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Abstract

Tor is a privacy-preserving network that enables users to browse the Internet anonymously.

Although the prospect of such anonymity is welcomed in many quarters, Tor can also be

used for malicious purposes, prompting the need to monitor Tor network connections.

Most traffic classification methods depend on flow-based features, due to traffic encryption.

However, these features can be less reliable due to issues like asymmetric routing, and

processing multiple packets can be time-intensive. In light of Tor’s sophisticated multi-

layered payload encryption compared with nonTor encryption, our research explored

patterns in the encrypted data of both networks, challenging conventional encryption

theory which assumes that ciphertexts should not be distinguishable from random strings

of equal length.

Our novel approach leverages machine learning to differentiate Tor from nonTor

traffic using only the encrypted payload. We focused on extracting statistical hex

character-based features from their encrypted data. For consistent findings, we drew

from two datasets: a public one, which was divided into eight application types for more

granular insight and a private one. Both datasets covered Tor and nonTor traffic. We

developed a custom Python script called Charcount to extract relevant data and features

accurately. To verify our results’ robustness, we utilized both Weka and scikit-learn for

classification.

In our first line of research, we conducted hex character analysis on the encrypted

payloads of both Tor and nonTor traffic using statistical testing. Our investigation

revealed a significant differentiation rate between Tor and nonTor traffic of 95.42% for

the public dataset and 100% for the private dataset.
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The second phase of our study aimed to distinguish between Tor and nonTor traffic

using machine learning, focusing on encrypted payload features that are independent of

length. In our evaluations, the public dataset yielded an average accuracy of 93.56%

when classified with the Decision Tree (DT) algorithm in scikit-learn, and 95.65% with

the j48 algorithm in Weka. For the private dataset, the accuracies were 95.23% and

97.12%, respectively. Additionally, we found that the combination of WrapperSubsetE-

val+BestFirst with the J48 classifier both enhanced accuracy and optimized processing

efficiency.

In conclusion, our study contributes to both demonstrating the distinction between

Tor and nonTor traffic and achieving efficient classification of both types of traffic using

features derived exclusively from a single encrypted payload packet. This work holds

significant implications for cybersecurity and points towards further advancements in

the field.
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Chapter 1

Introduction

This introductory chapter serves as an overview of our research, providing all the

necessary information to help the reader comprehend the main aspects of this study. We

begin by highlighting the importance of this research, followed by specifying the problem

statement, which includes a discussion of potential challenges. Our study employs a

systematic approach that involves formulating and testing hypotheses. Therefore, the

research questions that guide this study are integral to formulating these hypotheses. To

provide a comprehensive understanding of our research, we define the research objectives,

which help to establish the study’s scope and conceptual framework. At the end of the

present chapter, a thesis outline gives a brief synopsis of each chapter, providing the

reader with a clear understanding of the topics that will be addressed throughout the

remainder of the thesis.

1.1 Background and Motivation

The World Wide Web has become an indispensable component of our daily lives,

eliminating communication boundaries for people all over the world. The number of

people accessing the web via various kinds of electronic devices is growing day by

day. The web might be a perfect tool if users comprehend the potential dangers that

can arise when browsing and use it prudently and smartly. When accessing the web

through standard browsers such as Google Chrome and Internet Explorer, these tools
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do not fully protect users’ privacy. In the standard web browsing scenario, which can

be termed as nonTor traffic, data transmission is more transparent. When employing

security measures, nonTor traffic typically employs Transport Layer Security (TLS) for

encrypting data packets during its transfer. The essential purpose of this encryption

is to provide security and privacy for web-based transactions. Typically, when we

browse the web, any authorities, such as the government, spies or our Internet Service

Provider (ISP) can obtain information on our browsing habits. These entities may be

motivated to profit from targeted adverts as well as online tracking, leading to potential

cybersecurity threats. There are several techniques to protect user privacy while online,

including connecting to a Virtual Private Network (VPN), using browsers in anonymous

surfing modes (e.g., Incognito, in Chrome), using privacy-preserving search engines

(e.g., DuckDuckGo or Swisscows), and utilising the well-known anonymity-focused Tor

browser. This study focuses on characteristics of the Tor network that underpins the

operation of Tor browsing.

Tor, originally developed by the United States Naval Research Lab, is a popular tool

that provides privacy and anonymity for network users. Its primary purpose is to shield

user identities from traffic monitoring and surveillance, making it a valuable resource

for those seeking freedom in their online activities. In contrast to the single-layer TLS

encryption typical of nonTor traffic, Tor makes use of multiple layers of encryption. This

multi-layer approach, often termed ‘onion routing’, is designed to wrap data in several

encryption layers corresponding to the randomly chosen relay nodes it passes through.

While TLS in nonTor ensures data confidentiality for a direct communication path, Tor’s

use of TLS obscures both the data and the routing information, making it more complex

and secure. However, the benefits of Tor also give rise to potential misuse by malicious

actors. For those managing the technology, it becomes crucial to find a middle ground

between allowing legitimate users to benefit from Tor’s privacy features and preventing

its exploitation for nefarious activities.

Numerous studies (Faizan & Khan, 2019; Liggett et al., 2020; Monk et al., 2018;

Owen & Savage, 2015) have documented the wide range of illegal services facilitated

by the Tor network, including drug trafficking, fraud, counterfeiting, weapons sales,
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terrorism, child abuse, and sale of illegally obtained private and sensitive information.

High-profile cybercriminal activities using the Tor network include the Silk Road darknet

marketplace (Liggett et al., 2020) and Command and Control (C&C) communications for

network exploit like Mevade Botnet (Hopper, 2014), ChewBacca malware (Mirea et al.,

2018), and CryptoWall 2.0 ransomware (Yetter, 2015). These examples illustrate the

exploitation of Tor’s user anonymity for nefarious purposes, prompting law enforcement

and governments to seek methods to block or monitor illicit Tor activity (Koch, 2019;

Lee et al., 2016).

While Tor effectively conceals user identity, location, and activities, it cannot fully

hide the network traffic generated during its usage. Traditional methods to prevent Tor

usage, such as blocking the public IP addresses of Tor relays and directory authorities,

have proven inadequate due to the use of Tor bridges and pluggable transports (Lee

et al., 2016; Mrphs, 2016). Nevertheless, simply blocking Tor is not an ideal solution, as

this would also restrict access for legitimate users who rely on Tor for privacy protection.

As a response to these challenges, Network Traffic Classification (NTC) techniques have

emerged as a potential solution for detecting and monitoring Tor traffic. These advanced

approaches aim to identify, monitor, and potentially manage Tor traffic, enabling its use

by legitimate users who require Tor’s privacy-enhancing features.

NTC encompasses a range of techniques for analysing packets transmitted across a

computer network. Simple classification methods rely on port numbers and presumed

protocols (Reynolds & Postel, 1992), but these techniques are often unreliable due to the

use of random ports by many applications. More advanced classification techniques, such

as Payload-based or Deep Packet Inspection (DPI), examine characteristic signatures

or patterns of strings found in the payload packets of specific applications. Despite

providing accurate results in some contexts, DPI fails when applied to encrypted packets.

Consequently, statistical-based classification methods that leverage Machine Learning

(ML) techniques have gained popularity in recent years (Cuzzocrea et al., 2017; Dainotti

et al., 2011; Lashkari et al., 2017; Mahdavi, Hassannejad, et al., 2018). Building

upon this trend, most ML-based classification techniques rely on flow-based features

arising from connection characteristics in the communication (A. Moore et al., 2013).
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These methods have been applied to various objectives, including malware detection

(Tran et al., 2020; Yeo et al., 2018), network intrusion detection (Gogoi et al., 2012;

Pektaş & Acarman, 2019), botnet detection (W. Wang et al., 2020), and protocol-based

classification (Bhargava et al., 2013; Schatzmann et al., 2010; Vinayakumar et al., 2017).

In this study, we aim to classify Tor traffic using ML while adopting a novel strategy

that does not rely on traffic flow characteristics. Instead, our approach focuses on

features derived solely from the encrypted payload. Although this may appear similar

to DPI, our method operates effectively on encrypted packets without compromising

the confidentiality of the packet payload. In fact, the features considered in this

innovative approach are the undecrypted contents of the encrypted payload. This

poses a challenge to the prevailing encryption theory, which posits that no information

should be learnable from encrypted data. However, due to the differences in encryption

mechanisms employed by Tor and nonTor networks, some distinctive characteristics

may be inadvertently exposed and allow for effective classification. Capitalising on this

potential vulnerability, our approach focuses on the following method. We measure

frequencies of possible hex digits (0-9, a-f) found in the encrypted payload in the TCP or

TLS/SSL layer. These counts are converted to ratios to ensure normalisation for different

payload sizes. The resulting hex character statistics-based features are examined using

statistical and ML approaches, to demonstrate their effectiveness as generic attributes

for distinguishing between Tor and nonTor network traffic.

1.2 Thesis Statement

This thesis presents a novel approach to classifying Tor traffic using ML, focusing on

features derived solely from the encrypted payload, rather than traditional traffic flow

characteristics. By analysing the statistical frequencies of hex digits in the encrypted

payload and employing advanced ML techniques, this research challenges the prevailing

encryption theory that encrypted data should reveal no observable patterns. Our findings

demonstrate the feasibility of distinguishing between Tor and nonTor network traffic

based on unique characteristics in their encryption mechanisms, offering a significant

contribution to the field of network traffic classification and cybersecurity.
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1.3 Problem Statement

The benefit of maximising users’ privacy through Tor incurs a negative impact in the

prospect of potential abuse of this anonymity. Malicious actors may exploit Tor’s

anonymity features to engage in illegal activities, either by accessing regular websites or

hidden services hosted on the Tor network, where a majority of illicit activities occur.

Consequently, monitoring connections to the Tor network becomes essential, especially

in cases where users may have malicious intent. Identifying illegal activities within Tor

traffic poses a considerable challenge; however, tracking who is using Tor is more feasible.

Several Tor traffic detection methods with high success rates have been reported but

each comes with limitations. Tor packet delivery, which involves routing traffic through

multiple proxy servers worldwide, is slower than regular traffic. As a result, many studies

on Tor traffic classification rely heavily on flow-based features of traffic flow. However,

these can be unreliable due to asymmetric routing, and the computation of multiple

packets for feature extraction can introduce processing delays. Moreover, while Tor

handshake traffic reveals distinct server names compared to nonTor traffic, this method

relies on the presence of TLS/SSL certificates, which are only visible at the beginning of

a connection (Lapshichyov & Makarevich, 2019).

To address these limitations, we propose a novel classification method for Tor traffic

based on hex character statistics analysis. This approach is particularly intriguing

because Tor achieves privacy for Internet browsing using multi-layer encryption, in

contrast to the single-layer encryption employed by nonTor traffic. The application of

multiple layers of encryption and distinct encryption mechanisms in Tor may influence

the distribution of data within its payload, defying the traditional encryption theory

that presumes encrypted data discloses no useful information for attackers. Despite this,

our goal is to investigate whether these characteristics can be leveraged as distinguishing

features for the automated identification of Tor traffic, utilising ML methods. Our

proposed method employs packet-based features, requiring only a single packet, and

demonstrates the ability to accurately distinguish Tor and nonTor network traffic types.

By addressing the limitations of existing traffic classification techniques, our research
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contributes significantly to the development of more effective methods to identify and

monitor Tor traffic, and thereby, may lead to stronger Internet security.

1.4 Research Questions and Hypotheses

As previously mentioned, one goal of encryption is to ensure that ciphertext does not

reveal information about the plaintext, even when an attacker has prior knowledge

(Katz & Lindell, 2020). However, for the purpose of privacy, the encryption processes

employed in Tor are more complex than those used in nonTor networks. These unique

encryption techniques, along with other distinct networking properties of Tor, could

potentially influence the distribution of data within its payload. This observation leads

to the formulation of the first research question and the corresponding null hypothesis.

Q1: Can we distinguish Tor from nonTor traffic based on their encrypted payload?

To address this question, we consider the following null hypothesis: H01 : There is no

difference between Tor and nonTor traffic in terms of encrypted payloads.

Building on the first research question and hypothesis, we seek to explore the ef-

fectiveness of a proposed approach in accurately distinguishing Tor traffic. Traditional

methods, especially those relying on flow-based features, need multiple packets from the

start to the end of a flow to compute features. This dependency can sometimes cause

unexpected timeouts, leading to process delays. In light of these challenges, our aim

shifts towards providing a more data-efficient means of identifying Tor traffic. Conse-

quently, we formulate the second research question and the corresponding null hypothesis.

Q2: Can we distinguish Tor from nonTor traffic using the encrypted payload in

a data-efficient manner? In addressing this question, we consider the following null

hypothesis: H02 : A single encrypted payload cannot be used to identify Tor traffic.
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1.5 Objectives and Scopes of Research

The research background and problem statement set the direction for identifying and

classifying Tor traffic, with an emphasis on investigating the unique characteristics of

encrypted payloads. By utilising statistical analysis and ML techniques, our aim is

to develop a novel, robust and effective method for distinguishing between Tor and

nonTor traffic, potentially enhancing network security and aiding law enforcement efforts

in monitoring Tor network activities. In light of these goals, we present our research

objectives as follows.

Research Objectives:

1. Develop an automated method to extract features based on hex character statistics

from both Tor and nonTor public and private datasets.

2. Study the differences in hex character statistics between Tor and nonTor encrypted

payloads based on statistical methods for understanding their underlying statistical

patterns

3. Evaluate the potential of classifying Tor and nonTor traffic based on features

derived from hex character statistics using ML techniques.

4. Propose a novel payload size-independent approach for data efficient Tor and

nonTor traffic classification.

Research Scopes:

1. To address the first objective, we deploy a custom-written script to extract en-

crypted payloads from raw traffic data, yielding four sets of features based on hex

character statistics essential for further analysis.

2. To address the second objective, we conduct a comprehensive statistical analysis,

encompassing both descriptive (visualisation) and inferential methods, to compare

hex character statistics-based features between Tor and nonTor encrypted payloads,

highlighting potential differences in hex character patterns.



Chapter 1. Introduction 9

3. To address the third objective, we experiment with various ML models, including

Decision Tree (DTs)-based, Random Forests (RFs) and k -Nearest-Neighbours

(kNN)-based algorithms, to assess their performance in classifying Tor and nonTor

traffic using character analysis.

4. To address the fourth objective, we investigate the correlation between features

and payload size to ensure the proposed methodology is robust against payload

size variations.

1.6 List of Publications

1. Choorod, P., & Weir, G. (2021). Tor traffic classification based on encrypted

payload characteristics. 2021 National Computing Colleges Conference (NCCC),

1–6.

2. Choorod, P., Weir, G., & Fernando, A. (2024). Classifying Tor Traffic Encrypted

Payload using Machine Learning. IEEE Access, doi: 10.1109/ACCESS.2024.3356073..

1.7 Thesis Outline

This thesis presents a novel quantitative analysis grounded in hypothesis testing to

illustrate the potential benefits of encrypted payload analysis for NTC. The following

thesis chapters appear as follows:

• Chapter 2 is divided into two parts. The first part provides an overview of the

principles underpinning this thesis, equipping the reader with the necessary back-

ground to understand the remainder of the thesis. This includes the fundamentals

of cryptography, protocols and their encryptions, an overview of the Tor network,

character analysis, statistical analysis, and the ML approach. The second part of

Chapter 2 reviews previous works in NTC, discussing various techniques, their

benefits, and drawbacks. The chapter then narrows its focus to works most relevant

to this thesis, specifically NTC in Tor.
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• Chapter 3 consists of two main sections. The first section presents the research

methodology, including an overview, research framework, and descriptions of

dataset collection, data preprocessing, statistical analysis, and ML approaches.

The characteristics of our research tools and validation approach are detailed here.

The second section describes the practical application of the methodology, covering

data collection, raw data handling, and preparation of the system environment.

• Chapter 4 presents a comprehensive statistical analysis of sample Tor and nonTor

traffic, incorporating both descriptive and inferential statistics. This chapter offers

an interpretation of the statistical results, highlights the significant findings, and

discusses the implications of these outcomes in the context of the research problem.

• Chapter 5 details the experiments conducted in Tor traffic classification, covering

the selection and evaluation of various supervised classifiers. This chapter discusses

the performance of each classifier, their advantages and limitations, and the impact

of feature selection on the classification process. Additionally, it provides an

interpretation of the classification results, highlighting the significant findings and

their implications for the overall research objectives.

• Chapter 6 examines the significant findings and their connections to the research

questions and hypotheses. These findings offer crucial evidence in support of

encryption theory, asserting that various network data types should not leak

identifiable information and validating the classification tasks’ success. This

chapter provides a summary of the thesis findings, a discussion of the results, and

an evaluation of the study’s limitations. Finally, it highlights the contributions of

this work and suggests directions for future research.



Chapter 2

Related Work and Literature Review

This chapter aims to provide the reader with a comprehensive account of the present

research by addressing two major topics: an overview of the underlying technologies

employed in this work and a survey of related work on NTC, with an emphasis on the

Tor network.

Our study focuses primarily on the characteristics of encrypted packets in both Tor

and nonTor networks, which heavily rely on encryption and encrypted protocols. We

begin with an overview of encryption in the field of cryptography. A brief history of

cryptography, an explanation of cryptographic principles, and an overview of various

types of cryptography will also be presented. Encrypted packets are created according

to specific encryption protocols, which we will further explore in this section. After

discussing relevant aspects of encryption, we shift our focus to the Tor network, providing

an overview of its functionality, usage, and importance. Following that, we delve into the

technical aspects of the Tor network, including its construction, packet encryption, and

successful delivery of data to the destination. In the subsequent section, we showcase

the core methodology of this study which is character analysis. This has consistently

proven useful in highlighting features in a wide variety of texts and our chosen approach

to illuminating characteristics of encrypted Tor data packets.

Our proposed hypotheses associated with the Tor are addressed by two processes:

the first involves statistical analysis, while the second explores the use of ML techniques.

Accordingly, we will present these two analyses in this section. The latter part of this
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chapter reviews related work on NTC, encompassing previous research on Tor and nonTor

protocols. We will examine the methods employed, their strengths and weaknesses, and

how these aspects contributed to the development of our approach.

2.1 Cryptography

Cryptography is ubiquitous in the digital world, pervading various aspects of our

lives, from Internet applications to computational storage. It plays a crucial role in

safeguarding sensitive data. Encryption is a specific technique within cryptography that

aims to provide high levels of security, preventing information leakage from encrypted

messages. Ideally, distinguishing between encrypted messages of identical length should

be impossible, as per the fundamental principles of cryptographic design, which requires

that no information about the original content should be revealed. This presumption

represents a significant challenge in our research. Two of our null hypotheses reflect this

view by stating that there should be no observable distinction between Tor and nonTor

traffic in terms of encrypted payloads (H01), and that a single encrypted payload should

not be sufficient to identify Tor traffic (H02). This section highlights the significance of

robust cryptographic design and delves into other aspects of cryptography.

2.1.1 Overview

While some information is accessible to the public and not considered private, sensitive

data such as passwords, personal information, and credit card numbers, or secret military

communication, require confidentiality. In these cases, cryptography is used to disguise

the original message and ensure secure transmission. Cryptography involves two main

processes: encryption and decryption. Encryption utilises various techniques to transform

an understandable message, called plaintext, into an incomprehensible message, called

ciphertext. This transformation typically involves the use of a (secret) key, which is

a critical component in ensuring that only authorised parties can access the original

data. The key is used to encode the plaintext and, during decryption, the same or

a corresponding key is used to decode the ciphertext back into the original plaintext,
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ensuring the data remains secure from unauthorised access. Decryption is the reverse

process of recovering the original message from the ciphertext, often utilising the same

or a corresponding secret key. Figure 2.1 provides an example of the encryption and

decryption processes.

Figure 2.1: Encryption and decryption

Early evidence of data confidentiality dates back to ancient Egypt around 1900 BC,

where a substitution method was used to replace unusual hieroglyphic symbols with

customary ones, concealing the meaning of the writings (McDonald, 2015). Throughout

history, many other cryptography techniques have been employed. However, this section

will only cover a few early ciphers, summarised from Katz and Lindell (2020), along with

their flaws before moving on to the development of modern cryptography as progress

toward maximising security.

One of the earliest, simplest, and best-known ciphers is the Caesar Cipher, introduced

by the ancient Roman emperor Julius Caesar to safeguard his military communications.

The Caesar cipher is based on a substitution method by shifting the alphabet three

positions forward. Caesar’s ciphertexts are easily decipherable by sliding backwards three

positions. To address the weakness of using the fixed key, the shift cipher introduced the

use of a total of 26 potential keys in English letters, increasing the number of ciphertext

possibilities. Unfortunately, a brute-force attack that tries every conceivable key in the

encrypted string can break it. To overcome this weakness, the fixed shift cipher was

improved to the mono-alphabetic substitution cipher, allowing for arbitrary one-to-one

pairings, resulting in the key space size being 26! or around 280, making a brute-force

attack impractical. Despite this improvement, statistical patterns of language can still

be used to attack mono-alphabetic substitution ciphers using frequency analysis. To

conquer such an attack, the poly-alphabetic shift cipher, also known as the Vigenère

cipher, was introduced. It was known to be the strongest cipher at that time, but Charles

Babbage, a British cryptographer, eventually broke it (Kahn, 1973; Schrödel, 2008).
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The history of cryptography reveals that many adopted schemes have been com-

promised in time, whether quickly or after years of use. Interestingly, advancements

in computing technology have made it easier to break codes, making it challenging to

create unbreakable ciphers. Classical cryptography was considered more of an art than

a science because it lacked complex techniques to keep messages secure, unlike modern

cryptography, which uses sophisticated mathematical theories to improve encryption

and decryption mechanisms. To meet the rigorous demands of modern cryptography,

a cryptographic design must adhere to three principles: 1) Formal Definitions; 2) Pre-

cise Assumptions, and 3) Security Proofs (Katz & Lindell, 2020). These principles

differentiate modern cryptography from its predecessors.

Principle 1 – Formal Definitions. Formal definitions serve as the foundation

of modern cryptography design, facilitating precise explanations of potential threats

and the security guarantees required to construct cryptographic schemes. A scheme

is considered secure if it satisfies the definition; otherwise, it is deemed inadequate.

Therefore, it is essential to establish a formal definition of a secure encryption scheme,

as suggested by Katz and Lindell (2020, p.19):

Regardless of any information an attacker already has, a ciphertext should

leak no additional information about the underlying plaintext.

This definition can be represented by the mathematical expression below.

Pr[C = c |M = m] = Pr[C = c]

In this equation:

• Pr denotes the probability.

• M and C are random variables representing messages and ciphertexts, respectively.

• m is a specific value (message) that the random variable M can take on.

• c is a specific value (ciphertext) that the random variable C can take on.
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The equation expresses that the probability of observing a specific ciphertext c

given that the message random variable M takes the value m is the same as just the

probability of observing that specific ciphertext c on its own. This encapsulates the

essence of perfect secrecy, asserting that the ciphertext appears random regardless of the

plaintext that generated it. An encryption scheme adhering to this principle demonstrates

perfect secrecy. Another definition of perfect secrecy is based on the indistinguishability

experiment, where an adversary intercepts a ciphertext and tries to determine which

one of two known messages was encrypted. The encryption scheme is considered to

provide perfect indistinguishability between messages if the probability of the adversary

correctly guessing the encrypted message is exactly 50%. This is equivalent to a random

guess, implying that the observed ciphertext provides no additional information to the

adversary about which of the two messages was encrypted.

Principle 2 – Precise Assumptions. For a thorough validation of a cryptographic

scheme’s security, all assumptions must be explicitly stated. This facilitates meaningful

comparisons between schemes based on distinct assumptions and allows for security

proofs to be constructed.

Principle 3 – Proofs of Security. In contrast to the historical design-break-patch

cycle of cryptography, contemporary cryptographic schemes rely on proofs of security that

assure no vulnerabilities can be exploited. A proven secure scheme is one that adheres

to precise cryptographic definitions and a specific set of explicitly stated assumptions.

Although the three-principle-based cryptographic approach provides a rigorous

foundation for security, it does not necessarily guarantee real-world security (Katz &

Lindell, 2020). In some measure, the present thesis seeks to exploit the limitation of

such security schemes when applied to a specific aspect of computer networking.

2.1.2 Types of Encryption

The historical cryptography mentioned earlier relies on a single key for both encryption

and decryption. When two parties wish to exchange a secret message, they must share

the cryptographic key before communication commences. If a third party obtains the

shared key, the encrypted message becomes vulnerable to exposure. To address this
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issue, two separate keys are employed in the encryption and decryption processes. One

key is designated for encryption, while the other is reserved for decryption. Generally,

only the encryption key is made public, and the decryption key is privately held by the

owner. Even if an adversary acquires the public key, the intercepted message remains

secure as long as the private key is uncompromised. The first scenario, involving a single

key, is referred to as symmetric-key cryptography, whereas the second scenario, which

utilises two distinct keys, is known as asymmetric-key cryptography (Behrouz, 2022).

1) Symmetric-key cryptography: This approach utilises a single secret key for

both encryption and decryption. Before initiating communication, the parties involved

must exchange the shared secret key over a public communication channel. This key

is securely stored and never shared again. The sender uses it to encrypt a message,

converting it into ciphertext, which is then sent to the recipient. The recipient decrypts

the message using the same key employed for encryption. This single-key usage scenario

is also referred to as private-key, shared-key, or secret-key cryptography (Johnson, 2019).

Several well-known symmetric algorithms exist, such as Triple-DES (3DES or TDES),

which employs a 56-, 112-, or 168-bit key. However, 3DES or TDES, which applies

the outdated Data Encryption Standard (DES) three times to enhance security, is too

slow. Consequently, it has been replaced by Advanced Encryption Standard (AES),

which utilises a 128-bit block size and a 128-, 192-, or 256-bit key. According to various

studies (Alenezi et al., 2020; Raigoza & Jituri, 2016), AES is regarded as the best

encryption algorithm for both encryption and decryption. This evaluation is consistent

with The National Institute for Standards and Technology (NIST)’s assessment, which

took security, cost, and implementation criteria into account (Abdullah et al., 2017).

Many widely used Internet applications, including WhatsApp and Facebook, as well as

cryptographic protocols like TLS and Secure Shell (SSH), employ AES (Nistico et al.,

2020).

2) Asymmetric-key encryption: This encryption method, also known as public-

key cryptography, necessitates the use of two keys: a private key and a public key. The

public key is distributed to anyone who wishes to encrypt data, while the private key is

kept secret and used for decryption purposes. Major asymmetric encryption algorithms
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include Rivest-Shamir-Adleman (RSA) (Kota & Aissi, 2022) and ElGamal (Rao, 2017;

Tsiounis & Yung, 1998). In addition to encryption schemes, public-key cryptography

has applications in network protocols, such as secret key exchange (e.g., (EC)DH) and

digital signatures (e.g., (EC)DSA) (Heninger, 2022) for enhancing security tasks.

Figure 2.2: Symmetric and asymmetric cryptography

Figure 2.2 illustrates the two major types of cryptography: symmetric-key and

asymmetric-key cryptography. Symmetric-key cryptography employs the same key for

both encryption and decryption, making it quick and easy to implement. However,

secure distribution of the key is necessary since anyone who intercepts it can decipher the

encrypted message. On the other hand, asymmetric-key cryptography utilises separate

keys for encryption and decryption, providing better security. However, it is more

complex, time-consuming, and resource-intensive than symmetric-key cryptography.

As previously discussed, modern encryption schemes aim to achieve perfect indis-

tinguishability, preventing adversaries from determining which of two messages was

encrypted. However, in practice, entropy-based techniques can distinguish between

encrypted and unencrypted messages (Tang et al., 2019; K. Zhou et al., 2020). Addition-

ally, entropy is one of the parameters used to evaluate the robustness of cryptographic

algorithms (Mousa et al., 2013; Mushtaq et al., 2017; Patil et al., 2016). Entropy

measures the randomness or unpredictability of a message and can be used to assess
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the security of encryption schemes. In this research, entropy will be utilised as one of

the properties to investigate the characteristics of encrypted messages in two different

network environments (Tor and nonTor), providing a comprehensive analysis of the

security and performance of encryption schemes in real-world scenarios.

2.1.3 Entropy

Entropy, represented by H, measures the unpredictability or uncertainty associated with

a random variable. Historically, Clausius introduced the concept in the physical sciences

during the nineteenth century, applying it to describe the equilibrium of thermodynamic

systems (Greven et al., 2014). This foundational idea was further expanded upon

in 1948 by Claude Shannon, who is often referred to as “the father of information

theory”. He provided a formula for entropy, showing how it measures the uncertainty in

information signals (Shannon, 1948). This concept forms the foundation for modern data

compression and transmission techniques (Verdu, 1998). Moreover, Shannon emphasised

its application in measuring the average information within letters of a text Shannon,

1951.

The mathematical formulation of Shannon’s entropy for a discrete source with

alphabet X is:

H(X) = −
n∑

i=1

pi log2 pi (2.1)

where pi denotes the probability of occurence of the ith character.

Applications of entropy span diverse domains (Natal et al., 2021). In biology, it

aids in discerning the disorder within symbolic DNA sequences (Das & Turkoglu, 2018).

Linguists leverage entropy to probe into the richness of lexicons, and hydrologic engineers

employ it to oversee various hydrological systems (Keum et al., 2017). In digital signalling,

entropy measures the integrity of transmitted data. As an example, transmitting the

binary sequence “11111111” and receiving “11110011” suggests bit-flips and potential

data corruption during transmission (Lemons, 2013).

To illustrate the concept of entropy further, consider a bucket containing a mixture
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of 100 green and red balls. The table below shows the entropy values for varying

distributions of these balls:

Table 2.1: Entropy values based on different distributions of green and red balls in a
sample set of 100 balls.

Distribution H (bits)

10% Green, 90% Red 0.469

20% Green, 80% Red 0.722

30% Green, 70% Red 0.881

40% Green, 60% Red 0.971

50% Green, 50% Red 1

60% Green, 40% Red 0.971

70% Green, 30% Red 0.881

80% Green, 20% Red 0.722

90% Green, 10% Red 0.469

The table displays entropy values (H) for different green and red ball distributions.

A 50:50 ratio has the highest entropy of 1 bit, indicating maximum unpredictability.

As the distribution becomes more skewed (e.g., 90:10 or 10:90), the entropy decreases,

showing a reduced level of unpredictability.

In cryptography, randomness is a crucial requirement, as information should not be

vulnerable to adversary guessing. Entropy is utilised in the analysis of cryptographic con-

structions and key generation to measure the randomness or uncertainty of the characters

appearing in the ciphertext, providing insight into the performance of cryptographic

algorithms, as discussed in Patil et al. (2016) and Sanap and More (2021). More secure

algorithms result in higher unpredictability or entropy, as they are less susceptible to

guessing or frequency analysis. Similar to data encryption, data compression typically

also leads to high entropy (Croll, 2013; Lyda & Hamrock, 2007; Mamun et al., 2015).

The entropy in a ciphertext can be computed using Equation 3.4. In Chapter 4, entropy

will be demonstrated as a means of estimating the randomness of encrypted payloads

for two types of networks, Tor and nonTor, based on a single hex character.
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A brief overview of cryptography has been presented, highlighting its primary

objective of ensuring security and preserving confidentiality. This objective is evident

in the widespread utilisation of cryptography for safeguarding data, with modern

cryptography being integrated into various computer systems for numerous security

applications. These include file encryption on disk, digital content protection (Diehl,

2012), blockchain technology (Yaga et al., 2019), secure payment card transactions,

secure wireless traffic technologies via radio signals such as Wi-Fi, cellular and Bluetooth

networks, encrypted web traffic over Hypertext Transfer Protocol Secure (HTTPS),

and enhanced privacy for Internet users through the Tor network (Martin, 2017). The

latter two examples of cryptographic applications, which are pertinent to this study,

will be discussed in the next sections. This discussion will illustrate the critical role of

cryptography in securely delivering data while also achieving additional confidentiality

goals, such as authentication, integrity, and non-repudiation of origin.

2.2 Protocols and Their Encryptions

The research data in this study comprises a collection of network traffic traces, which are

directly related to network protocols. Therefore, this section provides an overview of the

Transmission Control Protocol/Internet Protocol (TCP/IP), which is the backbone of

the Internet, and TLS, which enables secure communication of TCP/IP network traffic.

A thorough understanding of these topics is essential for the proper execution of the data

preprocessing step, ensuring the accuracy and validity of the conducted experiments.

2.2.1 TCP/IP Protocol Overview

The Internet is a global network that connects computers, and its fundamental purpose

is communication. The underlying technology for Internet communication is the TCP/IP

(Hunt, 2002), which is a reference model consisting of a suite of data communications

protocols. A protocol is a standardised set of rules for exchanging data between electronic

devices. The TCP/IP reference model governs how a particular computer is connected

and transmits data via the Internet to other computers. The concept of TCP/IP
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was developed in the 1970s by Vinton Cerf and Bob Kahn, and two years later, they

published a paper (Vint & Kahn, 1974) outlining the Transmission Control Protocol

(TCP) protocol, which provides all the transport and forwarding functions on the Internet

(Leiner et al., 1997). The TCP/IP architecture is a system of connections between

layers, each with its own set of protocols. The name TCP/IP is derived from the two

primary protocols, TCP and Internet Protocol (IP), although many other protocols

work in conjunction with them. The TCP/IP model was originally designed with four

layers, but it is occasionally seen with a five-layer structure (with a physical layer below

the link layer), which makes it simpler for computer scientists to analyse (Tanenbaum,

Wetherall, et al., 2021). In this research, the focus is on the analysis of data operating at

the top two layers, namely the application and transport layers. Therefore, the original

four-layer TCP model, which encompasses these layers, will be discussed in this context.

The four TCP/IP layers, arranged from top to bottom, are named according to their

functions as follows: Application, Transport, Network, and Link layers. This layering

approach enables data to be transmitted down through the stack in a top-down fashion,

with each layer performing distinct functions and communicating with the layers above

and below it. The advantage of this layered structure is that any layer or service can

be changed without affecting the others, making it easier to maintain and upgrade the

network protocol (Fall & Stevens, 2012).To ensure proper delivery and communication,

each layer of the stack adds control information called a header in front of the data to be

transmitted. While the text-based headers of the Application Layer provide higher-level

protocol-specific information, the fixed-size headers in the lower layers primarily guide

the data’s transmission across the network. Each layer considers the data sent from the

adjacent layer as data and adds its own header to it. This process of adding a header at

every layer is known as encapsulation. The architecture of the TCP/IP stack is depicted

in Figure 2.3, along with the structure of additional data at each layer.

The following is an explanation of the primary functions of each TCP/IP layer, as

well as the mechanism by which data is sent from the top layer to the bottom layer:

1. Application Layer is the topmost layer of the TCP/IP stack, where applications

access network resources. This layer provides services to the end-users and enables
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Figure 2.3: Data delivery from source to destination in the TCP/IP stack (adapted from
Behrouz, 2022)

communication between different applications using standard protocols such as

Hypertext Transfer Protocol (HTTP) for web browsing, File Transfer Protocol

(FTP) for file transferring, Simple Mail Transfer Protocol (SMTP) for email, SSH

for remote login, etc (Hunt, 2002). The protocols at this layer focus on how to

represent, reconstruct, and interpret data. The actual data to be transmitted

called the application payload, is a portion of a packet in network traffic and is

the primary focus of this study. The payload structure will be discussed in the

following section.

2. Transport Layer. The Transport Layer facilitates data transport through two crucial

protocols, TCP and User Datagram Protocol (UDP). TCP is a connection-oriented

protocol that ensures accurate and complete message delivery by providing a

retransmission mechanism for missing data. In contrast, UDP is a simpler transport

protocol that does not offer a retransmission mechanism for lost packets; it only

guarantees data correctness, not completeness. Consequently, UDP prioritises

transmission speed over data reliability. TCP is implemented when reliable message

delivery is necessary, while UDP is employed when transmission delay is a more

significant concern than occasional data loss (Hunt, 2002). For instance, email

utilises TCP to ensure that recipients receive the same content as the sender.
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On the other hand, streaming/real-time media protocols like Web Real-Time

Communication (WebRTC) typically operate over UDP because a continuous data

flow is preferred, and minor data loss has no significant impact on users. However,

they can also be used with TCP if required (Santos-González et al., 2017).

At this layer, the initial encapsulation occurs, with a first header being added to

the application payload (collectively referred to as segments). The header contains

essential protocol information, such as source and destination ports, header length,

flags, etc., which is necessary for the accurate control of packet delivery. Within

the Transport Layer, one widely recognised parameter is transport ports or simply

ports. Well-known ports were previously used to define specific applications and

were considered crucial attributes for classifying application types. However, with

the advent of dynamic ports, port-based classification has become obsolete (Nguyen

& Armitage, 2008; Velan et al., 2015). In computer networks, a combination of the

transport protocol, source and destination IP addresses, and source and destination

ports form a 5-tuple. A series of packets sharing the same 5-tuple values is known

as a flow (Nguyen & Armitage, 2008). Since it is presumed that each application

possesses distinct statistical flow properties, such as packet sizes and time-based

features (Lashkari et al., 2017), flow features have become vital attributes in NTC.

This method follows the limitations of port-based and payload-based classification,

enabling traffic classification without compromising users’ privacy. However, the

drawbacks of flow features have led to the development of our approach, which

will be discussed in detail in Section 2.6.4.

3. Network Layer. The Network Layer is responsible for data addressing and routing,

determining the optimal path within the network. IP is the prevailing protocol

that manages packet delivery at this layer. Similar to the Transport Layer, the IP

header is added to the Transport Layer’s data (collectively referred to as packets).

The most crucial information in the IP header includes the source and destination

IP addresses, which identify the sending and receiving hosts.

4. Link Layer. Sometimes referred to as the Network Access Layer. This layer is
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the lowest one and closest to the physical network. It provides an interface for

connecting to network hardware. The widely used link layer protocol is Ethernet.

The Ethernet protocol appends its header and an additional trailer to packets

(colloquially known as frames) received from the Network Layer. The Ethernet

frame then physically transmits data in the form of binary 1s and 0s, enabling a

computer to understand and transmit it through physical media to the Ethernet

network (Goralski, 2017).

The binary information from the sender’s link layer is routed through several network

devices until it reaches the receiver’s link layer on the destination device. Before

forwarding the data to the layers above, each layer removes its header, a process called

decapsulation, leaving the data portion the same as that at the sender’s corresponding

logical level. The data delivery process is complete when the transmitted data reaches

the same layer as the sender.

Network Packet Structure

As previously discussed, a network packet consists of two parts: the header and

the payload. The header, located at the beginning of the packet, contains metadata

in plaintext, which is essential for communication between the source and destination.

The payload constitutes the actual data or application data of the entire transmitted

message and can be in plaintext or ciphertext, depending on the need for secure data

transmission. In the early days of the Internet, protocols transmitted data in plaintext,

which was accessible to anyone who intercepted it. At that time, there were only a small

number of people online, and mutual trust rendered encryption unnecessary. Later, as

the Internet’s popularity and range of applications grew, the need to secure online data

communication became increasingly important. As a result, data encryption has evolved

into a standard feature of data transmission.

Within each layer of the TCP/IP stack, there is a variety of alternative protocols

for securing communications. Nonetheless, our focus will be on the initial encryption of

application data that takes place at the Application Layer before being passed to the

Transport Layer. Several encryption techniques are responsible for this process; however,
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based on the datasets used in our analysis, we will only discuss the relevant encrypted

protocols, such as TLS, SSH, and proprietary protocols, in the subsequent sections.

Figure 2.4: The structure of unencrypted and encrypted packets

Figure 2.4 illustrates the structure of both unencrypted and encrypted packets.

Numerous Internet protocols, such as HTTP, SMTP, and FTP, utilise plaintext payload

data. On the other hand, more recent secure protocols, including HTTPS, SSH, and

other secure proprietary protocols, employ encrypted payload data. The content of

the encrypted payload remains unreadable and is represented by network analyser

tools in various formats such as binary, hex, and ASCII. When comparing these three

representations, the binary format consists of only 0s and 1s, making it more difficult

to read and write large values. In contrast, the hex format uses a base-16 numbering

system with 16 characters (0-9, a-f), making it easier to read and write large values.

Moreover, encrypted data often contains non-printable characters that do not map well

to ASCII characters, complicating the analysis. In contrast, the hex representation

can accommodate both printable and non-printable characters, allowing for a more

accurate and comprehensive analysis of encrypted data. Consequently, this study

analyses characters based on the hex format, as it is a suitable analysis method.

TCP Segmentation

To make network communication efficient, application data needs to be sent in smaller

pieces. This is one of the responsibilities of the Transport Layer, called segmentation.

Segmentation occurs with TCP but not with UDP. TCP divides the data received from

the upper layers into transmittable segments, with each segment containing a sequence

number, acknowledgement numbers, and other information that occupies the header

information. These numbers allow the Transport Layer to accurately reassemble the

message upon arrival at the destination, as well as identify and replace packets lost
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during transmission. The size of these chunks is determined by the Maximum Segment

Size (MSS), or the parameter of the maximum size of packets that can be sent over a

network. Various factors, depending on the specific TCP stack implementation, affect

MSS. TCP typically calculates the MSS based on the Maximum Transmission Unit

(MTU) value managed at the Network Layer, but many implementations use segments of

512 or 536 bytes (Goralski, 2017). The process of breaking packets into smaller parts can

also occur at the Network Layer and is known as IP fragmentation. The most common

IP fragmentation takes place with UDP traffic but not with TCP traffic (X. Wang &

Cronin, 2014). The reverse operation of segmentation and fragmentation on the receiving

side is called TCP reassembly and IP reassembly, respectively.

This study makes use of the payload in the form of segments represented in hex

format. As previously explained that the payload encrypted by various encryption

protocols in the Application Layer is passed down to the Transport Layer. These

encrypted payloads are then divided into smaller segments, as previously described, each

with its own headers and payloads. It is these segments that are examined in this study.

2.2.2 TLS

The TLS protocol is essential for secure communication between applications over the

Internet, providing end-to-end encryption. It offers authentication, confidentiality, and

data integrity services, ensuring the security of data for all applications running above

it. Initially designed to encrypt HTTP connections, TLS has since been extended to

other Internet traffic types, including those used in the Tor network, which is the focus

of this research. As TLS is implemented between the Application and Transport Layers,

outgoing application data above the TLS layer is wrapped and encrypted using the TLS

protocol, resulting in ciphertext generated by various TLS applications. This encrypted

payload data will be analysed to determine the characteristics of randomised character

distributions generated using different encryption schemes between Tor and nonTor

networks.

TLS is a descendant protocol of Secure Socket Layer (SSL), which was first imple-

mented by Netscape in 1994 (Ristic, 2015). The initial version of SSL, SSL 1.0, was
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never released due to significant security bugs. SSL 2.0 was the first public release in

1995, followed by SSL 3.0, which was a complete redesign of the protocol and the final

version of SSL. In 1996, the TLS protocol was introduced by the Internet Engineering

Task Force (IETF) 1 as an improved version of SSL. Since then, TLS has undergone

four releases: TLS 1.0 [RFC2246], 1.1 [RFC4346], 1.2 [RFC5246], and 1.3 [RFC8446].

The first two versions, TLS 1.0 (Dierks & Allen, 1999) and TLS 1.1 (Dierks & Rescorla,

2006), were vulnerable to dangerous flaws, leading to the release of TLS 1.2 (Dierks &

Rescorla, 2008) in 2008. Currently, TLS 1.2 is the most widely used and considered

reasonably secure. However, discovered attacks due to flaws in cryptographic ciphers

and algorithms led to the significant improvement of TLS 1.3 (Rescorla, 2018) in 2018,

which is the most recent and considered the strongest and safest version of the TLS

protocol. At the time of writing, only TLS 1.2 and 1.3 are still active versions. Although

the terms SSL and TLS are often interchanged or written as SSL/TLS due to their

similar purposes, TLS is the more commonly used protocol, as SSL is no longer in use.

Therefore, the term TLS will be used throughout this thesis.

To maximise security during deployment, TLS employs a combination of symmetric

and asymmetric cryptography to maintain a fair balance between security and efficiency

while ensuring secure data transfer. Asymmetric encryption occurs first during the

TLS handshake process, where the client and server agree on new keys, called session

keys, to be used for symmetric encryption in the TLS session communication. Once the

connection is successfully established, TLS uses the pre-agreed symmetric or session

keys to encrypt and transmit data.

As previously mentioned, TLS 1.2 and 1.3 are the currently utilised versions, and

both appear in our datasets. The network traffic from the public source was captured

in 2016 (Lashkari et al., 2017), while the private source was captured in 2020 (see

Section 3.4.1). A thorough examination revealed that nonTor traffic of both datasets

employs TLS 1.2 and 1.3, whereas Tor traffic of both datasets only uses TLS 1.2. This is

consistent with the Tor Protocol Specification2, which indicated that TLS support would

be added to the Tor browser in 2020 (Dingledine & Mathewson, 2022). Consequently,
1https://www.ietf.org/
2https://github.com/torproject/torspec/blob/main/tor-spec.txt
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TLS 1.2 and 1.3 will be addressed as the technology implemented in these datasets. The

general processes of TLS will be discussed first, followed by a comparison of the two

versions. We will then discuss the deficiencies of TLS 1.2, which led to the development

of TLS 1.3.

TLS operates in two phases, each controlled by a separate protocol. The handshake

protocol governs the first phase, which utilises asymmetric cryptography and digital

certificates for authentication, while the record protocol controls the second phase,

which employs symmetric cryptography for data encryption. The purpose of the first

phase is to authenticate two parties using digital certificates so they can exchange a

secret key to be used in symmetric encryption. The primary steps involve negotiating

the protocol version and selecting a cryptographic algorithm defined in cipher suites.

Once the agreed-upon algorithms are chosen, the parties authenticate each other using

asymmetric cryptography and digital certificates, ensuring the authenticity of the parties

involved. Following successful authentication, the two parties engage in a key exchange

process, often using the Diffie-Hellman key exchange protocol, to collaboratively generate

a shared secret key for session encryption without directly transmitting the key. This

ensures that even if an eavesdropper listens to the entire handshake, they cannot derive

the shared secret. With this shared secret established, the second phase can begin,

focusing on encrypting bulk data. During this phase, transmissions from multiple data

streams are encrypted collectively using the shared key. Upon receiving the encrypted

message, the recipient checks for data modification using the Message Authentication

Code (MAC) to ensure that the message has not been altered, thus maintaining data

integrity. If no modifications are detected, the message is decrypted using the same

symmetric secret key.

Both TLS 1.2 and 1.3 have two primary phases, but they differ in specifics. TLS 1.2

necessitates a full handshake, requiring two round trips to complete. In contrast, TLS

1.3 only requires one round trip, allowing the client to begin sending data immediately

after the first round trip. This process is known as TLS False Start and reduces protocol

round-trip latency. However, TLS 1.3 can further outperform with 0 RTT. Data from

previously visited websites can be transmitted to the server along with the first message,
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resulting in a round trip time of 0. TLS 1.3 employs 1 RTT or 0 RTT instead of 2 RTT,

significantly increasing speed. The newer version not only enhances performance but

also offers improved security. TLS 1.3 eliminates vulnerable ciphers such as CBC-mode

and RC4, thus no longer supporting unnecessary or insecure ciphers. The Diffie-Hellman

algorithm for shared secret key exchange, as used in TLS 1.2, is considered less secure

than the Ephemeral Diffie-Hellman (EDH) key exchange protocol implemented in TLS

1.3, which generates a one-time key for the current network session. The key is discarded

at the session’s conclusion. If an attacker obtains both the private key and the encrypted

message, the data remains secure. This feature, known as perfect forward secrecy,

represents one of the most significant improvements in TLS 1.3.

Several important differences between the two versions of TLS are relevant to our

work. For instance, the improved handshake process in TLS 1.3 results in fewer round

trips and packet exchanges compared to TLS 1.2. Additionally, while both versions

can utilize the Diffie-Hellman key exchange, TLS 1.3 mandates key exchange methods

that provide perfect forward secrecy. In contrast, earlier configurations of TLS 1.2

allowed the use of RSA key transport, a mechanism that could compromise security

if the server’s private key was ever obtained. This shift ensures enhanced security in

TLS 1.3, as the compromise of a long-term key cannot be used to decrypt past sessions.

This understanding of the differences and their implications will be valuable during the

packet investigation in Chapter 3.

2.2.3 Other Encrypted Protocols

Although most Internet applications use TLS for secure communication, other security

protocols also provide robust safeguards for them. The use of encryption in other security

protocols visible in the datasets, such as SSH and proprietary security protocols, will be

discussed further below.

SSH

SSH (Barrett et al., 2009) is a secure remote administration protocol that enables users

to execute commands on remote servers through the Internet. SSH operates at the
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Application Layer and implements cryptographic techniques to secure communication

and is typically executed over TCP (as defined in RFC 4251). Telnet, a formerly popular

unencrypted remote connection service, has been entirely replaced by SSH. The SSH

connection involves both symmetric and asymmetric encryption. The public and private

key mechanisms are employed for key creation and exchange, while a shared key is used

for data encryption within the SSH session. These processes bear resemblance to TLS,

which is previously discussed in Section 2.2.2. While SSH and TLS share the objective

of safeguarding user data from potential exposure, their communication fundamentals

differ in certain aspects. For instance, SSH uses port 22, whereas TLS uses port 443.

Additionally, SSH is utilised to execute remote commands on a server, while TLS is

designed to establish secure information exchange. Unlike TLS, which implements a

server certificate for client and server authentication, SSH uses a username and password

to authenticate and create the connection.

Furthermore, SSH may also be utilised to encrypt data transferred through other

network protocols such as FTP. By executing FTP over SSH, which is referred to as

SSH File Transfer Protocol (SFTP), secure remote service can be enabled. This study

analyses the encrypted segment payload of application data generated by the SFTP,

which has been encrypted with the SSH protocol.

Proprietary Security Protocols

The protocols discussed above are commonly known as standards or open protocols,

implying that they are open-source and can be used by anyone to build and produce

their own products. The majority of applications use this type of protocol. However,

some protocols are intended to be exclusive and cannot be used publicly. These protocols

are referred to as proprietary protocols. They are developed and designed for a specific

purpose by a single organisation. Typically, the owner enforces restrictions via patents

and trade secrets and does not disclose the protocol’s technical specifications. This

lack of disclosure makes it challenging for outside parties to fully understand how these

applications operate, and as a result, classifying their network traffic becomes difficult.

As a proprietary protocol is implemented on the Application Layer, the encrypted



Chapter 2. Related Work and Literature Review 31

segment payload for analysis represents application data encrypted with proprietary

security protocols. Two examples of proprietary protocols used in the datasets of this

thesis are Spotify and Skype.

The reader has now gained a fundamental understanding of cryptography and network

protocols, as well as how these two principles collaborate to provide Internet users with a

sense of security. They also serve as a key component of the Tor network. The following

sections will explain what the Tor network is, how it functions, and how it offers privacy.

Knowledge of the Tor network will provide valuable insights into the characteristics of

Tor and nonTor packets and their differences.

2.3 Tor

As the use of the Internet continues to grow, concerns regarding privacy have also

increased. There are various methods available for Internet users to maintain their

online privacy, including the use of VPN, proxy servers, mix networks, and onion routing

(Dutta et al., 2022a; Li et al., 2013). Among these methods, Tor is one of the most

widely adopted (Chakravarty et al., 2011; Platzer et al., 2020). and is renowned for its

ease of use, requiring no technical knowledge, and being freely available for download

(Shavers & Bair, 2016). This section provides an overview of Tor, discussing its nature,

circuit-building process, and packet movement within the Tor network.

2.3.1 Tor Background

Tor is a popular tool for Internet users to maintain their privacy and anonymity. It

operates as an overlay anonymous network situated in the Application Layer of the

TCP/IP protocol stack. Tor is known as The Onion Router because it employs the

onion routing technique to conceal user identities by encrypting packets multiple times

and decrypting multi-encrypted layer packets in a manner akin to peeling off an onion’s

layers. Tor has grown in popularity, with over two million users and a daily traffic

volume of above 200 Gbit/s (The Tor Project, 2021a). Tor is designed as a low-latency

communication system to enable real-time use of interactive applications such as web
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browsing, instant messaging, or SSH connections. This is in contrast to high-latency

anonymity systems like Mixmaster and Mixminion, where packet transport can take

approximately four hours on average, and sometimes up to several days (Annessi, 2014a;

Hopper et al., 2010; Murdoch & Zieliński, 2007). In addition, Tor is appealing to users

because it is open-source software, available for free download, and easy to use. Tor has

grown in popularity, currently serving an estimated two million users and processing a

daily traffic volume of 200 Gbit/s (The Tor Project, 2021a).

The origins of Tor can be traced back to the mid-1990s when mathematician Paul

Syverson and computer scientists David Goldschlag and Mike Reed, who were working

for the The United States Naval Research Laboratory (NLR), sought to develop a method

for anonymous Internet browsing. They developed a prototype of onion routing, which

combined encryption and private circuits. In the early 2000s, the onion routing concept

was refined into a new, next-generation design and implementation, which evolved into

the Tor project. The project was launched in 2002 and made publicly available in 2003

(Dutta et al., 2022b). The Tor development team released the formal design specification

for the Tor network Generation 2 in 2004 (Dingledine et al., 2004). Since 2006, Tor has

been maintained by a non-profit organisation known as the Tor Project3.

Tor has become an essential tool for individuals who seek privacy in their online

activities as their identities are completely concealed while accessing the Internet via the

Tor network. General Internet users utilise Tor to prevent their Internet information from

being traced by their ISP while they are online. Safe communication is necessary between

reporters and whistleblowers, and Non-governmental organizations (NGOs) workers can

establish remote connections to their organisation’s websites more securely without

revealing their true identities. Some activist groups use Tor to promote civil liberties

online while shielding their identities from government monitoring of suspicious websites.

However, the potential misuse of Tor by malefactors has turned it into a double-edged

sword. Various illegal services, such as drugs, fraud, counterfeiting, weapons, terrorism,

child abuse, and access to other illicit content, including stolen data, exist because of

Tor (Faizan & Khan, 2019; Guitton, 2013; Monk et al., 2018; Owen & Savage, 2015).
3https://www.torproject.org/
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Cybercriminal activities enabled by the Tor network, such as the Silk Road darknet

marketplace, the Mevade Botnet, the ChewBacca malware (Mirea et al., 2018), and

Cryptowall 2.0 ransomware (Yetter, 2015) are notorious examples. Consequently, there

is a need for law enforcement or governments to develop methods to block the illicit

usage of the Tor network (Koch, 2019; Lee et al., 2016). In response to this, several

research studies have attempted to explore methods for detecting Tor traffic, and these

will be discussed in the Related Work section in 2.7.

In addition to the Tor browser, Tor provides a range of other services, such as

Nyx for SSH connections, the Metrics Portal for Tor statistics, Tails for using Tor

in amnesic and live mode, and onion services or hidden services for hosting .onion

domain names. Despite its numerous advantages, a significant number of research has

identified weaknesses in Tor, particularly its low latency, which can be passively attacked

by monitoring the timing and volume of traffic entering and exiting the Tor network,

leading to user de-anonymisation (Annessi, 2014b; Karunanayake et al., 2020; Sun et al.,

2015). Although many studies have explored methods to compromise Tor, most of these

approaches rely on identifying Tor traffic. To expose Tor users’ online activities and

identities, a substantial number of Tor nodes must be hosted and analysed by specialists,

which can be a time-consuming endeavour. In certain instances, Tor users’ identities

were de-anonymised due to human errors, such as accidentally revealing their actual

email addresses. It is worth noting that the Tor Project website specifies that the correct

way to write Tor is with an uppercase ‘T’ followed by a lowercase ‘o’ and ‘r,’ rather

than all uppercase letters like ‘TOR’ as is commonly misunderstood (The Tor Project,

2021b).

2.3.2 Tor Network

The Tor network is built on the concept of onion routing. The underlying principle

of onion routing is that instead of a client communicating directly with a server, the

connection is routed through several nodes. Figure 2.5 illustrates the Tor network

compared to the conventional Internet. When a user accesses a website on the standard

Internet, the browser typically establishes a direct connection to the destination, as
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depicted in the packet form on the left side (a). In contrast, within the Tor network,

packets are routed to the destination through multiple nodes, with each relay modifying

the packets along the communication path.

(a) Normal Internet

(b) Tor Network

Figure 2.5: Comparison of connections in normal Internet and Tor network

The Tor network is comprised of numerous volunteer nodes worldwide that contribute

bandwidth to form Tor virtual circuits. Approximately 7,000 active nodes contribute

to the Tor network daily, as reported in The Tor Project (2021a). As more volunteers

support Tor by running a Tor relay, the network becomes faster, more robust, more

stable, and more secure for its users, since having more relays is generally advantageous.

However, the current Tor network is relatively small compared to the number of people

who need to use it. To help run a relay, individuals must have technical expertise and

dedication. The Tor Project website4 provides extensive information to guide relay

operators in setting up their systems. Responsibilities include ensuring the relay runs on

a server available 24 hours a day, seven days a week, and allocating at least 16 Mbit/s

(Mbps) of upload and download bandwidth.
4https://community.torproject.org/relay/
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Typically, Tor is made up of four main components;

1) Tor Client: The client launches the Tor browser on the local machine to connect

to the Tor network.

2) Onion Routers (ORs): ORs (also known as routers, nodes, or relays) carry

data between the client and the destination through a series of routers, which are three

by default, consist of the entry node, middle node and exit node. At each router, packets

are modified through encapsulation and decapsulation using the TLS protocol, which

will be further explained in the subsequent section.

3) Destination: Generally, this refers to any servers that a Tor client requests

access to.

4) Directory Servers: Also known as Directory Authorities, which deliver signed

directory documents containing a list of signed server descriptors and onion router

information, such as public keys and the status of each router. Consequently, clients

can promptly receive real-time updates on the Tor network’s status. Nine directory

authorities are hard-coded into the Tor software, enabling clients to obtain information

about onion routers to establish Tor circuits.

These components enable Tor communication operates smoothly. The process begins

with Tor traffic being encrypted in layers (like layers of an onion) at the Tor client.

This layered encryption traffic is then routed through a Tor circuit, which is created by

randomly selecting three ORs (Onion Routers) by default, using information from the

Tor directory service. It’s worth noting that increasing the number of nodes may result

in increased latency rather than improved anonymity. At each relay in the Tor circuit,

one layer of encryption is peeled away, revealing the next relay’s IP address, but not

the final destination. This process continues until the traffic reaches the last node, the

exit relay. Here, the final layer is decrypted exposing the destination ip address, and the

original data is sent to its intended destination. The user’s original IP address remains

hidden, thereby preserving their anonymity. Upon reaching the destination, a response

is triggered by the reverse process and returned through the same Tor circuit until the

requested data is received and decrypted at the originating Tor client. The steps of Tor

traffic communication will be discussed in more detail in the following section.
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2.3.3 Tor Traffic Communication

Tor uses a different approach to traditional communication methods. Rather than

transmitting traffic in its original packet format, Tor dispatches data in fixed-sized cells,

enhancing anonymity. For data transmission within the Tor network, circuits must be

established first. Setting up these circuits involves various encryption and decryption

operations. Tor uses both symmetric and asymmetric encryption techniques, including

public-key ciphers, to maintain security and privacy. This is similar to the TLS protocol,

but with more complex operations.

Tor Cells: The Tor network structures its traffic into fixed-size cells, each containing

512 bytes, with a header and a payload. The encryption of Tor traffic does rely on the

TLS protocol for the initial connection and the basic communication. Beyond that, Tor

adds an onion-like layering of encryption, especially when establishing circuits. Tor cells

can be classified into two categories: control cells and relay cells. Figure 2.6 illustrates

the structure of both types of Tor cells. The headers of all cells are not onion-encrypted,

allowing subsequent Tor routers to process them; however, the remaining cell components

are encrypted in the characteristic onion-like fashion.

Figure 2.6: The structure of control (above) and relay cells (below) (Dingledine et al.,
2004; Karunanayake et al., 2021; Saputra et al., 2016)

Each Tor control and relay cell contains a 2-byte circuit identifier (CircID) in its

header, denoting the circuit to which the cells belong. This design is essential since the

Tor network multiplexes multiple TCP streams across each circuit to enhance efficiency

and confidentiality. Furthermore, a 1-byte command (CMD) is included to identify the

cell type and its corresponding function. Control cell commands encompass padding

(to pad packets into fixed sizes), create (to establish a connection), created (to signify a

connection has been formed), and destroy (to dismantle a circuit). In contrast, relay
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cells consist of an 11-byte header in addition to a control cell, encompassing a stream

identifier (StreamID), a cryptographic integrity verification mechanism, and the length

of the relay payload (Len). Relay commands include relay data, relay begin, relay end,

relay teardown, relay connected, relay extend, relay extended, relay truncate, relay

truncated, relay sendme, and relay drop.

Tor network data is typically encapsulated into uniform 512-byte cells. When traffic

congestion occurs, cells may be amalgamated or divided into multiple MTU-sized packets

and a singular non-MTU-sized packet. Consequently, the size of IP packets transmitted

through the Tor network varies and appears random over time, diverging from fixed or

MTU sizes (Ling et al., 2012).

Tor Circuit Construction: For communication within the Tor network, the construc-

tion of a Tor circuit is a prerequisite, as illustrated in Figure 2.7. This process is initiated

when a user, Alice, requests a web page using the Tor Browser. While Alice interacts

with the browser interface, the underlying Tor software manages the intricacies of circuit

creation.

Initially, the Tor client requests a list of relays from the directory servers. The

software then automatically constructs the Tor circuit by randomly selecting three Tor

routers, sending a control ‘create’ cell to the first relay (OR1) in the circuit. In response,

OR1 dispatches a control ‘created’ cell back, indicating the establishment of the initial

relay connection.

To extend the circuit further, the Tor client sends a relay ‘extend’ cell to OR1 with

the address of the second OR (OR2). OR1 then forwards a control ‘create’ cell to OR2.

Upon receiving a control ‘created’ cell from OR2, OR1 packages it into a relay ‘extended’

cell, returning it to the Tor client. This sequence ensures the integration of two ORs into

the circuit. Typically, the Tor software adds three ORs to the circuit, so the procedure

is repeated until the third relay is incorporated, designating it as the circuit’s exit node.

Once the circuit is established, a TCP stream is launched. The Tor client sends a

relay ‘Begin’ cell through the circuit up to the final relay. At the exit node, a three-way

handshake is initiated with the intended destination web server. Upon completing the

TCP handshake, the exit node sends a relay ‘Connected’ cell through the circuit. This
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fully constructed circuit then manages the transmission of data requests and responses.

When the communication session is over, the Tor client sends a control ‘destroy’ cell to

each OR in the circuit, instructing each relay to terminate the connection.

Figure 2.7: Constructing a Tor circuit using two relays by browsing a web page (Dingle-
dine et al., 2004; Saputra et al., 2016)

Tor Traffic Delivering: In a normal network where a secure protocol is used, data

encryption happens only once at the sending machine, and the packets are securely

routed to the best path. However, the Tor network’s data delivery mechanism is different.

It involves a circuit creation process (discussed above) and several encryption and

decryption repetitions (discussed below).

Figure 2.8 illustrates the delivery of encrypted packets in the Tor network. In the Tor

circuit, the Tor client possesses three pre-established keys corresponding to the selected

relays. First, the IP address of the Exit relay C is incorporated into the innermost layer,

encrypted with key C. Subsequently, the IP address of the Middle relay B is added, and

the middle layer is encrypted using key B. Finally, the outermost layer is encrypted

with key A, following the addition of the IP address of Entry relay A. The multilayer

encryption is completed and transmitted through the established circuit.

Upon reception by Entry relay A, the outermost layer is decrypted using the previously
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Figure 2.8: Encrypted packets delivering in Tor network

agreed-upon key with the Tor client, unveiling the next hop, or Middle relay B ’s IP

address. Relay A subsequently forwards the remaining packet to Middle relay B. Similarly,

the outermost layer is decrypted using the key previously established with the Tor client,

revealing the next hop, or Exit relay C ’s IP address. Relay B then forwards the

remaining packet to Exit relay C. The Exit relay C repeats the process, decrypting the

outermost layer with the agreed-upon key, revealing the original packet as it appeared at

the Tor client before onion-like encryption, and finally transmitting it to the destination.

This final decryption at the exit node is not facilitated by Tor, as Tor does not provide

end-to-end encryption. Consequently, if a user seeks enhanced security for their data

after exiting the Tor network, employing encryption protocols such as HTTPS for the

Tor client is essential.

At the destination, the process is repeated in reverse order, utilising the same circuit

relays. At each node, response packets are individually encrypted with their respective

keys. When a packet reaches the Tor client, all encrypted layers are decrypted using

the shared keys of A, B, and C, exposing the original packet from the destination. This

Tor-based traffic communication ensures that each router communicates solely with its

adjacent nodes. For instance, the entry node is only aware of its communication with

the Tor client and the intermediate node, remaining oblivious to other nodes (e.g., the

exit node and the destination) along the message’s path.
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2.3.4 Tor Encrypted Payload

(a) Normal Internet

(b) Tor Network

Figure 2.9: Comparison of encrypted payload structures in nonTor (a) and Tor networks
(b)

In Figure 2.9, a comparison is presented between the number of encryption layers

used for outgoing and incoming packets in the nonTor and Tor networks. The figure

illustrates that packets at the Tor client are encrypted three times, resulting in three

encrypted layers, while packets at a nonTor client (using a secure protocol) are encrypted

once, resulting in a single encrypted layer. The number of encryption layers and variables

used in the encryption algorithms and key generation processes of Tor and nonTor can

differ, leading to variations in the characteristics of the ciphertext. These distinctions

may provide valuable insights into the security of encryption schemes used in various

network environments.

In summary, Tor employs the TLS protocol to secure its communication. It uses

asymmetric cryptography, especially the Diffie Hellman and RSA algorithms, for public

key exchange. Historically, 1024-bit keys were used, but such key lengths are now viewed
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as insecure. Today, it’s recommended to use a security parameter of 2048 bits or more

for RSA5. For bulk data transmission, Tor utilises symmetric cryptography, specifically

128-bit AES in Counter (CTR) mode, to encrypt and decrypt cells. This implies that any

traffic originating from a Tor client carries a triple-layered AES encryption, with each

layer specifically corresponding to the entry, middle, and exit relays in the Tor circuit.

Furthermore, Tor employs several other cryptographic schemes for various operations,

including path selection and congestion handling. While these schemes are not the focus

of this research, further information can be found in AlSabah and Goldberg (2016),

Dingledine et al. (2004), and Martin (2017) and the Tor Protocol Specification6.

We have presented background information on computer security-related topics,

which should help readers gain a solid understanding of these subjects and comprehend

the subsequent steps of our study. Our focus now shifts to character analysis, which is

the primary methodology of our research. We have chosen this approach based on its

extensive research and proven accomplishments, and we will provide further justification

for our decision.

2.4 Character Analysis

Character analysis constitutes the fundamental concept of the methodology employed

in this study, originating from textual analysis. The advent of the Internet has led to

exponential growth in online data, including emails, social media posts, publications,

and more. Textual analysis is instrumental in scrutinising texts and facilitating users in

efficiently obtaining relevant information. To enable machine processing for knowledge

and insights extraction, the unstructured data within these documents must be converted

into structured numerical data. Techniques such as Bag-of-Words (BoW) and Term

Frequency-Inverse Document Frequency (TF-IDF) (Kowsari et al., 2019) aid in transform-

ing text sentences into numeric vectors. These techniques are grounded in a statistical

approach that calculates word occurrences within the text. While BoW constitutes a

collection of frequency vectors, the TF-IDF model encompasses the significance of words
5Recommendations on key lengths can be found at https://www.keylength.com/
6https://github.com/torproject/torspec/blob/main/tor-spec.txt

https://www.keylength.com/
https://github.com/torproject/torspec/blob/main/tor-spec.txt
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based on their relative importance. A term is considered more significant if it appears

frequently in a target document and infrequently in other documents (Dang et al., 2020).

Word frequency-based analysis is an essential component of Sentiment Analysis (SA),

one of the most prevalent Natural Language Processing (NLP) applications. Although

statistical computational approaches have demonstrated success in text classification

(Falck et al., 2020; Luo, 2021; Singh et al., 2021), they have yet to be explored within

the context of computer networks.

This study uses character statistics analysis to examine the characteristics of en-

crypted payloads based on individual hex characters. Similar to the key steps in textual

analysis, such as data preprocessing to eliminate irrelevant characters and performing

character statistics analysis to obtain insightful information, our approach involves

data preprocessing to discard unnecessary data and extract the features from each hex

character of raw payload data. Statistical techniques and ML are then employed to

analyse these features and report insights on our approach.

2.5 Statistical Analysis

Statistical analysis is a process that involves the analysis, interpretation, and presentation

of large data sets to extract useful quantitative information concerning the sample

characteristics (Ott & Longnecker, 2015; Pagano, 2012). There are two types of statistical

analysis: descriptive statistics, which are used to describe the characteristics of a set

of observations, and inferential statistics, which are used to make inferences about a

broader population using data from a sample. Our study employs both types of statistical

analysis to support our research hypothesis.

Since there are various statistical techniques available for data analysis, it is essential

to choose the relevant techniques for our study based on the levels of measurement

(Fisher & Marshall, 2009). The levels of measurement classify the values assigned to

variables in relation to each other and are broadly categorised into three groups. The

nominal level is a variable measurement based on the names of the categories, such as

sex (male = 1, female = 2). The ordinal level is a variable measurement of variables

that cannot be measured directly, such as satisfaction level (1 = very unsatisfied, 5 =
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very satisfied). The continuous level is a measurement of infinite scales, such as weight

and temperature. Our study’s data is derived from the calculation of hex characters

within the ciphertext. As such, it falls under the continuous level of measurement. We

will analyse this quantitative data using descriptive statistics metrics and generalise the

results using inferential statistics, as further explained below.

2.5.1 Descriptive Statistics

Descriptive statistics employ various metrics to summarise the characteristics of a dataset

collected from either a sample or an entire population. Descriptive statistics typically

involve three primary measurements: distribution, which evaluates the frequency of sets

of data values; central tendency (e.g., mean), which estimates the midpoint or centre of

sets of data values; and variability (e.g., min, max and SD), which quantifies the spread

or dispersion of data. The quantitative data in our study consists of continuous variables

and will be measured using data frequency, mean, min, max, and SD. We will present all

descriptive statistics numerically and visually in graphs to facilitate comparisons. This

comparative summary will provide a preliminary characterisation of the two groups of

data from two different networks.

2.5.2 Inferential statistics

Inferential statistics are used to draw conclusions about an entire population based on

a sample data set. Hypothesis testing is a common application of inferential statistics

(Allua & Thompson, 2009). Two types of inferential statistics are parametric and

nonparametric tests, which are based on the frequency histogram graph plotting. A

parametric inference test is appropriate when the data distribution is normal or has a

symmetrical bell shape. Conversely, a nonparametric test is employed for data with

a non-normal distribution. Several methods can be used to test for the normality of

continuous data. The Kolmogorov–Smirnov test and the Shapiro–Wilk test are two

well-known methods for testing normality. Statistical software such as SPSS7 and PSPP8

7https://www.ibm.com/products/spss-statistics
8https://www.gnu.org/software/pspp/
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offer built-in functions for easy data normality testing. The Shapiro–Wilk test is best

suited for small sample sizes (n < 50), whereas the Kolmogorov–Smirnov test is more

appropriate for larger sample sizes (n > 50) (Mishra et al., 2019).

Given that our observational data is assumed to deviate from a normal distribution

and the data points are independent of one another, the appropriate statistical test to

examine the null hypothesis is the ‘Mann-Whitney U Test’, also known as the Mann-

Whitney-Wilcoxon (MWW) or Wilcoxon rank-sum test. This nonparametric test is

employed to compare the attributes of two groups of independent samples. Statistical

software packages such as SPSS and PSPP offer built-in functions to facilitate the

execution of the Mann-Whitney U Test. The test yields a p-value ranging from 0 to 1. If

the p-value is less than 0.05, the difference is considered statistically significant, providing

strong evidence against the null hypothesis, as there is less than a 5% probability of

it being accurate. Consequently, the null hypothesis is rejected, and the alternative

hypothesis is accepted. In contrast, if the p-value exceeds 0.05, the interpretation would

be the opposite, supporting the null hypothesis instead. Equation 2.2 describes the

Mann-Whitney U statistics by the following, for each group (Nachar et al., 2008):

U1 = n1n2 +
n1(n1 + 1)

2
−
∑

R1

U2 = n1n2 +
n2(n2 + 1)

2
−
∑

R2

(2.2)

where n1 represents the size of the first sample, n2 denotes the size of the second

sample,
∑

R1 refers to the sum of the ranks of the first sample when the samples are

arranged in order, and
∑

R2 corresponds to the sum of the ranks of the second sample

when the samples are sorted in order.

Our first analysis, which is based on statistical tests, is the initial step in addressing

the first research question: “Can we differentiate Tor from nonTor encrypted traffic

based on their encrypted payload?” Chapters 3 and 4 will detail how this statistical

analysis can aid in answering this question. In the following section, we will explore ML,

which is related to the second analysis and is also an essential tool in answering the
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second research question: “Can we efficiently distinguish Tor traffic using the proposed

approach?” ML is a broad area comprising many disciplines that can assist scientists

automatically in solving a wide range of real-world problems. Therefore, we can leverage

its applications to help clarify any ambiguities. Chapters 3 and 5 will also discuss how

ML can be involved in addressing this research question.

2.6 Machine Learning

ML approaches have become increasingly popular for automating computational tasks,

simplifying large and complex problems, and enabling faster and more efficient completion

of manual jobs. The appeal of ML lies in its ability to learn or be trained from meaningful

data and produce outputs for particular tasks with fewer lines of code than manual

programming would require. This section provides an overview of ML, its applications,

and its relevance to the research questions addressed in this study.

2.6.1 Overview

Early Artificial Intelligence (AI) techniques were primarily based on rule-based systems,

operating according to a predefined set of instructions. For example, email spam

filters sort emails based on blacklisted terms. However, these systems have significant

disadvantages when handling complex tasks, such as distinguishing between cat and

dog images or adapting to evolving spam strategies. When a new problem arises or an

existing one significantly changes, rule-based systems often require extensive manual

updates, which are both time-consuming and inefficient. To address these limitations,

ML, a subfield of AI, has emerged, offering a more flexible and efficient approach. ML

systems learn from examples rather than manually coding every possible rule. For

instance, an ML system can identify spam by studying examples of flagged emails, or

differentiate between cats and dogs by learning from labelled images. The ability to

automate the learning of repetitive tasks is one of the most important characteristics of

ML. Two well-known ML definitions are provided below.
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First, Arthur Samuel, a pioneer in the field of ML, described it in 1959 as “Field of study

that gives computers the ability to learn without being explicitly programmed.” (Bhavsar

et al., 2017; Samuel, 1959).

Second, a more contemporary definition from Tom Mitchell, author of a prominent ML

book, describes it in 1997: “A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P, if its performance at tasks

in T, as measured by P, improves with experience E.” (Mitchell, 1997).

These definitions share the notion of allowing computer systems to perform tasks

beyond traditional programming by intelligent self-learning from their surroundings. In

other words, ML refers to the ability of computer systems to improve their performance

on a specific task by learning from experience, without being explicitly programmed.

This involves the use of algorithms that enable computers to identify patterns and make

predictions based on the data they have been exposed to, and subsequently adapt to

new information to improve their performance. ML integrates various scientific domains,

including statistics, mathematics, and computer science, to achieve remarkable success in

a wide range of different applications, such as speech recognition, image processing, NLP,

autonomous vehicles, and many more. It has become a rapidly growing field of research

and development that is not only transforming traditional computer-related areas but also

extending its impact to various other disciplines, including biology, chemistry, physics,

medicine, and agriculture, while also addressing complex problems in cryptography.

The application of ML in cryptography facilitates cryptanalysis of cryptosystems,

such as cryptanalysis, password strength evaluation, side-channel attacks, encrypted

traffic classification, etc. (Benamira et al., 2021; Gjorgjievska Perusheska et al., 2021).

In cryptanalysis, ML can be used to identify the classic cipher algorithm used to generate

a given ciphertext message. A study by Krishna (2019) utilised Support Vector Machine

(SVM) and Hidden Markov Model (HMM) to classify ciphertext consisting only of

alphabetic characters and assuming the plaintext is English. The authors showed that

HMM was more effective and that experiments with different numbers of hidden states of
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HMM could determine the unknown key length. The models could also be used to score

modern ciphers. In password security, Melicher et al. (2016) proposed a novel method

for predicting the guessability of passwords using a Neural Networks (NNs)-based model.

The authors trained a Deep Neural Networks (DNNs) with a dataset of over 50 million

passwords to predict which passwords are likely to be guessed by adversaries. The model

was faster, leaner, and more accurate in predicting password guessability than other

tools. ML techniques can also be applied to break cryptosystems by performing specific

side-channel attacks (Hettwer et al., 2020; Maghrebi et al., 2016; Timon, 2019). A study

by Timon (2019) presented a new method called Differential Deep Learning Analysis

(DDLA) for performing side-channel attacks using Deep Learning (DL) techniques in a

Non-Profiled context. By combining key guesses with DL metrics, the authors showed

that it is possible to recover information about a secret key. The method can outperform

classic Non-Profiled attacks and can also break masked implementations in black-box

without pre-processing or assumptions.

Additionally, the use of ML is particularly important in the field of classifying

encrypted traffic, which is the main focus of this study. In recent years, the encryption

of Internet traffic has become increasingly prevalent, which has made it more difficult

for network administrators and security researchers to monitor and analyse network

traffic. In order to address this problem, researchers have turned to ML techniques to

develop models that can accurately classify encrypted traffic based on its characteristics.

This approach has been the focus of numerous studies, as demonstrated by several

surveys (Cao et al., 2014; H. Liu & Lang, 2019; R. Liu & Yu, 2020; Velan et al., 2015).

These studies share the goal of using ML techniques to efficiently identify and classify

targeted encrypted traffic using designed features. For example, Draper-Gil et al. (2016)

introduced a classification technique for distinguishing encrypted and VPN traffic based

on time-related features. Their study utilised two prevalent ML algorithms, C4.5 and

kNN, which yielded similar results with over 80% accuracy, although C4.5 performed

slightly better. Another study by Lotfollahi et al. (2020) proposed a Deep Packet scheme

capable of identifying encrypted traffic and differentiating between VPN and nonVPN

network traffic. They asserted that their DL-based approach, relying solely on packet
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length features, surpasses all other proposed classification methods on the VPN-nonVPN

dataset belonging to UNB ISCX9. These studies demonstrate the potential of ML in

encrypted traffic classification, which is becoming increasingly important in the era of

pervasive encryption.

As outlined in Section 2.1, the two fundamental characteristics of encryption schemes,

practical secrecy10 and practical indistinguishable encourage researchers in encrypted

traffic detection to focus on flow-based. However, there are limitations to the flow-based

approach in encrypted traffic detection due to several issues, which will be discussed in

detail in Section 2.6.4. These limitations motivate us to explore a novel approach based

on character statistics analysis of encrypted traffic. In the upcoming section, we will

discuss why deep learning, despite its popularity and effectiveness in various domains,

may not be the optimal choice for our study. Instead, we will argue that ML techniques

offer a more suitable and targeted approach for addressing the specific challenges and

objectives of our research.

Deep Learning

Prior to the emergence of advanced ML schemes, traditional ML was widely employed.

In recent years, DL, a subset of ML, has demonstrated remarkable promise in intelligently

solving complex problems through a specific type of Artificial Neural Networks (ANNs)

known as DNNs. The DNNs architectures greatly enhance the capabilities of shallow

learning, which is commonly referred to as conventional ML (Janiesch et al., 2021; H. Liu

& Lang, 2019). This advanced approach is widely known as DL. With the increasing

availability of big data, DL algorithms have gained significant popularity due to their

ability to leverage large volumes of data for improved performance (Q. Zhang et al.,

2018). Based on the findings of Aggarwal et al. (2018) and Mathew et al. (2020), it is

typically observed that DL models tend to exhibit improved performance with more

data, while ML models often reach a plateau after a certain point. It is worth noting

that both DL and ML can utilise handcrafted features (Liang et al., 2017; Shaheen et al.,

2016; Shinde & Shah, 2018). However, DL has the distinct advantage of automatically
9https://www.unb.ca/cic/datasets/index.html

10While the concept of perfect secrecy represents an ideal goal in cryptography, achieving it in practice
is not always feasible due to various constraints in the context of computer networks. Consequently, the
term practical secrecy and practical indistinguishable are more appropriate for real-world applications.
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learning the significance of extracted features from data, in contrast to ML, which relies

solely on the provided handcrafted features.

DL has the potential to achieve high predictive accuracy using ANNs, or NNs in short,

which consists of computational units called neurons that mimic the biological neural

network of the human brain to intelligently solve problems (Aggarwal et al., 2018). These

computational units are interconnected by weights and arranged in multiple processing

layers, such as input, hidden, and output layers, for model learning (Sarker, 2021). Neural

networks with more than one hidden layer are called DNNs, and the models created

with DNNs are referred to as DL (Weidman, 2019). The most common DL algorithms

include Multilayer perceptrons (MLPs), Convolutional Neural Networks (CNNs) or

ConvNet, and Long Short-Term Memory Recurrent Neural Networks (LSTM-RNNs)

(Sarker, 2021).

Despite the remarkable achievements of DL, it is not suitable for all scenarios.

Inappropriate implementation of DL can lead to challenges due to its limitations, such

as being resource-intensive and time-consuming (Mueller & Massaron, 2019; Müller &

Guido, 2018). The arguments against using DL in this study are as follows: 1) DL’s

non-feature engineering nature makes it a black box model, rendering the results difficult

to interpret (H. Liu & Lang, 2019; Sheu, 2020). In some cases, a white box model is

required for interpretability (Loyola-Gonzalez, 2019). Our approach, based on character

statistics analysis of Tor and nonTor packets, necessitates this. 2) DL excels at analysing

unstructured data, such as images or videos, which is beneficial for applications like

self-driving cars, image/speech recognition, and NLP (Mathew et al., 2020). Our data

is organised in tabular form, referred to as structured data, which is better suited for

traditional ML algorithms (H. Liu & Lang, 2019). 3) It is true that handcrafted features

can also work effectively with DL, but doing so would necessitate high-end computing

resources and increased processing time, making it unsuitable for real-time traffic analysis

compared to shallow models that can perform faster classification (H. Liu & Lang, 2019).

For these reasons, DL is not the appropriate method for Tor traffic classification in this

study. With this understanding, we now turn our attention to the more general aspects

of ML. In the following sections, we will discuss various ML techniques, algorithms, and
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their applications, particularly focusing on those relevant to the task of classifying Tor

traffic.

2.6.2 Machine Learning Types

The primary objective of the ML approach is to enable computers to learn autonomously

using ML algorithms or models. Based on the characteristics of the input data used

for model training, ML is classified into four types: supervised learning, unsupervised

learning, semi-supervised learning, and reinforcement learning (Sarker, 2021).

1) Supervised Learning: Supervised learning consists of two phases: learning

and prediction. In the learning phase, a labelled dataset containing input and desired

output is employed to train the ML algorithm, assuming a pattern of relationship exists

between them. The algorithm will make predictions once the final model is developed.

The two major types of supervised learning are regression, where the target variable

is a continuous value, and classification, where the target variable is a discrete value

(Sarker, 2021). Sentiment analysis in text classification, as described in Section 2.4, is

an example of supervised learning. In this research, Tor traffic detection is considered a

classification problem since it involves separating encrypted payloads based on whether

they belong to the Tor or nonTor network. Popular supervised ML algorithms include

kNN, Linear models, Naive Bayes classifiers, DTs, RFs, SVM, and MLPs, which is a

fully connected multi-layer NNs (Müller & Guido, 2018).

2) Unsupervised Learning: Unsupervised learning is an ML technique applied

to unlabelled data, as opposed to supervised learning. Model training and correct

answers are not available for unsupervised learning. Instead, unsupervised learning

algorithms are used to discover correlations and relationships by analysing the information

provided in the dataset. Anomaly detection in NTC is a common application of

unsupervised learning. It involves identifying unusual or abnormal patterns in data,

often without prior knowledge of what those patterns may look like, making it suitable

for analysing unlabelled data (Eskin et al., 2002; Syarif et al., 2012). In such cases,

unsupervised learning algorithms can reveal the underlying structure of the data and

detect deviations from the norm, effectively identifying anomalies even in the absence of
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labelled information. Examples of unsupervised learning algorithms include K-Means,

Hierarchical clustering, and Principal Component Analysis (PCA).

3) Semi-supervised Learning: Semi-supervised learning is a combination of

supervised and unsupervised learning in which the model is trained using both labelled

and unlabelled data. Semi-supervised learning approaches are employed in real-world

situations when labelled data is inadequate. The classification accuracy can be improved

if the unlabelled data provides additional useful information for prediction. Examples of

this type of learning algorithm include Tri-training, used for classifying Tor anonymous

traffic at the application level (Lingyu et al., 2017), and self-trained algorithms used for

NLP (Tanha et al., 2017; B. Wang et al., 2008).

4) Reinforcement Learning: This type of learning differs from the previous three

types as no training datasets are required. Reinforcement learning enables an agent

to learn through trial and error in an interactive environment, using feedback based

on previous experiences. Examples of reinforcement learning problems include playing

computer games, complex decision-making problems, and reward systems (Sutton &

Barto, 2018).

2.6.3 Supervised Learning Process

Supervised learning is a technique used to solve classification problems, aiming to enable

machines to learn from predefined classes. The general processes of the supervised

learning model are depicted in Figure 2.10.

The supervised learning process has two phases: learning and prediction. In the

learning phase, the first step is data preprocessing, which is crucial for successful

ML as the classifier must identify useful patterns from the input data. This step

involves eliminating irrelevant data, such as duplicates and outliers, followed by feature

engineering. Feature engineering involves transforming raw input data into a set of

features that can be used to distinguish different classes of data. In some cases, selecting

the most important features can also be done to reduce computational complexity and

prevent overfitting. Once the features have been extracted, the model is trained using

supervised learning algorithms to generate a classification model. This involves selecting
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Figure 2.10: Diagram of the supervised learning process (adapted from B. Liu, 2011)

an appropriate model and optimising its parameters to achieve the best performance

on the training data. Hyperparameter tuning may be required to enhance the model’s

performance, and this tuning process may be repeated until the best final model is

obtained. The final step in the learning phase is to evaluate the model’s testing results.

This involves testing the trained model on a set of data that was not used during the

training process to measure the model’s performance and assess its generalisation ability

on the test set. In the prediction phase, the finalised model can be used in real-world

tasks to predict classes of new, unseen data. The performance of the model can be

assessed by comparing its predictions to the true labels of the test data. If the model’s

performance is not satisfactory, it may need to be retrained or updated with new data

to improve its accuracy on future predictions.

2.6.4 Feature Engineering

A feature, also referred to as an attribute, input, or variable, is a distinctive and

quantitative characteristic of an observed activity or object. Features serve as essential

input variables for ML algorithms to perform classification tasks. Feature engineering

is the process of transforming raw data into a well-structured set of features that can

enhance the performance and training of ML models (Dong & Liu, 2018). This section

focuses on two critical steps in feature engineering pertinent to this study: feature
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extraction and feature selection.

Feature Extraction: Feature extraction is a crucial step in feature engineering,

as it involves identifying and extracting relevant features from raw data. This process

aims to capture significant information, reduce data dimensionality, and retain essential

properties. Depending on the nature of the data and the specific problem being addressed,

various techniques can be employed for feature extraction, including Principal Component

Analysis (PCA), Linear Discriminant Analysis (LDA), and statistical or mathematical

transformations. However, for domain-specific problems, such as the classification of Tor

and nonTor traffic in our approach, manual or domain-specific feature extraction is often

more suitable. This approach relies on domain knowledge and expert insights to derive

meaningful features that are relevant to the specific problem and allow for more accurate

classification. This is because manual feature extraction allows for the inclusion of

relevant information that may not be captured by automatic feature extraction methods.

In the context of Tor traffic classification using ML approaches, previous studies have

primarily focused on time-based features derived from traffic flow (Cuzzocrea et al., 2017;

Lashkari et al., 2017; Shahbar & Zincir-Heywood, 2015). This emphasis is due to the

fact that Tor packet delivery requires passing through multiple proxy servers worldwide,

resulting in slower traffic compared to regular traffic. However, the asymmetric nature

of Internet routing, in which an ISP’s router may only capture one direction of a flow,

can influence time-related features (Crotti et al., 2009; Salman et al., 2020). Network

conditions such as latency, jitter, and congestion can cause inconsistencies in packet

timings, which can also reduce the effectiveness of these features. Furthermore, although

packet size is a commonly used feature due to Tor’s fixed cell-size, packet lengths can

be altered when traffic passes through a tunnel or proxy (Rezaei & Liu, 2019). In

addition to network-related issues, flow-based analysis has its own set of disadvantages,

particularly when calculating features from multiple packets. These disadvantages

include the strain on computational resources, potential inaccuracies due to inconsistent

packet characteristics or network anomalies, privacy concerns, and significant network

overhead when analysing large volumes of traffic. These limitations highlight the need

for alternative approaches that are more efficient, accurate, and privacy-preserving in
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the context of Tor traffic classification.

Consequently, we propose a novel approach for feature extraction that emphasises

character analysis of encrypted payloads. This concept arises from the fact that Tor,

like other nonTor encryption protocols, uses TLS for encryption, but its routing and

encapsulation methods are distinct, as presented in Section 2.3.3. This distinction

could potentially enable a novel approach to classify Tor traffic. Our method analyses

occurrences of hex characters (0-9 and A-F) in ciphertexts, calculating their relative

frequencies or proportions. These character statistics serve as features for the ML model,

representing the ciphertext’s composition based on hex character distribution. The goal

is to capture subtle differences in hex character distribution between encrypted traffic

types on Tor and nonTor networks for effective classification. Our proposed features,

derived from individual packets, exploit a single packet in classifying network traffic,

offering a significant advantage over multi-packet flow-based features and providing a

more efficient method.

It is important to note that character analysis of encrypted payloads can be chal-

lenging due to the nature of encrypted data. Encryption algorithms, including TLS,

are designed to produce ciphertext that appears random, thus making it difficult to

distinguish between different types of encrypted traffic by analysing the character pat-

terns. Nevertheless, as discussed in Section 2.1, the cryptographic principles, which

offer rigorous trust in security within a controlled and idealised environment, may not

necessarily guarantee security in the real world (Katz & Lindell, 2020), particularly

in the context of computer networks. Various factors during data transmission in a

heterogeneous computer network environment, such as data fragmentation and the use of

different encryption mechanisms, can impact their encrypted data, potentially exposing

meaningful patterns that could be exploited.

Feature Selection: Following feature extraction, feature selection is the subsequent

step in feature engineering. The primary objective of feature selection is to identify

the most informative and relevant features from the extracted set, thereby reducing

the number of features used in the ML model. This step is crucial in mitigating

overfitting by reducing the complexity of the model and removing irrelevant or redundant
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features. Overfitting occurs when a model learns the noise or random fluctuations in

the training data instead of the underlying patterns, leading to poor generalisation

performance on new, unseen data. Feature selection not only helps in improving the

model’s generalisation performance but also enhances its interpretability and reduces the

training time. Feature selection techniques can be broadly classified into three categories:

filter methods, wrapper methods, and embedded methods. Filter methods evaluate

features independently based on their relevance to the target variable, wrapper methods

assess feature subsets by evaluating the model’s performance, and embedded methods

incorporate feature selection as part of the learning algorithm itself.

2.6.5 Classification Algorithms

Selecting appropriate algorithms for specific tasks is a challenging effort. For our binary

classification task, we considered simple yet effective supervised algorithms that have

demonstrated success in prior literature. One such algorithm is the DTs, which is widely

used in various disciplines such as text analysis (Saad & Yang, 2019; Singh et al., 2021)

and NTC (Song & Ying, 2015). DTs are known for their simplicity, lack of ambiguity,

and resilience even in the face of missing values. However, one major disadvantage of

DTs is the risk of overfitting, especially when dealing with small datasets. To mitigate

this issue, the RFs algorithm can be used to enhance model performance and prevent

overfitting (Shaik & Srinivasan, 2019; Ziegler & König, 2014). According to Aggarwal

(2018), RFs are among the best-performing classifiers. In addition to DT-based and RFs

algorithms, we chose kNN as a competitive algorithm. This is due to kNN simplicity,

effectiveness, ease of understanding, and high performance, which make it a popular

choice in many domains, including text mining to automatically classify text documents

into categories (Bijalwan et al., 2014; Menzies et al., 2018; Moldagulova & Sulaiman,

2017; Radovanović & Ivanović, 2008) and NTC (Deng et al., 2016; Moldagulova &

Sulaiman, 2017). The success of the kNN classifier in these applications inspired us to

adopt it for our classification task alongside the other chosen algorithms.
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Decision Trees

DTs are a popular predictive algorithm in supervised learning for solving regression and

classification problems. They are non-parametric and effective at dealing with huge,

complex datasets (Song & Ying, 2015). DTs builds a model by predicting the value

of a target variable using basic decision rules derived from data attributes. The DTs

algorithm employs a repeated divide-and-conquer approach to divide a node into two or

more sub-nodes. This approach creates an inverted tree-like network in which the root

node is the topmost attribute, branches are decision rules, child nodes are attributes, and

leaf nodes are decision outcomes or classes. A classification tree is built in a top-down

approach via the recursive splitting of nodes into sub-nodes. The DTs algorithm utilises

a recursive divide-and-conquer strategy to partition a node into two or more sub-nodes.

This method constructs an inverted tree-like structure with the root node representing

the topmost attribute, branches representing decision rules, child nodes corresponding

to attributes, and leaf nodes signifying decision outcomes or classes. A classification tree

is built using a top-down approach, where nodes are recursively split into sub-nodes.

Several prevalent splitting criteria are employed to determine which feature to split

in DTs algorithms, including information gain, Gini index, and gain ratio. Information

gain is grounded in Shannon Claude’s information theory and entropy concept (Shannon,

1948). Although information gain serves as an effective splitting criterion, it can exhibit

bias when dealing with a large number of features. To mitigate this bias, the gain ratio,

which normalises information gain, is utilised as an alternative (Breiman et al., 2017).

The Gini index evaluates the impurity of a node by assessing the disparity between

the probability distributions of the target feature values, thereby contributing to the

decision-making process in splitting nodes.

Figure 2.11 depicts a simple decision tree that determines whether Saturday mornings

are favourable for playing tennis based on three factors: outlook, humidity, and wind

conditions.

In ML, some prominent DTs-based algorithms include Iterative Dichotomiser 3 (ID3),

C4.5, and CART. The ID3 algorithm, introduced by Quinlan (1986), is considered a

relatively simple approach. However, it possesses several drawbacks, such as not guar-
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Figure 2.11: A decision tree (adapted from Mitchell, 1997)

anteeing an optimal solution, encountering data overfitting issues, and being designed

exclusively for nominal attributes (Rokach & Maimon, 2015). To address ID3’s limita-

tions, Quinlan (2014) introduced C4.5, an extended version of ID3. C4.5 incorporates

pruning to manage large trees and handles numeric attributes and missing values. C5.0,

an enhanced and commercial version of C4.5, consumes less memory and computational

time (Rokach & Maimon, 2015). Classification and Regression Trees (CART), developed

by Breiman et al. (2017), can generate both regression and classification trees. and

CART adopts the Gini index. Additionally, while ID3 and C4.5 support top-down tree

construction with multiway splits, CART employs binary decision tree splits (Shamrat

et al., 2021). Due to its limitations, ID3 may still be used for educational purposes but

is less suitable for use in modern research or applications. It is often replaced by more

advanced algorithms like C4.5 and CART, which address the limitations of ID3 and

provide improved performance in various scenarios. J48, the Java implementation of the

C4.5 algorithm, is employed in WEKA, while the CART algorithm is available in the

Scikit-learn DTs library for Python 3. Given that the use of a single decision tree can

result in overfitting and poor generalisation performance, the combination of multiple

DTs to form a RFs can help address these issues and improve overall model performance

(Müller & Guido, 2018).
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Random Forests

RFs (Breiman, 2001) is an ensemble method that combines multiple DTs to create a

more robust and accurate model. Ensemble methods leverage the strengths of two or

more base models to yield a powerful, combined model. RFs models, which are ensembles

of DTs, are considered among the most effective ML models for both classification and

regression tasks (Müller & Guido, 2018).

As suggested by its name, a random forest is an ensemble of individual decision

trees. The RFs method improves upon the performance of a single DTs by constructing

multiple trees, each trained on a different random subset of the data. This is achieved

through a process called bootstrapping. In addition, a random selection of features is

used to form each decision tree model, introducing diversity among the trees. This

combination of bootstrapping and random feature selection helps mitigate overfitting,

which is a common issue with single decision trees. The process of combining results

from multiple models is known as aggregation. In the context of RFs, the combination of

bootstrapping and aggregation is referred to as bagging (short for bootstrap aggregating).

Bagging helps create diverse decision trees and reduce overfitting, thus enhancing the

performance of the RF model. For each input instance, the RF model makes predictions

using all the individual trees. In a classification problem, the final prediction is based on

the majority vote of all trees. In a regression problem, the prediction is based on the

average of all decision tree predictions. By aggregating the predictions of multiple trees,

the random forest model can achieve better generalisation and accuracy compared to

a single decision tree. This makes the RFs model an outstanding choice for many ML

tasks. Figure 2.12 provides a graphical illustration of a RFs model.

The use of bootstrap aggregation in a RFs offers a substantial advantage over a

single decision tree, as it helps reduce variance and mitigate overfitting. Moreover, RFs

is capable of handling a large number of input attributes while maintaining efficient

processing (Rokach & Maimon, 2015). However, one drawback of the RFs approach

is its reduced interpretability compared to a single decision tree. Due to the complex

nature of an ensemble of trees in a forest, it becomes challenging to study individual

trees, rendering RFs a black box model (Guidotti et al., 2018). On the other hand, the
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Figure 2.12: The principle of the RFs algorithm prediction (adapted from Y. Liu et al.,
2012)

kNN algorithm is notable for its transparency, which means it is easy to understand.

Along with its simplicity and effectiveness, kNN has been successfully applied in various

research areas. Therefore, it presents a promising alternative to the RFs and DTs models

in our study.

k-Nearest Neighbors

The kNN algorithm is a widely used non-parametric learning algorithm in ML and

data mining applications. Despite its reputation as one of the simplest ML algorithms,

it has proven to be effective in many various cases, including image recognition, text

classification, recommendation systems, and others (Guo et al., 2003). It can solve

both classification and regression problems and is based on the assumption that related

things tend to cluster together (Allahyari et al., 2017). As the name implies, the kNN

algorithm identifies the k closest neighbours to a given data point or object, and then

classifies the object based on the majority label of those neighbours. In cases where

multiple neighbours share the same distance to the object being classified, they may

have different labels, thereby an odd value of k is typically chosen to ensure a unanimous
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decision. To calculate the distance between two points or nearest neighbours, the kNN

classifier commonly employs the Euclidean distance function. This function measures

the straight-line distance between two points in a Euclidean space. It is important to

note that the choice of distance metric can have a significant impact on the performance

of the kNN algorithm, and different metrics may be more appropriate for different types

of data. Therefore, it is essential to consider various factors such as data type, data

distribution, and the nature of the problem when selecting an appropriate distance

metric.

Figure 2.13: kNN method for binary classification with k = 3 and k = 7

Figure 2.13 illustrates a simplified explanation of the binary classification problem

using the kNN method. The objects in the figure, represented as dots and squares, can

be considered as labelled objects, while the new triangle represents an unlabeled object

x. To predict the class of x, the distances between x and the labelled samples in the

training dataset are calculated. The k samples with the smallest distances to x are

selected, and their class labels are used to vote for the class of x. For example, if k =

3, x belongs to the dot class, whereas if k = 7, x is assigned to the square class. It is

important to note that the predicted class may vary depending on the chosen value of k.

Choosing the optimal value of k is still a challenging task in the kNN method. To

address this issue, several studies have proposed improved versions of the kNN method

that aims to find the best k value for a more efficient model (Guo et al., 2003; S. Zhang

et al., 2017, 2018). Although there are many methods for selecting the optimal k value,

one common approach is to test the model’s performance using different k values and
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select the one that yields the best results (Guo et al., 2003).

2.6.6 Model Evaluation

Model evaluation is a critical step in assessing the effectiveness of a trained and tested

model. The process involves dividing the dataset into appropriate portions for model

building and testing. Two common methods for splitting data for model evaluation are

discussed below.

1) Percentage split: This method is typically used for large datasets. The dataset

is split into two portions for training and testing based on a percentage split. The choice

of the split ratio affects the performance of the model. In practice, a commonly used ratio

is 66% for training and 34% for testing. However, the exact ratio can vary depending

on the specific problem and dataset being used. After the split, the model is trained

using the training subset and evaluated using the test subset. This technique is simple

and straightforward, but it suffers from the drawback of not testing all available data,

which can result in the model experiencing overfitting, i.e., low bias and high variance.

To mitigate this overfitting issue, multiple models can be fitted using cross-validation

(Robertazzi & Shi, 2020).

2) Cross-validation: Cross-validation is a widely used resampling technique for

training and testing predictive models. It evaluates the model on an independent test

set, similar to the percentage split method. However, cross-validation assesses all split

test subsets. To perform cross-validation, the number of folds (N ) must be determined.

Commonly, N is set to 5 or 10 (Kuhn, Johnson, et al., 2013). A larger N results

in reduced bias but increased computational time. Notably, N is often set to 10, as

numerous comprehensive tests have demonstrated this to be the optimal parameter. The

cross-validation procedure then proceeds by dividing the dataset into N equally sized,

random folds (referred to as stratified cross-validation). For each of the N folds, N -1

subsets are used for training, while the remaining subset is employed for testing the

trained model in rotation over N iterations. The objective of stratified cross-validation is

to minimise potential variance and bias by thoroughly training and testing all available

data.
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In conclusion, for small or simple datasets, the percentage split may provide suf-

ficiently reliable performance estimates, and the added complexity of cross-validation

may not be necessary. Conversely, for large or complex datasets, cross-validation can

provide more robust performance estimates and help prevent overfitting. However, the

choice of the evaluation method in practice depends on the specific problem, dataset

size and structure, computational resources, and other factors. There is no strict rule

or threshold that applies to all cases. As a result of the time-consuming issue and

limited computational resources in this study, cross-validation has been utilised for

smaller datasets containing around 10,000 instances or fewer. On the other hand, for

larger datasets exceeding approximately 10,000 instances, a percentage split is more

appropriate.

2.6.7 Performance Metrics

In the domain of ML, evaluating the performance of a model is crucial for understand-

ing its effectiveness and accuracy in addressing specific tasks. Selecting appropriate

evaluation metrics allows researchers and practitioners to compare different models and

identify areas for improvement. Various metrics are available to assess the performance

of models in response to specific problems. The choice of evaluation metric primarily

depends on the type of model used, such as regression or classification models. For

classification problems, which are the focus of this study, the following measures are

commonly employed to report model performance:

Confusion Matrix: A confusion matrix is an N ×N table that summarises the

performance measurement of a model on a test dataset, where N is the number of classes

in a classification problem. The matrix consists of the number of predicted classes

and the number of actual classes, providing insight into the errors and types of errors

generated by the classifier. In the case of a binary classification problem, as considered

in this study, a 2× 2 confusion matrix is illustrated in Figure 2.14.

The components of the confusion matrix are as follows:

• True Positive (TP): The sample value is true and the model prediction is positive.

In this case, the instance is classified as Tor and the prediction is also Tor (correct
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Figure 2.14: 2× 2 Confusion Matrix

prediction).

• True Negative (TN): The sample value is true and the model prediction is negative.

In this case, the instance is classified as nonTor and the prediction is also nonTor

(correct prediction).

• False Positive (FP): The sample value is false and the model prediction is positive.

In this case, the instance is classified as Tor but the prediction is nonTor (incorrect

prediction).

• False Negative (FP): The sample value is false and the model prediction is negative.

In this case, the instance is classified as nonTor but the prediction is Tor (incorrect

prediction).

Additional performance metrics can be calculated using the values obtained from

the confusion matrix table, as described in the following equations:

Accuracy: Accuracy is a measure of a model’s overall efficiency, calculated as the

ratio of correct predictions to the total number of predictions. It is a useful starting

metric; however, it may not be appropriate for significantly imbalanced classes (Chawla,

2009). The accuracy score can be calculated using Equation 2.3. To express the result

as a percentage, multiply it by 100. A higher accuracy, closer to 100%, indicates a better

model. In our case, accuracy measures how well the model can correctly classify Tor

and nonTor traffic.

ACC =
TP + TN

(TP + TN + FP + FN)
(2.3)
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Precision: Precision measures the accuracy of positive predictions. The precision

evaluates the proportion of true positive predictions (correctly identified Tor traffic)

relative to the sum of true positives and false positives (instances incorrectly identified

as Tor traffic). In other words, in our case, precision measures the model’s ability to

correctly classify Tor traffic out of all Tor traffic predictions. The precision score can be

calculated using Equation 2.4. Precision values range from 0 to 1, with values closer to

1 indicating a better model.

PR =
TP

(TP + FP )
(2.4)

Recall: Recall, also known as True Positive Rate (TPR) or sensitivity, measures

the accuracy of correctly identifying relevant data. The recall is the proportion of true

positive predictions (correctly identified Tor traffic) relative to the sum of true positives

and false negatives (instances that are actually Tor traffic but are incorrectly identified

as nonTor traffic). In other words, recall measures the model’s ability to correctly classify

Tor traffic out of all actual Tor traffic. The recall score can be calculated using Equation

2.5. Recall values range from 0 to 1, with values closer to 1 indicating a better model.

REC =
TP

(TP + FN)
(2.5)

F1 score: The F1 score, also known as the F-score or F-measure, is the harmonic

mean of precision and recall, providing a single metric that balances both aspects of

the model’s performance. In the context of classifying Tor and nonTor traffic, the F1

score can be interpreted as a measure of the model’s ability to accurately identify Tor

traffic while minimising both false positives (incorrectly identified Tor traffic) and false

negatives (actual Tor traffic misclassified as nonTor traffic). The F1 score is calculated

using Equation 2.6. Both TP and FP are considered, making them suitable metrics for

unbalanced datasets. A high F1 score indicates that the model is effective with a good

balance between precision and recall.

F1 =
2 ∗ (REC ∗ PR)

(REC + PR)
(2.6)
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ROC/AUC score: The Receiver Operating Characteristic (ROC) and Area Under

The ROC Curve (AUC) are commonly used performance metrics for binary classification

problems. The ROC curve is a graphical representation of the relationship between the

TPR, also known as recall, and the False Positive Rate (FPR), where FPR = FP
(FP+TN) .

The TPR is plotted on the y-axis, and the FPR is plotted on the x-axis, showing the

trade-off between sensitivity and specificity at various classification thresholds. The

AUC is a scalar value representing the area under the ROC curve, which measures

the classifier’s ability to distinguish between positive and negative samples. The AUC

value ranges from 0 to 1, where higher AUC values indicate better performance. An

AUC value of 0.5 suggests that the classifier is no better than a random chance at

distinguishing between positive and negative samples, while an AUC of 1.0 indicates

perfect classification. Although it has been suggested that the ROC/AUC metric is

particularly suitable for imbalanced datasets, as it evaluates a classifier’s performance

without making assumptions about class distribution (Gómez et al., 2019; H. Zhang et al.,

2012), the ROC/AUC metric can still prove valuable for evaluating classifiers on balanced

datasets. This is because it provides additional insights into the classifier’s performance

across various thresholds. While accuracy offers a single value representing the overall

correct prediction rate, it may not fully capture a classifier’s performance concerning

FP and FP. In contrast, the ROC/AUC metric accounts for the trade-off between

sensitivity and specificity at different thresholds, thus facilitating a more comprehensive

understanding of the classifier’s performance. Consequently, this study incorporates

ROC/AUC scores in the evaluation of the models.

A comprehensive understanding of the background knowledge associated with this

research has been provided through the review of the fundamental technologies under-

pinning the research methodology. This review should provide readers with a clear

understanding of the topic. Nevertheless, it is also crucial to examine related research

or previous studies focused on NTC, particularly in Tor traffic, ranging from the past

to the present. This section will discuss the methods, benefits, and drawbacks of these

prior works, which have inspired the development of our novel approach.
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2.7 Related Work on Network Traffic Classification

NTC encompasses a variety of techniques aimed at classifying unknown network packets

traversing a computer network into known traffic classes, such as browsing, email, VoIP,

etc. NTC serves several purposes for ISP and Network Administrators, including QoS

management (e.g., critical applications like video conferencing receive priority over

non-critical ones like email, resulting in a better user experience), network security (e.g.,

malware and intrusion detection), and more. NTC can generally be divided into three

main methods: Port-based, Payload-based, and ML-based.

2.7.1 Port-based Method

The most basic technique for NTC relies on inspecting the ‘well-known’ ports indicated

in packet headers, such as ports 20 and 21 for FTP, port 22 for SSH, port 25 for SMTP,

and port 80 for HTTP (Reynolds & Postel, 1992). Traffic can be classified based on the

port number and the presumed associated protocol. This method boasts the advantages

of simplicity, speed, and effectiveness. However, since the use of assigned ports is

not mandatory, many contemporary applications employ random ports to obfuscate

TCP/UDP headers and evade detection. Consequently, the port-based classification

approach may no longer be effective, as demonstrated by studies such as Karagiannis

et al. (2005). Several studies (Karagiannis, Broido, Brownlee, et al., 2004; Karagiannis,

Broido, Faloutsos, & Claffy, 2004; Karagiannis et al., 2003; A. W. Moore & Papagiannaki,

2005) have substantiated that using port numbers to identify application traffic has

become increasingly unsuccessful.

Madhukar and Williamson (2006) conducted a comparison of three techniques for

classifying Peer-to-Peer (P2P) applications: port-based classification, Application Layer

signatures, and Transport Layer analysis. Due to P2P applications employing various

obfuscation techniques, robust and effective methods for identifying P2P traffic are

essential. The performance of each technique was analysed using sample traffic traces

collected from the University of Calgary’s Internet connection over a two-year period. The

results demonstrated that port-based analysis is inefficient, as it can only identify between
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30% to 70% of current Internet traffic. Although application signatures are reliable, they

may be unattainable due to legal or technical constraints. Transport Layer analysis, a

flow-based method focusing on connection behaviour patterns, appears promising as it

offers an efficient means of measuring P2P traffic. To overcome the limitations of the

port-based method, other classification techniques that utilise payload-based approaches

are preferred.

2.7.2 Payload-based Method

The payload-based method, also known as DPI, relies on examining characteristic

signatures or patterns of strings found in the contents of application packets or payloads.

Although this technique often yields highly accurate results for classifying network

traffic, it also encounters several drawbacks, such as high computational costs for pattern

matching in payloads, potential confidentiality violations, and ineffectiveness when

inspecting encrypted packets (Bakhshi & Ghita, 2016; Shafiq et al., 2016). Encrypted

traffic has long posed a significant challenge for DPI. To address this, Sherry et al.

(2015) introduced BlindBox, a DPI technique capable of inspecting encrypted payloads

without decryption, thereby alleviating privacy concerns. Their approach represents the

first instance of combining encryption benefits with DPI middlebox functionality. The

term ‘BlindBox’ refers to the middlebox’s inability to access the content of the traffic.

However, their proposed middlebox is only applicable to HTTPS traffic.

2.7.3 Machine Learning-based Method

The increasing prevalence of encrypted traffic has led to a growing interest in ML and

statistical-based classification methods for NTC. Numerous studies have demonstrated

the effectiveness of using ML techniques for classifying network traffic, including tasks

such as malware detection (Tran et al., 2020; Yeo et al., 2018), network intrusion detection

(Gogoi et al., 2012; Pektaş & Acarman, 2019), (W. Wang et al., 2020), protocol-based

classification (Bhargava et al., 2013; Schatzmann et al., 2010; Vinayakumar et al., 2017).

As discussed in Section 2.2.1, ML-based NTC typically utilises flow-based features

derived from the Transport Layer (Layer 3 in the TCP/IP model) because they provide
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valuable insights into the behaviour and characteristics of network traffic without

requiring access to the content of the packets. Flow-based features can include metadata

such as connection duration, packet size, packet inter-arrival time, and the number of

exchanged packets between sender and receiver. This approach aids in classifying traffic

according to Application Layer protocols by analysing patterns and relationships in the

Transport Layer data. Additionally, the Internet Layer (Layer 2 in the TCP/IP model)

plays a supplementary role in protocol identification. The IP header, part of the Internet

Layer, contains a ‘Protocol’ field that explicitly specifies the next encapsulated protocol,

such as TCP, UDP, or ICMP. This information allows for easier identification of higher-

layer protocols. These ML-based NTC methods, which leverage flow-based features from

the Transport Layer and supportive information from the Internet Layer, have been

successfully applied to various classification tasks, including Tor traffic classification, the

focus of this study, which will be discussed in detail in the following sections.

2.7.4 Network Traffic Classification on Tor

As mentioned earlier, NTC is a crucial task for detecting Tor traffic because Tor traffic is

often disguised to look like other types of network traffic, making it difficult to identify

without sophisticated analysis tools. Researchers have made efforts to study and develop

approaches for detecting network traffic generated from the Tor network, which offers

several benefits, including: (i) providing insight into Tor traffic fingerprints to test the

system’s robustness (Shahbar & Zincir-Heywood, 2015), which could help minimise the

detectability of Tor traffic and subsequently enhance user privacy (Barker et al., 2011;

Granerud, 2010); (ii) facilitating cyber surveillance for authorities, as Tor’s anonymity

attracts criminals for illicit activities (Cuzzocrea et al., 2017), including investigating

network traffic sent to and from the darknet, an anonymous network frequently used

for malicious activities (Lingyu et al., 2017; Niranjana et al., 2020); and (iii) improving

the Tor user experience by prioritising different types of Tor traffic generated from

various applications (AlSabah et al., 2012) and revealing nonTor activities within the

Tor network that could affect users’ privacy (Hodo et al., 2017).

Based on a coarse classification of traffic analysis methodologies, active and passive
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network monitoring are commonly employed to attack Tor networks. Active network

monitoring refers to a type of monitoring technique where an observer interacts (e.g.,

modifying or injecting packets) with the network to gather information. In the context of

Tor, active network monitoring encompasses various techniques, including the alteration

of packet sizes by inserting a signal into the targeted Tor traffic between a Tor client

and an exit relay. The altered traffic can then be observed and detected through this

embedded signal (Fu et al., 2009; Ling et al., 2011, 2012). Other approaches to active

monitoring include using decoy traffic for malicious Tor exit nodes, modifying user traffic

parameters on the server-side and seeking similar modifications on the client-side via

statistical correlation (Chakravarty et al., 2014). Although this network monitoring

method efficiently and quickly verifies interaction relationships among users, it requires

donating a number of computers as Tor relay nodes to control Tor traffic communication

(Ling et al., 2012). Passive traffic analysis, on the other hand, passively monitors network

traffic without modifying any packets. This approach involves collecting every packet

traversing the network card to analyse and classify network traffic using various methods.

This approach has been the subject of extensive research, which can be summarised as

follows:

Some researchers use DPI techniques to identify traffic by examining details in

associated TLS certificates, such as hostname, TLS handshake, process, certificate size,

and port number. Since Tor uses different TLS characteristics from nonTor traffic, these

features can discriminate Tor usage (Granerud, 2010; Lapshichyov & Makarevich, 2019;

Mayank & Singh, 2017; Saputra et al., 2016). Chinese researchers (Bai et al., 2008) were

among the first to identify Tor packets based on Tor traffic fingerprint characteristics,

using combined DPI and packet frequency analysis methods to fingerprint Tor and

Web-Mix network traffic. Their paper explains that Tor and Web-Mix have similar

network topologies and unique IP packet characteristics. Both networks use unencrypted

and encrypted traffic to exchange data depending on the communication pair. As a

result, two procedures are considered to identify network traffic: First, packets are

sent in an unencrypted format during the early stages of Tor and Web-Mix network

establishment, and specific characteristics of payload strings are examined. Second, when
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the traffic relay starts, packets are encrypted, and the matching length technique for

Tor and dummy packet frequency analysis in Web-Mix are used. These two procedures

yield a traffic fingerprint recognition rate of over 95% for both networks. However,

these methods are slow and require considerable processing power. To overcome these

drawbacks, ML approaches have been explored. These techniques are sometimes referred

to as statistical analysis, as they rely on the analysis of statistical attributes or features

such as packet size, packet length, flow segment size, round trip time, duration, and

more. These statistical features enable the machine to learn and improve its performance

through experience. Based on past research, the following three groups of features have

been used as input to train supervised or semi-supervised algorithms, arranged by the

difficulty of obtaining features and the means of data collection:

• Packet-based features are derived from packet size, frequency of packet transmis-

sion, and metadata from packet headers. Barker et al. (2011) and Lingyu et al.

(2017) use these characteristics to classify Tor packets.

• Flow-based features are obtained from network flows in the form of packets that

all contain the same value from five parameters (Source IP, Destination IP, Source

Port, Destination Port, and Protocol). Some examples of flow-based features

include the number of packets in the flow, the total size of the flow in bytes, the

length of individual packets, the forward and backward times between packets,

the duration of an active or idle flow, the size and number of bidirectional packets

per second, and the duration of the flow. Most studies (Cuzzocrea et al., 2017;

Hodo et al., 2017; Lashkari et al., 2017; Mercaldo & Martinelli, 2017; Shahbar &

Zincir-Heywood, 2014; Soleimani et al., 2018) utilise these features from packet

flows for Tor traffic classification.

• Circuit-based features refer to the time associated with Tor circuit construction

and operation, including Tor cell transmission (e.g., circuit lifetime, data transmis-

sion rate, cell inter-arrival times (AlSabah et al., 2012), cells per circuit lifetime,

number of uplink cells, and downlink cells to uplink cells time rate (Shahbar &

Zincir-Heywood, 2014)).
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Our study centres on utilising supervised learning to develop a model capable of

distinguishing between Tor and nonTor traffic. In this regard, we will discuss several

investigations that utilise supervised algorithms, as well as a few studies that employ

DL.

Supervised Learning Approach

Barker et al. (2011) aimed to develop a simple passive recognition technique for detecting

Tor traffic. They established a private Tor network with three directory servers and

fifteen relays to simulate real-world traffic. They captured three sets of packets from

170 simulations over a seven-week period: regular HTTPS for two weeks, regular HTTP

passing a private Tor network for two weeks, and HTTPS passing a private Tor network

for three weeks. They used only packet sizes as attributes for classification. Their

classification results showed that RFs and J48 were able to classify all three types of

traffic with an accuracy of over 90%. In contrast, Adaboost failed to detect HTTPS

over Tor. The packet-based features were also used in Lingyu et al. (2017). Only four

key features, including packet length entropy, 600-byte packet frequency, zero data

packet frequency in the first ten packets, and the mean of packet interval, were required

to identify Tor traffic. When trained with the improved decision tree algorithm, the

accuracy was 94%.

In the literature, two scenarios are most commonly addressed when using ML to

classify Tor traffic, namely (a) detection of Tor traffic and (b) categorisation of Tor-based

applications. In Lashkari et al. (2017)’s paper introduced the UNB-CIC dataset, which

has been widely used in Tor classification research. The authors employed traffic flow

features and implemented four classifiers to achieve high performance in both scenarios.

For scenario (a), they obtained 96.4% and 97% for the weighted average of recall and

precision of Tor and nonTor, respectively, using the C4.5 algorithm. For scenario (b),

they achieved 84.3% and 83.8% for the same metrics using the RF algorithm. Similarly,

Cuzzocrea et al. (2017) utilised the same dataset and flow-based features but used

different classifiers. They found that JRip provided the best performance in scenario

(a) with 100% for the weighted average of recall and precision, while J48 gave the best
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performance in scenario (b) with 99.8%.

Another study that utilised the same dataset aimed to enhance the efficiency of the

Tor network by detecting anomalous traffic or nonTor traffic that could compromise users’

privacy. Hodo et al. (2017) employed a learning system to create a profile of regular traffic

and defined any behaviour that deviates from the profile as outlier traffic. Their results,

based on two algorithms, showed that a CFS-ANN hybrid classifier outperformed SVM

in detecting nonTor traffic, achieving an overall accuracy of 99.8% and 94%, respectively.

Wang and colleagues L. Wang et al. (2020) conducted a recent research study that

utilised network flow characteristics to distinguish Tor traffic. Their work builds upon

previous studies that differentiate between various network traffic types on personal

computer (PC) platforms. The authors extended this approach to compare the effective-

ness of traffic classification across two platforms: PC and mobile. With the increasing

prevalence of smartphone usage, this comparison is becoming more relevant. The study’s

findings demonstrate that the proposed method, which employs both time-related and

non-time-related features, achieves near-perfect accuracy in identifying Tor traffic on

both platforms. When utilising both types of features, the J48 supervised learning

algorithm outperformed jRip, Naive Bayes, and Bayesian Networks. Platform-specific

analyses showed that time-based features were more effective on PCs, while non-time-

based features performed better on mobile devices. This difference is likely due to the

less stable and more intricate nature of network traffic transmitted over mobile networks

compared to wired PC connections.

In addition to utilising features derived from flow packets to classify Tor traffic, some

researchers take into account the attributes extracted from the Tor network circuit. For

instance, AlSabah et al. (2012) observed that different applications result in varying

packet behaviours at the circuit (circuit lifetime and amount of data transferred by the

circuit) and cell (cell inter-arrival times and the number of cells sent) level. In order

to classify encrypted packets belonging to Tor circuits, they employed two forms of

traffic classification. Offline classification only considers circuit logs in Tor entry guards,

while online classification is performed during circuit operation and utilises both cell

and circuit properties for a real-time classifier. Consequently, the effectiveness of the



Chapter 2. Related Work and Literature Review 73

classification is critical. Using Bayes Nets and Decision Tree, they achieved an accuracy

of 97.8% and 91% for online and offline classification, respectively. Their proposed ML

implementation, in conjunction with a defined Quality of Service (QoS) rule, can improve

Tor network performance, aligning with their objective.

In their study, Shahbar and Zincir-Heywood (2014) expanded on previous works

aimed at classifying Tor by incorporating flow and circuit-based features. Their objective

was to compare the classification effectiveness at both feature levels. They hypothesised

that the encrypted cells in the circuit have distinct behaviours and characteristics that

are dependent on the type of traffic, to data traversing the Tor network. When trained

with C4.5 on 70% of examples consisting of four features, namely cells per circuit lifetime,

uplink cells, the rate of downlink cells to uplink cells, and the EWMA of the recently

sent cell, the accuracy approached 100% at the circuit level. On the other hand, 112

flow features obtained from Tranalyzers and Tcptrace were learned by Bayes Net with a

10-CV, and they achieved 100% accuracy at the flow level. Notably, circuit-level features

can only be extracted at the relay node, whereas flow-level features can be collected

passively between the Tor client and Tor’s relay.

Since the public availability of IP addresses for Tor relays has made it simple to

restrict access to the Tor network by banning these relays’ IP addresses. Additionally,

DPI methods can be effective in detecting Tor traffic at the TLS protocol level by

inspecting specific strings in the TLS certificate fields. To overcome this, Tor developers

introduced bridges and pluggable transports to help obfuscate Tor traffic and bypass

censorship or detection mechanisms. These techniques make Tor traffic appear similar

to other common nonTor protocols, making it harder for DPI to identify the traffic as

originating from the Tor network. Also, bridges are not publicly listed, preventing the

blocking of Tor by concealing the IP addresses of the bridge nodes. However, research

has successfully identified this ‘pretend-to-be-nonTor’ traffic. For instance, Shahbar

and Zincir-Heywood (2015) used flows extracted by Tranalyzer and trained with C4.5

to identify flows from five different pluggable transports (Flashproxy, Scramblesuit,

FTE, Meek and Obfs3) of Tor bridges. Their overall correctly classified result is 97%,

demonstrating that pluggable transport flow behaviours can be discriminated from other
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network traffic as they possess unique fingerprints. Similarly, Soleimani et al. (2018)

demonstrated that three commonly used Tor pluggable transports (Obfs3, Obfs4, and

ScrambleSuit) can be detected using their ML methodology utilising a set of bidirectional

flow statistics, such as total flow volume, mean packet length, and standard deviation of

packet length that is unaffected by the contents of the flow. The authors only examine

the first 10 to 50 packets, which are involved in the establishing activity and have

a distinct connection pattern that helps identify the flow. Four supervised learning

algorithms, including Adaboost, RFs, SVM, and C4.5, were utilised to classify distinct

traffic types along a 70 to 30% split, resulting in optimal F-measure and AUC values.

The authors concluded that traffic recognition produces better results as the number

of analysed packets increases, particularly when more than 30 packets are used in the

training phase.

Furthermore, due to the well-known fact that the Tor network’s hidden services

are a shelter for criminal activities, there have been efforts to not only classify regular

Tor traffic and Tor bridge traffic but also to detect Tor hidden services. Kwon et al.

(2015) proposed an attack on Tor’s hidden services by examining their fingerprinting.

They claim to be the first passive detection system that successfully identifies traffic

from hidden servers amidst regular Tor traffic. Flow traffic attributes, such as the total

transmission size and time, the number of incoming and outgoing packets, the location

of each outgoing cell, and the number of consecutive cells of the same type, were used

as inputs for their three supervised learning algorithms. They discovered that kNN

outperformed C4.5 and CART for classifying hidden services.

Deep Learning Approach

As discussed in the previous section, the prominent feature of DL in effectively modelling

data without requiring handcrafted features has led to its increasing popularity in NTC.

However, despite its success in classifying network traffic, there has been relatively little

research on the application of DL in the area of Tor network classification. In this

context, two studies that focused on the classification of Tor traffic are presented below

for instances.
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One study that closely aligns with our approach to utilising payload-based features

is that of Kim and Anpalagan (2018). The UNB-CIC dataset, which is renowned in

the Tor classification field, was employed in the study to enable comparison with the

results obtained by the dataset creators, Lashkari et al. (2017). This study proposes an

approach for classifying encrypted Tor traffic using a 1D-CNN model with raw packet

headers as input. Specifically, the first 54 bytes of TCP packets, including the TCP/IP

header and Ethernet II header, are utilised as input. These hex values are then converted

to decimal values. The proposed CNN model performs packet classification without

any manual feature extraction or engineering. The results of the study demonstrated

that the proposed CNN model outperformed the C4.5 algorithm in terms of precision

and recall in scenario A, which involved classifying Tor and nonTor traffic. Specifically,

the CNN achieved perfect precision and recall, whereas the C4.5 algorithm achieved

0.95 and 0.93, respectively. In scenario B, which involved classifying application-level

Tor traffic, the CNN model also outperformed the C4.5 algorithm for all applications.

The CNN achieved a range of 0.86-0.99 in precision and 0.84-1.0 in recall, whereas the

C4.5 algorithm ranged from 0.62-0.98 in precision and 0.48-0.97 in recall. These results

suggest that the proposed approach can effectively classify Tor traffic without the need

for manual feature extraction or engineering, which is a significant advantage of DL.

It is widely acknowledged that DL is well known for its ability to extract features

automatically, without the need for human intervention. However, it is also possible

to incorporate handcrafted features into deep learning models, as demonstrated in the

study by Sarkar et al. (2020). The authors presented a DNNs for detecting Tor traffic

using DL, which was tested on the UNB-CIC Tor network dataset. However, the study

employed human-crafted features based on time-based features provided by the dataset

owner. The authors used feature selection methods such as Symmetric Uncertainty

(SU) and Correlation-Based Filter Selection (CFS) to train their DNNs models using 25

out of the 28 available features. In scenario A, the best result achieved an accuracy of

99.89% with DNNs, while in scenario B, the accuracy was 95.60%. These results were

significantly better than those achieved using C4.5, which was employed in the dataset

creator’s work.
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While many studies have shown that flow-based features are effective for Tor traf-

fic classification, there are some limitations to this approach as discussed in Section

2.6.4. The latter two studies have demonstrated that DL methods have shown superior

performance compared to traditional classification approaches, particularly by utilising

automated feature extraction capabilities (Sarkar et al., 2020). However, our work

requires manual feature extraction, and there are limitations associated with using DL,

as discussed in Section 2.6.1. These limitations justify our use of traditional ML methods,

applying character statistical-based features to achieve our objectives.

2.8 Summary

In the first part of this chapter, we provided an overview of various technologies essential

to appreciate the background and setting of our research. We introduced cryptography

principles, different Internet protocols and their encryption, and discussed the Tor

network architecture and encryption techniques that ensure anonymity for its users. We

also compared Tor and nonTor packets and explored character analysis, a fundamental

concept in our study’s methodology. Additionally, we presented statistical analysis and

essential concepts of ML relevant to our research.

The second part of this chapter focused on related work in NTC, specifically for Tor

traffic. We presented diverse approaches used to classify network traffic, along with their

advantages and disadvantages. We also reviewed recent studies that demonstrated the

potential of ML and DL approaches in achieving high accuracy in Tor traffic classification.

The following chapter gives a detailed account of the methodology adopted in our

research, building on the background and related work presented in this chapter.



Chapter 3

Research Methodology and

Experimental Setup

This chapter is divided into two main sections: research methodology and experimental

setup. The methodology section outlines the research approach and framework, including

data requirements, proposed features, data collection, data preprocessing, statistical

analysis, and ML techniques. Additionally, in methodology, we discuss the tools used and

measures taken to ensure the validity and reliability of each stage in the study framework.

The experimental setup section focuses on the implementation of the methodology, which

includes collecting the data needed for analysis, handling the raw data, and preparing

the system’s environment to produce accurate findings.

3.1 Methodological Approach

A research methodology is established at the outset of research, addresses research

problems and draws new conclusions by systematically working toward a predetermined

goal. Our research primarily focuses on characterising Tor traffic through a quantitative

approach that involves observing character statistics in encrypted payloads. This

approach is appropriate because integrating quantitative data into research can help

generate authentic and relevant research findings by statistically testing and estimating

the outcomes (Fletcher, 2017). Our chosen methodological approach is appropriate for
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Tor traffic classification based on the statistics of character features. The attributes used

were derived from the hex characters that appear in the encrypted payloads of Tor and

nonTor packets, yielding numerical values. For example, quantitative data is derived

from Tor and nonTor network attributes to compare descriptive statistics, which is then

presented graphically to help readers understand the results. Quantitative data can also

be used for the classification phase since our experiments require numerical data that can

be evaluated and validated relative to our research objectives. The methodology adopted

in this study is in line with the work by Wiek and Lang (2016), which stated that the

quantitative methodological approach is more efficient for research since it emphasises

measurement of objectives such as statistical, numerical, and graphical analysis.

In addition to selecting an appropriate methodological approach, it is crucial to

determine a research design that provides clear direction for procedures in a research

study (Creswell & Creswell, 2018). Our study involves quantitative data for statistical

and ML analysis, which falls under the category of experimental research. This approach

involves manipulating the independent variable and observing the resulting changes in

the dependent variable. Our study aims to investigate the characteristics of encrypted

payloads between Tor and nonTor networks, as outlined in null hypothesis H01. Therefore,

the independent variable is the network type (Tor or nonTor), and the dependent variable

is the characteristics of the encrypted payloads, such as the hex character frequency, hex

character frequency ratio, total characters, and entropy. Null hypothesis H02 seeks to

determine if a single encrypted payload is sufficient to identify Tor traffic. In this case,

the independent variable is the classifiers used to identify Tor traffic when using a single

payload, and the dependent variable is the efficiency of these classifiers.

Based on the methodological approach and experimental research of this study, we

have developed a research methodology that focuses on testing research hypotheses using

the scientific method. Fundamentally, the scientific method (Dewey, 1933; Hoy & Adams,

2015; Kerlinger, 1966) involves four key steps for acquiring knowledge based on empirical

evidence: defining a problem, formulating a hypothesis, justifying the hypothesis, and

observing and designing an experiment for testing the hypothesis. Adopting the scientific

method, the following steps were included in the proposed research methodology: the
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Figure 3.1: Proposed methodology of the thesis (Adapted from Dewey (1933) and
Kerlinger (1966))

first step is to define the research problem, objectives, research questions, and hypotheses.

The second step is to review previous work on the identified problem on Tor network

traffic classification. The third step is to collect data. The fourth step is to convert

raw data into well-formed data that can be used for statistical analysis and as input to

ML models. The fifth step examines the characteristics of encrypted payloads from Tor

and nonTor networks to test the null hypothesis of the first research question. If the

null hypothesis is not rejected, the findings are concluded. Otherwise, the ML process

continues to investigate the Tor traffic classification. The classification results are used

to evaluate the null hypothesis of the second research question. If the hypothesis is not

rejected, the findings are concluded. Otherwise, a Tor traffic classifier is produced, which
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is in the sixth step. Finally, in the seventh step the findings of the study are reported,

and the research questions are answered.

A comprehensive understanding of our quantitative research design and the proposed

methodology, which follows a logical sequence, has been described. This understanding

will aid in conducting the practical tasks of the study in a scientific manner, ultimately

fulfilling the research objectives. The following section discusses the data requirements

that need to be examined first in order to collect research data appropriately. This

examination is essential to ensure that we collect the right type of data, with appropriate

measures and methods, to answer our research questions and test our hypotheses

effectively.

3.2 Data Requirements

Data is a critical component of research, as it forms the foundation for generating

research findings (Hofmann, 2013). Before initiating the data collection process, it

is essential to identify and understand the data requirements of the study. For our

study, which aims to classify network traffic, we require that the collected network data

encompass secure network protocols running over the transport layer on the TCP/IP

stack, resulting in encrypted packets. Meeting these data requirements will enable us to

ensure that the research data collected is relevant, accurate, and sufficient to conduct

analyses that effectively address our research questions and objectives.

In networking, data collection is typically classified into two types based on the

captured packets approach: active and passive (D. Zhou et al., 2018). The active

approach involves modifying packets by inserting data into traffic and observing the

responses for network traffic monitoring purposes. In contrast, passive data collection

involves passively monitoring network traffic without modifying any packets, capturing

all flow packets passing through the network card using network traffic monitoring tools

to analyse and classify the network traffic. For our study, we used passive data collection

to capture and analyse network traffic data. The analysis of Tor traffic classification

necessitates the collection of network traces from multiple applications operating on both
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Tor and nonTor networks. These traces represent encrypted payload data derived from

various security protocols. Passive traffic capture is employed to collect the data, which

can be conveniently executed on the client-side without interfering with the Tor nodes.

To ensure consistent results and accurately validate the assumptions, the collected data

from a diverse range of applications on both networks must be sufficiently dense and

robust.

In academic research, publicly available datasets, also known as secondary datasets,

are generally preferred as they save time and money and are often of high quality.

However, when specific criteria for the research cannot be met by any available data,

researchers obtain self-gathered datasets, also known as primary datasets. In our study,

we focus on analysing the statistics of characters that appear in encrypted payloads. As

discussed in Section 2.1.1, it is acknowledged that modern encryption algorithms are

highly effective (Katz & Lindell, 2020), and should make it infeasible to determine traffic

type solely by inspecting encrypted payloads. Consequently, character statistics-based

analysis is likely to fail with encryptions, as ciphertext strings cannot be interpreted.

In light of this assumption, we chose also to collect a self-gathered dataset to ensure

independence and consistency within the heterogeneous networking environment. It is

important to note that our study aims to demonstrate the character statistics-based

approach applied with modern encryption to investigate the characteristics of Tor and

regular nonTor traffic, rather than revealing message information from the ciphertext.

To summarise, our study employs two types of dataset sources. The first is a publicly

available dataset. The second is a privately gathered dataset that supports the findings

of the publicly available dataset. The process of collecting network traces for the private

dataset will be elaborated in Section 3.5.1.

3.3 Proposed Features

As discussed in Section 2.2.1, network analyser software typically presents ciphertext

in three data formats: binary, ASCII, and hex. The binary format, consisting of only

0s and 1s, becomes lengthy and thus more challenging to visually interpret for larger

numbers. ASCII characters comprise a set of 256 characters, including both printable
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and non-printable ones. The broad range of characters in ASCII, along with the inclusion

of non-printable control characters, adds layers of complexity to the analysis process.

For instance, the wide range of characters makes it difficult to quickly identify patterns,

and the presence of non-printable characters can make visual inspection challenging.

In contrast, the hex format uses a base-16 number system that includes 16 characters

(0-9, a-f). It offers a more compact representation of data, which can make reading

and interpreting larger values more intuitive. This format can represent both printable

and non-printable ASCII characters. In light of these considerations, our analysis

emphasises single-hex characters over the two-hex characters commonly displayed in

network analysers. Similar to the advantages observed in feature selection that reducing

features can improve the model efficacy, a smaller feature set can lead to improved

analytical efficiency. Simplifying pattern identification might enhance both the overall

effectiveness and the speed of the operational process. As a result, our approach relies

upon statistics of 1-hex values, as presented below:

(1) A set of hex frequency (F_0-F_f ): This feature measures the frequency

of each hex character (0-9, a-f) in the encrypted payloads. Though encryption aims to

make the content of the payload unreadable, the frequency of each character can still be

observed. The analysis of the frequency of each hex character in the encrypted payloads

can reveal patterns and characteristics of the encrypted data. By examining the frequency

of each character, it is possible to identify which characters occur more frequently and

which are rare. This information can be used to identify specific patterns and anomalies

in the data that may be useful in classification or other analysis purposes. For example,

it may be possible to identify specific types of network traffic based on the frequency of

certain characters in their encrypted payloads. Additionally, by comparing the frequency

of characters in encrypted payloads across different networks or applications, it may be

possible to identify differences or similarities in their encryption methods.

(2) A ratio set of hex frequency(R_0-R_f ): This feature measures the ratio

of each hex character’s frequency (0-9, a-f) to the total frequency of all hex characters

in the encrypted payload. It aims to normalise the frequency distribution by accounting

for potential variations in payload sizes. This method ensures length normalisation and
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independence, reducing biases or inaccuracies that may occur when analysing encrypted

payloads based solely on absolute packet length.

(3) The total number of characters (T): This feature measures the total number

of characters in the encrypted payloads, which corresponds to the payload length, by

counting individual hex characters in the ciphertext. This metric can be used to identify

patterns in the data and to compare the size of payloads across different networks or

applications.

(4) Entropy (E): This feature measures the randomness of the encrypted payload

by calculating the Shannon entropy of the payload. It serves as a metric to quantify

the randomness or unpredictability of data. In the context of encrypted payloads,

higher entropy signifies a more random distribution of hex, which is anticipated in

well-encrypted data and generally preferred for secure communication, as discussed in

Section 2.1.3. Ideally, encrypted data should display a uniform distribution of values

(Gancarczyk et al., 2011).

3.4 Research Methods

In addition to the methodological approach, a research design must be determined to

provide clear direction for procedures in a research study (Creswell & Creswell, 2018).

A research design involves the planning of systematic research operations to efficiently

address problems while adhering to the research objectives or hypotheses. It contains

several procedures that serve as a blueprint for the researcher (Dulock, 1993; Yin, 2009)

to construct the research framework action plan for the investigation. The research

methodology of this study consists of a series of steps that must be executed to achieve

the research objectives. The procedures and instruments employed in each step of this

research are detailed in the following section.

A research framework represents the underlying structure or model of a research plan

by outlining completed procedures throughout the study. It serves as a guide to narrow

down the scope of research. Figure 3.2 depicts the framework for our research. Our

research framework consists of four major phases. The first phase involves the procedure

for collecting datasets. Our study employs both primary and secondary datasets, which
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Figure 3.2: Research framework of the thesis

will be implemented and analysed using the same procedures. For the primary dataset,

publicly available data is obtained. For the secondary dataset, which requires collecting

data privately, a network analyser tool, called Wireshark, is used to collect network

traces from both Tor and nonTor networks. Details for the acquisition of the two types of

data sources can be found in Section 3.4.1. The second phase, data preprocessing, takes

raw data from phase one and transforms it into a format that can be understood and

analysed by statistical and ML methods. Several tools are involved in the preprocessing

of raw data. This phase includes three sub-steps: data cleansing, feature extraction,

and data labelling, which will be described in detail in Section 3.4.2. The third phase,

statistical analysis, includes descriptive and inferential statistics tests. The test results

will help address H01: There is no difference between Tor and nonTor traffic in terms of

encrypted payloads. This phase consists of three sub-steps: descriptive statistics, normal

distribution tests, and inferential statistics, detailed in Section 3.4.3. All statistical

analysis tests are conducted using Statistical Package for the Social Sciences (SPSS), a

widely used statistical software package. The fourth phase, ML, which involves all steps

for classification using three supervised learning algorithms: DTs, RFs, and kNN. It

consists of two major parts: classification and prediction of unseen data. The outcomes

of this phase are key to addressing H02: A single encrypted payload cannot be used to

identify Tor traffic. Section 3.4.4 demonstrates how to perform the ML processes. The
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well-known ML platforms, WEKA and Scikit-learn are used to run classification tasks.

3.4.1 Datasets Collections

A dataset is a collection of data that is used to answer research questions. The process

of gathering data is known as data collection, and it involves collecting information from

various sources using different methods such as surveys, experiments, and observations.

It is important to ensure that the data collected is of high quality and represents the

population being studied. As previously mentioned in Section 3.2, this study employs

both public and private datasets to address the research questions. By utilising two

sources of datasets, the study can ensure the validity of the findings and provide a more

accurate and complete analysis of the study. The following section provides a detailed

description of both types of datasets used in this study.

Public Dataset Description

Before 2016, Tor datasets were not publicly available, so research on identifying Tor

traffic relied entirely on private datasets. However, freely downloadable Tor datasets

have since been released for academic use in Tor traffic studies. Using accessible datasets

as a starting point ensures trustworthiness and previous results can serve as benchmarks.

Two openly available Tor network traffic datasets are ISCXTor20161 (Lashkari et al.,

2017) and Anon172 (Shahbar & Zincir-Heywood, 2017). ISCXTor2016 is a traffic dataset

that contains eight application types in Tor and nonTor networks, stored in PCAP3

format and in ARFF4 format. This dataset is owned by the Canadian Institute for

Cybersecurity (CIC) at the University of New Brunswick (UNB) in Canada, making it

also known as the UNB-CIC dataset. Anon17 comprises three datasets of anonymised

network traffic in ARFF format, collected by the Network Information Management and

Security lab (NIMS) at Dalhousie University in Canada: Tor, JonDonym, and I2P. Since

our research aims to investigate encrypted payloads, we prefer network traffic in PCAP
1ISCXTor2016 can be downloaded from https://www.unb.ca/cic/datasets/tor.html
2Anon17 can be downloaded from https://projects.cs.dal.ca/projectx/Download.html
3a raw network trace that can be structured into a TCP/IP model using Wireshark
4a ML file compatible with WEKA
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format; thus, we use the ISCXTor2016 dataset.

ISCXTor2016

ISCXTor2016 or UNB-CIC (Lashkari et al., 2017) dataset has been widely used in the

research area of Tor traffic. The dataset contains Tor and nonTor traffic data collected

from real-world traffic via Whonix, a Tor-integrated open-source Operating System

(OS) based on Linux. Whonix consists of two Debian GNU/Linux virtual machines:

a workstation and a gateway. Traffic captured by the Whonix workstation is regular

traffic, whereas traffic captured by the Whonix gateway is Tor traffic since it is routed

through the Tor network. The dataset was collected by simultaneously recording network

activities on both virtual machines using a packet sniffing tool (e.g., Wireshark) and

storing regular traffic and Tor traffic as separate PCAP files in Tor and nonTor directories.

Figure 3.3 illustrates the Whonix architecture.

Figure 3.3: ISCXTor2016 dataset collection (Adapted from (Lashkari et al., 2017))

The ISCXTor2016 dataset developer released two types of files in their repository5

for download: TorCSV.zip and TorPcap.zip. TorCSV.zip contains time-based features

and is labelled in ARFF format, derived from TorPcap.zip files using ISCXFlowMeter6.

Our focus is on the 20 GB TorPcap.zip file, modified on September 9, 2019, at 13:46.

This file contains eight traffic types (Audio, Browsing, Chat, Email, FTP, P2P, VDO,

and VoIP) from over 18 software applications (e.g., Firefox, Chrome, Facebook, Skype,

Gmail, etc.), offering a diverse range for our research purposes. The ISCXTor2016 was
5http://205.174.165.80/CICDataset/ISCX-Tor-NonTor-2017/Dataset/
6ISCXFlowMeter (now renamed as CICFlowMeter) is a Java-based network traffic analyser developed

by the Tor dataset team that reads and converts PCAP data to CSV files. It can produce bidirectional
network traffic and calculate over 80 statistical flow-based attributes.



Chapter 3. Research Methodology and Experimental Setup 87

captured and classified through the following means, representing real-world internet

usage:

Audio-Streaming: Continuous audio data streams from Spotify were used to

capture audio traffic.

Browsing: HTTP and HTTPS traffic were collected using Chrome and Firefox.

Chat: Chat traffic was collected using Facebook and Hangouts instant-messaging

applications via web browsers, as well as Skype, IAM, and ICQ using Pidgin.

Email: Thunderbird was used to generate email traffic. Emails were sent via

SMTP/S and received via POP3/SSL on one client and IMAP/SSL on the other.

FTP: FTP traffic was collected when sending or receiving files via Skype file transfers,

FTP over SSH, and FTP over SSL traffic sessions.

P2P: File-sharing protocols, such as BitTorrent, were generated and captured as

Peer-to-Peer (P2P) traffic using the Vuze application.

Video-Streaming: Video traffic was captured with continuous video data streams

from YouTube (HTML5 and Flash versions) and Vimeo services via Chrome and Firefox.

VoIP: Voice call traffic was captured from Facebook, Hangouts, and Skype.

Private Dataset Description

To demonstrate that the results are not influenced by any particular network environment,

we expand our experiment to include a self-collected dataset in addition to the initial

public dataset. Due to time constraints and to simplify the system setup, we choose

only one Browsing application instead of capturing Tor and nonTor traffic from eight

applications like in the public dataset. Encrypted Browsing traffic data is collected from

Firefox in both regular and Tor networks. Collecting data from the browsing application

is made carefully to ensure that irrelevant network packets are excluded from the dataset,

thus improving the accuracy and relevance of the results. A detailed description of the

private data collection process is presented in Section 3.5.1.
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3.4.2 Data Preprocessing

Data preprocessing is an essential step in the data analysis process because it involves

preparing raw data by transforming, cleaning, and formatting it into a structured dataset

that can be used for further analysis. The preprocessing stage is necessary because

raw data is often incomplete, noisy, and unformatted, and cannot be used directly for

analysis. Meaningful patterns can be identified by filtering and extracting relevant

features from preprocessed data, which can provide valuable insights into a variety of

problems. Data preprocessing in this study comprises three sub-processes: data cleansing,

feature extraction, and data labelling, as illustrated in the second step in Figure 3.2.

Data Cleansing

Data cleansing is a crucial step in the data preprocessing phase as it involves removing

irrelevant data from the acquired dataset. In this study, our focus is on network

traffic classification, which involves raw network traffic data in PCAP format as input.

As described in Section 3.4.1, the publicly collected data was categorised into eight

application types, including Audio, Browsing, Chat, Email, FTP, P2P, VDO, VoIP, and

Private-browsing, generated from 18 software, and one from the private dataset. To

ensure consistency and enhance the results, the datasets corresponding to the same

application types in the public dataset are grouped into a single dataset, following the

same grouping pattern used for categorisation. This resulted in nine groups of application

types for both Tor and nonTor networks across the two dataset sources. Grouping the

captured network traffic can also provide benefits for investigating the security protocols

utilised by these applications. In the context of our study, the security protocols found

in the datasets are TLS, SSH and secure proprietary protocols.

During the data cleansing process, there are two factors to consider to ensure that

only relevant data is retained. Firstly, encrypted packets must be generated by network

traffic from specific applications for secure communication. As explained in Section 2.2,

this operation is usually performed by considering only secure protocols. Therefore,

any application that does not provide secure communication is disregarded. Secondly,

only packets containing payload need to be obtained. Captured network traffic typically
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consists of all packet types involved in device communication, travelling in and out of

the network interface card. This includes the initial TCP handshake packets, which do

not contain any payload data but rather information required to establish the connection

located in the packet’s header. As a result, network connection-related packets must be

ignored because only packets containing application data or payload are considered. The

data cleansing process with the inclusion of these two conditions is essential in improving

the quality of the data for analysis and ultimately, in obtaining more accurate results.

Algorithm 1 provides the data cleansing pseudocode, an overview of the process to

extract relevant packets containing payload while filtering out unimportant packets like

TCP handshake flows. The operation takes the network flow in PCAP format as input

and processes each packet individually.

Algorithm 1 Data Cleansing Algorithm
Require: F : Network flow in PCAP format
Ensure: E: The encrypted payload
1: i← 0 //Initialise with the first packet in the PCAP file
2: while i < F do
3: Read packet i
4: if topmost_layer_protocol = “TLS” then
5: Read payload i
6: if payload i != “0” then
7: E ← Get tls.app_data //Extract non-empty TLS payloads and append to

the encrypted payload set E
8: end if
9: else if topmost_layer_protocol = “SSH” then

10: Read payload i
11: if payload i != “0” then
12: E ← Get ssh.encrypted_packet //Extract non-empty SSH payloads and

append to the encrypted payload set E
13: end if
14: else if topmost_layer_protocol = “TCP” or proprietary protocol then
15: Read payload i
16: if payload i != “0” then
17: E ← Get tcp.data //Extract non-empty TCP payloads and append to the

encrypted payload set E
18: end if
19: end if
20: i← i+ 1
21: end while
22: return E
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During the processing, the algorithm iterates through each packet:

1. If the topmost layer protocol is TLS, the algorithm checks if the payload is

non-empty. If so, it uses the command ‘tls.app_data’ to extract the payload and adds it

to the encrypted payload set (E ).

2. If the topmost layer protocol is SSH, the algorithm checks if the payload is

non-empty. If so, it uses the command ‘ssh.encrypted_packet’ to extract the payload

and adds it to the encrypted payload set (E ).

3. If the topmost layer protocol is TCP or a proprietary protocol, the algorithm

checks if the payload is non-empty. If so, it uses the command ‘tcp.data’ to extract the

payload and adds it to the encrypted payload set (E ).

The algorithm iterates through all packets in the network flow. After the entire

network traces have been processed, the extracted encrypted payload set (E ) is returned

as the output. This approach ensures that only relevant payload data is retained for

further analysis, while unnecessary packets are excluded from the dataset.

Feature Extraction

Feature extraction is the process of deriving meaningful attributes from the collected

and cleansed data, which is then transformed into a well-formatted dataset suitable

for data analysis. This study employs statistical and classification analyses. Before

performing classification analysis, the extracted features undergo statistical analysis

to identify the most relevant and informative features. Properly designed features are

crucial for effective statistical analysis and improved prediction accuracy, enabling precise

problem-solving using a trained model with appropriate features (Robertazzi & Shi,

2020). As mentioned in Section 3.3, our proposed features include a set of hex statistic

calculations. To obtain these statistics, we use the mathematical equations presented

below.

The frequency of each hex character in a single payload can be computed using the

following equation:
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Fci(p) =

|p|∑
k=1

δ(ci, p(k)) (3.1)

∀i ∈ {0, 1, . . . , F}

δ(ci, p(k)) =


1, if ci = p(k)

0, otherwise

In this equation, Fci(p) represents the frequency of hex character ci in payload p.

The hex character ci ranges from 0 to F . The payload p has a length denoted by |p|, and

k is an index variable iterating through each character in the payload. The indicator

function δ(ci, p(k)) takes the value 1 when hex character ci matches the k-th character

of payload p and 0 otherwise.

Equation 3.1 calculates the frequency of each hex character ci in the payload p by

iterating through the payload’s characters and comparing them with the hex characters.

The indicator function δ(ci, p(k)) counts the matches, and the summation accumulates

the counts to compute the final frequency for each hex character in the payload.

The total character count in a payload can be computed using the following equation:

T (p) =
∑

i∈0,1,...,F
Fci(p) (3.2)

In Equation 3.2, Fci(p) denotes the frequency of hex character ci in payload p as

calculated using Equation 3.1. The summation in Equation 3.2 adds up the frequencies

of all hex characters to obtain the total character count in the payload.

The ratio of each hex character in a payload can be computed using the following

equation:

Rci(p) =
Fci(p)

T (p)
(3.3)

In this equation, Rci(p) represents the ratio of hex character ci in payload p. The
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hex character ci ranges from 0 to F . Fci(p) denotes the frequency of hex character ci in

payload p, as calculated using Equation 3.1. The payload p has a total character count

represented by T (p).

Equation 3.3 computes the ratio of each hex character ci in the payload p by dividing

the frequency of hex character ci (calculated using Equation 3.1) by the total character

count in the payload T (p). This ratio represents the proportion of each hex character in

the payload, which is useful for analysing the distribution of hex characters in encrypted

data.

The entropy of a payload can be computed using the following equation:

H(p) = −
∑

i∈0,1,...,F
Rci(p) log2Rci(p) (3.4)

In this equation, H(p) represents the entropy of payload p. Rci(p) denotes the ratio

of hex character ci in payload p, as calculated using Equation 3.3. The hex character i

ranges from 0 to F .

Equation 3.4 calculates the entropy of a payload p by summing the product of the

ratio of each hex character ci in the payload and the base-2 logarithm of that ratio.

These equations are integrated into Algorithm 2 to calculate four sets of features in

a series of payloads. The algorithm provides the pseudocode for the feature extraction

process. The input to the algorithm is an extracted encrypted payload (P ), and the

output is a set of relevant features derived from the payload. These features include

the frequency of individual hex characters appearing in the encrypted payload (F ), the

frequency ratio of individual hex characters (R), the total number of characters in the

encrypted payload (T ), and the entropy of the encrypted payload (E).
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Algorithm 2 Feature Extraction Algorithm
Require: P : Extracted encrypted payloads
Ensure: F : Frequency of individual hex characters in the encrypted payloads

R: Ratio of the frequency of individual hex characters in the encrypted payloads
T : total characters in the encrypted payloads
E: entropy in the encrypted payloads

1: for all packet in P do
2: if packet contains “,” then
3: Split and append a new row
4: end if
5: F ← Frequency count //calculated using Eq. 3.1
6: R← Ratio of F //calculated using Eq. 3.3
7: T ← Total Character //calculated using Eq. 3.2
8: R← Entropy of P //calculated using Eq. 3.4
9: end for

10: return F , R, T , E

The algorithm iterates through each packet in the extracted encrypted payload (P ).

If the packet contains a comma (‘,’), it splits the packet and appends a new row. Then,

for each packet, the algorithm performs the following actions:

1. Counts the frequency of each character in the payload (F ).

2. Normalises the frequency count by calculating the ratio of individual hex characters

(R).

3. Calculates the total number of characters in the payload (T ).

4. Calculates the entropy of the payload (E).

After processing all packets in the payload, the algorithm returns the extracted

features: F , R, T , and E. These features will be used for further statistical analysis and

classification tasks.

Building upon this concept, we developed a Python-based script called Character

Statistics Analysis using Python (CHARSTAT) for research purposes. This script

processes data cleaning and extracts the encrypted payloads and relevant features

described earlier. Utilising CHARSTAT simplifies the task of data preparation and

enhances the precision of the resulting features. This, in turn, ensures the efficacy of

statistical and classification analyses, leading to more accurate and reliable outcomes.
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Data Grouping and Labelling

As described in Section 3.4.1, the publicly collected data was categorised into eight

application types, including Audio, Browsing, Chat, Email, FTP, P2P, VDO, VoIP, and

Private-browsing, generated from 18 software, and one from the private dataset. To

ensure consistency and enhance the results, the datasets corresponding to the same

application types in the public dataset were grouped into a single dataset, following

the same grouping pattern used for categorisation. This resulted in nine groups of

application types for both Tor and nonTor networks across the two dataset sources.

By grouping multiple datasets based on application types, it can mitigate the impact

of software-specific characteristics on the analysis and enhance the statistical study

by integrating a larger sample size. This approach can improve the reliability and

generalisability of the results, particularly when examining and comparing Tor and

nonTor traffic across various applications.

Following the grouping of application types, data labelling is performed. In ML,

data labelling is crucial for training models using supervised learning algorithms, as the

accuracy of the classifier’s learning capabilities depends on both the extracted features

and the labelled data. Moreover, in our study, statistical tests require the use of labelled

data to validate the analysis. The labelled data is assigned following the group of

application types, resulting in multiple files that contain labels for nine pairs of Tor and

nonTor networks across the two dataset sources. The labelling process is integrated into

CHARSTAT, enabling automatic labelling of the data, which provides a more accurate

and efficient labelling process compared to manual labelling. Section 3.4.2 provides a

detailed description of the data labelling.

3.4.3 Statistical Analysis

This study employs statistical analysis to test the research hypothesis by investigating

and comparing the characteristics of Tor and nonTor traffic using three subprocesses,

as shown in the third phase of Figure 3.2. As mentioned in Section 2.5, descriptive

analysis, including Data distribution(Frequency), average (Mean), standard deviation

(SD), minimum (Min), and maximum (Max ), is calculated from continuous quantitative
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data. These measurements are presented both quantitatively and graphically to facilitate

comparison. Prior to applying inferential statistics to scientifically validate the research

hypothesis, the data is subjected to a normality test. The Kolmogorov–Smirnov test is

used for this purpose, and if the observed data does not show a normal distribution, the

Mann–Whitney U test is applied for inferential analysis.

Statistical analysis is conducted on nine groups of application types from both

dataset sources. To compare the characteristics of encrypted payloads in Tor and

nonTor networks efficiently, it is essential to investigate each aspect of character analysis

based on payload features. Therefore, the 34 features discussed in Section 3.5.2 derived

from encrypted Tor and nonTor payloads belonging to nine sets of applications will be

analysed. The use of these nine sets of applications ensures data analysis consistency

and strengthens the validity of the study’s findings. In the context of statistical analysis,

all elements can be interconnected, as illustrated in Figure 3.4.

The linkage of each object involving three elements can be described as follows: (1)

two types of network traffic (Tor and nonTor), (2) nine types of applications (Audio,

Browsing, Chat, Email, FTP, P2P, VoIP, VDO, and Private-Browsing), and (3) four sets

of features. These four sets of features, which consist of 34 features (F_0-F_f, R_0-R_f,

T, E derived from the nine Tor applications, are mapped one by one to the corresponding

34 extracted features obtained from the nine nonTor applications. Descriptive statistics,

including Frequency, Mean, SD, Min and Max, are used to describe and compare the

characteristics of each pair of features. The Mann-Whitney U test is then used to

evaluate these characteristics and provide insight into the first null hypothesis. The

statistical analysis is covered in Chapter 4. All statistical tasks are performed using the

(SPSS), a powerful statistical software that simplifies the work.

In summary, the statistical analysis aims to provide a comprehensive understanding

of the characteristics of Tor and nonTor traffic by examining all aspects of extracted

features derived from various applications. The use of both descriptive and inferential

statistics allows researchers not only to describe the trends, patterns, and relationships

within the data but also to draw conclusions about the larger population. This approach

helps to validate the research hypothesis and provides valuable insights for further
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Figure 3.4: Relationship of nine sets of applications on statistical analysis approach

analysis, such as building classification models.

3.4.4 Machine Learning

ML deals with developing algorithms that allow machines to learn patterns and rela-

tionships from data. In the context of this study, ML is used to classify Tor traffic and

test the second research hypothesis. The entire classification process is depicted in the

fourth phase of Figure 3.2. The ML process consists of two phases: the classification

phase and the unseen data prediction phase. Before both phases can be performed, the

preprocessed dataset must be split into two portions: a training dataset for building
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the classification model and a validation dataset for evaluating the performance of the

model on unseen data.

In the classification phase, the dataset is divided into a training set, which is used

to fit the chosen classification model, and a testing set, which is used to assess the

model’s performance on previously unseen data. It is important to have a proper dividing

ratio to ensure there is enough data to train and test the model effectively. In this

study, we employ a supervised learning approach using three algorithms: DTs, RFs,

and kNN. These algorithms are selected based on their effectiveness in classification

tasks, as discussed in Section 2.6.5. To improve the performance of the classifier and

reduce training time, feature selection is performed to select the best and most promising

features from Tor and nonTor traffic. The classification results are measured using

metrics including accuracy, precision, recall, F1 score and ROC/AUC score.

In the unseen data prediction phase, the finalised model is employed to make

predictions on a validation dataset that has not been utilised for training or testing, to

prevent overfitting. Overfitting is a prevalent issue in ML models, is unable to generalise

or fit accurately to new and unseen data (Ying, 2019). Mitigating overfitting by

evaluating the model’s performance on previously unused data is essential, as unlabelled

data typically serve as the input for real-world implementation in the prediction task. A

detailed overview of every step of the ML process will be provided in Chapter 5. In this

study, the classification results are analysed using two platforms, Waikato Environment

for Knowledge Analysis (WEKA) and Scikit-learn, which are detailed in the next section.

At this point, the reader should have a clear understanding of the methodology

employed in the present study, which has been detailed in the preceding section. In

the next section, we will present the various research tools utilised to support the

implementation of the study.

3.4.5 Research Tools

The successful completion of a research project necessitates the employment of various

tools and methodologies for tasks such as data collection, data processing, data analysis,

and experimentation. Our work similarly relies on an assortment of software to facilitate
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these tasks. The instruments employed in this research are outlined as follows:

The Amnesic Incognito Live System (Tails)

The Amnesic Incognito Live System (Tails)7 is an open-source, live operating system

(OS) specifically designed to offer comprehensive anonymity to its users (Tails, 2022).

Tails operates by booting directly from a portable storage device, such as a flash drive

or DVD, thereby leaving no trace on the local system it is executed on and eliminating

user data upon system shutdown (Cardenas-Haro & Dawson, 2017). This OS is built on

the Debian Linux distribution and is compatible with the majority of Unix commands.

In the context of this study, Tails 5.1 is employed for generating a private dataset

and reporting its results in conjunction with the public dataset. Tails will be installed

as a live OS within a virtual machine environment to ensure that unrelated data from

nonTor background network activity is excluded in the analysis.

Wireshark

Wireshark8 is the most widely employed network traffic analyser utilised by a diverse

range of users, such as system administrators and security professionals for network

troubleshooting, software developers for investigating communication protocols, and

academics for educational purposes. This free, open-source software is renowned for

its user-friendly graphical interface and extensive capabilities in capturing and filtering

data.

Wireshark captures local network traffic in raw binary data format from any network

adapter, encompassing Ethernet, Bluetooth, and wireless connections, enabling both

real-time and offline analyses. The captured binary data is typically not in a human-

readable format, but Wireshark provides a feature to convert the captured data into

a more human-readable format for analysis purposes (e.g., hex and ASCII). which is

displayed hierarchically in the breakdown sections of the network communication model

(TCP/IP or OSI). Wireshark facilitates traffic filtering during packet capture and offline

analysis, refining searches within the network trace. For instance, one can configure a
7https://tails.boum.org/
8https://www.wireshark.org/
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filter to display only TCP traffic from a local network (Sanders, 2017). As mentioned in

Section 3.4, Wireshark 3.2.1 is employed in this study to generate a private dataset by

capturing Tor and nonTor traffic and serves as a packet analyser tool in the network

packet examination step for both datasets.

CHARSTAT

CHARSTAT is a lightweight, custom Python script that runs in Jupyter Notebook9,

which is one of the best Interactive Development Environments (IDEs) for Python

and Data Science. CHARSTAT is open-source software that anyone interested in

detecting Tor traffic using character statistics on payload-based methods is available to

download10. It serves as an important tool for the data preprocessing phase of our Tor

traffic classification approach, and is inspired by a function in the Posit text profiling

toolset, called charcount (Weir, 2007, 2009; Weir et al., 2018). The Posit toolset is

designed to analyse textual data and count the occurrences of words and characters

within a text, which served as a starting point for our approach to feature extraction.

CHARSTAT is designed to allow multiple tasks in data preprocessing to be completed in

a single execution through two main functions. The first function is packet filtering and

payload extraction, which removes irrelevant packets and extracts only those containing

the payload. The second function is feature extraction and data labelling, which involves

extracting character statistics-based features and labelling the data. Its user-friendly

interface enables CHARSTAT to run the two aforementioned functions in one click on

the loaded file after loading input, which is the raw network traffic data. The output

is exported in CSV format, allowing for statistical analysis and compatibility with

classification employing WEKA and Scikit-learn. The main CHARSTAT procedures

involve filtering relevant packets and extracting encrypted payloads, as described in

Algorithm 1, and extracting features and labelling the data, as described in Algorithm 2.

These procedures are then converted into Python scripts, as presented in Appendix A.1.
9https://jupyter.org/

10https://github.com/pitpimon/Tor-traffic-classification/blob/main/charstat.py
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SPSS

SPSS11 is a statistical software package for interactive and batch statistical analysis

of simple to complex data. It debuted in 1968 and was purchased by IBM in 2009

(Field, 2013). The University of Strathclyde provides free access to the licensed software,

SPSS, for university staff and students. Although PSPP12, an open-source analytical

tool that performs similar tasks to SPSS, lacks some of the advanced features of SPSS

in managing and analysing large-scale data. As a result, SPSS is the preferred tool

for the statistical analysis part of this study and plays a vital role in analysing the

descriptive and inferential statistics to prove our first null hypothesis. Its Graphical User

Interface (GUI) covers a broad range of capabilities for the entire analytical process,

greatly simplifying our statistical analysis tasks. In this research, IBM SPSS Statistics

version 28.0.0.0 was utilised.

WEKA

WEKA13 is a powerful data mining, Java-based open-source software platform created by

a developer team at Waikato University in New Zealand (Holmes et al., 1994). The latest

stable version of WEKA is 3.8, and for this research, version 3.8.4 was utilised. Java

JDK 8 is required to run the software on a local machine. WEKA contains a collection

of supervised and unsupervised learning algorithms for ML tasks, accessible through

several graphical user interfaces that enable easy access to the underlying functionality.

Moreover, WEKA allows running attribute selection algorithms on the trained data to

select the most relevant attributes and provides a visual representation of the relationship

between attributes (Hall et al., 2009). The software is available for free download from

the developer’s website and is easy to use without requiring programming knowledge.

Therefore, WEKA is a suitable tool for the preliminary ML experiments in this study,

where it is used for data preprocessing, classification, feature selection, and unseen data

prediction.
11https://www.ibm.com/products/spss-statistics
12https://www.gnu.org/software/pspp/
13https://www.cs.waikato.ac.nz/ml/weka/
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Scikit-learn

The Scikit-learn14 is a popular open-source ML library for Python that provides a

wide range of tools for various ML tasks, such as classification, regression, clustering,

and dimensionality reduction. It includes a large number of powerful algorithms and

techniques for data preprocessing, model training, and evaluation, making it a versatile

and valuable tool for many different types of analyses. In classification problems, Scikit-

learn includes a wide range of popular classifiers, such as DTs, SVM, and RFs, as well

as tools for feature selection and feature engineering (Géron, 2022). This study utilises

Scikit-learn in addition to WEKA for running the ML experiments. Comparing the

results of the same ML task in both platforms can help to validate the accuracy of the

models generated. If both platforms produce similar results, it provides more confidence

in the accuracy of the models.

Jupyter Notebook

The Jupyter Notebook15, formerly known as the IPython Notebook, is an open-source

web-based computing platform and is free to use. Jupyter Notebook implements Read-

Eval-Print-Loop (REPL) for creating and sharing documents that contain programming

codes, visualisations and text interactively on the terminal. It is made up of rows of

cells, each of which contains static content such as text, images, graphs, video, audio or

the Python programming language, as well as support for over 40 different programming

languages (Nagar, 2018; Perkel, 2018). The Notebook’s REPL functionality enables

users to execute individual code snippets contained in each cell, whereas entire source

code files are typically interpreted using traditional programming languages.

In this research, we utilised Jupyter Notebook server version 6.0.3, which was running

on Python version 3.7.7 to create and run Python scripts for developing CHARSTAT in

data preprocessing and applying the Scikit-learn library for classification tasks. Python-

based approaches are highly adaptable, as the code can be easily customised to meet

our specific needs. For instance, CHARSTAT is designed to run multiple tasks in
14https://scikit-learn.org/
15https://jupyter.org/
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data preprocessing with just one click upon input loading. Similarly, when it comes to

classification, this custom script can efficiently execute multiple tasks in classification

with a single click using Scikit-learn. This facilitates testing different classifiers with

four distinct feature sets or comparing results across various parameter settings without

manually running individual tests on WEKA. Although using Python-based scripts

simplifies the ML tasks, it requires some programming skills to fully interpret and

leverage the results. In contrast, WEKA is an excellent option for quickly viewing

preliminary results and conducting early analyses of the dataset with just a few clicks,

without requiring coding experience. However, WEKA may be less flexible when it

comes to customisation or modifying the algorithms. Overall, both platforms have their

unique advantages and disadvantages, and the choice of which to use depends on the

specific needs of each analysis.

3.4.6 Validity and Reliability

This study aimed to investigate and compare the characteristics of encrypted payloads

in Tor and nonTor traffic using character analysis and ML techniques. Our research

questions centred on the efficacy of statistical and ML analyses in distinguishing Tor and

nonTor traffic. To guarantee the validity and reliability of our study, several key steps

were taken throughout the research process to maintain and enhance the credibility of

our findings.

To ensure the validity of our study, we commenced with a comprehensive literature

review that identified gaps in both the existing knowledge and previous works related to

the classification of Tor and nonTor encrypted payloads. This review process facilitated

our understanding of the distinctions between Tor and nonTor encrypted payloads,

enabling us to develop clear research questions and devise a novel approach to address

the identified gaps. Our research questions defined the formulation of our methodology,

which centred on character-based analysis. By examining individual hex characters

in ciphertexts, we employed a suitable approach for the study of encrypted payloads.

The features extracted—such as frequency hex, frequency ratio, total characters, and

entropy—proved relevant for the classification of Tor and nonTor encrypted payloads,
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thereby ensuring the appropriateness of our approach within the context of this study.

Quantitative data played a pivotal role in substantiating our chosen methods. We

utilised statistical analysis and ML techniques to conduct a comprehensive examination

of the encrypted payloads. By applying the quantitative data derived from the extracted

features to these approaches, we achieved unbiased results that facilitated the precise

classification of Tor and nonTor traffic. The careful selection and implementation of

appropriate methods, coupled with the leverage of quantitative data, strengthened the

overall quality of our research and its potential contribution to the field.

In terms of reliability, our study employed comprehensive data collection procedures,

incorporating quality control measures and steps to ensure consistent data collection

across both Tor and nonTor traffic. For instance, we obtained the public dataset from a

reputable source, while capturing the private dataset in a controlled network environment.

The data collection and preprocessing steps adhered to standardised protocols, such

as data cleaning, handling missing data, and transforming variables, ensuring that

our statistical and machine-learning analyses were performed accurately. Specifically,

classification experiments were conducted using both WEKA and Scikit-learn platforms.

The utilisation of two platforms for the classification experiments contributed to the

consistency of the results, confirming that observed patterns were not due to chance

or errors. Moreover, the adoption of standardised software and tools facilitated the

maintenance of our findings’ reliability. Lastly, clear and detailed explanations for all

steps involved in conducting the research were provided, which is important for enabling

other researchers to reproduce our study and achieve comparable results.

Drawing on the foundation provided in previous sections, the purpose of this study

is to introduce a novel quantitative method for investigating how the characteristics of

encrypted payloads can facilitate network traffic classification. To address our research

questions through hypothesis testing, we provided a detailed discussion of the techniques

and instruments used, demonstrating the appropriateness of our chosen method for

the research. The previous discussion has given readers a clear understanding of the

methodology used in this study. The next section will detail the implementation of the

proposed research methodology.
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3.5 Experimental Setup

The research methodology detailed how to conduct the study in a structured manner,

ensuring the reliability and validity of the results. Once the methodology was established,

the next step was to set up the components for the experiment. This involved collecting

relevant datasets for the study and processing them properly to remove any errors or

inconsistencies. Research tools were also configured appropriately to effectively collect

and analyse the data.

3.5.1 Dataset Collection

As discussed in Section 3.4.1, we required an additional data source besides the first

one acquired from a reliable public site. Consequently, we carefully collected a private

dataset through self-collection, ensuring an accurate representation of both Tor and

nonTor network traffic. Capturing nonTor traffic was relatively easy since it simply

involved capturing network traffic originating from a system without any installed

Tor clients. However, capturing Tor traffic needed to ensure that nonTor traffic was

involved, as certain protocols transmit and receive packets in the background without

user intervention, causing potential interference. To avoid this issue, we collected both

network traffic types using a live OS. We installed the live OS on a VirtualBox16 virtual

machine, which served as a clean environment. Data collection for both networks followed

the same procedure, with the except for the OS employed. The data-gathering process

was conducted on a machine equipped with an Intel Core i5-6000 @ 3.20GHz processor

and 16.0 GB of DDR3 RAM. Figure 3.5 provides a visual representation of the Tor and

nonTor traffic collection.

We used Tails 4.22 as the OS to emulate the Tor environment, as outlined in

Section 3.4.5. Tails is developed by the Tor project and includes an integrated Tor

browser, providing maximum privacy and anonymity by leaving no trace on the local

system. All incoming and outgoing traffic from Tails is forced to pass through the

Tor network, making it classified as Tor traffic. To capture Tor traffic from Tails, we
16https://www.virtualbox.org/
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Figure 3.5: Collection of Private Dataset for (a) Tor Traffic and (b) nonTor Traffic

installed Tails on VirtualBox and then installed Wireshark on Tails. We generated

browsing traffic by compiling a list of the top 50 domains from the 500 most popular

websites ranked by MOZ17. We filtered out HTTP domains and similar domains, such

as google.com, play.google.com, and others, to select the top 50 domains as input for a

Python-based automated browsing script. Appendix A.2 contains the automated Python

script and the website list. The traces from Tails were captured using Wireshark, saved as

PCAP files, and labelled as ‘private-browsing-Tor’ traffic. Collecting Tor network traffic

proved more challenging than we had expected. We encountered two issues: installing

Wireshark in live OSs like Tails required administrative privileges and was wiped

upon system reboot. Additionally, some websites, such as https://www.reuters.com,

https://www.samsung.com, and https://www.nasa.gov, were inaccessible via the Tor

browser and had to be removed from the website lists.

The process of collecting nonTor traffic was similar to capturing Tor traffic, but using

different tools used. Firstly, Ubuntu 20.04.3 LTS was utilised as the live OS instead of

Tails OS, and Mozilla Firefox was used as the web browser instead of the Tor browser.

However, the same automated Python script as described in Appendix A.2 was used
17https://www.moz.com/top500 retrieved on 26 August 2021
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for both Tor and nonTor traffic capture. Similar to Tails, Wireshark was installed in

Ubuntu to capture the network traffic data, and the resulting traces were saved as PCAP

files. The captured traffic was then labelled as ‘private-browsing-nonTor’ traffic.

3.5.2 Data Preprocessing

The process of data preprocessing generally involves several steps, and in the context of

this study, it also requires the manipulation of multiple files. To simplify this process,

we utilised CHARSTAT.

Figure 3.6: Data preprocessing steps

In the data preprocessing phase, the first step was to manually categorise the variety

of public dataset into individual application type. After this initial step, we performed

the remaining data preprocessing steps on both the public and private datasets using

the CHARSTAT tool. The CHARSTAT tool comprises two primary modules: Module 1,

which involves packet filtering and payload extraction, and Module 2, which includes

feature extraction and data labelling. Each module consists of several sub-steps. In the

next sections, each module will be discussed in detail.
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Data Cleansing and Categorisation

The first step of data preprocessing was applied only to the public dataset, with the

aim of cleaning the data and categorising the multiple files into their corresponding

groups, as discussed in Section 3.4.2. However, this step could not be supported by

CHARSTAT because it required a manual examination of the ISCXTor2016 dataset.

During the investigation, it was discovered that some files had identical sizes and content

but different names, resulting in duplicate files that were removed. Additionally, to

ensure an unbiased outcome, unencrypted data generated by insecure protocols such

as FTP and HTTP were ignored. Consequently, the total number of PCAP files was

reduced from 85 to 68, and these files were categorised into their respective groups.

The categorisation of the data was based on our observations as the file structure

was not explained in the literature. Our aim was to ensure that the data were correctly

categorised into their corresponding groups. As discussed in Section 3.4.1, the data were

collected by recording software activities on both Tor and nonTor networks, resulting in

files appearing twice: once in the Tor directory and once in the nonTor directory. We

found that the applications’ names were based on their primary function. For example,

the traffic generated by Spotify, which provides a continuous stream of audio data, was

classified as ‘Audio’, and Vuze’s traffic, which is a BitTorrent client used for file transfers

via the BitTorrent protocol, was classified as ‘P2P’. Some software applications provide

more than one primary service, such as Facebook and Skype, which offer services for both

Chat and VoIP. The dataset owner included the service name within the file, allowing us

to categorise the files correctly. For instance, the file CHAT_gate_facebook_chat.pcap

was identified as traffic captured from Facebook and categorised as a chat application.

After categorising the files, we investigated the encryption protocols used by each

software in order to include relevant packets by applying the accurate filtering command.

The following presents the encryption protocols used by each software, organised into

application types and provided as a reference to facilitate network packet examination in

the next section. However, this list is only applicable to nonTor traffic because when any

software operates within the Tor network, its traffic is encrypted using TLS, resulting in

all traffic generated from Tor being classified as belonging to the TLS protocol.
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Below is a listing of the encryption protocols utilised by each software, categorised

by application type:

Audio: Spotify18 employs a proprietary protocol (Hjelmvik & John, 2009; B. Zhang

et al., 2013) to protect data in transit, using a symmetric key stream cipher and enhancing

data encryption with the AES block cipher (Wood & Uzun, 2014).

Browsing: When collecting browsing traffic via Chrome19 and Firefox20, only

HTTPS is considered.

Chat: Various chat applications use different protocols to generate chat traffic,

which can make packet examination challenging. Thus, we need to ensure that each

application employ secure protocols. ICQ21, AIM22, and Skype23 use secure proprietary

protocols, while Hangouts24 and Facebook25 encrypt their packets using TLS (Azfar

et al., 2016; Datta et al., 2015; Tong et al., 2018).

Email: Thunderbird26 uses TLS to protect emails (Modadugu & Rescorla, 2004).

FTP: SFTP uses SSH to ensure secure communication while transferring files, while

Skype employs its protocol that adds security to file transfers through the use of a strong

encryption method (Cheng et al., 2013).

P2P: Vuze27 employs the BitTorrent protocol and improves security and privacy

with MSE/PE (Hjelmvik & John, 2010).

VDO: Vimeo28 and YouTube29 encrypt their traffic and use Chrome and Firefox

to stream videos continuously. The traffic of TLS can be captured due to secure

communication.

VoIP: While Skype uses a secure proprietary protocol (Adami et al., 2009; Mamun

et al., 2015; Velan et al., 2015), Hangouts also uses its proprietary protocol to ensure
18https://open.spotify.com/
19https://www.google.com/intl/th/chrome/
20https://www.mozilla.org/en-GB/firefox/browsers/
21https://icq.com/
22https://aim.chat/
23https://www.skype.com/en/
24https://hangouts.google.com/
25https://www.facebook.com/
26https://www.thunderbird.net/
27https://www.vuze.com/
28https://vimeo.com/
29https://www.youtube.com/
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secure transmission of video, audio, and data (Vápeník et al., 2014).

Table 3.1: Number of files in Tor and nonTor directories for eight application types
obtained from the ISCXTor2016 dataset.

Application Types Source Applications # Tor Files # NonTor Files

Audio Spotify 2 3

Browsing Chrome, Firefox 5 7

Chat
ICQ, AIM, Skype,

Facebook, Hangouts
6 10

Email SMTPS, POP3S , IMAPS 4 4

FTP Skype, SFTP, FTPS 3 2

P2P Bittorent, Vuze 2 2

Video Vimeo, Youtube 3 3

VoIP Facebook, Skype, Hangouts 6 6

Total 31 37

*Noted that the ten repeated items in the Tor and nonTor folders were excluded and uncounted.

Packet Filtering and Payload Extraction

After data categorisation, the next step involved applying packet filtering to extract

the encrypted payload from network traces. To ensure the accuracy of the analysis

input, a thorough examination of network packets was required to correctly filter out any

irrelevant packets. Only packets containing payloads of secure protocols were included to

prevent bias in the data. In this study, Wireshark was used to facilitate the examination

of network packets. Wireshark allowed us to display all captured packets in the 68

files and provided a comprehensive view of the network traffic. Figure 3.7 depicts how

Wireshark was utilised to display all captured packets. TLS packets with payloads were

outlined in red borders and were not excluded, while irrelevant packets such as TCP and

TLS initial handshake packets were removed to focus only on the relevant data. This

approach ensured that only relevant packets were obtained for accurate analyses in both
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statistical and ML methods.

Figure 3.7: Packet examination using Wireshark

The process of extracting encrypted payloads from network traces involved using

filtering commands specific to the encryption protocols used by each software application.

To identify the appropriate filtering command for each application, we compiled a

comprehensive list of the encryption protocols employed by each software, drawing

from our previous data analysis. Our findings, for example, revealed that Firefox and

Chrome use TLS for secure data transmission, and thus the filtering command for these

applications is ’TLS.app data’. However, some applications, such as Skype and Spotify,

use proprietary protocols that make it challenging to detect and analyse their traffic. In

such cases, we used ‘TCP.payload’ as the filtering command to extract their payloads.

It is worth noting that the captured traces were obtained exclusively from the control

environment, as presented in Section 3.4.1. Therefore, it can be reasonably assumed

that the packets within the traces predominantly, if not entirely, belong to the software

being investigated.

However, after a thorough investigation of the captured traces, it was discovered

that there were other packets present that were unrelated to the target applications,
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possibly stemming from background processes. For instance, some TLS packets were

found in the Spotify traces despite its proprietary protocol. Therefore, it was necessary

to exclude such packets to ensure that the extracted payloads were as closely aligned

as possible to the relevant packets. This issue required an examination of all network

trace files. Consequently, to facilitate extraction of encrypted payloads from both Tor

and nonTor traffic, filtering commands were summarised for displaying only encrypted

protocols for all applications in Table 3.2. This table was designed to work in conjunction

with Algorithm 1 in Section 3.4.2 to extract encrypted payloads. For example, The

filter expression tls.app_data && !tls.handshake && !_ws.expert that is used to

capture only packets belonging to the TLS protocol that contain application data. The

tls.app_data filter ensures that only packets belonging to the TLS protocol that contain

application data are captured, while !tls.handshake ignores any handshake packets.

Additionally, the _ws.expert filter excludes any packets that Wireshark is unable to

dissect, such as packets with an unrecognised protocol. This filter expression was applied

to capture TLS packets containing application data and exclude handshake packets and

any packets that Wireshark cannot dissect.

For audio applications like Spotify, the filter expression tcp.payload && !http &&

!tls && !_ws.expert was used to extract Spotify’s encrypted payload. This was be-

cause Spotify uses its own proprietary protocol over HTTPS to ensure the privacy and

security of its users, and TLS packets were not found in the captured traces. Therefore,

using tcp.payload as the filter for the encrypted payload was most appropriate. Fur-

thermore, any HTTP packets found were disregarded to ensure that only the relevant

data was extracted.

For Vuze, which uses the MSE/PE protocol to encrypt its traffic, a filter expres-

sion of tcp.payload && !bittorrent && !tls && !_ws.expert was used to extract

encrypted payloads belonging only to Vuze, while excluding bittorrent handshake packets

used for establishing the session and packets that Wireshark cannot dissect.

Finally, Hangouts uses proprietary protocols for voice and video calls, which can

be transmitted over both TCP and UDP. To extract the encrypted payload, we used

the filter expression tcp.payload && !http && !tls && !_ws.expert since only TCP
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packets were found in the network traces. This filter excluded any HTTP packets and

TLS packets, which are not relevant to Hangouts’ proprietary protocol.

In contrast to nonTor traffic, where filtering commands vary depending on the

encryption protocol used, the filtering command for encrypted payloads in Tor traffic is

always ‘TLS.app data’, as Tor traffic always uses the TLS protocol. It should be noted

that this filtering method may not be 100% accurate due to the proprietary nature of

some network protocols. However, our approach provided a logical rationale for obtaining

relevant data by carefully selecting filtering commands based on the specific encryption

protocols used by each application.
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Table 3.2: Filtering command of encrypted protocols of nonTor traffic

Encryption Protocol
Traffic Type Application

Filtering Command

Public Dataset

Tor

TLS
All 9-class N/A

tls.app_data && !tls.handshake && !_ws.expert

nonTor

Proprietary
Audio Spotify

tcp.payload && !http && !tls && !_ws.expert

TLS
Browsing Chrome, Firefox

tls.app_data && !tls.handshake && !_ws.expert

Proprietary
ICQ, AIM, Skype

tcp.payload && !tls && !_ws.expert

TLS
Chat

Facebook, Hangouts
tls.app_data && !tls.handshake && !_ws.expert

TLS
Email Thunderbird

tls.app_data && !tls.handshake && !_ws.expert

SSH
SFTP

ssh.encrypted_packet && !_ws.expert

Proprietary
FTP

Skype
tcp.payload && !tls && !_ws.expert

Bittorent
P2P Vuze

tcp.payload && !bittorrent && !tls && !_ws.expert

TLS
Video Vimeo, Youtube

tls.app_data && !tls.handshake && !_ws.expert

Proprietary
VoIP Hangouts, Skype

tcp.payload && !http && !tls && !_ws.expert

Private Dataset

Tor & nonTor

TLS
Browsing

Firefox for nonTor

Tor browser for Tor tls.app_data && !tls.handshake && !_ws.expert

These filter commands were applied in the display-filter-specification window

of Wireshark to investigate encrypted payloads and extract them, as shown in Figure

3.8. However, manually filtering and extracting payloads from the large number of files

(68 in total) would have been extremely time-consuming. To overcome this challenge,

we utilised CHARSTAT, which automated this process and significantly reduced the
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time required.

Figure 3.8: Encrypted payloads examination using Wireshark

The results of the encrypted payload extraction using CHARSTAT are illustrated in

Figure 3.9. The extracted features were stored in a tab-delimited CSV file containing

four columns: ID, source IP, destination IP, and the encrypted payload. The first

three columns were included for validation purposes and were eventually removed. The

final column, representing the primary feature for analysis, consisted of a string of hex

characters. This column was further converted into a format compatible with statistical

and ML analyses.

Feature Extraction and Data Labelling

The next step was to extract features and label the data, which was performed in module

two of CHARSTAT. To perform feature extraction, the encrypted payload obtained

from the previous section was transformed into the proposed features. Algorithm 2, in

conjunction with Equations 3.1 through 3.4, illustrates the feature extraction process

within CHARSTAT, which enables the automatic computation of 34 features for each

individual extracted payload.

After extracting the features using CHARSTAT, the data were labelled based on

their corresponding application and network traffic types. This labelling process is
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Figure 3.9: Exporting the encrypted payload into CSV format

critical for supervised learning algorithms as it enables the models to learn from labelled

examples and make predictions on unseen data. CHARSTAT assigned labels to the

data according to their application types and network traffic types. For instance, a

network packet containing audio traffic and from the Tor network was labelled as ‘Tor-

Audio’, while a packet containing browsing traffic from a nonTor network was labelled

as ‘nonTor-Browsing’.

Figure 3.10: Feature extraction and data labelling output in CSV format

The output of the CHARSTAT feature extraction process is presented in Figure 3.10

in CSV format, consisting of 35 columns. the first 16 columns represent F_0-F_f, the

second 16 columns denote R_0-R_f, the 33rd column corresponds to T, the 34th column
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corresponds to E, and the 35th column represents the label that identifies the class.The

features are separated by commas. This process was applied to all 68 files. The next

step involves preparing the data for analysis, which will be explained in the following

section.

Data Preparation for Analyses

Preparing data for statistical and ML analyses is a manual process that involves four

sub-processes: file merging, data balancing, splitting Data for Prediction, and creating

Statistical and classification inputs.

File Merging: In the data preparation step, the preprocessed data from the

previous step, which were in multiple files, were combined to create binary class and

multi-class datasets. For binary classification, the files with their groups from both

Tor and nonTor networks were merged into a single file, resulting in nine binary class

files, eight from the public dataset and one from the private dataset. For multi-class

classification, which was only applied to the public dataset, files with the same application

type were merged into a single file, resulting in a single file containing eight classes.

After merging the files, it became apparent that the binary class resulted in imbal-

anced data. For example, the number of instances of Audio in the Tor class (13,727) was

much less than in the nonTor class (148,335), which is a common issue encountered in

many classification problems. When one class has significantly fewer instances than the

other, some ML algorithms tend to prioritise the majority class and ignore the minority

class, resulting in a biased classification model with poor performance. To avoid such

issues, it is crucial to balance the data by adjusting the number of instances in each

class to ensure that the classification model learns from both classes equally.

Data Balancing: Data balancing is a critical step in data preprocessing, as

imbalanced datasets or classes, characterised by an uneven distribution of classes, can

pose significant risks during model training. Imbalanced data can negatively impact

the learning process, leading to a biased model with poor performance (Ali et al., 2019;

Azab et al., 2022). Various techniques can be applied to address imbalanced data, such

as oversampling, undersampling, or a combination of both. In our study, we employed
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undersampling, which involves reducing the size of the majority class to match that of

the minority class. This approach was chosen because the size of the minority class was

adequate, and training the model with a larger dataset would require more time and

computational resources.

Table 3.3: Number of Tor and nonTor encrypted payloads before and after balancing
data for public and private datasets across all application types

Before undersampling After undersampling
Application types

Tor nonTor Tor&nonTor (each) Total

Public Dataset

Audio 13,727 148,335 13,727 27,454

Browsing 85,840 37,868 37,868 75,736

Chat 3,423 6,066 3,423 6,846

Email 28,559 6,474 6,474 12,948

FTP 271,027 512,339 271,027 542,054

P2P 228,300 1,339,363 228,300 456,600

Video 103,603 16,923 16,923 33,846

VoIP 877,700 388,096 388,096 776,192

Private Dataset

Browsing 15,579 58,600 15,579 31,158

Table 3.3 provides an overview of the number of Tor and nonTor instances in the

public and private datasets of all applications before and after applying undersampling

using the SpreadSubsample filter in WEKA. The ‘before undersampling’ columns display

the number of instances of Tor and nonTor obtained from the feature extraction step.

In contrast, the ‘after undersampling’ columns present the number of Tor and nonTor

instances after undersampling. For example, the before undersampling for the Tor of

Audio resulted in 13,727 instances, while the nonTor class had 148,335 instances. The

SpreadSubsample filter was then applied to reduce the number of nonTor instances

to match that of Tor instances. Similarly, for Browsing, there were 85,840 instances

in the Tor class and 37,868 instances in the nonTor class before undersampling. The

SpreadSubsample filter was applied to reduce the size of Tor instances to match that of

nonTor instances.
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Splitting Data for Prediction: As discussed in Section 3.4.4, performing

predictions on unseen data is essential, as it helps prevent the overfitting problem. In

some cases, such unseen data is provided separately from the training data. However,

if no unseen data is available, one approach is to split the existing preprocessed data

into training (seen) and validation (unseen) datasets. In this study, a 5% ratio of the

balanced data was designated as unseen data, while the remaining 95% was used for

the classification phase. This proportion ensures sufficient data for both training and

testing. Table 3.4 presents the number of instances in both the seen and unseen datasets

after applying the data balancing process.

Table 3.4: Number of instances of seen and unseen data after data balancing

Traffic type # 95% Seen Data # 5% Unseen Data Total

Public Dataset

Audio 26,082 1,372 27,454

Browsing 71,950 3,786 75,736

Chat 6,504 342 6,846

Email 12,300 648 12,948

FTP 514,952 27,102 542,054

P2P 433,770 22,830 456,600

Video 32,154 1,692 33,846

VoIP 737,382 38,810 776,192

Private Dataset

Browsing 29,600 1,558 31,158

Creating Statistical and Classification Inputs: This was the last step of

data preparation and the final stage of data preprocessing, which involved transforming

the preprocessed data for analyses in statistical and ML applications. In this step,

the preprocessed data, stored in CSV format, was converted into formats suitable for

specific analytical tools. For statistical analysis using SPSS, the preprocessed data in

CSV format was converted into the SAV format, and the appropriate data types were

assigned to variables. This process was accomplished using the functionalities provided

by SPSS. On the other hand, for ML analysis, a header that included the data types
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corresponding to each column was added to the top of each CSV file. This header was

necessary for ML algorithms to correctly interpret and process the data. It was essential

to ensure that the header accurately reflected the data types stored in each column, such

as numerical or categorical data. This conversion process was carried out using a text

editor or Unix command line tool.

The raw data files were subjected to the necessary data preprocessing steps and

transformed into appropriately formatted files to facilitate further processing. Prior to

conducting the data analyses, it was necessary to adjust the configurations of the tools

utilised in this study. A detailed account of the tool configurations will be presented in

the next section.

3.6 Tools Configurations

The analysis presented in Table 3.3 showed that the majority of the files were consider-

ably large in size, which created significant challenges during the data preparation and

experimentation stages. Large files required extensive system resources, leading to slow

processing and an increased likelihood of errors. To overcome these challenges, it was

essential to increase the computer’s memory and carefully consider the memory configu-

ration of the tools used. In this context, we described how the memory configurations

of the SPSS and WEKA platforms were adjusted to prevent memory issues. It also

recommended setting the project directory as the startup folder in Jupyter Notebook to

work directly with the project directory.

SPSS

SPSS can encounter a memory error when working with large files exceeding 100 MB

or approximately 400,000 records. To address this issue, it is advisable to increase the

workspace memory from its default value of 6,184 KB. The command SHOW WORKSPACE

is for displaying the default memory, while SET WORKSPACE=‘new memory’ is to set the

desired memory. It is recommended to gradually increase the workspace memory as

needed until the task can be executed without errors.
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WEKA

To address the issue of Out-of-Memory warnings that may appear when working with

large files (>100 MB) in WEKA, it is necessary to modify the environment variable

Maxheap in the RunWeka.ini file, located in C:\Program Files\Weka-3-8-4, from its

default value of 1024 MB to the maximum amount of memory available to WEKA.

The amount of memory that WEKA can use can be checked by running the command

java weka.core.SystemInfo at SimpleCLI and examining the memory.max property.

In this study, the maximum amount of memory available to WEKA was 4068 MB.

Jupyter Notebook

To work directly with the project directory, it was necessary to modify the configuration

in the config.py file to change the Jupyter Notebook’s startup folder. This allowed for

direct access to the project directory when working in Jupyter Notebook.

In terms of Python libraries, this study utilised several popular ones for data analysis

and ML. These included Scikit-learn for importing ML algorithms, NumPy for working

with arrays and conducting scientific computing, and pandas for data manipulation and

analysis. These libraries are typically included in Anaconda’s free distribution, but it is

always recommended to ensure that the latest version is installed to take advantage of

the latest features and bug fixes.

3.7 Summary

In the first section of this chapter, a novel quantitative methodology was presented to

investigate the role of encrypted payload in facilitating network traffic classification,

which is grounded in hypothesis testing. The approach was comprehensively outlined

to address the research questions and ensure the reader’s comprehension of the chosen

method’s applicability to the study. Validation and reliability were also discussed to

ensure that the research was conducted with validity and reliability.

In the second section, a detailed discussion was presented on the processes and tools

utilised in the experiment setup, mainly in dataset collection and data preprocessing.
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The necessary steps to transform the raw data into the proper format for analyses

were outlined, and the data preprocessing steps were comprehensively explained to

ensure the reader’s comprehension of the data preparation procedures. Furthermore, the

configuration of the tools used to ensure that the analyses were performed without any

issues was also discussed in the chapter. The steps taken to address memory-related

issues in IBM SPSS Statistics and WEKA were detailed, and the use of the Scikit-learn,

NumPy, and pandas Python libraries for data analysis was also mentioned. The next

chapters will present the findings of the analyses.



Chapter 4

Statistical Analysis of Tor Traffic

This chapter presents a statistical analysis of sample Tor and nonTor traffic across a

variety of applications, aimed at comparing the encrypted payloads of both types based

on character analysis. The analysis includes both descriptive and inferential statistics to

provide insight into the first research question, which asks, “Can we distinguish Tor from

nonTor traffic based on their encrypted payload?” This relates to the first hypothesis,

which states, “There is no difference between Tor and nonTor traffic in terms of encrypted

payloads”. The results of the statistical analysis are expected to provide valuable insights

into the unique characteristics of Tor traffic and may facilitate the development of more

effective methods for detecting and classifying Tor traffic.

4.1 Features Measurement

In Section 2.4, we explored the efficacy of statistical calculations of word occurrences in

various text classification scenarios, substantiated by several studies (Falck et al., 2020;

Luo, 2021; Singh et al., 2021). However, these methods have not been explored within

the context of computer networks.

In cryptography, the production of ciphertext is the result of encryption, which

is usually presented as a set of hex characters that should appear random, based on

rigorous cryptography principles. A fundamental goal of cryptography is to ensure that

a ciphertext leaks no additional information about the underlying plaintext, regardless
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of any information an attacker may already possess (Katz & Lindell, 2020). However, in

real-world implementations of cryptography in computer networks, several factors can

potentially weaken or compromise the security of the encryption, leading to information

leakage.

These factors include vulnerabilities in the encryption algorithms or their implemen-

tation, weaknesses in the key management system, and the possibility of side-channel

attacks that exploit weaknesses in the physical realisation of the system. For instance, a

comprehensive survey on SSL/TLS and their vulnerabilities by Satapathy, Livingston, et

al. (2016) highlights the various types of cyber attacks that can compromise the security

of SSL/TLS protocols, such as the exploitation of symmetric encryption and cipher block

chaining in TLS 1.0, and the use of RC4-generated keys to recover plaintext through

statistical analysis of individual ciphertext locations. Although all the vulnerabilities

presented in the study have been fixed, this still reflects the need for further research to

improve the security of SSL/TLS by reducing bugs.

The unique implementation of Tor’s packets and connections, including encryption

mechanism and fixed cell size, as discussed in Section 2.3.3, presents an opportunity to

exploit these distinctive characteristics for ciphertext analysis. Incorporating character

analysis into the ciphertext may provide valuable insights into the security of the Tor

network, which is facilitated by statistical analysis. Among the different types of cipher-

text representation in the computer networks, we consider hex character representation,

consisting of 0-9, a-f in 1-hex form, suitable for analysis (see Section 3.3).

The approach, depicted in Figure 3.4, comprehensively examines all aspects of

hex character statistics in Tor and nonTor encrypted payloads using descriptive and

inferential statistical analysis across all applications, including Audio, Browsing, Chat,

Email, FTP, P2P, VDO, VoIP and Private-Browsing. Four features are considered:

(1) the frequency of hex characters (F_0-F_f ), (2) the ratio of the frequency of hex

characters (R_0-R_f ), (3) the total number of characters (T ), and (4) entropy (E ). This

thorough investigation of character statistics aims to reveal the distinct characteristics

of encrypted payloads in the two networks under study (Tor and encrypted nonTor).

The four sets of features are analysed using descriptive statistics to account for the
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features’ characteristics and inferential statistics to comprehensively address the research

question and hypothesis H01, which assumes that Tor and encrypted nonTor traffic have

identical characteristics. Through this statistical analysis, the research hypothesis is

tested, and the research question is answered, providing insights into the effectiveness of

the approach in distinguishing between Tor and nonTor traffic.

4.2 Descriptive Statistics

Descriptive statistics are crucial in providing insights about the characteristics of a

dataset, as discussed in Section 2.5.2. In our study, we employed descriptive statistics to

examine Tor and nonTor encrypted data based on character analysis. The four sets of

features were analysed using descriptive statistics, which include measurements such as

frequency, Mean, SD, Min and Max values. The frequency measurements are presented

in the context of the data distribution to enable effective analysis. Data distribution is

used to reveal the pattern of how individual features are distributed across the range

of values in Tor and nonTor encrypted payloads. The Mean measurement provides an

understanding of the central tendency of each feature, helping to identify the average

value of the individual features. SD serves as a measure of the variability or dispersion

of each feature, helping to identify trends or patterns in the individual features. Min

and Max values provide an understanding of the range of each feature within each Tor

and nonTor application, where a wider range may indicate greater variability in traffic

characteristics. These measurements, applied to each feature, can be instrumental in

identifying differences in data patterns and understanding the distinct characteristics of

encrypted payloads in the two networks under study.

The study involved a descriptive statistics analysis, and a comprehensive analysis of

the results is provided in the appendices to this thesis. Detailed information about the

descriptive statistics analysis results can be found in Appendix B.1 through B.13. Due

to space limitations, the findings are presented in a summarised form to offer a concise

overview to the reader. To display and effectively compare the results, violin plots were

utilised. Violin plots are a useful tool to visualise the distribution of each feature. They

represent the probability density of the data at different values, with the width of the
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violin at a particular point indicating the estimated probability density at that point.

A wider section of the plot indicates a higher concentration of data points, while a

narrower section indicates a lower concentration. The median lines within the violin

plots represent the middle value of distribution, making them useful for summarising

and comparing distributions (Hintze & Nelson, 1998). In the context of our study, the

violin plot visually represents the distribution of each feature’s values. The width of the

plot shows the density of values at different points, while the median line represents the

middle value of each feature distribution. The height of the plot represents the frequency

or number of features. The y-axis displays the values, while the x-axis labels Tor and

nonTor. It is important to note that while the violin plot does not provide the actual

values of the data, it still provides a visual representation of the distribution and density,

which can be useful for identifying patterns and trends. The following section displays

the summary of findings from the descriptive statistics analysis.

4.2.1 Hex Character Frequency (F_0-F_f )

The individual hex character frequency (F_0-F_f ) features were analysed using data

distribution, Mean, SD, Min, and Max values in Tor and nonTor encrypted payloads

across all applications. The significant findings are presented below.

Data Distribution

Figure 4.1 illustrates the violin plots for the data distribution of individual frequency

(F_0-F_f ) features in encrypted payloads of Tor (left-side violin) and nonTor (right-side

violin) across all applications. Based on the violin plots, it can be observed that the

data distribution of individual frequency features (F_0-F_f ) is similar between Tor

and nonTor encrypted payloads across all applications. In Tor, the majority range of

individual frequency features is around 100 characters across all applications, indicating

a consistent frequency of each hex character frequency appearing in their ciphertext

for each application. On the other hand, nonTor has a higher majority of individual

frequency features in Audio, FTP, and P2P applications, while the remaining applications

have a consistently lower majority compared to Tor. The outliers in nonTor appear
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Figure 4.1: Distribution of individual frequency (F_0-F_f ) features in encrypted
payloads of Tor (left-side violin) and nonTor (right-side violin) across all applications,
illustrated with violin plots

in all applications, particularly with significantly higher frequency in P2P and Private

Browsing applications.

Mean, SD, Min and Max

Figure 4.2 illustrates the violin plots for the dispersion measures (Mean, SD, Min, and

Max) of the individual hex character frequency (F_0-F_f ) features in the form of range
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values in Tor and nonTor encrypted payload across all applications. The significant

findings are discussed below.

Figure 4.2: The dispersion measurements (Mean, SD, Min and Max) of the individual
hex character frequency (F_0-F_f ) features in the form of range values in Tor and
nonTor encrypted payload across all applications, illustrated with violin plots

Mean: It is observed that the Mean distribution of individual hex character fre-

quency features in nonTor traffic generally covers a higher range than in Tor traffic for

most applications, except for Audio, Chat, and FTP. Specifically, the majority Mean

distribution of individual hex character frequency features in Tor traffic is consistent
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with being concentrated in the range of 60 to 80 characters across all applications,

while nonTor traffic is mostly lower than Tor traffic, except for Audio with the majority

around 153 characters, FTP around 159 characters, and P2P around 145 characters.

Additionally, some nonTor applications exhibit a wider range in the Mean distribution of

individual frequency features, with Browsing having the majority of around 42 characters,

Email around 30 characters, and VoIP around 13 to 15 characters.

SD: The SD distribution of individual hex character frequency features in nonTor

traffic was generally more dispersed than in Tor traffic across all applications. In Tor

traffic, the SD ranged around 12 to 35 characters and was concentrated around 18

characters for Audio and VDO, 27 for Browsing and Email, 22 characters for Chat, 34

characters for FTP, 20 characters for P2P, and 12 characters for VoIP. On the other

hand, nonTor traffic generally exhibited higher SD distributions than Tor traffic, except

VoIP which had a majority of around 11 to 16 characters.

Min and Max: The distribution of Min and max values for individual hex character

frequency features revealed a clear contrast between Tor and nonTor traffic. Specifically,

Tor displayed higher Min values, with the majority ranging between 0 and 4 characters

across all applications, whereas nonTor values predominantly remained at 0 characters.

The distribution of Min values showed consistency between Tor and nonTor encrypted

payloads, while nonTor Max values were substantially higher than those of Tor. In

contrast, Tor had a consistent Max distribution, with the majority ranging between 160

and 233 characters, except for the private dataset, where it was around 550 characters.

On the other hand, nonTor applications displayed a broader range of Max values.
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4.2.2 Hex Character Frequency Ratio (R_0-R_f )

The individual hex character frequency ratio (R_0-R_f ) features were analysed using

data distribution, Mean, SD, Min, and Max values in Tor and nonTor encrypted payloads

across all applications. The significant findings are discussed below.

Data Distribution

Figure 4.3: Distribution of individual frequency ratio (R_0-R_f ) features in encrypted
payloads of Tor (left-side violin) and nonTor (right-side violin) across all applications,
illustrated with violin plots
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Figure 4.3 illustrates the violin plots for the data distribution of individual hex

character frequency ratio (R_0-R_f) features in encrypted payloads of Tor (left-side

violin) and nonTor (right-side violin) across all applications. The violin plots show

that the data distribution of individual frequency ratio features exhibits a consistent

pattern between Tor and nonTor encrypted payloads across all applications. However,

some nonTor applications, such as Email and VoIP, display a greater range than in Tor.

Additionally, outliers are observed in nonTor encrypted payloads across all applications.

Mean, SD, Min and Max

Figure 4.4 illustrates the violin plots for the dispersion measurements (Mean, SD, Min,

and Max) of the individual hex character frequency ratio (R_0-R_f ) features in the

form of range values in Tor and nonTor encrypted payloads across all applications. The

significant findings are discussed below.
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Figure 4.4: The dispersion measurements (Mean, SD, Min and Max) of the individual
frequency ratio (R_0-R_f ) features in the form of range values in Tor and nonTor
encrypted payloads across all applications, illustrated with violin plots

Mean: The analysis showed that the Mean distribution of individual hex character

frequency ratio features in Tor had a consistent range between values of 6.1 to 6.5,

while nonTor displayed greater diversity values across all applications, except for FTP

which exhibited a significant consistent concentration at around 6.25. However, nonTor

had a similar concentration to Tor in Audio, with Mean values ranging between 6.2 to

6.3. Chat also exhibited a relatively consistent concentration in both Tor and nonTor,
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ranging from values of 6.15 to 6.35.

SD: The SD of the distribution of individual hex character frequency ratio features

showed consistency between Tor and nonTor encrypted payloads, with Tor exhibiting a

relatively stable range of values between 0.8 and 0.9 across all applications. However,

the variability in the distribution of individual hex character frequency ratio features for

nonTor was generally higher than that of Tor applications. Browsing had the highest

SD range of around 5, indicating a wider variability of this feature for nonTor traffic in

this application.

Min and Max: The distribution of the Min and Max values for individual hex

character frequency ratio features showed a clear contrast between Tor and nonTor

applications. Tor had higher Min values, with a wider range across all applications,

including Audio, Browsing, and Private with Min values ranging from 0 to 4, Chat

values from 2 to 4, and FTP and P2P values from 0 to 2. On the other hand, nonTor

values were mostly concentrated at 0. The Max distribution, on the other hand, showed

a consistent pattern between Tor and nonTor encrypted payloads, with nonTor Max

value ranges being substantially higher than those of Tor. Tor had a consistently smaller

Max distribution value, with the majority ranging around 10, in contrast to a broader

range in all nonTor applications. The widest range of Max distribution was found in

FTP, P2P, and VDO, with the majority values around 25 to 70, while the narrowest

range was found in Browsing, Email, and VDO, with the majority values around 10 to

25.
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4.2.3 Total Characters (T)

The total characters (T ) feature was analysed for the data distribution, SD, Min, and

Max values in Tor and nonTor encrypted payloads across all applications. The significant

findings are discussed below.

Data Distribution:

Figure 4.5: Distribution of total character (T ) feature in Tor and nonTor encrypted
payload across all applications, illustrated with violin plots

Figure 4.5 displayed violin plots for the data distribution of the total characters (T )
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feature in Tor and nonTor encrypted payloads across all applications. The violin plots

for Tor showed a consistent shape, with the majority of total characters concentrated

at around 1,000 characters across all applications. However, there were multiple wider

sections in most Tor applications, except for VoIP. For example, Browsing had two

denser regions, with the majority of characters around 1,000 and a smaller concentration

of around 2,000. FTP exhibited multiple denser regions, with the majority around 1,000,

400, and 600 characters. In contrast, the distribution of total characters in nonTor

encrypted payloads was more diverse. The highest majority of total characters were

found in Audio, FTP, and P2P applications, with values around 3,000 characters.

Mean, SD, Min and Max

Figure 4.6 illustrates the violin plots for the dispersion measurements of the total

character (T ) feature, which ranges across all applications in Tor and nonTor encrypted

payload, in terms of Mean, SD, Min, and Max. The significant findings are discussed

below.

Figure 4.6: The dispersion measurements (Mean, SD, Min and Max) of the total character
(T ) feature, which ranges across all applications in Tor and nonTor encrypted payload,
illustrated with violin plots

Mean: The analysis of Mean values for the total characters feature across all

applications indicated that nonTor traffic generally exhibited greater variability in the

total number of characters in encrypted payloads compared to Tor traffic. The observed

difference ranged from approximately 600 to 2500 characters, with two majority sections

being around 600 to 700 characters and around 2300 to 2500 characters, implying that

nonTor traffic tends to have a diverse range of total character numbers in encrypted

payloads on average.
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SD: The SD values of the total characters feature across all applications indicated

that nonTor traffic had greater variability in the total characters of encrypted payloads,

which were concentrated around 600 to 1,200 characters, compared to Tor traffic, which

exhibited wider sections at around 200 to 600 total characters across all applications.

This suggests that the total characters of encrypted payloads for nonTor applications are

more diverse than the consistency observed in the encrypted payloads of Tor applications.

Min and Max: The analysis of the Min and Max values for the total characters

feature in encrypted payloads revealed the range of character counts for both Tor and

nonTor applications. NonTor applications generally had a higher minimum total character

count compared to Tor applications, with a few exceptions where Tor applications had

slightly higher Min values. However, in some nonTor applications, the Min total character

count was very low. In contrast to the Min values, both types of applications exhibited

similar shapes in their Max values, with the majority of applications having a Max

character count of around 3000 characters across all applications.



Chapter 4. Statistical Analysis of Tor Traffic 136

4.2.4 Entropy (E)

The entropy (E ) feature was analysed for the data distribution, SD, Min, and Max

values in Tor and nonTor encrypted payloads across all applications. The significant

findings are discussed below.

Data Distribution

Figure 4.7: Distribution of entropy (E ) feature in Tor and nonTor encrypted payload
across all applications, illustrated with violin plots

Figure 4.7 displayed violin plots for the data distribution of the entropy (E ) feature in
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Tor and nonTor encrypted payloads across all applications. The distribution of entropy

showed consistency between Tor and nonTor applications, with density parts at around

4 across all applications. However, in nonTor applications, extreme values were observed,

with values as low as around 3 in Browsing, Email, VDO and Private, and even lower

in the remaining applications. This implies that the minimum total character counts

in these applications were considerably lower in nonTor traffic compared to Tor traffic,

where the extreme values were much higher, at around 3.8 of the minimum entropy value

found in all Tor applications.

Mean, SD, Min and Max

Figure 4.8 illustrates the violin plots for the dispersion measurements of the entropy (E )

feature, which ranges across all applications in Tor and nonTor encrypted payload, in

terms of Mean, SD, Min, and Max. The significant findings are discussed below.

Figure 4.8: The dispersion measurements (Mean, SD, Min and Max) of the entropy
(E ) feature, which ranges across all applications in Tor and nonTor encrypted payload,
illustrated with violin plots

Mean: The analysis of Mean entropy values for Tor and nonTor traffic revealed a

close similarity, with Tor traffic displaying slightly higher Mean entropy values in most

cases. The majority of Mean entropy values for Tor traffic were consistently close to

4, indicating a relatively high level of randomness in the encrypted payloads. On the

other hand, the range of Mean entropy values for nonTor traffic spanned from 3.9 to 4,

indicating a moderately consistent level of randomness across different types of nonTor

traffic.

SD: The SD values for entropy in nonTor applications showed greater variability,

ranging from around 0 to 0.4, compared to Tor applications, where the variability was
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almost 0 across all applications. This suggests that nonTor traffic had a more diverse

set of encrypted payloads in terms of entropy. In contrast, Tor traffic had a smaller

variability of entropy values than nonTor traffic, indicating a tighter and more consistent

distribution of entropy values across different applications.

Min and Max: NonTor applications generally exhibited lower Min entropy values

in their encrypted payloads compared to Tor applications, but had a wider range of

values ranging from around 0 to 4, while Tor applications had a more narrow range

of values around 4. Despite this difference, both types of applications had a similar

distribution shape for Max entropy values, with the majority of values being around

3.9995. Overall, nonTor applications displayed a wider range of Max entropy values

compared to Tor applications.

We have seen how descriptive statistics can reveal whether Tor and nonTor payloads

are similar or different in various aspects. However, we need to make a judgement based

on a comparison of the two if they belong to the same population. Inferential statistics

can be used to draw conclusions for summarising the null hypothesis.

4.3 Inferential Statistics

This section aims to analyse and contrast encrypted payloads in Tor and nonTor traffic,

focusing on the attributes of 306 distinct features. As discussed in 2.5.2, inferential

statistics are used to test hypotheses and generalise results from a sample to an entire

population (Allua & Thompson, 2009). Before conducting the inferential tests, we

checked the assumption of normality for the dataset, as this is necessary to determine

the appropriate inferential test to use. Normality was assessed using the Kolmogorov-

Smirnov test on a total of 306 features, as presented in Appendix B.14. The results

indicated that all 306 features had p-values less than 0.05, suggesting that the data

do not follow a normal distribution. Additionally, the two groups of data (Tor and

nonTor) we analysed are independent of each other. The data under study is discrete

in nature, making it rankable. Given these characteristics, the Mann-Whitney U test,

an alternative to parametric tests, can be employed to compare the two independent



Chapter 4. Statistical Analysis of Tor Traffic 139

samples and determine if they originate from the same population when the normality

assumption is not satisfied. The results of the Mann-Whitney U test are provided in

Appendix B.15. This test was used to determine the p-values of all features from all

applications in both public and private datasets using SPSS. The test produces a p-value

ranging from 0 to 1. A p-value less than 0.05 indicates statistical significance, implying

that there’s less than a 5% probability of observing the given data (or something more

extreme) if the null hypothesis were true. If the p-value is less than 0.05, we reject the

null hypothesis and accept the alternative one. In our context, this indicates distinct

populations between the two networks.

Table 4.1: Features with p-values > 0.05 in Tor and nonTor encrypted payloads

Application types Features p-value (Mann-Whitney U)

Audio (3) R_5 0.077

R_c 0.066

R_e 0.803

Chat (10) R_1 0.368

R_5 0.156

R_6 0.964

R_7 0.741

R_8 0.481

R_9 0.770

R_a 0.064

R_b 0.225

R_d 0.185

R_e 0.051

P2P (1) R_0 0.380

The summarised results are presented in Table 4.1. This table highlights features

with p-values greater than 0.05, indicating that they did not reach the conventional

threshold for significance. This suggests non-significant differences between Tor and

nonTor encrypted payloads. From these results, we can infer similarities between Tor
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and nonTor encrypted payloads across different application types. Specifically, within

the Audio application type, the features R_5, R_c, and R_e were indistinguishable

between Tor and nonTor payloads, resulting in a similarity rate of 8.82% for both Tor

and nonTor Audio encrypted payloads. For the Chat application, ten features were

identified (R_1, R_5, R_6, R_7, R_8, R_9, R_a, R_b, R_d, and R_e), leading to a

similarity rate of 29.41% for both Tor and nonTor Chat encrypted payloads. Conversely,

P2P had only one identical feature, R_0, yielding a resemblance rate of 2.94% for both

Tor and nonTor P2P encrypted payloads. The findings indicated that considering all

features from all application types, the Mann-Whitney U test findings revealed that out

of the 306 features analysed, 292 features demonstrated significant differences between

Tor and nonTor encrypted payloads, resulting in a high differentiation rate of 95.42%.

4.4 Statistical Analysis Findings

The four sets of features, including (1) the frequency of hex characters (F_0-F_f ),

(2) the ratio of the frequency of hex characters (R_0-R_f ), (3) the total number of

characters (T ), and (4) entropy (E ) were analysed using descriptive statistics to study

the characteristics of Tor and nonTor encrypted payloads based on character analysis,

and inferential statistics to generalise the findings. The insights and implications of

this study, as well as the addressing of Research Question Q1 and Hypothesis H01, are

presented in the following section.

Descriptive Statistics

A Hex Character Frequency Set: The findings suggest that the frequency of

any individual feature in a single encrypted payload with around 100 characters can

potentially be used to identify Tor packets, as this characteristic is unique to Tor and not

present in nonTor traffic. Additionally, the measures of dispersion indicate that Mean

values of individual hex character frequency features ranging from 65 to 80 characters

can potentially be used to identify Tor packets, as this characteristic is also unique to

Tor. Similarly, SD values ranging from 12 to 35 characters can potentially be used to
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identify Tor packets, except in VoIP where they are quite close to nonTor, making them

less reliable as identifiers. A Min value of more than 0 characters is likely to be indicative

of Tor traffic, but Max values do not reveal any clear patterns between Tor and nonTor

applications, and are therefore not recommended as identifiers.

A Hex Character Frequency Ratio Set: The findings of this study suggest

that the hex character frequency ratio exhibits a very similar pattern in both Tor and

nonTor applications, although there are slight differences in some applications. This may

be the effect of normalisation, which produces very small and subtle values that make it

difficult to notice any significant differences in the graphs. In terms of the measures of

dispersion, similar to a frequency set, the Min with ratio values more than 0 is likely to

be Tor. However, it is not recommended to use Mean, SD, and Max as identifiers for

Tor as there is no clear pattern between Tor and nonTor traffic.

Total Characters: The findings suggest that the measurements analysed in this

study can potentially be used to identify Tor packets based on the following characteristics:

total characters with around 1000 characters, Mean values with around 1000 characters,

SD values with less than around 500 characters, and Min values more than 60 characters,

except for Max values, as they do not reveal any unique pattern compared to nonTor

applications. This insight is supported by the fact that Tor utilises fixed-size cells of 512

bytes, as opposed to the variable packet lengths in nonTor applications.

Entropy: The entropy value of Tor and nonTor encrypted payload across all

applications was found to be almost reaching 4. However, the measurements analysed

in this study suggest that Tor packets can be potentially identified based on specific

characteristics, including an entropy value of less than 3.98, SD value of less than 0.01,

and Min value of more than 3.99, except for Mean and Max values which do not reveal

any unique patterns compared to nonTor encrypted payload. This insight can be further

supported by the fact that Tor uses multiple encryptions on fixed-size cells of 512 bytes,

as opposed to the one-time encryption on variable packet lengths in nonTor applications.

The findings on these four sets of features suggest that nonTor traffic tends to have

larger and more variable encrypted payloads compared to Tor traffic. This could be

attributed to the diverse nature of nonTor traffic, which might encompass a wider range
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of applications, data types, and communication patterns. In contrast, Tor traffic appears

to be more homogeneous across most features, which reflects a potentially effective

approach for classifying Tor traffic.

Inferential Statistics

The results discussed in Section 4.3 revealed that among the 306 features analysed,

a significant difference was observed in 292 features between Tor and nonTor traffic,

resulting in a high differentiation rate of 95.42%. This finding serves as strong evidence

to reject the first null hypothesis and supports the conclusion that encrypted payloads

differ between Tor and nonTor traffic. The statistical analysis findings suggest that hex

character statistics analysis can be used as an effective method to distinguish between

Tor and nonTor traffic based on the observed differences in feature frequencies.

Similar to our study, which employs inferential statistics to test the hypothesis and

draw conclusions from the results. In a study by Cuzzocrea et al. (2017), machine

learning techniques were employed to detect Tor traffic using time-based features. The

study hypothesised that there were no significant differences between the considered

features of Tor-generated traffic flow and normal traffic flow. This hypothesis was tested

using the Mann-Whitney test at a significance level of .05. The results of the hypothesis

testing showed that all of the considered features passed the test, suggesting that the

feature set could be a viable approach for discriminating between Tor and nonTor

network traffic.

In conclusion, the findings presented in this study significantly contribute to the

understanding of the distinctive characteristics of encrypted payloads in both Tor and

nonTor traffic. Our analysis reveals that nonTor traffic typically exhibits larger and

more variable encrypted payloads in comparison to Tor traffic. This observation can

likely be attributed to the diverse nature of nonTor traffic, which encompasses a broader

range of applications, data types, and communication patterns. In contrast, Tor traffic

demonstrates greater homogeneity in terms of payload size, reflecting the main research

objective of distinguishing between Tor and nonTor traffic.
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4.5 Summary

This study presented the results of both descriptive and inferential statistical analy-

ses. Descriptive statistics were used to describe the characteristics of Tor and nonTor

encrypted payloads, followed by hypothesis testing using the Mann-Whitney test in

inferential statistics. The findings suggest that there were significant differences between

Tor and nonTor payloads, which could aid in the development of more effective methods

for detecting and classifying encrypted network traffic. These methods will be discussed

in the next chapter.



Chapter 5

Machine Learning Modelling and

Analysis of Tor Traffic

The results presented in Chapter 4 indicate a clear distinction between Tor and nonTor

encrypted payloads based on character analysis. This finding highlights an opportunity

to develop an automated tool for the efficient identification and classification of Tor traffic.

The present chapter introduces an approach that utilises ML modelling to analyse Tor

traffic. This approach aims to address the second research question: “Can we distinguish

Tor from nonTor traffic using the encrypted payload in a data-efficient manner?” and

to test its corresponding null hypothesis: “A single encrypted payload cannot be used

to identify Tor traffic”. To ensure the reliability and validity of our scientific findings,

we performed classification experiments using two different datasets. Additionally, we

strengthened the experimental design by demonstrating feature selection and predicting

unseen data from the final model. To provide a thorough comparison, experiments were

conducted using both the WEKA and Python-based platforms, both of which are widely

used for classification tasks. The findings of the ML analysis are discussed in detail at

the end of this chapter.
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5.1 Character Statistics-Based Features Approach

In this section, we provide an overview of the key aspects that constitute the classification

process. These components include defining the features used as input, splitting the data

into training and testing sets, selecting supervised learning classifiers, and evaluating

model performance.

5.1.1 Proposed Classification Features

Character analysis of the encrypted payload serves as the basis for identifying the

features to be used subsequently in classification. As summarised in Section 4.3, the

statistical findings clearly demonstrate that the majority of the proposed features (292

out of 306 features, or equivalently 95.42%) are unique to Tor traffic, allowing for the

possibility of exploiting these features in classifying Tor traffic. However, it is important

to consider the robustness of cryptographic designs, which ideally should not reveal

any meaningful data from a given ciphertext of the same length. Yet, such an ideal

cannot always be guaranteed in real-world implementations, as noted by (Katz & Lindell,

2020). In response to these considerations, we selected a set of features that include

the hex character frequency ratio (R_0-R_f ) set, which is unaffected by variations in

payload length, and the hex character frequency (F_0-F_f ) set for comparison purposes.

The ratio set is our primary focus, with the frequency set serving as a comparative

benchmark. However, we excluded the total characters (T ) and entropy (E ) features

from our analysis as they were not of primary interest.

To ensure that the R_0-R_f features were not influenced by the payload size,

a correlation test was conducted using the Pearson correlation coefficient. This test

aimed to determine the correlation between two quantitative variables, particularly

between R_0-R_f and T. For comparative purposes, a similar correlation test was

performed between F_0-F_f and T to assess their relationship. This analysis enabled

an understanding of the impact of payload size on the selected features.

The Pearson correlation coefficient ranges from -1 to +1, with a negative value

indicating an inverse correlation, a positive value indicating a direct correlation, and a
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value of zero indicating no correlation (Benesty et al., 2009). The null hypothesis H0 was

defined as two unrelated variables, while the alternative hypothesis H1 was defined as

two related variables. The significance level for the test was set at 0.05. If the calculated

p-value was less than this threshold, then the null hypothesis was rejected.

Table 5.1: Pearson correlation coefficient between Total Character (T ) and Hex Character
Frequency Ratio R_0–R_f features across all applications

Pearson Correlation Coefficient between

Total Characters (T) and Hex Character Frequency Ratio Values of
Application Types
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_
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_

9

R
_

a

R
_
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R
_

c

R
_

d

R
_

e

R
_

f

Public Dataset

Audio .01 .04 .03 .02 .03 .00 .02 .00 .03 .03 .04 .06 .02 .03 .00 .05

Browsing .58 .15 .16 .17 .18 .18 .18 .19 .18 .18 .18 .19 .19 .19 .19 .19

Chat .20 .01 .01 .00 .02 .04 .02 .00 .02 .01 .01 .02 .01 .03 .01 .04

Email .66 .16 .19 .21 .18 .22 .20 .20 .20 .21 .21 .23 .23 .21 .21 .21

FTP .05 .01 .05 .03 .08 .05 .08 .03 .06 .01 .03 .03 .04 .04 .03 .02

P2P .13 .02 .01 .06 .00 .06 .04 .08 .03 .06 .04 .05 .07 .04 .08 .06

Video .37 .07 .07 .08 .08 .08 .08 .10 .08 .11 .09 .09 .10 .09 .09 0.1

VoIP .38 .04 .06 .06 .00 .13 .05 .15 .16 .03 .17 .14 .15 .16 .08 .18

Private Dataset

Browsing .12 .02 .00 .00 .02 .02 .02 .01 .03 .00 .01 .00 .00 .00 .02 .00

* Note that the values in cells with a white background colour equal the asterisk (*) indicating that the correlation is
significant at the 0.05 level

The results of the Pearson correlation coefficient tests conducted on SPSS between

T and R_0-R_f features across different applications in public and private datasets

are presented in Tables 5.1. This table shows the correlation coefficient values and their

corresponding p-values resulting from the correlation tests. The asterisk (*) values,

which are presented in cells with a white background colour in this table due to space

limitations, indicate that the null hypothesis H0 is rejected, suggesting a significant

correlation between the variables. However, it is important to note that despite the

rejection of the null hypothesis for many of these values, most of the correlation coefficients

are still close to zero, with the majority of values ranging from 0.23 to 0.00, indicating a

negligible positive correlation. This suggests that even though there is a statistically

significant relationship between T and R_0-R_f features, the actual strength of this
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relationship is very weak. Only a few cases have high values, such as R_0 for Email at

0.66, R_0 for Browsing at 0.58, R_0 for VoIP at 0.38 and R_0 for Video at 0.37.

The presence of predominantly weak correlations, despite the statistical significance,

supports the idea that normalisation is an appropriate approach to eliminate the impact of

payload size. By normalising the data, we can minimise the influence of total characters

on the features. As a result, the ratio set is suitable for classification. We further

investigated the features related to the absolute frequency values, without normalising

them to a ratio and determine their correlation with the total characters.

Table 5.2: Pearson correlation coefficient between Total Character (T ) and Hex Character
Frequency Ratio F_0–F_f features across all applications

Pearson Correlation Coefficient between

Total Characters (T) and Hex Character Frequency Values of
Application Types
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Public Dataset

Audio .98 .98 .98 .97 .98 .98 .97 .98 .98 .98 .98 .98 .98 .98 .98 .98

Browsing .98 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99

Chat .98 .98 .98 .98 .98 .98 .98 .98 .98 .98 .98 .98 .98 .98 .98 .98

Email .98 .99 .99 .99 .99 .98 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99

FTP .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99

P2P .72 .98 .98 .98 .98 .98 .97 .98 .98 .98 .98 .98 .98 .98 .98 .94

Video .98 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99

VoIP .89 .98 .98 .98 .98 .98 .94 .98 .98 .98 .98 .98 .98 .98 .98 .98

Private Dataset

Browsing .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99

* Correlation is significant at the 0.05 level

Table 5.2 presents the results of the Pearson correlation coefficient tests (using SPSS)

between T and F_0-F_f features in different types of applications in the public and

private datasets. This shows the correlation coefficient values and associated p-values

resulting from the correlation tests. The correlation coefficients between T and F_0-

F_f range between 0.72 and 0.99 for all applications, with most values exceeding 0.95.

This high correlation between the variables T and F_0–F_f indicate a strong positive

relationship between them in these applications. Moreover, the rejection of the null
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hypothesis H0 for values marked with an asterisk (*) further confirms this association.

Consequently, we can infer that the variable T has a significant impact on the features

of F_0–F_f. However, for the experiments, we decided to retain the F_0–F_f feature

for the purpose of analysis and comparison with the R_0–R_f features.

Before delving into the experimental results, we present the list of features used in the

classification experiments for the sake of clarity and coherence. Table 5.3 comprehensively

enumerates the 32 features used in the classification process. These features were

categorised into three sets for easier identification: Set 1 comprises the hex character

frequency (F_0-F_f ), Set 2 is the hex character frequency ratio (R_0-R_f ), while Set

3 combines both Set 1 and Set 2. The integration of Set 1 and Set 2 into Set 3 facilitates

a more comprehensive perspective on the features, which may improve the accuracy of

the classification process, ultimately leading to the development of a robust and reliable

classification model. Consequently, utilising Set 3 in the classification experiments may

yield a more robust and reliable classification model.

Table 5.3: List of features used in the classification experiments

Set Name List of Features Total Number of Features

Set 1 hex character frequency (F_0-F_f ) 16

Set 2 hex Character frequency ratio (R_0-R_f ) 16

Set 3 The combination of Set 1 and Set 2 32

The following section will explain the data-splitting technique used to train and test

the supervised learning algorithms.

5.1.2 Data Splitting for Training and Testing Dataset

As outlined in Section 3.4.2, the datasets in our study were initially divided into ’seen’

and ’unseen’ sets. The unseen set was reserved for testing the final model and evaluating

its performance on new data, as detailed in Section 5.5. The seen set was used for the

classification process and further split into training and testing sets. This splitting can

be conducted in various ways; in our study, we implemented both 10-fold cross-validation

(10-CV) and a 70-30 percentage split.
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We acknowledge a methodological limitation in not repeating the 70-30 percentage

split multiple times. Repeating splits and averaging results are standard practices

that provide a more robust evaluation by minimising bias from any single data split.

This approach ensures that model performance is not excessively influenced by the

specific distribution of a particular split. Although 10-CV helps reduce bias by utilising

all available data for both training and testing, unlike the percentage split, it has its

drawbacks. The 10-CV process can be time-consuming, especially with large datasets,

and was constrained in our study by the limitations of our computational resources.

Consequently, the choice between 10-CV and percentage splitting was influenced

by the size of the dataset. For datasets with fewer than 10,000 instances, 10-CV was

employed. In contrast, for larger datasets, the percentage split method proved more

practical. This decision was based on balancing the need for robust data analysis against

the computational resources available for the study. Future research could address this

limitation by considering multiple repetitions of the data splitting process using a robust

three-phase CV approach including training, validation, and testing phases.

5.1.3 Classification Algorithms

The selection of the supervised learning algorithms for classification was influenced

by previous research on NTC and text analysis, as discussed in Section 2.6.5. Three

algorithms were selected: DTs due to its ease of understanding and interpretability while

still being effective; RFs, which improves accuracy and reduces overfitting problems; and

kNN for its simplicity and flexibility. These algorithms were employed to compare the

classification results. Table 5.4 provides a list of classifiers on the WEKA and Scikit-learn

platforms using their default parameters.

5.1.4 Model Performance Metrics

In this study, the evaluation of classification models involved the use of various metrics,

including accuracy, precision, recall, F1 score, and AUC score. These metrics were

derived from the measurements of TP, FP, TN, and FP in a confusion matrix, as

explained in Section 2.6.7. Accuracy was used to assess how well the models predicted
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Table 5.4: Supervised learning algorithms used in WEKA and Scikit-learn

Libraries used in
Supervised Learning Algorithms

WEKA Scikit-learn

DTs J48 DecisionTreeClassifier

RFs RandomForest RandomForestClassifier

kNN IBk KNeighborsClassifier

whether a packet was Tor or nonTor, with a higher accuracy value being preferred. A

100% accuracy indicates a perfect model. Precision was calculated by dividing TP by

the total number of positive predictions, while recall was calculated by dividing TP

by the total number of actual positives. A perfect classifier would have precision and

recall values of one. The F1 score is a weighted harmonic mean of precision and recall,

providing a single score that balances both metrics. The AUC score measures the degree

of distinction between the predictions of the two classes by comparing the TP Rate to

the FP Rate. A higher AUC score indicates a greater distinction between the predictions

of the two classes.

5.2 Classification on Two-Class

This section presents the binary classification results of nine different application types,

comprising eight from the public dataset and one from the private dataset. It is essential

to have rich datasets with multiple binary class pairs to effectively test the null hypothesis

and address the research question of whether a single packet can be used to efficiently

identify Tor traffic.

Table 5.5 provides a comprehensive list of the number of instances for each application

in the public and private datasets, along with the test options used in the classification.

We used a 10-CV approach to split the Chat and Email, while a percentage split of 70/30

for training/testing was utilised for the rest of the application types. We employed both

WEKA and Scikit-learn platforms to compare and discuss their results and processing

tasks.
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Table 5.5: Number of instances and testing options for nine applications

Application Types #instances Test Options

Public Dataset

Audio 26,082 Percentage Split

Browsing 71,950 Percentage Split

Chat 6,504 10-CV

Email 12,300 10-CV

FTP 514,952 Percentage Split

P2P 433,770 Percentage Split

VDO 32,154 Percentage Split

VoIP 737,382 Percentage Split

Private Dataset

Browsing 29,600 Percentage Split

5.2.1 WEKA Results

The classification of Tor traffic was performed in WEKA using three supervised learning

algorithms - J48, RFs, and IBk - and nine binary-class pairs based on three feature sets.

The results of the Tor classification accuracy using three set features among various

supervised learning algorithms in WEKA are presented in Table 5.6.

The table displays the accuracy scores for three algorithms on nine binary-class pairs,

utilising three feature sets in WEKA. Averaging the scores, RandomForest demonstrated

the highest accuracy rates, with 96.59% for Set 1 and 97.81% for Set 3. J48 achieved the

best performance on Set 2, with a 95.81% accuracy rate. Although IBk’s accuracy rates

were marginally lower than RandomForest’s for Set 1 (96.46%) and Set 3 (95.30%), its

performance significantly dropped to 73.23% for Set 2.

Examining the results for each dataset source revealed that, for the public dataset,

IBk performed the best on Set 1, with accuracies ranging from 99.77% for VoIP to

92.04% for Chat. On Set 2, J48 had the highest accuracy rates, ranging from 99.63%

for VoIP to 88.99% for audio. For Set 3, RandomForest achieved the best performance,

with 99.90% for VoIP to 94.84% for audio. In the private dataset, RandomForest had

the highest accuracy for Set 1 at 97.06%, while J48 achieved 97.12% for Set 2, and

RandomForest reached 97.23% for Set 3.
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Table 5.6: Accuracy of three feature sets in public and private datasets using J48,
RandomForest and IBk in WEKA

J48 RandomForest IBk
Application types

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

Public Dataset

Audio 90.01 88.99 94.95 91.97 88.99 94.84 92.04 65.80 90.51

Browsing 94.35 99.03 97.86 96.56 94.26 97.88 96.86 70.44 95.99

Chat 91.34 93.36 95.97 95.94 86.37 97.49 96.88 60.62 95.45

Email 97.08 91.85 98.05 98.20 92.85 98.41 97.64 89.24 96.08

FTP 93.92 96.43 98.28 95.52 91.58 97.97 94.40 72.41 93.75

P2P 95.00 98.44 98.45 96.53 96.82 98.30 96.23 69.14 95.24

VDO 96.38 97.46 97.43 97.78 91.18 98.24 97.57 68.53 96.75

VoIP 99.62 99.63 99.81 99.77 98.92 99.90 99.77 93.98 99.76

Private Dataset

Browsing 95.55 97.12 97.07 97.06 90.81 97.23 96.73 68.90 94.18

Average Scores

9 datasets 94.81 95.81 97.54 96.59 92.42 97.81 96.46 73.23 95.30

In conclusion, when comparing the different feature sets, Set 3 outperformed Set 1

and Set 2 for all models except IBk, indicating that integrating features from absolute

frequency and frequency ratio can improve the models. The performance of Set 1 and Set

2 varied depending on the algorithm and binary class, with some applications showing

only slight differences in accuracy between the two sets, while in others, there was

no significant difference between the two sets. Moreover, in both public and private

datasets, the accuracy results showed a similar trend of high accuracy, particularly in

J48 and RandomForest, with overall scores exceeding 86% across all feature sets. This

indicates that the proposed approach for Tor traffic classification can successfully detect

Tor traffic from multiple data sources, including both public and private datasets. It is

noteworthy that the lowest accuracy scores consistently emerged from the Audio or Chat

categories, while the highest scores were consistently obtained from the VoIP category.

This observation suggests that the accuracy scores may be heavily influenced by the size

of the datasets, with larger datasets yielding higher accuracy scores. This emphasises
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the importance of having adequate data for training and validating the models, as it

can significantly impact their performance.

Our investigation was to identify the best model for Tor traffic classification using

average accuracy scores, with a focus on Set 2 features. Our findings revealed that

RandomForest achieved the highest accuracy score of 92.42%, while IBk had the highest

accuracy score of 73.23%. However, the best model for Tor traffic classification was

found to be J48, achieving an accuracy score of 95.81% and considered the most reliable

for Tor traffic classification based on hex character frequency ratio features.

The corresponding bar graphs of the table can be found in Figure 5.1. The graphs

illustrate the classification accuracy of Tor traffic using three feature sets and three

different algorithms in WEKA, J48 in (a), RandomForest in (b), and IBk in (c), across all

application types. The x-axis represents the application types, while the y-axis represents

the accuracy scores, starting from 60%. The graphs indicate that Set 1 and Set 3 features

displayed a consistent trend across all three classifiers, while Set 2 features displayed

varying trends based on the algorithm used. J48 and RandomForest displayed a similar

trend, both achieving an accuracy score over 80%, unlike, IBk produced significantly

lower accuracy scores, all below 75%, except for VoIP.

As discussed above, J48 was identified as the best model for Tor traffic classification

when considering Set 2 features, achieving an average accuracy score of 95.81% in WEKA.

We conducted a more in-depth investigation into the performance of this model, and

Table 5.7 presents the precision, recall, F1 score, and AUC/ROC score on average for

the J48 algorithm using Set 2 features across all applications in WEKA.

From the table, the public dataset showed the highest precision, recall, F1 score, and

AUC/ROC scores in Browsing with a score of 0.99, while the lowest scores were found in

Email with a score of 0.80. Similarly, the private dataset, which contained only browsing

applications, also showed high precision, recall, F1 score, and AUC/ROC scores for the

J48 algorithm, with all scores being 0.96. The average scores for all application types

from both the public and private datasets had average precision and recall values of

0.94 and 0.93, respectively. This suggests that the J48 algorithm can achieve a 94%

correct detection rate and a 93% correct alarm rate when classifying Tor and nonTor
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Figure 5.1: Accuracy of Tor traffic classification using J48, Random Forest, and IBk on
3 feature sets in WEKA for both public and private datasets

traffic. These results indicate that the J48 algorithm is a promising tool for accurately

classifying Tor and nonTor traffic.

The evaluation metrics used, including accuracy, precision, recall, F1 score, and

AUC/ROC scores, have substantiated the efficacy of the J48 classifier in detecting Tor

traffic across various applications within both public and private datasets. The use of
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Table 5.7: Precision, Recall, F1 score and AUC/ROC results of the J48 model with Set
2 features in WEKA for both public and private datasets

J48
Application Types

Avg. Precision Avg. Recall Avg. F1 score Avg. AUC/ROC

Public Dataset

Audio 0.89 0.89 0.89 0.89

Browsing 0.99 0.99 0.99 0.99

Chat 0.94 0.93 0.93 0.93

Email 0.80 0.80 0.80 0.80

FTP 0.97 0.97 0.97 0.97

P2P 0.99 0.99 0.98 0.98

VDO 0.93 0.93 0.93 0.93

VoIP 0.96 0.97 0.96 0.96

Private Dataset

Browsing 0.96 0.96 0.96 0.96

Average Scores 0.94 0.94 0.94 0.95

these diverse datasets enhances the reliability and validity of our research findings. How-

ever, to ensure that our results are not solely influenced by the specific implementations

of ML algorithms for DTs, RFs and kNN in WEKA, we conducted parallel investigations

using the same types of algorithms in Scikit-Learn. The details of these additional

investigations will be discussed in the following section.

5.2.2 Scikit-Learn Results

Similar to the classification conducted in WEKA, we applied three supervised learning

algorithms, including Decision Tree, Random Forest and KNN to nine binary-class pairs

based on three feature sets in Scikit-learn. The results of the Tor traffic classification

accuracy using three set features among various supervised learning algorithms in

Scikit-learn are presented in Table 5.8.

The table presents the accuracy scores for three algorithms on nine binary-class

pairs, using three feature sets in Scikit-learn. Averaging the scores, KNN exhibited the
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Table 5.8: Accuracy of three feature sets in public and private datasets using Decision
Tree, Random Forest, and KNN in Scikit-learn across all applications

Decision Tree Random Forest KNN
Application types

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

Public Dataset

Audio 88.00 87.85 94.36 91.65 87.12 94.40 92.42 66.84 93.04

Browsing 93.47 97.95 97.39 96.51 90.34 97.81 97.13 75.45 97.22

Chat 92.55 83.50 94.59 96.59 81.41 97.01 97.56 67.29 97.89

Email 96.68 89.72 97.48 98.18 92.83 98.21 98.05 87.86 98.08

FTP 92.84 96.00 97.93 95.57 89.57 97.83 95.89 76.30 96.12

P2P 93.12 97.64 98.19 96.49 94.44 98.27 96.80 71.59 96.94

VDO 95.45 96.19 96.92 97.52 87.72 97.88 98.04 72.06 98.29

VoIP 99.67 99.64 99.89 99.76 98.32 99.88 99.88 93.42 99.89

Private Dataset

Browsing 93.57 95.23 97.34 97.10 87.50 97.31 97.47 71.81 97.47

Average Scores

9 datasets 94.06 93.87 97.15 96.60 89.92 97.62 97.07 75.99 97.25

highest accuracy rates, with 97.07% for Set 1. The Decision Tree achieved the best

performance on Set 2, with a 93.87% accuracy rate. Meanwhile, RF attained the best

performance on Set 3, with a 97.62% accuracy rate. Similar to the results in WEKA,

KNN’s performance was comparable to that of other classifiers but significantly dropped

to 73.23% for Set 2.

Upon examining the results for each dataset source, it was found that for the public

dataset, KNN performed the best on Set 1, with accuracies ranging from 92.42% for

Audio to 99.88% for VoIP. In Set 2, the Decision Tree achieved the highest accuracy rates,

ranging from 83.50% for Chat to 99.64% for VoIP. For Set 3, all algorithms displayed

similar best performance with only slight and insignificant differences observed, with

values above 93% for Audio to above 99.88% for VoIP. In the private dataset, KNN had

the highest accuracy for Set 1 at 97.47%, while the Decision Tree reached 95.23% for

Set 2, and KNN achieved 97.47% for Set 3.

In conclusion, when comparing different feature sets, Set 3 outperformed Set 1 and
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Set 2 for all models, indicating that combining features from absolute frequency and

frequency ratio can enhance the models. The performance of Set 1 and Set 2 varied

depending on the algorithms and binary class, with some applications exhibiting only

minor differences in accuracy between the two sets, while in others, no significant

difference was observed. Furthermore, in both public and private datasets, the accuracy

results displayed a similar trend of high accuracy, particularly with the Decision Tree

and Random Forest algorithms, as overall scores exceeded 87.50% across all feature

sets. This finding suggests that the proposed approach for Tor traffic classification can

effectively detect Tor traffic from various data sources, including both public and private

datasets. It is worth noting that the lowest accuracy scores consistently appeared in the

Audio or Chat categories, while the highest scores consistently emerged from the VoIP

category. This pattern implies that the accuracy scores may be heavily influenced by

dataset size, with larger datasets yielding higher accuracy scores. This highlights the

importance of having sufficient data for training and validating the models, as it can

significantly impact their performance.

Our investigation was to identify the best model for Tor traffic classification using

average accuracy scores, with a focus on Set 2 features. Our findings revealed that

Random Forest achieved an accuracy score of 89.92%, while KNN had an accuracy score

of 75.99%. However, the best model for Tor traffic classification was found to be Decision

Tree, achieving an accuracy score of 93.87% and considered the most reliable for Tor

traffic classification based on hex character frequency ratio features.

The corresponding bar graphs of the table can be found in Figure 5.2. The graphs

illustrate the classification accuracy of Tor traffic using three feature sets and three

different algorithms, Decision Tree in (a), Random Forest in (b), and KNN in (c), across

all application types. The x-axis represents the application types, while the y-axis

represents the accuracy scores, starting from 60%. The graphs indicate that Set 1 and

Set 3 features exhibited a consistent trend across all three classifiers, while Set 2 features

displayed varying trends based on the algorithm used. Decision Tree and Random

Forest displayed a similar trend, both achieving an accuracy score over 80%. However,

KNN produced significantly lower accuracy scores, all below 75%, except for VoIP and
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Private-Browsing with above 72%.

Figure 5.2: Accuracy of Tor traffic classification using Decision Tree, Random Forest
and KNN on 3 feature sets in Scikit-learn for both public and private datasets
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As discussed above, Decision Tree was identified as the best model for Tor traffic

classification when considering Set 2 features, achieving an average accuracy score of

93.87% in Scikit-Learn. Further investigation was conducted into the performance of

this model, and Table 5.9 presents the precision, recall, F1 score, and AUC/ROC score

on average for the Decision Tree algorithm using Set 2 features across all applications in

Scikit-Learn.

Table 5.9: Precision, Recall, F1 score and AUC/ROC results of the Decision Tree model
of Set 2 features in Scikit-learn for both public and private datasets

Decision Tree
Application Types

Avg. Precision Avg. Recall Avg. F1 score Avg. AUC/ROC

Public Dataset

Audio 0.89 0.88 0.88 0.88

Browsing 0.98 0.98 0.98 0.98

Chat 0.84 0.84 0.83 0.83

Email 0.90 0.90 0.90 0.90

FTP 0.96 0.96 0.96 0.96

P2P 0.98 0.98 0.98 0.98

VDO 0.96 0.96 0.96 0.96

VoIP 1.00 1.00 1.00 1.00

Private Dataset

Browsing 0.96 0.96 0.96 0.96

Average Scores 0.94 0.94 0.94 0.94

The results show that all metric performances were above 0.83 in all nine binary

classes. In the public dataset, the lowest average scores for AUC/ROC and F1 score

were 0.83, and for precision and recall were 0.84, obtained for the Chat, while the highest

average score of 1.00 was achieved for VoIP. In the private dataset, which contained

only browsing traffic, the Decision Tree algorithm achieved very high precision, recall,

F1 score, and AUC/ROC scores, all at 0.96 on average. The average scores for all

application types from both datasets had precision and recall values of 0.94, indicating

that the Decision Tree algorithm can achieve a 94% correct alarm rate and correct

detection rate when classifying Tor and nonTor traffic. These results suggest that the
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Decision Tree algorithm is a promising tool for accurately classifying Tor and nonTor

traffic.

The evaluation metrics used, including accuracy, precision, recall, F1 score, and

AUC/ROC scores, have confirmed the effectiveness of the Decision Tree classifier in

detecting Tor traffic across various applications within both public and private datasets.

The use of both types of datasets enhances the reliability and validity of our research

findings. Furthermore, the consistent results obtained from using WEKA and Scikit-learn

provide confidence in our proposed approach, which is based on character analysis for

classifying Tor traffic, and demonstrate that these results are independent of the specific

implementations of the algorithms in these platforms. To gain deeper insights, we also

performed multi-class classification within the Tor network, which is presented in the

next section.

5.3 Classification on Eight-Class

As a means of further exploring the efficacy of our proposed approach for Tor traffic

classification, we expanded our experiments to include an eight-class classification of the

public dataset within the Tor network. This allowed us to investigate whether it was

possible to classify different application types within Tor based on the same encrypted

payload characteristics. To ensure the validity and reliability of our findings, we tested

the classifications using both WEKA and Scikit-learn.

Table 5.10: Accuracy of eight-class classification of the public dataset in WEKA

J48 RandomForest IBk
Application types

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

8-class 17.68 14.75 17.48 21.43 18.23 21.88 17.95 13.63 17.25

Table 5.10 and 5.11 present the accuracy scores for the eight-class of Tor traffic using

J48, RandomForest, and IBk in WEKA, and Decision Tree, Random Forest, and KNN in

Scikit-Learn. The results indicate that all accuracy scores were significantly below 25%,

with RF achieving the highest accuracy scores, ranging from 21.88% to 23.20% using
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Table 5.11: Accuracy of eight-class classification of the public dataset in Scikit-Learn

Decision Tree Random Forest KNN
Application types

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

8-class 17.89 14.28 17.97 23.16 19.05 23.20 19.62 13.93 19.82

Set 3 features. These findings highlight the complete ineffectiveness of the classification

methods in distinguishing application types within Tor networks. The primary reason

for this classification failure is that the encrypted payloads exhibit similar characteristics

in terms of character analysis.

The results from the eight-class classification clearly demonstrate that hex character

statistics analysis of a single packet cannot be used to classify application types within

the Tor network due to the identical characteristics shared by encrypted Tor payloads.

While our proposed features can distinguish between Tor and nonTor encrypted traffic,

there is room for improvement in model performance by selecting only useful features,

as discussed in the following section.

5.4 Feature Selection

As discussed in Section 2.6.4, feature selection is a crucial process in ML that involves

selecting the best and most promising features from a feature set to reduce training

time and maintain or improve classifier performance. In the case of network traces,

where a large number of packets are involved, limiting the number of input variables for

NTC can help reduce the computational cost and result in faster traffic classification,

especially for real-time NTC that require high-speed processing with packet inspection.

Therefore, feature selection is an important technique for reducing the search space of

the ML algorithm, particularly when dealing with large datasets like network traces

(Dehghani et al., 2010).

In our study, WEKA was employed to perform the feature selection experiment,

utilising the WrapperSubsetEval+BestFirst method with the J48 classifier. This method

combines the wrapper method (WrapperSubsetEval) with a search algorithm (BestFirst)
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to select the best subset of features for the classifier. The WrapperSubsetEval method

evaluates the entire feature subset by creating classifiers for each possible subset of

features, aiming to find the best subset that fits the particular classifier being used.

The BestFirst search algorithm then identifies the optimal subset of features to use in

the classifier based on the evaluations provided by the chosen attribute evaluator. The

combination of WrapperSubsetEval and BestFirst offers a balance between searching for

the optimal feature subset and computational efficiency (Witten et al., 2017).

Table 5.12: Results of feature selection for nine application types from both public and
private datasets using WEKA

Feature Selection WrapperSubsetEval+BestFirst

Before Feature Selection After Feature SelectionApplication types

Accuracy (%) Selected Feature Accuracy (%)

Public Dataset

Audio 88.99 R_0 99.7

Browsing 99.03 R_3 99.2

Chat 93.36 R_6 97.4

Email 91.85 R_0 96.5

FTP 96.43 R_d, R_e 98.5

P2P 98.44 R_3, R_a 99.1

VDO 92.76 R_1 99.3

VoIP 99.63 R_0 99.9

Private Dataset

Browsing 97.12 R_2, R_e 97.9

Average Scores

9 Datasets 93.96 n/a 98.61

Table 5.12 presents the results of feature selection experiments using the Wrapper-

SubsetEval+BestFirst method on nine different application types from both public and

private datasets. The ‘Before Feature Selection’ column shows the accuracy achieved

without feature selection, while the ‘After Feature Selection’ column displays the ac-

curacy achieved after selecting the most relevant features. As demonstrated by the

table, feature selection leads to an improvement in accuracy for all application types.



Chapter 5. Machine Learning Modelling and Analysis of Tor Traffic 163

It is important to note that the most informative feature for distinguishing between

the two classes will be selected. Consequently, different features (R_0 to R_f) may

be chosen based on the specific binary class being examined, as they provide the most

information for that particular classification task. For instance, for the Browsing of

the public dataset, the feature R_3 was selected as the most relevant feature among

16 features. In contrast, for the FTP, features R_d and R_e were found to be the

most relevant. Although the accuracy improvements in these applications, as well as in

P2P, VDO, and private browsing, were only slight, the reduction of features can still

enhance model performance. In certain application types, such as Audio, Email, and

VoIP, feature selection significantly improves accuracy. The greatest improvement in

accuracy was observed in the Audio, which increased from 88.99% to 99.7% after feature

selection. On average, the scores for all nine datasets increased from 93.96% to 98.61%

after feature selection. This demonstrates the effectiveness of feature selection not only

in enhancing classification accuracy but also in reducing processing time.

5.5 Unseen Data Prediction

As discussed in Section 3.4.4, preventing overfitting is a critical aspect of developing

robust ML models. To achieve this, it is essential to test the finalised model using new,

unseen data to ensure that the model is not merely memorizing the training data. In our

study, the additional unseen data was unavailable. Therefore, as explained in Section

3.5.2, we designated a 5% ratio of the balanced data as unseen data to evaluate the

model’s performance and minimize the risk of overfitting.

To perform predictions on the unseen data, we used the finalised model obtained

from Section 5.4 and tested it with the new data, considering the selected features of

each class. Table 5.13 presents the results of testing the finalised model on unseen data

for various application types from both public and private datasets. The unseen data

was split from the original dataset, as explained in Section 3.5.2. The ‘Application Types’

column lists the different types of applications, and the ‘#Unseen Instances’ column

shows the number of instances in the unseen dataset for each application type. The

‘Accuracy (%)’ column displays the accuracy of the model’s predictions on the unseen
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Table 5.13: Unseen dataset testing results with finalised model

Application Types #Unseen Instances Accuracy (%)

Public Dataset

Audio 1,372 97.23

Browsing 3,786 99.29

Chat 342 98.83

Email 648 92.99

FTP 27,102 96.94

P2P 22,830 99.10

Video 1,692 99.62

VoIP 38,810 99.97

Private Dataset

Browsing 1,558 98.53

Average n/a 98.06

data for each application type.

The results indicate that the model’s predictions on the unseen data for all application

types of the public dataset have an accuracy exceeding 90%, with the highest accuracy

of 99.97% achieved for VoIP. Similarly, Browsing in the private dataset also achieved a

very high accuracy of 98.53%. The average accuracy across all application types was

98.06%. These results demonstrate the reliability and generalisability of the finalised

model, which was tested on previously unseen data to ensure that it can accurately

classify new instances.

We have demonstrated the classification of Tor traffic in both public and private

datasets using the WEKA and Scikit-learning platforms. The classification experiments

were conducted with detailed explanations and interpretations of the model performance

reports, ensuring a thorough understanding of the process. The performance of the model

was further improved using feature selection. The final models were tested on previously

unseen data to evaluate their forecasting accuracy in a real-world scenario. The next

section discusses the research findings and the comparison to the other approaches based

on traditional ML and DL.
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5.6 Machine Learning Analysis Findings

5.6.1 Research Finding

The primary objective of this chapter was to demonstrate the effectiveness of identifying

Tor traffic using a single payload through our character analysis approach via ML. In

this study, the classification performance was evaluated using various metrics, including

accuracy, precision, recall, F1 score, and AUC/ROC scores on both WEKA and Scikit-

learn platforms. The results revealed that the average accuracies obtained were 93.87%

and 95.81%, with all other evaluation metrics achieving average scores of around 94%.

Moreover, we investigated the improvement of model performance by implementing a

feature selection process that identified only the most useful features. Our findings

showed that by selecting only relevant features, the average accuracy improved from

93.96% to 98.61%, resulting in increased accuracy and reduced training time. Lastly,

the final models were evaluated using previously unseen data to verify the reliability and

generalisability of the approach. The results indicated that the accuracy of predicting

with the final model, when applied to new unseen data, exceeded 90% across all nine

applications, with an average accuracy of 98.06%. These results substantiated the

effectiveness of our approach in detecting Tor traffic across various applications within

both public and private datasets. This provided evidence against the null hypothesis

H02 that a single encrypted payload cannot be used to identify Tor traffic, while also

addressing research question Q2 by demonstrating the efficient distinction of Tor traffic

using the proposed approach.

The findings from this study can be summarised in terms of four key elements:

1) Features: To examine the robustness of cryptography when deployed in real-world

scenarios, we utilised features derived from hex character statistics analysis, organising

them into three distinct feature sets (Set 1 - an absolute frequency set, Set 2 - a frequency

ratio set, and Set 3 - a combination of Sets 1 and 2). When comparing the different

feature sets, Set 3 outperformed Sets 1 and 2 for all models in Scikit-learn, except for IBk

in WEKA, indicating that integrating features from absolute frequency and frequency
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ratio can improve the models. The performance of Sets 1 and 2 varied depending on the

algorithms and binary classes, with some applications showing only slight differences in

accuracy between the two sets, while in others, there was no significant difference between

the two sets. However, to examine the robustness of cryptography when deployed in

real-world scenarios, ciphertext must be of the same length. As a result, we focused on

Set 2, which was unaffected by the encrypted payload length. The findings demonstrated

that Set 2 can be used to classify Tor traffic with average accuracies of 93.87% and

95.81% across both platforms.

2) Datasets: To achieve consistent results and network independence, we conducted

classification experiments on two dataset sources, containing nine binary classes, which

included eight from the public dataset and one from the private dataset. In both public

and private datasets, the accuracy results displayed a similar trend of high accuracy. For

instance, in WEKA, the accuracy scores of the public dataset on Set 2 ranged from 88.99%

to 99.63% in eight applications, while the private dataset achieved 97.12%. Consequently,

the use of nine binary classes from both dataset sources indicated consistent results and

network independence.

3) Algorithms: To ensure accurate and valid outcomes, we utilised three effective

supervised learning algorithms, including DTs-based, RFs-based, and kNN-based algo-

rithms. For Sets 1 and 3, all algorithms demonstrated similar performance levels. In

contrast, for Set 2, the performances of DTs-based, RFs-based algorithms were quite

similar, except for kNN, which experienced a significant decline of approximately 23%

on average.

4) Platforms: To guarantee the reliability and confidence of our findings, we

performed classification using both WEKA and Scikit-learn platforms. During the

experiments, we found that WEKA was useful for quickly viewing preliminary results

and conducting initial analyses with just a few clicks. However, it may have limited

flexibility for customising or modifying algorithms. On the other hand, a Python-based

script utilising the Scikit-learn library provided us with greater flexibility to customise and

adapt to our specific needs, as well as more efficient data preprocessing and classification

tasks. Overall, both platforms have unique advantages and disadvantages, and the choice



Chapter 5. Machine Learning Modelling and Analysis of Tor Traffic 167

of which to use depends on the specific needs of each analysis.

The efficiency of our approach compared to traditional approaches can also be seen

in the fact that it requires only a single packet to accurately identify Tor traffic. While

traditional approaches that rely on time-based features may require the calculation

of several packets to achieve high accuracy rates, our approach can achieve accurate

identification with only a single packet. This not only saves processing time but also

reduces the risk of misidentification due to unreliable time-based features. This approach

is particularly useful in situations where time-based features are unreliable or unavailable

due to the asymmetric nature of Internet routing, traffic aggregation, or modification of

packet length in tunnels or proxies (Rezaei & Liu, 2019). The use of character analysis

features can also provide a quick and efficient way to identify Tor traffic with high

accuracy rates.

5.6.2 Comparison

Traditional Machine Learning

A comparison to previous works is given in order to compare the performance of our

proposed approach to that of others. The public dataset we used during the research

is known as the ISCXTor2016 dataset, which was created by researchers in Canada.

One of their objectives (Lashkari et al., 2017) is to classify Tor traffic using time-based

features. Their proposed approach achieved both precision and recall scores of 0.99 from

flow-timeout value 120. The same dataset and flow-based features were employed by

Cuzzocrea et al. (2017), in conjunction with different classifiers. Their results showed

that JRip provided the best performance of 100% for both precision and recall when

differentiating between Tor and nonTor traffic. Another recent work from Sarwar et

al. (2021) used ISCXTor2016 to detect darknet traffic. They found that CNN-LSTM

produced the best performance evaluation metrics of precision, recall, and F1 score,

which were 0.97, 0.95, and 0.96, respectively.

Our approach achieved the highest scores of precision and recall scores of 0.99 from

Browsing. When compared to the above works, our approach produced the same model

performance as Lashkari et al. (2017), slightly higher than Sarwar et al. (2021), and
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slightly lower than Cuzzocrea et al. (2017)’s approach. However, the features proposed by

these three works are calculated from multiple flow packets, as opposed to our approach,

which requires only one packet to identify Tor. This could be advantageous because,

rather than computing the number of packets, only a single packet is required to detect

Tor traffic, thereby consuming fewer computer resources. Aside from time-based features,

which require multiple packets to generate and inevitably require capturing packets

from the start of the connection, our approach is independent of the network flow’s

location. However, it should be noted that our proposed approach, while highly effective

in identifying Tor traffic, is limited to detecting it based on packet characteristics only,

without taking into account other factors such as network behaviour or user behaviour.

Therefore, future research could explore combining our approach with other detection

techniques to achieve more comprehensive and accurate results.

Deep Learning

NTC has increasingly incorporated DL techniques, which, in certain contexts, have

shown promise in outperforming some classical ML models in accuracy. One of the

prominent advantages of using deep learning models, particularly in domains like image

and speech recognition, is their ability to automate feature extraction, potentially

reducing the need for manual feature engineering that is often required in traditional

machine learning approaches (Shaheen et al., 2016). In our study, we sought to determine

if DL could outperform traditional ML techniques. To test this, we carried out Tor

traffic classification using encrypted payloads as input for the DL model, leveraging

the Keras1 library with the Tensorflow2 backend. In this experiment, we used the

ISCXTor2016 dataset, identical to that in our study. We employed a ML model with a

CNN architecture that includes a Conv1D layer, a Flatten layer, and a Dense output

layer. This design aims to achieve a balance between model complexity and performance,

all while ensuring efficient computational use. The Dense output layer uses a sigmoid

activation function, reflecting for binary classification, differentiating between Tor and

nonTor traffic. Our model processes input features R_0-R_f, corresponding to the
1https://keras.io/
2https://www.tensorflow.org/
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labels of Tor and nonTor class labels. We divided the dataset into 60% for training, 20%

for validation, and 20% for testing.

The model was trained for ten epochs, with a batch size of 32 and binary cross-

entropy loss function. During training, we also utilised a validation set to measure the

model’s performance, ensuring it didn’t overfit to the training data. After training, we

assessed the model on a separate testing set, achieving an accuracy of 81%. This result

suggests that DL can be used for Tor traffic classification using encrypted payload as

input. Throughout the training phase, we observed the training and validation loss

curves. These curves provide insights into the model’s learning process. Ideally, both

curves should decrease to a point of stability with a minimal gap between them. If the

training loss is much lower than the validation loss, it suggests overfitting, meaning the

model might perform poorly on new, unseen data. Conversely, if both the training and

validation loss are high, it may indicate underfitting, implying that the model is not

even fitting the training data properly. In our observations, both curves consistently

decreased, indicating that our model achieved a good balance. This suggests the model

generalised well to the validation set without significant overfitting or underfitting.

In our research, traditional ML outperformed DL, particularly the character analysis

approach which achieved accuracy rates of 97.95% with Scikit-Learn and 99.03% with

WEKA in browsing application traffic. The ML approach, focusing on handcrafted

features, not only provided superior accuracy but also gave valuable insights into the

network traffic differentiation, specifically between Tor and nonTor traffic. Decision trees,

for example, offered clear transparency in feature selection from R_0-R_f, enabling

understanding. In contrast, DL, despite its potential, presented challenges. The CNN

we used still depended on handcrafted features but lacked the explanatory depth that

ML models provided (Ismailaj et al., 2021). Furthermore, DL’s computational and data

demands make it less ideal for real-time packet detection, where speed and efficiency are

paramount. Given these factors, traditional ML was the clear choice for our research

objectives.

Therefore, while DL models can be effective in network traffic classification, our

findings suggest that traditional ML models may be more suitable for certain types
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of tasks, particularly when the goal is to gain insights into the relationships between

features and their impact on the output. In the case of Tor traffic classification using

character analysis, DTs-based algorithms are the most efficient option.

5.7 Summary

In this chapter, we detailed experiments to classify Tor traffic using public and private

datasets and two different ML platforms. We demonstrated the classification process

and discussed how to interpret the performance reports. To improve model performance,

we implemented feature selection, which resulted in higher accuracy rates. The final

models were also tested on previously unseen data to evaluate their performance in a

real-world scenario. The chapter concludes with a discussion of the results and their

implications for network traffic classification. In addition to presenting the ML approach,

we also compared our findings to other traditional features such as time-based features.

Furthermore, we presented preliminary results from our DL experiments using the same

dataset and approach. While the results showed that DL can be effective for Tor traffic

classification using encrypted payload as input, our findings suggest that traditional ML

models may be more suitable for certain types of tasks like classifying Tor traffic using

character analysis.

The next chapter will serve as the final chapter, in which we summarise the main

findings of the study and discuss their contributions to the field as well as their impli-

cations for practice and research. We will also provide suggestions for future research

based on the limitations and opportunities identified in the study.



Chapter 6

Conclusion and Future Work

In this concluding chapter, we provide a comprehensive summary of the key findings

and contributions made through this research. The primary focus has been to develop

and evaluate a novel approach for classifying encrypted network traffic, specifically

differentiating between Tor and nonTor traffic. This chapter begins by revisiting the

motivation behind our study and summarising the main results obtained from our

extensive experimentation. We then discuss the implications of our findings, addressing

the impact of our work on the field of network security and encrypted traffic analysis.

Additionally, we acknowledge the limitations and challenges encountered during our

research and suggest potential avenues for future work in this area. Overall, this

chapter serves to consolidate our research efforts, emphasising the significance of our

contributions and outlining the path forward for the continued advancement of encrypted

traffic classification techniques.

6.1 Overview

This study investigated encrypted payload characteristics in both Tor and nonTor

networks using character analysis, aiming to propose a novel Tor traffic classification

approach. The research utilised statistical and ML techniques to analyse the hex

characters within the ciphertexts.

While Tor is renowned for providing online anonymity, its use for illicit activities mo-
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tivates researchers to seek accurate methods for detecting Tor traffic. NTC is the process

of identifying and categorising network traffic using various methods to provide services

such as QoS, billing, and anomaly detection. Traditional traffic classification methods,

such as port-based classification, have been replaced by payload-based classification using

DPI. However, the increasing use of encryption in network communication to ensure

security and privacy have made traffic classification more difficult, as packet inspection

is not possible with encrypted packets. ML approaches, such as supervised learning and

DL, are now being utilised to classify network traffic. Although DL models that do not

require handcrafted features have higher accuracy rates than supervised learning models,

handcrafted features remain essential. The selection of features used in model training

is crucial, as a poor choice of input features can negatively impact classification quality.

Due to encryption, current trends in traffic classification are focused on flow-based

characteristics of packets, especially in the case of Tor traffic. In many studies that used

supervised learning for classification, Tor traffic detection relied primarily on the flow

characteristics of packets, i.e., their time-based properties. This method depends on

the fact that Tor packets travel longer distances through multiple proxy servers located

worldwide to reach their destination than nonTor packets. However, this method requires

many packets to generate the features, and the asymmetric nature of Internet routing

may affect model performance.

Considering these limitations, it is important to explore alternative approaches for Tor

traffic classification. One key aspect that sets Tor apart from nonTor networks is its packet

routing mechanism. Specifically, Tor employs a multilayer encryption approach, unlike the

single-layer encryption used in nonTor networks. This difference in encryption methods

may provide a basis for novel classification techniques that overcome the drawbacks

associated with relying solely on time-based properties. While encryption serves to secure

data, weak cryptographic algorithms can result in compromised security. Consequently,

an ideal encryption scheme incorporates key principles of modern cryptography design

to ensure robust security, preventing ciphertexts of the same length from revealing

any additional information about the underlying plaintext message, regardless of the

attacker’s knowledge. However, this theoretical security does not always guarantee
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real-world security, particularly in computer networking. Therefore, investigating the

characteristics of encrypted payloads may reveal unique insights, potentially contributing

to the development of novel classification techniques for Tor traffic.

In light of this, statistical computational approaches, which have been successful

in text classification, have yet to be tested in the context of computer networks. Tor

encrypts data using the TLS protocol, leading us to expect that the hex characters

appearing in the payload should exhibit similar characteristics to other TLS traffic

and to traffic in other encryption scenarios. However, Tor’s multilayer encryption

process may influence the distribution of data in the payload differently compared to

the single-layer encryption used in nonTor communication. This difference prompts us

to question whether Tor and nonTor encrypted traffic should appear similar in terms of

character analysis. To address these issues, we formulated our first null hypothesis H01

as follows: “There is no difference between Tor and nonTor traffic in terms of encrypted

payloads”. We tested this hypothesis by answering the first research question Q1, “Can

we distinguish Tor from nonTor traffic based on their encrypted payload?”. Our analysis

supported the rejection of the first null hypothesis, leading us to test the second null

hypothesis H02, “A single encrypted payload cannot be used to identify Tor traffic”, by

exploring the second research question Q2, “Can we distinguish Tor from nonTor traffic

using the encrypted payload in a data-efficient manner?”. To rigorously examine both

research questions and hypotheses, we extracted hex statistics-based features from the

ciphertext of Tor and nonTor traffic.

6.2 Research Findings

This study introduces a novel approach that challenges conventional assumptions in the

field of encryption theory. Our research was conducted with scientific rigour, utilising

appropriate methodologies to ensure the validity of our arguments to address our research

objectives. Data used was drawn from two different sources. One source was publicly

available repositories, which provided a vast and diverse range of sample traffic data

suitable for addressing our research questions. This reliable data was complemented

by self-collected data to ensure the independence of the network environment during
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analysis, thereby reinforcing the validity of our results. In order to ensure consistent

results, datasets from both sources were transformed into nine binary classes for analysis.

However, a significant challenge in data preprocessing was noise exclusion, as traffic

traces often contained a mixture of packets and protocols running in the networking

media. To isolate the relevant encrypted payload, it was essential to thoroughly examine

the nature of each individual application and its handling of packet transport. This

process laid the foundation for developing precise packet-filtering commands, ensuring

accurate encrypted payload extraction for further analysis. Below are our key findings

aligned with the four research objectives:

1. CHARSTAT: Our primary objective was to develop an automated method for

extracting features based on hex character statistics from both Tor and nonTor public

and private datasets. To achieve this, we utilised our custom-written Python script,

CHARSTAT, available in Appendix A.1 and openly accessible1 to extract encrypted

payloads from raw traffic data. This resulted in four distinct feature sets based on hex

character statistics. These features, extracted from the encrypted payload, encompass:

(1) the frequency of hex characters (F_0-F_f ), representing raw hex values;(2) the

ratio of hex character frequencies (R_0-R_f ), reflecting raw hex values;(3) the total

character count (T ), indicating the payload size;(4) and entropy (E ), measuring the

randomness of hex values in ciphertexts. The output of CHARSTAT served as input for

both statistical analysis and classification, playing a critical role in our research.

2. Statistical Analysis: Our second objective focused on examining the differ-

ences in hex character statistics between Tor and nonTor encrypted payloads based

on statistical methods for understanding their underlying statistical patterns. To this

end, we undertook a comprehensive statistical analysis comparing four feature sets: (1)

F_0-F_f, (2) R_0-R_f, (3) T, and (4) E, across nine application types for both Tor

and nonTor encrypted payloads. We leveraged both descriptive and inferential statistics

to comprehensively address the first research question and the hypothesis H01, which

assumes that Tor and nonTor encrypted payloads have identical characteristics.

Descriptive statistics revealed notable differences between Tor and nonTor traffic in
1https://github.com/pitpimon/Tor-traffic-classification/blob/main/charstat.py
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terms of hex character frequency, total characters, and entropy values. These observations

can be attributed to Tor’s use of fixed-size cells of 512 bytes and unique encryption

methods, as opposed to the variable packet lengths and diverse encryption mechanisms

employed in nonTor applications. In contrast, the hex character frequency ratio exhibited

a very similar pattern in both Tor and nonTor applications, with only slight differences

observed in some cases, which may be due to the effect of normalisation.

Overall, The characteristics of Tor traffic varied considerably from nonTor traffic

in most attributes, except for the ratio features. Using the Mann-Whitney U test on

four attribute sets, we found that 292 out of 306 features showed significant differences

between Tor and nonTor payloads, leading to a 95.42% differentiation. This outcome

led to the rejection of the null hypothesis H01 that the two types of packets have

similar character frequencies. Consequently, our findings address research question Q1,

demonstrating that it is certainly possible to distinguish Tor from nonTor traffic based

on their encrypted payloads.

3. ML Analysis: The third objective aimed to assess the capability of classifying

Tor and nonTor traffic using features from hex character statistics via ML techniques.

To address this, we experiment with multiple ML models, including DTs-based, RFs

and kNN-based algorithms. These experiments were conducted on both the WEKA and

Scikit-learn platforms. We processed data from two sources (eight application types from

public sources and one from a private dataset), resulting in nine binary classification

groups.

To examine the robustness of cryptography in real-world scenarios, we focused on hex

character frequency and hex character frequency ratio features, organising them into three

distinct feature sets (Set 1 - F_0-F_f ), Set 2 - R_0-R_f ), and Set 3 - a combination

of Sets 1 and 2). In our analysis using Scikit-learn, Set 3 consistently surpassed the

performance of Sets 1 and 2 for all models, except for IBk in WEKA, indicating that

integrating features from Set 1 and Set 2 can improve the model performance. However,

the effectiveness of Sets 1 and 2 varied depending on the algorithms and binary classes,

with some applications showing only slight differences in accuracy between the two sets,

while in others, there was no significant difference. A key consideration for analysing the
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robustness of cryptography in real-world settings is the consistency of ciphertext length.

Hence, we focused on Set 2, which was unaffected by the encrypted payload length.

The findings demonstrated that Set 2 effectively classified Tor traffic using DTs-based

algorithms, achieving average accuracies of 93.87% and 95.81% across both platforms,

with other evaluation metrics yielding similar scores.

We further enhanced our model’s performance by employing the top-performing

DTs-based model, using Set 2, and conducting a feature selection process to identify the

most useful features. By selecting only relevant features, the average accuracy improved

from 93.96% to 98.61%, resulting in increased accuracy and reduced training time. When

evaluating the final models using previously unseen data, the accuracy of predicting

with the final model exceeded 96% across all nine applications, with an average accuracy

of 98.61%. The obtained results validated the efficacy of our approach in identifying Tor

traffic across diverse applications in both public and private datasets. These evidences

disprove the null hypothesis H02 stating that a single encrypted payload cannot be used

to recognise Tor traffic. Additionally, it addresses research question Q2, confirming that

the encrypted payload can differentiate Tor traffic in a data-efficient manner.

4. A Novel Payload Size-Independent Approach: Our fourth objective aimed

to introduce a unique payload size-independent method for effective Tor and nonTor

traffic differentiation. To achieve this, we explored the correlation between features

and payload size to ensure the proposed methodology is robust against payload size

variations. Through the Pearson correlation coefficient tests, we identified a significant

correlation between the variables. However, most correlation coefficients were proximate

to zero, primarily falling between 0.23 and 0.00. This denotes a marginal positive

correlation. Thus, despite a statistically significant relationship between the T and R_0-

R_f features, their actual correlation strength is insubstantial. Consequently, R_0-R_f

emerges as a reliable payload size-independent feature for Tor traffic classification.

Although our findings may contradict the encryption theory assumption that a

ciphertext should not leak any additional information about the underlying plaintext

message, our approach does not reveal the message’s content from the ciphertext. Instead,

it distinguishes Tor and nonTor traffic based on their unique characteristics. Several
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reasons may explain why our hex character statistics analysis approach is effective in

identifying encrypted traffic:

1. NonTor networks implement various encryption algorithms and parameters across a

multitude of applications, each utilising a distinct encryption protocol. In contrast,

the Tor network’s packets are generated by a uniform encryption algorithm, creating

a more homogeneous traffic pattern in Tor compared to nonTor networks.

2. The Tor network employs a uniform packet structure, wherein every packet is

consistently sized at 512 bytes. This standardized size results in more uniform

packet splitting patterns, distinguishing Tor traffic from nonTor traffic, which

typically displays more variability in packet sizes.

3. In Tor, varying packet sizes are first split into 512-byte fixed-size cells at the

application layer, and then encrypted into Tor segments. Meanwhile, in nonTor

networks, varying packet sizes are first encrypted and then subjected to data split-

ting, which could involve either segmentation (at the TCP layer) or fragmentation

(at the IP layer). The order of packet splitting could affect the uniformity of the

ciphertext.

Any or all of these proposed explanations could contribute to the distinguishable

characteristics of their encrypted traffic. It is essential to acknowledge that the proposed

explanations for the effectiveness of our hex character statistics analysis approach are

based on plausible theories, but they remain assumptions at this stage. Further research

is required to corroborate these hypotheses and enhance our understanding of the

differences between Tor and nonTor traffic. Importantly, the insights derived from our

study could also highlight potential channels to exploit vulnerabilities within the Tor

network. By revealing these areas of concern, Tor developers might find the information

valuable in their ongoing efforts to improve the security and robustness of the network.
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6.3 Research Contributions and Impact of Work

Our research offers a significant contribution to the field of network security by presenting

a novel and effective approach for detecting Tor traffic that is privacy-preserving and

does not require the decryption of packets or knowledge of cryptographic keys. The

following is a list of our main contributions:

1. We have developed a novel approach for detecting Tor traffic based on hex character

statistics analysis of encrypted traffic, involving the computation and analysis of

hex character statistics in the ciphertext. To support this method, which does

not require packet decryption or knowledge of cryptographic keys, we also created

CHARSTAT, a versatile tool that computes and generates classification features

based on encrypted payloads and can be used for other types of character analysis

tasks.

2. Our novel approach requires only one packet to determine whether the traffic

originated from Tor or nonTor networks. This represents a significant improvement

compared to conventional methods, which usually require multiple packets for

accurate classification.

3. Our novel approach requires only a single packet to determine whether the traffic

originated from Tor or nonTor networks. This independence from sequential packet

analysis allows us to examine packets from any location within network traces,

eliminating the necessity to analyse packets in a specific order. Such flexibility

enhances the versatility of our method in detecting Tor activity.

4. While our approach is to inspect encrypted network traffic to differentiate packets

between Tor and nonTor networks, it does not decrypt or access the actual content

of the encrypted payload, thereby ensuring privacy preservation. Our approach

accommodates the growing concern for user privacy in the digital age.

As a direct result of our contributions, our work significantly impacts enhanced

monitoring. Particularly, organisations involved in cybersecurity can employ our method
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to inspect Tor traffic with greater efficiency. This is especially beneficial in detecting

malicious activities that use the Tor network as a hiding place. Specifically, our approach

offers a substantial tool for both law enforcement and cybersecurity investigations,

contributing to the reduction of cybercrime. Moreover, the precision of our traffic

classification not only increases network security but also enhances its performance,

leading to a more secure and optimised digital environment.

6.4 Challenges

In spite of the promising results achieved by our proposed approach, there were several

challenges that we encountered during our study. These challenges need to be taken into

account to ensure the generalisability and validity of our findings.

1. Incompatibility of Classifiers Across Different Network Environments:

The two final models from the different contexts were found to be incompatible

with each other, as discussed in Section 5.5. This means that the final model

from VoIP cannot accurately classify Tor traffic in Browsing or other applications.

Therefore, it is crucial to build a new model based on the specific sample data

from each new network environment. Prior to implementation, it is advised to

retrain the model for the new computer network context. This phenomenon aligns

with the suggestion made by Rezaei and Liu (2019) that a model trained on a

dataset collected at a single capturing point may not be effective when applied at

a different capturing point.

2. Processing Time Consumption: DPI has the disadvantage of taking a long

time to examine traffic, as it must scan each individual packet. Our approach

also requires packet inspection, which can be time-consuming. However, with the

prevalence of supercomputers, packet investigation can be speeded up. Furthermore,

we can improve our promising accurate detection approach by investigating light-

weight packet detection, such as selecting a few packets from the target flows after

the TLS connection has been terminated, rather than scanning every packet that

contains payload data. This alternative may allow us to overcome the overhead on
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inspection time.

3. Theoretical Assumption in Hex Character Statistics Analysis Approach:

One limitation of this study is the proposed explanations for the effectiveness of

our hex character statistics analysis approach in distinguishing Tor and nonTor

traffic. Although we have suggested several plausible reasons, such as differences in

encryption layers, encryption algorithms, and packet uniformity, these explanations

are theoretical and require further investigation to be confirmed. Future research

should aim to verify these hypotheses and enhance our understanding of the

differences between Tor and nonTor traffic. This could involve designing and

conducting experiments to test the specific impact of encryption layers, algorithms,

and packet properties on the frequency distribution of characters in encrypted

payloads. By addressing these gaps in our knowledge, we can contribute to the

development of more robust and accurate methods for identifying and classifying

encrypted network traffic.

6.5 Future Work

While our study has provided a useful understanding of the classification of Tor and

nonTor encrypted traffic using hex character statistics analysis, there are several routes

for future research that could build upon our findings. Exploring these areas, we believe,

would advance the field of network traffic analysis and improve our ability to detect and

classify encrypted traffic in a variety of contexts.

1. Enhancing compatibility of classifiers: Investigate methods to improve the

compatibility of classifiers across different network environments. This could

involve developing adaptive models that can adjust to new contexts or exploring

transfer learning techniques to leverage knowledge from one domain to another.

2. Expanding the scope of traffic analysis: Extend the research to other types

of encrypted network traffic beyond Tor and nonTor, such as those generated by

different VPN protocols, anonymity networks, or other encryption technologies.
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This would provide a more comprehensive understanding of encrypted traffic and

contribute to the development of more robust classification methods.

3. Optimising packet inspection techniques: Explore the development of more

efficient packet inspection methods to reduce the time consumption associated

with traffic analysis. This could include investigating lightweight packet detection

techniques, such as sampling strategies or ML approaches that can quickly identify

relevant packets in the traffic flow.

4. Incorporating additional features: Investigate the potential benefits of incor-

porating additional features, such as packet timing or flow-based features, in the

classification process. Combining multiple features could lead to more accurate

and reliable classification models.

5. Validating theoretical assumptions: Conduct experiments to test the impact of

encryption layers, algorithms, and packet properties on the frequency distribution of

characters in encrypted payloads. This would help confirm or refute the theoretical

conjectures proposed in this study and provide a better understanding of the

differences between Tor and nonTor traffic.
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Appendix A

Python Scripts

A.1 charstat.py

1 import os
2 import pandas as pd
3 import collections
4 from scipy.stats import entropy
5

6 # Define network type for working directory and label
7 Tor = 'y'
8

9 # Function to process pcap files
10 def process_pcap(pcap):
11 pcap = pcap.lower()
12 # Conditions to process pcap files based on different app types
13 if (Tor == 'y' and 'torg' in pcap):
14 conditions = [
15 (('audio' in pcap), 'tshark -r %s -Y "(tls.app_data &&

!tls.handshake && !_ws.expert)" -Tfields -e frame.number -e
ip.src -e ip.dst -e tcp.payload', 'audio', 'tcp.payload'),

↪→

↪→

16 (('browsing' in pcap), 'tshark -r %s -Y "(tls.app_data &&
!tls.handshake && !_ws.expert)" -Tfields -e frame.number -e
ip.src -e ip.dst -e tls.app_data', 'browsing',
'tls_app_data'),

↪→

↪→

↪→

17 (('chat' in pcap), 'tshark -r %s -Y "(tls.app_data &&
!tls.handshake && !_ws.expert)" -Tfields -e frame.number -e
ip.src -e ip.dst -e tcp.payload', 'chat', 'tcp.payload'),

↪→

↪→

18 (('transfer' in pcap), 'tshark -r %s -Y "(tls.app_data &&
!tls.handshake && !_ws.expert)" -Tfields -e frame.number -e
ip.src -e ip.dst -e tcp.payload', 'ftp', 'tcp.payload'),

↪→

↪→
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19 (('mail' in pcap), 'tshark -r %s -Y "(tls.app_data &&
!tls.handshake && !_ws.expert)" -Tfields -e frame.number -e
ip.src -e ip.dst -e tcp.payload', 'email', 'tcp.payload'),

↪→

↪→

20 (('p2p' in pcap), 'tshark -r %s -Y "(tls.app_data &&
!tls.handshake && !_ws.expert)" -Tfields -e frame.number -e
ip.src -e ip.dst -e tcp.payload', 'p2p', 'tcp.payload'),

↪→

↪→

21 (('video' in pcap), 'tshark -r %s -Y "(tls.app_data &&
!tls.handshake && !_ws.expert)" -Tfields -e frame.number -e
ip.src -e ip.dst -e tls.app_data', 'vdo', 'tls.app_data'),

↪→

↪→

22 (('voip' in pcap or 'ssl' in pcap), 'tshark -r %s -Y
"(tls.app_data && !tls.handshake && !_ws.expert)" -Tfields
-e frame.number -e ip.src -e ip.dst -e tls.app_data', 'voip',
'tls_app_data'),

↪→

↪→

↪→

23 (('private' in pcap), 'tshark -r %s -Y "(tls.app_data &&
!tls.handshake && !_ws.expert)" -Tfields -e frame.number -e
ip.src -e ip.dst -e tls.app_data', 'private', 'tls_app_data')
]

↪→

↪→

↪→

24 else:
25 conditions = [
26 (('aim' in pcap or 'icq' in pcap), 'tshark -r %s -Y

"(tcp.payload && !tls && !_ws.expert)" -Tfields -e
frame.number -e ip.src -e ip.dst -e tcp.payload', 'chat',
'tcp.payload'),

↪→

↪→

↪→

27 (('facebook' in pcap or 'hangout_chat' in pcap or 'hangoutchat'
in pcap), 'tshark -r %s -Y "(tls.app_data && !tls.handshake
&& !_ws.expert)" -Tfields -e frame.number -e ip.src -e
ip.dst -e tls.app_data', 'chat', 'tls_app_data'),

↪→

↪→

↪→

28 (('skype_chat' in pcap or 'skypechat' in pcap), 'tshark -r %s -Y
"(tcp.payload && !tls && !_ws.expert)" -Tfields -e
frame.number -e ip.src -e ip.dst -e tcp.payload', 'chat',
'tcp.payload'),

↪→

↪→

↪→

29 (('spotify' in pcap), 'tshark -r %s -Y "(tcp.payload && !http &&
!tls && !_ws.expert)" -Tfields -e frame.number -e ip.src -e
ip.dst -e tcp.payload', 'audio', 'tcp.payload'),

↪→

↪→

30 (('skype_audio' in pcap or 'skype_voice' in pcap or
'skype_transfer' in pcap), 'tshark -r %s -Y "(tcp.payload &&
!http && !tls && !_ws.expert)" -Tfields -e frame.number -e
ip.src -e ip.dst -e tcp.payload', 'audio', 'tcp.payload'),

↪→

↪→

↪→

31 (('p2p' in pcap), 'tshark -r %s -Y "(tcp.payload && !bittorrent
&& !tls && !_ws.expert)" -Tfields -e frame.number -e ip.src
-e ip.dst -e tcp.payload', 'p2p', 'tcp.payload'),

↪→

↪→

32 (('sftp' in pcap), 'tshark -r %s -Y "(ssh.encrypted_packet &&
!_ws.expert)" -Tfields -e frame.number -e ip.src -e ip.dst
-e tls.app_data', 'ftp', 'tls.app_data'),

↪→

↪→
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33 (('browsing' in pcap or 'ssl' in pcap), 'tshark -r %s -Y
"(tls.app_data && !tls.handshake && !_ws.expert)" -Tfields
-e frame.number -e ip.src -e ip.dst -e tls.app_data',
'browsing', 'tls_app_data'),

↪→

↪→

↪→

34 (('email' in pcap or 'thunderbird' in pcap), 'tshark -r %s -Y
"(tls.app_data && !tls.handshake && !_ws.expert)" -Tfields
-e frame.number -e ip.src -e ip.dst -e tls.app_data',
'email', 'tls_app_data'),

↪→

↪→

↪→

35 (('vimeo' in pcap or 'youtube' in pcap), 'tshark -r %s -Y
"(tls.app_data && !tls.handshake && !_ws.expert)" -Tfields
-e frame.number -e ip.src -e ip.dst -e tls.app_data', 'vdo',
'tls_app_data'),

↪→

↪→

↪→

36 (('hangout_audio' in pcap), 'tshark -r %s -Y "(tcp.payload &&
!tls && !_ws.expert)" -Tfields -e frame.number -e ip.src -e
ip.dst -e tcp.payload', 'audio', 'tcp.payload')

↪→

↪→

37 ]
38

39 # Iterate through conditions and return the command, app_type and
field_name if condition is met↪→

40 for condition, command, app_type, field_name in conditions:
41 if condition:
42 return command, app_type, field_name
43 print(app_type)
44 return None, None, None
45

46 # Function to estimate the Shannon entropy of a sequence
47 def estimate_shannon_entropy(dna_sequence):
48 bases = collections.Counter([tmp_base for tmp_base in dna_sequence])
49 dist = [x/sum(bases.values()) for x in bases.values()]
50 entropy_value = entropy(dist, base=2)
51 return entropy_value
52

53 directory = os.getcwd()
54

55 # Define the headers for the output CSV file
56 headers = ['F_{:x}'.format(i) for i in range(16)] + ['R_{:x}'.format(i)

for i in range(16)] + ['t', 'e']↪→

57

58 #Define the network type (Tor or Non-Tor)
59 network_type = 'tor' if Tor == 'y' else 'nontor'
60

61 # Iterate through pcap files in the directory
62 for pcap in os.listdir(directory):
63 if pcap.endswith(".pcap"):
64 pcap_path = os.path.join(directory, pcap)
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65 csv_name = 'features_' + pcap.replace(".pcap", "") + '.csv'
66 csv_path = os.path.join(directory, csv_name)
67 # Process the pcap file and get the command, app_type, and

field_name↪→

68 command, app_type, field_name = process_pcap(pcap)
69 if command: # Run the tshark command
70 print(f"Running tshark command: {command}") # Add this line

to print the tshark command↪→

71 os.system((command % pcap_path) + f" > {csv_path}")
72

73 # Read the generated CSV file containing the payloads
74 df = pd.read_csv(csv_path, sep='\t', header=None,

names=['frame_number', 'ip_src', 'ip_dst', field_name])↪→

75

76 # Prepare a list for storing the extracted features
77 extracted_features = []
78

79 # Iterate through each row (payload) in the DataFrame
80 for _, row in df.iterrows():
81 payload = row[field_name]
82

83 # Check if payload is a string before processing
84 if isinstance(payload, str):
85 # Split the payload by comma
86 payloads = payload.split(',')
87

88 # Iterate through payload parts
89 for payload_part in payloads:
90 hex_freq = collections.Counter(payload_part)
91 hex_ratio = {k: v / len(payload_part) * 100 for k, v

in hex_freq.items()}↪→

92 total_chars = len(payload_part)
93 shannon_entropy =

estimate_shannon_entropy(payload_part)↪→

94

95 # Combine the features into a single list
96 features = [hex_freq.get(k, 0) for k in

'0123456789abcdef'] + \↪→

97 [hex_ratio.get(k, 0.0) for k in
'0123456789abcdef'] + \↪→

98 [total_chars, shannon_entropy]
99 extracted_features.append(features)

100 else:
101 print(f"Skipped non-string payload: {payload}") # Add

this line to print non-string payloads↪→
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102

103 # Convert the extracted features list into a DataFrame and save
it as a CSV file↪→

104 features_df = pd.DataFrame(extracted_features, columns=headers)
105

106 # Assign the label by combining network_type and app_type
107 label = f"{network_type}-{app_type}"
108 print(f"Assigned label: {label}") # Add this line to print the

assigned label↪→

109 features_df['class'] = label
110

111 features_df.to_csv(csv_path, index=False)

A.2 website_lists.py

1 import web-browser
2

3 #website_list_1
4 webbrowser.open("https://www.google.com")
5 webbrowser.open("https://www.apple.com")
6 webbrowser.open("https://www.cloudflare.com")
7 webbrowser.open("https://www.microsoft.com")
8 webbrowser.open("https://www.blogger.com")
9 webbrowser.open("https://wordpress.org/")

10 webbrowser.open("https://www.mozilla.org")
11 webbrowser.open("https://en.wikipedia.org/")
12 webbrowser.open("https://www.linkedin.com/")
13 webbrowser.open("https://europa.eu/")
14 webbrowser.open("https://www.adobe.com/")
15 webbrowser.open("https://vimeo.com/")
16 webbrowser.open("https://telegram.org/")
17 webbrowser.open("https://github.com/")
18 webbrowser.open("https://vk.com/")
19 webbrowser.open("https://www.amazon.com/")
20 webbrowser.open("https://www.istockphoto.com/")
21 webbrowser.open("https://www.uol.com.br/")
22 webbrowser.open("https://www.whatsapp.com/")
23 webbrowser.open("https://www.bbc.co.uk/")
24

25 #website_list_2
26 webbrowser.open("https://www.facebook.com/")
27 #webbrowser.open("https://www.netvibes.com/")
28 webbrowser.open("https://www.nytimes.com/")
29 webbrowser.open("https://www.terra.com.br/")
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30 #webbrowser.open("https://www.paypal.com/")
31 webbrowser.open("https://www.nih.gov/")
32 webbrowser.open("https://www.hugedomains.com/")
33 webbrowser.open("https://www.imdb.com/")
34 webbrowser.open("https://www.slideshare.net/")
35 webbrowser.open("https://issuu.com/")
36 webbrowser.open("https://www.globo.com/")
37 webbrowser.open("https://www.w3.org/")
38 webbrowser.open("https://www.brandbucket.com/")
39 webbrowser.open("https://edition.cnn.com/")
40 #webbrowser.open("https://www.weebly.com/")
41 webbrowser.open("https://creativecommons.org/")
42 webbrowser.open("https://www.forbes.com/")
43 webbrowser.open("https://www.theguardian.com/")
44 webbrowser.open("https://www.washingtonpost.com/")
45 webbrowser.open("https://www.dropbox.com/")
46 webbrowser.open("https://mail.ru/")
47 webbrowser.open("http://gnu.org/")
48 webbrowser.open("http://gizmodo.com/")
49

50 #website_list_3
51 webbrowser.open("https://myspace.com/")
52 #webbrowser.open("https://www.reuters.com/")
53 webbrowser.open("https://www.live.com/")
54 webbrowser.open("https://medium.com/")
55 webbrowser.open("https://www.msn.com")
56 webbrowser.open("https://www.opera.com/")
57 webbrowser.open("https://uk.yahoo.com/")
58 webbrowser.open("https://www.dailymotion.com/gb")
59 webbrowser.open("https://line.me/en/")
60 webbrowser.open("https://www.who.int/")
61 webbrowser.open("http://dailymail.co.uk/")
62 #webbrowser.open("http://rakuten.co.jp/")
63 webbrowser.open("http://telegraph.co.uk/")
64 webbrowser.open("http://wired.com/")
65 webbrowser.open("http://ft.com/")
66 webbrowser.open("https://twitter.com/")
67 webbrowser.open("https://www.office.com/")
68 webbrowser.open("http://cpanel.com/")
69 webbrowser.open("https://elpais.com/")
70 webbrowser.open("http://fandom.com/")
71 webbrowser.open("http://loc.gov/")
72 webbrowser.open("https://www.washington.edu/")
73

74 #website_list_4
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75 webbrowser.open("https://www.privacyshield.gov/")
76 webbrowser.open("http://independent.co.uk/")
77 webbrowser.open("http://mediafire.com/")
78 webbrowser.open("https://www.thesun.co.uk/")
79 webbrowser.open("https://www.aol.com/")
80 webbrowser.open("http://huffingtonpost.com/")
81 webbrowser.open("http://booking.com/")
82 webbrowser.open("http://wsj.com/")
83 webbrowser.open("http://huffpost.com/")
84 webbrowser.open("https://bitly.com/")
85 webbrowser.open("http://android.com/")
86 webbrowser.open("http://steampowered.com/")
87 webbrowser.open("http://bloomberg.com/")
88 webbrowser.open("http://ebay.com/")
89 webbrowser.open("http://soundcloud.com/")
90 webbrowser.open("https://ok.ru/")
91 webbrowser.open("http://amazon.de/")
92 webbrowser.open("http://aliexpress.com/")
93 webbrowser.open("http://tinyurl.com/")
94 webbrowser.open("http://foxnews.com/")
95

96 #website_list_5
97 #webbrowser.open("http://samsung.com/")
98 #webbrowser.open("http://nasa.gov/")
99 #webbrowser.open("http://aboutads.info/")

100 webbrowser.open("http://businessinsider.com/")
101 webbrowser.open("http://time.com/")
102 webbrowser.open("http://cnet.com/")
103 webbrowser.open("http://abcnews.go.com/")
104 webbrowser.open("https://en.gravatar.com/")
105 webbrowser.open("http://usatoday.com/")
106 webbrowser.open("http://scribd.com/")
107 webbrowser.open("http://www.gov.uk/")
108 webbrowser.open("http://archive.org/")
109 webbrowser.open("http://mirror.co.uk/")
110 webbrowser.open("http://cbsnews.com/")
111 webbrowser.open("http://dan.com/")
112 webbrowser.open("https://www.plesk.com/")
113 webbrowser.open("https://www.cdc.gov/")
114 webbrowser.open("https://discord.com/")
115 webbrowser.open("http://berkeley.edu/")
116 #webbrowser.open("http://yelp.com/")
117 #webbrowser.open("http://quora.com/")
118 webbrowser.open("http://hollywoodreporter.com/")
119 webbrowser.open("https://ria.ru/")
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120 webbrowser.open("https://www.theguardian.com/")
121 webbrowser.open("https://www.netflix.com/")



Appendix B

Statistics

B.1 Descriptive Statistics of Audio

Table B.1: Descriptive Statistics of Audio

Mean Tor nonTor SD Tor nonTor Min Tor nonTor Max Tor nonTor
F_0 70.48 153.43 F_0 18.04 48.30 F_0 2 0 F_0 190 557

F_1 71.24 153.38 F_1 18.02 47.92 F_1 1 0 F_1 185 229

F_2 70.49 153.48 F_2 18.10 48.34 F_2 1 0 F_2 199 407

F_3 70.50 153.93 F_3 17.99 49.50 F_3 1 0 F_3 203 714

F_4 70.09 153.41 F_4 17.79 48.10 F_4 2 0 F_4 196 247

F_5 70.85 153.23 F_5 17.89 48.06 F_5 1 0 F_5 209 232

F_6 71.32 153.90 F_6 18.03 49.92 F_6 1 0 F_6 203 761

F_7 70.43 153.26 F_7 17.97 48.02 F_7 2 0 F_7 198 233

F_8 70.25 153.32 F_8 17.96 48.12 F_8 1 0 F_8 196 232

F_9 70.13 153.16 F_9 18.04 48.08 F_9 2 0 F_9 195 237

F_a 69.98 153.15 F_a 18.07 48.09 F_a 1 0 F_a 186 240

F_b 72.14 153.08 F_b 17.87 48.19 F_b 1 0 F_b 189 235

F_c 70.99 153.22 F_c 18.07 48.27 F_c 0 0 F_c 193 241

F_d 70.23 153.02 F_d 18.11 48.03 F_d 4 0 F_d 200 240

F_e 70.62 152.94 F_e 18.08 48.00 F_e 0 0 F_e 196 236

F_f 71.67 153.09 F_f 18.01 48.21 F_f 4 0 F_f 179 281

R_0 6.23 6.28 R_0 0.74 1.35 R_0 3.03 0.00 R_0 15.00 90.00

R_1 6.30 6.26 R_1 0.75 0.74 R_1 1.52 0.00 R_1 15.63 22.73

R_2 6.23 6.25 R_2 0.75 0.72 R_2 1.52 0.00 R_2 13.54 18.18

R_3 6.23 6.28 R_3 0.73 0.87 R_3 1.04 0.00 R_3 9.85 25.22

R_4 6.19 6.26 R_4 0.72 0.74 R_4 1.79 0.00 R_4 10.64 18.18

R_5 6.26 6.25 R_5 0.73 0.75 R_5 1.56 0.00 R_5 9.39 33.33

R_6 6.30 6.27 R_6 0.75 0.94 R_6 1.04 0.00 R_6 12.12 31.25

R_7 6.22 6.25 R_7 0.73 0.75 R_7 2.63 0.00 R_7 9.11 20.31

R_8 6.21 6.25 R_8 0.74 0.70 R_8 1.72 0.00 R_8 12.12 18.18

R_9 6.20 6.24 R_9 0.74 0.70 R_9 2.08 0.00 R_9 9.68 20.83

R_a 6.18 6.24 R_a 0.74 0.74 R_a 1.56 0.00 R_a 12.12 22.73

R_b 6.38 6.23 R_b 0.75 0.74 R_b 1.67 0.00 R_b 10.61 18.52

R_c 6.28 6.25 R_c 0.73 0.75 R_c 0.00 0.00 R_c 11.02 18.18

R_d 6.21 6.23 R_d 0.73 0.71 R_d 3.05 0.00 R_d 13.64 18.18

R_e 6.24 6.23 R_e 0.74 0.77 R_e 0.00 0.00 R_e 9.29 22.73

R_f 6.34 6.23 R_f 0.75 0.77 R_f 3.79 0.00 R_f 16.46 31.82

Total 1131.41 2453 Total 256.96 743.65 Total 58 12 Total 2816 2920

Entropy 3.9898 3.9884 Entropy 0.0073 0.0704 Entropy 3.6629 0.5690 Entropy 3.9992 3.9994
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B.2 Descriptive Statistics of Browsing

Table B.2: Descriptive Statistics of Browsing

Mean Tor nonTor SD Tor nonTor Min Tor nonTor Max Tor nonTor

F_0 79.88 50.86 F_0 27.35 52.82 F_0 2 0 F_0 187 230

F_1 80.08 41.88 F_1 27.52 52.80 F_1 1 0 F_1 182 228

F_2 79.89 41.82 F_2 27.46 52.78 F_2 0 0 F_2 183 230

F_3 79.56 41.88 F_3 27.31 52.91 F_3 2 0 F_3 184 223

F_4 79.77 41.83 F_4 27.37 52.82 F_4 0 0 F_4 184 220

F_5 80.19 41.82 F_5 27.43 52.90 F_5 0 0 F_5 192 222

F_6 80.10 41.87 F_6 27.40 52.93 F_6 2 0 F_6 181 223

F_7 80.78 41.80 F_7 27.63 52.87 F_7 3 0 F_7 191 221

F_8 79.70 41.80 F_8 27.57 52.83 F_8 2 0 F_8 179 232

F_9 79.73 41.81 F_9 27.45 52.86 F_9 1 0 F_9 195 225

F_a 79.88 41.80 F_a 27.34 52.88 F_a 1 0 F_a 184 219

F_b 80.23 41.78 F_b 27.36 52.87 F_b 1 0 F_b 195 224

F_c 80.18 41.77 F_c 27.51 52.81 F_c 2 0 F_c 187 220

F_d 79.59 41.77 F_d 27.49 52.83 F_d 2 0 F_d 176 223

F_e 79.63 41.73 F_e 27.48 52.85 F_e 2 0 F_e 181 229

F_f 79.53 41.74 F_f 27.30 52.82 F_f 2 0 F_f 183 218

R_0 6.25 12.98 R_0 0.70 12.98 R_0 1.56 0.00 R_0 11.72 37.50

R_1 6.26 5.88 R_1 0.71 5.88 R_1 0.78 0.00 R_1 12.12 18.75

R_2 6.25 5.84 R_2 0.71 5.84 R_2 0.00 0.00 R_2 11.49 18.75

R_3 6.22 5.81 R_3 0.70 5.81 R_3 1.56 0.00 R_3 11.31 20.83

R_4 6.24 5.81 R_4 0.71 5.81 R_4 0.00 0.00 R_4 11.54 16.67

R_5 6.27 5.81 R_5 0.71 5.81 R_5 0.00 0.00 R_5 10.94 18.75

R_6 6.27 5.81 R_6 0.70 5.81 R_6 1.19 0.00 R_6 11.72 16.67

R_7 6.32 5.80 R_7 0.72 5.80 R_7 1.92 0.00 R_7 14.06 20.83

R_8 6.23 5.80 R_8 0.70 5.80 R_8 2.34 0.00 R_8 12.02 17.86

R_9 6.23 5.80 R_9 0.71 5.80 R_9 1.43 0.00 R_9 11.06 18.06

R_a 6.25 5.79 R_a 0.71 5.79 R_a 0.78 0.00 R_a 15.52 18.75

R_b 6.28 5.78 R_b 0.71 5.78 R_b 1.56 0.00 R_b 12.50 19.44

R_c 6.27 5.78 R_c 0.70 5.78 R_c 2.34 0.00 R_c 13.28 18.06

R_d 6.22 5.78 R_d 0.71 5.78 R_d 2.98 0.00 R_d 13.64 17.19

R_e 6.23 5.76 R_e 0.71 5.76 R_e 1.52 0.00 R_e 10.16 22.92

R_f 6.22 5.77 R_f 0.71 5.77 R_f 1.56 0.00 R_f 10.94 18.06

Total 1278.70 677.96 Total 416.65 839.19 Total 58 48 Total 2748 2910

Entropy 3.9898 3.9884 Entropy 0.0073 0.0704 Entropy 3.6629 0.5690 Entropy 3.9992 3.9994
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B.3 Descriptive Statistics of Chat

Table B.3: Descriptive Statistics of Chat

Mean Tor nonTor SD Tor nonTor Min Tor nonTor Max Tor nonTor

F_0 70.48 153.43 F_0 18.04 48.30 F_0 2 0 F_0 190 557

F_1 71.24 153.38 F_1 18.02 47.92 F_1 1 0 F_1 185 229

F_2 70.49 153.48 F_2 18.10 48.34 F_2 1 0 F_2 199 407

F_3 70.50 153.93 F_3 17.99 49.50 F_3 1 0 F_3 203 714

F_4 70.09 153.41 F_4 17.79 48.10 F_4 2 0 F_4 196 247

F_5 70.85 153.23 F_5 17.89 48.06 F_5 1 0 F_5 209 232

F_6 71.32 153.90 F_6 18.03 49.92 F_6 1 0 F_6 203 761

F_7 70.43 153.26 F_7 17.97 48.02 F_7 2 0 F_7 198 233

F_8 70.25 153.32 F_8 17.96 48.12 F_8 1 0 F_8 196 232

F_9 70.13 153.16 F_9 18.04 48.08 F_9 2 0 F_9 195 237

F_a 69.98 153.15 F_a 18.07 48.09 F_a 1 0 F_a 186 240

F_b 72.14 153.08 F_b 17.87 48.19 F_b 1 0 F_b 189 235

F_c 70.99 153.22 F_c 18.07 48.27 F_c 0 0 F_c 193 241

F_d 70.23 153.02 F_d 18.11 48.03 F_d 4 0 F_d 200 240

F_e 70.62 152.94 F_e 18.08 48.00 F_e 0 0 F_e 196 236

F_f 71.67 153.09 F_f 18.01 48.21 F_f 4 0 F_f 179 281

R_0 6.23 6.28 R_0 0.74 1.35 R_0 3.03 0.00 R_0 15.00 90.00

R_1 6.30 6.26 R_1 0.75 0.74 R_1 1.52 0.00 R_1 15.63 22.73

R_2 6.23 6.25 R_2 0.75 0.72 R_2 1.52 0.00 R_2 13.54 18.18

R_3 6.23 6.28 R_3 0.73 0.87 R_3 1.04 0.00 R_3 9.85 25.22

R_4 6.19 6.26 R_4 0.72 0.74 R_4 1.79 0.00 R_4 10.64 18.18

R_5 6.26 6.25 R_5 0.73 0.75 R_5 1.56 0.00 R_5 9.39 33.33

R_6 6.30 6.27 R_6 0.75 0.94 R_6 1.04 0.00 R_6 12.12 31.25

R_7 6.22 6.25 R_7 0.73 0.75 R_7 2.63 0.00 R_7 9.11 20.31

R_8 6.21 6.25 R_8 0.74 0.70 R_8 1.72 0.00 R_8 12.12 18.18

R_9 6.20 6.24 R_9 0.74 0.70 R_9 2.08 0.00 R_9 9.68 20.83

R_a 6.18 6.24 R_a 0.74 0.74 R_a 1.56 0.00 R_a 12.12 22.73

R_b 6.38 6.23 R_b 0.75 0.74 R_b 1.67 0.00 R_b 10.61 18.52

R_c 6.28 6.25 R_c 0.73 0.75 R_c 0.00 0.00 R_c 11.02 18.18

R_d 6.21 6.23 R_d 0.73 0.71 R_d 3.05 0.00 R_d 13.64 18.18

R_e 6.24 6.23 R_e 0.74 0.77 R_e 0.00 0.00 R_e 9.29 22.73

R_f 6.34 6.23 R_f 0.75 0.77 R_f 3.79 0.00 R_f 16.46 31.82

Total 1131.41 2453 Total 256.965 743.659 Total 58 12 Total 2816 2920

Entropy 3.9898 3.9884 Entropy 0.0073 0.0704 Entropy 3.6629 0.5690 Entropy 3.9992 3.9994
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B.4 Descriptive Statistics of Email

Table B.4: Descriptive Statistics of Email

Mean Tor nonTor SD Tor nonTor Min Tor nonTor Max Tor nonTor

F_0 66.44 43.32 F_0 27.73 54.10 F_0 3 5 F_0 197 234

F_1 66.89 29.92 F_1 27.53 54.71 F_1 3 0 F_1 199 213

F_2 66.90 29.77 F_2 27.84 54.64 F_2 3 0 F_2 202 215

F_3 67.66 29.64 F_3 27.88 54.41 F_3 3 0 F_3 208 211

F_4 66.34 29.81 F_4 27.78 54.61 F_4 3 0 F_4 198 216

F_5 66.79 29.75 F_5 27.87 54.78 F_5 2 0 F_5 193 215

F_6 66.82 29.82 F_6 27.76 54.72 F_6 3 0 F_6 199 211

F_7 67.07 29.69 F_7 27.61 54.50 F_7 4 0 F_7 199 211

F_8 66.39 29.85 F_8 27.79 54.88 F_8 3 0 F_8 191 214

F_9 67.18 29.73 F_9 27.75 54.63 F_9 4 0 F_9 194 224

F_a 67.48 29.71 F_a 27.52 54.72 F_a 4 0 F_a 200 211

F_b 67.63 29.72 F_b 27.77 54.74 F_b 4 0 F_b 213 222

F_c 66.99 29.76 F_c 27.63 54.82 F_c 1 0 F_c 188 216

F_d 67.04 29.75 F_d 27.83 54.75 F_d 2 0 F_d 207 220

F_e 66.75 29.66 F_e 27.70 54.64 F_e 2 0 F_e 207 213

F_f 66.40 29.75 F_f 27.56 54.71 F_f 2 0 F_f 192 215

R_0 6.19 17.46 R_0 0.83 7.28 R_0 2.34 5.23 R_0 10.16 40.00

R_1 6.25 5.67 R_1 0.81 2.15 R_1 2.34 0.00 R_1 11.14 17.57

R_2 6.25 5.54 R_2 0.81 2.07 R_2 1.79 0.00 R_2 10.60 16.67

R_3 6.32 5.50 R_3 0.83 2.11 R_3 1.44 0.00 R_3 10.76 15.71

R_4 6.18 5.58 R_4 0.82 2.12 R_4 2.34 0.00 R_4 10.10 18.75

R_5 6.23 5.46 R_5 0.83 2.14 R_5 1.56 0.00 R_5 12.02 16.67

R_6 6.23 5.53 R_6 0.83 2.12 R_6 1.44 0.00 R_6 11.72 16.18

R_7 6.27 5.51 R_7 0.82 2.14 R_7 2.45 0.00 R_7 10.94 16.67

R_8 6.19 5.52 R_8 0.82 2.14 R_8 2.34 0.00 R_8 11.06 15.00

R_9 6.28 5.48 R_9 0.84 2.13 R_9 2.99 0.00 R_9 12.50 16.28

R_a 6.34 5.43 R_a 0.86 2.11 R_a 2.08 0.00 R_a 12.50 15.71

R_b 6.31 5.45 R_b 0.83 2.08 R_b 2.40 0.00 R_b 11.96 16.67

R_c 6.26 5.43 R_c 0.83 2.09 R_c 0.78 0.00 R_c 12.50 17.19

R_d 6.26 5.49 R_d 0.83 2.10 R_d 1.56 0.00 R_d 11.06 15.48

R_e 6.23 5.45 R_e 0.80 2.16 R_e 1.56 0.00 R_e 11.72 15.71

R_f 6.19 5.49 R_f 0.82 2.09 R_f 1.56 0.00 R_f 11.11 14.71

Total 1070.77 489.66 Total 425.08 870.27 Total 128 50 Total 2904 2822

Entropy 3.9873 3.7707 Entropy 0.0104 0.1801 Entropy 3.8500 3.0200 Entropy 3.9988 3.9995
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B.5 Descriptive Statistics of FTP

Table B.5: Descriptive Statistics of FTP

Mean Tor nonTor SD Tor nonTor Min Tor nonTor Max Tor nonTor

F_0 61.63 159.85 F_0 34.61 52.26 F_0 0 0 F_0 223 550

F_1 62.17 159.81 F_1 34.52 52.25 F_1 1 0 F_1 222 253

F_2 61.90 159.87 F_2 34.69 52.29 F_2 0 0 F_2 221 425

F_3 62.66 159.85 F_3 34.59 52.53 F_3 1 0 F_3 215 864

F_4 62.80 159.82 F_4 34.42 52.25 F_4 1 0 F_4 220 278

F_5 61.62 159.84 F_5 34.59 52.24 F_5 0 0 F_5 223 246

F_6 63.06 159.93 F_6 34.47 52.64 F_6 2 0 F_6 226 799

F_7 62.50 159.84 F_7 34.54 52.25 F_7 1 0 F_7 220 242

F_8 61.61 159.83 F_8 34.61 52.28 F_8 0 0 F_8 217 275

F_9 62.22 159.81 F_9 34.50 52.25 F_9 1 0 F_9 226 239

F_a 62.62 159.81 F_a 34.59 52.30 F_a 1 0 F_a 233 271

F_b 62.55 159.79 F_b 34.55 52.28 F_b 1 0 F_b 222 247

F_c 62.10 159.77 F_c 34.71 52.28 F_c 0 0 F_c 220 243

F_d 61.94 159.79 F_d 34.67 52.27 F_d 0 0 F_d 221 240

F_e 62.49 159.79 F_e 34.55 52.26 F_e 1 0 F_e 223 246

F_f 62.73 159.84 F_f 34.88 52.31 F_f 1 0 F_f 216 404

R_0 6.15 6.25 R_0 0.91 1.03 R_0 0.00 0.00 R_0 15.00 90.00

R_1 6.25 6.25 R_1 0.91 0.96 R_1 0.78 0.00 R_1 14.84 50.00

R_2 6.17 6.25 R_2 0.92 0.95 R_2 0.00 0.00 R_2 14.84 50.00

R_3 6.30 6.25 R_3 0.91 0.97 R_3 0.78 0.00 R_3 14.84 50.00

R_4 6.37 6.25 R_4 0.93 0.94 R_4 1.52 0.00 R_4 16.41 33.33

R_5 6.15 6.25 R_5 0.91 0.94 R_5 0.00 0.00 R_5 14.06 37.50

R_6 6.39 6.25 R_6 0.93 0.98 R_6 1.56 0.00 R_6 16.67 50.00

R_7 6.29 6.25 R_7 0.91 0.95 R_7 0.78 0.00 R_7 16.41 37.50

R_8 6.15 6.25 R_8 0.91 0.95 R_8 0.00 0.00 R_8 13.28 50.00

R_9 6.26 6.25 R_9 0.91 0.94 R_9 0.78 0.00 R_9 14.84 50.00

R_a 6.30 6.25 R_a 0.91 0.95 R_a 0.78 0.00 R_a 17.19 50.00

R_b 6.30 6.25 R_b 0.92 0.95 R_b 0.78 0.00 R_b 15.63 37.50

R_c 6.20 6.25 R_c 0.92 0.97 R_c 0.00 0.00 R_c 13.28 50.00

R_d 6.18 6.25 R_d 0.91 0.95 R_d 0.00 0.00 R_d 14.84 37.50

R_e 6.29 6.25 R_e 0.91 0.95 R_e 0.78 0.00 R_e 15.00 50.00

R_f 6.25 6.25 R_f 0.92 0.95 R_f 0.78 0.00 R_f 13.28 50.00

Total 996.60 2557.25 Total 539.90 812.71 Total 60 0.00 Total 2904 2920

Entropy 3.9843 3.9823 Entropy 0.0143 0.0783 Entropy 3.5988 0.568996 Entropy 3.9993 3.9996
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B.6 Descriptive Statistics of P2P

Table B.6: Descriptive Statistics of P2P

Mean Tor nonTor SD Tor nonTor Min Tor nonTor Max Tor nonTor

F_0 72.17 149.27 F_0 20.36 101.27 F_0 1 0 F_0 200 2871

F_1 72.68 144.64 F_1 20.40 62.37 F_1 0 0 F_1 209 858

F_2 72.78 144.17 F_2 20.29 62.36 F_2 0 0 F_2 202 809

F_3 71.88 145.66 F_3 20.25 62.96 F_3 1 0 F_3 196 824

F_4 72.05 144.20 F_4 20.37 62.50 F_4 1 0 F_4 206 1071

F_5 71.87 144.76 F_5 20.44 62.52 F_5 1 0 F_5 217 889

F_6 71.51 144.99 F_6 20.35 63.49 F_6 0 0 F_6 204 1080

F_7 71.97 146.63 F_7 20.39 63.60 F_7 1 0 F_7 199 809

F_8 72.79 144.80 F_8 20.21 62.85 F_8 0 0 F_8 200 824

F_9 71.64 144.90 F_9 20.37 62.55 F_9 0 0 F_9 206 829

F_a 72.39 144.39 F_a 20.33 62.69 F_a 1 0 F_a 202 808

F_b 72.84 145.68 F_b 20.36 63.03 F_b 2 0 F_b 202 474

F_c 71.55 145.45 F_c 20.35 62.68 F_c 1 0 F_c 213 501

F_d 71.94 145.62 F_d 20.32 62.95 F_d 0 0 F_d 211 366

F_e 72.02 146.51 F_e 20.40 63.55 F_e 1 0 F_e 197 415

F_f 72.60 149.28 F_f 20.34 69.95 F_f 1 0 F_f 207 2792

R_0 6.25 7.36 R_0 0.73 8.92 R_0 1.52 0.00 R_0 12.82 98.32

R_1 6.30 6.15 R_1 0.74 1.38 R_1 0.00 0.00 R_1 14.06 50.00

R_2 6.31 6.13 R_2 0.73 1.40 R_2 0.00 0.00 R_2 14.06 50.00

R_3 6.22 6.18 R_3 0.73 1.41 R_3 0.78 0.00 R_3 12.68 50.00

R_4 6.24 6.16 R_4 0.73 1.31 R_4 0.78 0.00 R_4 15.15 50.00

R_5 6.22 6.14 R_5 0.73 1.44 R_5 1.47 0.00 R_5 13.28 50.00

R_6 6.19 6.18 R_6 0.73 1.42 R_6 0.00 0.00 R_6 13.28 50.00

R_7 6.23 6.21 R_7 0.73 1.45 R_7 1.04 0.00 R_7 13.64 50.00

R_8 6.31 6.15 R_8 0.75 1.43 R_8 0.00 0.00 R_8 14.84 50.00

R_9 6.20 6.15 R_9 0.74 1.42 R_9 0.00 0.00 R_9 15.38 50.00

R_a 6.27 6.12 R_a 0.73 1.46 R_a 1.14 0.00 R_a 12.12 50.00

R_b 6.31 6.17 R_b 0.73 1.42 R_b 1.47 0.00 R_b 13.28 50.00

R_c 6.19 6.17 R_c 0.73 1.41 R_c 1.04 0.00 R_c 15.00 50.00

R_d 6.23 6.21 R_d 0.73 1.34 R_d 0.00 0.00 R_d 12.50 50.00

R_e 6.24 6.20 R_e 0.73 1.45 R_e 0.78 0.00 R_e 14.84 100.00

R_f 6.29 6.32 R_f 0.73 2.27 R_f 1.44 0.00 R_f 14.06 100.00

Total 1154.70 2330.96 Total 297.86 976.01 Total 52 2 Total 2830 2920

Entropy 3.9900 3.9262 Entropy 0.0066 0.3543 Entropy 3.6465 0.0000 Entropy 3.9993 3.9999
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B.7 Descriptive Statistics of VDO

Table B.7: Descriptive Statistics of VDO

Mean Tor nonTor SD Tor nonTor Min Tor nonTor Max Tor nonTor

F_0 71.29 51.61 F_0 19.06 60.10 F_0 4 0 F_0 172 227

F_1 71.60 47.68 F_1 18.99 61.35 F_1 3 0 F_1 175 227

F_2 71.00 47.60 F_2 18.99 61.26 F_2 3 0 F_2 175 221

F_3 71.81 47.68 F_3 19.14 61.41 F_3 3 0 F_3 173 219

F_4 71.40 47.58 F_4 19.04 61.27 F_4 3 0 F_4 175 225

F_5 71.81 47.60 F_5 19.04 61.26 F_5 4 0 F_5 171 229

F_6 71.24 47.56 F_6 18.94 61.25 F_6 2 0 F_6 170 228

F_7 71.81 47.72 F_7 19.05 61.51 F_7 2 0 F_7 174 223

F_8 70.87 47.63 F_8 18.92 61.37 F_8 3 0 F_8 173 224

F_9 72.27 47.64 F_9 19.06 61.52 F_9 4 0 F_9 169 223

F_a 71.17 47.54 F_a 19.13 61.19 F_a 4 0 F_a 173 221

F_b 71.06 47.60 F_b 18.94 61.32 F_b 3 0 F_b 167 226

F_c 70.72 47.51 F_c 19.04 61.29 F_c 3 0 F_c 177 222

F_d 71.29 47.56 F_d 19.06 61.34 F_d 3 0 F_d 168 223

F_e 72.81 47.69 F_e 18.99 61.38 F_e 3 0 F_e 171 223

F_f 72.08 47.55 F_f 19.00 61.36 F_f 3 0 F_f 166 223

R_0 6.23 9.41 R_0 0.73 6.41 R_0 2.38 0.00 R_0 12.50 36.36

R_1 6.26 6.09 R_1 0.74 1.78 R_1 1.79 0.00 R_1 9.39 16.41

R_2 6.21 6.06 R_2 0.75 1.77 R_2 1.79 0.00 R_2 11.31 14.38

R_3 6.27 6.07 R_3 0.74 1.79 R_3 1.79 0.00 R_3 12.50 15.63

R_4 6.24 6.05 R_4 0.74 1.77 R_4 1.79 0.00 R_4 13.69 15.85

R_5 6.28 6.05 R_5 0.74 1.78 R_5 2.38 0.00 R_5 11.31 18.18

R_6 6.23 6.05 R_6 0.73 1.79 R_6 1.19 0.00 R_6 11.31 15.63

R_7 6.28 6.02 R_7 0.75 1.78 R_7 1.19 0.00 R_7 14.88 16.67

R_8 6.19 6.05 R_8 0.72 1.79 R_8 2.34 0.00 R_8 9.52 15.63

R_9 6.32 6.01 R_9 0.73 1.79 R_9 2.38 0.00 R_9 10.94 16.67

R_a 6.22 6.02 R_a 0.74 1.79 R_a 2.98 0.00 R_a 12.50 16.67

R_b 6.21 6.03 R_b 0.74 1.78 R_b 1.79 0.00 R_b 12.50 17.19

R_c 6.18 6.00 R_c 0.74 1.78 R_c 1.79 0.00 R_c 11.90 15.15

R_d 6.23 6.02 R_d 0.74 1.79 R_d 2.34 0.00 R_d 10.71 17.71

R_e 6.37 6.07 R_e 0.74 1.80 R_e 1.79 0.00 R_e 10.94 19.51

R_f 6.30 6.01 R_f 0.73 1.78 R_f 1.79 0.00 R_f 10.12 15.85

Total 1144.22 765.76 Total 274.64 973.98 Total 128 48 Total 2224 2880

Entropy 3.9899 3.9021 Entropy 0.0060 0.1251 Entropy 3.8286 3.2440 Entropy 3.9993 3.9996
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B.8 Descriptive Statistics of VoIP

Table B.8: Descriptive Statistics of VoIP

Mean Tor nonTor SD Tor nonTor Min Tor nonTor Max Tor nonTor

F_0 68.22 25.07 F_0 11.99 28.20 F_0 2 0 F_0 175 669

F_1 68.21 15.64 F_1 11.93 14.64 F_1 1 0 F_1 177 247

F_2 68.69 15.56 F_2 12.17 14.25 F_2 1 0 F_2 177 251

F_3 68.16 14.97 F_3 11.94 14.05 F_3 1 0 F_3 181 227

F_4 68.85 15.56 F_4 11.99 15.11 F_4 1 0 F_4 180 283

F_5 68.82 14.37 F_5 12.04 13.43 F_5 2 0 F_5 178 215

F_6 68.08 15.05 F_6 11.92 14.38 F_6 1 0 F_6 178 325

F_7 69.13 14.72 F_7 11.89 14.55 F_7 2 0 F_7 176 257

F_8 69.27 14.42 F_8 11.90 13.10 F_8 1 0 F_8 175 210

F_9 68.24 15.44 F_9 11.95 14.75 F_9 2 0 F_9 172 254

F_a 68.09 14.23 F_a 11.99 13.57 F_a 2 0 F_a 178 220

F_b 68.77 14.37 F_b 11.98 13.93 F_b 2 0 F_b 175 216

F_c 68.33 13.82 F_c 11.95 12.85 F_c 2 0 F_c 175 208

F_d 68.84 14.11 F_d 11.94 13.66 F_d 2 0 F_d 179 212

F_e 67.83 14.68 F_e 11.93 13.96 F_e 2 0 F_e 175 232

F_f 68.18 13.64 F_f 11.94 12.65 F_f 2 0 F_f 178 206

R_0 6.23 10.42 R_0 0.73 6.72 R_0 2.34 0.00 R_0 10.94 100.00

R_1 6.23 6.37 R_1 0.73 1.99 R_1 0.78 0.00 R_1 10.94 50.00

R_2 6.27 6.40 R_2 0.74 2.00 R_2 0.78 0.00 R_2 16.67 62.50

R_3 6.22 6.06 R_3 0.73 1.98 R_3 1.52 0.00 R_3 11.72 50.00

R_4 6.28 6.29 R_4 0.73 2.24 R_4 1.52 0.00 R_4 11.06 50.00

R_5 6.28 5.85 R_5 0.74 2.02 R_5 2.34 0.00 R_5 10.50 50.00

R_6 6.21 6.08 R_6 0.73 2.04 R_6 0.78 0.00 R_6 10.94 66.67

R_7 6.31 5.87 R_7 0.74 2.09 R_7 2.34 0.00 R_7 13.28 50.00

R_8 6.32 5.89 R_8 0.74 2.03 R_8 1.52 0.00 R_8 12.50 62.50

R_9 6.23 6.30 R_9 0.74 2.11 R_9 2.34 0.00 R_9 11.72 40.00

R_a 6.21 5.74 R_a 0.73 2.10 R_a 2.34 0.00 R_a 10.94 50.00

R_b 6.28 5.80 R_b 0.73 2.09 R_b 1.56 0.00 R_b 13.28 50.00

R_c 6.24 5.67 R_c 0.73 2.12 R_c 2.34 0.00 R_c 10.94 50.00

R_d 6.28 5.72 R_d 0.73 2.14 R_d 1.56 0.00 R_d 12.50 50.00

R_e 6.19 5.95 R_e 0.73 2.04 R_e 1.56 0.00 R_e 13.64 50.00

R_f 6.22 5.58 R_f 0.73 2.13 R_f 1.56 0.00 R_f 12.50 50.00

Total 1095.69 1095.69 Total 142.34 224.11 Total 66 2 Total 2264 2920

Entropy 3.9900 3.9900 Entropy 0.0039 0.1748 Entropy 3.7344 0.0000 Entropy 3.9992 3.9985
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B.9 Descriptive Statistics of Private Browsing

Table B.9: Descriptive Statistics of Private Browsing

Mean Tor nonTor SD Tor nonTor Min Tor nonTor Max Tor nonTor

F_0 75.54 47.92 F_0 29.42 64.64 F_0 5.00 0 F_0 549 1110

F_1 75.38 46.38 F_1 29.38 64.65 F_1 4.00 0 F_1 536 1059

F_2 75.35 46.45 F_2 29.31 64.71 F_2 4.00 0 F_2 569 1093

F_3 75.40 46.33 F_3 29.45 64.54 F_3 6.00 0 F_3 527 1055

F_4 75.58 46.25 F_4 29.59 64.48 F_4 4.00 0 F_4 555 1063

F_5 75.50 46.40 F_5 29.44 64.68 F_5 4.00 0 F_5 567 1005

F_6 75.60 46.48 F_6 29.57 64.94 F_6 1.00 0 F_6 555 1089

F_7 75.52 46.34 F_7 29.56 64.69 F_7 3.00 0 F_7 552 1038

F_8 75.48 46.29 F_8 29.84 64.59 F_8 4.00 0 F_8 571 1049

F_9 75.50 46.34 F_9 29.60 64.45 F_9 4.00 0 F_9 555 1006

F_a 75.50 46.25 F_a 29.42 64.47 F_a 5.00 0 F_a 548 1107

F_b 75.38 46.37 F_b 29.33 64.45 F_b 5.00 0 F_b 549 1089

F_c 75.38 46.39 F_c 29.46 64.70 F_c 4.00 0 F_c 523 1103

F_d 75.58 46.34 F_d 29.41 64.61 F_d 5.00 0 F_d 564 1045

F_e 75.50 46.38 F_e 29.51 64.75 F_e 3.00 0 F_e 566 1057

F_f 75.50 46.35 F_f 29.67 64.63 F_f 4.00 0 F_f 563 1076

R_0 6.26 6.93 R_0 0.72 3.55 R_0 3.09 0.00 R_0 10.49 34.85

R_1 6.24 6.19 R_1 0.72 2.10 R_1 2.47 0.00 R_1 9.26 21.05

R_2 6.24 6.23 R_2 0.73 2.13 R_2 2.47 0.00 R_2 11.11 22.06

R_3 6.24 6.23 R_3 0.72 2.14 R_3 3.58 0.00 R_3 9.88 23.68

R_4 6.26 6.17 R_4 0.72 2.14 R_4 2.47 0.00 R_4 9.88 21.05

R_5 6.25 6.18 R_5 0.72 2.09 R_5 2.47 0.00 R_5 10.49 21.15

R_6 6.26 6.19 R_6 0.72 2.11 R_6 0.62 0.00 R_6 11.11 23.68

R_7 6.25 6.21 R_7 0.73 2.13 R_7 1.85 0.00 R_7 12.96 21.21

R_8 6.25 6.16 R_8 0.73 2.09 R_8 2.47 0.00 R_8 9.89 26.32

R_9 6.25 6.23 R_9 0.72 2.09 R_9 2.47 0.00 R_9 10.49 21.15

R_a 6.25 6.20 R_a 0.72 2.10 R_a 3.09 0.00 R_a 9.88 21.15

R_b 6.24 6.24 R_b 0.73 2.11 R_b 3.09 0.00 R_b 11.11 21.05

R_c 6.24 6.22 R_c 0.72 2.12 R_c 2.47 0.00 R_c 9.88 23.68

R_d 6.26 6.21 R_d 0.72 2.09 R_d 3.09 0.00 R_d 10.49 21.05

R_e 6.25 6.19 R_e 0.72 2.10 R_e 1.85 0.00 R_e 11.73 26.32

R_f 6.25 6.21 R_f 0.73 2.15 R_f 2.47 0.00 R_f 9.88 23.68

Total 1207.69 743.25 Total 452.31 1028.49 Total 162 36 Total 8130 17044

Entropy 3.9903 3.9053 Entropy 0.0049 0.1136 Entropy 3.8757 3.2332 Entropy 3.9994 3.9995



Appendix B. Statistics 220

B.10 Hex Characters Frequency (F_0-F_f)

B.10.1 Frequency

Figure B.1: Histogram of Hex Characters Frequency of Audio

Figure B.2: Histogram of Hex Characters Frequency of Browsing

Figure B.3: Histogram of Hex Characters Frequency of Chat
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Figure B.4: Histogram of Hex Characters Frequency of Email

Figure B.5: Histogram of Hex Characters Frequency of FTP

Figure B.6: Histogram of Hex Characters Frequency of P2P
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Figure B.7: Histogram of Hex Characters Frequency of VDO

Figure B.8: Histogram of Hex Characters Frequency of VoIP

Figure B.9: Histogram of Hex Characters Frequency of Private Browsing
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B.10.2 Mean, SD, Min and Max

Figure B.10: Descriptive Statistics of Hex Characters Frequency of Audio

Figure B.11: Descriptive Statistics of Hex Characters Frequency of Browsing

Figure B.12: Descriptive Statistics of Hex Characters Frequency of Chat
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Figure B.13: Descriptive Statistics of Hex Characters Frequency of Email

Figure B.14: Descriptive Statistics of Hex Characters Frequency of FTP

Figure B.15: Descriptive Statistics of Hex Characters Frequency of P2P
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Figure B.16: Descriptive Statistics of Hex Characters Frequency of VDO

Figure B.17: Descriptive Statistics of Hex Characters Frequency of VoIP

Figure B.18: Descriptive Statistics of Hex Characters Frequency of Private Browsing
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B.11 Hex Characters Frequency Ratio (R_0-R_f)

B.11.1 Frequency

Figure B.19: Histogram of Hex Characters Frequency Ratio of Audio

Figure B.20: Histogram of Hex Characters Frequency Ratio of Browsing

Figure B.21: Histogram of Hex Characters Frequency Ratio of Chat
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Figure B.22: Histogram of Hex Characters Frequency Ratio of Email

Figure B.23: Histogram of Hex Characters Frequency Ratio of FTP

Figure B.24: Histogram of Hex Characters Frequency Ratio of P2P
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Figure B.25: Histogram of Hex Characters Frequency Ratio of VDO

Figure B.26: Histogram of Hex Characters Frequency Ratio of VoIP

Figure B.27: Histogram of Hex Characters Frequency Ratio of Private Browsing
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B.11.2 Mean, SD, Min and Max

Figure B.28: Descriptive Statistics of Hex Characters Frequency Ratio of Audio

Figure B.29: Descriptive Statistics of Hex Characters Frequency Ratio of Browsing

Figure B.30: Descriptive Statistics of Hex Characters Frequency Ratio of Chat
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Figure B.31: Descriptive Statistics of Hex Characters Frequency Ratio of Email

Figure B.32: Descriptive Statistics of Hex Characters Frequency Ratio of FTP

Figure B.33: Descriptive Statistics of Hex Characters Frequency Ratio of P2P



Appendix B. Statistics 231

Figure B.34: Descriptive Statistics of Hex Characters Frequency Ratio of VDO

Figure B.35: Descriptive Statistics of Hex Characters Frequency Ratio of VoIP

Figure B.36: Descriptive Statistics of Hex Characters Frequency Ratio of Private-
Browsing
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B.12 Total Characters

B.12.1 Frequency

Figure B.37: Histogram of Total Character of each application

B.12.2 Mean, SD, Min and Max

Figure B.38: Descriptive Statistics of Total Character of each application
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B.13 Entropy

B.13.1 Frequency

Figure B.39: Histogram of Entropy of each application

B.13.2 Mean, SD, Min and Max

Figure B.40: Descriptive Statistics of Entropy of each application
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B.14 Normality Test

Figure B.41: Normaility Test of Audio and Browsing



Appendix B. Statistics 235

Figure B.42: Normaility Test of Chat and Email
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Figure B.43: Normaility Test of FTP, P2P and VDO
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Figure B.44: Normaility Test of VoIP and Private Browsing
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B.15 Mann Whitney Test

Figure B.45: Mann Whitney Test of Audio
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Figure B.46: Mann Whitney Test of Browsing
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Figure B.47: Mann Whitney Test of Chat
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Figure B.48: Mann Whitney Test of Email
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Figure B.49: Mann Whitney Test of FTP
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Figure B.50: Mann Whitney Test of P2P
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Figure B.51: Mann Whitney Test of VDO
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Figure B.52: Mann Whitney Test of VoIP
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Figure B.53: Mann Whitney Test of Private Browsing
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B.16 Pearson Correlations

B.16.1 Set 1 Feature

Figure B.54: Pearson Correlations of Set 1 Feature of Audio, Browsing and Chat
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Figure B.55: Pearson Correlations of Set 1 Feature of Email, FTP and P2P
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Figure B.56: Pearson Correlations of Set 1 Feature of VDO, VoIP and Private Browsing
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B.16.2 Set2 Feature

Figure B.57: Pearson Correlations of Set 2 Feature of Audio, Browsing and Chat
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Figure B.58: Pearson Correlations of Set 2 Feature of Email, FTP and P2P
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Figure B.59: Pearson Correlations of Set 2 Feature of VDO, VoIP and Private Browsing



Appendix C

Deep Learning

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 from sklearn.model_selection import train_test_split
4 from sklearn.preprocessing import LabelEncoder, MinMaxScaler
5 from sklearn.metrics import accuracy_score
6 from tensorflow.keras.models import Sequential
7 from tensorflow.keras.layers import Conv1D, Flatten, Dense
8

9 # Load and preprocess the data
10 data = pd.read_csv('writing/#new/browsing-b-seen.csv')
11 #X = MinMaxScaler().fit_transform(data.iloc[:, 0:15].values) # Features

F_0 - F_f↪→

12 X = MinMaxScaler().fit_transform(data.iloc[:, 18:34].values) # Features
R_0 - R_f↪→

13 y = LabelEncoder().fit_transform(data.iloc[:, -1].values)
14

15 # Splitting data
16 X_temp, X_test, y_temp, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)↪→

17 X_train, X_val, y_train, y_val = train_test_split(X_temp, y_temp,
test_size=0.25, random_state=42)↪→

18

19 # Reshape data for CNN
20 X_train, X_val, X_test = [x.reshape(*x.shape, 1) for x in [X_train,

X_val, X_test]]↪→

21

22 # Define and compile the 1D CNN model
23 model = Sequential([
24 Conv1D(16, 3, activation='relu', input_shape=X_train.shape[1:]),
25 Flatten(),
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26 Dense(1, activation='sigmoid')
27 ])
28 model.compile(optimizer='adam', loss='binary_crossentropy')
29

30 # Train the model
31 history = model.fit(X_train, y_train, epochs=10, batch_size=32,

verbose=0, validation_data=(X_val, y_val))↪→

32

33 # Plot loss curves
34 plt.figure(figsize=(12, 6))
35 plt.plot(history.history['loss'], label='Training Loss')
36 plt.plot(history.history['val_loss'], label='Validation Loss')
37 plt.title('Training and Validation Loss Curves')
38 plt.xlabel('Epochs')
39 plt.ylabel('Loss')
40 plt.legend()
41 plt.show()
42

43 # Display training and validation loss
44 print("Training Loss per Epoch:", *map("{:.4f}".format,

history.history['loss']), sep='\n')↪→

45 print("\nValidation Loss per Epoch:", *map("{:.4f}".format,
history.history['val_loss']), sep='\n')↪→

46

47 # Make predictions
48 y_pred = model.predict(X_test)
49 y_pred = (y_pred > 0.5).astype(int).reshape(-1)
50

51 # Calculate accuracy
52 accuracy = accuracy_score(y_test, y_pred)
53 print(f'Accuracy: {accuracy:.2f}')
54



Appendix D

A Thesis Data

All data for this thesis is available at http://personal.strath.ac.uk/pitpimon.choorod

http://personal.strath.ac.uk/pitpimon.choorod
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