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Abstract

In this thesis, we look into the problem of finding an analytical model for the submono-

layer nucleation processes on a substrate. More specifically, we explore the Distribu-

tional Fixed Point Equation (DFPE) approach of modelling the size distribution of the

gaps between nucleated islands (GSD) on a one dimensional substrate, and the size

distribution of capture zones (CZD) around the islands (areas where a free monomer

is more likely to be absorbed into the relevant island than to escape to the next one).

The DFPEs incorporate information about the critical island size, the nucleation

mechanism (via diffusing monomers or through deposition) and the probability P (a)

of a new island nucleation occurring at a position a inside a gap. The corresponding

distribution Pz for the capture zones is derived from the fragmentation probability P

for the gaps, so it cannot be directly observed.

We develop a strategy to solve the inverse problem of calculating the distribution

P and Pz from the Integral Equation form of the DFPE, for a known GSD and CZD,

in which we build P and Pz as a finite Fourier series. Additionally, we solve the inverse

problem in another way: by using the Tikhonov regularisation method, and compare

these results against each other and with the theoretical predictions. For the case of

the gaps, we can directly measure P during the kinetic Monte Carlo simulations. We

compare the results to the previously calculated P and find good consistency.

For the capture zones, we define an alternative distribution, one that can be mea-

sured: the probability of fragmenting a zone at a position a, Q(a). We then create an

DFPE for this distribution Q, and we also use it to directly sample CZD. Since both

approaches give promising results, we conclude our work by testing them on a two

dimensional substrate, where we find that only the latter approach gives good results.
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Chapter 1

Introduction

Studies of the initial stage of growth of nanoclusters and thin films on a substrate

during deposition have been attracting a lot of interest since the 1960’s because of its

importance to the subsequent film properties and morphology.

One of the key interests is detailed characterization and understanding of the spa-

tial arrangement of structures nucleated on a substrate, and their size distribution.

This effort has its place in a broader goal of first elucidating and then controlling the

formation of various nanostructures.

A lot of work has been done in this area, yet a lot of problems are still open research

questions. We will begin setting the stage by explaining the basic processes and then

proceed to the thesis motivation and aims.

1.1 Basic processes

An important method in ultrathin film growth is epitaxy: a method of depositing a

crystalline overlayer on a crystalline substrate. The term epitaxy derives from Greek

and denotes an ordering (taxis) on top or over (epi); the structure grown on top of

a substrate will have some particular crystalline order determined by the substrate.

Because of that, it is important in semiconductor thin film production, where certain

levels of crystal lattice matching are required for the desired electronic properties.

Homoepitaxy uses the same material both for the substrate and the deposited film and

heteroepitaxy deposits a different material to the substrate.

1
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Molecular beam epitaxy is an ultra high vacuum - based method (to minimize

resulting surface defects) of producing epitaxial films of high purity, where atoms or

single clusters of atoms (heated up so they are in gas phase) are slowly deposited onto

a substrate so that layer by layer growth ensues, in a high vacuum environment [7].

The deposition rate F (deposition flux in newer literature) is measured in monolayers

per unit time. Once on the substrate, monomers can re-evaporate (at high substrate

temperature) or diffuse as adatoms across the surface, with a diffusion constant which

can, to a very good approximation, be taken to be the Arrhenius rate [1] [8]:

D = D0e
−Ed/kBT (1.1)

where Ed is the activation energy for surface diffusion, kB the Boltzmann constant and

T the substrate temperature. The pre-exponential factor is given by D0 = 1
bνa

2, where

b is the lattice connectivity (b = 2 in one dimension and in two b = 4), ν is attempt

frequency (vibration frequency for hopping) and a is a lattice constant (in simulations,

this is the distance between the lattice grid sites). In Molecular Dynamics (MD) sim-

ulations D0 is typically of the order of atomic vibration frequency and is often set to

10−12 − 10−13s−1 [9].

The average time in which a surface site will be hit by a depositing atom is 1/F , and

an adatom will diffuse away after a meantime 1/D, so the growth dynamics depends on

the ratio R = D/F [1] [10]. Typical experimental values for growth are R ∼ 105−1010.

Island density decreases with R increasing; for growing values of R the rates of diffusion

become larger than the rate of deposition so adatoms can travel further before being

absorbed into an island (the creation of islands is discussed below).

The kinetics of growth also depend on the percentage of the surface covered with

atoms (coverage θ). Coverage is frequently used as a measure of time when desorption

is negligible; then θ = Ft, where t is the deposition time [2].

When diffusing adatoms collide, they can form a cluster, called an island, if the ther-
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mal energy kBT is significantly smaller than the binding energy between the adatoms

(or one adatom and the substrate surface, in case of a single adatom attaching to the

surface). An important parameter is the critical island size i: islands made up of i+ 1

atoms are the smallest stable islands and are more likely to grow than decay.

Figure 1.1: Elementary moves during early-stage deposition and growth. Figure taken
from Ref. [1].

We distinguish three stages of growth [11] [12]:

a) in the initial (so-called transient) regime the adatom number density n1 grows

linearly in time according to the law n1 ' Ft, leading to nucleation of far-distanced

islands. This causes a ”depletion zone” around these islands: adatoms surrounding

them aggregate with the island which locally reduces n1. Depletion zones grow (with

radius r v (D∆t)1/2, ∆t being the time elapsed since nucleation [13]) and start to

cover most of the substrate surface. Finally, as they collide, they form boundaries of

capture zones: areas surrounding an island where a diffusing monomer is more likely

to aggregate to that particular island then to the neighbouring ones [14].

b) when the island density becomes approximately equal to adatom density, we

enter the aggregation regime. The substrate surface is now completely tessellated by

capture zones. Nucleation of new islands still occurs, but most deposited atoms will

aggregate with existing islands. Since most of atoms deposited within a capture zone

3



Chapter 1. Introduction

will aggregate with that zone’s island, island growth rate is proportional to the capture

zone area [3] [14].

c) at coverage around 20 − 40% [15] [16], coalescence (merging) of islands occurs;

after this stage second-layer growth will start.

In this work, we will be interested only in the aggregation regime.

The nucleation and growth of nanostructures can be studied with either completely

deterministic (analytic) or completely stochastic models (typically kinetic Monte Carlo

(kMC) simulations). Analytical theoretical models are required to interpret and extend

kMC simulation results; the latter are widely used as an easy to obtain substitute for

(more scarce) experimental data.

1.1.1 Kinetic Monte Carlo simulations

Kinetic Monte Carlo simulations of deposition and nucleation usually follow the same

basic set of rules. They are performed on a lattice which is initially empty and are

driven by diffusion and deposition steps. The ratio R dictates the procedure, since it

determines the number of diffusion steps relative to the deposition steps [17] [18].

In deposition steps, new monomers are added randomly at an appropriate rate F .

At each diffusion step a monomer is selected at random and moved by a unit length

on the lattice, in a random direction, and in a deposition step a monomer is placed on

a random lattice site. If a monomer arrives (or is deposited) to a position adjacent to

another cluster of monomers, or to an existing stable island, it will be fixed on that

position provided that the total number of monomers has exceeded i. This way islands

nucleate and grow.

The main difference between different models is the shape of islands - they can be

extended (dendritic, spherical) or point islands.

In the point island model they are kept as single points on the lattice and their size

is recorded and incremented with the number of captured atoms. This way the island

shape effects are alleviated and islands will not coalesce for large coverage θ, which

makes this model a convenient way to study the asymptotic scaling limit θ −→∞.
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In an extended island model an s-size two-dimensional island occupies s sites on

the lattice. Typically coalescence starts being relevant at approximately θ = 20% [16].

For the purposes of this thesis, in our simulations we will use point island model on

a one-dimensional substrate, and an extended spherical island model in two dimensions.

1.2 Research problem and the aim of the thesis

We have stated that this thesis will be looking only at the aggregation regime of the

nucleation and growth. Within this regime, an interesting phenomena occurs: if the

sizes of islands are divided by its average value (scaled to the average), the distribution

of their sizes remains (approximately) the same as coverage grows. The same is true

for the distribution of capture zone sizes.

As we show in the literature review in Chapter 2, the search for a satisfying analyti-

cal model which would reproduce the correct island size distribution (ISD) and capture

zone distribution (CZD) is an active research topic.

This thesis adopts and explores a Distributional Fixed Point Equation (DFPE)

model of Mulheran, O’Neill, Grinfeld and Lamb [5]. Limiting the problem to a one-

dimensional substrate, they proposed an analytic model for the distribution of interis-

land gap sizes (gap size distribution, GSD) and the CZD.

On a 1d lattice, the creation of a new island is viewed as a fragmentation of the

inter-island gap. Then the evolution of a gap (and a capture zone) is tracked: a new

gap that was created when an older, larger gap (the parent gap) is fragmented via new

island nucleation. In Chapter 3 we will explain the model and the derivation of the

equations in detail; here it suffices to say it yields an integral equation:

φ(x) =

∫ min(x,1)

0
φ
(x
a
− 1
) P (a)

a
da, (1.2)

where x is the gap size scaled to the average, φ is the gap size distribution and P is

the probability that the new island nucleation occurs at a position a ∈ [0, 1] within the

(parent) gap. As we will explain in Chapter 2, it is proposed that the functional form
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of P :

P (a) =
(2α+ 1)!

(α!)2
aα(1− a)α (1.3)

can be (independently of the DFPE model) derived from the monomer density profiles

within the gap.

This theoretical P is derived from two idealized cases (giving the two values of

α): the diffusion driven P (where it is taken that all of the nucleations are a result of

collisions of i+ 1 monomers diffusing along the lattice with the diffusion constant D),

and the deposition driven P (where the nucleations are a result of a deposition of a

monomer directly on top of, or next to, a pre-existing unstable cluster of i monomers).

Following a similar logic, an analysis of the capture zones yields the same functional

form for the CZD:

φz(z) =

∫ min(z,1)

0
φz

(
z

az
− 1

)
Pz(az)

az
daz, (1.4)

where z is the capture zone size (scaled to the average) and φz is the CZD. Unlike

the probability P for the gaps however, probability Pz doesn’t have a straightforward

physical meaning; it is a function derived from the probability P for the gaps. It is

therefore also split in 2 idealized cases, diffusion and deposition.

The realistic nucleation processes on a lattice involve both cases, so the results of

the kMC simulations lie roughly between these two distributions.

Equations (1.2) and (1.4) offer an analytic description of the nucleation within the

scaling regime parametrized by i, and a unique possibility to determine P (Pz) from a

known GSD (CZD), either from kMC simulation results or experimental data. There-

fore, in this work we explore the model further.

The main goals of the thesis are:

1. to establish a reliable way of calculating P and Pz from a known GSD and CZD.

Equation (1.3) gives two limiting idealized cases, so wish to calculate the true P and
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Pz from a known GSD and CZD (the GSD and CZD obtained from a kMC simulation).

Because equations (1.2) and (1.4) are an ill-posed problem, we need to regularise them

in order to solve them. We can then see how much does one mode of nucleation

contribute relative to the other.

2. test the extension of this one-dimensional model to two dimensions. The defi-

nition of capture zones (unlike that of gaps) doesn’t depend on the dimension of the

substrate, which leaves open the possibility of writing an equation for capture zone

areas similar to Equation (1.4).

Some of the results from this thesis were presented in a talk on the 5th International

Statistical Physics Conference (Sigma Phi 2017), held in Corfu, Greece. Chapter 7 has

been converted to a paper; Ref. [19] is the arXiv preprint.

1.2.1 Thesis overview

Chapter 2 is a literature review which gives a (broad) background and establishes a

niche for this work.

Chapter 3 introduces and explains the DFPE model from Ref. [5]; Equations (1.2)

and (1.4) are derived here and the problem is set up.

In Chapter 4 we describe the numerical methods used to integrate Equation (1.2)

as well as the simulation method we use throughout the thesis.

Chapters 5, 6 and 7 cover the problem of inverting equations (1.2) and (1.4).

In Chapter 5 we use the textbook Tikhonov regularisation method to calculate P and

Pz. We find that, while the strategy gives reasonable solutions relatively quickly, the

expected symmetry and positivity of these solutions is not guaranteed.

In Chapter 6 we develop and alternative method, one that enforces symmetry and

positivity, and solve the inverse problem for P and Pz.

In Chapter 7 we compare the best solutions from these two chapters. For the case

of the gaps, it is possible to measure P directly during the kMC simulation; we collect

the results and compare them to the results of the inverse problem.

7
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Chapter 8 explores the fragmentation probability for the capture zones: while Pz

used in Equation (1.4) is a mathematical construct that cannot be measured, it is

possible to measure a fragmentation probability Q defined in a different way. This new

distribution Q doesn’t rely on gaps so its extension to 2d is straightforward. We write

alternative equations for CZD that utilizes it; while the results aren’t as good of a fit

for the kMC obtained CZD as Equation (1.4) was, they are still encouraging enough

to be tested in 2d.

Finally, in Chapter 9 we attempt to expand the model for the CZD to two dimen-

sions. We find that our DFPE approach with fragmentation probability Q gives very

poor results, due to its built-in (over) simplifications. We conclude our work with yet

another model equation, one that still utilizes the distribution Q and gives fairly good

results, which would make it the most promising future work direction.
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Literature review

2.1 Rate equations

The analytic approach utilizing Smoluchowski aggregation equations has been devel-

oped more than 50 years ago. Following previous work in classical nucleation the-

ory, Walton [8] used a set of coupled ordinary differential equations (mean field rate

equations) to describe the time evolution of mean field quantities such as the sin-

gle atom or monomer density n1 and densities of islands of size s (islands made of s

atoms/monomers), ns. It is assumed that only single adatoms are mobile, islands grow

by capturing a single adatom at a time and these adatoms are randomly produced in

their vicinity either by deposition or by release from an existing island. Also, direct im-

pingement of atoms on islands is neglected. This gives an (infinite) set of rate equations

(REs):

dn1
dt

= F − 2Dσ1n
2
1 −Dn1

∑
s≥2

σsns + 2
1

τ2
n2 +

∑
s≥3

1

τs
ns (2.1)

dns
dt

= Dσs−1n1ns−1 −Dσsn1ns +
1

τs+1
ns+1 −

1

τs
ns, s = 2, 3, ... (2.2)

Term ns/τs is the rate of dissociation of an island of size s (by single atom release);

1/τs is the characteristic time for dissociation of an atom from an s-size island [20].
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The term Dσsn1ns is the rate of attachment of single atoms to s-size islands; σs are

the so-called capture numbers of atoms by s-size islands. They are a measure of how

effective an s-size island is in competing with other islands for the available adatoms.

In the first equation, each dimer formation results in the loss of two monomers or

adatoms; so Dσ1n
2 is multiplied by 2. The first equation states that the total density

of single atoms is increased by deposition F , dissociation of an island made of two

atoms and release of atoms from s = 3, 4, ... -size islands; the adatom density is de-

creased by aggregation of two atoms into a s = 2 -size island and capture of an atom

by s = 2, 3, ...-size islands.

The (missing) key ingredients for solving this system of equations are the capture

numbers. The main problem of using REs is that the functional form of σs is not

known.

The simplest assumption is that σs = σaverage = const., which gives a good result

for the average island density for R� 1 [1] [21].

A more sophisticated approach determined σs self-consistently from diffusion equa-

tions for adatom capture by a specific, s-size island. This resulted in capture numbers

given in terms of Bessel functions K0 and K1 [2] [22]:

σs = 2π
Rs
ζ

K1(Rs/ζ)

K0(Rs/ζ)
(2.3)

where Rs is the island radius (islands are taken to be circular) and ζ is the average

distance an adatom travels before being captured by an island or another adatom; it is

identified with the loss term in equation (2.1):

ζ−2 = 2σ1n1 +
∑
s≥2

σsns (2.4)
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Figure 2.1: Average island size ver-
sus coverage for: (a) D/F = 105,
(b) D/F = 107 and (c) D/F = 109.
Dashed lines are numerical solutions
from the RE and solid lines are ob-
tained from kMC simulation. Figure
taken from Ref. [2].

Figure 2.2: Island size distribution ver-
sus s (number of atoms in an island) at
three different coverages. The dashed
lines are obtained from RE and solid
lines from kMC simulation. Figure
taken from Ref. [2].

These attempts on the REs are perfectly adequate for average values (such as mean

island size or total island density) but fail in the description of the island size distribu-

tion (ISD) [2] [21]. The reason for this is that the REs describe the growth of clusters

that depend only on time and their sizes, but not on their local environments. Since it

employs a mean field assumption that the surroundings of islands are independent of

their shapes and sizes [21], it neglects the fact that larger islands have larger capture

zones [14] and predict that all the islands grow with the same rate. This does not

reproduce the correct form of the ISD and does not agree with simulations [2] [23], as

is shown in Figures 2.1 and 2.2.

Properties of scale invariance are often observed in non-equilibrium growth pro-

cesses. One example is the scale invariance of the ISD: the average island size changes

during growth but the distribution of island size relative to the average does not. Much

work has been done in an effort to explain and incorporate this, and scaling theory has

been used in attempts to obtain the ISD from REs.
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2.2 Scaling theory

Since the normalised ISD will at any time look the same when plotted against island

size divided by the average island size (s/〈s〉), the average island size 〈s〉 is the only

relevant size scale. Therefore a scaling ansatz for solving the REs has been proposed

early in the 1980’s by Vicsek and Family [24]:

ns(θ) =
θ

〈s〉2
f

(
s

〈s〉

)
(2.5)

where the scaling function f(x) must satisfy the normalization and the first moment

conditions [1]

∫ ∞
0

f(x)dx =

∫ ∞
0

xf(x)dx = 1 (2.6)

Since then the validity of (2.5) has been confirmed in simulations [25] [26] and experi-

mentally, in STM studies [27], and it was used further by different authors [21] [15] [28].

The mean quantities 〈s〉, 〈n1〉 and 〈n〉 (island size, monomer number density and total

number density) can be written in the form [25] [26]:

〈s〉 ∼ θzRx (2.7)

〈n1〉 ∼ θ−rR−w (2.8)

〈n〉 ∼ θ1−zR−x (2.9)

The exponents z, x, r, w have been obtained from simulation [26] and experiment [29]

[30] for different modes of growth. They can also be obtained from the REs [25] [31]

when an appropriate form of σs is chosen:
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σs ∼ sp. (2.10)

But despite the fact that this form of σs reproduces and agrees with the exponent

values of (2.7) - (2.9) which concur with previous findings, there have been no report

of a success in obtaining a correct ISD from RE with it.

2.2.1 ISD scaling function of Amar and Family

Amar and Family [32] proposed an explicit expression for the scaling function f(s/〈s〉):

f(x) = Cix
ie−iaix

1/ai (2.11)

where i is the critical island size and parameters Ci and ai are such that f(x) satisfies

normalization conditions (2.6). This function fits both the ISD they obtained through

kMC and the experimentally obtained ISD [27]. The dependence of the scaling function

(2.11) on i allows identification of the critical island size from experimental data. To

that end, it has been used in many analyses of experimental data [33–38].

The form of ISD scaling function (2.11) is accurate for i = 1, 2, 3; but an expression

that works for i = 0 hasn’t been found [32].

2.3 Refinements of capture numbers

2.3.1 Work of Bartelt and Evans - kMC obtained capture numbers

Bartelt and Evans [21] [39] performed kMC simulations to obtain σs numerically, from

the mean number of attachments Ms to islands of size s during a time interval ∆t.

Then they calculated σs as σs = Ms/(L
2∆tDnsn1), where L is the lattice length, and

found that it depends linearly on s for s > 〈s〉, where 〈s〉 is the average island size,

and is almost exactly a constant for s < 〈s〉. Their simulation data agrees with capture

numbers that were measured with STM in an experiment where first Co islands were

formed on Ru(001) and then additional Cu was deposited [39].
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Similar results for σs were obtained in a later experiment with Ag islands on Ag(001)

[40].

Their simulation results strongly suggested a scaling ansatz for σs:

σs
〈σ〉
∼ C

(
s

〈s〉

)
(2.12)

Using (2.12), the ISD scaling function f , where they used ns ∼ θ/〈s〉2f(x), x = s/〈s〉,

was obtained from the REs:

f(x) = f(0)exp

(∫ x

0

(2z − 1)− C ′(y)

C(y)− zy
dy

)
(2.13)

where z = d(ln〈s〉)/d(ln t).

2.3.2 Level set method of determining σs

A different way of obtaining σs numerically was undertaken by Gibou et al. [28] [41] [42].

They used a level-set method [41], a general technique for simulating the motion of

moving boundaries (here, boundaries of an island) represented by a smooth function

ϕ. Its motion is obtained from the evolution equation [43]:

∂ϕ

∂t
= vn|∇ϕ| (2.14)

where vn is the normal boundary velocity. It is determined by the influx of monomers to

the island boundaries, which can, in turn, be calculated from the diffusion equation for

the monomer number density. Since the island boundary velocity is describing island

growth, σs can then be calculated from it.

Gibou et al. separated the nucleation regime from the island growth regime; they

focused on the well established aggregation regime where they neglected new nucle-

ations, thus making sure the existing capture zone network will not be rearranged by

nucleations. In contrast to kMC, these σs are a function of time, but still they can only

be obtained numerically.
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Unlike the kMC results of Bartelt and Evans, this σs doesn’t have a plateau; it has

an approximately linear dependence on island size s both for s < 〈s〉 and for s > 〈s〉.

They were able to obtain a scaling function for ISD from the REs with these values

of σs which agreed extremely well with kMC obtained ISD, however no analytic form

of σs that would allow integration of the REs was found.

More recently, Körner, Einax and Maas extended the numerical study of σs using

the same approach as Bartelt and Evans. They calculated σs as a function of both the

island size s and coverage [44], and later as a function of island size, coverage and ratio

R [45]. They used these numerically obtained σs(θ,R) to integrate the REs and the

resulting ISD was in excellent agreement with the kMC obtained ISD.

An analytic variant of this was done by Dubrovskii and Sibirev [46], with a func-

tional form σs(θ) = α(θ)(a + s − 1), with coefficient a and an arbitrary function α(θ)

that yield σs corresponding to the previously discussed kMC measured σs of Bartelt

and Evans [21] and Körner, Einax and Maas [45]. A choice of α(θ) = cθp (with coef-

ficient c > 0 and p > −1) was used to calculate the ISD from the REs [46]. A choice

of α(θ) = 1 was also explored [47], corresponding to a closed system with discontinued

deposition (so F is set to F = 0 in the REs).

An issue not addressed by these approaches is the fact that different islands of a

particular size s have different capture areas, which is a result of the spatial fluctuations

during island nucleations. These islands will then grow differently which cannot (easily)

be incorporated into a single σs. An additional complication is that a capture area can

greatly change if a new island nucleates near it [9].
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2.4 Capture zone areas - substrate tessellation

Capture zones are generally identified as Voronoi cells [3] where the island centres are

used as the Voronoi cell generators. A Voronoi cell is a polygon that encloses all of the

points whose distance to that cell’s generator (which is a predefined point) is less or

equal than the distance to another cell’s generator. So, for a network where the island

centres are the generators, points of a particular cell are closer to the center of the

corresponding island than to any other island’s centre.

Since the size distribution of islands basically follows the associated Voronoi cells,

scaling properties in such a model appear naturally, which can be seen on Figure 2.3

and 2.4 (Voronoi cells with generators in island centres, from [3]).

In a study of nucleation on substrate defect sites (so-called heterogeneous nucle-

ation), Mulheran and Blackman found that a semi-empirical expression for capture zone

area distribution, derived from random Voronoi networks, reasonably well matches the

kMC data [3]:

A(z) =
ββ

Γ(β)
zβ−1e−βz (2.15)

where z is the cell area divided by the average cell area, and β an empirical parameter.

(For a more general form of (2.15) in 1, 2 and 3 dimensions see [48]).

This Gamma distribution fit was used by a number of authors; in 2d for simulation

results [49] [50] and for experimental data [51–54], and also for 1d simulations [55]

(here, it was also used to fit the ISD).

A refinement of this tesselation was also made, with the Voronoi cells generated

around the island’s edges (Edge Cells) [14] [11] [40] instead of its centre. It was re-

ported [14] that for the case of nucleation via monomer diffusion (so-called homogeneous

nucleation), Edge Cells make a small but visible improvement over cells with islands

centres as generators. (In the case of nucleation on substrate defects sites (heteroge-

neous nucleation), substituting one type of cells with the other made no difference.)

It was also claimed [11] that Edge Cells are a necessary improvement for large islands

(large coverages).
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Figure 2.3: Snapshots of growing islands in their Voronoi cells, at coverage θ = 10 and
20%. Voronoi network was generated after the simulation. Figure taken from Ref. [3].

Amar, Family and Popescu used a set of Voronoi cell area (island-size dependant)

evolution equations coupled to the usual REs for island densities [56] and obtained

capture numbers as a function of coverage out of it.

A different study was undertaken by Mulheran and Robbie [57] [58], who used

the concept of capture zones to make a Joint Probability Distribution for island sizes

and capture zone areas and constructed RE governing their evolution. If ns,z is a

distribution of islands of size s with a capture zone area z, then its time evolution is

given by the RE:

dns,z
dt

= P (s− 1, z)− P (s, z) +
∑
z+

P#
s,z+

d
(∑

s>i ns
)

dt
− P#

s,z

d
(∑

s>i ns
)

dt
. (2.16)

Here the term P (s, z) is the probability that an island of size s and capture zone area

z absorbs another monomer. This is composed of the case when a diffusing monomer

hits the island (P ∼ σs,zns,zn1) and the case of a monomer being deposited onto the

island (P ∼ Fns,z).

P#
s,z is the probability that a newly nucleated island’s cell is overlapping the existing
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Figure 2.4: The correlation between island size and Voronoi cell area, in units of lattice
constant squared. Figure taken from Ref. [3].

cell (of size z) of the island (of size s). If the cell before this new nucleation was of size

z, new nucleation will decrease ns,z. If the cell was larger, of some size z+ > z, then

ns,z will increase. Then, the third term in (2.16) is the gain term for ns,z accounting

for increase of cells of size z belonging to islands of size s, and the fourth term is the

loss term.

This approach was later explored further by Bartelt and Evans [59] [60].

2.4.1 Generalised Wigner surmise

Pimpinelli and Einstein [61] proposed the generalised Wigner surmise (GWS) as a

model function for the CZD. It is a probability distribution function rooted in random

matrix theory and it can, for this problem, be written in the form:

Aβ(z) = aβz
βe−bβz

2
(2.17)

where z is the capture zone area divided by its mean. The constants aβ and bβ are

determined by normalization conditions
∫∞
0 A(z)dz =

∫∞
0 zA(z)dz = 1:

aβ =
2Γ
(
β+2
2

)β+1

Γ
(
β+1
2

)β+2
, bβ =

Γ
(
β+2
2

)
Γ
(
β+1
2

)
2

(2.18)
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The single parameter β is given by:

β =


2
d(i+ 1) if d = 1, 2

(i+ 1) if d = 3

where d is the spatial dimension and i is the critical island size.

Equation (2.17) is qualitatively similar to semi-empirical distribution (2.15) that

followed from Voronoi tessellation, but decays faster which makes it less skew and

shifts the peak towards a larger z. Unlike the gap fragmentation equation (2.29),

it is claimed to hold for all dimensions. However, in kMC simulations performed in

d = 1, 2, 3, 4 dimensions for the i = 1 point island model [62], it was found that,

specifically for d = 1, CZDs are narrower and with a higher peak than predicted by

GWS.

In the 2d case with i = 1, it was found that a different, higher β is required for a good

fit and a case was made that the general form of A(z) is more complex than the GWS

model [63]. This, along with observed experimental data on twodimensional island

growth, led Einstein and Pimpinelli to modify the original β = i+ 1 to β = i+ 2 [64].

The small size asymptotic behaviour (z −→ 0) of the model has been questioned in

Ref. [65].

In later publications, Einstein and Pimpinelli discussed the limitations of the model

for large zone sizes, and suggested it to be a good approximation at least in the mid-

range of scaled CZ sizes ([0.5, 2]) [64].

The GWS has been used to fit experimental data in several studies, from which i

was deduced [54] [66] [38].

2.5 Fragmentation approach

Instead of describing nucleation with the formalism of classical nucleation theory through

the REs, it can be viewed as a fragmentation process: each new nucleation fragments

the relevant cell.
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2.5.1 Precursor: Work of Blackman and Mulheran (1d lattice)

Adatoms diffusing near islands locally satisfy the diffusion equation [2] [15] [9]:

∂n1
∂t
−D∇2n1 = F −Dn1

2σ1n1 +
∑
s≥2

σsns

 (2.19)

where the last term is the rate of nucleation of new islands and attachment onto existing

ones. In the aggregation regime, when the single atom density n1 is in approximate

steady state, n1(X) between two point islands situated at X = 0 and X = Y on a

one-dimensional substrate satisfies the steady-state diffusion equation:

D
d2n1
dX2

+ F ' 0 (2.20)

The solution is the saturated form of the monomer density:

n1(X) =
1

2R
X(Y −X), 0 ≤ X ≤ Y (2.21)

and integrating this over the intervalX ∈ [0, Y ] gives the total number of single adatoms

(monomers) in a gap: n1,TOT = Y 3/12R. By averaging n1,TOT over all the gaps along

the substrate we get average adatom density 〈n1〉 = 〈Y 3〉〈n〉/12R, where 〈n〉 is the

(mean) total density of islands, 〈n〉 =
∑

s〈ns〉. With average gap size 〈Y 〉 = 1/〈n〉 and

scaled variable y = Y/〈Y 〉 we have:

12〈n〉3〈n1〉R = 〈y3〉 (2.22)

To get the capture zone distribution (in one dimension), two gaps (one to the left and

the other to the right of the point island) are bisected. With the assumption that there

is no correlation between the sizes of two gaps, the capture zone distribution Ac(z) is:

Ac(z) = 2

∫ 2z

0
φ(y)φ(2z − y)dy (2.23)
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where φ is the gap size distribution. This equation was numerically solved with numer-

ical values of φ(y) from the relation (2.22); the result compares favourably with data

obtained through kMC simulation [15].

This approach was extended by Amar et al. [56] [67] for the two-dimensional sub-

strate, again with fairly good comparison of ISD with kMC data; however the capture

zone area distribution was less satisfactory.

2.5.2 Gap fragmentation equation

On a 1d substrate, given the steady - state monomer density (2.21), the probability

of a nucleation occurring is proportional to n1(X)α, where α reflects the nature of

nucleation [68]:

a) for α = i+ 1 nucleation is driven by diffusion of monomers and i+ 1 of them are

needed to form a stable island, and

b) for α = i, stable islands are created when a monomer is newly deposited next to

(or directly onto) a pre-existing cluster made up of i monomers.

A nucleation in the gap of width Y (’parent gap’) results in creation of two new gaps

(’daughter gaps’) of widths X and Y − X. Processes like this are usually described

with the linear fragmentation equation [65] [69] [70]:

∂

∂t
u(X, t) = −a(X)u(X, t) +

∫ ∞
X

b(X|Y )a(Y )u(Y, t)dY (2.24)

where u(X, t) is the number density of gaps of widths X at time t, a(X) is the rate of

fragmenting gaps of width X and b(X|Y ) denotes the distribution of gaps of width X

that were created by fragmentation of the parent gap of width Y . Conditions:

∫ Y

0
b(X|Y )dX = 2,

∫ Y

0
Xb(X|Y )dX = Y (2.25)

enforce the fact that each nucleation produces exactly two new gaps and that the total

width of all gaps is preserved. Since the probability of a new nucleation in a gap of
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width Y is proportional to n1(X)α, a(Y ) is given by [65]:

a(Y ) =

∫ Y

0
Xα(Y −X)αdX = B(α+ 1, α+ 1)Y 2α+1 (2.26)

where B is the Beta function and the probability that this nucleation will occur at a

position r = X/Y in the gap is proportional to:

h(r) = rα(1− r)α, 0 ≤ r ≤ 1 (2.27)

When properly normalised, this becomes:

p(r) =
rα(1− r)α

B(α+ 1, α+ 1)
=

(2α+ 1)!

(α!)2
rα(1− r)α (2.28)

Now the fragmentation equation (2.24) can be written as:

∂

∂t
u(X, t) = −B(α+ 1, α+ 1)X2α+1u(X, t) + 2

∫ ∞
X

(X(Y −X))α u(Y, t)dY (2.29)

This is a special form of a linear, homogeneous fragmentation equation which admits

similarity solutions [65] [70]:

u(X, t) = 〈X(t)〉−2φ(X/〈X(t)〉) (2.30)

where 〈X〉 is the average gap size and the reduced distribution φ satisfies the norm

conditions
∫∞
0 φ(Y )dY =

∫∞
0 Y φ(Y )dY = 1. With (2.30), asymptotic behaviour is

found [65] [68]:

φ(x) ∼ kxα as x −→ 0 (2.31)

φ(x) ∼ kx−2 exp
(
−cx2α+1

)
as x −→∞ (2.32)
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where k, c are constants and x = X/〈X〉.

The connection with the CZD is given in (2.23), and with this the small-size asymptotic

CZD behaviour is:

A(z) ∼ kz2α+1 as z −→ 0 (2.33)

The large-size asymptotics of CZD can be calculated only for the case α = 1 , i = 0:

A(z) ∼ kz−9/2 exp
(
−2z3/µ3

)
as z −→∞ (2.34)

where µ > 0 is a constant.

These results were in good agreement with extensive kMC simulations results [68], but

an extension to a dimension d > 1 wasn’t possible.

In a later publication [5], a model equation for the GSD and CZD was derived

within the gap fragmentation framework on a 1d lattice: the Distributional Fixed Point

Equation (DFPE). The DFPE model is the topic of this thesis, so we will dedicate the

next chapter to the work previously done on it.
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Previous work on the DFPE

model

Inspired by work of Seba who modelled the distribution of spacings between parked

cars on a street [4], Mulheran et al. devised a new model for the GSD and CZD [5].

On a 1d substrate and within a point-island model, a gap of size x (daughter gap)

was created when a larger (parent) gap of size x + y fragmented. Here the sizes of

gaps are scaled to the average: x = X/〈X〉. Since y is unknown (the procedure of

fragmenting new gaps is a stochastic one) and because the sizes of gaps are scaled to

average, a mean field approximation is used: y = 1. Now the statistics of processes

where a parent gap of size x+ 1 breaks into proportions a and 1− a is described with

a distributional fixed-point equation (DFPE):

x , a(1 + x) (3.1)

The symbol , means that the left and right side of the equation have the same distri-

bution (so, the random variable x on the left and x on the right are drawn separately

from the same distribution).
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3.1 The Dickman distribution

Seba had used the DFPE (3.1) to model the distribution of open spaces between cars

parked in a street. By x he denoted the distance between car bumpers (scaled to the

average) and, again, a ∈ [0, 1] determines the proportions this open space will break

into when a new car parks in it. For a = 0 the new car will park immediately in front of

the left edge of the parking space, for a = 1 it parks on the right edge and for a = 1/2

it parks exactly in the middle.

With the presumption that a new car will park on a random position in the open

space, without any preference, a will have the probability density:

P (a) = 1, a ∈ [0, 1] (3.2)

This yields the well-known case of the Dickman distribution [71]. Figure 3.1 shows the

distribution of open spaces for this case.

Figure 3.1: Probability distribution of open spaces (scaled to the average), for the
Dickman case (P (a) = 1, a ∈ [0, 1]). Figure taken from Ref. [4].

However, the Dickman case isn’t a realistic model for parked cars; at minimum it

is reasonable to expect P (0) = P (1) = 0. Seba used a probability density P (a) given

with a Beta function to model the measured distances between parked cars on a street

in a city in Czech republic [4]. This has also been used to model the distances of birds

sitting on a power line [72].
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3.2 Modelling the GSD and CZD with DFPE

The probability of fragmenting a gap into proportions a and (1 − a), as described by

the DFPE x , a(1 + x), is denoted by P (a). φ(x) denotes the probability distribution

function of gaps x ∈ [0,∞) and Φ(x) is the cumulative distribution function (CDF)

that corresponds to it; defined as:

Φ(x) =

∫ x

0
φ(x1)dx1 (3.3)

As in Ref. [4], with this an Integral Equation can be derived from the DFPE:

Φ(x) = Prob[x1 ≤ x]

=

∫ 1

0
Prob[a(1 + x1) ≤ x|a]P (a)da

=

∫ 1

0
Prob[x1 ≤ x/a− 1]P (a)da

=

∫ 1

0
Φ
(x
a
− 1
)
H
(x
a
− 1
)
P (a)da (3.4)

Here the Heaviside step function H(r) (zero for r ≤ 0, otherwise one) enforces the fact

that Φ(r) = 0 for r ≤ 0. Then, since a can take values in interval [0, 1], argument of H

is equal or greater than zero only if a ≤ x:

Φ(x) =

∫ min(x,1)

0
Φ
(x
a
− 1
)
P (a)da (3.5)

Since the probability density function is the derivative of the CDF, it can be determined

by differentiating (3.5) in two regions, x < 1 and x > 1 (since it is not clear if Φ is

differentiable at x = 1). With the Leibniz rule:

d

dx

∫ B

A
Φ(a, x)P (a)da =

∫ B

A

∂

∂x
Φ(a, x)P (a)da+ Φ(B, x)P (B)

dB

dx
− Φ(A, x)P (A)

dA

dx

(3.6)
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for x < 1 (3.5) gives:

φL(x) =
d

dx
Φ(x) =

∫ x

0

∂

∂x
Φ
(x
a
− 1
) P (a)

a
da+ Φ

(x
x
− 1
)
P (x)

=

∫ x

0
φ
(x
a
− 1
) P (a)

a
da (3.7)

since Φ(0) = 0. For x > 1 (3.5) gives

φR(x) =
d

dx
Φ(x) =

∫ 1

0

∂

∂x
Φ
(x
a
− 1
) P (a)

a
da =

∫ 1

0
φ
(x
a
− 1
) P (a)

a
da (3.8)

Since the left side limit:

lim
x→1−

φL(x) =

∫ 1

0
φ
(x
a
− 1
) P (a)

a
da (3.9)

and the right side limit:

lim
x→1+

φR(x) =

∫ 1

0
φ
(x
a
− 1
) P (a)

a
da (3.10)

are the same, Φ(x) is differentiable at x = 1 and (3.7) and (3.8) can be written as:

φ(x) =

∫ min(x,1)

0
φ
(x
a
− 1
) P (a)

a
da (3.11)

This is the Integral Equation (IE) for DFPE and it holds for any differentiable P (a),

a ∈ [0, 1]. It can be solved iteratively if P (a) is known.

The probability that the nucleation will occur at a position a was already obtained

in the fragmentation equation model (Equation (2.28)):

P (a) =
aα(1− a)α

B(α+ 1, α+ 1)
=

(2α+ 1)!

(α!)2
aα(1− a)α (3.12)

where B(m,n) = Γ(m)Γ(n)/Γ(m + n) is the Beta function and parameter α holds

information about the dominant nucleation mechanism - diffusion or deposition. For
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α = i + 1 islands are nucleated by i + 1 diffusing monomers and for α = i an island

nucleated when a monomer was deposited in the vicinity of a pre-existing cluster of

size i.

Equation (3.12) assumes that the diffusing monomers are in a steady - state (with

a saturated density profile described by Equation (2.21)).

Specially, for the case i = 0 and α = i, an analytic expression for φ was found [5]:

φ(x) =
3x2

Γ(2/3)µ3

∫ ∞
(x/µ)3

t−4/3e−tdt, where µ =
4

3
Γ

(
2

3

)
. (3.13)

With P (a) given with (3.12), the small-size asymptotic form of (3.11) is:

φ(x) ∼ kxα as x −→ 0 (3.14)

as it was in the fragmentation equation approach (2.31). The large-size asymptotics

couldn’t be obtained analytically [5].

Figure 3.2 shows kMC simulation results used to test the DFPE model. For i > 0

there is virtually no difference between the scaled GSD φ(x) for the extended and the

point island model.

Figure 3.3 compares GSD φ(x) obtained through kMC simulations in a point-island

model and coverage 100% with the solutions of IE (3.11), for α = i + 1 and α = i

case. Equation (3.13) is shown on the i = 0 panel. The kMC data is (roughly) between

the α = i and the α = i + 1 case of the IE, suggesting that both the deposition and

diffusion driven cases of the DFPE (IE) model contribute to the actual nucleation on

the lattice.
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Figure 3.2: GSD for extended and point islands obtained from kMC with coverages
θ = 5%, 20% and (just for point islands) 100%. Black symbols are for the case R = 107,
blue and light gray for R = 108 and the red and dark grey for R = 109. Data for R = 109

and θ = 100% on the i = 3 panel are not included. Figure taken from Ref. [5].
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Figure 3.3: GSD obtained through kMC simulations in a point-island model and cov-
erage 100% (empty circles) compared to the solution to integral equation (3.11) for
diffusion (α = i + 1) and deposition driven (α = i) nucleation processes, plotted with
a full and dotted black line, respectively. On the bottom right panel equation (3.13) is
plotted with a green line. Figure taken from Ref. [5].

3.2.1 CZD

The capture zone distribution function can be obtained from the gap size distribution

(3.11) through equation (2.23) of the previous section (assuming the neighbouring gap

sizes aren’t correlated); but it can also be obtained via another DFPE.

Figure 3.4: The sizes of capture zones. Capture zones of sizes z′1 and z′2 were split into
three zones, smaller z1 and z2 and the new z.

The capture zone z (scaled to average) on Figure 3.4 can be viewed as a part of a
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previously larger zone z′1 on the left, and a part of z′2 on the right, that is:

z ,
a1
2

(z + z1) +
a2
2

(z + z2). (3.15)

With the mean field approximation z1 = 1 = z2 this becomes:

z ,
1

2
(a1 + a2)(1 + z), (3.16)

where a1 and a2 are both drawn separately from the distribution (3.12).

The corresponding integral equation is:

φz(z) =

∫ min(z,1)

0
φ

(
z

az
− 1

)
Pz(az)

az
daz (3.17)

where

az =
a1 + a2

2
. (3.18)

Comparison with kMC data and the generalised Wigner surmise is shown on Figure

3.5.

3.3 Non - mean field DFPE model

The DFPE for the GSD: x , a(x+ 1) involves a mean field approximation (setting the

average neighbouring gap to 1). A non - mean field version is possible:

x , a(x1 + x2), (3.19)

where x, x1 and x2 are all drawn from the same distribution. The corresponding integral

equation is (derivation in the Appendix):

φ(x) =

∫ 1

0
da

∫ x/a

0
dx1 · φ

(x
a
− x1

)
φ(x1)

P (a)

a
. (3.20)
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Figure 3.5: CZD from generalised Wigner surmise (red line), DFPE for α = i+ 1 (full
black line) and α = i (dotted black line), and kMC data (empty circles) in point island
model, with coverage θ = 100%. Figure taken from Ref. [5].

While the equation (3.19) moves past the approximation of setting x2 = 1, it does not

take into account that not all gaps are chosen with the same probability: the large

gaps are more likely to be fragmented. To account for that, it was proposed that

the gap x1 still be drawn from φ(x1) but after x1 is chosen, the gap x2 needs to be

drawn with a bias. Gap of size (x1 + x2) is fragmented with probability (x1 + x2)
2α+1

(as in Eqn. (2.26)) so x2 is not drawn from φ(x2) but from the skewed distribution:

(x1 + x2)
2α+1φ(x2). The resulting, biased integral equation is then:

φ(x) =

∫ 1

0
da

∫ x/a

0
φ
(x
a
− x1

)
φ(x1)P (a)

x2α+1

a2α+2
dx1. (3.21)

Figure 3.6 shows the difference between the mean field IE (3.11), and non-mean

field unbiased and biased Eqns. (3.20) and (3.21), for the values of α = 1, 2, 3 and 4.

The unbiased Eqn. (3.20) overestimates the number of smaller gaps, which is fixed by

by the bias.

The biased Eqn. (3.21) grows closer to the mean field Eqn. (3.11) as α grows, so
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Figure 3.6: Mean field IE (3.11) (full black line), unbiased non-mean filed Eqn. (3.20)
(dotted blue) and biased Eqn. (3.21) (dotted red), for α = 1, 2, 3 and 4. Upper left
panel (α = 1) additionally shows Eqn. (3.13) with a full green line. Figure taken from
Ref. [5].

the non-mean field refinement of the DFPE will only be a visible improvement to the

mean field approximation for lower cases of i.

The mean field DFPE (3.1) (and its corresponding IE (3.11)) gives us two idealized

model cases: nucleation which is driven only through diffusion (α = i + 1), and only

through deposition (α = i).

For i = 0, setting α = i = 0 (the deposition case) in Eqn. (3.12) gives P (a) = 1,

which leads to the Dickman distribution. Such a P (a) is a very poor physical model; it

expects that every monomer on the lattice has the same probability of sticking to the

surface (forming an island) regardless of its surroundings. We will nevertheless treat the

case of the Dickman distribution as it were a valid deposition model for i = 0, mainly
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because we have no alternative model for this case but also because the distribution

itself is an interesting one.

It is important to notice that modelling GSD and CZD with the mean field DFPE

and its IE (3.11) and (3.17) includes two separate assumptions: first, that the realistic

nucleation process can be modelled with the DFPE described in section 3.2. Second,

for the GSD, that the P (a) is given with Eqn.(3.12), which is derived from the monomer

density (Eqn.(2.21)), independently of the DFPE model. In the case of the CZD, Pz(az)

which is sampled from the P (a) through (3.18), includes an additional assumption that

the neighbouring gaps are uncorrelated.

The non-mean field DFPE (3.19) includes the same assumptions, but not the mean

field approximation, which makes it a more accurate model. However, it only makes

for a small improvement (as seen on Figure 3.6). We will therefore almost exclusively

focus on the simpler mean field model, test its consistency and its possible extension

to 2d.
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Simulations and numerical

methods

Some of the computational methods we use in this work are self-contained and explained

within a single research chapter, and a few methods we use throughout the entire thesis.

We shall describe the latter here, so that all of the subsequent research chapters can

refer to the same explanation of a calculation (or simulation) method.

4.1 Monte Carlo procedure for obtaining gaps from a DFPE

To create a set of gaps of lengths x that satisfy the DFPE equation x , a(1 + x), we

used a Monte Carlo procedure:

First define an array for M = 106 gap sizes x(M) (the allowed values are real numbers

with 9 decimal spaces). Set the first to one and the rest to zero (x(1) = 1, x(2, ...,M) =

0).

Make a loop with indices i ∈ [2,M ] and in it perform these two steps M − 1 times

(from i = 2 to i = M):

1) Use the random number generator (built-in in the compiler, we use GNU Fortran

(gfortran) and Intel’s Fortran (ifort) compilers) to select one of the gap sizes by random:
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we choose a gap index by random, jran and then define x(jran).

Built-in random number generators can give random real numbers between y = 0

and y = 1 (but not including 1), with the probability distribution P (y) = 1 (like in the

Dickman case). To select a gap size (which is an element in a one-dimensional array

with M indices), we need to select a random integer value for an index, so we convert

a random real number into an integer. In the first step (i = 2) the algorithm can only

choose jran = 1 (so x(1) is the chosen gap size), but for j = 3 a random number from

the interval [0, 1) is mapped to integers 1 or 2 to give jran = 1 or jran = 2; in general

the real random number in this step is always mapped onto a set of integers in the

interval [1, i− 1] with uniform density.

2) Use the random number generator to select a value for a and then redefine the

second element (when i = 2) of the gaps array, x(i) = x(2), as:

x(i) = a(1 + x(jran)) (4.1)

Since the first gap size was x(1) = 1, the gap size x(jran) used to redefine x(2) in this

step could have only been 1. In the next cycle (i = 3), after a random value for a

has been randomly chosen, the third element of the array, x(i) = x(3), is redefined as

x(i) = a(1+x(jran)). The gap size x(jran) (randomly chosen in step 1) used to redefine

x(3) could have been (with equal probability) either 1 (if jran = 1 is chosen in step 1)

or the previously updated value of x(2) (if jran = 2).

Next, to incorporate the fact that nucleation fragments a gap into two new gaps

with size proportions a and 1− a, redefine x(jran):

x(jran)→ (1− a)(1 + x(jran)). (4.2)

This enforces the symmetry a↔ (1− a).

As i increases, so does the number of available gaps to choose from (jran ∈ [1, i −

1]). This expanding array of ‘active’ gaps yields DFPE. A large array (following large
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number of steps) is needed for a good sample and it ensures the stochastic nature

of DFPE. After a few steps the system completely forgets the initial conditions (the

predetermined length of the first gap size x(1) = 1 and the zeroes of the rest). The

code block for this procedure is in the Appendix B.

The above described procedure corresponds to the Dickman case. DFPE for the gap

size distribution between islands is obtained in the same way, with slight modification

that transforms the built-in P (a) = 1 of the random number generator into the desired

P (a) = N · aα(1 − a)α, where N is the normalization constant. This is done in two

steps:

1. choose a random value of a (call it ax) and calculate the corresponding value of

P (a) (call it y).

2. choose another random number: t ∈ [0, 1), and multiply it by Pmax - the max-

imum possible value of the function P (t) on the interval [0, 1). This way, the inter-

val [0, 1) (from which the random number generator can draw) maps to the interval

[0, Pmax) (where the final, multiplied value of t lies).

Now if this t ∈ [0, Pmax) is smaller than or equal to y from the first step, the value

ax is kept as a. If not, the two steps are repeated until such a t is found for which

t ≤ y. This way, the randomly chosen a is kept (for further use in the algorithm) with

a probability y = P (a).

A variant of this procedure is used in Chapter 9 to calculate the DFPEs for the

capture zones in 2d.

Once the set of M = 106 gap sizes x(M) is created, we calculate their size distri-

bution φ(x) by creating histograms: we divide the x axis into equal intervals (bases

of bins) and count the number of gap sizes that fall into each of them; this gives the

height of bins. When normalised (each bin divided by the total area) these heights are

the distribution φ(x).

Results of this MC procedure are shown on Figure 4.1 for the Dickman distribu-

tion, and for the GSD from DFPE with α = i+1, i = 0 (P (a) = 6a(1−a)) on Figure 4.2.
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To better understand the behaviour of the DFPE, for the Dickman case we investi-

gated whether the large (small) gap sizes were created by small or large vales of a. To

see the structure in the a vs. x plot, the gap sizes were grouped in intervals of length

0.5 (first interval x ∈ [0, 0.5], second x ∈ [0.5, 2] etc). The values of a that created

these grouped gaps were located, and histograms for a corresponding to the intervals

of x were created. On Figure 4.3, the distribution P (a) that created the gaps of sizes

x ∈ [0, 0.5] is shown with yellow circles (visible on the left); the small-size gaps were

created with small-size a. On the opposite end, the large-size gaps were created by

large-size a; the distribution P (a) responsible for x ∈ [3, 3.5] is shown in black circles

(zero for a ∈ [0, 0.4] and then growing to the right). These two P (a) have a pronounced

peak, for the first distribution near a = 0 and for the second near a = 1, and are

almost zero otherwise. The values of a that created the mid-size gaps (around x ' 1)

have flatter and wider distributions, so the (averaged) sum of all these distributions is

P (a) = 1.
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Figure 4.1: The Dickman distribution φ(x) from the MC procedure, with 50 and 500
bins used to obtain φ(x).
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Figure 4.2: GSD φ(x) from the MC procedure, with P (a) = 6a(1 − a), obtained with
50 and 500 bins.

4.2 Numerical calculation of the integral equation

To numerically calculate the integral equation

φ(x) =

∫ min(x,1)

0
φ
(x
a
− 1
) P (a)

a
da, (4.3)

we used an iterative scheme. The probability P (a) can be set to the theoretical expec-

tation:

P (a) = Naα(1− a)α, (4.4)

where N is the normalizing constant, or to the values obtained from the kMC simula-

tions.

Initial guess for φ(x) was a rectangular distribution:

φ0(x) =


0.5, x ∈ [0, 2]

0 elsewhere.
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Figure 4.3: Distributions P (a) that created gap sizes grouped in intervals from x ∈
[0, 0.5] to x ∈ [3, 3.5].

This was inserted on the right hand side of (4.3) to obtain φ1(x), which was then

inserted on the right hand side (4.3) to obtain φ2(x), and so on. A distribution φn+1(x)

that does not differ from the previous iteration φn(x) is the solution of (4.3) for the

given P (a). When using (4.4), after ten iterations we have φ10(x) = φ11(x) up to the

first three decimals, and later the routine was always run until the iterations were the

same at least up to the first 5 decimals.

Figure 4.4 shows the convergence of the IE solution for the α = 2 case.

4.3 Full kMC simulations: one-dimensional lattice

We use a point island model, in which islands occupy a single site on the lattice with

sizes recorded and incremented as they capture new monomers. In this model the

islands don’t coalesce even at large coverage θ, which allows us to collect much more

data than we could in the extended island model (where the scaling would quickly break

down).

The simulation starts with an empty lattice and loops diffusion steps a certain
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Figure 4.4: Iterations of Equation (4.3), for α = 2.

number of times (determined by the desired ratio R) between deposition steps. In a

diffusion step, we select a random free monomer on the lattice and move it to either the

left or right adjacent lattice site with equal probability. In a deposition step a monomer

is placed on a randomly chosen lattice site.

If a monomer arrives (or is deposited) to a position adjacent to a stable island, it

will be absorbed: we delete it from the list of free monomers and increment the island’s

size by one (the island is still occupying a single site on the lattice).

If the monomer arrives next to (or on top of) another cluster of monomers, and

the total number of monomers has exceeded i, an island nucleates: the monomers are

deleted from the list of free monomers and the new island’s size and position is recorded.

We use periodic boundary conditions: if a monomer finds itself on one end of the

lattice, it can diffuse to the site on the opposite end.

Schematics of the processes in a point island simulation with i = 1 are shown

in Figure 4.5. In our kinetic Monte Carlo simulation, we start off with an initially

empty lattice with N = 106 sites and diffusion to deposition ratio R = 107. We allow

monomers to hop on average 20 times before the next deposition event (R = 0.5 ·20 ·N ,

where the factor 0.5 reflects the fact that a monomer will, on average, hop to the left
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Figure 4.5: Illustration of processes involved in the 1d point island kMC simulation.
The sizes of the islands are here indicated by the monomer stacks (for illustration only).
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Figure 4.6: Number densities of free monomers and islands vs. coverage θ, for i = 1.

(or right) in half of its diffusion moves). In total we deposit n = 106 monomers to get

θ = 100% coverage on a lattice with N = 106 sites (however, not all of the n monomers

will be attached, typically at the end of a simulation there is up to a hundred free

monomers in i = 1 case, and more for higher i). Figure 4.6 shows the number densities

of free monomers and number densities of islands as a function of coverage θ in the

i = 1 case.

In the i = 0 case we set the probability that a monomer will permanently stick to

the site onto which it hopped or was deposited to be p = 10−7.

To get GSDs and CZDs we use outputs at desired coverage θ and average the data
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over 100 runs. Every time a new island nucleates, we record its position and use that

data to create PkMC(a) (built as a histogram). We also record the size of the gap

in which the new island nucleation occurs, and the gap’s size rank. GSD results for

i = 1 are shown on Figure 4.7, with true gap sizes, measured in lattice spacings, and

on Figure 4.8 with gap sizes scaled to the average gap size at a given coverage.

For the remainder of the thesis, whenever dealing with a one-dimensional substrate,

we will be using the GSDs and CZDs described here; with θ = 100% coverage (point

island model), R = 107, results averaged over 100 runs (the example GSD case plotted

red in Figure 4.8).
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Figure 4.7: GSD for i = 1, unscaled, at various coverages θ.
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Inverse problem and the

Tikhonov regularisation method

The DFPE model for the GSD and CZD can be used to calculate the relevant proba-

bility distribution P from a known GSD and CZD (in our case, kMC obtained).

In his chapter, we set out to do this because it will not only be a test for the models

self - consistency (ultimately we will compare the calculated P with the one we directly

measure during kMC simulations), but also it has implications for situations where P

cannot be measured. Developing a good strategy of calculating P from measured size

distributions could later be used on experimental data for 1d substrates (for example,

nucleation along a step edge).

The Tikhonov regularisation method is a textbook method of solving the inverse

problem we are concerned with; we will use in this chapter.

The chapter is structured as follows: we will first cover some of the theoretical

basics behind the inverse problem we are dealing with in Section 5.1, before proceeding

to explain the theory behind the Tikhonov method in Section 5.2. We will then look

into the technical aspects of the inverse problem associated with the gaps, and compare

the solutions from two different software algorithms in Sections 5.3 and 5.4. With a

chosen algorithm, we will finally solve the inverse problem for the gaps and attempt a

few modifications to the standard choice of method parameters, in Sections 5.5 - 5.7.
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Lastly, we will solve the inverse problem for the capture zones in Section 5.8, with the

approach that worked best for the gaps.

5.1 Inverse problem

We aim to solve the inverse problem of finding P (a) for a given φ(x) (obtained from

kMC) from the integral equation

φ(x) =

∫ min(x,1)

0
φ
(x
a
− 1
) P (a)

a
da. (5.1)

The integral equation (5.1) belongs to the class of (linear) Fredholm integral equa-

tions of the first kind, which are ill-posed. An ill-posed problem, in the sense of

Hadamard, has a solution that is not unique or it isn’t stable, i.e. it doesn’t depend

continuously on the data (a small perturbation in the data can cause arbitrarily large

perturbations in the solution) [73, p.4].

Fredholm equations of the first kind have a general form

g(x) =

∫ B

A
k(x, a)f(a)da, (5.2)

where g is the unknown and k is called the kernel function.

It is important to notice that our integral equation (5.1), when compared with the

Fredholm equation (5.2), has an additional complication: the function φ(x) on the left

hand side also appears as the kernel function φ(x, a) under the integral on the right

hand side. So, in an inverse problem of finding P (a), any noise in the input data φ(x)

will also propagate in the kernel. Because of that, this is not a standard inverse problem

and, as far as we know, there are no recipes for dealing with this complication. In lack

of another strategy, we will proceed to treat the integral equation (5.1) as a standard

Fredholm equation.
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The Fredholm integral equation (5.2) can be written in an operator form:

κf = g, (5.3)

where κ is a linear integral operator, κ : U → V , and U, V are subspaces of some

normed spaces X,Y . Applying the kernel κ to the function f on the right hand side

will in general smooth it, so inversion becomes difficult and the solution is very sensi-

tive to small changes or noise in the input g: a small error in input can result in an

arbitrarily large error in the solution.

Ill-posedness of equation (5.3) is a consequence of both the properties of the operator

κ : U → V and the subspaces it works on; a formal mathematical discussion of this

can be found in Appendix C. The key result is that κ cannot be inverted to get a

good (stable) solution because U is infinite-dimensional; this is a fundamental property

of the equation and cannot be avoided. The consequence is this seemingly counter -

intuitive behaviour: under normal circumstances, increasing the number of points on

the mesh grid (on which the equation is solved numerically) gives better solutions. But

for ill-posed equations, the solutions become less reliable as the number of grid points

is increased.

5.1.1 Discrete ill - posed problem

When equation κf = g is discretized with some quadrature rule:

∫ b

a
Φ(x)dx ≈

N∑
i=1

wiΦi(x), (5.4)

it is a matrix equation Kf = g with K ∈ Rm×n, f ∈ Rn and g ∈ Rm (or, more generally,

in C). Ill-posedness of the continuous operator then translates into ill-posedness of the

matrix K, which can be quantified with its condition number; a measure of how much

the output changes for a small input change. The matrix condition number grows as

the number of grid points on which K is evaluated grows; the discrete Km×n operating
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on a finite, n-dimensional space becomes closer to the continuous operator κ operating

on an infinite dimensional space.

Generally, with a given matrix equation Ax = y, the condition number of the matrix

A is defined as the maximum ratio of the relative error in x, δx, and the relative error

in y, δy. When y has an attached error δy, the solution x′ to the matrix equation is:

x′ = A−1(y + δy) = A−1y +A−1δy = x+A−1δy, (5.5)

which causes an error in x′:

δx = x′ − x = A−1δy. (5.6)

If A is very small, then A−1 will be very large and amplify δx. The condition number

of A is now defined as:

cond(A) = max

(
‖δx‖
‖x‖

/
‖δy‖
‖y‖

)
= max

(
‖δx‖ · ‖y‖
‖δy‖ · ‖x‖

)
= max

(
‖A−1δy‖ · ‖Ax‖
‖δy‖ · ‖x‖

)
,

(5.7)

and because

‖A−1δy‖ · ‖Ax‖
‖δy‖ · ‖x‖

≤ ‖A
−1‖ · ‖δy‖ · ‖A‖ · ‖x‖
‖δy‖ · ‖x‖

= ‖A−1‖ · ‖A‖ (5.8)

we have:

cond(A) = ‖A−1‖ · ‖A‖. (5.9)

Here, ‖A‖ denotes a norm of A (any norm); it is possible to define the condition number

of A relative to any norm, although in practise one would most often use the 2-norm

(‖·‖2). The 2-norm of a matrix Am×n is defined as the square root of the sum of the
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absolute squares of its elements,

‖A‖2=

√√√√ m∑
i=1

n∑
j=1

|Aij |2 (5.10)

and ‖x‖2 =
√∑n

i=1|xi|2 for a vector x.

From (5.9), it is clear that the condition number is equal to or greater than one:

‖A−1‖ · ‖A‖ ≥ ‖A−1A‖ = ‖I‖ = 1.

If the condition number is too large (more precisely, if its reciprocal is close to

the machine’s floating point precision [73, p.53]), a matrix is ill conditioned (if the

condition number is infinite, it is singular). Well conditioned matrices have condition

number close to one.

Singular value decomposition

Singular values σi of a matrix Am×n, m ≤ n, are the positive square roots σi =
√
λi ≥ 0

of the associated Gram matrix ATA. The corresponding eigenvectors of ATA are called

the singular vectors of A.

Matrix ATA is symmetric, so it has a property that its eigenvectors vi form an

orthonormal basis. Then, singular value decomposition can be constructed like this:

let ui = Avi/σi and then construct 3 matrices:

matrix U has ui as column vectors,

matrix V has vi as column vectors,

matrix Σ has σi on the diagonal and zeros elsewhere.

Then UΣ is a matrix with Avi as column vectors and when multiplied with V T , UΣV T

gives Aviv
T
j but since the eigenvectors vi are orthonormal the result is A.

Formally, singular value decomposition (SVD) of the real matrix A is defined as [73,
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p.19]:

A = UΣV T =
n∑
i=1

uiσiv
T
i , (5.11)

where U = (u1, ..., un) ∈ Rm×n, Σ = diag(σ1, ..., σn) ∈ Rn×n and V = (v1, ..., vn) ∈

Rn×n. Matrices U and V have orthonormal columns and V , since it is a square matrix,

has orthonormal rows too (so it is an orthogonal matrix):

UTU = I, V TV = I, V V T = I. (5.12)

From the definition (5.11), we have ATA = V ΣTUTUΣV T = V Σ2V T and AAT =

UΣV TV ΣTUT = UΣ2UT so the link of SVD to eigendecomposition of the symmetric

matrices ATA and AAT is clear; the left singular vectors of A, ui, are eigenvectors of

the matrix AAT and the right singular vectors of A, vi, are eigenvectors of ATA.

A very useful additional property of the SVD is that it constructs an orthonormal

basis for the nullspace and the range of the matrix.

If there is a matrix equation Ax = y where x ∈ X, y ∈ Y are vectors, then the matrix

A maps vectors x to vectors y; the range (or image) of A is a subset of Y comprised of

these y’s. Rank of the matrix A is defined as the dimension of the space spanned by

its columns (or, equivalently, rows), so it is just a dimension of the subspace of Y onto

which A has mapped elements from X (dimension of the range), r(A) = dim(Im(A)).

A necessary (but not sufficient) condition for a matrix Am×n to be invertible is that it

is of full rank (r(A) = min(m,n)). If a matrix doesn’t have full rank, it is said to be

rank deficient, and it will map some of the elements from X not to Y but to zero; the

subspace of X for which Ax = 0 is the nullspace or the kernel of a matrix A. (In terms

of the definition of an ill-posed equation from Appendix C, the matrix A here is not

bijective.) Dimension of the nullspace plus rank are equal to the full rank of A (the

rank and nullity theorem, dim(Ker(Am×n)) + dim(Im(Am×n)) = min(m,n)).

Columns of V corresponding to singular values equal to zero are an orthonormal

basis for the nullspace, and columns of U that correspond to singular values not equal
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to zero are an orthonormal basis for the range [6, p.53]. So the rank of A can be

calculated as the number of non-zero singular values.

The determinant of A is equal to the product of all of its singular values, so if any of

the singular values is zero the determinant is zero - rank deficient matrices are singular.

When the 2-norm (‖·‖2) is used, the definition of the condition number of a matrix

(5.9) reduces to the ratio of the largest to the smallest singular value in its singular

value decomposition:

cond(A) =
σmax(A)

σmin(A)
, (5.13)

so it is clear that singular matrices have infinite condition number.

If A is not full rank, equation Ax = y is a rank deficient problem. Rank deficient

problems are characterised by matrices with a well defined gap between the large and

the small singular values that cluster around zero [73, p.2]. Then some of the rows (or

columns) of A are a linear combination of the others.

Numerical rank of a matrix is equal to the number of its linearly independent

columns (or rows), and it can also be calculated as the number of positive singular

values. Then, when errors are present (i.e. measurement, approximation or rounding

errors) it can happen that otherwise linearly independent columns (or distinct positive

singular values) become (almost or completely) linearly dependant (in other words,

some or all singular values become indistinguishable). Because of that, a strict definition

of numerical rank takes into account a certain tolerance interval ε within which the

columns are linearly independent. When working with singular values, the numerical

rank only makes sense if there is a well – determined gap between the singular values

(otherwise it is ill-defined) [73, p.46]:

σr > ε ≥ σr+1. (5.14)

Discretized Fredholm integral equations typically belong to the class of discrete ill-

posed problems, where there is no particular gap in the singular value spectrum and

the singular values decrease gradually towards zero. Because there is no gap between
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the singular values, there is no clear notion of numerical rank [73, p.2].

From the SVD definition (5.11) we have the following relations:

Avi = σiui, ‖Avi‖2= σi, (5.15)

ATui = σivi, ‖ATui‖2= σi. (5.16)

From this, it is clear that if some singular values σi are small enough, the matrix A is

nearly rank deficient and the corresponding vi are the numerical nullvectors of A, and

the ui of AT [73, p.21].

5.2 Tikhonov regularization: theoretical background

The matrix equation Kf = g discussed in the previous chapter, is in most practical

applications contaminated with noise in the input g: (typically, g represents measured

data so it has an error)

g = g0 + e, (5.17)

where g0 is the true, error free input and e is noise. Ideally, the bound for the error

norm is known:

‖e‖2 ≤ δe. (5.18)

The goal (since the error free solution f0 isn’t available) is to solve the ’perturbed’

equation Kf = g. The Tikhonov regularisation method replaces this problem - the

problem of minimizing

min
f
‖Kf − g‖22 (5.19)

with the following:

min
f
{‖Kf − g‖22 + λ‖Lf‖22}. (5.20)
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Here λ > 0 is the regularisation parameter and L the regularisation operator, typically

the identity operator, a discrete approximation of some derivation operator, or a di-

agonal weighting matrix [73, p.12] [74]. The regularisation parameter determines how

much weight is given to minimizing ‖Lf‖2 relative to the residual norm ‖Kf − g‖2.

For a chosen value of λ, the standard form of a matrix equation associated to (5.20) to

be solved is

(KTK + λLTL)f = KT g. (5.21)

If the matrix K is ill - conditioned, with an ill-determined rank, the addition of the

regularisation operator L should make the problem well posed and [73, p.22] [75]:

N (K) ∩N (L) = {0} (5.22)

(where N (K) is the nullspace of K; discussed in the previous section), so then Equation

(5.21) has a unique solution fλ for all λ. These solutions are less sensitive to error than

the solutions of the original problem.

We can write the equation Kf = g in terms of the singular value decomposition

(SVD) [73, p.19]:
∑

i uiσi(v
T
i f) = g. From this we have:

∑
i

vTi f =
∑
i

uTi g

σi
. (5.23)

Then the solution f only exists if uTi g (the expansion coefficients of g with respect to the

orthonormal ui) decrease faster than σi. Matrix K can be of full rank, but numerically

rank deficient if some of the singular values σi are small enough. The small σi can give

an arbitrarily large norm ‖f‖22 =
∑

(uTi g/σi)
2 unless g is in the range of K, that is

unless |uTi g| < σi (singular vectors ui span the range of K).

The Picard condition: If g satisfies:

∑
i

∣∣∣∣uTi gσi
∣∣∣∣2 <∞, σi 6= 0, (5.24)
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then the solution of Kf = g (or minf‖Kf − g‖2) is:

f =
∑
i

uTi g

σi
vi. (5.25)

The Picard condition is always satisfied for a finite-dimensional problem, unless noise

is present; then it is very unlikely that it will be satisfied [73, p.49].

5.2.1 Generalized SVD

In the minimization (5.20) we have a pair of matrices, (K,L) for which we can define

generalized singular value decomposition (GSVD). Assuming that (5.22) holds and that

L is full -rank, for K ∈ Rm×n and L ∈ Rp×n the GSVD is defined as [73, p.22]:

K = Ũ

Σ̃p 0

0 In−p

X−1, L = Ṽ
(
Mp 0

)
X−1, (5.26)

where Ũ ∈ Rm×n and Ṽ ∈ Rp×p are orthonormal (so ŨT Ũ = In and Ṽ T Ṽ = Ip) and

X ∈ Rn×n is a non singular matrix with columns that are KTK orthogonal, that is,

they satisfy the following:

XTKX =

Σ̃p 0

0 In−p

 , XTLTLX =

Mp 0

0 0

 . (5.27)

The matrices Σ̃p and Mp are diagonal,

Σ̃p = diag(σ̃i), Mp = diag(µi) (5.28)

and their elements are

0 ≤ σ̃1 ≤ ... ≤ σ̃p ≤ 1, 1 ≥ µ1 ≥ ... ≥ µp > 0, (5.29)

54



Chapter 5. Inverse problem and the Tikhonov regularisation method

and they satisfy

σ̃2i + µ2i = 1. (5.30)

The generalized singular values γi of the pair (K,L) are:

γi =
σ̃i
µi
> 0, i = 1, ..., p. (5.31)

Matrices Ũ , Σ̃, Ṽ of the GSVD of (K,L) are in general different from the matrices

U,Σ, V of the SVD of K. The are identical if the regularisation operator L is chosen

to be In. Then X−1 = M−1Ṽ and K = Ũ(Σ̃M−1)Ṽ T , so then the generalized singular

values of (K,L), γi, are related to the ordinary singular values of K, σi, by: σi = γn−i+1.

The solution to Equation (5.21), equivalent to (5.25), in terms of GSVD, is [76]:

fλ =

p∑
i=1

γ2i
γ2i + λ2

ũTi g

σ̃i
xi +

n∑
i=p+1

(ũTi g)xi. (5.32)

Here γ2i /(γ
2
i + λ2) are the filter factors that filter out the contributions to f that come

from the terms with small singular values γi. Since the small singular values were the

main generators of large oscillations of f in non-regularized case (5.25), solutions of the

regularized problem will now be less sensitive to perturbation (i.e. error in input g).

5.2.2 Choosing the regularisation parameter

If the error (5.18) is known and if only the right hand side of Kf = g is perturbed, a

popular and simple method of choosing the regularisation parameter λ is given by the

so-called discrepancy principle [76]: λ that gives the residual norm equal to the upper

norm of the errors, ‖Kfλ − g‖2= δe. If, additionally, error in K is also present (and

known), this expands into the generalised discrepancy principle. This method however

will (especially when errors in K are present) typically oversmooth the real solution [76].

If the error is unknown, a frequently used method is the generalized cross - valida-

55



Chapter 5. Inverse problem and the Tikhonov regularisation method

tion [77] [73, p.187], where λ is chosen as the one that minimizes the GCV function:

GCV =
‖Kfλ − g‖22

(Tr(I −KK−1))2
. (5.33)

Another option is the (relatively new) L-curve criterion.

Since minimization (5.20) involves a trade - off between minimizing the residual

norm ‖Kf − g‖2 (agreement between data and the solution) and minimizing the semi-

norm (the regularisation term’s norm) ‖Lf‖2 (smoothness and stability of the solution),

it is convenient to plot those two against each other. This is the L - curve:

L-curve =
{

(χ(‖Kfλ − g‖22), χ(‖Lfλ‖22) : λ > 0
}
, (5.34)

where χ is a monotonically increasing function, most often χ(x) = x, χ(x) = log(x)

or χ(x) =
√
x [78] (we will use χ(x) = x for our L - curve plots). The L - curve,

as a function of λ, always [76] has a shape of the letter L (hence the name). With

these standard choices of χ, ‖Kfλ − g‖22 is an increasing function of λ and ‖Lfλ‖22 a

decreasing one.

All of the solutions of (5.20) are above the L - curve or lie on it, that is, for a given

fλ:

χ(‖Kfλ − g‖22) ≤ χ(‖Kf − g‖22), ∀f ∈ Rn such that χ(‖Lf‖22) ≤ χ(‖Lfλ‖22)

(5.35)

(a proof is provided in [78]).

The L-curve has a corner where the solution fλ changes from being dominated by

regularisation errors (oversmoothing) to being dominated by the errors of the right

hand side g. The value of λ on the corner is therefore taken to be the optimal.
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5.3 Calculation of Pλ(a) from the GSD

When solving our inverse problem; that is, when solving the IE:

φ(x) =

∫ min(x,1)

0
φ
(x
a
− 1
) P (a)

a
da (5.36)

for P where φ is the known, we use the zeroth order regularisation. Then the matrix

equation to be solved is

(KTK + λIT I)P = KTφ, (5.37)

where the matrix K is given as a discretized integral
∫
φ(
x

a
− 1)

da

a
where φ is taken as

the height of the bin used to create the GSD as a histogram from the kMC data:

K =
100∑
j=1

φj(
xj
aj
− 1)

da

aj
(5.38)

All of the GSDs were originally created with 500 bins, and the size of the interval they

cover varies for different i (because each is scaled to the average and the average gap

size differ) - for example, for i = 1 it is [0, 6.9321], giving dx = 6.9321/500 = 0.0138.

This interval and the number of points xj is then rescaled to a 100 points where the

expression (5.38) is evaluated, xj ∈ [0, 6.9321/100] giving dx = 0.069321.

The interval for the variable a, [0, 1], is also divided into 100 points where aj is

evaluated, so da = 0.01 and K100×100.

With this K and a chosen parameter λ, matrices (KTK+λIT I) and KTφ (where φ

is again taken to be the bin heights φj that created GSD from kMC data) are written

as a product of a lower and upper triangular matrix (LU decomposition) using routines

from the ”Numerical recipes” handbook [6], allowing the solution P of (5.37) to be

simply calculated; the matrix equation when using LU decomposition comes down to

the final stage of the Gaussian elimination method.
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5.3.1 Regularity of the problem matrix K for i = 1 case

In this section, we illustrate the regularity issues of the K matrix on the example

dataset: i = 1 case of the KP = φ inverse problem, where the input GSD is averaged

from a 100 runs of kMC simulations.

MATLAB calculates the rank of the matrix K100×100 to be 100, so K is full rank. It

also reports that all of the singular values are nonzero (it calculates rank as the number

of nonzero singular values), but when they are written out in a format which rounds up

a real number to 15 decimal places, many of them turn out to be zero. When ordered

by size from the largest to the smallest, after the 62nd all of the singular values are

the same and equal to 2.9 · 10−17 (this is still larger than the smallest single precision

floating point number, which in MATLAB is of the order 10−38). So this is a nearly

rank – deficient matrix (or numerical-rank deficient).

Also (and because of this), the determinant of K is 0, both calculated as a product

of all of the singular values (where the rounding causes it) and from the LU decompo-

sition (det(K) = det(L) · det(U), the determinants are: det(L) = 1, det(U) = 0 and all

of the elements on the diagonal of U are 0).

The regularised matrix (KTK + λIT I) with λ = 0.001 is full rank and has singular

values that are, after the 36th by size, all equal to 0.001 (singular values previously

equal to or close to zero are increased by the value of λ). The determinant of this

matrix, calculated as a product of nonzero singular values, is 4.7972× 10−288 (smallest

double precision floating point is of the order 10−308), which is equal to the determinant

that is calculated from LU decomposition, det(L) = −1 and det(U) = −4.7972×10−288.

The first 50 singular values (in decreasing order from the largest) of the regularised

matrix are shown on the Figure 5.1, along with the singular values of the original matrix

K; visually, after the 20th value they are hard to distinguish (the regularised are lifted

only by 0.001).

58



Chapter 5. Inverse problem and the Tikhonov regularisation method

0

0.0005

0.001

 

20 40 60

 

Si
ng

ula
r v

alu
es

 σ
i

0

0.05

0.1

0.15

0.2

0.25

0.3

 

 i
0 10 20 30 40 50

Figure 5.1: First 50 singular values for the matrix K given by (5.38), shown in black
circles. Red circles are the singular values of the regularised matrix (KTK + λIT I),
with λ = 0.001. The inset (zoom-in) shows the elevation of these singular values above
the singular values of the original matrix.

5.4 “Numerical recipes” routine vs. MATLAB

A Tikhonov regularisation package is available in MATLAB (under the name “regtools”

[79]). It calculates the L - curve, finds the point of maximum curvature and uses its

corresponding λ as the optimal parameter. It makes use of singular value decomposition

of the equations’ matrices (as opposed to the LU decomposition algorithm from the

“Numerical recipes” - Ref. [6]).

MATLAB’s resulting L-curve for i = 1 (again, the kMC GSD as the input φ) is

shown on Figure 5.2, along the L-curve we obtained by using the “Numerical recipes”

algorithm. The “Numerical recipes” handbook suggests using λ = Tr(KTK)/Tr(IT I)

as an initial guess [6, p.802], which then one increases and decreases to map out the L

- curve. For the case i = 1, this initial guess is equal to λ = 3.46 · 10−3.

The L - curves from the two different algorithms correspond. However, MATLAB’s

corner - locating algorithm fails to find the real corner (the best λ), and instead just

picks the furthest right point. The resulting Pλ(a), for this λ and the next two cor-
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ner values (λ = 5.445 · 10−7 and 0.012376) from the Figure 5.2, are shown on Figure

5.3 and the left panel of Figure 5.4. All three cases of Pλ(a) give the (almost) same

φλ(x), shown on the right panel of Figure 5.4. It is clear that, in this case, we need

to look for a solution in the furthest right corner, with λ ≈ 0.01 (and larger, since the

solution for λ = 0.012376 on the left panel of Figure 5.4 still needs to be smoothed out).

To find inverse problem solutions in the rest of the thesis, we will proceeded with

the “Numerical recipes” [6] algorithm.

Figure 5.2: MATLAB’s “regtool” package result for i = 1. Corners of the curve are
marked on the graph, with the corresponding values of λ. The optimal λ is identified
as the Tikhonov corner, λ = 1.127 ·10−15 (also visually marked with dotted lines in the
left right corner). The L - curve that was calculated with an algorithm from “Numerical
recipes” [6] is shown with green dots.
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Figure 5.3: MATLAB’s solutions: Left: Pλ(a) with the “regtool” package suggested
λ = 1.127 · 10−15.
Right: Pλ(a) from the first corner; λ = 5.445 · 10−7.

Figure 5.4: MATLAB’s solutions: Left: Pλ(a) with the second corner; λ = 0.012376.
Right: Resulting φλ(x) for all three cases; λ = 1.127 · 10−15, λ = 5.445 · 10−7 and
λ = 0.012376.
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5.5 Regularisation with the identity operator

Before we proceed to calculate Pλ(a) from the kMC obtained GSD for the four cases

of i, we can test the “Numerical recipes” algorithm on a known problem: we use

P (a) = 6a(1− a) (corresponding to the diffusion model P (a) for i = 0 (α = i+ 1)) to

solve the IE (5.36), then invert the resulting φ(x) to see if we can get the exact P back.

The L - curve for this problem is shown on Figure 5.5. There is no clear choice of a

corner point; as we look closer (or stretch the scale), the corner becomes bow - shaped,

and its ‘sharpness’ depends on the number of points we use to plot the L - curve graph.

There is a level of subjectivity in choosing the value of λ; so every time we look for the

Pλ solution, we plot a couple of solutions with values of λ visually in the corner of the

L - curve. We then choose the solution that is smoothest while its error isn’t too large

(at the very least, the corresponding φλ shouldn’t visibly differ from the input φ).

On Figure 5.5, we choose four values of λ (marked with green dots) for which we

show the solutions Pλ in Figure 5.7. When these solutions are used again to solve the

IE (5.36) to obtain φλ, they overlap each other and the original φ perfectly, as shown

on Figure 5.6.

The errors listed are the square mean errors (err = ‖KP − φ‖22, read off the L -

curve plot) - the same as the ones used in the Fourier reconstruction method in the

previous chapter (Eqn. (6.17)).
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Figure 5.5: L - curve for the test case of the inverse problem: inversion of φ(x) (Eqn.
(5.36)) which was obtained with P (a) = 6a(1− a). Four chosen values of λ are marked
green; the corresponding solutions are shown on Figure 5.6.

As can be seen from the Figure 5.7, the first two λ choices are still too small -

the solutions Pλ oscillate around the true P (a). The third choice, λ = 0.0001 would

be the optimal choice. The fourth choice of λ is already leaving the corner area; the

corresponding solution Pλ is showing small signs of oversmoothing around a = 0.8− 1

(here, Pλ is a straight line).

Since the Tikhonov regularisation relies only on minimizing the ‖·‖2 norm;

‖P‖2 =

∫ 1

0
|P (a)|2da, (5.39)

it does nothing to preserve symmetry, positivity or the ‖·‖1 norm:

‖P‖1=
∫ 1

0
|P (a)|da. (5.40)

The best solution on Figure 5.7 (dark blue) is positive for all x (unlike the solution

with the smallest λ; plotted red), and it is roughly symmetric, with ‖Pλ‖1 ' 0.99990.

The loss of symmetry, positivity and the norm will continue to follow us through all

the particular cases of the inverse problem. However, from the behaviour of the chosen

few solutions Pλ with λ values from the corner of the L - curve, it is clear that the best

solutions tend to be (the most) symmetric, positive and with ‖Pλ‖1 close to 1.
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Figure 5.8: Left: L - curve for the i = 0, 1, 2 and 3 case of the inverse problem of finding
Pλ from the kMC obtained GSD.
Right: λ vs. error ‖KP − φλ‖22.

5.5.1 Pλ(a) results for the kMC obtained GSD

L - curves for the inverse problem of calculating Pλ(a) from the kMC obtained GSD

(in Eqn. (5.37) we set φ to φ = φkMC) are shown on the left panel of Figure 5.8.

The curves for i = 1, 2 and 3 (and, more notably, their corner regions) each in turn

increase their the smallest possible error and regularisation term norm as the corners

move away from the origin for increasing i. The reason for this is that, as i increases,

so do the noise levels in the kMC data. This trend in the L - curves graphs shows us

that, for higher i, we cannot hope to obtain as good a solution: a larger ’amount’ of

regularisation is needed yet we are still left with a larger error between the kMC GSD

and φλ.

The regularisation parameter λ increases from left to right on the L - curve plots

(it grows with the error ‖KP − φkMC‖22); the right panel of Figure 5.8 shows how fast

it grows with the error.

Figures 5.9 and 5.18 show these L - curves separately, with the chosen values of λ

marked green. We plot the Pλ for these λ values on Figures 5.11, 5.13, 5.15 and 5.17 (for

i = 1, 2, 3 and 0 case, respectively). We also show the model diffusion and deposition

case of P (a) = Naα(1 − a)α (N being the normalization constant); these are plotted

in light and dark blue on all of the graphs. Their corresponding IE (5.36) solutions are
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Figure 5.9: Left: L - curve for the i = 1 case, with chosen λ points (green).
Right: L - curve for the i = 2 case, with chosen λ points (green).

again plotted light and dark blue, in Figures 5.10, 5.12, 5.14 and 5.16. These figures

also show the kMC obtained GSD (used as the input φ in Eqn. (5.37)). When the

solutions Pλ are integrated again according to the IE (5.36), we get the shown φλ.

In all of the graphs the best solutions are plotted green; they are chosen as the

ones having as small a λ as they can before the error becomes too large (the φλ graph

visibly slides below the kMC GSD) and the ‖·‖1 norm drops towards 0.95 (the norms

‖·‖1, listed in the legends, decrease as λ increases). For the i = 2 and 3 case the best

solutions plunge below 0 in a small region near a = 1, so they couldn’t be renormalized.

This is why we left the solutions as they were, un - normalized, in all of the cases of i.

In Chapter 7, we compare the best solutions Pλ with the kMC results and the

Fourier reconstructed solutions PF from the previous chapter.
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Figure 5.10: i = 1 case: the kMC GSD (black circles) used to calculate Pλ and the
resulting φλ, shown with the diffusion and deposition case of the DFPE model (light
and dark blue).
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5.6 The second differential operator as the regularisation

operator

Instead of the identity operator, a differential operator can be used as a regularisation

operator. Since we want to damp the oscillations of Pλ, the most logical choice is the

second differential operator. Its corresponding matrix is also listed in the “Numerical

recipes” handbook [6]. Apart from changing the operator L, everything in the procedure

is the same as before.

After some testing, we didn’t find the differential operator to be a valuable improve-

ment for our case: it gave similar results as the simpler choice of the identity operator.

We show here the case i = 3, with kMC GSD as the input φ. Figure 5.19 (left panel)

shows the L - curve with marked choices of λ; the last one (furthest to the right) gives a

reasonably good solution. It is comparable to the λ = 0.0019 choice (second λ from the

left in Figure 5.18, left panel) that we used with the identity operator in the previous

section; both result in an error of the order ‖KPλ−φkMC‖22 ∼ 0.01 and their Pλ graphs

similar.
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Figure 5.20: Left: The original GSD and the φλ for the chosen values of λ.
Right: Three solutions Pλ(a); for the 3 largest values of λ from Figure 5.19 (zoom -
in).
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5.7 Symmetrization operator

Because we know that P needs to be symmetric, we can modify the regularisation

procedure for our problem by adding a term that penalizes asymmetry. We replace the

minimization problem:

‖KP − φ‖22 + λ‖LP‖22 (5.41)

with the minimization problem:

‖KP − φ‖22 + λ‖LP‖22 + λS‖P (a)− P (1− a)‖22. (5.42)

The added term amplifies the asymmetry P (a)−P (1− a) when λS increases, so mini-

mizing for P means finding the solution P for which P (a)− P (1− a) ' 0.

This translates to the matrix equation (analagous to Eqn. (5.21)):

(KTK + λLTL+ λSS)P = KTφ (5.43)

where P is a one-column matrix, P = (P1, P2, ..., Pn), and S is a matrix such that

SP =
n∑
i=1

(Pi − Pn−i+1) (5.44)

(in our case, n = 100). The matrix S that forces the opposite elements of P to cancel

out as in (5.44) is a square matrix with zeroes everywhere except on the diagonals:

S =



1 0 0 . . . 0 0 −1

0 1 0 . . . 0 −1 0

0 0 1 . . . −1 0 0
...

...
...

. . .
...

...
...

0 0 −1 . . . 1 0 0

0 −1 0 . . . 0 1 0

−1 0 0 . . . 0 0 1


(5.45)
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Figure 5.21: Left: the kMC GSD for i = 1 case (black circles) used to calculate Pλ,S
from Eqn. (5.43) with λ = 0.001, and the resulting φλ,S .
Right: Solutions Pλ,S with λ = 0.001 and varying λS .

With our P1×100 we then get SP = (P1−P100)+(P2−P99)+...+(P99−P2)+(P100−P1).

We solved Eqn. (5.43) for the i = 1 case and kMC GSD as an input φ. With the

identity operator as the identity operator, L = I, we took the value of λ to be fixed

at λ = 0.001. This is the value that gives a good solution to the original problem

(KTK + λITT )P = φ (in the previous section, Figure 5.10 shows the best solutions as

the ones with λ = 0.001055 and λ = 0.001579). With a fixed λ, we tried a few solutions

for different λS ; the results are shown on the right panel of Figure 5.21. The straight

black line is drawn as a visual aid. It is easy to see, relative to the line, that the third

solution (λS = 0.01, plotted red) still isn’t symmetric, but it already starts to assume

the M - shape (drops at a = 0.5). With higher λS the solutions become symmetric but

the M - shape deformation also becomes more prominent.

Clearly, we cannot simply enforce symmetry on the best solution we found by just

strengthening the symmetrization term while keeping λ fixed. Equation (5.43) would

require its version of the L - curve plotted in a 3-dimensional coordinate system, where

we would find the optimal (λ, λS) point; equivalent of the old L - curve corner.

Since this would extend the workload significantly, while it is still not clear how

(if even possible with the equation form like (5.43)) we could enforce positivity, we

abandoned this search.
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5.8 Calculation of Pz,λ(az) from the kMC CZD

Here we apply the same methodology to find the inverse problem solution of the DFPE

for capture zones, rather than gaps.

Finding Pz,λ from the IE:

φz(z) =

∫ min(z,1)

0
φz

(
z

az
− 1

)
Pz(az)

az
daz, (5.46)

where φz is the known CZD, translates into solving the matrix equation:

(KT
z Kz + λLTL)Pz = KT

z φz, (5.47)

with the matrix Kz calculated as the discretized integral
∫
φz(

z

az
− 1)

daz
az

and again

the discrete values of φz are taken to be the heights of the bins used to create the CZD

as histograms of the kMC data averaged from a 100 runs (θ = 100%).

In light of the previous sections, we used the identity operator (zeroth order regu-

larisation); L = I and chose as the best solutions those from the corner region of the

L - curve, which were smooth without having their φz,λ visually differ from kMC CZD

(too large error), and with a ‖·‖1 norm as close to 1 as possible without sacrificing the

smoothness of the solution.

Qualitatively, the behaviour of the solutions (as we test λ from smaller to higher

value) is the same as with the kMC GSD in Section 5.5.1. We show the L - curves

with chosen values of λ on Figures 5.22 and 5.23. The corresponding solutions Pz,kMC

are shown in Figures 5.25, 5.27, 5.29 and 5.31 for i = 1, 2, 3 and 0 case, respectively.

Figures 5.24, 5.26, 5.28 and 5.30 show the corresponding φz,λ.

We use the same color coding as with the kMC GSD graphs: the best solutions

Pz,kMC are plotted green, input kMC CZD is black and the diffusion and deposition

theoretical models are light and dark blue (where the model Pz(az) is sampled from

the corresponding GSD’s P (a) = Naα(1− a)α).

Again the best solutions for i = 2, 3 have a few negative points, around az = 0.8. In

Chapter 7 we will again plot the best solutions Pz,λ (against the Fourier reconstructed
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i = 1

|| L
P z

 || 2
2

0

500

1000

1500

2000

 

|| KzPz - Φz||22
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

choices of λ
 from left to the right:
λ = 6.1∙10-6 , || LPz ||22 = 230.5
λ = 4.05∙10-4 , || LPz ||22 = 203.6
λ = 7.91∙10-4 , || LPz ||22 = 200.7
λ = 1.861∙10-3 , || LPz ||22 = 193.7

i = 2

|| L
P z

 || 2
2

0

500

1000

1500

2000

 

|| KzPz - Φz||22
0 0.1 0.2 0.3 0.4

choices of λ 
from left to the right:
λ = 5.1∙10-5, || LPz ||22 = 255.2
λ = 9.61∙10-4 ,|| LPz ||22 = 245.3
λ = 2.581∙10-3 , || LPz ||22 = 235.8
λ = 4.521∙10-3 , || LPz ||22 = 225.4

Figure 5.22: Left: L - curve for the i = 1 CZD case, with chosen λ points (green).
Right: L - curve for the i = 2 CZD case, with chosen λ points (green).
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solutions Pz,F which we will describe in the following chapter).

To summarize the key results of this chapter; we have (after covering the neces-

sary theoretical background) tested the Tikhonov regularisation method on the inverse

problem of finding P (a) from the GSD, where we have chosen the L-curve criterion for

determining the best solution.

We tested the identity operator and the second derivative operator as the regulari-

sation operator, and found that the identity gives better results.

To try and address the problem of the lack of symmetry in solutions, we devised a

second regularisation operator, to be added to the identity operator. This transforms

the minimization problem from a one-parameter to a two-parameter minimization (find-

ing a minimum of a function of 2 variables). Since it seriously complicates the inverse

problem, and still leaves the problem of negative solutions open, we concluded that the

standard Tikhonov regularisation method with the identity operator is the best choice.

In Sections 5.5.1 and 5.8 we have presented the solutions for the gaps and capture

zones, P and Pz, respectively, with the identity operator.
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P z
(a

z)

−1

0

1

2

3

4

 

az

0 0.2 0.4 0.6 0.8 1

diffusion Pz(az)
deposition Pz(az)
λ = 6.1∙10-6 , || Pz ||1 = 1.105
λ = 4.05∙10-4, || Pz ||1 = 0.999
λ = 7.91∙10-4, || Pz ||1 = 0.992
λ = 1.861∙10-3,

|| Pz ||1 = 0.978

Figure 5.25: i = 1 case: solutions Pz,λ for the choices of λ marked green on the L -
curve (Figure 5.22), shown with the diffusion and deposition case of the model Pz(az)
(light and dark blue).

78



Chapter 5. Inverse problem and the Tikhonov regularisation method

 

Φ
z

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 

z
0 0.5 1 1.5 2 2.5 3 3.5

IE, diffusion
IE, deposition
kMC
λ = 5.1∙10-5, err=9.50∙10-4

λ = 9.61∙10-4, err=4.411∙10-3

λ = 2.581∙10-3, err=2.581∙10-3

λ = 4.521∙10-3, err=4.521∙10-3

Figure 5.26: i = 2 case: the kMC CZD (black circles) used to calculate Pz,λ and the
resulting φz,λ, shown with the diffusion and deposition case of the DFPE model (light
and dark blue).

 

P z
(a

z)

0

1

2

3

4

 

az

0 0.2 0.4 0.6 0.8 1

diffusion Pz(az)
deposition Pz(az)
λ = 5.1∙10-5,

|| Pz ||1 = 1.035
λ = 9.61∙10-4,

|| Pz ||1 = 1.000
λ = 2.581∙10-3,

|| Pz ||1 = 0.982
λ = 4.521∙10-3, 

|| Pz ||1 = 0.963

Figure 5.27: i = 2 case: solutions Pz,λ for the choices of λ marked green on the L -
curve (Figure 5.22), shown with the diffusion and deposition case of the model Pz(az)
(light and dark blue).

79



Chapter 5. Inverse problem and the Tikhonov regularisation method

 

Φ
z

0

0.5

1

1.5

 

z
0 0.5 1 1.5 2 2.5 3

IE, diffusion
IE, deposition
kMC
λ = 2.61∙10-4, err=7.891∙10-3

λ = 1.991∙10-3, err=2.1799∙10-2

λ = 4.691∙10-3, err=7.2346∙10-2

Figure 5.28: i = 3 case: the kMC CZD (black circles) used to calculate Pz,λ and the
resulting φz,λ, shown with the diffusion and deposition case of the DFPE model (light
and dark blue).

 

P z
(a

z)

0

1

2

3

4

 

az

0 0.2 0.4 0.6 0.8 1

diffusion Pz(az)
deposition Pz(az)

λ = 2.61∙10-4, 
|| Pz ||1 = 1.007

λ = 1.991∙10-3, 
|| Pz ||1 = 0.991

λ = 4.691∙10-3, 
|| Pz ||1 = 0.963

diffusion Pz(az)
deposition Pz(az)
λ = 0.000261, || Pz ||1 = 0.9861
λ = 0.001991, || Pz ||1 = 0.9698
λ = 0.004691, || Pz ||1 = 0.9457Figure 5.29: i = 3 case: solutions Pz,λ for the choices of λ marked green on the L -

curve (Figure 5.23), shown with the diffusion and deposition case of the model Pz(az)
(light and dark blue).

80



Chapter 5. Inverse problem and the Tikhonov regularisation method

 

Φ
z

0

0.2

0.4

0.6

0.8

1

1.2

 

z
0 0.5 1 1.5 2 2.5 3 3.5

IE, diffusion
IE, deposition
kMC
λ = 2.31∙10-4, err=1.064∙10-3

λ = 1.451∙10-3, err=5.464∙10-3

λ = 2.711∙10-3, err=1.5951∙10-2
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Chapter 6

Inverse problem and the Fourier

reconstruction

In the previous chapter we have seen that the standard (Tikhonov) method of calculat-

ing P (a) and Pz(az) from a known (kMC obtained) GSD and CZD gives results that

aren’t entirely symmetric or positive. In this chapter, we will work out a way of finding

positive and symmetric solutions.

As we have briefly mentioned before, ill-posedness of the Fredholm integral equation

stems from the fact that the (sub)space U on which K : U → V operates is infinite-

dimensional (the mathematical reasons for this are explained in the Appendix C).

Consequently, reducing the dimensions of U is a form of regularisation. A practical

application is apparent: often, in various calculation, it is convenient to represent a

function as an expansion in some orthonormal basis (i.e. the Taylor series expansion).

Given the shape of P (a), the Fourier series is probably the most convenient choice.

The sines and cosines constitute an orthonormal basis, spanning an infinite-dimensional

space over R. A truncated expansion (cutting off all higher harmonics after some finite

number N) will be in an N -dimensional space. We will use this as a way of ensuring

stable solutions: with a good choice of N we should be able to get good solutions P ,

Pz. This is the core concept of this chapter.

We will also need to employ the Fourier series in such a way that the positivity is
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enforced, and the solutions have a ‖·‖1 norm equal to 1.

To that end, we will explore 2 approaches: one that uses moments of the distribution

in Section 6.1, and a second one in Section 6.2, using a simulated annealing procedure

with a Fourier reconstruction.

6.1 Method of moments

Having introduced the core of regularisation via a dimension reduction, we are ready

to attempt solving the inverse problem posed by the model IE (5.1).

Assuming that we know the distribution of gaps of size x, φ(x), we can calculate

the moments of φ(x):

〈xn〉 =

∫ ∞
0

xnφ(x)dx. (6.1)

We wish to determine the corresponding distribution of a, P (a). We can write it as

a sum of the Fourier series. We use sines but not cosines so it is guaranteed that

P (a) = 0 at a = 0, 1. By using only the sines with odd wave numbers, k = 1, 3, 5..., the

representation of P (a) is symmetric around a = 1/2 : P (a) =
∑
Ak sin(kπa), 0 ≤ a ≤ 1.

With this the moments of P (a), 〈an〉, are:

〈an〉 =

∫ 1

0
da · an

∑
k

Ak sin(kπa), (6.2)

or (with the additive property of Riemann integral):

〈an〉 =
∑
k

AkM(k, n), (6.3)

where

M(k, n) =

∫ 1

0
an sin(kπa)da. (6.4)

Now to determine P (a) we just need to find the coefficients Ak - we need to determine

〈an〉 and then solve (6.3).
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From the DFPE x , a(1 + x) and with the use of binomial theorem we have [80]:

〈xn〉 = 〈(a(1 + x))n〉 = 〈an〉
n∑
i=0

(
n
i

)
〈1n−i〉〈xi〉 = 〈an〉

n∑
i=0

n!

i!(n− i)!
〈xi〉. (6.5)

Side note: from this, if 〈an〉 (that is, P (a)) are known, we can build the moments

〈xn〉 through

〈xn〉 =
〈an〉

1− 〈an〉

n−1∑
i=0

n!

i!(n− i)!
〈xi〉 (6.6)

by defining the zeroth moment 〈x0〉 = 1.

Moments 〈an〉 were calculated from (6.5), where the moments 〈xi〉 were obtained in

two ways:

a) from the simple MC procedure (DFPE) described in the previous chapter. The

(normalised) heights of bins that previously created histograms were used as φ(x). We

got best results when taking the interval x ∈ [0, 10] and 1000 bins (of base width 0.01).

We ran the MC program that creates gaps a thousand times, calculated the moments

〈xi〉 and 〈an〉 for each run and then took the average values of 〈an〉 as the final result.

b) from the integral equation, with P (a) = Naα(1 − a)α. It was solved with the

iterative procedure to obtain φ(x), which was then used to integrate (6.1) numerically.

We calculated the moments for the case of diffusion driven nucleation (α = i+ 1) with

critical island size i = 0 and for the Dickman distribution. The results are presented

in Table 6.1, with the accurate moments for comparison:

〈an〉 =

∫ 1

0
anP (a)da = 6

∫ 1

0
ana(1− a)da =

6

n+ 2
− 6

n+ 3
, (6.7)
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and for the Dickman case:

〈an〉 =

∫ 1

0
anP (a)da =

∫ 1

0
anda =

1

n+ 1
. (6.8)

P (a) = 6a(1− a) (crit.isl.size i = 0) Dickman case, P (a) = 1

n accurate 〈an〉 from MC from IE n accurate 〈an〉 from MC from IE

0 1.000000 1.000000 1.000000 0 1.000000 1.000000 1.000000
1 0.500000 0.500000 0.499961 1 0.500000 0.500001 0.499806
2 0.300000 0.300003 0.299962 2 0.333333 0.333332 0.332631
3 0.200000 0.200006 0.199969 3 0.250000 0.249998 0.249033
4 0.142857 0.142864 0.142834 4 0.200000 0.199996 0.198874
5 0.107143 0.107149 0.107125 5 0.166667 0.166656 0.165436
6 0.083333 0.083338 0.083320 6 0.142857 0.142835 0.141553
7 0.066667 0.066669 0.066656 7 0.125000 0.124960 0.123640
8 0.054545 0.054543 0.054537 8 0.111111 0.111044 0.109708
9 0.045455 0.045446 0.045448 9 0.100000 0.099891 0.098563
10 0.038462 0.038444 0.038456 10 0.090909 0.090735 0.089444
11 0.032967 0.032936 0.032962 11 0.083333 0.083054 0.081845
12 0.028571 0.028522 0.028567 12 0.076923 0.076470 0.075414
13 0.025000 0.024921 0.024996 13 0.071429 0.070692 0.069901
14 0.022059 0.021935 0.022056 14 0.066667 0.065486 0.065122
15 0.019608 0.019414 0.019605 15 0.062500 0.060666 0.060937
16 0.017544 0.017247 0.017541 16 0.058824 0.056099 0.057239
17 0.015789 0.015347 0.015787 17 0.055556 0.051703 0.053944
18 0.014286 0.013653 0.014283 18 0.052632 0.047443 0.050985
19 0.012987 0.012122 0.012985 19 0.050000 0.043322 0.048305
20 0.011858 0.010729 0.011856 20 0.047619 0.039358 0.045857

Table 6.1: Comparison of moments calculated in different ways

Now to obtain the Fourier coefficients Ak from equation (6.3) we only need the moments

of harmonics:

M(k, n) =

∫ 1

0
an sin(kπa)da. (6.9)
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By integrating (6.9), we get a formula for odd n:

M(k, no) =
1

kπ
+

(n−1)/2∑
m=1

(−1)m

(kπ)2m+1

n!

(n− 2m)!
(6.10)

and for even n:

M(k, ne) =
1

kπ
+

(n−2)/2∑
m=1

(−1)m

(kπ)2m+1

n!

(n− 2m)!
+ (−1)n/2

n!

(kπ)n
2

kπ
. (6.11)

So now the system (6.3) is split into two systems, for odd and even n (no or ne), and

n = k (otherwise the problem is under or over-imposed).

The end goal was to solve (6.3) for 〈xno/e〉 calculated from kMC data through (6.5),

that is, to solve two sets of equations

〈xno/e〉

(no/e∑
i=0

(no/e)!

i!(no/e − i)!
〈xi〉

)−1
=
∑
k

AkM(k, no/e), (6.12)

but first we tested this method by solving (6.3) with 〈an〉 calculated from a known

distribution, P (a) = Nai(1− a)i where N is the normalization factor.

We used a subroutine from [6] to solve (6.3), one that solves a system of n×n linear

equations Mx = A with the use of LU decomposition:

here the n×n matrix is decomposed into a product of 2 triangular matrices, LU = M ,

where L has elements only on the diagonal and below and U on the diagonal and above.

Decomposition is performed with Crout matrix decomposition algorithm. The system

then becomes Mx = L(Ux) = A and it is first solved for a vector y such that Ly = A

and then for the vector x which satisfies Ux = y. Both systems are of course trivial

since L and U are triangular.
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Figure 6.1: Solution of the 2× 2 problem.

For the 2×2 problem (k = 1, 3 and n = 1, 2) and the simplest case of critical island

size i = 0, we got the solutions A1 = 1.5477, A2 = 0.0691. Visual comparison of this

Fourier representation and the original P (a) = 6a(1− a) is quite good, as can be seen

on Figure 6.1.

However, on the 3×3 problem this method broke down. The probability distribution

became negative and we couldn’t impose P (a) ≥ 0 for a ∈ [0, 1]. Instead of a sequence of

decreasing amplitudes from the largest A1, we got A1 = 1.7, A2 = −6.7 and A3 = 10.4.

The solution would rapidly change for extra decimal places in the input matrix elements

and moments as shown on Figure 6.2, where the difference between the three solutions

is just one extra decimal place of input values. The gap size distribution that results

from these P (a) is shown on Figure 6.3.

The equation the solver ‘sees’ looks like (here rounded to just two digits for sim-
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Figure 6.2: Solutions for the 3 × 3
problem, shown with the true P (a) =
6a(1− a).
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Figure 6.3: The corresponding φ(x) for
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plicity):

A1 · 0.32 +A2 · 0.11 +A3 · 6.36 · 10−2 = 0.5

A1 · 0.19 +A2 · 0.10 +A3 · 6.26 · 10−2 = 0.3

A1 · 0.13 +A2 · 0.09 +A3 · 6.21 · 10−2 = 0.2 (6.13)

The matrix containing the moments of sines, M3×3, is here full-rank, has an inverse

and a trivial nullspace. But the problem is still ill - posed, so drastically that changing

just the number of decimals in the input values (replacing 0.50009 with 0.5001 in the

input, for example) results in huge solution oscillations, as seen on Figure 6.2.

We have replaced the original inverse problem with Equation (6.3), but the sources

of ill - posedness (the kernel from the IE; discussed in the Appendix C) are now entan-

gled and hidden on the right hand side of the system (6.13). This puts us into a worse

situation than we were with the original problem of solving the IE for P and, addi-

tionally, there is no satisfying way of ensuring positive solutions, so we have abandened

this method.

Finding an optimal solution here meant choosing an optimal number of harmonics

to be used in the Fourier expansion so that the solution doesn’t exhibit high frequency

oscillations. Choosing optimal parameter(s) and solutions is inevitable when dealing

with ill-posed problems, however in our case we also need the solutions to be positive.
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Since we cannot enforce positivity with this method, much like with the Tikhonov

method before, the only way to ensure P > 0 is to choose a positive solution (if we can

find one) at the very end. The annealing method we will describe in the next section

will finally allow us to impose positivity.

6.2 Annealing and the Fourier reconstruction method

In this approach, we aimed to solve the inverse problem by constructing P (a) directly as

a Fourier series, with an algorithm that adds random harmonics and tests if this brings

us closer to the solution. We started with the numerically integrated IE to develop the

method for a known P (a) before applying it to kMC data.

We calculated the IE iteratively with P (a) = Naα(1− a)α, N being the normaliza-

tion constant, as described in Chapter 4.1. For the resultant φ(x) we want to reconstruct

P (a) as a partial sum of the Fourier series, by randomly adding harmonics in a search

that minimizes the error defined as the difference between the original φ(x) and the

φF (x) calculated for this Fourier-constructed PF (a). When applying this method to

kMC simulation results, the original φ(x) is the GSD obtained as a histogram from kMC

data and φF is obtained by numerically integrating IE with the Fourier representation

of P (a).

Downhill method

Our algorithm starts by defining PF,old(a) as a single sine:

PF,old(a) = N sin(πa) (6.14)

where N is the normalization constant, and calculate φF,old(x) for it with the iterative

procedure. We then calculate the difference between this φF,old(x) and the original φ(x)

and define it as the initial error (mean square error):

err old =
∑
j

(φF,old(xj)− φ(xj))
2 (6.15)
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Then we randomly (using Fortran’s built-in random number generator) choose a

harmonic, that is, we choose a random odd integer k (for sin kπa). The possible values

from which we choose are k = 1, 3, 5, ..., kmax where kmax is a predefined parameter;

we’ve run the program for various choices of kmax.

Next, we choose a random amplitude A for this harmonic (any real number smaller

than a predefined Amax).

We add A sin(kπa) to PF,old:

PF,new(a) = PF,old +A sin(kπa) (6.16)

and check if PF,new is acceptable as a probability distribution:

If PF,new(a) < 0 for a ∈ [0, 1] we reject this A sin(kπa) and choose another pair of k,A.

If PF,new(a) ≥ 0, we keep it, calculate φF,new(x) for PF,new(a) with the iterative proce-

dure, and then calculate the error:

err new =
∑
j

(φF,new(xj)− φ(xj))
2 (6.17)

If err new > err old we reject this A sin(kπa) and choose another to construct PF,new.

If err new < err old, then this PF,new(a) and φF,new are closer to the true P (a) and

φ(x) than PF,old(a) and φF,old(x) are, so we rewrite PF,old in the procedure as PF,new:

PF,new(a)→ PF,old(a)

err new → err old (6.18)

and proceed to another random choice of a harmonic that will be added to PF,old(a)

to get PF,new(a) according to (6.16) and err new according to (6.17). The predefined

number of these cycles is the third parameter of the method.

The idea was to find the optimal values of the parameters for the known IE φ and

P (a), and then run the procedure with the kMC obtained φ(x); however we have only

been able to reconstruct the true P (a) = Naα(1−a)α for critical island sizes i = 0, 1, 2
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(in a diffusion driven nucleation, α = i+ 1) so a refinement of the method was needed.

Simulated anneal

Unlike the downhill method where we accepted PF,new if its error was smaller than in the

previous attempt (err new < err old), here we accept PF,new(a) with the probability:

p = e−(err new−err old)β (6.19)

where the inverse ’temperature’ β is initially set to β = 1. To achieve this, we use the

random number generator to choose a real number R ∈ [0, 1]; if R < p we accept PF,new

and rewrite PF,old with it according to (6.18). If R > p we reject it and choose another

PF,new.

After a predetermined number m of such cycles, we increase β by one and repeat

the m cycles.

After the inverse ’temperature’ β has been increased M times, the program stops.

This procedure alone has not given satisfactory results, but following it with the

downhill method, we have reproduced the original P (a).

Figure 6.4 illustrates why the downhill method shouldn’t be used alone: the con-

straint err new < err old means that we can get trapped in a local minimum in the

error(A, k) landscape. Allowing the harmonics to increase the error according to (6.19),

it is possible to escape these local minima (illustrated with blue arrows) and reach a

global minimum. After this, the downhill method corrects PF,new; that is, we slide into

the global minimum (green arrow).
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Figure 6.4: Illustration of the search of PF,new for which the error is minimal.

6.2.1 GSD results

Just like in the previous method with moments of the distribution, adding higher

harmonics resulted in oscillations of the reconstructed P (a) around its true shape: on

Figure 6.5, right panel, we show solutions PF built with different numbers of harmonics

(the solutions with higher harmonics contributions are the ones that oscillate more

around the true shape of P ). The left panel shows the result of integrating those PF

solutions: φF , all lying perfectly on top of each other.

The reason for this is that increasing the accuracy of the numerical approximation

of a continuous kernel κ : U → V where dim(U) = ∞, that is, increasing the number

of dimensions of the finite - dimensional numerical approximation of U , results in an

increase of the condition number of the kernel matrix. In other words, increasing

the number of harmonics means increasing the number of base elements spanning U

(increasing the dimension of U), which brings us closer to the continuous kernel κ

operating on an infinite-dimensional space U , where the problem is necessarily ill-

posed. The origin of this can be found in the Appendix C (Theorem C.4).

Therefore, to stabilize the solutions we had to limit the maximum number of har-

monics to 5 (so, k = 3, 5, 7, 9, 11).

With allowed maximum amplitudes Amax = 0.05 and kmax = 11 we ran the simu-

lated anneal with M = 500 and m = 30 (500×30 cycles) and then applied the downhill
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Figure 6.5: Searching for the optimal kmax

method with, again, Amax = 0.05 and kmax = 11 and up to 300 attempts of finding an

improved Pnew.

The results for the case i = 1 are shown on Figures 6.6 and 6.7, both for the IE

with P (a) = Naα(1 − a)α (φIE) and the GSD obtained from averaging 100 runs of

a kMC simulation on a lattice with 106 sites, R = 107 and 100% coverage (φkMC).

Reconstructed φF (integrated from the IE with Fourier constructed PF (a)), both for

the kMC data and the IE, match their respective originals very well, but since the

original kMC GSD is not smooth the recovered φF has a larger error. The Fourier

construction of PF (a) for the kMC GSD lies between theoretical P (a) for diffusion and

deposition, as we would expect for realistic island growth.

Results of the kMC simulations for the case i = 2 have a lot more noise than for

the i = 1 case, so the recovered φF deviates visibly from the φkMC ; it is in fact lying

on top of diffusion φIE rather than on φkMC . So the Fourier constructed PF (a) also

coincides with theoretical P (a) for diffusion. Because of the noise and the fact that

the error minimised in the procedure is the sum of distances between recovered φF and

φkMC squared, we weren’t able to get a recovered φF that better fits the true φkMC .

The case i = 3 is dominated by noise, so the best φF we recovered has an error three

orders of magnitude higher that the relatively noise - free i = 1, making this solution’s

validity questionable.

Reconstruction of the φIE for P (a) = 1 (corresponding to deposition, i = 0, α = i)
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- the Dickman distribution, isn’t successful. This case is problematic even as a direct

problem - the ’true’ φIE(x) calculated iteratively with P (a) = 1, shown in black on

Figure 6.12, is noisy and discontinuous near zero.
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Figure 6.6: GSD from kMC data for i = 1 and the reconstructed GSD, shown with IE
solutions for deposition and diffusion (original and reconstructed).
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Figure 6.7: The corresponding P (a) for i = 1 (original and reconstructed).
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Figure 6.8: GSD from kMC data for i = 2 and the reconstructed GSD, shown with IE
solutions for deposition and diffusion (original and reconstructed).
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Figure 6.9: The corresponding P (a) for i = 2 (original and reconstructed).
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Figure 6.10: GSD from kMC data for i = 3 and the reconstructed GSD, shown with
IE solutions for deposition and diffusion (original and reconstructed).
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Figure 6.11: The corresponding P (a) for i = 3 (original and reconstructed).
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Figure 6.12: GSD from kMC data for i = 0 and the reconstructed GSD, shown with
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Figure 6.13: The corresponding P (a) for i = 0 (original and reconstructed).

Reconstruction of P (a) for the i = 0 case of kMC GSD, with the same parameters

that gave stable solutions in the previous cases, is shown on Figure 6.12 and 6.13. It

deviates more than the other cases from what we expected to get and is very unstable.
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Figure 6.14: Solutions for different kmax, for inversion of kMC obtained GSD, i = 0.

Allowing the maximum number of harmonics to be kmax = 11 doesn’t restrict this

problem enough; this can be seen on Figure 6.14 where we try out solutions for lower

number of harmonics. A solution with kmax = 5 (also shown on Figures 6.12 and 6.13)

is chosen as the best one.

6.2.2 CZD results

Capture zone distributions can be calculated from convolutions of the corresponding

GSDs (Eqn. (2.23)):

Ac(z) = 2

∫ 2z

0
φ(t)φ(2z − t)dt (6.20)

(We assume here that the neighbouring gaps aren’t correlated.) Alternatively, CZDs

can be obtained directly from kMC simulation. Since we assume that CZDs are mod-

elled by the DFPE:

z ,
1

2
(a1 + a2) (1 + z) (6.21)

we applied the annealing algorithm to CZDs obtained from the kMC simulations (also

averaged over 100 runs) just like for the GSDs before, and compared the results with

the ones integrated from GSDs according to Equation (6.20). Here we also show the

generalized Wigner surmise (GWS, Equation (2.17)): Aβ(z) = aβz
βe−bβz

2
.
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We expected to get the Fourier - constructed PF (az) that lies between the theoretical

Pz(az) for diffusion and deposition. These two were calculated as histograms from a

sample of 5 · 106 values 1
2 (a1 + a2), where a1 and a2 were drawn from P (a) = Naα(1−

a)α.

Results for i = 0, 1 were obtained with the same set of parameters as the i = 1, 2, 3

GSDs before: with allowed maximum amplitudes Amax = 0.05 and kmax = 11 the

simulated anneal ran with M = 500 and m = 30 (500 × 30 cycles) and then the

downhill method was used with, again, Amax = 0.05 and kmax = 11 and up to 300

attempts of finding an improved PF,new.

For higher critical island sizes a higher inverse ’temperature’ was needed, and for

i = 3, to smooth out the otherwise too noisy kMC results, histograms that give CZD

were created with double the bin base width. So, for i = 2, 3, with allowed maximum

amplitudes Amax = 0.05 and kmax = 11 we ran the simulated anneal with M = 500

and m = 70 (500× 70 cycles) and then applied the downhill method (Amax = 0.05 and

kmax = 11) with up to 700 attempts of finding an improved PF,new.

Results of the annealing procedure are shown with the original kMC obtained CZDs

in Figures 6.15, 6.17, 6.19 and 6.21. Additionally, CZDs obtained as convolutions (6.20)

from the corresponding kMC GSDs are shown, alongside the GWS.

In Figures 6.16, 6.18, 6.20 and 6.22, Fourier reconstructed PF (az) are shown, with

the assumed theoretical Pz(az) distributions for diffusion and deposition, calculated as

histograms from
1

2
(a1 + a2) samples.

All of the CZDs calculated as convolutions from kMC GSDs fall slightly below the

true CZDs (the kMC CZDs). Convolution (6.20) is based on an assumption that there

is no correlation between neighbouring gap sizes; the discrepancy between the two plots

suggests that there might be some correlation between the adjacent gaps.

Interestingly, GWS for i = 1, 2 lies on top of the convolution curves, rather than on

the true kMC CZDs. It makes an excellent fit for the kMC data only in the i = 3 case.

The reconstructed PF (az) is consistently higher than the upper, diffusion limit. This

is most likely a result of the fact that convolution of GSD doesn’t agree completely with

the kMC measured CZD.
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Figure 6.15: CZD from kMC data for i = 0 (dark green) and the reconstructed CZD
(light green), shown with CZD obtained by integrating kMC GSD (Equation (6.20),
shown in gray) and GWS (light blue). Shown within the diffusion (pink) and deposition
(black) theoretical predictions; retrieved diffusion and deposition solutions are plotted
on top (blue, red).
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Figure 6.16: Reconstructed PF (az) (light green) shown with theoretical Pz(az) for
diffusion (pink) and deposition (black) (from (6.21)).
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Figure 6.17: CZD from kMC data for i = 1 (dark green) and the reconstructed CZD
(light green), shown with CZD obtained by integrating kMC GSD (Equation (6.20),
shown in gray) and GWS (light blue). Shown within the diffusion (pink) and deposition
(black) theoretical predictions; retrieved diffusion and deposition solutions are plotted
on top (blue, red).
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Figure 6.18: Reconstructed PF (az) (light green) shown with theoretical Pz(az) for
diffusion (pink) and deposition (black) (from (6.21)).
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Figure 6.19: CZD from kMC data for i = 2 (dark green) and the reconstructed CZD
(light green), shown with CZD obtained by integrating kMC GSD (Equation (6.20),
shown in gray) and GWS (light blue). Shown within the diffusion (pink) and deposition
(black) theoretical predictions; retrieved diffusion and deposition solutions are plotted
on top (blue, red).
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Figure 6.20: Reconstructed PF (az) (light green) shown with theoretical Pz(az) for
diffusion (pink) and deposition (black) (from (6.21)).
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Figure 6.22: Reconstructed PF (az) (light green) shown with theoretical Pz(az) for
diffusion (pink) and deposition (black) (from (6.21)).
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In this chapter, we have set out to devise a method of solving the inverse problem

which ensures positivity, symmetry and the preservation of the 1-norm of the solutions.

We developed and tested two methods: first, one that uses the idea that the dis-

tribution P (a) can be reconstructed from its moments. While it did give symmetric

solutions, the method of moments didn’t enforce positivity: positive solutions can only

be chosen post-calculation, like before with the Tikhonov regularisation.

In the second method, we reconstruct the wanted solutions P directly as a Fourier

series, and then keep rebuilding it until the final, true solution is found. This method

allows us to immediately eliminate possible negative solutions, which finally brings us to

our goal. From a practical standpoint, when comparing the Fourier reconstruction with

the Tikhonov regularisation of the previous chapter, the Tikhonov method is easier to

use (just one parameter which needs to be optimized), and the runtime is much shorter.

So it would be a preferred choice when just a rough solution is needed quickly. For

finding good solutions that satisfy all of the physical system requirements, the Fourier

reconstruction method has to be used.
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Chapter 7

Comparison of the inverse

problem solutions and the kMC

obtained P (a)

In the previous two chapters we have explored the Tikhonov regularisation method and

the Fourier reconstruction for solving the inverse problem: calculating P (a) from the

corresponding integral equation when the GSD (or CZD) is known. In this chapter we

will compare the solutions from the two methods against each other, and the true (kMC

obtained) results. Partly, this chapter is a collection of the best results of Chapters 5

and 6, but there is also something new to be added: we can, only for the case of the

gaps, measure P (a) directly from kMC simulations; call it PkMC(a).

We will therefore first revisit the kMC simulations and explain the procedure for

measuring PkMC , and then check how well do the inverse problem solutions for the

gaps match it.

For the case of the capture zones, we aren’t able to obtain Pz(az) directly from the

kMC simulations in any way, so in the second part of this chapter we will only show the

best inverse problem solutions of Chapters 5 and 6, plotted together for comparison.
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7.1 Gap size distributions

7.1.1 PkMC(a) measured from the kMC simulations

To determine PkMC from kMC simulations, we collected datasets from a 100 kMC

simulation runs (as described in Section 4.3) and averaged the results.

During each simulation run, after every nucleation event the position inside the gap

(and capture zone) where the new nucleation happened is recorded. We also record the

size of the gap that was fragmented, and the sizes of all the other gaps on the lattice:

this way, we know how often are the largest gaps fragmented, how often the second

largest etc. – we know the frequency of fragmenting a gap of a certain size rank.

The procedure is then as follows: during the simulation, each time a gap is frag-

mented, we check what was its size rank – if it was the largest gap on the lattice, we

note that a gap of rank 1 (R = 1) was fragmented at the appropriate coverage, if it was

the second largest we note (R = 2) was fragmented etc. At each fragmentation event,

there is some total number of different sizes of gaps residing on the lattice; the smallest

gap has the maximum rank at that timestep (kMC algorithm step), Rmax. Therefore

Rmax is also a number of different sizes of gaps and it changes during the simulation.

At first, Rmax grows rapidly – this is the initial phase: simulation starts with the

empty lattice (equivalent to a single gap, so the first Rmax = 1) and then the new

nucleations increase the total number of (mainly) different gap sizes on the lattice,

until a large pool of gaps of different sizes is created. Here Rmax is at its peak; new

nucleations will then slowly start to remove some of the present sizes of gaps (starting

with the largest) so Rmax will start to decrease. However, since at every simulation

step a unique gap of a certain size can be fragmented into two gaps that have the

exact sizes already present on the lattice (this reduces Rmax by one and increases the

overall number of gaps), Rmax doesn’t grow or decrease monotonically. The general

trend can be seen on Figure 7.1 (left panel), where we show Rmax as a function of the

total number of islands on the lattice, nis. We used a single run of the i = 1 case to

plot it. For all the other cases of i the behaviour of Rmax is qualitatively similar. Since

coverage θ (not the here relevant nis) is the measure of elapsed time, we also plot θ vs.
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Figure 7.1: Left: Rmax (number of different gap sizes on the lattice) vs. nis (total
number of islands), for i = 1, in a single kMC run.
Right: coverage θ vs. nis for the same dataset.

nis (Figure 7.1, right panel), for the same simulation run.

Coverage on which Rmax starts to drop roughly corresponds to the onset of the scal-

ing regime (the PkMC(a) measured at those coverages stabilizes and becomes coverage

independent, for all the cases of i).

Since Rmax varies, it can happen that in one nucleation event, a gap of rank (for

example) R = 5 is fragmented, and at that timestep the total number of different

gap sizes is Rmax = 300. In another nucleation event, again a gap of rank R = 5

is fragmented, but at that timestep there are Rmax = 900 different gap sizes. It is

therefore necessary to scale the ranks of the fragmented gaps.

We divide the rank of the fragmented gap with the current Rmax, to get a scaled

set of ranks, r = R/Rmax ∈ [0, 1]. Then we group these data sets within some coverage

intervals corresponding to nis intervals and make histograms of the scaled ranks r (we

use a 100 runs and average the results). We use the same intervals to create PkMC(a)

graphs which are shown on the right panels of Figures 7.2, 7.3 and 7.4 for i = 0, 1 and

2, respectively. The histograms that show the frequency of breaking gaps of some rank

r (within a coverage interval) are normalized, giving the probability of fragmenting a

gap of a certain size rank. These are shown on the left panels of Figures 7.2, 7.3 and

7.4. The intervals of nis in which the data is grouped are chosen in such a way that
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Figure 7.2: Left: frequency of fragmentation of gaps of certain (scaled) size ranks
r = R/Rmax within intervals of total island numbers nis (or the corresponding coverage
intervals). Case of i = 0.
Right: PkMC(a) obtained from the same intervals, for i = 0.

 

ga
p 

fra
gm

en
ta

tio
n 

fre
qu

en
cy

0

1

2

3

4

 

scaled rank r = R/Rmax

0 0.2 0.4 0.6 0.8 1

nis = 1-2k;  theta= 0.0-0.0067  - tu maxrank raste sa nis
nis = 2k-3k;  theta= 0.0067-0.011  - tu je kao tocka infleksije za maxrank
nis = 3k-5k;  theta= 0.011-0.031  -na nis=3k se maxrank totalno stabilizirao i monotono pada kako nis raste
nis = 5k-8k;  theta= 0.031-0.128
nis = 8k-10k;  theta= 0.128-0.28
nis = 10k-13k;  theta= 0.28-0.75

nis = 1 - 2∙103, θ= 0.0 - 0.0067
nis = 2∙103 - 3∙103, θ= 0.0067 - 0.011
nis = 3∙103 - 5∙103, θ= 0.011 - 0.031
nis = 5∙103 - 8∙103, θ= 0.031 - 0.128
nis = 8∙103 - 1∙104, θ= 0.128 - 0.28
nis = 1∙104 - 1.3∙104, θ= 0.28 - 0.75

 
P(
a)

0

0.5

1

1.5

2

 

a
0 0.2 0.4 0.6 0.8 1

nis = 1-2∙103, θ= 0.0-0.0067
nis = 2∙103-3∙103, θ= 0.0067-0.011
nis = 3∙103-5∙103, θ= 0.011-0.031
nis = 5∙103-8∙103, θ= 0.031-0.128
nis = 8∙1031∙104, θ= 0.128-0.28
nis = 1∙104-1.3∙104, θ= 0.28-0.75

Figure 7.3: Left: frequency of fragmentation of gaps of certain (scaled) size ranks
r = R/Rmax within intervals of total island numbers nis (or the corresponding coverage
intervals). Case of i = 1.
Right: PkMC(a) obtained from the same intervals, for i = 1.

(for every i) the first interval covers (roughly) the initial part with fast growing Rmax

(shown with light blue symbols on the graphs), the second interval contains the peak

(pink) and the third interval (black symbols) has Rmax steadily decreasing. All the

higher intervals are within the scaling regime and are chosen arbitrarily.

We see that initially the vast majority of the gaps that get fragmented are the

largest gaps, but this starts to change as coverage grows: initially the largest gaps were
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Figure 7.4: Left: frequency of fragmentation of gaps of certain (scaled) size ranks
r = R/Rmax within intervals of total island numbers nis (or the corresponding coverage
intervals). Case of i = 2.
Right: PkMC(a) obtained from the same intervals, for i = 2.

being fragmented, but as time passed the large gaps got ”used up” (but some small

number of these large gaps remained) leaving a large pool of smaller gaps which then

started to be fragmented at an increasing frequency. In order to observe this behaviour

for i = 2, we had to run the simulations up to higher coverages; for a fixed coverage

θ the total number of nucleations nis decreases as i increases. Figure 7.5 shows θ vs.

nis plot for all i; there is a clear trend of decreasing nis for i = 1, 2 and 3 but the case

of i = 0 does not follow this rule; the algorithm for this case has a different rule for

island nucleation (each monomer has the same probability of attaching irreversibly to

the lattice). On Figure 7.6 we show only the PkMC(a) for i = 3 reaching steady state.

Right panels of Figures 7.2, 7.3, 7.4 and Figure 7.6 show (in black symbols) PkMC(a)

entering the scaling regime at around θ = 0.0189 for i = 0, θ = 0.011 for i = 1, θ = 0.016

for i = 2 and θ = 0.21 for i = 3. The reason for such a large difference in θ for i = 3

case be seen on Figure 7.5. The scaling regime was found to start around nis ∼ 2 · 103

for all the cases of i, and for i = 3 the coverage starts to grow rapidly just around this

value of nis.

The functional form of P (a) is derived from the saturated monomer density n1

(Eqn. (2.21)), which is obtained as a solution of the steady state (∂n1/∂t ' 0) diffusion

equation (Eqn. (2.20)). As shown with single gap simulations in Ref. [68], in very large
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gaps nucleations are too frequent so the monomer densities don’t have time to reach

its saturated form. For different kMC simulation parameters we then expect to find

different values of the gap size that behave as a threshold under which the monomer

densities and P (a) enter the steady state (scaling regime).

With nis = 2 · 103, an average gap on the lattice (we used a lattice with 106 sites)

stretches across 500 lattice sites, which is here clearly sufficiently small to enter the

scaling regime.

7.1.2 Comparison of P (a) obtained from kMC simulations and as so-

lutions of the inverse problem

With the scaling regime of PkMC(a) identified, we can compare it to the PF (a) obtained

as a Fourier series representation of a solution of the inverse problem, and to the

Tikhonov regularisation solution Pλ(a). These are all shown on Figures 7.8, 7.10, 7.12

and 7.14, together with the diffusion (α = i + 1) and deposition (α = i) case of the

model P (a) given with:

P (a) =
(2α+ 1)!

(α!)2
aα(1− a)α. (7.1)

We also use PkMC to solve the direct problem; that is, to integrate the IE form of
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the mean field DFPE x , a(1 + x):

φ(x) =

∫ min(1,x)

0
φ
(x
a
− 1
) P (a)

a
da. (7.2)

The non-mean field DFPE, x , a(x1 + x2), has an IE form (with a bias, Eqn. (3.21)):

φ(x) =

∫ 1

0

∫ x/a

0
φ
(x
a
− x1

)
φ(x1)P (a)

x2α+1

a2α+2
dadx1, (7.3)

where again α = i + 1 or α = i, depending on the mode of nucleation. In Figures

7.7, 7.9, 7.11 and 7.13 we show diffusion and deposition theoretical limits given with

Eqn. (7.2) (where P (a) is given by Eqn. (7.1)), the kMC obtained GSD (φkMC), the

solutions of Eqn. (7.2) with P = PkMC(a) and also with P obtained as a solution of the

inverse problem, P = PF and P = Pλ. Additionally, we show solutions of non-mean

field Eqn. (7.3) with P = PkMC , for both cases of α.

When looking at the inverse problem solutions PF and Pλ, for the i = 1 and 2 cases

(Figures 7.10 and 7.12) both the Fourier and the Tikhonov method gave good results,

but in the i = 2 case we start to see the effect of increased noise in the input φkMC

relative to the i = 1 case: Pλ is noticeably negative near a = 1. In the i = 3 case (Figure

7.14) the situation is even worse, so here Tikhonov solution is more of a guideline for

the behaviour of the true P (a). The case of i = 0 (Figure 7.8) is problematic for both

methods, with the solutions slightly undershooting the true PkMC .

In all of the cases of i we got better results with the Fourier reconstruction ap-

proach, which makes this a preferred method, especially if preservation of symmetry

and ‖·‖1 norm is required. The downside however is the relative difficulty of optimizing

the method parameters (and their larger number); the Tikhonov method is perfectly

adequate when a fast calculation is needed.

When we use PkMC to integrate Eqn. (7.2), the resulting GSD (shown with empty

squares in Figures 7.7, 7.9, 7.11 and 7.13) fits the kMC obtained GSD (φkMC) quite

well for all the i cases, but it doesn’t match it perfectly. Especially in the i = 0 and

i = 1 case it is easy to see the limitations of the mean field approximation as the solu-
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tions of Eqn. (7.2) overshoot the peaks of the kMC data. Given the shortcomings of

the mean field approximation, it is impossible to say to what extent the misalignment

of the presented inverse problem solutions and the true PkMC are a result of the mean

field approximation itself, as opposed to being poorly calculated solutions of the ill

posed problem.

Solutions of the non-mean field Eqn. (7.3) with PkMC are also shown on Figures

7.7 - 7.13, both the α = i+ 1 (dark green line) and the α = i (orange line) case. As we

already expect from the mean field model experience, the α = i+ 1 (corresponding to

diffusion) case is a (here just slightly) better fit. The deposition case fails completely

only in the i = 0 case; however the deposition limit we have been using makes little

physical sense when applied to the i = 0 case.

The non-mean field solutions are a visible improvement to the mean field approx-

imation in all the cases of i. However, the (relative) simplicity and the possibility

of calculating P from a known GSD are the unique features of the mean field DFPE

model.
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Figure 7.7: Case i = 0: Solutions of the IE (7.2) with P given by diffusion and
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green (Eqn. (7.2) where we use the inverse problem solutions PF and Pλ; mean square
errors (relative to φkMC are listed) and φkMC (black). Shown with the solutions of IE
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solution, the squared ‖ · ‖2 norm of the regularisation term LPλ and the ‖ · ‖1 norm of
Pλ are listed).
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Figure 7.11: Case i = 2: Solutions of the IE (7.2) with P given by diffusion and
deposition case of Eqn. (7.1) (light and dark blue), φF and φλ shown red and light
green (Eqn. (7.2) where we use the inverse problem solutions PF and Pλ; mean square
errors (relative to φkMC are listed) and φkMC (black). Shown with the solutions of IE
(7.2) with PkMC (empty black squares) and of the non-mean field Eqn. (7.3) (dark
green for α = i+ 1 and orange for α = i).
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Figure 7.12: Case i = 2: Diffusion and deposition case of Eqn. (7.1) (light and dark
blue), PkMC (black) and the inverse problem solutions: PF in red (Fourier recon-
structed, with the maximum wave number kmax) and Pλ in light green (Tikhonov
solution, the squared ‖ · ‖2 norm of the regularisation term LPλ and the ‖ · ‖1 norm of
Pλ are listed).
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Figure 7.13: Case i = 3: Solutions of the IE (7.2) with P given by diffusion and
deposition case of Eqn. (7.1) (light and dark blue), φF and φλ shown red and light
green (Eqn. (7.2) where we use the inverse problem solutions PF and Pλ; mean square
errors (relative to φkMC are listed) and φkMC (black). Shown with the solutions of IE
(7.2) with PkMC (empty black squares) and of the non-mean field Eqn. (7.3) (dark
green for α = i+ 1 and orange for α = i).
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Figure 7.14: Case i = 3: Diffusion and deposition case of Eqn. (7.1) (light and dark
blue), PkMC (black) and the inverse problem solutions: PF in red (Fourier recon-
structed, with the maximum wave number kmax) and Pλ in light green (Tikhonov
solution, the squared ‖ · ‖2 norm of the regularisation term LPλ and the ‖ · ‖1 norm of
Pλ are listed).
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Since we assume that the realistic processes, modelled with the kMC simulations,

are a mixture of the diffusion and deposition driven nucleation, we can quantify the

level of those contribution for different i. We first express PkMC and φkMC as a convex

combination of the diffusion and deposition cases of Eqn. (7.1) and (7.2) (light and

dark blue curves on the previous graphs):

PkMC = βP diffusionα=i+1 + (1− β)P depositionα=i , (7.4)

φkMC = γφdiffusionα=i+1 + (1− γ)φdepositionα=i . (7.5)

Now the parameters β and γ can be calculated with the least squares method (we did

this in MATLAB). We show the results in Table 7.1. There is no trend with i or a

symmetry between β and γ, but given the limitations of the mean field model and the

numerical noise in the kMC data that is not surprising. From the results we can only

safely conclude that diffusion is the dominant mechanism of island nucleation.

i β γ

0 0.998 ±2.654 · 10−3 0.912 ± 0.005
1 0.821 ± 6.887 ·10−3 0.728 ± 0.010
2 0.819 ± 0.015 1.015 ± 0.018
3 0.844 ± 4.300 ·10−2 0.714 ± 0.020

Table 7.1: Results of fitting kMC results according to Eqns. (7.4) and (7.5).
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7.2 Capture zone distributions

The Pz(az) used in the IE for the CZD is a distribution of the random variable az =

1
2(a1 + a2), where a1 and a2 are drawn independently from the P (a) for the gaps, Eqn.

(7.1). Pz defined in such a way is a mathematical construct that cannot be measured,

so we can here only compare the Fourier and Tikhonov solution for Pz.

7.2.1 Comparison of Pz(az) obtained as solutions of the inverse prob-

lem

The IE we use to model the CZD has the same form as Eqn. (7.2);

φz(z) =

∫ min(1,z)

0
φ

(
z

az
− 1

)
Pz(az)

az
daz, (7.6)

and az is sampled as 1
2(a1+a2), with a1 and a2 drawn from the diffusion and deposition

case of Eqn. (7.1).

The CZD can also be obtained (or, more precisely put, modelled) as a convolution

of GSD:

φz(z) = 2

∫ 2z

0
φ(y)φ(2z − y)dy. (7.7)

We use the same color coding on the CZD graphs as we did on the equivalent

GSD graphs. The diffusion and deposition case of (7.6) are shown in light and dark

blue, respectively, on the right panels of Figures 7.15, 7.16, 7.17 and 7.15 (i = 0, 1, 2

and 3). Solutions of IE (7.6) with Pz = Pz,λ and Pz = Pz,F are plotted green and red

respectively, on the left panels. Again we list the mean square errors (difference between

φz,λ\F and φz,kMC . The norm ‖Pz,λ‖1 shows the deviation of the Tikhonov solution

from the expected normalized distribution, and the squared norm of the regularisation

term ‖LPz,λ‖22 is the value from the corresponding L-curve. Additionally, we show the

result of integrating the kMC GSD (φkMC) according to Eqn. (7.7) in pink.

Since we don’t have a kMC obtained Pz to check against, we can only say that

the Fourier reconstruction works better because it is always positive (the Tikhonov
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Figure 7.15: case i = 0. Left: Diffusion (light blue) and deposition (dark blue) cases of
the IE (7.6) (where Pz(az) is created by drawing from P (a) (Eqn. (7.1)) for the gaps),
φz,F (red) and φz,λ (green) calculated from the IE (7.6) with Pz,F and Pz,λ. Their
errors are relative to the kMC obtained φz,kMC (black). Convolution of the GSD φkMC

(Eqn. (7.7)) is plotted pink.
Right: Diffusion and deposition Pz(az) (drawn from Eqn. (7.1)) in light and dark blue.
Inverse problem solutions Pz,F (Fourier reconstructed, plotted red; with kmax = 11)
and Pz,λ (Tikhonov solution, in green, with the value of λ and the norms listed).

solutions for all i > 0 fall slightly below 0 near az = 1), and it is always symmetric.

Those problems aside, both look very similar, lie on top of the diffusion curve for i = 0, 1

and overshoot it for i = 2, 3. This could be partly due to the mean field approximation

failure (we have so far seen that it tends to overestimate the peak).

The solutions of the convolution (7.7) however fall short of the true φkMC in all

the cases of i (pink curves on the right panels), pointing to some correlation between

the neighbouring gaps. Since the assumption that there is no correlation between the

gaps is also weaved into the model DFPE for the CZD, this also affects the solutions.

The convolution of the GSD seems to underestimate the φz,kMC roughly by the same

amount for all the cases of i, so the effects of correlation would act as a sort of a sys-

tematic error in the DFPE model.

In conclusion, we have in this chapter presented evidence in favour of the DFPE

model, by comparing the inverse problem solutions and the kMC measured PkMC for
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Figure 7.16: case i = 1. Left: Diffusion (light blue) and deposition (dark blue) cases of
the IE (7.6) (where Pz(az) is created by drawing from P (a) (Eqn. (7.1)) for the gaps),
φz,F (red) and φz,λ (green) calculated from the IE (7.6) with Pz,F and Pz,λ. Their
errors are relative to the kMC obtained φz,kMC (black). Convolution of the GSD φkMC

(Eqn. (7.7)) is plotted pink.
Right: Diffusion and deposition Pz(az) (drawn from Eqn. (7.1)) in light and dark blue.
Inverse problem solutions Pz,F (Fourier reconstructed, plotted red; with kmax = 11)
and Pz,λ (Tikhonov solution, in green, with the value of λ and the norms listed).
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Figure 7.17: case i = 2. Left: Diffusion (light blue) and deposition (dark blue) cases of
the IE (7.6) (where Pz(az) is created by drawing from P (a) (Eqn. (7.1)) for the gaps),
φz,F (red) and φz,λ (green) calculated from the IE (7.6) with Pz,F and Pz,λ. Their
errors are relative to the kMC obtained φz,kMC (black). Convolution of the GSD φkMC

(Eqn. (7.7)) is plotted pink.
Right: Diffusion and deposition Pz(az) (drawn from Eqn. (7.1)) in light and dark blue.
Inverse problem solutions Pz,F (Fourier reconstructed, plotted red; with kmax = 11)
and Pz,λ (Tikhonov solution, in green, with the value of λ and the norms listed).
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Figure 7.18: case i = 3. Left: Diffusion (light blue) and deposition (dark blue) cases of
the IE (7.6) (where Pz(az) is created by drawing from P (a) (Eqn. (7.1)) for the gaps),
φz,F (red) and φz,λ (green) calculated from the IE (7.6) with Pz,F and Pz,λ. Their
errors are relative to the kMC obtained φz,kMC (black). Convolution of the GSD φkMC

(Eqn. (7.7)) is plotted pink.
Right: Diffusion and deposition Pz(az) (drawn from Eqn. (7.1)) in light and dark blue.
Inverse problem solutions Pz,F (Fourier reconstructed, plotted red; with kmax = 11)
and Pz,λ (Tikhonov solution, in green, with the value of λ and the norms listed).

the gaps. We found that the diffusion driven nucleation is the dominant one, with

deposition driven nucleation making only a small contribution.

However, this is all we can say: the limitations of the mean field approximation do

not allow for any other (stronger) conclusions: checking both the GSD and the associ-

ated P graphs independently, we found no trend in diffusion-to-deposition contributions

with increasing i.

When using the measured PkMC in the non-mean field DFPE for the gaps, we saw

a small improvement in the fit of the resulting φ to the kMC GSD, but the non-mean

field DFPE is not suitable for the task of calculating P via the inverse problem.

In the case of the capture zones, there is no way of directly observing the distribution

Pz(az). Because of that, we just presented the best inverse problem solutions from the

two approaches, the Tikhonov regularisation and the Fourier reconstruction. We found

they both look very similar, but they also slightly overshoot the theoretical predictions,

pointing again to the limitations of the mean field approximation.

The reasoning and the procedure of collecting data from the kMC simulations which
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gave PkMC lead us to measure a similar fragmentation distribution for the capture

zones, one that isn’t related to the Pz(az). In the rest of the thesis we will explore and

build on it, leaving Pz(az) behind.
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Chapter 8

Alternative DFPE for the CZD

We have stated in the previous chapter that Pz(az), defined as the probability distri-

bution of the random variable az = 1
2(a1 + a2) where a1, a2 are drawn from P (a) for

the gaps, cannot be measured. However, a probability distribution defined in another

way can be measured in the process of fragmenting capture zones, let us call it Q(a),

to be defined below, with the random variable a ∈ [0, 1]. A DFPE, slightly different

than the one we have used so far, can be constructed for it. The driving motivation is

simple: if it is possible to construct a DFPE model for capture zones with measurable

fragmentation probability, we could extend it to two dimensions more easily. We could

not only have a way to check the validity of the model as we did for the gaps (compar-

ison of inverse solutions and PkMC) but also it would be a model that doesn’t rely on

the concept of gaps - a concept that doesn’t naturally extend to 2d.

A notation remark: the kMC obtained Q should be called QkMC for the notation

to be consistent with the one used for gaps. However, since the kMC measured Q is the

only one we have, we will omit the subscript kMC . This will come handy in Chapter 9

as it simplifies the notation.

We will begin this chapter by introducing the capture zone fragmentation proba-

bility distribution Q(a). Then, in Section 8.2, we construct a DFPE for it, by taking a

retrospective approach that traces the evolution of the reduced (fragmented) zone size;

similarly to the DFPE for the gaps we have been using up until now.
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In Section 8.3 we will, instead of focusing on the fragmented, old zone, look at

the newly created one and, by considering its evolution steps, redefine Q(a) so that it

reflects them. Using this redefined Q, we will write an alternative model equation for

the CZD and test its results against the kMC obtained CZD.

8.1 Q(a) measured from the kMC simulations

To calculate this new distribution Q(a), we use the results of the same 100 simulation

runs (and average over them) which we used in Chapter 7 to calculate PkMC for the

gaps.

The capture zones, just like the gaps, fragment with island nucleations. On Figure

8.1 we show the schematics of capture zones after a new island nucleated and the

Voronoi network is updated. Initially, we had two islands (black circles) with capture

zone sizes Z
′
1 and Z

′
2. Then the new island nucleated (red circle) and the third zone

was formed (of the size Z = dZ1 + dZ2) by taking areas dZ1, dZ2 from the older two,

leaving them with the reduced sizes Z1 and Z2.

Now we can define a1:

a1 =
Z1

Z
′
1

=
reduced zone size (post new nucleation)

original size
, (8.1)

and similarly a2 = Z2/Z
′
2. We can then construct Q(a) as a histogram of a, within the

desired coverage interval.

Figure 8.1: Schematics of capture zones after a new nucleation. Originally there were
two islands (black circles) with zones Z

′
1 and Z

′
2 (upper bar). After a new island

nucleated (red circle), a third zone was created, Z = dZ1 + dZ2 (marked red).

When processing the kMC data, we used the actual zone sizes (in units of lattice
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Figure 8.2: Left: i = 0 case. Q(a) measured in intervals of the total island size nis
(corresponding to coverage θ intervals); the intervals match those of Figures 7.2, 7.3,
7.4 and the color coding is the same.
Right: Q(a) for the i = 2 case.

spacings) in (8.1). In theory, using zone sizes scaled to the average is equivalent, but

it would introduce (more) rounding errors.

In Figure 8.2 we show Q(a) for i = 0 and i = 2 reaching the scaling regime. The

data sets are taken from the same intervals of total island numbers nis (corresponding

to coverages) which we used in section 7.1.1 (for gap ranks and PkMC), and we used

the same color coding. Q(a) enters the scaling regime around nis ∼ 2 ·103 just as PkMC

did.

8.2 DFPE for Q(a)

With Q(a) sampled from the data in the scaling regime, we can construct a DFPE for

the CZD with the same logic as in the GSD case.

Looking at the capture zones schematics in Figure 8.1, we can say that the reduced

zone of size Z1 was created when an older zone of size Z1 + dZ1 was cut at a position

a1 = Z1/(Z1 + dZ1). At the same time Z2 was created by cutting Z2 + dZ2 at the

proportion a2 = Z2/(Z2 + dZ2).

The new island’s zone (marked red) is of the size Z = dZ1 + dZ2. If we assume

that, on average, dZ1 = dZ2 = Z/2, we have (on average) Z1 = a(Z1 + Z/2) (and

Z1 = a(Z1 +Z/2) ). Then we employ the mean field assumption where we set the new
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zone size Z to 1. By denoting the reduced zone sizes (Z1, Z2) by z, we can write the

DFPE:

z , a

(
z +

1

2

)
. (8.2)

If we denote the distribution of z as ψ(z), the corresponding Integral Equation form is:

ψ(z) =

∫ min(2z,1)

0
ψ

(
z

a
− 1

2

)
Q(a)

a
da. (8.3)

The geometric considerations behind this DFPE demand that the average value of

a is 〈a〉 = 2/3. Then, if the average new zone size is 1 (red in Figure 8.1), the average

reduced zone size will also be 1. In Table 8.1 we show 〈a〉 and average sizes of new and

reduced zones; the zone sizes are not scaled to the average (like z in Eqn. 8.2 is) but

are instead measured in lattice spacings. Then the underlying assumption of the DFPE

demand that they are identical, however we see that the new zone sizes are always a

little smaller. This discrepancy grows with i, so this DFPE might not give a good fit

for very high i, although without the kMC data for i > 3 we cannot say for which

(if any). The intervals of nis in which we collect the data grow smaller as i increases

(fewer nucleation events for high i) so getting enough data points for i > 3 cases would

be problematic.

i = 0 i = 1 i = 2 i = 3

data from nis interval: (2−9.7)×103 (3−13)×103 (2− 5)× 103 (2−2.3)×103

corresponding to θ: (1.89 - 94)% (1.1 - 75)% (1.6 - 90)% (2.1 - 77)%

〈a〉 0.67290 0.68169 0.68266 0.68614

avg. new zone size 182.8 121.0 255.4 373.9

avg. reduced zone size 190.1 130.9 277.9 417.8
avg. new size

avg. reduced size
0.962 0.924 0.919 0.895

Table 8.1: Average values of a, the new zone sizes (marked red on Figure 8.1) and the
reduced zone sizes (marked gray), within the chosen nis intervals for collection of data
(these are representative of the scaling regime).
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Figure 8.3: Left: i = 0 case of Q(a), measured in the interval listed in Table 8.1.
Right: ψ iterations from IE (8.3), starting with the initial rectangular guess (plotted
black). The 50th iteration (red) is rescaled to 1 (plotted).

8.2.1 DFPE model results

Since the values of 〈a〉 shown in Table 8.1 aren’t exactly 2/3, when inserting them to

DFPE (8.2) we get 〈z〉 slightly different from 1. For i = 0 we have 〈z〉 = 1.029 and for

the worst case, i = 3, we have 〈z〉 = 1.093. Since these are still small deviations, we

can treat them as they were a result of numerical noise and simply rescale the result of

integrating IE (8.3) so that ψ(z) has a mean of 1.

With a given Q(a), IE (8.3) is solved iteratively as usual; for the i = 0 case on the

left panel of Figure 8.3 we show the convergence of ψ (for Q(a) shown on the right

panel) and the rescaled final result.

For all of the subsequent cases of i we use 50 iterations and rescale the resulting ψ.

In the left panels of Figures 8.4, 8.5, 8.6 and 8.7 we show Q(a) for i = 0, 1, 2 and

3, respectively. The intervals of nis (and θ) from which we gathered data are the ones

listed in Table 8.1. In the right panels we show the kMC CZD and both scaled and

unscaled ψ(z) (Eqn. (8.3) with Q from the left panels).

In all of the cases the (scaled) solution ψ over-represents the average sizes (over-

shoots kMC CZD around z = 1), and therefore under-represents the small amd large

sizes. This is the usual ailment of the mean field approximation, but the model can

still be of use (at least for small values of i) if precision isn’t the main concern. To
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Figure 8.5: i = 1 case. Left: Q(a) from the kMC simulations.
Right: ψ from IE (8.3), unscaled and scaled, shown with the kMC CZD (black).

that end, in Figure 8.9 we show the results of finding Q(a) from a known ψkMC , for

the example case of i = 1; the inverse problem solved with the Tikhonov regularisation

(the L - curve is shown on Figure 8.8) will not give the exact shape of kMC measured

Q(a) but it will display it’s general behaviour correctly.

If time restraints permitted, we could introduce factors into the DFPE (8.2) that

account for the difference between the new and the old, reduced zone (which would

fix the difference between the measured 〈a〉 and the predicted 2/3), but those would

be numerical improvements that depend on directly measured values which are only
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Figure 8.6: i = 2 case. Left: Q(a) from the kMC simulations.
Right: ψ from IE (8.3), unscaled and scaled, shown with the kMC CZD (black).
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Figure 8.7: i = 3 case. Left: Q(a) from the kMC simulations.
Right: ψ from IE (8.3), unscaled and scaled, shown with the kMC CZD (black).

available in simulations.

Since the model DFPE we proposed here doesn’t rely on any specific knowledge of

the system (only Q(a) or the CZD), and its predictions at least aren’t far off, it is more

beneficial to look into other aspects of the zone fragmentation from the scheme 8.1 and

test this model in two dimensions.
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8.3 The newly created capture zones: an alternative model

equation

We have so far been concentrating on the fragmentation and size reduction of the old

capture zone, while setting the newly created one to 1. If we now look at the new zone

on the schematics 8.1, we can backtrace its evolution in a similar way.

The new zone has been born by taking a portion of the old zone to its left and
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another portion from the old zone to its right; Z = dZ1 + dZ2 from Figure 8.1. In this

process, we would define the variable a as:

a =
piece of the old zone taken by the new zone

original old zone size
, (8.4)

so in our example we would have measured two values of a, a1 = dZ1/(Z1 + dZ1) and

a2 = dZ1/(Z1 + dZ1). The equation governing such a sampling of zones is:

z ,
1

2〈a〉
(a1z1 + a2z2), (8.5)

where z is the scaled size of newly created zones, z1, z2 of the old, fractured ones and

since all of the zones have been created by fragmenting older ones, z, z1 and z2 are all

drawn from the same distribution. There is no reason for having a preferred direction

on the lattice, so a1 and a2 (measuring the left and right zone fragmentation) are also

drawn from the same distribution, let us call it Qnew. Qnew(a) defined in this way is

just a symmetric image of the old Q around 0.5.

We can also make a mean field version of Eqn. (8.5) by setting z1 = z2 = 1:

z ,
1

2〈a〉
(a1 + a2). (8.6)

The distribution of the zone sizes z given by Eqn. (8.6) is easily calculated by

randomly drawing values of a1 and a2 from the interval [0, 1] with the probability

Qnew(a), adding them to get a set of values of z and then binning z. The algorithm is

similar to the one in section 4.1.

The resulting distributions are shown on Figures 8.10 and 8.11 for all 4 cases of i,

along with the kMC CZD. We also show the scaled distribution ψ(z) from IE (8.3);

which for all the cases except for i = 2 gives a worse fit to the kMC data. We can

probably look for reasons for this in the fact that Eqn. (8.6) is a simpler model that

only assumes we can set the old zone sizes to 1; IE (8.3) additionally assumes the two

older zones contribute (on average) equally to the newly created zone. The selling

point of the IE (8.3) is that we have an established way of finding Q from a kMC CZD
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Figure 8.10: Left: i = 0 case: CZD shown with scaled ψ(z) (Eqn. (8.3)) and the
distribution of z from Eqn. (8.6).
Right: i = 1 case.
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Figure 8.11: Left: i = 2 case: CZD shown with scaled ψ(z) (Eqn. (8.3)) and the
distribution of z from Eqn. (8.6).
Right: i = 3.

through it, which might equivalently be used in two dimensions.

8.3.1 The GSD connection

One additional result can be drawn from Qnew: if we look again at the schematics on

Figure 8.1, we can guess that the next island which will presumably nucleate later, in

the gap between the new (red) island and the old (black) island to the left, will most

likely nucleate half way between them - which is where the gray Z1 and the red Z

marked zones meet. The same is most likely to happen on the right hand side: an
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island nucleation on the edge of Z and Z2 zone. This makes the zone portions dZ1 and

dZ2 equal to the new gap sizes x1, x2, so we can sample the GSD from Qnew as:

x ,
a

〈a〉
, (8.7)

where x is the scaled gap size and a is defined as (8.4) and drawn from Qnew (the

symmetric image of Q(a)). In other words, Qnew(a) is the rescaled GSD (with a mean

of 〈a〉 ≈ 1/3; as shown previously in Table 8.1 where the average a drifted slightly from

the expected 2/3).

We stress here that this result comes entirely as a geometric property of the capture

zones which are defined as Voronoi cells around island centres on a 1d lattice, and the

parabolic nucleation probability within a gap (Eqn. (2.28)). The data from which we

created Q as a histogram only records the exact positions of the Voronoi cell edges,

which then correspond to probabilities of new island positions and gap sizes; but not

the actual position of some subsequent island.

With a given by Eqn. (8.7), Eqn. (8.6) becomes:

z ,
1

2
(x1 + x2) , (8.8)

which is in fact the convolution (2.23) from Ref. [15] we have been using previously

(the derivation of the convolution equation (2.23) from Eqn. (8.8) is as the one in the

Appendix A, if we set η = a = 1 and z → 2z).

In the left panel of Figure 8.12 we show Q(a) and Qnew(a) for i = 1, and on the right

panel the kMC GSD and Qnew which is rescaled so that its mean is 1 (this matches the

distribution of x given by Eqn. 8.7).

For the i = 2 case shown on Figure 8.13, we sampled x from the Qnew according to

Eqn. (8.7).
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8.3.2 Non - mean field equation

Equation (8.5) doesn’t set z1, z2 to 1, which we would then expect to be more accurate,

although introducing two more variables increases the chance for errors.

We again use the same procedure as in section 4.1: the algorithm defines an initially

empty set (array) of zone sizes and then proceeds to fill it with individually chosen

values z = (a1z1 + a2z2)/2, where a1 and a2 are randomly drawn from Qnew and z1, z2

are randomly drawn from the array of zone sizes z. In that way, the system forgets its

initial conditions (first z value set to 1) and builds a set of z values that satisfy Eqn.

(8.5).

The result of this procedure is shown on Figure 8.14, right panel, in pink. We can

see that it is completely different from the kMC CZD (plotted black): much like the

non - mean field integral equation for the gap sizes from section 3.3, the process of

choosing z1, z2 values needs to take into account that the zones in which a new island

nucleates are not chosen randomly; they are usually larger than the average ones.

On the left panel of Figure 8.14, those chosen zones are shown in purple, along with
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the usual kMC CZD (statistics made from all of the zone sizes on the whole lattice).

The reduced zone sizes (post nucleation) which were marked gray on our schematics

8.1, are here again plotted in gray. The newly created zone sizes are again plotted in

red, and all of the datasets are scaled to the average zone size of the whole lattice.

We can now introduce a bias to Eqn. (8.5): choosing z1, z2 with the same probabil-

ity like in kMC simulation (purple distribution on the left panel of Figure 8.14) should

have given a better fit to the kMC CZD than the mean - field equation did; however

the result was much worse. It is not clear why this happened. Certainly, introducing a

more sophisticated description, with more variables, increases the amount of possible

numerical errors; but such a large difference probably points to a deeper issue. With a

bias we introduced, z1 and z2 are still drawn independently of each other, and in the

mean field version setting them both to 1 relates them, in a very brute manner. This

might account for, at least a part, of the problem.

To summarize, in this chapter we have defined a fragmentation probability distri-

bution Q(a) (and its symmetric image Qnew) for capture zones, measurable from kMC.

We have used it in two ways to get CZD: first, by focusing on the old, reduced zone size

(post-fragmentation), a DFPE for the capture zones can be identified, equivalent to

the DFPE for the gaps. This approach, while giving rough results, also gives promise

for an extension to two dimensions where a similar DFPE can be written. Then, if the

model is good, it can be used to calculate Q from a known (kMC obtained) CZD by

solving the inverse problem, just as we did in Chapters 5 and 6.

A second approach, one that looks at the evolution of the newly created zone,

allowed us to sample the CZD according to the alternative model equation. The as-

sociated fragmentation probability, Qnew, is just a symmetric image of Q. This model

gives a better fit to the kMC CZD, but it is not clear if an extension of this equation

to two dimensions would still allow for Qnew to be calculated from a known CZD.

136



Chapter 9

Two dimensional substrate:

DFPE for the CZD

One of the appeals of the DFPE model (namely, Eqn. (3.16)) has been the possibility

of an easy extension to 2d: the lengths of the capture zones z from 1d would become

the areas of the zones in 2d, and then an equation such as z , az(z + 1) would allow

us to determine the correct Pz from the kMC CZD.

While it is certainly possible to calculate such a Pz from kMC CZD with the methods

from Chapter 6 and 5 (the resulting Pλ has in fact a parabolic shape similar to the

1d cases of Pz), it wouldn’t correspond to any physical (measurable) quantity. In the

1d case, Pz was sampled by drawing from the corresponding P for the gaps, so it was

defined through the gaps. However, in 2d it is not clear what an inter - island gap

would be.

On the other hand, capture zones have the same straightforward definition in all

dimensions, and since in the previous chapter we developed a DFPE for the CZD that

relies entirely on capture zones and measurable fragmentation probability Q, we will

in this chapter test if that model can be extended to 2d.

This chapter is structured as follows: first we explain the two-dimensional kMC

simulation procedure. Then, in Section 9.2, we will define Q(a) and, looking at a zone

fragmentation and size reduction on a 2d substrate, write model mean field DFPEs
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for the CZD analogous to the one in the previous chapter. In Section 9.3 we attempt

to refine the (over-simplified) model equation so that it encapsulates the complexities

present in a 2d problem. Finally, we will try out the alternative model equation which

focuses on the newly created zone using Qnew in Section 9.4.

9.1 The kMC simulation on a 2d lattice

In 2d simulations, we use an extended, circular island model. The dynamics are oth-

erwise the same as in the 1d case with point islands: starting on an empty lattice,

deposition steps (monomer placed on a random site) are followed by a certain number

of diffusion steps (randomly chosen free monomers on the lattice moved by one space

in a random direction; up, down, left or right).

A monomer will hop 16 times on average between two deposition events, which (with

the lattice size of 1000× 1000) gives the ratio R = D/F = 0.25× 16× 1000× 1000 =

4 × 106. We again use periodic boundary conditions and run the simulation until the

desired coverage is achieved.

When nmon = i+1 monomers collide, an island nucleates and its position is recorded

as the single lattice site - this is the island’s centre. Island’s size nmon is also recorded.

Then, assuming the island is a perfect circle, an effective radius is calculated: r2 =

nmon/π. If another monomer finds itself in a lattice position whose distance from the

island’s position (centre) is equal to or less than r, it will be absorbed and island’s size

and radius r will be incremented.

Capture zones are defined as Voronoi cells around island centres, so they don’t

change when islands grow; only when a new nucleation occurs. At higher coverages,

coalescence of two islands can happen without the Voronoi network registering it. For

low coverages, before the coalescence effects start to be relevant (which happens around

θ ∼ 20−30% [16]), we don’t expect the choice of generating cells around island’s centres

rather than around their edges will have a significant impact.

With this algorithm, the resulting structure (islands and Voronoi network) looks

like the one shown in Section 2.4 (Figure 2.3).
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Figure 9.1: Left: kMC obtained CZDs for i=1, scaled to the average zone size at a
given coverage. Right: unscaled CZDs.

To get the CZD and Q(a) we used a diffusion to deposition ratio R = 4 · 106 and

averaged outputs of 300 runs.

When plotting CZDs for i = 1 for different coverages (Figure 9.1), it is apparent that

the scaling is not perfect (for the i = 2 case, Figure 9.2, it looks much better). Usually

the scaling regime, in terms of R, is found to start around R = 105 and improves as R

grows. In terms of coverage, it starts at θ ≈ R−1/2 and ends between 10 and 30 % [16],

yet here we see scaled curves within that region slightly sliding down as coverage rises.

As a larger contrast to the equivalent 1d case, the unscaled CZD curves within that

region are very similar. This makes it difficult to choose the coverage at which it is best

to gather data for Q(a); it is unclear how big of an effect this will have on goodness of

fit of model equations to the kMC data.

Initially there is a large surge of new nucleations (making the θ = 1% and θ = 5%

CZD distinct from subsequent ones), after which we enter into an imperfect scaling

regime. After some higher coverage (dependant on i), new nucleations become so rare

it is impossible to collect enough data for constructing Q(a). The CZD curves here

overlap each other perfectly (both the ones scaled to the average and the unscaled) -

here the Voronoi cells remain more or less unchanged. Therefore the coverages at which

the data is collected are chosen roughly between those two extremes:
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Figure 9.2: Left: kMC obtained CZDs for i=2, scaled to the average zone size at a
given coverage. Right: unscaled CZDs.

for i = 2 Q(a) is constructed from the data collected between θ = 5% and 10 %,

for i = 1 between θ = 10% and 25 %.

9.2 Method: extension of 1d DFPE

Following the same approach as in one-dimensional capture zones, we measure Q(a)

from kMC simulations and attempt to construct a similar DFPE for the CZD.

Like before in the 1d case, we define a as the ratio of the reduced Voronoi cell

size and its original size: the cell area after a new island nucleated in its vicinity and

took away a portion of it, and the original cell area prior to nucleation. Reflecting the

difficulty of choosing an appropriate coverage interval based on the CZD behaviour,

there is very little difference between Q(a) in the early stage and the one measured in

what we believe to be the scaling regime (Figure 9.3).

Whenever a new island nucleates, the areas of the capture zones that are affected

are recorded and Voronoi network is updated. The size of the newly created zone size

is recorded, along with the areas that zone took away from the old zones. The total

number of zones that were reduced is recorded. This is sketched on Figure 9.4. Here,

after a new island nucleated, the updated Voronoi network has a new cell drawn in red.

Its area is dZ1+dZ2+dZ3. Three old zones (coloured grey) were reduced in size (from

initial Z1 +dZ1 to final Z1) and the values of a collected are then a = Z1/(Z1 +dZ1),
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a = Z2/(Z2 + dZ2) and a = Z3/(Z3 + dZ3).
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Figure 9.3: Q(a) for i = 2, measured in different intervals of coverage θ.

Figure 9.4: Schematics of capture zones after nucleation.

In the model we’re testing, the grey area (reduced zone) Z1 was created when a

larger, older zone of area Z1+dZ1 was sliced at a proportion a. In other words: a larger,

old zone consisting of the reduced zone Z1, and, on average, a third of the new zone

(dZ1), was reduced to a times its original size. With the mean field approximation of

taking the newly created zone’s area to be 1, DFPE that describes this process is
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z , a(z +
1

3
) (9.1)

However, a new island will not always break three old capture zones, so instead of

3 in the equation we need to use the average number of broken cells ξ, which varies

with coverage and critical island size i. It is averaged over all of the nucleation events

within the dataset from which we construct Q(a).

For i = 1 and θ ∈ [0.1, 0.25] we then have ξ = 4.7084 and the average value of a is

〈a〉 = 0.909 (similar to ξ = 5.5 found in [60], where point island model, i = 1, R = 107

and θ = 10% are used).

For i = 2 and θ ∈ [0.05, 0.1] it is ξ = 6.10633 and the average a is 〈a〉 = 0.896.

With these values alone, the average zone size from Equation (9.1) is slightly larger

than 1. Another correction we need to make is to the average size of the newly created

zones: new zones are usually smaller than the old ones they fragment. Referring to the

schematics on Figure 9.4, newly created (red) zone is smaller than the grey coloured

reduced old zones by some factor χ. When collecting all of the corresponding red and

grey areas in nucleations occurring within specified coverages for i = 1, 2, we get χ =

average of new zone area / average of old, reduced zones.

For i = 1, we have χ = 0.452 and for i = 2, χ = 0.675, within their respective

coverage intervals.

Figure 9.5 (left panel) shows the distribution of newly created cells ψnew (red cell

on scheme 9.4) and the reduced old ones ψreduced (gray Z sizes), together with the

distribution of original old zone sizes Z+dZ (distribution of cells that will be fragmented

in new nucleations, ψpick) and the total CZD on the lattice. All are scaled to the average

cell size on the lattice at a given coverage. When new cells are scaled to the average

new cell size and reduced to the average reduced size, they overlap (right panel).

Now, with introduced η =
χ

ξ
, the DFPE (9.1) becomes:
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Figure 9.5: Left: CZDs for i = 2, all scaled to the average size on the lattice at θ = 10%.
Pink: ψpick, zones to be fragmented in new nucleations, black: ψreduced, the same zones
after they were reduced in size to create a new zone, red: ψnew, newly created zones.
The standard kMC CZD (all the zones on the lattice at θ = 10%) is shown in green.
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z , a(z + η). (9.2)

Average zone size from this equation is now 0.995 for both cases of i. The corre-

sponding integral equation is:

ψ(z) =

∫ min(z/η,1)

0
ψ
(z
a
− η
) Q(a)

a
da. (9.3)

Figure 9.6 shows the solution to the IE for i = 2, with the corresponding IE where

χ is taken to be 1 for comparison. Both solutions were rescaled to 1 after integrating.
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Figure 9.6: Solutions of IE (9.3) for i = 2, on top of kMC CZD (plotted black).

Since the DFPE with a single capture zone variable isn’t a good fit, we try out a

version with two variables:

z , a(z1 + ηz2), (9.4)

where we still have η = χ/ξ = 0.452/4.708 for i = 1 and 0.675/6.106 for i = 2.

The corresponding integral equation is:

ψ(z) =

∫ a=1

a=0

∫ z1=z/a

z1=0
ψ

(
z

ηa
− z1
η

)
ψ(z1)

Q(a)

ηa
dz1da, (9.5)

and we again solve it iteratively. However, the results are hardly an improvement; they

are shown on Figures 9.9 and 9.11 for i = 1 and i = 2, respectively.

Because the number of cells fractured by a new nucleation is quite high but some

of them will only lose a very small proportion of their areas to the new cell, we can

assume only 3 cells contribute and the rest are negligible. Figure 9.7 shows individual

Q(a) distributions: in each nucleation, all of the fractured zones give a value of a and
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those are then ordered from the smallest a1 to the largest aN and binned to obtain

Q01, Q02,... ,Q07 (Q07 contains data from seventh and all of the higher chipped zones).

When collecting data only from the three zones that contributed the most to the new

one (have the smallest values of a) and neglecting all the rest, we can construct a

distribution Q(a) that corresponds to the scheme on Figure 9.4; call it Q3(a). We

collect 3 values of a per nucleation and build a single, collective Q3(a) from them (also

shown in Figure 9.7, and in 9.8 and 9.10).
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Figure 9.7: Individual Q0n for i = 2. Dark blue triangles show a distribution Q3(a)
made by binning only the smallest 3 values of a per nucleation.

Then we have

z , a

(
z +

ξ

3

)
, (9.6)

where for i = 1 we have ξ = 0.4706 and for i = 2, ξ = 0.6248. This can also be modified

into a DFPE with 2 variables,

z , a

(
z1 +

ξz2
3

)
. (9.7)
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9.2.1 Results

Figures 9.8 and 9.10 show Q(a) that takes all of the fractured zones into account, and

Q3(a) where only the 3 that lost the most of their surface count (the rest are neglected).

Solutions to the integral equations corresponding to the DFPEs (9.2), (9.4), (9.6), (9.7)

are shown on Figures 9.9 and 9.11. All of the solutions are an extremely bad fit, with

the solutions with Q3(a) consistently worse than the ones with the full Q(a).

All of the solutions over - represent the average zone size, giving peaks around

z = 1 which seriously overshoot the kMC data. We have seen in the 1d case that this

overshooting happens when the mean field approximation is used, but only now it is so

serious that the model becomes useless.

It is important to notice that the DFPE with 2 variables, z1 and z2 (Eqn. (9.4)) is

still in a sense mean field, since it works with the average of the fractured cells contri-

bution aηz2 instead of all of the fractured parts individually (marked as dZ1, dZ2 and

dZ3 on the post - nucleation zone schematics in Figure 9.4). In the case of i = 1, there

are less of them (ξ = 4.7084 on average during the data collecting period of nucleation,

as opposed to ξ = 6.10633 for i = 2). We would expect this to manifest as a slightly

better fit of the mean field DFPE in the i = 1 case than in the i = 2, where more

individual contributions were modelled with a single contribution aηz2. However the

opposite happened. Two problems could have lead to it: firstly, as we have seen on

the CZD graphs in Figures 9.1 and 9.2, the choice of the intervals of θ in which the

scaling regime is reached and we can collect the data for calculating Q, is somewhat

arbitrary. Perhaps in one case (or both) we made bad choices and collected some of

the data points which are not representative. Secondly, if we assume the intervals were

equally well chosen in both cases, possible correlations between the neighbouring zones

could have had a strong impact.

In the 1d case, the non-mean field DFPE improved the mean field results, but its

integral equation form (Eqn. (3.21)) involved a bias in choosing the neighbouring gap

and it was a double integral, which made it unfit for the task of calculating P from a

known φ (inverse).
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Here, an analogous non-mean field DFPE would complicate the model equation

much more, so we will try everything we can to make the mean field model work.
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Figure 9.8: Q(a) (black) and Q3(a)(red), for i = 1.
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9.2.2 Inverses

To explore the behaviour of this (clearly bad) IE model a little further, we can in-

vert them to see if we get the starting Q(a) back. Again we use standard Tikhonov

regularization method (zeroth order), as before in Chapter 5.
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Figure 9.12: Left: L-curve for calculating Q(a) from (9.2). Right: L-curve for calculat-
ing Q3(a) from (9.6).

We take the i = 2 case and distributions Q and Q3 shown in Figure 9.10. For

those two Q distributions we have solutions of the IEs corresponding to Equation (9.2)

(shown in dark green in Figure 9.13) and Equation (9.6) (shown in black, Figure 9.13

); these are the equations we invert to retrieve two distributions Qλ.

Figure 9.12 shows the L-curve for retrieving Q (left panel) and Q3 (right).

The best solutions are shown in Figure 9.14, and the integrals of those solutions Qλ

are shown on Figure 9.13, with the original (starting) IEs.

 

C
ZD

0

0.5

1

1.5

2

 

z
0 0.5 1 1.5 2 2.5

original IE
Tikh. sol. λ=2.6∙10-3

original IE, with Q3
Tikh. sol. λ=2.73∙10-3

Tikh. sol. λ=1.1∙10-4
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It is clear that the retrieved solutions Qλ differ from the correct Q’s (shown in dark

green and black on Figure 9.14). Of course, true Q has a lot more noise here than the

ones in 1d cases where we were always able to correctly reconstruct P . But, whatever

the cause of failure, these are discouraging results. Not only does the IE (DFPE) fail

to fit the kMC data directly, but it cannot even be inverted correctly. If CZDs in 2d

can at all be somehow modelled with DFPEs of this type, it may not be possible to get

a good fit on datasets with such a large amount of noise.

Just for the sake of completeness, results of inverting kMC CZD to get Qλ and Q3,λ

according to Equations (9.2) and (9.6) are shown on Figures 9.15 and 9.16.
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9.3 Modifying the model DFPE

9.3.1 Adding more zones

Since IE fails to fit kMC CZDs, the easiest thing to try next is a variation of DFPE

(9.4) with different number of variables z:

z , a(z1 + c
z2
2

), z , a(z1 + c
z2 + z3

3
), ..., z , a(z1 + c

z2 + ...+ z6
6

) (9.8)

Here the constant c is calculated from assuming all zi have an average of 1 (and

from kMC results, we know that 〈a〉 = 0.896 for i = 2).

To get these distributions, we use an algorithm (similar to the one described in

Section 4.1) that starts with a set of z’s (initially set to 1 and 0). In each step we draw

a necessary number of zi at random from the set (each element of the set has the same

probability to be chosen) – two for the first equation in (9.8) : (z1, z2) etc. We draw a

value of a ∈ [0, 1] (where the probability of choosing a is given by Q(a)) and calculate

the right hand sides of (9.8) . We repeat this 108 times and make a histogram from the

results. Resulting distributions are all the same and indistinguishable from previously

used DFPE (9.4) (z = a(z1 + ηz2)) , up to two decimal places, so we don’t show the

graph here.

During the kMC simulation, when an island nucleates, it fragments a few capture

zones of various sizes, in different proportions, so assuming all of them can be taken to

be of size 1 on average might be too crude of an approximation. Alternatively, trying to

capture this process with a single choice of a per nucleation might be the problem (or

both of it). In any case, introducing different zone sizes and values of a per nucleation

that would reflect this is not straightforward and it would (if it would work) be an

entirely empirical model. So, given the time constraints, we move on to try a simpler

modification of (9.4).
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9.3.2 Biased DFPE / Weighted IE

The simple MC procedure we have used to get a distribution of z doesn’t correspond

to the real situation: in kMC simulation, the Voronoi cells that are fragmented in new

nucleation events are usually larger than the average cell on the lattice. Figures 9.5

and again 9.18 (left panel) show the distribution of cells fractured in new nucleations,

ψpick(z), as well as the distribution of the resulting new and remaining cell sizes. If we

modify the simple MC procedure used to build DFPE solutions in such a way that each

randomly chosen zone z from the set is chosen with the probability equal to ψpick(z)

from Figure 9.18 (pink circles), we have a biased DFPE (similar to the 1d case, Eqn.

3.21).

Results for the biased DFPE (9.2) and (9.4) for i = 2 are shown on Figure 9.17. It

overshoots even more than the unbiased version. Since DFPEs already underestimate

the amount of very small and very large zones, a bias that forces the algorithm to

mainly choose z’s around z = 1 only sharpened the result. Distribution of z’s the

algorithm drew from the available pool of z values to calculate biased DFPE is shown

on Figure 9.18. The algorithm is set to prefer choosing z’s according to probability

distribution plotted in pink, but soon the set of z’s is redefined according to a(z + η)

which leads to a much sharper distribution of z’s chosen later on.
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Figure 9.18: Left: Distribution of z’s used in calculating the biased DFPE (blue), versus
the distribution of zones fragmented in full kMC simulation (pink) that is used as a
bias. Shown with full kMC simulation results: CZD at θ = 10% (green), distribution
of zone sizes after fragmentation (black) and the new zones (red) belonging to newly
nucleated islands.
Right: Result of (9.9) shown in turquoise. Gray curve shows the result of (9.9) where
we have set ψnew(z) = 1.
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Figure 9.17: Biased DFPE (9.2) (pink) and (9.4) (purple) for i = 2, shown with
unbiased versions (light green and green) and (9.6), (9.7) (light blue and blue) for
comparison; kMC CZD is plotted black (θ = 10% in full triangles and θ = 5% in empty
squares.

If instead of single variables z we add their individual distributions obtained as

histograms from kMC simulation (where zone sizes were divided by the average zone
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size on the lattice at a given coverage before binning), according to:

〈a〉
(
ψpick(z) +

1

ξ
ψnew(z)

)
(9.9)

(where 〈a〉 = 0.896 is the average value of a for i = 2 and ξ = 6.10633 is the average

number of fractured zones per nucleation), we get back the distribution of reduced zone

sizes. This is shown in right panel on Figure 9.18.

We would (roughly) expect the distribution of reduced zone sizes to follow from

a(zpick +ηzpick), but DFPE z , a(z1 +ηz2) is either a wrong approach completely or it

requires some modifications that would somehow capture the complex two dimensional

picture.

We saw in one dimension that the mean filed assumption that we can take the

neighbouring zone to be of size 1 leads to CZD results that overestimate the number of

zones with size z ≈ 1 (too high peaks around 1) and underestimate the very small and

large zones. This was most apparent in the DFPE model we devised in the previous

chapter with intent of expanding it here to 2d; but it was also happening (although far

less dramatically) with the gaps and capture zone DFPEs we used all up until Chapter

8.

In 1d case, assuming the neighbouring capture zone can taken to be of size 1 in-

troduces one simplification. On a 2d substrate, this multiplies: for i = 1 we have (on

average) ξ = 4.7084, and for i = 2 ξ = 6.10633, neighbours set to size 1. So instead of

one approximation, we are here introducing 5-6 ones.

Another issue is the way we calculate and use a: we assume that the collection of

those 5-6 zones we’ve set to size 1 will be sliced into two proportions, all with the same

a - regardless of their positions (and actual shapes!) on the lattice. So again we are

averaging: by fragmenting all of the neighbour zones with the same value of a in our

model, we are replacing individual fragmentations with a sort of an effective, average

a we draw once per nucleation from Q(a).
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9.4 Sampling the newly created zones

We have so far only focused at the process of fragmenting (reducing) old zones, so we

now explore the newly created zones.

As before in the 1d case, we can look at the zones around newly nucleated islands.

On scheme in Figure 9.4, the new zone (white with red edges) consists of 3 fragments

of the old zones. Previously we have been defining a as the ratio of the reduced (grey)

zones and their original sizes; now if we define it as the portion of the size that was

taken (dZ1) from the old zone divided by its original size (Z1 + dZ1), we have a new

Qnew(a):

Qnew(a) = Prob

(
dZ

Z

)
= (1−Q), (9.10)

where by Q we denote the old Q(a) that was used in previous sections. All of the

fractured zones were used in creating this Qnew, within the same coverage ranges as

before (so they are just symmetric images of old Q (Figures 9.8 and 9.10, black circles)

around a = 0.5).

Then we can sample the size distribution of new cells according to:

z ,
1

ξ

ξ∑
i=1

ai
〈a〉

, (9.11)

where ξ is the average number of zones fractured in a nucleation and all of the ai were

drawn from Qnew.

When we calculate (sample and build histograms) distribution ψ(z) according to

(9.11), in each step we draw ai’s from [0, 1] according to Qnew and sum them to get

left hand z. We draw (and sum) a different number of them in different steps so that

the final result contains on average ξ of ai’s (when averaged over all the steps).

For i = 1, ξ = 4.7084, we sample (9.11) in 106 steps: in 9 × 105 steps draw 5 ai’s,

in 904× 102 steps draw 2, in 9× 103 draw 3 and in 600 draw 1.

For i = 2, ξ = 6.10633 and from 106 steps, in 9× 105 draw 6, in 9× 104 draw 7, in
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9× 103 draw 8, in 800 draw 5, in 130 draw 2 and in 70 draw 1.

Results fit nicely on top of the kMC obtained CZD (the usual distribution of zone

sizes found on the lattice at a relevant coverage); they are shown on Figure 9.19.

Rounding up ξ to the nearest integer in (9.11) is an approximation that gives a

visibly worse fit (as shown on Figure 9.19, left panel) and a simpler model equation

z , ξa is obviously wrong, so there is no way of (simply) calculating Qnew(a) from a

known (measured) CZD.

Equation (9.11) contains a mean field assumption which sets all of the newly created

zone sizes to 1; without this the equation reads:

z ,
1

ξ〈a〉
(a1z1 + a2z2 + ...+ aξzξ) . (9.12)

The resulting distribution for i = 2 is shown on Figure 9.19 (right panel, plot-

ted red). Again, in building this distribution, all of the zi are drawn with an equal

probability from the set of zones (like in section 9.3.1). Average zone size is 〈z〉 = 0.89.

If we bias the selection of zi’s so that each is chosen with a probability ψpick(z)

(pink circles on Figure 9.5), we get a reasonably good fit for kMC CZD that should be

within rounding and binning errors from mean field Equation (9.11). Noise in ψpick(z)

also enters the equation, all of which probably contribute to the mean field version

being a better fit for kMC CZD. The biased Equation (9.12) is shown for i = 2 only (on

Figure 9.19, right panel, in orange). In calculation, the right hand side of the equation

had to be multiplied by 1.08 to bring 〈z〉 closer to 1 (this accounts for the noise and

binning errors that entered the equation); the result is 〈z〉 = 1.009.

Clearly, focusing on the daughter zones instead of the parents as we did before,

leads to a good model for the CZD. Interestingly, the full Equation (9.12) makes a

slightly worse fit that Eqn.(9.11) (which is it’s approximation, where all of the zi = 1),

as seen from the i = 2 case graphs (yellow and orange). This may be due to noise levels

and rounding errors which always increase as the number of variables we use increases.

Equation (9.11) offers the possibility of getting a CZD that is close to the real, kMC

obtained CZD if Q(a) is known; so exploring its properties further looks like the most
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Figure 9.19: Left: kMC CZD for i = 1 (black), shown with IE form of DFPE (9.2)
(green). Results of Equation (9.11) are shown in yellow. An approximation of (9.11)
where ξ is set to 5 is shown in blue. Purple curve is a plot of z , ξa.
Right: kMC CZD for i = 2 (black, full (θ = 10%) and empty (θ = 5%) symbols), with
IE form of DFPE (9.2) (green). Equation (9.11) is shown in yellow, Equation (9.12) in
red and biased (9.12) (each zi drawn with the probability ψpick(z)) is plotted in orange.

promising future direction.

To summarize, in this chapter we have tried to extend the 1d CZD model from

Chapter 8 to 2d. We have tested both the approach that focuses on the reduction of

the old zone size, yielding a DFPE model, and the approach where we trace the origins

of the newly created (daughter) zone (belonging to the newly nucleated island).

The failed attempts to make the mean field DFPE z , a(z1 +ηz2) work, along with

the assumption that there are no correlations between neighbouring zones, also assume

that the reduced parent zone can always be traced back to the original size by adding

the portion aηz2 (taken by the daughter), with a single a and z2 variable. This has

proved itself to be too crude of an approximation.

Had the time restrictions permitted it, we could have modified the DFPE with 3

variables (z1, z2 and a) into a DFPE with 1+ξ+ ξ variables (z and z1, z2, ..., zξ instead
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of only z2, and a1, ...aξ instead of only a):

z , [a1(z + η1z1) + a2(z + η2z2) + ...+ aξ(z + ηξzξ)]
1

ξ
. (9.13)

Then, instead of having only z2 and drawing a from the joint Q we would have z1, z2...

and draw a1, a2, ... from the individual distributions Q01, Q02... which were shown

on Figure 9.7. However, even if this would give a good fit, it would heavily rely on

empirical parameters (η can only be measured from a kMC simulation, where all the

nucleation steps can be traced; this cannot be done in experiments). It would also most

likely lead to a model from which it is not possible to calculate Q when CZD is known.

The alternative approach of focusing on the new (daughter) zone, gave us reasonably

good results. The governing equations still neglect any possible correlations between the

neighbouring zones and effects their shapes could have on the fragmentation process.

But, unlike the DFPE approach, they include 5-6 (on average) different values of a

per nucleation, all independently chosen from Qnew(a). Within this model, we also got

good results when setting all of the 5-6 zone sizes to 1; equation z , 1
ξ

∑ξ
i=1 ai/〈a〉

looks like a promising future direction. It does however require that ξ is known; ideally

it is simply related to i so it could be deduced in experiments, but it is also possible

that this parameter can only be obtained from a kMC simulation. It is also not clear

if the model equation would allow Qnew to be calculated from a known CZD.
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Conclusion

Explaining the island nucleation and growth processes analytically is an open research

problem, with ongoing development of theoretical models to describe the scaling prop-

erties of the island sizes and spatial distribution. Within that niche, in the last two

decades the focus has somewhat shifted from the problem of obtaining the correct form

of the ISD to that of the CZD.

In cases when one needs to fit the kMC or experimentally obtained CZD to a

functional form (for example, to deduce i), both the Gamma distribution and the Gen-

eralized Wigner surmise have been used frequently. The DFPEs originally proposed in

Ref. [5] similarly offer a (relatively) quick to use model function, one that differentiates

between i and P (a), and also provides a model for the nucleation process instead of just

a fitting function. This makes it a promising candidate, especially if it can be extended

to higher dimensions.

We have therefore in this work aimed to explore the behaviour of the model and

some of its possibilities.

The 1d DFPE model (Chapter 3.2), both for the gaps and the capture zones, estab-

lishes two theoretical limiting cases of nucleation: a purely deposition and a diffusion

driven, with the kMC GSD and CZD leaning towards the diffusion limit. One then

naturally asks how do the probabilities PkMC which correspond to kMC data look like,

and can they be calculated from a given (experimental or simulations) GSD (CZD).

In chapters 6 and 5 we have calculated P distributions, both with a textbook -
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method of regularisation and our own method which enforced symmetry and positivity

of the solution. For the case of the gaps, where it is possible to measure P directly during

the kMC simulations, we have also compared the calculated to the measured P . By

doing so, we found a good level of self - consistency within the model. However we have

also found recurring discrepancies between the kMC data and the mean field DFPE we

have been using, which tell us that the model works as a good approximation but it isn’t

accurate enough for the purpose of determining exactly how much does the diffusion

theoretical case, versus the deposition, contribute to the true nucleation process (which

we take to be represented by the kMC simulation). This becomes apparent when we

fit the kMC GSD and PkMC on a combination of the diffusion and deposition model:

there is no consistency between the PkMC and GSD fitting results (Table 7.1). The

only conclusion we can make is that, within the our model framework, the kMC GSD

and CZD can be reasonably well described with the mean field DFPE that is close to

the diffusion driven theoretical case.

Since Pz for the capture zones is sampled from the distribution P for the gaps,

it cannot be directly measured so we can only rely on the inverse problem solutions.

However, because the solutions from two different methods look much more alike than

they did for the gaps, we can take them with confidence. The solutions have broken

slightly above the diffusion theoretical case for i = 2 and 3, reflecting again the limits

of the mean field approximation. In this model, additionally an assumption that the

neighbouring gaps are uncorrelated is used, and we have seen that this is not completely

true from the plots of the CZD calculated as a convolution of the kMC GSD.

The inability of directly measuring Pz for the capture zones from simulations has

led us to define and measure another distribution, Q; a probability of fragmenting a

capture zone at a certain position. This then leads to a DFPE that doesn’t rely on

the concept of a gap, which makes it a preferred choice of an equation to be tested on

a two dimensional substrate - but all our efforts with getting it to work in 2d failed.

While in 1d the mean field approximation lead to slightly higher peaks than those of the

kMC CZD, in 2d this became so severe the model can’t be used. It might be possible

to modify it in such a way that it incorporates a sufficient amount of information to
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model kMC CZD correctly; a possible future direction would be testing an equation

such as (9.13), where the contributions of each individual neighbouring zone is taken

into account rather than a single, average one. Getting at least a better fit with such

an equation would strengthen the case for using a DFPE model which uses the Q

distribution. We don’t see however if there would be any practical implications since

it would rely entirely on numerically determined factors that need to be obtained from

simulations for each individual case.

Another possible direction is to return to the original DFPE with Pz sampled from

the corresponding distribution for the gaps, and see if it can be extended to 2d. The

Delaunay triangulation which is dual to the Voronoi tesselation, might be used in 2d

to mimic the idea of the interisland gaps. Then the DFPE (from Chapter 3.2) we used

in 1d can be tested in 2d, with x and z this time standing for the area rather than

length. If the model is appropriate, it should be possible to calculate the distribution P

from the size distribution of the Delaunay cells (gaps) and relate it the distribution Pz

for the Voronoi cells, just like in 1d (here we would also need to determine how many

neighbouring gaps are involved in a new capture zone formation). Based on the 1d to

2d transition attempt we have done, we strongly suspect that this model might also be

inadequate as it oversimplifies the nucleation process, but it would certainly provide

new insights into the problem.

Finally, when focusing on the creation of the new capture zones as we did in Chapter

8, we can easily sample the correct form of the CZD from a known distribution Q (as

z , 0.5(a1 + a2)). In the 1d case, Q can be calculated from the associated mean field

DFPE and known CZD, but in 2d we were only able to measure it during simulation.

It is unclear if it could in any way be calculated or correctly estimated when working

with experimental data. Yet since this method worked reasonably well in both one and

two dimensions, its further exploration is the most promising future direction stemming

from this thesis.
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Appendix A

Derivation of the Integral

Equation from the non - mean

field DFPE

The non - mean field DFPE has the form:

z , a(z1 + ηz2). (A.1)

The random variables z ∈ [0,∞), z1 ∈ [0,∞), z2 ∈ [0,∞) and a ∈ [0, 1] have probability

distributions φ(z), φ(z1), φ(z2) and P (a).

We denote the cumulative distribution function (CDF) of z as Φ(z). CDF is defined

as Φ(z) =
∫ z
0 φ(t)dt, so we can write Eqn. (A.1) as:
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Φ(z) = Prob[a(z1 + ηz2) ≤ z]

= E [Prob[a(z1 + ηz2) ≤ z | a]]

=

∫ 1

0
Prob[a(z1 + ηz2) ≤ z]P (a)da

=

∫ 1

0
E[Prob[a(z1 + ηz2) ≤ z | z1]]P (a)da

=

∫ 1

0

∫ z/a

0
Prob[a(z1 + ηz2) ≤ z]φ(z1)P (a)dz1da

=

∫ 1

0

∫ z/a

0
Prob

[
z2 ≤

(z
a
− z1

) 1

η

]
φ(z1)P (a)dz1da.

(A.2)

Here the upper integral limit is z/a because
(
z
a − z1

)
has to be ≥ 0. Now we have:

Φ(z) =

∫ 1

0

∫ z/a

0
Φ

(
1

η

(z
a
− z1

))
φ(z1)P (a)dz1da. (A.3)

If we differentiate Eqn. (A.3) with respect to z, with the use of the Leibniz rule

(3.6), we get:

φ(z) =

∫ 1

0
da

∫ z/a

0
dz1 · φ

(
z

ηa
− z1
η

)
φ(z1)

P (a)

ηa
+ 0. (A.4)
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Code block for generating gap

sizes according to the mean field

DFPE

The procedure described in Section 4.1 is written in the code as:

x = 0.0

x(1) = 1.0

DO i = 2, M

call random_number(harvest) here, harvest is an auxiliary real variable

nuse = INT((i-1)*harvest) + 1 nuse is an auxiliary integer variable

xran = x(nuse)

call random_number(harvest)

a = harvest

x(i) = a*(1.0 + xran)

x(nuse) = (1.0 - a)*(1.0 + xran)

END DO
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Appendix C

Mathematical background for the

problem of ill-posedness

Definition C.1. Let κ : U → V be an operator from a subset U of a normed space X

into a subset V of a normed space Y . The equation

κf = g (C.1)

(where f is the unknown) is called well - posed or properly posed if κ : U → V is

bijective and the inverse operator κ−1 : V → U is continuous. Otherwise, the equation

is called ill - posed or improperly posed.

(A function is bijective if it is surjective (every element of the codomain is mapped

to by at least one element of the domain; the function ”hits” the whole codomain)

and injective (every element from the domain is mapped to a different element in the

codomain; the function never maps different domain elements to the same codomain

element).)

According to Definition C.1 there are three possibilities of ill - posedness [81, p.298].

Firstly, equation (C.1) can’t be solved for all g ∈ V if κ is not surjective (nonexistence of

a solution). Equation (C.1) can have many solutions if κ isn’t injective (nonuniqueness

of a solution) and, finally, if κ−1 : V → U isn’t continuous then the solution does not

depend continuously on the data (instability).
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Ill - posedness (or well - posedness) is a property of κ but also of the solution space

X and the input data space Y (and the norms on X,Y ), so we need to look into the

properties of the operator κ and the subspaces it works on:

Definition C.2. A set U1 ⊂ X is bounded if there exists a positive number C such

that ‖x‖ ≤ C for every x ∈ U1.

Definition C.3. A bounded operator is a linear operator κ : U → V (where U, V are

subspaces of normed spaces X,Y ) for which there is a positive number M such that

‖κf‖ ≤M‖f‖, for all f ∈ U .

Definition C.4. Let X be a normed space.

a) A sequence (xn) ∈ X has an accumulation point in x0 ∈ X if every open neighbour-

hood of x0 contains infinitely many elements of the sequence.

b) A set U1 ∈ X is called compact if every sequence in U1 has an accumulation point

in U1.

It is also useful to introduce a compact set in another way. By the Heine - Borel

theorem, a compact subset of a normed space is a subset that is totally bounded (it can

be covered with a finite number of open balls of any radius r ∈ R>0 with centres inside

the subset) and complete (contains the limit of all of its Cauchy sequences). In finite

dimensional spaces, a bounded set is also totally bounded, but that no longer holds in

infinite dimensional spaces, which makes the requirement for a set to be compact much

harder to meet in an infinite dimensional space. A typical example that demonstrates

this is a closed unit ball: it is only compact in finite dimensional spaces (proof in [82,

p.163]).

Definition C.5. A linear operator κ : U → V from a normed space U into a normed

space V is compact if it maps each bounded set in U into a relatively compact set in V ;

that is, into a set whose closure (a union of a set and its limit points, or equivalently,

the unique smallest closed set containing the given set) is compact.

An alternative definition is usually used; in our case it is not as instructive, but for

the sake of completeness, we write it here:
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Definition C.6. A linear operator κ : U → V is said to be compact if for every

bounded sequence (fn) in the normed space U the sequence (κfn) has a convergent

subsequence in the normed space V .

From the previous definitions it is clear that the requirement for an operator to be

compact is harder to satisfy than that of boundedness.

Ill - posedness of the operator κ is a consequence of its compactness. To see how the

compactness of κ leads to an unbounded inverse κ−1 , we need the following theorems

(2.19,2.21 and 2.25 from [81] , chapter 2):

Theorem C.1. Compact linear operators are bounded.

Theorem C.2. Let U, V,W be subspaces of normed spaces X,Y, Z and A : U → V

and B : V → W bounded linear operators. Then the product BA : U → W is compact

if and only if one of the two operators, A or B, is compact.

Theorem C.3. The identity operator I : U → U is compact if and only if U is of finite

dimension.

The reason for this is that an identity operator would map a unit ball into a unit

ball, which in an infinite dimensional space cannot be compact, so neither can the

identity operator [83, p.91].

From Theorems C.1 and C.2, if κ is compact, the product κ−1κ = I : U → U is

compact if κ−1 is bounded. Then, if U is not of finite dimension, I is a compact linear

operator from infinite-dimensional U to U , which contradicts Theorem 3. Therefore, if

U is infinite-dimensional, I must not be compact from which follows that the inverse

κ−1 must not be bounded.

This can be formulated strictly as the following theorem (for proof see [84, p.12]):

Theorem C.4. Let X,Y be normed spaces and let κ : U → V , U ⊂ X and V ⊂ Y , be

a compact linear operator. Then the equation of the first kind κf = g is not well posed

if U is not of finite dimension. If U is infinite dimensional, then the inverse κ−1 is

unbounded; we can find a sequence (fn) such that κfn −→ 0 but ‖fn‖ −→ ∞.
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A consequence of this is that, when performing numerical calculations for a finite

dimensional approximation of κ (κ being a continuous operator in an infinite dimen-

sional space), increasing the accuracy of the approximation (that is, increasing the

degree of discretization) results in less reliable solutions [81, p.300].
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[25] C. Ratsch, A. Zangwill, P. Šmilauer, and D. Vvedensky, “Saturation and scaling of

epitaxial island densities,” Physical Review Letters, vol. 72, no. 20, pp. 3194–3197,

1994.

[26] J. G. Amar, F. Family, and P.-M. Lam, “Dynamic scaling of the island-size dis-

tribution and percolation in a model of submonolayer molecular-beam epitaxy,”

Physical Review B, vol. 50, no. 12, pp. 8781–8797, 1994.

[27] J. A. Stroscio and D. T. Pierce, “Scaling of diffusion-mediated island growth in

iron-on-iron homoepitaxy,” Physical Review B, vol. 49, no. 12, pp. 8522–8525,

1994.

172



Bibliography

[28] F. Gibou, C. Ratsch, and R. Caflisch, “Capture numbers in rate equations and

scaling laws for epitaxial growth,” Physical Review B, vol. 67, no. 15, pp. 155 403–

155 407, 2003.

[29] H.-J. Ernst, F. Fabre, and J. Lapujoulade, “Nucleation and diffusion of Cu adatoms

on Cu(100): A helium-atom-beam scattering study,” Physical Review B, vol. 46,

pp. 1929–1932, 1992.
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