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Abstract

In consideration to the significant healthcare funds given by donors, both rich countries

and philanthropic organizations, it is important to allocate this aid money in an effective

way. The conventional mechanism of healthcare funds allocation to the projects is based

on cost-effectiveness, i.e. the projects are ranked in their profit to cost ratios and are

prioritized based on this ranking. An alternative approach of allocating subsidies to

projects that are just cost-ineffective to a country rather than funding entire projects

that are cost-effective has been proposed in the literature. This approach will not

only encourage the country to contribute its resources but it will promote ownership of

projects that are subsidized from outside.

A Bi-level Programming Problem (BLPP) has been used to represent this approach

wherein there are two participants - a leader (donor agency) and a follower (recipient

country). In this specific BLPP, referred to as Donor-Recipient Bi-level Knapsack

Problem (DR-BKP) in our work, the donor has choice to subsidize healthcare projects

that are implemented by the recipient country and the country has choice to take these

subsidies for project selection using the further funding. There is a set of healthcare

projects, each one associated with a certain profit and cost, under consideration by

both participants. The cost of every project is common to the participants however the

profit values may differ for them. Along with the healthcare projects, the country has an

external project that is of no interest to the donor in this setup. Once the donor decides

on cost subsidies for the healthcare projects that are within its individual budget, the

country solves a knapsack problem with the cost subsidized projects and the external

project constrained by its own budget.
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Starting with an introduction to BLPPs and motivation of application in a health-

care economics problem, we present the DR-BKP in chapter 1. In chapter 2, we give

the literature reviewed for the BLPPs and their solution algorithms. In chapter 3, we

provide evidence for ΣP
2 -hardness by showing that the DR-BKP is both NP-hard and

Co-NP hard. After showing the existence of a solution for the DR-BKP, we give a

pair of finitely converging exact algorithms, an enumeration algorithm and a branching

algorithm, and show the convergence of these algorithms. A set of fifteen differing data

sets, each having randomly generated ten instances, have been generated and solved to

evaluate the performance of the proposed algorithms. These data sets are generated

such that they mimic a range of instances arising in real-life, i.e. starting from the ones

that can be trivially addressed to the ones that are complex and difficult to solve. The

complexity of some of these data sets is characterized firstly by the external project

having higher valuation than the healthcare projects, and then by the discrepancy in

the healthcare project valuation done by the two players. From the results of the com-

putational experiments, it can be seen that the branching algorithm performs better

when the instances are complex.

We give a nested sequential approach in chapter 4 for addressing the DR-BKP,

wherein the donor problem is solved using a genetic algorithm and the parameterized

country problem is solved using a heuristic or an exact solver. This is followed by

computational experiments of solving the fifteen data sets generated in chapter 3 using

the genetic algorithm and its results. At the end of chapter 4, we summarize the

performance of all the three algorithms over the fifteen data sets. The exact algorithms

perform better to solve the data sets with external project having higher valuation than

the healthcare projects, whereas the genetic algorithm performs better to solve the data

sets having discrepancies in the healthcare project valuation by the two players.

In chapter 5, we present generalizations of the proposed solution algorithms to other

bi-level optimization frameworks that are closer to realistic scenarios of the application,

like a single leader having multiple followers. Finally, we conclude the work done and

give directions for future research in chapter 6.
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Chapter 1

Introduction

A Bi-level Programming Problem (BLPP) consists of two optimization models in a

single instance. One optimization model is a part of the constraint set of another

optimization model. This creates a relationship between the two models since a solution

to one model makes an effect on another model. This rightly mimics the desired

hierarchical relation between two classes of decision-makers in a setup. Typically, a

central planner (or leader), with collective utility as an objective, makes an investment

decision based on which one or more agents (or followers) make decisions that maximize

their individual utility. Also, any behaviour made by the follower(s) is part of the

constraints of the leader and any decision made by either of the participants makes

an impact on the decisions made by the other participants. In the literature, the

hierarchical decision-making framework can be seen to originate from two domains.

One is from the domain of game theory, wherein Stackelberg (1934) developed decision

behavior models and established game-theoretic equilibria. Many bi-level optimization

problems we see today are originally proposed and studied as Stackelberg games in game

theory when there is a hierarchy in decision-making among the players (Kleinert et al.

2021). The other origin is from the domain of mathematical programming, wherein

Bracken & McGill (1973) introduced the nested structure of optimization problems as

BLPPs.

Usually, there are variables in both levels of a BLPP. The leader problem is modeled

at the upper-level and the follower(s) problem is modeled at the lower-level. There are
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Chapter 1. Introduction

several real-life decision-making problems that have more than one decision-makers,

wherein bi-level optimization framework can be used to model these problems and get

valuable solutions and/or insights for supporting the decision-makers.

A general formulation of a BLPP (Colson et al. 2005a) can be given as follows:

maximize
y∈Y, x∈X

f(y,x) (1.1a)

subject to F (y,x) ≤ 0 (1.1b)

x ∈ arg max
x′∈X
{g(y, x′) : G(y,x′) ≤ 0} (1.1c)

where, the upper-level decision variable is y ∈ Y ⊆ Rm, and the lower-level decision

variable is x ∈ X ⊆ Rn. The leader and the follower have their own objective functions,

f, g : Rm×Rn → R, and constraint functions, F : Rm×Rn → Rp andG : Rm×Rn → Rq.

Decision-making is sequentially done, first by the leader and then by the follower.

Once the leader makes a decision on y, the follower solves an optimization problem

parameterised by the leader’s decision.

There are two modeling approaches to a BLPP. One is an optimistic bi-level pro-

gramming approach where the leader is able to influence the follower’s choice whenever

there are multiple options. Since this depends on the coordination of both participants,

it is considered a strong Stackelberg solution. In the case where there is no coordination

and/or the leader is risk-averse and wants to limit the negative impact from an unde-

sirable choice done by the follower, it is a pessimistic bi-level programming approach

and considered a weak Stackelberg solution.

There are several real-life problems modeled as BLPPs. Côté et al. (2003) have

developed a BLPP for a toll-setting problem in the transportation domain. The upper-

level decision-makers here are an authority or owners of the highway development who

need to find a set of tolls to maximize their profit. However, they need to consider

that the highway users (lower-level decision-makers) will choose their itinerary in such

a way that they minimize their total cost of travel. Another BLPP has been developed

by Arroyo & Fernández (2013) to assess power system vulnerability. The upper-level in

2



Chapter 1. Introduction

this setup finds a set of simultaneous outages in the power system and the lower-level

finds an optimal power system operation under contingency with respect to the out-

ages in the upper-level. Morton et al. (2018) have developed a BLPP for a healthcare

economics problem. The model has a donor agency at the upper-level that aims to find

a set of subsidies to healthcare projects in a recipient country (lower-level decision-

maker) to maximize its health-related profit. Depending on the received subsidies for

each project, the country then finds its optimal set of healthcare projects to maximize

its health-related profit. Apart from these, there are real-life applications in national

agricultural planning by Fortuny-Amat & McCarl (1981), transportation network de-

sign by Constantin & Florian (1995), systematic search of hyper-parameters in machine

learning by Bennett et al. (2006), energy and electricity markets by Wogrin et al. (2020)

and many others. Although the application areas are wide, there are not many imple-

mentations seen due to a lack of efficient algorithms to deal with actual problem sizes

in real-life. Hence a lot of attention has been shifted recently to solving these extremely

challenging set of problems.

The difficulty of these problems can be realized from the fact that even in the sim-

plest case of linear BLPPs, wherein the objective functions and the constraints at both

levels are linear, the problem is NP-hard (Jeroslow 1985). In order to merely evalu-

ate a solution to these problems, one has to solve an NP-hard problem (Vicente et al.

1994). Bard (1984) proves that solving the linear BLPPs is equivalent to maximizing

a linear function over a piece-wise linear constraint set and gives necessary first-order

optimality for general bi-level programs. Other than linear BLPPs, there are different

structures of BLPPs seen in the literature based on (a) the linearity or convexity of

the objective functions and/or constraints in both levels, (b) variables being contin-

uous and/or discrete in both levels and (c) occurrence of upper-level variables in the

lower-level problem (Colson et al. 2005a, Mersha & Dempe 2006). There are BLPPs

that have quadratic objective functions and linear constraints. Bard & Moore (1990b)

give a Branch-and-Bound solution methodology to solve these. The nonlinear BLPPs

are solved by Savard & Gauvin (1994) using the method of steepest descent direction

and by Colson et al. (2005a) using a trust-region algorithm.

3



Chapter 1. Introduction

Another class of BLPPs that is largely studied is the mixed-integer BLPPs. Some

or all the variables in either of the levels or both levels of the BLPPs are discrete in this

type. These are a difficult class of problems to solve. The Mixed-Integer Programming

Problem (MILP) Branch-and-Bound cannot be simply generalized for mixed-integer

BLPPs since dropping the integrality constraints in the mixed-integer BLPPs does not

yield a valid relaxation (DeNegre 2011). There are many sub-types of mixed-integer

BLPPs seen in the literature depending on which level the discrete variables appear,

if the variables are binary, and if the participants in both levels are working at the

same or contradicting objectives. These also vary based on the particular applications

for which the mixed-integer BLPPs have been developed. A general mixed-integer

BLPP has been introduced by Moore & Bard (1990), where they present the challenges

involved in solving this formulation.

In this thesis, the focus is on Bi-level Knapsack Problems (BKPs) which are a special

type of mixed-integer BLPPs. It has been applied to a real-life problem in healthcare

economics. A detailed motivation of this study has been given in section 1.1 along

with a description of the healthcare economics problem. The BKPs are introduced

in section 1.2, followed by an introduction to the Donor-Recipient Bi-level Knapsack

Problem (DR-BKP) and the research contribution of this thesis in section 1.3. An

outline of the thesis is given in section 1.4.

1.1 Motivation

There has been significant progress made in the direction of preventing and treating dis-

eases in our human race all across the world (UnitedNations 2015). This advancement

can be attributed not only to the technological progress in medical science but also to

the aid money allocated for healthcare projects (henceforth, referred to as “project”)

conducted all over the world. The projects are primarily funded by the recipient coun-

try, where they are implemented, in partnership with financing organizations like the

Global Fund. The funding of these organizations is from nations with large gross na-

tional income and philanthropic organizations.

4



Chapter 1. Introduction

Figure 1.1: Project selection by recipient country and donor subsidies (Adapted from
Morton et al. (2018))

The recipient is often a developing country that manages its budget for healthcare

projects alongside numerous other projects such as education, welfare, infrastructure,

defense, etc. The aid money available through the donors is limited as well. The world

population is rising and so is the potential impact of diseases, as can be realized from

the recent COVID pandemic that struck the world in 2019. Hence, it is important

to identify an efficient and fair mechanism to allocate the funds available between the

donor and the recipient to these projects.

The traditional and most followed approach is to rank the projects based on their

benefit-to-cost ratio and prioritize projects that have a higher ratio. This approach is

more like “value for money”. However, Morton et al. (2018) claim that this approach

results in crowding out of indigenous financing of interventions, and thus results in

under-allocation of resources to healthcare. They instead have proposed a novel ap-

proach for the donor to allocate subsidies to projects that are just cost-ineffective to a

country i.e. the projects that have just missed a chance to be funded by the country

itself will be subsidized by the donor agency and pulled to the level of marginal projects.

Marginal projects are the projects that are eligible to be funded by the country itself.

5
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Figure 1.1 shows the line of marginal cost-effectiveness (v0/c0) where v0 represents the

value of all the non-healthcare projects together for the country and c0 represents the

cost of these projects together. The green squares represent the projects funded by the

country, and the red circles represent the projects that can be subsidized and brought

to the marginal line of cost-effectiveness. The given approach assures not only efficient

allocation of the available funds but is also in line with the idea of “sustainable” aid.

The overall objective of the system here is to optimally allocate aid money available

to the donor and the recipient country amongst the healthcare projects to maximize the

health-related profits of both participants. The analogy of a donor-recipient country is

captured by the leader-follower strategic games. These games are modeled and solved

using BLPPs. The upper-level here is the donor and the lower-level is the recipient

country. The subsidies given by the donor for each of the projects make an impact

on the project selections done by the country and also the projects selected by the

country affect the decisions of the donor. This hierarchical relationship amongst these

participants emphasizes the suitability of developing a BLPP for this allocation prob-

lem. Also, the healthcare projects have different valuations from the perspectives of

donor agency and recipient countries and this can be well captured with BLPPs. The

preliminary findings of Morton et al. (2018) have shown promise in relaxing certain as-

sumptions made in this paper and in developing solution techniques for this challenging

and intriguing modeling framework.

The donor-recipient country relationship for healthcare funds can be generalized

to many other realistic applications. For example, the donor in this setup can subsi-

dize projects related to education in a recipient country. Considering the hierarchical

decision-making in a federal government like India, the union-states relationship can

be modeled using BLPPs for different types of funding like education, healthcare, and

infrastructure. Also, the headquarters-regional offices’ relationship in any government

or private organization can be captured using BLPPs for their revenue management.

Similarly, there can be many other applications seen in reality where there is a central

leader who subsidizes items/projects of its interest to influence the follower(s) decisions

(see DeNegre (2011), Dame & Nüsser (2011), Muraközy & Telegdy (2016), Finkelstein

6



Chapter 1. Introduction

et al. (2022) for this type of applications of the BLPPs).

1.2 Bi-level knapsack problems

The BKPs are a type of mixed-integer BLPPs that have a knapsack at either or both

levels in the formulation. This setup is well suited to capture the framework of financing

problems where more than one participant or beneficiary is involved. For example, as

given by Brotcorne et al. (2009), an individual shares his/her capital in both a savings

account with a fixed rate of return and a risky investment through a broker to maximize

his/her profit. The individual here is a leader with a knapsack budget and the broker

is a follower who wants to find the right investment options to maximize his/her profit

through the returns within the leader’s budget.

In general cases, the budget of the follower’s knapsack problem gets determined by

the leader’s problem. However, there are several different formulations possible of a

BKP. Depending on the structure of a BKP, there are three different variants of these

as suggested by Caprara et al. (2014) and Carvalho (2016), viz. (1) the Dempe-Ritcher

variant, (2) the Mansi-Alves-de-Carvalho-Hanafi variant, and (3) the DeNegre variant.

A detailed description of the literature reviewed for these BKP variants along with

some of their extensions recently seen in the literature has been given in chapter 2.

In the next section, we give the specific BKP developed for the healthcare economics

problem described in section 1.1.

1.3 Donor-Recipient bi-level knapsack problem

The BKP formulated for the healthcare economics problem proposed by Morton et al.

(2018) is referred to as the Donor-Recipient Bi-level Knapsack Problem (DR-BKP)

in this thesis. The DR-BKP has a knapsack constraint at both upper and lower-

levels as given in (1.2) and (1.3), where upper-level is the donor problem (DONOR) and

lower-level is the recipient problem (RECIPIENT(y)) parameterized on the upper-level

decision y. The follower solves a knapsack problem that is influenced by decisions made

by the leader’s knapsack problem. Due to the nature of the application, cooperation is
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assumed and we discuss optimistic strategies only.

Problem DONOR:

maximize wTx (1.2a)

subject to y ∈ Y (1.2b)

x ∈ argmax(RECIPIENT(y)), (1.2c)

Problem RECIPIENT(y):

maximize vTx+ v0x0 (1.3a)

subject to
∑
i∈I

(ci − ciyi)xi + c0x0 ≤ Br (1.3b)

(x, x0) ∈ X, (1.3c)

where, I is a set of n projects, I = {1, . . . , n}, that are common to both players. Each

project i ∈ I, has a profit of wi ∈ N (resp. vi ∈ N) for the donor (resp. recipient), and

a cost ci ∈ N. Let w and v denote the vectors of profits of the donor and the recipient

respectively and c be the vector of costs of these projects. We have two integer budgets,

Bd and Br, corresponding to the donor and the recipient. Besides the projects in I, the

recipient has to allocate its budget to an outside option of projects. This represents a

portfolio of projects that is of no interest to the leader. We will refer to this option as

an “external project”. The external project has a linear profit and linear cost of v0 and

c0 respectively as per the original formulation (Morton et al. 2018). The objective is

to pick a subset of items (either fractionally or wholly) such that their costs are within

the budget and the profit is maximized.

So an instance of the DR-BKP is specified by the input (w,v, c, v0, c0, Bd, Br). The

recipient solves a knapsack problem, where each item of the knapsack corresponds to

a project i ∈ I with a profit vi and cost (ci − ciyi), where yi is the proportion of the

cost of project i that is subsidized by the donor. These projects are binary and cannot

be fractionally picked. Along with the healthcare projects, the recipient has to fund

8
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the external project which can be done fractionally or wholly i.e. only a proportion or

entire cost of the external project can be funded by the recipient.

A solution to an instance of the DR-BKP is to decide on the proportion of the

cost to be subsidized, yi, for each project, i ∈ I with
∑

i∈I ciyi ≤ Bd such that profit

of the donor is maximized given the projects are in the optimal solution set of the

recipient’s cost subsidized knapsack problem. We use the notation y to denote a vector

of subsidy. The leader cannot subsidize a project more than its cost and the total

subsidy cannot exceed the leader’s budget. The set of all valid subsidies is denoted by

Y :=
{
y :

∑
i∈I ciyi ≤ Bd,y ∈ [0, 1]n

}
.

We let x to denote a 0-1 vector representing the set of projects that are picked (ith

component of the vector, xi, is 1 if project i is picked and 0 otherwise) and x0 to denote

the proportion of the cost of the external project that is being funded by the recipient.

We define the set X :=
{
(x, x0) : x ∈ {0, 1}n, x0 ∈ [0, 1]

}
.

This modeling framework rightly captures the relationship between the donor and

the recipient country. The donor problem finds the right amount of subsidies for the

healthcare projects with respect to the donor’s budget and the optimal solution ob-

tained for the recipient country’s problem while maximizing the valuation from the

donor’s perspective. The recipient’s problem maximizes the valuation again but from

its own perspective. It selects projects from a range of healthcare projects after con-

sidering the amount of subsidy allocated to the donor problem and with respect to the

recipient’s budget. The external project of the recipient is also a contending option for

funding in the lower-level problem.

In Morton et al. (2018), the authors have considered a set of assumptions to carry

out preliminary analysis and computational experiments with the DR-BKP. These

assumptions are as follows:

1. the external project has a linear profit and cost function so that the lower-level

problem is relatively easier to handle, otherwise the DR-BKP would be more

difficult to solve.

2. the donor and recipient budgets are fixed although the recipient budgets tend to
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decrease especially as the donor funds are received.

3. the projects are implemented independently such that there are no shared benefits

coming from these projects or costs associated.

4. the recipient country is middle-income such that it can fund all its healthcare

projects from its budget. However, this budget is less than the cost of the external

budget, i.e.
∑

i∈I ci < Br < c0.

As per the last assumption above and by restricting the subsidy values in the upper-level

problem to
(
ci − vi

c0
v0

)
∀i ∈ I, Morton et al. (2018) have given a reformulated single-

level knapsack problem that is equivalent to the DR-BKP. This reformulation is easy

to solve using standard optimization solvers. The results have given interesting insights

towards the funding decisions made by the two participants in the system. However,

the assumption is quite strong from a practical perspective and does not capture all

application contexts. Numerically, without this assumption, we are unlikely to get a

single-level knapsack reformulation as we have shown strong evidence for ΣP
2 -hardness

in subsection 3.2.1.

In this thesis, we address the above-mentioned assumption number 4 partly, the

recipient country is middle income i.e.
∑

i∈I ci < Br. This makes the problem more

generic and has a wider applicability. To relax this assumption, the subsidies from the

upper-level problem, which are continuous variables, appear in the lower-level problem.

This results in the problem getting more complicated to solve. These types of mixed-

integer BLPPs tend to be ill-posed and might result in no solution (Vicente et al. 1996,

Köppe et al. 2010). The issue of ill-posedness is not true and the existence of a solution

can be guaranteed for the DR-BKP, we have discussed this in section 3.2. However,

there are not many numerical procedures seen in the literature for such problems.

Hence, solution algorithms developed for the DR-BKP can be generalized to handle

other mixed-integer BLPPs, especially BKPs, having continuous variables in the upper-

level problem and mixed-integer lower-level problem where at least the problem is not

ill-posed.

However, the assumption that the recipient budget is always less than the cost of
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the external project i.e. Br ≤ c0 still holds in this thesis. The rationale for this has

been given in section 3.3.

Research contribution

The main contribution of this thesis are:

• Two finitely converging exact algorithms have been given for the Donor-Recipient

Bi-level Knapsack Problem (DR-BKP), an enumeration algorithm based on optimal-

value-function reformulation and a branching technique that eliminates large re-

gions that are not bi-level feasible. These algorithms solve the DR-BKP when one

of the important assumptions made by Morton et al. (2018), the recipient country

is middle-income i.e.
∑

i∈I ci < Br, has been relaxed. The generalized DR-BKP

has continuous variables in the upper-level problem that appear in the lower-level

problem. Such class of mixed-integer BLPPs are difficult to solve. Most of the

literature for mixed-integer BLPPs either assumes that there are no continuous

variables in the upper-level problem or that the upper-level continuous variables

do not appear in the lower-level problem. This algorithmic development is a novel

pair of solution techniques for the mixed-integer BLPPs, especially BKPs, with

continuous variables in the upper-level problem that appear in the lower-level

problem. A set of differing data sets are generated based on real-life instances of

the healthcare economics problem in order to test and compare the performance

of the developed algorithms.

• A genetic algorithm having a nested sequential approach has been developed to

solve the DR-BKP. The two levels of the problem are decoupled such that the

upper-level is solved using a genetic algorithm, followed by separately solving

the parameterized lower-level problem either using an exact solver or a heuristic

solution method. It has been tested on a set of data sets solved completely by the

exact solvers. The genetic algorithm has then been used to solve the instances

that could not be completely solved by the exact solvers in a reasonable time.

Finally, we have compared the performance of all the developed algorithms based
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on the data sets.

1.4 Outline of thesis

Following from the introduction to the thesis given in this chapter, a comprehensive

literature review of the BKPs and solution techniques for these has been given in

chapter 2. In chapter 3, the DR-BKP has been presented along with two exact solvers

i.e. (1) an enumeration algorithm and (2) a branching algorithm. This is followed by

the computational experiments we performed to understand the performance of these

algorithms. The genetic algorithm for the DR-BKP has been presented in chapter 4

along with the results of computational experiments. In chapter 5, we have presented

the generalization of the DR-BKP along with the potential ideas in which the given

model formulations can be addressed. We have concluded the work and have given

future research directions in chapter 6.
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Literature review

The Bi-level Programming Problems (BLPPs) have received a lot of interest recently

due to the suitability of using this framework of problems in real-life applications. The

BLPPs are a complex class of problems and hence intriguing for many researchers

around the world. Some of the classical approaches for developing algorithms and

solving BLPPs can be categorized into four types, (1) reformulating a BLPP into a

single-level problem and solving with an appropriate method (Fortuny-Amat & McCarl

1981, Bialas & Karwan 1984, Bard & Moore 1990a, Edmunds & Bard 1991, Shi et al.

2005), (2) using descent methods to search the solution space (Kolstad & Lasdon 1990,

Savard & Gauvin 1994, Vicente et al. 1994, Solodov 2007), (3) using penalty function

methods and solving a series of optimization problems having these penalty terms

(Aiyoshi & Shimizu 1981, 1984, Ishizuka & Aiyoshi 1992, Lv et al. 2007), and (4) using

iterative trust-region methods to refine the search space (Liu et al. 1998, Marcotte et al.

2001, Colson et al. 2005b). The latest and by far the largest annotated list of references

can be found in the book by Dempe & Zemkoho (2020).

In this chapter, we have first given a review of the literature focused on the problem

of allocation of funds by donor agencies to healthcare projects and different methods

used to address this in section 2.1. This section is followed by a detailed literature

review of the mixed-integer BLPPs in section 2.2 and that of the Bi-level Knapsack

Problems (BKPs) in particular in section 2.3. A literature review of the heuristic

methods to solve general BLPPs has been given in section 2.4.
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2.1 Allocation of healthcare funds

The success and sustainability of healthcare projects depend on an increased recipient

country contribution along with donor funding (Heller 2005). Continuing aid-funded

health programs will be difficult without support from the national government if donor

funding depletes or ends. Treating health aid as a replacement for national government

spending can weaken a country’s health system (Lu et al. 2010). In the literature,

there are different attempts to understand the trends in both recipient country’s and

donor’s financing for healthcare projects and their effectiveness using appropriate meth-

ods (Biesma et al. 2009, Lu et al. 2010, Roodman 2012, Van de Sijpe 2013, Shaw et al.

2015)

Furthermore, it is critical to identify an efficient and fair mechanism to allocate

healthcare funds by donor agencies to recipients. As mentioned in section 1.1, the con-

ventional and widespread approach is a cost-effective analysis that prioritizes projects

that deliver value for money (Teerawattananon et al. 2013). Although cost-effective

analysis has no intrinsic link to health as an outcome, researchers and practitioners

rely on this approach since it is based on the idea that health is a benefit on its own

terms (Lauer et al. 2020). There is growing interest in using health technology as-

sessment as a resource allocation approach. It determines whether an intervention’s

Incremental Cost-Effectiveness Ratio (ICER) indicates that it would constitute an ef-

ficient allocation (Chi et al. 2020). ICER is the ratio of the incremental costs to the

incremental benefits relative to the current standard of care, wherein benefits are typ-

ically measured in a metric such as Quality Adjusted Life Year (QALY) or Disability

Adjusted Life Year (DALY) averted. A common prescription is to invest only in those

projects that meet some cost-effectiveness threshold. This idea has the merit of be-

ing both grounded in economic theory and also practically implementable: it informs

decision-making in many countries (Morton et al. 2018). Also, studies such as by Drake

et al. (2024) use separate cost-effectiveness thresholds, for donor and recipient coun-

try, to reflect the perspective of decision-makers and create a structure for resource

allocation.
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In the literature, there are optimization modeling approaches for healthcare fund-

ing allocation (examples: Weinstein & Zeckhauser (1973), Stinnett & Paltiel (1996),

Cleary et al. (2010), Morton et al. (2016), Duro et al. (2024)). Since they have bud-

get constraints and objectives, these models provide a framework for setting goals and

discussing outcomes. Such frameworks provide flexibility for the decision-maker to

consider issues such as indivisibilities, returns to scale, interactions between alternative

investments, and the availability of recourse actions if investment decisions taken under

uncertainty do not yield satisfactory results (Morton 2014). As already set out in chap-

ter 1 of the thesis, we have taken an optimization modeling approach. The problem

of healthcare funds allocation by donor agencies to recipients has been modeled as a

bi-level optimization model that can capture the hierarchical relationship between the

two decision-makers in the system.

2.2 Mixed-integer bi-level programming problems

A mixed-integer BLPP is a BLPP with one or more variables that are discrete in

either of the two levels of the problem or in both levels. The difficulty of solving the

mixed-integer BLPPs depends on which level the discrete variables are present and how

they impact the other level of the problem. Vicente et al. (1996), Dempe (2001), and

Fanghänel & Dempe (2009) discussed properties and optimality conditions of BLPPs

with different structures related to the integer and continuous variables appearing in

both levels of the models.

To illustrate the inducible regions of mixed-integer BLPPs, we use an example from

Vicente et al. (1996). Consider the mixed-integer BLPP in (2.1) and (2.2):

Upper-level Problem:

minimize
y, x

f(y, x) (2.1a)

subject to x ∈ argmin(Lower-level Problem). (2.1b)
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Lower-level Problem:

minimize
x′

x′ (2.2a)

subject to y + x′ ≤ 2 (2.2b)

− y + x′ ≤ 2 (2.2c)

5y − 4x′ ≤ 10 (2.2d)

− 5y − 4x′ ≤ 10. (2.2e)

There are four different scenarios that can occur as per the integrality of the upper and

lower-level variables in the problem.

1. If the variables in both levels are continuous i.e y ∈ R and x′ ∈ R, these are

referred to as Continuous-Continuous BLPPs or linear BLPPs in the literature.

2. If the variables in the upper-level are discrete and those in the lower-level are

continuous i.e y ∈ Z and x′ ∈ R, these are referred to as Discrete-Continuous

BLPPs.

3. If the variables in both levels are discrete i.e y ∈ Z and x′ ∈ Z, these are referred

to as Discrete-Discrete BLPPs.

4. If the variables in the upper-level are continuous and those in the lower-level

are discrete i.e y ∈ R and x′ ∈ Z, these are referred to as Continuous-Discrete

BLPPs.

The inducible regions of each of these cases are given in Figure 2.1 (Vicente et al. 1996).

The discrete variables at either of the levels cause the search space to get disconnected.

The optimality conditions for the first three cases is guaranteed easily (as can be seen in

Vicente et al. (1996)). However, studying the inducible region of Continuous-Discrete

BLPPs and proving the existence of their optimal solutions is non-trivial. The inducible

region of Continuous-Discrete BLPPs is a non-compact set and there may not be a bi-

level optimal solution existing for the problem although non-empty inducible region.
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Figure 2.1: Inducible regions of problems wherein the upper and lower-level variables
are continuous and/or discrete (Adapted from Vicente et al. (1996))

The Donor-Recipient Bi-level Knapsack Problem (DR-BKP) studied in this thesis

is a type of mixed-integer BLPP that has continuous variables in the upper-level and

mixed-integer problem in the lower-level. The optimality conditions for this problem

in particular and the existence of bi-level optimal solution are studied in chapter 3.

Solution techniques:

A Branch-and-Bound algorithm has been given by Moore & Bard (1990) at the very

beginning for general mixed-integer BLPPs. They have given the background of solv-

ing these problems using traditional Branch-and-Bound techniques for Mixed-Integer

Programming Problems (MILPs). The fathoming rules for MILPs are not directly

applicable to mixed-integer BLPPs - if a solution to a relaxed sub-problem is fath-

omed due to this being worse than the incumbent, a bi-level feasible solution may get

disregarded. Hence, the authors have proposed a Branch-and-Bound algorithm with

more strict fathoming conditions. They also have proposed some heuristics to trade

off accuracy for speed and to obtain good solutions for larger instances. In another

paper, the same authors have given an enumeration approach for BLPPs having only

binary variables where they find incremental improvements in the upper-level problem

(see Bard & Moore (1992)). Another Branch-and-Bound algorithm has been given by

Edmunds & Bard (1992) for mixed-integer BLPPs where discrete variables appear only

17



Chapter 2. Literature review

in the upper-level. A cutting plane approach has been given by Dempe (1996) for

Continuous-Discrete BLPPs using Chvátal-Gomory cuts.

A Bender’s decomposition-based approach has been given by Saharidis & Ierapetri-

tou (2009) and later on modified for their own problem by Caramia & Mari (2016). In

this type of approach, the Discrete-Continuous BLPP is decomposed into a restricted

master and a slave problem. The slave problem is converted into bi-level linear prob-

lems by fixing its integer values and it is solved using Karush-Kuhn-Tucker (KKT)

conditions. The obtained solutions to the slave problems generate cuts for the master

problem which is then solved till a bi-level optimal solution is obtained.

A Branch-and-Cut approach for integer BLPPs has been given by DeNegre & Ralphs

(2009) by introducing cutting planes derived in a similar way for standard Integer

Linear Programming Problems (ILPs). This work has been improved and a generalized

Branch-and-Cut Algorithm has been proposed and implemented in an open-source

solver by Tahernejad et al. (2020). Xu & Wang (2014) have proposed an improved

Branch-and-Bound algorithm for BLPPs with only discrete variables in the upper-level,

wherein they propose new pruning rules to eliminate large regions that are not bi-level

feasible. They have proposed another exact solution technique, called “watermelon

algorithm” (see Wang & Xu (2017)), for solving BLPPs with discrete variables in

both levels where they have used multi-way branching to remove bi-level infeasible

points from the search space. For BLPPs with only discrete variables in the upper-

level, Lozano & Smith (2017) have given an exact finite algorithm using optimal-value-

function reformulation. They iteratively generate primal bounds using relaxed BLPPs

and dual bounds using bi-level feasible solutions obtained until the bounds are within

desired solution gaps.

A finitely-convergent solver has then been given by Fischetti et al. (2017) for gen-

eral mixed-integer BLPPs, assuming that the upper-level variables that appear in the

lower-level must be discrete and bounded. Along with a modified Branch-and-Bound

algorithm for the solver, they have proposed new classes of linear inequalities that

include intersection cuts based on convex feasible-free sets. They adapt the idea of

branching on solutions using an enumeration scheme from Xu & Wang (2014), wherein
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they use the branching rule to derive valid inequalities to cut bi-level infeasible solutions

from the solution space. This work has been improved upon in their proceeding article

(Fischetti, Ljubić, Monaci & Sinnl 2018) in which they have proposed new families

of intersection cuts and separation algorithms. An extensive computational study has

been done by them on a set of varying classes of problems from the literature and these

results have been reported in their article. Liu et al. (2021) have recently proposed

an enhanced Branch-and-Bound algorithm for BLPPs with discrete variables that are

bounded in both levels. Their algorithm has improved the branching rule over that

given in Xu & Wang (2014) and hence can disregard larger bi-level infeasible spaces

in each iteration during the search. The following section gives the literature that we

have studied related to BKPs.

2.3 Bi-level knapsack problems

As already seen in section 1.2, the BKPs are a class of mixed-integer BLPPs that have

knapsack at either or both levels in the model. There are three variants of BKPs as

discussed by Caprara et al. (2014) and Carvalho (2016). We discuss these along with

some of their extensions recently seen in the literature.

Dempe-Ritcher Variant:

First is the Dempe-Ritcher variant by Dempe & Richter (2000) where the knapsack

budget is decided by the leader and items in this knapsack are selected by the follower.

This model has continuous variables in the upper-level and binary variables in the

lower-level. The objective of both leader and follower is to maximize their respective

profits. Dempe & Richter (2000) have given a pseudo-polynomial exact algorithm and

polynomial time approximate algorithm. A Dynamic Programming (DP) algorithm has

been given by Brotcorne et al. (2009) for BKPs with upper-level controlling the con-

tinuous capacity of the lower-level knapsack and the follower solves a binary knapsack

problem with the chosen capacity.
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Mansi-Alves-de-Carvalho-Hanafi:

Second variant is called the Mansi-Alves-de-Carvalho-Hanafi variant given by Mansi

et al. (2012) in which the knapsack is shared by both leader and follower with a pre-

decided budget. A reformulation approach has been given by Brotcorne et al. (2013)

for integer BKPs, which has then been solved using a two-step algorithm. The authors

used a DP approach to find all possible reactions of the follower in the first step and all

the obtained reactions have been used to reformulate the BKP as a single-level MILP

in the second step. This reformulation has been solved using an MILP solver.

DeNegre variant:

DeNegre (2011) has given the third variant of BKPs. In this variant, both leader

and follower have their independent knapsacks and they select items from a common

set of items. This variant is a type of interdiction models. Interdiction models are

leader–follower games in which the leader takes interdiction actions to maximize the

minimum objective a follower can obtain in solving its optimization problem (McMas-

ters & Mustin 1970, Wood 1993). The leader’s interdiction actions can impact the

follower’s objective, feasible region, or both (Smith & Song 2020). The author has

developed a Branch-and-Cut framework to solve a pure integer framework and a refor-

mulation approach to solve this variant. Another solver has been given by Caprara et al.

(2016), where the authors use continuous relaxation of the follower’s problem to get a

single-level reformulation and then compute the upper bounds iteratively till a stop-

ping condition is satisfied. Della Croce & Scatamacchia (2020) first compute effective

bounds for this variant of the BKPs. These bounds are then used to explore promising

sub-problems through constraint generation and pruning. The authors have extended

this solution approach to the Min-max Regret Knapsack Problem (MRKP), which shows

improved performance over a Lagrangian-based Branch-and-Cut approach proposed

by Furini et al. (2015). An exact Branch-and-Cut algorithm has been recently given

by Fischetti et al. (2019) for interdiction games that have follower problem satisfying

certain monotonicity property. One of the examples of the problems that have this

property are DeNegre’s variant and the authors have conducted a computational study
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on the benchmark instances of the variant.

In the literature, we can find approximation-guaranteed algorithms for some vari-

ants of the BKPs. In the problem setup by Briest et al. (2012), the follower has to

select a set of items within a given weight and at minimum cost. Since the follower

is computationally bounded, it uses a greedy 2-approximation algorithm. The authors

give a (2+ϵ)-approximation algorithm to maximize the leader’s revenue in this setup.

Other pseudo-polynomial algorithms are given by Chen & Zhang (2013) and then im-

proved upon by Qiu & Kern (2015) for different versions of a BKP variant in which

both leader and follower pack their items simultaneously in their own knapsacks. The

follower maximizes its own profit however leader is concerned to maximize both profits.

Two variants of BKPs with continuous variables in the upper-level and binary vari-

ables in the lower-level are given by Pferschy et al. (2019) and Pferschy et al. (2021).

Greedy heuristics and pseudo-polynomial time exact algorithms have been provided for

these problems. In these variants, the items of knapsack are partitioned as leader and

follower items. The follower decides which of these items get picked in the knapsack

that are within some budget. There is a maximum profit level that can be attained

for a leader’s item. The leader decides on the profit levels that it will receive while

awarding the remaining profits to the follower thereby incentivizing the follower to pick

the leader’s items in the knapsack. Incentives can also be offered as weight offsets in

the knapsack and these are deducted from the leader’s profit (Pferschy et al. 2019). For

instance, in the application provided in Pferschy et al. (2019), there is a trader that

provides cost offsets to the products offered to his/her customers. This is modeled as

the trader having a reduced return due to the cost offset he provides. Typically traders

can borrow and invest the loan for the offset. One would typically then maximize the

return on the profits provided by the products after the interest from the loan has been

deducted.
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2.4 Heuristic-based solution techniques

A state-of-the-art collection of meta-heuristics, hybrid meta-heuristics, and exact meth-

ods has been given by Talbi (2013) for solving different types of BLPPs that have ap-

plications in a wide range of applications. Also, a comprehensive review has been given

by Sinha et al. (2018) wherein the authors give classical and evolutionary algorithms

for BLPPs. The complex structure of the BLPPs has led to the increasing popularity of

using heuristic-based algorithms to handle these challenging problems (Deb et al. 2020).

The developed heuristics are either surrogate-based or non-surrogate-based models. If

an approximation of the actual model is used to evaluate it fast, it is called a surrogate-

based model. The non-surrogate-based models as seen in the relevant literature can be

classified into the following types:

• Nested sequential approach

• Single-level reduction approach

• Co-evolutionary approach

2.4.1 Nested sequential approach

As the name implies, these types of heuristic approaches first deal with the leader’s

problems. For each of the leader solutions obtained, the follower’s problem is solved.

The leader first generates solutions and then the follower reacts to the leader’s decisions.

Every iteration involves evaluation by considering the upper and lower-level decision

variables. These type of approaches can be computationally expensive though, since

the follower’s problem is solved for each of the leader’s decision. The first time an

evolutionary approach was used by Mathieu et al. (1994) for solving BLPPs had a

nested structure. They used a genetic algorithm for solving the upper-level problem

and a linear program for the lower-level problem. These approaches are generally used

in two ways, viz. (1) an evolutionary algorithm for the upper-level and an exact solver

for the lower-level problem, and (2) evolutionary algorithms for the upper and lower-

level problems.
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Yin (2000) has given a nested approach for solving a real-world application in trans-

portation system planning problem, and shown how this can be effectively adapted to

handle non-convex BLPPs. In the application, the upper-level problem is solved using

a genetic algorithm where its decision variables are used as individuals and the fitness

of these individuals is measured using the lower-level solutions. Yin (2000) has used

the Franke-Wolfe algorithm to solve the lower-level problem.. A nested approach using

Particle Swarm Optimization (PSO) has been given by Li et al. (2006) wherein the au-

thors use two variants of PSOs at the upper and the lower-level of the BLPPs. Calvete

et al. (2011) have given a nested approach for a production-distribution planning prob-

lem formulated as a BLPP. The upper-level is solved using an ant colony algorithm

and lower-level is solved to optimality. Another nested approach for a production-

distribution planning problem formulated as a BLPP has been given by Camacho-

Vallejo, Muñoz-Sánchez & González-Velarde (2015). The authors have used a Scatter

Search algorithm in the upper-level problem and an off-the-shelf exact solver for the

lower-level problem.

Another nested approach has been given by Arroyo & Fernández (2013) for power-

system vulnerability assessment through an attacker-defender model which is a mixed-

integer BLPP. The upper-level problem is solved using a genetic algorithm and the

lower-level problem (an MILP) is solved using an off-the-shelf exact solver. Angelo &

Barbosa (2015) have given a nested approach where they use ant colony optimization

for upper-level problem and differential evolution method for the lower-level problem.

They have formulated a mixed-integer BLPP to solve a production-distribution prob-

lem. Camacho-Vallejo, Mar-Ortiz, López-Ramos & Rodŕıguez (2015) have proposed a

nested approach for local network design problem wherein they solve the lower-level

problem with a heuristic approach and the upper-level problem with a genetic algo-

rithm. Cheraghalipour et al. (2019) have modeled a realistic rice supply chain problem

as a mixed-integer BLPP and solved it using two nested meta-heuristics and also a few

hybrid approaches.
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2.4.2 Single-level reduction approach

BLPPs are transformed into equivalent single-level reformulations in these types of

approaches followed by using heuristic methods to solve the reformulation. Usually,

these reformulations are non-linear due to some of the constraints. Heuristic methods

can be developed to avoid struggling with the complicated constraints and the resulting

formulations. Similar to the exact solution techniques, the KKT conditions of the

lower-level problem that follow certain regularity conditions can be used to transform

the BLPP into a single-level problem. Using heuristic methods in these approaches

allows these regularity conditions to be more general.

Hejazi et al. (2002) have transferred their BLPP into a single-level reformulation

and then solved using a genetic algorithm. A single-level reformulation for a BLPP

has been given by Wang et al. (2005), using the KKT conditions. The authors have

used an evolutionary algorithm, that is based on a constraint handling scheme and

a crossover operator, to effectively solve the reformulation. It is a useful approach

for also the BLPPs that have nondifferentiability in upper-level objective function.

A new improved evolutionary algorithm has been given by Wang et al. (2011) that

performed better than their previous algorithm and it is also useful for BLPPs that

have nondifferentiability in the upper-level objective function and non-convexity in

the lower-level problem. A simplex-based genetic algorithm has been given by Wang

et al. (2008) for linear-quadratic BLPPs. They transform the BLPP into a single-

level problem using KKT conditions of the lower-level problem. Another single-level

transformation of the BLPPs is given by Wan et al. (2013) where the authors use KKT

conditions of the lower-level problem for this. Then they solve the reformulation using

the PSO and chaos search technique together. Fischetti, Monaci & Sinnl (2018) have

developed heuristic schemes based on single-level reformulation for solving a type of

BLPPs called the interdiction problems.

2.4.3 Co-evolutionary approach

In co-evolutionary approaches, there are two levels maintained in the meta-heuristic.

Each level has a population of partial solutions, one for the leader and another for
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the follower. These levels evolve in parallel to improve their objectives. There is a

co-evolutionary mechanism that exchanges information between these populations, for

example, sending the leader’s elite solutions to the follower’s population. This exchange

of information is to obtain the complete set of solutions and also to keep track of the

overall objective of the BLPP. Co-evolutionary approaches are generally developed and

used where other approaches like nested and reformulation are not practically usable.

These approaches however are less common in the literature.

Oduguwa & Roy (2002) have given a bi-level genetic algorithm (BiGA) for different

classes of BLPPs that are within a single framework. The algorithm maintains two

different populations in parallel and an external elite population is used to identify elite

individuals in the two populations after every generation. The co-evolution is achieved

by sending lower-level variables to the upper-level population using a crossover operator.

Another co-evolutionary algorithm (CoBRA) is given by Legillon et al. (2012) for a more

general class of BLPPs. The cooperation between the two players is symmetric i.e.

both players cooperate with each other as against the asymmetric cooperation given

by Oduguwa & Roy (2002). A co-evolutionary decomposition-based algorithm to solve

discrete BLPPs has been given by Chaabani et al. (2017). They have further extended

this algorithm to solve BKPs in Chaabani & Said (2020).

2.5 Other solution approaches

In the relevant literature, other approaches can be seen that develop solution algorithms

for BLPPs. We have given some of these approaches in this section.

Multi-objective optimization approach:

As the name suggests, in this type of approach, the BLPPs are transformed

into a multi-objective optimization framework such that solution methods of

the multi-objective optimization problems can be used to solve relevant BLPPs.

There are several attempts in the literature to find a link between BLPPs having

single-objective and multi-objective optimization problems. Some of the earlier
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attempts are by Bard (1984) and Ünlü (1987), however, the optimal solution

to the original problem cannot be seen in the Pareto-front of the bi-objective

equivalent problem. Fülöp (1993) investigated the link between BLPPs having

single-objective and multi-objective optimization problems using an efficient set.

The author shows that a linear multi-objective programming problem can be

constructed such that the feasible solutions of a linear BLPP can represented

with the efficient solutions of the multi-objective programming problem, followed

by exploring the converse direction of the reformulation. Ecker & Song (1994),

Glackin et al. (2009) have used these findings for developing solution algorithms

of linear BLPPs. Also, Ruuska et al. (2012) extended work by Fülöp (1993) to

general vector-valued functions, thus allowing the lower-level problem in a BLPP

to be a nonlinear multi-objective optimization problem.

Fliege & Vicente (2006) have proposed a binary relation based on cone domi-

nance such that a bi-level optimal solution of the BLPP is optimal if and only if

it is efficient with respect to the proposed relation. They have used this relation

between the bi-level optimal solutions and the non-dominated solutions of the

related multi-objective problem for reformulation of a BLPP as a multi-objective

optimization problem. An extension of this binary relation and problem reformu-

lation has been given by Ivanenko & Plyasunov (2008), wherein the models can

have upper-level constraint functions depending on the lower-level decision. For

a realistic application of this approach, one can refer to the exact integer-linear

multi-objective optimization methodology given by Andrade et al. (2020). The

authors solve a metabolic engineering problem previously solved using bi-level

optimization framework with the aim to expand the current set of tools for the

problem.

Surrogate-based methods:

The non-surrogate-based models require high computational time typically. In

order to deal with this, there has been research done on surrogate-based methods
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to solve the BLPPs. These methods are commonly used for problems that have

functions which are difficult and expensive to evaluate. A surrogate model is an

approximation of the actual model of the problem such that the approximated

model is faster to evaluate compared to the original model. In simpler problems,

the surrogate model can be trained and used further using a small sample of

the actual model. However, the BLPPs are intrinsically complex set of problems

and hence there are iterative meta-modeling techniques used to approximate the

actual model. There is a surrogate model of the lower-level problem in the BLPPs

combined with evolutionary algorithms for the upper-level problem to search for

good solutions for the overall BLPP. The meta-modeling techniques are based on

two different mappings in the BLPPs (Sinha et al. 2018), viz.:

1. Based on the rational reaction set wherein, the evolutionary algorithms use

iterative approximation of the reaction set mapping to solve the BLPPs.

Some of the literature using this approach are Angelo et al. (2014), Sinha

et al. (2014) and Sinha et al. (2017).

2. Based on the lower-level optimal value function. The authors have combined

evolutionary algorithms with an iterative approximation of the optimal value

function to solve the BLPPs in these type of approaches (Sinha et al. 2016,

2020).

Although these approaches seem to be effective, they have been found difficult

to use and ineffective for large-scale BLPPs (Kieffer et al. 2020). Instead of such

approaches, Kieffer et al. (2020) have proposed a Genetic Programming Hyper

Heuristics approach to address large scale BLPPs. They have used a machine

learning model to train their heuristics to find heuristics that best solve unseen

lower-level instances.
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2.6 Concluding remarks

In this chapter, we have given a review of the literature on solution techniques

for BLPPs for both exact and heuristic methods. We have started the discussion

with exact solution methods for the general BLPPs, then for the mixed-integer

BLPPs. Later a detailed literature review has been given for the BKPs since

these are the class of problems closely related to our problem formulation. One

can perceive the BKP that we have proposed in this work as an extension or

variation of the Dempe-Ritcher variant (Dempe & Richter 2000). In this variant,

a subsidy is directly provided to expand the budget of the recipient. In our model,

the leader has greater control over how the subsidy is allocated by providing

offsets to the costs of the individual projects that are of interest to the leader.

The leader makes a single decision on the continuous budget of the follower.

The DR-BKP, as introduced in section 1.3, presents a challenge that cannot be

addressed using any of the exact or heuristic-based solution methods currently

available in the literature. In chapter 3, we present the DR-BKP and related

properties, followed by exact solution methods that we have developed along

with the computational experiments that test their performance. We have also

developed a genetic algorithm to address some data sets of the DR-BKP and give

this along with the results in chapter 4.
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Exact solution techniques for the

DR-BKP

Bi-level Programming Problems (BLPPs) are an interesting and complex class of

problems that have been drawing researchers’ attention more recently. They are

widely applicable since they rightly capture the hierarchical relationship between

the participants that are involved in actual decision-making. A BLPP can model

the impact of decisions made by one participant on the decisions made by another

participant. A special class of mixed-integer BLPPs, called Bi-level Knapsack

Problem (BKP), has a knapsack at either or both levels in their formulation.

The healthcare funds allocation problem given by Morton et al. (2018) is a BKP

and we refer to it as Donor-Recipient Bi-level Knapsack Problem (DR-BKP).

Contributions:

The main contribution of this chapter is two finitely converging exact algorithms

for the DR-BKP. These algorithms are based on the ideas of two finitely converg-

ing exact algorithms, (a) an enumeration algorithm using optimal-value-function

reformulation by Lozano & Smith (2017) and (b) a branching technique to elimi-

nate large regions that are not bi-level feasible by Xu & Wang (2014) to solve the

DR-BKP model. There are other optimal-value-function-reformulation based ap-
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proaches, like DeNegre & Ralphs (2009), Fischetti et al. (2017), Fischetti, Ljubić,

Monaci & Sinnl (2018), Tahernejad et al. (2020). In general, they solve the lin-

ear relaxation of the BLPP, iteratively generate valid inequalities to improve the

bounds, and branch when necessary. The lower-level optimal values are used to

generate cuts that reduce solution space in their procedures. Whereas, Lozano

& Smith (2017) rely on partial enumeration of lower-level solutions. They gen-

erate cuts by fixing lower-level variables to accelerate the convergence of their

algorithm.

We differ from the models given by Lozano & Smith (2017) and Xu & Wang

(2014) in many ways. Firstly, our problem has continuous variables in its upper-

level and both continuous and discrete variables in the lower-level. Most mixed-

integer BLPPs assume that the lower-level problem is parameterized exclusively

by the upper-level integer variables. Continuous upper-level variables in the

lower-level problem impose two difficulties. The first one being the ill-posedness

of the problem due to non-compact feasible region i.e. an optimal solution may

not exist in such cases as shown by Vicente et al. (1996). An example is given by

Köppe et al. (2010) to illustrate this case. Our upper-level objective is a discrete

function, which circumvents this issue. The second difficulty lies in the design of

the algorithm. The constraints added in both Lozano & Smith (2017) and Xu

& Wang (2014) require that the lower-level problem is parameterized by integer

upper-level variables to avoid open feasible sets. We have shown that convergence

is guaranteed even without this assumption. In addition, the upper and lower-

level variables interact non-linearly at the lower-level constraints but the param-

eterized lower-level problem is a mixed-integer linear program. This requires us

to modify both constraint and branching rules of Lozano & Smith (2017) and Xu

& Wang (2014).

We have made an assumption on the cost of projects that we will discuss

later in the sequel. With this assumption, we have shown convergence and the

computational experiments are performed and presented. We have also provided
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evidence for ΣP
2 -complexity in Section 3.2.1, by showing the decision version of

the problem is both NP-hard and Co-NP hard.

The problem has been formally defined in Section 3.1 followed by the com-

plexity of the DR-BKP. The enumeration algorithm and the branching technique

have been given in Sections 3.3 and 3.4 respectively, to solve the DR-BKP. A

set of 150 instances (10 in each of the 15 different data sets) have been solved,

compared and presented in Section 3.5. These data sets have been generated to

mimic the different scenarios arising in real-life healthcare problems. Finally, the

last section concludes this chapter.

3.1 Notation and definitions

An instance of a knapsack problem comprises a budget and a set of items, each

with a profit and cost. The objective is to pick a subset of items (either frac-

tionally or wholly) such that their costs are within the budget and the profit is

maximized. An instance of the DR-BKP comprises two players, a donor and a

recipient. We have a set I of n projects, I = {1, . . . , n}, that are common to both

players. Each project i ∈ I, has a profit of wi ∈ N (resp. vi ∈ N) for the donor

(resp. recipient), and a cost ci ∈ N. Let w and v denote the vectors of profits

of the donor and the recipient respectively and c be the vector of costs of these

projects. We have two integer budgets, Bd and Br, corresponding to the donor

and the recipient. Besides the projects in I, the recipient has to allocate its bud-

get to an outside option of projects. This represents a portfolio of projects that

is of no interest to the leader. We refer to this option as an “external project”.

We consider the model introduced in Morton et al. (2018), where the external

project has a linear profit and linear cost of v0 and c0 respectively. So an instance

of the DR-BKP is specified by the input (w,v, c, v0, c0, Bd, Br). The recipient

solves a knapsack problem, where each item of the knapsack corresponds to a

project i ∈ I with a profit vi and cost ci − ciyi, where yi is the proportion of the
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cost of project i that is subsidized by the donor. These projects are binary and

cannot be fractionally picked. Along with the healthcare projects, the recipient

has to fund the external project which can be done fractionally or wholly i.e.

only a proportion or entire of the cost of the external project can be funded by

the recipient.

A solution to an instance of the DR-BKP is to decide on the proportion of

cost to be subsidized, yi, for each project i ∈ I with
∑

i∈I ciyi ≤ Bd such that

profit of the donor is maximized given the projects are in the optimal solution

set of the recipient’s cost subsidized knapsack problem. We use the notation y

to denote a vector of subsidy. The leader cannot subsidize a project more than

its cost and the total subsidy cannot exceed the leader’s budget. The set of all

valid subsidies is denoted by Y :=
{
y :

∑
i∈I ciyi ≤ Bd,y ∈ [0, 1]n

}
.

We let x to denote a 0-1 vector representing the set of projects that are picked

(ith component of the vector, xi, is 1 if project i is picked and 0 otherwise) and

x0 to denote the proportion of cost of the external project that is being funded

by the recipient. We define the set X :=
{
(x, x0) : x ∈ {0, 1}n, x0 ∈ [0, 1]

}
. Let

X := {x1,x2, . . . ,xK} be the set of all possible subsets of projects. We define the

set of all valid projects corresponding to a subsidy y ∈ Y as

G(y) := {x ∈ X :
∑
i∈I

(ci − ciyi)xi ≤ Br}. (3.1)

The DR-BKP proposed by Morton et al. (2018) has been given in (3.2) and

(3.3) where upper-level is the donor problem (DONOR) and lower-level is the re-

cipient problem (RECIPIENT(y)) parameterised on the upper-level decision y.

Problem DONOR:

maximize wTx (3.2a)

subject to y ∈ Y (3.2b)

x ∈ argmax(RECIPIENT(y)). (3.2c)
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Problem RECIPIENT(y):

maximize vTx+ v0x0 (3.3a)

subject to
∑
i∈I

(ci − ciyi)xi + c0x0 ≤ Br (3.3b)

(x, x0) ∈ X. (3.3c)

We now introduce a few more notations.

Relaxed feasible set:

S =
{
(y, (x, x0)) :

∑
i∈I

(ci − ciyi)xi + c0x0≤ Br,y ∈ Y, (x, x0) ∈ X
}
. (3.4)

Follower’s rational reaction set for a fixed ŷ ∈ Y :

P (ŷ) =
{
(x, x0) : (x, x0) ∈ argmax

{
vTx+ v0x0 :

∑
i∈I

cixi + c0x0

≤ Br +
∑
i∈I

ciŷixi, (x, x0) ∈ X
}}

.
(3.5)

Inducible Region:

IR = {(y, (x, x0)) ∈ S : (x, x0) ∈ P (y)}. (3.6)

With these notations, DR-BKP can also be defined as:

maximize wTx (3.7a)

subject to (y, (x, x0)) ∈ IR. (3.7b)

3.2 Properties and assumptions

Let Relaxed Donor-Recipient Bi-level Knapsack Problem (R-DR-BKP), given as

(3.8), denote the Relaxed DR-BKP i.e. the DR-BKP after ignoring the objective
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function of the RECIPIENT problem. This relaxation of a bi-level optimization

problem is generally called as High Point Relaxation (HPR) in the literature.

maximize wTx (3.8a)

subject to (y, (x, x0)) ∈ S. (3.8b)

The integer constraints in Mixed-Integer Programming Problems (MILPs) are

relaxed and standard rules are applied for pruning off low quality solutions in

Branch-and-Bound solution techniques. However, this methodology cannot be

adopted for mixed-integer BLPPs. Let us call the MILP HPR as HPR after relaxing

its integer constraints. The inducible region of HPR may not contain the inducible

region of original problem (Moore & Bard 1990). Also unlike in the case of

standard MILPs, unboundedness of HPR relaxation cannot be used to derive the

optimal solution of original bi-level problem. An unbounded HPR region can imply

either infeasible, unbounded or occurrence of an optimal solution (Xu & Wang

2014). This situation however is not an issue in our problem R-DR-BKP since

the integer variables have finite bounds. The finite bounds on integer variables

also assure that there would never be a situation when RECIPIENT problem is

infeasible or unbounded for any donor decision y.

In general, mixed-integer BLPPs with continuous upper-level variables that

appear in the constraints at the lower-level problem may have a non-compact

feasible region resulting in no optimal solution even if the feasible region is non-

empty (Vicente et al. 1996, Köppe et al. 2010). An example in these works

conveys the idea that an optimal solution may never be attained. However in our

problem DR-BKP, the upper-level objective is a discrete function taking discrete

variables with finite bounds as input, and hence a maximum always exists. This

is given in proposition 1.

Proposition 1. DR-BKP has a maximum.
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Proof. For a fixed set of projects, xk ∈ X , let

R(xk) :=
{
y ∈ Y : max

(x,x0)∈X

{
vTx+ v0x0 :

∑
i∈I

(ci − ciyi)xi ≤ Br

}
≤ vTxk + v0x0(x

k,y),∑
i∈I

(ci − ciyi)x
k
i ≤ Br

} (3.9)

where

x0(x
k,y) = min

{
1,

Br −
∑

i∈I cix
k
i +

∑
i∈I ciyix

k
i

c0

}
.

For each such solution xk ∈ X , k = 1, . . . , K, with the corresponding upper

objective wTxk, we are interested in knowing whether R(xk) = ∅ or not and the

non-compactness of R(xk) is not relevant. Due to the finiteness of X , we could

simply order the solutions in X in the decreasing order of their corresponding

upper-level objective values. More formally, let π be the ordering, such that

wTxπ1 ≥ · · · ≥ wTxπK . Pick the first solution in this order for which R(xπk) ̸= ∅.

So ∃ŷ ∈ Y such that xπk ∈ P (ŷ) and for all ℓ, such that wTxπℓ ≥ wTxπk we have

xπℓ /∈ P (y) for all y ∈ Y .

We now make the following assumption. The cost of external project in RECIPIENT

problem is at least equal to the budget of the RECIPIENT, i.e.,

c0 ≥ Br. (3.10)

The reason for this assumption is given in section 3.3. Under this assumption we

have

x0(x
k,y) =

Br −
∑

i∈I cix
k
i +

∑
i∈I ciyix

k
i

c0
.

From an application perspective, this assumption is not restrictive as the external

option summarises the cost of all other projects that a recipient country incurs

and this typically exceeds the recipient’s budget.
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3.2.1 Complexity of the DR-BKP

Regardless of the cost assumption (3.10), the results of this section hold. We now

provide evidence for DR-BKP to be Σp
2-hard. We do this by showing that it is

both NP-hard and Co-NP hard. However, there are no immediate certificates to

show that they are in either NP or Co-NP. So, unless NP = Co-NP, it is likely

to be complete in a higher complexity class in the polynomial hierarchy. The

class of problems in P are solvable in deterministic polynomial time, whereas

the class of problems in NP have a polynomial time verifier, given a polynomial-

size certificate. These problems are difficult to solve however, if a solution is

provided, it takes polynomial time to check if the given solution is correct. In

case it takes polynomial time to check if the given solution is incorrect, these

problems are in Co-NP (i.e. Complementary to class NP).The class of problems

in NP-complete are a subset of problems that are considered the hardest in the

NP class. An NP-complete problem can be verified efficiently however no known

efficient algorithms exist to solve them. A problem is in class NP-hard if every

problem in NP-complete can be reduced to this problem in polynomial time. If

any NP-hard problem could be solved efficiently, then all NP-complete problems

can be solved efficiently. The class of problems that are complementary to NP-

hard class are called Co-NP-hard.

We now define the decision version of the DR-BKP to show our hardness

results.

Definition 1. The input to the decision problem D-DR-BKP is an instance of

DR-BKP (w,v, c, v0, c0, Bd, Br) and a number k and it answers

• YES, if there is a subsidy ŷ ∈ Y and a project set, x̂ ∈ G(y), such that for

all (x, x0) ∈ P (ŷ), we have vT x̂ + v0x0(ŷ, x̂) ≥ vTx + v0x0 and wT x̂ ≥ k,

and

• NO, otherwise.

Theorem 1. D-DR-BKP is NP-hard.
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Proof. We show this by reducing an instance of knapsack problem to D-DR-BKP.

In the knapsack instance, we are given a set of n items with profits {p1, . . . , pn},

weights {w1, . . . , wn} and a budget B. The decision version of the problem

asks whether there exists a set of items S ⊂ {1, . . . , n} with
∑

i∈S pi ≥ k and∑
i∈S wi ≤ B. We create an instance of D-DR-BKP by creating one project for

each knapsack item and there is no external project, i.e., we have c0 = v0 = 0.

The cost of a project is the corresponding knapsack item’s weight. Both donor’s

and recipient’s profits will be the corresponding knapsack item’s profit. The re-

cipient’s budget Br is 0 and donor’s budget Bd is the knapsack budget B. The

D-DR-BKP instance has an optimal value of k if and only if the knapsack instance

has a solution value of at least k. We observe that an item can never be picked

unless it is completely subsidized by the leader. Otherwise, it is infeasible to

the follower. If the knapsack instance is yes, then the leader could simply subsi-

dize the items in this set fully. Otherwise, no subset of items that can fully be

subsidized (within the budget B) will have a profit of at least k.

Theorem 2. D-DR-BKP is Co-NP-hard.

Proof. We show this by reducing the inverse subset sum problem (ISSP). An

instance of this problem comprises of a set, A, of n integers a1, . . . , an and a

target integer B. We answer NO to this instance if there exists a subset, S ⊂ A,

of integers that add up to exactly B and YES otherwise. For the reduction, we

take projects in I corresponding to the n integers in A. We will refer to these

projects as integer projects. We also take one extra project in I. There are no

external projects, i.e., we have c0 = v0 = 0. The costs and the recipient profits

of the integer projects are the same as the corresponding integers. The donor’s

profits for integer projects are all 0. The extra project has a cost of 1 with a

donor profit of 1 and recipient profit of 1/2. The recipient’s budget is B and the

donor’s budget is 0. Now the ISSP has a solution if and only if the constructed

D-DR-BKP has a solution value of at least 1. To see this, first note that donor

does not have any budget and cannot subsidize any project and it is entirely up
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to the recipient to pick projects. If there exists a set of integers for ISSP that

adds up to B, then the recipient will pick the corresponding integer projects and

get a profit of B and the extra project will not be picked. If there are no subset

of items that add up to B, then recipient will definitely pick the extra project to

maximize its profits which results in a donor profit of 1.

Unfortunately, we do not have a direct reduction from a Σp
2-complete problem

and we leave this as a conjecture.

3.3 Enumeration algorithm

Consider the model (3.8) after linearising the products of donor subsidies yi and

project selections xi in the lower-level budget constraint.

Problem R-DR-BKP:

maximize wTx (3.11a)

subject to cTy ≤ Bd (3.11b)

cTx+ c0x0 ≤ Br + cTy (3.11c)

yi ≤ xi ∀i ∈ I (3.11d)

y ∈ [0, 1]n (3.11e)

x ∈ {0, 1}n (3.11f)

x0 ∈ [0, 1]. (3.11g)

Constraint (3.11d) assures that there are no subsidies given in case the project

is not picked. This is not restrictive. For a fixed set of projects, x̂, if R(x̂) is

non-empty then there exists a subsidy ŷ ∈ R(x̂) such that ŷi ≤ x̂i for all i ∈ I.

We can reduce the subsidy of a project for an arbitrary subsidy vector, which

was not picked by the recipient’s optimal solution, to 0. This will not change

the optimal solution of the recipient’s problem. This also allows us to avoid the
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bi-linear terms in (1.3b) and rewrite that constraint as (3.11c).

For an optimal solution (x∗, x∗
0,y

∗) of R-DR-BKP to be bi-level feasible to

DR-BKP, we need (x∗, x∗
0) ∈ P (y∗). Since it is a relaxation, we also achieve

optimality. We will formalise this soon. We are now interested to know how to

tighten this relaxation if (x∗, x∗
0) /∈ P (y∗). In other words, we want to elimi-

nate this point from the search space. In this case, for any (x̄, x̄0) ∈ P (y∗) the

inequality

vTx+ v0x0 ≥ vT x̄+ v0x̄0 (3.12)

will eliminate (x∗, x∗
0,y

∗) from the search space. Since (x̄, x̄0) is optimal to

RECIPIENT(y∗),

x̄0 = x0(x̄,y
∗). (3.13)

Using this, inequality (3.12) can be written as

vTx+ v0x0 ≥ vT x̄+ v0x0(x̄,y). (3.14)

Under assumption(3.10), we have

x0(x̄,y) =

(
Br −

∑
i∈I ci(x̄i − x̄iyi)

)
c0

.

This gives us linear components in the RHS of (3.14) and we do not have to

introduce binary variables. We define c′i :=
v0ci
c0

. Inequality (3.14) can then be

re-written as

vTx+ v0x0 −
∑
i∈I

c′ix̄iyi ≥ vT x̄+
v0
c0
(Br − cT x̄). (3.15)

However, inequality (3.15) can only be added if (y, (x̄, x̄0)) ∈ S. Otherwise,

we will cutoff valid subsidies from our search space. This is added as con-
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straints (3.16d) and (3.16e) in EBKP given below. Big M - M1 and M2 - are

used here to handle the “if-then” nature of the constraint. The choice of big M

is discussed further in Section 3.5.

maximize wTx (EBKP)

subject to cTy ≤ Bd (3.16a)

cTx+ c0x0 ≤ Br + cTy (3.16b)

yi ≤ xi ∀i ∈ I (3.16c)

cTxk −
∑
i∈I

cix
k
i yi +M1t

k ≥ Br + ϵ ∀k ∈ {1, . . . , K} (3.16d)

vTx+ v0x0 −
∑
i∈I

c′ix
k
i yi +M2(1− tk)

≥ vTxk +
v0
c0
(Br − cTxk) ∀k ∈ {1, . . . , K} (3.16e)

tk ∈ {0, 1} ∀k ∈ {1, . . . , K} (3.16f)

y ∈ [0, 1]n (3.16g)

x ∈ {0, 1}n (3.16h)

x0 ∈ [0, 1]. (3.16i)

For any solution xk ∈ X , constraint (3.16d) forces the binary variable tk to 1 if the

cost of projects in xk that are subsidized by y does not strictly exceed the budget

Br. In other words, tk is set to 1, if xk is a feasible solution to RECIPIENT(y). We

have modeled this using a parameter ϵ to avoid open feasible sets. In the case tk

is set to 1, any solution we pick must be at least as good as xk with respect to the

recipient’s objective for it to be bi-level feasible. Constraint (3.16e) ensures this.

X is subset of all projects in I and can have exponentially many of them. We

solve (EBKP) iteratively. At each iteration we obtain a solution (y∗, (x∗, x∗
0)). We

then determine if (x∗, x∗
0) ∈ P (y∗) by solving RECIPIENT(y∗). If (x∗, x∗

0) ∈ P (y∗),

then we terminate otherwise RECIPIENT(y∗) returns an optimal solution (x̄, x̄0) ∈
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P (y∗) that we add as constraints of the form (3.16d) and (3.16e). Since these

constraints are of the “If-then” nature, we have to introduce a binary variable

for every such constraint. This is given in Algorithm 1. This procedure is very

similar to the one proposed in Lozano & Smith (2017). They aggregate their

constraints (3.16d) and add a single constraint for all xk. This makes sense when

the upper-level decision variables are present in many different constraints at the

lower-level. We, however, have a single constraint at the lower-level in which

the upper-level variable is present. We add them as dis-aggregated constraints

that provide a tighter relaxation. This does not affect the running time as one

new inequality of the form (3.16e) and one new variable have to be added at

every iteration in Lozano & Smith (2017). We instead add two new inequalities

and one new variable at every iteration. In addition, in order to deal with open

feasible sets and ill-posedness of the problem, in Lozano & Smith (2017), the

authors assumed integer restrictions on upper-level variables. We show that for

sufficiently small ϵ, our algorithm would terminate at optimality, which we discuss

in Theorem 3.
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Algorithm 1: Enumeration Scheme for DR-BKP

Solve R-DR-BKP and Let (x∗, x∗
0,y

∗) be its optimal solution;

Solve RECIPIENT(y∗) and let (x̄, x̄0) be the optimal solution;

Set k = 0, (xk, x̄k
0) = (x̄, x̄0), Set UB = wTx∗, LB = wTxk;

while (UB−LB)
LB

≤ gap do

if vTxk + v0x
k
0 > vTx∗ + v0x

∗
0 then

if wTxk = wTx∗ then

Return (xk, xk
0,y

∗)

else

Set LB = max(LB,wTxk);

Add following constraints to R-DR-BKP:

cTxk −
∑

i∈I cix
k
i yi +M1t

k ≥ Br + ϵ;

vTx+ v0x0−
∑

i∈I c
′
ix

k
i yi +M2(1− tk) ≥ vTxk + v0

c0
(Br − cTxk);

end

else
Return (x∗, x∗

0,y
∗)

end

Set k = k + 1;

Solve R-DR-BKP and Let (x∗, x∗
0,y

∗) be its optimal solution;

Set UB = wTx∗;

Solve RECIPIENT(y∗) and Let (xk, xk
0) be the optimal solution;

end

Algorithm 1 gives the Enumeration Scheme to find bi-level optimal solution for

the DR-BKP problem. The R-DR-BKP is solved first using an MILP solver and

from the solution, (x∗, x∗
0,y

∗), subsidy y∗ is used to solve RECIPIENT(y∗). If

(x∗, x∗
0) ∈ P (y∗), then (x∗, x∗

0,y
∗) is returned as a solution, else the constraints of

type (3.16d) and (3.16e) corresponding to some optimal solution (xk, xk
0) ∈ P (y∗)

are added to R-DR-BKP and solved again. Note that if wTxk = wTx∗ then

(xk, ⌊y∗⌋) is an alternative optimal to the current iteration of R-DR-BKP, where
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⌊y∗⌋ is obtained by setting y∗i to 0 if xk
i = 0 and to y∗i otherwise. Feasibility

is easy to see because (xk, xk
0) ∈ P (⌊y∗⌋) and we check for optimality in the

condition wTxk = wTx∗. Whether we use ⌊y∗⌋ or y∗ as subsidy to obtain xk

does not matter to our original bi-level DR-BKP problem. Every time R-DR-BKP

is solved, upper bound of the problem is updated to the obtained donor profit.

The lower bound of the problem is the donor profit obtained with the projects

selected by RECIPIENT(y∗) and it gets updated every time the inner problem is

solved. The algorithm runs till bounds are within some predefined gap.

Theorem 3. Algorithm 1 terminates at an optimal solution.

Proof. We enumerate the set of integer solutions in X , i.e, a subset of projects in

every iteration. And at every iteration, we enumerate a new subset of projects

and there are finitely many of them so the algorithm terminates in finite time.

We say a subsidy ỹ is feasible for a subset of projects x̃ if
∑

i∈I(ci− ciỹi)x̃i ≤ Br

and infeasible otherwise. The formulation looks for a set of projects x∗ and

corresponding subsidy y∗ that is better than any subset of projects x̃ (with regards

to the inner objective) if the subsidy y∗ is feasible for x̃. The solution is then

obviously bi-level feasible. In order to see that it is also optimal to the DR-BKP,

first observe that we used the parameter ϵ in (3.16d) to avoid strict inequalities.

Let us refer to the theoretical model obtained from (EBKP) with (3.16d) replaced

by the strict inequality

cTxk −
∑
i∈I

cix
k
i yi +M1t

k > Br ∀k ∈ {1, . . . , K} (3.17)

as (OBKP). The strict inequalities require us to search for a solution in an open

feasible set. So, we instead use (EBKP). This, however is not an issue if ϵ is

sufficiently small. Let ϵ1 be numerical tolerance used to solve (EBKP). Clearly,

we need ϵ > ϵ1, otherwise we can set the tk to 0 instead of the actual value of 1

in (3.16d). The possible issue arises when we do not consider a subsidy ỹ that is

feasible for (OBKP) but infeasible for (EBKP). This happens when ỹ is infeasible
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for some subsets of projects {x̄1, . . . , x̄κ} ⊆ X but not by ϵ− ϵ1 amount, i.e., for

each k = 1, . . . , κ

Br < cT x̄k −
∑
i∈I

cix̄
k
i ỹi < Br + ϵ− ϵ1, (3.18)

∑
cix̄iỹi + (Br − cT x̄k) < 0 <

∑
cix̄iỹi + (Br − cT x̄k) + ϵ− ϵ1. (3.19)

We first assume ϵ = n+1
n
ϵ1 and we will soon make the reasoning for this

assumption clear. Since this ensures ϵ > ϵ1, this is a valid assumption. In

addition, with a sufficiently small tolerance, we can assume ϵ < 1. We can now

take a component of ỹ that is non-zero, say i for which x̄k
i = 1 and decrease this

value by ϵ−ϵ1
ci

. The idea behind this is that by doing this reduction, we can make

the infeasibility of the reduced ỹ for x̄k by at least ϵ − ϵ1. Note that not all ỹi

with x̄k
i = 1 can be strictly less than ϵ−ϵ1

ci
. If this is true, then

0 ≤
∑
i∈I

cix̄
k
i ỹi <

∑
i∈I

ci
ϵ− ϵ1
ci

x̄k
i ≤

∑
i∈I

ϵ1
n
x̄k
i ≤ ϵ1.

Since Br and cT x̄k are both integers, one cannot satisfy (3.19) unless ϵ > 1.

Now we need to do reduction of components of ỹ for every subset in {x̄1, . . . , x̄κ}

and in the worst case, we could reduce every component of ỹ. Let us call this

reduced subsidy vector ŷ. For some (x̃, x̃0, ỹ) feasible for (OBKP), we want

to show that (x̃, x̃0, ŷ) is feasible for (EBKP). Now by construction ŷ will be

feasible for constraint (3.16d). Since we are only reducing the value of ỹ to get

ŷ, (3.16a), (3.16c) and (3.16e) are also feasible. In order to show feasibility

of (3.16b), we first observe our assumption of ϵ = n+1
n
ϵ1. From feasibility of
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(x̃, x̃0, ỹ) to (OBKP), we have

cT x̃+ c0x̃0 ≤ Br + cT ỹ, (3.20)

cT x̃+ c0x̃0 ≤ Br + cT ŷ + n(ϵ− ϵ1), (3.21)

cT x̃+ c0x̃0 ≤ Br + cT ŷ + ϵ1. (3.22)

3.4 Branching algorithm

In Section 3.3, we have seen enumeration algorithm where two cuts are added to

the R-DR-BKP every time there is an optimal solution (y∗, (x∗, x0)) to R-DR-

BKP but (x∗, x0) /∈ P (y∗). After the cuts are added, R-DR-BKP is resolved

again until the bi-level optimal solution is achieved. A mixed-integer program is

solved iteratively and in addition we introduce two new constraints and a binary

variable at every iteration. An alternative approach has been proposed by Xu

& Wang (2014), where (y∗, (x∗, x0)) is eliminated from search using a branching

rule. The branching rule proposed in Xu & Wang (2014) cannot be directly used

for our problem for two reasons. First they require that upper-level variables

that are involved in the lower-level are discrete. In addition they require that the

upper-level variables do not have non-linear interaction with lower-level variable.

Neither of these are true in our model. We provide a modified branching rule

that addresses these issues and handles the elimination of (x∗, x0) /∈ P (y∗) from

search space but none of the bi-level feasible solutions.

The pseudo-code of branching algorithm is given in Algorithm 2. The branch-

ing rule is created only when an incumbent solution (y∗, (x∗, x∗
0)) is found. The

usual rules based on bounds cannot be applied anymore. First RECIPIENT(y∗)

is solved which returns an optimal solution (x̄, x̄∗
0). If v

T x̄+ v0x̄0 = vTx∗ + v0x
∗
0,

then we can prune the node as (y∗, (x∗, x∗
0)) is a bi-level feasible solution. Else the

solution (y∗, (x̄, x̄0)) is appended in a queue generated to store potential solutions
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Figure 3.1: Branching from an incumbent solution

that need to be branched (called BrQueue) and then the solution (y∗, (x∗, x∗
0))

is rejected. Every time the branching callback is activated and there is at least

one solution in the BrQueue, the solution with maximum donor profit is used to

branch upon. As shown in Figure 3.1, there are two branches generated. Node 1

is explored where a valid subsidy y is such that x̄ is infeasible for RECIPIENT(y).

Node 2 is explored where a valid solution (y,x, x0) is such that x̄ is feasible

for RECIPIENT(y) and vTx + v0x0 ≥ vT x̄ + v0x0(x̄,y). This idea is similar to

constraints (3.16d) and (3.16e) in MILP-DR-BKP.

Algorithm 2 terminates with an optimal solution. When there is an incumbent

to the R-DR-BKP, say (y∗, (x∗, x∗
0)), we solve RECIPIENT(y∗) and get solution

(y∗, (x̄, x̄0)). The search space is divided into two, (1) one is explored where

a valid subsidy y is such that x̄ is infeasible for RECIPIENT(y), and (2) the

other is explored where a valid solution (y,x, x0) is such that x̄ is feasible for

RECIPIENT(y) and vTx+ v0x0 ≥ vT x̄+ v0x0(x̄,y). The division of search space

into two is similar to the idea of EBKP formulation of the DR-BKP. So instead of

adding two new constraints and a binary variable and refining the solution space

using new bounds as per the EBKP, the solution space gets divided in two parts
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in every branching call in Algorithm 2. In both algorithms, the only space that

remains un-searched is that for the subsidies yi that remain in ϵ−ϵ1. We may lose

some bi-level feasible subsidy values in this range and related project selections.

However, this will not occur as shown in Theorem 3. If either of the solutions

feasible to OBKP (where in all subsidies are searched) say (x̃, x̃0, ỹ) is reduced

by amount ϵ− ϵ1 for at least one project i, resulting in a solution (x̃, x̃0, ŷ), it is

feasible to EBKP.
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Algorithm 2: Branching approach for DR-BKP

Define a queue, BrQueue = [];

Solve R-DR-BKP and Let (x∗, x∗
0,y

∗) be its optimal solution;

Solve RECIPIENT(y∗) and let (x̄, x̄0) be its optimal solution;

Set k = 0, (xk, x̄k
0) = (x̄, x̄0), UB = wTx∗, LB = wTxk;

while (UB−LB)
LB

≤ gap do

if vTxk + v0x
k
0 > vTx∗ + v0x

∗
0 then

if wTxk = wTx∗ then

Return (xk, xk
0,y

∗)

else

Set LB = max(LB,wTxk);

Append (x̄, x̄0) in BrQueue ;

Reject solution (x∗, x∗
0,y

∗);

end

else
Return (x∗, x∗

0,y
∗)

end

if BrQueue has at least one solution set then

Select solution from BrQueue that yields maximum profit, say (x̄, x̄0) ;

Make branches as per Figure 3.1

end

Solve R-DR-BKP and Let (x∗, x∗
0,y

∗) be its optimal solution;

Set UB = wTx∗;

Solve RECIPIENT(y∗) and Let (xk, xk
0) be the optimal solution;

end

3.5 Computational experiments

To understand, analyze and compare the performance of both proposed algo-

rithms, a computational study has been performed. We have used an HP com-
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Class1 Class2 Class3 DBudget CBudget
DataSet N1 P/C1 α1 N2 P/C2 α2 N3 P/C3 α3 γ (% of TotalHCProjectsCost)

1 10 1 [1,1] 10 0.7 [1,1] 10 0.5 [1,1] [1,1] 20 30
2 20 1 [1,1] 20 0.7 [1,1] 20 0.5 [1,1] [1,1] 20 30
3 40 1 [1,1] 40 0.7 [1,1] 40 0.5 [1,1] [1,1] 20 30
4 100 1 [1,1] 100 0.7 [1,1] 100 0.5 [1,1] [1,1] 20 30
5 10 1 [1,1] 10 0.7 [1,1] 10 0.5 [1,1] [1,1] 10 15
6 10 1 [1,1] 10 0.7 [1,1] 10 0.5 [1,1] [1,1] 5 7
7 10 1 [1,1] 10 0.7 [1,1] 10 0.5 [1,1] [0.5,1] 20 30
8 10 1 [1,1] 10 0.7 [1,1] 10 0.5 [1,1] [1,1.5] 20 30
9 10 1 [1,1] 10 0.7 [1,1] 10 0.5 [1,1] [1.5,2] 20 30
10 10 1 [1,1] 10 0.7 [1,1] 10 0.5 [1,1] [2,2.5] 20 30
11 10 1 [1,1] 10 0.7 [1,1] 10 0.5 [1,1] [2.5,3] 20 30
12 3 1 [0.01,0.5] 24 1 [0.5,1.5] 3 1 [1.5,5] [1,1] 20 30
13 10 1 [1,10] 10 0.7 [1,1] 10 0.5 [1,1] [1,1] 20 30
14 10 1 [0.1,1] 10 0.7 [1,1] 10 0.5 [1,1] [1,1] 20 30
15 10 1 [0.01,0.1] 10 0.7 [1,1] 10 0.5 [1,1] [1,1] 20 30

Table 3.1: Input parameters for data generation

puter (Windows 10 Enterprise with 64-bit operating system, 3.19 GHz processor

and 8GB RAM) for the experiments. Both algorithms are coded and solved in

Python 3.8 using CPLEX 20.1.0.

3.5.1 Data generation

Instance generation has been guided by the real-world instance presented in Mor-

ton et al. (2018). There are 15 data sets 1 generated as shown in Table 3.1 and 10

instances are generated and solved in every data set. The first data set has a total

30 projects (10 in each of the three classes, as given in columns N1, N2 and N3).

Classes of the projects are made based on their profit to cost ratios of recipient,

as given in columns P/C1, P/C2 and P/C3. These division of projects in classes

have been made to understand the allocations preferred by donor and recipient.

A parameter called α is used in each class here to influence the leader or follower’s

decisions. The profit of a project for the donor is the profit of recipient for that

project scaled by the parameter α1 in Class 1, α2 in Class 2, and α3 in Class

3. Both donor and recipient budgets are generated as a percentage of the total

cost of healthcare projects (columns DBudget and CBudget) to be considered for

funds allocation. For the profit values of the external project, a parameter called

γ has been used. Profit to cost ratio of external project in each instance is the

1All data used in this work are available at https://github.com/ashwin-1983/DR-BKP/
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average of profit to cost ratios of all healthcare projects in the instance scaled by

an input parameter called γ. The cost values of healthcare and external projects

are random integers in [5000, 10000] and [1000000, 2000000] respectively. In ev-

ery instance, there are (2n + 1) variables and (n + 2) constraints where n is the

total number of projects.

Each data set has perturbation in one of the parameters with respect to the

first data set. These step-by-step changes on the data sets are made to under-

stand the performance of the developed algorithms on every parameter in the

instances generated. For the second, third, and fourth data sets, the number of

projects has been increased to 20 projects, 40 projects, and 100 projects in each

class respectively. The donor and recipient budgets have been decreased in data

set 5 from 20% and 30% to 10% and 15% of total cost of healthcare projects

respectively, and further more for data set 6. The γ value has been maintained

to 1 for all other data sets except for data sets 7 to 11. The range of γ values

has been increased gradually in these data sets. In the case of data set 12, a

combination of changes in the parameters ‘number of projects in each class’ and

‘range of α values’ have been made. In further data sets, only the ranges of α

values have been changed for Class 1 projects. It will be useful to understand

how the project allocations and/or time to solve these instances are affected by

the divergence in priorities of donor and recipient.

3.5.2 Results

We have conducted computational experiments to compare the performance of

both algorithms at two different tolerance parameters (at ϵ = 1e−2 and ϵ = 1e−4)

for a set time limit of 3600 seconds. It is critical to determine big M values

used to solve a single-level reformulation of any BLPP, i.e. the reformulation

EBKP of the DR-BKP in our case. Kleinert et al. (2020) show that validating

that a given big M does not cut off any bi-level optimal solution is as hard as

solving the original bi-level problem when the single-level reformulation is based
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on Karush-Kuhn-Tucker (KKT) conditions of the lower-level problem. However,

the big M approach can be adopted without this issue when valid values of big

M can be determined based on problem-specific knowledge (Kleinert & Schmidt

2023). Since we do not use KKT conditions to reformulate the DR-BKP and have

problem-specific knowledge like values of project cost and budget, we go ahead

with using the big M approach. The big M values used in the EBKP are set

such that they just exceed the right hand side of related constraints. The value

of big M, M1, in constraint (3.16c) is set to the tightest possible value - the right

hand side of the constraint i.e. Br + 1 (Br is budget of the recipient). The value

of big M, M2, in constraint (3.16d) can be either set to right hand side of the

constraint as it changes in every iteration or set to a constant value of
∑

vi + v0

which is not as tight as the former. To see the impact of the differing values on

the performance of the algorithm, we solve all the instances using both of these:

(1) M2 = Mk
2 = vTxk + v0

c0
(Br − cTxk) ∀k ∈ 1, . . . , K and (2) M2 =

∑
vi + v0.

The minimum, average, and maximum solution times of both algorithms for

solving the 10 instances in each of the data sets are given in Table 3.2 when

ϵ = 1e−2 and Table 3.3 when ϵ = 1e−4. These are the data sets that are solved

within the set time limit. In cases of data sets 14 and 15, none of the instances

are solved to optimality within the set time limit. Their minimum, average, and

maximum solution gaps at the termination of algorithms are given in Table 3.4

when ϵ = 1e− 2 and Table 3.5 when ϵ = 1e− 4.

It can be observed from the result tables that as the number of projects

increases and hence the number of variables in data sets 2, 3, and 4 compared to

data set 1, the average solution time increases for both algorithms in case of lower

tolerance parameter. However, in the case of higher tolerance parameter, both

algorithms take less time to solve. From data set 1, 5, and 6, we can observe that

the algorithms take less time to solve if the budgets are lower for similar-sized

instances. When parameter γ is increased (data sets 8 to 11 as compared to data

sets 1 and 7), i.e. external project has higher profit and starts competing with
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DataSet
BranchingAlgo EnumerationAlgo

Min Avg Max
bigM2 = Mk

2 bigM2 = M2

Min Avg Max Min Avg Max
1 0.238 0.348 0.434 0.101 0.157 0.348 0.088 0.171 0.251
2 0.047 0.325 0.916 0.062 0.108 0.341 0.047 0.081 0.203
3 0.049 0.309 0.454 0.062 0.142 0.214 0.080 0.183 0.430
4 0.066 0.458 1.036 0.078 0.166 0.325 0.078 0.168 0.258
5 0.062 0.096 0.133 0.056 0.069 0.094 0.062 0.074 0.093
6 0.078 0.138 0.250 0.061 0.086 0.181 0.061 0.122 0.291
7 0.045 0.085 0.166 0.042 0.084 0.184 0.048 0.118 0.241
8 0.167 2.416 18.089 0.096 14.540 102.491 0.131 12.712 95.759
9 2.116 17.089 43.792 4.100 21.041 59.338 4.918 19.015 56.586
10 1.247 28.504 74.147 6.780 165.973 250.540 6.654 167.280 277.944
11 8.369 62.662 149.575 44.327 114.624 200.056 31.662 131.119 246.953
12 0.057 0.074 0.125 0.047 0.069 0.094 0.047 0.072 0.094
13 0.047 0.192 0.345 0.055 0.103 0.212 0.062 0.110 0.175

Table 3.2: Average solution time (in seconds) for data sets that are solved within time
limit (ϵ = 1e− 2)

DataSet
BranchingAlgo EnumerationAlgo

Min Avg Max
bigM2 = Mk

2 bigM2 = M2

Min Avg Max Min Avg Max
1 0.273 0.599 1.665 0.109 0.448 1.493 0.109 0.445 1.666
2 0.266 0.639 0.994 0.156 0.351 1.366 0.173 0.329 0.830
3 0.328 2.203 5.471 0.270 2.540 10.742 0.283 2.390 11.762
4 5.625 13.370 37.202 0.368 65.958 187.436 0.480 67.152 185.231
5 0.067 0.128 0.165 0.060 0.091 0.199 0.058 0.088 0.217
6 0.095 0.158 0.266 0.057 0.079 0.099 0.063 0.088 0.187
7 0.104 0.289 0.875 0.052 0.222 1.251 0.047 0.353 2.404
8 0.453 10.961 47.005 0.105 35.436 145.728 0.109 26.219 103.939
9 4.601 22.661 49.743 5.316 32.232 111.013 5.408 28.578 92.281
10 2.009 36.293 90.415 8.335 200.500 301.985 12.251 205.050 302.571
11 10.963 72.226 156.519 50.653 128.790 283.821 43.976 147.279 295.884
12 0.053 0.085 0.141 0.040 0.076 0.142 0.047 0.065 0.078
13 0.329 0.574 1.050 0.101 0.250 0.640 0.099 0.238 0.610

Table 3.3: Average solution time (in seconds) for data sets that are solved within time
limit (ϵ = 1e− 4)

DataSet
BranchingAlgo EnumerationAlgo

Min Avg Max
bigM2 = Mk

2 bigM2 = M2

Min Avg Max Min Avg Max
14 6.7% 15.4% 31.2% 5.4% 19.5% 33.5% 7.0% 19.5% 34.8%
15 49.4% 65.6% 81.4% 50.3% 87.3% 109.2% 50.3% 87.3% 109.2%

Table 3.4: Average solution gaps for data sets that are not solved within time limit
(ϵ = 1e− 2)
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DataSet
BranchingAlgo EnumerationAlgo

Min Avg Max
bigM2 = Mk

2 bigM2 = M2

Min Avg Max Min Avg Max
14 8.8% 18.4% 31.2% 3.4% 19.5% 34.8% 5.0% 19.7% 34.8%
15 74.7% 87.7% 101.5% 76.8% 92.8% 109.2% 76.8% 92.8% 109.2%

Table 3.5: Average solution gaps for data sets that are not solved within time limit
(ϵ = 1e− 4)

the healthcare projects for the recipient budget, branching algorithm performs

significantly better than the enumeration algorithm for both tolerance limits.

Another complexity of the healthcare funds allocation problem is the diver-

gence between valuations of projects by donor and recipient. If the α value

increases above 1 in either of the three classes of projects, the donor values its

projects more than the recipient does in that particular class. Else if the α value

is below 1, the donor values its projects lesser than the recipient. As seen in data

sets 13 to 15, the range of α values for class 1 are decreased gradually. In data

set 13 where the donor values its projects more than the recipient, all instances

are solved using both algorithms very fast. However, none of the instances from

data sets 14 and 15 are solved where the donor values its projects lesser than the

recipient (refer to Table 3.4 and Table 3.5).

While comparing the performance of the enumeration algorithm for both men-

tioned big M values, there is hardly any difference observed in the solution times

of all the data sets except for data sets 7 to 11. For these particular data sets,

the γ value is increased gradually. However, since the solution times are not

consistently lower in either for either of the big M values, we keep this open for

further research.

It can be observed from these results that there is evidence to believe that the

branching algorithm performs better when the instances are generated with more

complexity where there is a greater discrepancy in the valuation of the projects

by the two players.
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3.6 Conclusion

We have carried out a complexity study and computational experiments on DR-

BKP that has been introduced in Morton et al. (2018). We have first shown

that the problem is well-posed. We have then extended and adapted the algo-

rithms proposed for discrete bi-level problems to DR-BKP and have proved its

convergence. We have provided some complexity results for the problem. A pre-

dominant issue of having continuous upper-level decision variables in lower-level

constraints is the non-compact feasible set. This complicates both proving the

existence of a solution and the convergence of algorithms. We have observed that

a guaranteed solution exists when the upper-level objective function is discrete,

involving only the lower-level variables, and the solution set is finite. A simple

enumeration of the solutions in the finite set and evaluation of their bi-level fea-

sibility would provide this. This is generalizable and goes beyond DR-BKP. The

convergence of the known enumeration schemes tends to work for our problem

despite the continuous upper-level variables. These enumeration schemes aim to

restrict the search space to a closed set by cutting off the open feasible set at a

threshold. This is easier to do when we have integer upper-level variables. Despite

having continuous upper-level variables, we have shown that these enumeration

schemes work for our problem for sufficiently small thresholds. We have shown

this by constructing an equivalent solution in the closed set for any valid solution

cut-off. This is dependent on the problem structure and the generalizability of

this procedure is not clear, keeping a number of questions still open for further

research.
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Genetic algorithm for the DR-BKP

The Donor-Recipient Bi-level Knapsack Problem (DR-BKP) has been introduced

in chapter 1. Starting with a discussion of the problem’s complexity in chapter 3,

we have proposed two exact solution approaches and conducted computational

experiments to test their performance on a wide range of instances generated

using realistic data. There are fifteen data sets with ten instances in each data

set. The nature of data sets has been changed by either increasing the number

of healthcare projects, varying the budgets of participants, varying the cost to

profit ratio of external project as compared to those of the healthcare projects,

or varying valuations of healthcare projects by the donor as compared to that

by the country. After studying the results for these generated instances, we hav

realized that the solution time for data sets that are complex in nature grows

significantly, especially for the data sets that vary the valuations of healthcare

projects by the donor as compared to that by the country. Since a heuristic-based

approach is flexible and has the potential to provide good quality solutions in a

reasonable time, we take this approach in this chapter.

We have developed a meta-heuristics-based approach to address the complex

data sets. A genetic algorithm, which is a specific type of evolutionary algo-

rithm, has been developed and presented in this chapter. Evolutionary algorithms

are search algorithms inspired by natural selection principles of genetics. Evo-
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lutionary Bi-level Optimization (EBO) algorithms are gaining attention due to

their flexibility, implicit parallelism, and ability to customize for specific problem-

solving tasks (Sinha et al. 2018). These algorithms allow flexibility for customiz-

ing the solution procedure by enabling any heuristics or rules to be embedded in

their operators (Deb et al. 2020).

In Bi-level Programming Problems (BLPPs), the upper-level problem is sen-

sitive to the quality of lower-level solutions. Hence challenge here is the compu-

tational effort needed to solve the lower-level problem to a reasonable accuracy

for every upper-level solution. This also offers an advantage to use two different

optimization methods for the upper and lower-level problems depending on their

complexities (Deb et al. 2020). However, such approaches may be computation-

ally expensive for large scale problems. We have explored this avenue using the

developed genetic algorithm for DR-BKP and comparing its performance with

the exact solvers for the varying data sets we have generated previously.

Contribution: The main contributions of this chapter are

1. A genetic algorithm has been developed for solving the DR-BKP. We have

solved the upper-level of the problem using the genetic operators. The lower-

level problem can be solved either using a heuristic approach or an exact

approach; we have used both these with a greedy heuristic and an avail-

able solver respectively. We have given performance results of the genetic

algorithm using both these approaches.

2. The results obtained for all the instances using the developed genetic algo-

rithm have been compared with that by the exact solvers as presented in

chapter 3. These are promising results to solve complex large instances that

are closer to realistic scenarios.

The DR-BKP has been formally defined in section 3.1 in chapter 3. We introduce

genetic algorithm followed by its adoption for solving the DR-BKP in section 4.1.
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The results of solving all data sets with the genetic algorithm and their compar-

ison with exact solvers have been given in section 4.2. We have concluded this

chapter in the last section with a discussion and findings of the algorithm and

suggestions for future research.

4.1 Genetic algorithm

Meta-heuristics are a family of approximate optimization techniques that provide

“acceptable” solutions in suitable time to solve complex optimization problems

for which exact solution approaches are unable to be efficient (Talbi 2013). Typ-

ically, a meta-heuristic consists of two steps for the search procedure, viz., (a)

initializing with a population of solutions and (b) improving the population of

solutions by searching new solutions using a set of rules. A genetic algorithm

is a meta-heuristic for generating high-quality solutions for optimization prob-

lems, inspired by the ideas of natural evolution and genetics (Holland 1992). In

a genetic algorithm, the search for good solutions starts with a population of

solutions. These solutions are refined and evolved to find better solutions by

biologically inspired processes like selection, mutation and crossover over a series

of iterations referred to as generations. The fittest solutions from population in

every generation are selected for reproduction to generate offspring solutions that

enter the next generation population. Since the genetic algorithm operates on a

set of solutions, it can be harnessed to generate several solutions that meet given

criteria.

Genetic algorithm for the DR-BKP:

A genetic algorithm has a framework to find good solutions denoted by individuals

in the process of evolving or improving a constant-sized population of solutions

over given number of generations. The solutions are referred to as chromosomes

and these are encoded as strings of symbols. A gene represents the position of a
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symbol and an allele represents value of the symbol. Solutions that are feasible are

evaluated for fitness and high performing solutions are selected wherein the fitness

of a solution is generally determined by the objective value of the optimization

problem. The selected solutions reproduce to generate offspring solutions which

inherit features of their high performing parents.

There are different approaches in the literature to handle the two optimization

levels in the problem - (1) Nested sequential approach, (2) Single-level transforma-

tion approach, (3) Co-evolutionary approach and, (4) Multi-objective approach

as given by Talbi (2013). A detailed description of each of these approaches has

been given in section 2.4 from chapter 2.

We have used a nested sequential approach in this chapter. It is one of the easy

approaches to use heuristic methods for solving BLPPs since it does not require

any assumptions on convexity or differentiability of the lower-level problem, as

Figure 4.1: Block diagram of genetic algorithm for the DR-BKP
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can be seen in Calvete et al. (2008) and Hejazi et al. (2002). The original formula-

tion of both optimization levels is achieved by the decoupling of the optimization

levels in the nested approach (Arroyo & Fernández 2013). After decoupling both

optimization levels, the upper-level problem has been solved first using a genetic

algorithm, followed by solving the parameterized lower-level problem. To solve

the lower-level problem, we can use either an exact solver or a heuristic solution

method. Although the bi-level methods that solve both leader’s and follower’s

problems heuristically can only find semi-feasible solutions, these are worth devel-

oping when both problems are difficult to solve exactly (Alekseeva & Kochetov

2013). The bi-level meta-heuristics can provide a quick solution. Since such

solutions are not feasible to the original bilevel problem, we could retrieve fea-

sibility by solving the inner problem exactly parametrized by the final subsidies

calculated by the heuristics.

A diagrammatic representation of the genetic algorithm that we propose for the

DR-BKP is shown in Figure 4.1 and its detailed description is as following.

Algorithm framework

Firstly, we introduce the following definition before discussing the framework

of the algorithm. The High Point Relaxation (HPR) is the formulation obtained

after relaxing the lower-level objective function of the original model. The HPR of

the DR-BKP can be given as follows and it is referred as Relaxed Donor-Recipient

Bi-level Knapsack Problem (R-DR-BKP). This will be used subsequently in the

evaluation of candidate solutions. The DR-BKP is given in (3.2) and (3.3) in

chapter 3.
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Problem R-DR-BKP:

maximize wTx (4.1a)

subject to cTy ≤ Bd (4.1b)

cTx+ c0x0 ≤ Br + cTy (4.1c)

yi ≤ xi ∀i ∈ I (4.1d)

y ∈ [0, 1]n (4.1e)

x ∈ {0, 1}n (4.1f)

x0 ∈ [0, 1]. (4.1g)

To remove the bi-linear term in (3.3b) in the DR-BKP, constraint (4.1d) has been

introduced. It will ensure that if a project is not selected, there will be no subsidy

allocated to that project.

In a genetic algorithm, it is important to define the fitness function of the

solutions i.e. the individuals in the evolution process. The evaluated fitness of

the individuals and population in each generation forms the basis of the search

algorithm. Each of the structural components of the genetic algorithm are given

below:

4.1.1 Solution coding

A candidate solution to the DR-BKP (i.e. decision vector y) is represented by an

individual in the population. Each of these individuals are encoded as an array

of length n where n is the size of decision vector y (i.e. number of healthcare

projects that require funding). The subsidy of every healthcare project is a gene

and its value is the allele of chromosomes of the individuals. At the start of the

algorithm, an initial population of these individuals is provided.

Every generated individual is considered upper-level feasible, if it is within

the donor’s budget. All feasible individuals in the upper-level are then sent to
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the lower-level problem. The individuals that are found feasible to the lower-level

problem are given a fitness value which is nothing but the upper-level objective

achieved using this individual. We discuss the fitness of individuals in detail in

the next section.

Figure 4.2: Solution coding of an example individual in the population

Figure 4.2 shows an example of solution coding of an n-sized individual. The

allele of each gene is value yi which represents the proportion of cost that the

donor will subsidize for each project i ∈ I. Since yi is a continuous variable, we

have restricted these values to five decimal places in order to avoid numerical in-

consistencies. The actual subsidy values are obtained from these cost proportions

ranging from 0 to 1, up to five decimal points and multiplied by four digit cost

values.

4.1.2 Evaluation function

The competence of an individual is determined by its fitness value computed

using a fitness function. For the DR-BKP, the fitness of an individual solution is

determined by the upper-level objective achieved using this solution. Let y∗ be

an individual solution, its fitness will be given by optimal value of the following

instance:
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maximize wT x̄ (4.2a)

subject to y∗ ∈ Y (4.2b)

x̄ ∈ argmax(RECIPIENT(y∗)). (4.2c)

The parameterized lower-level problem (as given in 1.3) with given upper-level

solution y∗ is represented by RECIPIENT(y∗). Solution of RECIPIENT(y∗)

gives the decision vector x̄ and fitness of individual y∗. x̄ represents the project

allocations optimal to lower-level problem when subsidy y∗ is received. Using

these project allocations, the upper-level objective wT x̄ determines fitness of the

individual solution y∗.

RECIPIENT(y∗) is a 0-1 knapsack problem with one continuous variable. It

can be solved using either a heuristic or an exact method to find objective values of

the parameterized lower-level problem for each individual y∗. We use both these

approaches since it will be interesting to see the impact of non-optimal lower-level

solutions on the upper-level objectives. Although a greedy method to solve the

lower-level problem and a genetic algorithm to solve the upper-level problem give

an approximate solution, we have performed computational experiments using

this to find and analyze the quality of these quick solutions. We have reported

true solutions to these approximate solutions. We have compared the performance

of these solutions along with the ones obtained using the genetic algorithm that

uses exact lower-level solutions. The greedy heuristic has been described along

with its pseudo-code in the next section. After giving details of the evolution

process of the genetic algorithm in the section 4.1.3, we give the pseudo-codes

for both approaches (see Algorithm 4 for genetic algorithm where lower-level is

solved using an off-the-shelf exact solver and Algorithm 5 for genetic algorithm

where lower-level is solved using the greedy heuristic).

62



Chapter 4. Genetic algorithm for the DR-BKP

Greedy heuristic for lower-level problem

A greedy heuristic makes choice of picking the largest valuable item (in our case,

a project) until the budget has run out. It has been introduced by Dantzig (1957)

and later several variants of the greedy heuristic have been proposed and seen in

the literature (Kellerer et al. 2004).

A feasible individual y∗ obtained by the genetic algorithm running for the

upper-level problem is plugged in the lower-level problem given in 1.3.

RECIPIENT(y∗) is solved using the greedy heuristic. After finding subsidized

cost (ci − ciy
∗
i ) of each healthcare project i, the projects with zero subsidized

costs are selected by the lower-level problem and those projects that have non-

zero subsidized costs along with the external project are ranked on the basis of

their profit to cost ratio. Let k be the number of projects that have non-zero

costs where k ≤ n+ 1. Let π be the ranking of these k projects i.e. it maps the

ranks to the original ordering of projects. Note that v0
c0

can be at the start, in

between or at the end of this ranking which we denote by ratio R. We have just

given a representation of the ranking order of the projects in 4.3:

vπ(1)
cπ(1) − cπ(1)yπ(1)∗

≥ · · · ≥ R ≥ · · · ≥
vπ(k)

cπ(k) − cπ(k)y∗π(k)
. (4.3)

Starting from the highest ranked project to the lowest rank, all projects are

considered sequentially. A project is selected if its cost is within the leftover

lower-level budget. At the end, if the external project is not allocated any funds

during the sequential allocation, the leftover lower-level budget is allocated to the

external project using the Equation 4.4:

x̄0 =
Br −

∑
i∈I ci(x̄i − x̄iy

∗
i )

c0
(4.4)

where, x̄i is project selection as per the greedy heuristic ∀i ∈ I. The pseudo-code

for the greedy heuristic is given in Algorithm 3.
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Algorithm 3: Greedy Heuristic to solve lower-level problem

A feasible individual solution (y∗) is received from the upper-level;

for i ∈ I do

if y∗i = 1 then
x∗
i = x̄i = 1

end

end

for i ∈ {π(1), . . . π(k)} do

if Br > 0 then

if i = R and c0 <= Br then

x̄0 = 1 ;

Br = Br − c0

else

if ci − ciy
∗
i <= Br then

x̄i = 1 ;

Br = Br − (ci − ciy
∗
i )

end

end

else

break ;

end

end

if x̄0 = 0 and Br > 0 then

x̄0 =
Br

c0

end

Return fitness value = wT x̄
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4.1.3 Evolution process

At the start, the size of the population and the number of generations are defined.

To make an initial population, first a large set of random individuals are generated

and these are included in the initial population if they satisfy the upper-level

constraints. For every individual in the initial population, its fitness is computed

and these fitness values are used in further generations development. In every

new generation, the old population is replaced by new individual solutions using

the operators - selection, crossover, mutation and elitism. These operators are as

follows:

Selection:

To select parents of individuals for reproducing in the next generation, the roulette

wheel scheme is used in this proposed genetic algorithm. In this scheme, indi-

viduals are obtained randomly with the probability that is proportional to the

fitness of the individuals i.e. the y vectors which are individuals in our case, are

selected with higher probability if they give higher donor profit (fitness value).

The number of parents selected is the size of the population and they are then

paired for crossover to generate two child individuals. Hence after moving to the

next generation, the size of the population in maintained.

Figure 4.3: Diagrammatic representation of an example single-point crossover in a pair
of parent individuals
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Crossover:

After the parent individuals are paired, there are different ways in which cross-

over can be implemented. In the proposed genetic algorithm, a single-point

crossover has been implemented. In a single-point crossover, a random loca-

tion is chosen in the parents’ array. The divided arrays of each of the parents are

now swapped to generate the children as shown in an example in Figure 4.3.

Mutation:

It is important to incorporate new features to the population that is getting

evolved over a course of generations which allows the algorithm to explore new

regions of the solution space. Hence the new individuals are mutated with a

predefined probability (called as mutation rate) to include diversity in the new

population. In this algorithm, mutation is implemented by selecting a gene of an

individual and changing its allele i.e. the proportion of cost subsidized for the

chosen project is replaced with a new random value.

Elitism:

In this genetic operator, a set of high performing solutions are carried forward in

the next generation of the evolution process. This assures that there is a reference

maintained in the promising areas of the search space in all the generations.

Criteria for termination:

The genetic algorithm can be terminated based on varying criteria like maximum

number of generations of the algorithm, solution time limit and acceptable solu-

tion gap. In the proposed genetic algorithm, we terminate it if maximum number

of generations are completed.
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Algorithm 4: Genetic algorithm for DR-BKP, using an exact solver for the

lower-level problem

Set number of generations = 30, and ni = 0;

Set size of population of individual solutions = 750;

Generate an initial population of upper-level variables y, popinit;

pop← popinit;

while ni < 30 do

for each y in pop do

y∗ ← y;

Solve RECIPIENT(y∗) using an exact solver, let the obtained solution

be (x̄, x̄0);

Allocate fitness value to individual solution = wT x̄;

end

Get neopop using Selection(pop), Crossover(pop),

Mutation(pop), and Elitism(pop);

pop← neopop;

ni++;

end

Return (x̄, x̄0,y
∗) that has the highest fitness value
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Algorithm 5: Genetic algorithm for DR-BKP, using a heuristic method to

solve the lower-level problem

Set number of generations = 30, ni = 0;

Set size of population of individual solutions = 750;

Generate an initial population of upper-level variables y, popinit;

pop← popinit;

while ni < 30 do

for each y in pop do

y∗ ← y;

Solve RECIPIENT(y∗) using a greedy method as per algorithm 3, let

the obtained solution be (x̄, x̄0);

Allocate fitness value to individual solution = wT x̄;

end

Get neopop using Selection(pop), Crossover(pop),

Mutation(pop), and Elitism(pop);

pop← neopop;

ni++;

end

Return (x̄, x̄0,y
∗) that has the highest fitness value;

Solve RECIPIENT(y∗) using an exact solver to report true optimal solution

4.2 Computational experiments

We have conducted computational experiments to evaluate the performance of

the genetic algorithm with that of the exact solvers given in chapter 3. There

are fifteen varying data sets, each data set consisting of ten instances generated

randomly. First, we have solved just one of the instances in each data set, and

present their solution time and conversion of solutions by the genetic algorithm.
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This is followed by giving the performance comparison of the genetic algorithm

with the branching algorithm for test data sets 1 to 7. We then have solved and

compared all the remaining data sets with all the proposed algorithms

4.2.1 Experimental settings

The genetic algorithm has been coded in Python 3.10 and the experiments have

been performed on a DELL computer (Windows Enterprise with 64-bit operating

system, 1.30 GHz processor and 16.0 GB RAM). Both exact solvers have been

solved with two different optimality tolerance parameters (at ϵ = 1e − 2 and

ϵ = 1e − 4). In this chapter, we have used results of ϵ = 1e − 2 for performance

comparison of the algorithms.

To generate an initial population of the genetic algorithm, we have used the

upper-level decision vector ỹ that yields a lower bound of the instance. The

lower bound of an instance is found by solving its HPR (given by model 4.1)

and plugging the upper-level decision vector in the lower-level problem. We have

used CPLEX 20.1.0 to solve HPR of an instance. One of the individuals in the

initial population is ỹ. To generate other individuals, we select either one or two

projects and change the subsidy proportions in ỹ.

The parameters of the genetic algorithm used in this computational study are

empirically chosen after completing some preliminary experiments. We have a

population size of 750 individual solutions and the algorithm is executed for 30

generations. The genetic operator crossover has been set to single-point crossover

at a random location in the array of individuals and the mutation rate has been set

to 0.9. We have maintained 10% elite population of high performing individuals

in the evolution process.

As discussed in subsection 4.1.2, either a heuristic or an exact method can

be used to solve the lower-level problem for every individual solution y∗ in the

evaluation process of the algorithm. We have used both of these, the pseudo-code

for the greedy heuristic is given in Algorithm 3 and we use CPLEX 20.1.0 to find
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exact solutions in the latter approach.

4.2.2 Results

First, we used the genetic algorithm to solve the first instance in each of the fifteen

data sets given in chapter 3, and present these results in Table 4.1. Followed

by this, the performance of the genetic algorithm is compared with that of the

branching algorithm on few of the data sets that are easily solvable by the exact

solvers (see Table 4.3 in section 4.2.2). Finally, we give summary results of solving

all instances in each of the data sets using the genetic algorithm in section 4.2.2

(see Table 4.4).

Since the branching algorithm comparatively performed better than the enu-

meration algorithm for most of the data sets as can be seen in subsection 3.5.2 in

chapter 3, we compare the performance of the genetic algorithm with the branch-

ing algorithm in Table 4.1. In this table, the upper bound (UB), upper-level profit

obtained (z br), and solution time in seconds (t br) of the branching algorithm

are reported for each of the solved instances with the genetic algorithm. Along-

side these values, we give the upper-level profit obtained when the lower-level

problem is solved using greedy heuristic (z ga-heur), upper-level profit obtained

when lower-level problem is solved using exact solver (z ga-exact) and time (in

seconds) to achieve these values (t ga-heur) and (t ga-exact) respectively as

the generations progress (GenN). We report only the solutions obtained for a few

generations out of a total 30 in the algorithm.

The genetic algorithm with a greedy heuristic for lower-level problem performs

equally well with the branching algorithm for data sets 1 to 11, and 13. The

solution quality is good and it is achieved very early in the evolution process with

solution gaps lesser than 0.1 %. For the case of data sets 12, 14, and 15, wherein

there are healthcare projects with changing α values, the solution quality is not

good. This indicates that the genetic algorithm is not able to evolve and generate

a better population of solutions after a few generations when there is divergence
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DS Inst BranchingAlgorithm GeneticAlgorithm
UB z br t br GenN z ga-heur t ga-heur z ga-exact t ga-exact

1 1 103659 103364 0.365 0 101640 0.091 101133 0.000
5 102610 93.320 102808 60.898
10 103256 261.472 102808 160.009
15 103256 544.961 102808 300.061
20 103364 969.192 102808 482.196
25 103448 1572.797 102808 726.718
30 103624 2397.534 103342 1008.608

2 1 199263 199232 0.062 0 199232 0.026 195104 0.001
5 199232 75.790 197145 74.818
10 199232 242.300 198713 226.572
15 199232 527.317 198713 490.900
20 199232 961.775 198713 905.519
25 199232 1592.558 198713 1292.690
30 199232 2427.101 198713 1723.470

3 1 405743 404481 0.409 0 405280 0.063 388276 0.001
5 405520 68.455 392325 114.600
10 405622 234.627 401946 280.795
15 405622 515.463 403761 492.470
20 405622 899.263 404600 755.805
25 405622 1438.144 404600 1059.094
30 405622 2247.206 404600 1425.203

4 1 1017941 1017941 0.219 0 1015626 0.140 770933 0.001
5 1016560 56.577 792134 140.729
10 1016572 179.475 802220 361.155
15 1017513 393.036 821628 605.577
20 1017513 884.067 830237 881.060
25 1017513 1574.543 842376 1258.793
30 1017513 2574.831 857130 1577.947

5 1 54541 54343 0.109 0 54343 0.040 54541 0.001
5 54343 86.904 54541 187.570
10 54343 272.042 54541 450.457
15 54343 589.225 54541 791.684
20 54343 1075.403 54541 1210.937
25 54343 1743.755 54541 1720.352
30 54343 2643.287 54541 2291.207

6 1 28074 28074 0.116 0 25538 0.054 28074 0.001
5 26502 105.156 28074 121.494
10 26502 310.287 28074 301.258
15 26502 663.867 28074 536.789
20 26502 1017.324 28074 827.930
25 26502 1425.912 28074 1193.948
30 26502 1966.269 28074 1627.125

7 1 105029 104732 0.045 0 104732 0.056 104732 0.000
5 104926 123.707 104873 80.752
10 104926 393.505 104926 199.769
15 104926 864.920 104926 358.996
20 104926 1513.799 104926 561.914
25 104926 2330.057 104926 802.129
30 104926 3277.299 104926 1091.966

8 1 96220 96139 18.090 0 94325 0.043 85215 0.007
5 95850 158.056 90495 136.066
10 95850 496.098 93833 339.370
15 96124 1060.207 95850 606.206
20 96124 1717.405 96176 937.479
25 96124 2387.902 96176 1358.604
30 96124 3813.574 96176 1843.421

Table 4.1: Results for data sets solved using genetic algorithm and compared with
results given by branching algorithm



DS Inst BranchingAlgorithm GeneticAlgorithm
UB z br t br GenN z ga-heur t ga-heur z ga-exact t ga-exact

9 1 107374 106953 26.386 0 106657 0.061 50813 0.001
5 106841 172.549 69738 63.328
10 106981 377.831 72877 151.640
15 107352 688.847 77062 268.021
20 107352 1137.793 77062 413.463
25 107352 1794.658 78623 590.126
30 107352 3085.603 78623 795.264

10 1 99832 99758 15.185 0 99588 0.033 66679 0.000
5 99770 77.544 75339 60.366
10 99812 249.782 81638 143.426
15 99812 571.634 82949 255.818
20 99827 1032.902 86395 397.021
25 99827 1693.552 87076 563.965
30 99827 2538.128 88214 763.137

11 1 81271 81271 26.632 0 80667 0.030 42355 0.001
5 81265 121.043 54008 63.556
10 81265 375.032 58828 150.256
15 81265 781.214 62955 264.533
20 81269 1388.431 70227 407.624
25 81270 2222.499 70227 579.071
30 81270 3331.431 70227 781.741

12 1 199686 198684 0.064 0 117974 0.030 191401 0.000
5 163219 78.059 196396 72.127
10 171570 245.703 197328 173.277
15 175922 537.789 197328 310.267
20 177761 967.689 197328 482.674
25 181730 1578.903 197328 687.723
30 182300 2391.932 197328 929.418

13 1 378679 378565 0.260 0 376459 0.028 375302 0.000
5 378586 81.392 377192 84.303
10 378586 256.763 378586 216.356
15 378586 563.819 378586 397.604
20 378586 1035.684 378586 628.542
25 378586 1939.833 378586 919.370
30 378586 3477.612 378586 1432.773

14 1 80907 72197 3600.114 0 72218 0.027 75623 0.009
5 72218 77.588 77573 89.385
10 73857 244.641 77948 242.765
15 73857 524.936 78879 483.411
20 73857 950.609 79095 755.752
25 73857 1545.262 80207 1094.692
30 73857 2354.257 80207 1532.895

15 1 70523 47206 3600.087 0 50783 0.053 43575 0.000
5 52397 81.593 47358 113.029
10 59294 251.329 51592 297.571
15 60975 525.733 53839 550.410
20 63030 928.222 55802 838.614
25 64010 1492.392 56120 1203.000
30 64469 2246.385 59472 1651.631

Table 4.1: Results for data sets solved using genetic algorithm and compared with
results given by branching algorithm (continued)
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DS Inst UB z br z ga-exact z ga-heur true-z ga-heur

1 1 103659 103364 103342 103624 99051
2 1 199263 199232 198713 199232 153097
3 1 405743 404481 404600 405622 307071
4 1 1017941 1017941 857130 1017513 886735
5 1 54541 54343 54541 54343 54541
6 1 28074 28074 28074 26502 26502
7 1 105029 104732 104926 104926 104036
8 1 96220 96139 96176 96124 52169
9 1 107374 106953 78623 107352 47238
10 1 99832 99758 88214 99827 29786
11 1 81271 81271 70227 81270 20120
12 1 199686 198684 197328 182300 172092
13 1 378679 378565 378586 378586 361705
14 1 80907 72197 80207 73857 69767
15 1 70523 47206 59472 64469 62341

Table 4.2: True values of the upper-level objective for instances solved using genetic
algorithm for upper-level problem and greedy heuristic for lower-level problem

in the project valuations by the donor and recipient country.

Since the greedy heuristic is approximate, we report the true bi-level optimal

solutions of the solved instances in Table 4.2. To find a true bi-level optimal

solution (true-z ga-heur) related to a heuristic solution (z ga-heur), we first

solve the lower-level problem exactly using the heuristic upper-level solution (i.e.

the subsidy) to find the optimal lower-level allocation. The upper-level objective

with this optimal lower-level allocation is the true solution of the heuristic solu-

tion. The only data sets that have good quality true solutions are 5-7 and 13. In

the case of data sets 8-11, the solution quality is particularly very low. Since the

γ values of these data sets are higher than the others, it can be observed that if

the profit to cost ratio of external project is higher than the average profit to cost

of healthcare projects, the greedy heuristic poorly performs to optimally allocate

the projects.

The genetic algorithm with an exact solver for the lower-level problem obtains

bi-level optimal solutions for data sets 1 to 3, 5 to 8, and 12 to 14 (see Table 4.1).
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(a) Data Set 1 Instance 1 (b) Data Set 2 Instance 1

(c) Data Set 3 Instance 1 (d) Data Set 4 Instance 1

(e) Data Set 5 Instance 1 (f) Data Set 6 Instance 1

(g) Data Set 7 Instance 1 (h) Data Set 8 Instance 1

Figure 4.4: Evolution of population for genetic algorithm solved for the upper-level
problem where lower-level is solved using (1) greedy heuristic and (2) exact solver
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(i) Data Set 9 Instance 1 (j) Data Set 10 Instance 1

(k) Data Set 11 Instance 1 (l) Data Set 12 Instance 1

(m) Data Set 13 Instance 1 (n) Data Set 14 Instance 1

(o) Data Set 15 Instance 1

Figure 4.4: Evolution of population for genetic algorithm solved for the upper-level
problem where lower-level is solved using (1) greedy heuristic and (2) exact solver
(continued)
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The effectiveness of this approach can be particularly seen in data sets 14 and

15 which are a few of the complex data sets that could not be solved by the

enumeration and branching algorithms given in chapter 3. The algorithm has

converged to a bi-level optimal solution within approximately 1100 seconds for

data set 14. Although this was not the case for data set 15, an improved bound

has been achieved within 1500 seconds, with a far improved solution gap of ap-

proximately 18.5 %, where the percentage solution gap is given by Equation 4.5.

The optimality gap of the solution obtained for this instance with the branching

algorithm is approximately 49.4 %.

%gUL =
UB − ẐUL

ẐUL

× 100 (4.5)

where,

UB: upper bound of the upper-level solution and,

ẐUL: upper-level solution obtained within the given time limit.

However there are few data sets wherein this approach did not work effectively.

Firstly as can be seen in Figure 4.4, the convergence of solutions with this ap-

proach is slower compared to the genetic algorithm with a greedy heuristic for the

lower-level problem, especially for data sets 2, 3, and 4. The number of projects

increases eventually resulting in more decision variables in these data sets. Sec-

ondly, solutions for data sets 9 to 11 did not converge after 30 generations. These

data sets have higher γ values as compared to other data sets which means that

the profit to cost ratio of external profit is higher as compared to the average

profit to cost of the healthcare projects. Even with a large population size of 750

individuals, the best-performing solution amongst the initial population is low.

The increments in solutions in every generation are slow and cease to occur after

a certain number of generations.

The genetic algorithm with a greedy heuristic for the lower-level problem
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is not sufficient to give good solutions for complex data sets like data sets 8

to 12, 13, and 14. However, these solutions converge faster towards the best

bound as compared to the solutions obtained with the genetic algorithm with an

exact solver for lower-level problem. These two approaches can be combined to

achieve faster good quality solutions in the future. For example, when the genetic

algorithm progresses, few of the best solutions obtained using greedy heuristic

can be plugged into an exact solver to find optimal allocations. This new set of

solutions can then be reused in the population of the heuristic approach so that

the low-quality solutions are discarded from the search process.

Following from the findings so far, we continue using only the results that

are obtained using the genetic algorithm with an exact solver for the lower-level

problem in the rest of the chapter.

Test data sets

Data sets 1 to 7 have been easily solved using both exact solvers (see chapter 3).

Hence, we have used these data sets to test the performance of the genetic al-

gorithm against the branching algorithm since it has generally performed better

than the enumeration algorithm. In Table 4.3, the average solution time (in sec-

onds) of all the instances in each of the data sets has been given. The solution

time that we report here is the time when the genetic algorithm first finds a

solution within an acceptable optimality gap during the search. For the data

sets in which few of the instances could not be solved completely, we report their

average solution gaps followed by a bracket that includes the number of instances

that could not be solved to optimality. For example, in the case of data set 3,

all instances have been solved by both branching and enumeration algorithms.

However, only six instances are solved completely by the genetic algorithm whose

solution time is reported first. And for the remaining four instances, we report

their solution gaps at the bottom of the particular row.

The genetic algorithm has given optimal solutions to all instances in all data
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DS
BranchingAlgorithm GeneticAlgorithm
Min Avg Max Min Avg Max

1 0.238 0.348 0.434 36.760 162.205 383.707
2 0.047 0.325 0.916 30.880 267.679 994.403
3 0.049 0.309 0.454 20.704

2.4% (4)
270.865
4.2% (4)

412.956
6.4% (4)

4 0.066 0.458 1.036 1484.448
6.4% (9)

1484.448
14.9% (9)

1484.448
21.5% (9)

5 0.062 0.096 0.133 14.318 25.934 34.250
6 0.078 0.138 0.250 14.307 21.180 42.551
7 0.045 0.085 0.166 12.845 49.471 180.563

Table 4.3: Summary of solution time (in seconds) and solution gaps of all instances
solved in data sets 1 to 7 using (a) branching algorithm, and (b) genetic algorithm

sets except data sets 3 and 4 in acceptable solution time. Four out of ten instances

in data set 3 could not be solved with an average solution gap of 4.2%, and nine

out of ten instances in data set 4 could not be solved with an average solution

gap of 14.9%. This clearly indicates that the genetic algorithm is not performing

well when the number of variables (number of projects) increases. However, the

results are promising enough to explore how the genetic algorithm performs when

the data sets are complex wherein the number of projects remains the same.

All data sets for performance comparison of the proposed algorithms

Finally, we compare the performance of all three proposed solution methods - (1)

Enumeration Algorithm, (2) Branching Algorithm, and (3) Genetic Algorithm

and present in Table 4.4. We have solved all the instances in each of the data sets

and compared their solution quality. For the data sets wherein all the instances

are solved to optimality, their minimum, average, and maximum solution time (in

seconds) are given. The solution time that we report here is the time when the

algorithm first finds a solution within an acceptable optimality gap during the

search. For the data sets in which few of the instances could not be solved com-

pletely, we report their minimum, average, and maximum solution gaps followed

by a bracket that includes the number of instances that could not be solved to

optimality. For example, in the case of data set 3, all instances have been solved
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Chapter 4. Genetic algorithm for the DR-BKP

by both branching and enumeration algorithms. However, only six instances are

solved completely by the genetic algorithm whose summary of solution time is

reported first. And for the remaining four instances, we report a summary of

their solution gaps at the bottom of the particular row. For the data sets wherein

none of the instances could be solved to optimality, a summary of their solution

gap is given followed by the number 10 in a bracket since all 10 instances remain

unsolved.

Out of all the data sets, data sets 9 to 11 and data sets 14 and 15 are closer to

realistic scenarios however these have been found difficult to solve. Both enumer-

ation and branching algorithms have solved all instances in data sets 9 to 11 to

optimality in less time. However, the genetic algorithm has terminated without

optimal solutions after a given limit on generations and with high solution gaps.

Contrasting to this, the genetic algorithm has performed effectively in the case of

data sets 14 and 15 as compared to the exact solvers. It has given optimal solu-

tions for five of the ten instances in data set 14. For the remaining five instances,

the obtained solution gaps are improved as compared to those given by the exact

solvers. For data set 15, the branching and enumeration algorithms could only

achieve solution gaps of at most 49.4% and 50.3% respectively, whereas the ge-

netic algorithm has managed to achieve 27.8% solution gap or better over the ten

instances.

The results for each of the instance in every data set solved using all the

proposed algorithms are uploaded on Github1. A summary file is included in this

results folder that gives tables provided in this chapter.

4.3 Conclusion

In this chapter, we have given a genetic algorithm with a nested procedure to solve

the DR-BKP. Being a difficult problem to solve exactly especially for complex and

large instances that are close to real-life scenarios, we took a meta-heuristic-based

1https://github.com/ashwin-1983/DR-BKP/tree/main/GeneticAlgorithm_Results
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Data sets Changes in the data sets
Algorithm with better

performance
Observations

1 to 4

Number of healthcare
projects in each class

is increased
Branching algorithm

Solution time increases with number
of variables, this is addressed by the

branching algorithm

5 to 6
Donor and recipient

budgets are decreased All algorithms
Lower budget does not complicate

the problem

7 to 11
Valuation of external
project is increased Branching algorithm

Leads to increase in number of
constraints and branches, this is

addressed by the branching algorithm

12 to 15

Divergence in project
valuations by both

participants is increased
Genetic algorithm

Both exact methods cannot reach
optimal solutions, the genetic algorithm

can improve bounds faster

Table 4.5: Summary of performance comparison of all the proposed algorithms with
respect to changes in the data sets

approach to address the DR-BKP. The DR-BKP has a knapsack at both upper

and lower levels. In the developed genetic algorithm, the upper-level problem is

dealt with by the genetic operators and a population of solutions (i.e. subsidies).

The population evolves over a set of generations wherein the fitness of solutions is

given by the upper-level objective achieved using the lower-level allocation done

after using the particular solution or subsidies.

A performance summary of both exact algorithms and the genetic algorithm

has been given in Table 4.5, for the groups of data sets based on key changes

that have been done to generate these data sets. Although the genetic algorithm

has not performed well on the complex data sets where valuations of the external

projects are increased (especially, data sets 9, 10, and 11), it shows potential

to at least improve the bounds of solutions much faster as compared to both

of the exact solvers. The exact solvers are ineffective in these sets since the

cuts generated in the enumeration algorithm cease to reduce the solution space

effectively after certain iterations and the number of branches increases so large

in the branching algorithm that the search process becomes extremely slow. The

genetic algorithm approach can be used along with these exact solvers to generate

cuts at a faster rate to reduce the feasible solution space during the exact solution

procedures. It is an interesting direction that can be taken for further research
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in Bi-level Knapsack Problems. The developed algorithm is also flexible enough

to be extended to single-leader multi-follower bi-level knapsack problems.
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Chapter 5

Generalization and applications

of interest

In this chapter, we have given generalizations of the proposed solution algorithms

to other bi-level optimization frameworks that are related to the Donor-Recipient

Bi-level Knapsack Problem (DR-BKP), viz.,

(1) DR-BKP with lower-level problem having multiple non-healthcare projects

that cannot be picked fractionally,

(2) DR-BKP with lower-level objective having a piece-wise linear concave func-

tion, and

(3) DR-BKP with multiple lower-level problems i.e. recipient countries.

5.1 DR-BKP with lower-level problem having multiple non-

healthcare projects

The DR-BKP introduced in chapter 1 and considered for developing solution

techniques in chapter 3 and chapter 4 has a framework such that the lower-level

problem (the recipient country) has an outside option of projects along with the

healthcare projects that compete for funding. This outside option of projects

are the non-healthcare projects that are of interest only to the recipient country;
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these are projects like education, welfare, and defense and these are referred to

as the “external project”. Along with the healthcare projects, the recipient has

to fund the external project fractionally or wholly. The external project has a

linear profit and linear cost of v0 and c0 respectively.

We consider the original set of one or more non-healthcare projects in the

lower-level problem instead of a single representative external project in order to

take a realistic approach to the current problem formulation. The non-healthcare

projects are eligible to be selected wholly by the recipient country for funding

along with the healthcare projects in the bi-level model given in this section.

This model is referred to as the Donor-Recipient Bi-level Knapsack Problem with

Non-Healthcare projects (DR-BKP-NH) henceforth.

5.1.1 Problem definition

An instance of the DR-BKP-NH comprises two players, a donor and a recipient

country. The donor is leader and the recipient is follower in the bi-level problem

framework. There is a set I of n healthcare projects, I = {1, . . . , n}, which are

of interest to both players. Also, there is a set J of m non-healthcare projects,

J = {1 . . .m}, which are of interest to the recipient country (lower-level player)

only. Each project i ∈ I, has a profit of wi ∈ N (resp. vi ∈ N) for the donor (resp.

recipient), and a cost ci ∈ N. Let w and v denote the vectors of profits of the

donor and the recipient respectively and c be the vector of costs of the healthcare

projects. Each project j ∈ J , has a profit of v0j ∈ N for the recipient, and a

cost c0j ∈ N. Let v0 and c0 denote the vectors of profits and the costs of the

non-healthcare projects. We have two integer budgets, Bd and Br, corresponding

to the donor and the recipient.

To solve an instance of the DR-BKP-NH, the donor solves upper-level knap-

sack problem to allocate subsidies yi to the healthcare projects i ∈ I with a profit

wi and cost ci. Here, a subsidy yi is the proportion of cost of project i. Using

the allocated subsidies yi for each of the project i, the recipient solves its own

84



Chapter 5. Generalization and applications of interest

knapsack problem to allocate funds amongst the healthcare and non-healthcare

projects. Each item of this knapsack corresponds to (1) a healthcare project i ∈ I

with a profit vi and cost ci− ciyi after considering the donor subsidies, and (2) a

non-healthcare project j ∈ J with a profit v0j and cost c0j. Both healthcare and

non-healthcare projects are binary and cannot be fractionally picked.

The donor aims to maximize its profit such that budget Bd is not exceeded

and the projects selected are in the optimal solution set of the recipient’s cost

subsidized knapsack problem. Let y denote the vector of subsidy. Since the

donor cannot subsidize a project more than its cost and the total subsidy cannot

exceed its budget, the set of all valid subsidies is denoted by Y :=
{
y :

∑
i∈I ciyi ≤

Bd,y ∈ [0, 1]n
}
.

For the decision vectors to represent project selection, let x denote 0-1 vector

representing set of healthcare projects that are picked (ith component of the

vector, xi, is 1 if project i is picked and 0 otherwise) and let x0 denote 0-1 vector

representing set of non-healthcare projects that are picked (jth component of

the vector, x0j, is 1 if project j is picked and 0 otherwise). We define the set

X :=
{
(x,x0) : x ∈ {0, 1}n,x0 ∈ {0, 1}m

}
.

The DR-BKP-NH has been given in (5.1) and (5.2) where upper-level is the

donor problem (DONOR) and lower-level is the recipient problem (RECIPIENT(y))

parameterised on the upper-level decision y.

Problem DONOR:

maximize wTx (5.1a)

subject to y ∈ Y (5.1b)

x ∈ argmax(RECIPIENT(y)). (5.1c)
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Problem RECIPIENT(y):

maximize vTx+ v0
Tx0 (5.2a)

subject to
∑
i∈I

(ci − ciyi)xi +
∑
j∈J

c0jx0j ≤ Br (5.2b)

(x,x0) ∈ X. (5.2c)

The DR-BKP-NH is continuous in the upper-level and discrete in the lower-

level. The enumeration algorithm given for the DR-BKP in chapter 3 can be

extended for this problem setup. Let Relaxed Donor-Recipient Bi-level Knapsack

Problem with Non-Healthcare projects (R-DR-BKP-NH) denote the High Point

Relaxation High Point Relaxation (HPR) given in Equation 5.3.

Problem R-DR-BKP-NH:

maximize wTx (5.3a)

subject to cTy ≤ Bd (5.3b)

cTx+ c0
Tx0 ≤ Br + cTy (5.3c)

yi ≤ xi ∀i ∈ I (5.3d)

y ∈ [0, 1]n (5.3e)

x ∈ {0, 1}n (5.3f)

x0 ∈ {0, 1}m. (5.3g)

To ensure that an optimal solution (x∗,x∗
0,y

∗) to the R-DR-BKP-NH but

(x∗,x∗
0) /∈ P (y∗), following inequality will remove (x∗,x∗

0,y
∗) from the search

space for any (x̄, x̄0) ∈ P (y∗). Big M can be used to handle “if-then” constraint

in order to refrain from cutting off valid subsidies.

vTx+ v0
Tx0 ≥ vT x̄+ v0

T x̄0 (5.4)
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where P (y∗) is the follower’s rational reaction set for a fixed y∗ ∈ Y :

P (y∗) =
{
(x,x0) : (x,x0) ∈ argmax

{
vTx+ v0

Tx0 :
∑
i∈I

cixi +
∑
j∈J

cjxj

≤ Br +
∑
i∈I

ciy
∗
ixi, (x,x0) ∈ X

}}
.
(5.5)

The only difference between the DR-BKP and the DR-BKP-NH is that the

DR-BKP has a continuous variable, x0, in the lower-level problem whereas DR-

BKP-NH has a set of discrete variables in the lower-level problem. This continu-

ous variable is one of the difficulties to directly use the inequality 3.12 to eliminate

(x∗, x∗
0,y

∗) when (x∗, x∗
0) /∈ P (y∗) in the solution algorithm. To handle the issue

of evaluating a range of continuous x0 values, assumption (3.10) i.e. c0 ≥ Br has

been used. In the case of DR-BKP-NH, since all variables in the lower-level prob-

lem are discrete, these can be potentially enumerated before adding inequality

5.4 when (x∗,x∗
0) /∈ P (y∗) and hence it will be a straightforward process.

The challenge in this approach may arise when the problem size increases.

The solution time to handle several binary variables will increase immensely as

the number of both healthcare and non-healthcare projects increases. Taking a

heuristic approach like the given genetic algorithm in chapter 4 can reduce the

solution time in such cases. The upper-level problem will be solved using the

genetic algorithm, and the lower-level problem will be solved using an off-the-

shelf exact solver. However with the increasing size of a problem, due to the

binary variables of both healthcare and non-healthcare projects, the lower-level

problems may get computationally expensive. It will be interesting to compare

the performance of both bi-level exact solvers and the genetic algorithm when

the problem size increases.
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5.2 DR-BKP with lower-level objective having a piece-wise

linear concave function

The DR-BKP has a set of both healthcare and non-healthcare projects. The

non-healthcare projects are of interest only to the recipient country. These have

been represented by a single external project with linear profit and cost functions

in the lower-level problem in the previous chapters. However in realistic cases,

as the proportion of funds allocated by the recipient country to a representative

external project increases, its profit achieved is not linear and tends to decrease.

This decrease in the lower-level profit is approximated by a piece-wise linear

concave function in the model that we present in this section. We refer to this

model as Donor-Recipient Bi-level Knapsack Problem with Recipient profit as a

Piece-wise linear Concave function (DR-BKP-RPC) henceforth.

5.2.1 Problem definition

An instance of DR-BKP-RPC comprises two players, a donor, and a recipient

country. The donor is leader and the recipient is follower in the bi-level problem

framework. There is a set I of n healthcare projects, I = {1, . . . , n}, which are

of interest to both players. Each project i ∈ I, has a profit of wi ∈ N (resp.

vi ∈ N) for the donor (resp. recipient), and a cost ci ∈ N. Let w and v denote

the vectors of profits of the donor and the recipient respectively and c be the

vector of costs of the healthcare projects. We have two integer budgets, Bd and

Br, corresponding to the donor and the recipient.

The recipient has to allocate its budget to the external project that has a

linear cost c0. This funding can be fractionally or wholly done. The profit of the

external project is given by function Equation 5.6:

f(x0) = max
(j=1...m)

(aj + ujx0). (5.6)

This function is divided into intervals (also called pieces of the function) of
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Figure 5.1: Piece-wise linear concave function for the external project of the lower-level
problem

the decision variable x0, also shown in Figure 5.1 that is non-negative and has an

upper bound 1 since it represents the proportion of cost of the external project

that gets funded by the recipient country. The slope of the lower-level profit

function decreases as x0 increases, given by slopes uj, ∀j, and slope intercepts

aj, ∀j, for pieces j = 1, . . . ,m where m is the total number of profit function

intervals. In the current setup, we consider only three pieces of the piece-wise

linear concave function, as also represented in Figure 5.1. Let u and a denote

the vectors of slopes and slope intercepts of the piece-wise linear concave function

respectively.

An instance of DR-BKP-RPC is specified by the input (w,v, c,u, c0, Bd, Br).

The recipient solves a knapsack problem, where each item of the knapsack corre-

sponds to a project i ∈ I with a profit function f(x0) given in Equation 5.6 and

cost ci − ciyi, where yi is the proportion of cost of project i that is subsidized by

the donor. These projects are binary and cannot be fractionally picked.
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A solution to an instance of DR-BKP-RPC is to decide on the proportion of

cost to be subsidized, yi, for each project i ∈ I with
∑

i∈I ciyi ≤ Bd such that

profit of the donor is maximized given the projects are in the optimal solution

set of the recipient’s cost subsidized knapsack problem. We use the notation y

to denote a vector of subsidy. The leader cannot subsidize a project more than

its cost and the total subsidy cannot exceed the leader’s budget. The set of all

valid subsidies is denoted by Y :=
{
y :

∑
i∈I ciyi ≤ Bd,y ∈ [0, 1]n

}
.

We let x to denote a 0-1 vector representing the set of projects that are picked

(ith component of the vector, xi, is 1 if project i is picked and 0 otherwise). We

define the set X :=
{
(x, x0) : x ∈ {0, 1}n, x0 ∈ [0, 1]

}
. Let X := {x1,x2, . . . ,xK}

be the set of all possible subsets of projects. We define the set of all valid projects

corresponding to a subsidy y ∈ Y as

G(y) := {x ∈ X :
∑
i∈I

(ci − ciyi)xi ≤ Br}. (5.7)

The DR-BKP-RPC has been given in (5.8) and (5.9) where upper-level is the

donor problem (DONOR) and lower-level is the recipient problem (RECIPIENT(y))

parameterised on the upper-level decision y.

Problem DONOR:

maximize wTx (5.8a)

subject to y ∈ Y (5.8b)

x ∈ argmax(RECIPIENT(y)). (5.8c)
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Problem RECIPIENT(y):

maximize vTx+ f(x0) (5.9a)

subject to
∑
i∈I

(ci − ciyi)xi + c0x0 ≤ Br (5.9b)

(x, x0) ∈ X. (5.9c)

The DR-BKP-RPC is continuous in the upper-level and both discrete and

continuous in the lower-level. The HPR of DR-BKP-RPC or the Relaxed Donor-

Recipient Bi-level Knapsack Problem with Recipient profit as a Piece-wise lin-

ear Concave function (DR-BKP-RPC) will be the same as the Relaxed Donor-

Recipient Bi-level Knapsack Problem (R-DR-BKP) (see Equation 4.1 in chap-

ter 3). However, to use the enumeration algorithm for this setup, the inequality

to cut off bi-level infeasible solutions will be different.

To ensure that an optimal solution (x∗, x∗
0,y

∗) to the DR-BKP-RPC but

(x∗, x∗
0) /∈ P (y∗), following inequality will remove (x∗, x∗

0,y
∗) from the search

space for any (x̄, x̄0) ∈ P (y∗).

vTx+ f(x0) ≥ vT x̄+ f(x̄0) (5.10)

where P (y∗) is the follower’s rational reaction set for a fixed

P (y∗) =
{
(x, x0) : (x, x0) ∈ argmax

{
vTx+ f(x0) :

∑
i∈I

cixi + c0x0

≤ Br +
∑
i∈I

ciy
∗
ixi, (x, x0) ∈ X

}}
.

(5.11)

Since it is known that in order to use the inequality 3.12 to eliminate (x∗, x∗
0,y

∗)

when (x∗, x∗
0) /∈ P (y∗) in the solution algorithm,

It is known now that the continuous variable x0 is one of the difficulties to
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directly use the inequality 3.12 to eliminate (x∗, x∗
0,y

∗) when (x∗, x∗
0) /∈ P (y∗)

in the solution algorithm of DR-BKP. Using assumption (3.10) i.e. c0 ≥ Br,

inequality 3.15 has been used to address this issue. In every iteration of the

enumeration algorithm, the search space is cut using this inequality if bi-level

optimal solution is not reached. However, the challenge here is to find the exact

piece/ interval of the piece-wise linear concave function where the bi-level optimal

solution will lie. Depending on the piece where the bi-level optimal solution lies,

the profit function uj changes and hence the right hand side of the inequality 5.10.

In case all the pieces are enumerated on the right hand side of the inequality using

the profit to cost ratio of each piece, there will be many branches created in just

one iteration of the search process. This can result in intractability over just a

few iterations.

5.3 DR-BKP with multiple lower-level problems

The model framework considered in this thesis has a single leader and single

follower i.e. the DR-BKP has a single donor in the system that allocates funds

to healthcare projects in a single recipient country. The decision made by the

donor (example: a subsidy is increased for either of the projects) can make an

impact in the decision made by the recipient (example: the recipient can select

this project after it receives more subsidy if it was not selected before).

However, in realistic cases, the donor has multiple recipient countries in its

consideration for allocating the funds for healthcare projects. In this section, we

introduce a model framework of single leader-multiple followers to address this

realistic generalization of the DR-BKP i.e. the DR-BKP with multiple lower-

level problems. We refer to this model framework as Donor-multiple Recipients

Bi-level Knapsack problem (D-mR-BKP) henceforth. This problem is a special

case of the general framework ‘Single-Leader Multi-Follower Games’ given by

Aussel & Svensson (2020).
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5.3.1 Problem definition

In order to keep the problem definition simpler, we consider only two recipient

countries i.e. Donor-two Recipients Bi-level Knapsack problem (D-2R-BKP). An

instance of D-2R-BKP has a single donor who is the leader and two recipient

countries who are the followers. There is a set I of n healthcare projects, I =

{1, . . . , n}, that is of interest to recipient 1 and there is a set J of m healthcare

projects, J = {1, . . . ,m}, that is of interest to recipient 2. The donor is interested

in all the healthcare projects across both recipient countries to maximize its profit.

Each project i ∈ I, has a profit of w1i ∈ N (resp. v1i ∈ N) for the donor (resp.

recipient 1), and a cost c1i ∈ N. Let w1 and v1 denote the vectors of profits of

the donor and the recipient 1 respectively and c1 be the vector of costs of the

healthcare projects. Similarly, each project j ∈ J , has a profit of wj ∈ N (resp.

vj ∈ N) for the donor (resp. recipient 2), and a cost c2i ∈ N. Let w2 and v2

denote the vectors of profits of the donor and the recipient 2 respectively and c2

be the vector of costs of the healthcare projects.

We have integer budgets, Bd, B1r and B2r, corresponding to the donor, re-

cipient 1 and recipient 2. Both recipients also allocate their respective budgets

to their own external projects. An external project of each recipient is a rep-

resentative project of all other non-healthcare projects wherein the donor is not

interested. These external projects have linear profits, v10 and v20, and linear

costs, c10 and c20, for recipient 1 and recipient 2 respectively.

An instance of D-2R-BKP is specified by the input (w1,w2,v1,v2,

c1, c2, v10, v20, c10, c20, Bd, B1r, B2r). Recipient 1 solves its own knapsack prob-

lem, where each item of the knapsack corresponds to a project i ∈ I with a profit

v1i and cost c1i − c1iy1i, where y1i is the proportion of cost of project i that is

subsidized by the donor. Similarly, recipient 2 solves its own knapsack problem,

where each item of the knapsack corresponds to a project j ∈ J with a profit

v2j and cost c2j − c2jy2j, where y2j is the proportion of cost of project j that

is subsidized by the donor. All the healthcare projects are binary and cannot be
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fractionally picked. Along with the healthcare projects, the recipients have to

fund their respective external projects which can be done fractionally or wholly

i.e. only a proportion or entire of cost of the external projects can be funded by

the recipients.

A solution to an instance of D-2R-BKP is to decide on the proportion of cost

to be subsidized, y1i, for each project i ∈ I and y2j, for each project j ∈ J with∑
i∈I c1iy1i +

∑
j∈J c2jy2j ≤ Bd such that profit of the donor is maximized given

the projects are in the optimal solution set of the recipients’ cost subsidized

knapsack problems. We use the notation y1 and y2 to denote the vectors of

subsidy for recipient 1 and recipient 2 respectively. The leader cannot subsidize

a project more than its cost and the total subsidy cannot exceed the leader’s

budget. The set of all valid subsidies is denoted by

Y :=
{
(y1,y2) :

∑
i∈I c1iy1i +

∑
j∈J c2jy2j ≤ Bd,y1 ∈ [0, 1]n,y2 ∈ [0, 1]m

}
.

We let x1 denote a 0-1 vector representing the set of projects that are picked

(ith component of the vector, x1i, is 1 if project i is picked and 0 otherwise)

and x10 to denote proportion of cost of external project that is being funded by

the recipient 1. We define the set X1 :=
{
(x1, x10) : x1 ∈ {0, 1}n, x10 ∈ [0, 1]

}
.

Similarly, let x2 denote a 0-1 vector representing the set of projects that are picked

(jth component of the vector, x2j, is 1 if project j is picked and 0 otherwise) and

x20 to denote proportion of cost of external project that is being funded by the

recipient 2. We define the set X2 :=
{
(x2, x20) : x2 ∈ {0, 1}m, x20 ∈ [0, 1]

}
.

The D-2R-BKP has been given in (5.12), (5.13) and (5.14) where upper-level

is the donor problem (DONOR) and there are two problems in the lower-level

- (1) recipient 1 problem (RECIPIENT1(y1)) parameterised on the upper-level

decision y1 and (2) recipient 2 problem (RECIPIENT2(y2)) parameterised on

the upper-level decision y2.
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Problem DONOR:

maximize w1Tx1+w2Tx2 (5.12a)

subject to (y1,y2) ∈ Y (5.12b)

x1 ∈ argmax(RECIPIENT1(y1)) (5.12c)

x2 ∈ argmax(RECIPIENT2(y2)). (5.12d)

Problem RECIPIENT1(y1):

maximize v1Tx1+ v10x10 (5.13a)

subject to
∑
i∈I

(c1i − c1iy1i)x1i + c10x10 ≤ B1r (5.13b)

(x1, x10) ∈ X1. (5.13c)

Problem RECIPIENT2(y2):

maximize v2Tx2+ v20x20 (5.14a)

subject to
∑
j∈J

(c2j − c2jy2j)x2j + c20x20 ≤ B2r (5.14b)

(x2, x20) ∈ X2. (5.14c)

The D-2R-BKP is continuous in the upper-level and both continuous and

discrete in the lower-level. We first define the HPR of the D-2R-BKP i.e. Relaxed

Donor-two Recipients Bi-level Knapsack problem (R-D-2R-BKP) as follows.
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Problem R-D-2R-BKP:

maximize w1Tx1+w2Tx2 (5.15a)

subject to cTy ≤ Bd (5.15b)

c1Tx1+ c10x10 ≤ B1r + c1Ty1 (5.15c)

c2Tx2+ c20x20 ≤ B2r + c2Ty2 (5.15d)

y1i ≤ x1i ∀i ∈ I (5.15e)

y2j ≤ x2j ∀j ∈ J (5.15f)

y1 ∈ [0, 1]n (5.15g)

y1 ∈ [0, 1]m (5.15h)

x1 ∈ {0, 1}n (5.15i)

x2 ∈ {0, 1}m (5.15j)

x10 ∈ [0, 1] (5.15k)

x20 ∈ [0, 1]. (5.15l)

To extend the enumeration algorithm given for the DR-BKP in chapter 3

in this problem setup, first inequalities need to be identified which can be used

to cut off the search space that have bi-level infeasible solutions. To ensure

that an optimal solution (x1∗,x2∗,x1∗
0,x2

∗
0,y1

∗,y2∗) to the R-D-2R-BKP but

(x1∗,x1∗
0) /∈ P1(y1∗) and (x2∗,x2∗

0) /∈ P2(y2∗), following inequalities will re-

move (x1∗,x2∗,x1∗
0,x2

∗
0,y1

∗,y2∗) from the search space for any (x̄1, x̄10) ∈

P1(y1∗) and (x̄2, x̄20) ∈ P2(y2∗) after assumption 3.10 in chapter 3.

v1Tx1+ v10x10 −
∑
i∈I

c1′ix̄1iy1i ≥ v1T x̄1+
v10
c10

(B1r − c1T x̄1), (5.16)
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v2Tx2+ v20x20 −
∑
j∈J

c2′ix̄2iy2i ≥ v2T x̄2+
v20
c20

(B2r − c2T x̄2). (5.17)

where P1(y1∗) is the recipient 1’s rational reaction set for a fixed y1∗ ∈ Y :

P1(y1∗) =
{
(x1, x10) : (x1, x10) ∈ argmax

{
v1Tx1+ v10

Tx10 :∑
i∈I

c1ix1i + c10x10≤ B1r +
∑
i∈I

c1iy1
∗
ix1i, (x1, x10) ∈ X1

}}
,

(5.18)

and P2(y2∗) is the recipient 2’s rational reaction set for a fixed y2∗ ∈ Y :

P2(y2∗) =
{
(x2, x20) : (x2, x20) ∈ argmax

{
v2Tx2+ v20

Tx20 :∑
j∈J

c2jx2j + c20x20≤ B2r +
∑
j∈J

c2jy1
∗
jx2j, (x2, x20) ∈ X2

}}
.

(5.19)

The solution method will start by solving the R-D-2R-BKP first. In every

iteration, cuts will be added when either

1. (x1∗,x1∗
0) /∈ P1(y1∗), inequality 5.16 will be added if

c1T x̄1−
∑

i∈I c1ix̄1iy1i ≤ B1r or

2. (x2∗,x2∗
0) /∈ P2(y2∗), inequality 5.17 will be added if

c2T x̄2−
∑

j∈J c2ix̄2iy2i ≤ B2r

In order to handle the “if-then” constraints, there will be a need to use more

than two big Ms. This might affect the solution time of the enumeration algo-

rithm. An interesting direction will be to use the branching algorithm wherein

the cuts can be systematically added at every incumbent.

The genetic algorithm can be easily extended to a DR-BKP with multiple

lower-level problems like the D-2R-BKP to find good quality solution in reason-

able time.. The upper-level will be solved by the genetic algorithm. For every
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upper-level feasible solution, each of the lower-level problems will be solved using

an off-the-shelf exact solver. However, both solution quality and time will be

significantly impacted by the size of the problem.
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Conclusion and future research

In this thesis, we have studied a specific application of Bi-level Knapsack Problems

(BKPs) in a real-world problem of allocation of healthcare funds and developed

algorithms to solve different instances that range on differing parameters. We

start with an introduction to a general Bi-level Programming Problem Bi-level

Programming Problem (BLPP) and then discuss about the mixed-integer BLPPs.

Following this, we give the real-world problem which has played a key role in mo-

tivating this thesis. The application problem is about allocating the healthcare

funds to healthcare projects by two participants in the system, a donor agency

and a recipient country, as introduced by Morton et al. (2018). They solved this

problem using an assumption that the recipient country is a middle-income coun-

try capable of funding all the healthcare projects from its own budget. In order to

generalize the model and get solutions for realistic cases, this assumption needs to

be relaxed. However, the resulting BKP, referred to as Donor-Recipient Bi-level

Knapsack Problem (DR-BKP) in this thesis, is a very difficult but interesting

problem to solve.

After studying different types of mixed-integer BLPPs and BKPs in the liter-

ature, as presented in chapter 2, we realized none of the solution methods in liter-

ature can be directly used to solve the DR-BKP. In chapter 3, we define the DR-

BKP along with its properties and assumptions. The complexity of the DR-BKP
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is then discussed while giving evidence to this problem being
∑p

2-hard. We have

then proposed two exact solution techniques for solving the DR-BKP. First, a

relaxed DR-BKP is presented along with a rationale for developing and using cuts

to exclude bi-level infeasible solutions during the search process. The developed

cuts are used to give a reformulation of the DR-BKP. A finitely-terminating enu-

meration algorithm has been presented then that uses this reformulated DR-BKP

to find the bi-level optimal solution. Using the same reformulation, a branching

algorithm has been proposed that makes use of the branching functionality in

the Mixed-Integer Programming Problem (MILP) solver called CPLEX. We have

presented a computational study following this, where in first a range of data

have been generated based on available real data of the application problem.

The performance of both enumeration and branching algorithms has been tested

by solving all instances in the generated data sets. The obtained results show that

the enumeration algorithm performs better in case the problem instances are less

complicated. As the complexity of the instances increases, like when the exter-

nal project starts competing with healthcare projects in the lower-level problem

and/or when there is divergence in the healthcare project valuation by the two

participants, the branching algorithm performs better. We also encountered two

data sets so complex that the exact solvers could not find reasonable solutions

in the given time limit. This motivated us to develop a heuristic approach for

solving the DR-BKP.

A genetic algorithm has been developed to solve the DR-BKP and presented

in chapter 4. The developed algorithm is a nested sequential approach to handle

the two levels of the DR-BKP. The upper-level decision variables are coded as a

genome used in the evolution process of the genetic algorithm for each population.

These genomes are generated randomly to get a solution of the upper-level prob-

lem. Each upper-level solution that is within the upper-level budget is then sent

to the lower-level problem for evaluation. The parameterized lower-level knapsack

problem can now be solved using any heuristic or exact solvers. We have used two
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methods, a greedy heuristic and an available exact solver to solve the lower-level

problem for each upper-level solution. The obtained lower-level solution is a set

of project allocations which are then plugged back into the upper-level objec-

tive to find the upper-level profit. This value of the upper-level objective gives

us the fitness of the generated solution. The population of upper-level solutions

evolves over each generation in the genetic algorithm. After a given number of

generations, the algorithm terminates and gives the best solution obtained so

far. The performance of the genetic algorithm is pronounced in complex data

sets that have divergence in the donor and country valuations of the healthcare

projects, however, it finds difficult to handle instances that have profit to cost

ratio of external project higher than the average profit to cost ratio of healthcare

projects.

In chapter 5, we have given extensions to the DR-BKP. The DR-BKP has a

single external project as a representative project for the non-healthcare projects

in the lower-level problem. We have given a model formulation in section 5.1

that considers multiple non-healthcare projects in the lower-level for selection by

the recipient country in its knapsack problem along with the healthcare projects.

The healthcare projects are eligible to be subsidized partially or wholly by the

donor and selected for funding by the recipient after receiving the donor subsi-

dies. However, the non-healthcare projects can be selected wholly for funding

by the recipient only. In section 5.2, we relax the assumption made in the DR-

BKP that the external project has linear cost and linear profit. As in realistic

cases, the profit of the external project decreases as the funding for this project

increases. This relation is captured using a piece-wise linear concave function

for the lower-level profit and a model formulation has been given such that the

lower-level problem has this updated profit function. We also have considered an-

other realistic situation where there is a single donor and multiple followers i.e.

there are more than one recipient countries in the system. The donor considers

all the healthcare projects in these countries for its funds’ allocation. A model
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formulation for this scenario has been given in section 5.3.

From this study, we have looked into different methods to solve the DR-BKP

such that various data sets can be handled and solved effectively. Nevertheless,

there are some directions in which this research work can be taken further to

solve the DR-BKP and its variations more effectively.

The cost of the external project in the lower-level problem is assumed to be

at least equal to the lower-level budget in the solution methods developed in this

thesis. It would be interesting to explore how the developed algorithms can be

extended to operate without relying on the assumption (see 3.10 in chapter 3).

Firstly, the problem needs to be investigated to check if an optimal solution

exists i.e. if the problem has a maximum. After this primary study, when as-

sumption (3.10) is relaxed, the right hand side of the introduced cut will not

remain linear anymore. This will need another binary variable to linearise these

terms and hence impact the efficiency of the search algorithm.

The proof of complexity that we give does not provide evidence that a poly-

nomial solution is not possible for unary encoding. However, the existence of

a pseudo-polynomial algorithm for this problem would be beneficial in practical

scenarios. We have only provided evidence for Σ2
p-hardness in chapter 3. A direct

reduction from a Σ2
p-complete problem to DR-BKP is open.

For the genetic algorithm developed and presented in chapter 5, there are

different directions in which it can be improved to get good solutions fast. The

initial population that we generate is set to the upper-level decision variables

that yield a lower bound of the instance. In our computational experiments, we

realized other heuristic methods can be used to generate an initial population like

a greedy heuristic that prioritizes projects valued more by both upper-level and

lower-level participants based on pre-defined weights. Although the best bound

has been improved by the genetic algorithm for the most difficult data sets, viz.

14 and 15, we would be interested in obtaining bi-level optimal solutions in a

reasonable time. The genetic algorithm approach can be used along with the
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exact solvers to generate cuts at a faster rate to reduce the feasible solution space

during the exact solution procedures. As the size of the instances increases i.e.

the number of healthcare projects increases, all the solution algorithms tend to

take longer time to solve. Hence further research can be done to modify the

evaluation function to address this issue, like a machine learning algorithm to

approximate the upper-level objective for a candidate solution or perturbation in

the candidate solution. There are few attempts in the literature that term this

approach as meta-modeling (Angelo et al. 2014, Sinha et al. 2014, 2016).
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