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Abstract 

Rolling element bearings (REBs) are one of the most critical mechanical components. 

Their failures can lead for catastrophic failures which might include great loss in 

economy or even in the lives of people. REBs are inherently dynamic and they 

demonstrate complex vibration behaviour where conventional vibration –based fault 

diagnosis methods might not give sensitive indicators of the presence of the defects. 

This thesis investigates the singular spectrum analysis (SSA) capabilities as completely 

data-based fault diagnosis method in REBs. The SSA is used to decompose the bearing 

vibration acceleration signals in a certain number of principal components having the 

trend, periodical components and structure-less noise. This thesis develops two 

methodologies to use SSA in different ways and for different purposes. The first 

methodology uses the SSA (i.e only the decomposition stage) to create a baseline space 

from healthy bearing vibration signals. Then, any new signals are projected onto this 

baseline space. From these projections, features are made and used for fault diagnosis 

purposes. In the second methodology, the SSA contributes to the development of an 

advanced signal pretreatment that efficiently improves representing the nonstationary 

bearing vibration signals by linear time invariant autoregressive (LTIVAR) model. Then 

the coefficients of LTIVAR model are used as features for fault diagnosis purposes. 

The two methodologies have been validated by using experimental data obtained from 

three different bearing test rigs. The data used in the analysis covers different defect 

locations and different defect severities. The results of both methodologies, in terms of 

correct classification, were compared to some other recent methodologies. In 
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comparison, it is shown that both methodologies have a very good performance and 

they are superior to those methodologies. 

The thesis offers simple and efficient methodologies for a complete fault diagnosis in 

terms of fault detection, identification and severity estimation. Thus, these 

methodologies have a potential possibility for automation of the entire process of each 

method. 
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Chapter 1 

Introduction 

1.1  Background 

All mechanical and electrical machines are generating signals when they are in an 

operating process. These signals are characterising those machines’ condition. Thus any 

change in these signals may indicate a change of the machine condition. Condition 

monitoring (CM) is a term refers to the process of monitoring the change of a parameter 

or some parameters which are obtained from these characterising signals. 

1.2  Importance of condition monitoring 

Rotating machines are one of the popular machines in industrial productive stations 

such as petrochemical stations and power stations.  Globally, safety, reliability, reducing 

the cost of products, and scheduling the time of production are the key aspects for 

successful productive companies. However, all machines are expected to deteriorate, no 

matter how well they were designed, because of the nature of severe operating condition 

that they work in. Failure of machines,   particularly the critical ones, is one of main 

issues that affect negatively the production’s cost and time schedules. This is because 
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failures cause downtime of a machine which means enormous cost for maintenance or 

replacement and delay in production. It can lead to a costly loss and even human 

causalities. These failures are usually caused by a developed small defect in one of the 

machine components. If these defects are not detected at an early stage, and a right 

decision is not taken, they develop and may lead to a catastrophic failure. 

A fundamental solution to reduce the possibility of machine breakdown is the 

maintenance which ensures keeping the machines up to a satisfactory level of 

performance. A brief summary on the history of maintenance techniques is given in[1]. 

The earliest and most classic way of maintenance is called unplanned maintenance (it 

can also be called breakdown maintenance or run to failure maintenance). This kind of 

maintenance is applied only when a failure occurs and a machine breaks down. Another 

kind of maintenance is the so called planned maintenance (i.e preventive maintenance) 

which implies doing periodic maintenance regardless of the condition of a machine. 

This includes a periodic stop of the machines and changing some parts and doing other 

maintenance work.  However, these two kinds of maintenance have some potential 

disadvantages, such as consuming time and spending extra money for the new parts. 

Furthermore, such kinds of maintenance can cause some mechanical faults throughout 

to the disassembling and assembling of machine parts during the periodic maintenance. 

They can also affect the planned schedule of production.  

Usually such kinds of maintenance cause loss of money which might be estimated, as an 

example in some cases, as much as one third of the production costs [2].  
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 A more efficient way of maintenance is called condition-based maintenance (CBM) 

which can be defined as the maintenance process of a machine based on the information 

obtained from the machine itself during the condition monitoring process.  

The CM of a machine has several advantages; just a few to mention are [3-5] : -  

 The maintenance decision based on CM helps avoiding dangerous failures, 

considerably reducing maintenance costs by eliminating unnecessary 

maintenance   and eventually extending the remaining life of the machine  

 CM can provide advanced information about machine defects which means it 

gives an opportunity to plan for a shorter time of maintenance which necessarily 

means shorter time of downtime of a system.    

1.3  CM for Rolling element bearings (REBs) 

Rolling element bearings (REBs) are one of the most critical mechanical components in 

the rotating machinery such as motors and pumps where more than 90% of rotating 

machines are using rolling elements bearings [6]. No matter how well the bearings are 

precisely designed, normally loaded and correctly assembled and properly lubricated 

they fail due to material fatigue after a certain operating time.  This period of operating 

time is called the bearing fatigue life and it is estimated by the number of revolutions 

that a bearing can do before it comes to failure. The estimated bearing fatigue life can 

be calculated according to the formula: - 

𝐿10 = (
𝐶

𝑃
)
𝑛𝑜
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Where P is the equivalent dynamic load and it can be determined depending on the 

bearing geometry and the radial and thrust load components [7].  C is the constant load. 

The no is a constant which is estimated as n=3 for ball bearings and n=10/3 for roller 

bearings. It is mentioned in the literature that the majority of the identical test bearings 

have a fatigue of bearing is around one million revolutions [8]. Defects in REBs shorten 

their fatigue lives. These defects can be caused by either internal factors such as 

assembly error or outer factors such as the force from other components in the 

assembly. The defects of REBs are considered as one of the main reasons of rotating 

machinery failures.  For instance, the literature shows that they form around 40% of 

reasons for failure in induction machines [9]. Faults in REBs can also be indicators for 

the existence of another fault in the machines such as the misalignment and unbalance. 

The lack of fault detection at an early stage can lead to dangerous consequences. 

Detection of bearing faults can help to avoid the catastrophic failure of a bearing, and as 

a result a failure of the machine, when right decision is taken at a due time.  

1.4  Bearings CM strategies    

Usually, most of bearing defects occur during the operating time. Thus, monitoring the 

condition of the bearings and detecting such faults without dismounting the bearing or 

even without stopping the machine is very important. There are various approaches used 

for detecting defects in bearing.  The condition strategies can be classified, based on the 

type of acquired signals, into acoustic signal analysis, temperature measurement, 

lubricant analysis, electrical current analysis, and vibration measurement [10]. Several 

strategies are developed to achieve the goals of condition monitoring. They are mainly 
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classified as acoustic measurements, machine current and bearing temperature 

monitoring, lubricants analysis and bearing vibration analysis. A brief explanation for 

each of these strategies is introduced below: - 

1.4.1 Acoustic Emission 

Acoustic emission (AE) can be defined as the generation of elastic waves due to a rapid 

release of strain energy. This strain energy can be induced by a deformation or damage 

within or on the material surface [11-13].  Although AE based defect techniques are 

useful, their successful application and accuracy have been partly limited to the 

processing, and interpreting of the acquired data[14].    

1.4.2 Bearing temperature monitoring 

Excessive heat can be generated in the rotating components of a bearing due to the 

presence of distributed defects [15, 16]. Thus monitoring of the temperature of a bearing 

housing or lubricant is considered as one of the simplest methods for fault detection in 

rotary machines.  

1.4.3 Electrical Motor Current Monitoring 

Monitoring the current of a machine such as induction motors, can be also used as a 

bearing defect detection tool [17]. The changes in electrical current of a machine may 

be associated with changes of the mechanical components such as a bearing [18]. 
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1.4.4 Lubricants analysis 

Some bearing defects can also be detected through the analysis of a bearing lubricant 

sample. The analysis of a lubricant sample usually looks for the presence of any 

metallic particles.  Such kind of analysis is done using some special sensors [19]. 

Furthermore, the analysis of the different metallic elements in the lubricant can facilitate 

the location of the fault.  

1.4.5 Bearing vibration analysis 

Every machine which has moving parts has a specific vibration signature related to its 

state. The machine’s vibration signal contains information about the global behaviour of 

the machine and any changes within the machine result in changes in the vibration 

signal. This change can be used in the detection of incipient defects before the 

development of the severity of the defects. For a defected bearing, the interaction 

between the defect and any of other mating bearing components generates a vibration 

signal which can be analysed for the purpose of fault diagnosis of REBs. The bearing 

vibration signals are considered more effective and suitable for fault diagnosis among 

all other bearing data [20]. For this reason, vibration-based strategy is the most popular, 

among the other different CM strategies, for fault diagnosis of rolling element bearings 

[21-23].  

Other reasons for the popularity of the vibration-based strategy is that it is it is an 

online, and non-destructive methodology and able to successfully detect 90% of all 

machinery defects [3]. The vibration strategy is widely used in the industrial 

applications and there are different portable analysers which are based on mathematical 
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algorithms and are used for detecting faults in machinery. For these reasons, the work in 

this thesis is based on analysing bearing vibration signals. Other benefits of the bearing 

vibration analysis include relatively low cost sensors and a simple set up. 

1.5  Research objectives 

The primary objective of this research is the development of a data–driven methodology 

for a complete fault diagnosis in REBs. This methodology should be able to detect, 

identify the location and estimate the severity of the faults. 

In addition, there are some other specific objectives can be defined as:- 

A. To study of the capabilities of the singular spectrum analysis for the purposes 

of rolling element bearing fault diagnosis. This investigation includes the use 

of singular spectrum analysis in different ways and for different purposes. 

B. To investigate a new way of applying SSA by using only the decomposition 

stage. 

C. To demonstrate the importance of signal pre-treatment for the success of 

machinery diagnosis methods  

D. To develop a signal pretreatment that facilitates the efficient use of simple 

forms of autoregression rather than complicating the structure of the auto-

regression function to improve the diagnosis. 

E. To validate the methodologies developed in this thesis for a variety of data sets 

and operational conditions. 
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1.6  Research motivations and contributions 

One of the main interests of industries is in obtaining a relatively simple and complete 

fault diagnosis method for REB monitoring which is reliable enough and easy to apply.  

Although many interesting vibration data –based CM techniques have been developed 

during the last few decades, almost of them are unable to completely and precisely 

diagnose the present fault. So currently there is still a need for the development of 

simple methods that can be applied without any specific training of the personnel 

operating the machinery, and which give complete diagnosis of the existing fault in the 

sense of detection, localization (qualification) and size/extent estimation 

(quantification).   

One of the main goals of the present research is to utilise the data-measured in the 

development of a simple and a complete full diagnosis. The term ‘complete’ means that 

the methodologies developed in this research are able to detect, localize and estimate the 

severity of the fault. 

 This research’s goal includes the development of two methodologies for extracting 

some features which are sensitive to the change of bearing condition due to the presence 

of a defect. Both of these methodologies use the singular spectrum analysis-based 

techniques but in different ways and for different purposes.  As a result two 

methodologies, which are fully based on data analysis, have been developed  
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A new singular spectrum analysis based methodology for fault diagnosis in REBs: 

 In this method, the SSA is used to build a baseline space (corresponding to healthy 

bearing) and uses it as a reference helping in the detection of fault corresponding to 

different locations and different severities. The baseline space is made from the healthy 

bearing signals category and the decomposition stage only. When the baseline space is 

made, any new (i.e probably faulty) signal is projected onto this baseline space. The 

signals that come from the same signal categories will have similar projections while 

the signals come from different categories will have different projections and this will 

be helpful in assessing the changing of the bearing condition. The methodology helps 

not only in distinguishing between the baseline and non-baseline signal categories but 

also in distinguishing among the non-baseline categories as well. The methodology is 

validated for three phases of fault diagnosis (i.e detection phase, fault type identification 

phase and fault severity estimation phase) using data sets obtained from three different 

bearing test rigs. The methodology shows very good performance when compared to 

other recent methods in terms of correct classification rates. 

Bearing fault diagnosis using a novel signal pretreatment and Linear time 

invariant auto regressive modelling:  

This methodology suggests the use of SSA in an advanced signal pre-treatment before 

the use of a linear time invariant autoregressive (LTIVAR) model. This signal pre-

treatment de-noises the signal by SSA and transforms the non stationary signal to a 

stationary one using a simple procedure called differencing.  This helps the use of the 

simple form of modelling (i.e LTIVAR) effectively. The feature vectors (FVs) are 
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extracted using the coefficients of the LTIVAR model. This methodology is validated 

using three different bearing test rigs for the purpose of fault detection and identification 

and for fault severity detection. The methodology shows a very good performance when 

compared to other recent methods in terms of correct classification rates. The 

methodology and the related results are presented in chapters 6&7. Three publications 

are developed based on the results of this methodology [24-26]. 

The first motive for this research is that it is important to detect rolling element bearing 

defects at different locations and of different severities as this provides more time for 

corrections that can prevent further damage. 

Another motive is the need for simplification of data-based CM techniques.  

The following are the main contributions made in the thesis: - 

o A very simple and efficient data analysis based method is developed in 

the present research (i.e in chapter 4).  The simplicity of the current 

approach comes from the fact that only healthy signals are required for 

subjecting to the decomposition stage and then building the baseline 

space. Compared to other singular spectrum (SSA) - based techniques 

(i.e shown in section 3.4.1), which subject signals from different 

categories to SSA, the current SSA-based methodology is simpler. In this 

method, only the signal corresponding to the healthy bearing category is 

used to build a multi-dimensional space where all other signals are 

projected and then to be compared to the baseline (i.e the healthy state). 
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This method is used for a complete fault diagnosis in terms of detection, 

identification of location and severity estimation. The baseline space in 

all the levels of the fault diagnosis is made by subjecting the training 

sample, which is only made from healthy data to a decomposition stage 

of the SSA. The features are obtained from the norms of the PCs 

corresponding to this training sample. A threshold is found from the 

features corresponding to this training sample. Until this moment, no 

damage classes have been involved in building the baseline space or 

determining the threshold, and that is what is meant by referring the use 

only of healthy category signals. 

Any new signal (healthy or faulty) is projected onto this baseline space 

and from the projection, features are obtained and the Mahalanobis 

distance is measured between the feature (i.e the feature vector) and the 

baseline category. This Mahalanobis distance is then compared to the 

predetermined threshold, and a decision about assigning the new signal to 

either the baseline or non-baseline category is made. Thus, this part of 

the methodology can be considered as unsupervised learning because no 

information from the fault category is involved in the assignment 

decision.  

o To the best of the author’s knowledge none of the previous SSA- based 

methods used only healthy signals to build the baseline space by 

subjecting them to only the decomposition stage.  
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o Besides the simplicity and efficiency of the methodology, it is able to 

distinguish not only between the baseline and non-baseline signal 

categories but also among the different non-baseline signal categories 

From the results obtained for this methodology, it is observed that the 

Mahalanobis distances corresponding to the features from the faulty 

category are deviate significantly from those corresponding to the 

baseline category. Moreover, the Mahalanobis distance levels (ranges) 

change with the change of fault severities and fault locations. This means 

that the methodology is able to detect faults corresponding to different 

locations (such as in the inner and outer races of a bearing) and of 

different severities, from small to large. 

o When a higher phase / level of diagnosis is required, a number of feature 

matrices, which belong to different fault categories, are built.  More 

specifically when a category of a specific feature set (i.e to which the 

fault location category or severity belongs) needs to be known, a number 

of signal categories from the training samples are built. In this case this 

process can be considered to be supervised identification. 

o Development of a new and simple data-analysis based signal 

pretreatment. This new signal pretreatment is suggested to make a 

nonstationary bearing vibration signal more amenable to analysis by the 

simplest form of autoregression (i.e by use of the stationary 

autoregressive (AR) model). Most AR – based methodologies for fault 

diagnosis in REBs tend to complicate the structure of the AR model to 
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represent the complex bearing vibration signal. Using such complex AR 

models requires proposing the shape of evolution of the AR model 

coefficients. Furthermore, an initial set of AR model coefficients is to be 

proposed as well.  In the current research, the new suggested signal 

pretreatment facilitates the efficient use of a stationary AR model, which 

does not require the same assumptions as for nonstationary AR models. 

Little attention has been given to simplifying the signal structure before 

subjecting them to stationary autoregressive modelling. Thus one of the 

contributions offered here is to enrich the research in this direction. The 

suggested signal pretreatment combines a SSA-based denoising 

technique, together with a stationarisation technique by means of 

differencing. To the best of the author’s knowledge, both the proposed 

denoising and stationarising techniques are used here for the first time 

(i.e in the way that they are used in the current thesis) for fault diagnosis 

of REBs. 

o Development of a methodology for complete fault diagnosis in REBs. 

The methodology combines the above signal pretreatment, a linear time 

invariant autoregressive (LTIVAR) model and a nearest neighbour 

classifier (i.e chapter 6 & chapter 7).  

o Both methodologies, which are developed in this thesis, are compared 

with some recent other methodologies. The similarity of data sets in all 

the compared methodologies is taken in consideration. Although all other 

methodologies show a very good performance, the present methodology 
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has also very good data and performs them sometimes. So one of the 

contributions of the present research is the very good performance of the 

methodology in detecting, localising and estimating the fault severity. 

1.7  Thesis organisation  

This thesis begins with introducing the definition of the basics of condition monitoring. 

Then, the importance and benefits of condition monitoring are highlighted. 

Furthermore, the common strategies of bearing condition monitoring are briefly 

introduced. The motivation and contribution of present research work are also presented 

in this chapter 1. 

Chapter 2 introduces the fundamentals of rolling element bearings and main defects. 

The chapter starts with presenting the most common types of rolling element bearings 

with brief description and illustrations. Then a description of the parts of a typical 

bearing is also given.  The modes and reasons of bearing failure are also discussed in 

this chapter.  

Chapter 3 shades the light on the main techniques for vibration   based condition 

monitoring of rolling element bearings. The methods are divided into two main types 

namely, model –based techniques and data –driven techniques. Some works which 

using these techniques are discussed. 

Chapter 4 introduces the fundamentals of the SSA. Then, it presents the REB fault 

diagnosis methodology which is based on the SSA method. The two main stages of the 

method (i.e the building of the baseline space and the fault diagnosis) are explained in 
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details. In the first stage, the chapter explains the building of the baseline space from the 

healthy bearing category and using the decomposition stage of the SSA only. It also 

explains the projection process of other signals and the feature extraction from these 

projections. In the second stage, the chapter explains the processes of the three phases of 

the fault diagnosis which are fault detection, fault type identification and fault severity 

estimation.  

Chapter 5 demonstrates some results obtained using the method presented in chapter 4.  

These results include the correct classification rates of the fault diagnosis (for the three 

phases, namely fault detection, fault type identification and fault severity estimation). 

Data sets obtained from three different test rigs are used for the purpose of the 

methodology validation. A comparison with other fault diagnoses is also presented. 

Chapter 6 presents the REB fault diagnosis methodology which uses LTIVAR 

modelling. This methodology is divided into two main parts: signal pre-treatment and 

signal diagnosis. In the first part, steps of the advanced signal pre-treatment are 

explained. In the second part, the steps of building feature vectors and diagnosis process 

is explained. 

Chapter 7 introduces some results obtained from the methodology, which is presented 

in chapter 6, using three different studies are explained in chapter 6. Demonstrative 

figures are presented to illustrate the steps of the signal pre-treatment using one of the 

case studies. In addition, the correct classification rates are also introduced for all the 

case studies. 
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Chapter 8 presents some important conclusions drawn from the work and provides 

some recommendations for future research. 

1.8  Summary  

This chapter shows the importance of condition monitoring and focuses specifically on 

condition monitoring for REBs. Then the chapter discusses the bearing CM strategies 

and more illustration is given to a strategy which is based on the analysis of bearing 

vibration. The objectives of the current thesis is also introduced, and discussed. The 

motivation and contributions made in this thesis are also explained in this chapter. 
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Chapter 2   

Fundamentals of rolling element bearings and 

main defects 

2.1  Background   

Rolling elements bearings (REBs) are one of the mechanical components which tend to 

fail due to some operational conditions. It is described in the literature that bearing 

failures are behind more than half of the failures in motors [27]. In this chapter, the 

common types of REBs and the parts of a typical REB will be presented.  Then the 

reasons and modes of failures in these REBs are also explained. 

2.2  Types of rolling element bearings  

There are many different designs of rolling element bearings. They can be classified 

based on the shape of the rolling elements or based on the way in which the load is 

supported. According to the shape of the rolling elements, the rolling element bearings 

can be divided into ball bearing and roller bearing. And each type of these bearing can 

further be divided into more subgroups according to the direction of load and other 

design requirements.   
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2.2.1 Ball bearings 

These types of bearings have rolling elements of a ball shape. They are mainly divided, 

according to the direction of applied load, into: radial, angular contact and thrust 

bearings. 

Radial ball bearing  

They can be in different configurations such as single row deep groove and double row 

deep groove bearings to meet the requirements of different applications. Figure 2.1 

shows a typical single and double row deep groove ball bearings. A single row deep 

groove is the most popular rolling bearing. The curvature radii of the inner and outer 

raceway grooves are in between 51.5-53 % of the ball diameter. A double row deep 

groove ball bearing has greater radial load capacity where the load is shared between the 

rows. Otherwise, both single row and double row deep groove bearings behave in 

similar way. For further details see [28]. 

                   

 

 

 

 

 

Figure 2.1:  A deep grove radial ball bearing.  A single row (left) and a double row 

(right) [28].  
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Angular contact ball bearings 

 Figure 2.2 shows a typical single row angular contact ball bearing. Such kinds of ball 

bearings are designed to support heavy thrust load or combined radial depending on the 

magnitude of the contact angle. The curvature radii are usually in the range 52-53 % of 

the ball diameter and the contact angles is no more 40%. 

                              

Thrust ball bearings  

The standard thrust ball bearings have a 90
o 

contact angle as shown in Figure 2.3. 

Usually, the ball bearings which have contact angle greater than 45
o
 can be classified as 

thrust bearings. The thrust ball bearings of 90
o
 can only support thrust loads but no 

radial load. Thrust ball bearings are suitable for operating at high speeds and sometimes 

they are usually mounted on a spherical seat to achieve some aligning ability.   

 

Figure 2.2: An angular-contact ball bearing [28]. 
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2.2.2 Roller bearings  

These types of bearings offer a line contact and usually used for applications which 

require heavily loadings.  However, they cost more in manufacturing when compare to 

the comparable size ball bearing. They also require more care during mounting than the 

ball bearing does. They include radial, angular contact and thrust roller bearings.  

Radial roller bearings 

Radial roller bearings includes cylindrical and needle roller bearings. The former are 

suitable for high speed operating conditions and high radial load capacity. They usually 

made of multi rows to support more load rather than to use longer cylindrical rollers see 

Figure 2.4. 

 

 

 

Figure 2.3: A 90
o
 contact-angle thrust ball bearing. The right is with 

spherical seat [28]. 
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The corners of the roller elements are usually crowned to prevent high stresses at the 

roller edges and to enhance the bearing protection against small misalignments.  

Another type of radial roller bearings is called needle roller bearings illustrated in 

Figure 2.5 in which the length of the rolling element is greater than the roller diameter. 

They are usually used when there is a need to conserve radial space where they can 

usually also set directly on shaft. Such bearing are suitable for light loads applications. 

 

Figure 2.4: A radial cylindrical roller bearing (a single row (left), a 

double row (middle) and a multi row (right) [28]. 

Figure 2.5:  A needle roller bearing [28].   
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Tapered roller bearing 

Tapered roller bearings illustrated in Figure 2.6 are design to support combined load 

(radial and thrust loads). However, it is not suitable for high speed applications without 

considering more attention to lubrication and cooling. 

                               

Thrust roller bearings 

They can have different configuration based on the type of the rollers. They includes 

cylindrical and needle roller thrust bearings as shown in Figure 2.7 from [29] . 

     

Figure 2.6:  A single-row tapered roller bearing showing 

separable cup and non separable cone, cage and roller [28].  

assembly. 

Figure 2.7:  a cylindrical (left) and needle (right) thrust roller bearing [29].   
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In the next section, more description is given about a typical single row radial bearing.  

2.3  Parts of a rolling element bearing  

Rolling element bearings are those mechanical parts which used to reduce the friction of 

rotating parts. Depending on the purpose of use, there are many kinds of bearing such as 

thrust and radial bearing. A typical radial bearing has four main parts, namely, Inner 

raceway, rolling elements (i.e balls or rollers), outer race and a cage which separate the 

bearing rolling elements and prevent friction among them [28]. The Figure2.8 shows a 

typical single raw, deep groove bearing.   

 

The inner raceway is usually mounted on the shaft and thus rotates with it. Outer 

raceway is inserted in a bearing housing and it is usually stationary. The rolling 

elements can be balls, tapered rollers, cylindrical rollers or some other shapes. They       

locate between the inner and outer races and they are transferring the load by contact 

with the raceways and maintaining the motion between the stationary outer race and the 

rotating raceway (i.e inner raceway). Cage is installed to separate the adjacent rolling 

Figure 2.8:- The structure of a typical ball bearing [28]. 

Rolling element 

Cage  

Inner race 

Outer race 

Shaft 
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element, provide equal spacing and to provide equal spacing among the rolling elements 

and to prevent the contact internal strikes due to the collision of them. 

2.4  Reasons of bearing failure 

 Bearing faults occur in different locations and for different reasons. There are several 

reasons behind the defect occurrences in bearing. These faults prevent the bearings from 

achieving the designed life span of operating. Less than 1% of bearing achieve their 

design life span [30]. The popularity of bearing failure defects reasons is shown in 

Figure 2.9 below. 

 

2.5  Modes of bearing failure  

Generally, bearing defects can be classified into localised and distributed defects. 

Cracks, pits and spalls are typical examples of localised bearing defects which are 

usually caused by plastic deformation, brinelling, and material fatigue. For the 

distributed bearing defects, they include waviness, surface roughness, off-size rolling 

Figure 2.9:  Causes of failures in rolling bearings [30]. 
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elements and misaligned races. They usually occur due to wear, improper mounting, 

design and manufacturing errors and corrosion [31, 32]. 

Although both of these two classes of bearing defects can cause machinery breakdown, 

localised bearing defects are more important from the point of bearing healthy condition 

monitoring. This is because the localised bearing defects are the dominant style of 

bearings in real industrial applications while many distributed bearing defects are 

originally started as localised defects [33]. Thus, the work in this research focuses on 

detecting bearing localised bearing defects. 

Experimentally, there are two approaches to generate faults in bearing for the purpose of 

investigating the vibration signature of bearing. One is the running of bearing until 

failure under sever conditions such as overloading, overspeeding or lack of sufficient 

lubricants [34-36]. The other approach is creating defects in bearing using spark 

erosion, acid etching, scratching or mechanical indentation [37-39]. The presence of 

these defects in bearing components can considerably shorten the typical designed 

operating life of a bearing. Some of the common modes of defects are explained below. 

2.5.1 Wear 

Bearing wear is one of the most common failure modes and can be a result of a fatigue 

in the bearing material, lubricant contamination and existence of foreign particles such 

as dust. This kind of failure is started as a localised defect, at early stages, and then it 

can be distributed for a larger area of the internal bearing surface see Figure 2.10 [40].  
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2.5.2 Plastic Deformation 

A plastic deformation is usually a localised damage at contact surface caused by a high 

amplitude impact, a shock while the bearing a stationary.  

2.5.3 Corrosion 

Bearing corrosion damage occurs due to a corrosive operating environment such as 

when a water entering to bearing. The rust particles in a corroded bearing are worn off 

during the bearing rotation and wear may generate [41].  

                       

Figure 2.10: Wear in roller elements [40] 

Figure 2.11: Corrosion on a tapered roller race [40]. 
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2.5.4 Brinelling 

It can be defined as the permanent indentation on the surface of the bearing raceways. 

There are several causes of the occurrences of such indentation such as improper 

hammering during bearing installation and accidental drops. See Figure 2.12 [42]. 

                   

2.5.5  Improper mounting 

The common problem in the bearing mounting process is the excessive preloading 

because of the improper tolerances. Such problem can be recognised by the appearance 

of track formation in the bearing raceways. Another types of problem includes the 

improper hammering and pulling of a bearing during the installation and dismounting 

processes.  More details about these faults is given in [43]. 

 

Figure 2.12:  Brinelling failure [42]. 
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2.6  Summary 

The chapter gives a short background about the importance of REBs (section 2.1). It 

also explored the main categories of the REBs (i.e section 2.2) and illustrated the main 

components of a typical bearing structure (section 2.3). Sections 2.4 and 2.5 explored 

the reasons and modes of bearing failures respectively. Compared to distributed defects, 

localised bearing defects are more important from the point of bearing healthy condition 

monitoring. This is because the localised bearing defects are the dominant style of 

bearings in real industrial applications while many distributed bearing defects are 

originally started as localised defects.  
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Chapter 3 

Literature review 

3.1 Introduction  

This chapter presents the general procedure for vibration-based in fault diagnosis REBs. 

Then it presents a short overview on the bearing fault diagnosis vibration -based 

techniques. These techniques are based on the concept that when a defect occurs in the 

bearing, a change occurs in the vibration signal obtained from that bearing.  In this 

chapter, the vibration –based techniques is classified into two main groups, depending 

on how the vibration data are obtained, to model-based techniques and data-driven 

techniques. The concept of each group is presented briefly and a presentation to some of 

studies of each group is introduced. More emphasis is given to the data driven 

techniques as they are more popular in the REB fault diagnosis area.  

3.2 A general vibration –based machinery health monitoring  

procedure  

As was mentioned in section 1.4.5, vibration –based techniques are one of the most 

popular strategies for monitoring the bearing health state.  In this strategy, the healthy 

state can be assessed by analysing and monitoring the changes of the vibration signals 

obtained from the machine (i.e usually from bearing housing).  The typical vibration-

based fault diagnosis strategy usually includes three main steps as below: 
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Data acquisition is the process of collecting useful information (i.e signal) about the 

bearing. In this step, the number, type, locations and sensitivity of the sensors to collect 

the signal are determined. This step may be sometimes affected by the economic factor 

as more sensors and data acquisition cards of high technical specifications cost more 

money.  

Signal analysis is a crucial step and it receives a considerable attention by the 

researchers. Usually in this step includes subjecting the signal to a certain pretreatment 

and extracting some compact information ’’features’’ which are   used for monitoring 

the health statues of the REBs or even for distinguishing among different health 

conditions of a REB.  An enormous number of techniques are developed by the 

researchers for the purpose of bearing signal analysing and feature extraction. These 

techniques can be classified according to the signal domain, such as time, frequency and 

time-frequency domain, where the analysis is carried out. For a successful fault 

diagnosis process, these features should be high sensitive to defects and convenient to 

be measured technically and economically.  

Diagnosis is the step in which the bearing signal category is assigned to one of the 

possible bearing health conditions such as healthy and faulty. Depending on the level of 

diagnosis, classification can be only for two groups such as healthy and faulty or can be 

extended to classify the bearing vibration signal to one of the signal categories under 

study.  Generally, a model of classification can be learnt using features corresponding to 

data training sample. Then a new feature/ feature set is / are assigned to one of the 

classes made by the model.  The classification can be carried out using different 
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techniques such as artificial neural network based techniques (ANN) [44, 45], support 

vector machines based (SVM) [46, 47] and nearest neighbour based techniques 

(NN)[48, 49]. 

3.3  Literature overview of vibration-based REB condition monitoring  

Over the last few decades, an enormous number of studies was presented by the 

researchers in the field of REBs fault diagnosis.  These studies aim mainly to develop 

new methodologies or improve / extend the available methodologies of fault diagnosis. 

In this section, a short overview for the vibration –based bearing fault diagnosis is 

presented. This short overview does not mainly compare among the fault diagnosis 

techniques because each technique has its limitations and advantageous and limitations 

depending on the case of study. It aims to highlight some of the main techniques and 

then more discussion is provided to the techniques which are related to the work 

presented in this thesis. Further details about the vibration-based techniques of REB 

fault diagnosis can be in [4, 5, 33, 50-52].  The REB fault diagnosis techniques can be 

classified into two main groups: model- based techniques and data driven techniques 

depending on the type of the source where the data are obtained. In the former, the 

techniques use mathematical models to derive a knowledge which can be used to 

determine the bearing’s condition. In the latter, the techniques use collected 

experimental data to learn about the system and infer it is current state of health.  
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3.3.1 Model –based techniques  

These techniques are based on a mathematical model describing the vibration response 

of a REB and use the modelled responses for assessment of the system health (state).  

The complexity of a model structure is increased, but more comprehensive matching is 

obtained, when more effects such as misalignment and radial clearance are considered. 

Models can be built for a bearing working under normal condition (i.e healthy) and then 

experimental data are used to assess the similarity with those obtained from the model 

and eventually to evaluate the state of the bearing. Models can also be built for different 

conditions of bearing such as healthy, a fault on a raceway or on a rolling element and 

then the experimental vibration signal can be compared to the simulated one obtained 

from these models to evaluate the category of the signal using some intelligent 

algorithms. One of the first interesting studies on dynamic modelling of a REB, with a 

single point defect on the inner raceway, was presented in [53]. The model can consider 

several parameters such as load distribution and shaft rotational speed. The same 

authors of the work above have extended the model in [54] considering the case of 

multiple defects. another attempt for dynamic modelling of bearing can be found which 

model  the defect using the forces introduced by the deformation of rolling element 

bearing of modelling is presented in [55]. In [56] the authors model  a localised defect 

as a smooth pit with a curved shape. Another study models a single point defect bearing 

in the case of high speed [57].   

 The study presented in [58] discuss a model considering  radial clearance effect.   A 

single defect was also modelled as a sphere  and the contact between the ball and 
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bearing races is modelled as nonlinear spring [59]. More details about these studies can 

be found in [52, 60] which discuss more studies of dynamic modelling of REB.  

One of the advantages of model-based techniques is that they are used generally for 

system model updating.  For model updating, experimental data are used to enhance the 

accuracy of the model in representing the vibration behaviour of the system. There are 

advantages to the use of the model-based techniques. However, complex systems are 

difficult to model accurately, and model updating methods can be affected by the 

variability of the system experimental measurements [61].  

The next section explains the non-model based techniques (e.g data driven techniques) 

which rely completely on the vibration data measured from the REBs.   

3.3.2 Data-driven techniques 

These techniques rely totally on the analysis of vibration data which are obtained 

experimentally from the machine under consideration and use them to infer conclusions 

on the condition and the health state of the bearing. One of the first data driven 

techniques are those that deal with the time waveform directly and use rather simple and 

straightforward calculations. This includes for example extracting some statistical 

features and assessing their values at different bearing conditions. Kurtosis and crest 

factor are one of the most common features used in the fault diagnosis problems. Both 

of these factors characterise the ‘peakiness’ of a signal. However, according to the 

literature, kurtosis is more sensitive than the crest factor in indicating the defects [62-

64]. Each of the crest factor and the kurtosis has typically a certain value at normal 

bearing conditions but that value changes when the bearing condition changes. For 
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example and as was mentioned in[1] , for a vibration signal obtained from an intact 

bearing, the crest factor and  the kurtosis values are 3.5 and 3 respectively. While for a 

bearing with a defect on its inner race they are 6.35 for a crest factor and 4.75 for a 

kurtosis .Some other studies basically deal with the frequency domain of the vibration 

signal (i.e the values of a signal verses frequencies) where the repetitive signal 

component is shown as a peak at the frequency of repetition. This may include finding 

the frequency spectrum of the vibration signals and a certain frequency band of interest 

which can be isolated for further analysis [33].  The fast Fourier transform (FFT) is one 

of the most popular techniques  [65] used for obtaining the frequency spectrum of the 

signal. There are other techniques which use other  spectral expressions such as 

cepstrum [66] and envelope analysis [67]. Other studies present the analysis of vibration 

signal in time-frequency domain instantaneously using some particular techniques such 

as such as short time Fourier transform (STFT) [68], wavelet transform (WT) [39, 69, 

70].  

In comparison to model-based techniques, there can be no fear of losing information 

due to lack of model accuracy, as no analytical or numerical model is made of the 

REBs. Usually these techniques use measurements, acquired under normal conditions 

for the machine, and then they are used to build the baseline state, against which the 

measurements from the machine in service are compared. Any deviation of the new 

observations from the baseline state may indicate the presence of a defect. Compared to 

model based-techniques, data driven-techniques are considered to be easier to manage. 

This is because it is not trivial to construct or derive models which can properly 
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describe machine behaviour, particularly in the presence of several components and 

nonlinearities [71]. 

Another group of interesting studies on fault diagnosis in REBs are those that apply the 

concept of time series analysis. In the next section, an overview of the some of the most 

important time series analysis techniques will be presented. 

3.4  Time series analysis techniques  

 A time series can be defined as a sequence of measurements (i.e data points) of a 

variable, .e.g. acceleration or velocity, collected over time. The concept of time series 

analysis is very popular in climate and financial research fields[72] and many 

techniques were developed for purposes of analysis or predicting of the future values of  

a time series. These techniques take into account some aspects of the internal structure 

in the data. Some of these techniques offer representing a time series by some 

parametric models such as Autoregressive modelling (AR) [73]. Others, such as  

singular spectrum analysis (SSA) [74], are used to decomposed a time series into a 

number of independent components that can have some meaningful interpretations  such 

as trend and periodic components. 

The concept of time series analysis has also a wide attention in engineering areas such 

as structural health monitoring (SHM) and machinery diagnosis. This study contributes 

to the knowledge of fault diagnosis in REBs by using SSA in two new different ways 

and for different purposes. 1) A new SSA-based method is developed for a complete 

fault diagnosis in REBs and 2) SSA combined with differencing is used in developing 

an advanced signal pretreatment that enhances the goodness of fit of linear AR model. 
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The next sections introduce the basics of the two time series analysis techniques used in 

this thesis, namely, singular spectrum analysis (SSA) and autoregression (AR).  

3.4.1 Singular spectrum analysis  

The SSA is a data analysis method  which is popularly used in the climate data analysis 

[75, 76],  biomedical signal analysis [77, 78] and tool wear health monitoring [79, 80]. 

However, few researches are done on the use of SSA for purposes of fault diagnosis in 

rolling element bearing. Bubathai [81] has published the first study which uses SSA for 

classifying signals as healthy or faulty (with a fault on the inner raceway)  for detection 

purposes only. In this study both the vibration acceleration signals (i.e those 

corresponding to healthy and faulty bearings) were subjected to SSA and the original 

signals are then decomposed into two time domain main components, namely, the trend 

and the residuals. Then, only the trend component was considered for further analysis. 

A number of statistical features such the peak value and the standard deviation were 

obtained from the trend. These features were used to form the feature vectors which 

were eventually used as input for a neural network classifier. In [82] the SSA was also 

used as a multi-decompositional analysis technique. In this study the number of singular 

values, which preserves a specific predetermined variance percentage, is used as an 

indicator for a fault presence.  

Two different feature sets were obtained from the application of SSA in [83] and they 

are used as feature vectors.  The first feature vector was made of the singular values and 

the second feature vector was made from the energy of the first time domain principal 

components.  The accuracy of the bearing condition classification was investigated by 
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using those feature vectors as input to the back propagation neural network (BPNN) 

classifier.  

In the study presented in this thesis, a new methodology using only the decomposition 

stage in SSA is proposed
1
. This makes the suggested method much simpler as compared 

to the previously developed ones. 

In this thesis, the SSA (more specifically only the decomposition stage) is used to build 

a baseline space corresponding to the healthy condition. Afterward the lagged versions 

of the new signals are projected onto the baseline space.  To the best of the author’s 

knowledge none of the previous SSA-based methods used only healthy signals to build 

the baseline space by subjecting them only to a decomposition stage. This explains the 

simplicity of the current methodology. The projections of the other signals onto the 

baseline space are then used to make the FVs which are then used in the diagnosis stage. 

Besides the simplicity and efficiency of the method, it is able to distinguish not only 

between the baseline and non-baseline signal categories but also among the different 

non-baseline signal categories, which include different fault locations and different fault 

severities categories.  

The method was validated using data sets obtained from three different bearing test rigs. 

The results prove the very good performance of the methodology in terms of correct 

classification rates.  

 

                                                           
1
 Part of the work is submitted to one of the standard journals and it is under review  
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3.4.2 Autoregressive modelling (AR) 

Another direction of studies, which has been attracted the interest of many researchers, 

is the use of the parametric modelling concept for fault diagnosis in rolling element 

bearings. According to this concept, the bearing vibration signals are considered as time 

series and represented by a suitable model with few parameters [84]. There are three 

main types of parametric modelling and they are: Autoregressive (AR) model, Moving 

Average (MA) model and Autoregressive Moving Average (ARMA) model [85].  

Among these models, the AR models receive more attention by the researchers in 

developing techniques for the REBs fault diagnosis. One of the reasons for the 

popularity of AR use in the fault diagnosis of REBs is that the sensitivity of the AR 

parameters to the variation of the system where the AR model is used to describe its 

response[86]. Generally, the AR model used to represent the bearing vibration signals 

and the parameters (prediction error and the AR coefficients) are used for fault detection 

and identification. Faults can be also diagnosed when by constructing a model for each 

known bearing condition. Then for any new bearing vibration observation, it (i.e the 

new observation) can be assigned to the model which represents it more precisely.  

There are several challenges accompanied with the use of the AR model to represent the 

bearing vibration signals. One of the most important challenges is the complexity of the 

bearing vibration signal. Bearing vibration signals are almost always non-stationary 

because they are inherently dynamic. The definition of stationarity of signal is the 

condition of a signal where all the first four statistical moments are constant with time.  

However, the definition is used for the so-called strict stationarity which occur rarely. 
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Instead, the term of ‘weak stationarity’ is used for signals which the first and second 

statistical moments (i.e mean and standard deviation). The non-stationarities can be 

found  in the benign bearings and might come from the clearance between the bearing 

components and sliding of rolling element, just to mention a few [87]. Non-

stationarities can also come, for example, from the impact between the damage and non-

damaged parts of the bearing [88]. Therefore, compared with gear system analysis, 

bearing fault diagnosis is an even more challenging task in condition monitoring, 

especially when the machine is operating in a noisy environment. 

Some researchers suggest the use of time-varying autoregressive (TVAR) models which 

take into account the presence of non-stationarities in the signal. In [89, 90], the 

investigation for three different algorithms for the time varying autoregressive model 

coefficients estimation was introduced.  These algorithms are namely, Kalman, 

extended Kalman and modified extended Kalman filter. A parametric time-frequency 

using a time varying autoregressive model is introduced in [91]. In that study, the time-

frequency array is subjected to the singular value decomposition (SVD) to form features 

vectors which are used for the classification based on the radial basis (RB) neural 

network. In all the above studies, the TVAR model coefficients were assumed to change 

over time in a pre-proposed way to facilitate the representation of the non-stationary 

bearing vibration signal. However, there are some challenges implicit in obtaining these 

coefficients. One of these challenges is the setting of a proper assumption for the way 

that the model coefficients evolve with time. Another challenge is the need to assume a 

proper initial model coefficient to start the evolution over the time.  Thus, the entire 

process of building an accurate model might be jeopardised by an improper assumption 
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for the initial coefficient set and/or an inappropriate assumption for the evolution of the 

coefficients.  

Other forms of autoregressive modelling, which assuming that data points of a signal 

are related in nonlinear way, is also investigated in [92, 93].  Such kinds of models are 

also challengeable in terms of the requirement of proper assumption of the nonlinear 

relationship form. 

Another form of autoregressive model is proposing that the model coefficients have a 

periodic time –varying behaviour [94]. In this kind of autoregressive model, it is 

assumed as that bearing vibration signal has cyclo-stationary behaviour.  

In terms of complexity of the forms of autoregressive model above, linear 

autoregressive models with time invariant coefficients are mainly simpler. as compared 

to other forms of representing signals. Nevertheless, these models are suitable for 

stationary signals, which makes their use in the fault detection in rolling element 

bearings is limited [95]. 

Some studies are presented to investigate the application of some signal pre-treatment 

such as empirical mode decomposition (EMD) [86], and amplitude demodulation (AD) 

[93] to enable the use of the LTIVAR model in the fault detection of rolling element 

bearings.   

One of the main contributions in the study presented in this thesis is the use of a simple 

LTIVAR model, in combination with the suggested signal pretreatment, in a precise and 

successful fault diagnosis. This is achieved by the development of a new signal pre-
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treatment. This signal pre-treatment aims covering the limitation associated to the use of 

such stationary model in modelling the bearing vibration signal, which is almost always 

non stationary. By using the LTIVAR, neither the assumption of an initial set of model 

coefficients nor the assumption of the shape of coefficient evolution over time are 

required.  The pretreamtent includes subjecting the signals to SSA –based de-nosing 

step and stationarising the non stationary signals by stabilising their means over the time 

using a simple procedure called as differencing. Eventually the goodness of fit of the 

LTIVAR model is enhanced and a very good fault diagnosis results were obtained.  

3.5  Summary 

The chapter explains the general vibration –based machinery health monitoring 

procedure. Then it discusses model –based techniques and data –driven techniques used 

in vibration-based bearing condition monitoring and discusses their advantages and 

disadvantages. More focus is also given to the time series analysis techniques, 

particularly the SSA-based techniques and the AR-based techniques. A critical review 

was conducted for each two approaches, which are developed in the present thesis, with 

other SSA-based technique and AR-based techniques in the literature. The contributions 

behind using these two approaches are also explained.  
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Chapter 4  

A new SSA based methodology for fault diagnosis 

in REBs  

4.1  Introduction 

In this chapter a new methodology for the fault diagnosis in rolling element bearing is 

suggested. The methodology is based on the use of singular spectrum analysis (more 

specifically the decomposition stage only). The methodology assumes the building of a 

reference space from the healthy bearing signals and then to project any new signal in 

that baseline space. From these projections feature vectors are made and used in 

different phases of fault diagnosis.  The fault diagnosis’s phases investigated in this 

method are: fault detection phase where only the presence of a fault is detected, fault 

type identification where the type (i.e location) of the fault is detected and fault size 

estimation where the different faults severity is detected.  The similarity of the new 

signal to the reference category is assessed by measuring the Mahalanobis distance. The 

steps of the methodology, for each fault diagnosis phase, are presented in this chapter. 
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The results regarding the performance of the methodology in terms of the correct fault 

diagnosis rates are presented as well using more than test rig data. 

4.2  The fundamentals of SSA  

SSA is a statistical procedure which has been used extensively for climate analysis [75, 

76], biomedical analysis [77, 78]  and meteorology analysis, but has not yet gained 

popularity for machinery analysis. It is simply principal components analysis applied to 

the lagged components of a time series. 

SSA is used to decompose the original signal into a number of independent 

components; the principal components (PCs). The initial time series can be then 

reconstructed by using a number of PCs. 

The primary aim of SSA is to uncover the trend in a signal, particularly its oscillatory 

patterns. SSA can, however, also be used as a noise-cleaning procedure; it is known to 

clean structure-less noise by transforming it into low singular value components [26, 

74]. The SSA has two main stages: decomposition and reconstruction. The fundamental 

of each stage will be illustrated in this section. Further details about the method is given 

in [96]. 

4.2.1 Decomposition stage 

In the decomposition stage, a sub-signal x of length n , x(1),x(2),…,x(n),is mapped onto 

a window of length (L) to form the so-called trajectory matrix X (LxK) where K=n-L+1 

(see Eq. (4.1)). 
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Then, the covariance matrix (CX) of   X is calculated as in Eq.(4.2). 

𝐂𝐗 =
𝐗𝐗′

𝐿
                                                                                                                              (4.2) 

The CX has a dimension (KxK) and it defines the covariance between signal realisations. 

The CX is then subjected to Eigen decomposition by singular value decomposition 

(SVD) to obtain L eigenvectors (𝐔𝑖, 𝑖 = 1,2. . , 𝐿) and L eigenvalues (𝜆𝑖 , 𝑖 = 1,2. . , 𝐿) by 

solving the following expression (see Eq.(4.3)) 

𝐂𝐗𝐔𝑖 = 𝜆𝑖 𝐔𝑖                                                                                                                         (4.3)     

Each 𝜆𝑖 represents the partial variance of the original time series in the direction of 

the 𝐔𝒊. Projecting the trajectory matrix onto each eigenvector provides the 

corresponding principal components (PCi.): 

 

where 

 i=1, 2….L; 

m=1, 2…n; 

𝐗 =

[
 
 
 
 

  

𝑥(1) 𝑥(2)
𝑥(2)  𝑥(3)

𝑥(3) … 𝑥(𝐾)

𝑥(4) … 𝑥(𝐾 + 1)

𝑥(3) 𝑥(4)
⋮

𝑥(𝐿)
⋮

𝑥(𝐿 + 1)

𝑥(5) … 𝑥(𝐾 + 2)
⋮

𝑥(𝐿 + 2)
⋱
…

⋮
𝑥(𝑛) ]

 
 
 
 

                                                 (4.1) 

𝑃𝐶𝑖(𝑚) =∑𝑋𝑇(𝑚 + 𝑗 − 1)

𝐿

𝑗=1

∗ 𝑈𝑖(𝑚)   
                                                                    (4.4) 



 

 Chapter 4                        A new SSA based methodology for fault diagnosis in REBs 

 
 

45 

 j=1, 2…L.  

Then, L elementary matrices 

(𝐄𝐥𝑖 = 𝐔𝑖𝐏𝐂𝑖
′  𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, … 𝐿  𝑎𝑛𝑑 𝑡ℎ𝑒 𝑝𝑟𝑖𝑚𝑒 𝑚𝑒𝑎𝑛𝑠 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒) can be created 

by the projection of the PCs on the Eigenvectors U.  

The contribution of these elementary matrix norms to the original trajectory matrix 

norm follows the trend of the singular values, which is the first matrices have the 

highest contribution while the last ones have the lowest.    

4.2.2 Reconstruction stage 

As was mentioned above, the signals can be reconstructed by a linear combination of all 

or a number of the  PCs. Different criteria can be used to select the number of PCs [82]. 

The reconstruction process is done by the diagonal averaging technique, which is 

described below, to produce the reconstructed signal (xr)[97]:  

 𝑥𝑟(𝑚) =
1

𝑁𝑚
∑ ∑ 𝑃𝐶𝑖

𝑈𝑚

𝑗=𝐿𝑚𝑖∈𝑤
(𝑚 − 𝑗 + 1) ∗ 𝑈𝑖(𝑚)     ,𝑚 = 1,2, , , , 𝑛 − 1        (4.5) 

The Normalisation factor (𝑁𝑚) and the lower (Lm) and upper (Um) bounds of sums 

differ for the edges and the centre of the signal. They are defined as follows:  

 

(
1

𝑁𝑚
, 𝐿𝑚, 𝑈𝑚) =

{
 
 

 
 (

1

𝑚
, 1,𝑚) ,  𝑓𝑜𝑟         1 ≤ 𝑚 ≤ 𝐿 − 1

(
1

𝐿
, 1, 𝐾) , 𝑓𝑜𝑟           𝐿 ≤ 𝑚 ≤ 𝐾

(
1

𝑛 −𝑚 + 1
,𝑚 − 𝑛 + 𝐿, 𝐿) ,   𝑓𝑜𝑟      𝐾 + 1 ≤ 𝑚 ≤ 𝑛

  (4.6)   
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 The w refers to the number of the PCs used in the reconstruction of the signal. 

4.3  The SSA- based methodology 

It was mentioned in section 1.6 in the present thesis that the SSA is used in two 

different ways and for different purposes and therefore two SSA-based methods results. 

In this chapter, the first method is presented where the SSA, more specifically only the 

decomposition stage, is used for developing a methodology for fault diagnosis in REBs. 

The methodology presented in this chapter includes the use of the decomposition stage 

only to build a baseline space and project other signal on it. The projections on to the 

baseline space are used to form the feature vectors (FV) which are used in the fault 

diagnosis process. Three fault diagnosis phases are investigated in this chapter; namely, 

fault detection, fault type identification and fault severity estimation. In the fault 

detection phase, FVs are classified into baseline and non-baseline categories. In the fault 

type identification, the FVs are assigned to one of fault location categories such inner 

race fault (IRF) and outer race fault (ORF). In the fault severity estimation, the method 

is use for the detection of different fault severity.  

The method has two main steps: building baseline space using a healthy signal only and 

fault diagnosis. 

4.3.1 Building baseline space  

As was introduced in the last section, the building of the baseline space is based on the 

decomposition stage of the SSA and using the signals obtained from healthy bearing 
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only. First a signal x=[x (1), x (2)… x (n)] is lagged (i.e embedded) on window (L) to 

obtain the trajectory matrix (X) as in Eq. (4.1). 

Then, the covariance matrix of X is obtained (Eq.(4.2) and subjected to the singular 

value decomposition (Eq.(4.3) to obtain L eigenvectors (𝐔𝑖, 𝑖 = 1,2. . , 𝐿) and L 

eigenvalues (𝜆𝑖, 𝑖 = 1,2. . , 𝐿). Each 𝜆𝑖  represents a partial variance proportion of the 

original signal in the direction of the corresponding 𝐔𝒊. The  (𝜆𝑖: 𝑖 = 1: 𝐿)  and their 

corresponding (Ui: i=1: L) are arranged ascendingly. The plots which show 

eigenvalues (𝜆𝑖: 𝑖 = 1: 𝐿) versus the principal components (PCs) are usually called 

scree plots. 

When the eigenvalue obtained, all or a number of the first Ui=1:L corresponding to the 

healthy state can be used for building the reference space. .  

R
L
= [U1, U2, …, UL] 

There are number of criteria mentioned in [82] which  can be used as guidance for the 

selection of the number of the PCs (i.e consequently means the number of λ and U). In 

this study we investigate the effect of increasing the PC number on the fault diagnosis 

results. However, for the purposes of visualisation we sometime use the first three PCs.  

The next section will explain the fault detection phase where the signals are assigned to 

a healthy or faulty category. 

4.3.2 Fault diagnosis methodology : fault detection phase 

When a reference space is built, the fault detection phase can then be conducted.  It has 

two main parts: feature extraction and fault detection process 
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Feature extraction  

First, the signals corresponding to healthy bearing are divided into a training and testing 

samples, whereas all the signals corresponding to the faulty bearing conditions are used 

as testing sample. For all the signals corresponding to the training or testing, the FVs are 

obtained in the same way as will be described later in this section. For any signal, the 

trajectory matrix X of a dimension (KxL) is obtained and projected (i.e multiplied by) 

onto the L dimensional baseline space to obtain L of PCs (see Eq. (4.4)). Supposing a 

(Q) of the first PCs are selected for the extraction of features. Then, the Euclidean norm 

(𝑓𝑖𝑗) of each of PC, is calculated according to Eq.(4.7)   

 𝑓𝑖𝑗 = ∑ (𝑃𝐶𝑖𝑗(𝑚))
2𝐾

𝑚=1      , 𝑗 = 1,2,3…𝑄   𝑖 = 1,2,3…𝑘                                              (4.7) 

Where 

𝑓𝑖𝑗   is a norm of the j
th

 PC obtained from i
th

 signal. 

K   is the length of a PC and equals (n-L+1) 

𝑘    is a number of signals corresponding to a baseline condition  

𝑃𝐶𝑖𝑗(𝑚) is the m
th
 element of the j

th
 PC obtained from i

th
 signal 

The Euclidean norms obtained from the Q of PCs, which corresponds to i
th

 signal, are 

used to form a Q dimensional feature vector (FV) see Eq.(4.8) below.  

 𝐟𝐯𝑖 = [𝑓𝑖1  𝑓𝑖2 𝑓𝑖3…𝑓𝑖𝑄 ]                                                                                                  (4.8) 
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As was mentioned previously, a special case of 3 dimensional feature vectors is used for 

the purpose of visualisation (see Figure 4.1).  

On the basis of the Eq. (4.7) which illustrated that the Euclidian norm is simply the 

summation of squared values, all the features have positive values and when they are 

projected on the feature space they are located in the first quadrat (i.e for the case of a 3-

dimensional feature vector).  

                                    

The feature vectors obtained from the training sample corresponding to the healthy 

bearing condition are used to make the baseline feature matrix (𝐅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒). By arranging 

the baseline FVs in rows (Eq. (4.9)) 

𝐅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 =

[
 
 
 
 
𝑓11 𝑓12 .    𝑓1𝑄
𝑓21 𝑓22 .   𝑓2𝑄
.
.
𝑓𝑘1

.

.
𝑓𝑘2

 .    .     
.     .   
.   𝑓𝑘𝑄 ]

 
 
 
 

                                                                                          (4.9) 

Following the steps described above by Eqs. (4.4),(4.7),(4.8), the FV for any other/new  

signals (i.e testing sample) can be obtained .    

𝑓𝑖2 

𝑓𝑖1 

𝑓𝑖3 

Figure 4.1: A 3D visualisation of a  𝐟𝐯𝑖 in the feature space 
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Fault detection process 

In this section, the details of the fault detection process are introduced. In the current 

study, the classification of the baseline and non-baseline bearing conditions is made on 

the basis of a threshold. In this regard the Mahalanobis distance is calculated and used 

to measure the similarity of a testing FV to the training feature matrix corresponding to 

the baseline condition. Then, it is compared to a pre-determined threshold 

corresponding to the baseline condition.  Thus all the FVs whose distance is equal to or 

less than the threshold are classified as healthy and all the ones with distance greater 

than the threshold are considered as faulty.  The fault detection process contains two 

main parts 1) setting a threshold of the baseline condition and 2) the comparison of the 

Mahalanobis  distance, corresponding to a new testing FV, to the threshold. 

Setting a threshold for the baseline condition 

When the feature matrix of the baseline condition 𝐅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  is obtained (i.e as in 

Eq.(4.9), the Mahalanobis distance of each of the baseline  𝐟𝐯𝑖 to the 𝐅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is 

calculated as shown below (Eq. (4.10)) 

𝐷𝑖 = √(𝐟𝐯𝑖 − 𝐄𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒). 𝐒−1. (𝐟𝐯𝑖 − 𝐄𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)′                                                        (4.10) 

𝑤ℎ𝑒𝑟𝑒 𝐷𝑖    is Mahalanobis distance of a 𝐟𝐯𝑖  to the to the matrix 𝐅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 

𝐒−1 is the inverse of the covariance matrix of 𝐅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒. 

The prime ( ′ ) denotes the transpose of the vector(𝐟𝐯𝒊 − 𝐄𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒). 
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𝐄𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is the mean of 𝐅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒rows ; which is given by Eq.(4.11) 

𝐄𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 =
∑ (𝑓𝑖1     𝑓𝑖2  …       𝑓𝑖𝑄  )
𝑘
𝑖=1

𝑘
  , 𝑘 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝐅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑟𝑜𝑤𝑠     (4.11) 

Let D be the vector which has the k of Di corresponding to the baseline condition. A 

threshold is obtained based on the probability distribution of the elements of the D.  In 

fact, most research has assuming a normal distribution as it is the most likely 

distribution to be used in practice. However, in this work, the author has questioned this 

assumption and the selection of a suitable probability distribution can be made on the 

basis of the similarity between the shape of the histogram of the D and a selected 

probability distribution function.  In this study, as the values of the D elements are 

positive and skewed, the lognormal distribution is selected for the purpose of 

determining the threshold of the baseline condition.  The similarity of the lognormal 

distribution to the histogram of the MD is checked visually and it is shown that they are 

very similar (see Figure 5-B.1 in appendix B page 190). The formula of the lognormal 

probability distribution function is given by Eq.(4.12) below   

𝑝(𝐷𝑖)|𝜇,𝜎 =
1

𝜎√2𝜋
𝑒(ln(𝐷𝑖)−𝜇)

2 (2𝜎2)⁄                                                                                     (4.12)      

where  

𝑝(𝐷𝑖)  is the lognormal probability density function value at 𝐷𝑖. 

µ, σ   are the mean and standard deviation of the 𝑝(𝐷𝑖)   𝑖 = 1,2, … . 𝑘   

Figure 4.2 shows the standard shape of both the probability density function and the 

cumulative density function of the lognormal probability distribution. 
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The figure to the left shows the lognormal probability density function. The x-axis 

represents a range of values (i.e in our case the elements of D) while the y-axis 

represents the relative likelihood that a random number to take a given number on x-

axis (i.e p(Di)).  The figure to the right represents the cumulative distribution function 

(i.e P(Di)) which is related to the area under the curve corresponding to the probability 

distribution function (i.e p(Di)).  

To set up a threshold, a certain value of d is determined such that α% area under the 

curve locates to the right and 1- α % locates to the left.  In classification problems, 

misclassifications are divided into two main groups: 1) False-positives which indicate 

the presence of a fault when there is not one, and 2) False-negatives which indicate no 

fault when one is actually present. In the current study, a statistically based threshold is 

determined such that these false alarms are kept to a minimum during the fault detection 

process.  

The author has checked the misclassification rates at different cumulative probability 

Di 

p (Di) 

0 1-α α 

d 

P (Di) 

0 

Di 

Figures 4.2: Statistical hypothesis threshold based on lognormal distribution (only 

single tail) 
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values (i.e 0.97 and 0.99). Eventually, d  is selected such that the area cumulative 

probability equals 0.99, which gives minimum misclassification rates. 

Figure 4.3 illustrates the possible distribution of FVs and the Thrbaseline (i.e dashed line) 

corresponding to the baseline condition. The x- axis represents the number of FV 

whereas the y-axis represents the Mahalanobis distance of FVs to the Fbaseline as was 

described in Eq.(4.10).    

Depending on the value of Thrbaseline a considerable number of Di (corresponding to 

baseline FVs) will be below this threshold and all the rest will be above.   

 

Comparison of a new testing Di to the threshold. 

For any new signal from the testing sample, the FV is obtained as described in the 

feature extraction section. Then, the Mahalanobis distance of the FV to 𝐅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is 

calculated as described in Eq.(4.10) and finally it is compared to the chosen threshold 

Thrbaseline. If the Mahalanobis distance of the new FV is less than or equal to Thrbaseline, 

the FV is assigned to the baseline condition and vice versa (see Eq.(4.13)). 

FV number  

𝐷𝑖 

𝑇ℎ𝑟𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 

𝑡ℎ𝑒 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐹𝑉𝑠 
 

Figure 4.3: Illustration of Thrbaseline made from the baseline training FVs 
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𝐷𝑖 > 𝑇ℎ𝑟𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒      𝑎 𝐹𝑉𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑓𝑎𝑢𝑙𝑡𝑦 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦

𝐷𝑖 ≤ 𝑇ℎ𝑟𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒      𝑎 𝐹𝑉𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦
}                (4.13)  

The performance of the methodology in terms of the correct assignment of the FVs to 

their actual category (baseline & non baseline condition) is evaluated on the basis how 

many FVs is classified to their actual classes.by using the so-called confusion matrix.    

The confusion matrix is a square (K x K) matrix, where K is the number of sub-signal 

categories. The columns represent the predicted classes, while the rows represent the 

actual classes. Thus, the main diagonal represents the correctly categorised signals, 

while all the other elements represent the miscategorised signals. The name ‘confusion’ 

stems from the fact that this matrix makes it easy to evaluate whether the proposed 

methodology confuses two or more classes (i.e. mislabelling one category as another). 

Table 4.1 shows the structure of a confusion matrix: 

Actual class/predicted 

class 
1 2 ....`.. K 

1 C11% C12% …… C1Kk% 

2 C21% C22% …… C2Kk% 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

K CKk1% CKk2% …… CKkKk% 

                 `Table 4.1: An example of a confusion matrix 

Cij (i and j =1,2…Kk) refers to the percentage of vectors from class i which are 

classified as class j. It is clear that if i=j, then Cij represents the percentage of correct 

classification. If i≠j, then Cij represents the percentage ratio of the misclassification. 



 

 Chapter 4                        A new SSA based methodology for fault diagnosis in REBs 

 
 

55 

 A flowchart showing the steps of the methodology- fault detection phase is presented in 

Figure 4.4. The flowchart has three main blocks given in the dash-line boxes: 

1. Building a baseline space: Illustrating the building of Q-dimensional 

baseline space from training sample which corresponding to healthy bearing 

category.  

2. Extraction of FVs:  Projecting the lagged versions of the new signals from 

onto the baseline space to obtain the PCs and then creating FVs. 

3. Fault detection phase:  Measuring the Mahalanobis  distance (Di), setting a 

threshold and comparing the (Di) of the FVs corresponding to the testing 

sample with threshold.    
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Figure 4.4: A flowchart shows the steps of the fault detection phase in the 

methodology. 

Subject X to SSA and 

select the first (Q) of (U) as 
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Set threshold Thrbaseline 
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FVs  

Compare 
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baseline matrix Fbaseline 

Eq. (4.10) 

Di > Thrbaseline, assigned as a 
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Di =< Thrbaseline 
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Obtain PCs by projecting 

the X onto the baseline 

space R and make FVs. 

2 

A trajectory matrix X 
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signal from a testing 

sample Eq. (4.1) 



 

 Chapter 4                        A new SSA based methodology for fault diagnosis in REBs 

 
 

57 

Using all elements versus norms of Q- PCs: visual interpretation 

As was mentioned previously, the 1
st
 three PCs will be used for the visualisation 

purposes are used in the fault detection process. In this section, it will be visually 

illustrated how the use the norms of the PCs provides easier distinguishing between the 

baseline and non baseline signal categories than the use of all the elements of these PCs. 

An example from the data sets used in this study is shown to illustrate the improvement 

of the use of norms of the 1
st
 three PCs as features to distinguish between two different 

conditions (i.e H-Healthy and F-Faulty bearing). 

The Figure 4.5 shows the 3D visualisation and its 2D projections of using all the 

elements of the 1
st
 three PCs. In this figure the 1

st
 three PCs corresponding to 30 signals 

from baseline condition (at 1772 RPM) and another 30 from non-baseline conditions 

(i.e IRF at 1772 RPM) are plotted. It can be seen that the two conditions are mixed and 

there is no clear separation between them. 

 

 

 

 

 

 

 

 

 
Figure 4.5: 2D&3D visualisation   for the case of using all the elements 

corresponding to the first three PCs.  H and IRF – CS1 at 1772 RPM. 
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Thus, it is suggested in this study that each signal is to be represented by a single feature 

which is the Euclidean norm of its Q- PCs instead of using all the elements of these 

PCs. This can help by reducing the dimension of the FV used to represent a signal and 

improves the separation between the two signal categories (i.e baseline and non 

baseline).  

In the Figure 4.6, the 3D visualisation and the three 2D projections of using the norms 

of the first three PCs are shown. It is clearly seen that the two conditions are well 

separated.   

 

4.3.3 Fault diagnosis methodology- Fault type identification phase 

As was mentioned above, all the FVs are extracted from the norms of the PCs which are 

obtained from projecting the trajectory matrices on to the baseline space.  For the 

Figure 4.6: 2D& 3D visualisation   for the case of using norms corresponding to the 

first three PCs . H and IRF – CS1 at 1772 RPM. 
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purpose of fault type identification (i.e classification of the fault to an inner race fault 

(IRF), ball fault (BF) and outer race fault (ORF)), the FVs of each bearing condition 

category are divided equally into a training sample and testing sample. From the 

training sample, the FVs (i.e see Eq.(4.8)) are arranged in rows to form the so called 

feature matrices FK see Eq.(4.14).   

𝐅𝐾𝑖 = [

𝑓𝐾𝑖11 𝑓𝐾𝑖12 .

𝑓𝐾𝑖21 𝑓𝐾𝑖22 .
.

𝑓𝐾𝑖𝑁1

.
𝑓𝐾𝑖𝑁2

.

.

    𝑓𝐾𝑖1𝑄
    𝑓𝐾𝑖2𝑄.
     𝑓𝐾𝑖𝑁𝑄

]                                                (4.14) 

where  

Ki    number of the signal categories considered in the analysis. 

N    number of training FVs per category. 

Q   a feature vector dimension. 

Then for any new FV, the Mahalanobis distance (Di) to each of the feature matrices is 

measured. Eventually, the testing FV is assigned to the category which has a minimum 

Di. The Figure 4.7 illustrates the flow chart of the fault type identification process. The 

figure has three main blocks, 1) building a baseline space process, 2) Extraction of FVs 

and 3) Fault type identification phase in which each testing FV is assigned to a specific 

category based on the minimum Mahalanobis distance (Di). 
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3 

Figure 4.7: A flowchart shows the steps of the fault type identification. 
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4.3.4 Fault diagnosis methodology-Fault severity estimation phase 

The method is also used to investigate the capabilities of fault severity estimation. This 

includes projecting signals corresponding to different fault severities onto the baseline 

space and making FVs from the resulting projections. As in the fault type identification 

phase, the FVs are divided into a training sample and testing sample. From a training 

sample, a number of feature matrices corresponding to different fault severities are 

made. Then, the Mahalanobis distances (Di) of any new FV from testing sample are 

measured to each of the feature matrices made from the training sample. Eventually, the 

new FV is assigned to the category which has a minimum Di. 

In this study, the use of Di as a fault index is also investigated. For this purpose, the Di 

of the different fault severities to the baseline space is measured and used as index for 

fault severity change.  

4.4  Experimental data  

For the validation purpose of the methodology, data sets from different bearing test rigs 

are used. The description of the test rigs and data sets are given below: 

4.4.1 Case study 1(CS1) 

The bearing vibration data were obtained from the test rig of Case Western Reserve 

University (CWRU). The data-bearing centre [98] shown in Figure 4.8 consists of a 

3 HP three-phase induction motor: a dynamometer. The drive end bearing (SKF 6025 

deep grove ball bearing) data were used in this analysis. An electrical discharge 

machine (EDM) was used to introduce single point faults in the bearing raceways and 
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ball elements of different bearings with fault diameters of 0.007, 0.014, and 0.021 

inches and a depth of 0.011 inches. The bearing vibration data sets were obtained at a 

sampling rate of 12 kHz for different fault sizes and at speed varying from 1797 rpm (0 

HP) to 1730 rpm (3 HP). The data for the outer race fault were taken with the fault 

position centred at the 6 o’clock position with respect to the load zone. 

          

The data sets obtained from this test rig and used in this study are shown in Table 4.2. 

The notations in the table can be defined as follow: H for healthy category, IRF for 

inner race fault category, BF for ball fault category, ORF for outer race fault category, S 

refers to the small fault size (i.e 0.007 inch), M refers to medium fault size (i.e 0.014 

inch and L refers to large fault size (i.e 0.021 inch). The first four cases (i.e CW1-CW4) 

represent the data sets corresponding to healthy and different small fault locations 

categories obtained at different rotational speed (i.e 1730, 1750, 1772 and 1797 RPM). 

Figure 4.8: The bearing test rig of CWRU [98]. 1. Induction motor. 2. 

Accelerometer position.3. Torque transducer. 4. dynamometer 

1 

3 

4 

2 
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The remaining cases ( i.e CW 5-CW16) represent the data sets corresponding to Healthy 

and different fault severities. 

 

Case no. speed(rpm) Signal Category 

CW1 1730 Healthy, (IRF, BF and ORF)  small fault  0.007’’  

CW2 1750 Healthy, (IRF, BF and ORF) small fault  0.007’’  

CW3 1772 Healthy, (IRF, BF and ORF) small fault  0.007’’  

CW4 1797 Healthy, (IRF, BF and ORF) small fault  0.007’’  

CW5 1730 H&IRF (S,M and L) 

CW6 1750 H&IRF (S,M and L) 

CW7 1772 H&IRF (S,M and L) 

CW8 1797 H&IRF (S,M and L) 

CW9 1730 H&BF (S,M and L) 

CW10 1750 H&BF (S,M and L) 

CW11 1772 H&BF (S,M and L) 

CW12 1797 H&BF (S,M and L) 

CW13 1730 H&ORF (S,M and L) 

CW14 1750 H&ORF (S,M and L) 

CW15 1772 H&ORF (S,M and L) 

CW16 1797 H&ORF (S,M and L) 

Table 4.2: The drive end bearing vibration datasets obtained from case study 1 used 

in the bearing condition diagnosis 

 

The method was investigated using different sub-signal lengths (i.e the long signals are 

segmented into shorter sub-signals) where the method is applied using each of the sub-



 

 Chapter 4                        A new SSA based methodology for fault diagnosis in REBs 

 
 

64 

signal length (512, 1024, 2048 and 4096 data points). The number of the sub-signals 

obtained at for a different sub-signal length is shown, for all the Case studies used in the 

analysis, in Tables 4-A.1, 4-A.2& 4-A.3 (i.e in appendix 4-A attached at the end of the 

thesis). The number of shaft revolutions included in a certain sub- signal length (n) can 

be calculated from the following Eq. 4.15. 

𝑁𝑟 =
𝑛 ∗ 𝑆𝑝

60 ∗ 𝑆𝑟
                                                                                                                  (4.15) 

where 

Nr the number of shaft bearing inner race revolutions in a sub-signal length (n). 

n a sub-signal length. 

Sp the rotational speed of the inner race of the bearing (RPM) 

Sr the sampling rate (Hz)  

For example, for a sub-signal of 2048 data points length obtained at 12 kHz and a 

rotational speed of 1797 RPM, the number of revolution will be 

(2048*1797/(60*12000))=5.11 revolutions. 

4.4.2 Cases study 2 (CS2) 

The experimental test rig was designed and set up ,and the measurements were taken by 

the author in the laboratories at the Department of Mechanical and Aerospace 

Engineering and the University of Strathclyde. The experimental test set-up is shown in 

Figure 4.9. The test rig consists of a 1 HP shunt DC motor, a bearing assembly and a 
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mechanical loading system. The bearings used in the experiment are SKF 6308 single 

row deep groove. The motor shaft’s torque is transmitted to the test bearing assembly by 

a pinion-toothed belt mechanism. As the pinions at the motor and the entrance of the 

bearing assembly are of different diameters, the rotational speed of the test bearing shaft 

is measured by a contactless tachometer. Faults were introduced using an electrical 

discharge machine on the inner raceway, a rolling element and outer raceway using 

different bearings with a fault diameter of 0.05 inches in approximate. This fault size 

was deliberately made small by the author to challenge the performance of the 

methodology in detecting small faults.  Due to the limitations of the EDM tool size at 

the time of conducting the experiments, a smaller fault size than this was not possible. 

However, cases of smaller fault sizes were covered in the other case studies (i.e CS1 

and CS3). The bearing vibration data were obtained for healthy, inner raceway, a ball 

and outer raceway fault conditions at three rotational speeds (250, 750 and 1250 RPM).  

Signals were obtained at a 12 kHz sampling rate.  

A healthy bearing is mounted on the shaft and inside the bearing housing, and then data 

are acquired for acceleration vibration signals at a specific speed, such as 250 RPM.  

Then the motor speed is increased and another five signals are obtained at the new 

speed and the same is done for the speed considered in the analysis. When the 

measurement from the healthy signals is finished, a faulty bearing, such as a bearing 

with a fault in its inner raceway, is mounted in the test rig and the author follows the 

same measurement procedure. The measurements are repeated for the other faulty 

bearings. 
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The data sets obtained from this test rig and used in this study are shown in Table 4.3 

where the ST denotes Strathclyde University where the bearing test rig is. 

Case no. 
Motor 

speed(rpm) 
Signal Category 

ST1 250 Healthy, (IRF, BF and ORF)  small fault  0.05’’  

ST2 750 Healthy, (IRF, BF and ORF) small fault  0.05’’  

ST3 1250 Healthy, (IRF, BF and ORF) small fault  0.05’’  

Table 4.3: The bearing vibration datasets obtained from case study 2 used 

in the bearing condition diagnosis 

4.4.3 Case study 3 (CS3) 

The data were acquired from a test rig assembled at the Department of Mechanical and 

Aerospace Engineering of Politecnico di Torino by the Dynamics & Identification 

2 
3 

4 

8 

7 

1 6 

5 

Figure 4.9: Bearing test rig CS2. 1- Portable vibration analyser. 2- DC motor. 3- 

Wooden shield to cover the toothed belt and pinion. 4- Supporting journal bearing. 

5-accelerometer. 6-test bearing housing. 7-wireless tachometer. 8.weights. 
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Research Group (DIRG) (Figure 4.10) [99].  The author acknowledges the help of 

colleagues from the University of Torino in providing the data. The bearing is a roller 

bearing supplied by the SKF according the specification required by the teamwork. The 

signals were acquired at a 102.4 kHz sampling frequency for both healthy, defective 

inner raceway and defective roller elements at 18000, 24000 and 30000 RPM shaft 

speed and 1.4 kN load. For the cases considered in this thesis, the defects are made by 

Rockwell type indentation. The have three different diameters namely 0.006, 0.0098 

and 0.0178 inches. The data sets obtained from this test rig and used in this study are 

shown in Table 4.4, where PT denotes Politecnico Torino. 

 

 

 

 

Figure 4.10: DIRG test rig, the triaxial accelerometers (X, Y, Z) and the damaged roller 

used in the tests [99]. 1. Bearing assembly. 2. Three axes accelerometer. 3. Indention on 

a roller element 
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2 
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Case no. Motor speed (rpm) Signal Category 

PT1 18000 (H, IRF and  BF) small fault  0.006 inch diameter 

PT2 24000 (H, IRF and  BF) small fault  0.006 inch diameter 

PT3 30000 (H, IRF and  BF) small fault  0.006 inch diameter 

PT4 18000 H&IRF (S, M and L) 

PT5 24000 H&IRF (S, M and L) 

PT6 30000 H&IRF (S, M and L) 

PT7 18000 H&BF (S, M and L) 

PT8 24000 H&BF (S, M and L) 

PT9 30000 H&BF (S, M and L) 

 

Table 4.4: The bearing vibration datasets obtained from case study 3 used for the 

bearing condition diagnosis 

 

4.5  Variety of the data sets obtained from the three bearing test rigs  

From Tables 4.2, 4.3 and 4.4 it can be seen that a wide range of data sets were used for 

validation of the present methodologies. The data sets cover a variety of bearing 

rotational speed ranges. For the test bearing at Case Western Reserve University the 

speed ranges used were from 1730 RPM to 1797 RPM.  For the test bearing at 

Strathclyde university the speed ranges went from 250 RPM (which is a relatively low 

speed) up to 1250 RPM.  For the test bearing at the Politecnico di Torino the speeds are 

very high, and range from 18000 RPM to 30000 RPM.   For all of these speeds the 

methodology performs very well and shows a 100% correct classification for most of 

the cases. 
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The test bearings cover various fault severities which are detected and diagnosed by the 

current methodologies. Some of these fault severities were very small such as the one 

used in the Case Reserve Western university (i.e CS1) which is 0.007 inch, the one used 

at Strathclyde university (i.e CS2) which is 0.050 inch and the one used in the 

Politecnico di Torino (i.e CS3) which is 0.006 inch in diameter (around one tenth of a 

millimetre). 

The structure of the test bearings was not the same and the bearings used were also 

different. For example, the bearing used in the test rig at Politecnico di Torino is a 

specifically made rolling element bearing of a special dimension, while the other test 

rigs used different types of ball bearing. 

The sampling rate of the data taken from Politecnico di Torino was different to that 

which was used in the other test bearing rigs. The loads applied to the bearing were 

different for the entire test bearing rigs. The author believes that the three case studies 

cover a wide range of speeds, a good range of bearing types, a good range of fault 

extensions and severities from very small ones to those that are rather large, a good 

variety of fault types covering most of the faults experienced in bearings, and a good 

range of operational conditions. In conclusion the author is confident that the 

methodology developed is general enough to be applied for most types of machines.  

4.6  Summary  

The chapter introduces the fundamentals of the singular spectrum analysis. It first 

explains both stages of the SSA namely; the decomposition stage and the reconstruction 
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stage. Then it introduces the steps of the SSA-based methodology in detail. For 

validation of the methodologies developed in this thesis, the description of a three 

bearing test rig is given in this chapter. These bearing test rigs are different in terms of 

the bearing specifications, the fault severities and the rotational transmission 

mechanism. The obtained acceleration vibration data sets cover different fault locations, 

different fault severities and different shaft rotational speeds. The variety in the data set 

specifications gives good support for the generalisation of the application of the 

methodologies.   
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Chapter 5 

Results and discussion – a new SSA-based 

methodology for fault diagnosis in REBs  

5.1  Introduction 

The section of the results and discussion has two parts. The first part showing a 

demonstration for the method presented in this chapter using a data set from the CS1.  

The second part illustrates the results obtained for the three phases of the fault diagnosis 

(i.e fault detection, fault type identification and fault severity estimation). 

5.1.1 Part 1 -  Methodology demonstration based on CS1 

The demonstration of the methodology steps is presented in this section using a data set 

from CS1. The selected data set for demonstration contains the signals obtained  at 1730 

RPM for a healthy bearing (H), a bearing with inner race fault (IRF), a bearing with a 

ball fault (BF) and a bearing with outer race fault (ORF) with a fault size of 0.007 inch 

in diameter (i.e CW1 in Table 4.2). Figure 5.1 presents a sub- signal   corresponding to 

the healthy bearing category in the time domain at 1730 RPM. The x-axis represents the 

number of the data points while the y-axis is the acceleration of the signal vibration in 

m/sec
2
. Although recording the signal in the time domain provides rich information, no 
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direct information can be easily obtained from presenting it in its time domain. The next 

step is subjecting the lagged version of the sub-signal to SSA in order to unfold it 

through the decomposition stage and extract more information. 

 

The subjection of the sub-signal above to the 1
st
 stage of SSA, leads to decomposition 

into a number of PCs equal to the number of the embedding window, which is 10 in this 

case. Each PC contributes in a certain ratio of the original sub-signal variance. The 

distribution of this contribution versus the number of PCs is shown in the so-called 

scree plot as in Figure 5.2.  The plot displays the   normalised eigenvalues versus the 

number of PCs for a window L =10.   The y axis represents the normalised eigenvalues 

Figure 5.1: A sub- signal of 2048 data points corresponding to a healthy bearing 

at 1730 RPM. CS1-CW1 
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(i.e 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝜆𝑖 = 𝜆𝑖 ∑ 𝜆𝑖
𝐿
𝑖=1⁄ )  which explains the percentage of variance portions 

explained by each of the PCs.  It is clearly seen that the first PCs have the highest 

variance portions when compared to the last ones.  Larger (but should not be larger than 

half of a sub-signal length) or smaller embedding windows can also be used but in this 

study selecting the embedding window as 10 was convenient. When a larger embedding 

window is used, the variance portions contained in the first PCs decreased and the 

variance portion in the far PCs increase and vice versa.  As was mentioned in section 

4.3.2, any number of PCs can be selected and used in the analysis to form the FVs. In 

this study, the methodology’s correct classification rate has been checked using 

different PC numbers (i.e from 1 to 10) and eventually the minimum number of PCs to 

achieve the maximum correct classification rates. However for the purposes of 

visualisation only the 1
st
 three PCs are used. In Figure 5.2,   the variance proportion 

accounted for in the first three PCs is at least 75% of the variance of the original signal 

and it meets one of the criteria mentioned in [82].  

  

 
Figure 5.2: Scree plot of a healthy signal at 1730 RPM 
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As mentioned in section 4.3.1, that baseline space is made from the eigenvectors 

corresponding to a healthy bearing category. The lagged version of any new sub-signal 

is projected on that baseline space. The resulted projections are made to obtain the FVs. 

Figure 5.3 represents a 3D visualisation of 3D feature space. This feature space 

represents the norms of the projections of the FVs on the baseline space. The horizontal 

axes represent the values of the 1
st
 and 2

nd
 features of the FV respectively (i.e norms of 

the projections on to the U1 & U2) while the perpendicular axis represents the value of 

the 3
rd

 features (i.e the norms of the projection on to the U3).  The number of the FVs 

shown in this figure is 30 FVs corresponding to the baseline training sample (Htr) 

category. 

                      

Since the baseline eigenvectors are corresponding to a healthy bearing, it is expected 

that FVs corresponding to non baseline bearing condition will differ from the baseline 

the FVs. The Figure 5.4 shows a 3D visualisation and 2D views of 3D feature space. 

Figure 5.3: 3D visualisation of feature space corresponding o 

Htr category (baseline condition) at 1730 RPM-CS1-CW1 
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The 3D- FVs shown in the figure are corresponding to Healthy (H) and different faulty 

categories (F). The total number of FVs is 240 (60 for H and 180 for F) corresponding 

to a sub-signal length of 2048 and a rotational speed 1730 RPM. As was mentioned in 

Section 4.3.2, the trajectory matrix of each testing sample sub- signals is projected on to 

the baseline space (i.e multiplied by baseline eigenvectors). Figure 5.4-A shows the 3D 

visualisation of the FVs corresponding to the baseline condition in blue and the other 

different faulty bearing conditions in red for IRF, green for BF and black for ORF. It 

can be seen that FVs corresponding to the faulty classes are well separated from the 

baseline conditions and they are also separated from each other. Figures 5.4-B, 5.4-C 

and 5.4-D show the distribution of the FVs from different 2D views. Figure 5.4 shows 

that selecting three PCs to form the FVs improves the separation not only between the 

baseline and non-baseline categories but also among the non-baseline categories as well.  
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The separation of the non-baseline FVs from the baseline one can be assessed by 

calculating the Mahalanobis distance (D) (see Eq. (4.10)) and comparing it to a 

predetermined threshold. Figure 5.5 presents the D of the testing and the training FVs to 

the baseline FVs. From the D corresponding to the healthy training sample a threshold 

(Thrbaseline) is determined based on the lognormal probability density function as was 

described in Section 4.3.2 (see Figure 5-B.1 in appendix 5-B for comparison of 

lognormal probability distribution with  the D  histograms corresponding to healthy 

training sample).    As it is seen from the figure, there are five regions /parts of D 

Figure 5.4: The 2D & 3D visualisation of the FVs corresponding to different 

bearing conditions obtained at 1730 RPM, sub-signal length (2048).A.3D view, 

B.PC1&PC2 view, C.PC1&PC3 view. D. PC2&PC3 view. 

A B 

C D 
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separated by vertical dashed lines. The most left part represents the D of the ‘’Training 

baseline FVs” which represents the D of each training FV measured to Fbaseline. This is 

the part where the threshold is made. The threshold is represented by the horizontal 

dashed line in the figure. The second left part represents the D of the ‘’Testing baseline 

FVs’’ measured to the baseline FVs.  The other parts (i.e the last three) represent the D 

of the testing FVs corresponding to different fault locations. It is clear that all the D 

corresponding to training  baseline FVs are below the Thrbaseline and most of the ones 

corresponding testing healthy sample are also still below (i.e only two out of 30 locate a 

slightly above the Thrbaseline value). However, all the other distances corresponding to 

the faulty condition are quite far from the Thrbaseline and the healthy bearing category. 

The y-axis is in a log scale in order to show how well the non-baseline FVs are 

separated from the baseline ones.  

       

Figure 5.5: Shows the D as an indicator of the fault detection in the bearing 1730 RPM. 
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The total FVs used in this example is 240 (4 categories (i.e H, IRF, BF and ORF) * 60 

(FV for each category)).  Half  (i.e 30) of the (H) category D values is used to determine 

the baseline threshold while the other 30 as well as the other 180 D values 

corresponding to the faulty  (F) category are used as testing sample.  The confusion 

matrix corresponding to the classification of testing FVs obtained at 1730 RPM is 

shown in Table 5.1. It is clearly shown that the positive false alarm (i.e FVs 

corresponding to the healthy class but assigned as faulty) is 6.7% as only 2 out of 30 is 

misclassified while there is no negative false alarm (i.e none of the FV corresponding to 

faulty bearing category is assigned to the healthy category). 

Actual class/predicted classes H F 

H 93.3% 6.7% 

F 0% 100% 

Table 5.1: Confusion matrix of testing FVs, 1730 RPM. 

It is important to mention that the present method can be successfully applied to a real 

complex machine. This is because the baseline space will be created based on the real 

data of the machine itself (not from a simulated model) using the healthy condition. 

Then, a threshold will be set up from this healthy category data and any anomaly will be 

detected and classified as an observation different to the baseline space. 

5.1.2 Part2- Fault diagnosis 

In this part, results are presented for all the three phases of fault diagnosis; 1-Fault 

detection, 2: Fault type identification and 3. Fault severity estimation (see section 4.3).  
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Fault detection 

This part of the results shows the methodology performance in distinguishing between 

healthy and faulty categories (i.e baseline and non-baseline). As was mentioned above 

(section 4.3.2), the FVs corresponding to the healthy category are equally divided into a 

training sample and a testing sample. The training sample is used to build the baseline 

space and setting a threshold while the testing sample is used to validate the 

methodology.  All the FV corresponding to a fault category are used as a testing sample. 

The methodology is applied for different FV dimensions (i.e different baseline space 

dimensions) and different sub-signal lengths. The results for the correct classification 

rates are shown in the following sections:- 

A study of FV dimension and sub signal length effect on fault detection accuracy rate 

The method is applied for different FV dimensions (i.e from 1D to 10 D) in order to 

investigate the effect of the FV dimension on the fault detection accuracy. In the case of 

1D, only the first PC is used to make the FV and in the case of 2D only the first two 

PCs are used for the FV and the same process for other FV dimensions. Figure 5.6 

shows the D (i.e Mahalanobis distance of testing FV to the baseline) at different FV 

dimensions and for testing FVs corresponding to the H category and IRF category. 

These two categories are selected for the simplicity of showing the effect of baseline 

space dimension on the D. The x-axis represents the number of the testing FV used in 

the classification process while the y-axis represents the D of the testing sample FVs to 

the baseline feature space.  It can be seen that the D values increases with the increase 

of the dimension of the FVs. At 1D, there is no considerable deviation between the 
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healthy and faulty categories but the deviation becomes clear when the FV dimension 

increases. This can be explained as considering more dimensions means including more 

PCs and more information about the fault.  The figure shows the increase in D using the 

FV of one dimension (1D), where only the first PC is used in extracting the features, up 

to the use of a 5 dimensional FV (5D), where the first five PCs are used in the extracting 

the features.  

                                       

Figure 5.7 A-D shows the effect of increase of FV dimension on the correct 

classification rate of the proposed methodology. The x-axis represents the dimension of 

the FV while y-axis represents the correct classification rate in percent. The red line 

corresponds to the FV from faulty bearing class whereas the blue line corresponds to the 

FV from the healthy testing sample. 

Figure 5.6: Effect of increasing the FV dimension of on D  

Htest   

IRF   
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Generally, there are several notes that can be interpreted from the figure. First, a general 

phenomenon can be seen in the FV dimensionality versus the correct classification 

rates. It can be easily seen that the distinguishability of the FVs corresponding to the 

faulty category is improved with the increase of FV dimension. This can be interpreted 

as an increase of FV dimension (i.e when more PC components are used) meaning the 

involvement of more information about the bearing fault. Second, the correct 

classification of FV corresponding to the H testing sample decreases with the increase 

of the FV dimension. And this decrease is much clearer at larger sub-signal length 

particularly at 4096 (i.e Figure 5.7-D).  

       

However, it can be seen that at some certain FV dimension the correct classification 

rates reach a maximum and there is no need to add more PCs. The same notes can be 

Figure 5.7: Effect of FV dimension on the correct classification rates. 

 CW1-1730 RPM at different sub-signal length A-512, B-1024, C-2048 and 

D-4096 

A B 

C D 
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made for the CS-2&3 as shown in Figures 5.8-5.9 respectively. Figure 5.8 shows the 

correct classification rates at different FV dimensions and at different sub-signal length 

corresponding to CS2. Figure 5.9 shows the correct classification rates at different FV 

dimensions and at different sub-signal length corresponding to CS2. In all these Figures 

it can be seen when the sub-signal length increased, the FV dimension to achieve the 

maximum correct classification rate decreases. 

 

      

Figure 5.8: Effect of FV dimension on the correct classification rates. ST1-250 

RPM at different sub-signal length A-512, B-1024, C-2048 and D-4096 
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Minimum baseline space dimension to achieve the highest classification rate.  

Recalling the Figures 5.7-5.9 above, which are showing the effect of FV dimension (i.e 

baseline space dimension) on the correct classification rates, It can be seen that the 

minimum baseline space dimension to achieve the highest correct classification rates of 

FV corresponding to fault bearing category  is case dependent (i.e it is not a unique for 

all the cases). For example in the Figure 5.7-A, using the 3D baseline space is sufficient 

to achieve 100% of fault detection rate for sub-signal length of 512 data points. 

However when a longer sub-signal is used (such as 1024, 2048, 4096 in the Figures 5.7 

B, C, D respectively), lower baseline space dimension is required (i.e only 2). This can 

be interpreted as incorporation of more data points in the sub-signal means 

Figure 5.9: Effect of FV dimension on the correct classification rates. PT4-

24000 RPM at different sub-signal length A-512, B-1024, C-2048 and D-4096 
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incorporation of more information about the fault in the sub-signal. Consequently more 

information about the fault will be involved in the first PCs. 

Table 5.2 shows the minimum baseline space dimension required to achieve maximum 

fault detection rates for the data sets of CS1 for different speeds and different sub-signal 

lengths. The correct classification rates are shown in the form ‘’ minimum baseline 

space dimension [%classification rate of Htest, %classification rate of F]’’. The numbers 

out of the brackets represents the minimum baseline space dimension required to 

achieve the maximum fault correct classification, while the numbers inside the square 

brackets refer to correct classification rate of the FVs corresponding to the healthy 

testing sample and the correct classification rate of the FVs corresponding to the faulty 

testing sample respectively in percent. 

  Sub-signal length 

Speed 

RPM 
512 1024 2048 4096 

1730 4[99.2,100] 2[100,100] 2[100,100] 2[100,100] 

1750 3[97.5,100] 2[100,100] 2[100,100] 2[100,100] 

1772 4[96.5,100] 2[100,100] 2[100,100] 2[100,100] 

1797 3[100,100] 2[100,100] 2[100,100] 1[100,100] 

Table 5.2: The minimum baseline space dimension and 

corresponding average and lowest correct classification 

rates CS1-fault detection phase 

However, it can be seen that, in general, the minimum baseline dimension tends to 

decrease with the increase of sub-signal length. For example, at 1797 RPM it is three at 

sub-signal length of 512 but it decreases to one when sub-signal length is 4096. Results 

of correct classification rates for CS2 and CS3 are shown respectively in the Tables 5-

C.1 and 5-C.2 (Appendix 5-C). 
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 Fault type identification  

In the previous section, the classification of FVs into only a baseline and non-baseline 

categories are discussed.  In this section, the results of the correct classification rates of 

the FVs to their actual categories are presented (i.e to baseline and different non-

baseline categories such as inner race fault, ball fault and outer race fault). Figure 5.10 

shows the average and lowest correct classification rates versus FV-dimension for CS1 

at 1730 RPM. The average correct classification rate is the mean value of the main 

diagonal of the corresponding confusion matrix while the lowest correct classification 

rate is the lowest value of main diagonal of the same confusion matrix. Generally, it can 

be seen that increasing the baseline space dimensions improves the correct classification 

rates. As seen in the detection phase, the average correct classification rates reach to a 

maximum value at a certain baseline space dimension. This means that it is unnecessary 

to increase the baseline space dimension.   It can be seen also that the minimum baseline 

space dimension, which is required to obtain the highest average correct classification, 

decreases with the increase of the sub-signal length. For example, in the Figure 5.10, 

which shows the classification rates for FV made at different  sub-signal length (A-512, 

B-1024, C-2048 and D-4096) the minimum baseline space dimension (i.e minimum  FV 

dimension) is (2 at 512, 2 at 1024, 1 at 2048 and 1 at 4096). After these minimum 

dimensions it is unnecessary to increase the baseline space dimension because the 

average correct classification rates reach maximum. 
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Figures 5.11 & 5.12 show the average and lowest correct classification rates for CS2 

and CS3 respectively. For CS2, the method shows poor performance for the case where 

the sub-signal length is 512 data points while it shows a good performance at the higher 

sub-signal lengths. The trend of classification rates improvement shows an increase 

with the increase of baseline space dimension. Another note can be seen that increasing 

the sub-signal length decreases the baseline space dimension required for better correct 

classification rates. 

Figure 5.10: Average and lowest correct classification rate versus FV-

dimension CS1, 1730 RPM, A-512, B-1024, C-2048 & D-4096 
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C D 
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Figure 5.11: Average and lowest correct classification rate versus 

FV-dimension CS 2, 250 RPM, A-512, B-1024, C-2048 & D-4096 

D 

A B 

C 

Figure 5.12: average and lowest correct classification rate versus FV-

dimension CS3, 18000 RPM, A-512, B-1024, C-2048 & D-4096 

A B 

C 
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For the data sets corresponding to CS3, the average and lowest correct classification 

rates has the same trend as in CS2.   

Table 5.3 shows correct fault type classification rate in percent for the data sets of CS1. 

The numbers beside the square brackets defines the minimum baseline space dimension 

while the numbers inside the square brackets show the average and lowest correct 

classification rates respectively. As mentioned previously in section 4.3.3 the FVs are 

divided into a training sample and a testing sample. From the training sample a number 

of feature matrices are made. The testing sample is used for validating the methodology. 

It can be seen from the table, the method shows a very good performance for all the data 

sets considered in the CS1 and for the different sub-signal length. The number of FVs 

used in the fault type identification phase is 960 (4category *240 FVs for each category) 

for sub-signals of 512, 480 FVs for sub-signal length of 1024, 240 FVs for sub-signal 

lengths of 2048 and 120 FVs for sub-signal length of 4096. The results for other case 

studies CS2&CS3 can be seen in Table 5-C.3 and 5-C.4 in appendix5- C 

 Sub-signal length  

Speed 

RPM 
512 1024 2048 4096 

1730 3[100%,100%] 3[100%,100%] 2[100%,100%] 2[100%,100%] 

1750 3[100%,100%] 2[100%,100%] 2[100%,100%] 2[100%,100%] 

1772 3[100%,100%] 2[100%,100%] 2[100%,100%] 2[100%,100%] 

1797 2[100%,100%] 1[100%,100%] 1[100%,100%] 1[100%,100%] 

Table 5.3: The minimum baseline space dimension and corresponding 

average and lowest correct classification rates CS1-fault type identification 

phase. 
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Fault severity estimation  

The methodology is also investigated for the detection of different fault severities. 

Figures 5.13, 5.14 and 5.15 show a 3D visualisation of 3D feature space corresponding 

to healthy and different fault severities categories for CS1. Figure 5.13 shows an 

example of the clustering of FVs corresponding to healthy and different fault severity at 

inner raceway at sub-signal length of 2048. The total number of FVs used in this 

example is 240 (4 categories * 60 FV foe each category). The SIRF, MIRF and LIRF 

refer to the small (0.007 inch), medium (0.014 inch) and large (0.021 inch) fault size at 

the inner raceway respectively. The figure shows that the methodology is able to 

distinguish not only between the baseline and non-baseline categories but also among 

the different fault size non-baseline categories. Figure 5.14 shows the visualisation of 

the 3D feature space of FVs corresponding to healthy and different fault severities at a 

ball element. Although the FVs corresponding to MBF (i.e medium ball fault size) are 

not very close each to other but they are distinguished from other categories.   Figure 

5.15 shows the visualisation of the 3D feature space of FVs of FVs corresponding to 

healthy and different fault severities at outer raceway (ORF). It shows a very good 

distinguishing of different fault severities signal categories from the baseline (i.e 

healthy) and among themselves as well which indicates the robustness of the present 

method.   
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Figure 5.13: Clustering of FVs which corresponding to healthy and different 

inner race fault (IRF) severities at 1730 RPM and sub-signal length 2048 
 

Figure 5.14: Clustering of FVs which corresponding to healthy and different ball 

fault (BF) severities at 1730 RPM and sub-signal length 2048 
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A study of FV dimension and sub signal length effect on detection accuracy rate of 

different fault severities 

The method performance in terms of detecting different fault severities is also 

investigated. First the capability of the method in distinguishing the healthy and 

different fault severities FVs into a baseline and non-baseline is firstly investigated. As 

described previously, from the Mahalanobis distances (D) of the healthy training sample 

to the baseline a threshold is made. The D values corresponding to the testing sample 

FVs are compared to the Threbasline and used to validate the method. Figure 5.16 shows 

the average correct classification rates of the testing FVs versus different FVs 

dimension (i.e different baseline space dimension). The F and Htest notations in the 

figure refer respectively to the testing sample of Faulty and Healthy FVs categories. The 

Figure 5.15: Clustering of FVs which corresponding to healthy and different 

outer race fault (ORF) severities at 1730 RPM and sub-signal length 2048. 
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average correct classification rates in the figure shows how well the method is able to 

distinguish the FVs corresponding to different fault severities into a baseline and none-

baseline categories.  The same general phenomenon, which can be seen in the case of 

detection of fault locations (i.e see page 76), can also be noticed here. The increase of 

FV dimensionality (i.e involving more PCs in building the space lines) helps in 

incorporating more information about the fault presence.  This leads to an improvement 

in the average correct classification rates of the FVs corresponding to the F category.  

On the other hand, the average correct classification rates for the FVs corresponding to 

the Htes decreases with the increase of FV dimensionality.  

          

However, it can be seen clearly that the average correct classification rates of FVs 

corresponding to F category reach maximum when the baseline space dimension is two 

Figure 5.16: Average correct classification rate versus FV-dimension CS 1-

different fault severities at inner race, 1730 RPM. RPM, A-512, B-1024, C-

2048 & D-4096 

A B 

C D 
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and there is no need to use a higher space dimension. Furthermore, increasing the 

baseline space dimension can deteriorate on the average correct classification rates of 

the FV corresponding to Htest category.      

Minimum baseline space dimension to achieve the highest classification rate.  

Tables 5.4-5.6 show the minimum baseline space that gives best average correct 

classifications of FV of F and Htest categories. In each of these tables, the first row 

represents the sub-signal length which the FVs are made from. The first column 

represents the shaft rotational speeds. The values in the internal cells of the tables 

represent the following expressions 

‘’baseline space dimension minimum [%average correct classification rate of Htest 

category %average correct classification rate of F category]’’ 

Generally, a number of notes can be seen for all the cases shown in the Tables 5.4-5.6. 

The minimum dimension of the baseline space decreases when sub-signal length 

increases. For example, in Table 5.4,  the data corresponding to a speed 1772 RPM, the 

minimum baseline space dimension increase from 4 to 2 when the sub-signal length 

increases from 512 to 4096 data points. This might be interpreted as incorporation of 

more data points in the sub-signal (i.e increasing its length) means incorporation of 

more information about the fault in the sub-signal. The minimum dimension of the 

baseline space to achieve highest average correct classification rates is case dependent 

(it is not the same for all the cases).   
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  Sub-signal  length 

Speed 

RPM 
512 1024 2048 4096 

1730 3[99.2  100] 2[100 100] 2 [100 100] 2 [100 100] 

1750 4[97.5  100] 3[96.7  100] 2 [100 100] 2 [100 100] 

1772 4[96.6 100] 3[95 100] 2[100 100] 2[100 100] 

1797 3[100 100] 3[100 100] 1[100 100] 1[100 100] 

Table 5.4: Minimum dimension of the baseline space , average 

correct classification rate of Htest category and average correct 

classification rates of F category of different IRF  severity category 

FVs. CS1 

 

 Sub-signal  length 

Speed 

RPM 
512 1024 2048 4096 

1730 5[99.2 100] 3[98.3  100] 2[100 100] 2[100 100] 

1750 5[96.6 100] 5[96.7  100] 4[80   100] 4[53.3 100] 

1772 5[96.6 100] 4[95     100] 4[80   100] 3[86.7 100] 

1797 4[100  100] 4[100   100] 2[100 100] 2[100 100] 

Table 5.5: : Minimum dimension of the baseline space , average correct 

classification rate of Htest category and average correct classification rates 

of F category of different BF  severity category FVs. CS1 

 

 Sub-signal  length 

Speed 

RPM 
512 1024 2048 4096 

1730 3[99.2 100] 3[98.3 100] 2[100 100] 2[100 100] 

1750 3[97.5 100] 3[96.7 100] 2[100 100] 2[100 100] 

1772 3[96.7 100] 2[100 100] 2[100 100] 2[100 100] 

1797 3[100 100] 2[100 100] 2[100 100] 1[100 100] 

Table 5.6: : Minimum dimension of the baseline space , 

average correct classification rate of Htest category and 

average correct classification rates of F category of different 

ORF  severity category FVs. CS1 

The Tables 5.7 and 5.8 show the minimum dimension of baseline space that gives best 

average correct classifications of FV of F and Htest categories corresponding to CS3. 

The same notes obtained for CS1 can also be seen for this case study where the 
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minimum dimension of the baseline space decreases when the sub-signal length 

increases. 

sub-signal length 

 RPM 512 1024 2048 4096 

18000 7[99.4 93.7] 4[99.5 100] 4[99.5 100] 3[100 100] 

24000 5[99.6 99] 5[99.3 100] 3[99.5 100] 1[100 100] 

30000 10[98.8 98.7] 7[98.3 100] 5[99 100] 2[100 100] 

Table 5.7: Minimum dimension of the baseline space , average 

correct classification rate of Htest category and average correct 

classification rates of F category of different IRF  severity 

category FVs. CS3 

 

 sub-signal length 

 RPM 512 1024 2048 4096 

18000 9[99.1 98.8] 5[99.3 100] 4[99.5 100] 3[100 100] 

24000 10 [99 92.4] 5[99.3 100] 4[99.5 100] 3[100 100] 

30000 8[99.3 79.6] 7[98.3 99.3] 6[97.5  100] 4[99 100] 

Table 5.8: Minimum dimension of the baseline space , average 

correct classification rate of Htest category and average correct 

classification rates of F category of different BF  severity category 

FVs. CS3 

A study of FV dimension and sub signal length effect on detection accuracy rate of 

identification of different fault severities 

In the previous section of the results, it is shown that the methodology has a very good 

performance in distinguishing the FVs corresponding to H and different fault severities 

into a baseline and non-baseline categories. The current section of results discusses the 

method performance in distinguishing not only to a baseline and non-baseline categories 

but among the non-baseline categories as well. As explained in section 4.3.4 the FVs are 

divided into a training sample and testing sample. The training sample is used to build 

the feature matrices corresponding to the healthy and the different fault severities such 

as small, medium and large inner race fault. The testing sample is used to validate the 
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method performance. The method performance is investigated in terms of how many 

FVs are assigned to their actual categories. The method was applied using FVs obtained 

at different sub-signal length, different rotational speed and different baseline space 

dimensions. 

Figure 5.17 A-D illustrates the average and lowest correct classification rates for a data 

sets corresponding to different fault severities at inner race from CS1 (i.e CW5 in Table 

4.2). In Figure 5.17A&B), it can be seen that selecting a two dimensional baseline space 

was sufficient to achieve the maximum average correct classification rate and there is 

no need to increase the baseline space dimension. In Figure 5.17-A, the FVs were 

obtained from the projections corresponding to the sub-signals of a length 512 data 

points. When only the projection on the U1 is considered, the average correct 

classification rate was 89.3%. However, when the projections on the U1 and U2 are also 

included, the average correct classification is improved to be 100%. The same note can 

be seen for Figure 5.17-B, where using projections on U1 and U2 improve the average 

correct classifications form 95.4% (i.e when using projections on the U1 only) to 98.3% 

(i.e when using projections on the U1 and U2 together).  In Figures 5.17 C&D, it can be 

seen that using FVs obtained from the projections on the U1 was sufficient to achieve 

100% classification where all the testing FVs are classified correctly to their actual 

category.  
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Figure 5.18 A-D represents the average and lowest correct classification rates for the 

data sets corresponding to healthy and different fault severities at a ball element (i.e 

CW9 in Table 4.2). As was seen before the correct classification rates improve with the 

increase of baseline space dimension.  For example, for a sub-signal of 512 data points 

(i.e Figure 5.18 A), the average correct classification rates improves from 62.4% to 

100% when the baseline space dimension increased from 1D to 3D.            

A B 

C D 

Figure 5.17: Average and lowest correct classification rate versus FV-

dimension CS1,CW5 1730 RPM, A-512, B-1024, C-2048 & D-4096 
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Figure 5.19 A-D represents the average and lowest correct classification rates for the 

data sets corresponding to healthy and different fault severities at outer race (i.e CW13 

in Table 4.2). As was seen before that the correct classification rates improve with the 

increase of baseline space dimension.  For example, for a sub-signal of 512 data points 

(i.e Figure 5.19 A), the average correct classification rates improves from 85.8% to 

98.8% when the baseline space dimension increased from 1D to 3D.  

A B 

C D 

Figure 5.18: Average and lowest correct classification rate versus FV-

dimension CS1, CW9 1730 RPM, A-512, B-1024, C-2048 & D-4096 
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Figure 5.20 A-D and Figure 5.21 A-D represent the average and lowest correct 

classification rates for the data sets corresponding to PT5 and PT8 of CS3 (see Table 

4.2).  Figure 5.20 shows the average and lowest correct classifications of FVs 

corresponding to H and different inner race fault severities of CS3.  The minimum 

dimension of baseline space decreases with the increase of the sub-signal length. 

Furthermore, the correct classification rates improve when the dimension of the baseline 

space increased. This improvement is clearly seen when incorporating few first PCs 

while there is none or slight improvement when more of the last PCs are incorporated. 

Similar notes can be seen for correct classification rates for the FVs corresponding to 

healthy and different roller element fault severities categories (CS3) as in Figure 5.21. 

 

A B 

C D 

Figure 5.19: Average and lowest correct classification rate versus FV-

dimension CS1, CW13 1730 RPM, A-512, B-1024, C-2048 & D-4096 
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A B 

C D 

Figure 5.20: Average and lowest correct classification rate versus FV-

dimension CS3, PT5, 24000 RPM, A-512, B-1024, C-2048 & D-4096 

Figure 5.21: Average and lowest correct classification rate versus FV-

dimension CS3, PT8,24000 RPM, A-512, B-1024, C-2048 & D-4096 
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Minimum baseline space dimension to achieve the highest classification rate.  

Recalling Figures 5.17-5.19 above, which are showing the effect of FV dimension (i.e 

baseline space dimension) on the classification rates of a baseline and a different fault 

severities categories., It can be seen that minimum baseline space dimension to achieve 

the highest classification rates of FV corresponding to fault bearing category is also a 

case dependent (i.e it is not a unique for all the cases). For example in Figure 5.17-A, 

using 2D baseline space is sufficient to achieve 100% of fault estimation rate for sub-

signal length of 512 data points. When a longer sub-signal is used (such as 2048, 4096 

in the Figures 5.17 C, D respectively), the minimum baseline space dimension to 

achieve 100% correct fault estimation rate is only one. This can be interpreted as more 

data points in the sub-signal means more information about the fault might be included 

in the sub-signal and consequently more information about the fault will be involved in 

the first PCs. 

Table 5.9-5.11 show the minimum baseline space dimension required to achieve 

maximum fault detection rates for the data sets of CS1 for different speeds and different 

sub-signal lengths. The correct classification rates are shown in the form ‘’ minimum 

baseline space dimension [%average correct classification rate, % lowest correct 

classification rate]’’. The numbers out of the brackets represents the minimum baseline 

space dimension required to achieve the maximum average correct fault estimation 

rates, while the numbers inside the square brackets refer to average correct fault 

estimation rate and lowest correct fault estimation rate respectively. Generally, it can be 

also seen that the minimum baseline space dimension decreases when the sub-signals 

length, which used to obtain the FVs, increases. 
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 sub-signal length  

CRWU 512 1024 2048 4096 

1730 2[100 100] 2[98.3  98.3] 1[100 100] 1[100 100] 

1750 2[100 100] 2[98.3  98.3] 2[100 100] 1[100 100] 

1772 3[100 100] 2[98.3  98.3] 2[100 100] 2[100 100] 

1797 3[99.299.2] 2[98.3  98.3] 2[100 100] 1[100 100] 

Table 5.9 : Minimum baseline space dimension, average correct fault 

estimation rates of FVs corresponding to H and different IRF severities 

CS1 

 

 sub-signal length  

CRWU 512 1024 2048 4096 

1730 3[100 100] 3[98.3  98.3] 2[100 100] 2[100 100] 

1750 5[100 100] 5[98.3  98.3] 5[100 100] 2[100 100] 

1772 7[100 100] 8[98.3  98.3] 6[100 100] 3[100 100] 

1797 9[99.4 97.5] 8[98.3  98.3] 7[100 100] 4[100 100] 

Table 5.10 : Minimum baseline space dimension, average correct fault 

estimation rates of FVs corresponding to H and different BF severities 

CS1 

 

 sub-signal length  

CRWU 512 1024 2048 4096 

1730 2[98.8  98.3] 2[100 100] 2[100 100] 2[100 100] 

1750 2[100 100] 2[98.3 98.3] 2[100 100] 2[100 100] 

1772 2[99.2  99.2] 2[100 100] 2[100 100] 2[100 100] 

1797 3[100 100] 1[98.3 98.3] 1[100 100] 1[100 100] 

Table 5.11 : Minimum baseline space dimension, average correct fault 

estimation rates of FVs corresponding to H and different ORF severities CS1 

  Fault severity index 

In this research, the use of the Mahalanobis distance (D) of testing FVs measured to the 

baseline space as a fault severity index is investigated. Figure 5.22 show the D values of 

the FVs corresponding to healthy and different fault severities at inner raceway (CS1) 

measured to the baseline space. The dimensions of the baseline space are selected from 

Table 5.9. It can be seen that fault category’s FV are correctly distinguished not only 
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from the baseline category but among themselves.   Although D changes with the fault 

severity changes, it does not always follow a monotonic function.  

 

In Figure 5.23, shows the D of the FVs corresponding to H and different inner race fault 

severities categories for the data set of CS3 of sub-signal length 2048 data points. It can 

be seen that the D  is generally following a monotonic function as it increases with the 

increase of the fault severity, especially for the data sets obtained at 18000 & 30000 

RPM.  However, at speed 24000 RPM the D level changes when the fault severity 

becomes large. 

Figure 5.22: The Mahalanobis distance (D) of FVs corresponding to H and different 

inner race fault severities categories measured to baseline conditions sub-signal length 

of 2048 data points – CS1. A-1730 RPM. B. 1750RPM C. 1772RPM D. 1797RPM 
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5.2  Results comparison to some recent published work 

Table 5.12   shows the precision of the present method as compared to some other 

recent methods which are based on different time series analysis techniques but they use 

the same part of datasets of CWRU.   Information regarding the datasets details, number 

of testing and training FVs and average correct classification rates are presented in 

Table 5.12 for these methods and for the method suggested here.   

The methods are listed below: 

1) Difference histograms (DHs) and feed forward neural network (FFNN)[100]:  The 

difference histograms (DHs) based method includes the formation of scaled 

Figure 5.23: The Mahalanobis distance (D) of FVs corresponding to H and different 

inner race fault severities categories measured to baseline conditions sub-signal 

length of 2048 data points – CS3. A-18000 RPM. B. 24000 RPM C. 30000 RPM. 
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0.0178’’ 



 

 Chapter 5               Results and discussion –a new SSA-based methodology for fault 

diagnosis in REBs 

 
 

105 

representation for histograms of increased sub-signal  lengths. Some of the first 

histogram bins are used as inputs to a FFNN for classification purpose of faults. 

2) SSA and back propagation neural network (BPNN) [83]:In this study two sets of 

feature vectors are developed using SSA.   The first FV includes the singular values of 

some of the first several principal components and the other FV uses the energy of the 

time domain of sub-signal components corresponding to these principal components. 

These feature vectors are used as input to the BPNN classifier. 

3) In [101], signals from two different accelerometers are used to create a two  

dimensional representation of the bearing condition. The minimum volume ellipsoid 

(MVE) method is used to extract the features.  Principal component analysis (PCA) is 

used for selecting the most important features. The last step is to input the selected 

features to the nonlinear nearest neighbour classifier. 

 It can be seen from Table 5.12 that all the compared methods achieve a rather good 

classification rate. From all the four methods compared it can be seen that the method 

suggested here demonstrates the best classification rate, which is between 98.3-100% 
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Method Data set 

Training 

and testing 

FVs 

Conditions classified 

Average correct 

classification 

rates (%) 

Fault features 

1)DH and FFNN[95]      

0.18, 0.36,0.53mm; 

0–3 HP load;30000 

data 

points 

Both 144 

 (IF, OF and BF 

classification 

only) 

92-95 

First 6 histogram 

bins 

 

2)SSA and BPNN 

[65]  

0.18, 0.36, 0.53, 0.71 

mm; 0– 3 HP 

load;6100 data points 

Train—336 

test—144 

H, IF,OF 

and BF 

96.53–100 

95–100 

4 singular values 

3 energy features 

 3)MVE, PCA and 

nonlinear  neighbour 

classifier [96]  

0.18, 0.36,0.53mm , 

0-3 HP, 2000 data 

points 

- 

Healthy and faulty. 

It was reported by the 

author that there is some 

94.68-99.98 

- 
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overlapping among some 

fault classes  

4)The methodology 

presented in his 

chapter 4  

0.18, 0.36,0.53 mm; 

0-3 HP loads; 2048 

data points 

Train-  

Test-  

H, IF, OF and BF 98.3-100 

 Norms of the 1
st
 

three projections on 

to the baseline 

space 

Table 5.12: A comparison of the performance of the present methodology with other published work using the same parts of CWRU 

data 
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5.3  Conclusions and discussion 

This chapter suggests a rather simple and easy to apply but accurate method for fault 

diagnosis in rolling element bearings based on singular spectrum analysis. The 

simplicity of the method can be explained in terms of its application as it uses solely the 

signals from the healthy bearing state to build the so-called baseline space. Furthermore, 

it uses only the decomposition stage of the SSA. It is applied to investigate the 

capabilities of the SSA for different fault diagnosis phases namely the detection of fault 

presence, the identification of fault type and the estimation of fault severity in REBs. 

In all the levels of fault diagnosis, the baseline space is made from subjecting only the 

measurements from the healthy bearing category to the decomposition stage, and all 

other signals are projected on to it.  In such a sense the transformations applied to the 

measured signals are minimal and very simple. Then, features are made from the 

Euclidean norm of these projections. As illustrated in Figures 4.5 and 4.6, using the 

Euclidean norm of the projections improves the distinguishability of FVs corresponding 

to different categories. 

For fault detection phase, the method does not require any previous measurements 

corresponding to faulty/anomalous conditions. A threshold based on the statistical 

hypothesis was set for this level of fault diagnosis. The assumptions made for 

determining the threshold have been questioned. The minimizing of positive and 

negative misclassification was taken in consideration when the threshold was made. The 

classification rule, which is based on a threshold of the Mahalanobis distance, is also a 

robust and simple one. As a result of these points, the methodology holds considerable 
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potential for automatization and practical implementation. The results obtained for this 

level of fault diagnosis show that the method is able to distinguish not only between 

baseline and non-baseline categories but also amongst non-baseline signal categories 

themselves. Since only the signals corresponding to healthy signals are used for 

building the baseline space, and none of the fault signals are used as a training sample, 

this level of fault diagnosis is considered to be a form of unsupervised learning. 

For fault type identification, the method shows a very good performance in 

distinguishing among different fault location signal categories. As in the fault detection 

phase, the baseline reference is build using a number of signals from training samples of 

healthy bearing categories. The other training sample signals which correspond to the 

other categories are all projected on the baseline space and a number of feature matrices 

are made from these projections as was explained in Section 4.3.3. The classification 

rule is based on the minimum Mahalanobis distance which a new FV from testing 

sample has with one of the feature matrices.  

For fault severity estimation, the signals corresponding to fault categories of different 

severities were projected on to the baseline space which was made from the healthy 

bearing category. The FVs were made from these projections and the Mahalanobis 

distance of these FVs to the baseline space is measured and used as indicator for fault 

size change.  

The directions of the principal components (i.e eigenvectors) are used to build the 

reference space. And the classification/fault diagnosis is done on the basis of projecting 

the data on these directions. In such a sense it can be argued that the PCs obviously 

contain information regarding the state of the bearing. The effect of using more 
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directions (i.e more eigenvectors), in building the baseline space, on the performance of 

the method in terms of classification accuracy is also investigated.  

In machine learning it is preferable and easier to work with fewer features (i.e short FV 

lengths). In the current study, and for all levels of fault diagnosis, a clear phenomenon is 

seen in the FV dimensionality (i.e the number of PCs) with respect to classification 

accuracy. It is noticed generally that increasing FV length affects positively the correct 

classification rates.  This can be interpreted that an increase in FV length means the 

incorporation of more PCs, and then more information about the fault present is 

included.  

It should be noted as well that the methodology is rather general and can be applied to 

any measured signals regardless of their stationarity. The 3D visualisation showed that 

not only baseline and non-baseline signal categories can be distinguished but in some 

cases the method can be used to separate different faulty categories. This is still a 

subject of further research and in such a sense the interpretation of the PCs/the principal 

directions will be very helpful. 

The Mahalanobis distances of different fault severities, which are measured to the 

baseline category, are also used as a fault index. Although the Mahalanobis distance 

level changes when fault size changes, sometimes (as in CS1) its trend does not follow a 

monotonic path. In fact, the reasons behind the non-monotonic path followed by the 

data of CS1, are not investigated in the current study. This might be explained by the 

fact that the feature selected are not always capable of  behaving linearly with the 
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change of fault severity. A further future study might help in further understanding the 

physical meaning of the features.  

Based on the obtained results, it has been shown for the case studies considered that 

SSA in the way that it is used in this chapter, is capable of extracting essential 

information regarding the fault detection, fault type identification and fault severity 

estimation.  

Although there were not any opportunities to validate the method using data sets from a 

real machine in service,  the author is confident that it also would perform well in more 

challenging scenarios, and below are some reasons for this assertion: -  

o First of all, the method suggested is one which is purely based on data/signal 

analysis. SSA and the method developed in this thesis use a sample of signals 

measured for the healthy condition in order to build the space corresponding to the 

healthy bearings signals. Thus this space should incorporate changes stemming from 

noise or other deviations within the healthy signals sample. And in effect the 

method will detect the changes due to the bearing fault rather than these deviations.  

o It should also be mentioned that structure-less noise usually affects the higher order 

PCs [26, 74], while the method only uses the first few PCs. 

o SSA has been extensively used for analysis of biomedical signals and climatological 

data where the measurements come from different categories such as seasonal data. 

In all such cases one is dealing with real data which on most occasions will be noisy 

and error-contaminated, but SSA has the capability to distinguish between data 
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obtained from the different categories.  This is because for the case of two or more 

categories of observations, the distances amongst the PCs from the same category 

tends to decrease, whereas the distances among the PCs from different categories 

tend to increase [102, 103]. 

o The author also would like to stress the fact that the present method has a good 

capability for being used for fault detection in complex systems because it simplifies 

complex signals by projecting them onto the higher dimensional baseline space, and 

thus unfolds the information contained in these signals. So, assessing the similarity 

of these new projections to the projections obtained from baseline conditions can 

give us an indication of the presence of a defect when these projections are different 

to the baseline one.   

The author would like to clarify that the current SSA-based methodology (i.e chapter 4) 

has been able to achieve 100% correct classification by using only the first PC. Thus it 

is noticed that in comparison to other SSA-based techniques, as discussed in section 

3.4.1, the way that SSA is applied in the current methodology reduces the necessary 

number of PCs required for achieving maximum correct classification.  

5.4  Summary 

In this chapter the results for the methodology, presented in chapter 4, are demonstrated. 

The results include two main parts 1) demonstration of the methodology using data 

from CS1 and 2) fault diagnosis. In the first part, the building of a baseline space from 

healthy signal category, projections of other signals onto the baseline space are 
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demonstrated. In the second part, the fault diagnosis results corresponding to fault 

detection, fault type identification and fault severity estimation are presented. The 

methodology performance is compared to some other recent published methodologies 

and it is shown that the present methodology is superior to those methodologies.  
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Chapter 6 

Bearing fault diagnosis using a novel signal 

pretreatment and LTIVAR modelling 

6.1  Introduction 

As was introduced in section 2.4.2, a novel signal pretreatment based on singular 

spectrum analysis and differencing techniques is suggested to facilitate the 

representation of bearing vibration signals using a LTIVAR model. In this chapter the 

steps and mathematical formulas are presented.   

The methodology presented in this chapter has two main stages: - 

1. signal pretreatment.  

2. signal diagnosis. 

In the first stage, the non-stationary bearing vibration signal is firstly transformed to a 

stationary one through several steps and then subjected to the modelling with the linear 

time invariant autoregressive model to obtain the model coefficients.  

In the second stage, the coefficients of the LTIVAR model are used to make the feature 

vectors. These feature vectors are used to form feature matrices that belongs to the 

different signal classes used in the analysis. The fault diagnosis process is achieved by 
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using the pattern recognition approach. This contains the classification of any new 

feature vector using the nearest neighbour (NN) rule based on the Mahalanobis distance. 

6.2  Signal pretreatment 

6.2.1 Signal Segmentation 

The acquired relatively long signals are divided into a number of equal-length and non-

overlapping sub-signals (i.e segments). This segmentation is useful into providing more 

signal samples and saving time and overcoming the difficulty of repeating 

measurements from a machine. The length of the sub-signal can be estimated based on 

the type of analysis that will be done on the sub-signals. For example, it is 

recommended in [104] that when autoregressive modelling is used, the sub-signal 

length should follow the ratio 𝑝 𝑛⁄ < 0.1, where p is the model order and n is the sub-

signal length.   

6.2.2 SSA-based noise cancellation 

As was mentioned in section 4.2, the SSA has not yet obtained popularity for fault 

machinery diagnosis. When a lagged version of the original sub-signal (see Eq. (4.1)) is 

subjected to the SSA, a number of independent principal components (PCs) can be 

obtained following Eq. (4.2) to Eq. (4.4). Then the initial sub-signal can be then 

reconstructed using a number of these PCs and by using the diagonal averaging 

technique based on Eq. (4.5). In this method, the SSA is used to clean the sub-signal 

from the structure-less noise. This noise cancellation is applicable as the structure-less 

noise can be transformed through the SSA steps into low singular value components 
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[26, 74]. That means only the PCs that explain a large portion of original sub-signal 

variance will be selected in the reconstruction stage. Such kind of noise cancellation 

resulted in a considerable improvement in the LTIVAR model accuracy of sub-signal 

representation. The details of SSA stages (decomposition and reconstruction were 

explained in details into Chapter 4-section 4.2).  

6.2.3 Stationarization 

The definition of a stationary signal is basically that the consistency of the first four 

statistical moments of a signal over the time. Conversely, non stationarity occurs when 

these statistical moments are changing with time. Nevertheless, the definition above is 

used for the so-called ‘’strict stationarity’’ and it is difficult to achieve a signal in which 

its first four statistical moments are constant over the time. Thus, a second order or 

weak stationarity is usually meant by the term ‘’stationary’’. And it refers to the case 

when the first two statistical moments are constant over the time [105].  

As was mentioned that LITVAR model is primarily developed for the stationary time 

series, it is necessary to bring the signals to stationarity before subjecting them to the 

model.  There are several ways to transfer the non-stationary signals to stationary one 

such as finding their logs, square roots and differencing them. The suggested 

transformation in this thesis is to use the differencing technique as it is the simplest 

form of stationarisation. Although differencing brings the nonstationary signals to a 

weaker form of the stationary ones, it has been a sufficient contribution to the 

improvement of the goodness of fit of the LTIVAR. However, it should be taken in 

consideration that applying differencing several times can introduce considerable 
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amounts of high frequency noise. It is suggested firstly to check the sub-signal for 

stationarity and then apply the differencing to the nonstationary sub-signals just once. 

There are a couple of tests which have been developed in the literature for testing the 

stationarity of signals. In this research, the Kwiatkowski–Phillips–Schmidt–Shin 

(KPSS) test [106] is used to test the stationarity of each sub-signal. In this test, the null 

hypothesis assumes that the sub-signal is stationary around a deterministic trend. If the 

sub-signal is recognised as non-stationary then it is subjected to differencing technique. 

The differencing technique be described using the following equation[105]: 

𝑥𝑟𝑑𝑖𝑓(𝑚) = 𝑥𝑟(𝑚) − 𝑥𝑟(𝑚 − 1),where 𝑚 = 2,3, …𝑛                      (6.1) 

It is clear that the length of the new transformed sub-signal 𝑥𝑟𝑑𝑖𝑓 is shorter than the 

original sub-length by one. The primary aim of differencing is to remove the 

stochastic trends responsible for the sub-signal non-stationarity (i.e. to stabilise the 

mean of a non-stationary sub- signal[107]. This is the simplest method that can be used 

for the purposes of stationarisation.  

Generally, the number of differencing (i.e order of differencing) relates to the 

complexity of the non-stationary signals. If, for example, a signal lacks the tendency to 

return to its mean value, higher order of differencing might be applied. In general the 

differencing method is a rather simple but powerful process so on most occasions quite 

high stationarity is achieved through just one application. In most studies which apply 

differencing for other purposes not related to fault diagnosis and machinery dynamics 

the process is applied just once[108-110] .  
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In this work, one application of differencing was sufficient to bring the sub-signals to 

stationary ones. 

The differencing technique has been used for purposes of stationarisation in climate 

research [111]; to the knowledge of the authors, however, it has not been used in the 

field of machinery fault diagnosis. 

6.2.4 Linear time invariant autoregressive (LTIVAR)  modelling 

Once the stationarity of a sub-signal is achieved, the sub-signal is subjected to LITVAR 

modelling. The mathematical structure of the LITVAR is given Eq.(6.2)[112].  

𝑥𝑟(𝑚) = 𝑎𝑜 + ∑ 𝑎𝑚

𝑝

𝑚=1

. 𝑥𝑟(𝑚 − 𝑖) + 𝜀(𝑚)                                                            (6.2) 

where 

 xr(m)  is the predicted value of a sub-signal at time m ; 

 p         is the order of the  LTIVAR model; 

 am (m =0,1,2…,p) are the LITVAR model coefficients; 

𝜀(𝑚)    is an error term which represents the difference between the real and predicted  

the m value of a sub signal  

There are a number of algorithms to estimate the LTIVAR model coefficients detailed 

in [112]. In this study, the least square algorithm is used. When the coefficients of the 
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LTIVAR model are estimated, it is necessary to check the accuracy of the model in 

representing the sub-signal (i.e. goodness of fit). The accuracy of the LTIVAR model in 

representing the real sub-signal can be evaluated by the normalised mean square error. 

There are several way to measure the goodness of fit of a model such normalised mean 

square error which given by the equation (6.3). 

𝐺𝑜𝑜𝑑𝑛𝑒𝑠𝑠 𝑜𝑓 𝐹𝑖𝑡|𝑁𝑀𝑆𝐸 =

(

 1 −
√∑ (𝑥𝑟𝑝𝑟(𝑖) − 𝑥𝑟𝑚𝑠(𝑖))

2
𝑖=𝑛
𝑖=1

∑ 𝑥𝑟𝑝𝑟(𝑖) −
𝑖=𝑛
𝑖=1 𝑥𝑟̅̅ �̅�𝑟

)

 ∗ 100%            (6.3) 

where: 

𝑥𝑟𝑝𝑟 is predicted stationary sub-signal; 

𝑥𝑟𝑚𝑠 is the stationary real time measured sub-signal; 

𝑥𝑟̅̅ �̅�𝑠 is the mean value of 𝑥𝑟𝑚𝑠; 

n     is the sub-signal length. 

The calculations for the least square algorithm and the NMSE values mentioned above 

were carried out using MATLAB. 

6.2.5 Model order selection 

As was illustrated in Eq (6.2) in the LTIVAR model each point is linearly related to a 

number of past points (i.e model order). The model order is not selected arbitrarily 

because using improper model order can affect negatively on the model goodness of fit 
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and may lead to the problems of either under or over fitting [89, 113].  Thus, a proper 

selection of model order can considerably reduce the consequences of the over-fitting or 

under-fitting. There are a number of approaches which are developed for estimating the 

optimum model order. These techniques are generally based on calculating a certain 

loss function value over the increase of model order and then to estimate the optimum 

order which corresponds to the minimum error criterion function. These error criterion 

functions are based mainly on the calculations of the sum of squared differences 

between the predicted and measured data. In this study, the Akaike’s final prediction 

error (FPE) approach is used[114]. This FPE approach is given in the equation (6.4) 

below: 

𝐹𝑃𝐸 = 𝑉. (1 + 𝑝 𝑛⁄ ) (1 − 𝑝 𝑛⁄ )                                                  (6.4)⁄  

where 

V  is the variance of the difference between the predicted and the measured sub-signal; 

According to this approach, the optimum model order is defined as that the model order 

corresponding to the minimum FPE. 

6.2.6 Dealing with different model orders 

It was mentioned in section 6.2.5 that the optimum model orders is that order 

corresponding to the minimum information criterion (i.e in this study it is the FPE). It is 

worth mentioning that all the criteria of model order estimation suggest that the 

optimum model order corresponds to the minimum value of a loss function. However, it 
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is not always easy to find a clear minimum value of the appropriate loss function. 

Therefore, a criterion is used for guidance only and the model order is estimated. In 

some cases, different optimum model orders might be estimated for different signals  

and signal classes. In the current study, different optimum model orders means different 

FV lengths. The equalising of FV lengths is necessary when a NN rule-based classifier 

(i.e one more specifically based on the Mahalanobis distance) is used. This is because 

both the training and testing FVs must have the same length when such a classifier is 

used. So, the equalisation of FV lengths is applied if there is a difference in the 

optimum model order. 

Four different possibilities for equalising FV lengths are investigated to see whether the 

way of equalising can affect the performance of the methodology.   Assuming that the 

minimum and maximum optimum orders for several signals/categories are (pmin) and 

(pmax) respectively, the equalising possibilities are:- 

Zero padding. One possibility for equalising different length FVs is to add zero 

elements to the short length FVs. That is, the FVs of a lower order (i.e  (l< pmax) are 

transformed by adding (pmax – l) zero elements at the ends (see Figure 6.1). Eventually 

all the feature vectors acquire the maximum length  pmax..  

 

(pmax – l) elements 

[𝑎𝑜 𝑎1 𝑎2   ….    𝑎𝑙  0 0 0  0] 

[𝑎𝑜 𝑎1 𝑎2……  ….    𝑎𝑝𝑚𝑎𝑥
] 

 

Figure 6.1: Illustration of zero padding. 
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Trimming. It is proposed to trim/cut the features vectors of length l, where l> pmin, to 

length (pmin). If [ao a1 a2…….al] is a longer feature vector (i.e. l> pmin), then its last l- 

pmin components are removed and the new vector is [ao a1 a2…….a Pmin] (see Figure 

6.2). 

 

Maximizing. It is proposed to expand the shorter feature vectors up to the maximum 

one. This time is not by adding zeros but by increasing the smaller model order up to 

the largest one. Eventually, all the feature vectors will have the same lengths.  

Variance Threshold Method: In this method, it is proposed to select the model 

coefficients which have the highest variance contribution among the feature vectors. 

This can be done using the variance threshold method (VTM), which proposes to select 

only the model coefficients with a variance higher than the mean value of all the 

features vectors variances. 

In this research, all the four possibilities above were applied during the detection and 

the fault identification stage. The best one in terms of highest correct classification rate 

was selected and used further for the next stage of fault severity estimation. 

 

 

cut (l-pmin) elements 

[𝑎𝑜 𝑎1 𝑎2   ….    𝑎𝑙−3  𝑎𝑙−2  𝑎𝑙−1  𝑎𝑙  

[𝑎𝑜 𝑎1 𝑎2…    𝑎𝑝𝑚𝑖𝑛
] 

 
Figure 6.2: Illustration of trimming. 
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6.3  Fault diagnosis method 

 In this section, the method of fault diagnosis is explained. The method is divided into 

two parts; construction of feature vectors and diagnosis methods. 

6.3.1 Construction of feature vectors 

When the coefficients of the LTIVAR model are obtained as described in section 6.2.5, 

they are ordered to make the feature vectors. The different lengths of the feature vectors 

are equalised by one of the techniques mentioned in section 6.2.6.  Thus a feature vector 

of a sub-signal is formed from the LTIVAR model coefficients corresponding to this 

sub-signal.   

6.3.2 NN rule based fault diagnosis 

The fault diagnosis presented here is implemented into two stages 1) fault detection and 

identification and 2) fault severity estimation. In the first stage, a feature vector (i.e a 

sub-signal) is assigned to a healthy bearing class or to a bearing with a specific located 

fault class.  In the second stage, the FV which is assigned to one of the faulty classes in 

the first stage is further assigned to one of the different fault severity levels. At first the 

FVs are divided into training and testing samples. The training FVs are used to build the 

feature matrices which defines the classes in each fault diagnosis stages. The testing 

FVs are used as inputs for the classification process. The diagnosis of the severity 

condition can be considered as a classification problem or a regression problem. It 

might be desirable to use a regression model, however this might complicate the 

methodology as it requires determination of the coefficients of the regressor. In the 
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current study we dealt with the quantification of the bearing fault severity as a 

classification problem assuming that a faulty bearing signal can be assigned to one of 

fault severity categories (i.e small, medium and large).  

Building feature matrices  

As was mentioned in the section above the FVs were used to build the feature matrices 

and to define the classes for each fault diagnosis stages. For the detection and 

identification of fault stage, Ka feature matrices corresponding to healthy bearings (H), 

Inner race fault condition (IRF), ball bearing fault condition (BF) and Outer race fault 

condition (ORF) are made. For the fault estimation stage, Kb feature matrices are made 

corresponding to small fault class (S), medium fault class (M) and large fault class (L). 

For both fault diagnosis stages, the feature matricies are made from arranging the 

training FVs in rows as described in Eq. (6.5): 

𝐅𝐾𝑖 = [

𝑎𝐾𝑖11 𝑎𝐾𝑖12 .
𝑎𝐾𝑖21 𝑎𝐾𝑖22 .
.

𝑎𝐾𝑖𝑁1

.
𝑎𝐾𝑖𝑁2

.

.

    𝑎𝐾𝑖1𝑝
    𝑎𝐾𝑖2𝑝.
     𝑎𝐾𝑖𝑁𝑝

]                                                (6.5) 

For each matrix, the number of rows (e.g N) equals the number of the training FVs 

corresponding to the K class while the number of the columns (p) equals the length of a 

training FV (i.e model optimum order) corresponding to the class (K).  

where Ki corresponds to one of the categories in the diagnosis stages (i.e. fault 

identification 𝐾𝑖 ∈ 𝐾𝑎 and quantification). 𝐾𝑖 ∈ 𝐾𝑏 
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Nearest neighbour rule 

In both fault diagnosis stages, the assignment of any new testing FV to one of the Ka or 

Kb classes is based on the use of NN rule[115] . According to this rule, the distance (e.g 

Mahalanobis distance) of any new testing FV is measured to each of the feature 

matrices (i.e FKI in Eq. (6.5)). In this study, the Mahalanobis distance (DKi) is used to 

measure the distance between a testing FV to the matrix Fk as defined by the following 

Eq. (6.6) in below: 

𝐷𝐾𝑖(𝐟𝐯, 𝐄𝐾𝑖) = √(𝐟𝐯 − 𝐄𝐾𝑖). 𝐒
−1. (𝐟𝐯 − 𝐄𝐾𝑖)

′
                                    (6.6) 

where  

𝐷𝐾𝑖   is Mahalanobis distance of 𝐟𝐯 to the feature matrix 𝐅𝑲𝒊 . ; 

𝐟𝐯      is a testing FV; 

𝐒−1   is the inverse of the covariance of the feature matrix 𝐅𝑲𝒊; 

The prime ( ′ ) denotes the transpose of the vector (𝐟𝐯 − 𝐄𝐾𝑖). 

The mean of the row feature vectors for each of the matrices 𝐅𝐾𝑖  is calculated as 

follows:
 

         𝐸𝐾𝑖 =
∑ (𝑎𝐾𝑖𝑗1……………

𝑎𝐾𝑖𝑗𝑝
)𝑁

𝑗=1

𝑁
                                                                                    (6.7) 
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The lengths of the(𝐟𝐯, 𝐄𝐾𝑖), in which the Mahalanobis distance is measured in between, 

should be equalised as discussed in section 6.2.6.  

After obtaining the Mahalanobis distances of the new testing FV to each of the feature 

matrices, the new vector is assigned to the class for the Di has a minimum all over the 

distances. 

Figure 6.3 shows the stages of the diagnosis procedure. It is clear from the figure that in 

a case in which the new feature vector is assigned as healthy, it will not go further for 

the second stage of diagnosis. 

Figure 6.3 shows the block diagram of the whole process of the methodology. There are 

three main blocks in the flow chart (1, 2 and 3), each bordered by a dashed rectangle.  

 Block 1: the stages of signal pretreatment. 

 Block 2: Fault detection and identification. 

 Block 3: Fault severity estimation. 
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Figure 6.3: A block diagram illustrating the proposed classification method 
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The performance of the methodology was estimated by using the so-called confusion 

matrix described in section 4.3.2.  

6.4  Summary 

The method is based on developing an SSA and differencing –based advanced signal 

pretreatment technique that facilitate the use of the LTIVAR model for fault diagnosis 

in bearing. The method has two main stages:- signal pretareatment and signal diagnosis. 

The fundamentals and steps of the first main stage are introduced in section 6.2 while 

the fundamentals and steps of the second main stage are introduced in section 6.3.  The 

method aims to provide an advanced signal pretreatment that denoise and stationaries 

the signal before subjecting them to LTIVAR modelling. This signal pretreatment will 

simplify the signal and improves the goodness of fit of the LTIVAR. Then, the 

coefficients of the LTIVAR are used as features in the classification using NN rule. The 

method was validated using three different data sets obtained from different bearing test 

rigs.  
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Chapter 7 

Results and discussion- Bearing fault diagnosis using a 

signal pretreatment and LTIVAR model 

7.1  Introduction 

In the next sections, results will be presented for both methodology stages (i.e signal 

pretreatment and signal diagnosis).  The first stage of the methodology is demonstrated 

using data sets obtained from case study 1. A couple of figures and tables are presented 

to demonstrate the steps of the signal pretreatment. For the second stage, results are 

presented for the averaged correct classification rates for both 1) the fault detection and 

identification and 2) the fault estimation using case study 1, 2 and 3. The effect of sub-

signal lengths, equalisation of FV lengths is also discussed.  

7.2  Part1- methodology demonstration based on CS1 

7.2.1 Signal pretreatment 

In this section, the illustration of each step of the signal pretreatment stage is 

introduced. The Figure 7.1 shows a bearing vibrational acceleration sub-signal, of 

length 2048 data points, acquired from the drive end bearing at different bearing 

conditions namely, H, IRF, BF and ORF for a rotational speed 1772 RPM. The sub-

signals are shown in their time domain. The x-axis represents the data point number 

while the y-axis represents the acceleration amplitude in (m/sec
2
).  It can be seen that 
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for the sub-signals corresponding to the faulty raceways, there are several peaks related 

to the strikes of the rolling element with the raceways. However, these peaks may not be 

seen in some cases of noisy signals.  

 

Signal denoising  

Each sub-signal is subjected to the SSA and decomposed into a number of PCs where 

each one contributes to the variance of the original sub-signal. The maximum window 

size of the SSA should not be more than half of the sub-signal length (n) under study. In 

the current study, the SSA window size is selected as 140 for all the cases. The Figure 

7.2-A illustrates the normal scree plot in which the normalised eigenvalues per each PC. 

Figure 7.1: Raw sub-signals for different bearing conditions at 1772 RPM-CS1-

CW3.A.Healthy category. B. Inner race fault category .C. Ball fault category .D. 

Outer race fault category 

A B 

C D 
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The Figure 7.2-B shows the cumulative scree plot where cumulative values of the 

normalised eigenvalues are shown for the four bearing conditions. It can be easily seen 

that most variance of the original sub-signal is conserved in the first components while 

the last components have the lowest portion of variance where scree plot becomes flat.  

 

The new denoised sub-signal can be reconstructed using a number of PCs. The Figures 

7.3A -7.3D, show the comparison between the real sub-signal and a reconstructed and 

denoised sub-signal at different number of PCs. The x-axis represents the number of 

data points while the y axis represents the vibration acceleration amplitude in m/sec
2
. 

Figure 7.3A, compares the real sub-signal versus a reconstructed sub-signal made using 

the 1
st
 PC only. It can be seen that the reconstructed represented mainly the trend of the 

real sub-signal. When the number of PCs is increased, the reconstructed sub-signal will 

contain more information from the original sub-signal and becomes more similar to the 

original one (see the Figure 7.3B for 3 PCs, Figure 7.3C for 5 and Figure 7.3D for 18). 

All these number of PCs are out of 140, the total number of the PCs which the sub-

Figure 7.2: A-Normal scree plot and B- Cumulative scree plot for different 

bearing conditions at 1772 RPM 
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signals were originally decomposed. The remaining of the PCs was rejected as they are 

corresponding to the structure-less noise. In this study, the number of the PCs used in 

the reconstraction stage is selected such that the percentage of the recovered variance is 

90% of the original variance of the original sub-signal. 

   

For the case used in the demonstration the number of PCs used in the reconstruction 

signals are shown in Table 7.1. The number in bold represents the number of the PCs 

selected for the reconstruction of the signal. The percentage inside the square brackets 

represent the percentage of the variance recovered using these numbers of PCs. It can be 

seen that percentages are very close to 90%.  For all the data sets considered in the 

Figure 7.3: The real raw signal versus SSA-based denoised signal. A. 

1PC,B.3PCs. C. 5PCs.  D.18 PCs  

A B 

C D 
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analysis, the number of the selected PCs and the recovered percentage of original signal 

variance can be seen in Tables 7-A.1 to 7-A.3 (appendix 7-A).  

H IRF BF ORF 

18[90.88%] 42[90.1%] 26[90.38%] 22[90.176%] 

Table 7.1: the number of PCs selected for 

reconstruction purpose and the corresponding variance 

percentages for CS1-CW3 

Signal differencing 

As it was mentioned in section 6.2, a noise free sub-signal is subjected to a stationarity 

test and then if it is identified as a non-stationary, it is subjected to differencing in order 

to transform it to stationary by stabilising its mean. The differencing helps in stabilising 

the mean of the sub-signal over the time and eventually stationariese the sub-signal.  

Figure 7.4 shows the sub-signal before and after the 1
st
 order differencing process of the 

non-stationary sub-signal. The figure compares the fluctuation of mean of the non-

stationary sub-signal over the time before and after 1
st
 order differencing.  For both 

versions of sub-signal (before and after differencing), the sub-signal is divided into a 

number of smaller sub-sections each of 100 data points and then the averages of each of 

these 100 data points are found. The x-axis represents the number of the sub-sections 

while the y-axis represents the average of these subsections data points. It is clear from 

the figure, that mean of the sub-signal is considerably stabilised which indicates the 

achievement of the stationarity.  
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LTIVAR model  

At the next step of the analysis, the stationarized sub-signals are subjected to the 

LTIVAR modelling (Eq. 6.2). Before subjecting the sub-signals to the modelling, it is 

necessary to estimate the optimum model order in order to avoid the problems of the 

under fitting and overfitting which arise from the use of improper model order.  As it 

was mentioned in section 6.2.5, the FPE function is used for the purpose of estimation 

of the optimum model order. Figure 7.5 shows the FPE values versus the model order 

for the four bearing conditions H, IRF, BF and ORF. For all the conditions in the figure, 

the value of the FPE decreases considerably and at some point it has a flat trend. 

According to the criterion of the optimum model order selection, the first point, where 

FPE curve shows no more considerable decrease, is selected to determine the optimum 

model order. 

Figure 7.4: stabilisation of a non- stationary sub-signal mean by 1
st
 order differencing   
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For the case considered in the demonstration (i.e CW3 in Table 4.2) the optimum model 

orders are shown in Table 7.2.  The model optimum orders and NMSE are obtained 

according to the Eqs. (6.4) & (6.3) respectively. For all the data sets considered in the 

analysis, the optimum orders for the other case studies can be seen in Table 7-A.4 to 7-

A.6 in appendix 7-A. 

H IRF BF ORF 

5[99.96 %] 12[99.07%] 5[99.47%] 5[99.35 %] 

Table 7.2: The optimum model order of the LTIVAR (bold) and 

the NMSE (percentages inside the square brackets) for the CW3.  

Figure 7.5: FPE values versus different model order.A.Healthy category.B. 

Inner race fault category.C.Ball fault category.D.Outer race fault category. 

A B 

C D 
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It is important to mention that the NMSE values shown in the Table 7.2 and any other 

tables are normalised values (i.e subtracted from one and then multiplied by 100 see 

Eq.(6.3))It can be seen from the Table 7.2, the optimum order of the LTIVAR are the 

same for the H, BF, and ORF categories while it is different for the IRF category. For 

this reason, the change of the optimum order of the model cannot be always used as an 

indicator for the fault detection. In the next step, the stationarised bearing vibrations 

acceleration sub-signals are subjected for representing by the LITVAR model and the 

model coefficients are obtained by least square algorithm. The Figure 7.6 compares an 

example the stationarised real time sub-signal with the modelled one. It can be seen that 

the model very precisely represents the sub-signal with a goodness of fit 99.97% 

calculated according (Eq. (6.3)). It is very difficuilt to distinguish among them. And a 

part of the sub-signal is magnified largely to show how the two signals (real and 

simulated) are very similar. 
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Figure 7.6:  Comparison of a modelled and a real time denoised sub-signals. A. 

whole length of the signals. B. zoomed part (600
th

 -800
th

 ) data points.. C. zoomed 

part ( 607-609 ) data points. 

A 

B 

C 
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Improvement of Goodness of Fit of LTIVAR model 

The signal pretreatment proposed in the 2
nd

 methodology is aimed to improve the 

goodness of fit of the model particularly for the faulty signals which are considered 

more complex than healthy signals. Table 7.3 shows the improvement in LTIVAR 

goodness of fit (i.e NMSE values) due to signal pretreatment. In the Table 7.3, the 

NMSE is shown in normalised and percentage form as was calculated in Eq.(6.3). The 

first and second columns represent the rotational shaft speed and the bearing condition 

respectively. The third and fourth columns show the normalised NMSE in percentages 

(before and after NMSE). The last columns represent the improvement achievement in 

the LTIVAR goodness of fit. This improvement is calculated by finding the difference 

between the NMSE of before and after applying the signal pretreatment. For all the data 

sets considered in the analysis, the improvement achieved in the NMSE can be seen in 

the Tables 7-A.7 &7-A.8 in appendix 7-A. 

Shaft 

speed 

(RPM) 

Bearing 

condition 

NMSE -before 

signal 

pretreatment 

NMSE -after 

signal 

pretreatment 

achieved 

improvement 

1
7
3

0
 

H 94.6% 99.99 % 5.71% 

IRF 86.14% 99.54% 15.55% 

BF 90.97 % 99.91 % 9.83% 

ORF 83.04 % 99.93% 20.34% 

1
7
5
0
 

H 93.45 % 99.96 % 6.97% 

IRF 81.96 % 99.24% 21.08% 

BF 88.94% 99.97 % 12.41% 
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ORF 85.48% 99.93 % 16.19% 

1
7
7
2
 

H 94% 99.96 % 6.34% 

IRF 78.39%  99.07% 26.37% 

BF 87.6% 99.47% 13.55% 

ORF 83.66%  99.35 % 18.75% 

1
7
9
7

 

H 95.27 % 99.97% 4.93% 

IRF 76.36 % 98.99% 29.62% 

BF 88.51% 99.71% 12.66% 

ORF 87.45 % 99.46% 13.73% 

Table 7.3:  Improvement of NMSE due to signal pretreatment CS1-CW3 

7.2.2 Bearing signal  diagnosis 

In this section the results of the sub-signals classification are introduced. This section 

will be divided into two parts namely,  1) fault detection and identification and 2) fault 

severity estimation. For both stages of diagnosis, the classification of sub-signals is 

based on the minimum Mahalanobis distance as explained in Eq (6.6).In the fault 

detection and identification part results will be introduced for the average correct 

classification rates for FVs based on the fault locations. In the fault estimation part, 

results will be introduced for the average correct classification rates for FVs based on 

the fault severity. 
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Fault identification 

As was illustrated in section 6.3.2, the Mahalanobis distances are measured for any 

new testing FV to each of the feature matrices corresponding to the training sample. 

The Figures 7.7A-7.7D show the Mahalanobis distances (DKi) of the testing FVs to 

the feature matrices corresponding to the training sample (see Eq.(6.5). In each 

figure the number of the testing FVs is 30. The DKi of Each of these 30 FVs is 

measured to each of the four feature matrices corresponding to H, IRF, BF and ORF 

as was explained in Section 6.3.2.  Thus in each of the Figures 7.7A-7.7D, the x- 

axis represents the 120 DKi values (i.e DKi of 30 FVs to 4 feature matrices). Figure 

7.7A represents the DKi of the testing FV corresponding to H bearing condition. 

Figure 7.7B represents the DKi of the testing FV corresponding to IRF bearing 

condition.  Figure 7.8C represents the DKi of the testing FV corresponding to BF 

bearing condition.  Figure 7.8D represents the DKi of the testing FV corresponding 

to ORF bearing condition.  In these figures, the blue points represent the DKi of the 

testing FVs to the training feature matrix corresponding to H bearing condition. The 

red points represent the DKi to the training feature matrix corresponding to IRF 

bearing condition. The green points represent the DKi to the training feature matrix 

corresponding to IRF bearing condition. The black points represent the DKi to the 

training feature matrix corresponding to IRF bearing condition. From Figure 7.7A, it 

is clear that testing FV corresponding to the H bearing class have the minimum 

distances to the feature matrix corresponding to the H bearing conditions. This 

means that all the testing FV from H signal class are correctly classified. The same 

notes can be seen for the other figures (i.e B, C and D).  
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A confusion matrix in Table 7.4 can be made based on the results shown in Figure 

7.7.  The Table 7.4 represents the correct classification percentage rates of 

classifying 120 FVs (4 categories * 30 testing FVs of each category). It is clearly 

seen that all the testing FV are correctly classified to their original classes.  

A 

A 

B 

C 

A 

D 

A 

FV number 
1-30 1-30 1-30 1-30 

FV number 
1-30 1-30 1-30 1-30 

FV number 
1-30 1-30 1-30 1-30 

FV number 
1-30 1-30 1-30 1-30 

Figure 7.7: Mahlanobis distances (DKi) of the testing FVss 

corresponding to, A. Healthy category, B.Inner race fault category. 

C.Ball fault category and D. outer race fault category, to the different 

training feature matrices.  
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Effect of sub-signal length and length equalisation  

The performance of methodology in terms of correct classification rates is also 

investigated using different sub-signal lengths, typically 512, 1024, 2048 and 4096,  

and different possibilities of equalisation of FVs (see section 6.2.6). In this 

investigation, all the method steps are repeated using different sub-signal lengths 

and using different procedures of FV lengths equalisation. Figure 7.8 A-D shows the 

percentage of the average correct classification rates for using different sub-signal 

lengths for different FV lengths equalisation procedures. In each figure, the x-axis 

represents the sub-signal length (n) where the methodology is applied. The y axis 

represents the average correct classification rate in percent. The percentages of the 

average correct classification rates are shown for different shaft rotational speed (i.e 

1730, 1750, 1772 and 1797 RPM).  

 

Prediction  

H IRF BF ORF 

A
ct

u
a
l 

H 100% 0% 
0% 0% 

IRF 
0% 

100% 
0% 0% 

BF 
0% 0% 

100% 0% 

ORF 
0% 0% 0% 

100% 

Table 7.4 : The confusion matrix using feature 

vectors modified using zero padding: 120 

feature vectors at 1772 RPM 
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The plots show the percentages of the average correct classification rates which are 

obtained from finding the mean value of the main diagonal of the confusion matrix 

of each case. The following paragraph will explain the obtaining of the percentage 

of the average correct classification rate. 

For example, in the Figure 7.8-B which represents the percentage of the average 

correct classification rate data obtained from case study CW3 (see Table 4.2) for the 

case of equalisation of FVs by trimming.  For a sub-signal length of 512 data points, 

the corresponding confusion matrix is shown in the Table 7.5. 
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Figure 7.8: The percentages of averaged correct classification rates for 

different sub-signal  lengths and different FV equalisation procedures. A-

ZP, B-Trim, C-Max and D-VTM. 
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  Prediction 

  H IRF BF ORF 

A
ct

u
a
l 

H 100% 0 0 0 

IRF 0 100% 
0% 

0% 

BF 0 0% 100% 0% 

ORF 0 0 0.83% 99.17% 

 Table 7.5: The confusion matrix  of CW3, sub-

signal of  512 (data points ), equalisation by 

trimming 

The main diagonal of the confusion matrix shows the percentages of the correct 

classification rate for 480 FVs from the testing sample. Only one FVs corresponding 

to ORF category was misclassified as BF category which gives (100* 

119/120%=99.17%) percentage of correct classification rate. The percentage of the 

correct classification rate is calculated by finding the mean value of the main 

diagonal of the confusion matrix. Thus, the percentage of the average correct 

classification rate related to this confusion matrix is 

(100%+100%+100%+99.17%)/4=99.79%.  The same procedure is followed for all 

other cases.  

The Table 7.6 shows the average correct classification rate for the case study 1.In 

terms of equalisation of FV lengths, it can be seen that methodology has a poor 

performance when the VTM procedure is used (see scion 5.2.6). Furthermore, the 

methodology performs well when the other equalisation procedures (i.e ZP, 

trimming and MAX) are used.  
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Case no. Speed 

(RPM) 

No. of 

FVs 
ZP TRIM MAX VTM 

   n=512 

CW1 1730 960 99.79% 100% 100% 100% 

CW2 1750 960 99.79% 98.95% 99.58% 99.79% 

CW3 1772 960 100% 99.79% 100% 97.69% 

CW4 1797 960 100% 100% 100% 100% 

   n=1024 

CW1 1730 480 100% 100 100 98.75% 

CW2 1750 480 100% 100 99.15 100% 

CW3 1772 480 100% 100 100 100% 

CW4 1797 480 100% 100 100 99.58% 

   n=2048 

CW1 1730 240 100% 100% 100% 98.33% 

CW2 1750 240 100% 100% 99.17% 79.16% 

CW3 1772 240 100% 100% 100% 100% 

CW4 1797 240 100% 100% 100% 100% 

   n=4096 

CW1 1730 120 100% 100% 100% 100% 

CW2 1750 120 100% 100% 100% 78.33% 

CW3 1772 120 100% 100% 100% 80% 

CW4 1797 120 100% 100% 100% 96.66% 

Table 7.6: The average correct classification rates for CS1 

Table 7.7 shows the average correct classification rate for the data sets obtained for CS2 

(see Table 4.3). The classification rates are shown for different possibilities of 

equalisation of feature vector lengths. In terms of the procedures of equalisation of 

feature vector lengths, it can be notices that classification rates, when ZP or TRIM, are 

generally better than when MAX and VTM are used (see for example ST2 at n=512, 

ST3 at n=2048). Furthermore, the correct classification rates when the VTM procedure 

use are generally lowest among all of those corresponding to different procedures of 

equalisation of feature vector lengths. 

Case 

no. 

Speed 

(RPM) 

No. of 

FVs 
ZP TRIM MAX VTM 

   n=512 

ST1 250 1280 94.37% 94.84% 88.12% 94.84% 

ST2 750 1280 93.43% 94.06% 78.43% 92.34% 
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ST3 1250 1280 84.68% 84.06% 84.68% 78.75% 

   n=1024 

ST1 250 640 92.5% 87.5% 92.5% 85.62% 

ST2 750 640 85.62% 86.87% 85.62% 82.18% 

ST3 1250 640 93.75% 91.25% 93.75% 84.06% 

   n=2048 

ST1 250 320 98.75% 95.62% 98.75% 89.37% 

ST2 750 320 90.62% 90% 90.62% 80.62% 

ST3 1250 320 100% 99.37% 98.75% 86.87% 

   n=4096 

ST1 250 160 100% 100% 98.75% 100% 

ST2 750 160 97.5% 98.75% 97.5% 97.5% 

ST3 1250 160 100% 100% 96.25% 98.75% 

Table 7.7: The average correct classification rates for CS2 

In terms of sub-signal lengths, it can be seen that increasing the sub-signal lengths 

relatively improve the correct classification rates. However the improvement of the 

correct classification rates with the increase of the sub-signal lengths is not completely 

linear. For example, under the column (ZP) the classification rates is 94.37% at n= 512  

and it slightly decreases to 92.5%  when n increases to 1024 then it eventually increases 

to 98.75% and to 100% when n  becomes 2048 and 4096 respectively. 

In terms of sub-signal lengths, it can be seen that increasing the sub-signal lengths 

relatively improve the correct classification rates. However the improvement of the 

correct classification rates with the increase of the sub-signal lengths is not completely 

linear. For example, under the column (ZP) the classification rates is 94.37% at n= 512  

and it slightly decreases to 92.5%  when n increases to 1024 then it eventually increases 

to 98.75% and to 100% when n  becomes 2048 and 4096 respectively. 

In the Table 7.8, the results of the average correct classification rates are presented for 

the data sets corresponding to CS3. It can be seen that correct classification rates, when 
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the VTM procedure used for equalisation of feature vector lengths, are lowest when 

compared to the classification rates at different procedures (i.e ZP, TRIM and MAX). 

Case no. Speed 

(RPM) 

No. of FVs 
ZP TRIM MAX VTM 

   n=512 

PT1 18000 4800 99.45% 99.45% 99.45% 94.54% 

PT2 24000 4800 98.25% 96.87% 98.29% 80.45% 

PT3 30000 4800 97.54% 97.54% 97.54% 92.5% 

   n=1024 

PT1 18000 2400 99.91% 99.83% 99.91% 91.08% 

PT2 24000 2400 100% 100% 99.83% 98.33% 

PT3 30000 2400 99.5% 99.5% 99.5% 94.83% 

   n=2048 

PT1 18000 1200 100% 100% 100% 99% 

PT2 24000 1200 100% 99.83% 100% 98.5% 

PT3 30000 1200 99.33% 99.16% 99.33% 98.16% 

   n=4096 

PT1 18000 600 99.66% 99.66% 99.66% 97.33% 

PT2 24000 600 100% 100% 100% 100% 

PT3 30000 600 100% 100% 100% 95% 

Table 7.8: The average correct classification rates for CS3 

It can be seen also that the method performs well at all the sub-signal lengths considered 

in the analysis for this case study. It performs well for different speeds. In conclusion, 

the method performs well for detecting fault different locations of fault at different 

speeds and different sub-signals lengths.  

Fault severity estimation  

Figures 7.9-7.11 show the DKi (i.e Mahalanobis distance) of the testing FV to the 

training feature matrices for the cases of different fault severity (sub-signal length 

n=2048).  The y-axis represents the DKi to the feature matrices which are made from the 

training FVs.  The x-axis represents the number of training FVs. For the case of n 

=2048, the number of the total FVs is 240 as shown in Table 7.6 and they were divided 
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equally into 120 training sample (i.e 30 FVs *4 categories) and 120 testing sample(i.e 

30 FVs *4 categories). In each figure, the  DKi  of the 30 training FVs measured to the 4 

testing sample categories are shown. At each x-axis of the figures, 4 groups of 1-30 

training FVs are demonstrated.   In these figures, the blue points represent the DKi of the 

testing FVs to the training feature matrix corresponding to H bearing condition. The red 

points represent the DKi to the training feature matrix corresponding to small size fault 

signal category (i.e 0.007 inch). The green points represent the DKi to the training 

feature matrix corresponding to medium size fault (i.e 0.014 inch) signal category. The 

black points represent the DKi to the training feature matrix corresponding to the large 

size (i.e 0.021 inch) signal category.  

For the Figure 7.9 which shows the DKi corresponding to the IRF signal category, it can 

be seen that all the testing FV has a minimum distances with their actual feature matrix. 

This means they are all successfully classified to their actual category. The same notice 

can be made for the other sub-signal categories as in Figure 7.10 for detection of 

different fault severity in BF and Figure 7.11 for detection of different fault severity in 

ORF. 
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B 

C 
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D 

A 

FV number 
1-30 1-30 1-30 1-30 

FV number 
1-30 1-30 1-30 1-30 

FV number 
1-30 1-30 1-30 1-30 

FV number 
1-30 1-30 1-30 1-30 

Figure 7.9: Mahalanobis distances (DKi) of the testing FVs 

corresponding to, A. Healthy category, B.small size inner race fault 

category. C. medium size inner race fault category and D. large size 

inner race fault category, to the different training feature matrices.  
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Figure 7.10: Mahalanobis distances (DKi) of the testing FVs 

corresponding to, A. Healthy category, B.small size ball fault 

category. C. medium size ball fault category and D. large size ball 

fault category, to the different training feature matrices.  
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The rates of averaged correct classification are shown in Table 7.9. It can be seen that 

all the testing FVs are correctly classified to their actual categories. However, for the 

case CW12 , which refers to the data sets corresponding to healthy and different fault 

severities at a ball element obtained at 1797 RPM, the correct classification rate is 95% . 

For this case, 6 out of the 30 testing FVs corresponding to small (0.007 inch) ball fault 

size category are misclassified as medium (0.014 inch) ball fault size category. 

A 
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FV number 
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FV number 
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Figure 7.11: Mahalanobis distances (DKi) of the testing FVs 

corresponding to, A. Healthy category, B.small size outer race fault 

category. C. medium size outer race fault category and D. large size 

outer race fault category, to the different training feature matrices.  
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 Case 

no. 

Motor 

speed 

(rpm) 

Signal Category 

No of 

testing 

FVs 

Average correct 

classification rate 

CW5 1730 Healthy & IRF (S,M and L) 120 100% 

CW6 1750 Healthy & IRF (S,M and L) 
120 

100% 

CW7 1772 Healthy & IRF (S,M and L) 
120 

100% 

CW8 1797 Healthy & IRF (S,M and L) 
120 

100% 

CW9 1730 Healthy & BF (S,M and L) 
120 

100% 

CW10 1750 Healthy & BF (S,M and L) 
120 

100% 

CW11 1772 Healthy & BF (S,M and L) 
120 

100% 

CW12 1797 Healthy & BF (S,M and L) 
120 

95% 

CW13 1730 Healthy & ORF(S,M and L) 
120 

100% 

CW14 1750 Healthy & ORF(S,M and L) 
120 

100% 

CW15 1772 Healthy & ORF(S,M and L) 
120 

100% 

CW16 1797 Healthy & ORF(S,M and L) 
120 

100% 

Table 7.9: The average correct classification rates based on zero-padding as 

equalisation of feature vectors for fault identification CS1. 

The Table 7.10 shows the average correct classification rates are presented for the CS2 

(i.e PT4-PT9) which presents the precision of the methodology in distinguishing among 

the different fault severities. The first three cases (PT4, PT5 and PT6) represent the 

methodology preciseness in distinguishing among different fault severities at inner 

raceway and at different rotational speeds. It can be seen that all the testing FVs were 

correctly classified to their actual categories.  

The cases (PT7, PT8 and PT9) represent the methodology preciseness in distinguishing 

among different fault severities at an element raceway and at different rotational speeds. 
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It can be seen that only a few testing FVs are misclassified in the cases PT7 and PT9 

while all the testing FVs corresponding to PT8 are correctly classified. For PT7, there 

was only one testing FVs corresponding to large (0.0178 inch) roller fault size is 

misclassified as a medium (0.0098 inch). For PT8, a testing FVs corresponding to 

healthy bearing category is misclassified as a small (0.0006 inch) and 3 testing FVs 

corresponding to small (0.0006inch) roller fault size category. And one testing FV 

corresponding to medium (0.0098 inch) roller fault size is misclassified as a small 

(0.0006 inch) roller fault size. 

Case 

no. 

Motor 

speed 

(rpm) 

Signal Category 

No of 

testing 

FVs 

Average correct 

classification rate 

PT4 18000 IRF (S, M and L) 1200 100% 

PT5 24000 IRF (S, M and L) 1200 100% 

PT6 30000 IRF (S, M and L) 1200 100% 

PT7 18000 BF (S, M and L) 1200 99.88% 

PT8 24000 BF (S, M and L) 1200 100% 

PT9 30000 BF (S, M and L) 1200 99.38% 

Table 7.10: The average correct classification rates based on ZP as equalisation 

of feature vectors for CS3 fault estimation. 

Fault severity index 

In this research, the use of the Mahalanobis distance of testing FVs measured to the 

healthy bearing category (Dto healthy category) as a fault severity index is also investigated. 

The Figure 7.12 shows the Dto healthy category   of the training FVs corresponding to healthy 

and different inner race fault severities measured for CS1.  The figure shows that the 

methodology is capable of detecting different inner fault severities for all the speed 
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considered in the analysis. However, distinguishing among the different inner fault 

severity categories is not clear. In Figure 7.13, distinguishing among the different ball 

severity categories is better than the case shown in the Figure 7.12. For Figure 7.13A, 

all the testing FVs corresponding to the fault categories are detected and the Dto healthy 

category show some changes when the severity level of the ball fault changes. Figure 

7.13B, the change of Dto healthy category versus the change of the fault severity level is 

clearer although it does not follow a monotonic function. Figure 7.14, shows the Dto 

healthy category   of the training FVs corresponding to healthy and different outer race fault 

severities.  It can be seen clearly that the  Dto healthy category decreases when the fault 

severity increases at all rotational speeds considered in the analysis.  

 

Figure 7.12: The Mahalanobis distance to of IRF testing FVS to the healthy 

training feature matrix.A. 1730RPM.B. 1750RPM.C. 1772RPM.D.1797RPM. 

A B 

C D 

D
to

 h
ea

lt
h

y 
ca

te
g

o
ry

 
D

to
 h

ea
lt

h
y 

ca
te

g
o

ry
 

D
to

 h
ea

lt
h

y 
ca

te
g

o
ry

 
D

to
 h

ea
lt

h
y 

ca
te

g
o

ry
 



Chapter 7      Results and Discussion: bearing fault diagnosis using a signal pretreatment 

and LTIVAR model 

 
 

155 

 

 

Figure 7.13: The Mahalanobis distance of BF testing FVS to the healthy training 

feature matrix.A. 1730RPM.B. 1750RPM.C. 1772RPM.D.1797RPM. 
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Figure 7.14: The Mahalanobis distance of ORF testing FVS to the healthy 

training feature matrix.A. 1730RPM.B. 1750RPM.C. 1772RPM.D.1797RPM. 
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7.3  Results comparison to some published work 

The performance of the current methodology, which is presented in chapter 6, is also 

compared to some of recent published work as in the Table 7.11. The details of the 

compared methods are already shown in (Chapter 5- Table 5.12). 

It can be seen from Table 7.11 that all the compared methods achieve a rather good 

classification rate. However, the methodology presented in this chapter (as well as the 

methodology presented in chapter 4) over-performs the compared methods in terms of 

the average correct classification rate, which is between 99.8-100% 
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Method Data set 

Training 

and testing 

FVs 

Conditions classified 

Average correct 

classification rates 

(%) 

Fault features 

1)DH and FFNN[95]      

0.18, 0.36,0.53mm; 

0–3 HP load;30000 

data 

points 

Both 144 

 (IF, OF and BF 

classification 

only) 

92-95 

First 6 

histogram bins 

 

2)SSA and BPNN 

[65]  

0.18, 0.36, 0.53, 0.71 

mm; 0– 3 HP 

load;6100 data points 

Train—336 

test—144 

H, IF,OF 

and BF 

96.53–100 

95–100 

4 singular 

values 

3 energy 

features 

 3)MVE, PCA and 

nonlinear  neighbour 

0.18, 0.36,0.53mm , 0-
- Healthy and faulty. 94.68-99.98 

- 
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classifier [96]  3 HP, 2000 data points It was reported by the 

author that there is some 

overlapping among some 

fault classes  

4)The methodology 

presented in chapter 6  

0.18, 0.36,0.53 mm; 0-

3 HP loads; 2048 data 

points 

Train- 480 

Test- 480 

H, IF, OF and BF 99.8-100 

 coefficients of 

LTIVAR 

model 

Table 7.11: A comparison of the performance of the present methodology with other published work using the same parts of CWRU 

data 
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7.4  Conclusions 

The present work suggests a new methodology for rolling element bearing fault 

diagnosis based on linear time invariant autoregressive modelling and pattern 

recognition. The suggested method is relatively simple in the sense that it uses a 

combination of simple processes to first transform the signal and then determine the 

condition of the bearing. A new signal pretreatment process is applied before subjecting 

the signals to modelling. This process includes noise cleaning, using singular spectrum 

analysis (SSA), and stationarisation of the bearing vibration signal by the differencing 

procedures. The methodology aims to transform the signal to bring it close to a 

stationary one, rather than complicating the model to bring it closer to the signal.  The 

signal pretreatment proposed enhances the precision of the model prediction, which is 

influenced by the presence of noise and non-stationary parts in the signal. The LTIVAR 

model coefficients are extracted using the least squares method and used as FVs for 

signal classification purpose.   The FVs are then presented to the 1-NN algorithm based 

on the Mahalanobis distance. The signals were assigned to the category of their nearest 

neighbour. The performance of the methodology is then assessed on the basis of 

confusion matrices, which provide the percentage of correctly- and incorrectly-

classified signals. 

The results presented in this chapter have shown the effectiveness of the suggested 

signal pretreatment in improving the goodness of fit of the LTIVAR model. The 

combination of the suggested signal pretreatment and the LTIVAR provides an accurate 

and complete fault diagnosis method. 
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The current approach also introduces a fresh direction in simplifying non-stationary 

signals and then representing them by use of a stationary autoregressive model. 

Compared to other autoregression-based signals, the current methodology is much 

simpler. This is because the other forms of autoregression that researchers usually use in 

the literature are complex and require several assumptions. When a LTIVAR model is 

used, neither the shape of the model coefficient evolution over time, nor the initial set of 

model coefficients, has to be assumed.  

The current approach also shows that equalisation of the FV might also effect the 

methodology performance in terms of the correct classification rates. It is shown that a 

zero padding procedure is generally performing well against the other procedures 

considered in the analysis. The equalisation of the different FV lengths facilitates the 

classification of different FV lengths based on the Mahalanobis distance classifier. 

From the results obtained in chapter 7, it is clear that model order cannot always 

selected as a feature for the purpose of classification. This is because, for some of the 

cases considered in the current analysis, we obtain same the model orders (but the 

model coefficients are different) for some categories but a different one for just one 

other category. Therefore,  a model’s optimum order is not always sensitive to changes 

in the bearing condition.   

The current methodology is compared to some other published recent work in terms of 

correct classification rates, which indicates the accuracy of the methodology. The 

similarity of the data set sources and specifications for the compared method is 
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considered. It is shown that the present methodology out-performs those methods and 

its average correct classification rate is between 99.8%-100%. 

The methodology suggested encompasses several relatively simple procedures, which 

facilitate its potential practical application and its possible automation.  

7.5  Summary 

In this chapter the results for the methodology, presented in chapter 6, are demonstrated. 

The methodology was validated using data sets obtained from the three bearing test rigs 

explained in chapter 4. The results include two main parts 1) demonstration of the 

methodology using data from CS1 and 2) fault diagnosis. In the first part, the steps of 

the signal pretreatment including signal denoising, and differencing and modelling by 

LTIVAR are illustrated. The improvement in the goodness of fit due to signal 

pretreatment is also explained.   In the second part, the fault diagnosis results 

corresponding to fault detection, fault type identification and fault severity estimation 

are presented. The correct classification rates are shown and compared to some other 

recent published methodologies, which use the same data sets. It is shown that the 

present methodology is superior to those methodologies and that it shows generally 

higher classification rates 
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Chapter 8 

Conclusions, limitations and future works 

8.1  Introduction  

This chapter presents the summary of the work done and briefly describes the 

methodologies developed in this thesis in section 8.2. In section 8.3 it discusses to what 

extent the objectives, specified in the introductory chapter, are achieved and draws some 

conclusions made from the work.   Then it addresses the limitation challenges that 

emerged during the work done, and suggests some future work, which could be 

continued to overcome these limitations and expand the generality of the present 

methodologies.    

8.2  Summary of the work 

The thesis covers important areas of bearing conditions, which includes fault detection, 

fault location identification and fault severity estimation. Two singular spectrum 

analysis-based methodologies were presented in this thesis. In these two methodologies 

the singular spectrum analysis method was used in different ways and for different 

purposes. The work carried out in each method is presented briefly as below: - 
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8.2.1 A new methodology for fault diagnosis in rolling element bearings using 

singular spectrum analysis 

The SSA is used to create a baseline space from the eigenvectors of the healthy bearing 

vibration signals. Then the embedded version (i.e the lagged version) of any new signal 

will be projected on to the baseline space. The feature vectors of the baseline and the 

new signals are obtained from the norms of the projection as the norm represents the 

length of the projection vectors. This method is used for the purpose of fault detection, 

location identification and fault severity estimation. 

In the fault detection process, a threshold is determined from the Mahalanobis distances 

of the training feature vectors corresponding to a healthy bearing category. In the 

current study, a statistically based threshold is proposed and the necessary assumptions 

were questioned in chapter 4. Then, the assignment of the testing feature vectors to a 

healthy or faulty bearing category is based on the comparison to the threshold. From the 

result obtained for this level of fault diagnosis, the methodology shows a very good 

performance in terms of correct classification rates. 

In the fault location identification, the feature vectors of each bearing signal category 

(i.e healthy, IRF, BF and ORF) are divided into two samples (training sample and 

testing sample). The training sample is used for building the feature matrices and then 

the Mahalanobis distance of each testing FV is measured to each of those feature 

matrices. Eventually, the testing FV is assigned to the category where the feature matrix 

has a minimum. 
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In the fault severity estimation, the embedded version of the signals corresponding to 

the different fault severities is projected to the baseline space.  From these projections, 

the feature vectors are obtained. The feature vectors of the baseline and each fault 

severity category (i.e small, medium and large) are divided into two samples (the 

training sample and the testing sample). The training sample is used for building the 

feature matrices and then the Mahalanobis distance of each testing FV is measured to 

each of those feature matrices. Eventually, the testing FV is assigned to the category 

where the feature matrix has a minimum. As discussed before it is desirable to use a 

regression model for the diagnosis of the severity condition. In this study, the regression 

model is not used as it might complicate the methodology, as it requires the 

determination of the coefficients of the regression model.  

The Mahalanobis distances of different fault severities, which are measured to the 

baseline category, are also used as a fault index, which tracks the changes in fault 

severities.  

The method and the results in terms of the correct classification rates are introduced in 

chapters 4 and 5. 

8.2.2 Bearing fault diagnosis using a novel signal pretreatment and LTIVAR 

modelling 

The SSA combined with a simple procedure of signal stationarization (i.e differencing) 

and contributes to an advanced signal pretreatment, which makes bearing non-stationary 

signals more amenable to efficient analysis by the stationary LTIVAR model.  The SSA 

is used for the purpose of noise cancellation, where the signals are decomposed in a 
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number of PCs each having a certain portion of the original variance. Then, some of the 

PCs with the low portion of variance were excluded from the reconstruction of the 

bearing vibration signal. The coefficients of the LTIVAR model are used to make the 

feature vectors, which used for fault diagnosis purposes. In this method, four different 

procedures were proposed for the purpose of the equalisation of the feature vectors. The 

method is illustrated in chapter 5 while the results and discussion are presented in 

chapter 5. 

8.3  Conclusions  

As mentioned in the introductory chapter, there were a number of objectives to be 

achieved in the present thesis.  This section discusses to what extent these objectives 

have been achieved.  Some of the main conclusions are stated below: - 

8.3.1 General Conclusions 

Development of a data–driven methodology for a complete fault diagnosis in REBs (the 

primary objective): -  As mentioned in Section 1.5, the primary objective of this 

research is to develop a data–driven methodology for a complete fault diagnosis in 

REBs. This methodology should be able to detect, identify the location, and then 

estimate the severity of the faults. The author believes that this primary objective has 

been achieved. This is because two methodologies were developed in this thesis and 

both of them were validated using the wide range of experimental data obtained from 

different test rigs and under different operational conditions. The performance of the 

methodologies was assessed in terms of fault detection and fault location and fault 
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estimation and the results obtained showed a very high rate of accurate fault diagnosis 

(invariably 100%). The methodologies were able to detect the changes in fault location 

and changes in the fault severities. Both the methodologies were compared to some 

recent published works, which used other time series analysis techniques. The 

comparisons were introduced in sections 5.2 & 7.3 and they showed that both 

methodologies (developed in this thesis) are superior to other methods used in the 

comparisons. It is believed by the author that the methodologies developed in this thesis 

contribute fundamentally to the knowledge of fault diagnosis in REBs. 

Capabilities of the singular spectrum analysis (specific objective A):  - It is shown from 

the results, presented in chapters 5 & 7, that the singular spectrum has a very good 

capability for the purposes of rolling element bearing fault diagnosis. It can be used 

effectively for generating features very suitable for bearing CM (see chapters 4 & 5). It 

is also used as part of a pre-processing stage for CM purposes (see chapters 6 & 7).  

Performance of the methodologies (specific object F): - The methodology performs 

very well for a wide range of data sets. These data sets were taken from three different 

bearing test rigs. The data sets covers different shaft rotational speed, different bearings 

with different fault types and different fault severities. The methodology can accurately 

detect, identify and quantify the different faults. 

More conclusions are specifically made from each methodology and explained in the 

following sections. 
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8.3.2  A new methodology for fault diagnosis in rolling element bearings using 

singular spectrum analysis 

 Specific objective B: In chapters 4 and 5 a new way of applying SSA by using 

only the decomposition stage was investigated (see section 1.7). The 

methodology, presented in chapter 4, offers a new and simple procedure for 

detection of faults because only signals from healthy bearing category are 

required and subjected decomposition stage in SSA. All other new signals are 

only embedded and projected on to the reference space.  The simplicity of the 

methodology can be taken from the point that it uses only signals from the 

healthy bearing category to build the baseline space by subjecting them only to 

the decomposition stage. The way that the SSA is used makes it practical. When 

compared to other SSA based fault diagnosis techniques, which use signals from 

both healthy and fault bearing categories and then subject each of them to SSA, 

the present approach is simpler. The simplicity of the procedure in detection of 

signals has the potential capability for automation.  

 From the results presented in chapter 5, projecting the new signals on to the 

baseline space does not only distinguish between the healthy and faulty 

categories but also among the different faulty categories as well. This was 

concluded when it was confirmed that the Mahalanobis distance levels (their 

range) were changing with the change of fault severity and location. In other 

words, the methodology is able to detect faults corresponding to different 

locations (such as those of the inner and outer races) and of different severities 
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such as those classed as small and large. This can be used as a stepping-stone for 

the case where information about other bearing conditions is not available. 

 A phenomenology is noticed in the FV dimensionality with respect to the correct 

classification rates for all the levels of fault diagnosis. The increase of FV 

dimension (an increase in the number of projections involved in the building the 

baseline space) improves the classification accuracy. This can be explained as 

incorporating more PCs means involving more information about faults because 

the PCs contain portions of the original variances.  

 The methodology showed a very good performance in terms of fault detection, 

fault type identification and fault severity estimation. It is shown, in comparison 

with the some recent published works, that the methodology is superior. It has a 

98.3 -100% average correct classification rates. 

 It is shown that the Mahalanobis distance level changes when the fault size 

changes. However, sometimes (as in CS1) the trend of such a change does not 

follow a monotonic path. In fact, the reasons behind the non-monotonic path 

followed by the data of CS1, are not investigated in the current study. This 

might be explained by the fact that the features selected are not able always to 

behave linearly with the change of fault severity. A further future study might 

help in further understanding the physical meaning of this.  
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8.3.3 Bearing fault diagnosis using a novel signal pretreatment and LTIVAR 

modelling 

 Specific objective C: - In chapter 7, it is shown that the method proves the 

importance of the signal pretreatment for the purposes of REB fault diagnosis 

and for making signals more amenable to analysis by LTIVAR. The developed 

signal pretreatment improves significantly the precision of the model in 

representing bearing vibration signals. 

 Specific objective D: - The method puts stress onto the pre-treatment process 

and as a result succeeds in developing a rather simple procedure based on 

simplest form of autoregression (i.e LTIVAR) for the purposes of fault 

diagnosis. This is considered as a fresh direction in representing non-stationary 

signals with a stationary autoregressive model (see the 4
th

 objective).   

 As a result, the combination of the suggested signal pretreatment and the 

LTIVAR provides a new methodology for complete bearing fault diagnosis. The 

methodology performs well for all levels of fault diagnosis, namely fault 

detection, type identification, and severity estimation. 

 Several procedures of length equalisation for the feature vectors were tested. Just 

one of the above procedures had a negative effect on the average correct 

classification rates. All the other procedures for feature vectors length 

equalisation result in quite high precision of the diagnosis. However, the zero 

padding provides the best results. 
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 The methodology showed a very good performance in terms of fault detection, 

fault type identification and fault severity estimation. It is shown, in comparison 

with the some recent published works, that the methodology is superior. It has a 

99.8 -100% average correct classification rates. 

8.4  Limitations and future works 

The thesis is one of the few works, which uses singular spectrum analysis for fault 

diagnosis in rolling element bearings. Although the approaches developed in this thesis 

are validated using a wide range of data sets, there are some limitations which can be 

covered in further future studies. The following summarise some interesting future 

studies, which could cover such limitations and / or expand the results already achieved.  

 Considering variation of shaft rotational speed: - In the current thesis, the 

rotational shaft speed was constant during the acquisition of the signals so 

investigating the variation of the operating speed would be an interesting topic.  

This is important as there are many industrial application where the rotational 

shaft speed are varying during the its operation.  

 Considering other types of fault and catering for more types of bearing: 

Another example of a further future direction would be in using data from other 

types of bearings such as double row groove bearings, and other types of faults 

such as multiple faults.  The bearings considered in this analysis were all single 

row types so application of the methodologies for cases where bearings are 

multi-row bearings would potentially be useful. These bearings are usually used 
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in heavy load applications.  The faults considered in the current investigation 

have all been single faults. However, there are some instances in practice where 

multiple faults might develop, and which could then be problematic.  

 In the current study it was difficult to obtain a real time vibration signal, and the 

validation was limited to data sets taken from bearing test rigs built in 

laboratories. Although the author believes that the methodology will work for 

real time applications, validating methodologies using real industrial 

environments will still be very useful and will support the generality of the 

methodologies. 

  Further capabilities of SSA can be investigated such as using the SSA for 

analysing signals in the time-frequency domain. Each PC component can cover 

or participate in a certain band of frequency. The width of the frequency bands 

covered by each PC is affected by the size of embedding window. This kind of 

analysis can help in building a 3D screen for the signal (frequency, amplitude, 

number of PCs). Then, the PCs, related to a frequency band, can be chosen and 

used for further analysis. 

 Following to the point above, another direction of further research can be the 

investigation of the SSA window size variations. In this direction, the possible 

effect of SSA window size on the frequency bands incorporated in each PC can 

be investigated. In this suggested future work, selection of proper window size 

can be investigated in more depth, leading towards the possibility of 

automation. 
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 The coefficients of the LTIVAR model can be further analysed by factorial 

analysis. Such kind of analysis can produces some inference about the relations 

between the bearing faults and some certain coefficients of the LTIVAR model. 

In such analysis the bearing condition can be indexed as a latent variable and 

then model coefficients, which have highest loading, can be used as indicators 

for the presence of that bearing condition.  

 Further analysis can be implemented for automation of the selection of the SSA 

window size and the number of the PCs selected for the reconstruction of 

signals. 
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Appendix 4-A 

Tables of number of sub-signals used in the 

analysis
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 Table shows the number of sub-signals (i.e number of FVs) and the number of 

revolution at each sub-signal length for all the case studies used in the analysis. The Nr 

represents the number of the revolutions in a specific sub-signal length. 

 Sub signal length 

Speed 

(rpm) 

512 1024 2048 4096 

No. of 

FVs 
Nr 

No. of 

FVs 
Nr 

No. 

of 

FVs 

Nr 

No. 

of 

FVs 

Nr 

1730 960 1.23 480 2.46 240 4.92 120 9.84 

1750 960 1.24 480 2.48 240 4.97 120 9.95 

1772 960 1.26 480 2.52 240 5.04 120 10.08 

1797 960 1.27 480 2.55 240 5.11 120 10.22 

Table 4-A.1: The number of the FVs and the shaft revolutions contained in each sub-

signal length CS1. 

 
 
 

 Sub signal length 

Speed 

(rpm) 

512 1024 2048 4096 

No. of 

FVs 
Nr 

No. of 

FVs 
Nr 

No. of 

FVs 
Nr 

No. of 

FVs 
Nr 

250 1280 0.17 640 0.35 320 0.71 160 1.42 

750 1280 0.53 640 1.06 320 2.13 160 4.26 

1250 1280 0.88 640 1.7 320 3.55 160 7.11 

Table 4-A.2 : The number of the FVs and the shaft revolutions contained in each sub-

signal length CS2 

 
 

 Sub signal length 

Speed 

(rpm) 

512 1024 2048 4096 

No. of 

FVs 
Nr 

No. of 

FVs 
Nr 

No. of 

FVs 
Nr 

No. of 

FVs 
Nr 

18000 4800 1.5 2400 3 1200 6 600 12 

24000 4800 2 2400 4 1200 8 600 16 

30000 4800 2.5 2400 5 1200 10 600 20 

Table 4-A.3 : The number of the FVs and the shaft revolutions contained in each sub-

signal length CS3 

 



  

 

 
 

191 

 

Appendix 5-B 

  

 Histograms and Lognormal distribution 

density functions for the healthy training 

samples data of the test rigs- fault detection 

phase 

 

 

 

 

 

 



Appendix 5-B         Histograms and Lognormal distribution density functions for the 

healthy training samples data of the test rigs- fault detection phase 
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Figure 5-B.1: Examples of the histograms and lognormal distribution density 

functions for the healthy training samples data of the test rigs 

(a) Test rig 1-1730 RPM (b) Test rig 1-1750 RPM 

 

(c) Test rig 1-1797 RPM 

 

(d) Test rig 2-250 RPM (e) Test rig 2-750 RPM 

 

(f) Test rig 2-1250 RPM 

 

(g) Test rig 3-18000 RPM (h) Test rig 3-24000 RPM 

 

(i) Test rig 3-30000 RPM 
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Appendix 5-C 

 

Tables of percentages of correct 

classification rates for the fault diagnosis – 

detection and fault type identification phases 

 



Appendix 5-C         Tables of percentages of correct classification rates for the fault 

diagnosis – detection and fault type identification phases 
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Average and lowest correct classification rates- detection phase – CS2 and CS3 

                Sub-signal length 

Speed 

RPM 
512 1024 2048 4096 

250 5[98,100] 5[97.5,100] 5[97.5,100] 4[90,100] 

750 5[100,100] 5[98.8,100] 2[100,100] 1[100,100] 

1250 3[100,100] 2[100,100] 2[100,100] 1[100,100] 

Table 5-C.1: The minimum baseline space dimension and 

corresponding average and lowest correct classification rates 

CS2- fault detection phase 

 

 Sub-signal length 

Speed 

RPM 
512 1024 2048 4096 

18000 7[99.5,87.5] 4[99.2,100] 4[100,100] 3[100,100] 

24000 10[99,87.3] 5[99.5,100] 3[99.5,100] 1[100,100] 

30000 10[98.8 67.3] 7[98.5,99] 6[97.5,100] 3[100,100] 

Table 5-C.2: The minimum baseline space dimension and 

corresponding average and lowest correct classification rates 

CS3-fault detection phase 

 

Average and lowest correct classification rates- fault identification phase – CS2 and 

CS3 

 Sub-signal  length  

Speed 

RPM 
512 1024 2048 4096 

250 10(88.9,  65] 10[94.4,82.5] 10[99.4,97.5] 3[98.75,95] 

750 10[93.8, 80.6] 6[97.8,92.5] 6[100,100] 4[100,100] 

1250 3[94.8,   88.8] 7[99.1,97.5]  2[100,100] 2[100,100] 

Table 5-C.3: The minimum baseline space dimension and 

corresponding average and lowest correct classification rates CS2-

fault type identification phase 
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 Sub-signal  length  

Speed 

RPM 
512 1024 2048 4096 

18000 10[98.9,97.9] 9[100,100] 5[100,100] 4[100,100] 

24000 10[98.9,97.9] 6[99.7,99.5] 6[100,100] 3[100,100] 

30000 10[98.7,96.6] 10[100,100] 10[100,100] 4[100,100] 

Table 5-C.4: The minimum baseline space dimension and 

corresponding average and lowest correct classification rates 

CS3-fault type identification phase 
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Additional results of Chapter 7- Bearing 

fault diagnosis using a novel signal 

pretreatment an LTIVAR modelling
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Number of PCs to achieve 90% of original sub-signal variance to be recovered in the 

reconstructed sub-signal 

Speed (RPM) n=512 

 H IRF BF ORF 

1730 19 36 26 22 

1750 18 40 24 23 

1772 17 51 25 21 

1797 15 43 28 21 

 n=1024 

1730 20 37 27 23 

1750 19 40 25 23 

1772 17 42 26 22 

1797 15 44 29 22 

 n=2048 

1730 21 37 27 23 

1750 19 40 25 23 

1772 18 42 26 22 

1797 16 44 29 22 

 n=4096 

1730 21 37 27 23 

1750 19 40 25 23 

1772 18 42 26 22 

1797 16 44 29 22 

Table 7-A.1: the number of PCs selected for the reconstruction stage CS1 
 

Speed (RPM) n=512 

 H IRF BF ORF 

250 22 26 21 26 

750 25 28 32 34 

1250 20 32 34 30 

 n=1024 

250 24 28 23 28 

750 27 31 36 37 

1250 21 33 36 37 

 n=2048 

250 24 30 24 29 

750 28 32 37 38 

1250 21 34 39 32 

 n=4096 

250 24 31 25 29 

750 28 32 37 39 

1250 21 34 40 33 

Table 7-A.2: the number of PCs selected for the reconstruction stage CS2 



 

Appendix 7-A         Tables PCs number selected for reconstruction of the signals  

 
 

198 

 

Speed (RPM) n=512 

 H IRF BF 

18000 62 61 62 

24000 59 50 58 

30000 54 48 60 

 n=1024 

18000 68 64 67 

24000 64 53 63 

30000 59 51 65 

 n=2048 

18000 70 65 68 

24000 66 54 65 

30000 61 52 67 

 n=4096 

18000 71 66 69 

24000 68 54 66 

30000 62 52 68 

Table 7-A.3: the number of PCs selected for the reconstruction stage CS3 
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The LTIVAR mode optimum order of the reconstructed sub-signals 

Speed (RPM) n=512 

 H IRF BF ORF 

1730 5 12 10 6 

1750 5 12 8 6 

1772 5 12 8 6 

1797 5 12 10 5 

 n=1024 

1730 5 12 10 8 

1750 5 12 8 5 

1772 5 12 10 5 

1797 5 12 10 5 

 n=2048 

1730 6 15 10 6 

1750 5 12 8 6 

1772 5 12 5 5 

1797 5 12 10 5 

 n=4096 

1730 5 12 8 5 

1750 5 12 5 5 

1772 5 12 5 5 

1797 5 12 10 5 

Table 7-A.4: the number of PCs selected for the reconstruction stage CS1 
 

Speed (RPM) n=512 

 H IRF BF ORF 

250 8 10 7 10 

750 5 13 10 10 

1250 8 10 10 10 

 n=1024 

250 8 10 10 10 

750 5 10 10 10 

1250 6 10 10 10 

 n=2048 

250 5 10 10 10 

750 5 10 10 10 

1250 5 15 10 10 

 n=4096 

250 10 8 8 10 

750 5 10 10 10 

1250 7 13 10 10 

Table 7-A.5: the number of PCs selected for the reconstruction stage CS2 
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Speed (RPM) n=512 

 H IRF BF 

18000 25 25 25 

24000 30 20 30 

30000 20 20 20 

 n=1024 

18000 25 20 25 

24000 30 20 20 

30000 20 20 20 

 n=2048 

18000 30 30 30 

24000 30 22 30 

30000 30 20 30 

 n=4096 

18000 28 28 28 

24000 30 20 20 

30000 24 20 22 

Table 7-A.6: the number of PCs selected for the reconstruction stage CS3 
 

 

NMSE improvement 

  Sub-signal length(n) 

Speed 

(RPM) 

Bearing 

condition 
512 1024 2048 4096 

250 

H 11.89% 14.38% 16.94% 13.1% 

IRF 5.23% 5.5% 5.57% 6.2% 

BF 6.74% 6.78% 7.67% 7.62% 

ORF 5.81% 6.47% 6.51% 6.51% 

750 

H 7.1% 7.73% 7.92% 6.98% 

IRF 6.28% 5.17% 5.42% 5.96% 

BF 8.83% 9.73% 9.07% 8.77% 

ORF 7.8% 8.72% 9.13% 9.69% 
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1250 

H 2.32% 3.46% 4.2% 2% 

IRF 5.18% 5.08% 6.24% 7.02% 

BF 7% 7.71% 7.96% 8.06% 

ORF 7.27% 6.9% 7.71% 11.73% 

Table 7-A.7: Improvement of NMSE due to signal pretreatment 

CS2 

 

 

  Sub-signal length(n) 

Speed 

(RPM) 

Bearing 

condition 
512 1024 2048 4096 

18000 

H 54.29% 37.29% 37.21% 61.44% 

IRF 27.5% 26.69% 44.85% 41.16% 

BF 52.63% 36.98% 42.12% 63.19% 

24000 

H 38.24% 37.13% 64.35% 40.05% 

IRF 27.16% 49.17% 66.36% 34.47% 

BF 35.97% 44.53% 71.56% 43.5% 

30000 

H 38.21% 68.18% 39.31% 40.96% 

IRF 50.41% 68.28% 54.89% 48.21% 

BF 54.09% 74.13% 40.19% 47.89% 

Table 7-A.8:  Improvement of NMSE due to signal pretreatment 

CS3 

 

 

  

 


