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Abstract

This thesis presents computational and experimental techniques to generate light po-

tentials of arbitrary shapes holographically using a phase-modulating liquid-crystal

spatial light modulator (SLM) for experiments with ultracold atoms. Many quantum-

simulation and quantum-computing experiments using ultracold atoms have benefited

from programmable local control on a microscopic scale. Inhomogeneities in the light

potentials used in these experiments must be reduced to mitigate dephasing effects or

heating of the atoms. Further, in applications where laser power is limited, a high effi-

ciency is desirable. Here, I demonstrate the generation of holographic light potentials

with a root-mean-squared (RMS) error below 1% and a measured efficiency of up to

∼ 40%. I show that in a Fourier imaging setup, for light potentials which occupy a

significant fraction of the addressable area in the image plane, a parasitic effect on the

SLM known as pixel crosstalk or fringing field effect limits the accuracy of the light

potential. By modelling this pixel crosstalk and by compensating for its effects, the

error in the light potential is reduced by a factor of ∼ 5. A gradient-based optimisa-

tion algorithm is employed to calculate the SLM phase pattern for the desired light

potential. To reduce experimental errors, we measure the wavefront of the incident

laser beam to within λ/120 and employ an iterative camera feedback algorithm. To

downscale the light potentials to a microscopic scale, a high-NA microscope objective

is used. Finally, a fast method to calibrate the experimental setup is demonstrated,

reducing the runtime from ∼ 3 hours to ∼ 5minutes, maintaining an RMS error of

below 1% in the resulting light potentials.
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Chapter 1

Introduction

This thesis is focused on optimising holographically generated light potentials specifi-

cally for applications in quantum-simulation and quantum-computing experiments us-

ing ultracold atoms. However, there are many other fields which might benefit from the

optimisation and calibration techniques presented here. Outside the scope of cold-atom

experiments, tailored light potentials are used in biomedical applications such as opto-

genetic stimulation [1], non-invasive imaging through tissue [2], and high-resolution 3D

imaging, microscopy and tomography. In the field of forensics, holographic techniques

were developed to record fingerprints [3]. Holographic beam shaping is used in manu-

facturing applications including metal processing or lithography [4]. In the automotive

and aerospace industries, holographic head-up displays emerged as an application [5]

whereas holographic near-eye displays are an active area of research for virtual and

augmented reality applications [6–9]. As holographically generated light potentials are

very sensitive to aberrations in the optical system used to generate them, producing

light potentials with a low error is challenging. Despite the complexity associated with

a holographic imaging setup, the prospect of achieving higher efficiencies and lower er-

ror has driven the development of sophisticated hologram calculation techniques such

as camera-in-the-loop calibration [6]. In this work, we optimise static potentials that

are generated by a liquid-crystal spatial light modulator which is imaged in the focal

plane of a Fourier lens. This is a common experimental setting used in, for example,

top-hat addressing beams and tweezer arrays for Rydberg atom array experiments [10]

where the efficiency and the uniformity of the generated potentials is important (see

1



Chapter 1. Introduction

Section 1.1.3).

1.1 Programmable local control in cold-atom experiments:

State-of-the-art

The capability to sculpt light into potentials of arbitrary shape has created many new

opportunities in cold-atom experiments which will be discussed in this section. Ap-

plications include atomtronics [11, 12], tailored potentials for experiments with optical

lattices [13–16] and quantum information platforms using Rydberg arrays [10, 17, 18].

These applications require smooth light potentials that minimise inhomogeneities and

the resulting dephasing effects. Additionally, a high efficiency is desirable for experi-

ments involving larger atom numbers or where laser power is limited. The hardware

used to tailor these potentials includes liquid-crystal spatial light modulators (SLMs),

binary amplitude-modulating digital micromirror devices (DMDs) and rapidly scan-

ning acousto-optic deflectors (AODs). Each of these devices has its own benefits and

drawbacks, making them suitable for different applications in cold atom experiments

as outlined in this section.

1.1.1 Ultracold quantum gasses

The ability to generate arbitrary light potentials has enabled the realisation of a range of

experiments that investigate out-of-equilibrium dynamics in Bose-Einstein condensates

(BECs) [16, 25–29]. In these experiments, either phase- or amplitude-modulating SLMs

were used to trap or anti-trap atoms, confining fermionic or bosonic atomic clouds to a

tailored region of space. Fundamental quantum effects such as superfluidity, quantum

turbulence, and the Kibble-Zurek mechanism which describes the formation of topolog-

ical defects during phase transitions, can be investigated in these experiments. Digital

micromirror devices (DMDs), a type of SLM that modulates the light’s amplitude in a

binary fashion, are commonplace in modern cold-atom experiments since they can be

imaged directly onto the plane of the atoms and have a higher switching speed compared

to liquid-crystal SLMs (see Section 1.3). Almost arbitrary control over the shape and

density of Bose-Einstein condensates (BECs) was demonstrated using repulsive optical

2



Chapter 1. Introduction

Figure 1.1: Various light potentials for cold-atom experiments. The figures are adapted
from previous work. (a-b) Holographically generated 2D tweezer arrays trapping Cae-
sium (yellow) and Rubidium (blue) atoms [19]. (c) 3D tweezers trapping atoms in the
shape of the Eiffel Tower [20]. (d) Holographic potential for an atomtronic Y-junction
[21]. (e) Ring trap generated with an AOD [22]. (f) DMD-generated potential for an
atomtronic Aharonov-Bohm interferometer [23]. (g) Blue-detuned bottle beam trap
[24]. (h) Holographically shaped top-hat potential for Rydberg addressing [10].

potentials generated by a DMD in a direct imaging setup through a high-NA micro-

scope objective [25]. Using a DMD provides rapid and programmable reconfigurability

of the atomic density without the need for modifying the optical setup. Eliminating

the need for expensive custom optical elements is another benefit of this approach [25].

Imaging the DMD directly reduces the computational cost compared to Fourier imag-

ing, however, aberrations in the optical system cannot be compensated this way (see

Section 2.1). In spite of the DMD’s binary nature (see Section 1.3.1), greyscales can

be achieved in a direct imaging setup using binary error diffusion or time-averaging

via pulse-width modulation [25]. Controlling the shape of quantum gasses will enable

3



Chapter 1. Introduction

atomtronics applications and the investigation of superfluid dynamics [25].

Using a phase-modulating SLM, a single Gaussian beam was split into three shaped

beams – one tube beam and two sheet beams [30]. The holograms for each individ-

ual shaped beam can be superimposed on the SLM with different phase gradients to

spatially separate the beams from each other. This cannot be achieved using a DMD

without a severe loss in efficiency. Even when disregarding the poor efficiency, a DMD

would reach its limit in terms of power-handling capabilities (see Section 1.3.1) for

this specific application with a combined laser power of 700mW in the laser beams

[30]. The shaped laser beams are recombined onto an atomic cloud where each of them

acts as a repulsive barrier forming a box potential which confines a Bose gas in three

dimensions [30]. The tube-shaped beam was created by displaying a 24π phase wind-

ing on the SLM [30], generating a hollow vortex beam with desirable self-focusing and

self-healing properties [31]. By generating three shaped laser beams using a single de-

vice, this example showcases the experimental versatility and reduction in complexity

that can be achieved by using phase-modulating SLMs in cold-atom experiments. This

technique to generate a 3D box potential paved the way for a number of experiments

that investigated out-of-equilibrium dynamics in a BEC [16, 26–29].

Ultracold Fermi gases were stirred using light potentials generated with a DMD

in direct imaging to observe vortex dynamics [32–34]. The chopstick method [35] was

employed using a DMD to create multiple vortex pairs, realising a ‘programmable vor-

tex collider’ [32]. The chopstick method refers to an experimental technique where the

atomic gas is first pierced with a repulsive, tightly-focused laser beam which is then

spilt up into two beams, moving away from each other at a certain angle, creating

a vortex-antivortex pair [35]. Initially, this technique was realised experimentally by

steering two individual laser beams using piezo-actuated mirrors which limits the ex-

periment to one vortex-antivortex pair. Using a DMD enabled this experiment to be

scaled to multiple vortex pairs. By exploiting the high switching speed and resolution

of the DMD, the chopstick method was applied simultaneously at multiple locations

in the atomic gas and in different directions, enabling a vortex collider to be realised

[32]. The programmable vortex collider is significant as it allows the controlled study

of vortex dynamics, their decay, and their interactions, providing valuable insights into

4



Chapter 1. Introduction

quantum turbulence and the behaviour of superfluids [32]. Understanding these dynam-

ics is essential for fundamental research in condensed-matter physics. The researches

claim that their work might pave the way to high-performance superconductors when

combined with optical disorder patterns [32]. In a different experiment, a DMD was

used to create a ring-shaped pattern with an azimuthal intensity gradient, imprinting a

varying phase onto a fermionic atomic cloud that introduces a persistent current in the

superfluid [33]. Persistent currents are important as they are crucial to understanding

the quantum phase coherence of mesoscopic electronic systems and superconductors

[33]. Further, persistent currents in superfluids demonstrate the ability to create and

control long-lived quantum states which are crucial for coherent atomic sensing devices

and for fundamental research in superfluid dynamics [33]. The DMD-generated poten-

tial in this experiment was optimised using a camera feedback algorithm producing a

smooth intensity gradient that prevents perturbations in the current [33]. Optimising

the uniformity of the potential is crucial for this application as any inhomogeneity in

the intensity gradient would have an adverse effect to preparing the persistent current

in the superfluid [33]. After stirring the atomic gas, the DMD was used to deliber-

ately introduce local, point-like perturbations in the rotating superfluid to observe the

nucleation of vortices due to defects [33]. This experiment is another example where

an SLM simplified the experimental setup. Here, the DMD performs multiple tasks

(stirring and local perturbations) that would otherwise require numerous laser beams

and more complicated optics. Similarly, a BEC was trapped in a ring-shaped repul-

sive potential generated using a DMD [34]. Instead of using the chopstick technique,

the DMD was used to generate a number of differently shaped stirring potentials [34]

with almost arbitrary control over the shape and the dynamics of the trapping poten-

tial. This reduction in experimental complexity enabled the investigation of various

different stirring techniques. This study is relevant for understanding two-dimensional

turbulence and the formation of vortices in a superfluid [34].

Similar to the bosonic experiments, optimising the uniformity of a Fermi gas was

demonstrated by shaping a repulsive optical potential using a liquid-crystal SLM [36].

To produce a uniform, top-hat-shaped atomic cloud, the in situ atomic density was

optimised using absorption images [36] which allowed the Kibble-Zurek mechanism in

5



Chapter 1. Introduction

a Fermi superfluid to be investigated [37]. The Kibble-Zurek mechanism describes the

formation of topological defects during a phase transition which is relevant for under-

standing superfluidity in fermionic gasses. Arbitrary spatial control of the repulsive

potential is important in this application to smooth out experimental imperfections in

the trapping potential. In this experiment, the liquid-crystal SLM was used in a direct

imaging setup. By rotating the polarisation of the incident light 45◦ with respect to

the fast axis of the SLM (see Section 2.2), amplitude modulation is achieved. A benefit

of this configuration compared to a DMD in direct imaging is the ability to display

greyscales on each SLM pixel without the need for binary error diffusion or pulse-width

modulation which can cause heating of the atoms.

In a different Fermi gas experiment, a tightly focused laser beam was generated using

a DMD imaged in the Fourier plane with a high-NA microscope objective to locally

probe atomic flow [38]. Further refinement might enable these probes to be used as

building blocks for more intricate atomtronic circuits [38]. The small, sub-micrometre

waist of the probe beam is critical to the spatial resolution of this experiment. To

ensure that the waist of the tightly-focused beam is diffraction limited, aberrations in

the optical system were precisely measured and corrected to within ∼ λ/10 [38]. The

aberrations were measured by displaying a series of patterns on the DMD, effectively

using the DMD as a Shack-Hartmann wavefront sensor. The measured aberrations

were then compensated using the DMD, and the position of the focussed beam was

varied dynamically on a nanometre scale to locally measure the conductance of the

Fermi gas [38]. The smallest displacement of the probe beam is limited to 93 nm due

to the discrete nature of the binary DMD. A phase-modulating SLM can overcome

this limitation which might be beneficial for this experiment since the fast switching

speed of the DMD is not a critical factor here. To reiterate, the DMD is used to

perform multiple tasks (beam steering, measuring, and correcting aberrations) that

would otherwise require additional hardware and complicate the experimental setup.

A number of cold-atom experiments were realised using acousto-optic deflectors

which, in contrast to liquid-crystal SLMs and DMDs, create time-averaged optical po-

tentials by rapidly scanning a tightly-focussed laser beam in two dimensions. These

devices were used to trap BECs [39] and to dynamically stir BECs in toroidal trapping
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potentials [40] (Fig. 1.1e). Using a phase-modulating SLM in combination with an

AOD, an array of ring traps was generated which can be controlled dynamically [22].

Using this technique, multiple atomic clouds were trapped and moved individually along

multiple dimensions. In atomtronics, a field which deals with circuits made of ultracold

atoms, the realisation of a range of atomtronic circuits was enabled by structured light

generated using AODs, DMDs and liquid-crystal SLMs (Fig. 1.1d and Fig. 1.1f) [18].

By designing two reservoirs connected by a channel using a DMD trapping a BEC, an

acoustic Helmholtz oscillator was realised [41]. A Josephson junction was generated

by trapping a BEC in a box potential with multiple repulsive barriers generated using

a DMD [11]. Josephson junctions are significant in quantum computing and sensing,

enabling qubits, superconducting quantum interference devices (SQUIDs), and preci-

sion metrology by exploiting quantum interference and sensitivity to external fields.

Here, the DMD is imaged directly onto the atomic cloud using a high-NA microscope.

Using the DMD, the width and the position of the barrier can be controlled dynami-

cally. Further, the uniformity of the barrier was optimised using camera feedback [11].

Similarly, a Josephson junction was realised by confining a Fermi gas in a potential

separated by a barrier generated using two DMDs in direct imaging [12]. By projecting

an engineered potential onto a BEC by directly imaging a DMD, an Aharonov-Bohm

circuit was realised, enabling high-precision rotation sensing (Fig. 1.1f) [23].

1.1.2 Optical lattice experiments with ultracold atoms

The ability to shape light on a microscopic scale has enabled new possibilities in optical

lattice experiments with ultracold atoms. In these experiments, atoms are trapped in

the periodic potential of an optical lattice which is generated by counter-propagating

laser beams. They enable studying quantum many-body systems in condensed matter

physics, quantum phase transitions, and quantum magnetism. More specifically, ex-

otic quantum states and effects such as high-temperature superconductivity [42], and

frustrated magnetism were investigated using ultracold atoms in optical lattices [43].

Optical potentials are either used in addition to the optical lattice or to form the op-

tical lattice itself with arbitrary geometries. A specific application is, for example,

projecting an anti-harmonic potential onto the optical lattice, removing the harmonic
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confinement caused by the Gaussian intensity profile of the lattice beams [15, 44, 45].

These light potentials in lattice experiments are often projected through a high-NA mi-

croscope objective to demagnify them to a micrometre scale. Generating micrometre-

scale potentials using holographic imaging is challenging since aberrations caused by

the high-NA objective must be measured in-situ to compensate for dephasing effects

[46]. Light potentials generated using an SLM in a direct imaging setup are more com-

mon in optical lattice experiments since they are less sensitive to aberrations compared

to holographically generated potentials. In a recent publication, an optical lattice was

split into several subsystems to study Fermi-Hubbard ladders by engineering optical

barriers using a DMD in a direct imaging setup with light from a superluminescent

diode [14]. Additionally, the flatness of the ladder systems was optimised by feeding

back on the atomic density using the DMD. Here, the incoherent light generated from

the superluminescent diode reduces the speckle noise in the optical potentials that is

associated with coherent laser light. In these ladder systems, locally varying energy

offsets were added using a DMD-generated light potential to study magnetically medi-

ated hole pairing [47], an underlying mechanism to unconventional superconductivity

[48]. Over the past 40 years, the lack of a clear understanding of this mechanism in real

materials has been driving both experimental and theoretical research [47]. In another

experiment, onsite-energy and tunnelling terms in an optical lattice were programmed

by projecting a DMD-generated optical potential on top of the lattice potential to

simulate the tight-binding model which is essential in the study of condensed matter

systems [49]. Other applications of DMD-generated potentials include making specific

lattice sites inaccessible to the atoms by ‘plugging’ them with a repulsive potential [45,

50]. Further, DMDs were used to address atoms in specific lattice sites as demonstrated

by a recent publication [44]. The high switching speed of DMDs enables generating

dynamic light potentials on atomic timescales. In a recent publication, spot arrays

were projected onto an optical lattice using a DMD to dynamically rearrange atoms

to specific lattice sites [51]. Moving optical barriers were engineered using a DMD to

dynamically compress multiple 1D systems of cold atoms in an optical lattice [52].

Despite the challenges associated with Fourier imaging, there are optical lattice ex-

periments that image DMDs in the Fourier plane. In a recent publication [13], phonon
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modes were realised in an optical lattice by holographically projecting structured light

into an optical cavity using a DMD. This specific experiment required both the phase

and the amplitude of the light potentials to be controlled which is not possible when

imaging the DMD directly. Using DMD-generated potentials in addition to the lattice

potential requires relatively little optical power. However, to replace the optical lat-

tice itself with a DMD-generated potential, higher intensities and optical powers are

required, increasing with the number of lattice sites in the system. Compared to liquid-

crystal SLMs, DMDs have a lower efficiency and power-damage threshold which poses a

limitation in this specific scenario. Here, phase-modulating liquid-crystal SLMs benefit

from their comparatively high efficiency and power-handling capability. In contrast to

optical lattices generated using counter-propagating beams, arbitrary lattice geometries

can be realised using SLM generated optical potentials. The generation of ring-shaped

optical lattices was demonstrated by imaging a phase-modulating SLM in the Fourier

plane to trap neutral atoms [53]. Further, it was shown that phase-modulating SLMs

can improve the imaging of single atoms [54]. By imprinting a helical phase onto flu-

orescence light from cold atoms in an optical lattice, 3D imaging of single atoms was

achieved using a phase-modulating SLM [54]. This is an important step towards realis-

ing optical lattice experiments in three dimensions since current systems are typically

restricted to two dimensions.

1.1.3 Atom array experiments

In atom array experiments, optical tweezer arrays are generated holographically using

LCOS SLMs to trap hundreds to thousands of cold atoms (Fig. 1.1a - c) [10, 17, 19,

20, 24, 55–58]. The tweezer array is typically relayed onto the atomic cloud using a

high-NA lens or a microscope objective to achieve the desired demagnification. In these

experiments, the light usage efficiency is especially important since the available laser

power limits the number of tweezers that can be generated to trap atoms. To maximise

the number of traps for a fixed optical power and to achieve uniform loading of the

atoms into the tweezers, a high uniformity of these traps is beneficial. In quantum

information platforms, increasing the number of tweezers and with it, the number of

available physical qubits is the subject of current research which progresses rapidly [10,
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55]. Recently, error-corrected logical qubits were realised in an atom-array experiment

using 280 physical qubits [59]. The authors claim that their approach can be scaled to

over 10000 physical qubits by increasing the laser power used to generate the tweezer

array [59]. Error correction and increasing the number of qubits are crucial steps

towards building a fault-tolerant quantum computer and to reaching practical quantum

advantage – the point at which a quantum computer can solve a real-world problem

faster or more accurately than a classical computer. In a recent publication [55], a

large tweezer array with 12000 sites was generated, trapping 6100 caesium atoms in

it. Other methods that do not require an SLM but instead use optical lattices (>1000

atoms) [60], microlens arrays (∼1200 atoms) [61], or nanophotonic chips (64 atoms) [62]

can generate tweezer arrays trapping a large number of atoms. However, in contrast

to programmable SLM generated tweezer arrays, the geometry of these arrays cannot

be changed without altering the experimental setup. In a recent publication [58], it

was demonstrated that various quantum circuits can be realised by arranging dual-

species Rydberg atoms in a specific spatial configuration of optical tweezers generated

using a phase-modulating SLM. Changing the phase pattern displayed by the SLM

enables the realisation of different circuit designs without requiring modifications to

the experimental setup. Red-detuned tweezer arrays can trap atoms in their ground

state, however, the tweezers act as a repulsive potential for atoms in the Rydberg state

which can lead to atom loss. Rydberg atoms in their excited state were trapped in

a repulsive, blue-detuned bottle beam trap generated using an SLM [24] (Fig. 1.1g).

More recently, arrays of such holographically generated blue-detuned bottle beam traps

were generated, trapping 18 atoms in a highly excited Rydberg state which possess

longer lifetimes compared to atoms in the ground state [63]. Here, optimising the

trapping potential is crucial to prevent atom loss and to achieve a high atom number

in the Rydberg state. In a different Rydberg atom array experiment, weighted-graph

optimisation was demonstrated by engineering local light shifts [64]. Local control over

the light shifts was achieved using a second, phase-modulating SLM in addition to

the SLM used to generate the trapping tweezers [64]. This holographically-generated

potential was first optimised using camera feedback before the vacuum chamber and

then further refined using single-atom spectroscopy. Using this method, a low RMS
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error of 2% in the relative weights was achieved [64] which is a critical factor when

mapping the desired optimisation problem onto the neutral atom quantum computer.

Here, lower errors in the light shifts result in a higher fidelity of the quantum algorithm.

Another application of phase-modulating SLMs in Rydberg atom array experiments

is top-hat beam shaping of the addressing beam used to excite atoms to the Rydberg

state. These top-hat beams are used to globally address the entire atomic array, prop-

agating in the direction parallel to the plane of the array. As opposed to tweezer arrays

which require a small diffraction-limited spot size in the order of one micrometre, these

potentials are generated without any high-NA optics as they only require a spot size

of several micrometres (see Section 3.8, Equation 3.3). For this application, the uni-

formity of the top-hat is critical since any spatial variation in the intensity will cause

varying Rabi-frequencies across the atom array, resulting in dephasing effects between

atoms [65]. A high intensity of the top-hat beam is beneficial in this application which

necessitates a high efficiency, making this a challenging optimisation task when the

available laser power is limited. In a recent experiment [10], laser light is shaped into

a top-hat beam with an RMS error of 0.7% and an efficiency of 38% using an SLM in

a Fourier imaging setup (Fig. 1.1h). Top-hat beam shaping is an important technique,

enabling quantum information platforms to be scaled to larger atom numbers while

maintaining uniform Rabi frequencies. The techniques for generating holographic light

potentials presented in this thesis are directly applicable to top-hat beam shaping in

Rydberg atom array experiments.

1.2 Atom-light interactions

Since we generate tailored holographic light potentials specifically for cold-atom ex-

periments, we introduce interactions between cold atoms and an optical potential to

explain the basic principles of atom trapping using laser light. Microscopic particles,

including neutral atoms, can be trapped using optical forces, arising from two mecha-

nisms: the optical dipole force and radiation pressure [66, 67]. As early as 1619, when

Kepler described the sun’s rays affecting comet tails, the concept of light exerting forces

on particles was recognised [68, 69]. Maxwell demonstrated that the momentum flux

carried by a beam of light correlates directly with its intensity, exerting a force that
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propels illuminated objects in the direction of the light’s propagation, known as radi-

ation pressure [67]. Using the dipole force to tap neutral atoms was first proposed by

Akar’yan in 1962 [66] and later demonstrated by Chu et al. [70].

1.2.1 Lorentz oscillator model

A two-level atom in an optical field made from laser light can be described as a classical

oscillator according to Lorentz’s model [66]. This model assumes that the electron is

elastically bound to the nucleus of the atom via a hypothetical spring. The oscillator

with natural frequency, ω0, is driven by an electric field oscillating with frequency,

ω, that interacts with the electron. Due to the accelerated charge, the oscillation is

damped as described by Larmor’s formula. The oscillating electric field of the laser

light can be expressed as [66]

E(r, t) = ê Ẽ(r) e−iωt + c.c. (1.1)

Here, ê is the unit polarisation vector, and Ẽ(r) the spatially varying amplitude of the

electric field. To describe the motion of the electron as a driven, damped oscillator, the

equation of motion is given by Newton’s second law,

Fnet = mea = me
d2r

dt2
, (1.2)

where a is the acceleration and me is the mass of the electron. The net force consists

of the driving force, Fdriving, the binding force between the electron and the nucleus,

Fspring, and the damping force, Fdamping, The driving force, Fdriving, is given by the

Lorentz force, Fdriving = −eE, where e is the charge of the electron. The binding

force between the electron and the nucleus, Fspring can be described by Hooke’s law,

Fspring = −kr, where r is the displacement of the electron from its equilibrium position

and k is the spring constant. Finally, the damping force is described by Larmor’s

formula, Fdamping = −meΓω
dr
dt , where Γω = e2ω2

6πϵ0mec3
is the classical damping rate [66],
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so we can write

Fnet = me
d2r

dt2
= Fdriving + Fspring + Fdamping, (1.3)

= −eẼ(r) e−iωt − kr−meΓω
dr

dt
. (1.4)

By introducing the resonance frequency of the oscillator, ω2
0 = k/me, and assuming the

solution r = r̃ e−iωt, we can solve the equation of motion resulting in

r(ω) =
−e

me

1

ω2
0 − ω2 − iωΓω

E(r, t) . (1.5)

Due to the displacement of the electron, a dipole moment, p, is induced by the electric

field [66],

p(ω) = −er(ω) = α(ω)E(r, t) . (1.6)

It follows that the polarisability of the atom, α, is given by [66]

α(ω) =
e2

me

1

ω2
0 − ω2 − iωΓω

. (1.7)

By introducing the on-resonance damping rate Γ ≡ Γω0 = (ω0/ω)
2 Γω, the polarisability

can be expressed as [66]

α(ω) = 6πϵ0c
3 Γ/ω0

2

ω0
2 − ω2 − i (ω3/ω0

2) Γ
. (1.8)

1.2.2 Dipole force

The interaction potential, Udip, between the induced dipole moment, p, and the electric

field, E, is given by [71]

Udip = −1

2
⟨pE⟩ = −1

2
α⟨E2⟩. (1.9)

The factor 1/2 in accounts for the induced nature of the dipole moment as opposed to

a permanent one. Introducing the intensity of the light, I(r) = ϵ0c⟨E(r)2⟩ where ϵ0 is

the permittivity of free space, and c the speed of light results in [66]

Udip = − 1

2ϵ0c
Re(α) I(r) . (1.10)
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The real part of the polarisability, Re(α), describes the in-phase response of the atom

to the electric field, which gives rise to the dispersive nature of the interaction [71]. In

the regime of low saturation and near resonance, where the detuning, ∆ = ω − ω0, is

much smaller compared to the resonance frequency, |∆|≪ω0, and much larger than the

on-resonance damping rate |∆|≫Γ, it can be shown the real part of the polarisability

can be expressed as

Re(α) = −3πϵ0c
3

ω3
0

Γ

∆
, (1.11)

by using the relation ω0 + ω ≈ 2ω0 and by applying the rotating-wave approximation.

Substituting Eq. 1.11 into Eq. 1.10 results in the dipole potential [71]

Udip(r) =
3πc2

2ω3
0

Γ

∆
I(r) . (1.12)

The spatially varying intensity, I(r), results in a dipole force, Fdip, acting on the atom

[71]

Fdip = −∇Udip(r) =
1

2ϵ0c
Re(α)∇I(r) = −3πc2

2ω3
0

Γ

∆
∇I(r) . (1.13)

An important result is that the dipole force is proportional to the gradient of the in-

tensity, ∇I, and inversely proportional to the detuning, ∆. Further, the sign of the

dipole force depends on the sign of the detuning, ∆. Consequently, for red-detuned

light, the atom is attracted to the intensity maxima and for blue-detuned light, the

atom is repelled from high-intensity regions. This classical description provides quali-

tative insight into the optical forces acting on a single atom, however, a semi-classical

description is required to provide accurate quantitative results.

Light shift for a two-level alkali atom

Cold-atom experiments for quantum simulation and computation typically use alkali

atoms. The dipole potential of a two-level alkali atom, Udip, in an alternating electric

field can be calculated by [71]

Udip(r) =
3πc2

2

(
1

3

ΓD1

ω3
D1∆D1

+
2

3

ΓD2

ω3
D2∆D2

)
I(r) , (1.14)
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where ΓD1, ΓD2 are the natural line widths of the D1 and D2 line which have frequencies

ωD1, ωD2 and detunings ∆D1 = (ω2 − ω2
D1)/(2ω) and ∆D2 = (ω2 − ω2

D2)/(2ω).

1.2.3 Scattering force

The power absorbed by the atom from the electric field is given by [66]

Pabs = ⟨ṗE⟩ = −iω⟨E2⟩ = ω

ϵ0c
Im(α) I(r) . (1.15)

Here, the imaginary part of the polarisability, Im(α), is responsible for the out-of-phase

response of the dipole interaction and is given by

Im(α) =
3πϵ0c

3

2ω3
0

(
Γ

∆

)2

. (1.16)

The scattering rate, Γsc, of the atom follows as [66]

Γsc =
Pabs

ℏω
=

1

ℏϵ0c
Im(α) I(r) =

3πc2

2ℏω3
0

(
Γ

∆

)2

I(r) . (1.17)

Dipole traps are often treated as conservative potentials, however, this is only true if

the phase across the optical potential is uniform [67, 72]. Gradients in the phase of the

potential cause a force acting on the atom by redirecting the radiation pressure away

from the optical axis, resulting in a transverse force component [67]. The spatially-

dependent phase of the light field, Φ(r), imprints a transverse phase pattern, φ(r),

onto the wavefront of a plane wave travelling in the ẑ direction resulting in [67]

Φ(r) = kz(r) z + φ(r) , (1.18)

with ẑ ·∇φ = 0 and the wave vector, k(r) = kz(r) ẑ+∇φ, provided that k2 = |k|2 =

k2z = |∇φ|2 which holds for small angles, k ≫ |∇φ| [67]. This modifies our driving

field (Eq. 1.1) as follows

E(r, t) = ê Ẽ(r) e−iωte−iφ(r) + c.c., (1.19)
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resulting in the scattering force [66, 67, 71]

Fsc = ℏ (kzẑ+∇φ) Γsc(r) =
3πc2

2ω3
0

(
Γ

∆

)2

(kzẑ+∇φ) I(r) (1.20)

Since the optical forces due to phase gradients are typically much weaker than the

optical dipole force [67], we do not consider them in this thesis. However, there some

are experiments with cold atoms utilising forces arising from phase gradients. Phase

gradients were used to transfer orbital angular momentum from an optical potential to

an atomic cloud in a four-wave mixing process [73]. In a different experiment, Bose-

Einstein condensates were stirred using an optical potential with phase gradients to

investigate vortex dynamics [74].

1.3 Spatial light modulators

Spatial light modulators (SLMs) enable local programmable control of a laser beam,

generating light potentials of arbitrary shape. Two types of SLMs are commonly used

in cold-atom experiments – amplitude-modulating digital micromirror devices (DMDs)

Figure 1.2: Comparison of phase-modulating liquid-crystal spatial light modulators and
digital micromirror devices. (a) A liquid crystal on silicon (LCOS) SLM (top left) [75],
the LCOS chip (top right) [76] and a diagram showing the cross-section of the LCOS
chip (bottom). (b) Chip of a digital micromirror device (top) with a microscope image
(inset) revealing the structure of the individual mirrors and a technical drawing of the
device (bottom) [77–79].
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and phase-modulating liquid-crystal SLMs (Fig. 1.2). Other devices used to shape

light include acousto-optic deflectors and micro-electromechanical systems (MEMS)

scanning mirrors [80], both of which can create time-averaged intensity patterns by

rapidly scanning a tightly focussed laser beam. A phase-modulating SLM based on a

programmable photonic crystal cavity array was developed, achieving high refresh rates

and high spatial resolution [81]. A bandwidth of 1.5GHz was achieved by developing a

lithium niobate on silicon spatial light modulator which is scalable to millions of pixels

[82]. This thesis focuses on a liquid-crystal SLM. However, to better understand the

benefits and drawbacks of using a liquid-crystal SLM, we will first discuss its closest

competitor in cold-atom physics – the DMD.

1.3.1 Digital mirror devices

A digital micromirror device consists of an array of microscopic mirrors which can

be controlled individually to tilt to the ‘on’ or ‘off’ position (corresponding to a tilt

angle of +10◦ and −10◦ for the specific device shown in Fig. 1.2b). This allows binary

modulation of the amplitude of the incident light. Laser light incident onto mirrors in

the ‘on’ position is directed into the desired diffraction order while any light incident

onto mirrors in the ‘off’ position is steered away from the optical axis which makes

this method of amplitude modulation inherently inefficient. The switching speed of

the micromirrors is rapid, allowing for refresh rates of ∼ 10 kHz [83] which enables

dynamically changing potentials on atomic timescales [52]. DMDs with resolutions of

up to 2716× 1600 pixels are available [83] with the pixel pitch ranging from 5.4µm−

13.6µm [83, 84]. Tailored light potentials for cold-atom experiments were realised

using a DMD in direct imaging [25, 41, 52], where the efficiency of the light potential is

directly proportional to the number of mirrors in the ‘on’ position and is limited by the

diffraction efficiency of the device (typically 30%−88%) [25, 38, 85]. Alternatively, the

DMD can be imaged holographically, in the focal plane of a Fourier lens, which reduces

the efficiency to 1% − 2% [46]. As opposed to direct imaging, holographic imaging

allows correcting for any aberrations in the optical system in situ, enabling diffraction-

limited light potentials [46]. Recently, phase-modulating DMDs were developed which,

instead of tilting each mirror, control the displacement of the individual mirrors on a
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nanometre scale to modulate the phase of the light. These devices combine the fast

switching speed of MEMS devices and the high efficiency associated with phase-only

light modulation. However, at the time of writing this thesis, this technology is still

in development and not readily available to purchase on the market. Using a phase-

modulating DMD (Texas Instruments DLP6750Q1EVM), more efficient light potentials

were generated holographically compared to amplitude-modulating DMDs [86].

1.3.2 Liquid-crystal SLMs

Liquid crystal on silicon (LCOS) SLMs consist of a liquid crystal material layer on

mirror-coated pixel electrodes which are controlled individually by a complementary

metal–oxide–semiconductor (CMOS) silicon backplate [87] (Fig. 1.2a). Depending on

the configuration of the device, LCOS SLMs can change the polarisation or the phase

of the incident light. Due to the birefringent properties of the liquid crystal material,

changing the orientation of the liquid crystal molecules by applying an electric field

changes the effective refractive index of the material which retards the phase of the

incident light. Phase-modulating LCOS SLMs, as used in this thesis, benefit from the

electrically controlled birefringence effect. This effect improves the phase modulation

depth, however, it also results in a long response time of the liquid crystal molecule,

limiting the refresh rate of the device especially for thick liquid crystal layers [87] to

∼ 200ms for the specific device we are using (Hamamatsu X13138-07). LCOS SLMs

with the twisted nematic configuration and the vertically aligned nematic configuration

rely on changing the polarisation state of the light. By using a polarisation analyser

after the liquid crystal layer, the amplitude of the light can be controlled. The twisted

nematic and vertically aligned nematic configurations are commonly used in liquid crys-

tal displays, however, they are unsuitable for phase modulation [87]. Phase-modulating

LCOS SLMs are sensitive to the polarisation of the incident light. Depending on the

polarisation, the SLM either modulates only the phase, only the amplitude, or both

the phase and amplitude of the incident light (Section 2.2). Liquid crystal on silicon

SLMs have an optical power damage threshold of up to 700W depending on the de-

vice [88] and the wavelength of the incident light, making it suitable for high-power

applications. Currently, devices with resolutions of 4160×2464 pixels [89] are available
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with a pixel pitch between 3.75µm− 17µm [89, 90]. Recently, an LCOS SLM utilising

Fabry-Pérot nanocavities was developed, reducing the pixel size to ∼ 1µm [91]. For

cold-atom experiments, a small pixel size is not always desirable since this typically

increases crosstalk between neighbouring SLM pixels. Further, smaller SLM pixels re-

duce the spatial extent of the SLM which increases the achievable diffraction-limited

spot size in the Fourier plane. The refresh rate of phase-modulating LCOS SLMs is

typically 60Hz, however, faster models with a refresh rate of ∼ 1.5 kHz are available

[90] enabling dynamic experiments with cold atoms [92]. Ferroelectric LCOS SLMs can

modulate the phase or amplitude of the light with switching speeds of 40µs, achieving

refresh rates of ∼ 6 kHz [93]. However, ferroelectric LCOS SLMs modulate light in a

binary fashion, limiting their efficiency. Using a phase-modulating LCOS SLM in a

holographic setup, calculated efficiencies of 18% − 64% were achieved [94–97], largely

independent of the size of the light potential. After multiplying these calculated effi-

ciencies by the diffraction efficiency of the LCOS SLM (20%− 90%, depending on the

diffraction angle [98]) they are still an order of magnitude higher compared to the DMD

efficiencies. The LCOS SLM can be used in a different configuration to modulate both

amplitude and phase by using 45◦ polarised light. However, this reduces the efficiency

of the device which makes it less interesting for our use case. Due to the high efficiency,

we use the LCOS SLM in a phase-only configuration with laser light polarised parallel

to the alignment direction of the liquid crystal material.
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1.4 Scope of this work

In this thesis, I will discuss computational and experimental methods to generate tai-

lored light potentials holographically using an LCOS SLM in a Fourier imaging setup.

The thesis is structured as follows:

Chapter 2 The experimental Fourier imaging setup is discussed as well as the char-

acterisation of simulated and experimentally measured light potentials. Then,

computational methods to calculate the SLM phase pattern for a desired light

potential are presented which produce simulated light potentials of < 1% RMS

error. Finally, techniques to calibrate the SLM and reduce the error in the ex-

perimentally measured light potentials are discussed.

Chapter 3 The optimisation of experimental light potentials using a camera feedback

algorithm in a Fourier imaging setup is discussed. Pixel crosstalk, a parasitic effect

on the SLM, is identified as a limiting factor for the accuracy of the experimental

light potentials. To improve the fidelity of the light potentials, pixel crosstalk

is modelled on a sub-pixel scale. At the end of the chapter, downscaling the

light potentials to a microscopic scale using a high-NA microscope objective is

demonstrated.

Chapter 4 A method to calibrate the SLM via gradient-based optimisation with

a greatly reduced runtime compared to the method in Chapter 2 is presented.

More intricate pixel crosstalk models which further accelerate the convergence

of the camera feedback algorithm and lower the error in the light potentials are

discussed.

Chapter 5 The findings of this thesis are summarised, and future work is discussed

along with the impact of this work on a broad range of applications.
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Phase-only Fourier holography

using an LCOS SLM

Depending on the application, there are various experimental configurations to generate

light potentials holographically using a liquid crystal on silicon (LCOS) SLM. Two

common configurations to image the SLM are Fourier imaging and lensless imaging.

Another experimental consideration is the polarisation state of the incident laser light

which determines if the SLM modifies only the phase of the light, the amplitude of

the light, or both the phase and the amplitude. Since the SLM is not imaged directly,

the complex field amplitude at the SLM which generates the desired light potential in

the image plane is unknown. Different algorithms which calculate the complex field

amplitude displayed by the SLM to generate the desired light potential in the image

plane were developed (Section 2.5). These algorithms typically minimise the error of

a simulated light potential and will only generate accurate experimental results if this

simulation agrees well with the experiment. To ensure that the simulation matches the

experiment, the SLM must be calibrated by carefully characterising the wavefront and

intensity profile of the incident light.

In this chapter, we discuss the advantages of imaging the SLM in the Fourier plane

(Section 2.1) and why using the SLM in a phase-only configuration is beneficial for

cold-atom experiments (Section 2.2). We then discuss our experimental Fourier imag-

ing setup (Section 2.3) and describe how we characterise simulated and experimental

holographic potentials (Section 2.4). Finally, we present how we calculate the SLM
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phase pattern to generate the desired light potential (Section 2.5) and discuss methods

to calibrate the SLM and characterise the incident laser light (Section 2.6).

2.1 Fourier imaging and lensless imaging

In Fourier imaging, the image plane is the focal plane of a lens which is placed one

focal length away from the SLM (Fig. 2.1a and Fig. 2.2), whereas in lensless imaging,

the image plane is located at a certain distance away from the SLM and does not

require any focusing optics (Fig. 2.1b). An advantage of Fourier imaging is that, due

to the Fourier-transforming properties of a lens, the propagation of light from the

SLM plane to the image plane can be modelled using a fast Fourier transform (FFT)

which is computationally efficient, especially on a graphics processing unit (GPU).

Figure 2.1: Schematic of different holographic imaging setups considering the reflection
of the SLM glass cover plate. (a) In the Fourier imaging setup, the input beam is
reflected by the glass cover plate and focussed onto a single spot in the image plane by
the Fourier lens. (b) In lensless imaging, the reflected beam is not focussed onto a spot
and interferes with the light diffracted by the SLM in a much larger area compared
to (a).
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In contrast, lensless imaging requires the propagation of light in free space from the

SLM to the image plane to be simulated using, for example, the angular spectrum

method (Appendix A). The angular spectrum method is, despite recent progress [99,

100], significantly more time-consuming to compute than the FFT. Further, a Fourier

imaging setup typically produces smaller light potentials of greater spatial resolution

compared to lensless imaging due to the larger diffraction angles generated by the

Fourier lens. Another experimental consideration is the bright spot forming on the

optical axis in the image plane when using Fourier imaging. A fraction of the light in

this spot originates from light reflected by the glass cover plate on the SLM (∼ 4% of

the incident light) which is focused onto the optical axis in the image plane (Fig. 2.1a).

The remaining light collecting on the optical axis is the zeroth diffraction order which

forms due to the pixelated nature of the SLM. The light in the zeroth-order spot can be

reduced by modelling structure of the SLM pixels [98, 101, 102] and by simulating the

effect of multiple internal reflections caused by the glass cover plate [103]. However,

since removing the zeroth order spot entirely is difficult, most light potentials are

displayed off-axis. Specific patterns such as spot arrays which include the zeroth-order

spot as part of the desired optical potential can be displayed on axis. Shifting the light

potential away from the optical axis reduces their efficiency, however, this removes any

interference caused by the light reflected from the cover glass. This spatial separation

of the reflected light and the diffracted light cannot be achieved using lensless imaging,

where the zeroth-order light and light reflected by the cover glass are not focused onto

a spot but take up a large region in the image plane, interfering with the light potential

(Fig. 2.1b). This can lead to unwanted interference fringes if the reflected light and the

zeroth-order light are not taken into account during the phase retrieval process [104,

105]. An advantage is that it is not necessary to shift the light potential away from

the optical axis as there is no intense spot on the optical axis. This makes lensless

imaging more attractive for applications in consumer electronics involving virtual or

augmented reality displays and head-up displays for the automotive and aerospace

industries. However, for the purpose of cold-atom experiments, Fourier imaging is

more commonly used due to the lower computational requirements, the lack of artefacts

caused by light reflected by the glass cover plate, and a higher spatial resolution.
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2.2 Polarisation of the incident light

By choosing the angle of polarisation of the incident laser beam with respect to the

alignment layer of the liquid crystal molecules, the SLM either modulates the phase of

the light, the amplitude of the light or both the phase and the amplitude. This happens

due to the birefringent properties of the liquid crystal material which possesses an

ordinary and extraordinary refractive index. If the incident light is polarised parallel to

the alignment direction of the liquid crystal molecules, the SLM only changes the phase

of the light. As only little light is absorbed by the SLM in this configuration, the device

can handle particularly high optical powers (up to 700W depending on the specific SLM

model [88], its cooling system and the wavelength). The phase-only mode of operation

is commonly used in applications which require intense light and high efficiency such

as laser sintering for metal 3D printing and cold-atom experiments – the subject of this

thesis. By polarising the incident light 45◦ to the liquid crystal alignment direction, the

SLM modulates both the amplitude and phase of the light. This configuration is often

used to generate vector beams that enable spatial control over the polarisation state

in the light potential [106–108]. However, using 45◦ polarised light is less efficient as

the SLM also modulates the amplitude of the light. This decreases the power damage

threshold as more light is absorbed by the SLM, causing the device to heat up at a faster

rate. Light which is polarised orthogonal to the liquid crystal alignment direction is

used less commonly in holographic setups as it is the least light-efficient configuration.

Since the amplitude of the light can be modulated directly, using 45◦ polarised light

or orthogonally polarised light allows using the SLM in a direct-imaging setup [36]. In

this thesis, we use the SLM in a phase-only configuration with parallel polarised light

due to its high efficiency.

2.3 Experimental Fourier imaging setup

For the reasons discussed in the previous two sections, we use a Fourier-imaging setup

and laser light polarised parallel to the liquid crystal alignment direction for phase-

only modulation (Fig. 2.2). Laser light at wavelength λ = 852 nm from a single-

mode fibre is collimated by a triplet lens (Melles Griot 06 GLC 001) with a specified
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Figure 2.2: Schematic of the experimental setup.

wavefront distortion of < λ
4 and is polarised along the horizontal plane by a polarising

beam splitter (Fig. 2.2). The beam is expanded by a telescope (Thorlabs GBE10-

B) to a diameter of 9.4mm at the SLM (Hamamatsu X13138-07, pixel pitch 12.5µm,

1272×1024 pixels) which reflects the beam at an angle of ∼ 10◦. An achromatic doublet

lens (Thorlabs ACT508-250-B) focuses the light onto the CMOS camera (Matrix Vision

mvBlueFOX3-1012dG, 3.75µm pixel pitch, 1280× 960 pixels). The diameter (2”) and

focal length (250mm) of the Fourier lens were chosen to avoid clipping the incident

laser beam while, at the same time, capturing as much of the light diffracted by the

SLM as possible.

Alignment

Since the holographically generated light potentials are sensitive to aberrations in the

wavefront of the incident laser beam, the beam was carefully aligned and collimated

as follows. After the collimation lens, a Shack-Hartman wavefront sensor (Thorlabs

WFS150-5C) was used to minimise the curvature in the wavefront of the beam. As the

diameter of the expanded beam is too large to fit on the Shack-Hartmann wavefront

sensor, a shear-plate collimation tester (Melles Griot 09 SPM 003) was used to adjust

the collimation of the beam after the expansion telescope. The manufacturer of the

SLM provided a phase map to compensate for the curvature of the SLM’s surface.

During alignment, this phase map was displayed on the SLM to ensure that the focal

spot is located in the Fourier plane of the lens, provided that the incident beam is

perfectly collimated. To align the Fourier lens, the phase of a lens with focal length 2f ,

in addition to the corrective phase map, was displayed on the SLM without the physical

Fourier lens in the setup. The position of the resulting focal spot on the camera was
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measured which is placed 2f away from the SLM. Then, only the corrective phase map

was displayed on the SLM and the Fourier lens was placed back in the setup. The

transverse position of the lens was adjusted until the position of the focal spot on the

camera coincided with the position of the previously measured spot without the lens

in the setup. The position of the camera along the optical axis was adjusted using a

micrometre translation stage to minimise the size of the focal spot on the camera. It is

important to adjust the distance between the lens and the camera to one focal length

within a fraction of the depth of focus since only then the propagation of light from the

SLM to the camera can be described accurately by a Fourier transform. The depth of

focus, DOF, is given by [109]

DOF =
8λf2

πD2
=

8 · 852 nm · (250mm)2

π (9.4mm)2
≈ 1.53mm, (2.1)

where λ is the wavelength and D is the beam diameter of the collimated beam at the

Fourier lens with focal length, f . The distance between the SLM and the Fourier lens

is less critical as any error can easily be compensated for by multiplying the electric

field in the SLM plane by a quadratic phase term [110]. To ensure that the camera

sensor is parallel to the image plane, it was carefully aligned as follows. The microlens

array on the CMOS camera sensor acts like a diffraction grating which can be used to

minimise the tilt of the camera with respect to the optical axis. The orientation of the

camera was adjusted so that the zeroth-order beam diffracted by the camera sensor

was aligned with the incident laser beam.

2.4 Characterisation of light potentials

To generate a light potential holographically, the phase pattern displayed by the SLM

is typically calculated by an iterative algorithm which relies on optimising a simulated

light potential. The simulated light potential in the computational image plane will

likely deviate from the experimental potential captured by the camera due to a dis-

crepancy between the simulation and the experiment. To characterise both the light

potentials predicted by the simulation and the experimental light potentials captured

by the camera, we work with two different coordinate systems in the image plane
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Figure 2.3: (a) Fourier imaging setup with the displayed SLM phase, φij , in the SLM
plane, shaping a light potential, Ikl, in the image plane which is the Fourier plane of a
lens [111]. (b) The light potential in the computational image plane, Ikl, is mapped to
the camera image, Iuv, via the affine transformation, U .

(Fig. 2.3b). This is necessary as the camera image and the simulation have different

pixel sizes and might be translated and rotated with respect to each other due to exper-

imental uncertainties. The coordinate system of the simulation in the computational

image plane is described by row and column indices k and l, whereas the camera coor-

dinates are described by indices u and v. An affine transformation, U , maps the camera

coordinates to the coordinates of the computational image plane (Section 3.1).

To characterise the quality of our light potentials, we use the normalised root-mean-

squared (RMS) error as this error metric is commonly used in the literature. We define

the predicted and measured RMS error, εP and εM, respectively,

εP =

√√√√√ 1

NM

∑
k,l∈M

(
T̂kl − Îkl

)2
T̂ 2
kl

and εM =

√√√√√ 1

NU

∑
u,v∈MU

(
T̂uv − Îuv

)2
T̂ 2
uv

. (2.2)

The predicted RMS error, εP, measures the difference between the target potential,

T̂kl, and the simulated light potential, Îkl. The error is calculated in a measure region,

M , which we define as the region in the computational image plane where the target

intensity is larger than 50% of the maximum target intensity [112], containing NM

number of pixels (Fig. 2.3b). This is necessary since the value of ε can become very
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large in dark regions with small values of T̂ . We normalise both the target light potential

T̂kl = Tkl/
∑

k,l∈M Tkl and the simulated light potential Îkl = Ikl/
∑

k,l∈M Ikl. The light

potential captured by the camera, Iuv, is characterised by the measured RMS error, εM.

To calculate εM, we first have to transform the target light potential and the measure

region to camera coordinates (Fig. 2.3b), resulting in T̂uv, the normalised, transformed

target light potential, and MU , the transformed measure region containing NU number

of pixels. Other commonly used metrics are the peak signal-to-noise ratio (PSNR) and

the mean structural similarity index measure (MSSIM) [113]. Both metrics are suitable

to characterise dark regions in the light potentials which is why they are measured in

the entire signal region, S, in the computational image plane and the transformed signal

region, SU , in the camera image, containing NS and NSU
number of pixels, respectively

(Fig. 2.3b and Section 2.5). The PSNR of the camera image is defined as

PSNRM = 20 log10

(
T̂MAX
uv√
MSE

)
with MSEM =

1

NSU

∑
u,v∈SU

(
T̂uv − Îuv

)2
, (2.3)

where T̂MAX
uv is the maximum value in T̂uv ∈ SU [114] and MSE is the mean-squared

error in SU . Similarly, for the PSNR of the simulated light potential, PSNRP. The

structural similarity index measure (SSIM) of the camera image is defined as

SSIMM(a, b) =
(2µaµb + c1) (2σab + c2)(

µ2
a + µ2

b + c1
) (

σ2
a + σ2

b + c2
) , (2.4)

with c1 =
(
k1T̂

MAX
uv

)2
and c2 =

(
k2T̂

MAX
uv

)2
, where k1 = 0.01, k2 = 0.03 are default

values. The SSIM is evaluated in sliding windows, a and b, of the two images T̂uv and

Îuv at the same location. We use a sliding window of 7 × 7 pixels size as in previous

studies [6]. The average intensities in each window are µa and µb, and the standard

deviations are σa, σb and σab. The MSSIM of the camera image is the SSIM averaged

over all sliding windows given by

MSSIMM =
1

Nab

∑
a,b∈SU

SSIMM(a, b) , (2.5)

with the number of sliding windows in SU , Nab. The MSSIM of the simulated light
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potential, MSSIMP, is calculated similarly. Even though RMS error and PSNR are

common metrics to measure image quality, they do not represent the perceived image

quality well. The MSSIM better represents the perceived image quality of the light po-

tential on a scale from 0 to 1 [115] and is used more often in work related to holographic

displays, where the perception of the human eye is important. Although less relevant

for cold-atom experiments, the MSSIM is introduced here to compare our results with

state-of-the-art work in the field of holographic displays as the RMS error is typically

not provided. The predicted efficiency, ηP, of the light potential is given by the ratio of

the power in the signal region, S, (indicated by the red rectangle in Fig. 2.3a), to the

total power in the image plane [96]. We define the experimental efficiency of the light

potential, ηM, as the ratio of optical power, PS , in the transformed signal region, SU ,

to the measured power of the beam before the expansion telescope, Pin, (Section 3.6)

ηP =

∑
k,l∈S Ikl∑
k,l Ikl

and ηM =
PS

Pin
. (2.6)

2.5 Phase retrieval

To generate the desired light potential in the image plane with an intensity pattern

IIMG(x, y) = |EIMG(x, y)|2, the phase pattern displayed by the SLM, φ(x, y), must

be found, given the constant field at the SLM, ASLM(x, y) exp [iφC(x, y)]. This task

is commonly known as the phase retrieval problem. Various algorithms such as the

mixed-region amplitude-freedom (MRAF) algorithm [96], the offset-MRAF algorithm

[94], a conjugate gradient (CG) approach [95], and neural networks such as HoloNet [6]

were developed to solve this purely computational problem. They produce simulated

light potentials of < 1% RMS error, however, creating light potentials experimentally

with this degree of accuracy is difficult due to a mismatch between the simulated

and the measured light potentials caused by uncertainties in the optical setup. These

effects include a distorted wavefront at the SLM, the curved surface of the SLM itself,

crosstalk between neighbouring SLM pixels, aberrations caused by the Fourier lens

and other alignment imperfections. Camera feedback algorithms were developed which

reduce experimental imperfections to generate more accurate light potentials [10, 92, 96,

112, 116] (Chapter 3). In a recent study, experimentally accurate light potentials were
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generated by directly optimising the camera image using stochastic gradient descent

(SGD) [6]. It was shown that the Fourier transform used to propagate the light field

from the SLM to the camera can be replaced by a more sophisticated method to simulate

the propagation of light which can result in more accurate experimental light potentials

[94]. In our Fourier imaging setup, the electric field in the SLM plane, ESLM(x, y), is

related to the electric field in the image plane, EIMG(x, y), via the Fourier transform

(details Fig. 2.3a). The electric field in the SLM plane at z = 0, E(x, y, 0) ≡ ESLM(x, y),

is calculated using the amplitude of the incident laser beam, ASLM(x, y), and the phase

at the SLM (Fig. 2.3)

ESLM(x, y) = ASLM(x, y) exp
{
i [φC(x, y) + φ(x, y)]

}
. (2.7)

The phase at the SLM is the sum of the pattern displayed by the SLM, φ(x, y), and

a constant phase, φC(x, y), which varies spatially across the SLM but does not change

with the displayed phase pattern. This constant phase is caused by the curvature of the

SLM’s surface and distortions in the wavefront of the incident laser beam. In the image

plane at z = 2f , the electric field, E(x, y, 2f) ≡ EIMG(x, y), consists of the amplitude,

AIMG(x, y), and the phase, ϕ(x, y), of the light potential

EIMG(x, y) = AIMG(x, y) exp [iϕ(x, y)]. (2.8)

Under the paraxial approximation and the far-field approximation, the electric field

in the image plane is related to the electric field in the SLM plane via the Fourier

transform [110], F ,

EIMG(κx, κy) =
1

iλf

∫∫ ∞

−∞
ESLM

(
x′, y′

)
exp

[
−2πi

(
κxx

′ + κyy
′)] dx′ dy′

≡ F {ESLM (x, y)} ,
(2.9)

with spatial frequencies in the image plane, κx = x/λf and κy = y/λf .

We implement the Fourier transform numerically by calculating its discrete version

using the fast Fourier transform (FFT). There are more sophisticated methods to simu-
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late the propagation of light in a Fourier-imaging setup. The angular spectrum method,

for example, simulates the propagation of light in free space between two parallel planes

without assuming a far-field or small diffraction angles. However, this method is about

one order of magnitude slower compared to the FFT. Fast phase-retrieval algorithms

are desirable since camera feedback algorithms typically run a phase retrieval algorithm

several times to optimise a measured potential, further increasing the computation time.

Additionally, slow thermal drifts can cause the light potential to move on the camera

on a micrometre scale between feedback iterations. Without accounting for this posi-

tional drift, the feedback algorithm can stagnate early, resulting in an inhomogeneous

potential. Since the angular spectrum method can simulate the propagation of light

from the SLM plane to the Fourier lens and from the Fourier lens to the image plane,

aberrations introduced by the Fourier lens and by the SLM can be modelled separately

(Appendix A).

2.5.1 Iterative Fourier transform algorithms

Iterative Fourier transform algorithms (IFTAs) are a set of algorithms which solve the

phase retrieval problem and rely on computationally propagating the electric field back

and forth between the SLM plane and the image plane using the FFT and the inverse

FFT. Even though the error of the light potential in the image plane is not minimised

directly, applying amplitude or phase constraints to the electric field in each plane

causes the algorithm to converge to the desired solution. The original and most simple

version of an IFTA, the Gerchberg-Saxton (GS) algorithm [117], can find φ(x, y) to pro-

duce spot patterns of 98% uniformity [118]. For spot arrays used to trap cold atoms, a

modified version of the GS algorithm is still state-of-the-art due to the fast convergence

and the ability to achieve high uniformity with high efficiency. However, for arbitrary

and smooth light potentials, required e.g., for quantum simulation experiments with

ultracold atoms in an optical lattice, the GS algorithm does not converge well. Modi-

fied versions of the original GS algorithm such as the mixed-region amplitude-freedom

(MRAF) algorithm [96] and the offset-MRAF (OMRAF) algorithm [94], have produced

smooth simulated light potentials approaching εP = 1% root-mean-square (RMS) er-

ror, and predicted efficiencies around ηP = 24% [94], depending on the target pattern
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(equation 2.2 and 2.6). The MRAF and OMRAF algorithms’ convergence is highly

dependent on the initial SLM phase guess (Section 2.5.3). In order to achieve low RMS

errors, the parameters of the phase guess must be tuned which requires running the

algorithm several times.

2.5.2 Gradient-based optimisation

More recently, gradient-based optimisation algorithms such as conjugate gradient (CG)

minimisation were used to generate simulated light potentials with εP < 0.1% RMS

error and efficiencies of ηP > 60% [95], outperforming the above-mentioned IFTAs [94,

96]. Note that these are RMS errors and efficiencies of simulated light potentials which

differ from the experimentally obtained values (Chapter 3). Optimisation by adaptive

moment estimation was used to solve the phase retrieval problem based directly on

the camera image [6], known as camera-in-the-loop (CITL) calibration. Following this

study, intensity control was achieved in multiple planes by regularising the phase in

each plane [7], avoiding the formation of optical vortices.

Figure 2.4: CG phase retrieval algorithm. (a) Flow diagram of the CG phase retrieval
algorithm [111]. (b) Typical convergence of the CG algorithm for a disc-shaped top-hat
potential. The RMS error of the simulated light potential, εP, (blue solid line) drops
below 1% after m = 250. Without calibrating the constant field at the SLM, the error
of the camera image, εM, (red dashed line) decreases initially, however, after m = 25,
the error increases to > 30%. After calibrating ASLM and φC, the error of the camera
image (red solid line) decreases to εM ≈ 15%.
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We use CG minimisation [95] due to its rapid convergence and its flexibility to define

a cost function which can be chosen to meet the requirements for a specific application,

e.g., the optimisation of intensity, phase, and efficiency in a specific region of interest.

The minimisation improves the simulated light potential, Ikl, iteratively by modify-

ing the SLM phase, φij , based on a cost function C and its gradient ∂C/∂φij (blue

loop in Fig. 2.4a). We use the mean-squared error between the normalised simulated

intensity pattern in the image plane, Ĩkl = Ikl/
∑

k,l∈S Ikl, and the normalised target

intensity pattern, T̃kl = Tkl/
∑

k,l∈S Tkl, in the signal region, S, as cost function for the

optimisation [95],

C (φ) = s
∑
k,l∈S

(
T̃kl − Ĩkl

)2
. (2.10)

The sum is evaluated over k and l in the signal region, S, where s is the steepness of

the cost function to aid convergence.

We use a nonlinear CG solver [119, 120], which has been implemented on a GPU

using PyTorch [121]. PyTorch has automatic differentiation capabilities, a technique

commonly used in machine learning which allows us to compute the gradient of the

cost function, ∂C/∂φ, efficiently without the need to derive an analytic expression.

Using s = 1012 (equation 4.3), the minimisation typically reaches εP = 1% within

250 iterations (blue line in Fig. 2.4b), depending on the shape of the desired potential

and provided that an initial phase guess which does not lead to optical vortices was

used. As the SLM phase pattern is optimised by simulating the diffraction of light, the

target intensity pattern, T̃kl, is convolved with a Gaussian with 2 camera pixels width

to remove sub-diffraction limited features which hinder convergence.

If desired, an efficiency term could be added to the cost function to optimise for

a higher optical power inside the signal region [10]. Currently, we do not require

control over the phase, ϕkl, in the image plane, however, it is possible to simultaneously

control the intensity and the phase in the image plane at the expense of efficiency [7,

10, 116]. By saving intermediate SLM phase patterns after every fifth CG iteration

and displaying them on the SLM, we investigated the experimental convergence of the

error in the camera image, ϵM (red lines in Fig. 2.4b). The experimental error stagnates

much sooner than the error predicted by the simulation, indicating a mismatch between

the experiment and the simulation. Measuring the constant amplitude, ASLM, and
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phase, φC, at the SLM significantly reduces the error in the camera image (Fig. 2.4b).

Calibrating the constant field at the SLM will be discussed in Section 2.6.

2.5.3 Initial phase guess

Finding a suitable initial SLM phase guess is essential for the convergence of the CG

minimisation. We choose an initial phase guess for a given light potential and remove

optical vortices from a light potential if necessary (Section 2.5.4). We use a combination

of a linear phase and a quadratic phase as an initial phase guess, φG, which is common

practice in IFTAs and gradient-based phase retrieval algorithms [95, 96],

φG (x, y) = mxx+myy + 4R
[
γx2 + (1− γ) y2

]
, (2.11)

The linear terms mxx and myy diffract the light away from the optical axis (Fig. 2.5d)

and are typically determined by the shape of the target light potential, Tkl. The

quadratic term with curvature, R, and aspect ratio, γ, creates an out-of-focus spot in

Figure 2.5: Example SLM phase patterns used as an initial guess and the corresponding
far field intensity distributions. (a) Linear phase with mx = my, (b) quadratic phase
and (c) sum of linear and quadratic phase. (d - f) Far field intensity distributions
corresponding to (a - c).
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the Fourier plane used to control the size of the illuminated area (Fig. 2.5e). Smaller

values of R produce more efficient light potentials as more light is focused into the

signal region S. By combining the linear and quadratic phase terms, this defocused

spot can be shifted away from the optical axis (Fig. 2.5f). Depending on the desired

light potential, a different initial phase guess might be more suitable, for example, a

conical phase term for ring-shaped light potentials [96]. The initial phase guess must

be chosen such that optical vortices cannot form in the signal region S of the image

plane [95, 96]. An optical vortex is a phase winding around a singularity at which the

phase is not defined [122]. The field amplitude at this point is zero, causing ‘holes’

in the light potential (Fig. 2.6a). The CG minimisation cannot remove these vortices

because a global phase shift is required to annihilate them [123]. By varying R, an

initial guess that prevents the formation of optical vortices can be found for ‘simple’

target potentials. We choose a uniform disc on a dark background as a target potential

and detect the number of vortices in the resulting light potential for each value of R

(Fig. 2.6e). The vortices in the light potential cause a higher predicted RMS error,

εP (black circles in Fig. 2.6e and blue circles in Fig. 2.6f). Certain values of R do not

result in optical vortices, and the lowest RMS error was found for R = 3.6mrad/px2.

2.5.4 Removing optical vortices

This procedure works well for simple patterns such as a disc-shaped flattop, however,

for more intricate light potentials, it becomes difficult to find a suitable initial guess by

scanning the value of R. Further, we found that using the measured intensity profile

of the incident laser beam, |ASLM (x, y)|2, instead of a perfect Gaussian can introduce

vortices even for simple patterns. In our scheme, we detect optical vortices in the

light potential and remove them [122, 123]. Initially, the usual CG minimisation is

performed until stagnation is reached. We then detect the position of the vortices by

identifying the zero crossings of the real and imaginary part of the electric field in the

image plane, EIMG(x, y). To find the charge of the vortices, a line integral around the

3× 3 neighbours of these points is evaluated. The sign of the line integral indicates if

the vortex is of positive or negative charge. The phase around these vortices, ϕV(x, y),

35



Chapter 2. Phase-only Fourier holography using an LCOS SLM

Figure 2.6: Detection and removal of optical vortices in the disc-shaped light potential
[111]. (a) Intensity of the light potential, showing the central 100 × 100 pixels; (b)
phase, ϕ, of the same potential, (c) phase, ϕv of the vortices only, (d) phase, ϕ− ϕv, of
the corrected field with vortices removed. (e) Number of vortices detected in the light
potential after 100 CG iterations and 10 feedback iterations, using different values for
the quadratic curvature, R, in the initial phase guess. (f) Predicted RMS error, εP,
before vortex removal (blue circles) and after (orange triangles).

is calculated using the relation [123]

ϕV (x, y) =

N∑
n=1

qnArg [(x− xn) + i (y − yn)] , (2.12)

where N is the total number of vortices, qn the charge of the vortex and xn and yn its

position. The phase, ϕV(x, y), (Fig. 2.6c) is then subtracted from the phase of the light

potential, ϕ(x, y), (Fig. 2.6b) which annihilates the vortices (Fig. 2.6d). The electric

field consisting of the corrected phase, ϕ(x, y)−ϕV(x, y), and the amplitude of the light

potential, AIMG(x, y), is propagated back to the SLM plane using the inverse Fourier

transform. The phase of the resulting electric field is used as a new initial phase guess,

φG(x, y),

φG(x, y) = Arg

[
F−1

{
AIMG(x, y) exp

[
i (ϕ(x, y)− ϕV(x, y))

]}]
. (2.13)
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By re-running the CG minimisation using φG(x, y), a vortex-free light potential can

be produced, provided that all vortices in the light potential were detected. In case

there are remaining vortices in the light potential, this process can be repeated until

all vortices are detected and annihilated. Using our technique, vortex-free simulated

light potentials can be generated even from an entirely random initial guess. However,

starting with such a random initial phase guess results in less accurate experimental

light potentials. Instead of removing optical vortices after running the CG minimisa-

tion, including a term in the cost function which constrains the phase can prevent the

formation of optical vortices in the light potential [7, 97]. This was done by optimising

for a target phase pattern [97] and by minimising the phase gradient in the signal region

[7]. Further, optimising for the phase in the light potential makes the convergence of

the CG minimisation less sensitive to the initial phase guess parameters [97].

2.6 Calibrating the SLM

Since the phase retrieval algorithms presented in the previous section only optimise

a simulated light potential, it is important to reduce any discrepancies between the

simulation and the experiment in order to achieve accurate experimental results. We

achieve this by calibrating the SLM and by accurately characterising wavefront and the

intensity profile of the incident laser beam.

2.6.1 SLM phase response curve

LCOS SLMs are usually controlled by uploading a greyscale image to the device. The

greyscale of each pixel corresponds to a certain phase. In our case, the SLM comes

pre-calibrated from the factory with a linear greyscale-to-phase response with pre-

determined slopes depending on the wavelength. This greyscale-to-phase calibration

can vary locally on the SLM [6, 124] and even depends on the angle of the diffracted

light [124]. We calibrated our device by removing the Fourier lens from our setup

and placing a camera in the far field of the SLM (Fig. 2.1) [125]. On the left half

of the SLM, we displayed a flat phase and on the right half a linear phase gradient

so that the light from each half interferes with each other at the camera, forming a

sine-shaped interference pattern. By varying the greyscale of the left half of the SLM
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Figure 2.7: Measured phase as a function of the greyscale displayed on the SLM.
The measured phase (black dots) differs significantly from the phase provided by the
manufacturer (blue line). The residual of the fitted line (grey line) and the measured
phase is periodic.

and measuring the spatial phase of the interference pattern on the camera, we obtain

a greyscale-to-phase lookup table (Fig. 2.7). The slope of the measured phase response

is ∼ 9% larger than the slope provided by the manufacturer. Further, the residual of

the measurement and the linear fit appears to be sine-shaped with period 2π. This

periodic residual might stem from light reflected by the glass cover plate of the SLM. It

was shown that, between the aluminium mirror of the SLM and the glass cover plate, a

Fabry-Pérot effect can occur, causing interference in the far field which can change the

observed amplitude and phase [103]. The non-linear behaviour in the phase modulation

is similar to what we observe in our measurement. We conclude that measuring the

phase using the described method is not suitable for our application. Even though our

phase measurement in the far field deviates from the factory-calibrated values (blue

line in Fig. 2.7), the phase modulation at the SLM might match the calibration. When

using the camera feedback algorithm (Chapter 3), we did not see any change in the error

of the light potentials when using our calibrated lookup table (black dots in Fig. 2.7).

For this reason, we keep using the lookup table provided by the manufacturer instead

of our measurement.
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Discrete phase levels

The greyscales in the image sent to the SLM are usually discretised into 8 to 10-bit

levels. The phase discretisation directly affects the diffraction efficiency of the SLM –

the more phase levels are available, the higher the diffraction efficiency will be. The

discretisation also impacts the quality of the light potentials. The MRAF algorithm,

for example, takes care of this by discretising the SLM phase before propagating it to

the image plane. This is more difficult to achieve in gradient-based phase retrieval algo-

rithms. Here, rounding the continuous phase to discrete values creates discontinuities

in the cost function, causing the gradient to become zero when the phase change of a

pixel is within one phase bin which hinders the convergence of the algorithm. When the

phase of an SLM pixel ‘jumps’ from one phase level to another, the gradient becomes

very large. To resolve these issues, the cost was combined linearly with the discretised

cost [126]

Cmixed (φ) = αC (φdiscrete) + (1− α)C (φ) , (2.14)

with the mixing parameter α between 0 and 1. The continuous SLM phase pattern φ

is binned to the number of available phase levels on the SLM according to the gray-

value-to-phase lookup table, resulting in the discretised phase φdiscrete. Choosing a

large value for α = 0.9 is sufficient to aid the convergence significantly.

2.6.2 Laser intensity profile

To generate experimental light potentials that match the simulated ones, it is essential

to measure the beam profile, ASLM(x, y), and constant phase, φC(x, y), at the SLM

plane. We use an interferometric method [46] which displays a sequence of patterns on

subsections on the SLM. We measure the constant phase, φC, across the SLM using

a scheme introduced in a previous study [46]. To measure the intensity profile across

the SLM, we sample the local intensity by displaying a square pattern on an area of

32 × 32 pixels containing a linear phase gradient (Fig. 2.8a), while on the remaining

area of the SLM, a flat phase is displayed. This phase gradient generates a diffraction

spot away from the optical axis, and the light incident onto the remaining area of the

SLM collects on the optical axis. We vary the position of the square pattern, dx and
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Figure 2.8: (a) Scheme illustrating the measurement of the laser intensity profile by
displaying a series of apertures containing a linear gradient on the SLM [114]. (b) Re-
sulting laser intensity profile [111].

dy, across the entire area of the SLM and measure the intensity of each diffraction spot,

|ASLM(dx, dy) |2, on the camera, and as a result, the intensity profile of the laser beam

across the SLM is reconstructed (Fig. 2.8b) [114]. The position of the square is moved

on an equally spaced grid using 64 × 64 measurements. The diffraction angle of the

linear phase gradient is αx = αy = 0.5◦ both in x- and y-direction. Initially, the square

is displayed at the centre of the SLM and a Gaussian is fitted to the resulting diffraction

spot on the camera, in a square region of interest of 300 camera pixels. The intensity

of each spot is calculated as the sum of all pixel values in the region of interest. In the

resulting laser intensity profile (Fig. 2.8b), a faint vertical stripe is visible in the centre

of the SLM. We suspect this line appears since the pixels in each half of the SLM are

driven separately, which might cause the left half of the SLM to be slightly out of phase

with the right half of the SLM (private communication with Hamamatsu [127]).

2.6.3 Laser wavefront

To measure the constant phase, the position of a square sample phase pattern is varied

across the entire area of the SLM, similar to our scheme used to measure the intensity.

In addition, a reference square pattern is displayed at the centre of the SLM (Fig. 2.9a).

The beams originating from the two phase patterns interfere at the camera, causing

sine-shaped fringes. The spatial phase, ϕM, of this interference pattern is detected by

fitting a 2D sine pattern to the camera image [46]

IIMG(x, y) = A2 +B2 + 2AB cos [k (x sin γx + y sin γy) + ϕM] , (2.15)
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Figure 2.9: (a) Scheme illustrating the measurement of the constant phase at the SLM
using an interferometric approach by displaying a sequence of patterns on sub-regions
of the SLM (adapted from Zupancic et al. [46]). (b) Resulting measured phase, φM,
expressed in units of λ.

where γx = arctan (dx/f) and γy = arctan (dy/f). Here, dx and dy are the position of

the sample pattern with respect to the reference pattern and f is the focal length of the

Fourier lens. A and B are the amplitudes of the diffracted beams caused by the reference

and the sample square pattern, respectively. Assuming perfect positioning of the lens at

z = f and the camera at z = 2f and assuming a thin and parabolic lens, the measured

phase, ϕM, corresponds to the phase difference between the reference aperture and the

sampling aperture φC = ϕM. The parameters A, B and ϕM are fitted while γx and

γy are calculated. Due to the Gaussian shape of the beam incident onto the SLM, the

intensity of the light at the SLM drops off towards the edges. This causes the intensity

of the sampling beam B to become very small compared to A as the sampling aperture

moves away from the centre of the SLM, resulting in a low interference contrast, 2AB,

and a poor fit. To counteract this, the size of the sampling patch is increased as it

moves away from the centre of the SLM to keep the power contained in the sampling

aperture equal to the power contained in the reference aperture. This increases the

contrast of the interference pattern on the camera and improves the uncertainty of the

phase measurement at darker regions of the SLM. We use 124× 124 different positions

of the phase pattern, equally spaced across the SLM with a reference phase pattern of

16×16 SLM pixels, resulting in the measured constant phase φC in Fig. 2.9b. Similar to

the measured laser intensity profile, a vertical stripe is visible in the centre of the SLM

caused by timing specifications of the SLM related to updating the phase pattern [127].

Displaying −φC on the SLM and re-running the measurement results in a flat phase
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of ∼ λ/40 RMS error. The wavefront reconstruction will not give accurate results

with a severely distorted wavefront which deflects the sampling beam and spatially

separates it from the reference beam on the camera, causing a lower contrast of the

interference pattern. As the measured intensity and phase have 32× 32 and 124× 124

data points, they are up-scaled to the native resolution of the SLM (central 1024×1024

pixels) using fourth-order Lanczos interpolation [128]. Before up-scaling, the phase is

unwrapped and both measurements are smoothed using a 3× 3 uniform filter. It takes

approximately 30 minutes to calibrate the intensity pattern and 2 hours to obtain the

phase calibration.

Compensating for beam pointing variations

We observed that the interference patterns on our camera move on a micrometre scale,

caused by moving air from the laminar flow air-conditioning above our optics table.

Further, there is a long-term thermal drift which moves the interference pattern several

micrometres throughout the 30min air-conditioning cycle. The airflow and thermal

drift cause pointing variations of the laser beam which manifest in position variations

of the interference pattern on the camera. Any movement of the interference pattern

will lead to an error in φM, degrading the accuracy of our measurement. To remove

any phase error caused by the movement of the laser beam on the camera, we create a

2D optical lattice on the camera, spatially separated from the sine-shaped interference

pattern (Fig. 2.10b). This is done by displaying a square phase pattern containing a

linear phase gradient in each corner of the SLM (Fig. 2.10a). The phase gradient of

those patterns is larger than the reference and sample pattern to achieve the spatial

separation on the camera. We then measure the position of the 2D optical lattice by

detecting the phase in x- and y-direction to remove any movement of the laser beam

from the measurement of φM. This decreases the RMS error in the phase measure-

ment from ∼ λ/40 to ∼ λ/120. Using a reference pattern like the optical lattice works

well in this calibration, however, this is more difficult to implement during the camera

feedback process to generate arbitrary potentials as the light potentials might interfere

with the reference pattern (Chapter 3). For this reason, we enclose the entire optical

path to shield it from moving air. To check if the enclosure reduced the movement
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Figure 2.10: Scheme to compensate for the pointing instability of the laser beam during
the phase measurement. (a) SLM phase pattern with sample and reference pattern
(green square) and the lattice patterns (orange squares). (b) Resulting intensity pattern
on the camera with the sine-shaped pattern (green circle) and the 2D optical lattice
(orange circle).
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of the light potentials on the camera, we run the stabilised wavefront calibration with

and without the enclosure and track the position of the optical lattice on the camera

throughout the measurement (Fig. 2.11). A periodic drift of the lattice position on the

camera with a period of several minutes can be observed in both measurements which

might be caused by thermal contraction and expansion of the optics table through-

out the air-conditioning cycle. This results in a ±2µm drift of the potential on the

camera throughout the measurement. Without the enclosure, moving air causes a

high-frequency displacement of the potential on the camera (Fig. 2.11a). Shielding the

optical path from moving air using the enclosure removes the high-frequency movement

of the potential on the camera, however, the thermal drift remains (Fig. 2.11b). We

identified the movement of the light potential on the camera as a limiting factor for

the accuracy of the light potential after we took the data presented in Chapter 3. The

results in Chapter 4 were taken with the enclosure in place.

Figure 2.11: Measuring the displacement of the optical lattice on the camera (a) without
enclosure and (b) with enclosure.

2.7 Outlook

The phase retrieval algorithms presented in Section 2.5 are all iterative and converge in

the order of a few seconds on our GPU. This is around three orders of magnitudes slower
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than the refresh rate of LCOS SLMs which lies in the range between 60Hz − 1 kHz,

depending on the device. Consequently, to display phase patterns sequentially at the

refresh rate of the SLM, it is necessary to pre-calculate them using iterative phase

retrieval methods. To accelerate the calculations, machine-learning approaches were

developed to solve the phase retrieval problem by training a neural network with pairs

of phase patterns and simulated images [6, 7, 56]. Training these networks is time-

consuming (multiple hours on a GPU), however, once they are trained, they can then

generate an SLM phase pattern corresponding to a target potential in a single step

with accuracies approaching the iterative algorithms. This enables real-time holog-

raphy without the need to pre-calculate phase patterns which is especially useful for

applications where the sequence of light potentials is not predetermined. In a recent

study [56], a neural network based on the U-net architecture [129] was trained specifi-

cally to generate spot arrays. The trained network was able to generate phase patterns

in only 160ms which produced optical tweezers trapping ultracold strontium atoms.

Another neural network, HoloNet [6], can generate SLM phase patterns to create ar-

bitrary light potentials at a rate of 40 frames per second. However, the quality of the

generated potentials is lower compared to the potentials generated by gradient-based

optimisation.

To calculate the initial phase guess, we simply used a combination of a linear and

a quadratic phase term, however, more sophisticated methods to calculate the initial

phase guess have been developed [130, 131]. These techniques will further accelerate

the convergence of the CG minimisation, preventing the formation of optical vortices

even for intricate target light potentials. The method we use to measure the intensity

profile and the wavefront of the laser beam incident onto the SLM (Section 2.6) takes

around 3 hours to complete. This is mostly due to the large number of phase patterns

displayed on the SLM. In total, we display ∼ 17000 phase patterns to calibrate the

laser beam intensity and phase, which requires 200ms for each pattern. The remaining

time is taken up by image acquisition, fitting a 2D sine to each camera image (phase

calibration only) and saving the data. Any change in the optical setup caused by, for

example, re-aligning the laser beam on the SLM or adjusting its collimation after a ther-

mal drift requires re-running the time-consuming calibration procedure. In Chapter 4,
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we introduce a faster calibration method based on optimisation by gradient-descent,

greatly reducing the runtime from 3 hours to 2 minutes.
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Chapter 3

Optimising experimental light

potentials using camera feedback

In this chapter, we discuss reducing the error in experimental light potentials using a

camera feedback algorithm. To compare simulated light potentials discussed in the pre-

vious chapter to camera images of experimental potentials, we discuss determining the

coordinate transform between the camera image and the computational image plane

in Section 3.1. In Section 3.2, we present a simple camera feedback algorithm which

reduces the error in the experimental light potential. We find that pixel crosstalk, a

parasitic effect occurring between neighbouring pixels on the SLM, causes artefacts in

the light potentials and hinders the convergence of our feedback algorithm. In Sec-

tion 3.3, we discuss modelling pixel crosstalk and compensating for its effects, reducing

the error in the experimentally measured light potentials. Using the above-mentioned

techniques, we then generate various light potentials relevant for cold-atom experiments

in Section 3.4. Since cold-atom experiments require local control on a microscopic scale,

we downscale the light potentials in the Fourier plane using a high-NA microscope ob-

jective as discussed in Section 3.8 and compare the microscopic potentials with our

previous results.

The phase patterns calculated by the phase retrieval algorithms presented in the

previous chapter only generate accurate simulated light potentials. Even after carefully

measuring the intensity profile and the wavefront of the incident laser beam, the exper-

imentally measured light potentials can vary significantly from the simulated ones due
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to experimental effects which are not taken into account in the simulation. To reduce

errors in the light potential caused by this mismatch between the simulation and the

experiment, various camera feedback algorithms were developed [6, 112, 131]. A sim-

ple and effective approach, commonly used in cold-atom experiments, is to modify the

target light potential used in the phase retrieval algorithm (Fig. 3.3 and Section 2.5).

This empirical approach has produced uniform spot arrays (1.4% standard deviation of

the trap depths [57]) and accurate top-hat potentials (0.7% RMS error [10]). Another

approach is to reduce the discrepancy between the experiment and the simulation by

deploying a more sophisticated model of the experimental setup [6, 7]. This model

includes experimental effects that were previously not accounted for by “learning”, for

example, optical aberrations in the experimental setup from a set of camera images

using machine learning techniques [6, 7] (Chapter 4).

3.1 Camera calibration

As already mentioned in Section 2.4, to compare the camera image of the light potential

to the simulated potential, we have to find a coordinate transform which maps the cam-

era image to the computational image plane and vice versa. The coordinate transform

must account for the different pixel sizes in the camera image and the computational

image plane and any translation and or rotation which might occur between the two

planes. We use an affine transformation to model the coordinate transform between

the two planes which accounts for scaling, translation, rotation in the xy − plane, and

shear between the two images. A rotation of the camera image around the x− and

y − axis could be modelled by using a perspective transformation instead of an affine

transformation, however, this is not necessary since we adjusted the rotation of the

camera to be perpendicular with respect to the optical axis (Section 2.3). The coor-

dinate transform between the computational image plane with indices k and l and the

camera image with indices u and v is given by

u
v

 = U

k
l

 , (3.1)
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where U is the affine transformation matrix (Fig. 2.3).

To calculate the affine transformation matrix, we generate a chequerboard-shaped

light potential on the camera and detect the corner points of the chequerboard in the

camera image [132] (Fig. 3.1a). We first measure the constant field at the SLM (Sec-

tion 2.6) and use this measurement to calculate the phase pattern for a chequerboard-

shaped light potential using the conjugate gradient algorithm. When displaying the

resulting phase pattern on the SLM, the chequerboard on the camera features fringes

caused by pixel crosstalk. Specifically, these fringes are caused by 0 to 2π phase jumps

in the phase pattern on the SLM, where pixel crosstalk is most noticeable. The fringes

degrade the chequerboard pattern and cause the corner detection to yield unreliable

results or to fail entirely. To resolve this issue, we add a global phase of 0.1 radians

to the SLM phase pattern and re-wrap it to 2π. This slightly shifts the position of

the 0 to 2π phase jumps on the SLM and with it, the corresponding fringes on the

camera. By repeating this process 10 times and averaging the corresponding camera

images, the fringes caused by pixel crosstalk average out and the resulting chequer-

board is detected reliably. Using a corner detection algorithm [132], the chequerboard

corner points are detected in the averaged camera image. These points are then fitted

to the corresponding corner points in the computational image plane (Fig. 3.1b) by

optimising the parameters in the affine transformation matrix, U . In previous studies,

a spot array [118] and an array of discs [6] were generated on the camera to obtain

the transformation matrix. We use a chequerboard pattern since fast and robust de-

tection algorithms already exist [132] and due to their ability to find corner points

with sub-pixel accuracy. Errors in the translation between the camera image and the

computational image plane (Fig. 3.2), even on a sub-pixel scale, can cause the camera

feedback algorithm to stagnate early as it relies on comparing the camera image to the

desired target light potential. To show the effect of an error in translation, we define a

square light potential of 100 camera pixels width with a blurred edge (Fig. 3.2a). Using

an affine transformation, we shift the light potential along the y-axis from 0 to 0.5 cam-

era pixels and calculate the RMS error between the shifted potential and the original

potential (Fig. 3.2c). Even a small translation of the potential, below 0.1 camera pixels,

causes a significant increase in RMS error. A translation of the light potential on the
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Figure 3.1: Camera calibration to find the affine coordinate transformation matrix.
(a) Camera image with the detected corner points (white circles). The orange arrows
indicate the error between the transformed corners of the target chequerboard and the
detected corners in the camera image. The length of the arrow is 30 times longer than
the displacement between the points. (b) Transformed camera image in the computa-
tional image plane containing the target corner points (orange circles).
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camera can occur in the experiment caused by, for example, vibrations from moving

air or thermal drift (Section 2.6.3). Currently, we determine the affine transformation

matrix at the start of the camera feedback process, however, the light potential might

move on the camera while running the feedback process. To improve the robustness of

the feedback algorithm against any displacement of the light potential on the camera,

it would be beneficial to determine the affine transformation matrix after taking each

camera image. This might be done by generating a reference pattern on the camera

which moves with the light potential similar to the approach in Section 2.6.3. Alterna-

tively, after capturing each camera image, the parameters of the affine transformation

could be re-optimised to minimise the difference between the target light potential and

the measured light potential. However, this might slow down the feedback algorithm.

a b

c

Figure 3.2: Effect of shifting the light potential on the RMS error. (a) The normalised
target light potential. (b) The difference between the target light potential and the
potential shifted to the bottom by 0.5 camera pixels. (c) RMS error between the shifted
light potential and the target light potential as a function of the vertical translation.
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3.2 Camera feedback algorithm

Here, we employ an iterative camera feedback algorithm from Bruce et al. [112] (red

loop in Fig. 3.3). First, a phase pattern calculated by a phase retrieval algorithm (blue

loop in Fig. 3.3) is displayed on the SLM and an image of the experimental light po-

tential is captured by the CMOS camera. In areas of the camera image with too little

light, the intensity in the target potential is raised and vice versa [112]. Re-running the

phase retrieval algorithm with the modified target potential will then result in a more

accurate experimental potential. Initially, at feedback iteration n = 0, an SLM phase

pattern, φ
(0)
ij , with row and column indices i and j is calculated for a given target light

potential, T̂
(0)
kl , by running the conjugate gradient minimisation for mmax iterations

(blue loop in Fig. 3.3). We then display this pattern on the SLM and take a camera

image, Iuv, of the light potential. We map the initial target light potential from the

coordinate system of the computational image plane, T̂
(0)
kl , to the coordinate system

of the camera image, T̂
(0)
uv , using the affine transformation matrix, U (Section 3.1).

Then, the camera image, Iuv, and the transformed initial target light potential, T
(0)
uv ,

are normalised [112] and subtracted from each other. This difference Duv = T̂
(0)
uv − Îuv is

then transformed back to the coordinates of the computational image plane and added

to the previous target light potential T̂
(n−1)
kl , resulting in a new target light potential

T̂
(n)
kl = T̂

(n−1)
kl +Dkl for the next feedback iteration, n. We then re-run the conjugate

gradient minimisation using the updated target light potential and the previous op-

timised phase pattern, φ
(n−1)
ij , as an initial guess. Before the new target potential is

calculated, the difference Duv is blurred with a Gaussian kernel to ensure that there

are no features in the new target that are smaller than the diffraction limit (such as

camera noise) as the conjugate gradient minimisation cannot produce light potentials

containing sub-diffraction-limited features. The feedback algorithm typically converges

within n = 15 iterations. Initially, the predicted error of the light potential converges

well to εP ∼ 1% (dashed line in Fig. 3.4d), however, the experimental error stagnates

at εM ∼ 18% (solid line in Fig. 3.4d). After updating the target light potential the first

time, εM converges at a faster rate before stagnating again. The slight increase in εM

towards the end of each feedback iteration might be caused by positional drift of the

light potential on the camera on a micrometre scale since we did not enclose our opti-
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Figure 3.3: Flow diagram visualising the process of generating a light potential [111]
which includes the conjugate gradient minimisation [95] (inner, blue loop) nested inside
of the camera feedback algorithm [112] (outer, red loop).
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cal setup to shield it from airflow (Section 2.6.3). Interestingly, stopping the conjugate

gradient algorithm when the smallest value of εM is reached causes the algorithm to

stagnate sooner in the next feedback iteration. Even though the εM slightly increases

towards the end of the conjugate gradient optimisation, running the conjugate gradient

algorithm longer aids global convergence. Defining an optimal number of conjugate

gradient iterations per feedback iteration is difficult since this number changes as the

feedback algorithm progresses and further depends on the target light potential and

the initial phase guess. However, we found that more conjugate gradient iterations are

required during the first feedback iterations than in later feedback iterations.

Figure 3.4: Convergence of the camera feedback algorithm. (a-c) Camera images, Iuv,
of disc-shaped light potentials after feedback iterations n = 0, n = 1, and n = 10. (d)
Updating the target light potential after each feedback iteration causes the experimental
error, εM, to converge. At the start of each feedback iteration, the error of the simulated
light potential, εP, increases as a result of changing the target light potential.
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3.3 Pixel crosstalk on the SLM

By modelling a single SLM pixel with a single computational pixel, we assume that

the phase across the SLM pixel is uniform. However, due to the nature of the liquid

crystal material inside the SLM, neighbouring pixels affect each other at their boundary

region. This effect is known as pixel crosstalk or fringing field effect [102, 104, 133–

136]. Artefacts in holographic light potentials caused by pixel crosstalk were reduced by

modelling pixel crosstalk to generate spot arrays [98, 134, 137] and smooth, arbitrary

potentials [9, 105, 111].

3.3.1 Modelling pixel crosstalk

We model the effect of pixel crosstalk on our light potentials by up-scaling the SLM

phase such that one SLM pixel is represented by 3 × 3 computational pixels and con-

Figure 3.5: Blurring effect of the pixel crosstalk on the SLM phase. (a) Crosstalk kernel
(equation 3.2). (b) Phase of 2× 2 SLM pixels before applying the crosstalk model. (c)
SLM phase after convolving the phase in (b) with the kernel in (a). (d-f) Profiles of
the kernel and the phase patterns along the dashed lines indicated in (a-c).
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volving it with a kernel, K, [136]

K (x, y) = F−1

{
exp

[
−
(
|κx|q + |κy|q

σq

)]}
, (3.2)

of order, q, and width, σ, with the spatial frequencies, κx and κy. To demonstrate the

blurring effect of the pixel crosstalk, we convolved a chequerboard phase pattern of 2×2

SLM pixels with the crosstalk kernel, up-scaling one SLM pixel to 50×50 computational

pixels. Simulating the entire SLM array with this degree of up-scaling is not possible

due to memory limitations (we run our computations on an Nvidia RTX A5000 graphics

card with 24 GB of graphics memory). As an example, we calculated the SLM phase for

a spot array target potential using the conjugate gradient minimisation and observed

fringes in the camera image (Fig. 3.6b) which do not appear in the simulated light

potential (Fig. 3.6a). After up-scaling and convolving the same SLM phase pattern, we

propagate the field from the SLM plane to the image plane using the Fourier transform.

The resulting simulated light potential (Fig. 3.6c) features fringes similar to those in

the camera image, however, with reduced contrast. Since we use Fourier imaging,

increasing the spatial resolution in the SLM plane increases the spatial extent of the

computational image plane but has no influence on the spatial resolution of the light

potential in the computational image plane.

Figure 3.6: Simulated and experimental images illustrating the effect of pixel crosstalk
[111]. (a) Simulated light potential for a spot array target light potential. (b) Camera
image of the experimental light potential showing fringes and an intensity gradient,
with less intense spots in the top left of the image. (c) Simulated light potential after
up-scaling and convolving the SLM phase pattern with kernel K. The fringes and
the intensity gradient seen in the camera image (b) are reproduced in the simulation,
however, with reduced contrast.
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3.3.2 Compensating for pixel crosstalk

In the conjugate gradient minimisation, we account for pixel crosstalk by upscaling

the displayed phase, φ (x, y), and restricting its values to a range between 0 and 2π to

ensure that the cost C (φ) remains a continuous, differentiable function. We convolve

the up-scaled phase with the kernel, K, before propagating the light field to the image

plane. The parameters σ = 1.24 px−1 and q = 1.80 were found by a 2D optimisation to

minimise εM after 150 conjugate gradient iterations without camera feedback for a disc-

shaped target potential. Using the camera feedback algorithm with the pixel crosstalk

model further reduces the RMS error. The final RMS error and the effect of the pixel

crosstalk correction depend on the size of a specific target light potential (Fig. 3.7).

Upscaling the SLM pixels by a factor of 3 is computationally expensive, however, we

accelerate our calculations using a GPU which reduces the runtime of our algorithm to

∼ 10 minutes (15 feedback iterations with 100 conjugate gradient iterations each).

To study how the pixel crosstalk model affects our light potentials, we produced

disc-shaped light potentials of different diameters, D, between 0.64mm and 3.3mm,

with and without accounting for pixel crosstalk (Fig. 3.7). The target light potential

was convolved with a Gaussian kernel of 2 pixels width to ensure that the edge of the

disc is not sharper than the diffraction limit. For the initial phase guess, the quadratic

phase curvature was adjusted proportionally to the disc diameter (Section 2.5.3). This

ensures that the predicted efficiency of the differently sized light potentials remains

similar (ηP = 74% − 87%). Without accounting for pixel crosstalk, we achieved the

lowest error (εM = 1.1%) for small discs of D = 0.85mm, and less accurate potentials

(εM = 3.6%) for larger discs ofD = 3.2mm with measured efficiencies ηM = 33%−40%.

We found that εM is inversely proportional to the measured intensity, I ′, in the flat part

of the disk (Fig. 3.7d). To obtain I ′, we measure the average intensity in the flat part of

the disc using the camera (Section 3.6). Smaller discs are of higher intensity since the

same amount of optical power is focused onto a smaller area. We found that the pixel

crosstalk causes a ghost image [98, 131] which can interfere with the light potential

and cause fringes. By accounting for pixel crosstalk in our model, any interference

with the light potential caused by the ghost image is attenuated which lowered the

final experimental RMS error by a factor of ∼ 0.4 (D = 2.8mm). We found that
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Figure 3.7: Effect of pattern size and pixel crosstalk on the RMS error [111]. (a)-
(c) Disc-shaped potentials (diameters D = 0.6mm, D = 1.5mm and D = 2.8mm),
generated using camera feedback without the pixel crosstalk model, and normalised by
the average intensity in the flat part of the disc. (d) RMS error of disc-shaped light
potentials of different diameters with and without the pixel crosstalk model. (e) Hori-
zontal profiles of the light potentials averaged over 10 rows within the white rectangles
in (a)-(c).

accounting for pixel crosstalk has little effect on smaller light potentials, where the

overlap between the ghost image and the light potential is smaller (Fig. 3.7d). When

taking the pixel crosstalk model into account, the RMS error, εM, remains smaller as

the ghost image caused by pixel crosstalk is attenuated (Fig. 3.7d), and the measured

efficiency decreases from ηM = 41% (D = 0.85mm) to ηM = 20% (D = 3.2mm). We

found that the predicted efficiency, ηP, is proportional to the measured efficiency, ηM.

The efficiency predicted by the pixel crosstalk model is lower and closer to the measured

efficiency as multiple diffraction orders are simulated. We did not see an improvement

in εM when increasing the resolution of an SLM pixel even further to 5 × 5 or 7 × 7

computational pixels. The simple crosstalk model (equation 3.2) only attenuates the

fringes seen in the camera image, they are not removed completely. In Chapter 4,

58



Chapter 3. Optimising experimental light potentials using camera feedback

we present a more sophisticated pixel crosstalk model, significantly improving on the

results presented here.

3.4 Potentials for cold-atom experiments

To characterise our method, we produced various light potentials relevant for cold-

atom experiments. We created a ring with a Gaussian profile relevant for atomtronic

experiments [40] (Fig. 3.8a), a Gaussian potential with an offset as used to cancel the

harmonic confinement in optical lattices [15] (Fig. 3.8b) and a Gaussian spot array with

a non-zero background for tweezer arrays [10] (Fig. 3.8c). We also generated a potential

resembling an ‘atomtronic’ OR gate as used by previous studies [94, 96, 131] (Fig. 3.8d).

For the Gaussian potential and the spot array, we achieved the best experimental results

by using an initial phase guess according to equation 2.11 (Section 2.5.3). For the ring-

shaped potential (Fig. 3.8a) and the OR gate (Fig. 3.8d), an initial phase guess resulting

in vortex-free potentials could not be found in the same way. For these patterns, the

remaining optical vortices were removed [122] (Section 2.5.4).

For all patterns, we used 15 feedback iterations with 100 conjugate gradient iter-

ations each, accounting for pixel crosstalk during the optimisation. The experimental

RMS error of all four patterns varies between εM = 1.4% − 1.6%, with measured ef-

ficiencies between ηM = 15% − 31% (Table 3.1). The remaining imperfections are

most visible in the cuts of holograms with flat regions. The peak signal-to-noise ratios

(PSNR) [114] measured in the transformed signal region, SU , of the light potentials in

Fig. 3.8a-d are 45.7 dB, 40.7 dB, 43.8 dB, and 39.9 dB, respectively.

Compared to previous studies (Table 3.1), we can generate experimental light po-

tentials of low RMS error and higher efficiencies. Using the conjugate gradient method,

a small line-shaped potential ( 105µm length) of 0.7% RMS error was generated [10]

by optimising the intensity and phase in the image plane as well as the efficiency

(εP = 38%). Using such a phase constraint, it becomes increasingly difficult to gen-

erate light potentials which are accurate and efficient for larger patterns. A larger

line-shaped potential (∼ 400µm length) was generated in a different study [97, 116]

by constraining the phase, however, with a much lower efficiency of 8.3%. If the phase

of the target light potential is constrained, more accurate light potentials are typically
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Figure 3.8: Camera images and their normalised profiles (along the white dashed lines)
after 15 feedback iterations using the FFT with the crosstalk model [111]. (a) Ring
with a Gaussian profile on a non-zero background. (b) Gaussian potential with offset.
(c) Gaussian spot array on a non-zero background. (d) An ‘atomtronic’ logical OR gate
[96].

less efficient and vice versa [10, 97]. By removing the phase constraint, accurate and

efficient light potentials were generated computationally using the conjugate gradient

method [95], however, the unrestrained phase makes it difficult to realise these exper-

imentally [116]. Here, we minimised experimental errors by characterising our optical

system and by using camera feedback. This allows us to generate accurate and efficient

light potentials experimentally, without constraining the phase in the image plane. Pre-

vious studies have characterised their optical system and used camera feedback without

constraining the phase [94, 112], however, using an IFTA (MRAF [96] or OMRAF [94])

instead of the conjugate gradient algorithm, resulting in less accurate and less efficient

experimental light potentials than presented here. In our work, accounting for pixel

crosstalk further reduced the RMS error, especially for large light potentials, while
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lowering the efficiency by ∼ 20% (bottom of Table 3.1).

3.5 Rigorous modelling of the propagation of light

We investigated if a more accurate method to model the propagation of light, the

angular spectrum method, reduces the error in our light potentials. In contrast to

the Fourier transform, the angular spectrum method provides a direct solution to the

Helmholtz equation [110] and does not require the paraxial approximation or the far

field approximation. The increased accuracy comes at the expense of computation

speed. For our optical setup, the angular spectrum method requires a larger amount of

zero-padding compared to the FFT since the pixel size of the input and output planes

are identical. For each free-space propagation from the SLM to the Fourier lens and

from the Fourier lens to the image plane, the angular spectrum method requires one

FFT and an inverse FFT, resulting in a total of four Fourier transforms to model the

propagation from the SLM to the image plane. We did not see an improvement in the

Figure 3.9: Convergence of the feedback procedure using the FFT and the angular
spectrum method (ASM), with and without pixel crosstalk modelling [111]. The main
figure shows εM as it converges for n = 15 camera iterations with m = 100 conjugate
gradient iterations in between. The values εM used in the camera feedback process are
shown as filled circles. To investigate the behaviour of εM during the conjugate gradient
minimisation, we saved intermediate phase patterns and analysed the resulting light
potentials (lines in main figure). For n > 1, the experimental error, εM, is smallest
for m < 100. The inset shows the convergence during the final 8 camera feedback
iterations. The lowest experimental error was found between n = 11 and n = 14
(hollow circles in the inset).
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RMS error when using the angular spectrum method (Appendix A) instead of the FFT,

however, other experimental uncertainties such as a displacement of the Fourier lens in

the xy-plane or a tilt of the Fourier lens could be modelled with the angular spectrum

method to improve the accuracy of the light potentials before any camera feedback.

The light potential might have drifted on the camera during the longer computation

time of the angular spectrum method, increasing the RMS error (Section 2.6.3 and

Section 3.1). Cold-atom experiments require microscopic potentials to be projected

using a high-NA objective, which will be discussed in Section 3.8. The FFT might not

be sufficient to model this high-NA objective due to the large diffraction angles and

the angular spectrum method could lead to more accurate potentials in this scenario,

even without restricting the phase.

3.6 Efficiency measurement

To obtain the power in the signal region, PS , we measure the optical power that cor-

responds to a certain pixel value and exposure time of the camera image. We display

a circular mask on the SLM containing a linear phase gradient and place an iris in

the image plane to block the zeroth-order light. Only the power of the first-order spot

caused by the SLM phase pattern is measured using a power meter. We then take a

camera image of this spot with a certain exposure time and relate the pixel sum of the

camera image to the measured power. Using this calibration, the optical power, PS , is

calculated from the pixel sum of the camera image inside the transformed signal region,∑
u,v∈SU

Iuv, and the exposure time. The predicted efficiency, ηP, is always higher than

the measured efficiency, ηM, as it does not take the diffraction efficiency of the SLM

into account. When displaying a flat phase on the SLM, the measured power of the

zeroth-order spot is 69% of the incident power, Pin.

3.7 Camera artefacts

We observe a chequerboard-like effect on our camera (Matrix Vision BlueFox 3), similar

to a Bayer pattern on a colour RGB camera. The intensity of every other camera pixel

is offset by ∼ 0.5%, causing high-frequency noise in the measured light potential which
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Simulation Experiment
Publication Pattern Method Propagation εP ηP PSNRP MSSIMP εM ηM PSNRM MSSIMM

[%] [%] [dB] [%] [%] [dB]

Ebadi et al. [10] Gaussian line CG FFT - 38 - - 0.7 - - -
Bowman [116] Gaussian line CG FFT 0.5 8.3 - - - 3.5 - -
Bruce et al. [92] Gaussian ring MRAF FFT 0.6 - - - 3.9 - - -
This work Gaussian ring (Fig. 3.8a) CG (CT) FFT 0.56 34 52.4 0.99 1.4 22 45.7 0.98
Gaunt et al. [94] OR gate OMRAF ASM 1 24 - - 7 - - -
Van Bijnen [131] OR gate MRAF FFT - - - - 6 - - -
This work OR gate (Fig. 3.8d) CG (CT) FFT 0.81 24 53.2 0.99 1.4 15 39.9 0.87
Harte et al. [95] Power-law potential CG FFT 0.07 64 - - - - - -
This work Gaussian potential (Fig. 3.8b) CG (CT) FFT 0.80 55 48.4 0.94 1.6 31 40.7 0.87
Gaunt et al. [94] Top-hat OMRAF ASM - - - - 6 - - -
Van Bijnen [131] Top-hat MRAF FFT - - - - 1.7 - - -
Peng et al. [6] Full colour scenes Adam, CITL ASM - - 34.3 0.96 - - 18.5 0.66
Choi et al. [7] Full colour scenes ADMM, CNN ASM - - 38.8 - - - 22.7 0.79
This work Small disc (Fig. 3.7a) CG FFT 0.91 87 51.9 0.92 1.1 40 43.7 0.95
This work Spot array (Fig. 3.8c) CG (CT) FFT 0.74 41 49.1 0.99 1.4 24 43.8 0.99
This work Large disc (Fig. 3.9) CG FFT 1.1 78 43.4 0.90 2.7 34 32.5 0.67
This work Large disc (Fig. 3.9) CG ASM 1.0 67 - - 2.8 33 31.7 0.64
This work Large disc (Fig. 3.9) CG (CT) FFT 0.92 54 48.7 0.88 1.9 28 35.3 0.73
This work Large disc (Fig. 3.9) CG (CT) ASM 0.87 55 - - 2.1 27 31.4 0.54

Table 3.1: Simulated (predicted) and experimental errors, εP/M, efficiencies, ηP/M, peak signal-to-noise ratio, PSNRP/M, and mean
structural similarity index measure, MSSIMP/M, of previous studies compared to this work. In the last four rows, we compare different
methods using the disc-shaped target light potential (convergence shown in Fig. 3.9).
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negatively affects the convergence of the feedback algorithm, limiting the accuracy of

our light potentials to around εM ∼ 1.4% (Section 3.4). By characterising this effect and

compensating for it, we lowered the RMS error to around εM ∼ 1.2%, however, there

were other artefacts present such as vertical stripes on the sensor which were difficult

to remove. We later tested a different camera (Andor Zyla 5.5) with higher sensor

uniformity which resulted in significantly more accurate potentials with εM ∼ 0.7%

(Chapter 4).

3.8 Microscopic light potentials

The light potentials presented above are sufficiently accurate for most applications

in cold-atom experiments, however, these experiments require local control on a mi-

crometre scale. In this section, we discuss generating microscopic light potential by

downscaling the existing potentials using a high-NA microscope objective.

Expansion telescope 1:10PBS

670 nm
laser

SLM

Camera

Collimation
lens

f

f2f2

f1

f

Objectives NA=0.75

Fourier lens

Figure 3.10: Holographic setup using two microscope objectives (Olympus MPLN50X)
[138]. An image forms in the focal plane of the Fourier lens (f = 250mm) which is
demagnified by the first tube lens (f1 = 150mm) and the first microscope objective.
The second microscope objective and tube lens (f2 = 200mm) image the microscopic
potentials onto a CCD camera.
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3.8.1 Setup

To create microscopic light potentials, we demagnify the potentials in the Fourier plane

by extending our existing setup (Fig. 2.2) by a tube lens (f1 = 150mm) and a high-NA

microscope objective (Olympus MPLN50X, NA = 0.75, Fig. 3.12). Due to the large

demagnification (a factor of 42), it is not feasible to directly place a camera in the

focal plane of the microscope objective to perform camera feedback since the pixel size

of the camera (3.75µm) is too large to resolve the potentials. Instead, to measure

the microscopic potentials, we use a second, identical microscope and another tube

lens (f2 = 200mm) to magnify the potentials in the focal plane of the objective onto

the feedback camera. Due to the low transmission of the microscopes at 852 nm, we

changed the wavelength to 670 nm.

3.8.2 Calibration

The collimation of the laser beam after the first tube lens and after the second micro-

scope objective is adjusted using a shearing interferometer. The position of the second

microscope objective along the optical axis was fine-tuned using a piezo stage to min-

imise the size of the focal spot on the camera. By running the intensity measurement

for the incident laser beam (Section 2.6.2) using the camera after the microscopes, we

image the aperture of the first microscope objective on the SLM. When running the

conjugate gradient minimisation, we only use the central circular region on the SLM

which is not truncated by the aperture of the objective – a flat phase is displayed on

the remaining pixels. We correct for aberrations in the system by running our phase

calibration (Section 2.6.3) and displaying the negative measured phase on the SLM.

To verify that our imaging system is diffraction-limited, we investigate its point spread

function. The diffraction-limited point spread function of our imaging system is an

Airy disc of radius, rlim, given by

rlim =
1.22λ

2NA
, (3.3)

resulting in rlim = 545 nm using λ = 670 nm and NA = 0.75. This corresponds to the

radius of the focal spot in the focal plane of the microscope objective, provided that
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Figure 3.11: Focal spot in the focal plane of the microscope objective. (a) The calcu-
lated, diffraction-limited PSF. (b) Measured PSF before the phase calibration and (c)
after the phase calibration.

the entire aperture of the microscope objective is illuminated uniformly (Fig. 3.11a).

However, the Gaussian laser beam at the SLM (1/e2 beam diameter dSLM = 7.25mm)

is demagnified by the Fourier lens and the first tube lens to a 1/e2 beam diameter at

the microscope objective, dMO = 4.35mm. Since the beam at the microscope objective

is smaller than the diameter of the microscope objective aperture, aMO = 6mm, we

expect a larger focal spot with the radius, rf ,

rf =
aMO

dMO
· rlim = 1.38 rlim (3.4)

Before calibrating the constant phase at the SLM, the measured PSF of the focal spot is

larger than the expected radius, rf (Fig. 3.11b). However, after calibrating the phase,

the width of the PSF is slightly smaller than rf (1.32 rlim, Fig. 3.11c) which indicates

that our imaging system is diffraction-limited.

3.8.3 Results: Comparison to macroscopic potentials

We generated the same patterns used in Section 3.4, Fig. 3.8 on a microscopic scale,

corresponding to a demagnification by a factor of 42. The experimental RMS error of

our microscopic potentials varies between εM = 3.6 − 6.2% which is ∼ 3 times larger

than the macroscopic potentials generated without the objectives [111]. Previously,

microscopic ring traps with a root-mean-squared (RMS) error of < 5% were used in

cold-atom experiments to investigate Bose-Einstein condensates [40, 92]. The increased

number of optical elements in our setup might lead to larger errors due to possible mis-
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Figure 3.12: Camera images of microscopic light potentials and their normalized profiles
(along the white, dashed lines) using patterns from previous work [138]. The scale bar
indicates the size of the potentials in the focal plane of the microscope objective. (a-
d) Ring with Gaussian profile, Gaussian profile with offset, Gaussian spot array, and
an ‘atomtronic’ logical OR gate.

alignment. Further, the Fourier transform used to simulate the propagation of light in

our phase-retrieval algorithm (Section 2.5) does not take the large diffraction angles and

polarization effects caused by the high-NA microscope objective into account. These

errors could be further reduced by using the angular spectrum method to model pos-

sible misalignment of optical elements and to model the large diffraction angles caused

by the high-NA objectives.

3.9 Outlook

The camera feedback algorithm we are using produces light potentials of low RMS

error in a Fourier imaging setup, however, it has several drawbacks. Running the

feedback algorithm only removes errors for a specific light potential – if a different
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shape is required, this new potential must be re-optimised. Another approach, which

does not have this limitation, is to model a digital twin of the experimental setup

which captures as many sources of error as possible [6]. Experimental imperfections in

the physical setup can be mimicked by optimising the model’s parameters to minimise

the difference between camera images and the corresponding simulated output of the

model. After the model is trained, experimentally accurate potentials can be generated

without relying on iterative optimisation using the camera image [6]. If required, the

resulting potential can be further optimised using an iterative method. This approach

would be especially interesting for the generation of microscopic light potentials, where

one could parameterise the entire optical path and learn the aberrations introduced by

each optical element and diffraction effects caused by, for example, the aperture of the

microscope objective. A downside of this approach is that any change in the experiment,

for example, a position drift of the incident laser beam, requires the digital twin to

be re-trained, which is time-consuming. Another iterative feedback method known

as camera-in-the-loop optimisation [6] can directly solve the phase retrieval problem

by optimising the camera image using adaptive moment estimation. Gradient-based

optimization of a simulated image is possible since the phase of the SLM is connected

to the simulated image via mathematical operations which allows the computation of

the gradient with respect to the SLM phase using automatic differentiation in, for

example, PyTorch. However, when calculating the cost function directly from the

camera image, the gradient of the cost function with respect to the SLM phase is no

longer accessible [6]. To circumvent this problem, camera-in-the-loop optimisation uses

an approximation of the gradient

∂C

∂φ
=

∂C

∂f
· ∂f
∂φ

≈ ∂C

∂f
· ∂f̂
∂φ

, (3.5)

where f is the experimental propagation (with inaccessible gradient) and f̂ is the sim-

ulated propagation of which we can calculate the gradient (see our definition of the

gradient in Section 2.5.2). Using this approximate gradient, the phase retrieval prob-

lem can be solved by optimising the camera image directly. Camera-in-the-loop opti-

misation requires fewer total iterations to converge compared to the simple feedback

algorithm we are using, however, more camera images are required as each cost func-
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tion evaluation requires a camera image. Camera-in-the-loop optimisation produces

very accurate results and is state-of-the-art for full-colour holographic displays [6, 7].

This method produces results of MSSIMM = 0.79 for full-colour images by using three

different wavelengths (red, green, and blue) [7]. Our method can produce light po-

tentials with a mean structural similarity index measure of MSSIMM = 0.73 − 0.99

(Table 3.1), however, we only use a single wavelength and our target light potentials

are less complex in comparison. It would be interesting to directly compare this tech-

nique to our implementation of camera feedback for the same patterns we used in this

work.

When generating microscopic light potentials, we model the propagation of light

using an FFT which is inadequate due to the large diffraction angles introduced by

the high-NA microscope objective. The angular spectrum method can model large

diffraction angles, however, it has a drawback which prevents us from using it in our

simulations. In our initial implementation of the angular spectrum method, the physical

size of a pixel in the input plane and the output plane are identical. This becomes a

problem since we require starkly varying pixel sizes in the SLM plane and the focal

plane of the objective. While the SLM pixel size is 12.5µm, a resolution of ∼ 250 nm

is desired in the focal plane of the microscope objective. A naive application of the

angular spectrum method would require upscaling the SLM plane by a factor of 50,

resulting in a zero-padded array of 102400 × 102400 pixels which is far beyond the

capabilities of our desktop workstation. Modified versions of the angular spectrum

method with varying pixel sizes in the input and output planes were developed to reduce

the computational requirements. By treating the quadratic phase term introduced by

the microscope objective analytically, a semi-analytical angular spectrum method was

developed [99, 139], greatly reducing the sampling requirements. More recently, a

scalable angular spectrum propagation was proposed [100] which performs a zoom-

in operation using three FFTs, further lowering the sampling requirements over the

semi-analytical angular spectrum method. These propagation methods would enable

to model the entire optical path of the setup discussed in Section 3.8 during the phase

retrieval process which will be the subject of future work. Alternatively, microscopic

light potentials of high accuracy were generated by constraining the phase of the light
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potential to be flat [10]. While constraining the phase makes the light potentials less

sensitive to experimental errors such as misalignment of optical elements, it typically

leads to less efficient potentials [10, 97].
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Fast SLM calibration using

Fourier imaging and adaptive

moment estimation

In this chapter, we present a new calibration technique that is faster than previous

methods while maintaining the same level of accuracy (Section 4.1). By employing

stochastic optimisation and random speckle intensity patterns, we calibrate a digital

twin that accurately models the experimental setup. This approach allows us to mea-

sure the wavefront at the SLM to within λ/170 in ∼5 minutes using only 10 SLM phase

patterns, a significant speedup over state-of-the-art techniques. Additionally, our digi-

tal twin models pixel crosstalk on the liquid-crystal SLM, enabling rapid calibration of

model parameters and reducing the error in light potentials by a factor of ∼5 without

losing efficiency (Section 4.2). Our fast calibration technique will simplify the imple-

mentation of high-fidelity light potentials in, for example, quantum-gas microscopes

and neutral-atom tweezer arrays where high-NA objectives and thermal lensing can

deform the wavefront significantly. Applications in the field of holographic displays

that require high image fidelity will benefit from the novel pixel crosstalk calibration,

especially for displays with a large field of view and increased SLM diffraction angles.

To compare our method to previous results, we generate light potentials of various sizes

and characterise them (Section 4.3).

The previously presented methods to calibrate the intensity (Section 2.6.2) and the
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wavefront (Section 2.6.3) at the SLM result in accurate holographic light potentials,

however, these calibration methods take several hours to run. Any change in the

experimental setup, for example, any drift of the incident laser beam, requires a re-

calibration. Further, to find the optimal parameters for the pixel crosstalk kernel

(Section 3.3), an exhaustive 2D optimisation of both kernel parameters was necessary.

4.1 Constant field at the SLM

Methods to measure the constant phase at the SLM with high speed and accuracy using

a Twyman-Green interferometer were proposed [141, 142], however, they require addi-

tional optical elements and a flat reference mirror. Self-interfering calibration schemes

(Section 2.6) that do not require additional equipment are typically slow as they involve

displaying a large number of phase patterns on the SLM to achieve the desired spatial

resolution and are not straightforward to implement [46, 111, 124, 143–145]. With our

Figure 4.1: A digital twin (red box) simulates our experimental Fourier imaging setup
(blue box) [140]. To train the digital twin, parameters of the simulation in the red box
(the constant intensity and wavefront at the SLM, I and φ, the pixel crosstalk kernel,
K, and the affine transformation matrix, U) are adjusted to minimise the difference
between the simulated images, Ikl, and the camera images, Iuv, when displaying semi-
random phase patterns, θ, on the SLM. The physical lens in the experimental setup is
modelled by a Fourier transform.
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specific hardware, measuring the wavefront at the SLM at a resolution of 128 × 128

data points takes over an hour, since due to the response time of the liquid crystal

material, it takes ∼ 200ms for each of the phase patterns to stabilize before we can

take a camera image.

As reported recently, the phase and amplitude profile of test objects were recov-

ered by displaying only eight random phase patterns on the SLM and recording the

corresponding speckle images [3]. To recover the unknown electric field, an iterative

Fourier transform algorithm (IFTA) was employed to minimise the difference between

the camera images and the simulated images. In a different study [6], thousands of

pre-calculated phase patterns were displayed on the SLM. Their corresponding camera

images were recorded and used to train a parameterised model of the experimental

setup by optimisation using adaptive moment estimation. The parameterisation in-

cluded modelling the amplitude and phase at the SLM using a sum of Gaussians and

Zernike polynomials, respectively.

In this chapter, I present a method that allows us to precisely measure the intensity

profile of the incident laser beam and its wavefront in a matter of minutes, requiring

less than 10 camera images without a reference mirror or other additional hardware.

A sequence of random phase patterns is displayed on the SLM to recover the constant

field at the SLM using optimisation by adaptive moment estimation, a form of stochas-

tic gradient-based optimisation. We introduce gradient terms to our cost function to

optimise for the smoothness of the constant phase and amplitude as opposed to mod-

elling the constant field using smooth, analytical functions. This removes any geometric

constraints from the intensity profile and the wavefront that might have been imposed

by, for example, radially symmetric Zernike polynomials used in previous work [6].

4.1.1 Fast calibration method

To measure the constant phase, φ, and intensity at the SLM, I, we display several

smooth, semi-random phase patterns, θ, on the SLM (Fig. 4.1) and record the corre-

sponding speckle patterns, Icam, using the camera (Andor Zyla 5.5, 6.5µm pixel pitch,

2560×2160 pixels). The phase patterns are generated from an array of 128×128 pixels

with uniformly distributed phase values between 0 and 3π. This array is upscaled to
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the native resolution of the SLM by a factor of 8 using nearest-neighbour interpolation

and is convolved with a Gaussian kernel with 8 SLM pixels width. The convolution pro-

duces smooth, semi-random phase patterns which suppress the effect of pixel crosstalk

[3] since neighbouring pixels do not display starkly different phase values in these pat-

terns. This is necessary as we do not account for pixel crosstalk when calibrating the

constant intensity and wavefront at the SLM. The expected camera images, Isim, are

simulated by propagating the electric field from the SLM plane to the image plane

using a Fourier transform, F ,

Isim = |F{E}|2 , (4.1)

with Ekl = Akl e
i(φkl + θkl), where Akl is the amplitude profile of the laser beam with

its intensity, Ikl = |Akl|2, its spatially varying phase, φkl, and the phase displayed on

the SLM, θkl, with indices, k, l. In the computational implementation, we now use

a type 2 non-uniform fast Fourier transform which allows us to arbitrarily choose the

pixel pitch and the region of interest in the Fourier plane. This saves memory at the

cost of execution speed compared to the regular FFT, provided that the camera has

a smaller field of view and fewer pixels than the computational image plane with the

regular FFT. Here, we choose the pixel pitch in the Fourier plane to match the pixel

pitch of our camera and only compute the area of the Fourier plane which is covered

by the camera. To find the coordinates in Fourier space which the camera occupies, we

detect the position of the zeroth-order diffraction spot on the camera by fitting a 2D

Gaussian to it. We then calculate the desired pixel pitch in the Fourier plane, pNUFT

(in radians, ranging from −π to π), given by

pNUFT =
2π

λf
pSLM pCAM, (4.2)

using the camera’s pixel pitch, pCAM, the pixel pitch of the SLM, pSLM, with the

wavelength, λ, and the focal length of the Fourier lens, f . In practice, this mapping of

the camera coordinates to the coordinates of the Fourier plane is not accurate enough

due to experimental errors such as a slightly rotated camera. To account for a slight

mismatch between the camera image and the simulated image, we employ a partial

affine transformation which models the rotation, translation, and scaling in the x- and
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y-directions of the camera image but no shear. By adjusting the value of every pixel in

the constant phase and intensity as well as tuning the parameters in the partial affine

transformation matrix, we minimise a cost function using optimisation by adaptive

moment estimation (Adam solver [146] using PyTorch [121]). Our cost function, CMSE,

computes the mean-squared error (MSE) of the difference between the transformed

camera image and the simulated image,

CMSE(φ, I, U) =
1

NFN2

NF∑
n=1

N∑
k, l

[(
Insim, kl − TU{Incam}kl

)2]
, (4.3)

where NF is the number of phase patterns and camera images used in the optimisation,

N the number of pixel rows and columns on the SLM (N = 1024 for our specific SLM)

and TU{·} is the affine transformation operator with the affine transformation matrix,

U . We introduce two smoothness terms, Cφ and CA, to minimise the gradient of the

phase and the amplitude, respectively, which is calculated using the forward difference

given by

Cφ =
1

(N − 1)2

N−1∑
i, j

[
(φi, j − φi+1, j)

2 + (φi, j − φi, j+1)
2
]
and (4.4)

CA =
1

(N − 1)2

N−1∑
i, j

[
(Aij −Ai+1, j)

2 + (Ai, j −Ai, j+1)
2
]
. (4.5)

Cφ and CA ensure that the constant wavefront and the intensity at the SLM remain

smooth as one would expect from the wavefront of a Gaussian beam and its intensity

profile. We weigh our cost function terms like follows

C = s (CMSE + sφCφ + sACA) , (4.6)

with the overall steepness of the cost, s, and the weighing parameters, sφ and sA. By

changing the weighing terms in the cost function, the smoothness of the amplitude and

phase can be controlled individually at the cost of accuracy (higher mean-squared error).

Excluding the smoothness terms from the cost function and only minimising the mean

squared error causes the optimiser to introduce unwanted high-frequency artefacts in

the recovered constant phase and intensity. The smoothness terms minimise variations
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between neighbouring pixels in the recovered wavefront and intensity which suppresses

high spatial frequencies. This form of regularisation prevents overfitting, promoting

global convergence by reducing the likelihood of getting stuck in a local minimum.

4.1.2 Calibration results

To run the optimisation, we use NF = 10 different random SLM phase patterns and the

corresponding camera images. The cost function steepness, s = 1014, and the weighing

parameters, sφ = 5 × 10−3 and sA = 2 × 10−2 were chosen empirically. To find these

values for sφ and sA, we calculated CA from an analytical Gaussian beam profile of

7.4mm beam diameter and Cφ from the SLM phase correction pattern provided by the

manufacturer. We then adjusted sφ and sA to keep CA and Cφ approximately at the

previously calculated values throughout the optimisation. Without prior knowledge of

the constant field at the SLM, the constant phase, φ, was initialised with an array of ze-

ros and the constant amplitude, A, with an array of ones. After 2000 iterations (around

7 minutes on an Nvidia RTX A5000 GPU for NF = 10), we stop the optimisation as

stagnation is reached, resulting in a smooth intensity profile (Fig. 4.2b) and wavefront

(Fig. 4.3b). To validate the results from our new stochastic approach, we compare them

to the results from our previous calibration method based on shifting the position of

Figure 4.2: Laser intensity profiles recovered using (a) local sampling method [46] using
64× 64 measurements and (b) the stochastic approach presented here [140]. The 1/e2

intensity threshold is indicated by the dashed white line.
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local phase patterns across the SLM (we will refer to this as local sampling method

[46], Section 2.6). The beam diameter calculated from the intensity measurement using

the stochastic approach is larger compared to the local sampling method (8.1mm com-

pared to 7.4mm). The local sampling method generated a visible vertical line in the

intensity profile in the centre of the SLM, caused by how the SLM updates the phase

pattern (private communication with Hamamatsu [127], Fig. 4.2a). This artefact does

not appear in the measurement using the stochastic approach (Fig. 4.2b). The wave-

fronts agree well in the centre of the SLM (Fig. 4.3), however, the wavefront recovered

using the stochastic approach is noticeably flatter in darker regions of the laser beam

towards the edges of the SLM.

To characterise φ, we only consider a region, B, on the SLM in which the intensity

is larger than 1/e2 of the maximum intensity (region within the white, dashed line

in Fig. 4.2b). To determine the recalibration error of the phase measurement using

the stochastic method, we subtract the initially measured phase from the semi-random

phase patterns and display the resulting phase, θ−φ, on the SLM. When re-running the

stochastic method using those wavefront-corrected phase patterns, we obtain a residual

Figure 4.3: Wavefronts recovered using (a) the local sampling method [46], φzup
C , using

124×124 measurements and (b) the stochastic approach, φada
C , using adaptive moment

estimation [140]. Due to technical reasons (Section 2.6.3), the local sampling method
cannot measure the wavefront at the very edge of the SLM, indicated by the black
border in (a).
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phase, δφ, after removing the tilt within B. To quantify the recalibration error, we

calculate the standard deviation of the residual phase

σ =

√
1

NBk2

∑
i, j∈B

(
δφij − δφ

)2
, (4.7)

where δφ is the mean value of δφ in B, containing NB pixels with indices i, j and

k = 2π/λ. With the stochastic approach (NF = 10), we obtain a similarly small

standard deviation, σ = λ/170, compared to the local sampling method, σ = λ/180.

To investigate the accuracy of the phase measured using the stochastic approach,

φSGD, we quantify its deviation from the phase measured using the local sampling

method, φLS, by calculating the RMS error of their difference, ∆φ = φSGD − φLS, in

region B,

ϵ =

√
1

NBk2

∑
i, j∈B

(
∆φij −∆φ

)2
, (4.8)

where ∆φ is the mean value of ∆φ in B. Using our stochastic approach with only

one SLM phase pattern (NF = 1) in the optimisation, we already obtain ϵ = λ/97.

To investigate if the RMS error, ϵ, decreases further when using more than one SLM

Figure 4.4: Comparing the wavefront of the stochastic approach to the local sampling
method [46, 140]. (a) Residual RMS error, ϵdiff, between the wavefronts obtained
from each method as a function of the number of phase patterns, NF, used during the
stochastic approach. Only the area of the wavefront within the 1

e2
intensity threshold

(dotted line in b) of the laser beam intensity is considered to calculate the RMS error.
(b) Difference between the wavefronts measured using the stochastic approach (NF =
10) and the local sampling method.
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phase pattern, we measure φSGD using different values of NF and calculate ϵ for each

measurement (Fig. 4.4a).

To investigate if the RMS error, ϵ, decreases further when using more than one SLM

phase pattern, we measure φSGD using different values of NF and calculate ϵ for each

measurement (Fig. 4.4). When increasingNF, the error decreases and reaches ϵ = λ/110

at NF = 10. When the number of SLM phase patterns is increased further to NF = 20,

the RMS error only decreases slightly. Artefacts caused by the local sampling method

become evident when plotting the difference between the two wavefronts (Fig. 4.4b).

Similar to the intensity measurement, a vertical stripe is visible in the centre of the SLM

when using the local sampling method (Section 2.6). This line appears since the pixels

on the left and right half of the SLM are driven separately (private communication

with Hamamatsu [127]). Periodic diagonal stripes across the entire SLM were observed

which are likely caused by the linear phase gradient used in the measurement [111]

(Section 2.6.3). Combining the repeatability of both methods in quadrature yields an

error of ∆σ =
√
σSGD

2 + σLS2 = λ/124, which explains why the RMS error between

the two measurements does not decrease significantly when using more than NF = 10

phase patterns (Fig. 4.4a). The runtime of the stochastic approach presented here is

much shorter and requires far fewer camera images compared to the local sampling

method (7minutes runtime and 10 images compared to 2.5 h and ∼ 17000 images).

Another advantage of the stochastic approach is the spatial resolution of 1 × 1 SLM

pixel, whereas the spatial resolution of the local sampling method depends on the

number of images taken and limited to around 8 × 8 SLM pixels. For this reason,

the local sampling method relies on upscaling the measured wavefront and intensity

to the native resolution of the SLM using interpolation which is not required with the

stochastic approach.

4.2 Pixel crosstalk

As discussed in Section 3.3, neighbouring SLM pixels which display different phase

values affect each other at their bordering region which is known as pixel crosstalk

or fringing field effect, leading to a non-uniform phase across a single SLM pixel. In

a Fourier-imaging setup, this effect is especially noticeable for large light potentials
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since they require high spatial frequencies to be displayed by the SLM. Specifically,

these high-frequency SLM phase patterns contain many 0 to 2π phase jumps which are

impacted most by pixel crosstalk, causing artefacts in the image. The magnitude of

pixel crosstalk heavily depends on the properties of the LCOS SLM such as the thickness

of the liquid crystal layer and the size of the pixel electrodes - smaller pixel sizes and

thicker liquid crystal layers amplify the effect. As manufacturers steadily increase the

resolution of modern LCOS SLMs and consequently shrink their pixel pitch, it becomes

increasingly important to model pixel crosstalk and compensate for its effects.

Here, we characterise the pixel crosstalk on the SLM by calibrating more sophis-

ticated pixel crosstalk models compared to previous work [111] using optimisation by

adaptive moment estimation, similar to the calibration of the constant field at the

SLM described in the previous Section. This method accelerates the convergence of

the camera feedback process significantly and further reduces the error in light poten-

tials compared to previous work [111], especially for large potentials.

4.2.1 Modelling pixel crosstalk

In this section, we discuss modelling pixel crosstalk on the SLM, introduce several pixel

crosstalk models used in previous work, and present new methods to model crosstalk.

Previously, pixel crosstalk was modelled on a sub-pixel scale by upscaling the SLM

phase pattern and convolving it with a parameterised crosstalk kernel [9, 98, 104, 105,

136],

Θ(x, y) = θ(x, y)⊛K(x, y) , (4.9)

where Θ is the phase after applying the pixel crosstalk model. In previous work, the

crosstalk kernel, K, has been parameterised using a symmetric super-Gaussian given

by equation 3.2 [102, 104, 111, 136], with two parameters (Section 3.3). We will refer

to the convolution with the super-Gaussian kernel, K, as pixel crosstalk model 1a. To

capture possible asymmetries, we introduce model 1b, which involves a convolution
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with a piecewise kernel, Kpw [102],

Kpw(x, y) =



F−1
{
exp
[
−
(
|κx|
σxn

)qxn
−
(
|κy |
σyn

)qyn]}
x ≤ 0, y ≤ 0

F−1
{
exp
[
−
(
|κx|
σxn

)qxn
−
(
|κy |
σyp

)qyp]}
x ≤ 0, y > 0

F−1
{
exp
[
−
(
|κx|
σxp

)qxp
−
(
|κy |
σyn

)qyn]}
x > 0, y ≤ 0

F−1
{
exp
[
−
(
|κx|
σxp

)qxp
−
(
|κy |
σyp

)qyp]}
x > 0, y > 0

(4.10)

with different orders, qi, and widths, σi, along the x and y directions for each quad-

rant of the crosstalk kernel. To remove any geometric constraints from the crosstalk

kernel, we introduce model 1c which involves convolving the phase pattern, θ, with an

entirely unconstrained kernel, Kuc, where each pixel value in the kernel is a learnable

parameter. A more sophisticated model was introduced by Moser et al. [102] which

accounts for nonlinearities that a convolution cannot model. Inspired by this approach,

we implemented pixel crosstalk model 2 as follows (Fig. 4.5). [102],

Θm′, n′ = θm,n + T 0
s, t(θm−1, n−1 − θm,n) + T 1

s, t(θm−1, n − θm,n)

+ T 2
s, t(θm−1, n+1 − θm,n) + T 3

s, t(θm,n−1 − θm,n)

+ T 4
s, t(θm,n+1 − θm,n) + T 5

s, t(θm+1, n−1 − θm,n)

+ T 6
s, t(θm+1, n − θm,n) + T 7

s, t(θm+1, n+1 − θm,n) ,

(4.11)

3x3 neighbours upscaled phase

SLM pixel

a b

Figure 4.5: Pixel crosstalk model 2 inspired by Moser et al. [102, 140]. The displayed
SLM phase θ is upscaled by a factor of P by applying the crosstalk model (equa-
tion 4.11).
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with the indices of the upscaled phase m′, n′ ∈ 0, 1, ..., PN and the indices of the SLM

pixels m = ⌊m′/P ⌋ and n = ⌊n′/P ⌋. The matrices T i
s, t with indices s = mod(m′, P )

and t = mod(n′, P ), each correspond to the crosstalk caused by the eight neighbouring

pixels, each containing P×P pixels, with the upscaling factor, P . Each pixel value in the

arrays T i is a learnable parameter. The difference between our model and the previous

implementation [102] is that each pixel T i is a free parameter. In the original model,

the two-dimensional T i were constructed from analytical one-dimensional transition

functions with varying parameters depending on the pixel values of two neighbouring

pixels. Model 2 is computationally efficient since no convolution is required and all

upscaled SLM pixels can be calculated in parallel using a GPU. For both model 1c and

model 2, we investigate how the upscaling factor, P , affects the performance of the

model.

4.2.2 Optimised crosstalk model

Finding the correct parameters to model pixel crosstalk using model 1a has previously

been achieved using an exhaustive search approach, where both parameters (width

σ and order q) of the model were optimised to obtain the best agreement between

a simulated image and the camera image [111]. This method is time-consuming as

it requires running the phase retrieval algorithm and analysing the resulting camera

image for each combination of parameters. For this reason, optimising models with a

larger number of parameters (such as models 1b, 1c, and 2) is impractical.

We present a faster and more convenient method to find the optimal crosstalk

parameters, similar to the approach used in Section 4.1 to calibrate the wavefront

and the intensity of the laser beam. Instead of using smooth, semi-random SLM phase

patterns, we generate entirely random phase patterns with uniformly distributed values

between 0 and 2π for each SLM pixel. The effect of pixel crosstalk generated by

the random phase patterns is especially noticeable since neighbouring pixels display

starkly varying phase values. As the previously calibrated laser intensity profile and

the wavefront are measured at the native resolution of the SLM, we upscale them by

a factor P using Lanczos interpolation [128] to model the incident laser beam. After

applying the crosstalk model to the phase displayed by the SLM, θ, the camera images
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are simulated by propagating the electric field from the SLM plane to the image plane

via a Fourier transform (Fig. 4.1)

I =
∣∣∣F {Aei(φ+Θ)

}∣∣∣2 . (4.12)

Using optimisation by adaptive moment estimation, the parameters of the different

pixel crosstalk models are found by optimising them together with the parameters of

the affine transformation matrix, U , to minimise the mean-squared-error between the

camera image and the simulated image,

Cct = sCMSE, (4.13)

where Cct is the cost used in the optimisation. In Section 2.6.3, we showed that the

optical potential can move on the camera on a micrometre scale due to thermal drift

and moving air. Generating a reference pattern on the camera (Section 2.10) might

enable to adjust the affine transformation for each camera image individually instead of

using a global affine transformation for all camera images, reducing translation errors

of the image (Section 3.1).

We use NF = 10 phase patterns for the optimisation which converges after around

300 iterations (∼ 4 minutes runtime with models 1a, 1b, and 1c and ∼ 2 minutes

with model 2) with an upscaling factor of P = 3. For model 1a (equation 3.2), the

Figure 4.6: Optimised pixel crosstalk kernels using different models, normalised by their
pixel sum [140]. (a) Kernel, K, in model 1a according to equation 3.2, (b) piecewise
kernel, Kpw, in model 1b according to equation 4.10, and (c) the unconstrained kernel,
Kuc, in model 1c, where each pixel is a learnable parameter.
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parameters q = 1.20 and σ = 2.03 px were found (Fig. 4.6a), where px is one SLM

pixel (px = 12.5µm). These values differ slightly from the previously found parameters

(Section 3.3), however, we are using light of wavelength λ = 670 nm, whereas previously,

λ = 852 nm was used. Optimising model 1b (equation 4.10) resulted in the orders

qxp = 1.85, qxn = 1.15, qyp = 1.75, qyn = 1.12 and σxp = 1.02pSLM, σxn = 2.72pSLM,

σyp = 1.06pSLM, σyn = 3.04pSLM (Fig. 4.6b). The kernels, K and Kpw, in models 1a

and 1b were initialised with parameters q = 2 and σ = 1px, based on values found in

the literature for a similar LCOS SLM device [104, 111]. In model 1c, by optimising

each pixel value in the kernel instead of the parameters of an analytic function, we

obtain the kernel, Kpw, shown in figure 4.6c. The kernel in model 1c was initialised

with the central pixel set to one and the remaining pixels set to zero. The spatial extent

of the kernels in models 1a, 1b, and 1a was set to 3× 3 SLM pixels.

For model 2, we vary the upscaling factor, P , to investigate if the error of the light

potentials can be further reduced by using a larger upscaling factor (Fig. 4.7). At the

Figure 4.7: Optimised pixel crosstalk model 2 for various upscaling factors (Fig. 4.5)
[140]. (a - c) Arrays T i after running the optimisation using the upscaling factor P = 3,
P = 5, and P = 7. (d - f) Standard deviation of arrays T i for P = 3, P = 5, and P = 7
after performing the optimisation three times for each value of P using different sets of
phase patterns and camera images.
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start of the optimisation, each array T i is initialised as an array of zeros. The structure

of the optimised arrays T i is similar for different values of P with a noticeable asym-

metry along the x-axis (Fig. 4.7a-4.7c). These results suggest that the pixel crosstalk

is affected most by the immediate left- and right-hand-side neighbours of each SLM

pixel. A similar asymmetry along the x-axis can be observed in the optimised kernel

of model 1c (Fig. 4.6c). The structure of each array T i becomes more intricate when

increasing the upscaling factor, P . To investigate the repeatability of these results, we

performed the optimisation of model 2 three times for each of the upscaling factors,

P = 3, P = 5, and P = 7 using different sets of random phase patterns and cam-

era images during each run. The optimised models are very similar for P = 3, with

the standard deviation in the arrays T i not exceeding 1% (Fig. 4.7d). However, for

larger upscaling factors, the standard deviation of individual pixels in the arrays T i is

increased due to the larger number of parameters (Fig. 4.7e and 4.7f). We conclude

that the number of phase patterns used during the optimisation, NF = 10, is sufficient

to train the crosstalk model since we obtain very similar results when using different

training datasets.

4.3 Results

To benchmark the performance of the different pixel crosstalk models and to show that

the stochastic approach to calibrate the SLM produces accurate light potentials, we

generate a square, top-hat-shaped light potential using conjugate gradient minimisa-

tion (Section 2.5) and a camera feedback algorithm (Section 3). We define our target

light potential in the image plane in the units of the Fourier pixel pitch, pF , in the

computational image plane assuming twofold zero-padding of the electric field at the

SLM, given by

pF = λf/ (N · pSLM) = 670 nm · 250mm / (2048 · 12.5µm) ≈ 6.54µm (4.14)

after performing the FFT, where the zero-padded SLM plane containsN×N pixels with

the pixel pitch, pSLM. The target light potential is a square of 600 pF side length with a

dark border of 100 pF width, offset from the optical axis by 420 pF along the x- and y-
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Figure 4.8: Benchmark of different crosstalk models used to generate a square target
light potential (a) with the optical axis at x = 0, y = 0 (white dot) and a square signal
region, S (red square) [140]. The maximum steering angle of the SLM corresponds to
±1024 pF , where pF is the width of one Fourier pixel. (b) Convergence of the RMS
error, εM, during the camera feedback process with the target potential in (a) as a
function of feedback iterations, n, using various pixel crosstalk models and upscaling
factors, P .

directions (Fig. 4.8a). We use a large light potential which occupies a significant fraction

of the addressable area in the image plane (within the bounds of the first diffraction

order). Diffraction angles approaching the maximum steering angle of the SLM, which

corresponds to ±1024 pF in the computational image plane, must be displayed on the

SLM to generate this pattern. The target pattern is convolved with a Gaussian kernel

of 2 pF width to avoid sub-diffraction-limited edges in the target light potential. As an

initial phase guess, we use a linear phase to offset the potential from the optical axis by

480 pF in the x- and y-directions and a quadratic phase term with R = 1.6mrad/pSLM
2

(equation 2.11). Using the convergence of the camera feedback process, we evaluate

the performance of the different crosstalk models (Fig. 4.8 and Fig. 4.9). Without

modelling pixel crosstalk, the RMS error of the square, top-hat-shaped light potential

reaches its minimum of 10.7% after 6 feedback iterations. Using model 1a, the error

reduces to 3.2% after 8 feedback iterations. Model 1b performs similarly with an error

of 2.9% after 9 feedback iterations. Interestingly, the error before any camera feedback

(n = 0) using models 1a and 1b is slightly larger than without any crosstalk model

(top row in Fig. 4.9 and Table 4.1). Model 1c results in significantly lower RMS error

before any camera feedback (16% compared to 29%). Further, the error converges faster
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Figure 4.9: Zoom in on the central, flat region of the top-hat (Fig. 4.8a) after n = 1,
n = 3 and n = 10 feedback iterations (left column) without pixel crosstalk model,
(centre column) using model 1a and (right column) using the model 1c. The upscaling
factor of the crosstalk models is P = 3. Using model 1c, the top-hat potential after
n = 3 is flatter than the potential using model 1a after n = 10.

compared to model 1a and model 1b. Using model 1c, an error of 3.1% is reached after

3 feedback iterations which took 8 – 9 feedback iterations with model 1a and model

1b (middle row in Fig. 4.9). The lowest error reached with this kernel is 2.2% after 5

feedback iterations which is 30% lower compared to model 1a. Increasing the upscaling

factor from P = 3 to P = 5 does not reduce the RMS error for this particular target

potential further using model 1c. Model 2 converges to similar error levels as model

1c. Before any camera feedback, the RMS error is slightly lower (15% compared to

87



Chapter 4. Fast SLM calibration using Fourier imaging and adaptive moment
estimation

Figure 4.10: Varying the size of the top-hat-shaped light potential using 10 feedback
iterations with (yellow) and without (blue) modelling pixel crosstalk. (a) The lowest
experimental RMS error reached during the feedback process increases as a function of
the area of the light potential, A. (b) Experimentally measured efficiency of the light
potential as a function of the area of the light potential. (c) Profiles of the camera
images through the centre of the square potential along the horizontal for varying sizes.
The intensity is normalised by the mean value of the flat region of the top hat.

16%) and the lowest error of 2.4% is reached after 4 feedback iterations. Increasing the

upscaling factor to P = 5 is beneficial using model 2 – the error before camera feedback

is reduced to 14% and reaches 2.3% after 6 feedback iterations. However, we did not

see a further reduction in RMS error when using P = 7.

We also investigated the experimental efficiency of the top-hat potentials generated

using different crosstalk models (Table 4.1). Without modelling pixel crosstalk, the

experimental efficiency of the top hat is∼ 14%. When using model 1a and model 1b, the

efficiency of the potential drops to ∼ 11%, which is consistent with our previous findings

[111]. Model 1c and model 2 do not decrease the efficiency of the potentials significantly,

resulting in an efficiency of ∼ 13% and ∼ 14%, respectively. The efficiencies of the top

hats are relatively low since a large value of R in the initial phase guess was necessary
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Figure 4.11: Camera image of a large spot array generated using pixel crosstalk model
2 with an upscaling factor of P = 3 after 6 feedback iterations [140].

to prevent the formation of optical vortices in the light potential during the feedback

process. The large value of R causes a significant loss of optical power to areas outside

the signal region. Employing a vortex-removal technique (Section 2.5.4) or adding a

phase gradient term to the cost function when solving the phase retrieval problem [7]

would allow using smaller values of R in the initial phase guess, increasing the efficiency

of the light potential. In previous work [10], an efficiency term was added to the cost

function, directly maximising the optical power in the potential.

To show the effect of pixel crosstalk at different sizes of the light potential, we vary

the width of the square target potential from 80 pF to 600 pF and perform 10 cam-

era feedback iterations for each square without modelling pixel crosstalk. To obtain

similar efficiencies for the differently sized potentials, we vary the curvature, R, of the
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Figure 4.12: Camera image of a square top-hat potential after 8 camera feedback
iterations [140]. After the optimisation, the light potential is ηM = 39% efficient with
an error of εM = 0.9%.

initial phase guess linearly with the area of the potential, from R = 0.2mrad/pSLM
2 to

R = 1.6mrad/pSLM
2 (Fig. 4.10b). We then repeat this measurement using the crosstalk

model 2 with an upscaling factor of P = 3 (Fig. 4.10). The RMS error increases in a

linear manner as a function of the light potential’s area for both sets of measurements,

however, with different slopes (Fig. 4.10a). For the smallest square potential with an

RMS error of ∼ 0.8%, modelling pixel crosstalk does not reduce the RMS error. The

RMS error of the largest square potential is reduced by a factor of 5.5 from ∼ 11%

without modelling pixel crosstalk to ∼ 2.0% using crosstalk model 2. Since we image

the SLM in the Fourier plane, a larger light potential requires higher spatial frequen-

cies on the SLM, increasing the number of 0 to 2π phase jumps in the SLM phase

pattern which are particularly affected by pixel crosstalk. By modelling pixel crosstalk,

however, the effect of these phase jumps is taken into account in the simulation and is

compensated for by the conjugate gradient minimisation.

To demonstrate that our method can generate light potentials relevant for cold-atom

experiments, we generate a square, uniform array of 1296 Gaussian spots on a small,

constant background which is 760 pF wide. The constant background is surrounded

by a zero-intensity region which is 20 pF wide. The Gaussian spots are spaced 20 pF

apart and are 2 pF wide with increasing amplitudes along the x-axis. After 6 camera
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Pattern Fig. A [mm2] Crosstalk P εM [%] ηM [%]
model n=1 n=3 lowest

Top-hat

4.8
4.9

15.5

- 1 29.5 13.7 10.7 14
1a

3
32.7 11.8 3.2 11

1b 32.6 10.8 2.9 11

1c
3 15.8 3.1 2.2 13
5 15.8 3.1 2.3 14

2
3 15.1 3.1 2.4 14
5 13.9 2.8 2.3 14

4.10

0.2
- 1 4.9 1 0.8 15
2 3 7.5 1 0.8 14

5.1
- 1 17.6 3.9 2.6 14
2 3 9.6 1.4 1.1 15

10.6
- 1 23.7 9.2 7.4 14
2 3 11.7 2.1 1.4 14

15.5
- 1 29.3 13.4 11 14
2 3 12.9 2.9 2 14

Spot array 4.11 24.7
2 3

10 2.1 1.6 12
Top-hat 4.12 0.06 8.7 1.7 0.9 39

Table 4.1: The measured efficiency, ηM, and the RMS error of the camera image, εM,
of light potentials with various sizes (area A) and shapes are shown at different points
in the camera feedback process (feedback iteration n), generated using various pixel
crosstalk models for different upscaling factors, P [140].

feedback iterations using crosstalk model 2 with an upscaling factor of P = 3, the

RMS error of the camera image reached εM = 1.6%. Artefacts are visible in the top

left corner of the image (Fig. 4.11) which might stem from the large diffraction angles

needed to reach this part of the image plane. A few optical vortices are present in the

light potential which can be removed using the vortex removal process described in

Section 2.5.4. The low measured efficiency of ηM = 12% can be explained by the large

diffraction angles needed as this light potential was displayed off-axis (the optical axis

is close to the bottom right corner in Fig. 4.11), resulting in low diffraction efficiency.

To demonstrate that our method can produce light potentials of high efficiency required

to, for example, shape a laser beam used to excite atoms to the Rydberg state [10], we

generated a small square top-hat potential (150µm wide) and tuned the initial phase

guess parameter, R, (Section 2.5.3) to optimise the efficiency. The resulting potential

is ηM = 39% efficient with an error of εM = 0.9% (Fig. 4.12).
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4.4 Discussion and outlook

The intensity profile and the wavefront measured using the stochastic approach pre-

sented here feature fewer artefacts compared to the results generated by the local

sampling method, however, the resulting wavefront is flattened and the intensity pro-

file is widened in comparison. This might be caused by minimising the gradient in

the wavefront and the intensity using the smoothness terms Cφ and CA which conse-

quently flattens the results. Darker areas towards the edges of the SLM are especially

impacted by this since the cost terms Cφ and CA can be minimised in these areas

without increasing the mean-squared-error term, CMSE, decreasing the total cost, C.

We argue that, since the mean-squared-error term is not affected much, the deviations

in these areas are not detrimental to the accuracy of the holographic light potential.

Optimising for the second derivative of the wavefront and the amplitude instead of the

gradient will likely improve this issue. A different approach which does not require any

derivative terms in the cost function was used in a recent study [6], where the constant

field was modelled using smooth functions like Zernike polynomials for the wavefront

and a sum of three Gaussians for the amplitude, however, this restricts the geometry of

the wavefront and especially the amplitude. Using the Fourier transform of the Zernike

polynomials [147] might provide a better parameterisation of the amplitude than a sum

of Gaussians. The wavefront and intensity reconstructed using the calibration method

presented here contains fewer artefacts and might be more accurate than the local sam-

pling method within the 1/e2 intensity region, however, we cannot verify this as we do

not have a more accurate wavefront reference. Methods for absolute characterisation of

aberrations without a reference optic exist, however, they require additional equipment

such as expensive polarisation optics [148]. The spherical wave diffracted from a sub-

diffraction-limited pinhole provides an accurate wavefront reference in point-diffraction

interferometers [149]. Placing such a pinhole in the Fourier plane of the lens in our

setup might enable an absolute characterisation of the optical system. Using a type-2

non-uniform FFT allowed us to perform the Fourier transform of 20 different SLM

phase patterns in parallel on a GPU due to the lower memory footprint compared to

a regular FFT. However, the non-uniform FFT is significantly slower than the FFT

and is not required when using a lower number of phase patterns, where the memory
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requirements are lower. Using an FFT further reduces the runtime of the calibration

process from ∼ 7minutes to ∼ 2minutes with a number of NF = 5 phase patterns.

Our method to calibrate the pixel crosstalk model allows the use of more sophis-

ticated models with a large number of parameters, reducing the error in large light

potentials by ∼ 30% compared to previous work with increased light usage efficiency

[111]. Further, the time taken to calibrate pixel crosstalk model 2 is only ∼ 2 minutes.

However, since our method simply reduces the mean-squared error between the camera

image and the simulation, the optimised pixel crosstalk model might correct for exper-

imental effects in the camera image which are not caused by pixel crosstalk and are not

accounted for in our simulation, for example, a slightly tilted Fourier lens.

We did not calibrate the phase response of the SLM (gray level to phase lookup

table), since the SLM we used in this study was calibrated by the manufacturer to

have a linear phase response. However, previous studies have shown that the phase

response can vary spatially on the SLM as well as with the diffraction angle [6, 124].

Additionally, there might be alignment errors and aberrations of the Fourier lens which

are currently compensated by the calibrated wavefront at the SLM. At larger diffraction

angles, however, modelling aberrations at the SLM and at the Fourier lens separately

might be beneficial and could further reduce the error in the light potentials. Currently,

we use two separate optimisation processes to calibrate the constant field at the SLM

and the pixel crosstalk model since we use different kinds of phase patterns at the SLM

to calibrate each effect. Combining both of these calibrations into one algorithm would

further reduce the time taken to calibrate the SLM which will be the subject of future

work.
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Conclusion

To summarise, we demonstrated the experimental generation of holographic light po-

tentials with an RMS error of less than 1% and an experimentally measured efficiency of

∼ 40%. We achieved these results by solving the phase retrieval problem using gradient-

based optimisation [95] on a GPU with PyTorch [121] using automatic differentiation.

This optimisation approach provides great flexibility in modelling the propagation of

light from the SLM to the image plane. We actively remove unwanted optical vortices

from the light potentials which enables to realise intricate vortex-free potentials and

simplifies finding a suitable phase guess to seed the conjugate gradient phase retrieval

algorithm. Since we optimise a simulated light potential, the RMS error of the ex-

perimentally measured potential is not limited by the convergence of the simulation

but rather by how accurately the experimental system is modelled during the opti-

misation. In quantum simulation and quantum computing experiments, lower errors

in the light potentials lead to more precise control over the atomic states, increasing

the fidelity of the measurements. In atom array experiments, higher efficiency allows

for the generation of more tweezers with the same amount of laser power, enabling

larger-scale experiments and potentially increasing the number of qubits available for

quantum computing. Additionally, these experiments benefit from highly uniform and

efficient top-hat potentials to globally drive the Rydberg excitation across the entire

atomic array. A reduced error in the generated top-hat potentials might lead to higher

fidelities of entangled gates, an important step towards implementing error correction

protocols [150].
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By measuring the wavefront and the intensity profile at the SLM and by modelling

pixel crosstalk, we reduced the ‘reality gap’ between the simulation and the experiment,

lowering the error in the resulting light potentials. We improved a scheme to calibrate

the wavefront at the SLM, making it robust to small pointing fluctuations of the laser

beam caused by thermal drifts and by vibrations due to moving air, reducing the

recalibration error from ∼ λ/40 to ∼ λ/120. This reduction in recalibration error

means that any aberrations in the optical system can be corrected more accurately,

enabling diffraction-limited light potentials which are especially significant for atom

array experiments requiring tight trapping tweezers. In optical lattice experiments,

diffraction-limited light potentials are crucial to achieve site resolved local control since

the lattice spacing and therefore the smallest distance between two neighbouring atoms

is typically close to the diffraction limit of the optical system.

We developed a method to calibrate the wavefront, the intensity profile and the

pixel crosstalk model in ∼ 5minutes, significantly improving on the combined runtime

of the previously used calibration methods, which took ∼ 3 hours. The reduction in

calibration time has a significant impact on the practicality of cold-atom experiments

using one or even multiple LCOS SLMs. It allows for more frequent recalibrations, en-

suring that the system remains accurately aligned and aberration corrected, reducing

the impact of, for example, thermal drifts. Additionally, the faster calibration pro-

cess enables more rapid iteration and testing of different experimental configurations,

accelerating the overall research and development process. Further, our calibration

approach is quite general, and it might be possible to extend it to more complicated

optical systems involving, for example, high-NA lenses or additional diffractive optical

elements.

Using a simple camera feedback algorithm, the RMS error in the light potential

is further reduced [112]. We developed a novel chequerboard method to calibrate the

coordinate transform between the camera and the computational image plane. The

chequerboard calibration we use is insensitive to artefacts caused by pixel crosstalk,

making it more robust and enabling to accurately calibrate the camera across its entire

field of view. We investigated pixel crosstalk on the SLM and showed that in a Fourier

imaging setup, the RMS error of the light potential increases in a linear manner with the
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area of the light potential. By modelling pixel crosstalk using a novel, computationally

efficient method, we greatly reduced the error in large light potentials that occupy a

significant fraction of the addressable area in the image plane. For these large light

potentials, pixel crosstalk is still a limiting factor and further work is needed to develop

more accurate models of pixel crosstalk.

We found that for smaller light potentials which do not require large diffraction

angles on the SLM, the sensor uniformity and noise of the feedback camera and the

pointing stability of the laser were limiting factors. By shielding the experiment from

airflow and by using a low-noise sCMOS camera with high sensor uniformity, we lowered

the RMS error of small top-hat potentials to ∼ 0.7%. By performing feedback on time-

averaged camera images, the RMS error of the time-averaged potential reaches 0.35%.

We conclude that the error can be further lowered by eliminating temporal variations

in the light potentials which might arise from phase flicker on the SLM and residual

pointing instability of the laser beam.

We used a high-NA microscope objective to generate light potentials on a micro-

scopic scale required for cold-atom experiments. The RMS error of the resulting poten-

tials is ∼ 3 times larger compared to the macroscopic potentials. This might stem from

an increased discrepancy between the simulation and the experimental setup since we

approximate the propagation of light with a Fourier transform. A more sophisticated

simulation of the propagation of light through the high-NA objective such as the an-

gular spectrum method might reduce the error in the microscopic potentials. Recent

progress in this field greatly reduced the computational requirements to run the an-

gular spectrum method for high-NA optics [99, 100], and the implementation of these

methods is the subject of future work. Additionally, extending the calibration approach

from Chapter 4 to learn aberrations from multiple optical elements in the setup might

allow us to further reduce the error of the microscopic potentials.

In addition to cold-atom experiments, the work in this thesis is relevant for a broad

range of applications. Holographically generated tweezer arrays can also be used in

quantum computation and simulation experiments with ultracold molecules, a field

that has seen rapid progress in recent years [151]. To scale up atom and molecular

arrays, reducing the error in the tweezer arrays will become increasingly important
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[151]. Applications in microscopy can benefit from aberration correction of the optical

system and from illuminating the sample with structured light using an SLM, increasing

the imaging resolution [152, 153]. Aberration correction in holographic lithography

used in biofabrication [154] or to manufacture photonic crystals [155] can decrease

the smallest possible feature size of the printed structures. The ability to generate

light potentials of arbitrary shape and low error can speed up the lithography process

as multiple regions in the target material can be addressed simultaneously. Further,

a recent publication demonstrated that holographic near-eye displays for augmented

and virtual reality glasses achieve improved image quality by modelling pixel crosstalk

[9]. For those applications, the novel pixel crosstalk model proposed in Chapter 4 can

lower the computational requirements for holographic displays and improve their image

quality.
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Angular spectrum method

We implement the ASM to simulate the propagation of light in our CG minimisation.

First, the electric field at the SLM plane, ESLM(x, y), is propagated to the lens plane

and multiplied by the aperture, AL(x, y), and phase, ϕL(x, y), of the lens using the

relation [110]

E(x, y, zL) = F−1
{
F {ESLM(x, y)}H

(
κ′x, κ

′
y, zL

)}
AL(x, y) exp [iϕL(x, y)] . (A.1)

Here, κ′x and κ′y are the spatial frequencies, E (x, y, zL) is the electric field in the lens

plane just after the lens and zL is the distance between the SLM plane and the lens

plane. AL(x, y) = circ(r) is the circular aperture of the lens with radius r and ϕL(x, y)

is the phase delay caused by the lens. The transfer function, H
(
κ′x, κ

′
y,∆z

)
, is given

by [110]

H
(
κ′x, κ

′
y,∆z

)
=


exp

[
2πi∆z

λ

√
1− (λκ′x)

2 −
(
λκ′y

)2]
if
√
κ′2x + κ′2y < 1

λ .

0 otherwise.

(A.2)

with propagation distance, ∆z. The resulting electric field, E(x, y, zL), is then propa-

gated to the image plane using [110]

E(x, y, zI) = F−1
{
F {E(x, y, zL)}H

(
κ′x, κ

′
y, zI − zL

)}
, (A.3)
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where E(x, y, zI) is the resulting electric field in the image plane and ∆z = zI − zL is

the distance between the lens plane and the image plane (Fig. 1a).

Using the ASM instead of the Fourier transform enables to model the lens accurately.

Specifically, we use a doublet lens with three spherical surfaces (Thorlabs ACT508-250-

B) which causes a phase delay [110]

ϕL(x, y) =
2π

λ
[∆12 (x, y) (n1 − 1) + ∆23 (x, y) (n2 − 1)] , (A.4)

where ∆12 and ∆23 are the lens thicknesses and n1 = 1.59847 and n2 = 1.76182 the

refractive indices of the crown and the flint glass [156, 157], respectively. The lens

thicknesses are given by [110]

∆ab(x, y) = −Ra

(
1−

√
1− x2 + y2

R2
a

)
+Rb

(
1−

√
1− x2 + y2

R2
b

)
(A.5)

with the radii of the spherical surfacesR1 = 137.7mm, R2 = −R1 andR3 = −930.4mm.

The phase of the doublet, ϕL (x, y), deviates from the idealised phase of the lens [110]

ϕQ(x, y) = − π

λf

(
x2 + y2

)
, (A.6)

with the focal length, f = 250mm, by 2.8λ (peak-to-valley) across the aperture of the

lens (48.3 mm).

In our numerical implementation, we pad the array representing the SLM field with

zeros to match the size of the SLM plane with the aperture of the lens used in our

experiment. This increases the computational complexity as the matrix size increases

from 2048 × 2048 to 3864 × 3864. When using the FFT, the matrix representing the

SLM plane of 1024 × 1024 pixels is zero-padded to 2048 × 2048 pixels, resulting in a

pixel spacing pIMG = λf
2NpSLM

= 8.32µm in the image plane, with the number of SLM

pixels, N , in each dimension and SLM pixel pitch, pSLM. With the ASM, the pixel

size in the SLM plane equals the pixel size in the image plane. To achieve a similar

spatial resolution in the output plane using the ASM, each SLM pixel of 12.5µm size is

sub-resolved computationally into 2× 2 pixels which increases the number of pixels to

7728×7728. We use a GPU (Nvidia RTX A5000 24 GB) to accelerate our calculations.
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A.1 ASM wavefront correction

Our method to measure the constant phase, φC, requires the lens to be parabolic and

assumes perfect placement of the lens and the camera. Using equation 2.15, the mea-

sured phase, ϕM(x, y), includes the phase difference caused by the distorted wavefront

at the SLM and the phase differences caused by a non-parabolic lens and a displace-

ment of the camera along the optical axis. As the ASM is capable of modelling the

doublet lens and a displaced camera, it is important to separate these phase differences

and the wavefront at the SLM, ϕC(x, y), from each other.

To implement the ASM, we calculate a corrective phase, ϕASM(x, y), which only

models the phase caused by the displaced, non-parabolic lens and the displaced camera,

assuming a flat wavefront at the SLM. To do so, we calculate the path length of every

sample beam between the lens and a fixed point in the image plane as well as the phase

delay each sample beam collects when passing through the lens, ϕL

(
xs(x) , ys(y)

)
.

ϕASM(x, y) =
2π

λ

√[
zI − zL

]2
+
[
xs(x)− xc

]2
+
[
ys(y)− yc

]2
+ ϕL

(
xs(x) , ys(y)

)
,

(A.7)

with the position of the sample beam on the lens xs(x) = x + zL tan(αx) and ys(y) =

y+ zL tan (αy), where αx and αy are the diffraction angles of the linear phase gradient

in x- and y-direction, respectively. The phase is sampled at a point in the image plane

with co-ordinates xc = f tan(αx) and yc = f tan(αy). We then subtract the corrective

phase pattern, ϕASM (x, y), from the measured constant phase to obtain the wavefront

at the SLM, ϕC(x, y) = ϕM(x, y)− ϕASM(x, y).
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HoloGradPy Python package

The majority of the code used to generate holographic light potentials in Chapter 2 and

Chapter 3 has been published on GitHub as part of the Python package HoloGradPy,

available at https://github.com/paul-schroff/hologradpy. This appendix con-

tains the corresponding documentation which has been generated automatically from

the code using Sphinx. The code documentation can also be found online at https:

//hologradpy.readthedocs.io. HoloGradPy and its documentation will be updated

in the future to include the code used to generate the results in Chapter 4.
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HoloGradPy, Release 1.0

HoloGradPy provides functionality to holographically generate light potentials of arbitrary shape using a phase-
modulating SLM (see our publication).
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CHAPTER

ONE

AUTHOR

This package was created by Paul Schroff during his PhD at the University of Strathclyde in the research group of Stefan
Kuhr.

Note: For questions or suggestions, email paul.schroff@strath.ac.uk.
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CHAPTER

TWO

FEATURES

To calculate the SLM phase pattern for a given target light potential, we implemented a phase-retrieval algorithm based
on conjugate gradient minimisation. The gradient used in the conjugate gradient minimisation is calculated using
PyTorch’s automatic differentiation capabilities.

Functions to characterise the beam profile and the constant phase at the SLM are provided. These measurements are
crucial for accurate experimental results.

We employed a feedback algorithm and model pixel crosstalk on the SLM to further reduce experimental errors in the
light potentials.

Note: This package works best with a Nvidia GPU to run the phase retrieval algorithm.

Warning: This documentation is work in progress - refer to the example scripts to get started.

2.1 Installation

Download this package and cd into the folder containing the setup.py file. Then, in your virtual conda environment,
run the command

pip install -e .

All required python packages should install automatically. To run PyTorch on a GPU, you have to install CUDA.

2.2 Example scripts

2.2.1 Setting up your hardware

This script sets constant experimental parameters and implements camera and SLM drivers. You will have to do this
for your own hardware.

import time
import numpy as np
from hologradpy import hardware as hw

# These modules are only needed for our camera and SLM drivers
(continues on next page)
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(continued from previous page)

import cv2 as cv
from harvesters.core import Harvester
from screeninfo import get_monitors
import imageio

Setting experimental parameters and other constant parameters

To start off, we write our own subclass of hardware.ParamsBase which sets some experimental parameters and other
constants needed in this script.

class Params(hw.ParamsBase):
wavelength = 670e-9 # Wavelength [m]
beam_diameter = 7.25e-3 # Diameter of incident beam [m]
fl = 0.25 # Focal length [m]

data_path = '../../holography_data/'

# Path to measured constant SLM phase and intenstiy
phi_path = data_path + '23-09-13_13-20-49_measure_slm_wavefront/dphi_uw.npy'
i_path = data_path + '23-09-13_11-47-42_measure_slm_intensity/i_rec.npy'

phi_filter_size = 2
crop = 64

pms_obj = Params()

Implementing SLM and camera drivers

This module provides the hardware.CameraBase class and the hardware.SlmDisp class to interface with the camera
and the SLM. You will have to write your own subclasses for the specific devices you are using. Here, we defined the
subclasses Camera and SlmDisp to interface with a MatrixVision BlueFox 3 camera and a Hamamatsu SLM. Make
sure you implement all abstract methods of hw.CameraBase and hw.SlmBase in your own subclasses.

class Camera(hw.CameraBase):
def __init__(self, res, pitch, name='before', roi=None, gain=0, bayer=False):

if roi is None:
roi = [1280, 960, 0, 0]

self.roi = roi
super().__init__(res, pitch, self.roi)
self.count = 0
self.gain = gain
self.bayer = bayer
self.name = name
self.h = None
self.ia = None
self.bayer_slope = 0.010487497932442524
self.bayer_offset = 2.195178550143578
self.max_frame_count = 2 ** 16 - 1

(continues on next page)
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def start(self, n=1):
if n >= self.max_frame_count:

n = self.max_frame_count

self.h = Harvester()

self.h.add_file('C:/Program Files/MATRIX VISION/mvIMPACT Acquire/bin/x64/
→˓mvGenTLProducer.cti')

self.h.update()

print("start init ia")

serial_numbers = []
for info in self.h.device_info_list:

serial_numbers.append(info.serial_number)
if self.name == 'before':

n_cam = serial_numbers.index('F0600075')
if self.name == 'after':

n_cam = serial_numbers.index('F0600086')
self.ia = self.h.create(n_cam)
self.ia.remote_device.node_map.ExposureAuto.value = 'Off'
self.ia.remote_device.node_map.mvLowLight.value = 'Off'
self.ia.remote_device.node_map.ExposureAuto.value = 'Off'
self.ia.remote_device.node_map.BlackLevelAuto.value = 'Off'
self.ia.remote_device.node_map.GainAuto.value = 'Off'
self.ia.remote_device.node_map.ExposureTime.value = 100
self.ia.remote_device.node_map.PixelFormat.value = 'Mono16'
self.ia.remote_device.node_map.AcquisitionMode.value = 'MultiFrame'
self.ia.remote_device.node_map.AcquisitionFrameRateEnable.value = True
self.ia.remote_device.node_map.AcquisitionFrameRate.value = 12
if self.name == 'before':

self.ia.remote_device.node_map.ReverseX.value = True
self.ia.remote_device.node_map.ReverseY.value = True

elif self.name == 'after':
self.ia.remote_device.node_map.ReverseX.value = False
self.ia.remote_device.node_map.ReverseY.value = True

self.ia.remote_device.node_map.TriggerMode.value = 'On'
self.ia.remote_device.node_map.TriggerSource.value = 'Software'
self.ia.remote_device.node_map.TriggerSelector.value = 'FrameStart'

w, h, dx, dy = self.roi

self.ia.remote_device.node_map.AcquisitionFrameCount.value = n
self.ia.remote_device.node_map.Gain.value = self.gain

if dx <= self.ia.remote_device.node_map.OffsetX.value:
self.ia.remote_device.node_map.OffsetX.value = dx
self.ia.remote_device.node_map.OffsetY.value = dy
self.ia.remote_device.node_map.Width.value = w
self.ia.remote_device.node_map.Height.value = h

else:
(continues on next page)
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self.ia.remote_device.node_map.Width.value = w
self.ia.remote_device.node_map.Height.value = h
self.ia.remote_device.node_map.OffsetX.value = dx
self.ia.remote_device.node_map.OffsetY.value = dy

self.ia.start()
print("start acquisition")

def get_image(self, exp_time_):
if self.count >= self.max_frame_count:

self.stop()
self.start(n=self.max_frame_count)

self.ia.remote_device.node_map.ExposureTime.value = exp_time_

self.ia.remote_device.node_map.TriggerSoftware.execute()

with self.ia.fetch() as buffer:
component = buffer.payload.components[0]
width = component.width
height = component.height

im = np.array(component.data.reshape(height, width)).astype(np.double)

if self.bayer is True:
im[0::2, 1::2] = im[0::2, 1::2] * (1 + self.bayer_slope) + self.bayer_offset
im[1::2, 0::2] = im[1::2, 0::2] * (1 + self.bayer_slope) + self.bayer_offset

self.count += 1
return im

def stop(self):
self.ia.stop()
print("stopped acquisition")
self.ia.destroy()
self.h.reset()

class SlmDisp(hw.SlmBase):
def __init__(self, res, pitch, calib=None, delay=0.2, dx=0, dy=0):

super().__init__(res, pitch)
self.max_phase = 2 * np.pi # Largest value for phase wrapping
self.slm_norm = 128 # Gray level on the SLM corresponding to max_phase
# Gray level vs phase lookup table
self.lut = np.load(pms_obj.data_path + '23-02-17_13-49-14_calibrate_grey_values/

→˓phase.npy')
self.idx_lut = np.argmin(np.abs(self.lut - self.max_phase)) # Index of max_

→˓phase in lut
self.lut = self.lut[:self.idx_lut]
# Path to Hamamatsu SLM correction pattern.
self.cal_path = pms_obj.data_path + 'deformation_correction_pattern/CAL_

→˓LSH0802439_' + '{:.0f}'.\
format(np.around(pms_obj.wavelength * 1e9, decimals=-1)) + 'nm.bmp'

(continues on next page)
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self.delay = 0.2 # Time to wait after displaying a phase pattern on the SLM [s]

if calib == 1 or calib is True:
self.calib_flag = True
self.calib = imageio.imread(self.cal_path)
self.calib = np.pad(self.calib, ((0, 0), (0, 8)))

elif calib == 0 or calib is False or calib is None:
self.calib_flag = False
self.calib = np.zeros((self.res[1], self.res[0]))

self.delay = delay
self.dx = dx
self.dy = dy

monitor = get_monitors()[-1]

cv.namedWindow('screen', cv.WINDOW_NORMAL)
cv.resizeWindow('screen', self.res[1], self.res[0])
cv.moveWindow('screen', monitor.x, monitor.y)
cv.setWindowProperty('screen', cv.WND_PROP_FULLSCREEN, cv.WINDOW_FULLSCREEN)
cv.waitKey(100)
print("SlmDisp initialised")

def display(self, phi_slm):
im_res_y, im_res_x = phi_slm.shape
slm_res_y, slm_res_x = self.res
slm_pad_x = (slm_res_x - im_res_x) // 2
slm_pad_y = (slm_res_y - im_res_y) // 2

slm_norm = self.slm_norm

if slm_pad_x == 0 and slm_pad_y == 0:
phi_zeros = slm_norm * phi_slm / (2 * np.pi)

elif -slm_pad_y - self.dy == 0:
phi_zeros = np.zeros((slm_res_y, slm_res_x))
phi_disp = slm_norm * phi_slm / (2 * np.pi)
phi_zeros[slm_pad_y - self.dy:, slm_pad_x - self.dx:-slm_pad_x - self.dx] =␣

→˓phi_disp
elif -slm_pad_x - self.dx == 0:

phi_zeros = np.zeros((slm_res_y, slm_res_x))
phi_disp = slm_norm * phi_slm / (2 * np.pi)
phi_zeros[slm_pad_y - self.dy:-slm_pad_y - self.dy, slm_pad_x - self.dx:] =␣

→˓phi_disp
else:

phi_zeros = np.zeros((slm_res_y, slm_res_x))
phi_disp = slm_norm * phi_slm / (2 * np.pi)
phi_zeros[slm_pad_y - self.dy:-slm_pad_y - self.dy, slm_pad_x - self.dx:-slm_

→˓pad_x - self.dx] = phi_disp

if self.calib_flag is False:
phi_zeros = phi_zeros.astype('uint8')

else:
phi_zeros = np.remainder(phi_zeros + self.calib, slm_norm).astype('uint8')

(continues on next page)
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cv.imshow('screen', phi_zeros)
cv.waitKey(1)
time.sleep(self.delay)

We can now use the classes Params, Camera and SlmDisp in other scripts.

2.2.2 Feedback algorithm example

This script calculates phase patterns for a phase-modulating liquid crystal on silicon (LCOS) spatial light modulator
(SLM) to create accurate light potentials by modelling pixel crosstalk on the SLM and using conjugate gradient (CG)
minimisation with camera feedback (see https://doi.org/10.1038/s41598-023-30296-6).

Using this script, it should be easy to switch between the different patterns from our publication, turn on pixel crosstalk
modelling and switch between the fast Fourier transform (FFT) and the angular spectrum method (ASM) to model the
propagation of light.

Importing modules

import os
import time
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable

from hologradpy import patterns as p
from hologradpy import error_metrics as m
from hologradpy import calibrate_slm as clb
from hologradpy import torch_functions as tfn

from examples.experiment import Params, Camera, SlmDisp

Here, we determine which computing hardware to use (CPU or GPU) and create instances from our custom hardware
classes.

device = tfn.check_device(verbose=True) # Check for GPU

pms_obj = Params()
cam_obj = Camera(np.array([960, 1280]), 3.75e-6, bayer=True) # Create instance of␣
→˓camera class
slm_disp_obj = SlmDisp(np.array([1024, 1280]), 12.5e-6) # Create instance of SLM␣
→˓class
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Initializing the camera feedback algorithm

Parameters for the phase-retrieval algorithm:

npix = 1024 # Number of pixels on SLM (npix * npix)
propagation_type = 'fft' # Propagation Type
optimizer = 'cg' # Optimizer
loss_fn = 'amp' # Loss function used during optimization
fft_shift = True # Perform FFT shift?
precision = 'single' # Computational precision
pixel_crosstalk = False # Model pixel crosstalk?
pix_res = 1 # Subsampling factor of each SLM pixel
detect_vortices = False # Detect vortices before the first camera feedback iteration?
threshold_vtx = 0.05 # Vortices are only detected in regions brighter than␣
→˓threshold (1 is maximum)

# Path containing a previously calculated affine transform to calibrate the camera.
tf_path = pms_obj.data_path + '23-08-29_18-42-53_torch_camcal/'

calc_transform = True # Calculate new transform?
measure_slm_intensity = False # Measure the constant intensity at the SLM (laser beam␣
→˓profile)?
measure_slm_phase = False # Measure the constant phase at the SLM?

Parameters for the initial SLM phase guess, the target light potential and the signal region:

guess_type = 'guess' # Use analytical phase␣
→˓guess
phase_angle = int(-npix // 4) # Offset of the target␣
→˓light potential to the optical

# axis in x- and y-
→˓direction in Fourier pixels to

# calculate the gradient␣
→˓of linear phase.
linear_phase = np.array([phase_angle + 2, phase_angle - 2]) # Linear term of the␣
→˓initial phase guess
quad_phase = np.array([4.7e-4, 0.5]) # Quadratic term of the␣
→˓initial phase guess

# Target Pattern
pattern = 'spot_array' # Name of the target␣
→˓light potential
mask_pos = int(phase_angle) # Offset of the target␣
→˓light potential to the optical

# axis in x- and y-
→˓direction in Fourier pixels
target_width = int(npix // 2) # Size of the target␣
→˓light potential
target_blur = 2 # Width of the blurring␣
→˓kernel for the target light

# potential

Parameters for the camera feedback algorithm:

2.2. Example scripts 11
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cam_name = 'before' # Name of camera
slm_disp_type = 'lut' # SLM display mode
iter_fb = 10 # Number of camera feedback iterations
iter_cg = 50 * np.ones(iter_fb) # Number of CG iterations per feedback iteration
alpha = np.ones(iter_fb) # Feedback gain parameter
exp_time = 200 # Exposure time of camera in microseconds
n_frames_avg = 10 # Number of camera pictures taken to average
feedback_blur = 0 # Size of Gaussian blurring for camera feedback

Defining the blurring kernel to model pixel crosstalk:

if pixel_crosstalk is True:
extent = 3 # Extent of crosstalk kernel in SLM pixels
q = 2.3 # Crosstalk kernel order
sigma = 0.92 / slm_disp_obj.pitch # Crosstalk kernel width
kernel_ct = p.pixel_ct_kernel(slm_disp_obj.pitch, pix_res, extent, q, sigma)

else:
kernel_ct = None

Inputs for the angular spectrum method:

# Number of pixels of zero-padded SLM plane
if propagation_type == 'asm':

npix_pad = int(pms_obj.lens_aperture // pms_obj.slm_pitch)
else:

npix_pad = 2 * npix

npix_tot = npix_pad * pix_res # Total number of pixels (npix_tot *␣
→˓npix_tot)
extent_lens = npix_pad * slm_disp_obj.pitch # Spatial extent of computational lens␣
→˓plane [m]
pd1 = pms_obj.fl # Distance from SLM plane to lens plane␣
→˓[m]
pd2 = pms_obj.fl # Distance from lens plane to camera␣
→˓plane [m]

Determine which data to save.

save = False # Save camera images?
convergence = False # Save convergence of CG algorithm?
n_save = 5 # Save every xx th CG iteration
iter_plot = [1, 2, 13, 14, 15] # List of feedback iterations to save CG convergence

# Create folder to save data
date_saved = time.strftime('%y-%m-%d_%H-%M-%S', time.localtime())
path = pms_obj.data_path + date_saved + '_' + os.path.splitext(os.path.basename(__file__
→˓))[0] + '_' + pattern
os.mkdir(path)
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Measuring the constant intensity and phase at the SLM

Measuring the constant intensity and phase at the SLM is crucial for accurate experimental results - see the supple-
mentary information of our publication for details.

if measure_slm_intensity is True:
i_path = clb.measure_slm_intensity(slm_disp_obj, cam_obj, pms_obj, 30, 32, 10000,␣

→˓256, 300)
pms_obj.i_path = i_path

if measure_slm_phase is True:
phi_path = clb.measure_slm_wavefront(slm_disp_obj, cam_obj, pms_obj, 30, 16, 64,␣

→˓40000, 256, roi_min_x=2,
roi_min_y=2, roi_n=26)

pms_obj.phi_path = phi_path

Using the functions above, this is our constant field at the SLM after upscaling it to the native resolution of the SLM:

Defining the target light potential

The patterns.Hologram class contains pre-defined patterns from our publication. It creates

• the upscaled measured constant SLM phase and intensity,

• the initial SLM phase guess,

• the target intensity pattern,

• and the signal region.

Feel free to define the arrays above yourself - using the patterns.Hologram class is not mandatory.

holo = p.Hologram(slm_disp_obj, pms_obj, pattern, npix, npix_pad=npix_pad, pix_res=pix_
→˓res, phase_guess_type=guess_type,

linear_phase=linear_phase, quadratic_phase=quad_phase, slm_field_type=
→˓'measured',

(continues on next page)
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propagation_type=propagation_type, target_position=mask_pos, target_
→˓width=target_width,

target_blur=target_blur)

Here is our target light potential, a Gaussian spot array, and the signal region:

The target is shifted away from the center to avoid the zeroth order diffration spot. The phase retrieval algorithm only
optimises for the intensity inside the signal region.

We use an analytic initial SLM phase guess consisting of a quadratic and a linear phase term. The quadratic phase term
depends on the size and the aspect ratio of the target pattern while the linear term depends on the position of the pattern
with respect to the optical axis. The initial phase guess defined here looks like this:
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Creating a virtual SLM object

This is a digital twin of the experimental Fourier holography setup. The forward method of VirtualSlm takes an
SLM phase pattern, models pixel crosstalk on the SLM and the propagation of light from the SLM to the camera. It
returns the electric field at the image plane.

# Create SLM mask to set unused pixels to zero
slm_mask = np.zeros((npix, npix))
slm_mask[pms_obj.crop:-pms_obj.crop, pms_obj.crop:-pms_obj.crop] = 1

# Pixel pitch in the Fourier plane (padded) [m]
img_pitch = pms_obj.wavelength * pms_obj.fl / (slm_disp_obj.pitch * slm_disp_obj.res[0]␣
→˓* 2)
xf = -256 * img_pitch # ToDO: Explain this.

# Create virtual SLM object
slm_obj = tfn.VirtualSlm(slm_disp_obj, pms_obj, holo.phi_init, npix_pad, npix=npix, e_
→˓slm=holo.e_slm,

kernel_ct=kernel_ct, pix_res=pix_res, propagation_
→˓type=propagation_type,

extent_lens=pms_obj.lens_aperture, pd1=pd1, pd2=pd2, xf=xf,␣
→˓device=device, slm_mask=slm_mask,

precision=precision, fft_shift=fft_shift).to(device)
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Camera calibration

Here, we calculate the affine transformation matrix between camera coordinates and image plane coordinates. This is
important to compare the simulated light potential to the captured camera image.

if calc_transform is False:
tf = np.load(tf_path + 'tf.npy')
itf = np.load(tf_path + 'itf.npy')

else:
# ToDO: Control over checkerboard position missing.
tf, itf = tfn.camera_calibration(slm_obj, slm_disp_obj, cam_obj, pms_obj, save=True,␣

→˓exp_time=1000,
checkerboard_rows=16, checkerboard_columns=12,␣

→˓checkerboard_square_size=30)

This is the result:

Note that the zeroth-order diffraction spot is now located in the center of the computational image plane on the right
hand side.

Running the camera feedback algorithm

First, we create an object from torch_functions.PhaseRetrieval which sets the phase retrieval method. By
default, torch_functions.PhaseRetrieval performs conjugate gradient minimisation using an amplitude-only
cost function (see https://doi.org/10.1364/OE.22.026548).

This phase retrieval method is then used iteratively by the camera feedback algorithm (see https://dx.doi.org/10.1088/
0953-4075/48/11/115303).

Before running the camera feedback algorithm, we set the phase of the virtual SLM , slm_obj, with the initial phase
guess. The phase pattern of slm_obj might have been modified by the torch_functions.camera_calibration
function.

phase_retrieval_obj = tfn.PhaseRetrieval(slm_obj, n_iter=int(iter_cg[0]), i_tar=holo.i_
→˓tar, signal_region=holo.sig_mask,

save=convergence, n_save=n_save)

(continues on next page)
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if propagation_type == 'asm':
# Modify the initial phase pattern on our virtual SLM if the ASM is used.
slm_obj.set_phi(holo.phi_init - slm_obj.asm_obj.phi_q_native)

else:
phase_retrieval_obj.slm_obj.set_phi(holo.phi_init)

# Run camera feedback algorithm
output = tfn.camera_feedback(phase_retrieval_obj, slm_disp_obj, cam_obj, tf, itf, iter_
→˓fb=iter_fb, iter_cg=iter_cg,

detect_vortices=detect_vortices, threshold_vtx=threshold_
→˓vtx, n_save=n_save,

n_avg=n_frames_avg, exp_time=exp_time, fb_blur=feedback_
→˓blur, alpha=alpha,

convergence=convergence, iter_convergence=iter_plot,␣
→˓path=path)

phi, img, M, T, [rmse, psnr], [rmse_conv_sv, rmse_pred_conv_sv, eff_conv_sv, n_conv_sv]␣
→˓= output

After the first 50 CG iterations, the optimised SLM phase pattern is displayed on the device and a camera image is
taken:

Here, we only show the signal region on the camera. The experimental errors in the camera image are greatly reduced
after 10 camera feedback iterations with 50 CG iterations each:
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# Transfer electric field in the image plane to CPU
e_out = tfn.gpu_to_numpy(slm_obj())

# Calculate intensity pattern of the simulated light potential
i_out = np.abs(e_out) ** 2

# Calculate phase pattern of simulated light potential
phi_out = np.angle(e_out)

# Calculate efficiency
eff = m.eff(holo.sig_mask, i_out)
print('Efficiency of the simulation:', eff * 100, '%')

Plotting

px = 1 / plt.rcParams['figure.dpi']
fig0, axs0 = plt.subplots(figsize=(800*px, 400*px))
plt.plot(np.arange(1, iter_fb + 1), rmse * 100, 'k*', label='RMS error')
plt.title('Experimental RMS error vs iteration number')
plt.xlabel('feedback iteration number')
plt.ylabel('experimental RMS error [%]')

plt.figure()
plt.plot(psnr, 'go', label='PSNR')
plt.title('Experimental PSNR vs iteration number')
plt.xlabel('experimental iteration number')
plt.ylabel('PSNR [dB]')

We can now plot the rms error of the camera images after each feedback iteration:
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The feedback algorithm lowered rms error from ~12 % to ~1.6 %.

plt.figure()
plt.imshow(i_out, cmap='turbo')
plt.title('Simulated light potential')

plt.figure()
plt.imshow(phi_out, cmap='magma')
plt.title('Phase of simulated light potential')

plt.figure()
plt.imshow(img[..., -1].squeeze(), cmap='turbo')
plt.title('Camera image')
plt.savefig(path + '//img.pdf', dpi=1200)

target_norm = T[..., 0].squeeze() * tfn.camera_feedback.sig_mask_tf
mask_target = target_norm > 0.1 * np.max(target_norm)
target_norm = target_norm / np.sum(target_norm[mask_target])

img_norm = img[..., 3].squeeze() * mask_target
img_norm = img_norm / np.sum(img_norm)
diff_img = (img_norm - target_norm) * mask_target

plt.figure()
plt.imshow(diff_img, cmap='seismic', vmin=-np.max(np.abs(diff_img)), vmax=np.max(np.
→˓abs(diff_img)))

We can investigate the convergence of the phase retrieval algorithm in-between feedback iterations by saving interme-
diate phase patterns, displaying them on the SLM and capturing the resulting camera image. This allows us to see when
the rms error of the camera image converges to determine the number of CG iterations needed per feedback iteration.

# Plot and save convergence graphs
if convergence is True:

(continues on next page)
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plt.figure('rmse')
x = min(iter_plot)
for i in range(len(iter_plot)):

plt.figure('rmse')
x = np.linspace(iter_plot[i] - 1 + 1 / iter_cg[iter_plot[i] - 1],

iter_plot[i] - 1 + n_conv_sv[i] * n_save / iter_cg[iter_plot[i] -
→˓ 1], n_conv_sv[i])

line_exp, = plt.plot(x, rmse_conv_sv[i] * 100, '-', color='C0')
line_pred, = plt.plot(x, rmse_pred_conv_sv[i] * 100, '--', color='r')

plt.figure('eff')
plt.plot(x, eff_conv_sv[i] * 100, '-', color='C1')

line_exp.set_label('experiment')
line_pred.set_label('predicted')

plt.figure('rmse')
plt.plot(np.arange(1, iter_fb + 1), rmse * 100, 'k*', label='RMS within 50% of max.␣

→˓intensity')
plt.legend()
plt.xlabel('CG iterations')
plt.ylabel('RMS error [%]')
plt.grid()
plt.savefig(path + '//rmse.pdf', bbox_inches='tight', dpi=600)

plt.figure('eff')
plt.xlabel('CG iterations')
plt.ylabel('Predicted efficiency [%]')
plt.grid()
plt.savefig(path + '//efficiency.pdf', bbox_inches='tight', dpi=600)

Saving data

Saving data to the hard drive.

if save is True:
np.save(path + '//lin_phase', linear_phase)
np.save(path + '//quad_phase', quad_phase)
np.save(path + '//tf', tf)
np.save(path + '//itf', itf)
np.save(path + '//T', T)
np.save(path + '//npix', npix)
np.save(path + '//npix_pad', npix_pad)
np.save(path + '//pix_res', pix_res)
np.save(path + '//M', M)
np.save(path + '//img', img)
np.save(path + '//phi', phi)
np.save(path + '//prop', propagation_type)
np.save(path + '//exp_time', exp_time)
np.save(path + '//kernel_ct', kernel_ct)

(continues on next page)
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(continued from previous page)

np.save(path + '//rmse', rmse)
np.save(path + '//eff', eff)
np.save(path + '//psnr', psnr)

np.save(path + '//rmse_conv_sv', rmse_conv_sv)
np.save(path + '//rmse_pred_conv_sv', rmse_pred_conv_sv)
np.save(path + '//eff_conv_sv', eff_conv_sv)
np.save(path + '//n_conv_sv', n_conv_sv)
np.save(path + '//iter_plot', iter_plot)

np.save(path + '//a_tar', holo.a_tar)
np.save(path + '//sig_mask', holo.sig_mask)
np.save(path + '//n_save', n_save)
np.save(path + '//iter_fb', iter_fb)

2.3 API Reference

This page contains auto-generated API reference documentation1.

2.3.1 hologradpy

Submodules

hologradpy.calibrate_slm

Module to measure the constant amplitude and phase at the SLM.

Functions

find_camera_position(slm_disp_obj, cam_obj,
pms_obj, ...)

This function generates a spot on the camera by display-
ing a circular aperture on the SLM containing a linear
phase

get_aperture_indices(nx, ny, x_start, x_stop,
y_start, ...)

This function calculates a grid of nx * ny rectangular
regions in an array and returns the start and end indices

measure_slm_intensity(slm_disp_obj, cam_obj,
pms_obj, ...)

This function measures the intensity profile of the laser
beam incident onto the SLM by displaying a sequence of

measure_slm_wavefront(slm_disp_obj, cam_obj,
pms_obj, ...)

This function measures the constant phase at the SLM
by displaying a sequence of rectangular phase masks on
the SLM.

1 Created with sphinx-autoapi
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Module Contents

hologradpy.calibrate_slm.find_camera_position(slm_disp_obj, cam_obj, pms_obj, lin_phase,
exp_time=100, aperture_diameter=25, roi=[500, 500])

This function generates a spot on the camera by displaying a circular aperture on the SLM containing a linear
phase gradient. The position of the spot is found by fitting a Gaussian to the camera image.

Parameters

• slm_disp_obj – Instance of your own subclass of hardware.SlmBase

• cam_obj –

• pms_obj –

• npix – Number of used SLM pixels

• lin_phase – x and y gradient of the linear phase

• cam_name – Name of the camera to be used

• exp_time – Exposure time

• aperture_diameter – Diameter of the circular aperture

• roi – Width and height of the region of interest on the camera to remove the zeroth-order
diffraction spot

Returns
x and y coordinates of the spot on the camera

hologradpy.calibrate_slm.get_aperture_indices(nx, ny, x_start, x_stop, y_start, y_stop, aperture_width,
aperture_height)

This function calculates a grid of nx * ny rectangular regions in an array and returns the start and end indices
of each region. All units are in pixels.

Parameters

• nx – Number of rectangles along x.

• ny – Number of rectangles along y.

• x_start – Start index for first rectangle along x.

• x_stop – End index for last rectangle along x.

• y_start – Start index for first rectangle along y.

• y_stop – End index for last rectangle along y.

• aperture_width – Width of rectangle.

• aperture_height – Height of rectangle.

Returns
List with four entries for the start and end index along x and y: [idx_start_y, idx_end_y,
idx_start_x, idx_end_x]. Each list entry is a vector of length nx * ny containing the start/end
index for each rectangle along x/y.

hologradpy.calibrate_slm.measure_slm_intensity(slm_disp_obj, cam_obj, pms_obj, aperture_number,
aperture_width, exp_time, spot_pos, roi_width)

This function measures the intensity profile of the laser beam incident onto the SLM by displaying a sequence
of rectangular phase masks on the SLM. The phase mask contains a linear phase which creates a diffraction spot
on the camera. The position of the phase mask is varied across the entire area of the SLM and the intensity of
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each diffraction spot is measured using the camera. Read the SI of https://doi.org/10.1038/s41598-023-30296-6
for details.

Parameters

• slm_disp_obj – Instance of your own subclass of hardware.SlmBase.

• cam_obj – Instance of your own subclass of hardware.CameraBase.

• aperture_number – Number of square regions along x/ y.

• aperture_width – Width of square regions [px].

• exp_time – Exposure time.

• spot_pos – x/y position of the diffraction spot in th computational Fourier plane [Fourier
pixels].

• roi_width – Width of the region of interest on the camera [camera pixels].

Returns

hologradpy.calibrate_slm.measure_slm_wavefront(slm_disp_obj, cam_obj, pms_obj, aperture_number,
aperture_width, img_size, exp_time, spot_pos,
n_avg_frames=10, benchmark=False,
phi_load_path=None, roi_min_x=16, roi_min_y=16,
roi_n=8)

This function measures the constant phase at the SLM by displaying a sequence of rectangular phase masks on
the SLM. This scheme was adapted from this Phillip Zupancic’s work (https://doi.org/10.1364/OE.24.013881).
For details of our implementation, read the SI of https://doi.org/10.1038/s41598-023-30296-6.

Parameters

• slm_disp_obj – Instance of your own subclass of hardware.SlmBase.

• cam_obj – Instance of your own subclass of hardware.CameraBase.

• pms_obj – Instance of your own subclass of hardware.Parameters.

• aperture_number – Number of square regions along x/ y.

• aperture_width – Width of square regions [px].

• img_size – Width of the roi in the camera image [camera pixels].

• exp_time – Exposure time.

• spot_pos – x/y position of the diffraction spot in th computational Fourier plane [Fourier
pixels].

• n_avg_frames – Number of camera frames to average per shot.

• benchmark (bool) – Load previously measured constant phase and display it on the SLM
to check for flatness.

• phi_load_path – Path to previously measured constant phase.

• roi_min_x – Aperture column number to display the first phase mask.

• roi_min_y – Aperture row number to display the first phase mask.

• roi_n – Number of apertures to display (roi_n * roi_n), starting at roi_min_x, roi_min_y.

Returns
Path to measured constant phase at the SLM.
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hologradpy.error_metrics

This module contains functions to characterise light potentials.

Functions

normalize(img, roi[, thres]) Normalises an image by dividing it by the pixel sum in a
region of interest. Only pixels brighter than

fidelity(signal, a_tar, phi_tar, a_out, phi_out) Calculate fidelity between two electric fields in a region
of interest (signal region).

rms(signal, i_target, i_out[, frac]) Calculate normalised root-mean-squared error between
two images inside a region of interest. Only pixels which
are brighter

rms_phase(phi) Calculates the root-mean-squared error of an image.
psnr(signal, i_target, i_out) Calculates the peak signal-to-noise ratio between two

images in a region of interest according to
eff (signal, i_out) Calculates the predicted efficiency of a light potential by

dividing the pixel sum in the signal region by

Module Contents

hologradpy.error_metrics.normalize(img, roi, thres=0.5)
Normalises an image by dividing it by the pixel sum in a region of interest. Only pixels brighter than thres *
max(roi * img) are taken into account.

Parameters

• img – Input image.

• roi – Binary mask containing region of interest.

• thres – Pixel value threshold (see above).

Returns
Normalised image.

hologradpy.error_metrics.fidelity(signal, a_tar, phi_tar, a_out, phi_out)
Calculate fidelity between two electric fields in a region of interest (signal region).

Parameters

• signal – Binary mask containing the region of interest.

• a_tar – Target amplitude pattern.

• phi_tar – Target phase pattern.

• a_out – Amplitude of light potential.

• phi_out – Phase of light potential.

Returns
Fidelity.
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hologradpy.error_metrics.rms(signal, i_target, i_out, frac=0.5)
Calculate normalised root-mean-squared error between two images inside a region of interest. Only pixels which
are brighter than frac * max(i_target_norm) are taken into account, where i_target_norm is the nor-
malised target intensity pattern.

Parameters

• signal – Binary mask containing region of interest (signal region).

• i_target – Target intensity pattern.

• i_out – Intensity pattern of light potential.

• frac – Threshold as explained above.

Returns
Normalised rms error.

hologradpy.error_metrics.rms_phase(phi)
Calculates the root-mean-squared error of an image.

Parameters
phi – Phase pattern.

Returns
Root-mean-squared error.

hologradpy.error_metrics.psnr(signal, i_target, i_out)
Calculates the peak signal-to-noise ratio between two images in a region of interest according to https://doi.org/
10.1364/OE.24.006249.

Parameters

• signal – Binary mask containing region of interest (signal region).

• i_target – Target intensity pattern.

• i_out – Intensity pattern of light potential.

Returns
Peak signal-to-noise ratio [dB].

hologradpy.error_metrics.eff(signal, i_out)
Calculates the predicted efficiency of a light potential by dividing the pixel sum in the signal region by the pixel
sum in the entire pattern.

Parameters

• signal – Binary mask containing the signal region.

• i_out – Intensity pattern of the light potential.

Returns
Efficiency.
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hologradpy.fitting

This module contains functions for curve fitting.

Classes

FitSine This class is used in the wavefront measurement to fit a
2D sine to the interference pattern on the camera. The

Functions

tilt(xy, *args[, mask]) Fit function containing the first three Zernike polynomi-
als of the form z = c0 + c1 * x + c2 * y + c3 * 2xy.

remove_tilt(img[, mask]) This function removes fits the first three Zernike polyno-
mials (Piston and tilt) to an image and subtracts the

gaussian(xy, *args) Gaussian fit function.
fit_gaussian(img[, dx, dy, sig_x, sig_y, a, c, ...]) Fits a 2D Gaussian to an image. The image s blurred

using a Gaussian filer before fitting.

Module Contents

hologradpy.fitting.tilt(xy, *args, mask=None)
Fit function containing the first three Zernike polynomials of the form z = c0 + c1 * x + c2 * y + c3 * 2xy.

Parameters

• xy – x, y coordinate vectors.

• args – Vector of length 4, containing Zernike coefficients.

Returns
First 3 Zernike polynomials.

hologradpy.fitting.remove_tilt(img, mask=None)
This function removes fits the first three Zernike polynomials (Piston and tilt) to an image and subtracts the fitted
function from the original image. :param ndarray img: Input image. :param ndarray mask: Binary mask in
which to remove tilt. :return: Image without tilt.

hologradpy.fitting.gaussian(xy, *args)
Gaussian fit function.

Parameters

• xy – x, y coordinate vectors.

• args – Fitting parameters passed to patterns.gaussian.

Returns
Gaussian.
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hologradpy.fitting.fit_gaussian(img, dx=None, dy=None, sig_x=15, sig_y=15, a=None, c=0,
blur_width=10, xy=None)

Fits a 2D Gaussian to an image. The image s blurred using a Gaussian filer before fitting.

Parameters

• img – Input image.

• dx – X-offset of Gaussian [px].

• dy – Y-offset of Gaussian [px].

• sig_x – X-width of Gaussian [px].

• sig_y – -width of Gaussian [px].

• a – Amplitude.

• c – Offset.

• blur_width – Width of Gaussian blurring kernel [px].

• xy – X, Y meshgrid. If not specified, pixel coordinates are used.

Returns
Fitting parameters, parameter errors.

class hologradpy.fitting.FitSine(fl, k, dx=None, dy=None)
This class is used in the wavefront measurement to fit a 2D sine to the interference pattern on the camera. The
distance between the sample and reference patch can be set by calling the method set_dx_dy.

set_dx_dy(dx, dy)
Method to set parameters dx and dy. :param dx: New dx. :param dy: New dy.

fit_sine(xy, *args)
Method to perform 2D sine fit. :param xy: x, y coordinate vectors. :param args: Args passed to pat-
terns.fringes_wavefront :return: 2D sine.

hologradpy.hardware

This module provides to interface with the camera and the SLM.

Classes

ParamsBase Class storing experimental parameters and constant
properties.

CameraBase Helper class that provides a standard way to create an
ABC using

SlmBase Helper class that provides a standard way to create an
ABC using
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Functions

get_image_avg(cam_obj, exp_time, n_avg) This function captures multiple camera images and cal-
culates the average.

Module Contents

class hologradpy.hardware.ParamsBase

Bases: abc.ABC

Class storing experimental parameters and constant properties.

abstract property wavelength

Wavelength [m].

property k

Wavenumber [rad/m].

abstract property beam_diameter

Diameter of incident Gaussian beam [m].

abstract property fl

Focal length [m].

n1 = 1.59847

n2 = 1.76182

r1 = 0.1377

r2

r3

lens_aperture = 0.0483

abstract property phi_path

abstract property i_path

abstract property data_path

Path to store data.

crop = 32

phi_filter_size = 5

i_filter_size = 3

class hologradpy.hardware.CameraBase(res, pitch, roi)
Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

property cam_size
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Calculates the physical size of the camera.

Returns
x, y dimensions of the camera [m].

abstract start(n=1)
You have to implement this yourself. Starts the acquisition.

Parameters
n – Number of frames to be captured.

abstract get_image(exp_time)
You have to implement this yourself. Acquires and returns a camera image of the shape determined by
self.roi.

Parameters
exp_time – Exposure time.

Returns
Camera image of shape as defined by self.roi

abstract stop()

You have to implement this yourself. Stops the acquisition.

hologradpy.hardware.get_image_avg(cam_obj, exp_time, n_avg)
This function captures multiple camera images and calculates the average.

Parameters

• cam_obj – Instance of your own camera class which is a subclass of CameraBase.

• exp_time – Exposure time.

• n_avg – Number of frames to be averaged.

Returns
Averaged image.

class hologradpy.hardware.SlmBase(res, pitch)
Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

property slm_size

Calculates the physical size of the SLM.

Returns
x, y dimensions of the SLM [m].

abstract display(phi)
This function displays a phase pattern on the SLM. You have to implement this yourself.

Parameters
phi – SLM phase pattern [radians].

Returns
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hologradpy.patterns

This module contains utility functions for array manipulation and functions to create binary masks, intensity and phase
patterns of various shapes.

The Hologram class provides arrays needed for the CG minimisation: The target light potential and the signal region,
the measured constant SLM phase and intensity at the required resolution, and the initial SLM phase guess to start the
CG minimisation.

Classes

Hologram This class provides arrays needed for the CG minimisa-
tion:
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Functions

make_grid(im[, scale]) Return a xy meshgrid based in an input array, im, ranging
from -scal * im.shape[0] // 2 to scal * im.shape[0] // 2.

pixel_corr(img, x, y) Replace a pixel value with coordinates x and y by the
mean value of its 3x3 neighbourhood.

unwrap_2d(img, **kwargs) Unwraps an image along the x- and y-axis.
unwrap_2d_mask(img, mask, **kwargs) Unwraps an image within a region of interest defined by

a binary mask.
crop(img, n_crop) Crops an image around all four edges by n_crop pixels.
crop_to_mask(img, mask) Crops an image to the smallest size taken up by a binary

mask.
load_filter_upscale(path, npx, pix_res[, crop, ...]) Loads a 2D numpy array and crops its edges. A uniform

filter is applied to the cropped image before it is upscaled
rect_mask(im, dx, dy, w, h) Rectangular mask using pixel coordinates of an input im-

age.
rect_mask_xy(x, y, dx, dy, w, h) Rectangular mask using XY meshgrid coordinates.
circ_mask(im, dx, dy, r) Circular mask using pixel coordinates of an input image.
circ_mask_xy(x, y, dx, dy, r[, sparse]) Circular mask using XY meshgrid coordinates.
gaussian(x, y, dx, dy, sig_x[, sig_y, a, c]) 2D Gaussian.
super_gaussian(x, y, dx, dy, nx, ny, sig_x, sig_y[, a,
c])

2D super-Gaussian.

gauss_array(im, nx, ny, dx, dy, d, sigma) Gaussian spot array using coordinates of input image.
ring_gauss(x, y, dx, dy, r, w[, a]) Ring with Gaussian profile.
checkerboard(npx, dx, dy, rows, columns,
square_size)

Creates a checkerboard on a canvas of (npx, npx) pixels.

fringes_wavefront(x, y, dx, dy, k, f, phi, a, b) Standing wave interference pattern on the camera caused
by two patches on the SLM seperated by dx and dy.

init_phase(img, slm_disp_obj, pms_obj[, lin_phase,
...])

SLM phase guess to initialise phase-retrieval algorithm
(see https://doi.org/10.1364/OE.16.002176).

lens(x, y, k, f) Phase of a parabolic lens.
doublet(x, y, k, n1, n2, r1, r2, r3[, dx, dy]) Phase of a doublet lens.
slm_phase_doublet(dx, dy, k, xf, yf, z1, z2, fl, n1, ...) Models the phase difference in the wavefront measure-

ment caused by the doublet lens and an out-of-focus
camera

pixel_ct_kernel(slm_pitch, pix_res, extent, m,
sigma)

2D blurring kernel to model pixel crosstalk on the SLM
(see https://doi.org/10.1186/s41476-021-00174-7).

vortex_field(img, m, x, y) Creates the phase of a vortex field of charge m at positions
x and y . The origin of the coordinate

detect_vortices(n_pix, e_holo, i_tar[, threshold]) This function detects the positions and charges of optical
vortices in an electric field.
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Module Contents

hologradpy.patterns.make_grid(im, scale=None)
Return a xy meshgrid based in an input array, im, ranging from -scal * im.shape[0] // 2 to scal * im.shape[0] // 2.

Parameters

• im – Input array.

• scale – Optional scaling factor.

Returns
x and y meshgrid arrays.

hologradpy.patterns.pixel_corr(img, x, y)
Replace a pixel value with coordinates x and y by the mean value of its 3x3 neighbourhood.

Parameters

• img – Input image.

• x – x-coordinate of pixel.

• y – y-coordinate of pixel.

Returns
Corrected image.

hologradpy.patterns.unwrap_2d(img, **kwargs)
Unwraps an image along the x- and y-axis.

Parameters

• img – Input image.

• kwargs – kwargs for np.unwrap() function.

Returns
Unwrapped image.

hologradpy.patterns.unwrap_2d_mask(img, mask, **kwargs)
Unwraps an image within a region of interest defined by a binary mask.

Parameters

• img – Input image.

• mask – Binary mask with region of interest.

• kwargs – kwargs for np.unwrap() function.

Returns
Unwrapped image.

hologradpy.patterns.crop(img, n_crop)
Crops an image around all four edges by n_crop pixels.

Parameters

• img – Input image.

• n_crop – Number of pixels to crop at both end of each dimension.

Returns
Cropped image.
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hologradpy.patterns.crop_to_mask(img, mask)
Crops an image to the smallest size taken up by a binary mask.

Parameters

• img – Input image.

• mask – Binary mask.

Returns
Cropped image.

hologradpy.patterns.load_filter_upscale(path, npx, pix_res, crop=None, filter_size=None)
Loads a 2D numpy array and crops its edges. A uniform filter is applied to the cropped image before it is upscaled
using Lanczos interpolation.

Parameters

• path – Numpy array or path to numpy array.

• npx – Number of SLM pixels.

• pix_res – Number of pixels per SLM pixel.

• crop – Number of unused pixels [SLM pixels].

• filter_size – Size of the uniform filter.

Returns
Upscaled image.

hologradpy.patterns.rect_mask(im, dx, dy, w, h)
Rectangular mask using pixel coordinates of an input image.

Parameters

• im – Input image

• dx – X-offset of rectangle from the centre of the image.

• dy – Y-offset of rectangle from the centre of the image.

• w – Width of rectangle.

• h – Height of rectangle.

Returns
Binary mask.

hologradpy.patterns.rect_mask_xy(x, y, dx, dy, w, h)
Rectangular mask using XY meshgrid coordinates.

Parameters

• x – X meshgrid

• y – Y meshgrid

• dx – X-offset of rectangle from the centre of the image.

• dy – Y-offset of rectangle from the centre of the image.

• w – Width of rectangle.

• h – Height of rectangle.

Returns
Binary mask.
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hologradpy.patterns.circ_mask(im, dx, dy, r)
Circular mask using pixel coordinates of an input image.

Parameters

• im – Input image

• dx – X-offset of circle.

• dy – Y-offset of circle.

• r – Radius of circle.

Returns
Binary mask.

hologradpy.patterns.circ_mask_xy(x, y, dx, dy, r, sparse=None)
Circular mask using XY meshgrid coordinates.

Parameters

• x – X meshgrid.

• y – Y meshgrid.

• dx – X-offset of circle.

• dy – Y-offset of circle.

• r – Radius of circle.

Returns
Binary mask.

hologradpy.patterns.gaussian(x, y, dx, dy, sig_x, sig_y=None, a=1, c=0)
2D Gaussian.

Parameters

• x – X meshgrid.

• y – Y meshgrid.

• dx – X-offset of Gaussian.

• dy – Y-offset of Gaussian.

• sig_x – X width of Gaussian.

• sig_y – Y width of Gaussian

• a – Amplitude.

• c – Offset.

Returns
2D Gaussian.

hologradpy.patterns.super_gaussian(x, y, dx, dy, nx, ny, sig_x, sig_y, a=1, c=0)
2D super-Gaussian.

Parameters

• x – X meshgrid.

• y – Y meshgrid.

• dx – X-offset of Gaussian.

34 Chapter 2. Features

A
p
p
en

d
ix

B
.
H
o
loG

ra
d
P
y
P
y
th
on

p
ackage120



HoloGradPy, Release 1.0

• dy – Y-offset of Gaussian.

• nx – X-order.

• ny – Y-order.

• sig_x – X-width.

• sig_y – Y-width.

• a – Amplitude.

• c – Offset.

Returns
2D super-Gaussian.

hologradpy.patterns.gauss_array(im, nx, ny, dx, dy, d, sigma)
Gaussian spot array using coordinates of input image.

Parameters

• im – Input image.

• nx – Number of array columns.

• ny – Number of array rows.

• dx – X-offset of array.

• dy – Y-offset of array.

• d – Separation between neighbouring spots.

• sigma – Width of Gaussian spots.

Returns
Spot array.

hologradpy.patterns.ring_gauss(x, y, dx, dy, r, w, a=1)
Ring with Gaussian profile.

Parameters

• x – X meshgrid.

• y – Y meshgrid.

• dx – X-offset of ring.

• dy – Y-offset of ring.

• r – Radius of ring.

• w – Width of Gaussian profile.

• a – Amplitude.

Returns
Ring with Gaussian profile.

hologradpy.patterns.checkerboard(npx, dx, dy, rows, columns, square_size)
Creates a checkerboard on a canvas of (npx, npx) pixels.

Parameters

• npx – Size of canvas.

• dx – X-offset of checkerboard.
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• dy – Y-Offset of checkerboard.

• rows – Checkerboard rows.

• columns – Checkerboard columns.

• square_size – Size of a square in pixels

Returns
Checkerboard.

hologradpy.patterns.fringes_wavefront(x, y, dx, dy, k, f , phi, a, b)
Standing wave interference pattern on the camera caused by two patches on the SLM seperated by dx and dy.
Equation adapted from https://doi.org/10.1364/OE.24.013881.

Parameters

• x – X meshgrid.

• y – Y meshgrid.

• dx – Separation between reference and sample patch along x [m].

• dy – Separation between reference and sample patch along y [m].

• k – Wavenumber [rad/m].

• f – Focal length of Fourier lens [m].

• phi – Phase difference between reference and sample patches (see paper above) [rad].

• a – Amplitude on reference patch.

• b – Amplitude on sample patch.

Returns
Interference pattern.

hologradpy.patterns.init_phase(img, slm_disp_obj, pms_obj, lin_phase=None, quad_phase=None,
lin_method=None)

SLM phase guess to initialise phase-retrieval algorithm (see https://doi.org/10.1364/OE.16.002176).

Parameters

• img (ndarray) – 2D array with size of desired output.

• slm_disp_obj – Instance of Params class

• lin_phase (ndarray) – Vector of length 2, containing parameters for the linear phase term

• quad_phase (ndarray) – Vector of length 2, containing parameters for the quadratic phase
term

• lin_method (str) – Determines how the linear phase term is parameterised. The options
are:

-‘pixel’
Defines the linear phase in terms of Fourier pixels [px].

-‘angles’
Defines the linear phase in terms of angles [rad].

Returns
Phase pattern of shape img.shape
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hologradpy.patterns.lens(x, y, k, f )
Phase of a parabolic lens.

Parameters

• x – X-meshgrid [m].

• y – Y-meshgrid [m].

• k – Wavenumber [rad/m].

• f – Focal length [m].

Returns
Phase of the lens [rad].

hologradpy.patterns.doublet(x, y, k, n1, n2, r1, r2, r3, dx=None, dy=None)
Phase of a doublet lens.

Parameters

• x – X-meshgrid [m].

• y – Y-meshgrid [m].

• k – Wavenumber [rad/m].

• n1 – Refractive index of flint.

• n2 – Refractive index of crown.

• r1 – Radius of curvature of the first crown surface [m].

• r2 – Radius of curvature of the second crown surface/ first flint surface [m].

• r3 – Radius of curvature of the second flint surface [m].

• dx – X-offset of lens [m].

• dy – Y-offset of lens [m].

Returns
Phase of the doublet lens [rad].

hologradpy.patterns.slm_phase_doublet(dx, dy, k, xf , yf , z1, z2, fl, n1, n2, r1, r2, r3)
Models the phase difference in the wavefront measurement caused by the doublet lens and an out-of-focus camera
placement (see equation S8 in the supplementary information of https://doi.org/10.1038/s41598-023-30296-6).

Parameters

• dx – X-position of sample patch [m].

• dy – Y-position of sample patch [m].

• k – Wavenumber [rad/m].

• xf – X-position of phase measurement in the image plane [m].

• yf – Y-position of phase measurement in the image plane [m].

• z1 – Distance between SLM and lens [m].

• z2 – Distance between lens and camera [m].

• fl – Focal length of doublet lens [m].

• n1 – Refractive index of flint.

• n2 – Refractive index of crown.
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• r1 – Radius of curvature of the first crown surface [m].

• r2 – Radius of curvature of the second crown surface/ first flint surface [m].

• r3 – Radius of curvature of the second flint surface [m].

Returns
Corrective phase pattern [rad].

hologradpy.patterns.pixel_ct_kernel(slm_pitch, pix_res, extent, m, sigma)
2D blurring kernel to model pixel crosstalk on the SLM (see https://doi.org/10.1186/s41476-021-00174-7).

Parameters

• slm_pitch – Pixel pitch of SLM [m].

• pix_res – Up-scaling factor (computational pixels per SLM pixel).

• extent – Spatial extent of kernel in SLM pixels.

• m – Order of the kernel.

• sigma – Width of the kernel.

Returns
2D blurring kernel.

hologradpy.patterns.vortex_field(img, m, x, y)
Creates the phase of a vortex field of charge m at positions x and y . The origin of the coordinate system is in the
top-left corner of img .

Parameters

• img – 2D array with size of desired output.

• m – Vector of vortex charge (1 or -1).

• x – Vector of vortex x-coordinate [px].

• y – Vector of vortex y-coordinate [px].

Returns
Phase of vortex field with size img.shape.

hologradpy.patterns.detect_vortices(n_pix, e_holo, i_tar, threshold=None)
This function detects the positions and charges of optical vortices in an electric field. Todo: Tidy up this function
and improve documentation.

Parameters

• n_pix – Number of pixels.

• e_holo – Electric field.

• i_tar – Target intensity pattern.

• threshold – Only look for vortices in areas which are brighter than theshold *
max(abs(i_tar) ** 2). Vortices in low-intensity regions are hard to detect.

Returns
Charge of vortices and their xy coordinates.
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class hologradpy.patterns.Hologram(slm_disp_obj, pms_obj, name, npix, npix_pad=None, pix_res=1,
phase_guess_type='random', linear_phase=None,
quadratic_phase=None, slm_field_type='guess',
propagation_type='fft', target_position=None, target_width=None,
target_blur=None, checkerboard_rows=8, checkerboard_columns=10,
checkerboard_square_size=32)

This class provides arrays needed for the CG minimisation:

• The target light potential

• the signal region

• the measured constant SLM phase and intensity at the required resolution

• and the initial SLM phase guess to start the phase retrieval.

Some patterns, including the patterns from our publication (https://doi.org/10.1038/s41598-023-30296-6), are
pre-defined here. Feel free to define your own patterns, you don’t have to use this class to do this.

Todo: Tidy up this class and improve documentation.

hologradpy.torch_functions

Module containing PyTorch-specific functions to perform conjugate gradient minimisation.

Classes

ASM This class models the propagation of light from the SLM
to the Fourier lens and from the Fourier lens to the image

VirtualSlm This class models pixel crosstalk on the SLM and the
propagation of light from the SLM to the camera.

PhaseRetrieval This function calculates the SLM phase pattern for a
given target light potential in the image plane using con-
jugate
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Functions

check_device([verbose]) Check if GPU is available.
gpu_to_numpy(gpu_tensor)

fft(e_in[, shift, norm]) Performs the FFT.
ifft(e_in[, shift, norm]) Performs the IFFT.
asm(e_in, e_lens, theta1[, theta2, shift]) Performs the angular spectrum method (ASM) twice,

from the SLM to the Fourier lens and from the Fourier
lens to the

rms(signal, i_target, i_out, frac) Calculate normalised root-mean-squared error between
two images inside a region of interest. Only pixels which
are

eff (signal, i_out) Calculates the predicted efficiency of a light potential by
dividing the pixel sum in the signal region by

loss_fn_fid(e_out, i_tar, phi_tar, signal) Phase and amplitude cost function from https://doi.org/
10.1364/OE.25.011692.

loss_fn_amp(e_out, i_tar, signal) Amplitude-only cost function from https://doi.org/10.
1364/OE.22.026548.

camera_calibration(slm_obj, slm_disp_obj,
cam_obj, pms_obj)

This function performs the camera calibration to obtain
the coordinate transform between

camera_feedback(phase_retrieval_obj, slm_disp_obj,
...)

This function implements a camera feedback algorithm
to reduce experimental errors in the light potentials

Module Contents

hologradpy.torch_functions.check_device(verbose=None)
Check if GPU is available.

Parameters
verbose (bool) – Verbose output?

Returns
‘cuda’ if GPU available, otherwise ‘cpu’.

hologradpy.torch_functions.gpu_to_numpy(gpu_tensor)

hologradpy.torch_functions.fft(e_in, shift=True, norm=None)
Performs the FFT.

Parameters

• e_in – Input electric field.

• shift (bool) – Perform FFT shift?

• norm – Normalisation of FFT.

Returns
FFT of e_in.

hologradpy.torch_functions.ifft(e_in, shift=True, norm=None)
Performs the IFFT.

Parameters
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• e_in – Input electric field.

• shift (bool) – Perform IFFT shift?

• norm – Normalisation of IFFT.

Returns
IFFT of e_in.

hologradpy.torch_functions.asm(e_in, e_lens, theta1, theta2=None, shift=True)
Performs the angular spectrum method (ASM) twice, from the SLM to the Fourier lens and from the Fourier
lens to the camera.

Parameters

• e_in – Electric field at the SLM.

• e_lens – Electric field of the lens (phase and aperture).

• theta1 – Propagation phase from SLM to lens.

• theta2 – Propagation phase from lens to camera. If not provided it is assumed theta2 =
theta1.

• shift (bool) – Perform FFT shift?

Returns
Electric field at the camera.

class hologradpy.torch_functions.ASM(slm_disp_obj, pms_obj, pix_res, npix_tot, pd1, pd2, extent_lens, xf ,
shift=False, precision='single', device='cuda')

This class models the propagation of light from the SLM to the Fourier lens and from the Fourier lens to the image
plane using the angular spectrum method. The lens is modelled as a doublet. The ASM wavefront correction is
also calculated in this class.

forward(e_in)
This function performs the simulation.

Parameters
e_in – Electric field at the SLM plane.

Returns
Electric field at the image plane.

class hologradpy.torch_functions.VirtualSlm(slm_disp_obj, pms_obj, phi, npix_pad, npix=None,
e_slm=None, kernel_ct=None, pix_res=None,
propagation_type='fft', extent_lens=None, pd1=None,
pd2=None, xf=None, device='cpu', slm_mask=None,
precision=None, fft_shift=True)

Bases: torch.nn.Module

This class models pixel crosstalk on the SLM and the propagation of light from the SLM to the camera.

set_phi(new_phi)
Set SLM phase from numpy array.

Parameters
new_phi (ndarray) – SLM phase [rad].

forward()

Model the SLM and simulate the propagation of light from the SLM plane to the image plane. This method
is used by gradient-based optimizers.
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Returns
Electric field in the image plane.

hologradpy.torch_functions.rms(signal, i_target, i_out, frac)
Calculate normalised root-mean-squared error between two images inside a region of interest. Only pixels which
are brighter than frac * np.max(i_target_norm) are taken into account, where i_target_norm is the nor-
malised target intensity pattern.

Parameters

• signal – Binary mask containing region of interest (signal region).

• i_target – Target intensity pattern.

• i_out – Intensity pattern of light potential.

• frac – Threshold as explained above.

Returns
Normalised rms error.

hologradpy.torch_functions.eff(signal, i_out)
Calculates the predicted efficiency of a light potential by dividing the pixel sum in the signal region by the pixel
sum in the entire pattern.

Parameters

• signal – Binary mask containing the signal region.

• i_out – Intensity pattern of the light potential.

Returns
Predicted efficiency.

hologradpy.torch_functions.loss_fn_fid(e_out, i_tar, phi_tar, signal)
Phase and amplitude cost function from https://doi.org/10.1364/OE.25.011692.

Parameters

• e_out – Electric field at the image plane.

• i_tar – Target intensity pattern.

• phi_tar – Target phase pattern.

• signal – Binary mask containing signal region.

Returns
Cost.

hologradpy.torch_functions.loss_fn_amp(e_out, i_tar, signal)
Amplitude-only cost function from https://doi.org/10.1364/OE.22.026548.

Parameters

• e_out – Electric field at the image plane.

• i_tar – Target intensity pattern.

• signal – Binary mask containing signal region.

Returns
Cost.
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class hologradpy.torch_functions.PhaseRetrieval(slm_obj, n_iter=10, i_tar=None, phi_tar=None,
signal_region=None, save=False, n_save=10,
loss_type='amp', optim_type='cg')

This function calculates the SLM phase pattern for a given target light potential in the image plane using conjugate
gradient minimisation or stochastic gradient descent (Adam).

set_target(target)
Sets the target light potential.

Parameters
target – Target light potential.

set_optimizer()

Sets the optimisation algorithm based on self.optim_type.

loss_fn(e_out)
Defines the loss function based on self.loss_type.

Parameters
e_out – Electric field at the image plane.

Returns
Loss value.

callback(x)
This function is called after every iteration of the optimisation. It saves intermediate SLM phase patterns
and the electric field in the image plane if save=True. The progress of the optimisation is printed after
every iteration.

retrieve_phase()

Performs phase retrieval algorithm.

Returns
Optimised SLM phase(s), (RMS error and efficiency if save=True)

hologradpy.torch_functions.camera_calibration(slm_obj, slm_disp_obj, cam_obj, pms_obj, save=None,
exp_time=None, checkerboard_rows=None,
checkerboard_columns=None,
checkerboard_square_size=None, linear_phase=None)

This function performs the camera calibration to obtain the coordinate transform between the camera image and
the computational image plane. To do this, an SLM phase pattern is calculated for a checkerboard-shaped target
light potential using CG minimisation and displayed on the SLM. The corners of the checkerboard in the resulting
camera image are detected and fitted to the corners of the checkerboard in the computational image plane using
an affine transformation.

Parameters

• slm_obj – Virtual SLM object created by VirtualSlm .

• slm_disp_obj – Object created by a subclass of hardware.SlmBase.

• cam_obj – Object created by a subclass of hardware.CameraBase.

• pms_obj – Object created by a subclass of hardware.ParamsBase.

• save (bool) – Save data?

• exp_time – Exposure time.

• checkerboard_rows –

• checkerboard_columns –
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• checkerboard_square_size –

• linear_phase –

Returns

hologradpy.torch_functions.camera_feedback(phase_retrieval_obj, slm_disp_obj, cam_obj, tf , itf ,
iter_fb=1, iter_cg=None, detect_vortices=False,
threshold_vtx=0.2, n_save=10, n_avg=10, exp_time=1000,
fb_blur=0, alpha=None, convergence=False,
iter_convergence=None, path=None)

This function implements a camera feedback algorithm to reduce experimental errors in the light potentials (see
https://dx.doi.org/10.1088/0953-4075/48/11/115303). Before applying any camera feedback, optical vortices in
the light potential are detected using the patterns.detect_vortices() function and removed if required.

After vortices are removed, the optimised phase pattern is displayed on the SLM and a camera image, M, is
recorded. To create the target light potential for the next feedback iteration, T[. . . , i + 1], a discrepancy, D,
between the camera image and the original target light potential, T[. . . , 0], is calculated and added to the previous
light potential, T[. . . , i].

At the end of each feedback iteration, the root-mean-squared error (RMSE) and the peak signal-to-noise ratio
(PSNR) of the camera image are calculated and saved. To find the experimental convergence of the CG minimi-
sation, intermediate SLM phase patterns are saved and displayed on the SLM. A camera image is taken for each
pattern and the RMSE is calculated.

Parameters

• phase_retrieval_obj – Instance of the class PhaseRetrieval.

• slm_disp_obj – Object created by a subclass of hardware.SlmBase.

• cam_obj – Object created by a subclass of hardware.CameraBase.

• tf – Affine transform matrix.

• itf – Inverse affine transform matrix.

• iter_fb – Number of feedback iterations.

• iter_cg – Number of conjugate gradient iterations per feedback iteration.

• detect_vortices (bool) – Detect vortices?

• threshold_vtx – See patterns.detect_vortices()

• n_save – Save data for every n_save th CG iteration.

• n_avg – Number of camera frames to capture and average per feedback iteration.

• exp_time – Exposure time.

• fb_blur – Width of blurring kernel for camera image [px].

• alpha – Feedback gain parameter for each feedback iteration.

• convergence (bool) – Save intermediate phase patterns during CG minimisation?

• iter_convergence – During which feedback iterations to save intermediate phase patterns.

• path – Save path.

Returns
See code.
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CHAPTER

THREE

CITE AS

If you are using this code, please cite our publication:

P. Schroff, A. La Rooij, E. Haller, S. Kuhr, Accurate holographic light potentials using pixel crosstalk modelling. Sci
Rep 13, 3252 (2023). https://doi.org/10.1038/s41598-023-30296-6

3.1 Indices and tables

• genindex

• modindex

• search
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PYTHON MODULE INDEX

h
hologradpy, 21
hologradpy.calibrate_slm, 21
hologradpy.error_metrics, 24
hologradpy.fitting, 26
hologradpy.hardware, 27
hologradpy.patterns, 30
hologradpy.torch_functions, 39
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INDEX

A
ASM (class in hologradpy.torch_functions), 41
asm() (in module hologradpy.torch_functions), 41

B
beam_diameter (hologradpy.hardware.ParamsBase

property), 28

C
callback() (hologradpy.torch_functions.PhaseRetrieval

method), 43
cam_size (hologradpy.hardware.CameraBase property),

28
camera_calibration() (in module holo-

gradpy.torch_functions), 43
camera_feedback() (in module holo-

gradpy.torch_functions), 44
CameraBase (class in hologradpy.hardware), 28
check_device() (in module holo-

gradpy.torch_functions), 40
checkerboard() (in module hologradpy.patterns), 35
circ_mask() (in module hologradpy.patterns), 34
circ_mask_xy() (in module hologradpy.patterns), 34
crop (hologradpy.hardware.ParamsBase attribute), 28
crop() (in module hologradpy.patterns), 32
crop_to_mask() (in module hologradpy.patterns), 32

D
data_path (hologradpy.hardware.ParamsBase prop-

erty), 28
detect_vortices() (in module hologradpy.patterns),

38
display() (hologradpy.hardware.SlmBase method), 29
doublet() (in module hologradpy.patterns), 37

E
eff() (in module hologradpy.error_metrics), 25
eff() (in module hologradpy.torch_functions), 42

F
fft() (in module hologradpy.torch_functions), 40

fidelity() (in module hologradpy.error_metrics), 24
find_camera_position() (in module holo-

gradpy.calibrate_slm), 22
fit_gaussian() (in module hologradpy.fitting), 26
fit_sine() (hologradpy.fitting.FitSine method), 27
FitSine (class in hologradpy.fitting), 27
fl (hologradpy.hardware.ParamsBase property), 28
forward() (hologradpy.torch_functions.ASM method),

41
forward() (hologradpy.torch_functions.VirtualSlm

method), 41
fringes_wavefront() (in module holo-

gradpy.patterns), 36

G
gauss_array() (in module hologradpy.patterns), 35
gaussian() (in module hologradpy.fitting), 26
gaussian() (in module hologradpy.patterns), 34
get_aperture_indices() (in module holo-

gradpy.calibrate_slm), 22
get_image() (hologradpy.hardware.CameraBase

method), 29
get_image_avg() (in module hologradpy.hardware), 29
gpu_to_numpy() (in module holo-

gradpy.torch_functions), 40

H
hologradpy

module, 21
hologradpy.calibrate_slm

module, 21
hologradpy.error_metrics

module, 24
hologradpy.fitting

module, 26
hologradpy.hardware

module, 27
hologradpy.patterns

module, 30
hologradpy.torch_functions

module, 39
Hologram (class in hologradpy.patterns), 38
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I
i_filter_size (hologradpy.hardware.ParamsBase at-

tribute), 28
i_path (hologradpy.hardware.ParamsBase property), 28
ifft() (in module hologradpy.torch_functions), 40
init_phase() (in module hologradpy.patterns), 36

K
k (hologradpy.hardware.ParamsBase property), 28

L
lens() (in module hologradpy.patterns), 36
lens_aperture (hologradpy.hardware.ParamsBase at-

tribute), 28
load_filter_upscale() (in module holo-

gradpy.patterns), 33
loss_fn() (hologradpy.torch_functions.PhaseRetrieval

method), 43
loss_fn_amp() (in module hologradpy.torch_functions),

42
loss_fn_fid() (in module hologradpy.torch_functions),

42

M
make_grid() (in module hologradpy.patterns), 32
measure_slm_intensity() (in module holo-

gradpy.calibrate_slm), 22
measure_slm_wavefront() (in module holo-

gradpy.calibrate_slm), 23
module

hologradpy, 21
hologradpy.calibrate_slm, 21
hologradpy.error_metrics, 24
hologradpy.fitting, 26
hologradpy.hardware, 27
hologradpy.patterns, 30
hologradpy.torch_functions, 39

N
n1 (hologradpy.hardware.ParamsBase attribute), 28
n2 (hologradpy.hardware.ParamsBase attribute), 28
normalize() (in module hologradpy.error_metrics), 24

P
ParamsBase (class in hologradpy.hardware), 28
PhaseRetrieval (class in hologradpy.torch_functions),

42
phi_filter_size (hologradpy.hardware.ParamsBase

attribute), 28
phi_path (hologradpy.hardware.ParamsBase property),

28
pixel_corr() (in module hologradpy.patterns), 32

pixel_ct_kernel() (in module hologradpy.patterns),
38

psnr() (in module hologradpy.error_metrics), 25

R
r1 (hologradpy.hardware.ParamsBase attribute), 28
r2 (hologradpy.hardware.ParamsBase attribute), 28
r3 (hologradpy.hardware.ParamsBase attribute), 28
rect_mask() (in module hologradpy.patterns), 33
rect_mask_xy() (in module hologradpy.patterns), 33
remove_tilt() (in module hologradpy.fitting), 26
retrieve_phase() (holo-

gradpy.torch_functions.PhaseRetrieval
method), 43

ring_gauss() (in module hologradpy.patterns), 35
rms() (in module hologradpy.error_metrics), 24
rms() (in module hologradpy.torch_functions), 42
rms_phase() (in module hologradpy.error_metrics), 25

S
set_dx_dy() (hologradpy.fitting.FitSine method), 27
set_optimizer() (holo-

gradpy.torch_functions.PhaseRetrieval
method), 43

set_phi() (hologradpy.torch_functions.VirtualSlm
method), 41

set_target() (hologradpy.torch_functions.PhaseRetrieval
method), 43

slm_phase_doublet() (in module holo-
gradpy.patterns), 37

slm_size (hologradpy.hardware.SlmBase property), 29
SlmBase (class in hologradpy.hardware), 29
start() (hologradpy.hardware.CameraBase method),

29
stop() (hologradpy.hardware.CameraBase method), 29
super_gaussian() (in module hologradpy.patterns), 34

T
tilt() (in module hologradpy.fitting), 26

U
unwrap_2d() (in module hologradpy.patterns), 32
unwrap_2d_mask() (in module hologradpy.patterns), 32

V
VirtualSlm (class in hologradpy.torch_functions), 41
vortex_field() (in module hologradpy.patterns), 38

W
wavelength (hologradpy.hardware.ParamsBase prop-

erty), 28
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Greiner, M., Vuletić, V. & Lukin, M. D. Quantum phases of matter on a 256-atom

programmable quantum simulator. Nature 595, 227–232. doi:10.1038/s41586-

021-03582-4 (2021).

11. Kwon, W. J., Pace, G. D., Panza, R., Inguscio, M., Zwerger, W., Zaccanti, M.,

Scazza, F. & Roati, G. Strongly correlated superfluid order parameters from dc

Josephson supercurrents. Science 369, 84–88. doi:10.1126/science.aaz2463

(2020).

12. Luick, N., Sobirey, L., Bohlen, M., Singh, V. P., Mathey, L., Lompe, T. & Moritz,

H. An ideal Josephson junction in an ultracold two-dimensional Fermi gas. Sci-

ence 369, 89–91. doi:10.1126/science.aaz2342 (2020).

13. Guo, Y., Kroeze, R. M., Marsh, B. P., Gopalakrishnan, S., Keeling, J. & Lev,

B. L. An optical lattice with sound. Nature 599, 211–215. doi:10.1038/s41586-

021-03945-x (2021).

14. Sompet, P., Hirthe, S., Bourgund, D., Chalopin, T., Bibo, J., Koepsell, J., Bo-
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