
PHD THES I S
E L E C T RON I C AND E L E C T R I CA L ENG IN E E R I NG

TOATIE — FUNCTIONAL
HARDWARE DESCR IPT ION
WITH DEPENDENT TYPES

CRAIG RAMSAY

University of Strathclyde,
Faculty of Engineering,
Software Defined Radio Research Laboratory

S U P E RV I S E D BY
DR LOUISE CROCKETT,
PROF BOB STEWART

NOVEMB E R , 2 023

Copyright © 2024 Craig Ramsay

This thesis is the result of the author’s original research. It has been com-
posed by the author and has not been previously submitted for examina-
tion which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the
UnitedKingdomCopyrightActs as qualified byUniversity of Strathclyde
Regulation 3.50. Due acknowledgement must always be made of the use
of any material contained in, or derived from, this thesis.

Signed: Craig Ramsay
Date: January 21, 2024

Dependent types make a lot of people nervous. They make me
nervous, but I like being nervous, or at least I find it hard not
to be nervous anyway.

— P I GWORK E R, 2 0 1 2

https://stackoverflow.com/questions/12961651/why-not-be-dependently-typed

AB ST RAC T

Describing correct circuits remains a tall order, despite four decades of evolu-
tion in Hardware Description Languages (HDLs).

Many enticing circuit architectures require recursive structures or complex
compile-time computation — two patterns that prove difficult to capture in tra-
ditional HDLs. In a signal processing context, the Fast FIR Algorithm (FFA) struc-
ture for efficient parallel filtering proves to be naturally recursive, and most Multi-
pleConstantMultiplication (MCM)blocks decomposemultiplications into graphs
of simple shifts and adds using demanding compile-time computation. Gener-
alised versions of both remain mostly in academic folklore. The implementations
which do exist are often ad hoc circuit generators, written in software languages.
These pose challenges for verification and are resistant to composition.

Embedded functional HDLs, that represent circuits as data, allow for these de-
scriptions at the cost of forcing the designer to work at the gate-level. A promising
alternative is to use a stand-alone compiler, representing circuits as plain func-
tions, exemplified by the CλaSH HDL. This, however, raises new challenges in
capturing a circuit’s staging — which expressions in the single language should
be reduced during compile-time elaboration, and which should remain in the cir-
cuit’s run-time? To better reflect the physical separation between circuit phases,
thiswork proposes a new functionalHDL (representing circuits as functions)with
first-class staging constructs.

Orthogonal to this, there are also long-standing challenges in the verification
of parameterised circuit families. Industry surveys have consistently reported that
only a slim minority of FPGA projects reach production without non-trivial bugs.
While a healthy growth in the adoption of automatic formal methods is also re-
ported, the majority of testing remains dynamic — presenting difficulties for test-
ing entire circuit families at once.

This research offers an alternative verification methodology via the combina-
tion of dependent types and automatic synthesis of user-defined data types. Given
precise enough types for synthesisable data, this environment can be used to de-
velop circuit families with full functional verification in a correct-by-construction
fashion. This approach allows for verification of entire circuit families (not just
one concrete member) and side-steps the state-space explosion of model checking
methods. Beyond the existing work, this research offers synthesis of combinato-
rial circuits — not just a software model of their behaviour. This additional step
requires careful consideration of staging, erasure & irrelevance, deriving bit rep-
resentations of user-defined data types, and a new synthesis scheme.

This thesis contributes steps towards HDLs with sufficient expressivity for
awkward, combinatorial signal processing structures, allowing for a correct-by-
construction approach, and a prototype compiler for netlist synthesis.

iv

ACKNOWLEDG EMENT S

Firstly, I would like to thank my supervisors, Dr Louise Crockett and Prof Bob
Stewart, for the countless opportunities, exposure, support, and direction they’ve
afforded me during this project. I couldn’t have asked for more welcoming men-
tors.

I have been exceptionally fortunate to spend so much of my time with the Uni-
versity of Strathclyde’s Software Define Radio Laboratory. Each and every mem-
ber deserves my thanks for these years together, both in and out of the lab. In
particular, thank you, Josh, for making our time at Xilinx Research Labs so mem-
orable.

Also, I’d like to acknowledge Craig Roy’s significant influence on this work —
both as a close friend and for nudging me towards a topic with which I’ve formed
a deep affection.

Most of all, this work would not have been possible without the support of my
partner, Francesca. Thank you for having patience with me during my periods of
momentum and, perhaps more so, beginning to run out of it when my priorities
go awry. Sei un bicchiere di vino con un panino.

Thank you to Markus Petterden, for your company and friendly rivalry — I
think you still feature in more academic outputs than I do.

This work was supported by the EPSRC [grant number EP/N509760/1].

v

CONT EN T S

CONTENTS

Contents vi

List of Figures ix

1 Introduction 1
1.1 Field Programmable Gate Arrays . 1
1.2 Functional Programming & Verification with Dependent Types 7
1.3 Aims . 10
1.4 Contributions . 11
1.5 Outputs . 13
1.6 Thesis Outline . 13

2 Circuit Description and Verification 15
2.1 Verification Methodologies for Circuits 16
2.2 Introduction to Hardware Description Languages 19
2.3 Traditional HDLs . 22

2.3.1 VHDL . 23
2.3.2 (System)Verilog . 27

2.4 Functional HDLs . 29
2.4.1 Lava Languages . 29
2.4.2 CλaSH . 34
2.4.3 Π-ware . 40
2.4.4 Proposed circuits in Ωmega and Idris 43
2.4.5 Proto-Quipper-D for Quantum Circuits 45

2.5 Summary . 47

3 An Engineer’s Introduction to Dependently Typed Programming 48
3.1 Introduction . 48
3.2 Basic functions and data types . 48
3.3 Dependent types . 51
3.4 Irrelevance and erasure . 54
3.5 Staging . 56
3.6 Theorem proving . 57
3.7 Summary . 62

4 Exploring Parallel FIR filters for RFSoC Applications with CλaSH 63

vi

CONT EN T S

4.1 Introduction . 63
4.2 Background on Digital, Finite Impulse Response Filtering 65

4.2.1 Filter specification . 66
4.2.2 Filter implementation . 67
4.2.3 Sample-parallel filtering . 67

4.3 Proposed filter architecture . 68
4.3.1 Traditional Architecture . 69
4.3.2 Polyphase Filter with Shared Multiple Constant Multiplication

Subfilters . 69
4.3.3 Fast FIR Algorithm Filter with MCM subfilters 72

4.4 Multiplier Counts Under Coefficient Symmetry 74
4.5 Implementation Results . 78

4.5.1 Utilisation Results . 79
4.5.2 Timing Results . 81

4.6 Practical hardware description . 82
4.6.1 The successes of our CλaSH implementation 84
4.6.2 The limitations of our CλaSH implementation 85

4.7 Practical verification . 87
4.8 Summary . 91

5 On Applications of Dependent Types to DSP Circuit Families 93
5.1 Introduction . 93
5.2 Minimal type-level guarantees:

towards a combinatorial dot product . 94
5.2.1 An unsigned adder circuit . 95
5.2.2 An unsigned multiplier . 100
5.2.3 A dot product and structure with higher-order functions 101
5.2.4 Summary for examples with minimal type-level guarantees . . . 105

5.3 Guaranteeing minimum wordlengths:
exploring a circuit family’s non-functional properties 106
5.3.1 Brief comparison to VHDL and Lava alternatives 112

5.4 Formal verification of a circuit family’s arithmetic meaning 113
5.4.1 A verified unsigned adder . 113
5.4.2 Signed arithmetic . 118
5.4.3 A verified, signed dot product . 121
5.4.4 FFT . 124

5.5 Further Work . 127
5.5.1 Speculation on synchronous DSP circuits 128

A direct form FIR filter . 129
Pruning in CIC Interpolators/Decimators 129

vii

CONT EN T S

A note on synchronous control systems 132
5.6 Summary . 134

6 toatie — A Multistage Hardware Description Language with Dependent
Types 135
6.1 Introduction . 135

6.1.1 The lambda calculus . 136
6.1.2 Typing judgements . 138

6.2 A formalisation of the TinyIdris language 140
6.2.1 A grammar for TTimp . 141
6.2.2 The core language, TT . 143

6.3 The toatie core language . 147
6.3.1 Sugar from Idris 2 . 150
6.3.2 Irrelevance and Erasure . 152
6.3.3 Staging . 155

6.4 Circuit Synthesis . 160
6.4.1 Restrictions for synthesisability . 161
6.4.2 Simple types, parameter types, and bit representations 162
6.4.3 Normalisation . 166
6.4.4 Netlist generation . 170
6.4.5 Synthesis examples . 173

Routing — Mirroring a binary tree 178
Structured data — keeping us honest with Maybe 180
Larger designs — A DFT example 181

6.5 Further Work . 183
6.5.1 A fully typed synthesis scheme . 183
6.5.2 Formalisation of synthesisability requirements 183
6.5.3 Rebase on Idris 2 . 184
6.5.4 Netlist optimisations for FPGA architectures 184

6.6 Summary . 185

7 Conclusion 186
7.1 Thesis review . 186
7.2 Further Work . 188
7.3 Concluding Remarks . 189

Bibliography 191

viii

L I S T O F F I GUR E S

L I ST OF F IGURES

1.1 Trends in Xilinx FPGA resource density over time [2–10] 2
1.2 Overview of RFSoC’s UltraScale+ FPGA architecture 4
1.3 SimplifiedviewofUltraScale+CLBArchitecture [13]with the vertical carry

chain left implicit . 5
1.4 Survey trends of FPGA bug escapes into production, based on data from [1] 7

2.1 Survey trends of FPGA verification technique adoption, based on data from
[1] . 18

2.2 Survey trends of HDL adoption, based on data from [1] 20
2.3 Summary of HDL features and styles . 21
2.4 The col combinator, connecting subcircuits f 31

4.1 Overview of RFSoC’s FPGA and RF Data Converters 65
4.2 Specifications of an example half-band FIR filter, featuring its coefficients

(top)with the resultingmagnitude response (left) andphase response (right) 66
4.3 A four-weight direct form FIR filter . 67
4.4 A four-weight systolic form (left) and transpose form (right) FIR filters . . 67
4.5 Example SSR implementation (Polyphasewith systolic subfilters) for 8 non-

symmetric weights . 69
4.6 Scaling of polyphase structures from ×2→ ×4 parallelism 70
4.7 From systolic FIR form to MCM-based transpose form 71
4.8 MCM Graph for fir0 using an Hcub variant 72
4.9 Sharing MCMs in polyphase filters . 72
4.10 Proposed 2-parallel filter with 8 weights . 73
4.11 Scaling of nested 2-parallel FFA filters for ×2→ ×4 parallelism 74
4.12 Number of multiplications synthesised under symmetries 79
4.13 Implementation utilisation results . 80
4.14 Maximum frequency results for ×8 half-band decimators 82
4.15 Composing ad hoc circuit generators . 83

5.1 A direct form FIR filter with worst-case growth along the adder chain 94
5.2 Structure of an unsigned adder circuit . 96
5.3 Schematic for addBin with 2-bit and 3-bit inputs, and a constant ’0’ carry

input . 99
5.4 Structure of a 4× 4 array multiplier . 101
5.5 Structure of three commonhigher-order functions: map, zipWith, and foldr103

ix

L I S T O F F I GUR E S

5.6 Structure for the two most significant output bits in a signed adder 120
5.7 The structure of our shift-and-addmultiplier given a recursive halving view

of a natural coefficient . 121
5.8 A CIC decimator without pruning. (R = 8, N = 3 and M = 1) 130
5.9 Post-layout results for ad hoc CIC filter generationwithHogenauer pruning

(dashed lines) and without (solid lines). M = 1 and Bin = 16 for all lines. . 131
5.10 A state machine for a simple AXI4 slave read channel 132

6.1 A syntax for λ→ . 136
6.2 Typing judgements for λ→ . 138
6.3 Typing checking of the expression λx : Int. 1 + x 140
6.4 Approximate grammar for TinyIdris . 141
6.5 The syntax for the TT language . 144
6.6 Typing judgements for TinyIdris . 145
6.7 The syntax for the TTT language with additions highlighted 148
6.8 Approximate grammar for TTTimp with additions highlighted 149
6.9 Type judgements for let bindings . 150
6.10 Partial definition of the ICC∗ extraction translation 153
6.11 New TTT typing judgements for irrelevance 154
6.12 Main type judgements for our staging constructs 159
6.13 toatie’s extra conversion rules for staging 159
6.14 Steps for bit representation of Vect 2 (Bit b) 165
6.15 The syntax for CExpT in normal form . 167
6.16 Graphical translation from CExpT to a circuit structure 171
6.17 Translation scheme from normalised CExpT to a VHDL architecture body . 172
6.18 Schematic for myadd directly from VHDL output 176
6.19 Schematic for myadd after synthesis with GHDL and Yosys, with mapping

to logic gates . 178
6.20 Binary tree mirroring example for depth of three 178
6.21 Final schematic for mymirror . 179
6.22 Final schematic for maybeNot . 181
6.23 Schematic for dft_2 . 182

x

1INTRODUCTION

Describing correct digital circuits can be an exercise in balancing uncertainty and pain.

One stage of this process ought to incite anxiety in particular: an implementation
that looks plausibly correct, but whose complete intricacies do not reside in the mind
of any one designer. This is a common phase, especially for modern high-performance
digital circuits. Single subcircuits can often contain such complexity that no single de-
signer can take full responsibility. More so, design reuse encourages implementations
of highly parameterised circuit generators (circuit families) but this complicates verifi-
cation efforts, often allowing bugs to lay dormant until an unfortunate parameter set
is requested.

Resigning from the verification challenge at this stage can be tempting, but there
can be dramatic consequences if something does go wrong. According to a 2022 Wil-
son Research Group verification study [1], this if is essentially a when. From their
survey of 980 Field Programmable Gate Array (FPGA) projects, only 16% reached de-
ployment with no non-trivial bugs.

Perhaps it is time for more digital designers, the author included, to better embrace
their own fatuity. The core motivation behind the work in this thesis is to allow dig-
ital design tooling to carefully “check our working” over our shoulder as we go, especially
when asking silly questions. To make strides towards this style of development, this
work proposes that circuit description and circuit verification should happen simulta-
neously, with progress in one avenue symbiotically guiding the other.

1 . 1 F I E LD PROGRAMMABL E GAT E ARRAYS

Throughout this thesis, FPGAs and their design techniques are used as a concrete ex-
ample of digital electronic design. This focus is adopted in order to provide specifics
about implementation details and also make direct comparisons between our own
work and the wealth of existing digital design literature and tooling targeting FPGAs
(which have beenwidely adopted in academia). Despite this, most of the contributions
presented in Chapters 4 to 6 are also somewhat applicable to topics of Application-
Specific Integrated Circuit (ASIC) design, as evidenced by industry’s longstanding
adoption of FPGAs as a means of prototyping high-performance ASICs before tape-
out.

1

1 . 1 F I E L D P ROGRAMMAB L E GAT E ARRAYS

This section offers an introduction tomodern FPGA architectures and their applica-
tions. This also provides a baseline for Chapter 2’s discussion ofHardwareDescription
Languages (HDLs) and verification methodologies for FPGA projects — two aspects
which are very much interwoven with FPGA architecture and applications. To briefly
touch onwhy these topics are interconnected, let us consider the trends in Xilinx FPGA
devices† over the last 35 years. Figure 1.1 summarises the growth of these devices over
time, highlighting the largest and smallest devices supplied in Xilinx’s flagship Virtex
series and their predecessors.

19
85

19
91

19
98

20
01

20
04

20
06

20
09

20
10

20
15

102

103

104

105

106

107

108 Virtex UltraScale+
VU19P

Virtex-7 Series
XC7VX1140T

Virtex-4 Series
XC4VLX200

Virtex-1 Series
XCV1000

XC2000s
XC2018Lo

gi
cC

el
ls

Series low-end device
Series high-end device

Figure 1.1: Trends in Xilinx FPGA resource density over time [2–10]

The exponential trend in effective logic density is clear. The single-chip density
spans nearly 5 orders of magnitude since 1985, and this has not been reciprocated by
substantial changes in the most popular HDLs. To substantiate this, we return to the
Wilson Research Group’s 2022 industry survey of FPGA functional verification. Their
reporting is, to the best of our knowledge, the largest biannual survey of the FPGA in-
dustry. It is the result of a collaboration between theWilson Research Group (amarket
research firm specialising in embedded systems) and Siemens EDA (formerly Mentor
Graphics; one of the biggest names in FPGA/IC tooling) which lends some credibility
to their findings. [1] claims that VHDL (VHSICHardware Description Language) and
Verilog appear in the vast majority of new FPGA projects. Both languages were:

↪→ Conceived in 1983, spanning the entire lifetime of Figure 1.1.

↪→ Originally intended for modelling the simulation of digital circuits only, support-
ing synthesis only at a later date.

†For posterity, note that Xilinx were acquired by AMD in 2022 and that these products are now
branded accordingly.

2

1 . 1 F I E L D P ROGRAMMAB L E GAT E ARRAYS

Clearly, as flagship FPGA logic density increases by nearly ×105, digital designers
are given the opportunity to realise larger andmore complex designs. This is, however,
just that: an opportunity. To reify such implementations without increasing designer
effort by the samemagnitude, wemust depend onHDLs which are expressive enough
to convey and compose these complex architectures concisely. This kind of expressivity
can consist of language features such as:

↪→ Iterative or recursive constructs to generate large structures concisely.

↪→ Higher-order functions (functionswhich can have function-valued arguments or
return new functions) to help separate circuit structure from behaviour. E.g. we
describe the structure of a tree of binary operations only once (as a higher-order
function) but can reuse it easily by specialising its behaviour to an adder tree, a
min/max search, etc.

↪→ Parameterisation of a component by compile-time values. This allows us, in con-
junction with the other techniques, to describe a “family” of similar circuits all at
once. Since we can specialise this single description to one of many members of
the family, there is more opportunity for reuse in larger designs.

As well as increased complexity in the description of circuits, the challenge of ver-
ification also increases. This is especially true of circuit families — it may be simple
to exhaustively test a single, trivial circuit, but how can we be confident that all pos-
sible configurations in the family are well behaved? As will be demonstrated later in
this thesis, the choice of features in the description language can quite fundamentally
change how we approach the verification challenge. This research investigates a new
single language for both circuit description and verification using dependent types.

For now, we consider one modern system-on-chip device with an FPGA compo-
nent as a case study. Although each FPGA series demonstrates variations in architec-
ture and particular use cases, the fundamentals remain consistent. The case studies
presented here examine the Xilinx UltraScale+ Radio Frequency System-on-Chip (RF-
SoC) device family [11, 12], as employed in Chapter 4. Figure 1.2 shows an overview of
the RFSoC’s FPGA architecture, ignoring the on-chip processor groups and hardened
peripheral blocks.

The majority of the device is dedicated to general “logic fabric”, consisting of inter-
woven Configurable Logic Blocks (CLBs) and their surrounding programmable rout-
ing. This sea of CLBs can be configured to perform any synchronous digital operation.
Figure 1.3 shows a simplified CLB architecture for UltraScale devices. In essence, a set
of 6-input Look-Up Tables (LUTs) can be configured to realise any combinatorial logic

3

1 . 1 F I E L D P ROGRAMMAB L E GAT E ARRAYS

I/O Pins

Block RAM UltraRAM DSP48E2s Logic Fabric

Transceivers

Configurable Logic Block

Programmable Routing

Switch Matrix

Figure 1.2: Overview of RFSoC’s UltraScale+ FPGA architecture

in a user application. These are followed by optional synchronous Flip-Flops (FFs)
which can be used to register signals, allowing designs with memory. While an ar-
chitecture with LUTs and FFs is sufficient to reproduce any digital circuit internally,
modern FPGAs provide many specialised blocks for more efficient implementation of
common circuit patterns, as well as dedicated I/O features.

For RFSoC devices in particular, these dedicated FPGA elements include:

↪→ Dedicated logic & memories

– Digital signal processing blocks (DSP48E2s) containing a hardware multi-
plier with optional post/preadders and pipeline registers.

– Block RAMs and Ultra RAMs for much more dense on-chip memory imple-
mentation than with generic logic fabric.

– A variant of the CLB slice shown in Figure 1.3 which adds write address
andwrite enable functionality to each LUT, allowing cheap implementation
of small, distributed 64-bit memories.

– Dedicated clock routing and management capabilities.

4

1 . 1 F I E L D P ROGRAMMAB L E GAT E ARRAYS

Logic function Registers

A LUT
6

z−1

z−1

Ax

Ai

B LUT
6

z−1

z−1

Bx

Bi

H LUT
6

z−1

z−1

Hx

Hi

Figure 1.3: Simplified view of UltraScale+ CLB Architecture [13] with the vertical carry chain
left implicit

↪→ Input / Output capabilities

– General purpose I/O blocks to interface with package pins.

– Gigabit Transceivers supporting several standards.

– High-speed RF Data Converters (Analogue to Digital and Digital to Ana-
logue) blocks, sampling at up to 5.9 and 10 Gsps, respectively [11].

For each FPGA architecture, there is a (usually closed source) vendor tool to take
a high-level description of the user’s circuit and map it efficiently to the given CLB
and specialised resource architectures. This is essentially a compiler from the HDLs

5

1 . 1 F I E L D P ROGRAMMAB L E GAT E ARRAYS

explored in Section 2.2 to the specific FPGA’s resources. Most of the novel contribu-
tions offered in this thesis sit above this level and are device agnostic — leaving the
particulars of low-level resources to existing vendor tooling.

The practical use cases for these FPGA devices are numerous, both inside and out-
side of academia. As alluded to previously, it might be easy to dismiss FPGAs at first
glance as a prototyping platform for designs which will eventually be realised as ASIC
devices. While this is one application, it is far from the full picture. Note that almost all
modern FPGA architectures are reconfigurable; indeed the “field programmable” part
of the acronym demands that the behaviour is configurable in the field (well after fab-
rication!). There are three broad categories of use case which are both motivated by
this reconfigurability:

1. Low volume applications:

ASICdesign and fabrication incurs enormousNon-RecurringEngineering (NRE)
costs. The reconfigurability of FPGAs sidesteps these costs but each unit is likely
more expensive than its ASIC counterpart. Given the lack of up-front NRE costs,
FPGA implementations are more viable than ASICs for low volume. Trimberger
suggests that the “crossover” threshold where ASICs become viable is also rais-
ing over time [14]. Low volume application are countless — ranging from small
commercial products to bespoke control logic for scientific instrumentation.

2. Future-resistant applications:

High performance industries including mobile communications, data centre net-
working, and video compression require custom digital electronics. These appli-
cations in particular are susceptible to a cruel obsolescence due to an important
part of their ecosystems — standards. FPGA implementations allow in-field up-
dates to support new standards without the costly manufacture respin and full
redeployment.

3. Dynamically reconfigured applications:

Perhaps the smallest of the three groups, the reconfigurability of FPGAs can be
exploited during the execution of a single application. A device may reconfigure
regions of its own fabric to update its behaviour. This can be used to time-share
one set of resources between multiple low-performance applications, or to itera-
tively tweak the behaviour of a single application. For example, a neural network
deployment might be highly optimised for inference by specialisation on one set

6

1 . 2 F UNC T I ONAL P ROGRAMM ING & VER I F I CAT I ON W I TH DE P ENDEN T T Y P E S

of weights, but can use dynamic reconfiguration to deploy improved weights
on-the-fly.

One theme which links many FPGA applications is the need for safety. Failures in
control systems for aerospace engineering or industrial automation, for example, can
be catastrophic. In these cases, no matter how challenging, verification of a circuit’s
functional behaviour is an absolute requirement. Indeed, for designs fully utilising
the modern, logic-dense flagship FPGAs seen earlier in Figure 1.1, verification is chal-
lenging. Returning to the 2022 Wilson Research Group study on FPGA verification:

The results shown in [Figure 1.4] are somewhat disturbing.
In 2022, only 16 percent of all FPGA projects were able to
achieve no bug escapes into production[…]

— HARRY FO ST E R I N [1]

With this “disturbing” scene set, the next section introduces the programming tech-
niques that could help motivated engineers raise the 16% to a more comforting metric.

0 1 2 3 4 5 ≥6
0

10

20

30

Number of non-trivial bug escapes into production

%
of

FP
G
A

de
sig

n
pr

oj
ec

ts

2016 Survey Data
2018 Survey Data
2020 SurveyData
2022 Survey Data

Figure 1.4: Survey trends of FPGA bug escapes into production, based on data from [1]

1 . 2 FUNCT IONAL PROGRAMMING & VER I F I CAT ION W I TH DEP ENDENT T Y P E S

Functional programming is a programming paradigm in opposition to the imperative
paradigms that an engineering audience are likely familiar with, such as procedural or
object-oriented. Especially for this audience, it is easier to convey the essence of func-
tional programming in terms of negative information—what functional programming
does not allow.

7

1 . 2 F UNC T I ONAL P ROGRAMM ING & VER I F I CAT I ON W I TH DE P ENDEN T T Y P E S

A functional program consists of pure functions which essentially represent math-
ematical equations. This may appear at first glance as a definition true of functions
in imperative languages such as C, but this is not quite the case. A pure function has
some extra restrictions:

Immutability: Once a variable has been assigned a value, it cannot be changed.
There is no standard assignment operation, only definitions.

No side-effects: A more general version of immutability. A pure function can have
no effect on the wider system other than simply calculating its result.

To illustrate these differences, Listings 1.1 and 1.2 give two possible implementa-
tions that calculate the Fibonacci sequence. The prior is expressed using a pure func-
tionwith standardmathematical syntax and the later is a valid implementationwritten
in C.

Listing 1.1: Fibonacci function expressed using pure functions

fib(n) =


0 , if n = 0
1 , if n = 1
fib(n− 1) + fib(n− 2) , otherwise

(1.1)

The use of recursion in functional programs is ubiquitous. Since there is no assign-
ment of variables, we are precluded from having constructs such as for loops. Also
notice that this definition does nothing but calculate its result — every single time the
developer writes fib(n) they will always receive the same value. Contrast this to List-
ing 1.2’s C implementation, written in bad-faith in order to expose some of the common
challenges in imperative programming. This particular C implementation does have a
better time and space complexity than our pure implementation. This is a concern for
many functional programs in software, but it does not always translate as strongly to
hardware design since all combinatorial sections are inherently parallel.

The implementation in Listing 1.2 will usually report the expected numerical an-
swer, but there are two nasty properties which both arise due to the presence of side-
effects. Line 16will conditionally produce the unfortunate side-effect of thermonuclear
war. More subtly, the mutability of the global variable n can also cause problems. Sup-
pose that Listing 1.2 is part of a multi-threaded application. If there are two concurrent
calls to fib, the later instance will likely clobber the prior’s value of n, causing it to exit
the loop early and return an incorrect value. More insidiously, if these two calls form
part of a race condition, we might only encounter this bug extremely rarely.

8

1 . 2 F UNC T I ONAL P ROGRAMM ING & VER I F I CAT I ON W I TH DE P ENDEN T T Y P E S

Listing 1.2: A valid Fibonacci program expressed in C

1 int n;
2
3 int do_fib()
4 {
5 int a=0, b=1, i, swp;
6
7 if (n==0) return a;
8 if (n==1) return b;
9

10 for (i=2; i<=n; i++) {
11 swp = b;
12 b = a + b;
13 a = swp;
14 }
15
16 if (b==4181) launchMissiles();
17 return b;
18 }
19
20 int fib(int new_n)
21 {
22 n = new_n;
23 return do_fib();
24 }

By disallowing side-effects, functional programs preclude both of these classes of
error. Limiting ourselves like this makes it substantially easier for both the human and
the compiler to reason about our programs. This is a contributing factor towards our
belief that functional programming is an important foundation for describing correct
circuits. The order of evaluation does not matter in pure functional programs. This
makes parallel evaluation muchmore tractable— and this is a boon for circuit descrip-
tions too.

Hughes’ seminal paper “Why Functional Programming Matters” [15] provides an
excellent, alternative framing of functional programming not as a set of constraints
placed upon us, but rather a set of advantages. These contribute towards code mod-
ularity, at the level of functions. We are encouraged by the language to implement
small, generic functions for simple tasks and are rewarded with tools to very concisely
compose them into solutions to complex tasks. One important feature enabling this
compositional glue is higher-order functions: functions which themselves have func-
tions as arguments. Higher-order functions come quite naturally to functional pro-
gramming environments since it is straightforward to treat pure functions, which are
free of side-effects, as first-class citizens of the language.

9

1 . 3 A IM S

Functional programming often seems to, quite coincidentally, go hand-in-hand
with sophisticated type systems. A type system being the set of rules the compiler fol-
lows to decide whether or not a given program, colloquially, makes sense. These two
topics are distinct (many functional languages are completely untyped!), but perhaps
the two communities overlap strongly in their reverence for mathematics. We consider
a program’s types to be extremely valuable; a stance probably not shared by the ma-
jority. Types are the only concrete source of information we pass to a compiler that
describes our intent. A type checker can attempt to match (or infer) a term’s type with
its implementation. If it succeeds, the implementation is accepted. If it fails, we get
feedback raising suspicion of our attempt. Clearly, the more information encoded in a
program’s types, the more opportunity the compiler has to identify our errors for us.

There are many approaches to typing, each allowing a different level of precision.
This research focuses on one of the more radical disciplines called dependent typing.
In the extreme, we could imagine writing a function’s type so precisely that there is
only one possible solution — one which is verified to be correct by the type checker.
Dependently typed programming based on Martin-Löf type theory, as popularised
by languages including Epigram [16], Agda [17], and Idris [18], enables such precise
typing with one fundamental concept. They allow types to mention terms.

1 . 3 A IMS

Our aim is to explore the design of anHDL that provides absolute confidence in the im-
plementation of an entire circuit family. The thesis statement guiding this exploration
is: uniting the verification and the implementation of circuit families can allay both chal-
lenges. More concretely, this work pursues answers for three research questions:

1. Towhat extent is it possible to exploit dependently typed software programming
techniques for describing combinatorial circuits?

2. How can real-world netlists be synthesised in the presence of dependent typing?

3. How does the formal verification effort scale for large Digital Signal Processing
(DSP) circuit families?

10

1 . 4 CONTR I B U T I ON S

1 . 4 CONTR I BUT IONS

Towards answering these three research questions, this thesis designs a language and
compiler which:

1. Encodes circuits as plain functions (inspired by CλaSH [19]), rather than data.
This typically simplifies circuit descriptions, allowing all language constructs to
be used in the behaviour of a circuit, not just its elaboration.

2. Allows meaning to be ascribed to synthesisable data via its type. This should
allow circuit functionality to be written in a correct-by-construction fashion, rather
than performing verification after the fact.

These two properties provide an interesting, largely unexplored point in what is
quite a densely populated field of study. Research of functional HDLs is as mature as
that of VHDL and Verilog — two mainstays of digital electronic design. However, to
the best of our knowledge, the literature only contains work that actually synthesises
circuits with either one of these two properties.

Notably, CλaSH [19] introduces a compiler for a subset ofHaskell which represents
circuits as plain functions, satisfying property 1. However their host language, Haskell,
limits howmuchmeaning we can convey in synthesisable data’s types. In practice this
is often limited to describing just the structure of a composite type: howmany elements
are in this vector or how deep is this binary tree? There are also a few HDL projects
which incorporate dependent types. Π-ware [20] is hosted in a dependently typed soft-
ware language but does not directly implement either of our desired properties. Still,
the host language does permit powerful theorem proving techniques for verification
ex post facto, just not in a correct-by-construction style. Sheard’s work in [21] explores
an encoding of circuits in the general purpose Ωmega with correct-by-construction
style, but encodes circuits as a data type. Finally, Brady in [22] outlines why a HDL
with both properties would be advantageous, culminating in a correct-by-construction
model of a simulated carry-ripple adder family. Although their work presents strong
arguments for this style of circuit description, it is only presented on software models
of circuits: there are no means of synthesising circuits from these descriptions.

Chapter 4 contributes a case study used to scrutinise CλaSH’s development expe-
rience for real-world DSP applications.

11

1 . 4 CONTR I B U T I ON S

↪→ A novel CλaSH implementation of a DSP architecture for low-cost, high-speed,
parallel filters for direct RF sampling. This combines techniques for exploiting
sharing between parallel subfilters (FFA) and decomposing the constant coef-
ficient multiplications into graphs of inexpensive additions and bit shifts. The
design completely precludes the need for valuable hardware multipliers in front-
end stages in RFSoC applications.

↪→ Considering the implementation of this circuit structure, the benefits of CλaSH’s
circuits-as-plain-functions approach are argued. The shortcomings are identified
and motivate this work’s focus on dependent types.

The work presented in Chapter 5, in essence, enhances the proposal from [22].
While an environment with dependent types can facilitate the full functional verifica-
tion presented by Brady, Chapter 5 identifies that there are different degrees to which
a designer may wish to lean on these type-level features. It contributes use-cases for a
dependently typed HDL where circuits are represented as functions:

↪→ Even when avoiding interaction with the type system, this environment sim-
plifies circuit descriptions. A single set of language constructs can be used to
describe the full lifetime of a circuit family — from type-level programming to
model bit growth, circuit elaboration-time, to the circuit’s run-time behaviour.

↪→ With a stronger adoption of type-level programming, designers can easily track
non-functional properties of a circuit family. This is demonstrated using DSP
examples with non-trivial bit growth patterns.

↪→ Extending Brady’s original correct-by-construction approach, Section 5.4 identi-
fies how the method scales to real-world DSP structures. It reveals an encourag-
ing trend—higher-level DSP blocks such as dot products and Fourier transforms
often give correctness theorems entirely for free!

Finally, Chapter 6 contributes the implementation of this thesis’ language and com-
piler: toatie. This is a single new language for both combinatorial circuit description
and theorem proving under one roof. In particular, contributions include the follow-
ing:

↪→ Existing language features (used only as optimisations) in software program-
ming can be repurposed to enforce distinction between phases in a circuit’s life-
time. toatie exploits irrelevance and erasure to help isolate the type checking
phase. Staging annotations are then exploited to distinguish between the circuit’s
elaboration phase and the circuit’s run-time.

12

1 . 5 OU T PU T S

↪→ Since toatie represents circuits as plain functions, it also automatically derives
bit representations for synthesisable user data types. Section 6.4 demonstrates
how this can be done by reusing the unification engine already required for any
dependently typed language implementation.

↪→ Elaborating a circuit to a netlist largely becomes an issue of normalisation. Again,
the type checker for any dependently typed language already has tooling for nor-
malisation.

1 . 5 OUTPUT S

The following outputs have been produced as a direct result of this work:

[23] OnApplications of Dependent Types to ParameterisedDigital Signal Process-
ing Circuits
C. Ramsay, L. Crockett, and R. Stewart
2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)
Conference paper — 2021
Sources and data sets are available at [24]

[25] Low-cost, High-speed Parallel FIR Filters for RFSoC Front-Ends Enabled by
CλaSH
C. Ramsay, L. Crockett, and R. Stewart
55th Asilomar Conference on Signals, Systems, and Computers
Conference paper — 2021
Sources and data sets are available at [26]

[27] Data for toatie—AHardware Description LanguageWith Dependent Types
C. Ramsay, L. Crockett, and R. Stewart
Self-published
Digital artefact — 2022
Sources and data sets are available at [27]

1 . 6 THE S I S OUT L IN E

The rest of this thesis is composed of two background chapters followed by three con-
tribution chapters. Chapter 2 offers relevant background on digital design with FPGA
devices and the corresponding languages for description and verification. Here there
is also further justification of our aims by exploring the differences between represent-
ing circuits as functions vs data, and different verification strategies. Chapter 3 offers

13

1 . 6 TH E S I S OU T L I N E

a concise practical background on dependently typed functional programming with
examples in the new language presented in this thesis, toatie. This introduces con-
cepts such as algebraic data types, irrelevance& erasure, staging, and theoremproving,
before we use them in the context of combinatorial circuits.

Chapter 4 is the first contribution chapter. It explores the design and implemen-
tation of a novel DSP architecture, addressing a real pain-point of many designs tar-
geting RFSoC devices: high-speed, parallel filtering. We offer a solution in CλaSH
exploiting heavy compile-time evaluation mechanisms, combining existing methods
for optimised parallel filtering and reduction of constant multiplications to graphs of
shifts and additions. This chapter concludes by offering a reflection on our practical
experience with the successes and limitations of existing functional HDLs.

The last two chapters concern this thesis’ protagonist, the toatie language. Chap-
ter 5 focuses on the implementation and verification of circuits in toatie. It explores
three different degrees of verification, ranging from the minimum requirements for
synthesis (fixed sized structures) to fully verified arithmetic meaning. An intrigu-
ing mid-point on this spectrum is also presented, where types help guide wordlength
arbitrary pruning strategies. This is concluded with an implementation of a radix-2
Decimation-In-Time (DIT)Discrete Fourier Transform(DFT) circuitwhichuses correct-
by-construction techniques to ensure itmeets our arithmetic specification. We also sup-
ply a separate proof demonstrating that the radix-2 DIT algorithm is indeed equivalent
to the more expensive direct DFT implementation.

Chapter 6 details the implementation of the compiler for toatie. It begins by for-
malising the foundation for our language, TinyIdris [28]. The chapter continues by
discussing toatie’s surface grammar, core language, and its typing rules. Particular
attention is paid to the new features of erasure, staging, and our synthesis scheme. This
combination of techniques is then consolidated by a selection of concrete examples;
stepping through their synthesis process and visualising their intermediate results.

Finally, Chapter 7 concludes with a summary of this thesis’ main contributions and
offers several promising avenues for future work.

14

2CIRCUIT DESCR IPT ION AND VERIF ICAT ION

This chapter discusses the literature and relevant work in description and verification of
digital circuits for FPGAs. Although this content is spun with a stronger emphasis on

functional programming and dependent types, much of the wider context is shared with two
publications produced during the project:

1. L. Crockett, D. Northcote, C. Ramsay, F. Robinson, and R. Stewart in “Exploring Zynq
MPSoC: With PYNQ and Machine Learning Applications” [29] — Strathclyde Aca-
demic Media

2. J. Goldsmith, C. Ramsay, D. Northcote, K. W. Barlee, L. Crockett, and R. Stewart in
“Control and Visualisation of a Software Defined Radio System on the Xilinx RFSoC
Platform Using the PYNQ Framework” [30] — IEEE Access Journal

This section offers an introduction to FPGA design by discussing the interwoven
topics of HDLs and design verification. The dependency between these topics is a re-
curring theme throughout this thesis. We first establish a set of common digital circuit
verification methodologies. Following this, we explore the landscape of hardware de-
scription and verification languages more concretely.

This discussion is initially grounded with reference to industry surveys, focusing
on the features typical to modern incarnations of the three most widely used HDLs:
VHDL, Verilog, and SystemVerilog. This wider context prepares us for a deeper dive
into the most relevant literature HDLs based on functional programming languages
— the strongest points of comparison for the contributions made in Chapters 4 to 6.
This background investigation pays special attention to aspects of the functional HDL
design space:

↪→ The representation of circuits — either as functions or as data.

↪→ The degree to which an HDL’s type system aids verification.

We believe that the contributions of this thesis occupy an interesting, unexplored
point within these dimensions.

15

2 . 1 V E R I F I CAT I ON ME THODOLOG I E S FO R C I RCU I T S

2 . 1 V ER I F I CAT ION METHODOLOG I E S FOR C I RCU I T S

It may seem jarring to be confronted with the verification techniques for hardware de-
scriptions before we introduce the implementations themselves, but that is, in essence,
this work’s entire thesis statement. The verification and description of circuits should
not be entirely separate concerns.

As evidenced in Chapter 1, FPGA designs are growing exponentially in complex-
ity. Neither the verification tooling nor design expressivity have managed to keep
pace historically, however. In order to help advance the discussion on both topics si-
multaneously (explored more in Chapter 5), we should first address the status quo
for verification techniques. In particular, we are interested the opportunity to verify
properties of entire circuit families at once.

The abstract methodologies introduced here will be used by concrete implementa-
tions throughout Section 2.2. As reported by theWilson 2022 FPGAverification survey
[1], only 16% of industry FPGA projects get to deployment without non-trivial bugs
escaping. Within the same survey, over 50% of all design respins are attributed to
logic/functional issues. There is also an overlapping ascription to reused Intellectual
Property (IP) cores — parameterised descriptions which often prove difficult to test in
full. The root causes are split between logical design errors and, perhaps more inter-
estingly, incorrect or incomplete specifications. Clearly, we need an alternative way to
perform verification, addressing:

↪→ Reusable IP cores, which have a potentially infinite parameter space (circuit fam-
ilies).

↪→ Thedesign specifications themselves—spotting ill-definedprotocols in amachine-
checked manner.

In the broadest terms, circuit verification methods assume one of two forms: dy-
namic or static analyses. Dynamic analysis calls for a case-by-case simulation of circuit
behaviour. In order for this to provide guarantees of circuit behaviour, the set of ex-
amples used would need to be exhaustive. This is, for most real-word circuits, entirely
unreasonable.

For example, an arithmetic unit providing an operation over two 32-bit inputs al-
ready has a parameter space of 264 pairs of inputs — just over 1.8× 1019 simulation
runs for exhaustive testing! This has historically been a real, practical issue, with the
Intel Pentium’s FDIV floating point division bug [31] in 1994 inducing a complete recall

16

2 . 1 V E R I F I CAT I ON ME THODOLOG I E S FO R C I RCU I T S

at an expense in the order of $475, 000, 000. In particular, this demonstrates the need
for completeness in testing because of the FDIV bug’s infrequency (an estimated one
in nine billion chance of random inputs provoking significant error) and its severity.
This class of bugs was later precluded at Intel by formal, static verification methods
including [32].

This search spacewill compound over each clock cycle in synchronous circuits with
long memory or many states. Instead of testing large circuits in this manner, we must
admit that completeness with dynamic verification is not achievable and instead rely
on subjective metrics to determine when our testing is “good enough”.

An obvious metric is code coverage, measuring how many lines of source code are
exercised by a set of tests. Thismight seem to indicate completeness, but it does not nec-
essarily exercise every global behaviour — including different combinations of chosen
branches. This more complete, but more elusive, metric is known as functional cover-
age. Both must usually be supported by the simulator for measurement, rather than
as an intrinsic part of the verification language. A complementary observation to nar-
row the coverage required is the use of local assertions. Here the tester can insert local
statements throughout the testbench which raise exceptions when certain conditions
are violated. This allows greater confidence in the behaviour of the global design with
fewer test runs, since we canmore easily detect certain illegal behaviours closer to their
source.

A further method to augment these dynamic, example-driven verification tech-
niques is the use of constrained random testing. Instead of providing a fixed, finite set
of test inputs, the tester instead provides a set of paired details:

1. A property (or local assertion) relating the input to the desired output. This
can often include relationships between cycles, as well as combinatorial relation-
ships.

2. A means of generating random, but valid, input sequences.

Armed with these two things, a testing infrastructure can generate and simulate as
many inputs as are feasible for a given timescale. Furthermore, randomly generated
inputs are more likely to exercise edge cases than a human designer. The element of
constraint here is important since, especially for stateful circuits, a completely random
sequence might not correspond to a possible real-world scenario. We will encounter
a high reward, low effort implementation of constrained-random testing in Chapter 4
using the Haskell library QuickCheck — SystemVerilog also has some support for this

17

2 . 1 V E R I F I CAT I ON ME THODOLOG I E S FO R C I RCU I T S

methodology. A more complete discussion of these topics can be found in [33]. Fig-
ure 2.1 shows the actual adoption of each of these dynamic verification techniques, as
well as two complementary static techniques.

0 10 20 30 40 50 60

Automatic formal applications

Formal property checking

Constrained-Random

Assertions

Functional coverage

Code coverage

Static
D
ynam

ic

% of FPGA design projects

2012 Survey Data
2022 Survey Data

Figure 2.1: Survey trends of FPGA verification technique adoption, based on data from [1]

From the survey in [1] it is clear that dynamic techniques remain the most com-
mon method in industry practice. However, it is important to note that the growth in
adoption is greater in formal, static methods.

Formal, static methods approach the completeness problem from a different per-
spective — often employing mathematical or symbolic techniques to ensure coverage
without predetermined test cases. While these do provide guarantees for complete-
ness, at least within certain constraints, they usually demand more specialised knowl-
edge from the developer or more complex implementation strategies than dynamic
methods using incomplete metrics.

Figure 2.1 demonstrates that amajor growth area in this field is the use of automatic
formal methods. These include exhaustive, automatic model checking and automatic
theorem proving techniques. These are appealing since they require very little exper-
tise from the developer. We will encounter such uses adopted in the Lava HDLs in
Section 2.4.1. These, however, come with real limitations when faced with the state-
space explosion of large circuits. Often it becomes impossible to automatically verify
properties of large concrete circuits, let alone circuit families. Instead, this thesis fo-
cuses onmanual (but often interactive) theorem proving techniques. Chapters 5 and 6
demonstrate how we can use the same description for both implementation and the-
orem proving while, better yet, letting one inform the other, creating a streamlined,

18

2 . 2 I N T RODUC T I ON TO HARDWARE D E S C R I P T I ON LANGUAGE S

type-driven development environment.

Before we do so, we must consider the languages used for the verification and de-
scription of circuits in industry today.

2 . 2 INTRODUCT ION TO HARDWARE DESCR I P T ION LANGUAGES

A likely fundamental aim of any high-level language is productivity. The productivity
of a language itself can be attributed to both its expressivity and the ease of verifying
a program’s correctness. These motivations are as true for hardware description as
they are for software programming. The contributions of this work will encourage a
selection of language features which ought to promote both of these metrics. These
topics include:

1. Representing circuits as pure functions, directly capturing the semantics of com-
binatorial circuits.

2. Using staging to clearly distinguish between elaboration-time evaluation and cir-
cuit run-time evaluation.

3. Dependently typed circuit families which demonstrate full functional correct-
ness, in a correct-by-construction fashion.

Beforewe divemore deeply into the literature for these techniques, we return to the
Wilson Research Group’s 2022 industry survey of FPGA projects [1] to investigate the
productivity possible within the industry’s status quo. Figure 2.2 shows survey results
for use of various HDLs in industry FPGA projects. These values sum to over 100%
since it is common for a single project can use multiple source languages, especially
when reusing legacy or vendor IP cores.

The vast majority of design projects contain either VHDL or Verilog code, hint-
ing towards a large inertia surrounding real-world tooling. We consider VHDL, Ver-
ilog, and its more recent derivative, SystemVerilog, as being representative of tradi-
tional (non-functional) HDLs and the real-world baseline. These are introduced in
Section 2.3. We also offer an overview of the functional HDLs most relevant to toatie,
representing the academic literature. Although all of the functional HDLs discussed
in Section 2.4 are collected in the ≤ 5% Other of Figure 2.2, functional hardware de-
scription is a longstanding research topic. Indeed, Sheeran introduced µFP as early as
1984, making it contemporary to VHDL and Verilog [34].

19

2 . 2 I N T RODUC T I ON TO HARDWARE D E S C R I P T I ON LANGUAGE S

VH
DL

Ver
ilog

Sys
tem

C

Sys
tem

Ver
ilog

C/C
++ Other

0

20

40

60
%

of
FP

G
A

de
sig

n
pr

oj
ec

ts
2014 Survey Data
2018 Survey Data
2022 Survey Data

Figure 2.2: Survey trends of HDL adoption, based on data from [1]

There are two remaining languages from Figure 2.2 which are not particularly use-
ful as comparisons for toatie: SystemC and C/C++. SystemC is commonly used for
modelling at a system-level (orchestrating existing blocks), whereas we are concerned
with the realisation of the hardware for each block. This thesis focuses on HDLswhich
compile with a structural view of the source. With a structural view, the developer has
full control over how the final netlist will look, as their description directly informs
both the area and the timing of a circuit. To afford the developer such control, the tool-
ing necessarily has only explicit pipelining, explicit unrolling of iterative structures,
and no automatic derivation of stack-based or soft-processor implementations of recur-
sive algorithms. The structural approach, the topic of this thesis, is dialectic with the
High-Level Synthesis (HLS) approach implied by the FPGA projects using C/C++.
HLS compilers are often invoked as a back-end for single-source systems languages
such as OpenCL and SYCL. HLS tooling aims to take an abstract specification of a
circuit’s behaviour (usually captured in a imperative software language) and automat-
ically generate a circuit architecture to realise the original behaviour. HLS approaches
promise productivity by abstracting away circuit-specific concerns such as clocking,
pipeline implementation, and the corresponding control logic. This loss of control for
a circuit’s non-functional properties is also true of Bluespec’s rule-based descriptions.
Instead, we advocate for productivity directly at the Register-Transfer-Level (RTL) via
programming language features including higher-order functions and staging.

The RTL level of abstraction sits nicely in the middle of the road. Here we are
explicit about the overall structure of our circuit, while gaining a productive level of
abstraction over the combinatorial paths within it. We are free to use choice constructs
such as case or if statements within our combinatorial sections — a freedom granted

20

2 . 2 I N T RODUC T I ON TO HARDWARE D E S C R I P T I ON LANGUAGE S

when describing the transfer between registers. The behavioural approach of HLS lan-
guages sits above this level, and their compilers are free to insert registers at will or
infer stack-based implementations. The designer only has control over the functional-
ity and is leaving most non-functional properties, such as timing and circuit area, to
the discretion of the compiler. In contrast to this, the lowest level of abstraction we
consider in this chapter is the gate level. Here the designer has full control over the
structure and the composition of combinatorial paths at the expense of productivity.
We must explicitly express all combinatorial logic in terms of primitive circuit gates
and are disallowed the comfort of native language choice constructs.

Figure 2.3 captures the commonalities and distinctions between most of the ap-
proaches to hardware description discussed in the rest of this chapter.

Figure 2.3: Summary of HDL features and styles

Paradigm
Abstraction

Level
Typing

Discipline
Hosting
Style

Traditional HDLs
VHDL Mixed /

Synchronous
RTL Strong Typing Stand-Alone

Verilog Mixed /
Synchronous

RTL Weak Typing† Stand-Alone

SystemVerilog Mixed /
Synchronous

RTL Strong Typing Stand-Alone

High-Level Synthesis Languages
Vivado HLS Imperative Behavioural Strong Typing Stand-Alone

Intel HLS Imperative Behavioural Strong Typing Stand-Alone

Functional HDLs
Bluespec Haskell Rule-based Behavioural Strong Typing Stand-Alone

Lava Functional Gate Stronger Typing
+

Hindley–Milner

Embedded
(Haskell)

Chisel Functional Gate Strong Typing Embedded
(Scala)

Π-ware Functional Gate Stronger Typing
+ Dependent

Types

Embedded
(Adga)

CλaSH Functional RTL Stronger Typing
+

Hindley–Milner

Stand-Alone

toatie Functional RTL Stronger Typing
+ Dependent

Types

Stand-Alone

21

2 . 3 T RAD I T I ONAL HDL S

2 . 3 TRAD I T IONAL HDLS

To further introduce the set of traditional HDLs, we focus in on VHDL, Verilog, and
SystemVerilog. Aswell as being (or derived from) early contemporary languages, they
all share a few base properties in common as well.

The overall structure of any program comprises of blocks described using one of
two paradigms:

Concurrent: Using a declarative (nearly functional) approach.
These blocks easily capture the behaviour of combinatorial logic, usually
limited in order to avoid combinatorial loops. Or…

Sequential: Using synchronous semantics more akin to imperative programming.
These blocks facilitate the synchronous logic found in Finite State Ma-
chines (FSMs) and other common control circuits.

When used with certain restrictions, these two kinds of code block can express cir-
cuit descriptions in a synchronous style—a single systemdescribed as the co-ordination
of logically separate processes. These traditional languages all contain two classes of
features; thosewhich can be used in the description of circuits (the synthesisable subset)
and those which have no circuit semantics (the non-synthesisable subset). The latter is
afforded mainly for the construction of testing infrastructure for the actual synthesis-
able circuit descriptions. Even within the synthesisable subset of features, there are
some extra restrictions placed on the programmer in order to maintain synthesisabil-
ity. For example, the concept of signal assignment (by default) slightly deviates from
the semantics of imperative software languages such as C in order to avoid introducing
race conditions. It is also common that no two sequential blocks may drive a shared
signal.

The traditional HDLs also share an important non-technical property: they are all
now designed and maintained by committee. In fact, VHDL and (System)Verilog are
both guided by the same committee — the IEEE Design Automation Standards Com-
mittee [35, 36]. Also, due to early success and industry adoption, any improvements to
the language are defined as additive extensions which carefully navigate the context of
the language’s legacy. Neither of these are inherently Bad Things (Haskell was itself
designed by committee!) however, it does have a consequence specific to the wider
FPGA development ecosystem. The definition of an HDL is necessarily quite separate

†Verilog only accepts synthesisable data encoded as one-dimensional bit arrays, and only distin-
guishes between nets (wire) and memory elements (reg).

22

2 . 3 T RAD I T I ONAL HDL S

from the implementation of its low-level compiler since the binary format for almost
all modern, dense FPGAs is proprietary. Hence each FPGA vendor implements and
maintains their own tooling. As we will see in the following subsections, even when
a committee defines excellent new language extensions for a traditional HDL, there is
often a large inertia to overcome before it is implemented in downstream proprietary
tooling — a harsh impedance mismatch in the industry. We also demonstrate that the
burden of early success encourages many modern features to be added via extensions
in an ad hoc manner, rather than addressing a whole set of concerns with a single,
fundamental change.

We continue by looking at concrete examples, and since this thesis is concerned
with design productivity, focusing on the abstraction mechanisms implemented in
each traditional HDL.

2 . 3 . 1 VHDL

The language VHDL, as standardised by IEEE in [36], embodies the ideas behind the
synchronous programming style and offers reasonably strong typing. Its types include
arrays, subtypes, enumerations, and heterogeneous record types, among others. A
strong typing discipline is an important consideration in both software and hardware
programming languages as it allows the type checker to catch some classes of errors
statically at compile-time, rather than leaving them to wreak havoc at run-time — pos-
sibly obscuring the original source of misbehaviour in the process. Just how many
classes of error can be caught statically (colloquially, its “strength”) depends on the
expressivity of the language’s type system and how the programmer chooses to em-
ploy types in their implementation. Although type safety is often simplified to a bi-
nary “weak”/“strong” when comparing VHDL and Verilog, the true answer always
lies somewhere on a spectrum. This is an important topic for the remainder of the
thesis and we explore different points of this spectrum throughout Chapter 5.

In terms of abstractions, VHDL has historically offered three distinct features:

1. Generate statements:

Used to generate structures directed by some constant value. The first of these
mechanisms is the for generate statement, directed by a constant range param-
eter. These correspond to an unrolled version of an iterative body— a simple for
loop for hardware. The second is if generate on constant boolean arguments,
offering conditional generation of structures.

23

2 . 3 T RAD I T I ONAL HDL S

2. Generics:

Used to parameterise a design entity by a constant value. Traditional examples
include numeric constant generics (e.g. to parameterise the width of a signal) or
time constant generics. Generics in VHDL are quite a composable feature — an
entity may accept generics as a parameter and propagate them to other entities
further down the design hierarchy.

3. Configurations:

Used to direct which circuit implementation (or, an architecture in VHDL termi-
nology) is used within a component instance. Configurations can be defined
either locally (hidden entirely within the implementation of an entity) or glob-
ally (a single definition touching any level hidden within the design hierarchy).
This feature can be viewed as a means of parameterising component behaviour
but without composability — the choice is either localised to a single entity or
for the entire design hierarchy.

Note that we already have two features (generics and configurations) which are
really both providing parameterisation, and could be unified into a single language
feature. This effect compounds when we consider features added by future iterations
of the VHDL specification.

A typical, reasonably good faith VHDL-2002 implementation of an N-word sum-
mation is shown in Listing 2.1. Note that before VHDL-2008 (defined ≈ 25 years after
the original), generics in VHDL did not support non-value parameters such as types,
functions, or components. Despite that, Listing 2.1 still makes good use of generics
and generate statements, parameterising the input wordlength and the number of in-
put words. We go as far as to intelligently bound the output wordlength (assuming a
linear chain of adders). However, we do not limit the wordlength of internal signals
and instead propagate the worst-case output wordlength throughout. At a top-level,
we may choose to use a configuration declaration to specify a particular implementa-
tion of the adder component, but this must be defined globally.

This implementation does have bugs which will only be revealed with certain sets
of parameters. For example, when N ≤ 2 elaboration will fail even though summing
two input words is entirely reasonable. These kinds of error, as edge cases of a circuit
family, can be elusive when only using simple testbench testing for larger designs.

24

2 . 3 T RAD I T I ONAL HDL S

Listing 2.1: An implementation of an adder chain using VHDL-2002 with generics and gener-
ate statements

1 entity summation is
2 generic (N : integer := 8 ;
3 M : integer := 12);
4 port (xs : in std_logic_vector (N*M-1 downto 0);
5 sum : out std_logic_vector (N+M-2 downto 0));
6 end entity;
7
8 architecture behavioural of summation is
9 component add is

10 generic (A : integer);
11 port (
12 x : in std_logic_vector (A-1 downto 0) ;
13 y : in std_logic_vector (A-1 downto 0) ;
14 z : out std_logic_vector (A-1 downto 0));
15 end component;
16
17 type inter_array is array(0 to N-3) of std_logic_vector(N+M-2 downto 0);
18 signal accs : inter_array;
19
20 begin
21
22 -- Initial adder
23 acc_init : add generic map (A => N+M-1)
24 port map (
25 x => (N+M-2 downto M => '0') & xs(M-1 downto 0),
26 y => (N+M-2 downto M => '0') & xs(2*M-1 downto M),
27 z => accs(0)
28);
29
30 -- Generate intermediate sums
31 acc_inters: for i in 1 to N-3 generate
32 acc_i : add generic map (A => N+M-1)
33 port map (
34 x => (N+M-2 downto M => '0') & xs((i+2)*M-1 downto (i+1)*M),
35 y => accs(i-1),
36 z => accs(i)
37);
38 end generate;
39
40 -- Final element
41 acc_last : add generic map (A => N+M-1)
42 port map (
43 x => (N+M-2 downto M => '0') & xs(N*M-1 downto (N-1)*M),
44 y => accs(N-3),
45 z => sum
46);
47 end behavioural;
48

25

2 . 3 T RAD I T I ONAL HDL S

While this is a reasonable attempt using VHDL-2002, there are a few aspects which
are less parameterised than one may like. For example:

↪→ We have encoded our input as a single std_logic_vector but we would like to,
more accurately, describe it as an array of N M-bit logic vectors. As it stands, we
need to perform error-prone mental gymnastics to construct our indices. How-
ever, the tools surprisingly do not allow us to index both the array and the std_
logic_vector elements with generics simultaneously.

↪→ The caller cannot locally specify which adder implementation should be used for
an application. This is required to easily make context-sensitive choices balanc-
ing between area and performance (e.g. a filter structure on the critical path vs.
a large but latency-tolerant adder structure).

↪→ We cannot fully parameterise the type of the input words. This limits our under-
standing of the inputwords too. For example, what numeric interpretation of the
raw input bits should be used? Unsigned, signed, one-hot, or perhaps canonical
signed digit?

↪→ We cannot easily parameterise the circuit structure more complexly. We might
want a single generic component to handle linear adder chains and adder trees.
We could also quite reasonably want to sum a collection of signals with hetero-
geneous wordlengths.

To partially address these limitations, VHDL-2008 was defined with extra features
for abstraction; including type and function generics. These alleviate the first two dif-
ficulties, however the latter two remain troublesome. It is also important to put the
definition of the VHDL language in its proper context for FPGA development: sup-
port available in vendor tooling.

Although Xilinx’s Vivado design suite has had partial support for VHDL-2008
since Vivado 2016.1, the type and function generics have only been supported since
2019.1 — nearly 11 years after the language definition. The Quartus Prime EDA soft-
ware from Intel (formerly Altera) now also has support for VHDL-2008. However, at
the time of writing, they have opted for the surprising strategy of placing their imple-
mentation of these language features behind a pay-wall [37].

Due to a combination of vendor support and the volume of pre-2008material circu-
lating throughout the industry, it remains a rare occurrence to see many of these new
features used in earnest. The interested reader can find details of all VHDL constructs
(including VHDL-2008) in Ashenden’s excellent resources [38].

26

2 . 3 T RAD I T I ONAL HDL S

2 . 3 . 2 (System)Verilog

As well as standardising VHDL, the IEEE Design Automation Standards Committee
also acts as the steward of (System)Verilog [35]. However, in contrast to VHDL, Ver-
ilog has quite a weak typing discipline. Every synthesisable signal is viewed simply
as a one-dimensional array of bits. While this does allow the designer to omit explicit
conversions, it disallows the designer from conveying anything more about the mean-
ing of their data to the compiler or other designers via its type. Whereas, in VHDL,
we often encounter signals with meaningful types — we treat unsigned numeric rep-
resentations differently from signed representations, and very differently compared to
a record structure.

Verilog takes inspiration from popular imperative languages, seducing C program-
mers with a familiar syntax, but this choice introduced a deadly issue early in the
project’s history. The blocking assignment semantics introduced non-determinism be-
tween concurrent statements [39] which is, unfortunately, the basis for most digital
design! Beyond its type system and its syntax, many of Verilog’s fundamental ideas
are similar to those we have covered for VHDL. We still use the synchronous style,
interleaving concurrent and sequential code blocks. We also have abstraction mecha-
nisms which map nearly 1 : 1 onto those found in pre-2008 VHDL. For instance, we
have:

Parameters: which abstract over constant values (not including types or functions).
These correspond to VHDL’s generics, but can be additionally associ-
ated with tasks and functions.

Configurations: analogous to the global configuration declarations of VHDL.

Generate blocks: for iterative and conditional design generation, mirroring VHDL’s gen-
erate statements.

SystemVerilog is a substantial extension of the Verilog language which introduces
many features, including enhancements paralleling the abstraction features discussed
for VHDL-2008. Verilog has nowbeen consumed by the SystemVerilog banner, leaving
only one standard [35]. Listing 2.2 shows an improved version of our summations
example (also parameterising over the adder function) in SystemVerilog. Note that an
equivalent is also possible in VHDL-2008, subject to tooling support.

27

2 . 3 T RAD I T I ONAL HDL S

Listing 2.2: A SystemVerilog adder chain with parameterised adder function, synthesised in
Vivado 2022.1

1 // A specific adder implementation
2 interface i_default_adder
3 #(parameter W=32);
4 task automatic add
5 (input logic [W-1:0] x, input logic [W-1:0] y, output logic [W-1:0] z);
6 z = x + y;
7 endtask
8 endinterface
9

10 // Summation module generic in word type and adder function
11 module sum
12 #(parameter N, parameter type WORD_TY)
13 (interface f, input WORD_TY [N-1:0] xs, output WORD_TY sum);
14
15 WORD_TY [N-3:0] accs;
16
17 // Initial adder
18 always_comb
19 f.add(xs[0], xs[1], accs[0]);
20
21 // Generate intermediate sums
22 genvar i;
23 generate
24 for (i = 1; i <= N-3; i+=1)
25 always_comb
26 f.add(xs[i+1], accs[i-1], accs[i]);
27 endgenerate
28
29 // Final adder
30 always_comb
31 f.add(xs[N-1], accs[N-3], sum);
32
33 endmodule
34
35 // Example top-level summation
36 typedef logic [7:0] T_WORD;
37 module top
38 (input T_WORD [3:0] xs, output T_WORD sum);
39
40 i_default_adder #(.W(8)) adder_arch();
41 sum #(.N(4), .WORD_TY(T_WORD))
42 sum_inst (adder_arch , xs, sum);
43 endmodule
44

As well as adding type parameters and function parameters (via the interfaces con-
struct), SystemVerilog also contributes two major topics: more expressive types and
a substantial language for verification-only code. The weak typing of Verilog is ex-
tended to includemultidimensional arrays, enumerations, structures, and unions. The
non-synthesisable subset of the language used for verification has been dramatically
reworked, demonstrating the industry appetite for improved verification tooling.

28

2 . 4 FUNC T I ONAL HDL S

The verification language supports the object-oriented programming style, defin-
ing stateful classes and allowing inheritance. Alongside this productivity boost comes
built-in support for generating constrained-random inputs for verification (a vital build-
ing block for property-based testing), boolean and temporal assertions, and collection
of coverage statistics. For our own narrative, SystemVerilog offers two insights: param-
eterisation is important (designers will navigate multiple different features in order
to implement it) and verification is acknowledged by the industry as a pain point in
VHDL/Verilog.

2 . 4 FUNCT IONAL HDLS

Recall that functions are treated as first-class citizens in functional programming. We
are free to pass pure functions as arguments, and to return new functions as results.
Functions which do so are called higher-order functions. As in software programming,
this offers a powerful way of composing abstractions. Depending on the type system
of the language, such functions are often enough to replace every abstraction feature
in the extensive libraries of VHDL-2008 and SystemVerilog. This simplifies both the
language implementation (whichwas a topic ofmuch inertia for traditionalHDLs) and
the designer’s burden—one fundamental feature can be employed formany purposes.

As mentioned previously, the subject of functional HDLs is a well studied one. The
interested reader is referred to surveys such as [40]. Although neglected in our own
summary, the functionally inclined digital designer may also wish to explore the sem-
inal work of µFP [41], or the more recent BlueSpec Verilog [42] and Chisel [43]. We
will continue with a small summary of the functional HDLs most relevant to this the-
sis. We pay particular attention to the choice of hosting style and how the type system
applies to hardware descriptions. The hosting style impacts the implementation effort
but also the representation of circuits: either embedding circuits as data in an existing
host language, or representing circuits as functions with a stand-alone compiler.

2 . 4 . 1 Lava Languages

A key observation behind Lava is that we already have a platform with all of the pow-
ers of abstraction needed for describing circuits quite well: pure functional software
languages. The family of Lava languages (including [44–46]) offers clear insights into
the use of hardware description libraries embedded in a standard software language —
called an Embedded Domain-Specific Language (EDSL). Lava is hosted in the func-
tional software programming language Haskell. Haskell offers an environment where

29

2 . 4 FUNC T I ONAL HDL S

functions are treated as first-class citizens and there is an expressive (although not
dependently typed) type system offering:

↪→ Algebraic Data Types (ADTs)

↪→ Parameterisation by type (via type variables, type classes, etc.)

↪→ Parameterisation by function (via higher-order functions)

↪→ Opportunity for much stronger type safety than traditional HDLs

↪→ Powerful type inference — function type definitions are usually not explicitly
required while we still maintain the advantages of strong typing

This is just a brief list of the highlights — a full appreciation for the features of
Haskell can be gained from [47]. Looking at Lava in particular, we are quickly con-
fronted with the EDSL style of hardware description. This approach is implemented
as a library within an existing software language. It offers the programmer two main
sets of tools. The first is a collection of primitive gates which typically correspond to
the dedicated hardware units in an FPGA’s architecture — e.g. LUTs, FFs, and per-
haps even Block RAMs. The EDSL also provides us with a set of basic combinators
which are functions to combine subcircuits in a variety of ways. Digital designers can
write Haskell/Lava code using these combinators to compose the circuit primitives in
interesting ways. When their program is evaluated, a circuit description is elaborated
to circuit composed entirely of the primitives. One perspective is that the host lan-
guage offers an extremely rich, Turing-complete† version of VHDL’s simple generate
statements — a completely programmable elaboration process. The advantage to this
approach falls largely in favour of the implementer. It is then the software evaluation
of a Haskell program which produces a circuit netlist. Relying on the Haskell host
means reusing Haskell’s entire machinery for free, including its type checker, evalua-
tor, parser, Integrated Development Environment (IDE) support, etc. The main dis-
advantage is, as we will soon encounter, that the embedded language is completely
distinct and secondary to the host language’s own constructs.

Listing 2.3 shows a binary adder from first principles described in Xilinx-Lava [48,
49]. Here xor2, xorcy and muxcy are primitives supplied by Lava andwe use standard
Haskell code to compose them into a binary adder structure. In particular, notice that
we are building our circuit as a data structure rather than representing it directly as a
function. Here (Out a) is a Lavadata type representing a netlistwhich outputs a signal

†A Turing-complete system is one which, if given enough time and memory, can compute anything
that is computable. I.e. a tempting metric for a language’s completeness.

30

2 . 4 FUNC T I ONAL HDL S

Listing 2.3: An example of an adder from first principles in Xilinx-Lava

1 oneBitAdder :: (Bit, (Bit, Bit)) -> Out (Bit, Bit)
2 oneBitAdder (cin, (a, b))
3 = do part_sum <- xor2 (a, b)
4 sum <- xorcy (part_sum, cin)
5 cout <- muxcy (part_sum, (a, cin))
6 return (sum, cout)
7
8 adderWithCarry (cin, (a,b))
9 = col oneBitAdder (cin, zip a b)

10
11 adder :: ([Bit], [Bit]) -> Out [Bit]
12 adder (a,b)
13 = do (c, _) <- adderWithCarry (zero, (a,b))
14 return c

of type (a). Towards building our adder circuit, also note the use of the higher-order
col function. This is our first introduction into the important concept of decoupling
a circuit’s structure from its behaviour. col replicates a subcircuit and connects them
together as shown in Figure 2.4. These functions for capturing common structural pat-
terns can be developed once and reused for many applications — resulting in concise,
meaningful descriptions for a developer familiar with the base set of combinators. We
show full definitions here for demonstration, but note that these particular functions
are usually supplied as part of the standard library. Although the Haskell type sys-
tem is very expressive, in this scenario, we are transforming dynamically sized lists of
bits. At the lowest level, this actually results in type safety worse than an equivalent
Verilog description! We will encounter a stronger use of Haskell’s type system during
our discussion of CλaSH.

fb0 c0

ain

fb1 c1

fbn−1 cn−1

aout

col f

Figure 2.4: The col combinator, connecting subcircuits f

31

2 . 4 FUNC T I ONAL HDL S

Working with such low-level gates sounds unproductive, but functional languages
allow us to quickly build abstractions on top of these structures, implementing increas-
ingly complex structures and exploring the design space. As a brief example, List-
ing 2.4 shows two summation circuits described via higher-order functions: one linear
adder chain and one adder tree. A feature unique to the Xilinx-Lava implementation is
that the combinators, including col, mapPair, and >=> also capture layout semantics:

adder uses ‘col oneBitAdder’ to infer a vertical chain of N-full adders, map-
ping well to the vertical specialised carry-chain hardware of many FP-
GAs.

foldChain uses ‘f >=> rec’ to iteratively build a chain of f subcircuits placed hori-
zontally with vertical centring.

foldTree uses mapPair to build a single layer of independent adders stacked verti-
cally, with each layer sequenced by >=> in adjacent horizontal slices with
vertical centring.

These combinators with geometry semantics can be a effective tool for FPGA power-
users, capturing hand-crafted floorplanning information for regular structures with-
outmuch extra effort beyond the standard digital design. We can reuse these structural
helpers with similar ease for much more complicated designs too. Instead of compos-
ing adder circuits, we could similarly be composing entire FFTs, sorter circuits, FSMs,
or complete processors.

Listing 2.4: A two summation circuits in Xilinx-Lava using higher-order functions for structure

1 foldTree :: ((a, a) -> Out a) -> [a] -> Out a
2 foldTree f [a] = return a
3 foldTree f as = (mapPair f >=> foldTree f) as
4
5 foldChain :: ((a, b) -> Out a) -> (a, [b]) -> Out a
6 foldChain f (a, [b])
7 = f (a,b)
8 foldChain f (a, b:bs)
9 = (f >=> rec) (a,b)

10 where rec c = foldChain f (c, bs)
11
12 sumTree = foldTree adder
13 sumChain = foldChain adder

Abstraction via higher-order functions is great for quickly combining subcircuits;
capturing a structural view of hardware description. In Lava’s case each subcircuit is
described at a gate level. Some applications, however, are more naturally described
using an RTL style, where we have more freedom when expressing the behaviour of

32

2 . 4 FUNC T I ONAL HDL S

each combinatorial section. Would this also be possible in Lava? It is relatively sim-
ple to implement combinators for parts of the choice constructs we are familiar with:
think case, or if. For example, one can construct a simple case construct as a function
accepting a value to scrutinise and a set of alternatives paired with the corresponding
scrutinee values. This might have the type:

casE :: Eq a => Out a -> [(Maybe a, Out b)] -> Out b

However, without substantial type-level shenanigans and language extensions, we
will often lose the ability to check our coverage in case constructs (i.e. do we actually
cover all valid choices or do we infer a latch?). More fundamentally, we necessarily
introduce a new name and syntax for these constructs since it is unusual for an EDSL
to be able to hook into the host syntax. This means the designer will have to juggle two
sets of choice constructs: one in the host language and one in the embedded language
with reduced syntactic expressivity. There are also arguments to be made about how
feature-complete these embedded choice constructs can be, as per Section 2.3.2 of [19].

Our Lava examples so far have only been combinatorial but the language can also
encode synchronous logic. Although it is internally a data structure describing a netlist,
developers may consider a value of Out a to represent an infinite stream of a-typed
values. Element at index N in this stream represents the output value which is stable
on the Nth clock cycle. The flip-flop primitives, including fd and fdce, provide ameans
to permute these streams in valid ways — e.g. a delay corresponds to prepending a
constant to the start of a stream.

Circuits in Lavamay also be interpreted in various otherways: as data for a concrete
simulation, as data for netlist synthesis, or as data for (external) symbolic verification
methods. As such, a common approach to verification in Lava is to adopt a property-
based strategy relying on external model checkers or automatic theorem provers [46].
Here, properties are captured using the same language as the circuits themselves; a
symbolic version of the property is passed to external tools for checking. Since these
are either boundedmodel checkers or automatic theorem provers, a circuit family must
first be completely specialised — i.e. we verify a single circuit rather than a circuit
generator itself. We would struggle to generate guarantees about the behaviour of
all possible multiplier circuits from a (potentially infinite or particularly complex) cir-
cuit family but we can automatically gain confidence in a hand-picked finite subset of
them. Chapter 5 demonstrates our own dependently typed environment for hardware
description which does not suffer this restriction.

33

2 . 4 FUNC T I ONAL HDL S

In summary, the family of Lava languages provides interesting insights into how
to capture circuit semantics with functional descriptions. It helps sing the praises of
higher-order functions as they apply to digital circuit design. Once we consider RTL
circuit descriptions, however, we do begin to feel some resistance. To address this we
consider stand-alone functional HDLs, rather than EDSLs such as Lava. These gener-
ally require more upfront engineering effort but, as CλaSH demonstrates in the fol-
lowing section, it can be worthwhile. Nonetheless, Lava certainly has its own kind of
elegance, delivering a beautiful implementation of an interesting observation — the
evaluation of a functional program can generate circuit netlists well, even with geome-
try information.

2 . 4 . 2 CλaSH

CλaSH is a functional HDL which is a standalone compiler for Haskell, rather than
hosted as an EDSL [19, 50]. Here the developer writes (nearly) vanilla Haskell func-
tions to describe the circuit structure and run-time behaviour. The CλaSH compiler
then transforms this description into a synthesisable circuit. As we will see shortly,
this allows us to directly utilise Haskell’s rich choice constructs and user-defined data
types directly in our circuit’s run-time descriptions — not just at elaboration-time.

CλaSH supports descriptions which are higher-order and polymorphic. These are
two common demands on fully parameterised circuits and, as demonstrated back in
Section 2.3, are not supported by pre-2008 VHDL or Verilog. While these parame-
terisation techniques are better supported by VHDL-2008 and SystemVerilog, FPGA
developers are limited by the subset of features implemented in vendor tooling. This
can often lag a decade behind the language definitions for good support.

Another consequence of being a standalone compiler is that CλaSH represents cir-
cuits as plain functions, instead of directly as a data structure. This necessitates a
slightly more complex compilation step but it is the fundamental choice that permits
the developer to enjoy the same set of Haskell syntax for both circuit generation and
circuit run-time behaviour. In particular, the compilation uses a term-rewrite system
defined in Chapter 4 of [19] to normalise the circuit description, eliminating intermedi-
ate non-synthesisable terms. Like most synchronous functional HDLs, CλaSHmodels
synchronous signals as infinite streams. Only “safe” operations on these streams are
exposed to the developer, such as the delay function. Listing 2.5 shows an introduc-
tory CλaSH implementation of an up/down counter which is entirely polymorphic in
terms of its numeric type.

34

2 . 4 FUNC T I ONAL HDL S

Listing 2.5: An up/down counter in CλaSH, representing circuits as functions over user-
defined data types

1 data Mode n
2 = IncrUp n
3 | IncrDown n
4 | Hold
5
6 getIncr :: Num a
7 => Mode a -> a
8 getIncr (IncrUp n) = n
9 getIncr (IncrDown n) = negate n

10 getIncr Hold = 0
11
12 counter :: (Num a, NFDataX a, HiddenClockResetEnable dom)
13 => Signal dom (Mode a) -> Signal dom a
14 counter mode = current
15 where
16 current = delay 0 next
17 next = current + (getIncr <$> mode)

Notice that we define our own Algebraic Data Type (ADT), Mode, to describe the
circuit’s control input. We are free to use this type in our circuit description and per-
form all of the pattern matching, case expressions, and guards one might expect from
Haskell. Indeed, getIncr is defined by pattern matching on a Mode type argument.
The compiler will automatically derive a bit representation for our type with a stati-
cally known length and infer multiplexer structures for each alternative branch in our
circuit description. This extra compiler support assists us in directly describing the
run-time behaviour of a combinatorial circuit without just composing gate-level prim-
itives. This vanilla Haskell style lets us convey much more about the meaning of our
data than when working directly with collections of bits.

Althoughwe are essentially writing vanilla Haskell, in order to ensure that a circuit
really is synthesisable by CλaSH, there are a few restrictions placed on the top-level
function:

↪→ It is monomorphic and first order.

↪→ Its arguments and return value are representable (i.e. have a finite length, statically
known bit representation).

Note that these restrictions only exist for the top-level—we canmake use of higher-
order or polymorphic function deeper in the hierarchy. This is akin to VHDL’s restric-
tion requiring all generics to be given a value by the top-level entity. There are some
secondary considerations hidden within the need for representable arguments. Most
severely, this precludes recursive data types and functions defined via data-dependent

35

2 . 4 FUNC T I ONAL HDL S

recursion! The need for these is somewhat dampened by a rich set of library primitives
with recursive patterns hard-coded over vectors and trees. At the time of writing there
is only experimental support for Generalized Algebraic Data Types (GADTs) too [51].

As evidence towards CλaSH’s synthesis restrictions being quite reasonable, there
are a surprising number of ubiquitous Haskell libraries that “just work” in synthesis-
able CλaSH descriptions. One excellent example of a CλaSH design which makes
good use of the existing Haskell ecosystem is Érdi’s implementation of a processor for
the language Brainfuck [52, 53]. We reproduce its high-level control logic in Listing 2.6
in order to investigate the mixing of plain Haskell libraries (created without any con-
sideration for CλaSH) and CλaSH-specific code in the wild. Here, the step function
captures the combinatorial logic coordinating the control for a single clock cycle of the
entire processor. The CPUIn input combines all of the input pins to the processor and
we compose our control system in the custom type CPU () — a monad which threads
CPU state between sub-operations and arbitrates driving of output pins. While the
reader can skip the finer details of this implementation, we wish to draw attention to
a few techniques in particular:

↪→ We are free to use monad abstractions to describe the control circuit’s run-time
behaviour.

This nearly-imperative style is often a very concise way of expressing control
logic, especially when reusing the large set of helper functions overmonads from
the standard library, Control.Monad. Since this is quite a simple processor ar-
chitecture, we mostly see use of the fundamental (>>=) combinator to compose
computations in the CPU monad. While this is a familiar abstraction pattern for
most Haskell programmers, it is perhaps surprising that it works out-of-the-box
for hardware description — offering a powerful imperative-style tool to capture
subcircuits which are inherently sequential.

↪→ We can also use the ubiquitous Control.Lens library, substantially enhancing
the functionality of record types.

Again, this is common practice in industrial Haskell projects. We might make
use of deeply nested data structures when describing the state of a more com-
plex processor and lenses help us work with these concisely. This accounts for
the (%=), (.=) combinators in Érdi’s example.

↪→ Behind the scenes, the barbies library is also at play.

36

2 . 4 FUNC T I ONAL HDL S

This offers us general purpose abstractions to parameterise data structures by a
functor. In this setting, Érdi employs barbies to implicitly generate default val-
ues for the CPU output pins, selecting the correct output when there aremultiple
drivers, and appealing to CλaSH’s bundling/unbundling of signal groups.

Listing 2.6: Example of control logic for the Brainfuck processor from [53] in CλaSH

1 step :: Pure CPUIn -> CPU ()
2 step CPUIn{..} = use phase >>= \case
3 Halt -> return ()
4 Init -> phase .= Exec
5 Skip depth -> fetch >>= \case
6 '[' -> phase .= Skip (depth + 1)
7 ']' -> phase .= maybe Exec Skip (predIdx depth)
8 _ -> return ()
9 Exec -> fetch >>= \case

10 '>' -> ptr %= nextIdx
11 '<' -> ptr %= prevIdx
12 '+' -> writeCell $ nextIdx ramRead
13 '-' -> writeCell $ prevIdx ramRead
14 '.' -> outputCell ramRead
15 ',' -> startInput
16 '[' -> if ramRead /= 0 then pushPC else phase .= Skip 0
17 ']' -> popPC
18 '\0' -> phase .= Halt
19 _ -> return ()
20 WaitWrite -> phase .= Exec
21 WaitOutput -> when outputAck $ phase .= Exec
22 WaitInput -> traverse_ writeCell input

All the reuse of Haskell libraries to describe a circuit’s run-time behaviour is a di-
rect consequence of siding with a standalone implementation, rather than an EDSL.
While one can reuse similar libraries with Lava, they are only useful in the circuit gen-
erators, not for directly describing circuit run-time behaviour. Beyond libraries, both
approaches also get access to the entire Haskell ecosystem including IDEs and package
management.

While the example in Listing 2.6 presents as very idiomatic Haskell, this is easier to
achieve for combinatorial circuits than synchronous ones. Chapter 14 of [52] presents
a reasonably simple address decoder circuit which cannot be synthesised by CλaSH;
compile-time evaluation mechanisms in CλaSH remain, at the time of writing, “very
poor” [51].

Next, we discuss the aspects of the CλaSH compiler with room for improvement.
One difficulty is the lack of staging. It is sometimes difficult to reason about when part
of our description will be evaluated — will an expression be reduced during the com-
pilation process or will it survive and appear in our final circuit? This challenge is, in

37

2 . 4 FUNC T I ONAL HDL S

part, due to the choice of representing circuits as plain functions. The staging is quite
clear in Lava, where all Haskell code is evaluated during elaboration-time, and any-
thing within the final netlist data type is present at circuit run-time. Since CλaSH uses
a single language for both, and relies on partial evaluation strategies, there can easily
be ambiguity. This staging concern appears most often when thinking about recur-
sively defined circuit generators which is a topic central the contributions in Chapter 4.
Some circuit architectures are simply recursive by nature, including prevailing FFT and
parallel filtering structures studied in this thesis. If the recursion in those generators
is not eliminated at compile-time, we end up with a non-synthesisable circuit. While
partial evaluation at compile-time remains a work in progress for the CλaSH project,
developers can resort tometaprogramming techniques such as TemplateHaskell (TH).
TH is a language extension allowing developers to write Haskell code which manipu-
lates the abstract syntax tree representing other Haskell code. It vitally allows forcing
evaluation of expressions at compile-time — allowing us to force the flattening of a
recursively defined structure. TH as a tool does come with its own restrictions too,
since these sorts of metaprogramming techniques were never a first-class element of
the language. These include limitations on where definitions with different staging
requirements can appear and can impact type safety; discussed more in Section 4.6.2.

Another common pattern found in CλaSH programs is the use of Vec types. We
can think of these as lists whose length is part of its type— a value of type Vec 3 Bit is
a collection of three elements, each of type Bit. Programming with Vecs is especially
important in hardware description since we need our synthesisable signals to have
a statically known length. Dynamically sized lists are not synthesisable in CλaSH,
so we instead use Vecs and enjoy the extra type safety that they infer. These length-
indexed structures are introduced later in Chapter 3 where we demonstrate that they
are quite natural to capture in dependently typed languages. Haskell, however, is not
dependently typed, so many of the clash-prelude standard functions operate over
types parameterised by natural numbers in this way: Vec helpers, binary tree helpers,
sized numeric types, and bit vectors. The way these structures are implemented in a
systemwithout dependent types is an orchestration of language extensions and special
trickswell explored in [54], whose closing remark reads “The best thing about banging
your head off a brick wall is stopping”.

As a small demonstration of these extra considerations required by Haskell’s lack
of dependent types, let us revisit our adder chain example. This time, armed with
a more expressive type system than traditional HDLs, we attempt to model the bit-
growth along each part of the chain. Assuming an adder function add which performs
our desired bit-growth, we might expect that a simple fold add would implement the
adder chain. This is not the case since the accumulated value changes type after each

38

2 . 4 FUNC T I ONAL HDL S

subsequent adder stage— the output is growing. Most standard definitions of fold do
not allow for this. We instead must use several different parts of type-level machinery
fromHaskell extensions in order to convince it that this growth isOK. Listing 2.7 shows
this example in full. Again, the reader is not necessarily expected to appreciate the full
details yet, but we wish to highlight the number of different constructs required to
implement something reasonably simple in CλaSH’s type system.

Listing 2.7: Faking dependently typed folds (directed by Nats only) in CλaSH to model an
adder chain with bit-growth

1 {-# LANGUAGE MultiParamTypeClasses #-}
2 {-# LANGUAGE AllowAmbiguousTypes #-}
3 module Adders where
4
5 import Clash.Prelude
6 import Data.Singletons
7
8 -- Type class describing the types for each step of an incremental sum with
9 -- bit-growth

10 class ExtendingSum a where
11 type StepResult a (n :: Nat)
12 stepAdd :: SNat n -> a -> StepResult a n -> StepResult a (n+1)
13 toFirstStep :: a -> StepResult a 0
14
15 -- An implementation of `ExtendingSum ` for Unsigned numbers
16 instance (KnownNat n) => ExtendingSum (Unsigned n) where
17 type StepResult (Unsigned n) m = Unsigned (n + m)
18 stepAdd SNat = add
19 toFirstStep = id
20
21 -- An implementation of `ExtendingSum ` for Signed numbers
22 instance (KnownNat n) => ExtendingSum (Signed n) where
23 type StepResult (Signed n) m = Signed (n + m)
24 stepAdd SNat = add
25 toFirstStep = id
26
27 -- A type level function ("motive") describing how the type of our
28 -- accumulator changes for each step, `n`.
29 data SumMotive (a :: Type) (f :: TyFun Nat Type) :: Type
30 type instance Apply (SumMotive a) n = StepResult a n
31
32 -- The actual sum circuit for any `ExtendingSum `, using Clash's `dfold`
33 summation :: forall n a . (KnownNat n, ExtendingSum a)
34 => a -> Vec n a -> StepResult a n
35 summation x xs = dfold (Proxy @ (SumMotive a)) stepAdd (toFirstStep x) xs

For this single fold over signed/unsigned binary numbers, the developer needs
to confront some of the more daunting features (and extensions) of Haskell. These
techniques include singleton natural numbers (linking term and type-level represen-
tations), proxies, type families, type-level functions, DataKinds, and knowing which
extension incantations are required for a given task. No dependently typed language
would make such a scenario as challenging! Since dependently typed languages share

39

2 . 4 FUNC T I ONAL HDL S

one syntax between the term and type levels, we only need standard data types and
standard functions over those data types. Chapters 5 and 6 work towards our own de-
pendently typed HDL, toatie, which demonstrates this simplification. In one sense,
we wish to continue a trends towards generality: just as the several abstraction features
of traditional HDLs are condensed into one feature by most functional HDLs, we aim
to condense the several language features required here for type-safe circuits into one
with toatie. As well as this generalisation, dependent types will offer us interesting
avenues for formal verification and theorem proving with our circuit families.

In terms of verification, CλaSH users can enjoy access to Haskell’s entire testing
ecosystem. Since circuits inCλaSH can be simulated just by evaluating a function (they
are represented as plain Haskell functions, after all) we can perform verification on cir-
cuit generators and their resulting circuits alike. A common choice is to use a property-
based testing library such as QuickCheck [55]. These approaches provide excellent in-
frastructure for constrained-random testing, often making it easier to write such tests
than less thorough example-based testbenches. Beyond the constrained-random test-
ing present in SystemVerilog, QuickCheck also employs a shrinking technique to re-
port failing test cases in their simplest, and often most insightful, form. While there is
no built-in support for model checkers or theorem provers, one could configure this
oneself, offering an environment with similar restrictions to Lava’s formal verification.

CλaSHdescriptions also eliminatewhole classes of bugs statically by offeringmuch
better type safety than is encouraged by Lava. Programming with types which are in-
dexed by their length, such as Vec, goes a long way towards eliminating common bugs
allowable by Lava. Here the type checker can ensure statically that a function manipu-
lates data soundly, at least in terms of its size. For example, the compiler catches bugs
such as accessing an element from a (potentially) empty vector, or combining two
vectors with (potentially) different lengths. We propose that a move towards a depen-
dently typed HDL will simplify the implementation of these circuit descriptions, and
open the doors for theorem proving directly in the source language.

2 . 4 . 3 Π-ware

Π-ware is an EDSL for hardware description embedded in the dependently typed soft-
ware language, Agda [20]. Here, in the same style as Lava, circuits are encoded as
data structures and the developer is offered a set of primitive gates and combinators
to construct larger circuits. Since the previous two sections have discussed a compari-
son of the EDSL and standalone approaches to functional HDLs, we instead focus on
Π-ware’s unique feature: its choice of a dependently typed host language.

40

2 . 4 FUNC T I ONAL HDL S

The fundamental advantage of moving to a dependently typed host is that it offers
a single roof under which to describe, simulate, synthesise, and formally verify hard-
ware descriptions without handing-off to external model checkers. In particular, the
manual theorem proving facilitated by dependent types allows us to verify properties
of entire circuit families at once, whereas most model checking techniques work well
over only one concrete circuit at a time. These formal foundations are also demon-
strated well by the implementation of Π-ware itself. Each semantic interpretation of a
netlist (simulation, synthesis, …) is defined as an algebra type which is folded over a
given netlist.

Π-ware takes a more general perspective on circuit description that Lava. Instead
of assuming that every circuit operates over a collection of bits and a library of FPGA-
friendly gates, a netlist is parameterised by:

↪→ The type of data represented by one logical wire, called an atom. This could be
a boolean, a larger arithmetic type, a finite enumeration, etc.

↪→ A set of primitive gates that operate over those atoms.

Instead of working with bits directly, we are free to raise the abstraction level to
something like n-bit signed numbers, offering primitive gates for adders, subtractors,
and negation. It is important to note that all wires must carry the same atom type —
there are no Π-ware language features for splitting or inspecting atom values other
than the black-box gates. We imagine most circuits likely opt for bit-level represen-
tations and construct larger structures through composition. For verification, it is as-
sumed that the function supplied by the developer to simulate each gate’s behaviour is
correct. If these implementations do not match the physical gate behaviour then we
will be able to construct bogus proofs of the real circuit’s behaviour.

Writing descriptions at such a low-level can be a challenge, as highlighted by Pizani
Flor in [20]. Furthermore, Π-ware does not provide named variable bindings within
circuit descriptions which forces the programmer to use a point-free style, composing
gates and combinatorswithout reference to argument names. Many (human!) readers
find this more difficult to parse for complex designs than a pointed description with
bound variable names. The advantage of the point-free style is that the programmer
can never accidentally construct circuits with certain mistakes such as combinatorial
loops. Later work developing λπ-ware [56] does allow named variable binding in
circuits for sharing and loops, helping improve legibility.

While we are free to use Agda’s full-spectrum dependent types in our circuit gen-
erators, the circuit descriptions themselves are more restrictive. Each netlist type is

41

2 . 4 FUNC T I ONAL HDL S

indexed by the number of input atoms (usually bits) and the number of output atoms.
As an example, an adder circuit might be given the following type where C isΠ-ware’s
netlist type:

addN : ∀{n} → C (n + n) (1 + n)

Here, two n-bit words are concatenated to form the input signal and the output
signal is extended by one bit. This approach gives some type safety for the dimensions
of subcircuits we connect together – i.e. chaining addN circuits together is only possible
if we grow the input wordlengths for each stage or otherwise truncate them. However,
beyond these dimensions, we struggle to encode any more information in the circuit’s
type. In a dependently typed language it really should be possible to write the type of
addN such that it also encodes the arithmetic meaning of the output. Any implemen-
tations which pass type checking are then guaranteed to be correct without further
verification effort — they would be correct-by-construction.

Later work for λπ-ware retains most of Π-ware’s properties but does make special-
case allowances for simple structures built of atoms, including vectors, products, and
coproducts. These each come with complementary case-style constructs for elimina-
tion. Having product types in the circuit descriptions could improve our addN example,
making the structure of the two input words more explicit. Ideally a compiler could
automatically synthesise these features from suitable user-defined data types, as in
CλaSH and toatie, rather than having ad hoc support for these three structures.

We are encouraged to think of circuit development in stages using Π-ware: first
an implementation, then simulation, then ad hoc testing, and then formal verification.
This is a valid approach and the dependently typed host language allows us to really
nicely attack the formal verification aspect. We can 1) prove theorems about entire
circuit families at once, and 2) do so under the same host language as the circuit’s im-
plementation. Π-ware also has an elegant solution for automatically and exhaustively
checking equivalence between a (small) circuit and a reference function. This is analo-
gous to Lava’s toolchain using external model checkers. We still need manual proofs
for any reasonably large circuits or over entire circuit generators.

However, we believe a limitation of Π-ware lies in the need for these distinct de-
velopment phases. It is common practice in dependently typed programming to en-
code more about your data’s meaning in its type. This not only gives us better type
safety (and implementations which are more likely to be correct) but the types can
often help inform our implementations interactively. If our types are specific enough,
we can even have circuits whose functional behaviour is entirely correct-by-construction.

42

2 . 4 FUNC T I ONAL HDL S

The proof of functional correctness and the implementation are developed simulta-
neously, and one helps inform the other symbiotically. Brady explores this concept
thoroughly in [57], framing the process of writing software as an iterative conversa-
tion with the type checker rather than treating the machine as an adversary. Since Π-
ware’s structure somewhat limits our ability to use this approach outside generators,
we advocate for a standalone implementation (CλaSH-style) with dependent types
as an alternative. Chapter 5 builds towards a DFT circuit family in toatie where the
correct-by-construction approach gives us a proof of arithmetic behaviour entirely for
free, given a base set of arithmetic building blocks.

2 . 4 . 4 Proposed circuits in Ωmega and Idris

Herewediscuss twopieces of relatedwork towards theoremproving for circuitmodels.
Our own work is strongly influenced by Brady’s observations in [22]. He suggests
an approach using a dependently typed language to verify properties of entire circuit
families. This is achieved by encoding our data’s complete meaning in it’s type — for
unsigned binary words, this includes its length and the natural number it represents.
His approach offers two main advantages:

↪→ Encourages circuits which are functionally correct-by-construction. The verifica-
tion of these properties and the implementation of the circuit are interwoven
in such a way that can actually assist its development — progress made in the
proofs can inform parts of the implementation, or vice versa.

↪→ It does not rely on external model checkers. This also sidesteps the state-space
explosion present in automatic model checking. Not only can his approach be
used to reason about very large circuit structures, it can reason about (potentially
infinite!) circuit families.

The disadvantage is that, whenmodel checking is applicable, it provides results au-
tomatically. This theorem proving approach is very much a manual process, although
languages such as Idris have good support for theorem proving interactively (in con-
versation with the type checker). The work presented in [22] only simulates circuit
behaviour and does not consider synthesis. This thesis extends upon these ideas and
builds a system which also enables synthesis of circuits, exploring language features
including erasure and staging in support of our synthesis process.

Contemporary to Brady’s work in [22], is Sheard’s similar contribution towards
static verification of circuits [21]. Here, insights are offered into how circuits could be

43

2 . 4 FUNC T I ONAL HDL S

encoded as a data type in the (software) language Ωmega. The central ideas are com-
mon between the two: perhapswe ought to be using types to verify circuit descriptions
under one language. Sheard’s perspective does differ in three important aspects:

↪→ Circuits should be encoded as data, rather than normal functions. Hence, we
count Ωmega implementations in our group of EDSLs, most closely resembling
Π-ware. Sheard argues that a representation as data is more natural for circuits
since a single netlist structuremight be interpreted in a number of different ways:
synthesis, simulation, or symbolically for verification. While this is true, our
discussion has already highlighted that this EDSL approach makes describing
choice structures inside a circuit’s run-time much more awkward than in a lan-
guage such as CλaSH that represents circuits as normal functions.

↪→ Types can just as naturally be used for tracking non-functional properties. For
example, one may wish to encode a metric representing a circuit’s area or power
consumption in its type. This allows the developer to reason about resource
boundedness statically.

↪→ Ωmega does not have full-spectrum dependent types. It instead provides a very
consistent syntax for programming at any (potentially polymorphic) level —
functions and data look much the same at the term-level, type-level, or in higher
kinds. Singleton data structures are then used heavily to convey information be-
tween each level. It is interesting to note that this approach should be enough
to encode every proof presented in Chapter 5. However, we prefer to explore
dependent types in order to simplify this process, and to allow circuit generators
unrestricted use of full-spectrum dependent types.

Although toatie was largely developed in isolation from the ideas of Ωmega, they
both use multi-staged programming. Sheard’s proposal uses staging only to optimise
the software simulation of circuits. This sort of specialisation as optimisation is per-
haps the most common use of multi-stage programming. However, toatie requires
staging to ensure the circuit descriptions are, in a sense, causal. Since both our circuit
descriptions and our circuit generators are encoded as normal functions, we need to
ensure we can pass information about our variables forwards in time (from the circuit
generator to the circuit’s run-time) but not backwards (using information only know-
able during the circuit’s run-time during circuit elaboration).

44

2 . 4 FUNC T I ONAL HDL S

2 . 4 . 5 Proto-Quipper-D for Quantum Circuits

Proto-Quipper-Dhas also heavily inspired thework in this thesis, despite beingdomain-
specific for quantum circuits rather than classical circuits [58]. The focus on quantum
circuits comes with a different set of restrictions for synthesisability. For example, one
cannot straightforwardly fork a signal into two paths due to the “no-cloning” property
of quantum mechanics. To help enforce this property, linearity is carefully consid-
ered in their type system — presented alongside a rigorous analysis of its categorical
structure. Underneath these differences, we do share challenges including the staging
distinction between circuit generator/circuit run-times and our ability to express entire
circuit families effectively in a type-safe way.

To this end, Proto-Quipper-D chooses to distinguish between circuit generator val-
ues and circuit run-time values by maintaining two separate kinds of types. These are
called parameter and simple types respectively. This is a concept retained in toatie.
Proto-Quipper-D also supports dependent types. However, dependently typed data
structures are only possible for simple (synthesisable) typeswhich comewith their own
restrictions. This dependent typing of simple data is only really intended to encode the
structure of collections of qubits — the equivalent of bits for quantum circuits.

Semantically, simple types corresponds to states. Syntacti-
cally, a simple type can uniquely determine the size and the
constructors of its data. The type checker will check whether
a simple data type declaration is well-defined.

— P ENG FU IN [59]

One important subtlety here is that simple types must unambiguously determine
their constructor. This allows length-indexed collections such as vectors and perfect
binary trees since each type only has one possible constructor. As in Listing 2.8, a
vector of length zero always corresponds to a VNil constructor and a vector of non-
zero length always corresponds to a VCons constructor.

Listing 2.8: A synthesisable (valid) Vec type and a non-synthesisable (invalid) Maybe type in
Proto-Quipper-D

1 -- Valid simple type
2 simple Vec a : Nat → Type where
3 Vec a Z = VNil
4 Vec a (S n) = VCons a (Vec a n)

1 -- Invalid simple type
2 simple Maybe a : Type where
3 Maybe a = Nothing
4 Maybe a = Just a

45

2 . 4 FUNC T I ONAL HDL S

A programmer may expect to be able to encode the familiar Maybe a type, either
holding an element of type a or nothing at all. However, this is an illegal simple type
in Proto-Quipper-D since there is ambiguity between two possible constructors.

The approach taken by CλaSH and toatie does allow for representation of these
ambiguities, as any branches will synthesise down to a mux-controlled set of alterna-
tives. Indeed this is the core feature which allows developers to encode circuits as
idiomatic, plain functions!

Proto-Quipper-D somewhat blurs the lines between our notions of an EDSL and
a standalone implementation. While it is not hosted in another language per se, they
do provide black-box primitives for state types and the corresponding gate libraries.
Developers can then represent quantum circuits as plain (linear) functions between
simple types, using the primitive gates. The language also supplies boxing and unbox-
ing operations which can convert these circuits between representations as functions
and data. In a boxed/data form, we can better inspect and reason about a circuit’s struc-
ture without supplying concrete inputs (Proto-Quipper-D even provides visualisation
tools for this). In an unboxed/function form, we can very easily simulate a circuit’s be-
haviour by treating it just like any other function. This is an interesting feature which
we have not yet included in toatie, instead relying on external tools to perform visu-
alisations given a synthesised netlist.

Verification also proves to be an interesting middle-ground in Proto-Quipper-D as
well. While it is not considered a language “for general theorem proving” [59], it does
have a type system strong enough to encode Leibniz equalities between terms. If we
wanted to follow this concept to its extreme, one could adopt a similar methodology
to Π-ware circuit verification (sans productivity features offered by Π-ware’s host lan-
guage). Here formal verification is treated very much separately to the implementa-
tion of the circuit description. Circuit generators are first written and then reasoned
about. We instead advocate for adopting a correct-by-construction, type-driven ap-
proach. Since the qubits are a black-box primitives, there is no opportunity to index
them by parameters precisely enough to ensure functional correctness in our circuit
types alone.

46

2 . 5 S UMMARY

2 . 5 SUMMARY

In this chapter, we have solidified the context for this thesis’ later contributions towards
circuit description and verification techniques.

Section 2.1 began with a brief summary of abstract circuit verification techniques,
including the divide between dynamic/static verification, approaches towards com-
pleteness of testing, and the tensions between model checking and theorem proving.
We continued bydrawing case studies fromboth traditionalHDLs (representing the in-
dustry status quo in Section 2.3) and the functional HDLs that are most relevant to the
ideas presented in toatie (in Section 2.4). We note that most traditional HDLs have,
over their histories, accrued multiple distinct features for abstraction and parameter-
isation which are usually condensed down to their most general forms by functional
HDLs.

Within the landscape of functional HDLs in particular, there are two clear divisions
between projects:

↪→ Encoding circuits as data vs encoding circuits as plain functions.

↪→ Treating verification separately to circuit description vs enabling
correct-by-construction designs.

To the best of the author’s knowledge, there has never been a project which gen-
erates synthesisable circuits by representing circuits as functions and encouraging full
functional verification in a correct-by-construction manner. Implementing such a sys-
tem is the goal of the remainder of this thesis.

47

3AN ENGINEER ’ S INTRODUCTION TO DEPENDENTLY
TYPED PROGRAMMING

A brief introduction to programming with dependent types, toatie’s syntax and semantics.
We cover language features including pattern matching, irrelevance, staging, theorem

proving, and GADTs, before we entertain their application to
describing circuits in particular.

3 . 1 IN TRODUCT ION

A large part of this thesis is investigating concepts from academic computer science
and promoting their enjoyment by the digital designer. A basic understanding of both
fields is a prerequisite for this discussion — so this chapter offers an uncomfortable
crash course in dependently typed programming for the straw man digital designer.
All code examples in this chapter are provided in our toatie language, although it
should look and feel extremely familiar for Idris programmers, and be largely under-
stood by Haskell programmers.

3 . 2 BAS I C FUNCT IONS AND DATA T Y P E S

Every declaration in toatie is either a function declaration or a data declaration. There
are no built-in primitive data types (such as int,float, or array), so let’s start by
defining a simple arithmetic data type — the Natural numbers.

In the absence of any other arithmetic types, we can define our Nat type inductively
in a form called Peano numerals[60]. We could say, in prose, a valid natural number is
either zero, or one greater than another natural number (called the “successor” func-
tion). This definition translates quite directly to the way data types are defined in
toatie — Generalised Algebraic Data Types (GADTs).

Listing 3.1: Data type for natural numbers

1 data Nat : Type where
2 Z : Nat
3 S : Nat → Nat

48

3 . 2 BA S I C FUNC T I ON S AND DATA T Y P E S

Line 1 in Listing 3.1 introduces Nat as a new type (a “type constructor”), while
lines 2 & 3 describe the two ways we can construct a Nat (the “data constructors”).
The data constructor for zero, Z, takes no arguments and represents a valid member of
the Nat type. The “successor” data constructor, S, takes exactly one argument which
is of type Nat and represents another valid member of the Nat type. Some examples
of Nat-typed values include:

0⇒ Z

1⇒ S Z

3⇒ S (S (S Z))

9⇒ S (S (S (S (S (S (S (S (S Z))))))))

Natural numbers are used heavily in later examples, so toatie will automatically
translate/desugar numeric literals to this Peano representation behind the scenes.

With the Z and S data constructors, we have managed to precisely capture the infi-
nite set of natural numbers. There are no values of type Nat which do not represent a
natural number (e.g. no sneaky quirks such as NULL pointers) and no natural numbers
without an equivalent Nat value. The inductive nature our definition also has some
pleasing consequences, despite being wildly space inefficient. We will soon see when
writing functions or proofs with Nats that we often only need to handle two cases: the
terminating/base case, and an inductive case.

This GADTs-style of defining data types may feel foreign to most digital designers,
but basic analogies can be made to concepts present in C. Each data constructor has a
(possibly empty) set of arguments. Each of these can be thought of as a struct in C;
a heterogeneous collection of fields. A Nat value can be made via any one of the data
constructors — picking one option from N constructors. This selection is analogous
to a tagged union in C. An unidiomatic but structurally equivalent definition of Nat
using C structures is shown in Listing 3.2.

Listing 3.2: A structural analogue for our Nat type in C

1 typedef struct Nat {
2 int tag;
3 union {
4 struct { } Z;
5 struct {struct Nat* k;} S;
6 } data_cons;
7 };

49

3 . 2 BA S I C FUNC T I ON S AND DATA T Y P E S

Where this comparison begins to fail is with the level of assistance provided by the
type checker. In our C example, the programmer is fully responsible for maintaining
coherence between the tag value and corresponding interpretation of the union, ensur-
ing that cases for all constructors are covered whenever we use the structure, as well
as standard checks and memory management for the pointers. For toatie, and most
other languages with algebraic data types, all of these concerns are alleviated from the
programmer’s mind and, instead, enforced by the type checker.

Now let us introduce functiondeclarations by considering an operation over Natural
numbers — the plus function shown in Listing 3.3. Every function is presented in two
parts: the function’s type (in line 1), followed by a set of patternmatching clauses. Our
pattern matching clauses compile into a tree of case expressions.

Listing 3.3: Addition of Natural numbers

1 plus : Nat → Nat → Nat
2 pat y ⇒
3 plus Z y = y
4 pat x, y ⇒
5 plus (S x) y = S (plus x y)

The type of plus can be read as “a function that takes two Nat arguments and re-
turns a Nat”, where the output type is always the last identifier in the “→” separated
list. In our example, we choose to pattern-match on the first argument only. The first
clause (lines 2 & 3) handles the case where the first argument is zero, and the sec-
ond clause (lines 4 & 5) handles the case where the first argument is the successor of
another Nat, x. Together, these two clauses define addition of natural numbers recur-
sively, written mathematically as:

plus(x, y) =

y if x = 0

1 + plus(x′, y) if x = 1 + x′
(3.1)

Note that lines 2 & 4 are only to introduce pattern names used in the following
clause’s left-hand side (LHS), and to optionally specify their type. By default, toatie
will attempt to check that every function is covering — i.e. it tries to ensure that all
valid combinations of input values have been handled by the clauses, even when the
arguments influence each other via dependent types. On that note, these examples
have been simply typed so far. Let us now look at dependent types in toatie and the
basic ways we can benefit from them.

50

3 . 3 D E P ENDEN T T Y P E S

3 . 3 DE P ENDENT T Y P E S

Brady et al. eloquently introduce the motivation for dependent types as follows:

Dependent type theory provides programmers with more than
an integrated logic for reasoning about program correctness.
It allows more precise types for programs and data in the first
place, strengthening the type checker’s language of guaran-
tees. We have richer function types ∀x : S.T which adapt
their return types to each argument; we also have richer data
structures which do not just contain but explain data, expos-
ing and enforcing their properties.

— B RADY E T A L . I N [6 1]

These claims feel quite profound but are readily demonstrable. Perhaps the most sur-
prising thing about these claims is that they are all a consequence of one reasonably
small design choice in the core language: allowing values (or “terms”) to appear in
types.

Wewill introduce these concepts with the obligatory basic examples, but Chapter 5
will demonstrate similar benefits with more complex structures and an eye towards
circuit description. First, consider a homogeneous list. In toatie, we could describe a
list as follows:

Listing 3.4: Definition of the List type

1 data List : Type → Type where
2 Nil : (a : Type) → List a
3 Cons : (a : Type) → (x : a) → (xs : List a) → List a

Here we see dependent types being used to the same effect as polymorphism. An
argument term, ’a’ (describing the type of our list’s elements), appears in the type of
later arguments, as well as the List a return type. Note that line 1 now shows that the
List type constructor only returns Type after being applied to one argument — the
type of our list’s elements. As with our Nat example, there are two data constructors
used inductively; one for the empty list, and one for an element appended to the head
of an existing list. Below are some examples of list terms to help foster an intuition:

[] for Nat ⇒ Nil Nat
[True] for Bool ⇒ Cons Bool True (Nil Bool)

[3,1] for Nat ⇒ Cons Nat (S (S (S Z))) (Cons Nat (S Z) (Nil Nat))

51

3 . 3 D E P ENDEN T T Y P E S

As per this definition, we might sometimes get ourselves into trouble when pro-
gramming with covering or total functions. For example, we try to implement a func-
tion to return the first element (the “head”) of a given list in Listing 3.5.

Listing 3.5: A partial definition of head for a List

1 head : (a : Type) → List a → a
2 pat a ⇒
3 head a (Nil a) = _
4 pat a, x, xs ⇒
5 head a (Cons a x xs) = x

All is well for the Cons case, but what should the function return when the input
list is empty? For a covering function, we do need to return something of type ‘a’. With-
out knowing exactly what type ‘a’ will be ahead of time, we simply will not be able to
guarantee that we return something correct in all situations. Many would be tempted
just to throw a run-time error at this point, hopefully noting the behaviour in the doc-
umentation. One other solution is to add a new argument to head, acting as a default
value to return if we identify an empty list at run-time. However, this run-time check
will still impact performance.

Often the programmerwill (correctly or otherwise) believe that their particular list
is special — it cannot possibly be empty because of some reasoning made outside of
the programming language— and thus could skip any of the run-time checks. Making
this leap unassisted is usually a dangerous move, but we can actually have the type
checker aid us if we make the type of List more precise. Listing 3.6 shows a version
of head on Vectors, a version of lists that track their length in their type.

Listing 3.6: A covering definition of head for a Vect

1 simple Vect : Nat → Type → Type where
2 VNil : (a : Type) → Vect Z a
3 VCons : (a : Type) → (k : Nat) → a → Vect k a → Vect (S k) a
4
5 head : (a : Type) → (n : Nat) → Vect (S n) a → a
6 pat a ⇒
7 head a Z [] impossible
8 pat a, n, x, xs ⇒
9 head a n (VCons a n x xs) = x

In this example, empty vectors with zero length can only be constructed with VNil,
and appending an element to an existing vector with VCons will always increase the
length by one. For the implementation of head, the caller must pass in a vector with
length ‘S n’ — i.e. any non-zero Nat. Now we can dismiss the clause handling empty
vectors as impossible, or simply omit it entirely. The type checker will ensure that all

52

3 . 3 D E P ENDEN T T Y P E S

impossible clauses have a contradiction in the types, providing certainty that they can
be safely excluded.

As an example, let’s see how toatie’s Read–Eval–Print Loop (REPL) reacts when
we try to pass some Vect terms to the head function. Note that we can opt to leave
arguments implicit by replacing them with an underscore. When there is a unique
solution to this hole, toatie will attempt to find it using unification process similar to
that of Idris [18].

Listing 3.7: Examples of calling our type-safe head

> head Nat _ (VCons _ _ 5 (VNil _))
Type: Nat
Evaluated: 5

> head Nat _ (VCons _ _ 9 (VCons _ _ 0 (VNil _)))
Type: Nat
Evaluated: 9

> head Nat _ (VNil _)
Type mismatch: 0 and (S ?{_:3})

Indeed the first two attempts work as hoped but the third attempt, trying to sneak
in an empty vector argument, fails with a type error. The type checker claims there
is a mismatch between 0 (our vector’s length) and (S ?{_:3}) (where the function is
expecting a non-zero length). A crucial aspect is that we encounter this error statically
at compile-time, rather than deferring this to a run-time check which would incur an
overhead and can prove difficult to test for seldom visited branches.

We have experienced a small taste, in its simplest form, of how dependent types
can help refine our function types and data declarations. This example uses dependent
types to help restrict the domain of an argument via a simple constructor application,
S. We could use them in a similar way to adapt the function’s return type based on
each/every argument. Further, we are not restricted to just a simple constructor ap-
plication — we can use any valid term (other functions, choice constructs, etc.) at the
type-level, refining our types arbitrarily.

Considering our current Vect implementation, we might start to question its run-
time efficiency. We have introduced extra terms to please the type checker, so howdoes
this impact space-requirements or circuit area?

53

3 . 4 I R R E L E VANC E AND ERA SUR E

3 . 4 I RR E L EVANCE AND ERASURE

Inmost statically typed languageswithout dependent types, there is a reasonably clear
separation between term-level expressions and type-level expressions. The type anno-
tations may, broadly speaking, be discarded after type checking (or “erased”) andwill
not be present in a compiled binary. However, in the presence of dependent types, this
separation no longer clearly falls on the boundary of terms vs. types since the two are
permitted to mingle. There is still a split between compile-time and run-time require-
ments, but this must be guided by some extra features: in our case, irrelevance and
erasure.

In Section 3.3, we introduced a Vect type which is parameterised (or “indexed”)
by its element type and its length. Doing so allows the type checker to better assist us
in writing and using functions correctly. The type of a function can restrict an input’s
domain (e.g. restricting the length of a vector) or precisely model the length of a re-
turned vector (e.g. appending two vectors with length n and m will yield an output of
length n + m). As it stands, these indices will remain in our program’s run-time and
have a substantial impact on the memory requirements of a Vect. We would perhaps
expect the run-time representation of a Vect to be a linked-list of elements of a single
type. However, we end up with something more akin to a linked-list of triples: the
element type (replicated in every single element!), the length of the vector’s tail as a
Nat, and the element term itself.

To step towards a linked-list representation at run-time, we can annotate the vec-
tor lengths and element types as “irrelevant”; they are required during type checking
but are totally irrelevant at run-time. In toatie, we do this by surrounding these ar-
guments with curly braces (not to be confused with Idris 2’s use of the same syntax).
Our vector example from Listing 3.6 becomes:

Listing 3.8: A Vect example with irrelevant element type and length indices

1 simple Vect : Nat → Type → Type where
2 VNil : {a : Type} → Vect Z a
3 VCons : {a : Type} → {k : Nat} → a → Vect k a → Vect (S k) a
4
5 head : {a : Type} → {n : Nat} → Vect (S n) a → a
6 pat a ⇒
7 head {a} {Z} [] impossible
8 pat a, n, x, xs ⇒
9 head {a} {n} (VCons a n x xs) = x

These irrelevance annotations are sufficient to ensure that the vector length and
element type will only be used during type checking, and then erased from the final

54

3 . 4 I R R E L E VANC E AND ERA SUR E

program/circuit description. Of course, there some extra restrictions on how we are
allowed to use irrelevant terms since they are no longer available at run-time. Our
implementation uses ICC∗, with all of their typing rules presented in [62]. As we
are just trying to gain an intuition of how to program in our language, an informal
definition of these rules will suffice:

↪→ Relevant/explicit terms may appear in any position. In other words, run-time
terms can be used at run-time and during type checking.

↪→ Irrelevant/implicit terms may only appear in implicit positions. Equivalently,
once a term is marked as for type checking use only, it must never be required at
run-time again.

There is one other subtlety which concerns pattern matching on irrelevant terms.
Since our pattern matching definitions get reduced to a series of run-time case state-
ments, should the programmer be allowed to pattern-match on irrelevant terms which
will be erased before run-time? In general, no, we cannot make decisions based on in-
formation which has already been discarded. There is, however, a special case which
we will often exploit; called “inaccessible patterns”.

Again, an informal description serves our purposes here, while the interested reader
may refer to [63] for amore formal handling of inaccessible patterns. We allow pattern
matching to refine an irrelevant term, if and only if the pattern is uniquely identified
by the other patterns in the clause. In other words, if the given pattern is the only pos-
sible solution, we can use it regardless of its run-time availability. As an example of
where using inaccessible patterns is necessary, let’s consider a function to append two
vectors.

Listing 3.9: Append two Vects using inaccessible patterns for length

1 append : {a : Type} → {n : Nat} → {m : Nat} →
2 Vect n a → Vect m a → Vect (plus n m) a
3 pat a, m, ys ⇒
4 append {a} {Z} {m} (VNil {_}) ys = ys
5 pat a, n, m, x, xs, ys ⇒
6 append {a} {S n} {m} (VCons {_} {_} x xs) ys =
7 VCons {_} {_} x (append {_} {_} {_} xs ys)

Listing 3.9 does type-check as-is, but only because our clauses can use inaccessible
patterns on the (irrelevant) argument, {n}. For example, if the first clause did not re-
fine {n} to {Z}, we encounter a type error: Type mismatch: n and 0. This is because
the type of append guarantees that the output length with be (plus n m) but we re-
turn ys with length m — leaving the type checker unconvinced that (plus n m) = m,

55

3 . 5 S TAG ING

unless we also know that n=0. Remember that this is a valid inaccessible pattern since
Z is the only possible form that n can take given that the first vector must match VNil.

3 . 5 S TAG ING

Staging techniques can prove useful for code generation, having the type checker as-
sist us in deciding when an expression can be evaluated. This is subtly different from
Section 3.4’s discussion of irrelevance. Instead of limiting the use of certain terms to
guarantee their erasure from a program/circuit description, we now want to limit the
use of certain terms to guarantee that we can fully evaluate parts of our structure at
certain times.

Although we do not focus on circuit description until Chapter 5, our main use case
of this feature is to separate what should be evaluated during the (software) elabora-
tion of a circuit and what should be evaluated during the elaborated circuit’s run-time.
We can think of this feature as allowing for arbitrary, user-defined circuit elaboration—
a powerful generalisation of the generic and for generate constructs in VHDL. The
staging rules we introduce help us keep track of when (in which “stage”) variables are
introduced, and maintain causality when we share variables between different stages.
For example, a value at the input of a circuit cannot be predicted until the circuit is
running, so should not be available during the elaboration of the circuit. If we fail to
maintain this distinction, we will not be able to fully synthesise our circuit to a netlist.

We introduce four annotations to enable staging in toatie — identical to the soft-
ware constructs in [64], an extension of the three in [65], and those theoretically ap-
plied to circuit description in [66]. These four annotations are:

J. . .K A quote defers the evaluation of a given term to a later stage.

〈. . .〉 A Code type represents the type of a quoted term.

∼(. . .) An escape splices a quoted term into a lower level, forcing its evaluation
sooner.

!(. . .) An evaluation is similar to an escape but specifically for splicing a quoted
term into stage zero. The inner term must contain no free variables.

To demonstrate the use of these annotations without the baggage of circuit descrip-
tion applications, let us consider the standard literature example of staging: the power
function, xi. Listing 3.10 shows one version of this function without staging constructs
and another with staging.

56

3 . 6 TH EOR EM PROV ING

Listing 3.10: The pow functions without (left) and with (right) staging annotations

1 pow : Nat → Nat → Nat
2 pat x ⇒
3 pow Z x = 1
4 pat i, x ⇒
5 pow (S i) x =
6 mul x (pow i x)

1 pow : Nat → 〈Nat 〉 → 〈Nat 〉
2 pat x ⇒
3 pow Z x = J 1 K
4 pat i x ⇒
5 pow (S i) x =
6 J mul ~x ~(pow i x) K

The introduction of the staging annotations is not particularly intrusive: the struc-
ture of the function is identical, each with one recursive call. The benefits we gain
are that the recursive call is explicitly unrolled (e.g. we expand x3 to x × x × x × 1
immediately) and our use of the quoted argument, x, is controlled to ensure that we
can always perform this elaboration without inspecting x. Without the staging annota-
tions, we cannot guarantee that our intended elaboration process will complete fully,
possibly returning a non-synthesisable circuit.

The type checker ensures that all variables bound in stage x are only used in stage
y if y ≥ x, maintaining causality between the stages in our program. The pattern
matching definitions in toatie provoke one final restriction: we can only use inacces-
sible patterns for quoted arguments. Informally, pattern matching on a quoted term in
general is equivalent to “using” that term at an earlier stage without the safety of the
escape/evaluate constructs, and is disallowed. Chapter 5 gives examples, including a
binary adder, which require the use of inaccessible patterns on quoted terms.

3 . 6 THEOREM PROV ING

Wehave previously hinted at encoding proofs in languageswith dependent types. This
is likely the concept, thus far, that seems the most alien to a digital designer. Towards
theorem proving, we must convince ourselves that there are fundamental symmetries
between formal logic and programs. While side-stepping much of the nuance, there
is a set of observations known as the Curry-Howard correspondence which tells us
that logical propositions are equivalent to types and that their proofs are equivalent to
programs of that type [67].

We have already encountered scenarios where we rely on our type checker to en-
sure some property is true — e.g. the input vector for head has a non-zero length.
Proofs are similar; a function with type that is specific enough to guarantee some prop-
erty. To avoid trespassing too far into philosophy during our practical introduction,
let’s ground ourselves by considering what equality really means in a language like
toatie.

57

3 . 6 TH EOR EM PROV ING

The onlyway to introduce an equality is through reflexivity; stating x = x. For this
definition, we can describe equality just like any other data type:

Listing 3.11: A definition of propositional equality

1 data Equal : (A : Type) → A → A → Type where
2 Refl : {A : Type} → {x : A} → Equal A x x

In true functional style, we can also equip ourselves with methods of composing
and applying equalities. Our four main functions, with types shown in Listing 3.12,
adhere to the naming conventions presented in [62].

Listing 3.12: Common helper functions for equalities

Symmetry:
If x = y then y = x

1 eqSym : {A : Type} →
2 {x : A} →
3 {y : A} →
4 (p : Equal A x y) →
5 Equal A y x

Transitivity:
If x = y and y = z then x = z

1 eqTrans : {A : Type} →
2 {x,y,z : A} →
3 (l : Equal A x y) →
4 (r : Equal A y z) →
5 Equal A x z

Congruence:
If x = y then f (x) = f (y)

1 eqCong : {A,B : Type} →
2 {f : A → B} →
3 {x, y : A} →
4 (p : Equal A x y) →
5 Equal B (f x) (f y)
6

Induction:
If x = y, we can rewrite P(x) as P(y)

1 eqInd2 : {A : Type} →
2 {x,y : A} →
3 {p : Equal A x y} →
4 {P : (A → Type)} →
5 (val : P x) →
6 P y

Let’s state a few simple propositions and try to develop valid proofs for them in-
teractively, in conversation with the type checker. Along this short journey, we’ll gain
an intuition for what toatie will be able to infer automatically, when we need to give
it a nudge by refining our pattern matching, and when we need to offer more explicit
direction. First consider a simple, concrete example without any unknowns: 2+ 2 = 4.
We can encode this proposition using the Equal type constructor from Listing 3.11. If
we leave the right-hand side (RHS) of our clause implicit (an underscore) toatie will
report the type it is expecting on the RHS, alongside the type of all local variables in
scope.

Here, the type checker claims it expects a value of type (Equal Nat 4 4): it has
normalised the expression (plus 2 2) to 4 by itself. We can always expect this when
an expression has nounknown/“free” variables since there is an evaluation stepduring
type checking. We only need to demonstrate that 4 = 4 and we can do so simply with
the Refl constructor fromListing 3.11. Substituting Refl {_} {_} for our implicit RHS

58

3 . 6 TH EOR EM PROV ING

Listing 3.13: Interrogating toatie about our proposition 2 + 2 = 4

1 twoPlusTwo : Equal Nat (plus 2 2) 4
2 twoPlusTwo = _

Unresolved holes in clause twoPlusTwo = ?{_:958}

Holes:

{_:958} : (Equal Nat 4 4)

completes the definition and the example passes type checking — we have provided a
proof that 2 + 2 = 4, as verified by the type checker!

Moving on to another arithmetic proof, we can explore propositions with universal
quantification (a “for all” or ∀). As a simple example, let’s try to demonstrate that
0 + x = x. We want to show that this proposition is true for all values of x. As before,
let’s encode this as a function type in toatie and ask to see what it expects of the proof.

Listing 3.14: Interrogating toatie about our proposition 0 + x = x

1 plusZeroLeftNeutral : (x : Nat) → Equal Nat (plus 0 x) x
2 pat x ⇒
3 plusZeroLeftNeutral x = _

Unresolved holes in clause (plusZeroLeftNeutral x[0]) = ?{_:962}

Holes:
x:_0 Nat

{_:962} : (Equal Nat x[0] x[0])

We again only need to demonstrate an equality through reflexivity: x = x. The
definition of plus has been normalised away again, in this case, reducing (plus 0
x) to x. A really important point is that normalisation only manages to reduce the
expression due to the way we have defined plus (back in Listing 3.3) via recursion on
the first argument, and without any pattern matching on the second argument. If the
second argument was inspected in the definition of plus, the normalisation process
would get stuck and wewould need to do a little more work to satisfy the type checker.
To demonstrate such a scenario, let’s look at a subtly different proposition: x + 0 = x.
Although this feels obvious given our previous proof, keep in mind that we haven’t
proved anything about the commutativity of plus yet, so we’ll continue with caution.

We finally have a scenario where toatie’s normalisation alone is not enough to
reduce our problem to a trivial solution. Here, the definition of plus immediately tries
to pattern-match on its first argument, x. Since the value of x is unknown at this time,

59

3 . 6 TH EOR EM PROV ING

Listing 3.15: A first interrogation of toatie about our proposition x + 0 = x

1 plusZeroRightNeutral : (x : Nat) → Equal Nat (plus x 0) x
2 pat x ⇒
3 plusZeroRightNeutral x = _

Unresolved holes in clause (plusZeroRightNeutral x[0]) = ?{_:967}

Holes:
x:_0 Nat

{_:967} : (Equal Nat (plus x[0] 0) x[0])

the normalisation does not continue any further. We can still complete a proof of our
proposition if we can demonstrate that it holds true for every valid data constructor of x.
Let’s refine our example by introducing pattern matches for x’s two data constructors:
Z, and S.

Listing 3.16: A case-split interrogation of toatie about our proposition x + 0 = x

1 plusZeroRightNeutral : (x : Nat) → Equal Nat (plus x 0) x
2 plusZeroRightNeutral Z = _
3 pat x ⇒
4 plusZeroRightNeutral (S x) = _

Unresolved holes in clause (plusZeroRightNeutral 0) = ?{_:967}

Holes:

{_:967} : (Equal Nat 0 0)

Unresolved holes in clause (plusZeroRightNeutral (S x[0])) = ?{_:971}

Holes:
x:_0 Nat

{_:971} : (Equal Nat (S (plus x[0] 0)) (S x[0]))

Now there are two holes for us to complete, but the types of each have been slightly
reduced by normalisation. For the case where x = 0, we’re only required to provide
a simple Refl {_} {_} to satisfy our target, 0 = 0. The second case is a little more
interesting. Notice that our target type is reduced, but only quite subtly — from (plus
(S x) (S x)) to (S (plus x 0) (S x)). Here we enjoy the benefits of defining our
Nat numerals inductively; we can write our proofs inductively too! Let’s recurse on
our proof with a Nat argument one smaller than the one we’ve been presented and see
how its type compares to our target.

We can see from the compiler output in Listing 3.17 that our inductive hypothesis

60

3 . 6 TH EOR EM PROV ING

Listing 3.17: A final interrogation of toatie about our proposition x + 0 = x

1 plusZeroRightNeutral : (x : Nat) → Equal Nat (plus x 0) x
2 plusZeroRightNeutral Z = Refl {_} {_}
3 pat x ⇒
4 plusZeroRightNeutral (S x) =
5 let rec = plusZeroRightNeutral x in _

Unresolved holes in clause (plusZeroRightNeutral (S x[0])) = let rec :_0 (
Equal Nat (plus x[0] 0) x[0]) = (plusZeroRightNeutral x[0]) in ?{_:971}

Holes:
x:_0 Nat
rec:_0 (Equal Nat (plus x[0] 0) x[0])

{_:971} : (Equal Nat (S (plus x[1] 0)) (S x[1]))

has the type Equal Nat (plus x 0) (x), which structurally similar to our target of
Equal Nat (S (plus x 0)) (S x). All we need to do now is use our congruence
rule (eqCong from Listing 3.12) to apply S to both sides of the equality. Listing 3.18
shows our complete proof of x + 0 = x.

Listing 3.18: A complete proof of our proposition x + 0 = x

1 plusZeroRightNeutral : (x : Nat) → Equal Nat (plus x 0) x
2 plusZeroRightNeutral Z = Refl {_} {_}
3 pat x ⇒
4 plusZeroRightNeutral (S x) =
5 let rec = plusZeroRightNeutral x
6 in eqCong {_} {_} {S} {_} {_} rec

While it is completely valid tomake recursive calls to our proofs, caremust be taken
to ensure we keep the function total. We must have a structurally smaller argument, en-
suring that the function will return in finite time and not become stuck in an infinite
loop. While languages like Idris 2 explicitly check for totality (to keep type checking
decidable), toatie only checks that a function is covering, so do be careful when mak-
ing recursive calls. Making an infinite loop by recursively calling the same function
with the same arguments is analogous to the playground circular reasoning of “x is
true because x is true”.

61

3 . 7 SUMMARY

Through this short introduction to theorem proving, we have seen that our depen-
dently typed setting allows:

↪→ Encoding propositional equality as a data type

↪→ Encoding proofs of properties as normal functions with a precise enough type

↪→ Automatically “solving” or reducing equalities via normalisation when pattern-
matched values are known a priori.

↪→ Completing “stuck” proofs by pattern matching, rewriting with equality helper
functions, and, very often, induction.

↪→ Writing functions/proofs interactively by leaving implicit “holes” in the definition
and letting the type checker report its expectations alongside a summary of the
names in scope.

Although not an exhaustive exploration by any means, hopefully the mystery sur-
rounding constructing formal proofs as dependently typed programs has been dis-
sipated somewhat — thanks to the Curry-Howard correspondence [67], we are just
reusing the same features we met while writing more traditional programs.

3 . 7 SUMMARY

This chapter has provided a concise introduction to the central software programming
features and themes of toatie, sharedwithmost dependently typed languages, aimed
at the curious digital designer. While it still may require further reading and a some ex-
perience of dependently typed programming in anger to fully appreciate, this is hope-
fully sufficient to arm the reader with the software programming techniques that are
foundational to the rest of this thesis.

The interested engineer is directed to [57] for thorough treatment of dependently
typed programming in Idris, [68] for an excellent exploration into theorem proving
with Coq, and [69] to be led on a charming amble through the woods of dependent
types, pausing to take in only the most beautiful sights.

62

4EXPLORING PARALLEL F IR F ILTERS FOR RFSOC
APPL ICAT IONS WITH CλASH

We present a new family of low-cost, high-speed, parallel FIR filters targeting direct Radio
Frequency (RF) sampling applications with the Xilinx Zynq UltraScale+ RF System on Chip

(RFSoC). This chapter is an extended version of this project’s conference paper “Low-cost,
High-speed Parallel FIR Filters for RFSoC Front-Ends Enabled by CλaSH” [25], and a

continuation of the themes from the IEEE Access journal paper “Control and Visualisation of
a Software Defined Radio System on the Xilinx RFSoC Platform Using the PYNQ

Framework” [30].

4 . 1 IN TRODUCT ION

We investigate the successes and limitations of circuit description in CλaSH through
the lens of a challenging case study. We present a new low-cost, high-speed parallel
Finite Impulse Response (FIR) filter generator targeting RFSoC and direct RF sampling
applications. We compose two existing approaches in a novel hierarchy:

↪→ Efficient parallelism with Fast FIR Algorithm (FFA) structures [70].

↪→ Efficient multiplierless subfilter implementations with Hcub [71], which intelli-
gently decomposes a set of constantmultiplications into a graph of simple adders.

The cumulative resource usage advantages (in both area and type) are compared
with similar output from the canonical approach, exemplified by vendor tools, as well
as the Hcub-based filters without the FFA optimisation. Although these techniques are
well studied individually in the literature, they have not enjoyed mainstream use as
their structural complexity proves awkward to capture with traditional HDLs. This
work continues a discussion of the use of functional programming techniques in hard-
ware description, highlighting the need for easily composable, staged circuit families.
These insights offer a dual purpose:

1. Exploring a novel, open access, implementation of a circuit family for a real-world
application. We improve substantially on the footprint of the vendor tools, both
in terms of area and the type of resources required.

63

4 . 1 I N T RODUC T I ON

2. A practical insight into the successes and limitations of existing tooling. The ap-
plication of parallel, multiplierless FIR filtering proves particularly challenging
for description because of the complexity of its compile-time computations and
demand for recursion. This helps inform the design of our own language, dis-
cussed in Chapters 5 and 6.

Before looking at this design, we provide its context and justify its motivation. The
RFSoC family of devices (among other direct RF sampling devices) demand fast fil-
tering stages which operate over a number of samples in parallel, since the multi-GHz
sampling clock is necessarily higher than the fabric clock of the internal FPGA. Figure
4.1 shows an overview of the XCZU28DR RFSoC’s FPGA and RF capabilities, high-
lighting the relative scarcity of hardenedDSP48E2 resources and the number/through-
put of the RF Analogue–Digital Converters (ADCs) and Digital–Analogue Converters
(DACs).

Specific RFSoC use cases for parallel FIR architectures are plentiful. This is exempli-
fied by the vendor support for a set of parallel, or “Super-Sample Rate” (SSR), circuit
generators [72]. Example use cases include:

↪→ Instrumentation applications that demand processing of the full available spec-
trum, including arrays for radio astronomy [73] and quantum computing read-
outs [74].

↪→ Channelisation of millimetre wave Intermediate Frequency (IF) signals, includ-
ing 5G NR (FR2) [75]. Such a signal can contain multiple baseband channels,
occupying the whole 4 GHz spectrum provided by the RFSoC and demanding
parallel filtering architectures for channel (de)multiplexing.

↪→ Custom Digital Up/Down Conversion (DUC/DDC) as a front-end of any radio
application. Especially useful when the characteristics of any available hardened
DUC/DDCs [76] do not meet the application’s requirements.

The demand for sample-parallelism and the multi-channel nature of the RFSoC de-
vice amplifies the effects of filter resource usage, making optimal filter implementation
a renewed battle in the context of RFSoC systems. These optimisations are the concrete
focus of our presented work. However, an equally important theme is the reflection on
our practical implementation experience, and musing about language features which
could better facilitate similar circuits. Our open source example in CλaSH highlights
the realisable benefits of optimisations whose theory is well studied but whose imple-
mentations remain, for the most part, in academic folklore.

64

4 . 2 BACKGROUND ON D I G I TA L , F I N I T E IM PU L S E R E S PON S E F I LT E R I NG

I/O Pins

Block RAMUltraRAM DSP48E2s Logic Fabric

To CPUs
To RAM

AXI
Ports

ADC
Tile

DAC
Tile

8 channel
12 bit at 4 GSPS

8 channel
14 bit at 6.5 GSPS

Figure 4.1: Overview of RFSoC’s FPGA and RF Data Converters

4 . 2 BACKGROUND ON D IG I TA L , F I N I T E IMPUL S E R E S PONS E F I LT ER ING

Before considering optimised filter designs, let’s first look at the foundations of digital
filtering. Most filter designs aim to change the frequency content of an input signal.
Different applicationswill motivate different changes to the frequency content— these
choices are well motivated in introductory texts, such as [77].

Mathematically, this filtering behaviour is achieved by computing a weighted aver-
age over a finite window of the input signal. More formally, given a set of weights, w0

to wN−1, and a time-varying input signal, x, we would like to implement:

y[k] =
N−1

∑
i=0

wi · x[k−i] (4.1)

This is essentially just a dot product operation, which is used as a running example
throughout Chapter 5. It may not be obvious why this operation actually achieves a
filtering effect, even with a carefully chosen set of coefficients. For a basic intuition,
think of the desired change in frequency content as a function of frequency — a fil-
ter’s frequency response. The filtering process just multiplies the input’s frequency com-
ponents with the filter’s frequency response. The Fourier transform tells us that this
multiplication in the frequency domain translates to the time domain convolution from
Equation (4.1). Lyons offers a full introduction to these topics in [77].

65

4 . 2 BACKGROUND ON D I G I TA L , F I N I T E IM PU L S E R E S PON S E F I LT E R I NG

4 . 2 . 1 Filter specification

The behaviour of a filter is designed through careful choice of the coefficients (or
“weights”). Figure 4.2 visualises one possible set of weights and the resulting filter’s
performance. The magnitude response in Figure 4.2 confirms that the example is a
half-band filter — one designed to pass the lower half of the frequency content while
blocking the upper half.

0 4 8 12 16 20 24 28 32

0

0.2

0.4

Index

Co
effi

cie
nt

0 0.2 0.4 0.6 0.8 1

−100

−50

0

Frequency (normalised)

M
ag

ni
tu

de
(d

B)

0 0.2 0.4 0.6 0.8 1

−30

−20

−10

0

Frequency (normalised)

Ph
as

e
sh

ift
(r

ad
ia

ns
)

Figure 4.2: Specifications of an example half-band FIR filter, featuring its coefficients (top)
with the resulting magnitude response (left) and phase response (right)

Another important property of the filter is its phase response. Figure 4.2 shows a
phase responsewhich is linear throughout the filter’s pass-band (0.0→ 0.5), andpiece-
wise linear across the remainder of the spectrum. The linearity of the phase response
is directly linked to the symmetry of the chosen weights. Achieving a linear phase re-
sponse is an extremely common requirement for digital communications. Many mod-
ulation schemes encode useful information in a signal’s phase— and so a filter should
not distort the phase content. For the applications covered in this chapter, we expect
the chosen coefficients to be:

↪→ Symmetric (or antisymmetric)

↪→ Constants (the filter behaviour is fixed)

The optimisations presented in this chapter will exploit both properties.

66

4 . 2 BACKGROUND ON D I G I TA L , F I N I T E IM PU L S E R E S PON S E F I LT E R I NG

4 . 2 . 2 Filter implementation

The implementation of the filter itself can be as simple as mapping Equation (4.1)
directly to hardware resources. A delay line is used to prepare the x[k] to x[k−N−1]

window, and arithmetic blocks implement the dot product. This design, shown in
Figure 4.3, is called direct form (or standard form). These direct form filters are often suf-
ficient, but they have a long critical path through the entire adder chain (highlighted
in purple in Figure 4.3), limiting the circuit’s maximum clock frequency.

z−1

+

××

z−1

+

×

z−1

+

×w0 w1 w2 w3

x[k]

y[k]

Figure 4.3: A four-weight direct form FIR filter

Most high-speed designs are based on one of the two alternative structures shown
in Figure 4.4. The direct form’s long critical path can be split by inserting registers in
a balanced fashion, at the cost of additional filter latency. In the extreme, this results
in the systolic form filter (noting the delayed y[k−3] output in Figure 4.4). The transpose
form offers a solution without additional latency by using flow graph reversal (noting
the reversed coefficients in Figure 4.4).

z−2

+

××
z−2

+

×
z−2

+

×
z−1 z−1 z−1

w0 w1 w2 w3

x[k]

y[k− 3]

×× × ×

z−1 + z−1 + z−1 +

× w3 w2 w1 w0

x[k]

y[k]

Figure 4.4: A four-weight systolic form (left) and transpose form (right) FIR filters

4 . 2 . 3 Sample-parallel filtering

So far, we have only considered filtering a stream of samples serially. For RFSoC de-
vices, it would be valuable to process multiple samples concurrently instead — recall
that its maximum sample rate greatly exceeds the maximum FPGA clock frequency.

Consider a parallel filtering structure that accepts two samples every cycle (x[2k]

and x[2k+1]) and also outputs two samples (y[2k] and y[2k+1]). Our circuit clock is op-
erating at half the sample-rate, and has a period of 2k. The challenge here lies in how

67

4 . 3 P RO PO S ED F I LT E R ARCH I T E C TUR E

we recover the odd offsets into x, using only 2k increments. The game is to rearrange
Equation (4.1) to be in terms of even-valued delays on the input samples (i.e. x[2k−2d]

and x[2k+1−2d]). We can do this for y[2k+1] by splitting the summation into two terms:

y[2k+1] =
(N−1)/2

∑
i=0

w2i · x[2k+1−2i] +
(N−1)/2

∑
i=0

w2i+1 · x[2k−2i] (4.2)

Each of these two terms are essentially sub-filters that are now amenable to our clock
period of 2k. The first only uses the even coefficients, and the second only uses the odd
coefficients. These subfilters are commonly referred to as H0 and H1, respectively. A
similar expression can be derived for y[2k]:

y[2k] =
(N−1)/2

∑
i=0

w2i · x[2k−2i] +
(N−1)/2

∑
i=0

w2i+1 · x[2k+1−2(i+1)] (4.3)

Note the additional one-cycle delay hidden in the second subfilter term. The full
implementation of this 2-by-2 parallel filter requires a total of four subfilters; each with
half the original number of coefficients. This particular architecture will be visualised
shortly in Section 4.3.1 but these structures are, more generally, called polyphase filters.
Harris provides excellent further reading for multi-rate, polyphase filtering in [78].

4 . 3 PROPOS ED F I LT ER ARCH I T EC TURE

To improve upon the traditional parallel filter architecture, exemplified by the System
Generator SSR blockset [72] and LogiCORE FIR Compiler [79], we employ two well
studied but seldom implemented techniques. We compose these techniques into a
novel hierarchy; one optimisation for the general structure of the filter’s parallelism,
and another optimisation for the multiplications required within each subfilter. These
techniques have enjoyed wide discussion in the literature [71, 80–82] but are less often
seen as practical implementations since they both prove to be extremely awkward to
describe, at least in a general form, with traditional HDLs.

The following subsections describes the evolution of this structure from the tra-
ditional architecture, to a new multiplierless polyphase structure, and finally to our
proposed multiplierless Fast FIR Algorithm (FFA) implementation.

68

4 . 3 P RO PO S ED F I LT E R ARCH I T E C TUR E

4 . 3 . 1 Traditional Architecture

The traditional architecture for parallel FIR filters is a polyphase structure with systolic
subfilters, mapped to specialised DSP48E2 resources. This approach is exemplified
by the LogiCORE FIR Compiler [79] and is often used via System Generator’s SSR
blockset [72].

x[2k] H0 +

H1

x[2k+1] H0 +

H1 z−1

y[2k]

y[2k+1]

z−2

+

××
z−2

+

×
z−2

+

×
z−1 z−1

DSP48
z−1

Figure 4.5: Example SSR implementation (Polyphase with systolic subfilters) for 8 non-
symmetric weights

These SSR structures can exploit coefficient symmetry, although we only visualise
the non-symmetric subfilter architecture in Figure 4.5. Figure 4.6 shows that the foot-
print scales approximately linearly with the level of parallelism (noting that each sub-
filter halves in length). The exception to this linear scaling is the introduction of extra
adders and registers for phase recombination.

The following section begins to extend this SSR structure, introducing multiplier-
less subfilters and exploiting resource sharing between subfilters.

4 . 3 . 2 Polyphase Filter with Shared Multiple Constant Multiplication Subfilters

As our first step, consider one of the subfilters in isolation. Figure 4.7 shows the systolic
form being replaced with a transpose form. All of the multiplications now share the
input as a common operand— a property whichwewill exploit despite the higher fan-
out∗ of the input signal. The shared input gives us an opportunity to share resources

∗Being the number of input pins driven by a given output pin. Extremely high fan-out can impact the
routability of a design.

69

4 . 3 P RO PO S ED F I LT E R ARCH I T E C TUR E

x[2k] H0 +

H1

x[2k+1]

+

z−1

y[2k]

H2

H3

H0

H1

H2

H3

H0

H1

H2

H3

H0

H1

H2

H3

x[2k+2]

x[2k+3]

+

+

+

z−1

+

+

+

z−2

+

z−2

+

+

+

z−3

z−1

y[2k+1]

y[2k+2]

y[2k+3]

x[2k] H0 +

H1

x[2k+1] H0

+

H1 z−1

y[2k]

y[2k+1]

Figure 4.6: Scaling of polyphase structures from ×2→ ×4 parallelism

between each of our constant multiplications. The last step in Figure 4.7 shows the
inclusion of a Multiple Constant Multiplication (MCM) block to perform this optimi-
sation.

Many existing MCM algorithms have been presented in the literature, with the
most general approaches being graph-based algorithms. These aim to decompose an
expensive set of multiplications into a graph of inexpensive additions and bit shifts
(offered for free in the routing), precluding the need for any specialised DSP48E2s.
The topology of these MCM circuits will change profoundly and quite unpredictably
depending on the exact set of coefficient values. Most examples will try not only to
minimise the graph for eachmultiplication in isolation, but also optimise for theMCM
block as a whole.

70

4 . 3 P RO PO S ED F I LT E R ARCH I T E C TUR E

z−2

+

××

z−2

+

×

z−2

+

×

z−1 z−1 z−1

×× × ×

z−1 + z−1 + z−1 +

MCM

z−1 + z−1 + z−1 +

×

1

2

3

Figure 4.7: From systolic FIR form to MCM-based transpose form

We implement the Hcub [71], RSG [81], and RAG-n [80] algorithms in [26] using
CλaSH, recommending the use of an Hcub variant which limits the graph depth at the
expense of the number of adders. This will generally result in smaller FPGA areas
for fully pipelined MCM blocks due to the predetermined ratio of look-up tables to
registers (1:2 for the RFSoC’s architecture); an effect explored further in [81].

Figure 4.8 shows an MCM graph generated using the Hcub variant. It realises an
example coefficient set — the 15 tap half-band filter (fir0) present in the first genera-
tion RFSoC’s DDC.Herewe can implement all 15multiplicationswith only 5 pipelined
adders and 7 pipeline registers, rather than 15 DSP48E2s. This also helps to demon-
strate that patterns in the coefficient sets can be readily exploited. We only need to
implement multiplications for unique, odd, positive coefficients; even-valued coefficients
can be recovered through bit shifts and negative coefficients can simply infer a subtrac-
tor in the filter’s adder chain.

Due to these duplications, as well as more subtle commonality between coefficients
identified by the MCM algorithm, implementing fewer but larger MCM blocks will al-
ways encouragemore resource sharing, resulting in amore area-efficient circuit. Figure
4.9 shows how we can apply this principle to polyphase filters, combining the MCM
blocks common to each input sample. Since each shared MCM will implement the

71

4 . 3 P RO PO S ED F I LT E R ARCH I T E C TUR E

x z-1

+

+

<<1

<<0
3x

+

+

<<2

<<0
5x

z-1

+

+

<<0

<<3
25x

z-1

+

+

<<3

<<0
27x

z-1 z-1

z-1

+

-

<<7

<<0
615x

z-1

<<8 *(-1)

<<11

<<1 *(-1)

<<1

<<1

-256x

-256x

-6x

-6x

0

0x

0x

0x

0x

0x

0x

54x

54x

1230x

1230x

2048x

Figure 4.8: MCM Graph for fir0 using an Hcub variant

full impulse response, H, we will directly exploit both symmetry and antisymmetry in
the coefficients. Antisymmetry in this context implies that the upper half is a negated
reflection of the lower half (i.e. wn = −w(N−n) for 0 ≤ n ≤ N

2).

x[2k] +

+

z−1

y[2k]

y[2k+1]z−1 + z−1 + z−1 +

MCM
{H0, H1}

z−1 + z−1 + z−1 +

z−1 + z−1 + z−1 +

MCM
{H0, H1}

z−1 + z−1 + z−1 +x[2k+1]

Figure 4.9: Sharing MCMs in polyphase filters

The polyphase structure with shared MCM-based filters is one structure we will
present implementation results for, but our final optimisation step considers a more
complex parallel structure in place of polyphase.

4 . 3 . 3 Fast FIR Algorithm Filter with MCM subfilters

We propose the use of FFA for the overall parallel structure of the filter, as opposed
to the more common polyphase decomposition. FFA identifies extra resource shar-
ing opportunities and generally requires fewer subfilters, at the expense of extra pre/-
postadders and increased coefficient wordlengths in some subfilters. An example of a
2-parallel FFA structure is shown in Figure 4.10. Although further specialisation can

72

4 . 3 P RO PO S ED F I LT E R ARCH I T E C TUR E

be made for higher parallelisms, we will nest successive 2-parallel FFA structures in
order to implement any required power-of-two level of parallelism.

x[2k] H0 +

H0 + H1

x[2k+1] H1 z−1

y[2k]

y[2k+1]

z−1 + z−1 + z−1 +

+ +

MCM

Figure 4.10: Proposed 2-parallel filter with 8 weights

This form of FFA is recursive in nature and can be difficult to represent and param-
eterise with VHDL. If we can overcome this, as with the difficulty in implementing
MCM algorithms, there are clear resource savings to be discovered. We would like to
take a moment to support our claim that the FFA and (at least the more complex of
the)MCM algorithms still lurk largely in academic folklore. In a survey of four journal
and transaction papers analysing the use of FFA structures under various coefficient
symmetries [83–86] (i.e. under the practical application for most filtering) only one
of three authors offer any experimental implementation results. For the one author
who does [83, 84], there are (non-open access) Verilog implementations of only a few
specialisations of these structures. This helps evidence our claim that many useful
DSP structures prove too complex to describe in a fully generalised way in traditional
HDLs.

Although even the 2-parallel structure shows a reduction in multiplier count of
25%, this reduction grows with the level of parallelism. Consider a filter architecture
which processes 2p samples in parallel. Its polyphase realisation will require a number
of multipliers proportional to 4p, while our nested FFA realisation is proportional to
only 3p. This scaling behaviour is shown in Figure 4.11.

73

4 . 4 MULT I P L I E R COUNT S UNDER CO E F F I C I EN T SYMME T RY

x[2k]

x[2k+1]

y[2k]

y[2k+1]

H0 +

H0 + H1

H1 z−1

+ +

H0 +

H0 + H1

H1 z−1

+ +

H0 +

H0 + H1

H1 z−1

+ +

x[2k+2]

x[2k+3]

+

+

+

+

z−1

z−1

+

+

y[2k+2]

y[2k+3]

x[2k] H0 +

H0 + H1

x[2k+1] H1 z−1

y[2k]

y[2k+1]+ +

H0

H0 + H1

H1

Figure 4.11: Scaling of nested 2-parallel FFA filters for ×2→ ×4 parallelism

The main trade-off with this optimisation is FFA’s ability to exploit coefficient sym-
metry. Each subfilter now has a unique input, precluding our shared MCM approach
used with polyphase filters. So, although FFA appears extremely promising in the
most general case, there is opportunity for a polyphase equivalent to perform favourably
under real-world coefficient sets with symmetry or duplication. Section 4.4 offers an
analysis of how each structure will perform under the six most common coefficient
patterns.

4 . 4 MULT I P L I E R COUNTS UNDER COE F F I C I ENT SYMMETRY

Although FFA reduces the number of multiplications in general, the preadders and
H0 + H1 response can cause less favourable performance under coefficient symmetry.
Since symmetry is prevalent in real-world impulse responses, we quantify the effect in
this section.

From our MCM-based polyphase architecture in Figure 4.9, we can see that a 2p-
parallel structure can be realised with 2p MCM blocks, each implementing the full
impulse response (H). Because each MCM block contains every coefficient, we can
always exploit any symmetry/antisymmetry present in the impulse response. This is
not the case for FFA structures since each recursive step in the algorithm demands sub-
filtering for three new permutations of the full impulse response — the even-phased
coefficients (H0), the odd-phased coefficients (H1), and the pairwise sum of even and
odd-phased coefficients (H0+ H1). These permutations aremixed again during every
recursive step during its structure, resulting in some non-trivial patterns of sharing.

74

4 . 4 MULT I P L I E R COUNT S UNDER CO E F F I C I EN T SYMME T RY

The general version of this effect has been studied in the literature: [83, 84] offers
alternative FFA architectures for 2× 2 and 3× 3 filters for even and odd symmetries
respectively, [85] proposes an extension to capturemultirate FFA structures for symme-
tries, and [86] offers similar work for polyphase structures. Our contribution to this
analysis is twofold:

1. An application-driven, quantitative analysis of the traditional FFA structure. This
is guided by the particular parameters demanded by real-world RFSoC applica-
tions.

2. A qualitative analysis of how coefficient symmetries are further augmented by
the composition of FFA and MCM approaches.

We select four classes of impulse response types, representative of real-world DSP
designs. Each of these patterns is extended with zero padding to reach an integer mul-
tiple of 2p, making it suitable for our recursive FFA structure. The common patterns
we consider are:

Nonlinear phase: Each coefficient is unique:
[w0, w1, . . . , wn−1]

Type-II/IV: Even taps with symmetry/antisymmetry:
[w0, w1, . . . , w n

2−1, w n
2−1, . . . , w1, w0] and

[w0, w1, . . . , w n
2−1,−w n

2−1, . . . ,−w1,−w0]

Padded Type-I/III: Odd taps with symmetry/antisymmetry, then padded with one
zero:
[w0, . . . , w n

2−2, w n
2−1, w n

2−2, . . . , w0, 0]
[w0, . . . , w n

2−2, w n
2−1,−w n

2−2, . . . ,−w0, 0]

Half-band: Odd symmetric taps where every second tap is zero except the
centre tap, padded with one zero:
[w0, 0, w1, 0, . . . , w n

4−1, w n
4
, w n

4−1, . . . , 0, w1, 0, w0, 0]

Since we target direct RF sampling applications with the RFSoC, we are only con-
sidering power-of-two parallelisms (1, 2, 4, 8, and 16 in particular) as these are directly
supported by the RFSoC’s front-end data converters. This also justifies our choice of
cascading 2× 2 FFA structures only, as we can easily synthesise any power-of-two par-
allelism. Table 4.1 shows non-recursive equations derived for the required multiplier

75

4 . 4 MULT I P L I E R COUNT S UNDER CO E F F I C I EN T SYMME T RY

Table 4.1: Multiplier count under symmetries for 2p-parallelism and 2pN coefficients

Structure Impulse Response Multiplications

Polyphase

Nonlinear Phase 4pN

Padded Type-I & III 2p
⌈

2pN
2

⌉
Type-II & IV 2p

⌊
2pN

2

⌋
Half-band 2p

⌈
2pN

4

⌉

FFA

Nonlinear Phase 3pN

Padded Type-I N(2 +
p−1

∑
k=1

3k + 2
p−2

∑
i=0

i

∑
j=0

3j) + (p− 1)
⌈

N
2

⌉

Padded Type-III N(2 +
p−1

∑
k=1

3k + 2
p−2

∑
i=0

i

∑
j=0

3j) + (p− 1)
⌊

N
2

⌋

Type-II
⌈

N
2

⌉
+ 2N

p−1

∑
i=0

3i

Type-IV
⌊

N
2

⌋
+ 2N

p−1

∑
i=0

3i

Half-band 1 + 2p−1 + N + 4N
p−2

∑
i=0

3i

count for 2p-parallel filters with 2pN weights. The equations for FFA structures have
been verified with the assistance of symbolic programming, identifying the number of
symbolically unique, absolute coefficients per subfilter. The source for this verification
is available at [26].

While we expect these forms to be difficult to interpret, there are two immediate
takeaways. The FFA equations for Type-II and Type-IV are slightly different — for odd
N, we expect Type-IV to exploit the cancellation of w n

2−1 with−w n
2−1. This effect is also

visible through the padded Type-III’s decomposition including one Type-IV subfilter.
The second point is that, while the polyphase equations are simply described in this
form, the structure of the FFA equations are noticeably more complex. This actually

76

4 . 4 MULT I P L I E R COUNT S UNDER CO E F F I C I EN T SYMME T RY

serves as evidence for how difficult a generic FFA structure can be to describe without
use of recursion — precluding descriptions in both VHDL and Verilog. To juxtapose
these complex expressions, we demonstrate how structurally simple each of the FFA
equations are in a recursive form.

HNLP(p) =

n = N, p = 0

3HNLP(p− 1), otherwise
(4.4)

HType-II(p) =

dN
2 e, p = 0

HType-II(p− 1) + 2HNLP(p− 1), otherwise
(4.5)

HType-IV(p) =

bN
2 c, p = 0

HType-IV(p− 1) + 2HNLP(p− 1), otherwise
(4.6)

HType-I(p) =

bN
2 c, p = 0

HType-I(p− 1) + HType-II(p− 1) + HNLP(p− 1), otherwise
(4.7)

HType-III(p) =

dN
2 e, p = 0

HType-III(p− 1) + HType-IV(p− 1) + HNLP(p− 1), otherwise
(4.8)

HHB(p) =

dN
4 e, p = 0

Hsingle(p− 1) + HType-II(p− 1) + HType-II′(p− 1), otherwise
(4.9)

where Hsingle(p) =

1, p = 0

2Hsingle(p− 1), otherwise

HType-II′(p) =

1 + bN
4 c, p = 0

2HNLP(p− 1) + HType-II′(p− 1), otherwise

Each of these expressions is either a base case or a simple combination of smaller
FFA equations for common impulse responses. The only exception to this pattern is
the decomposition of the halfband filter —we encounter one subfilter with a response
of only one non-zero coefficient and another that is equivalent to a Type-II with one
non-symmetric coefficient pair.

Let’s take a moment to consider the properties of coefficient symmetry that are
unique to our combination of FFA and MCM-based subfilters. While the H0 + H1 re-
sponse can often create difficulty for implementations hoping to exploit symmetry (as
explored in Table 4.1), there is an argument in favour of our combination of algorithms.
Under coefficient symmetry, the H0 + H1 response will, no matter the length of the
full impulse response, always introduce some common factors between coefficients —

77

4 . 5 IM P L EMENTAT I ON R E SU LT S

even when the symmetry of the full response is not preserved. For a DSP48-based
implementation this is not a useful property, nor is it particularly useful for implemen-
tations with simple MCM algorithms. The driving principle behind Hcub, however, is
optimising for some cumulative benefit (hence “CUB”). The goal of this principle is to
exploit the common factors shared between coefficients, and this application ought to
have an unusually large number of common factors.

The analysis provided in Table 4.1 is simply a worst-case for our algorithm, with a
strong indication of better performance due to the structure of our Hcub MCM blocks.
While only a qualitative analysis, we will see this effect in action when discussing our
experimental circuit usage results in Section 4.5.1.

Although our equations for quantitative analysis (ignoring the advantages of an
Hcub MCM) are useful for numerical evaluation of the algorithms, we appreciate that
the visualisation in Figure 4.12 provides a clearer insight into the behaviour. The half-
band analysis is for singe-rate filters only; the down-sampling step as included in Sec-
tion 4.5 would introduce its own effects in FFA, varying with the level of parallelism.

In particular, note that the required multiplication count for FFA is dramatically
lower than polyphase for high levels of parallelism (×8 and×16). The extreme results
for low levels of parallelism expose some subtleties in our consideration of real-world
filterweights. For×2 parallel, type-II filters, FFA actually requiresmoremultiplications
than the simpler polyphase structure since the H0 and H1 responses break the symme-
try in a worse-case manner. Here, the designer should opt to either adopt polyphase,
or convert to a type-I impulse response.

These rules of thumb only regard the number of multiplications required in the
filter structure and neglect any of the differences in additional adders, registers, and
wordlengths which arise from the full filter implementation. The following section
addresses these factors by presenting implementation results for each filter structure
and impulse response type.

4 . 5 IMP L EMENTAT ION RE SULT S

Figures 4.13 and 4.14 summarise resource utilisation and timing results for a set of
filters with 16 bit inputs and coefficients, using a set of realistic impulse responses.
These results are generated from a CλaSH implementation of the filter architecture
(discussedmore in Section 4.6) and Vivado 2020.1, targeting the ZCU111 development
board. The raw dataset and (and an environment to reproduce it) is available at [26].

78

4 . 5 IM P L EMENTAT I ON R E SU LT S

0 50 100
0

500

1,000

1,500
Re

qu
ire

d
m

ul
tip

lic
at

io
ns

Nonlinear Phase

0 50 100
0

200

400

600

800

Padded Type-I

0 50 100
0

200

400

600

800

Filter taps

Re
qu

ire
d

m
ul

tip
lic

at
io

ns

Type-II

0 50 100
0

100

200

300

400

Filter taps

Single-rate Half-band

×16 Parallel

0 20 40
0

100

200

300

400

Re
qu

ire
d

m
ul

tip
lic

at
io

ns

Nonlinear Phase

0 20 40
0

50

100

150

200

Padded Type-I

0 20 40
0

50

100

150

200

Filter taps

Re
qu

ire
d

m
ul

tip
lic

at
io

ns

Type-II

0 20 40
0

50

100

Filter taps

Single-rate Half-band

×8 Parallel

FFA Polyphase

0 10 20
0

50

100

Re
qu

ire
d

m
ul

tip
lic

at
io

ns

Nonlinear Phase

0 10 20
0

20

40

Padded Type-I

0 10 20
0

20

40

Filter taps

Re
qu

ire
d

m
ul

tip
lic

at
io

ns

Type-II

0 10 20
0

10

20

30

Filter taps

Single-rate Half-band

×4 Parallel

0 5 10
0

10

20

Re
qu

ire
d

m
ul

tip
lic

at
io

ns
Nonlinear Phase

0 5 10
0

5

10

Padded Type-I

0 5 10
0

5

10

15

Filter taps

Re
qu

ire
d

m
ul

tip
lic

at
io

ns

Type-II

0 5 10
0

2

4

6

8

Filter taps

Single-rate Half-band

×2 Parallel

Figure 4.12: Number of multiplications synthesised under symmetries

4 . 5 . 1 Utilisation Results

Figure 4.13 shows the Configurable Logic Block (CLB) and DSP48E2 usage for the
FFA, polyphase with shared MCM-block subfilters, and SSR structures. Results are
generated using out-of-context implementation [87]. We sweep over degrees of paral-
lelism, number of taps, filter structures, and impulse response types. The SSR results
are split into two resource types — one line for DSP48E2 usage (the systolic subfilter
logic) and another for CLBs (likely for overheads in phase recombination). Our two
proposed filter structures only use CLB resources, so the DSP lines are omitted.

79

4 . 5 IM P L EMENTAT I ON R E SU LT S

0 50 100
0

2

4

6
%

Ut
ili

sa
tio

n

X2 Parallel

0 50 100
0

5

10

X4 Parallel

0 50 100
0

10

20

Filter taps

%
Ut

ili
sa

tio
n

X8 Parallel

0 50 100
0

20

40

Filter taps

X16 Parallel

Nonlinear phase

0 50 100
0

1

2

3

%
Ut

ili
sa

tio
n

X2 Parallel

0 50 100
0

2

4

6

X4 Parallel

0 50 100
0

5

10

15

Filter taps

%
Ut

ili
sa

tio
n

X8 Parallel

0 50 100
0

10

20

30

Filter taps

X16 Parallel

Padded Type-I

FFA & MCM CLBs Polyphase & MCM CLBs SSR CLBs SSR DSPs

0 50 100
0

1

2

3

%
Ut

ili
sa

tio
n

X2 Parallel

0 50 100
0

2

4

6

X4 Parallel

0 50 100
0

5

10

15

Filter taps

%
Ut

ili
sa

tio
n

X8 Parallel

0 50 100
0

10

20

30

Filter taps

X16 Parallel

Type-II

0 50 100
0

0.5

1

1.5

%
Ut

ili
sa

tio
n

X2 Parallel

0 50 100
0

1

2

3

X4 Parallel

0 50 100
0

2

4

6

Filter taps

%
Ut

ili
sa

tio
n

X8 Parallel

0 50 100
0

5

10

Filter taps

X16 Parallel

Half-band Decimator

Figure 4.13: Implementation utilisation results

As a general rule, our polyphase and FFA implementations have a percentage CLB
usage that is bounded by the percentage DSP usage of the traditional SSR implemen-
tation. From this, we can think of the proposed designs as a means of trading off a
percentage DSP usage for a similar or smaller percentage of the more general CLB
fabric. A stronger assertion is that our total FFA CLB percentage tends towards ap-
proximately 50% of the traditional DSP percentage for nonlinear phase responses, 90%
for type-I/II responses, and 80% for half-bands.

So far, we have neglected the CLB overhead incurred with the SSR implementation.
The overhead is often comparable to the total CLB area required by our FFA implemen-
tation — especially for high levels of parallelism. Indeed, some of the extreme results

80

4 . 5 IM P L EMENTAT I ON R E SU LT S

for half-band filtering show that the FFACLB area is actually smaller than just the CLB
overhead incurred with SSR; not to mention the additional DSP usage!

The comparison between FFA and polyphase is more subtle. As predicted in Sec-
tion 4.4, FFA consistently outperforms polyphase for any nonlinear phase impulse re-
sponses — trending towards 65% for ×16 parallelism. For the remaining response
types, the two architectures perform quite similarly for low levels of parallelism. For
higher levels of parallelism, the FFA’s advantages depend on the length of the subfil-
ters. Small subfilters result in MCM blocks without much opportunity for resource
sharing, limiting any optimisation. Since the polyphase structure shares larger MCM
blocks between subfilters, the effect is less pronounced. In general, subfilters with
only one or two weights are better suited to polyphase implementations, while FFA
performs better for longer subfilters; tending towards 80% of the area for large ×16
type-I/II filters.

4 . 5 . 2 Timing Results

This section aims to estimate the maximum achievable clock frequency, fmax, for each
of the filter structures by implementing half-band decimators with×8 parallelism and
various filter lengths. Each architecture is implemented as a small loopback design (no
longer using out-of-context implementation). The fmax metric is defined as the fastest
clock rate achieved over 6 iterations of a binary search, directed by the previous run’s
achieved timing estimate. Source code for this process is available at [26].

Figure 4.14 shows the results for our MCM-based FFA and polyphase filters, as
well as the SSR architecture. This work is conducted in the context of front-end dig-
ital filtering for the RFSoC and we should aim to support the ADC block’s full data
rate. Given the clocking resource’s physical limit of 775 MHz [11] , the lowest possible
level of parallelism we can use is ×8 with a clock speed of ≥ 500 MHz. This target
frequency is annotated as a red line in Figure 4.14 — any implementation above this
line is sufficient for processing at the full ADC data rates.

All three implementations remain above the 500 MHz target for up to at least 128
taps. The SSR half-band decimators are the clear winner in terms of fmax, maintain-
ing the physical maximum — but anything above our red line target is acceptable for
all front-end applications. The MCM-based polyphase structure behaves comparably
but does start to dip below the chip’s maximum frequency between 64 → 128 taps,
possibly due to high fan-out from our shared MCM blocks. Finally, the FFA architec-
ture displays a similar trend with filter length but with smaller absolute frequencies.
This reduction is due to our pipelining strategy attempting to better balance utilisation

81

4 . 6 P RAC T I CA L HARDWARE D E S C R I P T I ON

0 20 40 60 80 100 120
0

200

400

600

800

Filter taps

f m
ax

FFA & MCM Polyphase & MCM SSR

Figure 4.14: Maximum frequency results for ×8 half-band decimators

and fmax. The phase recombination step introduces critical paths including two adders
between registers, but this can be easily further pipelined when timing closure is an
issue.

4 . 6 PRACT I CA L HARDWARE DESCR I P T ION

This chapter has, so far, only discussed the advantages offered by the FFA with MCM-
based subfilters architecture. While we do offer some new analysis of how these two
techniques interact in Section 4.4, and publish open source implementations of both,
the fundamental idea is simple — compose two existing, complementary algorithms
from the literature. An interesting question to reflect on is: “Why has this (to the best
of our knowledge) not been implemented already?”.

We propose that themain factor is due to traditional HDLs and practices. Both FFA
structures and MCM blocks have proven awkward to describe with traditional HDLs
for two different reasons:

↪→ FFA lends itself to descriptions with structural recursion. This is not typically
supported by traditional HDLs, perhaps because support for general recursion
in a (structural) HDL releases the floodgates to many non-synthesisable descrip-
tions.

↪→ MCM blocks can demand a huge amount of computation at compile-time in order
to infer the circuit topology. The exact set of coefficient values will have a pro-
found effect on the structure of theMCMblock’s shifts and adds— and thismust
be evaluated during compile-time, rather than during circuit run-time. This level
of meta-programming is rarely seen in the more traditional HDLs.

82

4 . 6 P RAC T I CA L HARDWARE D E S C R I P T I ON

These two properties of our architecture result in a challenging implementation
which we can use as a probing tool to test the limits of modern HDLs in anger. Fur-
thermore, the composition of these two circuits proves especially troublesome since each
is traditionally realised by ad hoc circuit generators, written in a separate software lan-
guage.

Historically, a designer can choose to either handcraft a circuit for one set of pa-
rameters, or turn to software programming in order to implement an ad hoc circuit
generator for their algorithm of choice (see the implementation of Hcub [71] as a well
regarded example). Implementations of the latter are used as atomic black boxes, pro-
ducing specialised HDL output given a set of input parameters. This approach has
known challenges, including being resistant to circuit verification techniques. These
difficulties arise, in part, from the wide range of technologies at play with no unifying
type checker or other assistance, as well as an effect similar to the required “semantic
domain crossings” described in [88]. Our addition to this discussion is that ad hoc
circuit generators also come with fundamental challenges for the composition of com-
plementary techniques, discouraging demonstrably useful classes of circuit such as
our FFA with MCM-based subfilters architecture.

Figure 4.15 visualises the main additional steps needed to compose two (hypothet-
ical) ad hoc circuit generators. In prose, these steps include splicing new sections into
each generator, working with the non-standard intermediate representation of each
circuit, passing these representations between generators in a language agnostic way,
and merging the HDL generation sections of the two codebases.

Weights MCM Generator

(in C)
VHDL

Weights
VHDL

Parallelism

(in Perl)

FFA Generator

Figure 4.15: Composing ad hoc circuit generators

We instead advocate for modern functional HDLs which are expressive enough to
directly encode our algorithms and their staging. Our implementation demonstrates
that CλaSH can accommodate these features under a single source language, type
checker, simulator, and compiler. This massively simplifies verification efforts and
enables the designer to have some confidence in the final circuit output for any combi-
nation of parameters, not just a select few example test cases.

83

4 . 6 P RAC T I CA L HARDWARE D E S C R I P T I ON

4 . 6 . 1 The successes of our CλaSH implementation

Functional approaches like CλaSH directly encourage composition in particular by al-
lowing subcircuits to be passed to and from circuit generators. This allows exploration
of the design space for many different algorithm combinations with little extra effort
— as has been the focus of this chapter. As a concrete example, each of our parallel
filter structures has been implemented as a generator parameterised by its subfilter
architecture. There is then almost no hurdle to testing composite architectures with
different combinations of parallelisms and MCM algorithms, which facilitated our ex-
ploration of implementation results in Section 4.5. We will see in Section 4.6.2 that
this advantage can become slightly tangled with our reliance on Template Haskell for
metaprogramming.

Another advantage demonstrated by this case study concerns the use of Algebraic
Data Types (ADTs). Programming directly with well structured data, quite precisely
capturing the themeaning of our data, is a boon both at the circuit generator and circuit
run-time stages. Enjoying these data types fully for descriptions of circuit run-time be-
haviour is more natural for languages which encode circuits as plain functions, as both
CλaSH and toatie do. Unfortunately, since this filtering example is all about compile-
time complexity in order to realise a directed acyclic graph of arithmetic operations, all
of our circuit’s run-time data structures are just simple numeric types. Regardless, let’s
consider the structured data types used during our circuit elaboration. In particular,
these quite directly capture the formal mathematical specifications given in MCM lit-
erature.

Thework in [71] towards a shared framework for all graph-basedMCMalgorithms
defines an MCM algorithm as simply a means of selecting successive fundamental
operations (coined as A-operations) to add to an accumulated graph. Each of these
A-operations are relative to a configuration, c = (l1, l2, r, s), where:

Ac(u, v) = |(u� l1) + (−1)s(v� l2)| � r (4.10)

for two previously synthesised positive coefficients (or “fundamentals”), u and v. This
is one operation providing a configurable add/subtract with optional shifts on both
operands and the output. The use of the absolute value can be avoided in all circuit
realisations of an A-operation — it just simplifies the equational definition by only
allowing subtraction in one direction.

During our implementation of each MCM algorithm, our only goal is to iteratively
construct a graph of these A-configurations until we have nodes which synthesise to

84

4 . 6 P RAC T I CA L HARDWARE D E S C R I P T I ON

every coefficient in our target set. Haskell, and therefore CλaSH, encourage the de-
signer to take a structured approach to this. For example, Listing 4.1 shows the data
types we define to direct this generalised, graph-based MCM framework.

Listing 4.1: CλaSH data types for (combinatorial) MCM algorithms

1 -- | Aop configuration , `c`, as in Equation (4.10)
2 data AConf = AConf
3 { l1 :: Shift
4 , l2 :: Shift
5 , r :: Shift
6 , s :: Sign
7 }
8
9 -- | A data type for a fully applied AOp

10 data AOp = AOp { c::AConf, u::Fundamental , v::Fundamental}
11
12 -- | A node in an MCM graph
13 data Node = Node {op :: Maybe AOp, depth :: Int}
14
15 -- | A combinatorial MCM graph: a collection of annotated AOps
16 newtype Graph = Graph {unGraph :: Map Fundamental Node}

This structured approach, along with helper functions for manipulating Graphs,
allows the implementation of each algorithm to focus only on what is important — the
choice of the nextA-operation(s) to insert. Each algorithm is notionally just a function
from some configuration structure to a graph description of the MCM topology: e.g.
hcub :: McmConfig -> Graph. In practice, this definition is slightly more involved in order
to allow I/O access to precomputed lookup tables.

The MCM graph data type can then be refined into a second set of data types, facil-
itating the clean separation (and hand-off between) the pure mathematical operation
of an MCM algorithm and the practical description of an equivalent pipelined circuit.
When considering a hardware implementation we need to handle nodes that describe
not only A-operations, but also registers for pipeline synchronisation between stages,
shifts to reconstruct even coefficients from our odd fundamentals, etc. The descrip-
tion of these nodes becomes more complex, but is captured quite concisely as the ADT
“PNode” in Listing 4.2.

Since we can directly use the PNode data type in our synthesisable descriptions in
CλaSH, the actual circuit description from this point is trivial — just≈ 30 lines in [26].

4 . 6 . 2 The limitations of our CλaSH implementation

In reality, the implementation presented in this chapter does brush up against some
limits of what is possiblewithmanymodern functional HDLs. One point to emphasise

85

4 . 6 P RAC T I CA L HARDWARE D E S C R I P T I ON

Listing 4.2: CλaSH data types for (pipelined) MCM algorithms

1 -- A node for a fully explicit pipelined MCM graph
2 data PNode = PNodeIn
3 | PNodeZero
4 | PNodeAOp AOp
5 | PNodePipe Fundamental
6 | PNodeShift Fundamental Shift Negation
7
8 -- A pipelined MCM graph, with nodes grouped by pipeline stage
9 newtype PGraph = PG {unPG :: Map Stage (Map Fundamental PNode)}

is that we lean heavily on Template Haskell — a rather heady language extension, al-
lowing themanipulation of aHaskell program’s abstract syntax tree and the splicing of
the results back into the program. We rely on this for two related meta-programming
purposes: staging of our circuit generator, and flattening the structural recursion.

We have already seen that the structure of our nested FFA parallelism is inherently
recursive, and it proves difficult to describe with iterative constructs alone. Listing 4.3
shows part of an FFA structure, captured in CλaSH with basic Template Haskell. The
Template Haskell annotations should look similar to those introduced back in Sec-
tion 3.5.

Listing 4.3: A partial example of an FFA structure in CλaSH with Template Haskell

1 -- An FFA structure where the whole filtering stage is left as a parameter
2 genFFA :: SNat n -> Q Exp
3 genFFA n =
4 [| \f -> bundle . $(reorder n) . $(post n) . f . $(pre n) . unbundle |]
5 where
6 pre 1 = [| id |]
7 pre n = [| … $(pre (n `div` 2)) |]
8 swap 2 = [| id |]
9 swap n = [| … $(swap (n `div` 2)) |]

10 post 2 = [| … |]
11 post n = [| … $(post (n `div` 2)) |]
12 …

Note the type of genFFA suggests that, given a singleton natural number for the FFA
parallelism, it will return (a computation providing) an untyped “expression”. We
define each of the pre, swap, and post stages recursively, also as untyped expressions.
This is, in some ways, quite a dangerous use of Template Haskell. The loss of static
typing information means:

1. We do not know if a circuit will type-check until we supply a value of n and
splice the result into our circuit. We no longer have type safety for our entire

86

4 . 7 P RAC T I CA L V E R I F I CAT I ON

circuit family. Indeed, Listing 4.3 will error for some values of n, since the caller
can supply a non-power-of-two, or 1 to break the swap and post functions.

2. We lose the circuit family’s best form of documentation. It becomes difficult to
statically reason about how the FFA inputs and outputs change shape as n in-
creases.

More recently, there is also support for a typed use of Template Haskell. This does
overcome most of the type safety issues but still comes with a set of constraints. As
a formal example, [89] discusses the interaction of constraints, polymorphism, and
staging with typed Template Haskell after using it in anger. Template Haskell’s use of
the Q monad can very easily start to pollute a codebase (such as our MCM algorithms
and their verification, in Section 4.7). Some careful navigation of the Glasgow Haskell
Compiler’s stage restrictions is also required. This impacts the way we can supply our
coefficients and perform our testing. Work on supporting existing language features,
such as type classes, has continued to as recently as [90] from 2022.

We propose that an implementation of the staging required for circuit description
could be better facilitated in a language with first-class staging constructs (rather than
extensions) and dependent types (one feature which subsumes many others, such as
type polymorphism and some constraints).

There is one other area that relies on Template Haskell where it may be undesirable
to do so. Our MCM algorithms (before the PGraph representation in Listing 4.2) use
dynamically sized collections, since encoding the computations for their sizes at the
type level is challengingwithout dependent types. In order to synthesise a circuit from
these dynamically sized collections, at some point after the PGraph representation, we
need to convert these to bit representable collections (such as CλaSH’s Vect type). We
use Template Haskell to do so — perhaps innocently enough, as long as there are no
infinite structures. This particular Template Haskell splice can also be thought of in
a more positive light as an important staging annotation. It marks the MCM decom-
positions as being evaluated at compile time, and only the resulting PNode operations
must be performed at circuit run time.

4 . 7 PRACT I CA L VER I F I CAT ION

The most ubiquitous approach to circuit verification is example-driven testbenches.
These are easy to write in both VHDL and Verilog, presenting a (usually small) hand-
crafted set of inputs to one circuit, already specialised for a particular set of generics.
We will use an adder as a demonstrator for our techniques here, and while it is easy

87

4 . 7 P RAC T I CA L V E R I F I CAT I ON

to loop exhaustively over all possible operands in VHDL for this case, a more complex
design (such as our full filter architecture) will tempt designers into using only a small
set of hand-crafted inputs.

An adder circuit under example-based testing might be presented with the follow-
ing four hand-crafted scenarios, with assert statements checking the output against
the expected value:

00002 + 00002 = 00002 (4.11)
01112 + 10002 = 11112 (4.12)
00012 + 10012 = 10102 (4.13)
10012 + 00012 = 10102 (4.14)

Although there are clear omissions, this set of examples has some reasonable justi-
fications. We test the lower extreme (the addition of zeros), one interpretation of the
upper extreme (the largest output we can encode), and two complementary examples
(suggesting that the addition might be commutative). Clearly, there are many incor-
rect implementations that would still satisfy these test cases. For example, there is no
example describing the desired overflow behaviour, or there might be a hard-coded
rule to return zero if either operand is zero. Perhaps a more serious omission is that
we test our generic adder structure only for one size of input (two four-bit operands).
We have not tested any other adder structures from this family, let alone the common
edge cases. These concerns can scale with the complexity of the design under test.

For our CλaSH implementation of MCM-based parallel filters, we use a different
approach to verification: property-based testing. Using a well known Haskell library
for this, Quick Check [91], gives a high-reward with very low developer effort. As an
introduction, let’s revisit our adder example through the lens of property-based testing.
We express our test cases as properties which should be true for our adder’s behaviour.
In this case, our properties should always hold true, but Quick Checkmakes it possible
to guard these by preconditions also. One obvious property we may want to test for
our adder is:

∀n ∈ Z, ∀x, y ∈ {0, 1, . . . , 2n − 1}. x + y = int(addern(binn(x), binn(y))) (4.15)

This first property appears equivalent to a VHDL testbench which iterates through
all operands (between 0 and 2n − 1) with an assert statement ensuring that the cast

88

4 . 7 P RAC T I CA L V E R I F I CAT I ON

output matches the in-built implementation of the + operator for integers. However,
we are now sampling from the entire circuit family— it applies to adders of any length,
not one concrete value of n. This also ensures that there is no overflow in the output.
While defining our property in terms of a built-in + operator is valid in this scenario,
we will not always have a such an obvious reference. In these cases, we look to con-
struct a set of different properties which, when combined, fully describe the intended
behaviour. There are, perhaps surprisingly, only a few properties that we need to test
for addition before we can be certain that the design under test definitely implements
addition. These are commutativity, associativity, and the neutrality of addition with
zero:

∀n ∈ Z, ∀x. addern(x, 0) = x (4.16)
∀n ∈ Z, ∀x, y. addern(x, y) = addern(y, x) (4.17)
∀n ∈ Z, ∀x, y, z. addern+1(x, addern(y, z)) = addern+1(addern(x, y), z) (4.18)

These properties can also be extended to account for latency and ramp-up times in
real synchronous circuits. For our FIR circuits, we can aim to judge their behaviour via
two properties:

↪→ The impulse response: how does the circuit react to a unit impulse? We expect a
time-delayed copy of the test’s coefficients.

↪→ The frequency response: how does the circuit transform inputs of different fre-
quencies? The expected result can be statically derived from the test’s coefficients
in terms of both phase and magnitude.

Once we have used these properties to establish one good reference implementa-
tion, we can continue by comparing our more complex implementations directly with
this reference. This approach to testing is facilitated by Quick Check which gives us
three important features. Firstly, it allows us to define random generators for terms of
a given type. Secondly, for all of the variables bound by ‘∀’ in our properties, Quick
Check will generate many random values via their generators and check that the prop-
erty holds true in each case. Finally, if a set of arguments does cause a property to
fail, it will attempt to reduce the failing case to the simplest possible form — expos-
ing a useful, simple failing example to the developer rather than the arbitrary original
values.

Unfortunately for this chapter’s filtering implementation, our reliance on Template
Haskell is somewhat at odds with the structure of standard Quick Check testing. We

89

4 . 7 P RAC T I CA L V E R I F I CAT I ON

use Template Haskell to flatten all FFA structures at compile time. However, we would
ideally like to write properties of FFA structures for any parallelism. Within the Quick
Check framework, the specialisation of the FFA structure would need to happen at run
time but Template Haskell does this at compile time. This is not a restriction true of
multistage programming in general, but is a consequence of the strict constraints in
Template Haskell. Although far from ideal, this is forgivable in the context of RFSoC
applications since wewill only encounter the fixed parallelisms of 1,2,4,8, and 16—we
can hard-code separate sets of properties for each.

Without the restrictions imposed by the interaction of Template Haskell and Quick
Check, this appears to be a reasonably effective and low-effort means of verification.
So, what is missing in this approach? Although we do gain reasonable evidence of cor-
rectness, we do not have a proof that the output is always functionally correct. For our
MCM-based filtering, [71] provides formal proofs of Hcub’s (without heuristic stage)
optimality, its complexity, and its termination. With the appropriate tooling, we could
encode these proofs and use them to verify such properties for our particular imple-
mentation; not just the abstract algorithm. This theoremproving approach is facilitated
by the toatie language, discussed in Chapters 5 and 6.

As a final comparison for circuit verification in particular, [91] uses circuit descrip-
tions in Lava as a Quick Check case study. They identify Quick Check as a means of
catching two classes of errors:

↪→ Logical errors that would be otherwise caught by Lava’s external theorem prover.
Since a call to the external theorem prover is a heavyweight task, they propose
Quick Check could be used to catch these errors more readily.

↪→ Errors in only some members of the circuit family. These might not be caught
with Lava’s external tools since they require that the circuit has already been spe-
cialised to a first order description. These errors usually stem from unhandled
clauses in accidentally non-covering descriptions (such as addition of two differ-
ently sized operands).

A comforting thought is that toatie can also catch both of these classes of error,
with more formal guarantees than property-based testing. We preclude non-covering
descriptions with our coverage checker and offer the means for theorem proving over
entire circuit families.

90

4 . 8 SUMMARY

4 . 8 SUMMARY

We have demonstrated that, in the context of RFSoC applications, a combination of
FFA parallelism andMCM-based subfilters can generate area-efficient and high-speed
parallel filters. These filters quite consistently exchange the traditional architecture’s
DSP usage for a similar percentage of the generic fabric resources (CLBs) — or for
nonlinear phase filters, often under half of the equivalent DSP usage. This is ignoring
the CLB “overhead” incurred by the traditional architecture as well— there are (some-
what extreme) scenarios where our full implementation has a smaller CLB area than
the traditional implementation’s overhead alone.

There are some interesting edge-cases for small filters with low parallelism where
our polyphase structure with sharedMCMblocks will often outperform an FFA equiv-
alent, due to better exploitation of the coefficient symmetry explored in Section 4.4.
Both implementations were presented in this chapter, and are available under open
source licences.

We also reported on our practical experiences with hardware description, identify-
ing some limitations of traditional methods and how these discourage exploration of
circuits with similarly complex structures. After identifying how modern functional
HDLs, such as CλaSH, help alleviate some of these difficulties, we also proposes lan-
guage extensions which could improve the experience for future designers.

CλaSHdoes facilitate our implementationwith clear advantages over ad hoc circuit
generators, but this work has also encouraged us to entertain new language features
as will be explored in Chapters 5 and 6. Our additions include support for dependent
types. This enables a host of quality-of-life improvements for the designer, including:

↪→ Concise, type-safe minimum wordlength tracking, especially for DSP with con-
stant coefficients. For readability, our CλaSH implementation manually resizes
inputs to the worst-case wordlength and relies on vendor Electronic Design Au-
tomation (EDA) tools to prune uninhabited bits. This is demonstrated later in
Section 5.3.

↪→ Encoding proofs of circuit behaviour in the source language, wherever formal
verification is demanded. This is explored further in Section 5.4.

Our reliance on meta-programming techniques also highlights the need for multi-
stage programming, which toatie includes as a first class element of its source lan-
guage. This enforces a clear split between compile-time computation and circuit run-
time computation in a type safeway. Not only can this address some common criticism

91

4 . 8 SUMMARY

of Template Haskell, it even alleviates the pressure on the compiler for unrolling primi-
tive recursion andpartial evaluation; we canwrite unrolling functions in the source lan-
guage explicitly and evaluate them at compile-time. This is in opposition to CλaSH’s
set of templated VHDL code for recursively defined library functions. These ideas
have already been explored in [22, 23, 64] but we go on to showcase them in a prac-
tical light, giving examples in our open source language and compiler, toatie. We
hope that this will further encourage modern, verifiable DSP solutions for high-speed
RFSoC applications and beyond.

92

5ON APPL ICAT IONS OF DEPENDENT TYPES TO DSP
CIRCUIT FAMIL IES

This chapter is an extension of the ideas presented in the paper “On applications of dependent
types to parameterised DSP circuits” [23]. It is adapted to our toatie language and now

includes exploration of circuit families with full functional verification in a
correct-by-construction fashion.

5 . 1 IN TRODUCT ION

This chapter presents combinatorial circuit examples in toatie, a newHDLwhose im-
plementation will be detailed in Chapter 6. This environment is dependently typed
and enables faithful descriptions of DSP circuit families, where various circuit proper-
ties can be statically verified by the type checker. There are a few different degrees to
which we might want to lean on our type system in a practical context, balancing pro-
ductivity and the completeness of verification. To demonstrate this circuit description
methodology, this chapter threads a combinatorial dot product example across three
different levels of type-level verification:

↪→ A introductory implementation, concerning standard, worst-case wordlengths
only.

↪→ Improved wordlengths with bounded integer ranges, where the types ensure
that each word is exactly as long as it needs to be — not any longer or shorter
than strictly necessary.

↪→ Types which encode a circuit family’s precise arithmetic meaning. This explores
the full functional verification of circuit families in a correct-by-construction fash-
ion.

Beyond the interests of the original developer, using the type checker to verify these
properties provides a contract to the user of a 3rd party’s circuit family; the developer
must generate well-formed circuits for all possible parameter sets (i.e. every circuit
within the family), and the developer is given a clear, computer-checked guarantee of
its behaviour. Although not dwelled on in this chapter, as well as tracking functional

93

5 . 2 M IN IMAL T Y P E - L E V E L GUARANT E E S :
TOWARD S A COMB INATOR I A L DOT P RODUC T

aspects of our circuits in their type, we can also track non-functional properties such as
abstract resource usage. This could offer a direct way of reasoning about circuit area,
etc., in the source language, rather than forcing the designer to interpret results after
a lengthy external elaboration with industry EDA tools.

We will pause along the way, sightseeing the likes of speculation on synchronous
circuits in Section 5.5.1, and proving the equivalence between a direct DFT implemen-
tation and a substantially optimised form in Section 5.4.4. We will clarify where our
circuit families otherwise prove difficult to describe in traditional HDLs, and how our
static verification compares to that of similar example-driven testbenches or model
checking.

5 . 2 M IN IMAL T Y P E - L EV E L GUARANTE E S :
TOWARDS A COMB INATOR IA L DOT PRODUCT

This section approaches circuit design with toatie in its most simple form. We will
not lean heavily into the verification aspects of the language, but will instead see how
naturally we can describe circuits with recursive structures and how we can compose
subcircuits together, quickly realising a non-trivial dot product circuit. Note that we
have adopted unsigned arithmetic for the purposes of illustrating toatie concepts,
acknowledging that signed arithmetic would be preferred for the likes of FIR filter
implementation. The interested reader can access our full source, including a signed
variant, at [24] and [27].

To begin thinking about our simple arithmetic building blocks, consider the direct
form FIR filter shown in Figure 5.1. All wordlengths have been annotated with the
worst-case for each unsigned arithmetic operation in isolation.

dot product

z−1 z−1 z−1

× × × ×w0

5
w1

5
w2

5
w3

5

8 8 8 8
x[k]

+ + + y[k]

13 13 13 13

14 15 16

Figure 5.1: A direct form FIR filter with worst-case growth along the adder chain

For this introductory example, the input is 8b (an 8-bit word), the coefficients are
all 5b, and the adder chain ends as 16b. In this section we consider each arithmetic op-

94

5 . 2 M IN IMAL T Y P E - L E V E L GUARANT E E S :
TOWARD S A COMB INATOR I A L DOT P RODUC T

eration in isolation and only account for the immediate input wordlengths, regardless
of any other information about the signal’s range that could be inferred. For example,
given nb and mb unsigned words, multiplication with worst-case bit growth is repre-
sented by (n + m)b, and addition gives (max(n, m) + 1)b.

This sort of growth can be captured by VHDL designs using generics, functions,
and for generate statements, but encoding heterogeneous collections of these sig-
nals for an adder chain is challenging. As an introduction to using toatie for circuit
description, let’s spend some time implementing our arithmetic functions and intro-
ducing a data type for our binary numbers.

5 . 2 . 1 An unsigned adder circuit

Listing 5.1 defines two data types, Bit and Bin, where a value of type Bit represents
a single bit and Bin n represents a collection of n bits. Notice that we introduce both
types with the simple keyword, rather than the data keyword seen in Chapter 3. This
marks the data type as being synthesisable. We will see that all top-level synthesisable
circuits must be a quoted function of simple arguments. Informally, a simple type
must have a statically known bit representation. To satisfy this requirement, Bin is
essentially defined as a fixed-length vector of bits, noting that a dynamically sized list
of bits would not have a single, known bit representation based on the type alone. The
length index in the BinCons data constructor is marked as irrelevant andwill be erased
—and important annotation since this unbounded natural number is not synthesisable.

Listing 5.1: A binary word indexed by its wordlength

1 simple Bit : Type where
2 O : Bit
3 I : Bit
4
5 simple Bin : Nat → Type where
6 BinNil : Bin 0
7 BinCons : {n : Nat} → Bin n → Bit → Bin (S n)

Note that we opt to construct Bins by appending bits to the least significant side.
This very slightly simplifies our implementation of addition and multiplication, but
appending to the most significant side also results in reasonable circuit descriptions.

As a first step, let’s consider a single-bit full adder as presented in Listing 5.2. This
implementation shows how simple pattern matching clauses can quite naturally de-
scribe a truth table or lookup-table. Note that we introduce a pair, or “tuple”, type to
encode the two output bits: cout and sum. We could have also chosen to implement

95

5 . 2 M IN IMAL T Y P E - L E V E L GUARANT E E S :
TOWARD S A COMB INATOR I A L DOT P RODUC T

the full adder as a series of xor/or/and gates, while being explicit about any resource
sharing with let bindings.

Listing 5.2: A single-bit full adder

1 -- A pair of values, a tuple.
2 simple Pair : Type → Type → Type where
3 MkP : {a,b : Type} → a → b → Pair a b
4
5 -- Single bit full adder
6 addBit : Bit → Bit → Bit → Pair Bit Bit
7 addBit O O O = MkP {_} {_} O O
8 addBit O O I = MkP {_} {_} O I
9 addBit O I O = MkP {_} {_} O I

10 addBit O I I = MkP {_} {_} I O
11 addBit I O O = MkP {_} {_} O I
12 addBit I O I = MkP {_} {_} I O
13 addBit I I O = MkP {_} {_} I O
14 addBit I I I = MkP {_} {_} I I

It should now be straightforward to compose multiple instances of our full adder
circuit into an n-bit unsigned adder. Figure 5.2 shows how we can cascade full adders
to achieve an n-bit adder. Since we define our binary words inductively, we should
also take a moment to identify the structure of our base case (for empty inputs) and
our inductive case (defining an (n+1)-bit adder in terms of an n-bit adder). The base
case is trivial: we just return the cin input. The inductive case requires us to pass the
least significant bit of our two operands to a full adder, along with cin. We can then
recurse on our adder structure for the remainingmost significant bits, threading along
the cout generated by the full adder.

a

b

cinFA

a0

b0

c0

FA

an−1

bn−1

cn−1

FA

an

bn

cncn+1

FA

an−2

bn−2

cn−2
c

…

n-bit adder
(n+1)-bit adder

Inductive stepBase case

Figure 5.2: Structure of an unsigned adder circuit

96

5 . 2 M IN IMAL T Y P E - L E V E L GUARANT E E S :
TOWARD S A COMB INATOR I A L DOT P RODUC T

The translation to toatie in Listing 5.3 matches our prose quite closely. We will
now make use of the staging constructs (introduced in Section 3.5) to ensure that our
circuit can always be fully elaborated once the explicit non-synthesisable arguments
are supplied. This ensures causality between elaboration time and circuit run-time
stages at the circuit’s top level.

Listing 5.3: An unsigned adder for Bin n

1 -- An `n` bit adder
2 addBin' : (n : Nat) → 〈Bit 〉 → 〈Bin n 〉 → 〈Bin n 〉 → 〈Bin (S n) 〉
3 -- Base case for empty inputs
4 pat cin ⇒
5 addBin' Z cin J BinNil K J BinNil K
6 = J BinCons {_} BinNil ~cin K
7 -- Inductive case for non-empty inputs
8 pat n, cin, x, xs, y, ys ⇒
9 addBin' (S n) cin J BinCons {_} xs x K J BinCons {_} ys y K

10 = J case addBit ~cin x y of
11 pat cin', lsb ⇒
12 MkP {_} {_} cin' lsb =⇒
13 BinCons {_} ~(addBin' _ J cin' K J xs K J ys K) lsb
14 K

There are a few features in this example that will become very familiar by the end
of the chapter. We see three of our staging annotations being sprinkled throughout
the definition. Since these are largely to assist the elaboration process, the reader may
choose to ignore them during their first pass of each example. For an intuition about
their meaning, each annotation can be read as:

Circuit type : 〈ty 〉 ⇒ an argument of type ‘ty’ that will only be available during
the elaborated circuit’s run-time (not during elaboration). For exam-
ple, our two binary words and the carry-in input are marked as only
being available during the circuit’s run-time.

Quote : J tm K ⇒ defers the evaluation of a term ‘tm‘ until circuit run-time.
For example, the RHS of both clauses are wrapped with quotes, de-
ferring the addition until circuit run-time by default. Quotes can also
appear on the LHS of a clause as part of an inaccessible pattern—ourJ BinNil K and J BinCons {_} xs x K matches, for example.

Escape : ~tm ⇒ force the evaluation of a term immediately. For example, we
unroll the recursive call to addBin' by explicitly evaluating it with
an escape. This is akin to flattening a nested circuit hierarchy into a
flat, wide structure.

97

5 . 2 M IN IMAL T Y P E - L E V E L GUARANT E E S :
TOWARD S A COMB INATOR I A L DOT P RODUC T

Another important aspect is the relevance/irrelevance of the length argument, n.
One may be tempted to mark n as irrelevant since it is only used in irrelevant positions
in the definition of Bin (see Listing 5.1). For Bin’s data constructors, we needed this
irrelevance since Nats are not synthesisable. However, wemust keep the adder’s length
argument relevant here since it is required during the elaboration of an adder circuit—
i.e. we need access to the length when deciding how many times to unroll our generic
adder structure. More formally, an explicit length argument is needed to permit our
inaccessible patterns which statically identify when our input words are empty (J
BinNil K) or non-empty (J BinCons {_} xs x K).

The final feature of interest is our use of an in-line case statement on line 10 of
Listing 5.3. This lets us perform simply typed pattern matching on an intermediate
value. In this case, we use it to help us decompose the Pair of Bits returned by the
full adder and give each of these Bits names we can reference later. A more verbose
option for our decomposition would have been to introduce an entire helper function
and use the standard pattern matching techniques. As an aside, the latter approach is
necessary when we want a matched clause to refine the types of existing names in our
scope, since we do not implement the with rule present in Idris 2.

Let us now generalise our adder circuit family to accept two words of different
lengths. Back in Listing 5.3, the type of addBin' accepts two Binary words of length
n and returns a word of length 1 + n. For convenience we would like a wrapper that
accepts an n-bit word and an m-bit word, returning a word with length 1 + max(n, m).
Listing 5.4 demonstrates such a wrapper, addBin. We resize each input to max(n, m) by
extending their Most Significant Bits (MSBs) with Os and then call addBin' as normal.

Listing 5.4: An unsigned adder for heterogeneous wordlengths

1 addBin : (n, m : Nat) → 〈Bit 〉 → 〈Bin n 〉 → 〈Bin m 〉 → 〈Bin (S (max n m)) 〉
2 pat n, m, cin, xs, ys ⇒
3 addBin n m cin xs ys = addBin' _ cin (resizeBin _ (max n m) xs)
4 (resizeBin _ (max n m) ys)

We have omitted the implementation of the helper function resizeBin for brevity.
Suffice to say, ‘resize j k bits’ takes a quoted Binary number of length j and resizes
it to length k by either truncating or padding zeros to the MSB. Using this version
of the adder circuit family should incur no overhead in the elaborated circuit when
both operands happen to be of equal length. Note that the return type, 〈Bin (S (

max n m)) 〉 , contains a call to a user-defined function, max. This is a consequence of
dependent types — we can put any term in the types, including calls to arbitrarily
complex functions.

98

5 . 2 M IN IMAL T Y P E - L E V E L GUARANT E E S :
TOWARD S A COMB INATOR I A L DOT P RODUC T

To conclude this section on our first adder circuit, let’s ground the discussion by
looking at the netlist that our description actually produces. Figure 5.3 shows an anno-
tated schematic generated by passing toatie’s netlist output through the Yosys Open
Synthesis Suite [92].

1
0

1
0

xs

ys

res0
1
2
3

0
1

0
1
2

/4/

/2/

/3/

HA

HA

FA

c0

c1

c2

Figure 5.3: Schematic for addBin with 2-bit and 3-bit inputs, and a constant ’0’ carry input

We can identify the adder’s composition in terms of half-adders and full-adders
(annotated as HA and FA respectively). This example performs addition on a 2-bit
input and a 3-bit input, with the carry input tied to a constant zero. As we may expect,
the first output bit comes from a half-adder (since there is no carry input to handle).
The second stage appears as a full-adder, while the final stage is another half-adder
since the corresponding bit derived from the xs input is a constant zero. The only
oddity after synthesis is that the intermediate carry signals are negated, although this
is compensated for later in the schematic at no intrinsic cost.

Although our steps into hardware description thus far are quite reserved, we have
fully demonstrated its overall methodology in microcosm: describing suitable data
types, defining structures over those types, and generating a netlist.

99

5 . 2 M IN IMAL T Y P E - L E V E L GUARANT E E S :
TOWARD S A COMB INATOR I A L DOT P RODUC T

5 . 2 . 2 An unsigned multiplier

Now that we have introduced the basic patterns for describing circuits over the Bin
type, we can quite quickly start to realise more complex designs. The implementation
of a hardware multiplier for Bins should require a modest number of lines once we
have a feel for its inductive structure.

Figure 5.4 shows one architecture for an array multiplier. It is clear that the approx-
imate structure is similar to a cascade of n, m-bit adders (like the one introduced in
Figure 5.2), but the exact inductive pattern might merit some extra inspection. We can
imagine such an array multiplier being defined by recursion only on its first operand
(labelled as ‘a’ in Figure 5.4) while passing through ‘b’ untouched. Each inductive step
generates a single new output bit and routes it to the current Least Significant Bit (LSB)
position — bits c0 → c3 are examples of this. All other intermediate accumulated bits
(shown as blue lines in Figure 5.4) are routed through to a recursive call. Our base
case, when there are no remaining bits in the first operand, is to simply return any
accumulated bits (see bits c4 → c7, for example).

This description can be quite directly translated to toatie, noting that we expect an
(n+m)-bit output for n-bit and m-bit inputs. Wewill also include an m-bit accumulator
argument, although this will usually be set to zeros by the caller. An implementation
of this in Listing 5.5 reinforces many of the characteristics we have been growing accus-
tomed to. These include the use of staging annotations to safely elaborate our recursive
structure, the use of inaccessible patterns to safely refine the shape of circuit run-time
variables (e.g. our J BinNil K and J BinCons _ xs x K patterns), and the use of an in-
line case statement to conveniently decompose an intermediate result. Perhaps the only
new construct we introduce for the multiplier is the difference between our two uses
of case statements. The case on line 13 of Listing 5.5 incurs no extra logic in our final
circuit. The type checker is satisfied that the scrutinee will always match the BinCons
constructor, so this check will not have to be performed again at circuit run-time. For
the case on line 10 of the same listing, there are multiple valid choices and we will not
be able to tell which branch to take until the circuit’s run-time. This implies that both
branches should appear in the netlist, and a multiplexer will select the correct branch
at circuit run-time. Indeed, omitting either of these branches (lines 11 and 12) from our
definition of mulBin will result in a compiler error — all choice constructs should be
covering, and since we encode circuits as plain functions, the type checker can easily
help enforce this.

100

5 . 2 M IN IMAL T Y P E - L E V E L GUARANT E E S :
TOWARD S A COMB INATOR I A L DOT P RODUC T

b
b0b2b3 b1

HA HA HA HA

a

a0

000 0

0

b
b0b2b3 b1

FA FA FA HA

a1

0

b
b0b2b3 b1

FA FA FA HA

a2

b
b0b2b3 b1

FA FA FA HA

a3

c1c4c5c6 c3
c

c2

0

0

c0

(2
×

4)
-b
it m

ul
tip

lie
r

c7

(3
×

4)
-b
it m

ul
tip

lie
r

Figure 5.4: Structure of a 4× 4 array multiplier

5 . 2 . 3 A dot product and structure with higher-order functions

To conclude our circuit family implementations for this section, we want to compose
our multipliers and adders into a dot product. This is in part to realise a common,
non-trivial building block of many DSP applications, but also to introduce the use of
higher-order functions to abstract the structure of a circuit. Since functions are a first
class element of toatie, we are free to pass function-valued arguments to and from
other functions. This allows us to separate the structure of a circuit with a regular
pattern from the behaviour of the repeated subcircuit. This separation allows us to try
radically different structures very easily, encouraging a thorough exploration of the
design-space.

Figure 5.5 introduces 3 common examples of higher-order functions. In each case,
the behaviour of the subcircuit, f, is left as a parameter and only the structure of the
full circuit is described by the higher-order function.

101

5 . 2 M IN IMAL T Y P E - L E V E L GUARANT E E S :
TOWARD S A COMB INATOR I A L DOT P RODUC T

Listing 5.5: An unsigned multiplier

1 mulBin : (n, m : Nat) → (acc : 〈Bin n 〉) → 〈Bin n 〉 → 〈Bin m 〉 →
2 〈Bin (plus n m) 〉
3 -- Base case: return accumulator
4 pat m, acc, ys ⇒
5 mulBin Z m acc J BinNil K ys = acc
6 -- Inductive case: add gated row to accumulator ,
7 -- return LSB, and then recurse
8 pat n, m, acc, xs, x, ys ⇒
9 mulBin (S n) m acc J BinCons {_} xs x K ys

10 = J let row : Bin m = case x of
11 I =⇒ ~ys
12 O =⇒ ~(zeroBin _)
13 in case ~(addBin' _ J O K J row K acc) of
14 pat zs, z ⇒
15 (BinCons {_} zs z) =⇒
16 BinCons {_} ~(mulBin _ _ J zs K J xs K ys) z
17 K

We consider versions of Figure 5.5’s map, zipWith, and foldr functions defined
over the Vect type (first introduced in Listing 3.6):

map applies a function to every element of a Vect.

zipWith combines two Vects, element-wise, with a given function.

foldr accumulates an output by repeated application of a function with every
element of a Vect.

A dot product operation (∑n−1
i=0 aibi, also visualised in Figure 5.1) can be considered

as a sequence of a zipWith to multiply element pairs, followed by an adder chain re-
alised with foldr. There is, however, one inconspicuous challenge that arises with the
adder chain. Indeed, this is likely the first actually challenging typing scenario that
a programmer familiar with Haskell-inspired HDLs (such as CλaSH) will encounter.
When we try to construct a foldr to replicate our adder, there is a type error: the
standard definition of foldr expects the accumulated value between each addition to
have the same type. Our adder explicitly grows the wordlength, with the inconvenient
consequence of ensuring that the output type will always be different from its operand
types. We must fall back on dependent types here, allowing us to parameterise the
accumulator type by the fold’s current stage (a function called the “motive”).

This challenge, although subtle, feels inevitable when working with data types in-
dexed by their length. Especially so when our basic arithmetic building blocks impact
these lengths. While this is addressed in CλaSHwith a special purpose function using
singleton natural numbers (see discussion of dfold in [51]), our dependently typed

102

5 . 2 M IN IMAL T Y P E - L E V E L GUARANT E E S :
TOWARD S A COMB INATOR I A L DOT P RODUC T

a

f

a0

b0

f

an−2

bn−2

f

an−1

bn−1

f

an−3

bn−3
b

b = map f a

…

a

f

a0

f

an−2

f

an−1

f

an−3

c = foldr f b a

…b c

a
a0an−2an−1 an−3

c = zipWith f a b

…
b

b0bn−2bn−1 bn−3

f

c0

f

cn−2

f

cn−1

f

cn−3
c

Figure 5.5: Structure of three common higher-order functions: map, zipWith, and foldr

Listing 5.6: Type definitions of our simply typed (left) and dependently typed (right) foldr

1 vfoldr :
2 (n : Nat) → {a,b : Type} →
3
4 (f : 〈a 〉 → 〈b 〉 → 〈b 〉) →
5
6 --^ Step function
7 (init : 〈b 〉) →
8 〈 Vect n a 〉 → 〈b 〉

1 vdfoldr :
2 (n : Nat) → {a : Type} →
3 (p : Nat → Type) →
4 --^ Motive
5 (f : (i : Nat) → 〈a 〉 →
6 〈p i 〉 → 〈p (S i) 〉) →
7 --^ Step function
8 (init : 〈p 0 〉) →
9 〈 Vect n a 〉 → 〈p n 〉

language permits such a function to be user-defined without special compiler support
or restriction to singleton natural numbers.

Listing 5.7 shows an implementation of a dot product circuit, whose structure is
defined by element-wise multiplication via zipWith and an adder chain via a depen-
dently typed vdfoldr.

103

5 . 2 M IN IMAL T Y P E - L E V E L GUARANT E E S :
TOWARD S A COMB INATOR I A L DOT P RODUC T

Listing 5.7: A dot product implementation for Bin

1 -- Dot product using higher order functions on vect
2 dotProdBin : (i,n,m : Nat) →
3 〈 Vect i (Bin n) 〉 →
4 〈 Vect i (Bin m) 〉 →
5 〈Bin (plus i (plus n m)) 〉
6 pat i, n, m, xs, ys ⇒
7 dotProdBin i n m xs ys
8 = J let muls = ~(vzipWith _ {_} {_} {_} (mulBin _ _ (zeroBin m)) xs ys)
9 in ~(vdfoldr _ {_}

10 (λi ⇒ Bin (plus i (plus n m))) -- The `motive`
11 (λi ⇒ λx ⇒ λy ⇒ addBin' (plus i (plus n m)) J O K
12 (resizeBin (plus n m) _ x) y)
13 (zeroBin _) J muls K
14)
15 K

The start of this section claimed that the use of higher-order functions can aid
design-space exploration. As evidence, it is trivial for us to replace the linear adder
chain in the previous example with an adder tree structure. This should reduce the
number of adders required and better reflect the worst-case output wordlength for
any Vect of words with a power-of-two length. For completeness, Listing 5.8 shows
such an implementation, along with the type definition for the binary tree version of
foldr. All of these higher-order functions for Vect would be supplied as part of a
standard library.

Listing 5.8: An alternative dot product with an adder tree

1 -- Type for a dependently typed fold for a binary tree
2 vdtfoldr : (n : Nat) → {a : Type} →
3 (p : Nat → Type) →
4 (a → p 0) →
5 (f : (i : Nat) → 〈p i 〉 → 〈p i 〉 → 〈p (S i) 〉) →
6 〈 Vect (pow 2 n) a 〉 → 〈p n 〉
7
8 -- An alternative dot product with an adder tree structure
9 dotProdTreeBin : (i,n,m : Nat) →

10 〈 Vect (pow 2 i) (Bin n) 〉 →
11 〈 Vect (pow 2 i) (Bin m) 〉 →
12 〈Bin (plus i (plus n m)) 〉
13 pat i, n, m, xs, ys ⇒
14 dotProdTreeBin i n m xs ys
15 = J let muls = ~(vzipWith _ {_} {_} {_} (mulBin _ _ (zeroBin m)) xs ys)
16 in ~(vdtfoldr _ {_}
17 (λi ⇒ Bin (plus i (plus n m)))
18 (λx ⇒ x)
19 (λi ⇒ addBin' _ J O K)
20 J muls K)
21 K

104

5 . 2 M IN IMAL T Y P E - L E V E L GUARANT E E S :
TOWARD S A COMB INATOR I A L DOT P RODUC T

5 . 2 . 4 Summary for examples with minimal type-level guarantees

To summarise Section 5.2, we have introduced the fundamentals of describing combi-
natorial circuits in a multi-stage language with dependent types, such as toatie. This
was presented in the practical context of constructing a dot product circuit from first
principles — starting without a definition of bits, nor unsigned addition.

Ignoring the specific features in the surface language for a moment, we have met
some, perhaps unusual, general approaches to hardware description. For example, we
introduce many circuit families via recursion. Although this may feel alien to many
digital designers, many real-world structures are elegantly described this way (such
as our FFT example introduced in Section 5.4.4) but are quite cumbersome to capture
with imperative ‘for generate’ statements. Such descriptions can otherwise be im-
possible for an algorithm’s most general case. Alongside this, we have briefly seen
use of the completely user-defined elaboration of circuits. Not only can we elaborate
recursive calls to a circuit function, we can write higher order functions to elaborate
an arbitrary pattern of subcircuits. Capturing our descriptions in this way offers the
possibility of radically changing a circuit’s structure with relative ease. This lowers the
barrier for structural changes to a circuit and encourages a more thorough exploration
of a circuit’s design-space.

At this point, we do not make a detailed comparison to traditional and existing
HDLs since most of our circuits thus far are possible to describe in such tools. Our
limited application of dependent types has just support circuit synthesis, rather than
functional verification. We have tracked the width of a bit vector at the type-level, en-
suring that toatie can synthesise a finite circuit representation for our data types; we
cannot synthesise a collection of unknown/dynamic length to a fixed bit representa-
tion.

However, we do still uncover some early advantages in toatie’s approach. We
can define computations over these type-level widths using standard, plain functions.
Programmatic control of even just wordlength growth in these early examples enables
us to avoid:

1. Awkward circuit family patterns in VHDL or Verilog, which instead encourage
the designer towrite an ad hoc description of one specialised circuit. For example,
difficulty in encoding the heterogeneous collection required to properly model
the accumulator widths along the dot product adder chain.

2. Dynamically sized circuit families, without the confidence provided by a static
type checker, as in Lava descriptions.

105

5 . 3 GUARANT E E I NG M IN IMUM WORDL ENGTH S :
E X P LOR ING A C I RCU I T FAM I LY ’ S NON - FUNC T I ONAL P RO P E RT I E S

3. The complex ecosystem of language extensions and special syntaxes required
to equip Haskell with a subset of dependent types. CλaSH does, however, pro-
vide an excellent templated standard library to facilitate many common circuit
patterns (including all of our examples so far).

Our encounter with vdfoldr when implementing the dot product’s adder chain
was one particularly clean-cut demonstration of the need for dependent types when
workingwith type-safe circuit description. Again, this is something provided in a stan-
dard library for projects such as CλaSH, but dependent types allow the developer to
describe such structures directly in the source language.

Moving forward, we investigate how a designer can choose to lean more heavily
on the type system. This is very much a choice: the methodology that was presented
in this section is often a sensible approach for simple designs with no high-assurance
requirements. Beyond this, when appropriate we can choose to exploit our type sys-
tem for either verification purposes (Section 5.4) or to improve a circuit family’s non-
functional properties, such as its area, by more precisely encoding their data’smeaning
in its type (Section 5.3).

5 . 3 GUARANTE E ING M IN IMUM WORDLENGTHS :
E X P LOR ING A C I RCU I T FAM I LY ’ S NON - FUNCT IONAL PROP ERT I E S

One important benefit of dependent types is the ability to encode more information
about some data’s meaning in its type. This section demonstrates such a use of depen-
dent types by refining our unsigned binary data type, indexing it by its length and the
known upper bound of its Natural number encoding. We will see how we can better
model wordlength growth in our circuit families before external elaboration, synthe-
sis, or placement and routing. This either lets us improve on a routed circuit’s area, or
at least gives us a better environment to reason about non-functional properties.

Using the FIR filter example presented back in Figure 5.1, an new circuit with im-
proved wordlengths could be described for two reasons:

1. Each arithmetic operation was considered in isolation. Repeated additions will
accumulate quantisation effects when the range of a number does not align with
powers of 2. For example, y in Figure 5.1 will only inhabit valueswithin the range
[[0, 215 − 1]], despite its 16b annotation.

2. The coefficients will often be constants. In this case, the bit growth due to multi-
plication will vary with the numerical value of each constant coefficient.

106

5 . 3 GUARANT E E I NG M IN IMUM WORDL ENGTH S :
E X P LOR ING A C I RCU I T FAM I LY ’ S NON - FUNC T I ONAL P RO P E RT I E S

The latter is particularly relevant, as it clearly demands a language with dependent
types — a term-level value (a coefficient) must be used to compute a type (the output
wordlength).

Better bit growth is facilitated by types that also track the numerical range each
signal can inhabit, rather than immediately rounding to the required number of bits
(i.e. tracking a range, 0→ r, rather than 0→ dlog2(1 + r)e). Our Bounded type in List-
ing 5.9 implements this, where a number of type ‘Bounded n w’ is a w-bit unsigned
binary number, encoding a value in the closed interval [[0, n]] (i.e. any value between 0
and n, inclusive). Notice that the only data constructor for Bounded requires an argu-
ment which is a proof that w = dlog2(1 + n)e. This argument is marked as irrelevant
and will be erased from the circuit after type checking. It does, however, provide ev-
idence that every single Bounded value we construct will have exactly the minimum
number of bits that its range requires. Trying to declare a Bounded value with extra
leading bits will result in a type error (since we cannot generate a valid proof), and
so will constructing a value with fewer bits than needed to encode the full range. We
will most often encounter words whose width is definitionally dlog2(1 + n)e, so the
function Bounded' provides this as a type alias.

Listing 5.9: A unsigned binary data type indexed by its upper bound and wordlength

1 simple Bounded : Nat → Nat → Type where
2 MkB : {n, w : Nat} → {prf : Equal Nat w (clog2 (S n))} →
3 Bin w → Bounded n w
4
5 Bounded' : (n : Nat) → Type
6 pat n ⇒
7 Bounded' n = Bounded n (clog2 (S n))

Now we can define some arithmetic building blocks quite simply, noting that our
Bounded type is essentially awrapper around Bin with an extra proof relating its upper
bound to its wordlength. Listing 5.10 defines functions for addition of two Boundeds
and multiplication of a constant and a Bounded. Each of these is a wrapper around the
respective function on the more general Bin type, resizing the outputs to the required
length. Note that the use of the resizing operation is not guaranteed to maintain the
arithmetic encoding of its argument; the developer is choosing to rely on their own
reasoning outside of toatie in this case. We address a scenario where the full arith-
metic meaning is modelled in the language throughout Section 5.4. The reader can
find a discussion of a similar constant multiplication circuit there too — we omit the
definition of mulConstBin here for brevity.

The interesting part of the above functions is their type definitions. For our adder,
addB, the output can inhabit the range [[0, n + m]] for any inputs with ranges [[0, n]] and

107

5 . 3 GUARANT E E I NG M IN IMUM WORDL ENGTH S :
E X P LOR ING A C I RCU I T FAM I LY ’ S NON - FUNC T I ONAL P RO P E RT I E S

Listing 5.10: Minimum bit growth for Bounded arithmetic functions

1 addB : (n, m : Nat) → 〈Bounded' n 〉 → 〈Bounded' m 〉 → 〈Bounded' (plus n m) 〉
2 pat n, m, xs, ys ⇒
3 addB n m J MkB {n} {_} {_} xs K J MkB {m} {_} {_} ys K
4 = J let ans = ~(addBin _ _ J O K J xs K J ys K)
5 in MkB {_} {_} {Refl {_} {_}} ~(resizeBin _ _ J ans K)
6 K
7
8 mulConstB : (n, c : Nat) → 〈Bounded' n 〉 → 〈Bounded' (mul c n) 〉
9 pat n, c, xs ⇒

10 mulConstB n c J MkB {n} {_} {_} xs K
11 = J let ans = ~(mulConstBin _ c J xs K)
12 in MkB {_} {_} {Refl {_} {_}} ~(resizeBin _ _ J ans K)
13 K

[[0, m]]. This often infers fewer bits than our wordlength-directed implementation from
Section 5.2. An important aspect is that the type-level range will propagate to succes-
sive function applications, for example, further reducing wordlengths along an adder
chain. As a more extreme example, multconstB will multiply a Bounded by a natural
number coefficient. It is the value of this coefficient that directs our output range and
wordlength, dramatically improving our analysis of wordlengths in FIR filters with
constant coefficients.

Our next step is to compose these arithmetic building blocks into a dot product
circuitwithminimalwordlengths. Let’s consider the dot product equation and attempt
to construct a precise output type, capturing our expected range. Equation (5.1) shows
a dot product of j coefficients (w) and j elements of a vector (x).

y[k] =
j−1

∑
i=0

wi · x[k−i] (5.1)

For our output type, let’s consider the worst-case magnitude of each term in Equa-
tion (5.1) — restricting all x inputs to the same worst-case range. This is not too restric-
tive in our context, since this will always be the case for dot product based FIR exam-
ples (we have no a priori knowledge of the input signal). Besides, we do encounter
an FFT example in Section 5.4.4 which does discuss descriptions with heterogeneous
collections of ranges/wordlengths. In our case, the range of x[k] is constant for all k, so
the output type can become:

|y[k]| = |x[k]|
j−1

∑
i=0
|wi| (5.2)

108

5 . 3 GUARANT E E I NG M IN IMUM WORDL ENGTH S :
E X P LOR ING A C I RCU I T FAM I LY ’ S NON - FUNC T I ONAL P RO P E RT I E S

From this, we can deduce that a valid type for the dot product function is Bounded'
(mul n (sum j ws)), given a collection of j coefficients, Vect' j Nat called ws, and
a collection of j samples of x, Vect j (Bounded' n). Note that sum is an ordinary
function and, once more, it is a consequence of dependent types that we can use it to
construct a type for the dot product output.

Listing 5.11 gives one interpretation of this dot product. We could have generalised
this with a new dependently typed fold (with intermediate types indexed by the pre-
ceding portion of the vector) but instead opt for basic recursion for simplicity.

Listing 5.11: A dot product with minimum wordlengths

1 dotProd : (j,n : Nat) → (ws : Vect' j Nat) →
2 〈 Vect j (Bounded' n) 〉 →
3 〈Bounded' (mul n (sum j ws)) 〉
4 pat n, xs ⇒
5 dotProd Z n (VNil' {_}) xs = J MkB {_} {_} {Refl {_} {_}} ~(zeroBin _) K
6 pat j, n, w, ws, x, xs ⇒
7 dotProd (S j) n (VCons' {_} {_} w ws) J VCons {_} {_} x xs K
8 = J let y = ~(addB _ _ (mulConstB _ w J x K)
9 (dotProd _ _ ws J xs K))

10 in eqInd2 {_} {_} {_} {lemmaDotProd n w (sum j ws)}
11 {λh ⇒ Bounded' h} y
12 K

We address the distinction between Vect and Vect' first of all. We have already
met the synthesisable, “simple” type, Vect. We use a variant of this, Vect', for our
coefficients which is not synthesisable. This is, unfortunately, a requirement since pa-
rameter types and simple types share one namespace, and simple types cannot appear
in a dependently typed setting: i.e. a circuit’s shape cannot depend on something syn-
thesisable. Other than the type and data constructors having an apostrophe appended
to their names, they are equivalent in practice.

The second point of note is that we construct our output, given the name ‘y’, before
rewriting its type with some proof, lemmaDotProd. To understand why this proof is
necessary, Listing 5.12 demonstrates the pertinent part of the type error thrown in the
absence of this coercion.

Listing 5.12: An excerpt of the type error given by dotProd without our proof

Constraints:
(plus (mul w[4] n[5]) (mul n[5] (sum j[6] ws[3])))
~~~
(mul n[5] (plus w[4] (sum j[6] ws[3])))

This constraint tells the developer that the typesmight align, but we need to demon-
strate that w × n + n × ∑ ws is equivalent to n × (w + ∑ ws). Essentially we need to

109



5 . 3 GUARANT E E I NG M IN IMUM WORDL ENGTH S :
E X P LOR ING A C I RCU I T FAM I LY ’ S NON - FUNC T I ONAL P RO P E RT I E S

provide evidence to the type checker that the multiplication of Nats is distributive and
commutative. This arises because, although we can intuit that the two equations are
equivalent, the structure of our definition is slightly different from the expectation set
by our types. The type of the dot product is defined as in Equation (5.2), andwhile our
recursive implementation is mathematically equivalent, it does have a subtly different
structure, as shown in Eq. 5.3 for the sth recursive step.

|y[k]| = |ws · x[k]|+ |x[k]|
j−1

∑
i=s+1

|wi| (5.3)

The goal of our rewrite rule, lemmaDotProd, is to demonstrate this equivalence:
Equation (5.2) ≡ Equation (5.3). We use two helper functions on proofs (eqInd2 and
eqSym) introduced back in Section 3.6 to demonstrate this equality. We start from the
reflexivity of w× n+ n×∑ ws. Thenwe apply two other rules, defined in our standard
library without any special treatment, to demonstrate the commutativity property of
w× n, and then the distributive property of n× (w+∑ ws). It is important to note that
both of these sub-proofs, called mulCommutative and mulDistributesOverPlusRight,
can be defined by the developer in our source language — the full source for each can
be found at [27].

Listing 5.13: The rewrite rule for our dot product

1 lemmaDotProd : (n, c, cs : Nat) →
2 Equal Nat (plus (mul c n) (mul n cs))
3 (mul n (plus c cs))
4 pat n, c, cs ⇒
5 lemmaDotProd n c cs
6 = let -- Start from (c∗n)+(n∗cs) = (c∗n)+(n∗cs)
7 h0 = Refl {_} {plus (mul c n) (mul n cs)}
8 -- Rewrite c∗n to n∗c in RHS
9 h1 = eqInd2 {_} {_} {_} {mulCommutative c n}

10 {λh ⇒ Equal Nat (plus (mul c n) (mul n cs))
11 (plus h (mul n cs))}
12 h0
13 -- Rewrite (n∗c)+(n∗cs) to n∗(c+cs) in LHS
14 h2 = eqInd2 {_} {_} {_}
15 {eqSym {_} {_} {_} (mulDistributesOverPlusRight n c cs)}
16 {λh ⇒ Equal Nat (plus (mul c n) (mul n cs)) h}
17 h1
18 in h2

This step in our implementation is worth lingering on for a little while. It is the first
instance of us using a dependently typed language to reason about the equivalence of
two expressions. Here, it is only used to demonstrate that our desired description for
wordlengths is met by our circuit’s definition (which has subtle structural differences).
At this point it may feel like an extra chore, satisfying the tooling but not benefiting

110



5 . 3 GUARANT E E I NG M IN IMUM WORDL ENGTH S :
E X P LOR ING A C I RCU I T FAM I LY ’ S NON - FUNC T I ONAL P RO P E RT I E S

ourselves, but later we can use the same techniques to reason about more interesting
properties for verification. For example:

1. Demonstrating that the arithmetic meaning of a circuit’s output always meets a
certain specification, e.g. an adder circuit always produces a binary word which
encodes the sum of its two operands and the carry input bit (Section 5.4.1).

2. Demonstrating equivalence between two arbitrary functions. For example, Sec-
tion 5.4.4 implements an optimised (radix-2 Cooley–Tukey) FFT circuit and then
proves that it matches the equation for the optimised FFT structure using bul-
let point 1). We then continue by proving that this optimised equation is to-
tally equivalent to the more straightforward, but computationally intense, direct
FFT implementation. In essence, reasoning about equivalence between two algo-
rithms, not just between our circuit family and its expected behaviour.

In summary, we have significantly tightened the ideas in Section 5.2 by leaning
more heavily on the type systemwithout much extra effort — ensuring that we always
implement the absolute minimum wordlengths throughout our dot product. If an im-
plementation failed to do so for any possible set of parameters, it will raise a type error,
seen both by the IP’s designer and the IP’s user. This gives a strong and clear contract
between the IP’s designer and the IP’s user. Errors for edge-case circuits within the
family are a common bug in traditional circuit generators, but we can identify such er-
rors statically. For example, we ensure that we handle zero coefficients or elimination
of complementary pairs as per the contract in Equation (5.2). We know exactly what
has been statically verified (the wordlength of the output given by certain inputs) and,
by inference, what has not been statically verified (the full arithmetic meaning of the
output in this case). Perhaps there will be more evidence of testing provided out-of-
band, but these should be taken with some trust placed in the original developer.

It is important to appreciate that tracking the wordlengths within a circuit is just
one of many non-functional properties of a circuit that can be tracked in a dependently
typed environment. Even just within the context of circuit area, we may choose to
model the resource usage more directly for a certain FPGA family. A dependently
typed language gives us the tools to encode a simple model for how addition can be
packed into 6-bit LUTs, as one example. We are also free to encode abstract cost mod-
els while evaluating different algorithms, without going through the lengthy place and
route process for each example circuit.

111



5 . 3 GUARANT E E I NG M IN IMUM WORDL ENGTH S :
E X P LOR ING A C I RCU I T FAM I LY ’ S NON - FUNC T I ONAL P RO P E RT I E S

5 . 3 . 1 Brief comparison to VHDL and Lava alternatives

Compare this dependently typed, minimum bit growth FIR filter to the implementa-
tions possible in other HDLs. A typical VHDL FIR filter can be parameterised in terms
of its coefficient values, the wordlength of the coefficients, and the input wordlength.
However, the bit growth is likely to beworse than even the scenario presented in Figure
5.1. Because of the lack of type inference or type-level generate statements in VHDL,
a common approach is to simply resize all arithmetic stages to match the worst-case
output width — heavily relying on synthesis tools to remove unused nets. We offer an
environment to reason about such non-functional properties in the source language
itself, rather than after the elaboration process in vendor EDA tools.

Although leaving this bit pruning to downstream tools is a valid design choice
when considering the filter in isolation, it presents practical difficulties for real designs.
The filter will usually be just one part of a larger chain of DSP circuits. At several points
along the data path, the full precision signals will be shortened to constrain resource
usage.

In this case, the designer may employ two strategies:

↪→ Truncation/rounding of the LSBs.

↪→ Removing uninhabited MSBs identified by Eq. 5.2.

The second option should be appealing as it can reduce wordlengths without loss
in precision, but it requires extramanual effort (for each coefficient set!) just to emulate
a static property of our toatie implementation.

There are also clear benefits above other modern functional HDLs, such as Lava
[93]. In Lava, a similar circuit can be described using dynamically sized lists of bits to
represent each word. It is then the execution of a (software) Haskell program that gen-
erates the circuit, since statically sized structures are required for most structural hard-
ware descriptions. In this case, the output circuitmight be equivalent to the toatie im-
plementation, but there are no guarantees about wordlengths checked by the compiler
— this is what we have addressed with dependent types. Similar benefits are demon-
strated in an adjacent domain; the language Proto-Quipper-D uses dependent types
to ensure properties about the structure of entire families of parameterised quantum
circuits [58]. Without these compiler checks, there is a large burden on the developer
to provide good evidence of testing.

112



5 . 4 FORMAL V E R I F I CAT I ON O F A C I RCU I T FAM I LY ’ S A R I THME T I C MEAN ING

5 . 4 FORMAL VER I F I CAT ION OF A C I RCU I T FAM I LY ’ S AR I THMET I C MEAN ING

The approaches to circuit description explored in Sections 5.2 and 5.3 are often satis-
factory, employing dependent types to naturally describe circuit structures precisely.
However, in a dependently typed HDL, the designer could also choose to tackle a cir-
cuit family’s implementation and its formal verification simultaneously.

This section demonstrates the extreme of a developer’s reliance on the type sys-
tem—ensuring full functional correctness. We use a correct-by-construction approach
where the fact that an implementation successfully type checks is evidence that its
functional behaviour matches our specification. This proof will often come “for free”
in this section’s later examples, once we have established a few arithmetic building
blocks. In the cases where manual theorem proving is required, we will see that more
designer effort is often required than alternativemodel checking techniques. However,
the theorem proving approach enables us to reason about entire, potentially infinite,
circuit families at once. We sidestep the state-space explosion encountered by tradi-
tional model checking methods.

The rest of this section follows the correct-by-construction development of a signed
dot product and a (radix-2 decimation-in-time) FFT circuit. The FFT example also
provides a proof showing the equivalence between the radix-2 Decimation-In-Time
(DIT) algorithm and the Discrete Fourier Transform (DFT).

5 . 4 . 1 A verified unsigned adder

We begin by considering an unsigned adder. This builds upon Brady’s work in [22]
by presenting a synthesisable example (with the required erasure and staging) rather
than just a model of the desired circuit behaviour. The remaining subsections extend
these ideas and apply them to larger DSP challenges.

Beginning the journey towards a verified unsigned adder circuit, we must intro-
duce some more precise data types for bits and unsigned words. In Section 5.3 we saw
an unsigned binary type indexed by its wordlength and its (potentially stricter) range.
In order for our circuits to be correct-by-construction, we want to index an unsigned
word by its wordlength and the exact natural number encoded by its bits.

Listing 5.14 presents a type for Bit, indexed by a Natural number encoding of
its value, and a type for Unsigned binary words, indexed by its wordlength and its
Natural number encoding. This is an extreme case of working with precise types— an
Unsigned’s indices uniquely identifies its value! That is to say, there is exactly one com-

113



5 . 4 FORMAL V E R I F I CAT I ON O F A C I RCU I T FAM I LY ’ S A R I THME T I C MEAN ING

Listing 5.14: A binary word indexed by its wordlength and encoded Nat

1 simple Bit : Nat → Type where
2 O : Bit 0
3 I : Bit 1
4
5 simple Unsigned : Nat → Nat → Type where
6 UNil : Unsigned 0 0
7 UCons : {width, val, b : Nat} →
8 Unsigned width val → Bit b →
9 Unsigned (S width) (plus b (double val))

bination of n bits that encodes a particular number (within the interval [[0, 2n− 1]]). As
a consequence, if we can satisfy the type checker when implementing a function over
Unsigned types, we can have total confidence in the arithmetic performed by that func-
tion.

Note that we append Bits to the least significant side of a Unsigned word. This
choice is quite arbitrary, but does result in a slightly simpler inductive description of
our Nat encoding. Appending a bit (b) to the left of a word (x) is equivalent to a
shift-and-add rule (b + 2x), whereas appending to the right would also depend on the
word’s currentwidth. Also note that toatie will happily synthesise descriptions using
Unsigned types where the val argument is unknown (left as an irrelevant argument)
since, even without val, we can directly infer a fixed bit representation from the width
index alone. This is the common case— it would be quite rare to know the exact value
encoded by a run-time input a priori!

Let’s revisit our full adder implementation. In contrast to Listing 5.2, addBit is now
dependently typed, precisely guaranteeing that the pair of output bits will represent
the sum of the two operands and the carry input.

Like before, we describe the full adder in look-up table style. The main difference
is that we return a BitPair which now includes a proof that the encoding of our bit
pair (BaBb) is exactly b + 2a. This proof will be used when constructing the adder for
Unsigned operands shortly. For now, notice that it is marked as irrelevant (and will be
erased before the netlist is generated) and we can just use reflexivity to demonstrate
this proof for all cases in the single-bit full adder. With this implementation, changing
any of the output bits erroneously will result in a type error, since the output is no
longer equivalent to c + (x + y). This is what we mean by the term “correct by con-
struction” — a function with incorrect behaviour is guaranteed to fail type checking.

Let’s compose these full adders into an adder for w-bit Unsignedwords. Listing 5.16
shows a partial implementation of this function, leaving a hole for the final output. The

114



5 . 4 FORMAL V E R I F I CAT I ON O F A C I RCU I T FAM I LY ’ S A R I THME T I C MEAN ING

Listing 5.15: A verified full adder

1 simple BitPair : Nat → Type where
2 MkBitPair : {a,b,c : Nat} →
3 {prf : Equal Nat (plus b (double a)) c} →
4 Bit a → Bit b → BitPair c
5
6 addBit : {c,x,y : Nat} → Bit c → Bit x → Bit y →
7 BitPair (plus c (plus x y))
8 addBit {_} {_} {_} O O O = MkBitPair {0} {0} {0} {Refl {_} {_}} O O
9 addBit {_} {_} {_} O O I = MkBitPair {0} {1} {1} {Refl {_} {_}} O I

10 addBit {_} {_} {_} O I O = MkBitPair {0} {1} {1} {Refl {_} {_}} O I
11 addBit {_} {_} {_} O I I = MkBitPair {1} {0} {2} {Refl {_} {_}} I O
12 addBit {_} {_} {_} I O O = MkBitPair {0} {1} {1} {Refl {_} {_}} O I
13 addBit {_} {_} {_} I O I = MkBitPair {1} {0} {2} {Refl {_} {_}} I O
14 addBit {_} {_} {_} I I O = MkBitPair {1} {0} {2} {Refl {_} {_}} I O
15 addBit {_} {_} {_} I I I = MkBitPair {1} {1} {3} {Refl {_} {_}} I I

structure of this function is identical to the adder introduced back in Section 5.2.1, but
we have slightly more work ahead of us here.

Listing 5.16: A partial implementation of a verified unsigned adder family

1 addU : (w : Nat) → {x,y,c : Nat} →
2 〈 Unsigned w x 〉 → 〈 Unsigned w y 〉 → 〈Bit c 〉 →
3 〈 Unsigned (S w) (plus c (plus x y)) 〉
4
5 pat c, cin ⇒
6 addU 0 {0} {0} {c} J UNil K J UNil K cin
7 = J UCons {_} {0} {c} UNil ~cin K
8
9 pat w, c, xsn, xn, xbs, xb, ysn, yn, ybs, yb, cin ⇒

10 addU (S w) {_} {_} {c} J UCons {w} {xsn} {xn} xbs xb K
11 J UCons {w} {ysn} {yn} ybs yb K cin
12 = J case (addBit {_} {_} {_} ~cin xb yb) of
13 pat a, b, prf, cin', lsb
14 ⇒ (MkBitPair {a} {b} {_} {prf} cin' lsb) =⇒
15 let rec = ~(addU _ {_} {_} {_} J xbs K J ybs K J cin' K )
16 ans = UCons {_} {_} {_} rec lsb
17 in _
18 K

Given our past experience implementing adders, we might expect ans to be ac-
cepted as “correct”. However, looking at toatie’s output upon encountering the hole,
the type of ans does not align with the type that our function expects to return.

The challenge we are left with is to demonstrate to the type checker that our at-
tempt’s Nat encoding, similar to b + 2(a + (xsn + ysn)) is equivalent to the expected
form, similar to c + ((xn + 2xsn) + (yn + 2ysn)). In isolation, this seems impossible
but we also have the proof supplied with our BitPair in scope, justifying the relation-
ship between a, b, xn, and yn. Before we dive into the specifics of this proof in toatie,

115



5 . 4 FORMAL V E R I F I CAT I ON O F A C I RCU I T FAM I LY ’ S A R I THME T I C MEAN ING

Listing 5.17: An excerpt of toatie’s output for addU

Holes:
w :0 Nat
c :0 Nat
xsn :0 Nat
xn :0 Nat
ysn :0 Nat
yn :0 Nat
a :1 Nat
b :1 Nat
prf :1 (Equal Nat (plus b[0] (plus a[1] a[1]))

(plus c[11] (plus xn[9] yn[5])))
ans :1 (Unsigned (S (S w[16]))

(plus b[4] (plus (plus a[5] (plus xsn[14] ysn[10]))
(plus a[5] (plus xsn[14] ysn[10])))))

--------------------------------
{_:1310} : (Unsigned (S (S w[17]))

(plus c[16] (plus (plus xn[14] (plus xsn[15] xsn[15]))
(plus yn[10] (plus ysn[11] ysn[11])))))

it may be helpful to attempt the proof with pen-and-paper. We offer one solution be-
low, only assuming the associativity of addition and a lemma to commute pairs of
additions.

Lemma 5.4.1. ∀i, j, k ∈ N the expression i + (j + k) is equal to (i + j) + k.

Lemma 5.4.2. ∀i, j, k, l ∈ N the expression (i + j) + (k + l) is equal to (i + k) + (j + l).

Proof. Let a, b, c, xsn, xn, ysn, yn ∈ N where b + (a + a) = c + (xn + yn). So,

b+((a + (xsn + ysn)) + (a + (xsn + ysn))) (Lemma 5.4.2)
= b + ((a + a) + ((xsn + ysn) + (xsn + ysn))) (Lemma 5.4.1)
= (b + (a + a)) + ((xsn + ysn) + (xsn + ysn)) (substituting variables)
= (c + (xn + yn)) + ((xsn + ysn) + (xsn + ysn)) (Lemma 5.4.2)
= (c + (xn + yn)) + ((xsn + xsn) + (ysn + ysn)) (Lemma 5.4.1)
= c + ((xn + yn) + ((xsn + xsn) + (ysn + ysn))) (Lemma 5.4.2)
= c + ((xn + (xsn + xsn)) + (yn + (ysn + ysn)))

Assuming that we already have functions proving these two lemmas (toatie’s
standard library does), we can directly translate this proof to a definition in toatie.
We can start from the reflexivity of the LHS, and then for every step in the proof above,
we use eqInd2 to incrementally rewrite part of our expression until we reach the RHS.
While verbose, Listing 5.18 shows the full implementation of this proof in toatie.

116



5 . 4 FORMAL V E R I F I CAT I ON O F A C I RCU I T FAM I LY ’ S A R I THME T I C MEAN ING

Listing 5.18: Lemma for our unsigned adder

1 lemmaAddU : (c, xb, yb, a, b, xsb, ysb : Nat) →
2 (prf : Equal Nat (plus b (double a)) (plus c (plus xb yb)) ) →
3 (Equal Nat
4 (plus b (double (plus a (plus xsb ysb))))
5 (plus c (plus (plus xb (double xsb)) (plus yb (double ysb))))
6 )
7 pat c, xb, yb, a, b, xsb, ysb, prf ⇒
8 lemmaAddU c xb yb a b xsb ysb prf
9 = let h0 = Refl {_} {plus b (double (plus a (plus xsb ysb)))}

10 h1 = eqInd2 {_} {_} {_}
11 {plusPairsCommutative a (plus xsb ysb) a (plus xsb ysb)}
12 {λn ⇒ Equal Nat (plus b (double (plus a (plus xsb ysb))))
13 (plus b n)
14 } h0
15 h2 = eqInd2 {_} {_} {_}
16 {plusAssociative b (double a) (double (plus xsb ysb))}
17 {λn ⇒ Equal Nat (plus b (double (plus a (plus xsb ysb))))
18 (n)
19 } h1
20 h3 = eqInd2 {_} {_} {_}
21 {prf}
22 {λn ⇒ Equal Nat (plus b (double (plus a (plus xsb ysb))))
23 (plus n (double (plus xsb ysb)))
24 } h2
25 h4 = eqInd2 {_} {_} {_}
26 {plusPairsCommutative xsb ysb xsb ysb}
27 {λn ⇒ Equal Nat (plus b (double (plus a (plus xsb ysb))))
28 (plus (plus c (plus xb yb)) n)
29 } h3
30 h5 = eqInd2 {_} {_} {_}
31 {eqSym {_} {_} {_} (plusAssociative c (plus xb yb)
32 (plus (double xsb) (double ysb)))}
33 {λn ⇒ Equal Nat (plus b (double (plus a (plus xsb ysb))))
34 (n)
35 } h4
36 h6 = eqInd2 {_} {_} {_}
37 {plusPairsCommutative xb yb (double xsb) (double ysb)}
38 {λn ⇒ Equal Nat (plus b (double (plus a (plus xsb ysb))))
39 (plus c n)
40 } h5
41 in h6

The developer is free (and encouraged) to construct such proofs interactively with
the assistance of the type checker. Instead of trying to come up with a complete proof
atomically, Listing 5.18 was constructed one step at a time, leaving the output as a hole
each time. This lets us see a summary of every name available in our scope and their
normalised types while incrementally working towards our goal. The type checker’s
normalisation process can often simplify proof obligations through evaluation too.

We can now complete the implementation of the adder by using eqInd2 and this
lemma to rewrite the type of ans. Our types ensure the behaviour matches the defini-

117



5 . 4 FORMAL V E R I F I CAT I ON O F A C I RCU I T FAM I LY ’ S A R I THME T I C MEAN ING

tion of plus for natural numbers. Here we have a stronger guarantee than traditional
dynamic verification using testbenches — we prove correct behaviour completely, not
just for a finite number of test cases. Our evidence is also stronger than static model
checking techniques since it applies to every width of adder within our circuit family.

Now that we’ve completed the definition of a simple circuit family, we continue
by exploring more complex circuits while only highlighting each of their unique chal-
lenges. Full source code for each example is available at [27].

5 . 4 . 2 Signed arithmetic

Our second stop on the tour of verified arithmetic circuits explores the differences en-
countered when implementing a signed adder. The overall methodology remains the
same, but the data types are slightly different and there are some interesting edge cases
which we encounter. The latter, in particular, helps expand our tool belt of theorem
proving strategies.

If we wish to index a signed binary word by the numeric value it encodes, we must
move away from the comfort of Natural numbers and towards an integer type. We
present this inductive integer type as ZZ (a typographical pun on Z) in Listing 5.19.

Listing 5.19: A definition for our integer data type

1 data ZZ : Type where
2 -- A positive Nat
3 Pos : Nat → ZZ
4 -- The negated successor of a Nat
5 NegS : Nat → ZZ

We define an integer as, in essence, a Nat or a negated Nat. The only nuance is that
we actually define the latter option as the negation of the successor of a Nat — pre-
cluding the embarrassing case of having two valid representations of zero. Functions
and proofs using ZZ terms are defined very similarly to those with Nats, usually only
needing cases for zero, the positive successor, and the negative successor.

We can define a signed binary word data type, indexed by its integer encoding.
Listing 5.20 gives an example of this, introducing a new data constructor, SMsb, which
enforces the negative weighting associated with the most significant bit in the 2’s com-
plement scheme. Note that the data constructor for appending a bit to the left of an
existing signed word, SCons, has a type which ensures that we can never accidentally
begin a signed word with a positively weighted bit on the right.

118



5 . 4 FORMAL V E R I F I CAT I ON O F A C I RCU I T FAM I LY ’ S A R I THME T I C MEAN ING

Listing 5.20: A definition for our signed binary word type

1 simple Signed : Nat → ZZ → Type where
2 -- Empty word
3 SNil : Signed 0 (Pos 0)
4 -- Single MSB with a negative weighting
5 SMsb : {b : Nat} → Bit b → Signed 1 (negateZ (Pos b))
6 -- Append LSB with positive weighting
7 SCons : {width, b : Nat} → {val : ZZ} →
8 Signed (S width) val → Bit b →
9 Signed (S (S width)) (plusZ (Pos b) (doubleZ val))

Perhaps the usefulness of representing emptywords (via SNil) is questionable, but
we retain it for completeness. We can then properly handle situations such as encoding
the result of a multiplication with a zero constant — commonplace in the half-band
filters from Chapter 4.

We conclude by recounting two interesting verification challenges exposed by the
signed adder. First of all, we are immediately confronted with a consequence of allow-
ing empty signed words! While an adder for empty inputs was our base case for un-
signed addition, consider the type we might attempt to write for a 0-bit signed adder:

emptyAddS : {x,y : ZZ} → {c : Nat} → 〈 Signed 0 x 〉 → 〈 Signed 0 y 〉 →

〈Bit c 〉 → 〈 Signed 1 (plusZ (Pos c) (plusZ x y)) 〉

Our output must be a 1-bit signed number that encodes c + x + y. We can deduce
that x and y must both be zero since they are representations of 0-bit words. When the
carry input is zero, we could construct a valid output (SMsb {_} O) but what should
the implementation return when the carry input is set high? We simply cannot encode
the correct result (1) as a 1-bit signedword. Our solution is to only allow addition/sub-
traction for non-empty arguments at this stage. The specialised functions for addition
and subtraction are free to allow empty arguments after the carry input has been pro-
vided.

The second verification challenge appears on the MSB side, in the structure of the
sign extension and discard of the final carry output. Figure 5.6 shows the structure of
the two most significant output bits in a signed adder (s2 and s1). Note that x and y
are the MSBs of each operand, c0 is the carry input driven by the previous full adder
stage.

Although this is likely a familiar structure, the reader may find it non-trivial to jus-
tify from first principles. We might be convinced that the sign extension (by repeating
the MSBs x and y) has no effect on the numerical meaning of the inputs, but what
about our right to discard c2, for example? If we work though the equations for the

119



5 . 4 FORMAL V E R I F I CAT I ON O F A C I RCU I T FAM I LY ’ S A R I THME T I C MEAN ING

x

y

c0FA

s1

FA

s2c2

c1

Figure 5.6: Structure for the two most significant output bits in a signed adder

full adder (Listing 5.15), or indeed let toatie report them automatically, we quickly
encounter a constraint. Noting that x, y, and s2 should be negatively weighted since
they are the MSBs of 2’s complement numbers:

Theorem 5.4.3. The signed adder structure in Figure 5.6 is correct if:

s1 − 2s2 = c0 + (−x) + (−y)

where s1 + 2c1 = c0 + x + y

s2 + 2c2 = c1 + x + y

Theorem 5.4.3 might be true, if we can demonstrate that c1 = c2. The equality of
two successive carry outputs might seem like a strange proposition to make, but it
turns out this is justifiable. We provide a formal proof in [27] while, informally, we
can look at the truth table for the full adder. We want to analyse if and when the carry
output might differ from the carry input. There are only two out of eight cases which
can cause a change between carry bits. Following these two cases across both full-bit
adders in Figure 5.6, we discover that there are only three possibilities since x and y
are common to both full-adders:

c2 =


c1 when c0 = c1

1 when c0 = 0, c1 = 1, x = y = 1

0 when c0 = 1, c1 = 0, x = y = 0

(5.4)

In all cases, we conclude that c1 = c2 really is true. The implementation of this in
toatie dismisses the other impossible cases with assistance from the coverage checker.
Concluding our experience with the signed adder, having a conversation like this with
a type checker can expose some cracks in the designer’s own understanding of funda-
mental DSP constructs — even the signed adder hides some nuance which we seldom
confront so explicitly!

120



5 . 4 FORMAL V E R I F I CAT I ON O F A C I RCU I T FAM I LY ’ S A R I THME T I C MEAN ING

5 . 4 . 3 A verified, signed dot product

Let’s now consider our recurring example — the combinatorial dot product. This is a
particularly interesting example of the correct-by-construction methodology because,
as we will see, its verification requires no extra theorem proving! In fact, many DSP
structures are quite direct compositions of fundamental arithmetic blocks so, once we
have implementations of verified arithmetic primitives, the developer enjoys either lit-
tle or no extra proof obligations. We first need to briefly introduce two prerequisites:
our verified constant multiplication, and heterogeneous collections of signed words.

We choose to implement constant multiplication with a simple shift-and-add algo-
rithm. This is a simple alternative to the constant multiplication algorithms presented
in Chapter 4. Our implementation is guided not just by a numerical constant, but a
more useful structural view of that constant. For a Natural coefficient, we opt to view
it as a series of divisions of two, essentially revealing the binary structure of the Nat.
This directly informs the structure of a shift-and-add multiplier, as seen in Figure 5.7.

<< 1x

y = 2c · x,where c > 0

y×c

<< 1x

y = (2c + 1) · x,where c > 0

y×c +

x

y = 0 · x

y

x

y = 1 · x

y

Figure 5.7: The structure of our shift-and-add multiplier given a recursive halving view of a
natural coefficient

We infer an arithmetic shift left by one bit when the coefficient can be halved with-
out remainder, while we shift and add the input when there is a remainder. There are
simple base cases for coefficients of zero and one. The data type used to capture this
view of Nats is shown in Listing 5.21.

121



5 . 4 FORMAL V E R I F I CAT I ON O F A C I RCU I T FAM I LY ’ S A R I THME T I C MEAN ING

Listing 5.21: A view for recursively dividing a Nat in half

1 data HalfRec : Nat → Type where
2 HalfRecZ : HalfRec 0
3 HalfRec1 : HalfRec 1
4 HalfRecEven : (n : Nat) → HalfRec (S n) → HalfRec (plus (S n) (S n))
5 HalfRecOdd : (n : Nat) → HalfRec (S n) → HalfRec (S (plus (S n) (S n)))

We direct the reader to [27] for the full listing of the constant multiplication be-
tween an integer coefficient and a Signed word, mulConstS, since it does not introduce
any new concepts. Note that our implementation does not guarantee absolute mini-
mum wordlengths (see Section 5.3), instead favouring simple descriptions which are
provably correct. As with our adder circuit, we do need to provide some extra proofs
to satisfy the type checker. These are still fairly trivial, only requiring arithmetic funda-
mentals such as the distributivity of multiplication and the neutrality of multiplication
by one. The two main proof obligations we have are to justify the recursive structures
shown in Figure 5.7. This boils down to proving the two following theorems:

Theorem 5.4.4. For input and coefficient, x, c ∈ Z then 0 + (c× x + c× x) = (c + c)× x

Theorem 5.4.5. For input and coefficient, x, c ∈ Z then x + (c + c)× x = (1 + c + c)× x

Now we can tackle the full dot product structure. Let’s consider the type of the
circuit family. It might feel natural to attempt encoding the collection of Signed in-
puts as a Vect, however, we would encounter a type error even for a simple case. Two
signed words, for example Signed w x and Signed w y, demand two different types
unless they encode the same integer value. Their width indices may also differ — and
likely should after an optimised constant multiplicationwith different coefficients. This
poses an issue since our definition of Vect enforces the property that all elements have
the same type. A good solution for this is a heterogeneous vector; one which is in-
dexed by a list of element types. We instead introduce a specialised version of this for
heterogeneous collections of Signed elements in Listing 5.22. Such an approach lets us
very easily reason about the width and encoded value indices as their own collections,
discussed further in Section 5.4.4.

Listing 5.22: A heterogeneous collection of Signed words

1 simple HWords : (n: Nat) → Vect n Nat → Vect n ZZ → Type where
2 HNil : HWords 0 [] []
3 HCons : {n, w : Nat} → {ws : Vect n Nat} →
4 {val : ZZ } → {vals : Vect n ZZ } →
5 Signed w val → HWords n ws vals →
6 HWords (S n) (VCons {Nat} {n} w ws) (VCons {ZZ} {n} val vals)

122



5 . 4 FORMAL V E R I F I CAT I ON O F A C I RCU I T FAM I LY ’ S A R I THME T I C MEAN ING

Just as a Vect n a is a collection of elements indexed by its length and element type,
HWords n ws vals is a collection of Signed elements indexed by its length, and each
element’s wordlength and each element’s integer encoding via two type-level Vects.
With HWords, we can precisely describe the dot product’s set of input words in a way
suitable for our correct-by-construction approach. The full listing for the verified dot
product circuit family is shown in Listing 5.23.

Listing 5.23: A definition for our signed, verified dot product

1 -- Description of wordlengths along our dot product's adder chain
2 dotProdBits : (j : Nat) → (ws : Vect j Nat) → (cs : Vect j ZZ) → Nat
3 pat j, ws, cs ⇒
4 dotProdBits j ws cs
5 = foldr j {_} {_} (λw : Nat ⇒ λacc : Nat ⇒ S (max w acc)) 0
6 (zipWith j {_} {_} {_} mulConstBitsS cs ws)
7
8 -- A verified dot product with heterogeneous wordlengths
9 dotProd : (j : Nat) → (ws : Vect j Nat) → {vals : Vect j ZZ} →

10 (cs : Vect j ZZ) →
11 〈 HWords j ws vals 〉 →
12 〈 Signed (dotProdBits j ws cs)
13 (sumZ j (zipWith j {_} {_} {_} multZ cs vals)) 〉
14 dotProd Z [] {[]} [] J HNil K = J SNil K
15 pat j, w, ws, val, vals, c, cs, x, xs ⇒
16 dotProd (S j) (VCons {_} {_} w ws)
17 {VCons {_} {_} val vals}
18 (VCons {_} {_} c cs)
19 J HCons {_} {_} {_} {_} {_} x xs K
20 = addS' _ _ {_} {_} (mulConstS _ c {_} J x K )
21 J ~(dotProd _ _ {_} cs J xs K ) K

The type of this implementation guarantees that output of every single specialised
dot product circuit will always encode the result ∑

j−1
i=0(csi × valsi) for coefficients cs,

and inputs encoding vals. This property is formally verified, machine checked, and
applies to every member of the circuit family. Best of all we get this property “for free”
in terms of developer effort. Once the fundamental arithmetic circuits are provided,
this often happens for direct implementations of DSP circuits — the property enforced
on the integer indices will often have an identical structure to that of the circuit’s im-
plementation. In this case, we do not need to construct any additional proofs to satisfy
the type checker but we still enjoy its full functional verification.

This is, of course, the best case scenario. There aremany applications which place a
larger burden on the developer when proving properties about a circuit family. There
are also other ways in which we might want to use these proof mechanisms for cir-
cuit description. The following section marks the end of our examples, culminating in
an optimised FFT circuit, and highlights a subtly different use of theorem proving in
toatie.

123



5 . 4 FORMAL V E R I F I CAT I ON O F A C I RCU I T FAM I LY ’ S A R I THME T I C MEAN ING

5 . 4 . 4 FFT

Thus far, we have been concernedwith guaranteeing full functional correctness of a cir-
cuit family relative to a reference function defined over Nats or ZZs. This section demon-
strates a slight twist on this theme — using theorem proving to justify a non-trivial
reference function. We present an optimised (radix-2 DIT) DFT, enjoying a correct-by-
construction approach, and then use toatie to prove that the optimised radix-2 DIT
algorithm really is equivalent to the direct DFT definition.

The standard definition of the DFT for a length (N) is shown in Equation (5.5). It
requires a constant twiddle factor (WN) defined as e−j2π/N , and a series of time-domain
inputs (x).

X(k) =
N−1

∑
n=0

x(n) ·Wkn
N , for k ∈ {0 . . . N − 1} (5.5)

Note that the twiddle factor is raised to various different powers, which are gener-
ally all precomputed (called the twiddle factors). These powers exhibit some interesting
properties, due to the symmetries of complex exponentials. These patterns are exactly
what the radix-2 DIT algorithm exploits in order to reduce the DFT’s computational
cost. Defined as an extended version of [94], the twiddle factor properties include:

W0
N = 1 (5.6)

WN
N = 1 (5.7)

WN/2
N = −1 (5.8)

Wk
n ·Wm

n = Wk+m
n , for 0 < n ≤ N, and k ≤ N (5.9)

Wk
n = W2k

2n, for 0 < n ≤ N, and k ≤ N (5.10)

The radix-2 DIT algorithm can use Equations (5.6) to (5.10) to rewrite the DFT
equation (Equation (5.5)) into an expression in terms of just two N/2-length DFTs.
From there we can use recursion to realise each N/2-length subtransform, assuming
N is a power of two. We begin by splitting the summation into two: one for even
components and one for odd.

124



5 . 4 FORMAL V E R I F I CAT I ON O F A C I RCU I T FAM I LY ’ S A R I THME T I C MEAN ING

X(k) =
N/2−1

∑
m=0

x(2m) ·W(2m)k
N +

N/2−1

∑
m=0

x(2m + 1) ·W(2m+1)k
N , using 5.9 (5.11)

X(k) =
N/2−1

∑
m=0

x(2m) ·W(2m)k
N + Wk

N

N/2−1

∑
m=0

x(2m + 1) ·W(2m)k
N (5.12)

Let’s continue by considering each half of X independently. For the lower half,
where k < N

2 , we can use the twiddle factor property (5.10) to reduce the equation to
two N/2-size DFTs. We label the “even” and “odd” halves as Ek and Ok respectively.

X(k) =
N/2−1

∑
m=0

x(2m) ·Wmk
N/2 + Wk

N

N/2−1

∑
m=0

x(2m + 1) ·Wmk
N/2, where k <

N
2

(5.13)

X(k) = Ek + Wk
N ·Ok (5.14)

For the upper half, where we use indices of the form k + N
2 , we employ twiddle

factor properties from Equations (5.7) to (5.10) to refine the expression into a very
similar structure. Applying these properties step-by-step gives:

X(k +
N
2
) =

N/2−1

∑
m=0

x(2m) ·W(2m)(k+N/2)
N + Wk+N/2

N

N/2−1

∑
m=0

x(2m + 1) ·W(2m)(k+N/2)
N (5.15)

X(k +
N
2
) =

N/2−1

∑
m=0

x(2m) ·Wmk
N/2 ·WmN

N + Wk+N/2
N

N/2−1

∑
m=0

x(2m + 1) ·Wmk
N/2 ·WmN

N (5.16)

X(k +
N
2
) =

N/2−1

∑
m=0

x(2m) ·Wmk
N/2 · 1 + Wk

N ·WN/2
N

N/2−1

∑
m=0

x(2m + 1) ·Wmk
N/2 · 1 (5.17)

X(k +
N
2
) =

N/2−1

∑
m=0

x(2m) ·Wmk
N/2 + Wk

N · (−1)
N/2−1

∑
m=0

x(2m + 1) ·Wmk
N/2 (5.18)

X(k +
N
2
) = Ek −Wk

N ·Ok (5.19)

Now both the lower and upper halves can share the subtransforms, Ek and Ok, each
of which can be implemented themselves as a radix-2 DIT structure. Identifying this
resource sharing opportunity is the advantage of the optimised DIT structure. This
existing derivation from first principles is afforded so much emphasis here because
this is exactly the process that one must translate to toatie when proving the equiv-
alence between the direct DFT and radix-2 DIT algorithms. Armed with the twiddle
factor properties, the above derivation, and the theorem proving mechanisms we have
already seen, we can construct a proof in toatie. The only extra effort required is to
defend the structural changes we made to the expressions during our derivation. For
example, we must demonstrate that it is indeed OK to reorder and split a summation

125



5 . 4 FORMAL V E R I F I CAT I ON O F A C I RCU I T FAM I LY ’ S A R I THME T I C MEAN ING

into its even and odd elements, and demonstrate that we can build an equality between
vectors given different subproofs for the lower and upper halves.

The full implementation is available at [27], but we list the type of this proof in
Listing 5.24 to introduce some new concepts. This is an example for a complete FFT
structure but we choose to work only over integer values. While a fixed-point complex
number representation is required for the general case, valid integer FFTs can still be
described where N ≤ 2. Our implementation does not exploit this restriction in a
meaningful way, and could be used in full with drop-in replacements for our integer
arithmetic functions.

Listing 5.24: The type showing equivalence between radix-2 DIT and direct DFT algorithms

1 eqDit : {n : Nat} → {f : Nat → Nat → ZZ} → (isPow2 : Pow2 n) →
2 (tw : Twiddles f n) → (xs : Vect n ZZ) →
3 Equal (Vect n ZZ) (dft n {f} tw xs)
4 (dit {n} {f} tw isPow2 xs)

Listing 5.24 lays out a proposition saying that, for all valid twiddle factors, power
of two lengths, and possible integer inputs, the result of the dft and dit transforms
are exactly equal. If we implement a circuit family that conforms to the behaviour of
the dit function, we can say that its behaviour is also equivalent to the dft function.

You may also notice two new types used in Listing 5.24. Pow2 n is a “witness” that
n is a power of two — it only has constructors which return Pow2 indexed by 1, or
double that of another Pow2. This lets us restrict the valid values of the argument n
to satisfy the radix-2 DIT structure’s preconditions. The other new type is Twiddles
f n. This is also, in essence, a witness that f is a valid source of twiddle factors. Its
only constructor expects 5 proof arguments; one proof for each of the twiddle factor
properties in Equations (5.6) to (5.10). Listing 5.25 shows these witnesses in action,
used during the implementation of our radix-2 DIT the circuit family.

Although Listing 5.25 references many helper function whose definitions are omit-
ted, we can quite clearly see two things:

↪→ The overall structure of the DIT; recursing on the even and odd input halves,
scaling by the twiddle factors, and recombining the halves.

↪→ There are no additional proofs required to demonstrate that this implementation
matches the arithmetic specified by the dit function! This is simply because the
structures of theDIT over integers and theDIT over signed binarywords are iden-
tical. We also reuse the correct-by-construction arithmetic circuits implemented
throughout this chapter.

126



5 . 5 F U RTH E R WORK

Listing 5.25: A verified circuit family for radix-2 DIT DFTs

1 circDIT : {n : Nat} → {f : Nat → Nat → ZZ} → (tw : Twiddles f n) →
2 (pow : Pow2 n) → (ws : Vect n Nat) → {xs : Vect n ZZ} →
3 〈 HWords n ws xs 〉 →
4 〈 HWords n (dftWidth {n} {f} tw pow ws) (dit {n} {f} tw pow xs) 〉
5 pat f, tw, w, x, bs ⇒
6 circDIT {1} {f} tw POne [w] {[x]} bs = bs
7 pat n, f, tw, prec, ws, xs, bs ⇒
8 circDIT {double' n} {f} tw (PDouble n prec) ws {xs} bs
9 = let -- Recurse on N/2 DFTs

10 es = circDIT {n} {f} (halfTwiddles {f} n tw) prec _ {_}
11 (evensH n {ws} {xs} bs)
12 os = circDIT {n} {f} (halfTwiddles {f} n tw) prec _ {_}
13 ( oddsH n {ws} {xs} bs)
14
15 -- Scale odds by twiddle factors
16 os' = zipWithConstH n {ZZ} _ {_} {_} {_}
17 (λw ⇒ λ{v} ⇒ λc ⇒ λb ⇒ mulConstS w c {v} b)
18 (twiddleRow {f} (double' n) tw 1 n)
19 os
20
21 -- Combine halves
22 outEs = zipWithH n _ _ {_} {_} {_} {_} addS' es os'
23 outOs = zipWithH n _ _ {_} {_} {_} {_} subS' es os'
24 outs = appendHalvesH n {_} {_} {_} {_} outEs outOs
25 in outs

With standard library functions provided (such as zipWithH, evensH, and oddsH),
it takes≈ 25 lines of code to define this realistic DFT circuit. Moreover, the description
is totally generic in terms of transform length and wordlengths of each and every input
sample. The integer value encoded at the output is guaranteed to correspond to our
software DIT implementation. In balance, there is a lot of developer effort hidden
under the other top-level functions — but most of these are generic, reusable blocks,
easily composed in a functional language. Clearly, after the initial effort required to
capture some correct-by-construction DSP fundamentals, it can be a relatively cheap
exercise to explore their composition for larger, realistic applications.

5 . 5 FURTHER WORK

The most pressing avenue for further work at the language-level is the support for syn-
chronous logic. The fact that toatie only synthesises combinatorial logic is its most
limiting factor. However, there is a wealth of existing literature concerning how to
encode synchronous signals in functional HDLs. These encodings ought to be applica-
ble to toatie with only additional engineering effort so, although this thesis is largely
restricted to combinatorial circuits, its contributions should still be broadly valuable.
Moreover, the choice to defer handling of synchronous signals is justified by the volume

127



5 . 5 F U RTH E R WORK

of engineering effort it induces in the compiler back-end for a flexible implementation.
Every synchronous operation carries the baggage of its associated clock, clock enable,
and reset signal. Allowing properly for different target technologies, the compiler and
simulator would also need to be parameterised by enable & reset polarity, and reset
synchronicity. Instead, this work prioritises efforts on the unsolved challenges of syn-
thesising circuits from a dependently typed environment.

Manyprojects including [41, 44, 48] represent synchronous signals as infinite streams,
at least for simulation. More relevantly, CλaSH in [19] does this while representing
synchronous circuits as plain functions over streams. The author believes that a similar
approach should be suitable for toatie, with additional support for non-strict seman-
tics.

Perhaps the more interesting research aspect regards how developing circuits as
functions over streams will impact theorem proving. Totality is vital when working
with proofs in dependently typed languages. All descriptions presented in Chapter 5
have been terminating — given finite time (possibly an extremely long time) they will
terminate. This is not always the case for an infinite (coinductive) stream type. Fortu-
nately, we can still perform theoremproving on the sort of stream suitable for hardware
description. All recursively defined circuits using streams will be productive. That is,
whenever we use streams recursively, we will always add a new element to the head
of a list — an analogy for inserting a one-cycle delay. There is precedent for encoding
productive coinductive types in Idris (see Chapter 11 of [57]). Here it is possible to
prove equality between productive functions over streams. The best way to represent
this in the context of circuit description is left for future work, as is the check for pro-
ductivity. It would ideally not just maintain our combinatorial verification techniques,
but also extend them in order to exploit literature on software verification with depen-
dent types. In particular, there is extremely relevant work in using dependent types
to statically ensure that a state machine conforms to a given protocol [95]. This would
be a great boon for any synchronous HDL.

Although toatie does yet not model or synthesise synchronous logic, the follow-
ing section does offer an initial investigation into how these future circuit descriptions
could assist DSP applications.

5 . 5 . 1 Speculation on synchronous DSP circuits

While all other sections in this chapter offer examples which are synthesisable to cir-
cuits in toatie, this subsection discusses speculative uses of this minimumwordlength
methodology for synchronous circuits. It is speculative since our compiler does not

128



5 . 5 F U RTH E R WORK

yet support synchronous circuits — only combinatorial circuits. This is not a funda-
mental restriction however, and the CλaSH project demonstrates how a compiler for
lazy functional languages can cleanly support synchronous logic via quite a small ex-
tension.

Now let’s take a look at how the methodologies we have encountered so far in our
synthesisable applications could, in future, benefit synchronous DSP circuits as well.

A direct form FIR filter

Using our combinatorial dot product as a starting point, we are only a small step away
from realising a synchronous, transpose-form FIR filter. If toatie had synchronous
streams with an applicative interface, it would be trivial to lift an arbitrary combinato-
rial function up into a synchronous signal. This is analogous to taking some combina-
torial expression in VHDL and restructuring it into a clocked process.

Listing 5.26 demonstrates how this FIR implementation might look. The function
liftA applies a combinatorial function to a given stream, returning the transformed
stream. The helper function window creates our delay line from a stream — returning
the most recent ‘j’ samples.

Listing 5.26: Speculation on lifting a combinatorial dot product up to a synchronous domain
with an applicative interface

1 fir : (j,n : Nat) → (ws : Vect' j Nat) →
2 〈 Stream (Bounded' n) 〉 →
3 〈 Stream (Bounded' (mul n (sum j ws))) 〉
4 pat j, n, ws, x ⇒
5 fir j n ws x = liftA {_} {_} (dotProd _ _ ws) (window {_} j (zeroB _) x)

This is the crux of how synchronous logic could be described in future versions
of toatie, as supported by similar approaches already used in Lava and CλaSH. We
encode synchronous signals as infinite streams via a new primitive in the language,
and encode delays as appending an element to the head of the stream. We then provide
an applicative interface to lift combinatorial functions up to the synchronous domain,
and to compose operations on streams.

Pruning in CIC Interpolators/Decimators

Moving away from the FIR example now, an interesting tangent to consider is the Cas-
caded Integrator-Comb (CIC) decimator/interpolator. Unlike our FIR and dot product
examples, implementations of CIC filters with pruning cannot rely on synthesis tools
to mask imprecise descriptions from traditional HDLs.

129



5 . 5 F U RTH E R WORK

CIC decimation filters are often used as a very low-resource means of resampling
— composed of a chain of N integrators, followed by a 1

R downsampler, followed by N
comb filters with a differential delay of M. Figure 5.8 shows an example CIC decimator
with R = 8, N = 3 and M = 1.

integrator

x[k]

+

z−1

+

z−1

+

z−1

↓ 8 +

z−1

+

−
+

z−1

+

−−
+

z−1

+

−

y[k]

BmaxBin

Bmax

comb filter

Figure 5.8: A CIC decimator without pruning. (R = 8, N = 3 and M = 1)

Hogenauer introduced a register pruning technique for CIC filters [96], deriving
equations for the mean error and variance introduced by truncation at each stage. It
is suggested that, given a desired output wordlength, a legitimate design choice is to
prune thewordlengths of all previous stagesmaximallywithout accumulating an error
greater than that introduced by the final rounding/truncation. This choice results in
Equation (5.20), describing the number of LSBs to discard at the jth stage.

Bj =

⌊
− log2 Fj + log2 σT2N+1 +

1
2

log2
6
N

⌋
(5.20)

where Fj is the variance error gain for the jth stage, σT2N+1 is the total variance at the
output due to truncation, and N is the number of stages. Note that the first two terms
have complicated definitions of their own, including cases, sums, exponentials, and
binomial coefficients [96].

As the pruned bits do contain information, synthesis tools cannot perform an equiv-
alent optimisation given a non-pruned description. We theorise that the same tech-
niques as shown in Section 5.5.1 could be used to implement and reason about a fully
parameterised, pruned CIC decimator in an extended toatie. The extensions would
need to include support for synchronous signals and the floating point primitives re-
quired in the pruning equations. This application quite clearly demonstrates the ben-
efits of having a rich, single language that can be used at both the term-level and the
type-levels. All language constructs can be used to implement Equation (5.20), and
this can then be used to direct the type of each stage in a CIC implementation.

130



5 . 5 F U RTH E R WORK

Although this suggestion is currently only speculative, we can still explore the post-
layout results for this CIC pruning algorithmusing an ad hoc Verilog/VHDLgenerator.
Figure 5.9 presents the LUT usages for different CIC filter parameters, highlighting the
resource savings attained by Hogenauer pruning. While these results are generated
with a CIC utility from the KiwiSDR project [97] (a C program that returns Verilog
code), the outputs should be structurally equivalent to our theorised implementation
— only without the safety of our dependently typed properties.

12 14 16 18 20 22 24 26
0

200

400

600

Bout (bits)

Sl
ic
e
LU

Ts
U
se

d

R=16; N=3 R=32; N=4 R=64; N=5

Figure 5.9: Post-layout results for ad hoc CIC filter generation with Hogenauer pruning
(dashed lines) and without (solid lines). M = 1 and Bin = 16 for all lines.

Note that the approach to circuit generation in [97] is a prime example of some
common issues thatwe are trying to addresswith dependent types. There is no verified
contract between the IP designer and its user for the range of valid parameters, their
effect on the generated circuit, and no clear evidence of testing. One such bug found
while generating Fig 5.9 is that any Bout which requires bit extension at the final stage,
rather than truncation, will silently generate syntactically invalid Verilog.

A dependently typed solution gives an environment in which we can play with
wordlength pruning design choices easily — even if this pruning is derived from rea-
sonably complex equations. This sort of lossy optimisation cannot be performed by
traditional synthesis tools since it does involve discarding information; but it is one
valid design choice, as highlighted by Hogenauer.

In comparison toHDLs embedded inHaskell, such as Lava, a similar structuremay
be technically realisable with type-level functions and singletons. However, Haskell
does not offer the luxury of one rich language for both the term and type levels. Be-
cause of this, implementing the complex, type-level function required to represent
Equation (5.20) could prove to be a particularly challenging excursion.

131



5 . 5 F U RTH E R WORK

A note on synchronous control systems

Thus far we have been focused only on idealised DSP applications but there many
real-world circuits, even within the realm of DSP, that require synchronous control
systems. In general, we can capture the behaviour of synchronous control systems as
Finite State Machines (FSMs). It is quite straightforward in most functional languages
to implement a Mealy machine based on a pure, combinatorial function mapping the
current state and input to the new state and output. The memory elements required
to hold the state (and optionally register the outputs) can be introduced by lifting the
combinatorial transfer function to the synchronous domain and specifying an initial
state.

An implementation of an FSM in a functional HDLwithout dependent types can be
well captured by a State monad (an abstraction over computations common enough
to often merit its own special syntax). As an example, consider a simple state machine
controlling the read channel of an AXI4 slave [98]. We present a state diagram in Fig-
ure 5.10, and an excerpt of the type definitions for functions encoding each transition
in Listing 5.27.

(False, Just (data, False))

(True, Just (data, True))
Idle

Bursting

Last
(True, Nothing)

startBurst
(ARValid & ARLen > 0)

startSingle
(ARValid & ARLen = 0)

showLast
(RReady & ARLen = 0)

showMid
(RReady & ARLen > 0)

stayMid
(RReady)

stayLast
(RReady)

stayIdle
(ARValid)

finishRead
(RReady)

Figure 5.10: A state machine for a simple AXI4 slave read channel

Now, themain statemachine functionwhich glues together the different transitions
must pattern-match on the statemachine inputs and our current state. Even this simply
typed example uses GADTs, toatie’s data type definitions, in twoways to improve on
a more traditional implementation:

132



5 . 5 F U RTH E R WORK

Listing 5.27: The data types and transition types for a simple AXI4 slave read channel

1 ROut : Type
2 ROut = Pair ARReady (Maybe (Pair RData RLast))
3
4 data RState : Type where
5 Idle : Mem → RState
6 Bursting : Mem → ARAddr → ARLen → RState
7 Last : Mem → ARAddr → RState
8
9 startSingle : ARAddr → State RState ROut

10 startBurst : ARAddr → ARLen → State RState ROut
11 showMid : ARAddr → ARLen → State RState ROut
12 showLast : ARAddr → State RState ROut
13 finishRead : State RState ROut
14 stayIdle : State RState ROut
15 stayMid : ARAddr → State RState ROut
16 stayLast : ARAddr → State RState ROut

1. We can encode inputs and outputs tagged with a “valid” signal as the common
data type Maybe. This ensures that we do not have access to a piece of data unless
it is flagged as valid, letting the type system preclude the temptation to reach for
invalid inputs to satisfy an incorrect implementation.

2. We carry different fields with each of the RState constructors. Again, this helps
us limit our access to only what should be necessary at each step, and diminishes
the temptation to reuse stale state values rather than construct them properly
from valid inputs.

Taking this idea further, an interesting avenue for future research considers how to
best apply dependent types to enhance the description of hardware FSMs. Just like the
three approaches we present in Sections 5.2 to 5.4, there are different extents to which
a designer may choose to embrace type-level shenanigans.

While a basicMealymachine implementation is often described via a State monad
(as in [19]), a designer may choose to graduate to indexed monads, where the type of
the output state may be of different from the type of the input state. This lets the type
checker better enforce when a certain transition is a valid option — sometimes only
between two specific states, and optionally with specific arguments. For our AXI ex-
ample, an implementation with indexed monads could have the type checker ensure
that each transition is only used to/from the expected states, and that the state is prop-
erly updated: e.g. showMid decrements the burst length and showLast can only be
used once the burst length reaches zero. This is a technique which can be encoded in
Haskell through use of type families. Brady takes this idea further in a dependently
typed context, allowing the next state to depend on the run-time outputs of the pre-

133



5 . 6 SUMMARY

vious stage [95]. In essence, we can encode transition types with possible run-time
failure or other conditionals. For example, the type checker can enforce the fact that
we check an authentication result before entering a secure state, or else fall back into an
insecure mode.

Both of these extended implementations highlight one new challenge for our hard-
ware description: toatie cannot currently mention the value of a synthesisable data
type as part of a dependent type. We currently do not allow a (possibly) run-time
value to influence the “shape” of a circuit during elaboration. This restriction is pre-
sented more formally in Section 6.4.2. Both FSM techniques (indexed monads and
encoding possibly failing transitions) require the state to be used in dependent typing
rules in the most general form. Future work could consider how these patterns might
be adapted to fit within our framework, or how these restrictions might be relaxed in
order to proliferate the literature for software state machine implementations.

5 . 6 SUMMARY

This chapter has offered an investigation into three main methodologies for digital de-
sign and verification when armed with a dependently typed, multistage, functional
HDL. This thesis presents, to the best of the author’s knowledge, the first set of synthe-
sisable combinatorial DSP circuits encoded as plain functions in such a language.

Section 5.2 demonstrates that toatie can be used quite similarly to the combina-
torial subsets of functional HDLs such as Lava or CλaSH. Section 5.3 builds on this
by suggesting that, with stronger reliance on the type checker, we can use dependent
types to more faithfully capture challenging DSP patterns. This was demonstrated
with a focus on modelling wordlengths of intermediate signals. Finally, Section 5.4
explores a powerful correct-by-construction approach to the complete function verifica-
tion of a circuit family. Although there is a burden of manual theorem proving when
constructing our fundamental arithmetic circuits from first principles, we did begin
to enjoy many theorems “for free” at the level of dot products and DFTs. This ap-
proach mixes the concerns of circuit implementation and circuit verification, and is
quite uniquely facilitated by representing circuits as plain functions and ascribing pre-
cise meaning to our circuit run-time data via its type.

134



6TOATIE — A MULTISTAGE HARDWARE DESCR IPT ION
LANGUAGE WITH DEPENDENT TYPES

This chapter discusses the design and implementation of the new HDL, toatie. The source
code for the compiler, example designs, and testing infrastructure are all available as an open

access artefact at [27].

6 . 1 IN TRODUCT ION

This chapter is concerned with detailing the concrete implementation of toatie’s core
language, type system, and netlist generation. While Chapter 5 offered practical cir-
cuit descriptions in toatie and explored the merits of dependently typed HDLs more
generally, we now change focus to the-behind-the-scenes machinery responsible for
compiling these descriptions into synthesisable netlists.

While toatie is a language and compiler in its own right, we make no secret of its
existing heritage — indeed, the reuse of existing codebases is one of its strengths. The
core language and type checker of toatie is based on top of the existing dependently
typed (software) language, TinyIdris. This chapter will formally introduce TinyIdris
before detailing our own additions towards representing and compiling circuit descrip-
tions. Maintaining this separation of concerns should help promote an understanding
of which challenges are unique to hardware description, as well as clarifying exactly
where this thesis’ contributions begin.

TinyIdris was introduced at the 2020 Scottish Summer School on Programming
Languages and Verification [28, 99] by Edwin Brady as pedagogical tool for explor-
ing the implementation and ideas of his (much richer) language, Idris 2. Its small
but complete core makes it an appealing project on which to base dependently typed
research projects, such as toatie. TinyIdris eliminates many of Idris 2’s ammenities
and peripheral features, but its structure (data structures, algorithms, and even file
structure) match Idris 2 exactly wherever this is feasible. Of course, this was likely a
guiding principle due to its use as a teaching tool, but it lends some credence to the
idea that toatie’s features could be transplanted onto a full Idris 2 base with relative
ease. In this case, we would gain all of the niceties of a full-featured language and its
development tools for “free”.

135



6 . 1 I N T RODUC T I ON

We offer a formalisation of the TinyIdris language (extending the presentation at
[28]) in Section 6.2. We cover the grammar of the surface language, its elaboration
to the core language, and the core’s type checking. We will see how a type checker
in the presence of dependent types becomes entangled with the topics of unification,
normalisation, and evaluation. Section 6.3 discusses the extensions to the language we
need to consider in order to capture synthesisable hardware descriptions. We go on to
discuss what restrictions we place on the surface language in an attempt to ensure that
a circuit family is indeed synthesisable and then describe our (currently very simple)
pipeline for generating netlists for downstream EDA tooling.

Before we explore the internals of TinyIdris, we first offer a brief background on
the standard notation used in this chapter. The two most pertinent sets of notation are
for describing language syntax, demonstrated with a simply typed λ-calculus, and its
typing judgements.

6 . 1 . 1 The lambda calculus

Our introductory example takes the form of a simply typed lambda calculus (λ→)
with primitive support for integer values and their addition. Lambda calculi are at the
heart of functional programming, so wewill briefly introduce its main concepts for the
digital engineer and see the notation used in the rest of this chapter.

Figure 6.1 shows the syntax of our small example language using a common no-
tation — the Backus–Naur Form (BNF). This introduces formal descriptions for two
different constructs in the language: term-level expressions and their types. There are
multiple valid forms for each description and we separate each option with a vertical
bar (|).

e, u ::= Expressions
x Variables
| λx : τ. e Function abstraction
| e u Function application
| n Integer literal
| e + u Addition

τ, σ ::= Types
Int Type of integers
| τ → σ Type of functions

Figure 6.1: A syntax for λ→

136



6 . 1 I N T RODUC T I ON

There are a limited number of ways we can construct our expressions, e. Our defi-
nition of λ→ has hard-coded support (or “primitives”) for integer literals and addition.
The other three constructs (variables, function abstraction, and function application)
are the core of the lambda calculus. While deceptive in their simplicity, these three
constructs are enough to encode data structures such as booleans, encode condition-
als, and even recursion (in the untyped case). In prose these three constructs are:

x | Variables let us reference a named argument. These variable names are
only ever introduced by function abstraction — x does not appear any-
where else on the RHS in Figure 6.1.

λx : τ. e | Function abstraction introduces a new function. Here the argument is
given the name x, whose type is τ, and the body of the function is the
expression e. It is important to note that e can indeed include references to
x. The function itself is anonymous — it is not given an explicit name.

e u | Function application describes applying an expression u as the argument
of a function expression e.

Programs written in λ→ can be evaluated very simply — exhaustively reducing
the expression using a small set of rules. We need only two rules: one rule describing
how to reduce addition of two integer values, and one rule describing how to apply
an argument to a function (called β-reduction). Our addition rule reduces an addi-
tion expression with integer arguments to a single integer result, while preserving the
arithmetic meaning:

nx + ny =⇒ n(x+y)

.

The β-reduction rule substitutes the concrete expression of an argument in place
of a function’s formal named parameter. Using the names from our previous applica-
tion examples, this means that every occurrence of x in the body e is replaced by the
argument u. The literature often depicts the β-reduction rule as:

(λx : τ. e) u =⇒ e[u/x]

where the square brackets are notation for substitution: the variable on the right of the
slash is replaced by the expression to left of the slash.

137



6 . 1 I N T RODUC T I ON

We have now explored the use of BNF notation to describe the syntax of a simple
functional language, and some of the mechanics for evaluating expressions in such a
language. However, the keen reader may be feeling uneasy with way we handle func-
tion applications in Figure 6.1. It seems that we allow any expression to appear on the
left of an application but then only provide a reduction rule forwhen this expression re-
ally is a function abstraction. How shouldwe evaluate an application of a non-function
expression? In fact, we should not attempt to evaluate such an ill-formed expression
— it simply does not make sense in the semantics of λ→. In statically typed functional
languages, we can ensure that a program is well-formed (and does not contain any of
these issues) by looking at its type. The following section introduces this process of
type checking and its accompanying notation.

6 . 1 . 2 Typing judgements

Althoughwe have yet to givemuch consideration to the types present in λ→, Figure 6.1
demonstrates their simplicity. Every valid expression either has the type Int or it has
a function-type (with potentially different types for its input and output). The type
checker’s job is to inspect a program written in λ→ and decide whether it represents
a well-typed/well-formed expression or not. If it is ill-typed, we know that we should
not continue with its evaluation or compilation.

The type checker performs this analysis, again, through a set of typing judgements.
Each judgement can have zero or more premises which must be met in order apply the
typing rule. All premises are written above a horizontal bar. Below the bar is the rule’s
conclusion; the new type we can infer using the rule. All of these typing judgements
are made relative to a context (written as Γ), which is simply a collection associating
each variable currently in scope to their type. Figure 6.2 shows all of the typing rules
for a λ→ type checker.

(int)
Γ ` n : Int

x : τ ∈ Γ (var)
Γ ` x : τ

Γ ` e : Int Γ ` u : Int (plus)
Γ ` e + u : Int

Γ; x : σ ` e : τ
(intro)

Γ ` (λx : σ. e) : σ→ τ

Γ ` e : σ→ τ Γ ` u : σ (app)
Γ ` e u : τ

Figure 6.2: Typing judgements for λ→

138



6 . 1 I N T RODUC T I ON

We will now consider each of these judgements in prose. This aims to encourage
the reader’s intuition for reading more complex type judgements later in this chapter
as well as reinforcing why it is convention to use this notation for typing judgements
— it is both more concise and more precise than English language descriptions of the
same rules.

(int) Typing integer literals.
This rule has no premises above the horizontal line, so it can be called upon
at any time. The conclusion states that, in any situation, we can be sure that
an integer literal (n from Figure 6.1) will have the type Int. This precludes
the interpretation of integer literals as, for example, function types.

(var) Typing variable references.
This rule’s one premise is that the context must associate a variable name,
x, with the type τ. The conclusion is that a reference to x in the current ex-
pression also has type τ. Note that the name x must appear in our context
— we cannot infer types for unknown variable names!

(plus) Typing addition of expressions.
Our two premises are that, relative to our context, the expressions e and u
both have type Int. If so, we can conclude that the addition of e and u will
also have type Int. This precludes us accepting non-integer arguments to
our addition primitive, and ensures that the result of an addition is also an
integer.

(intro) Typing function abstraction.
Our premise demands that the expression e has type τ when our context
is extended with a variable x of type σ. We can then conclude that the
function with an argument x of type σ and body e has the function type
mapping σ to τ. This ensures that function abstraction respects the types
of its argument and its output.

(app) Typing function application.
If the expression e has a function type mapping σ to τ, and expression u
has type σ, we can conclude that the application of u to e has the type τ.
Essentially, the application of a function to an argument must respect the
function’s input and output types.

139



6 . 2 A FORMAL I SAT I ON O F TH E T I N Y I D R I S L ANGUAGE

Each of these rules should hopefully feel intuitive, even if the standard notation
was unfamiliar. Perhaps the most subtle part of these typing rules lies in the intro
rule. The fact that we must extend our context with a binding for x before checking the
type of a function body e is vital. Consider an expression for the successor function:

λx : Int. 1 + x

Wewould expect this to have the type Int→ Int—a function accepting an integer
input and returning an integer output. The second premise of the intro rule would
demand that (1 + x) has type Int. Figure 6.3 demonstrates that this holds true if we
remember to extend the context with a binding for x. If we did not extend the context
with our new variable, x, we would not be able to apply the var rule appearing at the
top right of Figure 6.3.

(int)
{x : Int} ` 1 : Int

x : Int ∈ {x : Int}
(var)

{x : Int} ` x : Int
(plus)

{x : Int} ` 1 + x : Int
(intro)

∅ ` (λx : Int. 1 + x) : Int→ Int

Figure 6.3: Typing checking of the expression λx : Int. 1 + x

Concluding this introductory look at the notations used for functional language
syntax and typing judgements, Section 6.2 continues by formalising parts of TinyIdris
and introducing some of the nuances present in a dependently typed software lan-
guage.

6 . 2 A FORMAL I SAT ION OF THE T INY IDR I S L ANGUAGE

This section aims to give a formalisation of the TinyIdris software programming lan-
guage [28]. We leave the discussion of new features and topics specific to hardware
description until Section 6.3 in order to maintain a clear split between the new re-
search in this thesis (toatie) and the existing project that was reused as a foundation
(TinyIdris).

We first describe the full syntax of TinyIdris’s surface language (TTimp), continue
by looking at the smaller core language to which this elaborates (TT), and explore its
typing rules.

140



6 . 2 A FORMAL I SAT I ON O F TH E T I N Y I D R I S L ANGUAGE

6 . 2 . 1 A grammar for TTimp

Since TinyIdris is a small (but complete) language, we can feasibly present a full gram-
mar for its surface language, called TTimp. The structureswe can encode in TTimp should
be familiar after Chapter 5, since it is a strict subset of our toatie language. Figure 6.4
shows an extended BNF description of TTimp where x and y refer to names/identifiers
in a program.

e, u ::= v {→ w} Full (type) expressions

v, w ::= Simple expressions
Type Type of types
| _ Implicits
| x Names
| b Binders
| v w Applications
| ( e ) Nested expression

b ::= Binders
(x {, y} : e)→ u Π-binders
| λ a⇒ e λ-binders
| pat a⇒ e Pattern variables

a ::= x [: v] {, a} List of bound variables

decl ::= Declarations
x : e Type declaration
| data x : e where {y : u} Data declaration
| {e = u} Pattern matching function

Figure 6.4: Approximate grammar for TinyIdris

Note that we use curly braces ({. . .}) to indicate that the enclosed pattern can ap-
pear zero or more times, and square braces ([. . .]) for a pattern which can appear zero
or one time. Some future syntax figures also need to denote braces which should ap-
pear verbatim instead—wewill explicitly quote these literal braces to avoid ambiguity.

141



6 . 2 A FORMAL I SAT I ON O F TH E T I N Y I D R I S L ANGUAGE

Compared to our introductory example, there are many more constructs here and
some of variable length. This is largely for two reasons:

1. We are now dissecting a realistic, surface-level language. These usually support
extra syntactic niceties such as grouping several arguments that share a single
type. These are small “syntactic sugar” constructs — enhancing the legibility or
expression, but they compile down to the same few features in the corresponding
core language.

2. We are now considering amore feature-complete language than the simply typed
lambda calculus. We now consider extras such as named, global functions de-
fined by pattern matching clauses, GADTs, and dependent function types (Π-
binders).

Section 6.2.2 discusses point (1.) by introducing TT, the core language for TinyIdris,
and some of the elaboration process which translates TTimp programs to their corre-
sponding TT representations.

Let’s take a moment to compare TTimp’s features to the introductory λ→ language.
First of all, as demonstrated extensively during Chapter 5, we have support for user-
defined GADTs and defining functions by pattern matching on argument constructors
over several independent clauses. GADTs are introduced with the data construct, and
top-level functions are composed of a type declaration followed by their list of pattern
matching clauses. TTimp does not concern itself with the meaning of patterns directly
(preferring to leave such analysis for the TT representation).

Dependent types are supported by the Π-binder construct. We no longer have sep-
arate constructs for terms and types, since we will allow the two to mingle in a single
language. Instead, there is the Type construct — the type of types. This particular im-
plementation is actually a known weakness of both TinyIdris and Idris 2 (at the time
of writing), since this notion of Type allows contradictions such as Girard’s paradox
within our type system [100]. Wewould instead prefer to implement an infinite hierar-
chy of Types, claiming this requires engineering effort only anddoes not fundamentally
affect the ideas behind the rest of the implementation.

Finally, TTimp allows for implicits (written as _). These are essentially markers to
indicate to the system that a term has been left blank; if the type checker can unam-
biguously identify the implicit term’s value it will be substituted automatically behind
the scenes. The system’s ability to solve a hole left by an implicit is quite basic here
but is substantially extended in both toatie and the full Idris 2 implementation. Even
automating small, simple implicits is attractive since we often need to supply the type

142



6 . 2 A FORMAL I SAT I ON O F TH E T I N Y I D R I S L ANGUAGE

checker with redundant information — for example, passing explicit type arguments
to polymorphic functions or trivially inferable arguments to GADT data constructors.

Now considering the wider compilation pipeline, a TinyIdris program source file
is first parsed into a TTimp representation. The pipeline’s next goal is then to elaborate
this into a smaller core representation that is easier for us to work with: TT.

6 . 2 . 2 The core language, TT

TinyIdris’ core language, TT, is a refinement of TTimp which is completely explicit. We
demonstrate its syntax in Figure 6.5. We use an overline (e) as a synonym for indicating
zero or many occourances ({e}). The main features are, in short:

1. No implicit terms. These are initially replaced with metavariables and will be
resolved during unification.

2. We represent our patternmatching as case trees— a tree of case statements, each
scrutinising a single expression’s constructor form [101]. This is both for better
software evaluation of our pattern matching and for ease of the implementation
of coverage checking (a feature omitted from TinyIdris).

3. All binders are grouped together. This is a small structural choice. Sincewe quite
often treat all binders in the same way when manipulating TT expressions, it is
convenient to abstract over them.

Just like our introductory λ→ example, a type checking process over TT expres-
sions can help catch ill-formed programs. In the presence of dependent types, the type
checking process can require evaluation of expressions since we might need to decide
whether or not two expressions are equivalent. The rules followed by the type checker
are still rather minimal — captured entirely in Figure 6.6. Although terms and types
occupy a single, shared language, we will call (possibly) term-level expressions e/u
and type-level expressions S/T by convention. We also provide prose translations of
these judgements below:

ctxt: We performour type checking relative to a context, Γ. The first three rules (ctxt∅,
ctxtλ, ctxtΠ) describe how valid contexts can be constructed. Both λ and Π-
binders can be added to the context as long as their binding type really is a type.

var: There are two simple rules which are complementary to these context construc-
tion judgements; varλ and varΠ for resolving the types of variables bound in the
context.

143



6 . 2 A FORMAL I SAT I ON O F TH E T I N Y I D R I S L ANGUAGE

e, u, S, T ::= Terms
x Variables
| b e Binders
| e u Application
| Type Type of types
| _ Erased term
| ?m Metavariable

b ::= Binders
λx : S . Lambdas
| Πx : S → Functions
| pat x : S . Pattern variables
| pty x : S . Pattern types

c ::= Case trees
case x : S of a Case
| x Singleton term
| Unmatched Missing valid case
| Impossible Impossible case

a ::= Case alternatives
C x ⇒ c Constructor case
| _ Default case

g ::= Global definitions
λx. c : S Pattern matching definition
| Hole : S Placeholder for a hole term
| D : S Type constructor
| C : S Data constructor
Figure 6.5: The syntax for the TT language

conv: For the non-trivial rules, we introduce a means to convert between “equivalent”
types. In full, the conv judgement states that if a term e has type S, and that S and
T are convertible, x also has type T. We will address the details of what makes
two terms “convertible” shortly.

app: Our app judgement looks much like that of the previous λ→ example with one
important addition — the return type might depend on the applied argument’s
term. In prose, it says that if e has a function type Πx : S→ T, and u has type S,
we can conclude that the application e u has the type T[u/x] (read as T with u
substituted for x). This is the most central judgement for introducing dependent
types.

intro: The remaining two judgements (introΠ and introλ) both let us introduce new
binder abstractions. If S is a type and T is a type (when the context is extended
with Πx : S), we can say that Πx : S→ T is also a type. Likewise, if the function
type Πx : S→ T is a valid type, and e has type T (when the context is extended
with λx : S) then we can say that the lambda abstraction λx : S. e has the type
Πx : S→ T.

144



6 . 2 A FORMAL I SAT I ON O F TH E T I N Y I D R I S L ANGUAGE

(ctxt∅)
Γ ` valid

Γ ` S : Type
(ctxtλ)

Γ; λx : S ` valid
Γ ` S : Type

(ctxtΠ)
Γ; Πx : S ` valid

(λx : S) ∈ Γ
(varλ)

Γ ` x : S

(Πx : S) ∈ Γ
(varΠ)

Γ ` x : S

Γ ` e : S Γ ` T : Type Γ ` S ' T
(conv)

Γ ` e : T

Γ ` e : (Πx : S→ T) Γ ` u : S
(app)

Γ ` e u : T[u/x]

Γ ` S : Type Γ; Πx : S ` T : Type
(introΠ)

Γ ` (Πx : S→ T) : Type

Γ ` (Πx : S→ T) : Type Γ; λx : S ` e : T
(introλ)

Γ ` (λx : S. e) : Πx : S→ T

Figure 6.6: Typing judgements for TinyIdris

Although these typing rules are the heart of TinyIdris, their main logic is presented
in approximately 90 lines of code (albeit this is only facilitated by plumbing and sup-
porting features over a few thousand lines of code). Beyond the type system, we will
now only lightly touch on the surrounding features including the unification of terms
and the compilation of pattern matching clauses. While important, these are already
well studied in the literature and our hardware description context does not conflict
with the existing methods.

The motivation for compiling pattern matching clauses (used extensively in Chap-
ter 5) to case trees is twofold: improved evaluation performance and ease of analysis
(e.g. coverage checking). We illustrate the translation between pattern matching and
case trees by a standard zipWith example for lists in Listing 6.1.

A naive pattern matching approach may consider each clause in turn, selecting a
clause only when every one of the patterns on the LHS matches. For the worst-case
behaviour of the zipWith example, this might require inspecting both list arguments
three times. Some of this work is clearly duplicated since we begin the inspection pro-
cess anew for each clause, discarding the information we’ve already learned about the
arguments while matching previous clauses. TinyIdris instead compiles these pattern
matching clauses to a case tree for better performance [101]. This process combines all
clauses into a single tree which inspects each argument at most once — we now share
information learned about the arguments across all clauses. Listing 6.2 shows an equiv-

145



6 . 2 A FORMAL I SAT I ON O F TH E T I N Y I D R I S L ANGUAGE

Listing 6.1: A zipWith function via pattern matching

1 zipWith : (a,b,c : Type) → (f : a → b → c) →
2 List a → List b → List c
3 pat a, b, c, f, ys ⇒
4 zipWith a b c f (Nil _) ys
5 = Nil _
6 pat a, b, c, f, xs ⇒
7 zipWith a b c f xs (Nil _)
8 = Nil _
9 pat a, b, c, f, x, xs, y, ys ⇒

10 zipWith a b c f (Cons _ x xs) (Cons _ y ys)
11 = Cons _ (f x y) (zipWith _ _ _ f xs ys)

alent case tree structure for our zipWith example. Note that the case tree only inspects
arguments which actually deconstruct a data type (not arguments which only provide
a name to a formal parameter) and we examine each of these arguments at most once.

Listing 6.2: A case tree representation for zipWith

1 PMDef [[a, b, c, f, xs, ys]] ⇒
2 case xs : List a of
3 { Nil _ ⇒ Nil c
4 | Cons _ v vs ⇒ case ys : List b of
5 { Nil _ ⇒ Nil c
6 | Cons _ w ws ⇒ (Cons c (f v w) (zipWith a b c f vs ws))
7 }
8 }

The presence of dependent types makes the handling of pattern matching more
complex. Refining the structure of one argument may affect the type of another. This
can be handled as in [18] and has consequences for the later topics of impossible cases,
coverage checking, and the handling of inaccessible patterns.

Another important feature of TinyIdris is the simple unification process, which at-
tempts to reconcile the equality between two terms. This powers the dependent type
checking (the conv rule in particular) and the completion of implicits in the source
listing (e.g. the _ terms in Listing 6.1). A unification algorithm attempts to decide on
the convertibility of two terms, giving one of three responses:

Yes: The two terms unify. Informally they have the same normal form (i.e. they
“normalise” to the same value). This implies that we need to be able to nor-
malise expressions during type checking. For this end, TinyIdris makes good
use of normalisation-by-evaluation and reuses the same code as the REPL’s
evaluator.

146



6 . 3 TH E toatie COR E LANGUAGE

No: The two terms definitely do not unify. There is an unresolvable conflict be-
tween the two terms.

Maybe: The subtle casewhere the two termsmight unify butwe don’t yet have enough
information to know for sure. This is an important and valid option. Here
we generate new unification constraints, satisfying the preconditions for the
current unification problem. These new constraints might be solvable later.

This topic is well studied (see [17, 18, 102]) and, although it is a vital part of the
implementation of many functional languages, we have not identified any aspects of
this which are specific to hardware description. As such, we will not linger on the
details of TinyIdris’ implementation of unification.

Now that we have an appreciation for the structure TinyIdris, the base software lan-
guage for toatie, let’s consider the novel topics of adapting this for practical hardware
description.

6 . 3 THE toatie CORE LANGUAGE

The alert reader will have noticed that some of the most important concepts and an-
notations demonstrated throughout Chapter 5 were missing from our discussion of
TinyIdris. These constructs are our introductions to the language to support type-safe
hardware description. Throughout this section, we will consider these additions as
part of four (colour coded) groups:

Erasure: Our approach to ensuring that non-synthesisable data types can be erased
from our circuit descriptions before circuit run-time. We use this in particu-
lar to allow non-synthesisable terms to direct type checking for otherwise
synthesisable data constructors.

Staging: We introducemultistage-programming constructs to ensure that the elabo-
ration of a circuit can always complete in full, without knowledge of values
presented at a circuit’s run-time. This is vital since we must elaborate the
circuit to a fixed-structure during compile time — the structure of the cir-
cuit cannot be influenced by its run-time arguments.

Synthesis: We provide features to support synthesis of circuit descriptions into a form
interoperable with downstream EDA tools. This comprises of a few rea-
sonable restrictions on the core language, a synthesis scheme to translate
programs in TT to an internal representation of circuit structures, and a
VHDL netlist generator.

147



6 . 3 TH E toatie COR E LANGUAGE

Sugar: A few quality-of-life features reintroduced from Idris 2 to better support
the examples presented in Chapter 5. It is the “sugar” sprinkled on top to
make the experience a little more sweet.

We offer a full description of the surface language (TTTimp) and the syntax of the core
language (TTT ) upfront and then discuss the implementation details and new typing
judgements of each group in turn. As an overview, the additions to TTT in Figure 6.7
are reasonably modest and of the (colour coded) new feature groups can largely be
implemented independently from each other. The additions to the surface language in
Figure 6.8 may appear substantial but these are mostly attributable to simple quality-
of-life additions which are completely removed by elaboration to TTT (such as inline
case statements and natural number, list, and vector literals).

e, u, S, T ::= Terms
x Variables
| bs e Staged Binders
| e u Explicit application
| e {u} Implicit application
| Type Type of types
| _ Erased term
| ?m Metavariable
| Je : SK Quote
| 〈e〉 Code type
| ˜e Escape
| !e Evaluate

b ::= Binders
λx : S . Explicit λ
| λ{x : S} . Implicit λ
| Πx : S → Explicit Π
| Π{x : S} → Implicit Π
| pat x : S . Pattern variables
| pty x : S . Pattern types
| x 7→ e : S . Let bindings

c ::= Case trees
case x : S of a Case
| x Singleton term
| Unmatched Missing valid case
| Impossible Impossible case

a ::= Case alternatives
C x ⇒ c Constructor case
| Jx : SK⇒ c Quote case
| _ Default case

g ::= Global definitions
λx. c : S Pattern matching definition
| Hole : S Placeholder for a hole term
| Dp : S Parameter type constructor
| Ds : S Simple type constructor
| C : S Data constructor

Figure 6.7: The syntax for the TTT language with additions highlighted

148



6 . 3 TH E toatie COR E LANGUAGE

e, u ::= v {→ w} Full (type) expressions

v, w ::= Simple expressions
Type Type of types
| _ Implicits
| x Names
| b Binders
| ( e ) Nested expression
| v w Standard application
| v ‘{’ w ‘}’ Irrelevant application
| JeK Quote
| 〈e〉 Code type
|~v Quote escape
| !v Quote evaluation
| ‘[e {, u}] List literal
| [e {, u}] Vect literal
| n Natural number literal
| case e of { u =⇒ rhs } Inline case

b ::= Binders
(x {, y} : e)→ u Explicit Π-binders
| ‘{’ x {, y} : e ‘}’→ u Implicit Π-binders
| λ a⇒ e Explicit λ-binders
| λ ‘{’ a ‘}’⇒ e Implicit λ-binders
| let l in e Let-binders
| pat a⇒ e Pattern variables

a ::= x [: v] {, a} List of bound variables

l ::= x [: v] = e {, l} List of let-bound variables

rhs ::= RHS of clauses
e Valid clause RHS
| impossible Impossible clause RHS

decl ::= Declarations
x : e Type declaration
| data x : e where {y : u} Data declaration
| simple x : e where {y : u} Synthesisable data declaration
| {e = rhs} Pattern matching function

Figure 6.8: Approximate grammar for TTTimp with additions highlighted

149



6 . 3 TH E toatie COR E LANGUAGE

6 . 3 . 1 Sugar from Idris 2

We reintroduce some reasonably straightforward features which were removed dur-
ing the pruning of Idris 2 down to TinyIdris. These features mostly offer improved
ergonomics or expressivity to the programmer but do not have a substantial impact on
our ability to capture circuit descriptions in particular.

The most impactful of these reintroductions is simple, non-recursive let-bindings.
These allow us to bind an expression to a local variable name inside a global function.
We exploit let-bindings as an explicit way to denote sharing. An expression let-bound
to a local name should be evaluated at most once, but may appear many times in its
scope — this explicit sharing is preserved in a circuit description’s final netlist.

We include two complementary typing judgements in Figure 6.9 to handle the in-
troduction and elimination of let-bindings.

(let x 7→ e : S) ∈ Γ
(valLet)

Γ ` x : S

Γ ` e : S

Γ ` S : Type

Γ; let x 7→ e : S ` u : T

Γ; let x 7→ e : S ` T : Type
(introLet)

Γ ` (let x 7→ e : S .u) : T[e/x]

Figure 6.9: Type judgements for let bindings

The valLet rule states that if the name x is let-bound to a term e of type S in our
context, then the name x also has type S at its point of use. The introLet rule is extremely
similar to our previous introλ rule—wemay introduce awell-typed binding if its scope
(u) is also well typed in our newly extended context.

The second important featurewe reintroduce is coverage checking of patternmatch-
ing functions. This ensures that all possible valid combinations of inputs are handled
by a function’s pattern matching definition. Although this may seem like a superflu-
ous feature for a proof-of-concept, it actually plays an important role in our reasoning
about proofs. A proof must be fully covering in order for us to sensibly hold any con-
fidence in its soundness. A proof which relies on a non-covering function could other-
wise type-check but is, by definition, missing logic for some scenarios. Implementing
coverage checking becomes more nuanced in the presence of dependent types since
refining one argument via pattern matching may give us more information about the
type of another argument. This newly refined type may make certain constructors im-
possible — for example VCons is not a valid choice of constructor for type Vect 0 a.

150



6 . 3 TH E toatie COR E LANGUAGE

The coverage checking is facilitated by two standard features:

↪→ The detection of impossible clauses. These clauses contain patterns which con-
tradict each other. The example back in Listing 3.6 provides one simple example
of an impossible pattern being detected and safely dismissed. The programmer
may omit any impossible clauses or can opt to write them explicitly.

↪→ Checking a case tree for missing, possible clauses. This is made a reasonably sim-
ple task when we start from the case tree representation. We generate a set of all
potentially missing clauses by traversing the case tree node-by-node, noting any
unhandled constructors. From this set, we filter our results which are impossi-
ble clauses and false positives generated when multiple clauses overlap. If any
missing clauses remain we throw a compile-time error.

We augment the behaviour of our patternmatching clauses in Sections 6.3.2 and 6.3.3
when discussing handling of inaccessible patterns.

Another, largely cosmetic, reintroduction is in-line case statements, allowing the
programmer to inspect an intermediate local result via simple pattern matching. Note
thatwe do not include the “with” views from Idris 2 for local dependent patternmatch-
ing— auxiliary global functions must be used instead. In-line case statements are con-
spicuously missing from our description of TTT . This is because the elaboration of
TTTimp identifies case statements and lifts them out to a new global function automati-
cally. From this point, the standard top-level pattern matching machinery is invoked.

Finally, we add special parsing and printing rules for Nats, Lists, and Vects literals.
Although just a small feature to improve readability of source andREPLoutputs, itmay
be interesting to see that we rely on implicits which will be solved during unification,
even within the compiler itself. For example, the translations of lists and vectors below
both leave fields implicit — it would be quite difficult to infer the type of list elements
as early as the parsing stage!

Nat: 4←→ S (S (S (S Z)))

List: `[a,b,c]←→ Cons {_} a (Cons {_} b (Cons {_} c (Nil {_})))

Vect: [a,b]←→ VCons {_} {_} a (VCons {_} {_} b (VNil {_})))

151



6 . 3 TH E toatie COR E LANGUAGE

6 . 3 . 2 Irrelevance and Erasure

We introduce the motivation for irrelevance and erasure in hardware descriptions by
providing an example. Listing 6.3 gives possible definitions for two types that we
should hope are synthesisable to hardware descriptions.

Listing 6.3: Possible Bit and Vect definitions: Are they synthesisable?

1 simple Bit : Type where
2 O : Bit
3 I : Bit
4
5 simple Vect : Nat → Type → Type where
6 VNil : (a : Type) → Vect Z a
7 VCons : (a : Type) → (k : Nat) → a → Vect k a → Vect (S k) a

The Bit type is trivially synthesisable (as explored formally in Section 6.4). How-
ever, is this Vect definition likely to be synthesisable if all of its elements are also syn-
thesisable? Intuitively it feels like we should allow such a definition. However, there
are two arguments within these which we will struggle to encode in hardware: the ele-
ment type (a : Type) and the current length (k : Nat). Natural numbers are clearly
not synthesisable in general since they describe an infinite set (0 → ∞). Synthesis of
types poses a similar issue.

The insight which allows such definitions to be synthesisable is noticing that the
a and k constructor arguments only exist in order to satisfy the type checker. We do
not need their values at circuit run-time. This is to say that a and k are relevant during
type checking but irrelevant during the circuit’s run-time. If our compiler chooses to
erase all irrelevant terms from a description before compiling to a netlist, the Bit and
Vect examples can be synthesised using the approach discussed in Section 6.4. While
erasure is an important feature for the performance of software languages with depen-
dent types, it is absolutely vital for the synthesisability of dependently typed hardware
descriptions!

We implement the extensions proposed by the Implicit Calculus of Constructions
(ICC∗, a more verbose version of ICC) from [62] to track irrelevance of terms and to
ensure the program uses irrelevant terms consistently. In TTTimp and TTT , we introduce
implicit versions of application, λ binders, and Π binders to highlight irrelevance. This
is denoted by curly braces ({…}) around the argument term or the bound name.

From [62], we can use an extraction translation to perform the erasure of irrelevant
positions from the term-level of an expression. Figure 6.10 recursively defines this
translation for only the constructs which directly contain irrelevance annotations.

152



6 . 3 TH E toatie COR E LANGUAGE

EJxK = x (variables)
EJΠ(x : S)→ TK = Π(x : EJSK)→ EJTK (Explicit Π)
EJΠ{x : S} → TK = ∀(x : EJSK)→ EJTK (Implicit Π)
EJλ(x : S). eK = λ(x : EJSK). EJeK (Explicit λ)
EJλ{x : S}. eK = EJeK (Implicit λ)
EJe uK = EJeK EJuK (Explicit application)
EJe {u}K = EJeK (Implicit application)

Figure 6.10: Partial definition of the ICC∗ extraction translation

The rules for the explicit versions of these constructs leave the expressions un-
changed. The implicit application and λ binder rules completely omit their argument
and bound name, respectively. This is what provides our erasure — we completely re-
move all term-level expressionsmarked as irrelevant. The implicitΠ binder does retain
its bound name after translation, but this is permitted since it is a type-level construct.

The E translation scheme only applies to well-typed terms, so let us also explore
the new typing judgements that ensure we have used irrelevant expressions legally.
We split the existing judgements for app, introΠ, and introλ into their explicit and
implicit forms. All of the judgements for the explicit forms are identical to the originals
from Figure 6.6. The implicit rules for application and Π binders behave like their
explicit counterparts except that theymaintain the implicit annotations. The important
rule is in judging the introduction of implicit λ binders (i-introλ). Here we add the
restriction that the bound name must not appear as a free variable (discovered by the
FV function) in the extraction of the binder’s body.

Perhaps amore intuitiveway of considering the x 6∈ FV(EJeK) restriction thus: once
a parameter is marked as inaccessible/implicit, it must never reappear in an explicit
position. Of course, a parameter marked as implicit may continue to appear in implicit
positions, assisting the type checking process. Likewise, explicit parameters may be
“demoted” into implicit positions without consequence. The only issue is that of lifting
an implicit to an explicit — if we have already stated that a term is not required at
circuit run-time, it would be hypocritical to then use it at circuit run-time!

One final consequence of implementing irrelevance and erasure is its impact on our
ability to perform pattern matching. Previously, we have compiled pattern matching
descriptions into case trees and largely left the evaluation of the scrutinee and choice of
the appropriate alternative until run-time. However, in the presence of erasure, there
will be many patterns which we simply cannot analyse at run-time — erased terms

153



6 . 3 TH E toatie COR E LANGUAGE

Γ ` e : (Πx : S→ T) Γ ` u : S
(e-app)

Γ ` e u : T[u/x]

Γ ` e : (Π{x : S} → T) Γ ` u : S
(i-app)

Γ ` e {u} : T[u/x]

Γ ` S : Type Γ; Πx : S ` T : Type
(e-introΠ)

Γ ` (Πx : S→ T) : Type

Γ ` S : Type Γ; Π{x : S} ` T : Type
(i-introΠ)

Γ ` (Π{x : S} → T) : Type

Γ ` (Πx : S→ T) : Type Γ; λx : S ` e : T
(e-introλ)

Γ ` (λx : S. e) : Πx : S→ T

Γ ` (Π{x : S} → T) : Type Γ; λ{x : S} ` e : T x 6∈ FV(EJeK)
(i-introλ)

Γ ` (λ{x : S}. e) : Π{x : S} → T

Figure 6.11: New TTT typing judgements for irrelevance

will already be discarded and are not necessarily recoverable. To complicate the issue
further, there are many implementations of reasonable functions which do require us
to patternmatch on irrelevant terms in order to satisfy the type checker. See Listing 3.9
for such an example when implementing the append function for two Vects.

It seems we both need to allow pattern matching on erased arguments, and cannot
allow such pattern matching! The solution to this conflict is to distinguish “inaccessi-
ble” patterns from typical run-time pattern matching. Inaccessible (or “dot”) patterns
are thosewhich are presupposed tomatch— claiming that the given pattern is the only
possible matching term [61]. If this is true, we do not have to match against this dot
pattern again at run-time (we have statically verified that this is the case already dur-
ing type checking) and so we can allow even erased terms to appear in the dot pattern.
This approach also appears in the MiniAgda project [103] with a similar motive: sup-
porting size indices in a dependently typed language for termination checking, while
ensuring these sizes are erased from the generated run-time code.

Given that we already have compilation of pattern matching clauses to case trees
and a coverage checker, we can implement dot patterns quite easily for covering func-
tions:

154



6 . 3 TH E toatie COR E LANGUAGE

1. Reorder each clause’s patterns such that we scrutinise all run-time patterns be-
fore any dot patterns.

2. Compile to a case tree representation.

3. Perform coverage checking on the case tree.

4. Traverse the (fully covering) case tree to ensure that all dot pattern scrutinees
have exactly one alternative, throwing a compile-time error if we encounter a
dot pattern with multiple alternatives.

In toatie, all implicit patterns (enclosed by {…}) will be interpreted as dot pat-
terns automatically. The programmer is then free to write pattern matching functions
with irrelevant arguments without tracking mentally where and when each term is
used — toatie ensures that previously erased terms are never going to reappear at
run-time with this pattern matching implementation and the typing judgements from
Figure 6.11.

Although we have chosen to implement irrelevance (and then direct our erasure)
using ICC∗, there are many alternative methods. One tempting choice is to have a core
based Quantitative Type Theory, as in Idris 2. As well as aligning the codebase with
Idris 2more closely, this would gain us two features: irrelevance and linearity. We have
not considered the use of linearity for circuit description here, although [104] presents
some interesting insights on the topic. The Proto-Quipper-D project does make ex-
tensive use of linear types, although this is largely to enforce restrictions present in
quantum computing which are not necessary for traditional digital circuits.

6 . 3 . 3 Staging

Just as erasure contributes to synthesisable circuit descriptions by elimination of non-
synthesisable terms, we claim that staging constructs contribute to synthesisability by
forcing a distinction between a circuit’s (compile-time) elaboration and its run-time be-
haviour. Since one of toatie’s main goals is to support the description and verification
of entire circuit families at once, it is necessary to support an elaboration process from
a parameterised circuit family description to a single concrete member of that family.
This is analogous to the elaboration process present in traditional HDLs, especially
when VHDL’s generics are present in the description.

Perhaps the main difference in our approach is that the elaboration process is itself
entirely programmable and user-defined! A lack of expressivity in the developer con-
trol of elaboration is exactly what drives many digital designers to construct ad hoc

155



6 . 3 TH E toatie COR E LANGUAGE

circuit generators in general purpose software programming languages — an option
with minimal type safety, discussed and firmly discouraged back in Section 4.6. In
contrast to traditional HDLs, our approach is not tied to a few predefined structures
such as iterative for generate statements, and the designer can use the full toatie
language to define their own elaboration directed by arbitrarily complex data struc-
tures. We have already given a flavour for this style of programmable elaboration in
Section 5.2.3 where we transformed a simple dot product circuit to one with an adder
tree structure, exploiting higher-order functions and dependently typed folds.

In our case, we use techniques from multistage programming to enforce a strong
distinction between the compile-time elaboration stage and the circuit run-time stage.
Multistage programming is well studied in the literature, including its theory and im-
plementation for simply typed languages [65, 105] and dependently typed languages
[64, 106]. Kiselyov et al. have even considered its use for hardware description [66],
albeit in a simply typed setting. We apply Kiselyov’s observations on the use of multi-
stage programming for the type-safe elaboration of circuit descriptions to our depen-
dently typed language. This approach serves a number of use cases for circuit descrip-
tion:

↪→ As documentation to other programmers:

– Which parameters must be supplied before a function can elaborate to a
synthesisable circuit, or…

– Which parameters are only present for type checking purposes and can be
left unapplied even during synthesis, or…

– Which parameters are only presented to the circuit at run-time.

↪→ Ensuring that elaboration stage can be performed in full before the circuit run-
time. We are essentially using the type system to reason about the dependencies
between these two stages and ensuring they are causal. If elaboration depends on
a value only available during the circuit’s run-time, we cannot finish elaboration
and would be left with a non-synthesisable description.

As an introduction to these issues, let’s consider a simple example without the use
of toatie’s staging constructs. Listing 6.4 defines a function, rep, that replicates a
given bit n times. The width of this output is directed by the natural number encoding
of an unsigned binary word argument.

From the caller’s perspective, we are posed with an interesting question: Which
arguments must be passed to rep to make it synthesisable? Surely we must provide a

156



6 . 3 TH E toatie COR E LANGUAGE

Listing 6.4: A problematic example without staging constructs — Ambiguous rep

1 rep : (w : Nat) → {x, b : Nat} →
2 Unsigned w x → Bit b → Vect x (Bit b)
3 pat bn, b ⇒
4 rep Z {0} {bn} UNil b = VNil {_}
5 pat n, bn, xsn, xs, b ⇒
6 rep (S n) {_} {bn} (UCons {n} {xsn} {0} xs O) b
7 = append {_} _ _ (rep n {_} {_} xs b)
8 (rep n {_} {_} xs b)
9 pat n, bn, xsn, xs, b ⇒

10 rep (S n) {_} {bn} (UCons {n} {xsn} {1} xs I) b
11 = VCons {_} {_} b (append {_} _ _ (rep n {_} {_} xs b)
12 (rep n {_} {_} xs b))

value for the unsynthesisable Nat parameter, but what about the Unsigned parameter?
From the function’s type, it seems entirely plausible that we could satisfy the Unsigned
parameter with a run-time value (only known after elaboration). After some careful
analysis of the function’s implementation, however, we realise that this is not the case!
The value of the Unsigned parameter directly effects the structure of the circuit (the
width of our output vector) so we reason that its value must be known during elabora-
tion — the process responsible for flattening the structure to a known, fixed topology.

This issue for the caller could be simply resolved by allowing the author of rep to
tag the arguments with an indication of when each value must be supplied. However,
we suggest the use of multistage programming to document such intent, as well as
solving a deeper challenge on the side of the function’s author: Given the intended
staging of each parameter, how can we be sure that our elaboration will always be
successful‽

Strictly typed multistage programming allows us to enforce the causality required
for successul elaboration at a type level. To demonstrate this, we present two alterna-
tive versions of rep using staging constructs: one with a compile-time Unsigned ar-
gument which does type-check, and one version with a run-time Unsigned argument
which refuses to type-check since elaboration becomes impossible.

While repOK type-checks and synthesises as hoped, the repBad version (which ex-
plicitly claims that the Unsigned argument can be available only at run-time) gives
a compile-time error. The staging constructs are enough here to statically know that
repBad requires pattern matching on a run-time values at elaboration time. This gives
the developer more confidence that their entire circuit family should be synthesisable
within our language — the burden of this analysis has moved from the developer to
our type checker. We can identify quite general misuse of staged terms, not just the
dubious pattern matching present in this example. Of course, it is possible to describe

157



6 . 3 TH E toatie COR E LANGUAGE

Listing 6.5: Two staged reps which do (left) and do not (right) type-check

1 repOK : (w : Nat) → {x, b : Nat} →
2 Unsigned w x →
3 〈Bit b 〉 → 〈Vect x (Bit b) 〉
4 pat bn, b ⇒
5 repOK Z {0} {bn} UNil b = J VNil {_} K
6 pat n, bn, xsn, xs, b ⇒
7 repOK (S n) {_} {bn}
8 (UCons {n} {xsn} {0} xs O) b
9 = J append {_} {_} {_}

10 ~(repOK n {_} {_} xs b)
11 ~(repOK n {_} {_} xs b) K
12 pat n, bn, xsn, xs, b ⇒
13 repOK (S n) {_} {bn}
14 (UCons {n} {xsn} {1} xs I) b
15 = J VCons {_} {_} ~b (append {_} {_} {_}
16 ~(repOK n {_} {_} xs b)
17 ~(repOK n {_} {_} xs b)) K

〉 OK!

1 repBad : (w : Nat) → {x, b : Nat} →
2 〈Unsigned w x 〉 →
3 〈Bit b 〉 → 〈Vect x (Bit b) 〉
4 pat bn, b ⇒
5 repBad Z {0} {bn} J UNil K b = J VNil {_} K
6 pat n, bn, xsn, xs, b ⇒
7 repBad (S n) {_} {bn}
8 J UCons {n} {xsn} {0} xs O K b
9 = J append {_} {_} {_}

10 ~(repBad n {_} {_} J xs K b)
11 ~(repBad n {_} {_} J xs K b) K
12 pat n, bn, xsn, xs, b ⇒
13 repBad (S n) {_} {bn}
14 J UCons {n} {xsn} {1} xs I K b
15 = J VCons {_} {_} ~b (append {_} {_} {_}
16 ~(repBad n {_} {_} J xs K b)
17 ~(repBad n {_} {_} J xs K b)) K

〉 Case tree requires ambiguous pattern -
match on quoted arg, {arg:3}

a circuit family quite similar to the rep function which operates entirely at run-time
but we must satisfy the type checker that we have accounted entirely for the different
possible structures at run-time.

Given these examples asmotivation, let’s look at howwe implement the type check-
ing under our explicit staging constructs. First of all, we introduce new syntax in TTTimp
for four staging constructs inspired by [64]:

↪→ J ... K A quote deferring the evaluation of a given term until circuit run-time.

↪→ 〈... 〉 A Code type encoding a static type for a term available only at circuit run-
time.

↪→ ~(...) An escape, which splices a quoted term into a lower (but still circuit run-
time) level. This construct helps us flatten valid recursive definitions of circuits
within our staging restrictions.

↪→ !(...) An evaluation, forcing the reduction of a closed circuit run-time term. A
seldom required construct, similar to an escape but specifically for splicing a
quoted term into stage 0 if it contains no free variables.

Next, TTT is extended by forcing each application and binder to track the stage at
which it appears — stage 0 for any elaboration-time code, and a positive stage for any
circuit run-time expressions. This tagging is performed entirely automatically dur-
ing the translation from TTTimp to TTT . The current stage is tracked as a part of our
translation, being incremented whenever we enter a quote or a code type, and being
decremented whenever we encounter an escape or evaluation.

158



6 . 3 TH E toatie COR E LANGUAGE

With this information gleaned directly from the source listing, we can have the type
checker ensure that we use all bound variable names and functions in a way which
respects their staging. Figure 6.12 lists the augmented typing rules for our staging con-
structs. The quote, code type, eval, and escape rules determine howwe can safely lift
between adjacent stages. The varλ, varΠ, and vallet rules check any bound names at
their point of use for staging consistency. The n ≤ m prerequisite in these rules ensures
that run-time names (from a nonzero stage) can never appear in an elaboration-time
expressions (in a zero stage), hence preserving the causality between elaboration and
circuit run-time.

Γ `n+1 e : S
(quote)

Γ `n JeK : 〈S〉
Γ `n S : Type

(code type)
Γ `n 〈S〉 : Type

Γ `0 e : 〈S〉 FV(e) = ∅
(eval)

Γ `0 !e : S

Γ `n e : 〈S〉
(escape)

Γ `n+1 ˜e : S

(λx :n S) ∈ Γ n ≤ m
(varλ)

Γm ` x : S

(Πx :n S) ∈ Γ n ≤ m
(varΠ)

Γm ` x : S

(x 7→ e :n S) ∈ Γ n ≤ m
(valLet)

Γm ` x : S

Figure 6.12: Main type judgements for our staging constructs

There are a few additional rules we must add to allow proper unification between
staged terms, again, as per [64]. These are shown in Figure 6.13. These rules encode
the convertibility of a given term and the escape/evaluation of a quoted version of
the original term (convquote and convescape), as well as the equivalence between the
quotations of two convertible terms (convquote).

Γ ` e : S (convquote)
Γ ` !JeK ' e

Γ ` e : S (convescape)
Γ ` ˜JeK ' e

Γ ` e, u : S Γ ` e ' u
(convquote)

Γ ` JeK ' JuK
Figure 6.13: toatie’s extra conversion rules for staging

Our final special handling of staged terms is that of pattern matching. Exactly like
our handling of irrelevant terms in Section 6.3.2, it would be problematic to allow pat-
tern matching of quoted terms in general. In much the same way, we also often require
some degree of refinement on quoted arguments. We solve this by applying the same

159



6 . 4 C I RCU I T S YN TH E S I S

machinery for inaccessible patterns — we may refine circuit run-time patterns if and
only if they are unambiguously identified by their surrounding accessible patterns.

For the examples presented in Chapter 5, it is likely possible to implement the stag-
ing purely as a type annotation (omitting the term-level quotes and escapes). While
this would improve the brevity of the circuit descriptions, toatie keeps the quotes
and escapes explicit for clarity and allowing for future work which relies on a true
multi-stage system (such as reconfigurable circuits).

Although we employ staging constructs to hardware description for very different
reasons thanwe did erasure, it remains an interesting insight that both appear as sensi-
ble optimisations in the software world, but absolute necessities in the hardware world.

6 . 4 C I RCU I T S YNTHE S I S

This section details the important step of transforming a type checked program in TTT

down to a circuit netlist. We do this in three main steps:

↪→ Automatically synthesising bit representations for user-defined data types.

↪→ Normalising a top-level circuit description into a form trivially translated to a
circuit netlist.

↪→ Generating a netlist acceptable by downstream EDA tools, such as Xilinx’s Vi-
vado, for an FPGA target.

This section of toatie is perhaps the most idealised — we implement enough to
support all of the examples in Chapter 5, but acknowledge its limitations in this section.
These limitations are only present for our proof-of-concept and we address them with
reference to relevant literature to demonstrate how they may be effectively handled
without restructuring our core language. Although many real-world examples which
do successfully synthesise are presented, the metatheory of the proposed approach is
deferred for future study.

As with any HDL, we must place some reasonable restrictions on our top-level de-
scriptions if they are to be synthesisable. We detail these restrictions in Section 6.4.1.
The rest of this section details howwe choose to synthesise the resulting circuit descrip-
tions into a VHDL netlist.

160



6 . 4 C I RCU I T S YN TH E S I S

6 . 4 . 1 Restrictions for synthesisability

Inmuch the sameway asVHDL’s requirement that all generic arguments are supplied
at the top-level, toatie requires that all elaboration-time parameters are supplied at
the top-level. There are, however, some extra nuances to these restrictions — some
more permissive, some more restrictive, and some purely due to the expressivity of
our staging annotations. A synthesisable top-level circuit must be:

1. In a form whose extraction is a single code type. This code type may, itself, be
a function type describing the inputs and outputs of the circuit. This restric-
tion disallows unapplied, explicit arguments to the top-level circuit (similar to
undefined generics for our circuit family) but does permit unapplied irrelevant
arguments (useful only for the type checking of the circuit).

2. Recursion is allowed but only during elaboration (at stage zero or during escap-
ing of other staged terms). Recursion at run-time describes a possibly dynamic
structure and cannot be synthesised. We have already provided the staging con-
structs required to force bounded, recursive elaboration-time structures to be flat-
tened before synthesis.

3. The argument types and return type of our extracted circuit should all be syn-
thesisable. We distinguish between non-synthesisable types (parameter types)
and synthesisable ones (simple types). As well as being subject to extra checks,
terms of a simple type are not allowed to influence the dependent typing of any
other term. In other words, a run-time value cannot influence the shape (or type)
of another run-time value.

These three rules should result in a circuit description whose extraction is (at least
at its top-level) simply-typed, first-order, and monomorphic. Section 6.4.2 details the
requirements that a simple type must meet in order to be synthesisable.

At this point, we also reckon with one outstanding issue in our circuit descriptions.
We only offer a best-effort support for removing intermediate non-synthesisable terms
in our normalisation-by-evaluation system. We opt for an untyped normalisation stage
and the removal of non-synthesisable terms cannot be completely guaranteed. This is
a choice for our proof of concept, but CλaSH in [19] details how to normalise a circuit
description (with a typed directed term rewrite system) from similar language, System
FC. They also provide proofs that their approachwill always remove non-representable
terms. This property is perhaps more important for CλaSH since they do not entertain
the native staging constructs that we lean on so heavily to reason about elaboration.

161



6 . 4 C I RCU I T S YN TH E S I S

6 . 4 . 2 Simple types, parameter types, and bit representations

Inspired by Proto-Quipper-D in [58], we introduce two different kinds of data to dis-
tinguish between synthesisable terms and non-synthesisable terms. Borrowing Proto-
Quipper-D’s terminology, we call these simple and parameter types, respectively, and
they exist in the same namespace.

As a rule of thumb, parameter types best describe elaboration-time terms, while
simple types capture run-time values. To permit dependent types in Proto-Quipper-
D descriptions, the interpretation of dependent typing is changed for simple types.
Just like our application to digital circuits, they cannot allow the shape of a circuit to
be directed by a run-time value. Proto-Quipper-D’s novel solution to this is, instead,
allowing types to only depend on the shape of a simple value. The “shape” is a prop-
erty known at elaboration time. For our purposes, we have not encountered any sce-
narios which demand this allowance for shape-dependence, instead having a single
parameter value direct the shape of multiple simple types. To simplify the implemen-
tationwe instead choose to completely exclude terms of a simple type from influencing
other types in a Π-binding.

Our proof-of-concept attempts to handle all synthesisable data types in a generic
fashion. While there are clear motivations for special handling of certain primitives
in FPGA targets (such as explicit use of their specialised resources for arithmetic and
block memories), we follow the approach justified in “Implementing lazy functional
languages on stock hardware: the Spineless Tagless G-machine”:

Compilers sometimes implement the built-in types (list, tu-
ples, numbers) in special magic” ways, and the programmer
pays a performance penalty for user-defined types. We take the
view that the general mechanisms used for user-defined types
should be made efficient enough to use for built-in types too.

— S IMON P E Y TON JONE S I N [1 07]

For every simple type, we attempt to synthesise it to a fixed width bit representa-
tion by using amodest set of new recursive rules and the unificationmachinery already
required for an implementation of a dependently typed language.

To begin, let’s consider the most fundamental synthesisable type: Bit. This exam-
ple is simple since each constructor has zero arguments. In general, we can intuit that
there are two possible values a Bit n can occupy — either a O or 1. Since there are two
options, we only need a single bit in our netlist to represent the value. This process is a

162



6 . 4 C I RCU I T S YN TH E S I S

matter of quizzing the unification engine as to the number of constructors which could
possibly match a given type. We can then represent this constructor tag with dlog2 Ne
bits per N constructors.

Listing 6.6: A synthesisable definition of the Bit type

1 simple Bit : Nat → Type where
2 O : Bit 0
3 I : Bit 1

There are, however, some surprising nuances in the synthesis of such a description.
In a situation where we are certain the type is Bit 0, there is actually only one possible
constructor — it is a constant! In this case, we can reduce the term to a unit. In a sense,
we do not propagate unique constants through the netlist, but rather specialise the rest
of the circuit on this constant value. This is usually an advantage of our approach, but
care must be taken for the top-level interface when exporting circuits for integration
with other tools — a constant optimised away will impact our bit encoding. For this
reason we recommend all external interfaces use simply typed arguments, leaving all
implicit optimisations internal to the toatie description.

A slightly more involved example requires constructors with non-zero arities. The
most intuitive of which is a synthesisable vector, as defined in Listing 6.7.

Listing 6.7: A definition of a (potentially) synthesisable Vect type

1 simple Vect : Nat → Type → Type where
2 VNil : {a : Type} → Vect Z a
3 VCons : {a : Type} → {k : Nat} → a → Vect k a → Vect (S k) a

This encounter also prompts us to reckon with polymorphism. Given a length n,
and assuming the type a is itself synthesisable, we can synthesise a Vect n a. We can
use the same analysis of constructor tags as in our Bit example. However, wemust also
analyse the arguments to each constructor. We can describe this process quite concisely
given a helper function PC(D x) which uses the unification engine to find all of the
possible data constructors (with their specialised types) which could have possibly
returned the type D x. The process is then captured by two rules: one to translate
applied type constructors, and one to translate the specialised data constructors:

163



6 . 4 C I RCU I T S YN TH E S I S

BDJD xK = Translation for ty cons
dlog2|PC(D x)|e + (Tag bits)
max{BCJCi yiK | ∀ Ci yi ∈ PC(D x)} (Widest possible data con)

BCJC y : TK = Translation for data cons
y : T

∑
e : S
BDJSK (Sum of all data con arg types)

In essence, each type synthesises down to a set of tag bits (to uniquely identify
which data constructor was used) and a set of field bits (which encode each of the
tagged data constructor’s non-irrelevant arguments). The data constructor arguments
are encoded recursively, each having their own tag and field bits. There is also some
padding required to ensure that field widths of all data constructors are equal.

While this definition is quite similar to CλaSH, we differentiate the approach by
letting our definitions contain primitive recursion, which is unrolled by PC and the
unification engine. To be able to satisfy our requirement for primitive recursion, every
simple type must conform to the following restrictions:

1. Every non-irrelevant argument for every data constructor is also synthesisable.
(Irrelevant arguments can be non-synthesisable.) This ensures that, in our poly-
morphic Vect definition, the element type (a) must represent a synthesisable
type.

2. A recursively defined type is permissible if there is primitive recursion on (at
least) one of the type constructor arguments:

↪→ There must be a terminating case on this recursive position.

↪→ Every other constructor must have their recursion be structurally decreasing
in this position.

3. The type constructor must be applied enough to make 1) and 2) identifiable
solely through unification of the top-level problem — i.e. we must have compile-
time knowledge of any polymorphic type arguments and indices which direct
recursion before attempting synthesis.

164



6 . 4 C I RCU I T S YN TH E S I S

To demonstrate this process more concretely, let’s perform this analysis by hand
for a type of Vect 2 (Bit b), where b is unknown. Figure 6.14 shows a graph for
this analysis where all recursive definitions are shown with pink boxes/purple arrows
and all terminal definitions are shown with blue boxes/green arrows. A vector of two
bits is, and clearly should be, represented by two bits only. Every constructor of the
Vect type is uniquely identified by its length and incurs zero tag bits. Each element is
Bit b and incurs one tag bit. Notice that all irrelevant arguments are ignored for bit
representation purposes, since they should not appear in the synthesised netlist.

Tag: b0

Tag: b1 + Args: b0

Tag: b0

Tag: b0 + Args: b0

b0 + b2

b0 + b1

b0 + b0

b1 + b0

Figure 6.14: Steps for bit representation of Vect 2 (Bit b)

We can directly synthesise types featuring sums of products or primitive recursion
using our general transform rules. For example, we can entirely natively synthesise the
binary trees, Maybe types for encoding data with valid flags, and vectors with multiple
different Cons options (e.g. RCons, GCons, and BCons for colour vectors) as defined in
Listing 6.8.

While our approach to automatically deriving bit representations has similarities
to Proto-Quipper-D [59] (namely generation in the presence of irrelevant arguments),
there are three clear additions. These are, in part, encouraged by the control structures
possible in digital circuits, rather than the Quantum circuit descriptions of [59]. These
additions are:

↪→ We separate the “tag” bits from the “field” bits. With these explicit tag bits,
we can synthesise toatie’s choice constructs (such as case expressions) directly
with user-defined data types.

165



6 . 4 C I RCU I T S YN TH E S I S

Listing 6.8: Examples of synthesisable data types

1 simple BTree : Type → Nat → Type where
2 Leaf : {a : Type} → BTree a 0
3 Node : {a : Type} → {n : Nat} →
4 a → BTree a n → BTree a n → BTree a (S n)
5
6 simple Maybe : Type → Type where
7 Nothing : {a : Type} → Maybe a
8 Just : {a : Type} → a → Maybe a
9

10 simple RGBVect : Nat → Type → Type where
11 RGBNil : {a : Type} → RGBVect Z a
12 RCons : {a : Type} → {k : Nat} →
13 a → RGBVect k a → RGBVect (S k) a
14 GCons : {a : Type} → {k : Nat} →
15 a → RGBVect k a → RGBVect (S k) a
16 BCons : {a : Type} → {k : Nat} →
17 a → RGBVect k a → RGBVect (S k) a

↪→ We loosen their restrictions on synthesisable types. We can synthesise recursive
types with ambiguous constructors (where more than one constructor is possi-
ble), facilitated by our tag bits. This is demonstrated in the RGBVect example in
Listing 6.8.

↪→ We synthesise directly from the standard GADT syntax instead of a reversed,
function style.

Although more restrictive than theoretically necessary, our choice to support only
primitive recursion in simple typeswas proven sufficient to capture all of the examples
in Chapter 5.

6 . 4 . 3 Normalisation

We introduce one final intermediate representation before we attempt to generate a
netlist, called CExpT . This normalised form can be thought of as a lily pad on which
we hop between the TTT and netlist representations. Here, our entire goal is to dramat-
ically simplify a TTT program into a more restricted form which is directly amenable
to circuit generation.

We aim to transform any TTT program (which satisfied the restrictions from Sec-
tion 6.4.1) into a normalised form with the syntax shown in Figure 6.15.

166



6 . 4 C I RCU I T S YN TH E S I S

τ, σ ::= Types
Ds τ Fully applied simple type

a ::= Argument expressions
x Local variable
| Cs a Fully applied simple data constructor

e ::= Subexpressions
x Local variable
| Cs a Fully applied simple data constructor
| case x of alt [default a] Case with optional default
| πC

i x Projection

alt ::= Cs x → a Alternatives

g ::= λ x : τ . let y : σ 7→ e in z Top-level circuit

Figure 6.15: The syntax for CExpT in normal form

This represents a version of a top-level circuit with several restrictions. Our cir-
cuit’s internals are just a list of let-bound subexpressions and the circuit’s output is a
reference to one of these let-bindings. Each let-bound subexpression and circuit input
is given a name and tagged with its type. All types at this point ought to be a fully
applied simple type since parameter types are not synthesisable and we aim to have
eliminated any higher-order constructs. The type annotations exist only so we can rea-
son about the bit representation of a term during netlist generation.

Each subexpression can be only one of four, easily synthesisable, forms:

↪→ A local variable, referencing one of the previous let-bound names.

↪→ A simple data constructor fully applied with all of its arguments. Note that each
argument must be a local variable or a nested constructor application.

↪→ A case statement scrutinising a local variable. A default branch is optional.

↪→ A projection returning the ith argument from a fully applied data constructor, C.
The target of the projection is specified as a local variable.

Each of these four constructs have a clear translation to a circuit netlist, as described
in Section 6.4.4. A more mature version of toatie may wish to extend CExpT with
primitives which map to specialised FPGA resources (such as DSP blocks and Block
RAMs), as well as a registering construct for synchronous signals. Indeed, CλaSH’s

167



6 . 4 C I RCU I T S YN TH E S I S

normal formdoesmake these additions, as defined in Section 4.2.2 of [19]. Beyond this,
the independently designed CExpT normal form is nearly a subset of CλaSH’s. We omit
function applications in favour of exhaustive inlining, and omit primitive operations
in favour of handling everything via our support for user-defined data types. The only
addition in CExpT is that we choose to allow nested constructor applications—waiting
until netlist generation to flatten them out into a single bit vector.

Although the surface languages of toatie and CλaSH are really quite distinct, they
do both settle on a extremely similar normal forms just before netlist generation. This
is, perhaps, a good indication that both have captured the fundamental essence of func-
tional hardware description.

Now that we have defined the target of our normalisation scheme, let’s explore the
translations from TTT down to our CExpT normal form. When possible, we follow the
lead of the Idris 2 implementation (CExp) but there are major differences between the
goals for Idris 2’s software code generation and our netlist generation.

The broad process to convert TTT to CExpT is:

1. Translate to a new representation with:

↪→ Saturated applications and constructors, via η-abstraction for partial appli-
cations in TTT .

↪→ Inline case statements instead of top-level pattern matching. This allows us
more opportunity to reorder expressions during the rest of the process.

↪→ All irrelevant terms erased. We aremoving towards a synthesisable descrip-
tion; these must be removed.

↪→ We (temporarily) erase all types, except in function definitions.

2. Evaluate & inline the description as far as possible. Here, the circuit gets spe-
cialised by any parameters passed to the circuit family. Any reducible expres-
sions inside the quoted circuit run-time are also simplified. Every function call is
inlined. We expect termination here for total descriptions since the (non-irrelevant)
arguments for the elaboration stage should be fully applied and recursion on run-
time values is forbidden.

3. Lift any complex subexpressions out to their own let-bound name, as in Fig-
ure 6.15. Any unused let-bindings are erased. Each subexpression is either a
local variable, saturated simple data constructor, a case expression scrutinising
a local variable, or a projection.

168



6 . 4 C I RCU I T S YN TH E S I S

4. We annotate each let-binding with its type. Since all internal typing information
was erased in step 1, we attempt to regenerate this information via an annota-
tion pass. While this discard/regenerate process is overly restrictive, it is strong
enough to synthesise all examples in Chapter 5.

Since the goal of the normalisation process is to end up with a single top-level
expression as defined in Figure 6.15, we need to ensure that all other constructs are
eliminated. Noting that we erase all irrelevant terms (with the extraction translation
from Section 6.3.2) and discard all typing annotations, we identify themain remaining
constructs for elimination by comparing CExpT and TTT :

1. Staging constructs

2. λ-abstraction and applications

3. Terms using parameter types

The four staging constructs prove easy to dismiss. They are useful during type
checking to ensure that our use of variables is causal between stages, and to ensure our
top-level circuit has all elaboration-time arguments fully applied. However, beyond
these checks, we can simply erase the staging annotations with full confidence the
elaboration can complete in full — the type checker has already told us so! None of
our normalisation process is directed by the staging annotations.

The elimination of λ-abstractions and applications is also straightforward using a
normalisation-by-evaluation approach. Since no recursion is directed by run-time free
variables and all applications are saturated by this point, the normalisation scheme can
easily inline all functions and specialise their bodies as fully as possible as it does so.
This leaves no λ-abstractions and partially applied functions.

Finally, can we ensure that all terms with parameter types are eliminated? Our
starting point is our top-level circuit’s extracted code type, which is a function be-
tween only simple types. Within this expression, we might encounter intermediate
values with parameter types. These might then influence branching constructs via
case expressions. CλaSH provides a set of normalisation rules specific to their non-
representable types (or parameter types) which can provably eliminate them from
the interior of an otherwise synthesisable description. This includes substituting let-
bound parameter types into the scope of the let-binding, and a classic “case of case” op-
timisation (also present in Idris 2) to eliminate structures which scrutinise parameter

169



6 . 4 C I RCU I T S YN TH E S I S

types. Our implementation cannot provide these same guarantees because our proof-
of-concept normalisation process is largely untyped for simplicity. CλaSH uses its typ-
ing information to direct which normalisation rules should be applied but toatie does
not retain that information throughout the translation. Some of these intermediate
parameter types might be removed through our normalisation-by-evaluation process,
but this is not guaranteed. A more mature implementation of toatie should include
a rewritten normalisation process which carries our typing information throughout
(without needing to change TTT or CExpT ). We believe that this is not precluded by
any of the other differences between toatie and CλaSH.

The erasure of type annotations during toatie’s normalisation stage is unfortu-
nate for one other reason too. The Glasgow Haskell Compiler (GHC) offers good ev-
idence for the benefits of maintaining types throughout a compilation pipeline [108].
Although it burdens the developers with extra work, it serves as an excellent sanity
check for any optimisations implemented. Regardless, the simplicity of the current
normalisation process in toatie gives confidence towards an important property — if
normalisation does complete, we can largely trust the netlist to be correct.

6 . 4 . 4 Netlist generation

Generating a netlist interoperable with vendor EDA tools from CExpT is a trivial trans-
lation. Following the lead from [19], we present our relatively simple synthesis rules
visually in Figure 6.16. Our CExpT starting point is a single entity whose inputs and
output are defined by its type. The body of the circuit contains named signals trans-
lated from each of the let-bound subexpressions. The circuit output is driven by one of
these intermediate signals. Following this, we have very few constructs left to handle:

↪→ Local variable references are simply a wire, connected to the variable’s signal —
achieved purely in routing.

↪→ Constructor applications are concatenations of other signals into a single named
signal. The tag for this application is driven by a constant.

↪→ Case expressions synthesise down to a set of alternatives (which can be safely
evaluated simultaneously since they are pure functions), followed by a multi-
plexer to select the correct output.

↪→ Projection is simply a splice, addressing only part of another named signal.

While the graphical representation of the scheme should help nurture an intuition,
we also present a more formal version. Our implementation translates to VHDL, pro-

170



6 . 4 C I RCU I T S YN TH E S I S

N Ja1K
N JCsimple aK

N JanK ...

C

co
nc

at

N JπC
i xK

...N JxK sp
litx

N JxK

N Jalt1K
N Jcase x of alt [default a]K

N JaltnK
N JaK

...

N JxK
m
ux

tag x1

N Jλ x : τ1 . let y : τ2 7→ e in yiK

xn

...
N Je1K y1

N JeiK yi

N JemK ym

...

Figure 6.16: Graphical translation from CExpT to a circuit structure

viding integration with most downstream EDA tools. Since we currently only make
use of simple splices, concatenations, and multiplexers, it should be a simple exercise
to implement back-ends for Verilog, among others. To concisely describe the VHDL
implementation, we first introduce a set of helper functions to reason about the bit
representations of a type.

type(e): Get the type of a term

tagI(τ): Get the indices of the tag bits for a given type

tagB(τ, C): Get the tag bits for a given constructor

fieldI(τ, C, i): Get the indices for a given field/argument of a data type

padB(τ, C): Get the number of padding bits for a given constructor (padding out
the representation of this particular data constructor up to the worst-
case size for its type)

An entity declaration is generated with ports for all top-level inputs and a single
output, called res. The architecture is equipped with signals defined for all let-bound
names. From this point, we can generate the architecture’s body with the rules pre-
sented in Figure 6.17. The angle bracket notation is used to indicate indexing of a bus
and an ampersand represents bus concatenation:

171



6 . 4 C I RCU I T S YN TH E S I S

N Jλ x : τ . let y : σ 7→ e in zK Top-level circuit
= y ← N JeK (Let-bound signals)

res ← z (Output routing)

N JxK Local variable reference
= x

N JπC
i xK Projection of field
= N JxK 〈 fieldI(type(x), C, i) 〉 (Indexing of x)

N JCs aK Constructor application
= tagB(type(Cs a), C) (Constructor tag bits…)

& N JaK (with field bits…)
& padB(type(Cs a), C) (and padding bits)

N Jcase x of Cs y→ e [default a]K Case expression
= with N JxK 〈 tagI(type(x)) 〉 select (Scrutinise tag)

← N JeK when tagB(type(y), C) (Alternatives)
[N JaK when others]; (Default)

Figure 6.17: Translation scheme from normalised CExpT to a VHDL architecture body

The only rule which substantially leans on VHDL-specific constructs is the multi-
plexing of case expressions, using VHDL’s with/select assignment. This construct
offers a convenient way to express explicit choices for multiplexing as well as handling
a default case. This maps very neatly to our core language since case expressions can
have a non-exhaustive list of alternatives, followed by a default branch. For an imple-
mentationwhich outputs a netlist more directly (for example, an EDIF file) the burden
of handling default cases would likely lie on toatie’s netlist generator, rather than on
the downstream EDA tools such as Vivado.

The only other nuance to mention is that our scheme in Figure 6.17 allows nested
constructor applications. Each argument to a constructor application can itself be a
constructor application. This helps minimise the number of internal signals we need
to define, especially when constructing larger structures.

172



6 . 4 C I RCU I T S YN TH E S I S

6 . 4 . 5 Synthesis examples

To illustrate the synthesis process from start to finish, this section steps through a se-
ries of simple examples. We will make a point of discussing why the source descrip-
tion meets the synthesis requirements from Section 6.4.1, and the “what” behind its
normalised CExpT representation and final VHDL output.

The top-level source code for a single-bit adder is shown in Listing 6.9, noting that
addU is already provided by our standard library — the definition is only shown here
for reference.

Listing 6.9: A synthesisable single-bit adder for Unsigned

1 -- Top-level adder circuit
2 myadd : {x,y : Nat} →
3 〈 Unsigned 1 x → Unsigned 1 y → Unsigned 2 (plus x y) 〉
4 pat x, y ⇒
5 myadd {x} {y} =
6 J λxs ⇒ λys ⇒ ~(addU 1 {x} {y} {0} J xs K J ys K J O K ) K
7
8 -- Unsigned adder family (from Data.Unsigned)
9 addU : (w : Nat) → {x,y,c : Nat} →

10 〈 Unsigned w x 〉 → 〈 Unsigned w y 〉 → 〈Bit c 〉 →
11 〈 Unsigned (S w) (plus c (plus x y)) 〉
12 pat c, cin ⇒
13 addU 0 {0} {0} {c} J UNil K J UNil K cin
14 = J UCons {_} {0} {c} UNil ~cin K
15 pat w, c, xsn, xn, xbs, xb, ysn, yn, ybs, yb, cin ⇒
16 addU (S w) {_} {_} {c} J UCons {w} {xsn} {xn} xbs xb K
17 J UCons {w} {ysn} {yn} ybs yb K cin
18 = J case (addBit {_} {_} {_} ~cin xb yb) of
19 pat a, b, prf, cin', lsb
20 ⇒ (MkBitPair {a} {b} {_} {prf} cin' lsb) =⇒
21 let rec = ~(addU _ {_} {_} {_} J xbs K J ybs K J cin' K )
22 ans = UCons {_} {_} {_} rec lsb
23 in eqInd2 {_} {_} {_}
24 {prfAddU c xn yn a b xsn ysn prf}
25 {λh ⇒ Unsigned (S (S w)) h} ans
26 K

The top-level myadd circuit needs to meet a few restrictions in order to be synthesis-
able. These were described in the abstract form back in Section 6.4.1. Using myadd as a
concrete example, we ensure that:

↪→ The extraction of myadd is a single code type. This is true since the x and y ar-
guments are marked as irrelevant and will be erased during extraction. The re-
maining type is a single code type — albeit a function type, Unsigned 1 _ →

Unsigned 1 _ → Unsigned 2 (plus _ _).

173



6 . 4 C I RCU I T S YN TH E S I S

↪→ The argument types and return type of the extraction are all synthesisable. This
is true since Unsigned is declared as a simple type constructor, and the Unsigned

1 _ / Unsigned 2 _ types are both synthesisable (evenwith the second argument
erased).

↪→ There is no recursion in the circuit’s run-time. While addU is defined recursively,
this recursive call appears directly in an escaped quote (line 21) and will be eval-
uated during circuit elaboration.

We also take no risks with the erasure of intermediate non-synthesisable terms.
The only non-synthesisable terms present after erasure exist in stage zero and should
be reduced by the elaboration’s normalisation-by-evaluation.

This source representation is then parsed directly into its TTTimp representation be-
fore being type checked and expanded into a TTT program. Since we are focusing
on the circuit synthesis process here, we rejoin our myadd example in the subsequent
representation — normalised CExpT . A listing of this form is shown in Listing 6.10.
This representation captures the circuit after erasure, full inlining, and elaboration. We
should only expect to encounter the simplified constructs from Figure 6.15: a top-level
definition with a list of let-bindings, each of which are either local variable references,
constructor applications, one-level case expressions, or projections.

We can read the CExpT representation for myadd as four main stages, only one of
which is responsible for the combinatorial logic wemight expect to see. Step one (lines
4–7) explicitly projects the two single Bits out of our Unsigned inputs. These lines
prepare new local names for each Bit to be used as the scrutinee of subsequent case
expressions. Note that the full type of both of these are Bit [_]. We do not know if
the bit represents a 0 or a 1 — the synthesised bit representation will be wide enough
to encode both constructors.

Step two (lines 10–24) performs the combinatorial logic required by our adder.
These three case expressions scrutinise the Bits gathered in the previous step. Since
each case inspects a single bit, we can easily imagine synthesising these to MUX2 struc-
tures. The output used going forward is cv:14, defined as the pair of our carry output
and sum. With the circuit’s carry input tied to zero, we would expect the carry output
to be governed by x & y, and the sum by x⊕ y. The formwe see in Listing 6.10 is gener-
ated by a case tree instead of using standard logic gate primitives such as &, |,+, and⊕.
We can demonstrate the equivalence by constructing truth tables for both encodings,
and we also demonstrate an automatic reinterpretation later (Figures 6.18 and 6.19)
using the open source synthesis tool Yosys.

174



6 . 4 C I RCU I T S YN TH E S I S

Listing 6.10: Normalised CExpT representation for myadd

1 myadd ([xs, ys]) : =
2
3 -- Project bits out from unsigned inputs
4 let {cv:3} : (Bit [_]) =
5 prj^UCons_1 (local xs) in
6 let {cv:5} : (Bit [_]) =
7 prj^UCons_1 (local ys) in
8
9 -- Perform full-adder logic

10 let {cr:12} : (BitPair [_]) =
11 case (local {cv:5}) of {
12 O [] ⇒ MkBitPair[ (O []) (I []) ])
13 I [] ⇒ MkBitPair[ (I []) (O []) ])
14 } in
15 let {cr:13} : (BitPair [_]) =
16 case (local {cv:5}) of {
17 O [] ⇒ MkBitPair[ (O []) (O []) ]
18 I [] ⇒ MkBitPair[ (O []) (I []) ]
19 } in
20 let {cr:14} : (BitPair [_]) =
21 case (local {cv:3}) of {
22 O [] ⇒ local {cr:13}
23 I [] ⇒ local {cr:12}
24 } in
25
26 -- Project bits out from pairs
27 let {cv:7} : (Bit [_]) =
28 prj^MkBitPair_1 (local {cr:14}) in
29 let {cv:6} : (Bit [_]) =
30 prj^MkBitPair_0 (local {cr:14}) in
31
32 -- Construct unsigned output
33 let {cr:15} : (Unsigned 1 (plus [_] (double 0))) =
34 UCons[ (UNil []) (local {cv:6}) ] in
35 let {rec:9} : (Unsigned 1 (plus [_] (double 0))) =
36 (local {cr:15}) in
37 let {ans:11} : (Unsigned 2 (plus [_] (double (plus [_] (double 0))))) =
38 UCons[ (local {rec:9}) (local {cv:7}) ] in
39
40 -- Return output
41 local {ans:11}

The final two stages (lines 27–30 and 33–38) encode the simple routing required
to construct the final output. First, we project out each bit from the BitPair [_] in
cv:14. Next, we recombine them into the output Unsigned 2 [_] representation. We
will later see that, since both of these types only have one possible constructor, the
constructor tags are empty. This means that this pair of unpacking and packing steps
actually compiles down to routing only. A circuit operating over data types with am-
biguous constructors might inspect or introduce new constructor tags here, resulting
in some extra logic.

175



6 . 4 C I RCU I T S YN TH E S I S

Now we consider the representation of myadd in the final step of our compiler
pipeline: the VHDL output. This is a simple translation structurally, but demonstrates
the important topic of bit representation for our GADTs. Every signal has an explicit
wordlength and known layout; we know the length of the tag bits for each type and
the position of each argument for each constructor.

Listing 6.11 shows the full VHDL output for the myadd example. Since the transla-
tion between CExpT and VHDL is essentially a 1 : 1 mapping, we maintain the four
main stages from Listing 6.10. With reference back to Listing 6.10, it is clear to see
simple translation at work:

Local variable → Routing
Projection → Indexing

Case expression → With/select assignment
Constructor application → Concatenation

All four of these rules are used in the construction of Listing 6.11, albeit with an
empty tag for both constructor applications.

Although VHDL generation is the final step in toatie’s compilation pipeline, we
can continue the broader FPGA/ASIC development flow and pass our design into a
synthesis tool. We generate schematics for the myadd circuit by passing Listing 6.11
through the open source GHDL and Yosys synthesis tools. Vendor EDA tools should
provide equivalent results. Figures 6.18 and 6.19 shows two versions of our schematic:
one direct visualisation of our VHDL, and one after technology mapping.

1
0

1
0

1
0

xsys

res01

10

00

/2//2/

/2/

/2/
/2/

/2/ /2/

Figure 6.18: Schematic for myadd directly from VHDL output

176



6 . 4 C I RCU I T S YN TH E S I S

Listing 6.11: VHDL representation for myadd

1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.numeric_std.all;
4 entity myadd is
5 port (
6 xs : in std_logic_vector (0 downto 0);
7 ys : in std_logic_vector (0 downto 0);
8 res : out std_logic_vector (1 downto 0)
9 );

10 end myadd;
11
12 architecture behaviour of myadd is
13 signal \cv_3\ : std_logic_vector (0 downto 0);
14 signal \cv_5\ : std_logic_vector (0 downto 0);
15 signal \cr_12\ : std_logic_vector (1 downto 0);
16 signal \cr_13\ : std_logic_vector (1 downto 0);
17 signal \cr_14\ : std_logic_vector (1 downto 0);
18 signal \cv_7\ : std_logic_vector (0 downto 0);
19 signal \cv_6\ : std_logic_vector (0 downto 0);
20 signal \cr_15\ : std_logic_vector (0 downto 0);
21 signal \rec_9\ : std_logic_vector (0 downto 0);
22 signal \ans_11\ : std_logic_vector (1 downto 0);
23
24 begin
25 -- Project bits out from vector inputs
26 \cv_3\ <= xs(0 downto 0);
27 \cv_5\ <= ys(0 downto 0);
28
29 -- Perform full-adder logic
30 with \cv_5\(0 downto 0) select \cr_12\ <=
31 "0" & "1" when "0",
32 "1" & "0" when "1",
33 "00" when others;
34
35 with \cv_5\(0 downto 0) select \cr_13\ <=
36 "0" & "0" when "0",
37 "0" & "1" when "1",
38 "00" when others;
39
40 with \cv_3\(0 downto 0) select \cr_14\ <=
41 \cr_13\ when "0",
42 \cr_12\ when "1",
43 "00" when others;
44
45 -- Project bits out from pairs
46 \cv_7\ <= \cr_14\(0 downto 0);
47 \cv_6\ <= \cr_14\(1 downto 1);
48
49 -- Construct vector outputs
50 \cr_15\ <= "" & \cv_6\;
51 \rec_9\ <= \cr_15\;
52 \ans_11\ <= "" & \rec_9\ & \cv_7\;
53
54 -- Assign output
55 res <= \ans_11\;
56
57 end behaviour;

177



6 . 4 C I RCU I T S YN TH E S I S

The version after Yosys’s technology mapping demonstrates that our case tree ver-
sion is directly equivalent to the expected & and ⊕ logic gates. Later place and route
algorithms are then specialised to the architecture of the target device — accounting
for the primitive LUT dimensions, routing configurations, etc.

xs

ys

res0
1 /2/

Figure 6.19: Schematic for myadd after synthesis with GHDL and Yosys, with mapping to logic
gates

This concludes our in-depth look at the synthesis process for a single adder exam-
ple. The following subsections give a very brief look at some other small examples,
highlighting further common use cases.

Routing —Mirroring a binary tree

Listing 6.12 shows a program which mirrors/reflects binary tree structures. The mir-
roring process should be possible entirely through the circuit’s routing. This example
provides us with a sanity check to ensure that we do not infer gruesome overheads in
our synthesis process — it should be implemented “for free” in a larger circuit’s rout-
ing. This also acts as a reminder that we can think of evaluation of stage zero code as
a user-defined elaboration stage.

For clarity, mirror encodes a circuit family for mirroring a binary tree of any size.
Our top-level circuit is mymirror, which specialises mirror for trees with a depth of
three and a node type of Bit. Figure 6.20 visualises the binary tree structure and how
the result of the mirroring process should appear.

6

5

4 3

2

1 0

6

2

0 1

5

3 4

x mirror(x)

Figure 6.20: Binary tree mirroring example for depth of three

178



6 . 4 C I RCU I T S YN TH E S I S

Listing 6.12: A mirroring function for binary trees

1 import Data.Nat
2
3 simple Bit : Type where
4 O : Bit
5 I : Bit
6
7 simple BTree : Nat → Type → Type where
8 Leaf : {a : Type} → BTree Z a
9 Node : {a : Type} → {n : Nat} → a → BTree n a → BTree n a →

10 BTree (S n) a
11
12 mirror : {a : Type} → (n : Nat) → 〈 BTree n a 〉 → 〈 BTree n a 〉
13 pat a ⇒
14 mirror {a} Z J Leaf {_} K = J Leaf {_} K
15 pat a, n, x, tl, tr ⇒
16 mirror {a} (S n) J Node {_} {n} x tl tr K
17 = J Node {_} {_} x ~(mirror {_} _ J tr K ) ~(mirror {_} _ J tl K ) K
18
19 mymirror : 〈 BTree 3 Bit → BTree 3 Bit 〉
20 mymirror = J λt ⇒ ~(mirror {Bit} 3 J t K ) K

As before, there is no ambiguity between constructors for any BTree types with a
knowndepth. Thismeans no bits are used to store the tag. Adepth three binary tree for
Bits should occupy 7 bits (one for each node). When deriving the bit representation,
we traverse data constructor arguments in a left → right order. For BTree data, the
ordering is equivalent a preorder traversal. For example, the tree x in Figure 6.20would
be flattened to the sequence 6, 5, 4, 3, 2, 1, 0.

Figure 6.21 shows the final schematic for our mymirror circuit after toatie’s com-
pilation and visualisation with Yosys. We confirm that this simplifies down to routing
only; all of its structure is completely determined during our elaboration.

t res0
1
2
3
4
5
6

4
3
5
1
0
2
6

/7//7/

Figure 6.21: Final schematic for mymirror

179



6 . 4 C I RCU I T S YN TH E S I S

Structured data — keeping us honest with Maybe

Now we present an example demonstrating how we can actually inspect the structure
of our data types during circuit run-time. This relies on automatic separation of a
type’s constructor tag from the representation of its fields. We show this with a circuit
operating over a Maybe type. This data type is constructed either as an invalid sample
(Nothing) or a valid samplewith its payload (Just x). Using Maybe keeps us honest in
our descriptions with potentially invalid signals, especially for polymorphic functions.
Here we cannot rely on invalid data since we have no access to its payload — only the
fact that the sample is invalid! We preclude the designer’s temptation to use bogus
inputs when working around edge-cases.

The source example presented in Listing 6.13 shows such a circuit which negates
an input bit only when it is valid. Any valid input produces a valid negated output,
and any invalid input should always remain invalid. This is implemented with the
polymorphic map function for Maybe, which enjoys the type-safety described earlier.

Listing 6.13: An Maybe example for principled used of valid-gated data

1 import Data.Nat
2
3 simple Bit : Type where
4 O : Bit
5 I : Bit
6
7 simple Maybe : Type → Type where
8 Nothing : {a : Type} → Maybe a
9 Just : {a : Type} → a → Maybe a

10
11 map : {a, b : Type} → (f : 〈a → b 〉) → 〈 Maybe a 〉 → 〈 Maybe b 〉
12 pat a, b, f, ma ⇒
13 map {a} {b} f ma =
14 J case ~ma of
15 pat x ⇒ Just {a} x =⇒ Just {_} (~f x)
16 Nothing {a} =⇒ Nothing {_}
17 K
18
19 not : Bit → Bit
20 not O = I
21 not I = O
22
23 maybeNot : 〈 Maybe Bit → Maybe Bit 〉
24 maybeNot = J λx ⇒ ~(map {Bit} {Bit} J λy ⇒ not y K J x K ) K

Before considering the output schematic, we consider the bit representation of Maybe
Bit. This synthesises down into a two bit structure: the most significant bit represents
the constructor tag (0 for Nothing or 1 for Just), and the least significant bit represents
the encapsulated data Bit.

180



6 . 4 C I RCU I T S YN TH E S I S

Figure 6.22 shows the final netlist, after synthesis with Yosys. The input’s valid bit
is passed directly to the output’s valid bit, ensuring that we preserve the validity flag of
our data. The data itself is only negated when it is valid— ensured by the valid & data
gate. We note that the higher-order map function is completely specialised and results
in an implementation we would have hand-coded in a more traditional HDL.

x res0
1

1
0 /2//2/

Figure 6.22: Final schematic for maybeNot

Larger designs — A DFT example

Finally, we highlight an example with slightly more complexity. We offer a top-level
wrapper for the radix-2 DIT implementation of a DFT, as detailed in Section 5.4.4. Be-
yond the greater complexity of this example after synthesis, the source also contains
some interesting complexities considered back in Section 5.4.4. These topics included
heavy use of proofs to demonstrate equivalence with a direct DFT implementation,
and a heterogeneous collection of signals with different wordlengths (facilitated by
our HWords type). The top-level wrapper for the previous description is given in List-
ing 6.14.

Listing 6.14: Top-level description for a two-sample, 8-bit unsigned, radix-2 Cooley-Tukey FFT

1 import Examples.FFT.TwiddlesN2
2 import Examples.FFT
3
4 dft_2 : {xs : Vect 2 ZZ} →
5 〈 HWords 2 [8,8] xs →
6 HWords 2 [9,9] (dit {2} {oscilate} twOscil2 (PDouble 1 POne) xs) 〉
7 pat xs ⇒
8 dft_2 {xs} =
9 J λbs ⇒ ~(circDIT {2} {oscilate}

10 twOscil2 (PDouble 1 POne) [8,8] {xs} J bs K )
11 K

The final netlist is shown in Figure 6.23, demonstrating that all of our source-level
constructs reasoning about the radix-2 DIT structure do indeed synthesise down to
equivalent netlist constructs. This offers a more complex circuit than our other exam-
ples presented in this chapter and is only limited by readability, not by the compiler
itself.

181



6 . 4 C I RCU I T S YN TH E S I S

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

bs

res0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

1
9
0
8
2
10
3
11
4
12
5
13
6
14
7
15

/18/

/16/

Figure 6.23: Schematic for dft_2

182



6 . 5 FU RTH E R WORK

6 . 5 FURTHER WORK

The current implementation of toatie’s compiler and synthesis scheme has been sub-
stantiated against the plethora of examples from throughout Section 6.4.5 and Chap-
ter 5. However, this section suggests four avenues for further work, towards both
strengthening the presented theory and maturing its implementation.

6 . 5 . 1 A fully typed synthesis scheme

We acknowledge that our prototype circuit normaliser would bemore powerful if type
information was retained throughout the entire process. As it stands, types and irrele-
vant terms are erased, the description is evaluated as far as possible, and an attempt is
made to reconstruct just enough type information to identify each term’s bit representa-
tion. This is purely for convenience of implementation. Chapter 4 of [19] demonstrates
how the elimination of intermediate non-synthesisable terms is much more powerful
in the presence of typing annotations. In particular, a distinction can be made between
terms that ought to be synthesisable and terms which are not. Different sets of rules
can be applied, including inlining and specialisation of non-synthesisable terms in or-
der to safely eliminate them from our netlist. For toatie, it would also be possible
to synthesise a wider range of data types if type information is retained. Currently,
it must be able to reconstruct enough of each term’s type in order to determine a bit
encoding, which will fail when presented with enough ambiguity. Consistent typing
can also offer a sanity check for any future optimisations included in the compiler.

6 . 5 . 2 Formalisation of synthesisability requirements

Chapters 5 and 6 offer a range of circuit families which toatie can synthesise, which
is an encouraging result. Future research could help formalise this system and verify
our suggested restrictions for synthesisability. A rigorous, metatheoretic study could
eventually prove or dismiss important properties of the system presented in this thesis,
such as completeness of certain compiler passes. This is a pressingmatter since bugs in
the circuit synthesis process will undermine the confidence given by theorems proved
in the core language. Since toatie is itself implemented in a dependently typed lan-
guage, there is even scope for encoding proofs about the compiler’s implementation
in its source. For example, one could attempt to verify that the synthesis of netlists
preserves the semantics of the original description, or that the synthesis process can
always complete when given a valid source.

183



6 . 5 FU RTH E R WORK

6 . 5 . 3 Rebase on Idris 2

It is expected that an engineering effort to rebase toatie’s concepts on top of a rich,
dependently typed language such as Idris 2 would be extremely worthwhile. A port
to Idris 2 in particular is appealing since toatie’s original foundation was itself a very
stripped down version of Idris 2. With enough squinting, the two have a shared inter-
nal structure. This rebase ought to provide a few benefits, nearly for free:

↪→ Wegain access to the existing ecosystemof libraries for Idris. These can be reused
directly in stage zero, and a subset of them might be applicable to higher stages.

↪→ We get access to all the usability features of Idris. This importantly includes its
language server, offering text-editor support for case splitting, type-directed auto
complete, and interactive theorem proving. The latter substantially lessens the
burden of hand-crafting proof terms.

↪→ Since Idris 2’s type theory is based on quantitative type theory, it offers an imple-
mentation of erasure for free and the option of exploring linear types. Although
linear types are an important aspect of [58], we have not yet explored their use
for digital circuit descriptions.

6 . 5 . 4 Netlist optimisations for FPGA architectures

Finally, it might prove interesting to perform a deeper analysis of how the netlist struc-
tures generated by toatie interact with the optimisations present in FPGA vendor
tools, such as Xilinx’s Vivado software. Pattern matching is currently synthesised via
a (potentially quite deep) case tree. For constructors with only two options (such as
Bit), this can infer a deep chain of MUX2 structures. It might be the case that EDA
tools can infer better circuits if the compiler foregoes the case tree structure and more
directly translates an entire pattern matching clause to a shallower, wider structure.
There are similar choices to bemade regarding the derived bit representations for user-
defined data. Ideally toatie would be able to choose from a set of different encodings
for each data type, exploiting trade-offs between the existing encoding and the likes of
larger, one-hot encodings for tags. Lastly, for best use of the available hardware, a set
of primitive constructs could be added to toatie to encode the fundamental resources
available on modern FPGAs. These include hardened blocks such as DSP48E blocks,
BlockRAMs, and UltraRAMs.

184



6 . 6 SUMMARY

6 . 6 SUMMARY

This chapter has discussed three broad topics, as they relate to hardware description.
Wehavepresented a formalisation of the TinyIdris software language, onwhich toatie
is based. We then presented toatie’s core language as a superset of TinyIdris, with all
modifications justified by one of four feature groups:

Erasure to remove non-synthesisable terms from otherwise synthesisable
data types.

Staging to provide a type-safe, user-programmable circuit elaboration sys-
tem.

Synthesis to derive netlists from a high-level circuit description.

Syntactic sugar simply to improve the ergonomics of the language.

While the topics of erasure and staging were present in discussions of software
languages, we noted that these are usually employed as a secondary matter of optimi-
sation. When encoding circuits as plain functions in the hardware description world,
both of these features quickly became completely necessary for synthesisability.

The third section detailed this synthesis process. We automatically derived bit rep-
resentations for any synthesisable, simple types, maintaining a separation between a
type’s tag and its fields. This streamlined circuit descriptions by allowing the designer
to use the same toatie choice constructs for both elaboration software and synthesis-
able circuit behaviour — we could match on the inputs tag bits and choose the correct
alternative at circuit run-time. While our current normalisation process has its limi-
tations, there is existing literature explaining precisely how these challenges (for us,
the elimination of intermediate non-synthesisable terms) could be readily addressed.
From this normalised CExpT form, circuit generation is trivial. We show that any pro-
gram in CExpT form could be implemented with just four simple circuit constructs:
referencing signals, splitting signals, concatenating signals, and multiplexing case al-
ternatives.

These observations accumulate to provide, to the best of the author’s knowledge,
the first HDL and compiler with dependent types, where synthesisable combinatorial
circuits can be represented as plain functions and enjoy full functional verification in
a correct-by-construction fashion.

185



7CONCLUS ION

7 . 1 THE S I S R EV I EW

This thesis set out to explore a new HDL design, encouraging the description and full
functional verification of correct-by-construction circuit families under a single roof.
More specifically, the aim was to explore one uncharted point on this design space:

↪→ Encoding circuits as plain functions.

↪→ Ascribing precise meaning to synthesisable data via its type.

Our discussion of existing HDLs in Chapter 2 and our in-depth look at our own
novel DSP circuit family in Chapter 4 has strongly motivated these two language de-
sign choices. The new parallel filtering architecture presented in Chapter 4 is also
substantial in its own right, producing frontend RFSoC filters without the need for
any precious, hardened DSP48E2 resources — and occasionally with a total footprint
smaller than just the traditional CLB overhead. More often, the new architecture offers
a valuable trade-off for half-band filters: the traditional percentage usage of DSP48E2s
is translated to ×0.8 of the percentage for the generic CLB resources, leaving the spe-
cialised resources for rapid prototyping beyond the frontend filtering stage.

A functional HDL that encodes circuits as plain functions simplifies the implemen-
tation of circuits since designers can use the same set of native language features (in-
cluding choice constructs like pattern matching) to describe both elaboration-time be-
haviour and circuit run-time behaviour. Ascribing precise meaning to synthesisable
data, achieved with dependent types, allows our type checker to completely verify the
functional behaviour of an entire circuit family at once. This is in contrast to more
commonly used model checking techniques, practically limited to analysing one con-
crete circuit at a time. Tracking themeaning in the synthesisable data types themselves
encourages a correct-by-construction strategy, where we get a theorem about our cir-
cuit’s functional behaviour for “free”, rather than treating verification as awholly sepa-
rate concern after the fact. Here, we can enjoy a productive, type-driven methodology
for describing circuits with confidence. These benefits have been explored practically
through the numerous examples in Chapter 5.

186



7 . 1 TH E S I S R E V I EW

An important insight in Chapter 5 is that, although toatie provides an environ-
ment capable of full functional verification, a designer is still free to decide howheavily
they want to lean on the type system. Section 5.2 does so minimally, but still enjoys
the benefits of explicitly staged descriptions and simple type-level programming to
control wordlengths with more finesse than is common. Section 5.3 explores an in-
teresting mid-point: using the type system to track non-functional aspects of a circuit
family. The running example is to encode a binary number’s precise range in its type,
offering optimal wordlength pruning strategies even deep within a larger DSP circuit.
Section 5.4 demonstrates the extreme, revisitingmany of the previous circuitswhile de-
manding full functional verification in a correct-by-construction fashion. Perhaps the
most surprising finding there is how well combinatorial DSP circuits map to this style
of programming. Once the fundamental arithmetic blocks are in place, the implemen-
tations of the dot product, and even a radix-2 DIT FFT, really do give their correctness
proofs for free.

The choice to represent circuits as plain, dependently typed functions does, how-
ever, place a high burden on the language and compiler design. In terms of language
design, it was found that two features used as optimisations in software programming
(erasure and staging) become completely necessary for synthesisable hardware de-
scriptions. At the compiler-level, a new synthesis scheme was needed to translate suit-
able plain functions and user-defined GADTs to equivalent netlists. Chapter 6 began
to address these challenges with the following insights:

↪→ Erasure and irrelevance are a requirement for circuit description, instead of their
standard role in software programming as an optimisation. Wewill often need to
allow non-synthesisable terms to direct the type checking for otherwise synthe-
sisable data, especially for correct-by-construction techniques. We need a mech-
anism for ensuring that these non-synthesisable terms are present during type
checking but are guaranteed to be erased from the final netlist.

↪→ Staging constructs also become a requirement for circuit description, instead of
their standard role as an optimisation. A parameterised circuit has two clear and
even physically distinct phases: compile-time elaboration of the netlist and the
circuit’s run-time on an FPGA. The staging constructs help us control the flow
of information between these two stages in a type safe way. They are used to
ensure causality, where information generated in the elaboration stage can be
passed forward to the circuit’s run-time but we forbid information being passed
from the circuit’s run-time backwards to the elaborator.

↪→ Anewstrategy for automatically synthesising bit representations for user-defined
algebraic data types, including definitions with bounded recursion. The imple-

187



7 . 2 FURTH E R WORK

mentation of this becomes quite simple for a dependently typed language since
we can directly reuse the type checker’s unification process to determine all possi-
ble data constructors for a given (partially-known) type. The synthesisability of
an entire circuit is then guided by a set of reasonable restrictions from Section 6.4.

↪→ A prototype normalisation stage, reducing a synthesisable circuit in toatie’s
core language down to a form which can be trivially converted to a netlist. This
process includes eliminating constructs without a simple netlist semantics, such
as staging annotations and λ-abstractions/applications. When successful, we re-
turn a version of the circuit with only fourmain constructs, all of which are trivial
to encode in VHDL. These are local variable references (a wire), constructor ap-
plications (a concatenation of wires), case expressions (a set of alternative wire
bundles and a multiplexer), and projection (a slice).

7 . 2 FURTHER WORK

There are five main themes exposed by this thesis which merit further research. While
detailed in Sections 5.5 and 6.5, these five avenues are, in summary:

↪→ Encoding synchronous circuits in toatie. There is strong precedence for this in
the literature, and is expected to require engineering effort only. The more aca-
demic consideration here is addressing how the correct-by-construction verifica-
tion techniques presented in Chapter 5 could translate to a synchronous context.

↪→ Extending our circuit synthesis scheme to retain types throughout all steps. This
should help broaden toatie’s support for synthesis of user-defined data types
and elimination of non-synthesisable intermediates.

↪→ Further formalisation of our synthesis process and the restrictions we suggest
to encourage synthesisability. The end goal is to provide a guarantee that: 1)
the semantics of any generated netlist match that of the source program, and 2)
netlist generation will always succeed for a valid source.

↪→ Rebasing the implementation of toatie on a rich surface language such as Idris 2
with interactive development tooling. Gaining access to the ecosystem of a more
mature language would substantially improve productivity.

↪→ Further investigating the interplay between toatie-generated netlists and down-
stream EDA tooling. It is possible that refinements could be made to generated
netlist structures to better appeal to particular FPGA architecture resources and
their vendor tooling, including alternative bit representations and synthesis of
pattern matching.

188



7 . 3 CONC LUD ING R EMARK S

7 . 3 CONCLUD ING REMARKS

At the end of this journey, we have illustrated the returns of using dependently typed
programming to describe and verify combinatorial digital circuits. Indeed, implemen-
tation and verification need not be entirely independent affairs, and one can often be
used to learn more about the other. More concretely, this research has explored a set
of language and compiler features which unite to actually synthesise real-world com-
binatorial circuits from plain, dependently typed functions.

Clearly, the “disturbing” conclusion in [1] — that only 16% of FPGA projects reach
production without bugs — demonstrates a real issue with the traditional approaches
to circuit verification. The dependently typed environment offered by toatie allows
for a fundamentally different approach to verification, making it possible to catch func-
tional errors anywhere in an entire circuit family, at compile-time. This digital design
methodology feels particularly impactful to high-assurance contexts.

The work presented in this thesis has discovered one relatively unexplored point in
the historied landscape of functional HDLs. Beyond emboldening digital designers to
better craft correct circuits, this thesis hopes to kindle an interest in staged, dependently
typed languages elsewhere in the wider, blooming functional hardware community.

189



7 . 3 CONC LUD ING R EMARK S

190



B I B L I OGRA PHY

B IBL IOGRAPHY

[1] H. Foster, Siemens EDA. 2022 Wilson Research Group functional verification study. 2022.
URL: https : / / blogs . sw . siemens . com / verificationhorizons / 2022 / 10 / 10 /
prologue-the-2022-wilson-research-group-functional-verification-study/.

[2] Xilinx, Inc. XC2000 Logic Cell Array Families. 1985. URL: https : / / labmaster . com /
surplus/parts/html/941557-pl/xc2000.pdf.

[3] Xilinx, Inc. XC4000, XC4000A, XC4000H Logic Cell Array Families. 1991. URL: https://
media.digikey.com/pdf/Data%20Sheets/Xilinx%20PDFs/XC4000,A,H.pdf.

[4] Xilinx, Inc. DS003-1 — Virtex 2.5 V Field Programmable Gate Arrays (v4.0). 2013. URL:
https://docs.xilinx.com/v/u/en-US/ds003.

[5] Xilinx, Inc. Xilinx Virtex-II Series FPGAs. 2003. URL: https : / / www . xilinx . com /
publications/matrix/virtex_bw.pdf.

[6] Xilinx, Inc. DS112 — Virtex-4 Family Overview (v3.1). 2010. URL: https://docs.xilinx.
com/v/u/en-US/ds112.

[7] Xilinx, Inc. Xilinx Virtex-5 FPGAs Product Table. 2015. URL: https://docs.xilinx.com/
v/u/en-US/virtex5-product-table.

[8] Xilinx, Inc. DS150 — Virtex-6 Family Overview (v2.5). 2015. URL: https://docs.xilinx.
com/v/u/en-US/ds150.

[9] Xilinx, Inc. 7 Series Product Selection Guide. 2014. URL: https : / / www . xilinx . com /
content/dam/xilinx/support/documents/selection-guides/7-series-product-
selection-guide.pdf.

[10] Xilinx, Inc. UltraScale+ FPGAs Product Tables and Product Selection Guide. 2015. URL:
https://www.xilinx.com/content/dam/xilinx/support/documents/selection-
guides/ultrascale-plus-fpga-product-selection-guide.pdf.

[11] Xilinx, Inc. DS 926 — Zynq UltraScale+ RFSoC Data Sheet: DC and AC Switching Char-
acteristics. 2021. URL: https : / / www . xilinx . com / support / documentation / data _
sheets/ds926-zynq-ultrascale-plus-rfsoc.pdf.

[12] D. Allan et al. Software Defined Radio with Zynq Ultrascale+ RFSoC. English. Ed. by L.
Crockett, D. Northcote, and R. Stewart. 1st. Jan. 2023. ISBN: 9781739588601.

[13] Xilinx, Inc. UG574 — UltraScale Architecture Configurable Logic Block (v1.5). 2017. URL:
https://docs.xilinx.com/v/u/en-US/ug574-ultrascale-clb.

[14] S. M. Trimberger. “Three Ages of FPGAs: A Retrospective on the First Thirty Years of
FPGA Technology”. In: Proceedings of the IEEE 103.3 (2015), pp. 318–331. DOI: 10.1109/
JPROC.2015.2392104.

191

https://blogs.sw.siemens.com/verificationhorizons/2022/10/10/prologue-the-2022-wilson-research-group-functional-verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2022/10/10/prologue-the-2022-wilson-research-group-functional-verification-study/
https://labmaster.com/surplus/parts/html/941557-pl/xc2000.pdf
https://labmaster.com/surplus/parts/html/941557-pl/xc2000.pdf
https://media.digikey.com/pdf/Data%20Sheets/Xilinx%20PDFs/XC4000,A,H.pdf
https://media.digikey.com/pdf/Data%20Sheets/Xilinx%20PDFs/XC4000,A,H.pdf
https://docs.xilinx.com/v/u/en-US/ds003
https://www.xilinx.com/publications/matrix/virtex_bw.pdf
https://www.xilinx.com/publications/matrix/virtex_bw.pdf
https://docs.xilinx.com/v/u/en-US/ds112
https://docs.xilinx.com/v/u/en-US/ds112
https://docs.xilinx.com/v/u/en-US/virtex5-product-table
https://docs.xilinx.com/v/u/en-US/virtex5-product-table
https://docs.xilinx.com/v/u/en-US/ds150
https://docs.xilinx.com/v/u/en-US/ds150
https://www.xilinx.com/content/dam/xilinx/support/documents/selection-guides/7-series-product-selection-guide.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/selection-guides/7-series-product-selection-guide.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/selection-guides/7-series-product-selection-guide.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds926-zynq-ultrascale-plus-rfsoc.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds926-zynq-ultrascale-plus-rfsoc.pdf
https://docs.xilinx.com/v/u/en-US/ug574-ultrascale-clb
https://doi.org/10.1109/JPROC.2015.2392104
https://doi.org/10.1109/JPROC.2015.2392104


B I B L I OGRA PHY

[15] J. Hughes. “Why Functional ProgrammingMatters”. In: The Computer Journal 32.2 (Jan.
1989), pp. 98–107. ISSN: 0010-4620. DOI: 10.1093/comjnl/32.2.98. eprint: https:
//academic.oup.com/comjnl/article-pdf/32/2/98/1445644/320098.pdf. URL:
https://doi.org/10.1093/comjnl/32.2.98.

[16] C. McBride. “Epigram: Practical programming with dependent types”. In: Advanced
Functional Programming: 5th International School, AFP 2004, Tartu, Estonia, August 14–21,
2004, Revised Lectures. Springer. 2005, pp. 130–170.

[17] U. Norell. “Towards a practical programming language based on dependent type the-
ory”. PhD thesis. Göteborg, Sweden, 2007. ISBN: 978-91-7291-996-9.

[18] E. Brady. “Idris, a general-purpose dependently typed programming language: Design
and implementation”. In: Journal of Functional Programming 23.5 (2013), pp. 552–593.
DOI: 10.1017/S095679681300018X.

[19] C. Baaij. “Digital circuit in CλaSH: functional specifications and type-directed synthe-
sis”. PhD thesis. Netherlands: University of Twente, Jan. 2015. ISBN: 978-90-365-3803-9.
DOI: 10.3990/1.9789036538039.

[20] J. P. P. Flor, W. Swierstra, and Y. Sijsling. “Π-Ware: Hardware Description and Ver-
ification in Agda”. In: 21st International Conference on Types for Proofs and Programs
(TYPES 2015). Ed. by T. Uustalu. Vol. 69. Leibniz International Proceedings in Informat-
ics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2018, 9:1–9:27. ISBN: 978-3-95977-030-9. DOI: 10 . 4230 / LIPIcs . TYPES . 2015 . 9. URL:
http://drops.dagstuhl.de/opus/volltexte/2018/8479.

[21] T. Sheard. “Types and hardware description languages”. In: Hardware Design and Func-
tional Languages, A satellite event of ETAPS. Volume 5161. European Joint Conferences on
Theory and Practice of Software, 2007.

[22] E. Brady, J. McKinna, and K. Hammond. “Constructing Correct Circuits: Verification
of Functional Aspects of Hardware Specifications with Dependent Types”. English. In:
Trends in Functional Programming. Vol. 8. Eighth Symposium on Trends in Functional
Programming, which was held in New York City on April 2–4, 2007. United Kingdom:
Intellect Books, 2008, pp. 159–176. ISBN: 9781841501963.

[23] C. Ramsay, L. H. Crockett, and R. W. Stewart. “On Applications of Dependent Types
to Parameterised Digital Signal Processing Circuits”. In: 2021 IEEE International Mid-
west Symposium on Circuits and Systems (MWSCAS). 2021, pp. 787–791. DOI: 10.1109/
MWSCAS47672.2021.9531730.

[24] C. Ramsay. Source code for: ”On Applications of Dependent Types to Parameterised Digi-
tal Signal Processing Circuits”. 2020. DOI: 10 . 15129 / db040cb9 - 9e48 - 4823 - 8616 -
cbc0ace1b6cd. URL: https : / / doi . org / 10 . 15129 / db040cb9 - 9e48 - 4823 - 8616 -
cbc0ace1b6cd.

[25] C. Ramsay, L. H. Crockett, and R. W. Stewart. “Low-cost, High-speed Parallel FIR Fil-
ters for RFSoC Front-Ends Enabled by Cλash”. In: 2021 55th Asilomar Conference on Sig-
nals, Systems, and Computers. 2021, pp. 925–932. DOI: 10.1109/IEEECONF53345.2021.
9723107.

192

https://doi.org/10.1093/comjnl/32.2.98
https://academic.oup.com/comjnl/article-pdf/32/2/98/1445644/320098.pdf
https://academic.oup.com/comjnl/article-pdf/32/2/98/1445644/320098.pdf
https://doi.org/10.1093/comjnl/32.2.98
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.3990/1.9789036538039
https://doi.org/10.4230/LIPIcs.TYPES.2015.9
http://drops.dagstuhl.de/opus/volltexte/2018/8479
https://doi.org/10.1109/MWSCAS47672.2021.9531730
https://doi.org/10.1109/MWSCAS47672.2021.9531730
https://doi.org/10.15129/db040cb9-9e48-4823-8616-cbc0ace1b6cd
https://doi.org/10.15129/db040cb9-9e48-4823-8616-cbc0ace1b6cd
https://doi.org/10.15129/db040cb9-9e48-4823-8616-cbc0ace1b6cd
https://doi.org/10.15129/db040cb9-9e48-4823-8616-cbc0ace1b6cd
https://doi.org/10.1109/IEEECONF53345.2021.9723107
https://doi.org/10.1109/IEEECONF53345.2021.9723107


B I B L I OGRA PHY

[26] C. Ramsay. Source Code for Conifer — A playground for parallel and multiplierless FIR filters
with Clash. 2021. DOI: 10 . 15129 / a2c118f2 - 48a8 - 40d2 - 8896 - 89b9da71a4be. URL:
https://github.com/cramsay/conifer.

[27] C. Ramsay. Source for toatie— a Hardware Description Language With Dependent Types.
2022. DOI: 10.15129/fd83f191-2dc1-4839-adbb-684bac5ecd0c. URL: http://github.
com/cramsay/toatie.

[28] E. Brady. Source Code for TinyIdris — SPLV 2020. 2020. URL: https://github.com/
edwinb/SPLV20.

[29] L. Crockett et al. Exploring Zynq MPSoC: With PYNQ and Machine Learning Applications.
English. Apr. 2019. ISBN: 0992978750.

[30] J. Goldsmith et al. “Control and Visualisation of a Software Defined Radio System on
the Xilinx RFSoC Platform Using the PYNQ Framework”. In: IEEE Access 8 (2020),
pp. 129012–129031. DOI: 10.1109/ACCESS.2020.3008954.

[31] A. Edelman. “The Mathematics of the Pentium Division Bug”. In: SIAM Review 39.1
(1997), pp. 54–67. DOI: 10.1137/S0036144595293959. URL: https://doi.org/10.
1137/S0036144595293959.

[32] E.M.Clarke,M.Khaira, andX. Zhao. “WordLevelModel Checking—Avoiding the Pen-
tium FDIV Error”. In: Proceedings of the 33rd Annual Design Automation Conference. DAC
’96. Las Vegas, Nevada, USA: Association for Computing Machinery, 1996, pp. 645–
648. ISBN: 0897917790. DOI: 10.1145/240518.240640. URL: https://doi.org/10.1145/
240518.240640.

[33] J. Yuan, C. Pixley, and A. Aziz. Boston, MA: Springer US, 2006, pp. 25–35. ISBN: 978-0-
387-30784-8. DOI: 10.1007/0-387-30784-2_2. URL: https://doi.org/10.1007/0-
387-30784-2_2.

[34] M. Sheeran. “MuFP, a Language for VLSI Design”. In: Proceedings of the 1984 ACM Sym-
posium on LISP and Functional Programming. LFP ’84. Austin, Texas, USA: Association
for Computing Machinery, 1984, pp. 104–112. ISBN: 0897911423. DOI: 10.1145/800055.
802026. URL: https://doi.org/10.1145/800055.802026.

[35] Design Automation Standards Committee. “IEEE Standard for SystemVerilog–Unified
Hardware Design, Specification, and Verification Language”. In: IEEE STD 1800-2009
(2009), pp. 1–1285. DOI: 10.1109/IEEESTD.2009.5354441.

[36] DesignAutomation StandardsCommittee. “IEEE StandardVHDLLanguageReference
Manual”. In: IEEE Std 1076-2008 (Revision of IEEE Std 1076-2002) (2009), pp. 1–640. DOI:
10.1109/IEEESTD.2009.4772740.

[37] Altera, Inc. Intel® Quartus® Prime Software: Features. 2022. URL: https://www.intel.
com/content/www/us/en/products/details/fpga/development-tools/quartus-
prime/article.html.

[38] P. J. Ashenden. The Designer’s Guide to VHDL. eng. 3rd ed. Morgan Kaufmann series in
systems on silicon. 0. Morgan Kaufmann Publishers Inc, 2010. ISBN: 0120887851.

[39] J. Decaluwe. Verilog’s Major Flaw. Sigasi. 2010. URL: http://insights.sigasi.com/
opinion/jan/verilogs-major-flaw.html.

193

https://doi.org/10.15129/a2c118f2-48a8-40d2-8896-89b9da71a4be
https://github.com/cramsay/conifer
https://doi.org/10.15129/fd83f191-2dc1-4839-adbb-684bac5ecd0c
http://github.com/cramsay/toatie
http://github.com/cramsay/toatie
https://github.com/edwinb/SPLV20
https://github.com/edwinb/SPLV20
https://doi.org/10.1109/ACCESS.2020.3008954
https://doi.org/10.1137/S0036144595293959
https://doi.org/10.1137/S0036144595293959
https://doi.org/10.1137/S0036144595293959
https://doi.org/10.1145/240518.240640
https://doi.org/10.1145/240518.240640
https://doi.org/10.1145/240518.240640
https://doi.org/10.1007/0-387-30784-2_2
https://doi.org/10.1007/0-387-30784-2_2
https://doi.org/10.1007/0-387-30784-2_2
https://doi.org/10.1145/800055.802026
https://doi.org/10.1145/800055.802026
https://doi.org/10.1145/800055.802026
https://doi.org/10.1109/IEEESTD.2009.5354441
https://doi.org/10.1109/IEEESTD.2009.4772740
https://www.intel.com/content/www/us/en/products/details/fpga/development-tools/quartus-prime/article.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-tools/quartus-prime/article.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-tools/quartus-prime/article.html
http://insights.sigasi.com/opinion/jan/verilogs-major-flaw.html
http://insights.sigasi.com/opinion/jan/verilogs-major-flaw.html


B I B L I OGRA PHY

[40] G. Chen. “A Short Historical Survey of Functional Hardware Languages”. In: ISRN
Electronics 2012 (Mar. 2012). DOI: 10.5402/2012/271836.

[41] M. Sheeran. µFP: An Algebraic VLSI Design Language. Technical monograph. Oxford
University Computing Laboratory, Programming Research Group, 1983. URL: https:
//books.google.co.uk/books?id=gMtQAAAAIAAJ.

[42] “Bluespec System Verilog: Efficient, Correct RTL from High Level Specifications”. In:
Proceedings of the Second ACM/IEEE International Conference on Formal Methods and Mod-
els for Co-Design. MEMOCODE ’04. USA: IEEE Computer Society, 2004, pp. 69–70. ISBN:
0780385098. DOI: 10.1109/MEMCOD.2004.1459818. URL: https://doi.org/10.1109/
MEMCOD.2004.1459818.

[43] J. Bachrach et al. “Chisel: Constructing Hardware in a Scala Embedded Language”.
In: Proceedings of the 49th Annual Design Automation Conference. DAC ’12. San Fran-
cisco, California: Association for Computing Machinery, 2012, pp. 1216–1225. ISBN:
9781450311991. DOI: 10.1145/2228360.2228584. URL: https://doi.org/10.1145/
2228360.2228584.

[44] A. Gill et al. “Introducing Kansas Lava”. In: Implementation and Application of Functional
Languages. Ed. by M. T. Morazán and S.-B. Scholz. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 18–35. ISBN: 978-3-642-16478-1.

[45] P. Bjesse et al. “Lava: Hardware Design in Haskell”. In: SIGPLANNot. 34.1 (Sept. 1998),
pp. 174–184. ISSN: 0362-1340. DOI: 10.1145/291251.289440. URL: https://doi.org/
10.1145/291251.289440.

[46] K. Claessen and M. Sheeran. “A Tutorial on Lava: A Hardware Description and Verifi-
cation System”. In: Göteborg, Sweden: Chalmers University, 2000.

[47] G. Hutton. Programming in Haskell. Cambridge Univ Press, 2007. ISBN: 0521692695.

[48] S. Singh. “Designing reconfigurable systems in Lava”. In: 17th International Conference
on VLSI Design. Proceedings. 2004, pp. 299–306. DOI: 10.1109/ICVD.2004.1260941.

[49] S. Singh. “Source code for: Xilinx-Lava Version 5”. In: 2014. URL: https://github.com/
satnam6502/lava.

[50] C. Baaij et al. “CλaSH : Structural Descriptions of Synchronous Hardware Using
Haskell”. In: 2010 13th Euromicro Conference on Digital SystemDesign: Architectures, Meth-
ods and Tools. Sept. 2010, pp. 714–721. DOI: 10.1109/DSD.2010.21.

[51] QBayLogic B.V. Hackage Documentation for clash-prelude. 2022. URL: https : / /
hackage.haskell.org/package/clash-prelude.

[52] G. Érdi. Retrocomputing in Clash: Haskell for FPGAHardware Design. Leanpub, Sept. 2021.
URL: https://unsafeperform.io/retroclash/.

[53] G. Érdi. Source Code for ”Brainfuck on FPGA”. 2021. URL: https : / / github . com /
gergoerdi/clash-brainfuck.

[54] S. Lindley and C. McBride. “Hasochism: The Pleasure and Pain of Dependently Typed
Haskell Programming”. In: SIGPLANNot. 48.12 (Sept. 2013), pp. 81–92. ISSN: 0362-1340.
DOI: 10.1145/2578854.2503786. URL: https://doi.org/10.1145/2578854.2503786.

194

https://doi.org/10.5402/2012/271836
https://books.google.co.uk/books?id=gMtQAAAAIAAJ
https://books.google.co.uk/books?id=gMtQAAAAIAAJ
https://doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/291251.289440
https://doi.org/10.1145/291251.289440
https://doi.org/10.1145/291251.289440
https://doi.org/10.1109/ICVD.2004.1260941
https://github.com/satnam6502/lava
https://github.com/satnam6502/lava
https://doi.org/10.1109/DSD.2010.21
https://hackage.haskell.org/package/clash-prelude
https://hackage.haskell.org/package/clash-prelude
https://unsafeperform.io/retroclash/
https://github.com/gergoerdi/clash-brainfuck
https://github.com/gergoerdi/clash-brainfuck
https://doi.org/10.1145/2578854.2503786
https://doi.org/10.1145/2578854.2503786


B I B L I OGRA PHY

[55] K. Claessen and J. Hughes. “QuickCheck: A Lightweight Tool for Random Testing of
Haskell Programs”. In: Proceedings of the Fifth ACM SIGPLAN International Conference
on Functional Programming. ICFP ’00. New York, NY, USA: Association for Computing
Machinery, 2000, pp. 268–279. ISBN: 1581132026. DOI: 10.1145/351240.351266. URL:
https://doi.org/10.1145/351240.351266.

[56] J. P. Pizani Flor and W. Swierstra. “Verified Timing Transformations in Synchronous
Circuits with λπ-Ware”. In: Interactive Theorem Proving. Ed. by J. Avigad and A. Mah-
boubi. Cham: Springer International Publishing, 2018, pp. 504–522. ISBN: 978-3-319-
94821-8.

[57] E. Brady. Type-driven development with Idris. English. Manning Publications Co., Mar.
2017. ISBN: 978-1617293023.

[58] P. Fu, K. Kishida, and P. Selinger. “Linear Dependent Type Theory for Quantum Pro-
gramming Languages”. In: Proceedings of the 35th Annual ACM/IEEE Symposium on
Logic in Computer Science. LICS ’20. Saarbrücken, Germany, 2020, pp. 440–453. ISBN:
9781450371049. DOI: 10.1145/3373718.3394765. URL: https://doi.org/10.1145/
3373718.3394765.

[59] P. Fu et al. “A Tutorial Introduction to Quantum Circuit Programming in Dependently
Typed Proto-Quipper”. In: Reversible Computation. Ed. by I. Lanese and M. Rawski.
Cham: Springer International Publishing, 2020, pp. 153–168. ISBN: 978-3-030-52482-1.

[60] G. Peano. Arithmetices principia: nova methodo. Nineteenth Century Collections On-
line (NCCO): Science, Technology, and Medicine: 1780-1925. Fratres Bocca, 1889. URL:
https://books.google.co.uk/books?id=z80GAAAAYAAJ.

[61] E. Brady, C. Mcbride, and J. Mckinna. “Inductive families need not store their indices”.
In: Types for Proofs and Programs, Torino, 2003, volume 3085 of LNCS. Springer-Verlag,
2004, pp. 115–129.

[62] B. Barras and B. Bernardo. “The Implicit Calculus of Constructions as a Programming
Language with Dependent Types”. In: Foundations of Software Science and Computational
Structures. Ed. by R. Amadio. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 365–379. ISBN: 978-3-540-78499-9.

[63] H. Goguen, C. McBride, and J. McKinna. “Eliminating Dependent Pattern Matching”.
English. In: Algebra, Meaning, and Computation. Lecture Notes in Computer Science.
Springer, 2006, pp. 521–540. ISBN: 9783540354628. DOI: 10.1007/11780274_27.

[64] E. Brady and K. Hammond. “A Verified Staged Interpreter is a Verified Compiler”. In:
Proceedings of the 5th International Conference on Generative Programming and Component
Engineering. GPCE ’06. Portland, Oregon, USA: Association for Computing Machinery,
2006, pp. 111–120. ISBN: 1595932372. DOI: 10.1145/1173706.1173724. URL: https://
doi.org/10.1145/1173706.1173724.

[65] W. Taha. “A Gentle Introduction toMulti-stage Programming”. In:Domain-Specific Pro-
gram Generation: International Seminar, Dagstuhl Castle, Germany, March 23-28, 2003. Re-
vised Papers. Ed. by C. Lengauer et al. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004, pp. 30–50. ISBN: 978-3-540-25935-0. DOI: 10.1007/978-3-540-25935-0_3. URL:
https://doi.org/10.1007/978-3-540-25935-0_3.

195

https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/3373718.3394765
https://doi.org/10.1145/3373718.3394765
https://doi.org/10.1145/3373718.3394765
https://books.google.co.uk/books?id=z80GAAAAYAAJ
https://doi.org/10.1007/11780274_27
https://doi.org/10.1145/1173706.1173724
https://doi.org/10.1145/1173706.1173724
https://doi.org/10.1145/1173706.1173724
https://doi.org/10.1007/978-3-540-25935-0_3
https://doi.org/10.1007/978-3-540-25935-0_3


B I B L I OGRA PHY

[66] O. Kiselyov, K. Swadi, and W. Taha. “A methodology for generating verified combi-
natorial circuits”. In: EMSOFT 2004 - Fourth ACM International Conference on Embedded
Software. Jan. 2004, pp. 249–258. DOI: 10.1145/1017753.1017794.

[67] W. A. Howard. “The Formulae-as-Types Notion of Construction”. In: To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus, and Formalism. Ed. by H. Curry et al. Aca-
demic Press, 1980.

[68] B. C. Pierce et al. Logical Foundations. Ed. by B. C. Pierce. Vol. 1. Software Foundations.
2021. URL: http://softwarefoundations.cis.upenn.edu.

[69] D. B. Daniel P FriedmanDavid ThraneChristiansen.The Little Typer. English.MIT Press,
Sept. 2018. ISBN: 9780262536431.

[70] Z. Mou and P. Duhamel. “Fast FIR filtering: Algorithms and implementations”. In: Sig-
nal Processing 13.4 (1987), pp. 377–384. ISSN: 0165-1684. DOI: https://doi.org/10.
1016/0165- 1684(87)90019- 3. URL: https://www.sciencedirect.com/science/
article/pii/0165168487900193.

[71] Y. Voronenko and M. Püschel. “Multiplierless Multiple Constant Multiplication”. In:
ACM Trans. Algorithms 3.2 (May 2007), 11–es. ISSN: 1549-6325. DOI: 10.1145/1240233.
1240234. URL: https://doi.org/10.1145/1240233.1240234.

[72] Xilinx, Inc. UG897 — Vivado Design Suite User Guide: Model-Based DSP Design Us-
ing System Generator (v2018,3). 2018. URL: https : / / www . xilinx . com / support /
documentation/sw_manuals/xilinx2018_3/ug897-vivado-sysgen-user.pdf.

[73] P. Day et al. “A broadband superconducting detector suitable for use in large arrays”.
In: Nature 425 (Oct. 2003), pp. 817–21. DOI: 10.1038/nature02037.

[74] J. Pfau et al. “Reconfigurable FPGA-Based Channelization Using Polyphase Filter
Banks for Quantum Computing Systems”. In: Applied Reconfigurable Computing. Archi-
tectures, Tools, and Applications. Ed. by N. Voros et al. Cham: Springer International Pub-
lishing, 2018, pp. 615–626. ISBN: 978-3-319-78890-6.

[75] 3rd Generation Partnership Project (3GPP). 5G; NR; Base Station (BS) radio transmission
and reception, TS 38.104 version 15.2.0 Release 15. 2018. URL: https://www.etsi.org/
deliver/etsi_ts/138100_138199/138104/15.02.00_60/%20ts_138104v150200p.
pdf.

[76] Xilinx, Inc. PG 269 — Zynq UltraScale+ RFSoC RF Data Converter v2.3. 2020. URL: https:
//www.xilinx.com/support/documentation/ip_documentation/%20usp_rf_data_
converter/v2_3/pg269-rf-data-converter.pdf.

[77] R. Lyons. Understanding Digital Signal Processing. Prentice Hall, 2011. ISBN:
9780137027415. URL: https://books.google.co.uk/books?id=arVImAEACAAJ.

[78] f. j. harris. Multirate signal processing for communication systems. CRC Press, 2022.

[79] Xilinx, Inc. PG149 — FIR Compiler v7.2 LogiCORE IP Product Guide. 2015. URL: https:
//www.xilinx.com/support/documentation/ip_documentation%20/fir_compiler/
v7_2/pg149-fir-compiler.pdf.

196

https://doi.org/10.1145/1017753.1017794
http://softwarefoundations.cis.upenn.edu
https://doi.org/https://doi.org/10.1016/0165-1684(87)90019-3
https://doi.org/https://doi.org/10.1016/0165-1684(87)90019-3
https://www.sciencedirect.com/science/article/pii/0165168487900193
https://www.sciencedirect.com/science/article/pii/0165168487900193
https://doi.org/10.1145/1240233.1240234
https://doi.org/10.1145/1240233.1240234
https://doi.org/10.1145/1240233.1240234
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug897-vivado-sysgen-user.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug897-vivado-sysgen-user.pdf
https://doi.org/10.1038/nature02037
https://www.etsi.org/deliver/etsi_ts/138100_138199/138104/15.02.00_60/%20ts_138104v150200p.pdf
https://www.etsi.org/deliver/etsi_ts/138100_138199/138104/15.02.00_60/%20ts_138104v150200p.pdf
https://www.etsi.org/deliver/etsi_ts/138100_138199/138104/15.02.00_60/%20ts_138104v150200p.pdf
https://www.xilinx.com/support/documentation/ip_documentation/%20usp_rf_data_converter/v2_3/pg269-rf-data-converter.pdf
https://www.xilinx.com/support/documentation/ip_documentation/%20usp_rf_data_converter/v2_3/pg269-rf-data-converter.pdf
https://www.xilinx.com/support/documentation/ip_documentation/%20usp_rf_data_converter/v2_3/pg269-rf-data-converter.pdf
https://books.google.co.uk/books?id=arVImAEACAAJ
https://www.xilinx.com/support/documentation/ip_documentation%20/fir_compiler/v7_2/pg149-fir-compiler.pdf
https://www.xilinx.com/support/documentation/ip_documentation%20/fir_compiler/v7_2/pg149-fir-compiler.pdf
https://www.xilinx.com/support/documentation/ip_documentation%20/fir_compiler/v7_2/pg149-fir-compiler.pdf


B I B L I OGRA PHY

[80] A. G. Dempster and M. D. Macleod. “Use of Minimum-Adder Multiplier Blocks in FIR
Digital Filters”. In: IEEE Transactions in Circuits and Systems-II: Analog and Digital Signal
Processing 42.9 (1995), pp. 569–577.

[81] K.N.Macpherson andR.W. Stewart. “LowFPGAareamultiplier blocks for full parallel
FIR filters”. In: Proceedings. 2004 IEEE International Conference on Field- Programmable
Technology (IEEE Cat. No.04EX921). Dec. 2004, pp. 247–254. DOI: 10.1109/FPT.2004.
1393275.

[82] D. Parker and K. Parhi. “Area-efficient parallel FIR digital filter implementations”. In:
Proceedings of International Conference on Application Specific Systems, Architectures and
Processors: ASAP ’96. 1996, pp. 93–111. DOI: 10.1109/ASAP.1996.542805.

[83] Y.-C. Tsao and K. Choi. “Area-Efficient Parallel FIR Digital Filter Structures for Sym-
metric Convolutions Based on Fast FIR Algorithm”. In: IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 20.2 (2012), pp. 366–371. DOI: 10.1109/TVLSI.2010.
2095892.

[84] Y.-C. Tsao and K. Choi. “Area-Efficient VLSI Implementation for Parallel Linear-Phase
FIR Digital Filters of Odd Length Based on Fast FIR Algorithm”. In: IEEE Transactions
on Circuits and Systems II: Express Briefs 59.6 (2012), pp. 371–375. DOI: 10.1109/TCSII.
2012.2195062.

[85] A. Mayilavelane and B. Berscheid. “A Fast FIR filtering technique for multirate filters”.
In: Integration 52 (2016), pp. 62–70. ISSN: 0167-9260. DOI: https://doi.org/10.1016/j.
vlsi.2015.07.011. URL: https://www.sciencedirect.com/science/article/pii/
S0167926015000905.

[86] A. Kumar, S. Yadav, andN. Purohit. “Exploiting Coefficient Symmetry in Conventional
Polyphase FIR Filters”. In: IEEE Access 7 (2019), pp. 162883–162897. DOI: 10 . 1109 /
ACCESS.2019.2951706.

[87] Xilinx, Inc.UG905—Vivado Design Suite User Guide : Hierarchical Design (v2019.1). 2019.
URL: https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_
1/ug905-vivado-hierarchical-design.pdf.

[88] G. Smit, J. Kuper, and C. Baaij. “A mathematical approach towards hardware design”.
Undefined. In: Dagstuhl Seminar on Dynamically Reconfigurable Architectures. Ed. by P.
Athanas et al. Dagstuhl Seminar Proceedings. eemcs-eprint-19169. Germany: Interna-
tionales Begegnungs- und Forschungszentrum für Informatik, Dec. 2010, p. 11. DOI:
10.4230/OASIcs.WCET.2010.136.

[89] M. Pickering, A. Löh, and N. Wu. “Staged Sums of Products”. In: Proceedings of the 13th
ACM SIGPLAN International Symposium on Haskell. Haskell 2020. Virtual Event, USA:
Association for Computing Machinery, 2020, pp. 122–135. ISBN: 9781450380508. DOI:
10.1145/3406088.3409021. URL: https://doi.org/10.1145/3406088.3409021.

[90] N. Xie et al. “Staging with Class: A Specification for Typed Template Haskell”. In: Proc.
ACM Program. Lang. 6.POPL (Jan. 2022). DOI: 10.1145/3498723. URL: https://doi.
org/10.1145/3498723.

197

https://doi.org/10.1109/FPT.2004.1393275
https://doi.org/10.1109/FPT.2004.1393275
https://doi.org/10.1109/ASAP.1996.542805
https://doi.org/10.1109/TVLSI.2010.2095892
https://doi.org/10.1109/TVLSI.2010.2095892
https://doi.org/10.1109/TCSII.2012.2195062
https://doi.org/10.1109/TCSII.2012.2195062
https://doi.org/https://doi.org/10.1016/j.vlsi.2015.07.011
https://doi.org/https://doi.org/10.1016/j.vlsi.2015.07.011
https://www.sciencedirect.com/science/article/pii/S0167926015000905
https://www.sciencedirect.com/science/article/pii/S0167926015000905
https://doi.org/10.1109/ACCESS.2019.2951706
https://doi.org/10.1109/ACCESS.2019.2951706
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug905-vivado-hierarchical-design.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug905-vivado-hierarchical-design.pdf
https://doi.org/10.4230/OASIcs.WCET.2010.136
https://doi.org/10.1145/3406088.3409021
https://doi.org/10.1145/3406088.3409021
https://doi.org/10.1145/3498723
https://doi.org/10.1145/3498723
https://doi.org/10.1145/3498723


B I B L I OGRA PHY

[91] K. Claessen and J. Hughes. “QuickCheck: A Lightweight Tool for Random Testing of
Haskell Programs”. In: SIGPLANNot. 46.4 (May 2011), pp. 53–64. ISSN: 0362-1340. DOI:
10.1145/1988042.1988046. URL: https://doi.org/10.1145/1988042.1988046.

[92] C. Wolf. Yosys Open SYnthesis Suite. https://yosyshq.net/yosys/.

[93] A. Gill et al. “Introducing Kansas Lava”. In: Proceedings of the Symposium on Implemen-
tation and Application of Functional Languages. Vol. 6041. LNCS. Springer-Verlag, Sept.
2009.

[94] P. Bjesse. “Automatic Verification of Combinational and Pipelined FFT Circuits”. In:
Computer Aided Verification. Ed. by N. Halbwachs and D. Peled. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1999, pp. 380–393. ISBN: 978-3-540-48683-1.

[95] E. Brady. “Resource-DependentAlgebraic Effects”. In:Trends in Functional Programming.
Ed. by J. Hage and J. McCarthy. Cham: Springer International Publishing, 2015, pp. 18–
33. ISBN: 978-3-319-14675-1.

[96] E. Hogenauer. “An economical class of digital filters for decimation and interpolation”.
In: IEEE Transactions on Acoustics, Speech, and Signal Processing 29.2 (1981), pp. 155–162.

[97] J. Seamons. CIC filter register pruning utility. 2014. URL: http://www.jks.com/cic/cic.
html.

[98] ARM. AMBA® AXI™ and ACE™ Protocol Specification: AXI3™, AXI4™, and AXI4-
Lite™, ACE and ACE-Lite™. 2013. URL: https://documentation-service.arm.com/
static/5f915b62f86e16515cdc3b1c.

[99] Heriot-Watt University. Webpage for SPLV 20: Scottish Summer School on Programming
Languages and Verification. 2020. URL: http://www.macs.hw.ac.uk/splv/splv20/.

[100] T. Coquand. “An Analysis of Girard’s Paradox”. In: Proceedings of the First Annual IEEE
Symposium on Logic in Computer Science (LICS 1986). Cambridge, MA, USA: IEEE Com-
puter Society Press, June 1986, pp. 227–236.

[101] S. Peyton Jones. The Implementation of Functional Programming Languages. Prentice Hall,
Jan. 1987. URL: https://www.microsoft.com/en-us/research/publication/the-
implementation-of-functional-programming-languages/.

[102] D. Miller. “Unification under a mixed prefix”. In: Journal of Symbolic Computation 14.4
(1992), pp. 321–358. DOI: 10.1016/0747-7171(92)90011-R.

[103] A.Abel. “MiniAgda: Integrating Sized andDependent Types”. In:Electronic Proceedings
in Theoretical Computer Science. Vol. 43. Dec. 2010, pp. 14–28. DOI: 10.4204/EPTCS.43.2.

[104] J. de Muijnck-Hughes. Talk: Wiring Circuits is as easy as 0-1-Omega, or is it... 2022. URL:
https://jfdm.github.io/post/2022-05-31-Linear-Wirings.html.

[105] O. Kiselyov. “The Design and Implementation of BER MetaOCaml”. In: Functional and
Logic Programming. Ed. by M. Codish and E. Sumii. Cham: Springer International Pub-
lishing, 2014, pp. 86–102. ISBN: 978-3-319-07151-0.

[106] A. Kawata and A. Igarashi. “A Dependently Typed Multi-stage Calculus”. In: Program-
ming Languages and Systems. Ed. by A.W. Lin. Cham: Springer International Publishing,
2019, pp. 53–72. ISBN: 978-3-030-34175-6.

198

https://doi.org/10.1145/1988042.1988046
https://doi.org/10.1145/1988042.1988046
https://yosyshq.net/yosys/
http://www.jks.com/cic/cic.html
http://www.jks.com/cic/cic.html
https://documentation-service.arm.com/static/5f915b62f86e16515cdc3b1c
https://documentation-service.arm.com/static/5f915b62f86e16515cdc3b1c
http://www.macs.hw.ac.uk/splv/splv20/
https://www.microsoft.com/en-us/research/publication/the-implementation-of-functional-programming-languages/
https://www.microsoft.com/en-us/research/publication/the-implementation-of-functional-programming-languages/
https://doi.org/10.1016/0747-7171(92)90011-R
https://doi.org/10.4204/EPTCS.43.2
https://jfdm.github.io/post/2022-05-31-Linear-Wirings.html


B I B L I OGRA PHY

[107] S. L. P. Jones. “Implementing lazy functional languages on stock hardware: the Spine-
less Tagless G-machine - Version 2.5”. In: Journal of Functional Programming 2 (1992),
pp. 127–202.

[108] P. Hudak et al. “A History of Haskell: Being Lazy with Class”. In: Proceedings of the
Third ACM SIGPLAN Conference on History of Programming Languages. HOPL III. San
Diego, California: Association for Computing Machinery, 2007, pp. 12–1–12–55. ISBN:
9781595937667. DOI: 10.1145/1238844.1238856. URL: https://doi.org/10.1145/
1238844.1238856.

199

https://doi.org/10.1145/1238844.1238856
https://doi.org/10.1145/1238844.1238856
https://doi.org/10.1145/1238844.1238856

	Contents
	List of Figures
	Introduction
	Field Programmable Gate Arrays
	Functional Programming & Verification with Dependent Types
	Aims
	Contributions
	Outputs
	Thesis Outline

	Circuit Description and Verification
	Verification Methodologies for Circuits
	Introduction to Hardware Description Languages
	Traditional HDLs
	VHDL
	(System)Verilog

	Functional HDLs
	Lava Languages
	CaSH
	-ware
	Proposed circuits in mega and Idris
	Proto-Quipper-D for Quantum Circuits

	Summary

	An Engineer's Introduction to Dependently Typed Programming
	Introduction
	Basic functions and data types
	Dependent types
	Irrelevance and erasure
	Staging
	Theorem proving
	Summary

	Exploring Parallel FIR filters for RFSoC Applications with CaSH
	Introduction
	Background on Digital, Finite Impulse Response Filtering
	Filter specification
	Filter implementation
	Sample-parallel filtering

	Proposed filter architecture
	Traditional Architecture
	Polyphase Filter with Shared Multiple Constant Multiplication Subfilters
	Fast FIR Algorithm Filter with MCM subfilters

	Multiplier Counts Under Coefficient Symmetry
	Implementation Results
	Utilisation Results
	Timing Results

	Practical hardware description
	The successes of our CaSH implementation
	The limitations of our CaSH implementation

	Practical verification
	Summary

	On Applications of Dependent Types to DSP Circuit Families
	Introduction
	Minimal type-level guarantees:towards a combinatorial dot product
	An unsigned adder circuit
	An unsigned multiplier
	A dot product and structure with higher-order functions
	Summary for examples with minimal type-level guarantees

	Guaranteeing minimum wordlengths:exploring a circuit family's non-functional properties
	Brief comparison to VHDL and Lava alternatives

	Formal verification of a circuit family's arithmetic meaning
	A verified unsigned adder
	Signed arithmetic
	A verified, signed dot product
	FFT

	Further Work
	Speculation on synchronous DSP circuits
	A direct form FIR filter
	Pruning in CIC Interpolators/Decimators
	A note on synchronous control systems


	Summary

	toatie — A Multistage Hardware Description Language with Dependent Types
	Introduction
	The lambda calculus
	Typing judgements

	A formalisation of the TinyIdris language
	A grammar for TTimp
	The core language, TT

	The toatie core language
	Sugar from Idris 2
	Irrelevance and Erasure
	Staging

	Circuit Synthesis
	Restrictions for synthesisability
	Simple types, parameter types, and bit representations
	Normalisation
	Netlist generation
	Synthesis examples
	Routing — Mirroring a binary tree
	Structured data — keeping us honest with Maybe
	Larger designs — A DFT example


	Further Work
	A fully typed synthesis scheme
	Formalisation of synthesisability requirements
	Rebase on Idris 2
	Netlist optimisations for FPGA architectures

	Summary

	Conclusion
	Thesis review
	Further Work
	Concluding Remarks

	Bibliography

