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Abstract 

Total knee arthroplasty (TKA) is a widely successful surgical intervention for managing 

end-stage knee osteoarthritis (KOA), yet patient outcomes are highly dependent on 

postoperative rehabilitation. Despite this, adherence to rehabilitation programs 

remains suboptimal, potentially hindering recovery.  

Wearable inertial measurement units (IMUs) have emerged as promising tools to 

support rehabilitation and enable early diagnostics of unfavourable recovery through 

remote monitoring, potentially improving patients’ compliance to rehabilitation 

protocols and thus improving functional outcomes. However, the clinical utility of these 

devices depends on their ability to provide accurate measurements of knee joint 

kinematics, particularly knee flexion angles.  

This study aimed to evaluate the accuracy of two different wearable IMU devices (a 

Stryker (USA) commercially available technology, MotionSense™ and a wired IMU 

research device implementing the Seel Algorithm (Seel, Raisch and Schauer, 2014), in 

measuring knee flexion angles within clinically significant thresholds. Measurements 

were evaluated across a diverse healthy adult population of varying ages (20 healthy 

younger participants, ages ranging between 20 - 36 years old and 14 healthy older 

participants, ages ranging between 60 - 84 years old) and within a TKA clinical 

population (10 TKA participants, ages ranging between 53 - 71 years old) both 

preoperatively and postoperatively (1 week postoperatively and at 6 weeks 

postoperatively), across a broad range of activities of daily living (ADL’s).  

The commercially available MotionSense™ technology determines sagittal plane knee 

angle using a mobile-based app with proprietary software that implements a Madgwick 

filter (Madgwick, 2010), while the wired research IMU device calculates sagittal plane 

knee angle using the Seel algorithm (Seel, Raisch and Schauer, 2014). Both 

technologies’ measurements were compared against the gold standard opto-

electronic motion capture system, Vicon, which tracked 16 retro-reflective markers 

that were attached to the lower body as per the PlugInGaitTM  (PIG) model.  
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The methodology used to evaluate the accuracy of each of the IMU devices differed in 

protocol. Analysis of the MotionSense™ device incorporated a bespoke graphical user 

interface (GUI) which was used to manually isolated different movement cycles. 

Following up-sampling to 100Hz using the MATLAB (MathWorks, 2024) interp1 function, 

cross-correlation was used to time synchronise the movement cycle windows 

identified from peak flexion to peak flexion using the xcorr MATLAB (MathWorks, 2024) 

function for each technology. The population mean movement cycle was then analysed 

for each population group and for each activity, with the pooled mean population range 

of motion (ROM) assessed.   

Whereas, following conversion of the raw IMU data into sagittal knee angle 

measurements using the Seel algorithm (Seel, Raisch and Schauer, 2014), the wired 

IMU research device data was time synchronised to Vicon data using similar methods, 

by manually selecting peak knee flexion of each technology. As the sampling 

frequencies differed between the opto-electronic Vicon motion capture system and the 

wired IMU research device, Vicon was up-sampled to 200Hz, again by means of 

interpolation (interp1 function). These measures were then analysed by evaluating 

each populations mean pooled movement cycle window. 

For both IMU technologies the zero point for knee flexion depends on marker 

placement, therefore, the mean knee flexion was subtracted from each data set before 

calculating a root mean square error (RMSE) between the technologies, determined in 

each movement cycle window.  

Results presented RMSE of less than 5° across both devices, across both healthy and 

clinical populations and across all activities, including those involving larger ROM and 

higher joint velocities. RMSE values ranged between 0.86° - 4.70° for the MotionSense™ 

device, while RMSE values ranged between 2.92° - 4.78° for the wired IMU device. No 

statistically significant differences between the population groups for each technology 

was evidenced (p > 0.05).  Notably, greater discrepancies between the measurement 

systems were observed during activities involving larger degrees of flexion, for example 

during the flexion/extension activity performed by the younger healthy population a 

ROM of 116.5° and RMSE of 3.65° was reported between MotionSense™ and Vicon 
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opto-electronic motion capture system, whereas a RMSE of 1.48° and a ROM of 31.6° 

was reported for the 1 week postoperative session for the walking activity. Furthermore 

larger differences were also evidenced during periods associated with faster motion 

(swing phase displayed larger differences compared to the stance phase for the 

walking activity). The wearable IMU technologies revealed strong coefficients of 

correlation and were able to accurately track knee flexion patterns across all 

population groups.  

The findings from the TKA cohort underscore the highly patient-specific nature of 

recovery and postoperative outcomes, further emphasising the need for personalised 

rehabilitation approaches and the requirement for innovative technologies to deliver 

this level of personalised care.  

The use of wearable IMUs within clinical and healthcare settings offers substantial 

benefits within the recovery period, including remote monitoring capabilities and 

enhanced compliance with rehabilitation protocols.  

This study concludes that wearable IMU devices can accurately measure sagittal knee 

angle supporting their integration into clinical settings. Their ability to provide accurate, 

objective data validates their use as a practical alternative to traditional in-clinic 

assessments, particularly in enabling remote and continuous tracking of patient 

progress. As such, IMUs may represent a valuable asset in modern rehabilitation 

strategies, facilitating more efficient, patient-centred care.  
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Anatomical Planes 

Coronal/Frontal  Divides the body into its anterior and posterior portions. 

Sagittal/Median Runs superior to inferior through the body, dividing the 

body into left and right portions.  

Transverse/Horizontal Divides the body into superior and inferior parts, running 

horizontally. 

 

 

Figure 1.0-1. Human anatomical planes (Levine, 2012). 
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Knee Joint Range of Motion 

Flexion and Extension Primary movement of the knee joint and occurs 

in the sagittal plane and about the transverse 

axis 

Internal and External Rotation Occurs primarily when the knee is flexed and is 

observed in the transverse plane and about the 

longitudinal axis 

Abduction and Adduction Adduction of the knee also referred to as Varus 

(bow-legged), and abduction of the knee also 

referred to as Valgus (knock-kneed) occurring in 

the frontal plane and about the sagittal axis. 
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Figure 1.2. Types of motion that occur in the three anatomical planes a) Flexion and Extension in the 
sagittal plane, b) Valgus and Varus in the frontal plane, c) Internal and external rotation occurring in the 

transverse plane (Abu‐Faraj, Harris and Smith, 2015). 
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Nomenclature 

Accelerometer A sensor that measures linear acceleration (the rate of change 

of velocity, represented by α, measured in m/s²). 

Anthropometry  Measurement of size, weight, and proportions of the body. 

Calibration The process of adjusting and verifying the accuracy of a device 

or system, ensuring its measurements or outputs align with a 

standard or known reference, used to effectively zero the 

system.  

Compliance The extent to which a patient follows prescribed medical advice, 

treatments, or rehabilitation protocols.  

Gyroscope A sensor that measures angular velocity (how fast an object 

rotates around its axes, represented by ω, measured in rad/s). 

IMU Inertial measurement unit is a device that integrates sensors, 

such as accelerometers, gyroscopes, and sometimes 

magnetometers, used to measure linear acceleration, angular 

velocity, and orientation, allowing for the determination of 

orientation, velocity and position in space. 

Intraoperative  Refers to the period during the surgical procedure itself. 

Kinematics  Study of joint motion and angles. 

Kinetics  Study of forces and moments exerted on to rigid bodies. 

Magnetometer A sensor that measures magnetic field strength and direction (β, 

measured in Tesla or Gauss). 
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Perioperative Refers to the time period encompassing preoperative, 

intraoperative, and early postoperative phases. 

Physiotherapy  Concentrates on restoring and improving physical movement 

and function through techniques such as exercise, manual 

therapy, and patient education. It primarily addresses 

musculoskeletal limitations post-surgery. 

Postoperative  Refers to the period after a surgical procedure. 

Preoperative  Refers to the period before a surgical procedure. 

Rehabilitation The broad, multidisciplinary process of restoring function, 

mobility, or strength after an injury, surgery, or medical 

condition, typically through therapy and prescribed exercises. 

Aimed at helping individuals recover and regain independence. 

It encompasses not only physiotherapy but also other services 

like occupational therapy. 

Spatial   Changing in relation to space. 

Temporal  Changing in relation to time. 
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Conventions 

Reporting p-values 

p < 0.001  p < 0.001 

0.001 < p < 0.01 p < 0.01 

0.01 < p < 0.05  p < 0.05 

0.05 < p < 0.1  Exact value given 

p > 0.1   p > 0.05 

 

Thresholds 

The following thresholds were used to evaluate the technologies outcomes: 

Correlations were adapted from bandings as defined by Cohen, 1988. 

0     No correlation 
0.01 - 0.2   Weak correlation 
0.21 - 0.40   Moderate correlation 
0.41 - 1.00   Strong correlation 
 

While a RMSE < 5.0° was considered clinically acceptable (Chapman, Moschetti, and 

Van Citters, 2021; Prajapati et al., 2021; Whittle, 1996) and a RMSE < 3.0° was deemed 

highly accurate (Berner et al., 2020; Rekant et al., 2022).  
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1 Chapter 1 

1.1  Introduction 

Total knee arthroplasty (TKA) is an effective surgery for improving knee functionality, 

alleviating pain, enhancing quality of life, and decreasing morbidity in those with knee 

osteoarthritis (KOA) (Hamilton et al., 2015). The demand for TKA procedures is steadily 

increasing, with over 170, 000 operations performed in the United Kingdom (UK) 

annually (Knee Replacement - The National Joint Registry, 2023) and over 700, 000 

procedures conducted in the United States of America (USA) (Hamilton et al., 2020). It 

is expected that surgical volumes will increase as the population ages, life expectancy 

increases and as the prevalence of obesity rises (Inacio et al., 2017). 

TKA success is commonly reported through postoperative evaluations, which often 

include clinical assessments of knee joint function and range of motion (ROM), patient 

reported outcome measures (PROM’s) and occasionally imaging (Cornish et al., 2024). 

While TKA is generally successful, it is widely reported that approximately 15 – 20% of 

all TKA patients are dissatisfied with their surgical outcomes (Beswick et al., 2012; 

Jones et al., 2023). This dissatisfaction is usually characterised by ongoing pain and 

functional deficits (Bullens et al., 2001; Kahlenberg et al., 2018).  

Such dissatisfaction poses significant challenges. Whilst ongoing symptoms can 

greatly burden the individuals, the impact spreads beyond, also affecting society in 

several ways. Societal impact comprises of increased healthcare costs, including 

additional clinic follow-ups, further hospital investigations, prolonged rehabilitation 

protocols and large expenses associated with complicated revision procedures. While 

socio-economic factors such as difficulty returning to work and reduced independence 

further amplify the impact (Hamilton et al., 2015). 

Though TKA is commonly performed, rehabilitation plays a crucial role in patient 

recovery. Rehabilitation has proven to be effective in improving patients’ functional 

abilities, leading to more successful postoperative outcomes (Prill et al., 2022). 
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Although improvements in knee function can continue up to one year (Bade and 

Stevens-Lapsley, 2011; Zhou et al., 2015), and beyond (Peng et al., 2023), a large 

proportion of ROM improvements for both flexion and extension occur in the early 

postoperative period, which can be as early as 4 weeks following TKA (Van Onsem et 

al., 2018).  

However, achieving these outcomes rely heavily on patient adherence to rehabilitation 

protocols, with most rehabilitation programmes now being home-based. Unfortunately, 

adherence remains a persistent challenge, with patients often struggling to perform 

exercises correctly and consistently at the required intensity. Previous research (Bakaa 

et al., 2021; Bassett, 2012; Bini and Mahajan, 2017; Bullens et al., 2001; Campbell et 

al., 2001; Castrodad et al., 2019; Chakrabarti, 2014; Frost et al., 2017; Han et al., 2015; 

López-Liria et al., 2015; Mistry et al., 2016; Shukla et al., 2016; Vermeire et al., 2001) 

has reported that poor rehabilitation adherence is common and ultimately leads to 

unsuccessful recovery outcomes and as a result rehabilitative approaches being 

altered unnecessarily (Argent, Daly and Caulfield, 2018).  

Although home-based rehabilitation has reported superior patient satisfaction 

(Crawford et al., 2015), several factors contribute to poor compliance, including a lack 

of standardisation in programme design, minimal clinician-patient interaction, and 

insufficient guidance on exercise progression (Bandholm, Wainwright, and Kehlet, 

2018; Buus et al., 2021). Without clear indicators of functional progress, patients may 

lose motivation, further reducing adherence and ultimately compromising recovery 

outcomes (Argent, Daly and Caulfield, 2018). These challenges highlight the need for 

innovative solutions to increase patient engagement in rehabilitation and to monitor 

progress effectively (Bandholm, Wainwright, and Kehlet, 2018; Chen et al., 2022; 

Ibrahim et al., 2015; Parrington et al., 2021).  

Wearable technologies may offer a solution in enhancing home-based rehabilitation by 

providing continuous recovery tracking and enabling remote monitoring by healthcare 

professionals through the accurate measurement of knee joint angles. Furthermore, 

these devices may offer frequent quantitative assessment of knee function with greater 

resolution than subjective survey-based outcome measures (Atallah et al., 2011). 
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Additionally, when paired with an App they may provide instructional information and 

motivate patients through real-time feedback of their recovery progress leading to 

better rehabilitation adherence and greater functional outcomes. 

Stryker, USA have recently developed a commercial wearable device called 

MotionSenseTM which remotely supports postoperative TKA rehabilitation, providing 

personalised rehabilitation regimes, tracking of home exercises, and enabling 

healthcare professionals to continuously monitor rehabilitative progress and 

compliance remotely. The MotionSenseTM wearable device utilises two inertial 

measurement units (IMUs), above and below the knee, with knee angle provided using 

a Madgwick filter (Madgwick, 2010). The Madgwick filter is a type of sensor fusion 

algorithm commonly used in wearable IMU systems to estimate orientation by 

combining data from accelerometers, gyroscopes, and magnetometers to produce 

accurate and drift-reduced orientation estimates. When IMUs are placed on the thigh 

and shank, the Madgwick filter processes the sensor data to determine the relative 

orientation between these segments, allowing for precise measurement of sagittal 

knee angles. This is particularly important in rehabilitation contexts, where consistent 

tracking of knee motion is needed to assess patient progress. 

As with any new commercial product, it is essential that these wearable technologies 

undergo rigorous validation testing to ensure their accuracy in providing clinically 

meaningful motion data throughout the postoperative recovery period. This validation 

is of utmost importance before confident integration of such technologies into 

rehabilitative settings or clinical practice. Furthermore, it is valuable to ensure accurate 

clinical interpretation, both to confirm that patients are progressing as expected and to 

identify cases where recovery may be delayed or deviating from the expected 

postoperative outcomes. 

There is limited literature establishing the validity of wearable sensors to assess knee 

function shortly following TKA. Particularly literature that focusses on evaluating the 

accuracy of such devices over many different types of functional activities, that vary in 

speed, impact and across a broad ROM, that incorporate a relatively large healthy 
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control group of both younger and older participants which presents an opportunity to 

age-match to a TKA clinical population.  

Of the available literature, only a handful (Antunes et al., 2021; Chen et al., 2022; 

Cornish et al., 2024; Fain et al., 2024; Hafer et al., 2020; Parrington et al., 2021; Wang et 

al., 2025; Versteyhe et al., 2020) evaluate the accuracy of such devices within a clinical 

population. However, these studies generally include a restricted population pool, 

record data at a single time point or only include a simple flexion/extension movement 

or walking. Typically, investigations have recruited younger healthy cohorts with a 

maximum 3 - 12 individuals, all assessing different IMU technologies and algorithms 

against different 3D motion capture systems and models (Poitras et al., 2019). 

Although previous research (Ajdaroski et al., 2020; Allseits et al., 2017; Beravs et al., 

2011; Cho et al., 2018; El Fezazi et al., 2023; Ghattas and Jarvis, 2021; Jebeli et al., 

2017; Jordan et al., 2021; Zhang et al., 2013; Kayaalp et al., 2019; Kobsar et al., 2020; 

Papi et al., 2015; Poitras et al., 2019; Robert-Lachaine et al., 2017; Shuai et al., 2022; 

Taylor, Miller and Kaufman, 2017; Zhou et al., 2020) has shown that IMUs can 

accurately estimate knee joint angles, much of this work has been limited in scope and 

lacks the breadth necessary to support clinical application in diverse and real-world 

rehabilitation settings.  

Many studies focus exclusively on either healthy younger adults or patients at a single 

stage of recovery (Antunes et al., 2021; Cornish et al., 2024; Fain et al., 2024; 

Parrington et al., 2021; Versteyhe et al., 2020), often omitting older adults or those in 

the early postoperative period. To our knowledge, no previous studies have 

simultaneously evaluated healthy younger adults, healthy older adults, and a TKA 

clinical population within a single framework across a diverse set of activities using two 

different IMU technologies and their associated algorithms. While Wang et al. (2025) 

assessed the accuracy of wearable IMU devices in both healthy individuals and 

patients with knee and hip pathologies, their evaluation was limited to walking only. 

Similarly, Hafer et al. (2020) examined IMU accuracy in healthy younger and older 

adults as well as individuals with osteoarthritis (OA), but again, only during walking. 

There remains a clear gap in the literature. 
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 This narrow focus limits the generalisability and undermines the reliability of measures 

for a TKA population, which typically comprises of older individuals who may present 

with distinct or atypical movement patterns, functional limitations, and variable 

recovery trajectories. 

Younger adults typically display consistent and well-coordinated gait, while older 

adults often show altered kinematics due to age-related musculoskeletal changes 

(Prince et al,. 1997). Despite their importance as a control group for distinguishing 

normal aging effects from pathological movement patterns, older adults remain 

underrepresented in IMU validation studies (Kosbar et al., 2020). Furthermore, 

individuals awaiting TKA frequently demonstrate compensatory strategies, such as 

irregular gait, reduced joint range, and muscle weakness, resulting in atypical knee 

mechanics (Farquhar et al., 2009; Wilson et al., 2012). These biomechanical variations 

could impact IMU data interpretation and the accuracy of derived joint angle estimates 

(Mundt et al., 2019).  

The lack of a substantial, age-diverse healthy control group further constrains the 

ability to interpret deviations in joint kinematics as pathological or within normal 

variability. Hence, without validation in these distinct groups, there is a risk of 

algorithmic error, especially in TKA patients, potentially leading to inaccurate clinical 

assessments or misguided treatment decisions. Therefore, including younger adults, 

healthy older adults, and TKA patients is critical for developing robust, generalisable 

IMU-based motion analysis tools. 

Moreover, prior research often evaluates IMU accuracy during a restricted set of 

functional tasks, mainly focussing on level walking (Cho et al., 2018; McGrath and 

Stirling, 2022; Patel et al., 2022). However, everyday movements in rehabilitation 

encompass a broad range of functional activities that challenge the knee joint 

differently in terms of speed, impact forces, and ROM. These variations can affect 

sensor performance, yet few studies have systematically tested IMUs across such a 

comprehensive range of tasks. 
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In addition, sample sizes seen in earlier works (Chen et al., 2018; El Fezazi et al., 2023; 

Henkel., 2016; Zhou et al., 2020) are frequently small, limiting the robustness and 

statistical power of the findings. Though this study has a smaller clinical population, 

evaluations within this clinical group have been carried out across three separate data 

collection sessions providing a clearer indication of the performance of such devices 

both preoperatively and postoperatively. 

Finally, previous studies often focus on evaluating a single IMU technology. In contrast, 

this study incorporates both a commercial IMU device (Stryker’s MotionSense™) and a 

raw, wired IMU sensor processed using the Seel algorithm (Seel, Raisch and Schauer, 

2014) in collaboration with Philippe Martin (MINES Paris Tech), allowing for a more 

rigorous assessment of sensor accuracy under clinically relevant conditions. By 

validating this bespoke IMU knee flexion algorithm in MATLAB (MathWorks, 2024), it 

becomes possible to use any IMU device to measure a patient's knee ROM throughout 

recovery, offering a cost-effective, adaptable and practical alternative to conventional 

methods such as motion capture systems.  Though many algorithms exist, the Seel 

algorithm (Seel, Raisch and Schauer, 2014) was specifically evaluated as part of an 

opportunistic collaborative research effort with Philippe Martin (MINES, Paris), whereby 

existing MATLAB (MathWorks, 2024) code written by the collaborator required extensive 

validation testing. 

This study is designed to address each of these limitations directly. By including a larger 

healthy cohort of 34 individuals across a wide age range (20 – 84 years old), which 

enables similar age group comparisons to the TKA population, enhancing the clinical 

relevance of the findings, however, also taking into consideration the natural variations 

within gait kinematics of healthy individuals as they age. Furthermore, the inclusion of 

both preoperative and postoperative TKA patients enables the assessment of IMU 

performance across different stages of the recovery process. This study further 

incorporates a diverse set of functional tasks that vary in complexity, speed, and ROM 

demands, offering a more realistic evaluation of sensor accuracy in conditions that 

mimic real-world rehabilitation, while including evaluations on two different sensor 

technologies.  
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This thesis focussed on evaluating whether both the commercially available 

MotionSense™ wearable device (Stryker, USA) and the wired IMU research device using 

the Seel algorithm (Seel, Raisch and Schauer, 2014) in collaboration with Philippe 

Martin (MINES, Paris) can be implemented to accurately monitor postoperative 

recovery following TKA surgery and whether these measures are accurate enough to 

detect clinically significant changes in knee flexion angle. 

The scope to successfully implement such a device holds immense value in both a gait 

analysis laboratory environment and with further adaptations in rehabilitation settings 

for remote monitoring of patient recovery and personalised treatment plans, 

specifically for cases where patients cannot easily access healthcare facilities 

regularly (as a result of restricted movement / lack of independence, isolated location 

or limited in person appointments available).  

1.2  Clinical Problem 

Many factors contribute to successful outcomes after TKA, with rehabilitation playing a 

crucial role in promoting recovery and improving postoperative results (Bandholm, 

Wainwright, and Kehlet, 2018; Lisi et al., 2017; Mistry et al., 2016; Prill et al., 2022). 

However, the effectiveness of rehabilitation is contingent on patient adherence to 

prescribed protocols, which is often suboptimal (Campbell et al., 2001). Poor patient 

compliance to rehabilitation regimens frequently results in poor postoperative 

outcomes and increases the likelihood for technically demanding and costly revision 

surgeries (Sharkey et al., 2002; Suarez et al., 2008). 

Assessing the success of TKA involves both subjective measures, such as PROMs, and 

objective measures like ROM which are recorded before and after surgery. In busy 

clinical settings with limited resources, knee scores are typically recorded, although 

they are less sensitive to detecting subtle changes in joint function and kinematics (van 

Schie et al., 2024), while functional measures are often omitted. 

Ideally, instrumented opto-electronic motion capture systems such as Vicon motion 

capture would be used, as this method is often considered the gold standard for 



 

44 

 

measuring detailed 3D kinematic and kinetic data with high accuracy (Richards, 1999). 

However, these systems are costly and time-consuming to implement, making them 

impractical for routine clinical use. They are also limited by the number of visits a 

patient’ attends, often not providing a true reflection of patient recovery as data is only 

captured at discrete time points rather than providing a continuous outline of recovery 

progress.  

As a more feasible alternative, wearable sensors, such as IMUs have been introduced 

due to their low cost and ease of use (Versteyhe et al., 2020). Nevertheless, concerns 

remain regarding the accuracy and ease of use of these devices.  

In order for wearable sensors to be integrated into clinical and rehabilitation settings, it 

is essential that the data they provide accurately reflects patient recovery. Only after 

establishing the accuracy of such devices can, they be confidently incorporated into 

clinical practice for broader use.  

The implementation of wearables has the potential to act as a powerful tool not only for 

personalised rehabilitation protocols based off patient requirements and individual 

recovery progress, but also to enable the continuous monitoring of patient recovery, 

flagging potential surgery failures or those patients with poor rehabilitation 

compliance. This continuous window into patient recovery may reduce the risk of 

suboptimal outcomes and costly revision surgeries through early clinical intervention.  

Moreover, by collecting both objective and subjective data at various time points: 

preoperative, intraoperative, and postoperative, a broader and more detailed 

understanding can be gained from the different factors that contribute to more 

favourable postoperative outcomes. 

1.3 Research Question and Aims 

Are IMU devices accurate enough to measure clinically significant changes in knee 

flexion angle following TKA? 



 

45 

 

The primary aim of this thesis was to assess whether IMU devices and their associated 

algorithms are accurate enough to be confidently used within clinical environments. 

Specifically, this thesis investigates their capability to detect and measure clinically 

significant changes in knee flexion and extension angles. Evaluating the technology 

across a wide range of activities and ROM, at various stages of recovery, ensuring their 

accuracy and validity in measuring knee flexion angles to be used in supporting clinical 

rehabilitation and recovery monitoring. 

1.4 Thesis Structure 

This thesis has been organised as follows:  

Chapter 2. Literature Review: provides the reader with an extensive review on the 

literature currently available on the main topics covered by this research. The chapter 

begins with a description of the anatomy and physiology of a healthy knee joint. This is 

followed by a narrative explaining the degradation of the knee joint as a result of KOA, 

emphasising the common mechanisms of KOA and the symptoms associated with the 

disease. The treatment options for KOA are then discussed with a focus on TKA. The 

prevalence and effectiveness of surgical methods for treating KOA are evaluated, 

highlighting the factors that contribute to successful postoperative outcomes.  

The literature review then goes on to describe the pathway of recovery following TKA, 

describing conventional methods of rehabilitation and the systems traditionally used to 

measure recovery progress. The limitations of current recovery approaches are 

explored, introducing a potential solution to these shortcomings through the 

implementation of wearable devices. The different types of available wearable 

modalities are highlighted, emphasising the advantages and disadvantages associated 

with each, comparing these wearable devices with traditional forms of rehabilitation.  

A high-level explanation is provided, detailing the current methods available to convert 

measures captured from wearable devices into understandable and interpretable knee 

angle data that can be used to track recovery. The literature review reasons the need to 

validate such devices against clinically acceptable gold standards before they can be 
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safely and confidently employed in healthcare settings. An overview into validation 

methodologies is provided, with an emphasis on clinically significant thresholds. 

The purpose of this literature review is to inform the reader of the limitations in current 

rehabilitation modals and the effect that suboptimal rehabilitation delivery has on 

patient outcomes. Highlighting the potential for wearable technologies as an effective 

alternative for personalised rehabilitation, recovery tracking and early intervention of 

suboptimal recovery cases. 

Chapter 3. Aims and Objectives: this chapter outlines the primary aim of this thesis, 

and details the objectives designed to address the research question and achieve the 

aim. 

Chapter 4. Methods: the methods section describes the techniques employed to 

validate the accuracy of novel wearable devices used to determine knee angle 

measures in clinical and rehabilitative settings. The methods chapter is divided into 

three main sections.  

The first section outlines the complete study design, briefly describing the protocols 

performed during each stage of this research through the use of a flowchart. The 

common methodologies used throughout this research thesis are expanded upon, 

discussing participant recruitment and data collection techniques, laboratory and 

equipment set ups and finally a description of the statistical analyses used to validate 

the technologies against opto-electronic system, Vicon motion capture, is detailed.  

The remaining two sections focus on either the commercially available MotionSense™ 

wearable technology or the wired IMU device associated with the Seel algorithm. 

Providing specific details about where the common methodologies differ between the 

two sensor technologies and highlighting the different techniques used to analyse the 

data and the reasons for this. 
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Notably the practical implementation of the Seel algorithm is described, detailing the 

process taken to determine knee angles from raw IMU data used for validation. The 

theory behind the algorithm is also briefly explained. 

Chapter 5. Results: this chapter is divided into three sections and presents the data 

recorded from each of the methods described in Chapter 4.  

The first section presents the results from the MotionSense™ validation study, 

comparing the commercially available device against the opto-electronic system, 

Vicon motion capture in a healthy population of older and younger adults and in a TKA 

clinical population across a broad range of activities. 

The second section reports the findings from the implementation and validation of the 

Seel algorithm against the opto-electronic system, Vicon motion capture. This section 

includes results from both a healthy control population and a TKA clinical population, 

establishing the accuracy of this algorithm across a range of activities. 

The final section goes on to present the findings from a TKA population, describing the 

clinically relevant changes following TKA surgery, comparing subjective and objective 

measures. Results of a single TKA patient is also presented in this section, highlighting 

differences in outcome measures when considering population averages versus an 

individual’s outcomes, emphasising the highly individual nature of recovery. This 

section provides a practical example of the usability of such wearable devices within 

healthcare settings and the opportunity to deliver personalised care through such 

devices. 

Chapter 6. Discussion: this chapter discusses the results reported in Chapter 5. The 

data is compared to previously published TKA research and data from healthy adults. 

The accuracy of both wearable devices is compared against related validation studies 

and clinical thresholds, highlighting the feasibility of such technologies in movement 

analysis laboratories and within clinical settings. Postsurgical success is described 

through objective and subjective metrics, highlighting the correlations between these 
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measures while emphasising the limitations of only considering one type of metric to 

assess postoperative outcomes.  

The importance of personalised care and individual tailored treatment packages is 

underscored, as recovery pathways are found to be highly patient specific. Comments 

are made regarding the most efficient methods for implementing a highly individualised 

level of care, the feasibility of integrating wearable devices into rehabilitation settings, 

and the potential of such technologies in revolutionising postoperative recovery. 

Finally, suggestions into further project advancements are discussed, with 

recommendations into areas of improvements and expansion. 

Chapter 7. Conclusions: the thesis concludes by returning to the research questions, 

aims, and objectives. A summary of the main findings of the study are provided. 
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2 Chapter 2. Background Research 

This thesis presents the validation and usability of a commercially available wearable 

device designed to monitor postoperative joint function and rehabilitation compliance 

following TKA. The validation results were subsequently used to implement and 

evaluate the accuracy of the Seel (Seel, Raisch and Schauer, 2014) algorithm for 

tracking knee joint ROM using raw IMU data.  

The primary aim of this thesis was to assess whether these devices are suitable for 

monitoring postoperative recovery and to evaluate their potential implementation in 

clinical settings. A key goal of TKA is to enhance knee function and alleviate pain. 

 Evaluating TKA outcomes requires a comprehensive understanding of the anatomy and 

physiology of a healthy knee joint. Therefore, this literature review begins by introducing 

the typical form and function of a healthy adult knee joint. 

2.1 Overview of a Healthy Knee Joint 

The knee is a weight-bearing hinge-like joint that works harmoniously with the hip and 

ankle joints, predominantly facilitating flexion and extension of the lower leg (Gupton et 

al., 2018). The knee is the largest synovial joint in the body, comprising of the femur, 

patella, and tibia, and includes two interfaces: the tibiofemoral and patellofemoral 

joints as seen in Figure 2-1.  

Various structures, such as ligaments, cartilage, synovial tissues, muscles, and 

tendons, work together to maintain knee stability and correct joint mechanics (Wilson, 

2023).  
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Figure 2-1. Anatomy of a healthy knee joint (Wilson, 2024). 

 

2.1.1 Knee Anatomy 

The different structures each have their dedicated role yet complement one another by 

working in coordination to maintain proper joint function, by contributing to the overall 

stability and movement of the knee joint. The main structures that make up the knee 

joint are detailed below. 

Bones: The femur and tibia are long bones that form the primary structure of the knee 

joint. The patella, a triangular sesamoid bone, moves between the femoral condyles, 

and is stabilised by the patellar ligament and quadriceps tendon (Wilson, 2023).  

Menisci: Each bone in the knee joint is lined with a layer of cartilage called the 

meniscus, primarily composed of collagen. The menisci serve as shock absorbers, 

reduce friction between bones, and enhance knee stability by improving joint 

congruence.  

Muscles: The quadriceps muscle group (rectus femoris, vastus lateralis, vastus 

medialis, and vastus intermedius) facilitates knee extension while the hamstring 

muscles (semitendinosus, semimembranosus, and biceps femoris) enable knee 
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flexion. Muscle strength, particularly in the quadriceps, is crucial for knee stability and 

movement. A reduction in muscle strength is associated with OA progression and other 

comorbidities (Yoshida et al., 2008). 

Ligaments: The knee is stabilised by four primary ligaments: the anterior cruciate 

ligament (ACL), posterior cruciate ligament (PCL), and the medial (MCL) and lateral 

(LCL) collateral ligaments. The ACL and PCL prevent excessive forward and backward 

translation of the tibia, while the MCL and LCL control lateral movement. The PCL, 

located behind the ACL, is larger and stronger, providing greater resistance to posterior 

movement (Fekete et al., 2013; Scuderi and Tria, 2010), these structures provide the 

knee with most of its stability, restricting majority of its motion to a single plane.  

The knee joint relies on the complex interplay of bones, ligaments, muscles, and 

cartilage to provide stability, movement, and weight-bearing functionality. 

Understanding these structures is essential for diagnosing and treating knee-related 

conditions. If one component degrades or does not function as it is intended, increased 

strain is found in the other parts of the knee, leading to further damage and impaired 

function. 

2.1.2 Biomechanics of a Healthy Knee Joint 

2.1.2.1 Kinematics 

For the knee to function as expected it must exhibit proper kinematics. Although 

commonly considered a hinge joint, the knee's centre of rotation is dynamic, moving 

along a crescent-shaped path during flexion and extension. While the knee allows for 

movement across multiple planes, Figure 2-2, the primary motion occurs in the sagittal 

plane (flexion/extension), with limited varus/valgus motion in the frontal plane and 

some internal/external rotation in the transverse plane (Fekete et al., 2013). 

This small degree of medial rotation in full flexion and slight lateral rotation in full 

extension is known as the "screw-home" mechanism and contributes to knee stability 

by ensuring correct alignment of the joint (Scuderi and Tria, 2010).  
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Knee flexion involves a combination of rolling and sliding of the femur on the tibial 

plateau, which prevents excessive rotation and potential dislocation (Fekete et al., 

2013). Rolling prevents tissue impingement during flexion, while sliding ensures 

stability and proper function. This dual movement allows for a wide ROM while 

preventing injury (Affatato, 2015). 

The knee joint’s mobility is balanced by its robust stabilisers, which enable it to 

withstand significant external stresses. Ligaments and menisci provide static stability, 

while muscles and tendons offer dynamic stability (Fekete et al., 2013). This balance 

between movement and control is essential to prevent injury. Additionally, the knee 

endures substantial compressive and tensile forces across its articular surfaces, 

ligaments, and muscles, where improper alignment or loading can lead to degenerative 

conditions such as OA, as mentioned previously (Affatato, 2015). 

Healthy knee flexion ranges from 0˚ to 140 ˚, though requirements vary depending on 

the activity performed. For example, approximately 60˚ is required for walking, 90˚ 

when climbing stairs, and 110˚ during running (Stambough, 2019). 

 

Figure 2-2. Range of motion of the knee joint (Knee - Physiopedia, 2021). 
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These structures and their associated roles are all responsible for correct kinematics 

required for healthy joint motion, illustrating shock absorbing, propulsion and 

stabilising qualities. If knee joint motion is compromised, it is likely affected by and/or 

affecting the aforementioned stabilisers and could be signs of damage which may lead 

to further impaired joint performance.  

2.1.2.2 Kinetics 

Forces and moments act on the knee joint during dynamic movements, placing 

different stresses across the joint. During normal walking, the tibiofemoral joint 

experiences forces between 2.8 to 3.4 times body weight, while the patellofemoral joint 

undergoes forces ranging from 0.8 to 2.6 times body weight (Mesfar and Shirazi-Adl, 

2005). These forces increase significantly depending on the type of activity; for 

example, when walking downhill, compressive forces on the tibiofemoral joint can 

reach up to 8 times body weight, compared to 5 times when walking uphill. 

Knee flexion reduces the contact area between the tibia and femur due to femoral 

rollback, increasing stress distribution across the joint. Activities such as stair climbing 

and incline walking, which require greater knee flexion, are considered high-impact 

activities because they subject the knee to higher forces and stresses, potentially 

accelerating joint wear. 

Although these forces are absorbed by muscles and soft tissues, the ability for these 

structures to fully absorb and distribute these applied forces optimally are 

compromised as one ages. This is due to associated decline in muscle mass and 

strength, altering force distribution across the joint. This may contribute to increased 

wear and damage to the bone-cartilage interface, causing the cartilage to deteriorate 

over time. This wear and tear can result in further deterioration of the knee joint, 

ultimately resulting in pain and impaired joint function. 
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2.1.3 Conclusions 

Thus far the anatomy of a healthy knee joint and the role each structure plays to ensure 

correct joint function has been described. The complex interplay of each of these 

structures ensures optimal joint functionality. When these structures do not function 

as intended, increased wear and joint deterioration may occur resulting in reduced 

joint function, altered biomechanics and pain. 

2.2 Degradation of the Knee 

2.2.1 OA Development 

Zhang and colleague (Zhang and Jordan, 2010) stated that knee ROM is closely linked to 

the conditions of the stabilising structures and muscles surrounding the knee joint. It is 

when the balance between strength, stability and mobility is altered, normal joint 

biomechanics are compromised, potentially leading to pain and diminished joint 

function. 

Understanding the differences between a normal healthy knee and an affected joint is 

important for delivering correct treatment to restore function to a diseased knee joint. 

There are many reasons that may cause a knee joint to function incorrectly, however for 

the purposes of this thesis, only OA will be considered. 

OA arises from severe joint deterioration (Osteoarthritis - Symptoms & Causes - Mayo 

Clinic, 2019), often triggered by shifts in knee alignment and abnormal forces within the 

joint. As touched upon previously, under normal conditions, there is a balance between 

the breakdown and regeneration of articular surfaces, maintained by the formation of 

cartilaginous matrix in response to natural wear.  

However, when the rate of joint degradation exceeds the body's capacity to repair the 

cartilage, this balance is disrupted, leading to irreversible damage to the cartilaginous 

matrix (Michael, Schluter-Brust and Eysel, 2010). This damage marks the onset of OA, 
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initiating a cycle of further joint degeneration, including the loss of joint congruency and 

increased misalignment of the lower limb (Vad, Adin and Solomon, 2023). Over time, 

this cycle leads to progressive deterioration, resulting in reduced ROM, pain and 

impaired function. 

OA is the most prevalent form of arthritis, affecting approximately 528 million people 

worldwide (Long et al., 2022). The disease disproportionately affects older individuals, 

with 73% of cases occurring in people over the age of 55. Women are more commonly 

affected than men, accounting for 60% of OA cases (Zhang and Jordan, 2010).  

KOA is the most common form of OA and is considered a whole joint disease (Vad, Adin 

and Solomon, 2023). KOA is associated with a range of symptoms, including moderate 

to severe pain, stiffness, and swelling. The pain, thought to originate from various 

sources such as the subchondral bone, synovium, menisci, ligaments, or calcium 

deposits, is often the earliest sign of the disease and can occur during both active and 

passive movements (Loeser et al., 2012; Vad, Adin and Solomon, 2023).  

KOA is a complex, progressive disease that leads to irreversible damage. As KOA 

progresses, symptoms worsen, leading to severely reduced joint function, decreased 

mobility, muscle atrophy, and a diminished quality of life (Zhang and Jordan, 2010). 

Several risk factors contribute to the development of OA as described by Table 2-1. 
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Table 2-1. Risk factors associated with the development of knee osteoarthritis. 

Risk Factors Explanation 

Sociodemographic 

- Older people are more prone to developing 
OA, as one becomes older the breakdown 
of cartilage becomes faster than 
reformation. 

- OA is more prevalent in females than in 
males. 

Contact sports and trauma 

- Repetitive stresses placed on the joint 
when playing contact sports or previous 
injuries may alter lower limb alignment and 
pose risk to the development of OA. 

Genetics 
- There is a 40-60% heritability factor of OA 

development, suggesting OA is likely to be 
genetic. 

Weight 

- Carrying excess body weight increases the 
amount of stress applied to the joints 
which increases their wear. 

- Furthermore, fat tissue produces proteins 
which can result in inflammation around 
the joints. 

2.2.2 The Affected Knee Joint  

Given that KOA significantly alters the anatomy of the knee, the function of the joint is 

also directly affected. Knee ROM is commonly restricted as a result of KOA, with 

maximum knee flexion angles typically ranging between 80° to 125° (Heidari, 2011; 

Loeser et al., 2012; Man and Mologhianu, 2014; Zhang and Jordan, 2010), depending on 

the severity of the condition.  
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As described previously, a minimum knee flexion angle of 60° is necessary for walking, 

but a greater ROM is required for activities like stair climbing (Rowe et al., 2000). A more 

recent study by Collins and colleagues (Collins et al., 2014) supports this claim, 

reporting that people who are unable to flex their knee above 90° and cannot reach full 

extension are likely to find it impossible to carry out daily tasks. 

As a result of this reduction in ROM and loss of joint function, individuals with KOA deal 

with daily challenges, including limited independence, difficulty performing common 

ADL and often rely on others for help.  

In addition to reduced function, kinematic studies have consistently demonstrated that 

individuals with KOA walk at slower speeds, exhibit reduced cadence, and spend more 

time in the stance phase compared to healthy control subjects (Kaufman et al., 2001; 

Levinger et al., 2013; McClelland et al., 2017; Yoshida et al., 2008).  

These changes in kinematics suggest that altered gait is a means for adults struggling 

with KOA to mitigate knee pain and maintain functionality through compensatory 

mechanisms. 

2.2.3 Diagnosing OA 

Accurate diagnosis of KOA is crucial for providing effective treatment. Symptoms such 

as knee pain and swelling can result from various causes unrelated to KOA. Therefore, 

imaging is often necessary alongside pain assessments to correctly diagnose the 

patient.  

Radiographic imaging is commonly used to reveal changes in joint surfaces or bony 

projections. While KOA-related pain can stem from various sources such as 

mechanical, inflammatory, neuropathic, or psychosomatic factors (Thirumaran et al., 

2023), correctly locating the root cause of the pain enables appropriate treatment to be 

administered.  
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Treatment approaches vary based on the severity of the condition and can include non-

pharmacologic methods such as patient education, rehabilitation programmes aimed 

at strengthening muscles, and weight reduction through exercise (Rannou and 

Poiraudeau, 2010). While medical treatments focus on pain relief with analgesics and 

anti-inflammatory drugs. Surgical interventions, such as tissue repair, arthroscopic 

lavage, unilateral knee arthroplasty, and TKA, are considered when all other treatment 

options fail, with TKA being the most common surgical option (Affatato, 2015; Rannou 

and Poiraudeau, 2010; Tong et al., 2022; Zeni, Axe and Snyder-Mackler, 2010). 

While TKA is not always necessary for KOA, 95% of primary TKA surgeries are performed 

due to KOA (Long et al., 2022). The procedure is typically reserved for cases where 

patients experience persistent pain and limited knee ROM, although many individuals 

with OA do not undergo TKA. 

2.2.4 Conclusions 

Knee function relies heavily on maintaining its normal anatomy and biomechanics 

(Scuderi and Tria, 2010). Optimal function is most likely when the joint is correctly 

aligned and anatomically sound. When a knee joint is not functioning as expected and 

a person experiences pain and displays altered biomechanics this may signify issues 

within the joint. 

In order for appropriate treatments to be provided, correct diagnosis needs to be made. 

Patients presenting KOA are eligible for treatments aimed at relieving pain and 

improving joint function depending on the severity of the disease. Given the complexity 

of the disease and the intricacies of the knee joint, tailored treatment plans and regular 

follow-up assessments are essential for effective management. 

2.3 TKA as a Treatment Option 

As described, there are a wide variety of treatment options available to patients 

suffering from KOA, with treatment types depending on the severity of the disease 

(Loeser et al., 2012). KOA management often requires a multidisciplinary healthcare 
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team to control disease progression and prevent further joint degradation. In cases 

where KOA is not too severe or in the early stages of KOA development conservative 

treatments are often prescribed to sufferers (Petursdottir, Arnadottir and Halldorsdottir, 

2010; Rannou and Poiraudeau, 2010; Roddy et al., 2005; Van Gool et al., 2005; Michael, 

Schluter-Brust and Eysel, 2010; Zhang and Jordan, 2010).  

This typically includes rehabilitation protocols, weight loss programs, and strength 

training to preserve joint function. Early diagnosis and rehabilitative interventions are 

the most effective strategies to slow KOA progression and maintain joint function 

(Loeser et al., 2012; Petursdottir, Arnadottir and Halldorsdottir, 2010; Vad, Adin and 

Solomon, 2023). However, when KOA becomes too advanced, with severe joint 

degradation, joint replacement becomes necessary.  

This thesis will focus on end stage KOA with the primary treatment option being TKA. 

TKA aims to restore joint function, reduce pain, improve mobility and ROM, and realign 

the knee (Michael, Schluter-Brust and Eysel, 2010). The procedure involves removing 

the damaged articular surfaces of the knee and replacing them with artificial implants. 

The goal is to restore movement and optimise joint function, either through 

modification of existing structures or, in severe cases, a combination of modification 

and reconstruction. 

2.3.1 Prevalence of TKA 

TKA is a common surgical procedure and its prevalence is increasing. According to 

LSI’s Global Procedure Volumes Database approximately 3.6 million people undergo 

TKA worldwide each year, with over 170,000 procedures occurring in the UK (Long et al., 

2022; Matharu et al., 2022; Patel et al., 2019).  

In the UK, primary TKA constitute around 87% of all knee surgeries (Capelas et al., 

2022). TKA primarily targets individuals over the age of 65 with a history of OA. As OA 

affects women more commonly than men, women undergo TKA more frequently 

(Hamilton et al., 2015). 



 

60 

 

In England and Wales, approximately 160,000 knee replacements are performed 

annually, with an additional 8,000 in Scotland (Matharu et al., 2022). These procedures 

occur in around 400 hospitals, two-thirds of which are managed by the NHS (Matharu 

et al., 2022).  

The number of TKA surgeries are expected to rise due to an aging population associated 

with higher life expectancies, higher rates of OA, younger patients requiring surgery and 

increasing rates of obesity (Hamilton et al., 2015). The growing volume of TKA surgeries 

has in turn resulted in a corresponding increase in revision surgeries (Atallah et al., 

2011; Hamilton. et al., 2015; Lavernia et al., 2008).  

Studies predict that the demand for TKA will continue to grow by over 10% annually in 

the coming years (Kurtz et al., 2009). When considering that about 50% of all joint 

related surgeries performed in the UK are on the knee, it is important to ensure effective 

and successful treatment plans and high quality after care (National Joint Registry 15th 

Annual Report 2018 – HQIP, 2018). 

To meet the growing demand and evolving patient demographics, future treatment 

options and rehabilitation plans must be tailored to address individual patients' 

functional requirements, aiming to prevent dissatisfaction, poor surgical outcomes and 

reduce the risk of preventable revision surgeries (Hamilton et al., 2015; Pesteh et al., 

2015; Postler et al., 2018).  

2.3.2 How Effective is TKA? 

TKA is highly effective in reducing morbidity associated with KOA (Bade and Stevens-

Lapsley, 2012; Knee Replacement Surgery | NRAS | All the Details on Knee Surgery, 

2019). Data from the Swedish Arthroplasty Registry (Price et al., 2018) shows that 96% 

of all TKA procedures last at least 10 years, while the Australian registry (Postler et al., 

2018) reports a 94% 10-year survival rate. Due to the success of TKA, the demand is 

steadily increasing, with predictive models forecasting continued growth (Kurtz et al., 

2009; Matharu et al., 2022). 



 

61 

 

Primary TKA outcomes are generally excellent, and revision surgeries are only 

performed when necessary. However, revision surgery is more technically challenging 

and carries a higher risk of complications compared to primary TKA (Graichen, 2014; 

Postler et al., 2018; Suarez et al., 2008). Although the revision rates remain low, the 

large number of initial TKAs performed means that the burden of revision surgeries is 

growing (Pesteh et al., 2015). TKA complications, such as infection, component wear, 

and mechanical failure, can all lead to revision surgeries. 

To minimise the risk of revision surgery, high-quality aftercare and rehabilitation are 

crucial for optimising knee function and improving long-term outcomes (Hamilton. et 

al., 2015). 

2.3.3 Conclusions 

TKA is considered the standard treatment option for people with end stage KOA. As a 

result of increasing demands and changing patient demographics more TKA 

procedures are being performed than ever before, with models predicting a steady 

increase in the number of future operations. 

Despite the overall success of the procedure in restoring function and alleviating pain 

of an arthritic joint, TKA surgeries sometimes result in unwanted revisions. To prevent 

unnecessary revision surgeries, it is important that patient aftercare is optimised and 

that suboptimal surgery outcomes are detected promptly. 

2.4 Recovery Pathway Following TKA 

2.4.1 What Happens After TKA Surgery? 

The goal of all surgery is to discharge the patient as soon as it is safe to do so. In the UK, 

patients are discharged from hospital approximately 3 - 5 days after surgery, therefore 

inpatient rehabilitation is extremely short.  
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Early-stage rehabilitation that occurs during this brief period aims to mobilise the joint 

and facilitates a safe discharge with guidance from both a physiotherapist and 

occupational therapist. Healthcare workers ensure that the patient can safely 

complete basic tasks, such as getting up off a chair and that they can walk short 

distances in order to ensure that patients can safely return and stay at home 

independently (Hamilton et al., 2020). 

2.4.2 Overview of Conventional Postoperative Rehabilitation 

Physical rehabilitation plays a critical component of recovery after TKA, significantly 

improving functional outcomes and supporting patients' safe return to daily activities 

(Prill et al., 2022). However, rehabilitation approaches vary globally and even among 

hospitals (Ibrahim et al., 2015). Variations exist across each stage of care, including the 

intensity and duration of rehabilitation provided to patients.  

Though differences exist, the general structure, importance and recommendations 

around prehabilitation and post-surgery rehabilitation remain. Prehabilitation typically 

begins around 4 – 8 weeks prior to surgery and includes strength training focussing on 

building the major muscles groups through quadriceps sets and straight leg raises. 

ROM exercises such as heel slides and passive knee extension are performed to aid in 

mobility, while aerobic conditioning is normally performed on a stationary bicycle to 

improve cardiovascular fitness. Proprioceptive training helps to improve joint stability, 

balance and awareness, often including single-leg stance, sit to stand movements 

heel-to-toe walking and resistance band exercises (Monticone et al., 2010). The 

primary goal is to enhance muscle strength, joint mobility, and fitness in preparation for 

surgery (Wallis and Taylor, 2011). 

However, there is no universally accepted rehabilitation protocol or physiotherapy 

regime aimed at optimal TKA recovery, and international recommendations remain 

unreported (Noble et al., 2006). In the UK, there is uncertainty regarding the availability 

and standardisation of postoperative physiotherapy resources (Smith et al., 2020), with 

considerable variation in the delivery and content of rehabilitation programs between 

hospitals. 
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Despite this, rehabilitation is strongly linked to improved patient-reported outcomes 

following TKA (Den Hertog et al., 2012). Evidence suggests that early mobilisation of the 

joint, within a few hours post-surgery, leads to better outcomes, (Lisi et al., 2017) 

including shorter hospital stays, with patients discharged on average, 69 hours earlier 

than those who begin rehabilitation later. Furthermore, the duration of outpatient 

rehabilitation varies in length and can range between 1 - 6 months depending on the 

facility and patient (Artz et al., 2015). Westby and colleagues (Westby et al., 2018) 

recommends a minimum of 6 weeks of rehabilitation post-surgery for good functional 

outcomes, though length and intensity of programmes are debated. 

Pre- and post-TKA exercise-based interventions have also been linked to enhanced 

recovery, with higher preoperative exercise volumes associated with better 

postoperative outcomes (Han et al., 2015) and high-intensity, progressive resistance 

exercises targeting major muscle groups showing better long-term strength and 

functional outcomes compared to lower-intensity programmes (Bade and Stevens-

Lapsley, 2011). It has also been shown that patients with better overall health and 

fitness tend to have shortened hospital stays and improved early postoperative 

function (Moyer et al., 2017; Topp et al., 2009). 

However, other studies (Alrawashdeh et al., 2021; Bakaa et al., 2021; Konnyu, et al., 

2023) comparing different rehabilitation programmes, durations and intensities have 

found no significant differences between functional outcomes and the type of 

rehabilitation protocol performed. Though there are conflicting opinions regarding the 

manner in which rehabilitation is delivered, evidence shows rehabilitation is necessary 

to consistently improve joint function compared to minimal or no therapy (Hamilton et 

al., 2020). 

2.4.2.1 Postoperative Rehabilitation Pathways  

It is clear from the preceding sections that post-TKA rehabilitation protocols are not 

standardised; however, they all follow similar principles and is structured in progressive 

phases. Pain management and ice therapy are initiated immediately post-surgery, with 

physiotherapy starting within the first 24 - 48 hours to mobilise the joint. Exercises 
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carried out in the early phase focus on pain and swelling reduction, muscle activation 

such as quadricep and glute sets, circulatory support like ankle pumps and early 

mobility which may take the form of assisted ambulation.  

In the first 2 weeks, therapy focuses on improving knee mobility and strengthening 

surrounding muscles, with gradual weight-bearing and resistance band exercises. 

Patients typically continue using walking aids during this period. Exercises such as 

gentle stretches, heel slides, and leg raises aim to restore ROM while managing pain 

and swelling. These exercises aim to achieve greater degrees of flexion and gait training 

is prescribed to normalise walking patterns (Mistry et al., 2016). Exercises are typically 

performed “little and often” to promote better mobility of the joint. 

Between 3 - 6 weeks post-surgery, rehabilitation intensifies, focusing on building 

strength, balance, gait retraining and endurance. Functional activities like stair 

climbing, chair exercises (sit to stand and stand to sit), and resistance training (such as 

straight leg raises and quadriceps sets) are incorporated, along with more dynamic 

ROM exercises like seated knee bends and passive towel knee extensions to optimise 

outcomes (Mistry et al., 2016) and increase patient independence. Treadmill walking 

with a focus on heel to toe walking is carried out aiming to improve endurance and gait 

symmetry. While proprioception exercises often include single-leg weight shifts, 

balancing on foam pads or eyes-closed balance exercises, all aiming to improve joint 

stability and joint confidence (Zhang and Xiao, 2020). 

By 3 months postoperatively, the patient’s proprioception, agility, and balance should 

all have improved, with patients gradually returning to low-impact activities such as 

swimming and cycling to improve cardiovascular endurance (Bade and Stevens-

Lapsley, 2012). These exercises are typically tailored to individual patient factors and 

abilities, including preoperative fitness, comorbidities, and rehabilitation goals (Bade 

and Stevens-Lapsley, 2011; Minns Lowe et al., 2007). Overall, a well-structured, 

adaptable and personalised rehabilitation protocol is critical to the successful recovery 

and long-term mobility of individual TKA patients. By this later stage of recovery, 

typically, only one follow-up appointment with a healthcare provider occurs, unless 

complications arise. 
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Throughout the entire recovery period, the primary goals of rehabilitation protocols are 

to restore quadriceps strength, improve ROM, and enhance functional ability to ensure 

patients safely perform daily activities independently. Consistency in performing these 

rehabilitation exercises is crucial, as rehabilitation compliance is strongly correlated 

with positive outcomes (Forster and Frost, 1982). 

2.4.3 Conclusions 

Recovery is a major component contributing to the overall success of TKA surgery. 

Following the TKA procedure, the joint is mobilised to help reduce pain and stiffness 

and to decrease the length of time the patient stays in hospital. Once the patient is 

discharged, recovery and functional outcomes are dependent on patient rehabilitation 

compliance, with limited in person contact between patients and healthcare 

professionals.  

Rehabilitation programmes may vary depending on the facility, with the intensity, 

duration and type of rehabilitation prescribed varying depending on location (Konnyu, 

et al., 2023; Lisi et al., 2017; Prill et al., 2022; Sattler et al., 2020).  

Though differences in rehabilitation exist, functional outcomes following TKA rely on 

patient adherence to their rehabilitation protocols. It is therefore important for patients 

to strictly follow surgery aftercare and carry out their rehabilitation protocols correctly 

to ensure optimal postoperative success.  

2.5 Measuring TKA Success  

TKA is clearly effective in alleviating pain and enhancing joint function. While joint 

function is a good indication of TKA success, patient satisfaction is also a key metric 

commonly used to evaluate postoperative outcomes. Following TKA, functional 

improvements are commonly observed early postoperatively, yet patient satisfaction 

outcomes vary.  
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According to the Institutes of Health Consensus panel, only 85% of patients are 

satisfied with their outcomes following TKA (Noble et al., 2006), while other research 

has shown a broader range with postoperative satisfaction rates between 68% - 93% 

(Kahlenberg et al., 2018). Understanding the mechanisms that lead to greater 

satisfaction rates and managing patient postoperative expectations accordingly is 

important. 

Therefore, the ability to accurately monitor and track patient recovery lends itself to 

timely intervention in cases where patients are not progressing as expected or for early 

detection of postoperative complications. This proactive approach may help reduce 

the risk of revision surgeries by addressing issues before they escalate and ultimately 

improve patient postoperative function and increase satisfaction. 

2.5.1 How is TKA Success Measured? 

The success of TKA is typically evaluated using a range of outcome measures that 

assess patient function, pain relief, and overall satisfaction. These measures are 

generally divided into two categories: objective and subjective measures.  

Objective measures are based on quantifiable data gathered through clinical 

assessments or physical examinations, while subjective measures rely on self-reported 

patient feedback, reflecting individual experiences, perceptions, and satisfaction with 

the procedure.  

The success of a surgery should therefore be established by evaluating both subjective 

and objective measures in equal weighting. To improve TKA success, it is therefore 

important to find a balance between patient satisfaction and good functional 

outcomes and establish which factors contribute to greater postoperative scores. 

2.5.1.1 Objective Measures for Quantifying TKA Success 

To determine whether an implant has been successful, objective outcomes are 

commonly recorded perioperatively. These measures are quantifiable and 
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reproducible, providing critical data used to track improvement or deterioration of a 

patient and to assess recovery (Hamilton et al., 2020).  

Preoperative measures are reported to establish a baseline from which recovery can be 

compared against and commonly include knee ROM, strength testing, functional 

performance tests, gait analysis and joint alignment. Each measure is evaluated 

differently, for example, joint alignment is determined from imaging techniques such as 

radiographs or MRIs, while functional performance testing has traditionally been 

evaluated using timed tests like the Timed Up and Go (TUG) test, the 6-minute walk 

test, and stair climbing assessments (Small et al., 2019).  

Moreover, objective measures recorded intraoperatively might include soft tissue 

balancing, bone resection measures, implant position and alignment, and blood loss. 

Postoperative measures include the same preoperative measures, though, may include 

pain and swelling assessments.  

Functional tests performed postoperatively are normally compared against 

preoperative scores. However, these tests do not perfectly reflect ADLs as they do not 

fully capture real-world movement patterns which may lead to poor postoperative 

functional scores. Recent research (Small et al., 2019) suggests that incorporating 

ADL-based assessments together with patient-reported subjective outcome measures 

(PROMs) may offer a more comprehensive evaluation of TKA success (Small et al., 

2019).  

Objective measures are useful for providing consistent comparisons across patients at 

various stages of recovery. These objective outcomes provide clinicians with 

quantifiable information that can be used in future decision-making by identifying 

aspects of recovery that need to be addressed, while providing information that may be 

used to link preoperative measures with favourable postoperative outcomes. Assessing 

patient outcomes is therefore crucial following treatments or interventions like TKA, to 

ensure patients are progressing as expected (Padua et al., 2007) and that poor surgical 

outcomes may be detected promptly. 
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This thesis incorporates a number of common functional activities used in clinical 

settings to assess patient function and recovery. To comprehensively evaluate recovery, 

data should be collected at multiple time points (Kornuijt et al., 2019). Preoperative 

assessments establish a baseline from which comparison may be drawn against 

postoperative measures, while regular data collection at set intervals ensures ongoing 

monitoring of recovery progress. 

These data could contribute to developing predictive tools that forecast postoperative 

functional outcomes based on preoperative functional scores and patient satisfaction 

(Givens et al., 2018; Zeni and Snyder-Mackler, 2010). Such tools could offer valuable 

insights to improve postoperative outcomes and enhance surgical planning. 

Flexion/Extension as a Common Objective Measure of TKA Success 

Knee ROM, particularly flexion and extension, is a critical indicator of joint functionality 

following TKA (Oka et al., 2020). As previously established, a flexion angle of 90° - 100° 

is required for most ADLs such as stair navigation, sitting and getting in and out of a car 

or bathtub (Baliunas et al., 2002; Collins et al., 2014; Kaufman et al., 2001; Rowe et al., 

2000). However, many patients struggle to reach this degree of flexion postoperatively 

(Bauer et al., 2010), reducing their ability to perform basic tasks.  

Many factors influence ROM recovery following TKA, of which include preoperative 

ROM, age, BMI, surgical methods, and rehabilitation adherence (Moghtadaei et al., 

2012). Patients with limited ROM pre-surgery often experience significant improvement 

when compared to baseline measures, while those with normal ROM may temporarily 

display reduced postoperative ROM due to swelling (Zhou et al., 2015). 

Limited postoperative ROM is a common issue reported by patients (Khatri et al., 2009), 

often leading to patient dissatisfaction (Hamilton et al., 2020). Studies show a strong 

correlation between early knee flexion (at hospital discharge) and long-term ROM 

recovery, highlighting the importance of early mobilisation for better functional 

outcomes (Hamilton et al., 2020; Moghtadaei et al., 2012; Naylor et al., 2012).  
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Conventionally ROM is a common metric used to measure TKA success, recovery 

progress and functional improvements during rehabilitation (Collins et al., 2014; Patel, 

2019; Khatri et al., 2009). Therefore, this thesis focuses on measuring and quantifying 

knee flexion and extension across a wide range of activities and at early stages of 

recovery. 

Common Functional Objective Metrics 

Though ROM is a common quantifiable metric used to gauge TKA recovery, functional 

objective measures are essential tools in evaluating the recovery trajectory of 

individuals following TKA. These measures provide quantifiable insights into mobility, 

strength, and overall physical performance of the patient (Wright et al., 2011). 

Commonly used assessments include the Timed Up and Go (TUG) test, the 6-Minute 

Walk Test (6MWT), Stair Climb Test (SCT) and Sit to Stand test (Dobson et al., 2012). 

These measures serve not only as indicators of functional ability but also reflect 

underlying biomechanical adaptations that occur post-surgery. 

For instance, the TUG test assesses dynamic balance, lower limb strength, and 

transitional movement control, all of which are affected by quadriceps weakness and 

altered proprioception following TKA. Biomechanically, patients often compensate 

during this task by increasing trunk sway or relying more heavily on the non-operated 

limb, which can delay symmetrical gait recovery and contribute to long-term 

movement inefficiencies (Mizner et al., 2005).  

The 6MWT, commonly used to evaluate walking endurance and cardiovascular fitness, 

also highlights the functional limitations imposed by postoperative joint stiffness or 

pain. Shorter walking distances are often associated with compensatory gait patterns 

such as reduced knee flexion during swing phase or increased reliance on hip 

musculature to advance the limb, indicating ongoing biomechanical dysfunction (Bade 

and Stevens-Lapsley, 2011).  

Similarly, the Sit to stand test captures lower extremity power and neuromuscular 

control. Following TKA, many patients exhibit delayed muscle activation and decreased 
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force generation, particularly in the quadriceps. This results in an increased use of arm 

support and altered momentum transfer from sit to stand which further emphasises 

the residual deficits in knee extensor strength and joint stability. From a biomechanical 

perspective, such compensations can elevate joint loading in adjacent joints such as 

the hips or the spine, potentially predisposing patients to secondary musculoskeletal 

issues (Petterson et al., 2009). 

The SCT provides critical insight into the eccentric control of knee flexors and the 

concentric strength of extensors, both of which are often compromised 

postoperatively. Difficulty with stair descent, in particular, may indicate persistent 

quadriceps inhibition and limited joint proprioception, which are not always captured 

in self-reported outcome measures. 

Thus, these functional assessments are not merely clinical tools but provide a window 

into the mechanical efficiency, motor control strategies, and compensatory patterns 

that develop post-TKA. Understanding their biomechanical implications enables 

clinicians to target rehabilitation more precisely, promoting symmetrical loading, 

restoring proper movement mechanics, ultimately enhancing surgical outcomes and 

improving a patient’s independence and functional abilities. 

Altered Gait Biomechanics 

Persistent pain following TKA can hinder gait biomechanics and functional recovery 

(Atallah et al., 2011; Kaufman et al., 2001; Lavernia et al., 2008). Studies have shown 

that approximately 30% of patients continue to experience pain up to two years post-

surgery (Dowsey et al., 2012), which can impede the restoration of normal knee 

function and gait patterns. Altered weight distribution between the operated and non-

operated leg often results in muscle weakness and decreased functionality (Levinger et 

al., 2013; Dowsey et al., 2012), all leading to suboptimal postoperative results. 

Early identification of patients struggling with ROM recovery and abnormal gait 

characteristics is essential. Previously mentioned, there is a strong correlation 

between knee flexion at the time of hospital discharge and ROM outcomes 12 months 
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post-surgery (Chiang et al., 2017). However, if knee ROM can be continuously tracked 

throughout recovery, timely intervention in patients with delayed ROM recovery may 

lead to better functional results and enhanced quality of life. Preventing further gait 

abnormalities, poor function, dissatisfied patients and potential revision surgeries. The 

characteristics of gait abnormalities of an affected knee joint will be discussed in 

section 2.6.  

2.5.1.2 Subjective Measures for Quantifying TKA Success 

Subjective measures provide an alternative approach used to determine TKA success 

by considering patients’ perspectives. Patient recovery is highly individual and is 

typically subjectively assessed using PROM questionnaires (Van Onsem et al., 2018), 

which evaluate key postoperative aspects such as satisfaction, pain, and perceived 

mobility.  

While PROMs provide valuable insights into patient perceptions, discrepancies can 

arise when compared to objective, performance-based functional measures (Van 

Onsem et al., 2018). To reiterate, it is therefore important to use both objective and 

subjective measures in unison when evaluating the overall success of the procedure. 

There are several PROMs commonly used; however, this thesis focusses on three 

questionnaires which are outlined below. 

The Oxford Knee Score (OKS) (Fitzpatrick et al., 1998), is commonly used to evaluate 

pain and function through 12 questions, generating a score between 0 - 48, where a 

higher score indicates greater satisfaction. The Forgotten Joint Score - 12 (FJS) 

(Robinson et al., 2021) assesses a patient's awareness of their artificial joint during 

daily activities, also scoring between 0 - 48, with higher scores indicating greater 

awareness and therefore poorer outcomes. The Knee Injury and Osteoarthritis 

Outcome Score for Joint Replacement (KOOS JR), is a comprehensive questionnaire 

used to assess joint condition by evaluating 5 subscales. This questionnaire combines 

pain, stiffness, symptoms and functional ability into a single score, with higher values 

indicating worse knee health. 
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PROMs are widely adopted clinically due to their ease of use, low cost, and ability to 

capture patient-centric outcomes (Dowsey and Choong, 2013). However, they have 

limitations, including their subjectivity and bias (different patients place value on 

different aspects of recovery and have varying expectations), lack of sensitivity and 

specificity to detect functional changes, variability across different questionnaires, 

inconsistencies in timing of data capture following surgery, and difficulties interpreting 

the final scores (no clear threshold defining ‘’good’’ and ‘’bad’’ scores) making direct 

comparisons difficult (Dowsey and Choong, 2013).  

More extensive questionnaires may offer deeper insights into aspects of recovery that 

patients place greater value on but at the cost of reduced completion rates. Despite 

these limitations, PROMs provide critical information on patient satisfaction beyond 

what clinical measures alone can provide (Small et al., 2019). 

To gain a complete evaluation of TKA outcomes and success, subjective PROMs should 

be complemented by objective measures such as physical function, ROM, and other 

clinical assessments (Tew et al., 2020; Vogel et al., 2020). While PROMs provide 

valuable patient perspectives, their limitations necessitate a balanced approach that 

integrates both subjective and objective assessments. 

Therefore, evaluating TKA success by using both PROMs and functional outcome 

measures enhances the ability to evaluate the overall success of TKA by incorporating 

the patient's experience alongside clinical measures of joint functionality, ensuring a 

more comprehensive, patient-centred assessment of postoperative outcomes is 

established. 

2.5.1.3 Clinically Significant Improvement in Knee ROM  

Clinically significant improvements in knee ROM following TKA is typically defined as an 

increase in ROM that meaningfully enhances functional performance and patient-

reported outcomes. A common threshold for clinical significance is an improvement of 

at least 10° to 15° in knee flexion or extension compared to baseline measurements 

(Kittelson et al., 2020). This degree of change is generally associated with improved 
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mobility, reduced pain, and enhanced ability to perform daily activities (Chapman, 

Moschetti and Van Citters, 2021). 

Current clinical practice evaluates knee ROM through goniometer measurements or 

visual assessments (Antunes et al., 2021). However, these conventional measurement 

techniques are prone to errors and the accuracy is variable depending on which 

technique is used and who performs the measurement. For example, Edwards and 

colleagues (Edwards et al., 2004) found that 45% of patients who had their ROM 

assessments carried out visually, were reported incorrectly by more than 5°. Whereas 

22% of patients had ROM measures off by more than 5° using a goniometer (McGrath, 

Fineman and Stirling, 2018).  

Therefore, there is a requirement for accurate and sensitive measurements of ROM 

improvement following TKA. Particularly if recovery progress is to be tracked accurately 

and suboptimal outcomes are to be detected correctly. 

Timeline for Achieving Clinically Significant ROM Improvements 

Length of time is commonly used to access suboptimal recovery. The time required for 

patients to regain functional ROM post-TKA varies (Chapman, Moschetti, and Van 

Citters, 2021), and is influenced by factors such as preoperative ROM, surgical 

technique, rehabilitation adherence, and individual patient characteristics. 

Generally, patients can expect to see initial gains in ROM within the first 6 - 12 weeks 

post-surgery, with the most substantial improvements occurring during this period 

(Edwards et al., 2004; Kittelson et al., 2020). Therefore, careful monitoring of patient 

recovery progress is required particularly within this early postoperative phase as vast 

improvements should be evident. 

Full or near-full recovery of ROM often continues over 6 - 12 months (Kittelson et al., 

2020), with incremental gains in flexibility and function observed at later stages. 

Significant long-term recovery may take up to 24 months, particularly in cases with 

preoperative stiffness or complications. 
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It is therefore vital that patients are carefully monitored and that their functionality is 

accurately tracked in order for their recovery progress to be properly monitored if 

suboptimal recovery is to be detected. Clinicians can only intervene in a timely manner 

if suboptimal function is detected early.  

2.5.2 Patient Follow ups and TKA Failures 

According to the British Orthopaedic Association (Swinkels et al., 2009), patient 

outcomes are typically assessed at 6-, 24-, and 52-weeks following surgery. However, 

follow-ups beyond 52 weeks are limited due to constraints in funding and limitations in 

staffing resources (Atallah et al., 2011). Current methods for monitoring outpatients 

after TKA are insufficient, as early and late causes of knee replacement failures are 

often not documented adequately. 

Early implant infections usually occur within 1 - 6 weeks post-surgery, yet patients are 

not consistently contacted for follow-up appointments during this period (Atallah et al., 

2011). The lack of regular outpatient check-ups can delay the identification and 

treatment of infections, potentially leading to revision surgery and its associated costs. 

Prescribing antibiotics and scheduling regular check-ups to monitor postoperative 

progress could also limit these complications (Atallah et al., 2011). 

Although uncommon, implants can fail years following TKA. Later implant failures 

typically develop 5 - 10 years post-surgery and often go undetected in a home setting. 

Clinical or radiological assessments are required to confirm these failures, which are 

not performed as frequently as required (Ramkumar et al., 2019). Continual monitoring 

of patients following surgery, even in the later stages of recovery may allow for such 

failures to be detected earlier and prevent further deterioration within the joint. 

2.5.3 Conclusions 

In order to optimise outcomes following TKA, a detailed assessment of knee function is 

required. The success of TKA is commonly evaluated using both quantifiable objective 

measures and patient perceived subjective measures. A successful surgery is one in 
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which meets both criteria. It is therefore important to consider both objective and 

subjective outcomes in equal weighting when evaluating the success of a surgery. 

These two measures closely relate, with strong correlations between patient 

satisfaction and good functional outcomes.  

Accurate and granular documentation of a patient’s preoperative function and 

postoperative recovery is required to improve surgery outcomes and may allow for 

timely intervention in cases where patients are not recovering as expected. This may 

enable the prevention of timely and costly revision surgeries and improve patient 

satisfaction following TKA. 

2.6 Motion Analysis as a Clinical Evaluation Tool 

It has been established that there is a need to accurately measure and quantify knee 

joint motion. The ability to analyse and track human motion, particularly in the context 

of rehabilitation post-TKA provides an accurate indication of the improvements in joint 

function following surgery and rehabilitation and thus is useful for determining the 

success of the procedure. 

There are two types of measuring systems conventionally used to assess 

biomechanics, analyse gait and accurately monitor recovery (Richards, 1999), both of 

which are sensitive enough to detect small changes in joint function.  

The first type uses visual recordings of body segment positions (image-based optical 

motion capture), while the second employs magnetic sensors that track segment 

position and orientation in space (sensor-based). Image-based devices are further 

divided into passive and active systems: passive systems use light-reflecting markers, 

while active systems use markers with built-in light sources (Richards, 1999). 

Image-based optical motion analysis involves capturing a sequence of images, 

typically using high-speed cameras, to generate kinematic data based on the observed 

motion. In most setups, the cameras are positioned around a defined capture volume, 

allowing the system to track the movement of an object within that space. 
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Optical motion analysis is becoming increasingly accepted as the ‘gold standard’ 

outcome measure for assessing human movement (Komnik et al., 2015; McClelland, 

Webster and Feller, 2007). It is frequently used to evaluate individuals’ functional ability 

to perform tasks of daily living, especially walking (Levinger et al., 2013). 

According to recent research, optical motion analysis is the most effective outcome 

measure for detecting changes in the function of the knee joint pre- and 

postoperatively, as other objective tools are often unable to provide accurate and 

sensitive enough results (Andriacchi and Alexander, 2000; Yunus et al., 2021). 

Manual methods of assessing knee function have been criticised for not accurately 

reflecting the knee’s dynamic motion (Myles et al., 2001; Yang et al., 2016). In contrast, 

gait analysis through motion capture technologies is specifically designed to evaluate 

and interpret movement patterns during daily activities, giving gait analysis a distinct 

advantage over outcome measures that only assess static conditions, providing greater 

content validity as a result.  

Typically, real-time marker locations placed on known anatomical landmarks are 

captured through motion capture systems (Cappozzo et al., 2005). Force plates 

determine the forces acting on the body, while muscle activity is assessed through 

electromyography. Anthropometric data are collected using measuring tapes or 

callipers which are then used to accurately process the data, using software models.  

Joint kinematics are determined using the positions of retro-reflective markers, which 

are detected in 3D space by infrared cameras in the laboratory (Cappozzo et al., 2005; 

Davis et al., 1991). Initially, the marker coordinates are expressed relative to the global 

(or laboratory) reference frame (Davis et al., 1991). Since these markers correspond to 

anatomical landmarks, their coordinates can be translated into an anatomical 

reference frame. This allows for the description of the instantaneous position and 

orientation of the underlying bones and joint centres to be described (Andersen et al., 

2012; Cappozzo et al., 2005; Cappozzo et al., 2005; Davis et al., 1991). 
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Transformation matrices are used to convert marker coordinates from the global 3D 

reference frame into an anatomical reference frame. Once translated, rigid body 

mechanic principles are applied to these coordinates to calculate kinematic outputs 

within the body’s reference frame. As a result, knee ROM can be determined by tracking 

the relative movements of markers placed on the proximal and distal segments of the 

joint and calculating the angles between their corresponding anatomical axes 

(Andersen et al., 2012; Brennan, Deluzio and Li, 2011; Davis et al., 1991; Page et al., 

2014). Typically, a marker set consisting of around 10 to 50 markers is required to 

create a full biomechanical model to accurately track human movement. 

Biomechanical models found within motion analysis software are commonly 

implemented to analyse specific gait events that are not directly acquired through 

camera tracking. In these models, body segments are represented as a kinematic chain 

of links, comprising of bones and soft tissues. Bones within each segment are treated 

as non-deformable rigid bodies, and the segments are connected by joints, with up to 

six degrees of freedom (DOF). The total DOF of the model determines its ability to 

accurately represent human movement (Andersen et al., 2012; Page et al., 2014).  

Motion capture systems enhance movement analysis, by providing a visual means to 

interpret motion from different perspectives in space (Figure 2-3). This approach allows 

for a comprehensive description of the movement in all planes of motion and allows for 

easy comparison of recovery progress. While both kinematic and kinetic data are either 

directly measured or estimated using mathematical models (Cappozzo et al., 2005), 

further enhancing movement analysis. 

Similarly, the body segment can be viewed from any perspective, enabling a 3D 

representation. This approach allows for a comprehensive description of the segment's 

movement in all planes of motion. 
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Figure 2-3. Vicon motion capture data processing pipeline. 

2.6.1 The Plug-in Gait Model 

The Plug-in gait (PIG) model is a widely accepted model (Molina-Rueda et al., 2021; 

Nair et al., 2010; Paterson et al., 2017) used in motion capture for gait analysis. It relies 

on data collected from motion capture systems, to estimate joint angles and other 

kinematic parameters of the lower limbs (Vaughan, Davis and O’Connor, 1992).  

The PIG model is Vicon’s (Vicon, Oxford, UK) implementation of the broader 

Conventional Gait Model (Baker et al., 2017; Leboeuf et al., 2023). The origins of which 

can be traced to the work of John Hagy in the laboratory established by David 

Sutherland (Sutherland and Hagy, 1972). Vicon developed their own version of the 

Conventional Gait Model developed as the PIG model for Workstation software. This 

resulted in the wide adoption of the model within clinical and academic gait analysis 

(Baker et al., 2017; Leboeuf et al., 2023). 

The PIG model uses reflective markers placed on specific anatomical landmarks to 

track movement (Vaughan, Davis and O’Connor, 1992). Figure 2-4 describes the 

anatomical locations used for marker placement.  
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Figure 2-4. Plug-in Gait Lower Limb model marker placement (Behrens et al., 2012). 

Sixteen retro-reflective markers are positioned in specific locations and define the 

segments of the lower limb (pelvis, thigh, shank, and foot) which are necessary for 

calculating the motion of joints during activities such as walking. 

Beyond joint angles, the PIG model is used to calculate important gait parameters, 

such as stride length, step length, cadence, and walking velocity (Vaughan, Davis and 

O’Connor, 1992). Additionally, the model provides insights into the ROM of joints during 

the gait cycle. This model is a valuable tool for assessing gait performance, diagnosing 

abnormalities, and monitoring the effects of therapeutic interventions. 

2.6.2 Movement Analysis Laboratories and their Limitations  

Though motion analysis is increasingly being used by researchers due to its superior 

accuracy compared to traditional video analysis systems and manual techniques 

(Cuesta-Vargas, Galan-Mercant and Williams, 2010; Luinge and Veltink, 2005; Picerno, 



 

80 

 

Cereatti and Cappozzo, 2008). They are not commonly implemented as a clinical 

evaluation tool due to various restraints and limitations.  

Although individual retro-reflective markers are crucial for most 3D biomechanical 

motion capture gait assessments, they have been criticised for being prone to 

imprecise placement (Cappozzo et al., 2005), inconsistent position (Windolf et al., 

2008), and being time-consuming to apply (Akbarshahi et al., 2010; Andriacchi and 

Alexander, 2000; Fantozzi et al., 2003).  

With further sources of error which cannot be controlled for by the use of individual 

markers known as ‘soft tissue artefact’ (Akbarshahi et al., 2010; Cappozzo et al., 2005; 

Page et al., 2014; Solav et al., 2014). Neglecting the presence of soft tissue deformation 

can introduce errors, reducing the accuracy of the results (Peters et al., 2010). The 

effects of soft tissue artefacts can impact movement dynamics, specifically during 

activities involving high acceleration and high degrees of flexion (Hatze, 2002). This 

source of error is caused by the movement of markers in relation to the bone, because 

of the underlying soft tissue. The markers are attached to the skin, yet movement of the 

limb causes the tissue surrounding the bone to move relative to the joint, which might 

cause the markers to move to a position where it no longer represents the precise 

location of the bony anatomical landmark it was positioned on before. 

It is therefore important to ensure precise marker placement when carrying out 

biomechanical assessments and consider these sources of error. As placement errors 

directly translate to errors in both kinematic and kinetic data (Andriacchi and 

Alexander, 2000).  

Moreover, using individual markers comes with its own set of challenges. There is a risk 

that markers may fall off or be occluded during data capture which results in missing or 

gaps within the data. Occluded data which is caused by markers being blocked out of 

the cameras field of view, prevents data reconstruction which is necessary to process 

the data for gait analysis. In these cases, where the number of frames affected by 

marker occlusions is small, gap filling techniques may be used. However, they should 

be implemented with caution as they are not always successful or accurate. 
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Trials where markers are missing are often unusable as the software used to determine 

the kinematics and kinetics cannot always compensate for this missing information. 

This loss of data can severely impact the quality of studies. 

As described previously, a number of limitations exist in the implementation of motion 

capture systems, both practically and technically. Motion capture systems are 

technically complex to operate, which results in skilled operators required to work the 

systems. Due to their associated complexities these systems are therefore time 

consuming to use (Jebeli et al., 2017; Yunus et al., 2021) and have high cost associated 

with their utilisation. Most motion capture systems are also large in size and are not 

easily portable which all prevent the easy uptake of this technology into clinical 

environments (Bartlett, 2014). 

Before data collection can begin, cameras need to be calibrated, and markers need to 

be placed accurately on the individual. After data collection, the data then needs to be 

processed using specialised software, a task that can take several hours, before 

interpreting the resulting complex graphs (Yunus et al., 2021). These factors create a 

high barrier for clinical researchers who are not previously trained in motion capture, 

deterring many from using it. 

Therefore, as a result of the aforementioned limitations and challenges with 

implementing such systems into clinical settings, it is not surprising that movement 

analysis laboratories are not commonly found within healthcare environments. This 

technology is not easily accessible to those who could benefit the most from it, 

therefore, alternatives are required. 

2.6.3 Gait Analysis to Assess Biomechanics 

Motion analysis has the power to be an effective tool to monitor rehabilitation progress 

in patients following TKA, examining biomechanics during activities that mimic daily 

living (McClelland et al., 2017; Smith et al., 2006; Yoshida et al., 2008), and for tracking 

functional improvements. 
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In clinical practice, analysing gait provides insights into the extent at which a patient's 

walking pattern is influenced by an underlying condition (Chambers, Henry and 

Sutherland, 2002), serving as an assessment rather than a diagnostic tool. By carrying 

out functional assessments in a movement analysis laboratory a variety of factors can 

be identified, the most routine assessments involve identifying gait abnormalities by 

reviewing the walking patterns of an individual. 

The clinician specifically looks for asymmetries, such as limping or uneven weight 

distributions. This provides information regarding dysfunctions in locomotion or other 

pathologies such as KOA and allows for correct treatment options to be prescribed 

(Chambers, Henry and Sutherland, 2002) or further tailored.  

Gait analysis is useful in providing functional assessments of patients going into the 

operating theatre and can be used to assess patient improvements by evaluating their 

recovery against their own preoperative benchmarks.  

However, pathological gait can only be identified if the clinician has an understanding 

into a non-pathological walking pattern (Akbarshahi et al., 2010; Benedetti et al., 2003; 

Fantozzi et al., 2003; Schiefer et al., 2011; Whittle, 1996). The following section will 

discuss a normal gait cycle, discussing both healthy and affected knee joint motion and 

which parameters of gait analysis are commonly used to assess individuals with 

abnormalities.  

2.6.3.1 The Healthy Gait Cycle 

Gait refers to any movement involving alternating periods of weight-bearing and non-

weight-bearing on the limbs (Mayich et al., 2014) but commonly refers to walking. The 

complex coordinated efforts of the musculoskeletal system, central nervous system, 

and peripheral nerves ensure correct motion of the body (Kharb et al., 2011; Whittle, 

1996). A healthy gait, which is essential for daily life, occurs when these systems work 

together in harmony (Mayich et al., 2014). 
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The normal gait cycle can be divided into two phases known as ‘stance’ and ‘swing’. The 

stance phase makes up approximately 60% - 62% of the gait cycle and equates to the 

duration of time that the foot is in contact with the ground. While the swing phase, 

constitutes the remaining 38% - 40% (Kharb et al., 2011). 

During the swing phase the limb is propelled forwards, in front of the stance limb to 

allow forward progression. The stance phase, being the weight-bearing section of the 

cycle, often reveals the most inefficiencies (Bercovy, 1991). To further understand the 

gait cycle, the stance and swing phases can be broken down into distinct periods 

(Figure 2-5). 

 

 

 

 

 

 

Figure 2-5. Phases of the gait cycle (Neumann, 2010). 

 

After initial contact, the stance phase is typically divided into three or four sub-phases: 

loading response, mid-stance, terminal stance, and, less commonly, pre-swing. The 

swing phase, which is the non-weight-bearing phase, is divided into three sub-phases: 

initial swing, mid-swing, and terminal swing. 

In individuals with a normal gait, both limbs go through the same events, periods, and 

phases, but the movements occur 180° out of phase. Typically, during foot strike, the 

heel is the first part of the foot to touch the ground, and during foot-off, the toe is the 
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last part to lift off. However, in cases of abnormal gait, this pattern can change, and the 

first and last points of contact with the ground are called "first contact" and "final 

contact." 

In addition to the phases of gait, a variety of spaciotemporal parameters may be used 

to describe healthy gait patterns (Robinson and Smidt, 1981). These may include 

cadence (Slaght et al., 2017; Tudor-Locke et al., 2020), walking speed (Murtagh et al., 

2021), stride length (Levine, 2012) and step length and time. These indicators may all 

be used to provide an overall description of health. 

Although the gait cycle remains relatively consistent in normal walking, a number of 

variables including age, sex, and height can affect gait parameters. It is important to 

recognise that even among healthy individuals with normal gait patterns, 

spaciotemporal, kinematic, and kinetic measurements can vary, as gait is naturally a 

variable and individual specific activity. 

However, the values observed in people with normal gait typically fall within a range 

considered non-pathological. This range accounts for natural differences between 

individuals, allowing for variation while still classifying the gait as normal. Furthermore, 

this normal range is also commonly used as a benchmark to evaluate abnormal gait 

patterns against. 

2.6.3.2 Healthy Knee Joint Motion 

Lower limb angles, specifically the knee is of particular interest when analysing gait and 

joint health. Knee angle is defined as the angle between the femur and the tibia, 

enabling flexion and extension of the lower leg in the sagittal plane, and limited motion 

in the other planes.  

Through the progression of a single gait cycle each joint goes through specific trends 

(Fukuchi et al., 2018). The knee characteristically displays two flexion and extension 

peaks during walking, Figure 2-6, with the first flexion peak occurring at around 18% of 

the gait cycle at the beginning of mid-stance, then the knee tends towards full 



 

85 

 

extension at the start of late stance, and flexes again to a peak of about 50° - 60° during 

initial swing (Fukuchi et al., 2018). Similar trends are observed during stair navigation; 

however, the events occur at different stages of the gait cycle, Figure 2-7. 

Understanding healthy gait patterns and ranges in measures is essential for 

appropriately diagnosing pathological gait.  

 

Figure 2-6. Knee joint angles during a complete gait cycle of a healthy adult (Fukuchi et al., 2018). 

 

As established previously, motion in both the frontal and transverse planes function to 

aid in stability and maintain gait efficiency. The lower limb can be conceptualised as an 

interlinked multi-segmental system, where a change in one area causes a change in the 

joints above and below, ultimately affecting the lower limb biomechanics. 

 

Figure 2-7 Healthy Knee flexion angles during stair navigation and walking (Perry and Burnfield, 2010). 
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This literature review has emphasised the variability in ROM of a healthy knee joint 

depending on the type of activity or movement performed (Figure 2-7). Though a greater 

ROM of 90° - 100° has been suggested as necessary to complete everyday tasks such 

as stair navigation, getting in and out of a bathtub or car and for sitting (Rowe et al., 

2000), individuals with disease and associated comorbidities often experience 

restricted ranges and these are further reflected in their gait patterns. 

2.6.3.3 Affected Joint Motion 

Diseases such as KOA affect not only the joint itself, but also many gait parameters. 

The greater the severity of the disease, the more parameters are affected. Symptoms 

linked to KOA, such as knee pain, stiffness of the joint and reduced ROM can all result 

in significant compensations which cause adaptations within the gait cycle (Mayich et 

al., 2014). When a patient who is affected by OA and requires a TKA is compared 

against a healthy control, OA patients typically demonstrate altered knee kinematics, 

often exhibiting reduced knee ROM, Figure 2-8, reduced peak knee flexion angles 

during swing phase, which limits adequate toe clearance and compromises walking 

efficiency. Normal peak flexion is around 60°, yet TKA patients often achieve only 45 –

55° of knee flexion (Mizner et al., 2005; McClelland et al., 2007), with a flatter peak 

flexion displayed in the stance phase compared to healthy adult populations. This 

limitation is often compounded by quadriceps weakness and joint stiffness. 

Kinetic studies reveal a reduction in external knee flexion moments during stance, 

reflecting impaired extensor control (Benedetti et al., 2003). Spatiotemporal 

abnormalities are also prevalent, with TKA patients showing slower walking speeds, 

reduced cadence, shorter stride lengths, longer double-limb support times, and 

increased step width compared to age-matched healthy adults (Heiden et al., 2009; 

McClelland et al., 2007). These findings suggest not only reduced physical capacity, but 

also compensatory mechanisms aimed at improving balance and stability. 
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Figure 2-8. Gait cycle of an affected OA knee joint (solid line) and healthy joint (dashed line) during walking 
(Suzuki et al., 2023). 

While other activities such as stair navigation places significantly higher demands on 

the knee joint, often revealing functional limitations that are not apparent during level 

walking. Research shows that patients post-TKA frequently adopt a "step-to" strategy, 

particularly during stair descent, rather than a normal "step-over-step" pattern 

(McClelland et al., 2011). This modification is often due to restricted knee flexion, 

which in healthy adults typically exceeds 80 – 90° during stair descent but may remain 

below 75° post-TKA (Mills et al., 2013). 

Kinetic analysis reveals that TKA patients exhibit reduced knee extensor moments, 

particularly during the eccentric phase of stair descent, suggesting ongoing quadriceps 

inhibition and reduced neuromuscular control. Proprioceptive deficits following joint 

replacement may further impair stair performance, increasing reliance on handrails 

and the contralateral limb for support (McClelland et al., 2011; Mills et al., 2013). 
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Whereas the sit to stand activity, which is critical for maintaining independence is 

particularly sensitive to post-TKA neuromuscular deficits. Studies using motion capture 

and force platforms have shown that individuals post-TKA exhibit reduced peak ground 

reaction forces on the operated limb and longer transition times during the sit to stand 

movement (Yoshida et al., 2012; Ganea et al., 2010). To compensate for impaired knee 

extensor strength, patients often increase trunk flexion to generate momentum or shift 

weight toward the non-operated limb. 

Furthermore, angular velocity during knee extension in the rising phase is significantly 

reduced in TKA patients, indicative of slowed neuromuscular responses and impaired 

power generation. These compensations may persist even after initial recovery and 

have been linked to long-term functional limitations and asymmetrical joint loading 

(Yoshida et al., 2013). 

Understanding the thresholds of healthy gait measures and patterns is essential not 

only for diagnosing abnormal gait but also for designing effective, individualised 

treatment plans. Monitoring gait over time allows clinicians to benchmark 

improvements against normative healthy population values, providing a clear and 

objective framework for assessing rehabilitation progress.  

In the context of TKA patients and affected joint motion, the persistence of movement 

abnormalities highlights the limitations of traditional rehabilitation in addressing the 

specific biomechanical and neuromuscular deficits associated with functional tasks 

such as walking, stair climbing, and sit to stand transitions. As a result, there is a 

growing consensus in the literature advocating for the integration of advanced, targeted 

and patient specific rehabilitation approaches (Bade and Stevens-Lapsley, 2011). 

These include progressive resistance training, neuromuscular electrical stimulation, 

and gait retraining strategies aimed at restoring more natural and symmetrical 

movement patterns (Petterson et al., 2008; Petterson et al., 2009; Bade and Stevens-

Lapsley, 2011). Furthermore, the use of objective movement analysis tools such as 

wearable technologies may enhance the detection and monitoring of subtle gait 

deviations that may not be captured through self-reported measures or visual 
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observation, thereby supporting more data-driven and responsive rehabilitation 

interventions. 

2.6.4 Motion Analysis Through New Technologies 

Due to the inherent limitations and associated costs linked with traditional motion 

capture laboratories other solutions to carry out gait assessments accurately, cost 

effectively, user friendly and more portably are required.  

The employment of wearable devices has been brought forward (Beyond Optical 

Measurement | Vicon, n.d.). Wearable sensors offer benefits such as continuous 

motion data collection, which helps draw a clearer picture of patient recovery and may 

be used to flag cases where patients are not recovering optimally. 

Moreover, through the active use of wearable technology, rehabilitation compliance 

may be improved by prompting patients to complete protocols through remote 

monitoring mechanisms, which may aid patient motivation. 

Therefore, wearable technologies may offer the potential to perform gait analysis more 

accessibly, with the same accuracy as motion capture. However, has the ability to 

capture data across the entire recovery period at a higher granularity than previously 

available. 

2.6.5 Conclusions 

Currently, 3D gait analysis is the most effective method for collecting kinematic and 

kinetic data to assess patient functional outcomes. Gait analysis in a clinical 

environment has the potential to accurately diagnose gait pathologies and track 

recovery progress following surgery such as TKA. Although gait analysis offers 

significant advantages, such as being non-invasive, accurate, and reliable, its high cost 

and complexity have limited its routine use in clinical settings (Prajapati et al., 2021; 

Sutherland, 2002). Hence wearable technologies have emerged as a promising solution 
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in both research and clinical settings (Carse et al., 2013; Prajapati et al., 2021; 

Robinson and Smidt, 1981). 

2.7 Why Conventions Need to Change 

This thesis has outlined the importance of rehabilitation programs in achieving optimal 

postoperative outcomes and avoiding revision surgery; however, their effectiveness and 

delivery varies widely (Alrawashdeh et al., 2021; Artz et al., 2015; Bade and Stevens-

Lapsley, 2011; Bandholm, Wainwright, and Kehlet, 2018; Konnyu, et al., 2023; Sattler et 

al., 2020). 

As hospital stays shorten and both inpatient and outpatient rehabilitation options 

become increasingly constrained by high costs and limited resources (Hamilton et al., 

2020; Smith et al., 2020), there is a growing need for alternative rehabilitation 

approaches (Vermeire et al., 2001). 

Current rehabilitation models face limitations such as restricted session frequency, 

delayed rehabilitation progression, and a lack of personalisation as a result of 

generalised protocols, largely as a direct result of these constraints. Outpatient 

physiotherapy for TKA costs the NHS approximately £2,182 per patient annually 

(Capelas et al., 2022). The healthcare system's stressed resources, compounded by 

reduced hospital stays highlights the need for alternative, more efficient postoperative 

care and rehabilitation strategies (Mahomed et al., 2008). 

A significant concern to healthcare practitioners is the low patient compliance with 

prescribed rehabilitation. Research reports that up to 76% of patients do not adhere to 

their rehabilitation regimens, which results in reduced postoperative outcomes 

(Bahadori et al., 2018). 

Monitoring progress is essential, as the effectiveness of rehabilitation is contingent 

upon patient adherence to prescribed protocols. Non-compliance can lead to 

increased costs due to avoidable morbidity, hospital admissions, prolonged stays, and 

potentially unnecessary revision surgeries (Campbell et al., 2001). Patients may also 
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experience poor functional outcomes and persistent pain due to inadequate 

adherence (Bakaa et al., 2021). Given that 5 - 20% of patients report chronic pain 

postoperatively (Gan, 2017; Wylde et al., 2017) improving rehabilitation uptake remains 

a significant challenge. 

Currently, rehabilitation after TKA primarily depends on outpatient therapy and self-

motivated exercise routines (Chen, Li and Lin, 2016), rather than extended hospital 

stays and increased clinician contact. 

Home-based, self-directed rehabilitation has emerged as a cost-effective alternative, 

aimed at improving functional outcomes and early detection of joint abnormalities. 

However, the success of home-based rehabilitation is highly dependent on patient 

compliance (Chen, Li and Lin, 2016) and motivation. Literature suggests that 

adherence to unsupervised home rehabilitation can be enhanced by making exercise 

programs more engaging and interactive, and by providing feedback (Campbell et al., 

2001). 

Patients generally comply more closely to prescribed rehabilitation programmes when 

they feel supported by healthcare providers or peers (Chughtai et al., 2019; Li et al., 

2017). Additionally, visual and dynamic feedback of patient improvement contributes 

to a more enjoyable rehabilitation experience, helping to motivate patients to complete 

their necessary rehabilitation exercises.  

2.7.1 Limitations of Current Rehabilitation Modes 

Rehabilitation following TKA presents several challenges due to both patient-related 

and systemic factors. Patient-related limitations include non-compliance, health 

issues such as pain, and insufficient education (Dorr et al., 2007). Systemic constraints 

involve high costs associated with ongoing care and difficulties monitoring post-

discharge progress, labour demands, resource shortages, and gaps in knowledge 

(Buhagiar et al., 2019; Kornuijt et al., 2019). 
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One significant challenge that has been highlighted throughout literature is the 

variability in rehabilitation techniques and protocols across different healthcare 

practices. The optimal rehabilitation strategy for post-TKA recovery is not yet well-

defined and may vary for each patient (Hamilton et al., 2020). The absence of 

standardised guidelines leads to inconsistent exercise intensities, durations, and 

techniques, complicating the determination of effective protocols and potentially 

affecting patient outcomes (Bakaa et al., 2021). 

In addition to the variability in rehabilitation methods, there has been no correlations 

between the length of hospital stay and functional outcome scores (Dorr et al., 2007), 

although minimally invasive surgeries are linked to shorter hospital stays, while more 

traditional methods are associated with longer hospital stays (Dorr et al., 2007; Ogonda 

et al., 2005). 

In the USA, postoperative rehabilitation programs typically involve extended inpatient 

care, whereas as described previously, in the UK, inpatient rehabilitation is brief, often 

lasting only 3 - 5 days, with some patients being discharged on the same day as their 

procedure.  

A meta-analysis conducted by Hamilton et al. (2020) consisting of a multicentre, 

parallel-group randomised controlled trial across 13 secondary and tertiary care 

centres in the UK, with a total of 334 participants. Their study aimed to evaluate 

whether a structured course of outpatient physiotherapy offered superior outcomes 

compared to a single physiotherapy review followed by at home exercise regimens in 

patients identified as at risk of poor outcomes following TKA (defined as an Oxford knee 

joint score of ≤ 26). The physiotherapy led participants received 18 sessions of 

rehabilitation over six weeks which incorporated progressive, goal-oriented, and 

functional rehabilitation, with weekly modifications based on individual progress. Each 

session involved one-on-one contact with a physiotherapist, focusing on exercises to 

improve strength, ROM and functional mobility. While the home-based rehabilitation 

group were provided with a structured home exercise program, including written 

instructions and guidance on exercises to perform independently. No further 
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supervised physiotherapy sessions were scheduled, following their initial review 

session.  

No significant differences were observed between the two groups in terms of pain, 

function, satisfaction, or performance-based functional tests at any time point. The 

study concluded that, among patients identified as at risk of poor outcomes after TKA, 

a structured course of outpatient physiotherapy did not result in clinically meaningful 

improvements compared to a single physiotherapy review followed by a home exercise 

program. These findings suggest that intensive supervised rehabilitation may not be 

necessary for all patients, and resources could be better allocated by targeting 

interventions to those who would benefit most (Hamilton et al., 2020). 

Similarly, a study comparing home-based and outpatient rehabilitation found no 

significant differences in patient outcomes, depending on the location of where 

rehabilitation takes place (Han et al., 2015).  

Another study (Rajan et al., 2004) sought to evaluate traditional outpatient 

rehabilitation with unmonitored home-based rehabilitation exercise programs. The 

study compared 120 patients that were divided into two groups, one receiving standard 

postoperative care with a home-based rehabilitation exercise program and another 

receiving additional outpatient physiotherapy sessions. All participants were provided 

with a home exercise program upon discharge. The intervention group received 

additional outpatient physiotherapy sessions, typically ranging from 4 to 6 sessions, 

focusing on functional exercises and mobility training. Whereas the control group did 

not receive any organised outpatient physiotherapy beyond the initial home-based 

rehabilitation exercise instructions. This study (Rajan et al., 2004) found no significant 

differences in knee ROM measured 3, 6 and 12 months postoperatively between the 

two rehabilitation approaches. Further supporting the notion that a well-structured 

inpatient physiotherapy programme, coupled with clear home exercise instructions, 

may suffice for many patients recovering from TKA. Emphasising the importance of 

individualised patient assessment to determine the need for additional outpatient 

physiotherapy, potentially leading to more efficient use of healthcare resources without 

compromising patient outcomes. 
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While a randomised trial (Mahomed et al., 2008) aiming to compare the effectiveness 

and cost-efficiency of inpatient rehabilitation versus home-based rehabilitation 

following primary TKA also reported no significant differences in pain levels, physical 

function and patient satisfaction at 3 months after surgery when comparing inpatient 

rehabilitation and those completing home-based rehabilitation. Moreover, similar 

numbers of postoperative complications up to twelve months postoperatively in both 

groups were reported (Mahomed et al., 2008). A total of 234 patients were randomised 

into two groups: one receiving inpatient rehabilitation and the other receiving home-

based rehabilitation. All participants followed standardised care pathways and were 

evaluated using validated outcome measures, including patient satisfaction surveys. 

Assessments were conducted preoperatively and at three and twelve months 

postoperatively. Mahomed et al. (2008) recommend home-based rehabilitation 

following joint replacement, highlighting it as a more cost-effective approach 

compared to inpatient rehabilitation, especially in healthcare systems aiming to 

optimise resource utilisation without compromising patient outcomes. 

Despite these findings, it remains common practice for patients to undergo 6 to 8 

weeks of hospital-based rehabilitation following TKA (Han et al., 2015), with the 

specific exercises prescribed varying depending on healthcare therapist, location and 

patient. However, this approach to rehabilitation is under scrutiny and whether this 

length of treatment can feasibly be provided is debated.  

2.7.1.1 Improving Postoperative Outcomes Through Rehabilitation Delivery  

Rehabilitation faces several challenges. Yet it is well-established that adherence to 

prescribed rehabilitation programs significantly enhances patient recovery (Glitsch et 

al., 2022), leading to improved outcomes, including faster recovery, reduced overall 

operational costs (Papalia et al., 2013) and higher patient satisfaction scores (Bakaa et 

al., 2021; Campbell et al., 2001; Chakrabarti, 2014; Frost et al., 2017; Petursdottir, 

Arnadottir and Halldorsdottir, 2010; Van Gool et al., 2005).  

Remaining on top of patient improvements and recovery is highly laborious and cost 

intensive and thus developing a remote method to maintain patient assessment, 
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surveillance and rehabilitation is of benefit to all stakeholders (Buhagiar et al., 2017; 

Cooper, Bhuskute and Walsh, 2022; Hamilton, 2015).  

A highly involved knee rehabilitation program allows patients to re-establish normal 

functionality of the knee joint, enabling full ROM and better recovery outcomes (Naylor 

et al., 2012). This is predominantly achieved by continuous surveillance and data 

collection of the postoperative knee. The necessity for constant data collection 

enables the therapist to control and adapt the recovery conditions as required by the 

individual patient, allowing for positive, progressive rehabilitation outcomes in line with 

patient improvements. 

2.7.2 Conclusions 

Emerging technologies are increasingly playing a crucial role in supporting remote 

rehabilitation, enhancing patient rehabilitation compliance and outcomes. Innovations 

such as wearable devices, mobile apps, and telehealth platforms enable continuous 

monitoring, real-time feedback, and offer personalised guidance, making it easier for 

patients to follow rehabilitation programmes at home. By improving accessibility and 

engagement, these technologies aim to increase adherence rates and enhance overall 

rehabilitation outcomes, contributing to the success of TKA. 

2.8 Wearable Technologies Offering a Solution 

Implementing remote monitoring for home-based therapy offers significant benefits to 

the public healthcare sector. This approach aims to assess patients' physical 

functionality and mobility after TKA, both objectively and qualitatively (Kayaalp et al., 

2019) by reducing the reliance on in-person resources and facilitating the early 

detection of abnormalities during recovery. 

Wearable devices, used as a tool in telerehabilitation, may offer continuous patient 

monitoring and regular progress reviews, including exercise intensity, frequency, and 

overall satisfaction. This dynamic feedback allows rehabilitation protocols to be 
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updated in line with recovery improvements, enhancing the effectiveness of the 

rehabilitation process (Kayaalp et al., 2019). 

Moreover, such devices have the potential to replace bulky and expensive motion 

capture laboratories traditionally used for gait analysis and assessment. These 

technologies offer dual functionality by enabling rehabilitation monitoring and tracking 

patient compliance, while also providing continuous data for gait and movement 

analysis throughout the patient’s recovery journey. 

2.8.1 Wearable Technologies: An Introduction to IMUs 

Inertial Measurement Units (IMUs) are commonly used wearable devices for assessing 

human biomechanics (Fong and Chan, 2010; Parrington et al., 2021). These systems 

typically consist of three components: a gyroscope, an accelerometer, and a 

magnetometer (Beravs et al., 2011). IMUs are valued for their affordability, lightweight 

design, versatility, and ease of use. They also facilitate motion analysis out with a 

movement analysis laboratory enabling more natural and realistic movement patterns 

to be analysed.  

2.8.1.1 How Do IMUs Work? 

To capture motion in three dimensions, accelerometers and gyroscopes are typically 

configured in triads and mounted perpendicularly to one another on a segment. Adding 

magnetometers can enhance the accuracy of dynamic orientation calculations, 

particularly for determining heading or yaw (Seel, Raisch and Schauer, 2014).  

Gyroscopes measure angular velocity, which allows the calculation of changes in 

orientation through integration over time. However, gyroscopes are prone to drift errors 

due to cumulative integration inaccuracies. Accelerometers measure linear 

acceleration, including the effects of gravity, which can be used to estimate pitch and 

roll orientation but are unable to measure rotational movements directly. 

Magnetometers detect the Earth's magnetic field, aiding in determining the orientation 

relative to magnetic north and correcting gyroscope drift. Together, these sensors 



 

97 

 

combine data using sensor fusion algorithms, such as Kalman filters or 

complementary filters, to provide accurate and reliable measurements of orientation. 

Studies have demonstrated good accuracy of IMU-based systems when compared to 

gold standard motion capture systems, though reliability varies depending on the task 

and the precise positioning of the devices (Al-Amri et al., 2018; Beravs et al., 2011; Fong 

and Chan, 2010).  

Various algorithms can be employed to determining joint angles using IMUs (Seel, 

Raisch and Schauer, 2014). Quaternion-based orientation estimation algorithms, such 

as the Madgwick filter (Madgwick, 2010), have proven effective, with numerous studies 

confirming their utility (Madgwick, 2010, 2019; Narváez, Árbito and Proaño, 2018; 

Tadano, Takeda and Miyagawa, 2013). Additionally, Euclidean methods have 

demonstrated high accuracy in similar applications (Nwaizu et al., 2016). 

More robust algorithms utilising advanced sensor fusion techniques can further 

improve accuracy in IMU kinematic measurement. For example, an algorithm proposed 

by Seel and colleagues (Seel, Raisch and Schauer, 2014) reduces the dependence on 

precise device positioning, minimising the human component of error (Laidig, Schauer 

and Seel, 2017; Seel, Raisch and Schauer, 2014).  

2.8.1.2 Challenges of Using IMUs in Biomechanical Settings 

Employing IMUs to monitor gait presents various technical and implementation 

challenges (Antunes et al., 2021; Tunca et al., 2017). These challenges include 

hardware and software limitations, as well as broader issues related to integration 

within healthcare networks and data sharing protocols. 

2.8.1.3 Technical Concerns and Mitigation Measures 

Despite their advantages, several practical concerns hinder the uptake of IMU devices 

as summarised in Table 2-2. The most prominent issue relates to the calibration or leg 
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registration of these sensors, which is critical for accurate and reliable collection of 

joint kinematic data (Antunes et al., 2021). 

Leg registration ensures that the sensors are properly aligned with a patient’s leg 

(Ajdaroski et al., 2020; McGrath, Fineman and Stirling, 2018). Misalignment with the 

leg’s anatomical axis introduces bias into joint angle measurements, compromising 

data accuracy (Ajdaroski et al., 2020; McGrath, Fineman and Stirling, 2018). Therefore, 

incorporating robust calibration processes is essential to ensure a true representation 

of patient motion. 

IMUs are also susceptible to errors, particularly drift in accelerometers and gyroscopes 

(Pasquet et al., 2016; Tao et al., 2012; Tunca et al., 2017). Over time, small 

measurement inaccuracies accumulate, resulting in significant deviations from the 

actual movement. This issue is especially problematic in long-duration gait analyses. 

To mitigate drift, filtering and calibration algorithms are commonly employed (Chiang et 

al., 2017). 

Another common challenge is noise during dynamic movements, which necessitates 

the use of low-pass filters to eliminate high-frequency components from the data 

(Tunca et al., 2017). However, distinguishing between noise and meaningful data, 

particularly in individuals with mobility disorders, remains a significant challenge. 

Selecting appropriate filtering techniques is therefore critical for accurate data 

interpretation (Zhou et al., 2020). 
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Table 2-2. Challenges associated with IMU devices (Mohd et al., 2018; Sabatini, 2006; Silva, Paiva and Carvalho, 2021; Tunca et al., 2017, Wittmann, Lambercy, and Gassert, 
2019). 

Component Challenge Description 

Magnetometer 

Magnetic distortion 
Magnetometers are highly sensitive to magnetic interference 
from nearby objects, electronic devices, or environmental 
factors. This can lead to inaccurate readings. 

Drift 
Over time, magnetometers can experience drift, where the 
reference magnetic north shifts, affecting long-term accuracy. 

Dependency on 

Earth’s magnetic field 

They rely on the Earth's magnetic field, which can be 
inconsistent indoors or in environments with significant 
magnetic interference. 

Accelerometer 

Sensitivity to external accelerations 

Accelerometers measure both gravitational and linear 
accelerations. External forces (e.g., sudden movements, 
vibrations) can cause noisy data, making it difficult to isolate 
the gravitational component needed for accurate angle 
calculations. 

Rapid changes 

in acceleration 

They are excellent at detecting orientation when the system is 
stationary but less accurate during dynamic conditions due to 
the influence of linear accelerations. 

Noise 
High-frequency noise can affect the precision of the 
measurements, requiring filtering techniques to smooth out 
the data. 
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Gyroscope 

 

Drifting over time 
Gyroscopes are prone to integration drift, where small errors 
accumulate over time, leading to significant inaccuracies in 
angle measurements if used alone. 

Bias instability 
Changes in temperature and other environmental factors can 
affect the bias of the gyroscope, leading to further 
inaccuracies. 

Noise 
Gyroscopes also suffer from noise, which can complicate 
accurate angle measurements. 
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Although IMU devices face several challenges, solutions exist to address these 

difficulties. For instance, combining gyroscopes and accelerometers leverages the 

short-term precision of gyroscopes and the long-term stability of accelerometers. This 

integration mitigates the individual shortcomings of each sensor, providing a more 

accurate, stable and reliable representation of joint angles in motion tracking (Seel, 

Raisch and Schauer, 2014). 

2.8.1.4 Implementation Barriers within the Healthcare System  

The use of wearable technologies presents several technical challenges, as well as 

additional difficulties related to their implementation within healthcare facilities. These 

issues arise from both the structure of the healthcare system and the limitations of 

current solutions (Lewy, 2014).  

The current model of care is fragmented, with different providers (hospitals, GPs, 

physiotherapists, etc.) accessing isolated data sets. This lack of data integration 

prevents a comprehensive view of patient health and complicates the use of wearable 

devices, which generate large volumes of data that cannot be easily shared across 

different systems and to various stakeholders (Lewy, 2014). 

Currently, wearable technologies remain largely in the pilot phase, and there is still 

uncertainty about how best to incorporate them into healthcare workflows (Raghupathi 

and Raghupathi, 2014). Successful adoption requires the validation of data generated 

by these devices, along with the development of tools that are user-friendly and that 

seamlessly integrate into existing systems. Furthermore, managing the significant 

volumes of data produced by wearables, while maintaining security and privacy, is 

critical. 

For wearable technologies to be fully incorporated into healthcare, changes in care 

delivery models, data-sharing processes, and collaboration between providers and 

patients are necessary. Addressing challenges related to data standardisation, privacy, 

security, and workflow integration is essential to ensure that wearables enhance 

patient care and achieve widespread adoption. 
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2.8.1.5 Wired versus Wireless IMU Systems 

As IMU devices are emerging within healthcare and research settings, debates 

regarding the accuracy, validity and reliability of their measurements are prevalent (Cho 

et al., 2018). While wireless technologies offer a number of advantages such as 

unrestricted mobility compared to wired technologies, wired IMU systems are often 

considered more accurate and reliable for biomechanical assessments (Franček et al., 

2023). This is particularly relevant in controlled environments where data accuracy, 

reliability, and synchronisation are paramount (Boutaayamou et al., 2025; Cutti et al., 

2008; Franček et al., 2023; Hester et al., 2018; Lebel et al., 2017).  

Wireless IMU systems are commonly associated with wireless data transmission, 

which can result in challenges such as latency, packet loss, synchronisation difficulties 

and signal interference (Calvo et al., 2020; Franček et al., 2023; Hester et al., 2018).  

Previous research (Boutaayamou et al., 2025; Cutti et al., 2008; Lebel et al., 2017) 

comparing the accuracy of wired systems have found measurements captured from 

wired devices to demonstrate considerable accuracy, highly correlated angle data and 

absolute magnitude revealing likeness to the opto-electronic gold standard, Vicon 

motion capture system (Cutti et al., 2008). While other researchers (Lebel et al., 2017) 

revealed that wired IMU devices present accurate angle measurements, however, the 

accuracy varies depending on the activity performed.  

The inclusion of wired devices over wireless sensors is further emphasised due to their 

ability to ensure continuous data flow to acquisition systems, minimise transmission 

delays and loss, and provide high repeatability, as well as stable power and signal 

transmission (Calvo et al., 2020). This direct connection ensures high-fidelity data 

capture (Boutaayamou et al., 2025; Cutti et al., 2008; Franček et al., 2023; Hester et al., 

2018; Lebel et al., 2017). Moreover, in multi-sensor setups, time synchronisation is a 

critical factor. Wired connections enable precise timing between devices, ensuring 

coherent and synchronised data streams. 
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While wireless IMU systems offer greater freedom of movement and ease of setup, 

wired IMUs provide superior accuracy and reliability in measuring joint angles, making 

them preferable in controlled environments where data precision is important. 

2.8.2 MotionSense™ a Commercial Sensor to Monitor TKA Recovery 

EnMovi Ltd, a subsidiary of Stryker Ltd is an enterprise which focuses on wearable 

sensor technology and patient data capture through an application, MotionSense™. 

MotionSense™ is a downloadable mobile application which invites patients to engage 

with their rehabilitation programs and monitor their recovery progress. 

Following TKA surgery, two wearable IMU sensors are attached to the lower limb. One 

sensor is positioned above, and one sensor is positioned below the knee joint, toward 

the lateral side of the leg. These sensors continuously communicate with the mobile 

application via Bluetooth, collecting data throughout the duration the patient wears the 

devices.  

These sensors sample data at 50Hz, which is processed through a Madgwick filter to 

calculate knee angle. This calculation is based on measuring the angle between the 

femur and the tibia, as illustrated in Figure 2-9. The collected data can be transmitted 

to healthcare providers, enabling them to maintain high-quality treatments and 

improved clinical outcomes. 

This technology supports the perioperative patient journey, as the sensors can capture 

data both preoperatively and postoperatively, allowing clinicians to observe noticeable 

improvements over time. During the rehabilitation phase, the application provides 

additional support through daily pain journals, personalised home exercise routines, 

and notifications. These features ensure that both the patient and their healthcare 

team remain informed about recovery progress and rehabilitation milestones. 
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Figure 2-9. MotionSense™ wearable technology attached to the thigh and shank. 

 

2.8.3 Conclusions  

Wearable devices, such as IMU sensors, hold significant potential as tools for 

monitoring rehabilitation compliance in home environments and tracking patient 

recovery. While these technologies face technical and implementation challenges, 

their potential benefits, including improved patient engagement and data-driven care, 

outweigh their limitations. 

Although many commercially available devices exist, their suitability for clinical use 

remains a topic of debate. However, these technologies could play a pivotal role in 

enhancing healthcare delivery by supporting home-based rehabilitation, improving 

compliance, and achieving better functional outcomes. To ensure successful 

implementation, it is essential to evaluate the advantages and disadvantages of 

different rehabilitation models and address the challenges associated with integrating 

new technologies into clinical workflows. 
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2.9 Comparison of Different Rehabilitation Modalities  

The previous sections have highlighted the critical role of rehabilitation in improving 

patient outcomes following surgery. However, there is clear lack of standardisation in 

rehabilitation practices and limited understanding of which rehabilitation modalities 

yield the best outcomes, reduce the risk of complications and joint failures (Konnyu et 

al., 2023; Wylde et al., 2018).  

It is therefore essential to evaluate the effectiveness of various rehabilitation methods, 

understand the components of each approach, and consider their associated costs 

without compromising patient outcomes (Bandholm, Wainwright, and Kehlet 2018; 

Han et al., 2015; Konnyu et al., 2023; Moffet et al., 2015; Omari et al., 2021; Wylde et 

al., 2018). 

Rehabilitation can be delivered through several approaches, Table 2-3 below 

summarises the most common methods and provides a comparison of these 

modalities. 
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Table 2-3. Descriptions of common rehabilitation modalities. 

Rehabilitation 
Method 

Setting Supervision Personalisation Accessibility Costs 
Support and 
Motivation 

Compliance 

Hospital based 

Rehabilitation 
takes place in 
outpatient or 

inpatient settings 
within a hospital 

or clinic. 

Close supervision 
by healthcare 

professionals with 
immediate access 

to medical 
assistance if 

needed. 

No universally 
adopted 

rehabilitation 
protocol, thus 

treatment plans 
may differ 

depending on 
clinician and 

location. 

Accessibility 
depends on the 

proximity to 
healthcare 

facilities and 
transportation. 

Costs may vary 
depending on 

insurance 
coverage and 
length of stay. 
High costs for 

healthcare 
system. 

Limited social 
interaction during 

individual sessions, 
but potential for 
peer support in 
group settings. 

Higher likelihood of 
adherence due to 
regular monitoring 

and supervision 
from clinicians. 

Group based 

Rehabilitation 
occurs in a group 

setting with 
multiple patients 
and a therapist. 

Supervision 
shared among 
therapists for 

multiple patients 
simultaneously. 

Exercises and 
activities may be 

less tailored to 
individual needs 

due to group 
dynamics. 

Accessibility 
depends on the 
availability and 

location of group 
sessions. 

Cost-effective by 
maximising 

therapist time and 
resources among 
multiple patients. 

Provides social 
support, motivation, 

and peer learning 
opportunities. A 

support network is 
developed. 

Peer support and 
social dynamics 

may enhance 
adherence. 
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Face-to- face 

Patients interact 
directly with 

therapists in a 
clinic or hospital 

setting. 

Direct supervision 
and immediate 

feedback provided 
by therapists. 

Highly 
personalised 
interventions 

based on direct 
assessment and 

ongoing 
evaluation. 

Accessibility 
may be hindered 

by travel time 
and scheduling 

conflicts. 

Costs may include 
transportation and 
potential time off 
from work. Higher 
costs involved due 
to increased time 

and resources. 

Direct interaction 
with therapists 

enhances 
motivation, 

potential for peer 
support in group 

settings. 

Supervision 
enhances 

adherence, but 
external factors 

such as scheduling 
may impact 
compliance. 

Home based 

Rehabilitation is 
conducted in the 

patient's home 
environment. 

Limited 
supervision, 

usually periodic 
visits by a 

therapist or 
remote 

monitoring. 

Potential for 
personalised 

care and 
exercises 
tailored to 

individual needs, 
but often a stock 

rehabilitation 
protocol is 
prescribed. 

Convenient for 
patients, 

eliminates travel 
time and 

transportation 
issues. Easy for 

therapists as 
travel and 

contact time is 
eliminated. 

May reduce 
healthcare costs 

by eliminating the 
need for hospital 

visits. 

Limited social 
interaction, 
potentially 
impacting 

motivation. 

Adherence may be 
variable due to 

limited supervision. 
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Movement Analysis 
Laboratory 

Patients interact 
directly with 

therapists in a 
clinic or hospital 
setting, and the 

session is 
evaluated through 

motion capture. 

Direct supervision 
and delayed 

feedback 
regarding 

kinematics are 
provided by 
computer 
software. 

Progress is 
monitored 

accurately and 
quantifiably. 

Rehabilitation 
can be altered 
depending on 

progress 
measured. 

Not accessible, 
highly time 

consuming and 
expensive to run. 

Limited to one 
patient per 

session and 
often limited 

sessions 
available. 

Huge expense 
associated with 

labour, equipment 
and time. 

Limited social 
interaction, 

Higher likelihood of 
adherence due to 

accurate monitoring 
and supervision 
from clinicians. 

Remote 
tele-rehabilitation 
through wearable 

devices 

Rehabilitation is 
delivered 

remotely, typically 
through telehealth 

platforms or 
mobile 

applications. 

Supervision 
provided through 

video 
conferencing or 

remote monitoring 
tools. 

Tailored 
rehabilitation 

programs 
adjusted based 

on remote 
assessment and 

feedback. 

Offers 
accessibility to 

patients in 
remote areas, 
eliminates the 
need for travel. 

Can be cost-
effective by 

reducing the need 
for hospital visits 

and 
transportation. 

Limited social 
interaction, 

although family 
members can 

provide support, 
and group sessions 

may be 
programmed/ 

interactions with 
therapist via a 

mobile application. 

Adherence may be 
influenced by 
technological 

barriers and patient 
motivation; 

however, reduced 
rehabilitation may 
be flagged through 
remote monitoring 

and this information 
can be fed back to 

the healthcare team 
to then step in. 
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Many studies have compared different rehabilitative techniques to identify the most 

effective methods for delivering patient care and achieving optimal functional 

outcomes (Argent, Daly and Caulfield, 2018; Bakaa et al., 2021; Bandholm, Wainwright, 

and Kehlet, 2018; Castrodad et al., 2019; Hamilton et al., 2020; Han et al., 2015; 

Konnyu et al., 2023; Li et al., 2017; López-Liria et al., 2015; Mahomed et al., 2008; 

Mistry et al., 2016; Moffet et al., 2015; Proffitt and Lange, 2015; Rajan et al., 2004; 

Wylde et al., 2018). These studies have examined various approaches to rehabilitation 

such as traditional physiotherapy, tele-rehabilitation, and home-based rehabilitation, 

assessing their impact on functional outcomes, biomechanics, completion of ADLs, 

PROM’s, and healthcare utilisation. 

A recent review (Konnyu et al., 2023) evaluated the effectiveness of various 

rehabilitative approaches, including standard physiotherapy, tele-rehabilitation, and 

home-based rehabilitation. These findings indicated that all approaches yielded 

improvements during the acute recovery phase and contributed to pain reduction. 

However, no single method consistently emerged as superior compared to the others. 

Importantly, the review suggested that while rehabilitation interventions are crucial 

after TKA, the specific modality may not significantly influence overall patient 

outcomes. 

These findings align with other studies. For instance, Wylde and colleagues (Wylde et 

al., 2018) explored the relationship between rehabilitation techniques and chronic pain 

management following TKA, finding no evidence that one method was more effective 

than another in reducing pain severity after surgery. 

Tele-rehabilitation has garnered increasing attention as a potential alternative to 

conventional methods. Moffet and associates (Moffet et al., 2015) compared tele-

rehabilitation, home-based, and face-to-face therapy, with all groups receiving 

identical interventions of the same duration and assessed at consistent post-surgical 

time points. Their study demonstrated that tele-rehabilitation was as effective as 

traditional in-home therapy, yielding comparable recovery outcomes. 
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Supporting the viability of alternative rehabilitation approaches, a different study 

(Chughtai et al., 2019) examined outcomes such as patient compliance, time spent 

completing rehabilitation, clinical scores, and system usability for a tele-rehabilitation 

system (VERA) in 18 TKA patients. This study reported significant improvements in all 

outcomes, reinforcing the potential of tele-rehabilitation to complement traditional 

methods within clinical settings. 

While various rehabilitation approaches, including tele-rehabilitation, show similar 

outcomes, further research is needed to determine whether any method consistently 

offers superior long-term benefits to patients recovering after TKA. Nonetheless, the 

growing body of evidence supports the use of tele-rehabilitation as a flexible and 

effective alternative in post-TKA recovery (Alizadeh et al., 2023; Argent, Daly and 

Caulfield, 2018; Bullens et al., 2001; Chughtai et al., 2019; Kwasnicki et al., 2015; Lewy, 

2014; Li et al., 2017; Proffitt and Lange, 2015; Rajan et al., 2004; Rowe et al., 2000; 

Salchow-Hömmen et al., 2022; Shukla et al., 2016; Torner et al., 2019; Van Gool et al., 

2005; Wylde et al., 2018). 

2.9.1 Conclusions 

Rehabilitation is a critical phase in recovery, yet the method of delivery—whether in-

person or remote—does not appear to significantly influence post-surgical outcomes 

(Han et al., 2015; Konnyu et al., 2023; Moffet et al., 2015; Sattler et al., 2020). However, 

evidence suggests that remote rehabilitation offers distinct advantages over traditional 

face-to-face methods, specifically in monitoring patient recovery after TKA. Among the 

various tele-rehabilitation approaches, wearable sensors are emerging as a leading 

option. While these devices show significant potential, further evaluation is required to 

ensure their successful implementation and widespread acceptance in clinical 

settings. 
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2.10 How to determine Knee Joint Angle 

2.10.1 Angle Calculation Using Motion Capture 

The previous sections discussed the application of models in motion capture systems 

to support kinematic calculations and facilitate gait analysis.  

As outlined in section 2.6.1, the PIG model uses reflective markers placed on specific 

anatomical landmarks to calculate knee flexion and extension angles through Euler 

angle decomposition (Figure 2-10). These angles are easily interpreted and can be used 

to monitor knee joint ROM and track changes during recovery. A common method to 

determine joint centres is the Vaughan and Davis technique (Vaughan, Davis and 

O’Connor, 1992) which uses external anatomical landmarks and anthropometric 

regression equations. 

 

Figure 2-10. Flowchart describing process of determining joint angles from marker positions. 

Where uvw are orthogonal unit 
vectors that describe direction 
based on marker locations. 
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The markers are grouped in such a way as to define body segments and joint centres 

(Vaughan, Davis and O’Connor, 1992).  The hip joint is not directly measured with 

markers but rather is estimated based on the locations of the Anterior Superior Iliac 

Spines (ASIS) and Posterior Superior Iliac Spines (PSIS). To determine the hip joint 

centre the following equation is used: 

 

Equation 1 

𝑋𝐻𝐽𝐶 = 𝑋𝐴𝑆𝐼𝑆 + 𝜆. 𝑝𝑒𝑙𝑣𝑖𝑠 𝑤𝑖𝑑𝑡ℎ 

𝑌𝐻𝐽𝐶 = 𝑌𝐴𝑆𝐼𝑆 + 𝜇. 𝑙𝑒𝑔 𝑙𝑒𝑛𝑔𝑡ℎ 

𝑍𝐻𝐽𝐶 = 𝑍𝐴𝑆𝐼𝑆 + 𝜈. 𝑙𝑒𝑔 𝑙𝑒𝑛𝑔𝑡ℎ 

 

Where pelvis width is the distance between the ASIS markers, leg length is the distance 

from ASIS to lateral malleolus and 𝜆, 𝜇, 𝜈 are subject specific regression coefficients. 

The knee joint centre is found by determining the midpoint between the medial and 

lateral epicondyles: 

Equation 2 

𝐾𝐽𝐶 =  
𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝐸𝑝𝑖𝑐𝑜𝑛𝑑𝑦𝑙𝑒 +𝑀𝑒𝑑𝑖𝑎𝑙 𝐸𝑝𝑖𝑐𝑜𝑛𝑑𝑦𝑙𝑒

2
 

 

Since medial knee markers are often omitted in practical gait analysis, an estimate can 

be made using the lateral epicondyle and tibial width. 

The ankle joint centre is determined as the midpoint between the medial and lateral 

malleoli and is described by the equation below. 
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Equation 3 

𝐴𝐽𝐶 =  
𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝑀𝑎𝑙𝑙𝑒𝑜𝑙𝑢𝑠 +𝑀𝑒𝑑𝑖𝑎𝑙 𝑀𝑎𝑙𝑙𝑒𝑜𝑙𝑢𝑠

2
 

 

The thigh segment is defined by the hip and knee marker, the shank segment consists 

of the knee and ankle marker, while the knee joint centre is calculated by considering 

the position of the marker on the femoral epicondyle and the calibration pose captured 

during data collection. Any marker malpositioning can have a significant effect on 

accuracy, as highlighted in previous sections. 

Once the body segments have been defined, the coordinate systems are established. 

Local coordinate systems are defined for each segment respectively by Equation 7. 

These coordinate systems are based on the anatomical markers and are used to define 

the orientation of each segment; therefore, the thigh coordinate system will differ to 

that of the shank (Vaughan, Davis and O’Connor, 1992). 

The pelvis coordinate system is defined using both the ASIS and PSIS markers, where: 

 

Equation 4 

𝑖𝑝𝑒𝑙𝑣𝑖𝑠 = 
𝐴𝑆𝐼𝑆𝑟𝑖𝑔ℎ𝑡 − 𝐴𝑆𝐼𝑆𝑙𝑒𝑓𝑡

|𝐴𝑆𝐼𝑆𝑟𝑖𝑔ℎ𝑡 − 𝐴𝑆𝐼𝑆𝑙𝑒𝑓𝑡|
 

 

𝑘𝑝𝑒𝑙𝑣𝑖𝑠 = 
𝑀𝑖𝑑𝑝𝑜𝑖𝑛𝑡(𝑃𝑆𝐼𝑆) − 𝑀𝑖𝑑𝑝𝑜𝑖𝑛𝑡(𝐴𝑆𝐼𝑆)

|𝑀𝑖𝑑𝑝𝑜𝑖𝑛𝑡(𝑃𝑆𝐼𝑆) − 𝑀𝑖𝑑𝑝𝑜𝑖𝑛𝑡(𝐴𝑆𝐼𝑆)|
 

 

Where 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 𝑃/𝐴𝑆𝐼𝑆 =  
𝑃/𝐴𝑆𝐼𝑆𝑟𝑖𝑔ℎ𝑡−𝑃/𝐴𝑆𝐼𝑆𝑙𝑒𝑓𝑡

2
 

 

     
 𝑗

𝑝𝑒𝑙𝑣𝑖𝑠
= 𝑘𝑝𝑒𝑙𝑣𝑖𝑠  × 𝑖𝑝𝑒𝑙𝑣𝑖𝑠 
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The thigh coordinate system is defined using the hip joint centre, the knee joint centre 

and the lateral epicondyle. 

 

Equation 5 

𝑘𝑡ℎ𝑖𝑔ℎ = 
𝐻𝐽𝐶 − 𝐾𝐽𝐶

|𝐻𝐽𝐶 − 𝐾𝐽𝐶|
 

 

𝑖𝑡ℎ𝑖𝑔ℎ = 
𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝐸𝑝𝑖𝑐𝑜𝑛𝑑𝑦𝑙𝑒 − 𝐾𝐽𝐶

|𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝐸𝑝𝑖𝑐𝑜𝑛𝑑𝑦𝑙𝑒 − 𝐾𝐽𝐶|
 

 

     
 𝑗

𝑡ℎ𝑖𝑔ℎ
= 𝑘𝑡ℎ𝑖𝑔ℎ  ×  𝑖𝑡ℎ𝑖𝑔ℎ 

 

Finally, the shank coordinate system is defined using the knee joint centre, the ankle 

joint centre and the lateral malleolus.  

 

Equation 6 

𝑘𝑠ℎ𝑎𝑛𝑘 = 
𝐾𝐽𝐶 − 𝐴𝐽𝐶

|𝐾𝐽𝐶 − 𝐴𝐽𝐶|
 

 

𝑖𝑠ℎ𝑎𝑛𝑘 = 
𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝑀𝑎𝑙𝑙𝑒𝑜𝑙𝑢𝑠 − 𝐴𝐽𝐶

|𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝑀𝑎𝑙𝑙𝑒𝑜𝑙𝑢𝑠 − 𝐴𝐽𝐶|
 

 

     
 𝑗

𝑠ℎ𝑎𝑛𝑘
= 𝑘𝑠ℎ𝑎𝑛𝑘  ×  𝑖𝑠ℎ𝑎𝑛𝑘 

 

Once these coordinate systems have been defined, unit vectors are determined to yield 

Equation 8. The relative orientation of each segment is then calculated to determine 
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the knee joint angle. This requires the calculation of a rotation matrix, R, which 

considers the rotation of the distal (shank) segment with respect to the proximal (thigh) 

segment, Equation 9 

R is the rotation matrix equating the same position in a rotated set of axes, however, the 

inverse of the rotation matrix [R]-1 is applied in order to rotate the unit vectors within a 

single global set of axes (Equation 10 and Equation 11). 

 

 

Figure 2-11. Coordinate systems, showing both anatomical segment and global coordinate systems. 

 

Equation 7 

𝑖𝑝 = (

𝑖𝑥𝑃
𝑖𝑦𝑃
𝑖𝑧𝑃

)      𝑗𝑝 = (

𝑗𝑥𝑃
𝑗𝑦𝑃
𝑗𝑧𝑃

)     𝑘𝑝 = (

𝑘𝑥𝑃
𝑘𝑦𝑃
𝑘𝑧𝑃

) 

 

 



 

116 

 

Equation 8 

[𝑃] =  [

𝑖𝑥𝑃 𝑗𝑥𝑃 𝑘𝑥𝑃
𝑖𝑦𝑃 𝑗𝑦𝑃 𝑘𝑦𝑃
𝑖𝑧𝑃 𝑗𝑧𝑃 𝑘𝑧𝑃

], [𝐷] =  [

𝑖𝑥𝐷 𝑗𝑥𝐷 𝑘𝑥𝐷
𝑖𝑦𝐷 𝑗𝑦𝐷 𝑘𝑦𝐷
𝑖𝑧𝐷 𝑗𝑧𝐷 𝑘𝑧𝐷

] 

Where, 

Equation 9 

[𝐷] =  [𝑅]−1[𝑃] 

 

[𝐷][𝑃]−1 = [𝑅]−1[𝑃][𝑃]−1 

 

[𝐷][𝑃]−1 = [𝑅]−1 

 

[𝑅] =  [𝐷]−1[𝑃] 

 

And because [D] is constructed of three orthogonal unit vectors [R] can be defined as: 

 

Equation 10 

[𝐷]−1 = [𝐷]𝑇  

 

[𝑅] =  [𝐷]𝑇[𝑃] 
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Where [R] can be expanding to; 

 

Equation 11 

[𝑅] =  [

𝑖𝑥𝐷 𝑗𝑦𝐷 𝑘𝑧𝐷
𝑖𝑥𝐷 𝑗𝑦𝐷 𝑘𝑧𝐷
𝑖𝑥𝐷 𝑗𝑦𝐷 𝑘𝑧𝐷

] [

𝑖𝑥𝑃 𝑗𝑥𝑃 𝑘𝑥𝑃
𝑖𝑦𝑃 𝑗𝑦𝑃 𝑘𝑦𝑃
𝑖𝑧𝑃 𝑗𝑧𝑃 𝑘𝑧𝑃

], 

 

Equation 12 

Therefore, [𝑅] =  [

𝑖𝐷 ∙  𝑖𝑃 𝑖𝐷 ∙  𝑗𝑃 𝑖𝐷 ∙  𝑘𝑃
𝑗𝐷 ∙  𝑖𝑃 𝑗𝐷 ∙  𝑗𝑃 𝑗𝐷 ∙  𝑘𝑃
𝑘𝐷 ∙  𝑖𝑃 𝑘𝐷 ∙  𝑘𝑃 𝑘𝐷 ∙  𝑘𝑃

] 

 

However, it is also established that the rotation matrix, [R] can be decomposed into 

three angles 𝛼, 𝛽, 𝛾 (Equation 13), which correspond to the rotations about the 𝑖𝑃,  𝑗𝑃, 

and 𝑘𝑃, axes respectively, Figure 2-11. 

 

Equation 13 

[𝑅]  =  [

𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝛽 𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝛽 + 𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛾 𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝛾 − 𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛾
−𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝛽 𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛾 − 𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛾 𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛾 + 𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛾

𝑠𝑖𝑛𝛽 −𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛽 𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛽
] 

 

𝛼 = 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑏𝑜𝑢𝑡 𝑖𝑃, 𝐹𝑙𝑒𝑥𝑖𝑜𝑛/𝑒𝑥𝑡𝑒𝑛𝑠𝑡𝑖𝑜𝑛 𝑎𝑥𝑖𝑠 

𝛽 = 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑏𝑜𝑢𝑡 𝑗𝑃, 𝐴𝑏𝑑𝑢𝑐𝑡𝑖𝑜𝑛/𝑎𝑑𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑎𝑥𝑖𝑠 

𝛾 = 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑏𝑜𝑢𝑡 𝑘𝑃, 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙/𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑥𝑖𝑠  
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By considering that: 

Equation 14 

𝑠𝑖𝑛𝛽 = 𝑘𝐷 ∙  𝑖𝑃  

Therefore 

 𝛽 = 𝑠𝑖𝑛−1(𝑘𝐷 ∙  𝑖𝑃) 

And considering the trigonometric identities, angles may be determined through:  

 

−
𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛽

𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛽
= −𝑡𝑎𝑛𝛼 =  

𝑘𝐷 ∙  𝑗𝑃
𝑘𝐷 ∙  𝑘𝑃

 

 

−
𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝛽

𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝛽
= −𝑡𝑎𝑛𝛾 =  

𝑗𝐷 ∙  𝑖𝑃
𝑖𝐷 ∙  𝑖𝑃

 

Thus yielding: 

Equation 15 

𝛼 = 𝑡𝑎𝑛−1 (
−𝑠𝑖𝑛𝛼

𝑐𝑜𝑠𝛼
)  = −𝑡𝑎𝑛−1 (

𝑘𝐷 ∙  𝑗𝑃
𝑘𝐷 ∙  𝑘𝑃

) 

Equation 16 

𝛾 = 𝑡𝑎𝑛−1 (
−𝑠𝑖𝑛𝛾

𝑐𝑜𝑠𝛾
)  =  −𝑡𝑎𝑛−1 (

𝑗𝐷 ∙  𝑖𝑃
𝑖𝐷 ∙  𝑖𝑃

) 

Although the PIG model automatically calculates joint angles using proprietary Nexus 

software, it is important to have a basic understanding of the methods used to 

determine these measurements. This knowledge becomes especially valuable in 

situations where models are not available, and manual calculation of joint angles are 

required.   
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2.10.2 Using IMUs to Monitor Knee Joint Biomechanics 

As previously highlighted, IMU devices are increasingly being used to record and 

measure joint kinematics (Cooper et al., 2009; Mcgrath, 2021; Nüesch et al., 2017; 

Seel, Schauer and Raisch, 2012; Seel, Raisch and Schauer, 2014; Torino, 2021; Yi et al., 

2021). However, since they only capture raw data such as angular velocity and linear 

acceleration, algorithms are required to process this data and derive meaningful 

outputs like joint angles (Seel, Raisch and Schauer, 2014). 

Many commercial sensors incorporate built-in algorithms to determine the orientation 

of each sensor with respect to the global fixed coordinate system and to subsequently 

determine joint angles. The orientations can be represented in different mathematical 

forms, such as quaternions (which describe both rotation and orientation in 3D space), 

rotation matrices, or Euler angles (Brennan, et al., 2011). Regardless of the methods 

used, IMUs demonstrate good ability in measuring joint angles. 

2.10.2.1 Research Methods for Determining Knee Angle from IMU Measures 

Previous studies have used IMUs to measure joint angles across different activities, 

such as walking (Beravs et al., 2011; Ortigas Vásquez et al., 2023; Seel, Raisch and 

Schauer, 2014; Wang et al., 2022), both walking and running (Cooper et al., 2009; 

Gholami et al., 2020; Jakob et al., 2013), squats (Hindle et al., 2020; Jakob et al., 2013), 

lunges (Versteyhe et al., 2020) and a variety of common rehabilitation exercises (Lin 

and Kulić, 2012).  

Though IMU’s are commonly found in research, the combinations of sensor data may 

vary. Previous studies have used all three sensor components to determine joint angles 

(Beravs et al., 2011; Hindle et al., 2020), however, accelerometer and gyroscope data 

are more frequently used (Cooper et al., 2009; Jakob et al., 2013; Lin and Kulić, 2012; 

Mcgrath, 2021; Ortigas Vásquez et al., 2023; Seel, Raisch and Schauer, 2012; Versteyhe 

et al., 2020; Wang et al., 2022). Magnetometer readings are often disregarded because 

they can be significantly influenced by local magnetic fields (Laidig, Schauer and Seel, 
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2017; Ortigas Vásquez et al., 2023; Tognetti et al., 2015; Versteyhe et al., 2020), leading 

to drift and associated inaccuracies. 

Although IMUs are widely used in various activities and across different studies, the 

methods of implementation can vary. Though, the core principles remain consistent, to 

measure knee flexion angles using IMUs, sensor information (accelerometer, 

gyroscope and magnetometer data) is combined through a process called sensor 

fusion. This process involves blending sensor data using various filtering techniques to 

produce accurate joint angle measurements. Several filtering techniques are 

commonly used to process data from IMUs, each with its own strengths and 

application:  

Complementary filter (Seel, Schauer and Raisch, 2014): this filter fuses data from two 

sensors, an accelerometer and a gyroscope, by leveraging their complementary 

strengths. The accelerometer provides accurate low-frequency (long-term) data, while 

the gyroscope excels in high-frequency (short-term) data. By applying a low-pass filter 

to the accelerometer data and a high-pass filter to the gyroscope data, the 

complementary filter combines the information improving accuracy. 

Madgwick filter (Madgwick, 2010): is an efficient orientation filter for IMUs. The 

Madgwick filter estimates device orientation using accelerometer, gyroscope, and 

magnetometer data. It is computationally lightweight, making it ideal for embedded 

systems with limited power. The filter uses a gradient descent method to minimise error 

between estimated and measured data, providing robust and accurate 3D orientation 

estimates.  

Kalman filter (Cooper et al., 2009): is a recursive algorithm used to estimate the state 

of a dynamic system from noisy measurements. It combines predictions from the 

system’s dynamics with sensor data to generate optimal estimates. This filter assumes 

a linear system model and is widely used in various applications requiring real-time 

state estimation. 
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The extended Kalman filter (EKF) (Sabatini, 2011): extends the standard Kalman filter 

to handle non-linear systems. It linearises the system and measurement models at 

each time step using the Jacobian matrix (partial derivatives), making it suitable for 

applications like robotics and navigation where non-linear dynamics are common. 

The unscented Kalman filter (UKF) (Beravs et al., 2011; Hindle et al., 2020): is another 

extension of the Kalman filter (Cooper et al., 2009), designed for non-linear systems 

without the need for linearisation. It uses the unscented transform to generate "sigma 

points" that represent the distribution of possible states. These points are propagated 

through the system, and their weighted mean and covariance are used to update the 

state estimate. The UKF is often more accurate than the EKF, especially for systems 

with highly non-linear dynamics. 

Rauch-Tung-Striebel smoother (RTS) (Versteyhe et al., 2020): is a backward-pass 

algorithm that improves the state estimates produced by a Kalman filter (Cooper et al., 

2009). While the Kalman filter provides real-time (forward) estimates, the RTS 

processes the data afterward to generate more accurate state estimates by considering 

the entire dataset. 

Each of these filters and smoothers plays a crucial role in improving the accuracy and 

reliability of IMU data for various applications, especially in dynamic environments. In 

addition to sensor fusion techniques some studies use large datasets to implement 

machine learning techniques for joint angle estimation (Lim, Kim and Park, 2020; 

Renani et al., 2021). However, these data-driven approaches have their own limitations 

(Gholami et al., 2020). They require extensive and diverse datasets for training models 

and are susceptible to overfitting, which can hinder their ability to generalise effectively 

to new, unseen data.  

Nazarahari and Rouhani, 2021 conducted an experimental comparative study of 36 

sensor fusion algorithms, classifying them into two primary categories: deterministic-

based methods, which included the Linear Complementary Filter and Nonlinear 

Complementary Filter and stochastic-based methods, including the Linear Kalman 

Filter, Extended Kalman Filter (EKF), Complementary Kalman Filter, Square-root 
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Unscented Kalman Filter, and Square-root Cubature Kalman Filter. Their findings 

indicated that, in scenarios where execution time is not a critical factor, the EKF 

developed by (Sabatini, 2011) delivered the most accurate results. However, when 

computational efficiency is prioritised, the Linear Complementary Filter proposed by 

Justa et al., 2020 provided the best performance, striking an effective balance between 

accuracy and processing speed. 

While numerous algorithms are available for estimating knee joint angles from IMU 

data, this project employed the Seel algorithm (Seel, Schauer and Raisch, 2014) as part 

of an opportunistic collaboration rather than through an independent selection 

process. Notably, the Seel algorithm closely aligns with the method used by the 

MotionSense™ commercial IMU device, making it a practical and sensible choice for 

this study. 
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Figure 2-12. Flowchart outlining the common methods used to determine joint angle

Sensor Fusion 
Techniques

•Sensor fusion involves combining data from multiple IMU sensors to improve the accuracy of orientation estimation. Common sensor fusion 
algorithms include:

• Complementary Filter: This combines high-frequency gyroscope data with low-frequency accelerometer data to estimate orientation.
• Kalman Filter: A more sophisticated method that models the system's dynamics and updates the state estimates using both the process model 

and measurement updates.
• Madgwick Filter: An efficient orientation filter algorithm that uses a gradient descent method to minimise the error between measured and 

estimated orientation.

Segment 
Orientation and 
Joint calculation 

•Once the orientations of the thigh and shank segments are estimated using sensor fusion, the knee joint angle can be calculated as the relative 
orientation between these segments.

• Quaternion-Based Method: Quaternions are used to represent the orientation of each segment. The relative orientation is computed using 
quaternion algebra.

• 𝑞relative=𝑞thigh−1⊗𝑞shank
• Here, 𝑞relative represents the relative orientation between the thigh and shank.
• Rotation Matrix Method: Rotation matrices derived from sensor fusion data can be used to compute the relative orientation. The relative 

rotation matrix is given by:
• 𝑅relative=𝑅thigh−1⋅𝑅shank
• Joint angles can then be extracted using Euler angle decomposition.

Euler angle 
calculation

•Euler angles are extracted from the relative orientation (quaternion or rotation matrix [R]) to determine knee flexion/extension angles. For 
instance, using the XYZ sequence.

•The flexion angle can be calculated as expanded upon previosuly  or through quaternion to Euler angle conversion.

Kinematic 
constraints and 
biomechanical 

models

• In some methods, kinematic constraints and biomechanical models of the knee are used to improve angle estimation:
• Two-Link Model: The thigh and shank are modeled as rigid bodies linked at the knee joint, with constraints applied to limit the possible joint

angles based on human anatomy.
• Inverse Kinematics: Using joint kinematics to solve for angles that satisfy both the segment orientations and biomechanical constraints.
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2.10.2.2 Challenges Associated with Using IMUs for Joint Calculation 

Although there are many methods used to determine joint angles from IMUs, previous 

research (Favre et al., 2006; Liu et al., 2009) has reported that accuracy often varies 

due to the complexity and non-uniformity of the human body and not from the type of 

model implemented. 

The knee has six DOF, while it primarily exhibits flexion and extension, the joint also 

allows for abduction/adduction and internal/external rotation (Stagni et al., 2005). 

However, to simplify analysis, the knee is often modelled as a perfect hinge joint, 

reducing the problem to just a single degree of freedom (Cordillet et al., 2019; Favre et 

al., 2006; Hu et al., 2021; Laidig, Schauer and Seel, 2017; Martori, 2013; Pacher et al., 

2020; Schiefer et al., 2011; Seel, Schauer and Raisch, 2012; Yen and Radwin, 2000). 

However, this assumption can lead to reduced accuracy in the measurements. 

While simplifying the joint model can make the analysis easier, additional challenges 

exist when using IMU devices. These challenges include difficulties with sensor 

orientation, misalignment between the IMU's local coordinate system and the body's 

anatomical axes, and other factors that can affect the accuracy and precision of the 

measurements. These issues must be carefully considered to ensure reliable results. 

2.10.2.3 Solving Variability in IMUs Position on the Body 

The most common challenge associated with using IMUs to analyse human motion is 

ensuring precise alignment between the IMUs' local coordinate axes and the body's 

anatomical axes. Researchers use various strategies to solve this issue, each with its 

own strengths and limitations. 

Some research (Liu et al., 2009) assumes that the IMUs are mounted precisely along 

the joint line. This approach presumes perfect alignment between the sensors and the 

anatomical segments, with the sensor’s local coordinate frames collinear to the 

anatomical axes. While this method is simple, it often leads to reduced accuracy due 
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to imperfect alignment. More realistic approaches account for the likelihood of 

misalignment between the sensors local coordinate system and the joint axis, 

incorporating adjustments to improve accuracy. 

The positioning of the sensor relative to the joint axis and body segment can be 

determined manually (Picerno, Cereatti and Cappozzo, 2008). However, this approach 

tends to be time consuming and prone to inaccuracies. To address these challenges, 

alternative methods have been proposed, utilising various calibration poses and 

movements (Bonfiglio et al., 2024; Cereatti, Trojaniello and Croce, 2015; Cooper et al., 

2009; El Fezazi et al., 2023; Favre et al., 2006; Fry et al., 2021; Gholami et al., 2020; 

Jakob et al., 2013; Laidig, Schauer and Seel, 2017; Laidig, Weygers and Seel, 2022; Lim, 

Kim and Park, 2020; Liu et al., 2009; Mcgrath, 2021; O’Donovan et al., 2007; Oliveira, 

Park and Barrance, 2023; Pacher et al., 2020; Rhudy et al., 2024; Savage, 1998; Takeda 

et al., 2009; Versteyhe et al., 2020).  

A common approach is the use of static calibration poses, where participants stand 

still in a predefined posture for a short duration (Beravs et al., 2011; Cooper et al., 2009; 

Jakob et al., 2013; Wang et al., 2022). This allows the accelerometer to detect only the 

gravity vector, aiding in sensor alignment. Some studies also incorporate filtering 

algorithms to estimate the orientation of IMUs for static alignment (Beravs et al., 2011; 

Hindle et al., 2020). 

Another widely adopted method is functional calibration, where participants perform 

specific movements prior to data collection (Cutti et al., 2010). These movements are 

designed to clearly identify the direction of motion within anatomical planes. However, 

the accuracy of this method depends on how closely the participant performs the 

movements. Precise identification of joint axes and close alignment of the IMU 

significantly enhances measurement quality. 

In some cases, straps or boxes are used to secure the IMU to the body in predefined 

orientations (Niswander et al., 2020). More commonly, however, the IMU is placed in an 

arbitrary orientation on the leg, introducing additional computational challenges. 
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To overcome the limitations of predefined static or dynamic calibration protocols, 

alternative methods have been proposed that do not rely on standard poses. For 

example, Seel and colleagues (Seel, Schauer and Raisch, 2012; Seel, Raisch and 

Schauer, 2014) developed an innovative calibration approach, which was further 

refined in subsequent research (Laidig, Schauer and Seel, 2017; Laidig, Weygers and 

Seel, 2022; Ortigas Vásquez et al., 2023).  

This method (Seel, Schauer, and Raisch 2014) eliminates the need for precise sensor-

to-segment alignment, manual measurement of body segment lengths, and calibration 

poses. Additionally, it avoids reliance on magnetometers, which can be inaccurate in 

non-uniform magnetic fields. A related technique, principal component analysis, has 

also been employed in some studies (Carcreff et al., 2022) to accurately determine the 

direction of the sagittal plane. 

Seel’s dynamic calibration method (Seel, Schauer, and Raisch 2012; Seel, Raisch and 

Schauer, 2014) has been successfully applied in various studies to measure joint 

angles during activities such as level walking (Ortigas Vásquez et al., 2023; Seel, Raisch 

and Schauer,  2014), stair navigation (Ortigas Vásquez et al., 2023), sit to stand (Ortigas 

Vásquez et al., 2023) and lunges (Versteyhe et al., 2020). 

Despite the challenges associated with IMU devices, numerous methods have been 

developed to enhance measurement accuracy. Among these, techniques that avoid 

complex calibration protocols are often preferred, with the Seel algorithm (Seel, Raisch 

and Schauer, 2012) commonly implemented. 

2.10.3 Conclusions 

Gait analysis plays a crucial role in both research and clinical settings, with knee angle 

serving as a key metric for evaluating functional outcomes following TKA. To perform 

effective gait analysis, meaningful data is essential. While various methods are 

available for collecting motion data, IMU devices have gained popularity due to their 

numerous advantages. 
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When using IMUs for gait analysis—particularly for monitoring knee angles—it is crucial 

to process and present the data in a meaningful way. Several techniques exist for 

calculating knee angles from IMU data, each with distinct strengths and limitations. 

Among these, the method proposed by Seel et al. (Seel, Raisch and Schauer, 2012), 

has drawn attention for its accuracy and ease of use. However, to ensure its reliability 

for clinical applications, such as monitoring activity and tracking recovery, this 

algorithm must be validated across a wide range of movements and diverse 

populations. 

2.11 Validating Wearable Technologies 

With the growing interest in IMU devices for monitoring biomechanics, assessing joint 

function, and supporting diagnostic processes, their implementation into healthcare 

has garnered significant attention. These devices have the potential to address some of 

the current challenges faced by healthcare systems and alleviate the strain on 

overburdened facilities. 

Recent studies indicate that wearable sensing technology can enhance patient care 

(Chiang et al., 2017; Cooper, Bhuskute and Walsh, 2022; Kayaalp et al., 2019; Kobsar et 

al., 2020; Papi et al., 2015). For instance, IMUs can assist physiotherapists and 

orthopaedic surgeons in detecting movement pattern abnormalities, such as 

asymmetrical limb loading after anterior cruciate ligament reconstruction (ACLR) or 

measuring varus thrust in patients with KOA. 

Despite their promise, there is limited research on the capabilities and limitations of 

IMUs, particularly in clinical settings (Taylor, Miller and Kaufman, 2017). To confidently 

deploy these devices in practice, it is crucial to establish their validity and reliability 

across various applications by comparing them against trusted and established gold 

standard measurement systems (Chapman, Moschetti, and Van Citters, 2021; Lavernia 

et al., 2008). 
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2.11.1 Previous Studies Validating Wearable Technologies  

Previous studies have compared the accuracy of IMU measurements against motion 

capture systems (Ajdaroski et al., 2020; Al-Amri et al., 2018; Allseits et al., 2017; Beravs 

et al., 2011; Cho et al., 2018; El Fezazi et al., 2023; Ghattas and Jarvis, 2021; Jebeli et 

al., 2017; Jordan et al., 2021; Zhang et al., 2013; Kayaalp et al., 2019; Kobsar et al., 

2020; Papi et al., 2015; Poitras et al., 2019; Robert-Lachaine et al., 2017; Shuai et al., 

2022; Taylor, Miller and Kaufman, 2017; Zhou et al., 2020). These studies focused on 

evaluating the accuracy of lower leg joint kinematics, finding that IMU wearables could 

achieve an acceptable level of agreement (RMSE < 5°) for sagittal knee joint angles 

during various ADLs. However, lower levels of agreement were observed when 

measuring abduction/adduction angles (Poitras et al., 2019). Despite this limitation, 

the high accuracy in sagittal plane measurements highlights the potential of IMUs for 

use in both clinical and home-based rehabilitation settings. 

Each study identified specific strengths and limitations of IMU devices. Poitras and 

associates (Poitras et al., 2019) conducted a systematic review to assess the validity of 

wearables for joint angle measurement, concluding that accuracy depends 

significantly on the measurement plane, with flexion/extension angles demonstrating 

the highest accuracy. Additionally, other research has found the type of activity or 

movement being analysed strongly influences accuracy, with more complex 

movements generally yielding lower validity and higher RMSE values, (Cuesta-Vargas, 

Galan-Mercant and Williams, 2010; Robert-Lachaine et al., 2017). 

A common finding across numerous studies (Cornish et al., 2024; Cuesta-Vargas, 

Galan-Mercant and Williams, 2010; Cutti et al., 2010; Henkel, 2016; Hullfish et al., 

2019; Kobsar et al., 2020; Lavernia et al., 2008; Papi et al., 2015; Poitras et al., 2019; 

Taylor, Miller and Kaufman, 2017; Wong, Wong and Lo, 2007; Zhou et al., 2020) is the 

importance of proper calibration. Ensuring that the IMU axes align with the body's 

anatomical axes is crucial for reporting accurate measurements, as different 

calibration protocols can produce varying outcomes. Since the initial calibration serves 

as the reference for calculating joint angles during movement, poor alignment of the 

sensors during placement can significantly degrade data quality. 
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Furthermore, the length of data collection has been shown to affect accuracy. Studies 

recording data over shorter periods reported higher accuracy (Dejnabadi et al., 2006), 

likely due to reduced sensor drift. However, several filtering techniques are available to 

mitigate the effects of drift during longer recordings.  

The overall accuracy of IMU’s depends on several factors: the precision of sensor 

placement, the complexity of the movement being analysed, the algorithm used for 

data processing, the measurement plane, and the applied biomechanical model. As 

biomechanical models and calibration techniques continue to improve, IMUs are 

poised to become a standard tool in clinical and rehabilitation settings. 

2.11.2 How Accurate is Accurate Enough? 

Before adopting new technologies for clinical use, their accuracy must be evaluated 

against established clinical standards. Knee flexion is traditionally measured using 

various methods such as electrogoniometers, short-arm goniometers, digital 

goniometers, laser projection, and inclinometers. Goniometers are most commonly 

used (Kiatkulanusorn et al., 2023). 

However, research (Hancock et al., 2018; Kiatkulanusorn et al., 2023) has shown that 

traditional methods can produce highly variable results, with accuracy depending on 

the measurement technique and the person conducting the measurement. 

Discrepancies between tools and users can result in measurement differences of 

between 6° – 14°. 

The required level of accuracy in a clinical setting depends on the specific task, the 

environment in which the device is used, and the precision needed to effectively 

evaluate patient functionality (Chapman, Moschetti, and Van Citters, 2021 et al., 2021; 

Lavernia et al., 2008; Milanese et al., 2014; Prill et al., 2021). For a device to be 

considered clinically acceptable, it should have a correlation reliability coefficient 

above 0.90 and a standard error (SE) of measurement below 2° is recommended.  
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Furthermore, devices must be sensitive enough to detect clinically significant changes 

in knee ROM typically ranging between 5° - 10° following TKA (Rajan et al., 2004; 

Ramkumar et al., 2019; Smith et al., 2006). Previous research (Cornish et al., 2024; 

Cuesta-Vargas, Galan-Mercant and Williams, 2010; Hullfish et al., 2019; Kayaalp et al., 

2019; Kobsar et al., 2020; Luinge and Veltink, 2005; Mayagoitia, Nene and Veltink, 2002; 

Mundt et al., 2019; Nüesch et al., 2017; Obradović and Stančin, 2023; Ortigas Vásquez 

et al., 2023; Patel et al., 2012; Picerno, 2017; Picerno, Cereatti and Cappozzo, 2008; 

Rhudy et al., 2024; Schall et al., 2016; Taylor, Miller and Kaufman, 2017; Versteyhe et 

al., 2020; Wong, Wong and Lo, 2007; Yi et al., 2021; Zhou et al., 2020) has 

demonstrated that IMUs can measure ROM with error rates of 2° - 5° in certain 

movements and applications.  

This level of accuracy suggests that IMU devices are capable of detecting clinically 

significant changes and monitoring improvements in knee ROM following TKA, 

particularly for moderate to large changes. However, their precision may not be 

sufficient for identifying very subtle changes in knee angles. Accurate sensor 

placement and calibration remain critical to ensuring reliable measurements. 

IMUs are useful tools for continuous, long-term monitoring outside of clinical 

environments. However, for highly precise evaluations, they may still need to be 

supplemented with traditional motion capture methods. 

2.11.3 Conclusions 

Numerous studies have evaluated the accuracy of IMU technology across various 

activities and populations. While the accuracy depends on factors such as 

methodology, monitored activities, and sensor placement precision, IMUs consistently 

demonstrate the capability to measure knee angles with a high level of accuracy. When 

compared to existing clinical standards, these devices show great potential to enhance 

patient care, offering a valuable tool for both clinical and home-based monitoring 
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2.12 Summary 

This literature review highlights the critical role of rehabilitation compliance in 

achieving optimal functional outcomes following TKA. The requirement for the 

continuous assessment of knee function, particularly ROM, throughout the recovery 

process is emphasised. Regular monitoring is essential for preventing postoperative 

complications and enabling timely interventions when suboptimal outcomes are 

identified. However, due to resource constraints, many patients do not receive such 

detailed care, often resulting in lower satisfaction and suboptimal recovery outcomes.  

IMU technology has emerged as a promising solution, enabling remote monitoring of 

patient progress with greater precision and resolution than traditional methods. While 

these devices show significant potential, their accuracy can vary depending on factors 

such as calibration methods, sensor placement, and the complexity of monitored 

activities. Despite these challenges, IMUs have demonstrated the ability to measure 

knee angles with clinically acceptable accuracy under certain conditions. 
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3 Chapter 3. Aims and Objectives 

This thesis aims to determine whether IMU devices are accurate enough to measure 

clinically significant changes in knee flexion angles during the early postoperative 

rehabilitation period following elective TKA surgery, and whether these devices may be 

confidently used to promote rehabilitation compliance and monitor recovery.  

To meet this general aim the objectives of this study were as follows: 

1. To evaluate the accuracy of IMU devices for measuring sagittal knee joint angles 

by comparing data to those obtained using the gold standard opto-electronic 

system, Vicon motion capture (Vicon, Oxford, UK) across a variety of ADLs in a 

healthy population of different age groups and across a TKA clinical population 

preoperatively and postoperatively. 

2. To validate the Seel algorithm (Seel, Raisch and Schauer, 2014; Seel and 

Schauer, 2016) for calculating two-dimensional knee flexion joint angles from 

raw IMU data in both a healthy younger adult population and in a TKA clinical 

population both preoperatively and postoperatively across various activities. 

3. To investigate recovery following TKA surgery by examining changes in knee joint 

flexion and functional outcomes from pre- to early postoperative phases, 

integrating objective measurements with patient-reported data, comparing 

cohort trends with individual case profiles, and demonstrating the clinical utility 

of wearable sensors in rehabilitation settings. 

To quantify the accuracy of both technologies the root mean square error (RMSE), 

signed differences and Pearson’s correlation of coefficient (r) was determined between 

the sensor measurements and that of the opto-electronic system, Vicon motion 

capture.  

One-way ANOVA tests were performed across the technologies to establish whether 

differences between these devices were significant (p = 0.05).  
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Agreement between the wearable devices and the opto-electronic system, Vicon 

motion capture were visually displayed using mean signed error plots and Bland-

Altman plots.  

While variation within the measures were presented by plotting the standard deviations 

(SD), standard errors (SE) and 95% confidence intervals. 

The following parameters were analysed: 

• Joint kinematics: Knee ROM, minimum knee flexion angle, maximum knee 

flexion angle 

• Statistical analysis: RMSE, correlations (Spearman’s and Pearson’s), Bland-

Altman plots, ANOVA (p = 0.05), SD, SE, absolute signed differences. 

• TKA group reported: PROMs, BMI, treadmill speed, cadence, stride length and 

knee angle measures. 
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4 Chapter 4. Methods 

This chapter describes the different methodologies implemented in this thesis. While 

the studies all share common methodologies, participant groups and similar data 

analysis techniques, there are differences between the studies. These variations will be 

highlighted and detailed where appropriate. Firstly, a broad overview of the complete 

study design is presented with further detail provided for each aspect of the study 

design elaborated upon in the subsequent sections. Three different population pools 

were recruited for this study. Two groups of healthy able-bodied participants (who were 

categorised depending on age) and a single group of TKA patients were recruited.  The 

clinical aspects of this study were carried out in partnership with the Golden Jubilee 

National Hospital, Clydebank and the Glasgow Royal Infirmary, Glasgow.  

4.1 Study Design 

This section provides a brief overview of the study design and the various elements 

involved in the successful completion of this research, further details regarding the 

specific aspects of the study design will be detailed in subsequent sections. The study 

design includes participant recruitment, laboratory setup and calibration, data 

collection and finally data analysis. Firstly, participants were recruited to the project, 

upon which a date and time for data collection was agreed. Following recruitment, the 

movement analysis laboratory was set up, which included calibration (which is detailed 

in subsequent sections, see Section 4.5).  

Once the movement analysis laboratory was fully calibrated the participant then had 

their anthropometric data recorded and both the sensors and markers fitted to their 

body. The participant was then invited to move into the centre of the room for a static 

calibration to be taken. The participant was asked to stand stationary in the anatomical 

position and a static capture was recorded on all devices (Vicon opto-electronic 

motion capture system, MotionSense™ wearable sensor technology and the IMU wired 

sensors).  
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When the static calibration is combined with the participants anthropometric data the 

position of the joint centres can be calculated, and this is then used to calculate 

kinematic and kinetic measurements in Vicon Nexus software. 

4.1.1 Functional Activities  

Following the static calibration the participants were then asked to perform various 

ADLs in a random order. The researcher provided instruction and a demonstration for 

each ADL to ensure that each activity was performed correctly by the participant. 

These activities are briefly described in Table 4-1 below. 

Participants were allowed to take breaks between activities and were allowed to stop 

the session at any point should they not feel well enough to complete the full session or 

all tasks. During all activities video recordings were captured to provide a reference to 

kinematic data captured by both sensors and the motion capture system. Once all 

activities were completed the sensors and retro-reflective markers were removed and 

the participant was free to change into their casual clothes and leave the laboratory.  

Table 4-1. Overview of the activities of daily living performed by the participants. 

Task Brief Description 

Get Up and Go 
The participant sits on a stool, they then stand up and walk to a 3-
metre mark, turn around and walk back to the stool where they then 
sit back down. 

Flexion/Extension 
The participant performs a maximum flexion and extension 
movement while standing up right using a vertical structure for 
support. 

Stationary Cycle 
The participant cycles on a stationary bicycle for 2 minutes at a 
comfortable pace. 

Stair Navigation The participant walks up and down a set of stairs. 

Treadmill Walking 
The participant walks on a level treadmill at a self-selected 
comfortable walking speed for up to 5 minutes. 
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4.1.1.1 Detailed Explanation of Each Activity 

4.1.1.1.1 Treadmill Walking 

Participants were assisted onto the stationary level treadmill. Participants at the 

University of Strathclyde were strapped into the safety harness as no handrails were 

available for this treadmill. Participants at the Glasgow Royal Infirmary and Golden 

Jubilee National Hospital were encouraged to use the treadmill handrails if they felt 

unstable, and TKA participants were encouraged to use their assistive walking devices 

if they preferred to do so, particularly at the earlier postoperative sessions.  

Once the participant was positioned on the treadmill and felt comfortable standing on 

the belt by themselves, the treadmill was then switched on. There was an acclimation 

period that lasted approximately one minute and was used to determine the natural 

walking speed of the participant. This was achieved by setting the walking speed to a 

pace that the participant deemed ‘’normal and comfortable’’, the speed was then 

gradually increased, if the participant voiced that the speed was too fast, the speed 

was then returned to a speed at which the participant felt comfortable at.  

However, if the participant was comfortable walking at the faster speed, the treadmill 

speed was further increased until the participant stated that the speed was too quick. 

The median speed was then determined, and this was the speed set for the 5-minute 

walk or for as long as they could manage to walk for. The treadmill was then slowed 

down gradually and eventually brought to a controlled stop. The participant was helped 

off the treadmill and offered a rest and some water.  

4.1.1.1.2 Stair Navigation 

Different stairs were used depending on which movement analysis laboratory was used 

for data capture. If the participant had a session at the Glasgow Royal Infirmary 

portable stairs were used for the stair navigation activity. This set of stairs comprised of 

five stairs up and the same five stairs down, with a rail on either side. 
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However, if the participant attended a laboratory session at the University of 

Strathclyde a set of ‘’L-shaped’’ stairs that had three stairs on one side and four stairs 

on the other side were used.  

Due to the height restrictions at the Golden Jubilee National Hospital, the stair activity 

could not take place within this movement analysis laboratory. 

Each participant started the trial a few steps away from the first step to ensure that the 

stairs were climbed in a natural manner. No instruction was given to the participants as 

to how the stairs should be navigated, and so variations existed. Differences as to 

which foot strikes the first step varied between participants, while further differences 

were presented in the stair navigation approach used (step-by-step or step-over-step), 

some participants used the handrails or their walking device which would further result 

in variation within the data. These factors should be taken into consideration when 

interpreting the results.  

4.1.1.1.3 Get up and Go Test 

Each participant was asked to sit on a stool in a relaxed position with their knees bent, 

when instructed to get up and walk by the researcher, the participant then stood up 

from the stool and walked at a comfortable walking pace to a 3-metre line which was 

marked on the laboratories floor with black tape. Once the participant had reached this 

line, they were then asked to turn around and walk back towards the stool and return to 

the seated position. This action was repeated three times.  

4.1.1.1.4 Active Flexion and Extension 

Each participant was asked to perform a standing active full ROM knee flexion and 

extension movement. The participant was asked to stand in the centre of the 

laboratory, a support structure was placed in front of them to aid in their balance. 
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When the researcher instructed the participant to do so, they were asked to flex their 

sensored leg as much as possible and then return it to the fully extended position, 

ensuring their foot was flat on the ground. This movement was repeated three times.  

TKA participants were required to flex their operated leg as much as they were able to 

do before they felt stiffness and pain. These participants struggled to do this movement 

1-week postoperatively due to pain and swelling. Furthermore, limited ROM was 

presented within this population, with many participants displaying difficulty 

straightening their leg. 

4.1.1.1.5 Cycling 

The cycling activity was only completed by the healthy able-bodied participants. TKA 

participants were not required to complete this activity.  

Before the participated mounted the stationary bicycle the saddle height was adjusted 

to each participants normal riding height. The saddle height was determined by 

adjusting the saddle to what the participant considered to be their normal comfortable 

saddle height. The height of the saddle varied from participant to participant, some 

participants preferred a higher saddle that resulted in smaller degrees of knee flexion, 

while others preferred a lower saddle height, causing an increase in knee flexion angle.  

The handlebars of the bicycle were raised in order to minimise marker obstruction, this 

resulted in all participants cycling in a more upright position. The resistance was set to 

an easy effort to prevent fatigue and to ensure a constant cadence was maintained. 

Once the bicycle was setup, the participant was then asked to start pedalling at a 

leisurely speed that they could maintain for two minutes.  

4.1.2 PROM Questionnaires 

In addition to the functional activities, each TKA participant completed three PROM 

questionnaires, namely the Forgotten Joint Score - 12 (FJS), the Oxford Knee Score 

(OKS) and the Knee Injury and Osteoarthritis Outcome Score for Joint Replacement 
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(KOOS JR) (Appendix 1, Section 9.5). Each questionnaire was completed before the 

start of each session and then transcribed into excel following the completion of the 

session for analysis.  

All questionnaires have been converted to a scale out of 100 and ranked so that higher 

scores can be interpreted as more favourable outcomes to ensure that each 

questionnaire can be compared against one another. 

KOOS JR was used to assess patient-reported pain, symptoms, ability to complete 

ADLs independently, sports and recreation function, and knee-related quality of life 

(Beynnon, Roos and Roos, 1998). It produces a final score for each subscale, ranging 

from 0 - 100, with 0 indicating “severe difficulties” and 100 signifying “no problems at 

all.” This questionnaire is extensively used and is both valid and sensitive to changes in 

patients with knee osteoarthritis undergoing conservative or surgical treatment. This 

score is commonly used to evaluate both immediate and long-term outcomes post 

TKA, with higher scores representing perfect knee health. For this study, this scoring 

system was left unchanged. 

The FJS is a 12-question questionnaire, with scores ranging from 0 - 4. FJS is used to 

assess the patient’s ability to forget about their operated artificial joint during different 

ADLs. Higher scores indicate that patients are less aware of their joint, suggesting a 

better outcome (Porter et al., 2023). For this study, the FJS was converted to a raw score 

scale of 100 to allow for comparisons between PROM questionnaires.  

The OKS evaluates joint limitations and pain after surgery and consists of 12 questions 

scored between 0 - 4 with greater scores indicating better functional outcomes post 

TKA (Sajjadi et al., 2019). The OKS was converted to a raw score scale of 100 to allow 

for comparisons between PROM questionnaires. 
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4.2 Study Protocol Summary 
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4.3 Ethics 

Before the study could take place, ethical approval was required. The study was carried 

out in accordance with the standards of Good Clinical Practice (GCP). All members of 

the research team had an up-to-date research passport and GCP training (Appendix 2, 

Section 10.4.1). Ethical approval of the study protocol was granted by the departmental 

ethics committee at the Department of Biomedical Engineering, University of 

Strathclyde for younger healthy participants and the NHS Ethics committee, West of 

Scotland REC 4 for the older healthy and TKA populations (See Appendix 1 Section 

9.4.1  for Departmental Ethics and Appendix 1 Section 9.4.2 for NHS Research Ethics 

IRAS project ID 314702). 

The University of Strathclyde Ethics was required for data collection to take place on 

the university campus and NHS ethics was required for patient recruitment and data 

collection to take place on NHS grounds. Upon receiving ethical approval 20 younger 

healthy adults aged between 20 - 36 years old, 14 older healthy adults aged between 60 

- 84 years old and 10 TKA patients aged between 53 - 71 years old consented and 

participated in this study.  

4.4  Participants 

The healthy cohort consisted of younger participants who were recruited through the 

University of Strathclyde’s biomedical engineering email list, and a group of older 

participants who were recruited through the University of Strathclyde’ ageing network.  

Post hoc stratification of age cohorts was performed in the absence of pre-specified 

recruitment criteria for participant age. Accordingly, participants were retrospectively 

classified into two groups: younger participants, defined as those under 40 years of 

age, and older participants, defined as those over 55 years of age. This delineation was 

applied solely for subsequent subgroup analyses and was not a condition of initial 

study enrolment. 
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The TKA participants were recruited through the NHS mailing list and at orthopaedic 

clinics at the Golden Jubilee National Hospital, Clydebank with the help of Dr. Alistair 

Ewen or at the Glasgow Royal Infirmary, Glasgow with the help of Dr. James Doonan. 

4.4.1 Recruitment Criteria  

The inclusion criteria used for participant recruitment for both the healthy and clinical 

populations is described in Table 4-2. 

Table 4-2 Inclusion and exclusion criteria used for participant recruitment. 

Healthy Control Group 

Inclusion Criteria Exclusion Criteria 

- Able bodied 
- Normal lower limb function 
- Free from lower limb musculoskeletal 

injuries and no prior lower limb surgeries 
- Able to perform specific activities of 

daily living 
- Willing to take part in study 

- Any known underlying musculoskeletal, 
neurological or cognitive condition that 
may affect motor control and/or 
movement 

- Weight >135 kg /300 lbs/21 stones 3.62 
lbs 

- Pregnancy or thought to be pregnant 
- Unable to give written consent 

TKA Clinical Group 

Inclusion Criteria Exclusion Criteria 

- Received TKA surgery on one knee only 
(at the time of study) 

- Indicated for primary TKA with a primary 
indication of osteoarthritis will be 
identified by a consultant orthopaedic 
surgeon 

- Able to perform specific activities of 
daily living 

- Over 18 years old 
- Willing to take part 
- Able to return for follow up sessions 

- Contralateral knee pain 
- Contralateral knee arthroplasty 
- Any other lower limb impairments 

(apart from the affected knee) which 
inhibit normal functional movement 

- BMI > 35 
- Participation in any other clinical trial or 

study 
- Pregnancy or thought to be pregnant 
- Unable to give written consent 
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4.4.2 Recruitment Strategy 

Different recruitment strategies existed between the different population pools. These 

strategies are described in the flowcharts below. Figure 4-1 and Figure 4-2 outline the 

processes taken from initial point of contact to the point at which data capture 

occurred. 
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Figure 4-1. Flowchart describing the recruitment strategy and data collection methods used for the healthy older and younger adults. 
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Figure 4-2. Flowchart describing the recruitment strategy and data collection methods used for TKA patients. 
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4.4.3 Recruited Participants 

Following recruitment and obtaining informed consent from participants (Appendix 1, 

Section 9.3), a date and time for data collection was agreed and scheduled. The 

descriptive characteristics of the patients who participated in the data collection are 

summarised in Table 4-3 below. 

Table 4-3. Descriptive statistics for all recruited participants, including healthy older and younger adults 
and the TKA population. Results are presented as a mean (SD) for continuous data and a number for 
dichotomous data. 

 

F: Female; M: Male; R: Right; L: Left; H: High; M: Medium; L: Low 
ap<0.001 between younger vs older adults 
bp<0.001 between younger vs TKA adults 
cp<0.05 between younger vs TKA adults 
dp<0.05 between older vs TKA adults 
ep<0.05 between younger vs older adults 
 

 
Younger 

Adults 

Older 

Adults 

All Healthy 
Participants 

TKA 

Adults 

Number of participants 20 14 34 10 

Age (years)ab 24.05 (3.85) 70.57 (5.42) 43.21 (23.67) 62.4 (6.67) 

Age Range (years) 20 - 36 60 - 84 20 - 84 53 - 71 

Weight (kg)cd 69.09 (12.96) 72.39 (12.60) 70.43 (12.73) 88.02 (15.61) 

Height (m)de 1.76 (0.11) 1.68 (0.09) 1.73 (0.11) 1.73 (0.12) 

Body Mass Index (kg/m2) cde 22.28 (2.87) 25.48 (3.22) 23.60 (3.37) 30.09 (3.22) 

Sex (F/M) 8 / 12 10 / 4 18 / 16 4 / 6 

Physical activity level (H/M/L) 11 / 9 / 0 12 / 2 / 0 23 / 11 / 0 2 / 7 / 1 

Dominant Limb (R/L) 18 / 2 12 / 2 30 / 4 7 / 3 

Lower Limb sensor worn (R/L) 9 / 11 14 / 0 23 / 11 7 / 3 
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4.5 Motion Analysis 

Each healthy participant attended a single testing session either at the biomechanics 

laboratory at the University of Strathclyde or at the Human Performance Laboratory in 

the Clinical Research Facility of the Glasgow Royal Infirmary.  

While the TKA patients attended three testing sessions: one session preoperatively, one 

session 1-week postoperatively and a final session 6 weeks postoperatively at either 

the Human Performance Laboratory in the Clinical Research Facility of the Glasgow 

Royal Infirmary, or the Movement Analysis Laboratory of the Golden Jubilee National 

Hospital. 

During the laboratory session, the participant read through the participant information 

sheet (Appendix 1 Section 9.2) and was invited to ask any questions before signing the 

consent form (Appendix 1 Section 9.3). The participant then changed into appropriate 

clothing. 

The participants were asked to wear tight-fitting sports clothes and comfortable 

walking shoes. If the participant did not have tight clothes, Lycra bike shorts were 

provided.  

Once appropriately clothed the participants anthropometric data was collected in 

accordance with the lower body PIG protocol (Vicon Motion Systems, Oxford, UK) 

which included the participants body mass, height, leg length, knee width and ankle 

width. These measures were required for data processing.  

The participant was then palpated, and 16 retro-reflective markers were placed on 

specific anatomical bony landmarks as according to the PIG lower limb body model 

marker set (Vicon Motion Systems, Oxford, UK) using double sided tape (Figure 2-4 and 

Figure 4-3). Following marker placement two MotionSenseTM sensors were placed on 

the lateral thigh and lower leg on one side only (Figure 4-4). 
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The younger participants and certain TKA participants (TKA01 – TKA05)  had a second 

wired IMU sensor attached to their lower leg on the lateral thigh and shank on the same 

side as the MotionSenseTM sensors which captured accelerometer and gyroscope data 

(Figure 4-5). The wired IMU sensor was not worn by the older healthy population and 

only a select number of TKA patients as it had stopped working. 

For the younger adults the MotionSenseTM sensor was randomly worn on the left or right 

side, however for the older adults the sensors were worn on the right side only to aid 

video capture in the Clinical Research Facility at the Glasgow Royal Infirmary. The 

sensors were worn on the side of the operated leg for the TKA cohort.  

 

 

Figure 4-3. Plug-in Gait lower limb model marker locations. 
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Figure 4-4. Participant with lower body Plug-in-Gait marker model, and left and right sagittal view of 
participant with MotionSense™ sensors attached to their thigh and shank. 
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Figure 4-5 Participant with lower body Plug-in-Gait marker model and wired IMU device. 

 

The retro-reflective markers were tracked by a 12-camera Vicon T-series system at the 

University of Strathclyde and at the Golden Jubilee National Hospital, while a 15-

camera Vicon Bonita system was used at the Glasgow Royal Infirmary (Vicon Motion 

Systems, Oxford, UK).  

The MotionSenseTM sensors each consisted of a triaxial IMU, including a gyroscope, 

accelerometer, and magnetometer. The data was received and collected at ~50Hz via 

Bluetooth to an App on a mobile device in real-time and converted to knee angle using 

a combination of Madgwick filters (Madgwick, 2010; Madgwick Orientation Filter — 

AHRS 0.3.1 Documentation, 2019.) to estimate knee orientation while the 

transformation matrix between the two sensors was calculated to estimate knee angle.  

Though knee angle determined by the MotionSenseTM sensor was calculated by a 

propriety algorithm within a mobile phone App, these knee angle measurements were 

later downloaded onto a computer as .csv files for data analysis. The MotionSenseTM 
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sensors outputs different measures such as knee flexion, number of steps, ROM, and 

time spent weightbearing all calculated through the propriety sensor software. 

The wired sensors differ to the MotionSenseTM  device, the wired sensors measure raw 

accelerometer, magnetometer and gyroscopic data which is collected at 200Hz and is 

stored within the data logger. These measures were later downloaded onto a computer 

using an unpacking software and were saved as .mat files. Once the data had been 

transferred from the logger to a university computer a bespoke algorithm written in 

collaboration with Philippe Martin (MINES Paris Tech) based off the Seel algorithm 

(Seel, Raisch and Schauer, 2014) was then implemented into MATLAB (MathWorks, 

2024). Using the Seel algorithm (Seel, Raisch and Schauer, 2014) enabled knee flexion 

angle to be determined using the raw IMU measures while using a very similar filtering 

method to that of the MotionSense™ commercial device, while offering the opportunity 

to validate this approach. This methodology will be detailed in section 4.11 below and 

will from here on out be referred to as the Seel Algorithm.  

As different locations were used for data capture, to ensure all laboratories capture 

motion accurately to ensure fair comparisons, each Vicon opto-electronic motion 

capture system was calibrated using the same calibration procedure. The calibration 

protocol was performed at the beginning of every data capture session as follows; upon 

arrival the Vicon opto-electronic system was switched on, to allow the cameras to 

warm up for at least 30 minutes. All reflective objects and camera obstructions were 

removed from the capture volume, for larger objects that caused reflection but that 

could not be removed the mask tool was used.  

The researcher then carried out a dynamic calibration which involved moving a 

calibration wand that has retro-reflective markers of a known, set distance within the 

camera capture volume in view of all cameras. This ensures that the cameras position 

is set relative to the capture volume using a direct linear transform. This is achieved by 

calculating the calibration wands marker positions in each of the camera’s two-

dimensional image and converts this information into a three-dimensional co-ordinate 

system. This process allows for any markers placed inside the capture volume to be 

accurately tracked. 



 

152 

 

The volume origin of the movement analysis laboratory was then set by performing a 

static calibration, by placing the calibration wand on the floor in the centre of the 

laboratory in a fixed location, Figure 4-6. Vicon Nexus computer software calculates 

the relationship between the retro-reflective markers on the wand in three-dimensions 

against the two-dimensional positions of the calibration wands markers that are 

captured in each of the camera’s field of view. This allows the cameras to be calibrated 

with respect to the laboratories global orientation system.  

 

 

Figure 4-6. a) Calibration wand used for the calibration protocol. b) Setting the volume origin of the 
laboratory as part of the calibration procedure, to determine the global coordinate frame. 

 

A world error below 0.6 was considered acceptable, if the error was higher in any one of 

the cameras the calibration protocol was carried out from the beginning until an 

acceptable world error was achieved. Once calibration was complete the video 

cameras were switched on and ready to record the full session if the participant had 

consented to this. 

4.6 Equipment 

Though much of the experimental methodology and study protocols are consistent 

between the three population groups, three different movement analysis laboratories 

(Glasgow Royal Infirmary, Golden Jubilee National Hospital and University of 

Strathclyde) were used for data capture.  

a)  b)  
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Motion capture systems were consistent between all locations as each movement 

analysis laboratory made use of Vicon cameras which capture data at a frequency of 

100Hz. Vicon Nexus software version 2.13 was used at each location to calibrate the 

laboratories and to record data. Though the motion capture equipment and software 

used was the same across all locations, the equipment differed depending on the site.  

4.6.1 Treadmill  

Treadmill walking data captured at the University of Strathclyde was captured on the 

CAREN Motek system (Motek Medical, Amsterdam, NL). While treadmill walking data 

collected at the Glasgow Royal Infirmary’s movement analysis laboratory and at the 

Golden Jubilee National Hospital, was captured on a basic gym treadmill within the 

laboratory, Figure 4-7.  

The Motek CAREN system is an advanced treadmill with a double belt system and 

safety harness. The speed of the treadmill can be controlled by the operator by shifting 

the speed on the console, or it may be determined by the participant if set to self-paced 

mode. However, for this study, it was treated as a standard gym treadmill with the 

speed dictated by the participant and set by the operator, and the incline kept level. 

The standard gym treadmill had handrails on either side of the belt to provide support 

for the participant. The speed and incline of the treadmill can be manually adjusted 

through the console, however, for this study the incline was kept level, while the speed 

was dictated by the participant and set by the operator.  
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Figure 4-7. Treadmill set up at a) Strathclyde university and b) the Glasgow Royal Infirmary and Golden 
Jubilee National Hospital. 

 

4.6.2 Stairs 

There were no stairs available at the Golden Jubilee National Hospital as the ceiling 

was too low to allow stairs to be safely navigated by the participants. However, the 

stairs at the University of Strathclyde differed to those at the Glasgow Royal Infirmary, 

Figure 4-8. 

The stairs used at the University of Strathclyde consisted of three stairs on one side, 

and four steps on the other. While the stairs used at Glasow Royal Infirmary’s 

movement analysis laboratory consisted of five stairs up and down. Both stairs had 

railings on either side, which the participants were free to use if they felt they needed to 

do so. As different sets of stairs were used, the height and depth of the steps also 

differed.  

 

a) b) 
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Figure 4-8. Laboratory set up for stair navigation at a) Strathclyde University and b) Glasgow Royal Infirmary. 

 

4.6.3 Stationary Bicycle 

The cycling data was captured using a stationary bicycle. The stationary bicycle used at 

each location was the same, the Monark Ergomedic 828E, Figure 4-9. This stationary 

bicycle is fully adjustable. The saddle can be positioned forwards and backwards, the 

seat raised up or down and the handlebars can also be increased or decreased in 

height depending on the height of the participant. The resistance of the bicycle can be 

adjusted using the dial at the front of the bicycle.  

 

Figure 4-9.Monark Ergomedic stationary bicycle. 

a) b) 
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4.6.4 ROM Stability Platform 

To complete the full range of motion flexion/extension exercise a vertical platform 

(Figure 4-10) was designed and then used to maintain the participant’s balance. The 

platform was positioned in the centre of the room, with a 20kg weight placed on the 

base to ensure its stability.  

The participant could then, hold onto the platform to keep their balance when 

performing full flexion and extension. The platform was 1 metre tall and made from light 

weight wood to ensure it was both sturdy enough to support the participant, yet light 

enough to ensure it was portable. The same platform was used at each location. 

 

Figure 4-10. Full range of motion flexion/extension stability platform, used to maintain balance during the 
Flexion/Extension activity. 

 

4.6.5 Stool 

The sit-to-stand and stand-to-sit activity was isolated from the Get Up and Go Test. The 

stool used for this activity, was a foam stool with no back rest or arm rests (Figure 4-11), 

this was to ensure minimal marker obstruction occurred. The stool was set to a height 

of 480mm, the seat had a foam seat covering that measured 45mm thick and had a 

stiffness of 10.1kg/mm. The height of the stool was kept constant. 
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Figure 4-11.a) Participant seated on stool, and b) the stool used to perform the Get up and Go activity. 

 

4.7 Consent Forms and Data Storage 

Consent forms were kept confidential, stored indefinitely (with consent) in a locked 

cabinet in the Department of Biomedical Engineering at the University of Strathclyde. If 

a participant granted consent, video recordings were taken within the laboratory.  

Additionally, all personal information recorded during the laboratory sessions were 

saved as a backup in a password protected folder on a password protected University 

of Strathclyde computer and on a password protected external hard drive. An ID key 

code links the collected data to each participant. The coded list is stored in a locked 

cabinet at the University of Strathclyde in the Department of Biomedical Engineering.  

Any identifying material such as the coded key list, consent forms and kinematic data 

are only accessible to the named researchers within the departmental and NHS ethics 

application. All data, for both healthy and TKA participants was pseudonymised, 

however after 5 years after the completion of this study the coded key will be 

destroyed, and the data will become anonymous. Participants who volunteered for this 

study were all assigned a unique study ID number.  

a) b) 
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All hard copies of the data are kept in locked cabinets at the University of Strathclyde 

and are only accessible to members of the research team. All kinematic data collected 

during laboratory sessions were stored on a password protected computer and saved 

on a password protected external hard drive as a backup. All other related electronic 

data linked to this study were stored on university computers and were only accessible 

to members of the research team using their usernames and passwords. No personal 

data were or will be published of any participant. 

4.8 Data Processing  

4.8.1 Vicon Kinematic Data 

Each trial was cropped in Vicon Nexus to include only the relevant data and if any major 

gaps were identified during the start or the end of the trials these sections could be 

excluded from the data. Each activity was cropped to include as much of the trials as 

possible. 

Anatomical markers were then labelled using the Vicon Nexus software and each 

individual trial was manually checked for any maker gaps or mislabels within the data. 

If any mislabelling did occur, these maker trajectories were then manually corrected 

and if there were any gaps in the data due to marker obstructions, these too were 

corrected by filling these gaps with built in mathematic algorithms within the Nexus 

software. 

The Woltring quantic spline fill was used for gaps of less than five frames. This method 

of gap filling makes use of interpolation to calculate the position of the marker within 

the gap, by using the position of the last and the next known marker position and 

interpolating the markers within the gap from that information. Pattern fill was used for 

larger gaps which fill markers within the gap by selecting ‘’source’’ markers that are 

present within the gap and filling the gap based upon the relationship between the 

markers present in the gap with the markers absent in the gap.  

For any gaps present within the treadmill walking and cycling data, the cyclic fill was 

used. This type of gap filling uses patterns from the gait cycles earlier or later in the 
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data to fill missing markers. As treadmill walking and cycling are both cyclic in nature, 

this method of gap filling is most appropriate. 

Once the gaps had been filled, the Vicon opto-electronic data was exported as .c3d 

files ready for data analysis. 

4.8.2 IMU Sensor Data 

The data recorded by the MotionSense™ commercial sensors were manually copied 

over from an android mobile phone onto a computer after each data collection session. 

Each activity recorded by the MotionSense™ device were saved in separate files to aid 

analysis. These files were labelled with the same activity code as the corresponding 

Vicon file. 

For data to be extracted from the wired IMU device and saved onto a computer, the 

data needed to be ‘unpacked’. Unzipping software read in the compressed IMU data 

and decompressed, extracted and saved the data in separate .mat activity files. These 

files were then relabelled to match the corresponding activity codes of Vicon. This was 

carried out after each laboratory data capture session to prevent overriding of data. No 

data was collected from the older healthy population, as the wired IMU device had 

stopped functioning which prevented data from being captured on this device. 

All data for each participant was saved in separate coded folders according to their 

participant ID. All activity data collected from the different technologies were labelled 

using the same activity code to ensure corresponding files were appropriately linked to 

one another.  

4.9 Data Analysis  

The data analysis between Vicon and MotionSense™ differed to that of Vicon and the 

wired IMU sensors, as the functionality of each sensor was slightly different. 

MotionSense™ outputs knee flexion angles directly, while the wired sensor outputs raw 

IMU measures. Therefore, different MATLAB (MathWorks, 2024) scripts were used to 
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carry out the analysis of these two devices. The approaches used to compare the 

commercial MotionSense™ wearable device against Vicon opto-electronic motion 

capture will be described independently to the methods used to compare the knee 

flexion angle calculated from the wired IMU device against Vicon opto-electronic 

motion capture. 

4.9.1 Motion Data Captured from the MotionSense™ Device 

To effectively compare the MotionSense™ commercial IMU sensor measures to that of 

Vicon opto-electronic motion capture, a custom semi-automated process was created 

in MATLAB (MathWorks, 2024). An outline of the process is detailed in flowcharts 

(Appendix 2 Section 10.2.1). 

For each activity, the same procedure was carried out on both Vicon and 

MotionSense™ data. Firstly, to reduce noise and smooth trajectories, the data was 

filtered by applying a fourth order zero lag Butterworth filter with a cut off frequency of 

8Hz.  

A Butterworth filter was chosen as it is a commonly used filter in gait analysis because 

of its smoothing frequency response and minimal distortion (Roithner and 

Schwameder, 2000; Yu, 1999). As the MotionSense™ data was already filtered by the 

proprietary internal algorithm, to avoid over filtering and further attenuation of the 

signal components, a higher cut off frequency of 8Hz was chosen to preserve as much 

data as possible while still smoothing any remaining high-frequency noise (Bartlett, 

2014; Schreven, Beek and Smeets, 2015). 

The sampling frequency differed between Vicon (100Hz) and MotionSense™ (~50Hz). 

Therefore, MotionSense™ data was up sampled to a frequency of 100Hz using the 

MATLAB (MathWorks, 2024) interp1 function, to match the sampling frequency of the 

Vicon data.  

Though the researcher made an attempt to simultaneously begin data collection from 

both of the devices, the systems were not linked nor communicated with one another. 
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Therefore, the starting times were marginally different between the two technologies. 

To ensure accurate analysis between the two systems the two signals were time-

synchronised over the entire activity period. Time synchronisation was achieved by 

maximising the cross-correlation of the signals before any comparisons were made. 

Manual application of the retro-reflective markers and MotionSense™ sensors on the 

leg can result in a different zero angle for the knee for each technology. These 

differences arise due to differences in calibration methods between the technologies 

and differences in the accuracy of sensor and marker placement on the body. This 

offset difference was reduced by adjusting the sensor angle so that its mean value 

equalled that of the mean Vicon angle across the entire activity. 

This difference was typically small and resulted in a more meaningful comparison of 

the technologies by minimising any manual experimental errors resulting from marker 

and sensor placement. 

4.9.1.1 Functional Activity Analysis  

Once the data had been processed and was in a usable format, ready for analysis, gait 

events were then manually determined using a bespoke graphical user interface (GUI), 

Figure 4-12. The GUI displayed the lower limbs of the participant, which provided a 

visual aid linking the measures to specific stages of a movement. 

To ensure that the analysis focussed on the most relevant and meaningful sections of 

data, the GUI was used to effectively segment the data into meaningful isolated 

portions depending on the activity being analysed. The indices of these isolated data 

portions were stored to ensure that the same section of data was analysed across all 

devices. Each activities segmented data portion consisted of 100 interval points to 

represent 100% of the gait cycle. 
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Ten gait cycles were manually identified from heel strike to heel strike by visually 

identifying and selecting individual heel strikes during the walking activity, these heel 

strikes were determined from foot marker trajectories using the GUI, Figure 4-12. 

For the stair navigation activity, foot marker trajectories were used to determine one 

complete step for both the stair ascent and stair descent, by tracking the heel marker 

of the sensored leg. The stair navigation activity was isolated from initial contact to 

initial contact. 

Despite participants performing at least a 3-step ascent and descent, only one full gait 

cycle per trial could be analysed from initial contact to initial contact. As not all 

participants completed a full stair with their sensored leg, because of the stair 

arrangement.  

Again, using the GUI ten individual pedal strokes were isolated for the cycling activity. 

The individual pedal strokes were selected starting and ending at the 6 o’clock position 

(Figure 4-13) where the knee joint is at maximum extension during the pedal stroke. The 

heel marker was tracked together with the knee flexion angle to determine a complete 

pedal stroke.  

Despite the participants cycling for 2 minutes, the first ~1 minute was used as a 

habitation period, to ensure a natural pedal stroke and comfortable cadence was 

Figure 4-12. Example of a lower limb display using the bespoke GUI for identification of gait events. 
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reached, thereafter the first ten complete pedal strokes were manually identified and 

selected where no marker obstructions and dropouts occurred.  

 

Figure 4-13. Percentage cycle of the pedal stroke for the cycling activity, 0% represents maximum knee 
extension, while 50% represents maximum knee flexion. 

 

To isolate a complete flexion and extension movement the GUI was used to determine 

individual flexion and extension repetitions (three in total). The start and end points 

were defined from the point where the knee is in full extension and ended once the 

knee angle had returned to full extension after a maximum flexion had been 

completed, Figure 4-14. 
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Figure 4-14. Full range of motion flexion/extension activity in the standing position (Patel, 2013). 

 

Due to marker obstructions and participants walking in and out of the motion capture 

volume during the Get Up and Go activity, this activity was divided into two separate 

sub movements to aid analysis. These movements were separated into the sit-to-stand 

movement and the stand-to-sit movement, Figure 4-15. 

The sit-to-stand movement was characterised from the point where the participant was 

seated comfortably on the stool, with their legs bent at ~ 90 degrees, to the point where 

they were standing fully upright and ready to start walking, just before they took their 

first step. The stand-to-sit movement was identified from the point when the 

participant was standing just in front of the stool, once they had returned from the 3-

metre mark to the point where they were seated at rest with their legs bent at ~ 90 

degrees. These activities were isolated by implementing the same GUI as before.  
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Figure 4-15. a) Sit to stand movement isolated from the Get Up and Go activity. b) Stand to sit movement 
isolated from the Get Up and Go activity. 

 

As this movement was not specifically a sit to stand and a stand to sit exercise some 

differences may exist when reviewing the movement patterns.  

Once all the relevant activity data was isolated into meaningful sections, including the 

accurate identification of the start and end points depending on the activity carried out. 

The isolated data sections consisted of 101 bins that represented the entire data set 

from 0% to 100% of the gait cycle. This enabled a final opportunity to perform a more 

precise time-synchronisation on the individual segmented data series using the same 

cross-correlation methods as before. This final time synchronisation accounted for any 

minor variation between the time signatures of the MotionSense™ device and the Vicon 

index. 

4.9.1.1.1 Description of Analysed MotionSense™ and Vicon Data 

Table 4-4 below describes the full data set considered when comparing MotionSense™ 

to Vicon. The table outlines the activities evaluated, the population type and size and 

the portion of data considered. The results presented in this thesis only consider this 

portion of data. 

a) 

b) 
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Differences in the amount of data analysed existed as varying number of participants 

attended the sessions, occluded markers resulted in gaps in motion capture data and 

corrupted sensor data prevented certain files from opening. These difficulties 

prevented complete data setsfrom being analysed, as both technologies data needed 

to be complete in order for comparisons to be drawn.  

Table 4-4. Description of the data sets used to evaluate the accuracy of the MotionSense™ wearable device 
against Vicon. 

Participant Pool ADL 
Num of 

Participants 

Num of 
Cycles per 
Participant 

Healthy Adults 

Younger 
Adults 

Walking 20 10 
Stair Ascent 19 1 

Stair Descent 19 1 
Cycling 18 10 

FE 17 3 
Sit to stand 18 1 
Stand to sit 18 1 

Older 
Adults 

Walking 14 10 
Stair Ascent 14 1 

Stair Descent 14 1 
Cycling 8 10 

FE 14 3 

TKA Clinical 
Population 

Preoperative 
assessment 

Walking 6 10 
Stair Ascent 4 1 

Stair Descent 4 1 
FE 5 3 

1 Week 
postoperative 

Walking 2 10 
Stair Ascent 2 1 

Stair Descent 2 1 
FE 0 3 

6 Weeks 
postoperative 

Walking 4 10 
Stair Ascent 4 1 

Stair Descent 4 1 
FE 5 3 

FE: Flexion/Extension, Num: Number, ADL: Activities of Daily Living 
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4.9.2 Motion Data Captured from Wired IMU 

The wired IMU sensor which operated using the Seel Algorithm functioned differently to 

MotionSense™. Therefore, independent MATLAB (MathWorks, 2024) scripts were coded 

to determine the accuracy of the wired IMU device compared to Vicon data.  

The wired IMU device outputs raw unprocessed data (three dimensional gyroscopic, 

accelerometer and magnetometer measurements) of both the thigh and shank. To 

effectively compare the accuracy of the wired IMU sensor to that of Vicon motion 

capture, the IMU data was first put through the Seel algorithm (Seel, Raisch and 

Schauer, 2014) to calculate knee flexion angle. The working theory of this is detailed in 

section 4.11. 

Following the calculation of knee flexion angle from the raw IMU data, gaps in data were 

filled and the data was then filtered. Filtering the data reduced the noise and smoothed 

the data. The IMU data was filtered in the same manner as described previously, 

however, for this IMU device a cut off frequency of 3Hz was chosen. A cut off frequency 

of 3 Hz is commonly chosen for gait analysis as primary movement frequencies in 

human gait normally fall within this range and because no internal filtering occurred 

pre-analysis, a lower cut off frequency was chosen compared to that of the 

MotionSense™ device (Bartlett, 2014; Schreven, Beek and Smeets, 2015).  

The sampling frequency differed between Vicon (100Hz) and the IMU wired sensor 

(200Hz), in order to effectively compare the two signals, the Vicon data was 

interpolated using the MATLAB (MathWorks, 2024) interp1 function to match the 

sampling frequency of the IMU device.  

These two devices did not communicate between one another, therefore, the two 

signals were time-synchronised over the entire activity period. Time synchronisation 

was achieved by maximising the cross-correlation of the two signals by manually 

selecting the starting positions for each signal and aligning the signals from peak to 

peak (Figure 4-16), using the xcorr function in MATLAB (MathWorks, 2024). 
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The offset difference was removed by adjusting the IMU sensor angle so that its mean 

value equalled that of Vicon across the entire activity.  

4.9.2.1 Functional Activity Analysis  

Once the data had been processed it was now in a usable format for analysis. Different 

activities were analysed individually for accurate comparisons; however, the same 

routine was carried out across each activity.  

Meaningful gait events were detected using a semi-automated routine in MATLAB 

(MathWorks, 2024). This included the manual selection of starting points of each 

activity. The starting points were determined by identifying the same peak knee flexion 

angle for both Vicon and the wired IMU sensor. Once the starting point had been 

identified on both signals, the number of cycles to be analysed per activity was 

manually inputted.  

Flowcharts in Appendix 2 section 10.2.2 outline the procedure carried out to compare 

the two technologies. 

Figure 4-16 Manual selection of starting points, by visually determining the same peak values on both 
technologies to ensure time synchronisation of the signals. 
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To ensure that the analysis focussed on the most relevant and meaningful sections of 

data, the data was segmented into meaningful portions depending on the activity being 

analysed and the number of cycles considered. For the walking activity, each 

participant had fifty gait cycles analysed, identified from heel strike to heel strike. Gait 

cycles were determined by manually selecting the peak knee flexion from both 

measurement systems. The cycling activity included fifty complete pedal strokes per 

participant, identified from the 3 o’clock position to the 3 o’clock position, Figure 4-17. 

The flexion/extension activity was analysed from full flexion to full flexion (peak to 

peak), with three complete repetitions isolated per participant. The stair navigation 

activity was segmented by manually selecting the start and end points by determining 

initial contact to initial contact of the sensored leg for both stair ascent and stair 

descent. One complete step was considered for analysis per participant.  

Once the data was segmented appropriately depending on the activity, the series were 

time-synchronised once again in each gait cycle to account for any minor variation 

between the technologies and to ensure absolute time synchronisation of signals. 

 

Figure 4-17. Phases of the pedal stroke cycle for the cycling activity 25% represents maximum knee 
extension and 75% represents maximum flexion of the knee. 
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4.9.2.1.1 Description of Analysed IMU Sensor Data 

The amount of data analysed varied depending on the population group and the type of 

activity. Differences in data quantity were due to issues such as corrupted data files, 

faulty sensors, or large gaps in motion capture data due to marker obstructions. These 

difficulties prevented data from being analysed, as both technologies data needed to 

be complete in order for comparisons to be drawn. For example, no IMU data was 

collected from the healthy older adults because the wired IMU sensor malfunctioned 

and there was no available replacement device. 

Table 4-5 outlines the different activities evaluated, the population groups, the size and 

the portion of data considered. The results presented in this thesis only consider these 

portions of data. 

 

Table 4-5. Description of the data sets used to evaluate the accuracy of the IMU device against Vicon. 

Participant Pool ADL 
Num of 

Participants 

Num of 
Cycles per 
Participant 

Healthy Adults 
Younger 
Adults 

Walking 15 50 

Stair Ascent 9 1 

Stair Descent 9 1 

Cycling 18 50 

F/E 10 3 

TKA Clinical 
Population 

Preoperative 
assessment 

Walking 3 50 

1 Week postoperative Walking 2 50 

6 Weeks 
postoperative 

Walking 4 50 

F/E: Flexion/Extension, Num: Number, ADL: Activities of Daily Living 
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4.10 Statistical Analysis  

The accuracy of both wearable sensors (MotionSense™ and the wired IMU device) was 

evaluated using the mean signed error and RMSE between Vicon and the sensor data 

across the entire activity and where possible individual repetitions were analysed. 

Pearson’s correlations of coefficient (r) were determined between the sensor data and 

Vicon. While Spearman correlations of coefficients (𝜌) were determined between 

objective and subjective outcome metrics for the clinical TKA population to detect 

general trends in recovery, without assuming relationship directions. 

A clinically significant difference between measures was taken if the difference 

exceeded ±5°, where a RMSE < 5° was considered to be clinically acceptable. 

Maximum and minimum knee angles in addition to the ROM, for both the processed 

Vicon and sensor data were determined from each gait cycle and averaged across all 

gait cycles (mean ± SD) for each activity and every participant.  

One-way ANOVA tests compared participant demographics and all outcome 

measures.  

In this research SE provided information on the accuracy of the wearable device 

throughout the movement cycle. SE highlighted the mean error between Vicon and the 

IMU technologies at each time point during the movement cycle. It was calculated as 

the standard deviation of the error values (variability in the differences between the two 

technologies) divided by the square root of the number of samples (participants). This 

provides an estimate of how much the sample mean error deviates from the true mean 

error for the entire population (Nevill, 1998). 

All statistical analysis was performed using Minitab Statistical Software (Minitab, LLC v. 

22, USA) using a 0.05 level of significance.  

A widely used conventional visual method to assess whether two measurement 

systems are in agreement with one another is the Bland-Altman plot (Riffenburgh and 

Gillen, 2020). This plot displays the difference between the two systems across the full 
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measurement range, highlighting areas where larger differences exist, if any systematic 

differences (bias) are evident and whether errors are random. They are essential when 

comparing the same measurements from two different methods, and are a good 

representation of precision, and accuracy within a device.  

In order to interpret the Bland-Altman plot it is important to understand the 

characteristics of the plot and what both axes represent. The x-axis represents the 

average of the two measurement systems at each data point while the y-axis depicts 

the difference between the two measurement systems. If the two systems are identical 

all data points would cluster around the zero line, and the differences would be small.  

The mean difference, or bias line, is a horizontal line that displays the mean difference 

between the systems. If this line is close to zero, the two methods are very similar, 

however, if the line strays further away from zero, it indicates systematic bias, where 

one method consistently overestimates or underestimates compared to the other.  

The final feature of this plot are the limits of agreement which are two lines, placed 2 

standard deviations from the mean difference line, and represent the interval in which 

95% of the differences between the two methods are expected to lie. Narrower limits 

indicate a better agreement. The shape of the data should show random scatter with no 

trends, and differences should ideally follow a normal distribution across the range of 

measurements. 

For the purposes of this thesis, directional arrows have been added to the Bland-

Altman plots to indicate the progression through the gait cycle. These arrows, along 

with the designated start and stop points, provide a visual reference for identifying 

specific stages within the gait cycle, aiding in its interpretation. 

Bland-Altman plots in conjunction with mean signed error plots were used to visually 

display differences between the measurement systems, highlighting, areas of closer 

and lesser agreement.  
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Furthermore it is important to highlight that in this study, only one movement cycle per 

participant was analysed for certain activities (stair ascent and stair descent activities). 

This was due to the physical limitations of the available laboratory setup for the stair 

navigation activity, which allowed for the capture of only a single complete cycle per 

trial due to the stair arrangement. Whereas marker dropout and corrupted sensor data 

limited the sample size of the get up and go activity that was then analysed as two 

separate sit to stand and stand to sit movements. However, wherever possible more 

movement cycles were included for a more robust analysis.  

It is recognised that in populations such as individuals post-TKA, gait patterns can 

exhibit increased variability due to compensatory strategies, residual pain, muscle 

weakness, or limited joint ROM. In such cases, analysing multiple gait cycles is critical 

to account for this variability and to ensure that the data reflect consistent movement 

patterns rather than isolated anomalies. 

To address this, for activities not constrained by the experimental setup, such as level 

walking, multiple gait cycles were analysed. This approach ensures a more robust 

representation of movement in the TKA population where variability is a known factor. 

For stair negotiation, although only one cycle could be captured, care was taken to 

ensure it was representative and free from external disturbances or compensatory 

deviations. When interpreting findings from single-cycle data, these limitations are 

acknowledged, and results are considered within the context of the broader dataset. 
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4.11 Implementation of the Seel Algorithm  

In order to compare the wired IMU sensor against Vicon opto-electronic motion 

capture, knee angle measurements are determined from the raw IMU data. The 

methodology is adapted from methods described in (Seel, Raisch and Schauer, 2014; 

Seel and Schauer, 2016) and implemented into MATLAB (MathWorks, 2024). The Seel 

algorithm utilises a similar approach to the Madgwick filter (Madgwick., 2010), which is 

used in the proprietary algorithm adopted by the MotionSense™ wearable technology. 

The Seel algorithm was compiled into MATLAB (MathWorks, 2024) scripts by Philippe 

Martin for collaborative validation, making it the preferred choice. 

The theory and technical implementation behind this methodology is described below, 

together with a brief explanation of its practical applications. This method has been 

implemented in MATLAB (MathWorks, 2024) scripts, which are detailed and fully 

commented in Appendix 2. 

As described in (Seel, Raisch and Schauer, 2014; Seel and Schauer, 2016), and for the 

purpose of this study we only consider the accelerometer (a) and gyroscopic (g) 

measures, while the magnetometer data is ignored. Each participant had two IMU 

sensors mounted on their lower leg, one on their thigh (IMU1) and the other on their 

shank (IMU2), Figure 4-18.  

Each IMU has an associated coordinate system (local coordinate system). It is 

important to note that these local coordinate systems are different to the anatomical 

coordinate systems of the thigh and shank on which these devices are mounted on, 

and that these local coordinate systems may differ between IMU devices depending on 

their mounting orientations, Figure 4-18 and Figure 4-19. 
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Figure 4-18. IMU devices attached to the lower leg, one on the thigh and the other on the shank, displaying 
the local coordinate system of each device and the grey dashed line representing the longitudinal axis of 

each body segment (Rhudy et al., 2024). 

 

To accurately describe the knee angle from IMU data, it is important that the local 

coordinate system of each sensor is accurately aligned with the anatomical coordinate 

system of their associated body segment (thigh or shank). However, this is often not 

achieved by the original placement of these devices on the body segments but rather is 

initially estimated.   

Firstly, the longitudinal axis of each IMU is estimated by considering the accelerometer 

data in the static calibration trial. During the static calibration, the participant stands 

upright, with their legs fully extended (flexion angle of zero) in the anatomical position 

and remains stationary.  

As gravity dominates the accelerometer in this situation, the longitudinal axis of each 

IMU can be estimated by determining the normalised contribution of each axis in the 

local coordinate system of each sensor. These local longitudinal axes of each sensor 

are not perfectly collinear with the longitudinal axes of the anatomical coordinate 

system of each segment due to misalignments. Therefore, a sensor-to-segment 
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calibration is required through the implementation of a transformation matrix to align 

the local coordinate axes of each sensor to the anatomical axes of the body segments. 

 

Figure 4-19. Lower leg with IMU sensors, displaying local coordinate system of each IMU device, joint 
centre vectors (j1/j2) and joint origin vectors (o1/o2) (Seel, Raisch and Schauer, 2014).  

 

To simplify the remaining calculations, the knee joint is assumed to act as a perfect 

hinge joint (Laidig, Schauer and Seel, 2017) and primarily rotates about the sagittal 

plane. Therefore, the angular velocity along the knee axis is considered to be minimal 

but rather occurs predominately in the sagittal plane. 
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Figure 4-20. a) Two IMU devices attached to the thigh and to the shank, with the local coordinate systems 
not aligned with the anatomical coordinate system of either segment. b) The knee is acting as a hinge joint 

connecting each IMU device attached to the respective body segment.  

 

Both IMUs shown in Figure 4-20 measure triaxial accelerations, a1(t), a2(t) ϵ ℝ3 which 

can be used to determine distance and position and triaxial angular rates, g1(t), g2(t) ϵ 

ℝ3 that provide information about the orientation, over some sampling period ∆𝑡, where 

the subscripts 1 and 2 represent the thigh and shank respectively.  

The angular accelerations of each IMU can be calculated using a third order central 

differencing approximation (Seel, Raisch and Schauer, 2014). Where g represents the 

gyroscopic angular velocities, Δt represents the sampling period, and the subscripts 1 

and 2 indicate the shank and the thigh respectively. 

Additionally, the time derivatives, ġ1(t), ġ2(t) ϵ ℝ3 of each gyroscope can be calculated by 

determining the third order approximation yielding the angular acceleration: 

 

a) 

b) 
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Equation 17 

𝑔̇1/2(𝑡) ≈
𝑔1/2(𝑡 − 2𝛥𝑡) − 8𝑔1/2(𝑡 − 𝛥𝑡) + 8𝑔1/2(𝑡 + 𝛥𝑡) − 𝑔1/2(𝑡 + 2𝛥𝑡)

12𝛥𝑡
 

 

 

Because mounting of the IMU sensors is arbitrary, the location and orientation of the 

sensors with respect to the leg segments are completely unknown and because of this 

the coordinate axis of the IMU sensors will not be aligned to that of the anatomic 

coordinate system or the longitudinal axis of the limb segment or bone. It is therefore 

necessary to determine the direction and position of the flexion/extension axis by 

exploiting kinematic constraints (Seel, Schauer and Raisch, 2012). 

To simplify the remaining calculations, the knee joint is assumed to act as a perfect 

hinge joint (Laidig, Schauer and Seel, 2017) and primarily rotates about the sagittal 

plane. Therefore, the angular velocity about the centre of the knee joint is considered to 

equal zero.  

A cost function is carried out as a means of determining the best alignment of the two 

sensors to minimise angular velocity along the knee axis (Laidig, Schauer and Seel, 

2017; Seel, Raisch and Schauer, 2014) abiding by the knee’s kinematic constraints.  

The treadmill walking file is used to determine the direction of the knee joint axis 

(mediolateral axis), as movement will occur primarily in the sagittal plane during this 

activity.  

The result of the optimisation is 3D unit vectors, j1 and j2 which correspond to the knee 

flexion axis (mediolateral axis) in the local coordinates of IMU1 and IMU2 respectively.  

An optimisation procedure is used to determine the 3D unit vectors, j1, j2ϵ ℝ3 of the knee 

joints, which correspond to the knee flexion axis in the local coordinates of the shank 

and thigh sensors, respectively. 
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j1 and j2 are constants and depend only on the orientation in which the sensors are 

mounted with respect to the joint. The angular rates, g1(t), g2(t), measured on a hinge 

joint differ only by the joint angle velocity vector and a (time-variant) rotation matrix.  

Hence, their projections into the joint plane have equal lengths for each time instant, 

described by: 

Equation 18 

‖𝑔1(𝑡) × 𝑗1‖2 − ‖𝑔2(𝑡) × 𝑗2‖2 = 0∀𝑡 

 

Where ‖   ‖2 denotes the Euclidean norm (length of the vector). This constraint holds 

regardless of where and in which orientation the sensors are mounted on the 

segments.  

A comprehensive derivation of Equation 18 is presented below. 

As the knee is considered to be a hinge joint and consists of two connected segments 

(1,2), each segment has an IMU positioned on it, consisting of a gyroscope (g) that 

measures an angular velocity (𝜔1, 𝜔2) in the local coordinate system of that IMU placed 

on that segment. These two local coordinate systems are not necessarily aligned with 

one another.  

Each segment’s angular velocity can be considered to be composed of the addition of 

two angular velocities, one being around the hinge joint axis, (𝜔𝑗1, 𝜔𝑗2), described by 

unit vectors in the ‘1’ and ‘2’ coordinate systems, 𝑗1 and 𝑗2, and another angular velocity 

which represents the angular velocity of both segments as if they are rigidly connected 

(𝜔ℎ1, 𝜔ℎ2). It is easy to visualise that this angular velocity could be, for example, the 

angular velocity of the whole leg about the hip. Whilst the magnitudes of 𝜔𝑗1 and 𝜔𝑗2 

may differ, the magnitude of 𝜔ℎ1 will be equal to the magnitude of 𝜔ℎ2 (magnitudes 

need to be considered in their local coordinate systems as each IMU may not 

necessarily be aligned).  
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Therefore, 

‖𝜔ℎ1‖2 = ‖𝜔ℎ2‖2 

 

Further, as vectors 𝜔𝑗1 and 𝜔𝑗2 are parallel with 𝑗1 and 𝑗2 respectively, their cross 

product equals zero: 

𝜔𝑗𝑖 × 𝑗𝑖 = 0     𝑖 = 1,2 

 

The dot and cross products are defined as 

𝑎. 𝑏 = ‖𝑎‖‖𝑏‖𝑐𝑜𝑠𝜃 

𝑎 × 𝑏 = ‖𝑎‖‖𝑏‖𝑛 sin𝜃 

 

Where 𝑛 is a unit vector perpendicular to both 𝑎 and 𝑏. It follows that the magnitude of 

𝑎 × 𝑏 is 

‖𝑎 × 𝑏‖ = ‖𝑎‖‖𝑏‖|sin𝜃| 

Thus 

‖𝑎 × 𝑏‖2 = ‖𝑎‖2‖𝑏‖2𝑠𝑖𝑛2𝜃 

‖𝑎 × 𝑏‖2 = ‖𝑎‖2‖𝑏‖2(1 − 𝑐𝑜𝑠2𝜃) 

‖𝑎 × 𝑏‖2 = ‖𝑎‖2‖𝑏‖2 − ‖𝑎‖2‖𝑏‖2𝑐𝑜𝑠2𝜃 

‖𝑎 × 𝑏‖2 = ‖𝑎‖2‖𝑏‖2 − (𝑎. 𝑏)2 
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Thus 

‖𝜔 × 𝑗‖2 = ‖𝜔‖2‖𝑗‖2 − (𝜔. 𝑗)2 

‖𝜔 × 𝑗‖2 = ‖𝜔‖2 − (𝜔. 𝑗)2 

 

 

Figure 4-21. Explanation of Seel Algorithm, vector decomposition 

 

Thus when we consider the above diagram shown in Figure 4-21 (where v has been 

replaced with 𝜔 for the purpose of this explanation). Consider vector 𝜔. Its component 

in the direction of 𝑗 is 

(𝜔. 𝑗)𝑗 

It will also have a component perpendicular to 𝑗 and since 𝑗 is the joint axis, any vector 

perpendicular to 𝑗 is in the joint plane. Now, 𝜔 and (𝜔. 𝑗)𝑗 form two sides of a triangle in 

which 𝜔 is the hypotenuse. Thus, the magnitude of the side perpendicular to j may be 

found from Pythagorean trigonometry: 

‖𝜔‖2 − ((𝜔. 𝑗)𝑗)
2

 

‖𝜔‖2 − (𝜔. 𝑗)2𝑗2 
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And as 𝑗2 = 1 

‖𝜔‖2 − (𝜔. 𝑗)2 

 

And we remember that 

‖𝜔 × 𝑗‖2 = ‖𝜔‖2 − (𝜔. 𝑗)2 

 

So, the magnitude of the component of vector 𝜔 in the joint plane is 

‖𝜔 × 𝑗‖ 

Returning to our two angular velocity vectors of segments 1 and 2, it has been shown 

that the projection of 𝜔1 and 𝜔2 in the joint plane is given by 

‖𝜔1 × 𝑗1‖2 and ‖𝜔2 × 𝑗2‖2 

These can be written as 

‖(𝜔ℎ1 +𝜔𝑗1) × 𝑗1‖2 and  ‖(𝜔ℎ2 +𝜔𝑗2) × 𝑗2‖2 

 

And since the cross product is distributive over addition, 𝑎 × (𝑏 + 𝑐) = 𝑎 × 𝑏 + 𝑎 × 𝑐 

‖(𝜔ℎ1 × 𝑗1) + (𝜔𝑗1 × 𝑗1)‖2 and ‖(𝜔ℎ2 × 𝑗2) + (𝜔𝑗2 × 𝑗2)‖2 

Since, 

𝜔𝑗1 × 𝑗1 = 0 and 𝜔𝑗2 × 𝑗2 = 0 
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This results in; 

‖𝜔1 × 𝑗1‖2 = ‖𝜔ℎ1 × 𝑗1‖2 

‖𝜔2 × 𝑗2‖2 = ‖𝜔ℎ2 × 𝑗2‖2 

 

Since it has been argued that ‖𝜔ℎ1‖2 = ‖𝜔ℎ2‖2  it follows that the magnitudes of the 

projections of 𝜔ℎ1 and 𝜔ℎ2 into the joint plane are also equal, such that; 

‖𝜔ℎ1 × 𝑗1‖2 = ‖𝜔ℎ2 × 𝑗2‖2 

 

Which gives us the kinematic constraint that 

‖𝜔1 × 𝑗1‖2 = ‖𝜔2 × 𝑗2‖2 

 

The hinge joint axis, 𝑗1 is a constant in the ‘1’ coordinate system, and likewise 𝑗2 is a 

constant in the ‘2’ coordinate system. However, 𝜔1 and 𝜔2 vary with time.  

So, 

‖𝜔1(𝑡) × 𝑗1‖2 = ‖𝜔2(𝑡) × 𝑗2‖2        ∀𝑡 

 

Subsequently, j1 and j2 can be identified by minimising the cost function:  

 

Equation 19 

𝛹(𝜙1, 𝜙2, 𝜃1, 𝜃2):= ∑𝑖=1
𝑁 𝑒𝑖

2,            𝑒𝑖 = ‖𝑔1(𝑡𝑖) × 𝑗1‖2 − ‖𝑔2(𝑡𝑖) × 𝑗2‖2 
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More precisely, j1 and j2 are written in spherical coordinates where 

𝜙1/2𝑎𝑛𝑑 𝜃1,2 represents the spherical coordinates for the coordinate transformation 

from local IMU frames to knee joint frames, required for sensor to segment alignment: 

 

Equation 20 

𝑗1/2 = (𝑐𝑜𝑠(𝜙1/2)𝑐𝑜𝑠(𝜃1/2), 𝑐𝑜𝑠(𝜙1/2)𝑠𝑖𝑛(𝜃1/2), 𝑠𝑖𝑛(𝜙1/2)) 
𝑇 

 

Where the pitch angle is described by 𝜙1/2, ∈ [0, 𝜋]  and the yaw angle  

𝜃1/2, ∈ [0, 2𝜋]. 

By minimising ψ(ϕ1, ϕ2, 𝜃1, 𝜃2), the cost function, the best alignment of the two sensor 

frames is established. 

Once this sensor to segment alignment is achieved through the optimisation of the cost 

function, the knee flexion angle can be determined by considering the gyroscopic 

readings. 

This equation is based off the assumption that the knee joint functions as a perfect 

hinge joint. By assuming the knee to be a perfect hinge, angular velocity is limited about 

the knee axis, while most of the angular velocity occurs in the sagittal plane. With this 

alignment, the knee flexion angle can be calculated using gyroscope data through the 

process of integration, as shown Equation 21 below: 

Equation 21 

𝛼𝑔𝑦𝑟(𝑡) =  ∫ (𝑔1(𝜏) ∙ 𝑗1 − 𝑔2(𝜏) ∙ 𝑗2)𝑑𝜏
𝑡

0

 

 

After the joint axes have been determined, the coordinates of the joint centres in the 

local sensor coordinates, o1 and o2, are determined from an additional optimisation 

procedure (Seel, Schauer and Raisch, 2012) shown in Equation 22 as follows: 
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Equation 22 

𝛹̃(𝑜1, 𝑜2) ∶=∑𝑒1
2

𝑁

𝑖=1

, 𝑒𝑖 = ‖𝑎1(𝑡) − 𝛤𝑔1(𝑡)(𝑜1)‖2 − ‖𝑎2(𝑡) − 𝛤𝑔2(𝑡)(𝑜2)‖2 

 

Where, 

Equation 23 

𝛤𝑔𝑖(𝑡)(𝑜𝑖) ∶= 𝑔𝑖(𝑡) × (𝑔𝑖(𝑡)  × 𝑜𝑖) + 𝑔̇𝑖(𝑡) × 𝑜𝑖 , 𝑖 = 1,2 

 

Equation 24 

𝑜1 = 𝑜1̂ − 𝑗1 
𝑜1̂ ⋅ 𝑗1 + 𝑜2̂ ⋅ 𝑗2

2
, 𝑜2 = 𝑜̂2 − 𝑗2

𝑜1̂ ⋅ 𝑗1 + 𝑜2̂ ⋅ 𝑗2
2

 

 

𝜓̃ ̃ (𝑜1, 𝑜2) is minimised over its arguments. The result refers to an arbitrary point along 

the joint axis and is defined by ô1, ô2, Equation 23. A shift is then applied to move the 

optimised result as close to the sensors as possible by applying Equation 24. 

This optimisation algorithm corrects the acceleration signals for the normal and 

tangential acceleration components due to the position of the sensors relative to the 

joint (Seel, Raisch and Schauer, 2014).  

This type of correction is sometimes referred to as a lever arm correction. These joint 

centres are then used to correct the accelerometer measurements as follows: 

 

Equation 25 

𝑎̃1(𝑡) = 𝑎1(𝑡) − 𝛤𝑔1(𝑡)(𝑜1), 𝑎̃2(𝑡) = 𝑎2(𝑡) − 𝛤𝑔2(𝑡)(𝑜2) 
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𝑎̃1(𝑡) and 𝑎̃2(𝑡) are defined in two different local coordinate systems rotating with 

respect to one another around a single axis but equal in quantity. 

Therefore, by calculating the angle between the projections of 𝑎̃1(𝑡) and 𝑎̃2(𝑡) into the 

joint plane, the flexion/extension angle can be calculated. 

Consequently, a pair of joint plane axes x1/2, y1/2 ϵ ℝ3 for each local frame are defined by 

Equation 26. 

 

Equation 26 

𝑥1 = 𝑗1 × 𝑐,       𝑦1 = 𝑗1 × 𝑥1, 𝑥2 = 𝑗2 × 𝑐, 𝑦2 = 𝑗2 × 𝑥2, 𝑐 ∦ 𝑗1, 𝑐 ∦ 𝑗2 

 

The accelerometer-based joint angle can then be determined by: 

 

Equation 27 

αacc(t) = ∢2𝑑 ([
𝑎̃1(𝑡) ⋅ 𝑥1 
  𝑎̃1(𝑡) ⋅ 𝑦1

] , ⌊
𝑎̃2(𝑡) ⋅ 𝑥2
  𝑎̃2(𝑡) ⋅ 𝑦2

⌋)  

 

 

Where ∢2d() denotes the (signed) angle between two vectors in ℝ2 and c is any vector 

not parallel to j1 or j2.  

For this study we use c = [1 1 1]𝑇. While the coordinates (x1, y1) and (x2 and y2) 

represent arbitrary 2D coordinates in the knee joint plane. 

As αacc(t) is not calculated through integration, it is unaffected by drift, however errors 

may be introduced if ã1/2(t), (the shifted accelerations) are collinear, or approximately 

collinear with the joint axes j1/2.  
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However, practically this is overcome as gravitational acceleration dominates the 

acceleration signals a1(t), a2(t) and ã1(t), ã2(t).  

Therefore, the only situation whereby these errors may cause an effect are cases where 

the knee axis is close to the vertical or in situations where there is a high acceleration in 

the medial/lateral direction (Seel, Raisch and Schauer, 2014). These cases are very 

unlikely during walking and other ADLs. Furthermore, o1, and o2 are not susceptible to 

errors as Γg1/2(t)(o1/2) in Equation 25 is normally very small in relation to gravitational 

acceleration. 

The joint angle has been calculated by both gyroscopic and accelerometer measures 

(αgyr(t) and αacc(t)), with the gyroscope-based angle resulting in a very accurate angle 

over short time periods, but susceptible to drift. While the accelerometer-based angle 

is affected by noise and is less accurate in motions of rapid acceleration changes, 

however, is unaffected by drift. 

Therefore, a resulting angle of good accuracy and minimal drift is achieved by 

combining both measures using a sensor fusion technique. A complementary filter is 

used, and the resulting angle is represented by αacc+gyr(t), Equation 28.  

A simple implementation example is given by: 

Equation 28 

𝛼𝑎𝑐𝑐+𝑔𝑦𝑟(𝑡) = 𝜆𝛼𝑎𝑐𝑐(𝑡) + (1 − 𝜆) (𝛼𝑎𝑐𝑐+𝑔𝑦𝑟(𝑡 − 𝛥𝑡) + 𝛼𝑔𝑦𝑟(𝑡) − 𝛼𝑔𝑦𝑟(𝑡 − 𝛥𝑡)) , 𝜆 ∈ [0,1] 

 

The joint angle calculations described above are limited to rotations around the 

identified joint axis, in this case the flexion/extension axis. Although this algorithm 

(Seel, Raisch and Schauer, 2014) could be adapted for measuring abduction/adduction 

and inversion/eversion angles this thesis focusses on a single plane only. 
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4.11.1 Summary of the Implementation of the Seel algorithm 

A summary of the two main steps taken to determine knee flexion angle from raw IMU 

measures is briefly outlined below, highlighting the main stages. 

Step 1: Initial estimations of IMU orientation and position for both segments 

1. Using the static file, the acceleration is used to determine the longitudinal axis 

of both IMUs as gravity dominates this axis. 

2. The sagittal axis of each IMU is determined using the walking file as 

acceleration is prominent in this direction. 

3. The mediolateral axis is estimated by taking the cross product of the sagittal 

axis and the longitudinal axis to yield a perpendicular vector. 

4. A second cross product between the mediolateral axis and the longitudinal axis 

is carried out, resulting in three orthogonal vectors. 

These vectors are all in the local coordinate frame of each IMU sensor and are used to 

build rotation matrices to determine the segment alignments relative to the joint. 

Step 2: Sensor to segment alignment, local coordinates to anatomical coordinates. 

1. o1, o2 and j1, j2 are calculated (Seel, Raisch and Schauer, 2014). 

o1 and o2 are the vectors that connect the knee joint centre to the IMU centre. 

j1 and j2 are the local joint vectors relative to each IMU. 

2. o1 and o2, j1 and j2 are all calculated using the treadmill walking file, and 

assuming the knee to behave as a perfect hinge joint. 

3. Rotation matrices are determined for each IMU and the relative rotation of the 

thigh and the shank are calculated using the acceleration and gyroscopic data. 

4. The IMU data is transformed into the anatomical coordinate system using these 

rotation matrices. 

5. The knee angle (alpha) is determined via 2D projection using both acceleration 

data and integration of the gyroscopic data, by considering the relative rotation 

of the sensor and thigh segments. 

6. Using a complementary filter (sensor fusion) the alpha angle is combined to 

yield a final estimate of the Flexion/Extension angle. 
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4.11.2 Seel Algorithm Pseudocode 

For the full implementation of the Seel Algorithm in MATLAB (MathWorks, 2024) please 

see Appendix 2, Section 9.3. 

1. Load Vicon and IMU data 

CALL get_btk_angles(c3d_file_path) 
    → Returns Vicon joint angles and frame count 
 
LOAD IMU accelerometer and gyroscope signals: 
    - g_S, g_F: Accelerations from shank (S) and femur (F) IMUs 
    - n_S, n_F: Angular velocity (gyro) from shank and femur 
    - fs: Sampling frequency 
    - j1, j2: Joint axes (unit vectors) for shank and femur, 
equation 18 and equation 19 
 

 

 

2. Preprocess IMU signals 

CALL AngleReconstructionCompare(fc, fs, λ, j1, j2, g_S, g_F, n_S, n_F) 
    → Filter IMU data with Butterworth low-pass filter 
    → Derive angular velocity derivative using third-order 
approximation 
 
    Compute: 
        g1, g2       = filtered gyroscope signals (femur and tibia) 
        a1, a2       = filtered accelerometer signals 
        g1Dot, g2Dot = angular acceleration, Equation 17 
 
    CALL estimateo1o2(g1, g2, g1Dot, g2Dot, a1, a2) 
        → Solve optimization problem (nonlinear least-squares)  
%Equation 22 and 23 
        → Estimates orientation offsets o1, o2 that minimize projection 
error %Equation 24 
 
    Compute α ̇(angular velocity projection on joint axis), From 
Equation 21: 
        alphaDotGyr = dot(g2, j2) - dot(g1, j1) 
 
    Integrate alphaDotGyr over time to obtain α_gyr 
    CALL projectAngle(...) to compute α_acc using accelerometer-based 
projection %Equation 27 
 
    Apply complementary filter, Equation 28: 
        α_combined[i] = λ * α_acc[i] + (1 - λ) * (α_combined[i-1] + 
Δα_gyr) 
 
    RETURN α_combined as alphaAccGyr (final IMU knee flexion estimate) 
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3. Synchronise IMU and Vicon data Streams 

CALL alignDataStreams_2D(pStream, alphaVicon, alphaAccGyr) 

 

    → Display Vicon and IMU angle plots 

    → User manually selects matching gait cycle start points 

    → Cross-correlation used to fine-tune alignment 

 

    RETURN RD_lag and vicon_start (alignment indices) 

 

 

 

4. Synchronise IMU and Vicon data Streams 

CALL CalcMetrics2D(alphaVicon, alphaAccGyr, actn, nCycles, offset) 

 

    → Detect gait cycles using peak detection in flexion angle 

signals 

    → Align and interpolate both Vicon and IMU signals to 0–100% 

gait cycle 

    → For each cycle: 

        - Compute RMSE between Vicon and IMU 

        - Compute ROM (range of motion) for Vicon and IMU 

        - Store resampled gait cycle data 

 

    RETURN: 

        - RangeVI: ROM data (Vicon and IMU per cycle) 

        - RMSE: RMSE per gait cycle 

        - cyclealphaVq: Vicon gait cycle curves 

        - cyclealpha1Daq: IMU gait cycle curves 

        - gc: gait cycle time vector 
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5. Aggregate, Analyse and Plot the data  

FOR all subjects: 

    - Extract IMU/Vicon angles and metrics from CalcMetrics2D 

    - Concatenate angle curves for all subjects 

    - Compute mean angle curves and ROM 

    - Compute RMSE and correlation per subject 

 

    Store: 

        - alphaVicon_GC, alpha_IMU: all gait cycles (Vicon, IMU) 

        - Vicon_GC, IMU_GC: subject mean gait cycles 

        - ROMIMU_diff: ROM error 

        - RMSE_IMU, CORR_IMU 

 

Compute: 

    - Overall RMSE across all points 

    - Mean ± SD of angle difference (Vicon - IMU) 

 

Plot: 

    - Mean knee flexion with shaded ±1.96*SD bands  

    - Overlay Vicon and IMU mean traces 

    - Error plots (signed & absolute)  
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4.12 Spaciotemporal Parameter Calculations 

Spatiotemporal gait parameters were derived from kinematic data collected during the 

treadmill walking activity. Stride length, stride time, and cadence were computed 

based on heel strike events and known treadmill speed.  

Stride Time and Stride Length: 

Stride time was determined by using the heel strike indices manually selected from the 

bespoke GUI as described in Section 4.9. Specifically, the time interval between two 

successive heel strikes were used as the stride time: 

Equation 29 

𝑡𝑠𝑡𝑟𝑖𝑑𝑒 = 𝑡𝐻𝑒𝑒𝑙𝑆𝑡𝑟𝑖𝑘𝑒𝑖+1 − 𝑡𝐻𝑒𝑒𝑙𝑆𝑡𝑟𝑖𝑘𝑒𝑖     𝑖 = 1: 10 

Where: 

𝑡𝐻𝑒𝑒𝑙𝑆𝑡𝑟𝑖𝑘𝑒𝑖+1  is the timestamp of the ith heel strike for a given leg. 

With the stride time calculated and the treadmill speed (vtreadmill) known and is 

measured in meters per second, stride length (Lstride) was then computed using the 

relationship and given in meters: 

Equation 30 

Lstride = vtreadmill × 𝑡𝑠𝑡𝑟𝑖𝑑𝑒  

Cadence Calculation: 

Cadence was calculated using the derived stride length and treadmill speed. Since one 

stride consists of two steps, cadence was given as steps per minute and determined 

by: 

Equation 31 

𝑐 =  
2 × vtreadmill ×60

Lstride
 =  2 × 60

tstride
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Where the factor 60 converts seconds to minutes. 

 

Each parameter was averaged across 10 consecutive gait cycles for each participant to 

ensure consistency and reduce variability. Subsequently, a pooled population average 

was calculated by averaging each parameter across the entire population
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5 Chapter 5. Results 

This chapter presents the findings from three distinct studies, each detailed in its own 

section. 

Section 5.1 assesses the accuracy of the commercially available MotionSense™ 

wearable device against Vicon opto-electronic motion capture across a broad range of 

activities in a healthy population, of both older and younger adults and in a TKA clinical 

population, both preoperatively and postoperatively.  

Section 5.2 presents the accuracy of the Seel algorithm used to calculate knee flexion 

angles from raw IMU data in both a healthy population across a broad range of activities 

and a TKA clinical population during level treadmill walking both preoperatively and 

postoperatively.  

Section 5.3 explores key biomechanical changes following TKA surgery. This section 

highlights postoperative improvements in knee angle during the acute recovery phase, 

aiming to assess whether IMU devices are sensitive enough to detect improvements 

during rehabilitation. Additionally, the MotionSense™ data of an individual TKA patient is 

presented, providing both qualitative and quantitative data to support these findings. 

By exploring a patient's unique recovery journey through the evaluation of their data, 

the potential need for personalised care approaches is highlighted, evidencing the 

opportunity of wearable devices within the rehabilitation journey. 
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5.1 Validation of MotionSense™  

The accuracy of the MotionSense™ device is discussed separately for each activity, 

while comparisons between different populations are made within the same activity. 

Comparisons between the sensor accuracy are determined through RMSE, Bland-

Altman plots and correlation coefficients.  

The population demographics and anthropometrics varied between trials and are 

detailed in section 4.4.3. 

Comparisons are primarily conducted between the healthy populations and the TKA 

population; however, where data is unavailable for the TKA population, comparisons 

are limited to healthy populations only. 

5.1.1 Walking Results 

During level treadmill walking, ten gait cycles per participant were isolated for 

comparisons of sensor accuracy. For comparisons between population groups, an 

average gait cycle was calculated by pooling the data from each group. 

In addition to age, height and weight also differed significantly among the younger, 

older, and TKA adults (Table 4-3, p < 0.05). The older healthy adults walked significantly 

slower compared to the younger healthy group (0.94 ± 0.12 ms-1 vs 1.17 ± 0.07 ms-1, 

mean ± SD, p < 0.001, respectively). The TKA cohort walked significantly slower than 

both healthy older and younger adults across all three assessment points: preoperative 

assessment (0.56±0.14 ms-1), 1-week postoperative assessment (0.52 ± 0.14 ms-1), 

and 6 weeks postoperative assessment (0.60±0.28 ms-1 mean ± SD, p < 0.001). 

However, no significant differences in walking speed were observed within the TKA 

cohort between the sessions (p > 0.05). 

Knee flexion patterns for treadmill walking were similar between all populations, 

however the healthy adults displayed the highest similarities in knee flexion patterns 

between Vicon and MotionSense™ when comparing both the groups pooled SD and SE 
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in Figure 5-1 and Figure 5-2 respectively. Visually, the TKA population resembled the 

closest similarities to the healthy adult population at 6 weeks post-surgery where the 

swing phase apex is beginning to emerge, compared to their preoperative and 1-week 

postoperative knee flexion patterns.  

The TKA population displayed limited knee extension across all three visits compared 

to both the younger and older healthy adults as well as reduced knee flexion during the 

stance phase compared to the healthy control groups (Figure 5-1 and Figure 5-2). The 

TKA population displayed 20° knee flexion at heel strike compared to the 10° knee 

flexion the healthy population exhibited. However, both Vicon and MotionSense™ were 

able to accurately trace the movement patterns for all populations and at each stage of 

recovery for the clinical population. 

The greatest difference between the two measurement systems as shown by the grey 

shaded regions indicating one standard error occurred predominantly during periods of 

higher knee flexion, with larger differences evidenced in the TKA population compared 

to both healthy adult cohorts, Figure 5-1 and Table 5-1. Variation within measurements 

is displayed by the grey shaded regions displaying the standard deviations (Figure 5-2), 

occurring during the swing phase and at maximum knee flexion for both healthy groups, 

while larger variation was evident in the TKA cohort during the stance phase and during 

periods of larger knee flexion. 

MotionSense™ more commonly over estimated peak flexion compared to Vicon, while 

more often underestimated minimum flexion, this is particularly distinct for the TKA 

population. The greatest difference between Vicon and MotionSense™ was during 

minimum flexion, recording a maximum difference of -1.18° for the TKA population (p > 

0.05), while the maximum difference observed for maximum flexion was 1.00° for the 

older adults (p > 0.05). As expected, ROM measures were smaller for the TKA 

population, however the differences between MotionSense™ and Vicon were greatest 

in the TKA population compared to the healthy cohort (Table 5-1). 
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Figure X. Mean knee flexion (and standard error) from initial contact including the stance and swing phase of the gait cycle. 

Figure 5-1. Mean knee flexion (SE) from initial contact including the stance and swing phase of the gait cycle. 
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Figure 5-2. Mean knee flexion (SD) from initial contact including the stance and swing phase of the gait cycle. 
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Figure 5-3. Mean signed error between the measurement technologies over whole gait cycle. Error bars display one standard error. A negative difference 
reports an overestimation of knee angle by MotionSense™, and a positive difference an underestimation, walking showed a statistically significant 
difference (p < 0.05). between the older and younger adults and between the younger adults and 1-week postoperative session for the TKA group. 
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Figure 5-3 describes the same signed difference as a function of the gait cycle 

percentage, with error bars representing one standard error. Similar patterns were 

observed between the TKA population and the healthy older population, with errors 

peaking during initial swing at around 70% of the gait cycle.  

The largest difference between Vicon and MotionSense™ (-3.93° difference) was 

observed for the healthy younger adults at 60% of the gait cycle, during pre-swing, just 

as the limb begins to accelerate. While the older healthy adults reported a maximum 

difference during the swing phase, reaching a difference of 2.97°. The TKA population 

reported a maximum difference (-3.72°) at 6 weeks postoperatively, which occurred at 

around 90% of the gait cycle. The difference between the two technologies never 

exceeded 4.00° for all population groups. 
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Table 5-1. Mean knee angle (SD) results for walking for healthy adults and TKA clinical population. 

  Knee Angle (°) 

Walking Max Flexion Min Flexion ROM 

  Vicon MS Δ Vicon MS Δ Vicon MS Δ 

 
Younger Adults 59.4 (6.1) 59.8 (5.5) -0.4 (8.2) -3.4 (3.9) -2.7 (4.4) -0.7 (6.1) 62.7 (4.7) 62.5 (4.4) 0.3 (2.9) 

Healthy 
Population 

Older Adults 59.9 (8.4) 58.8 (7.9) 1.0 (2.9) 2.1 (6.2) 2.1 (7.2) 0.4 (2.3) 57.4 (6.1) 56.7 (5.5) 0.7 (4.3) 

 
All Healthy Adults 59.6 (7.0) 59.4 (6.7) 0.2 (3.1) -1.0 (5.8) -0.7 (6.2) -0.3 (2.4) 60.6 (5.9) 60.1 (5.6) 0.4 (3.6) 

 
Preoperative 45.5 (8.8) 45.9 (8.3) -0.5 (3.1) 7.0 (10.3) 5.8 (10.2) 1.2 (0.5) 38.5 (9.7) 40.2 (8.0) -1.6 (3.6) 

TKA 
Population 

1 Week postop 47.1 (6.2) 47.9 (4.8) -0.9 (1.4) 15.5 (1.3) 14.3 (3.2) 1.2 (1.9) 31.6 (5.0) 33.6 (1.7) -2.0 (3.3) 

 
6 Weeks postop 56.4 (7.1) 55.5 (5.3) 1.0 (2.6) 11.9 (3.3) 13.1 (4.5) -1.2 (1.6) 44.6 (3.9) 42.4 (0.8) 2.2 (3.3) 

Postop: Postoperative, Min: Minimum, Max: Maximum; ROM: Range of Motion; MS: MotionSenseTM; Δ: difference between Vicon and MotionSenseTM (and pooled SD). 
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The RMSE for walking ranged between 1.48° to 2.57° (Table 5-2) for all population 

groups. The lowest RMSE value was found in the TKA population at 1-week post-

surgery, while the greatest RMSE was evidenced during the preoperative assessment 

for the TKA population. The RMSE was similar between both the healthy younger adults 

and the healthy older adults. There was no statistically significant difference in the 

RMSE values between both the healthy adult groups and the TKA group (p > 0.05). 

A strong correlation was found between Vicon and MotionSense™ for the healthy 

cohorts and the TKA population (p << 0.01). 

Table 5-2. Mean RMSE (SD) results for walking for healthy adults and TKA clinical population.  

Walking 
  RMSE (°) r 

Healthy 
Population 

Younger Adults 2.41 (0.85) 0.98 

Older Adults 2.39 (0.68) 0.99 

All Healthy Adults 2.40 (0.77) 0.99 

TKA 
Population 

Preoperative 2.57 (1.03) 0.99 

1 Week postop 1.48 (0.47) 0.99 

6 Weeks postop 2.26 (0.95) 0.99 

Postop: Postoperative 
RMSE: Root Mean Square Error (and SD) 
r: Pearson Coefficient of Correlation 
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Figure 5-4. Bland-Altman plots of the mean error between the measurement technologies over whole gait cycle. Error bars display one standard error. A 
negative difference reports an overestimation of knee angle by MotionSense™, and a positive difference an underestimation. 
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Figure 5-4 depicts a Bland-Altman plot to assess whether the signed difference 

between the technologies varied with the mean knee flexion. Larger differences were 

evidenced when data points exceeded the limits of agreement (red dashed line 

representing ± 2 standard deviations), however, naturally 5% of the data is expected to 

be found outside of these limits of agreement, and so these findings are not 

unexpected. The limits of agreements are narrow in width across all populations, 

suggesting little variation between the measurement systems. For the healthy adults 

and TKA cohort the mean difference equals zero or lies very close to zero, indicating no 

systematic differences between the two technologies. For smaller knee angle 

measures the differences between the two technologies cluster close to zero. 

MotionSense™ presents a closer level of agreement in smaller degrees of flexion 

compared to larger flexion angles, this is evidenced in both the healthy groups and the 

TKA clinical population. 
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5.1.2 Stair Navigation Results 

To ensure a clear comparison of stair navigation activities, it is essential to consider 

variations in stair height between the populations, as each group used different sets of 

stairs depending on which movement analysis laboratory they attended. Additionally, 

natural variations within each population and differences in individual performance 

should not be discounted. These factors may contribute to further differences in knee 

angle measures and patterns and should be taken into account when interpreting the 

results.  

Participants received no specific instructions on stair climbing technique, which led to 

notable kinematic differences in the manner in which participants navigated the stairs, 

particularly between the healthy individuals and the TKA population. The TKA group 

typically used a step-by-step approach to ascend and descend the stairs, often relying 

on handrails or walking aids, while both healthy populations generally adopted a step-

over-step method. There was also no guidance on which foot should lead when 

initiating the climb. 

Knee flexion patterns for stair navigation were similar between the older and the 

younger healthy adult population, however, differences were observed when 

comparing both the older and younger healthy populations to the TKA clinical cohort.  

The TKA population resembled similarities in knee flexion angle to both healthy 

populations by 6 weeks postoperatively, for both the stair ascent and descent. 

However, preoperatively and 1 week postoperatively the TKA population revealed a 

reduced ROM and peak flexion angle compared to both healthy populations, as well 

decreased flexion in the stance phase during stair navigation (Figure 5-5 , Figure 5-6, 

Figure 5-8 and Figure 5-9). Vicon and MotionSense™ were able to accurately trace the 

movement patterns for both healthy and TKA populations at each period for both stair 

ascent and descent. 

The greatest variation between the two measurement systems as shown by the grey 

shaded regions indicating the standard errors (Figure 5-5 and Figure 5-8) which are 
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more evident in the TKA clinical population, specifically at 6 weeks following surgery for 

both stair ascent and stair descent compared to both healthy groups. These 

differences are especially apparent during periods of higher knee flexion and during 

periods that involve a dynamic change of velocity, notably during pre-swing. 

Variation within measurements is displayed by the grey shaded regions displaying one 

standard deviation (Figure 5-6 and Figure 5-9). For the stair ascent activity, the TKA 

population evidenced the greatest variability within measures, particularly during the 

preoperative assessment. For the stair descent activity, the largest variations were seen 

in the TKA population at 6 weeks postoperatively. These variations are prominent during 

stages of deep knee flexion for both the stair ascent and stair decent.  

The maximum and minimum flexion angles are detailed in Table 5-3. MotionSense™ 

more commonly underestimated peak flexion angles and overestimated minimum 

flexion angles compared to Vicon, for both the older and younger healthy adults and for 

the TKA population at 6 weeks post-TKA. However, the opposite was observed for the 

TKA population during their preoperative assessment and at 1-week postoperatively, 

where MotionSense™ appeared to underestimate minimum flexion angle, and 

overestimate peak flexion angle.  

The difference between Vicon and MotionSense™ was largest in flexion compared to 

extension, recording a maximum difference of 5.81° for the older healthy adults during 

the stair descent activity (p < 0.05) and of -3.42° between minimum flexion for older 

adults during stair ascent (p > 0.05). 

MotionSense™ recorded a smaller ROM compared to Vicon, with larger differences in 

ROM measures observed in the healthy populations and in the TKA population at 6 

weeks postoperatively.  
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Figure 5-5. Mean knee flexion (SE) from initial contact including the stance and swing phase of the movement cycle. 
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Figure 5-6. Mean knee flexion (SD) from initial contact including the stance and swing phase of the movement cycle. 
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Figure 5-7. Signed error between the measurement technologies over whole movement cycle. Error bars display one standard error. A negative difference 
reports an overestimation of knee angle by MotionSense™, and a positive difference an underestimation. 
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Figure 5-8. Mean knee flexion (SE) from initial contact including the stance and swing phase of the movement cycle. 
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Figure 5-9. Mean knee flexion (SD) from initial contact including the stance and swing phase of the movement cycle. 
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Figure 5-10. Signed error between the measurement technologies over whole movement cycle. Error bars display one standard error. A negative 
difference reports an overestimation of knee angle by MotionSense™, and a positive difference an underestimation. 
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Figure 5-7 and Figure 5-10 describes the same signed difference as a function of the 

gait cycle percentage. The older healthy adults and the TKA population at 6 weeks post-

surgery displayed similar patterns in differences for both the stair ascent and stair 

descent activity. For the stair ascent activity error peaked during the swing phase, 

nearing heel strike for both the older healthy population (+4.16° difference) and the TKA 

population at 6 weeks postoperative (+3.40° difference). 

For the stair descent the error peaked around toe off for all populations. The healthy 

younger adults reported an error of +2.66° while the healthy older adults reported a 

difference of +5.68°. The TKA population reported a maximum error of 3.80° at 6 weeks 

postoperative. For both stair ascent and stair descent the maximum error coincides 

with peak flexion angle for all population groups. 



 

214 

 

Table 5-3. Mean knee angle (SD) results for all participants for stair navigation. 

 

 

Knee Angle (°) 

 Max Flexion Min Flexion ROM 

 Vicon MS Δ Vicon MS Δ Vicon MS Δ 

Younger 

Adults 

Stair Ascent 87.1 (12.7) 85.8 (11.9) 1.3 (3.6) 6.5 (5.9) 7.1 (6.5) -0.3 (2.1) 80.3 (13.5) 78.7 (11.9) 1.7 (4.9) 

Stair Descent 85.7 (10.8) 82.1 (9.5) 3.6 (2.5) 6.0 (5.5) 6.6 (5.9) -0.6 (1.9) 79.7 (11.2) 75.5 (9.0) 4.2 (4.1) 

Older Adults 
Stair Ascent a 97.2 (7.1) 93.4 (8.3) 3.8 (2.2) 10.6 (5.7) 14.0 (6.8) -3.4 (2.9) 86.6 (4.8) 79.4 (5.6) 7.2 (3.8) 

Stair Descent a 97.5 (6.5) 91.5 (7.7) 5.8 (3.1) 6.1 (4.8) 9.7 (6.1) -2.9 (2.1) 91.0 (4.7) 82.4 (5.8) 8.6 (4.1) 

All Healthy 

Adults 

Stair Ascent a 91.0 (11.9) 88.3 (11.3) 2.7 (3.4) 8.0 (5.9) 9.7 (7.6) -1.7 (2.7) 83.0 (11.1) 78.6 (9.9) 4.4 (5.3) 

Stair Descent ab 90.7 (10.9) 86.1 (9.9) 4.6 (5.4) 6.3 (5.2) 7.8 (6.1) -1.6 (2.4) 84.4 (10.5) 78.3 (8.4) 6.1 (4.8) 

TKA 

Preoperative 

Stair Ascent 53.6 (34.9) 53.2 (34.7) -1.3(4.1) 5.3 (10.6) 6.6 (9.4) 0.4(1.33) 48.4 (28.1) 46.6 (27.3) 1.8(5.2) 

Stair Descent 39.5 (8.8) 39.7 (9.6) -0.2 (1.6) 6.6 (8.2) 6.3 (7.6) 0.3(0.65) 32.9 (2.2) 33.4 (4.1) -0.5(1.9) 

TKA 1 Week 

postop 

Stair Ascent 51.5 (2.7) 52.5 (1.5) -1.0 (1.1) 18.4 (0.9) 17.6 (2.7) 0.7 (1.8) 33.1 (1.7) 34.9 (1.2) -1.8 (2.9) 

Stair Descent 48.3 (2.8) 47.7 (4.1) 0.6 (1.3) 14.2 (0.8) 13.9 (2.9) 0.3 (3.7) 34.1 (2.0) 33.8 (7.1) 0.3 (5.1) 

TKA 6 Weeks 

postop 

Stair Ascent 78.9 (18.7) 76.3 (5.4) 2.6 (4.3) 13.6 (3.1) 15.9 (14.5) -2.3 (2.8) 65.3 (17.4) 60.4 (10.7) 4.9 (6.9) 

Stair Descent 74.9 (23.7) 71.5 (19.0) 3.4 (4.9) 12.1 (6.3) 13.2 (8.7) -1.1 (3.1) 62.8 (22.4) 58.3 (17.4) 4.5 (7.3) 

Postop: Postoperative, Min: Minimum, Max: Maximum; ROM: Range of Motion; MS: MotionSenseTM; Δ: difference between Vicon and MotionSenseTM (and pooled SD). 
ap<0.05 between Vicon and MS for range of motion  
bp<0.05 between Vicon and MS for maximum flexion  
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The RMSE for the stair navigation activity ranged between 0.86° to 2.83° (Table 5-4). For 

stair ascent RMSE values ranged between 1.13° to 2.77°, while the stair descent activity 

reported RMSE values between 0.86° to 2.83°.  

Smaller RMSE values were reported in the TKA population compared to the healthy 

population, with the lowest RMSE values reported during the 1-week postoperative 

assessment for both stair ascent and stair descent. The greatest RMSE was reported 

during stair descent in the older healthy population.  

There were no significant differences between RMSE for the healthy younger and 

healthy older participants, nor between both healthy populations and the TKA 

population for the stair navigation activity (p > 0.05).  
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Table 5-4. Mean RMSE (SD) results for all populations for stair navigation. 

 

Postop: Postoperative, RMSE: Root Mean Square Error (and SD), r: Pearson Coefficient of Correlation.  

 

 

 

 

Stair Navigation Activity 

 RMSE (°) r 

Stair 
Ascent 

Healthy 
Population 

Younger 
Adults 

2.77 (0.83) 0.99 

Older 
Adults 

2.60 (0.96) 0.99 

All healthy 
Adults 

2.70 (0.88) 0.99 

TKA 
Population 

Preoperative 2.08 (0.76) 0.99 

1 Week 
postoperative 

1.13 (0.52) 0.99 

6 Weeks 
postoperative 

2.45 (0.89) 0.99 

Stair 
Descent 

Healthy 
Population 

Younger 
Adults 2.41 (0.77) 0.99 

Older 
Adults 

2.83 (0.99) 0.99 

All healthy 
Adults 

2.59 (0.88) 0.99 

TKA 
Population 

Preoperative 1.33 (0.38) 0.99 

1 Week postop 0.86 (0.07) 0.99 

6 Weeks postop 2.62 (1.88) 0.99 
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Figure 5-11. Bland-Altman plots of the mean error between the measurement technologies over whole movement cycle. Error bars display one standard 
error. A negative difference reports an overestimation of knee angle by MotionSense™, and a positive difference an underestimation. 
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Figure 5-12. Bland-Altman plots of the mean error between the measurement technologies over whole movement cycle. Error bars display one standard 
error. A negative difference reports an overestimation of knee angle by MotionSense™, and a positive difference an underestimation. 
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Figure 5-11 and Figure 5-12 depicts a Bland-Altman plot to assess whether the signed 

difference between the technologies varied with the mean knee flexion. Differences 

only surpassed the limits of agreement at higher degrees of flexion (as knee flexion 

approached 90°) in the older healthy population during the stair descent activity.  

Wider limits of agreement and a greater spread of data points were observed for the 

TKA population at 6 weeks postoperatively, for both the stair ascent and stair descent 

activity. Whereas data is closely clustered about the mean-difference line for both stair 

ascent and stair descent for the TKA population 1-week post-surgery. The younger 

healthy population had narrower limits of agreement for both stair ascent and stair 

descent compared to the older healthy population. For both stair ascent and stair 

descent the mean difference line is zero for all populations, indicating no system bias.
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5.1.3 Flexion/Extension Results 

Each participant completed three flexion/extension repetitions. Comparisons were 

made between the pooled average of each population. However, no data was available 

for analysis for the TKA population 1 week postoperatively.  

For the TKA population preoperative ROM often depends on the severity of the OA or 

other issues leading to the surgery, however, many patients experience a reduction in 

ROM (often less than 100°) and restricted extension due to stiffness, pain and joint 

degradation (Chiu et al., 2002). Moreover, patients often experience a temporary 

reduction in ROM following TKA as a result of pain, swelling and stiffness. However, as 

the patient recovers and postoperative symptoms subside, joint ROM should improve. 

This is highlighted in Figure 5-13 and Figure 5-14, where preoperative peak flexion is 

restricted for the TKA population compared to the healthy populations, while 

postoperative peak flexion and extension is limited compared to preoperative baseline 

measures. Apart from the reduction in joint ROM, knee flexion patterns were similar 

between the healthy populations and TKA group (Figure 5-13 and Figure 5-14). 

Additionally, knee flexion patterns were similar between both technologies. 

Differences between measurement systems, as shown by the grey shaded regions 

indicating one standard error (Figure 5-13), occurred mainly during stages of greater 

knee flexion or during instances of rapid motion, with the TKA population reporting 

larger differences compared to the healthy population.  

While variation within each population is highlighted by the grey shaded region 

representing one standard deviation (Figure 5-14). Larger variations within the 

populations were reported at maximum flexion, with the TKA population displaying 

greater deviations within data compared to both healthy groups.  

The maximum and minimum flexion angles are detailed in Table 5-5. The largest 

difference between Vicon and MotionSense™ was reported during maximum flexion by 

the older healthy adults, with a difference of 6.98°, (p < 0.05). Older healthy adults 

reported the largest difference between the measurement systems for minimum flexion 
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angle, reporting a difference of -2.70°, (p > 0.05). MotionSense™ was more accurate 

when reporting smaller angles compared to larger angles of flexion. Furthermore, 

MotionSense™ tended to underestimated knee angle measures for larger degrees of 

flexion, while overestimated angles during minimum flexion. 

Notably, there is a significant discrepancy in minimum flexion angle between the 

groups. Six weeks post-surgery, the TKA population exhibited a much higher minimum 

flexion angle compared to both their baseline measurements and the healthy control 

populations Figure 5-13 and Table 5-5. 
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Figure 5-13. Mean knee flexion (SE) from initial contact including maximum flexion and full extension. 
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Figure 5-14. Mean knee flexion (SD) from initial contact including maximum flexion and full extension. 
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Figure 5-15. Signed error between the measurement technologies over whole movement cycle. 
Error bars display one standard error. A negative difference reports an overestimation of knee angle 

by MotionSense™, and a positive difference an underestimation. 

Movement cycle % Movement cycle % 

Movement cycle % Movement cycle % 



 

225 

 

Figure 5-15 displays the mean signed error across the complete activity cycle. The 

same trend was displayed within both healthy groups and the TKA population, revealing 

greater differences around ~50% of the gait cycle during peak flexion. 

For the healthy population the error peaked at maximum flexion (~50% of the gait 

cycle), reaching a maximum difference at 53% of the gait cycle in the younger 

population (+4.89° difference) and 56% of the gait cycle for the older adults (+5.08° 

difference), respectively. While the TKA population displayed the largest difference, 

during peak flexion (50 - 70% of the cycle) reaching a maximum error of (+5.61° 

difference) reported at 6 weeks postoperatively.  

The largest differences are reported at maximum knee flexion, with a positive difference 

reported for all populations, highlighting that MotionSense™ underestimates peak 

flexion angles compared to Vicon (Table 5-5).  
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Table 5-5. Mean knee angle (SD) results for healthy and TKA populations for the flexion/extension activity. 

Postop: Postoperative, Min: Minimum, Max: Maximum; ROM: Range of Motion; MS: MotionSenseTM; Δ: difference between Vicon and MotionSenseTM (and pooled SD) 
ap<0.05 between Vicon and MS for range of motion  
bp<0.05 between Vicon and MS for maximum flexion  
 

 

 

 

 

Knee Angle (°) 

 Max Flexion Min Flexion ROM 

 Vicon MS Δ Vicon MS Δ Vicon MS Δ 

Younger Adults 
Flexion/ 

Extension 
116.6 (11.4) 110.9 (10.2) 5.8 (2.2) 0.1 (4.2) 0.1 (4.2) 0.0 (2.6) 116.5 (13.1) 110.8 (10.4) 5.7 (4.5) 

Older Adults 
Flexion/ 

Extensionab 108.8 (7.9) 101.8 (7.8) 7.0 (2.8) -0.1 (5.8) 2.6 (5.9) -2.7 (1.9) 108.9 (9.8) 99.3 (9.2) 9.5 (4.0) 

All Adults 
Flexion/ 

Extension 
113.1 (10.6) 106.0 (10.1) 6.3 (2.4) 0.0 (4.9) 1.2 (5.1) 0.2 (3.1) 113.1 (12.2) 105.6 (11.3) 2.0 (8.1) 

TKA 
Preoperative 

Flexion/ 
Extension 

99.7 (15.9) 94.5 (14.6) 5.2 (3.7) 2.7 (8.4) 4.32 (6.1) -1.6 (3.1) 97.0 (19.8) 90.2 (17.7) 6.8 (6.2) 

TKA 
6 Weeks 
postop 

Flexion/ 
Extensiona 

83.2 (12.0) 77.6 (15.8) 5.6 (7.5) 12.9 (12.2) 14.6 (11.7) -1.7 (4.6) 70.4 (15.2) 63.0 (16.8) 7.4 (11.7) 
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The RMSE ranged between 3.21° to 4.70° (Table 5-6), with the largest RMSE reported for 

the TKA population 6 weeks postoperatively, while the smallest RMSE value was 

reported preoperatively. A maximum difference of 1.49° was reported between the 

RMSE values preoperatively vs 6 weeks postoperatively for the TKA population. 

There were no significant differences in RMSE values between the younger and older 

healthy participants or the TKA population (p > 0.05). 

A positive strong correlation is displayed for all populations for flexion/extension 

activity, Table 5-6. 

Table 5-6. Mean RMSE (SD) results for flexion/extension for healthy adults and the TKA population. 

 RMSE (°) r 

Flexion/ 
Extension 

Healthy 
Population 

Younger Adults 3.65 (1.24) 0.99 

Older Adults 4.09 (1.62) 0.99 

All Adults 3.85 (1.42) 0.99 

TKA 
Population 

Preoperative Assessment 3.21 (1.75) 0.99 

6 Weeks postop 4.70 (3.41) 0.99 

Postop: Postoperative 
RMSE: Root Mean Square Error (and SD) 
r: Pearson Coefficient of Correlation 
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Figure 5-16 depicts a Bland-Altman plot to assess whether the signed difference 

between the technologies varied with the mean knee flexion. Wider limits of agreement 

were observed, suggesting a lower degree of agreement between the measurement 

systems as there is a greater spread between measurement. The mean difference line 

is zero for all populations for the flexion/extension activity, indicating no bias between 

Vicon and MotionSense™.  

Figure 5-16. Bland-Altman plots of the mean error between the measurement technologies over whole 
movement cycle. Error bars display one standard error. A negative difference reports an overestimation of 

knee angle by MotionSense™, and a positive difference an underestimation. 
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Good agreement was found between Vicon and MotionSense™ for both the healthy and 

TKA populations. All data points were found within the acceptable limit bounds, though 

these bounds were wide. The healthy populations showed a tighter clustering of data 

points compared to the TKA population. Additionally, a consistent trend was observed 

across all groups: at higher degrees of flexion, MotionSense™ underestimate knee angle 

measures, while at smaller knee flexion angles, MotionSense™ overestimated the 

values, as indicated by positive and negative differences, respectively. 
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5.1.4 Cycling Results  

The TKA population did not participate in the cycling activity and so no clinical data will 

be presented for this activity. However, both groups of healthy adults completed two 

minutes of comfortable cycling. For each participant, ten pedal strokes were analysed, 

and pooled averages were calculated for both younger and older healthy adults. These 

averages were then compared between the groups. 

Knee flexion patterns between the two technologies were similar across both the 

younger and older adults (Figure 5-17 and Figure 5-18). The greatest disparity within the 

groups, as shown by the grey shaded region indicating the SE between the 

measurement systems, occurred during stages of higher knee flexion or during 

instances of faster joint accelerations (Figure 5-17). While variation within the 

populations is shown by the grey shaded region representing one standard deviation 

(Figure 5-18). 

For both the healthy younger and older adults, MotionSense™ recorded smaller ROM 

and lower maximum flexion values compared to Vicon. Furthermore, larger differences 

were observed for the older population compared to the younger adults (p > 0.05). The 

difference between Vicon and MotionSense™ was greatest in flexion compared to 

extension (Table 5-7), recording a maximum difference of 5.72° between maximum 

flexion (p > 0.05) and -3.10° between minimum flexion for older adults (p > 0.05). Older 

participants pedalled at a significantly slower cadence than younger participants 

(67.99 ± 9.01 rpm vs. 60.25 ± 9.98 rpm, mean ± SD, p < 0.05, younger vs older adults 

respectively). 
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Figure 5-17. Mean knee flexion (SE) from full extension to full extension cycle for a pedal stroke. 

Figure 5-18. Mean knee flexion (SD) from full extension to full extension cycle for a pedal stroke. 
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Figure 5-19 describes the signed difference as a function of the gait cycle percentage. 

During cycling the error peaked at maximum flexion, when the pedal was at the 12 o’ 

clock position (50% gait cycle) for older adults (+5.96° difference), and at 49% of the 

gait cycle for younger adults (4.90° difference). For both healthy groups maximum error 

coincides with peak flexion or at points where movements are associated with higher 

accelerations.  

 

 

Figure 5-19. Signed error between the measurement technologies over whole pedal cycle. Error bars display 
one standard error. A negative difference reports an overestimation of knee angle by MotionSense™, and a 

positive difference an underestimation. 
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Table 5-7. Mean knee angle (SD) results for healthy adults for cycling. 

Min: Minimum, Max: Maximum; ROM: Range of Motion; MS: MotionSenseTM; Δ: difference between Vicon and MotionSenseTM (and pooled SD) 

 

Table 5-8. Mean RMSE (SD) results for cycling for younger and older adults. 

Cycling 

 RMSE (°) r 

Younger Adults 4.05 (2.49) 0.99 

Older Adults 4.57 (1.46) 0.99 

All Adults 4.22 (2.21) 0.99 

RMSE: Root Mean Square Error (and SD) 
r: Pearson Coefficient of Correlation

 

 

Knee Angle (°) 

 Max Flexion Min Flexion ROM 

 Vicon MS Δ Vicon MS Δ Vicon MS Δ 

Cycling 

Younger 

Adults 
114.6 (8.2) 110.0 (7.8) 4.6 (2.6) 37.6 (14.4) 39.6 (14.9) -2.0 (1.9) 77.0 (7.8) 70.5 (9.5) 6.5 (3.8) 

Older 

Adults 
118.1 (7.0) 112.4 (6.2) 5.7 (2.4) 40.7 (9.1) 43.9 (10.5) -3.1 (1.7) 77.3 (4.8) 68.5 (5.6) 8.8 (3.5) 

All 

Adults 
115.7 (7.9) 110.7 (13.6) 4.9 (2.5) 38.6 (12.9) 40.9 (13.3) -1.2 (2.6) 77.1 (7.0) 69.9 (8.4) 7.5 (4.3) 
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The RMSE for both healthy age groups ranged between 4.05° to 4.57° (Table 5-8). The 

RMSE was smaller for younger adults, with a maximum discrepancy of 0.52° between 

the younger and older adults. There were no significant differences between RMSE for 

the healthy participants (p > 0.05). Both healthy populations displayed a strong positive 

coefficient of correlation.   

Figure 5-20 depicts a Bland-Altman plot to assess whether the signed difference 

between the technologies varied with the mean knee flexion. Differences between the 

measurement systems never exceeded the limits of agreement represented by ± 2 

standard deviations. However, larger differences between MotionSense™ and Vicon 

were evident at higher degrees of knee flexion. Furthermore, positive differences were 

observed during periods of greater flexion, while negative differences were presented at 

lower flexion angles. This indicates that MotionSense™ underestimates peak flexion 

angles, while overestimates smaller angles during the cycling activity.  

 

 

Figure 5-20. Bland-Altman plots of the mean error between the measurement technologies over whole 
movement cycle. Error bars display one standard error. A negative difference reports an overestimation of 

knee angle by MotionSense™, and a positive difference an underestimation. 
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5.1.5 Get up and Go Results  

This section details the accuracy of the MotionSense™ device compared to Vicon 

during the "Get Up and Go" activity for younger healthy adults. To facilitate analysis, the 

activity was divided into two key movements: sit-to-stand and stand-to-sit. For each 

participant, one sit-to-stand and one stand-to-sit movement were analysed, and the 

average results across the entire group were compared. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-21. Mean knee flexion (SE) for complete sit to stand and stand to sit activity. 

Figure 5-22. Mean knee flexion (SD) for complete sit to stand and stand to sit activity. 

Movement cycle % Movement cycle % 

Movement cycle % Movement cycle % 
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Both technologies displayed similar knee flexion patters for both the sit-to-stand and 

stand-to-sit activity (Figure 5-21 and Figure 5-22). Differences between the 

technologies are highlighted by the grey shaded region indicating one standard error 

(Figure 5-21), while variation within the participant measures are indicated by the grey 

shaded regions displaying one standard deviation (Figure 5-22). Variations were larger 

during periods of faster movement, as shown in Figure 5-22. The maximum and 

minimum knee flexion angles are detailed in Table 5-9. MotionSense™ measured 

smaller ROM measures compared to Vicon. However, ROM measures were not 

significantly different between the two systems (p > 0.05).   

Both the sit-to-stand and stand-to-sit activities reported very similar RMSE values (p > 

0.05), with the stand to sit activity reaching a maximum RMSE of 2.89°. Correlation 

values indicated a very strong positive correlation between Vicon and MotionSense™ 

(Table 5-10). Figure 5-23 describes the signed difference as a function of the gait cycle 

percentage. Stand-to-sit reported the smallest differences across the gait cycle with a 

maximum error as the participants begins to sit from the standing position (-2.93° 

difference). While the stand-to-sit activity had the largest error just as the participant 

left the stool and moved to the standing position about to take their first step (-4.24° 

difference). These errors coincide with periods of faster movements and quicker 

changes of knee joint angle. 

Figure 5-23. Signed error between the measurement technologies over whole movement cycle. Error 
bars display one standard error. A negative difference reports an overestimation of knee angle by 

MotionSense™, and a positive difference an underestimation. 

Movement cycle % Movement cycle % 
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Table 5-9. Mean knee angle (SD) results for get up and go for younger adults. 

Min: Minimum, Max: Maximum; ROM: Range of Motion; MS: MotionSenseTM; Δ: difference between Vicon and MotionSenseTM (and pooled SD) 

 

Table 5-10. Mean RMSE (SD) results for younger adults. 

Younger Adults 

 RMSE (°) r 

Sit to stand 2.89 (1.62) 0.99 

Stand to sit 2.31 (0.93) 0.99 

RMSE: Root Mean Square Error (and SD) 
r: Pearson Coefficient of Correlation

 

 

Knee Angle (°) 

 Max Flexion Min Flexion ROM 

 Vicon MS Δ Vicon MS Δ Vicon MS Δ 

Younger 

Adults 

Sit to Stand 104.3 (8.6) 102.1 (8.2) 2.1 (2.1) 14.1 (8.3) 15.8 (9.9) -1.7 (3.7) 90.2 (10.5) 86.4 (10.6) 3.8 (4.7) 

Stand to sit 103.3 (6.2) 103.9 (6.2) -0.5 (2.5) 20.0 (10.5) 22.1 (10.7) -2.1 (3.9) 83.3 (12.3) 81.7 (13.7) 1.6 (5.6) 
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Figure 5-24 depicts a Bland-Altman plots to assess whether the signed difference 

between the technologies varied with the mean knee flexion. Differences became 

particularly evident when measurements exceeded the limits of agreement. The stand-

to-sit activity displayed narrower limits of agreement suggesting closer agreement 

between Vicon and MotionSense™, while the sit-to-stand activity had wider limits.  

 

 

 

 

 

Figure 5-24. Bland-Altman plots of the mean error between the measurement technologies over whole gait 
cycle. Error bars display one standard error. A negative difference reports an overestimation of knee angle by 

MotionSense™, and a positive difference an underestimation. 
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5.2 Validation of the Seel Algorithm  

The results presented in this section compare the accuracy of the Seel IMU algorithm 

used for determining knee joint angles from raw IMU data against the opto-electronic 

Vicon motion capture system. The accuracy of the system is first evaluated across a 

healthy younger adult population over a diverse range of activities, evaluating its ability 

to accurately track sagittal knee joint angle. The accuracy of this algorithm is then 

assessed across a clinical TKA population during level treadmill walking, validating the 

systems accuracy both preoperatively and postoperatively.  

5.2.1 Healthy Younger Adult Population 

Knee flexion patterns were similar for both the IMU sensor and Vicon for all ADLs within 

the younger healthy adult population (Figure 5-25 and Figure 5-26). Larger differences 

between the two measurement systems occurred during stages of greater knee flexion 

(Figure 5-25), represented by the grey shaded regions indicating one standard error.  

The greatest variation within the data sets can be seen by the grey shaded region 

displaying the 95% confidence interval (Figure 5-26), occurring during instances of 

larger flexion angles and during movements that are associated with greater angular 

velocities. Stair navigation had the greatest variation within the data compared to the 

other activities. While the biggest differences between the IMU sensor and Vicon were 

evidenced for the flexion/extension activity (p < 0.05), displayed from peak flexion to 

peak flexion. For all activities, the largest difference between Vicon and the IMU sensor 

occurred in deep flexion compared to extension (Table 5-11), recording a maximum 

difference of 8.14° between maximum flexion during flexion/extension activity (p < 

0.05), while cycling showed the greatest difference of -3.68° between minimum flexion 

(p > 0.05). The IMU more commonly underestimated maximum flexion angles leading to 

positive differences between the systems, while overestimating minimum flexion 

angles resulting in negative differences. 
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Figure 5-25. Mean knee flexion (SE) from initial contact to initial contact for differ ADLs for healthy young adults. 

Movement cycle % 

Movement cycle % Movement cycle % 

Movement cycle % 

Gait cycle % 
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Figure 5-26. Mean knee flexion (and 95% confidence interval) from initial contact to initial contact for different 
ADLs for healthy young adults. 
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Figure 5-27. Signed error between the measurement technologies over whole gait cycle for each ADL for healthy 
young adults. Error bars display one standard error. A negative difference reports an overestimation of knee angle by 

the IMU, and a positive difference an underestimation. 

Gait cycle % 

Movement cycle % 

Movement cycle % 

Movement cycle % 

Movement cycle % 
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Figure 5-27 describes the signed difference as a function of the movement cycle 

percentage, where the error bars represent one standard error. The flexion/extension 

activity had the greatest difference during maximum flexion, occurring at 0% and at 

100% of the cycle (7.12° difference), and with larger errors observed during periods of 

faster movements or sudden changes in direction. Periods associated with faster 

movements occur from around 10% - 30% of the movement cycle (-4.55 ° difference) 

as the shank moves away from the thigh to carry out a full extension and then from 

around 80% - 100% of the gait cycle, where the shank is raised towards the thigh 

returning to maximum flexion. 

During walking, the maximum error was observed around initial contact, with a 

difference of -3.84°. Other notable differences occurred at approximately 60% of the 

gait cycle during toe-off (-3.49° difference), from 74% - 90% of the gait cycle during mid-

swing to terminal swing (~3.00° throughout this period), and just before heel strike (-

3.01° difference). These differences were observed when the knee reached higher 

degrees of flexion or during faster movements, particularly in the swing phase. 

In the cycling activity, the largest errors occurred around 28% of the pedal stroke cycle, 

with a difference of -3.39°. The knee reaches minimum flexion at 25% of the cycle, and 

by 28% of the gait cycle the limb has reached the bottom of the pedal stroke and begins 

changing direction, pulling the leg up towards maximum knee flexion (75% of the 

cycle). Larger errors were further observed at 72% - 75% of the cycle, during peak knee 

angle flexion, with a difference of 2.57°. 

For stair ascent, the greatest differences between measurement systems were seen at 

67% and at 88% of the gait cycle during the swing phase, with errors reaching -5.18° 

and 5.23°, respectively.  

For stair descent, smaller differences were noted compared to those reported during 

stair ascent. With stair descent reporting maximum errors during late stance and 

approaching early swing at 65% of the cycle (-3.41° difference) and at 79% of the cycle 
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when the knee reached maximum flexion (2.40° difference). Additional key differences 

were observed during the foot placement phase at the end of the cycle (100% of the 

gait cycle), with a difference of -3.80°. 

In all activities, the maximum error aligns with peak knee flexion. Additionally, in 

cycling, stair navigation, and the flexion/extension activity, larger differences are 

observed during phases of rapid movement or sudden direction changes that are 

associated with larger deviations in angular velocities. For example, in cycling, these 

differences appear at the bottom of the pedal stroke, just before the pull-up phase. In 

the flexion/extension activity, greater errors occur when the limb rapidly changes 

direction from maximum to minimum flexion and the reverse also being true, with a 

change from minimum to maximum flexion. In stair navigation, larger differences are 

noted during the swing phase, where faster movements are required to reposition the 

leg for clearing the step. 
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Table 5-11. Mean knee angle (SD) results for activities of daily living for younger adults. 

Min: Minimum, Max: Maximum; ROM: Range of Motion; MS: MotionSenseTM; Δ: difference between Vicon and MotionSenseTM (and pooled SD) 
ap < 0.05 between Vicon and IMU for maximum flexion 
bp < 0.05 between Vicon and MS for range of motion 

 

 

 

 

Knee Angle (°) 

 Max Flexion Min Flexion ROM 

 Vicon IMU Δ Vicon IMU Δ Vicon IMU Δ 

Younger 
Adults 

Walking 61.7 (3.0) 58.3 (3.6) 3.4 (1.9) -3.1 (3.8) -0.9 (4.4) -2.2 (3.4) 64.8 (3.0) 59.2 (3.8) 5.6 (4.4) 

Cycling 113.5 (8.1) 110.9 (6.7) 2.6 (4.0) 37.2 (14.7) 40.9 (16.1) -3.7 (2.8) 76.3 (7.6) 70.0 (11.5) 6.3 (6.7) 

Flexion/ 

Extensionab 
114.6 (8.5) 106.5 (9.7) 8.1 (2.9) 5.0 (6.7) 4.7 (8.2) 0.4 (1.7) 109.6 (11.7) 101.9 (14.0) 7.7 (3.5) 

Stair Ascent 83.7 (21.5) 78.2 (17.7) 5.5 (4.2) 2.3 (2.3) 2.6 (2.3) -0.3 (1.2) 81.4 (21.6) 75.6 (17.1) 5.8 (4.8) 

Stair 
Descent 69.9 (5.5) 68.8 (4.0) 1.1 (2.7) 3.0 (3.7) 4.6 (4.9) -1.6 (3.3) 66.9 (5.9) 64.2 (2.6) 2.7 (4.7) 
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The pooled RMSE ranged between 1.20° to 6.07° during walking for all 50 gait cycles, 

between 0.56° to 5.57° during cycling for all 50 pedal strokes, between 2.52° to 5.31° for 

stair ascent, 2.47° to 6.16° for stair descent and between 3.36° to 5.51° for the 

flexion/extension activity for all participants (Table 5-12) . 

Cycling had the lowest RMSE, while the greatest RMSE was measured during the 

flexion/extension activity.  

There were no statistically significant differences observed between the RMSE values 

for stair descent, stair ascent, and flexion/extension activities (p > 0.05). However, 

RMSE values for walking and cycling were found to be statistically significant (p < 0.05). 

The correlation between Vicon and the IMU sensor for all activities indicates a strong 

positive correlation between the two technologies, suggesting that the measurements 

from the IMU device are in strong agreement to that of the opto-electronic Vicon 

motion capture system. 

 

Table 5-12. Mean RMSE (SD) and correlation coefficient (r) results for all activities for younger adults. 

Activity RMSE r 

Walking 3.28 (0.81) 0.99 

Cycling 2.92 (1.95) 0.99 

Flexion/Extension 4.60 (0.73) 0.99 

Stair Ascent 4.21 (0.87) 0.99 

Stair Descent 4.42 (0.74) 0.98 
RMSE: Root Mean Square Error (and SD) 
r: Pearson Coefficient of Correlation 
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 Figure 5-28. Bland-Altman plots of the mean error between the measurement technologies over whole movement 
cycle for each ADL for the healthy younger adults. Error bars display one standard error. A negative difference 

reports an overestimation of knee angle by the IMU, and a positive difference an underestimation. 
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Figure 5-28 depicts Bland-Altman plots used to evaluate whether the signed difference 

between Vicon and the IMU device changes with mean knee flexion. All activities 

showed an acceptable level of accuracy, with data for cycling, stair navigation, and 

walking falling within the limit bounds. However, the flexion/extension activity exceeded 

the limit bounds, especially at higher degrees of knee flexion where larger differences 

occurred. The flexion/extension activity displayed a particularly notable error of 8° 

difference between the measurement systems at 100° knee flexion. Whereas, walking 

displayed the narrowest limits of agreement, while flexion/extension showed the widest 

range in limit bounds among all activities.  

Each activity displayed a mean difference line of zero or near to zero, notably with the 

flexion/extension activity and the stair descent activities mean difference line equalling 

0.65° and -0.72°, respectively. Moreover, across all activities consistent trends were 

observed between the two technologies. During larger degrees of knee flexion positive 

differences between the technologies were observed due to the underestimation of 

knee angle measures by the IMU device compared to that of the opto-electronic Vicon 

motion capture system. While for smaller knee flexion angles the differences between 

the two systems was negative indicating an overestimation in knee joint angle by the 

IMU device. 
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5.2.2 TKA Population 

It is important to note that out of the 10 TKA participants that consented to this study 

only 5 participants had their data recorded on the wired IMU sensor, therefore, the 

results presented in this section only consider those 5 TKA participants. 

Knee flexion patterns were similar for both measurement systems for walking (Figure 

5-29 and Figure 5-30). Larger differences between the two measurement systems 

occurred during periods of greater knee flexion (Figure 5-29), represented by the grey 

shaded regions indicating one standard error. Preoperatively and 6 weeks 

postoperatively the IMU device underestimated peak flexion, however, 1-week 

postoperatively the system overestimated peak flexion angles. Though at 1-week 

postoperatively the TKA population displayed a reduction in ROM, decreased minimum 

and maximum flexion in the stance phase and limited peak flexion, the system 

accurately traced knee angles throughout the cycle. 

The greatest variation within the data sets can be seen by the grey shaded region 

displaying the 95% confidence interval (Figure 5-30), highlighting the spread between 

the participant measures. Larger variations between measures were presented during 

the preoperative assessment compared to both postoperative sessions, with greater 

deviations observed in the swing phase compared to the stance phase.  

The largest difference between Vicon and the IMU sensor occurred in maximum flexion 

compared to minimum flexion (Table 5-13). A maximum difference of 9.81° was 

observed at maximum flexion during the preoperative assessment, while the 1-week 

postoperative assessment revealed the largest differences at minimum flexion (-2.46° 

difference). There were no statistically significant differences between the two 

measurement systems at any time point for the walking activity (p > 0.05). The IMU 

generally underestimated maximum flexion angles, leading to positive differences 

between the systems, while underestimating minimum flexion angles, resulting in 

negative differences. Consequently, the IMU device under reported ROM for each time 

point for walking. 
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Figure 5-29. Mean knee flexion (SE) from initial contact including the stance and swing phase of the gait cycle for each time point for the TKA 
population. 

Figure 5-30. Mean knee flexion (and 95% confidence interval) from initial contact including the stance and swing phase of the gait cycle for 
each time point for the TKA population. 
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Figure 5-31. Signed error between the measurement technologies over whole gait cycle. Error bars display one standard error. A negative difference reports an 
overestimation of knee angle by the IMU, and a positive difference an underestimation. 
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Figure 5-31 describes the signed difference as a function of the gait cycle percentage. 

Preoperative walking reported the largest difference compared to both postoperative 

sessions. The largest error between Vicon and the IMU device occurred at 80% of the 

gait cycle, during mid-swing at maximum flexion (9.30° difference). However, notable 

differences were observed at 8% of the gait cycle during loading response (-2.97° 

difference) and at 100% of the gait cycle at heel strike (-3.18° difference). 

Six weeks post-TKA revealed the greatest differences between the two systems at 

approximately 79% of the gait cycle at peak knee flexion during the swing phase 

(difference of 5.90°). Notable differences were also observed during toe off at around 

62% of the gait cycle (-3.32° difference). 

One week postoperatively the differences between the two systems were consistent 

throughout the gait cycle, with a maximum difference of -1.93° reported at 68% of the 

gait cycle during the swing phase. During this session, the IMU device was in close 

agreement to the measures reported by Vicon.  

Larger differences were observed when the knee reached larger degrees of maximum 

flexion or during faster periods of movement (swing phase), this was evidenced during 

the preoperative assessment and at 6 weeks postoperative session particularly.
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Table 5-13. Mean knee angle (SD) results for walking for TKA patients. 

 

 

Knee Angle (°) 

 
Max Flexion Min Flexion ROM 

 
Vicon IMU Δ Vicon IMU Δ Vicon IMU Δ 

Preoperative 55.2 (1.4) 46.0 (10.7) 9.2 (9.3) 4.8 (9.7) 6.3 (8.9) -1.5 (0.7) 50.4 (8.3) 39.7 (1.8) 10.7 (10.1) 

1 Week postop 43.6 (0.5) 44.1 (1.6) -0.5 (2.1) 17.1 (3.7) 19.6 (4.8) -2.5 (1.1) 26.5 (3.1) 24.6 (6.3) 2.0 (3.2) 

6 Weeks postop 60.4 (4.2) 54.3 (3.3) 6.1 (3.0) 14.1 (2.4) 14.7 (2.6) -0.7 (0.5) 46.3 (1.9) 39.5 (2.1) 6.8 (2.9) 

Postop: Postoperative, Min: Minimum, Max: Maximum; ROM: Range of Motion; IMU: Inertial measurement unit; Δ: difference between Vicon and IMU (and pooled SD) 
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The pooled RMSE ranged from between 3.36° to 4.78° for all three sessions for the 

walking activity (Table 5-14). The 1-week postoperative assessment revealed the 

highest level of accuracy between the IMU device and Vicon, while the preoperative 

assessment demonstrated the lowest level of agreement between the two 

technologies. There were no statistically significant differences between the RMSE of 

each session (p > 0.05). 

The correlation of coefficient indicated a very strong positive relationship between 

Vicon and the IMU sensor measurements for each time point. 

 

Table 5-14. Mean RMSE (SD) results for walking TKA population. 

Walking 

 RMSE (°) r 

Session 

Preoperative 4.78 (4.59) 0.97 

1 Week postop 3.36 (0.05) 0.95 

6 Weeks postop 3.68 (2.16) 0.96 
Postop: Postoperative 
RMSE: Root Mean Square Error (and SD) 
r: Pearson Coefficient of Correlation 
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Figure 5-32. Bland-Altman plots of the mean error between the measurement technologies over whole gait cycle. Error bars display one standard error. A negative 
difference reports an overestimation of knee angle by the IMU, and a positive difference an underestimation. 
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Figure 5-32 depicts Bland-Altman plots to assess whether the signed difference 

between Vicon and the IMU device varied with the mean knee flexion. Differences only 

became unacceptable at larger angles of knee flexion, highlighted both preoperatively 

and at 6 weeks postoperatively, with data points extending beyond the limits of 

agreement at greater degrees of flexion.  

For larger degrees of flexion, the difference between the systems is positive, suggesting 

an underestimation of knee angle by the IMU. However, at smaller degrees of flexion, 

the differences between the IMU and Vicon is negative, indicating that the IMU is 

overestimating knee angles. 

The mean difference line equals zero for both preoperative and 6 weeks postoperative, 

revealing no systematic bias. However, a mean difference of just below zero (-1.37°) for 

1-week postoperatively was reported, suggesting that on average the IMU 

overestimated knee angles compared to Vicon. 

Despite the observed system bias (mean difference line just below zero), the data 

presented 1-week postoperatively displayed the closest agreement between the two 

measurement systems, with all data points found within narrow limit bounds and 

closely clustered around zero. This implies that there is a high level of accuracy 

between the opto-electronic Vicon motion capture system and the wired IMU sensor. 
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5.3 Biomechanical Assessment of Rehabilitation Post TKA  

5.3.1 Overview of TKA Recovery 

Optimal knee ROM required to achieve a satisfactory level of function post TKA has 

been defined to be as low as 95º (Miner et al., 2003) to as high as 130º (Devers et al., 

2011) depending on the movement performed. However, following TKA over 20% of 

patients do not report clinically relevant pain relief or functional improvements 

(Kahlenberg et al., 2018; Sajjadi et al., 2019).  

This chapter evaluates key biomechanical measures and subjective PROM data for a 

TKA population both pre- and post TKA, evaluating the degree of subjective and 

functional improvements in the short period following TKA, and whether links between 

the two measures can be established. This chapter further expands on the practical 

applications of the aforementioned wearable IMU technologies and the benefits these 

technologies may pose to postoperative recovery. This is presented through functional 

outcomes within the clinical population’s recovery period. 

Table 5-15 presents the participants who attended each session, as complete data sets 

were not achieved for all participants, as a result of marker occlusion or due to faulty 

sensors. The measurement data presented only considers Vicon opto-electronic 

measurements as these data are considered to be ground truths upon which the 

clinical efficacy of both wearable technologies were scored and evaluated against. This 

should be considered when interpreting the results. 

While 48 patients were screened for the study, only 10 provided consent to participate. 

The remaining patients declined for a variety of reasons, including stress related to their 

upcoming surgery, reluctance to impose on others for transportation to the laboratory, 

concerns about potential pain, a lack of understanding about the importance of 

research volunteers, absence of perceived personal benefit, disinterest, or fear. Of 

these 10 patients that did consent to the study, 8 of these patients attended their 

preoperative testing session, 4 patients attended 1 week postoperatively, while 7 
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patients attended 6 weeks postoperatively. This small sample size should be kept in 

mind when interpreting these results. 

It is important to highlight, of the patients who attended the preoperative assessment, 

the same 5 patients attended the 6 week follow up session (Table 5-15 and Table 5-16). 

The data presented is Vicon data and PROM group averages. Where only operated leg 

data is discussed in Table 5-17.  

Table 5-15. TKA participant descriptive information and which sessions they attended. 

    Data Presented 

Patient ID 
Sex 

(F/M) 

Age 

(years) 

Side of TKA 

(L/R) 

Preoperative 

session 

1 Week 

postop 

6 Weeks 

postop 

TKA01 m 56 R Y N N 

TKA02 f 71 R Y* Y Y 

TKA03 m 57 L N Y* Y 

TKA04 f 65 R N Y Y 

TKA05 f 68 R Y N Y 

TKA06 f 65 R Y N Y* 

TKA07 m 68 L Y N Y* 

TKA08 m 67 R Y Y* N 

TKA09 m 54 R Y N Y* 

TKA10 m 53 L Y* Y* N 

Postop: Postoperative, F: Female, M: Male, L: Left, R: Right,  
Sessions attended: Y: Yes, N: No 
* Vicon data not included in analysis due to occlusions. 
 

Table 5-16. Mean weight and BMI (SD) results for all time points for the TKA population. 

 

TKA 

Population 

 
Sex 

(F/M) 

Age 

(years) 

Side 

(L/R) 

Weight 

(kg) 

BMI 

(kg/m2) 

Preoperative 3 / 5 62.8 (7.2) 2 / 6 88.0 (15.6) 29.6 (3.4) 

1 Week 

postop 
2 / 3 64.4 (7.0) 3 / 2 87.3 (1.0) 28.9 (2.3) 

6 Weeks 

postop 
4 / 3 64.0 (6.2) 2 / 5 84.4 (11.6) 29.1 (3.6) 

Postop: Postoperative, BMI: Body Mass Index, F: Female, M: Male, L: Left, R: Right 
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The average mass of the group 6 weeks postoperatively was not significantly different 

from the groups baseline mass recorded at their preoperative assessment (p > 0.05). A 

mean weight loss of 3.66kg was reached by the TKA population by 6 weeks 

postoperatively. 

5.3.1.1 Peak ROM Measures 

The mean ROM at each time point for all the activities are summarised in  

Table 5-17. For all three activities the TKA population showed improvements in both 

maximum flexion and ROM by 6 weeks post-TKA compared to the groups preoperative 

baseline measures. 

 

Table 5-17. Mean Knee angle (SD) results for all activities for the TKA population. 

 Knee Angle (°) 

 Max Flexion Min Flexion ROM 

Walking 

Preoperative 45.5 (8.8) 7.0 (10.3) 38.5 (9.7) 

1 Week postop 47.1 (6.2) 15.5 (1.3) 31.6 (5.0) 

6 Weeks postop 56.4 (7.1) 11.9 (3.3) 44.6 (3.9) 

Stair Ascent 

Preoperative 53.6 (34.9) 5.3 (10.6) 48.4 (28.1) 

1 Week postop 51.5 (2.7) 18.4 (0.9) 33.1 (1.7) 

6 Weeks postop 78.9 (18.7) 13.6 (3.1) 65.3 (17.4) 

Stair Descent 

Preoperative 39.5 (8.8) 6.6 (8.2) 32.9 (2.2) 

1 Week postop 48.3 (2.8) 14.2 (0.8) 34.1 (2.0) 

6 Weeks postop 74.9 (23.7) 12.1 (6.3) 62.8 (22.4) 
Postop: Postoperative, Max: Maximum; Min: Minimum, ROM: Range of Motion (and pooled SD). 

No significant differences in knee angles (minimum flexion, maximum flexion and ROM) 

were observed across different time points for the same activity, suggesting no 

significance change in knee angles preoperatively to 6 weeks postoperatively. Similarly, 

when comparing knee angles across the different activities at the same time point, no 

significant differences were observed, (p > 0.05). These findings should be considered 
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with caution as they may be as a result of the smaller sample size, and absolute 

changes should be considered instead. 

  

Figure 5-33. Mean minimum knee extension and mean maximum flexion angle for the pooled TKA 
population, preoperatively and postoperatively for stair navigation and walking. Each error bar represents 

one standard deviation, with the colours representing individual activities, dashed line indicating maximum 
flexion and the solid line minimum flexion. 

 

Figure 5-33 displays the TKA populations pooled average maximum flexion and 

minimum flexion values, with error bars indicating one standard deviation for the TKA 

participants at each time point for each activity. No significant differences were noted 

between preoperative baseline measures and 6 weeks post-TKA data for each activity. 

Maximum flexion values increased from base line measures for each activity by 6 

weeks, while minimum flexion angles had almost restored to preoperative baseline 

measures for each activity by 6 weeks postoperatively.  

It is important to take note of the standard deviation of the minimum flexion at 6 weeks 

postoperatively compared to the preoperative baseline measures. At 6 weeks 
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postoperative the minimum flexion standard deviations did not reach the same full 

extension range as preoperative standard deviations. 

No significant differences were found in ROM between the preoperative assessment 

and the two postoperative examinations, again possibly as a result of the limited 

sample size. However, ROM increased for all activities by 6 weeks post-TKA. Walking 

reported a 6.0° improvement in ROM (~17% increase) at 6 weeks post-TKA compared to 

preoperative baseline measures, stair ascent improved by 16.9° (~35% increase) by 6 

weeks postoperative and stair descent recorded the highest improvement of 29.9° 

(~91% increase) compared to baseline measures. Overall, across all activities, the TKA 

group increased their average ROM by 16.6°, from 39.9° preoperatively to 56.5° at 6 

weeks postoperatively (~42% increase). 

 

Figure 5-34. Average gait cycle from heel strike to heel strike for the pooled TKA clinical population, showing 
the average knee flexion angle for level walking at each data collection session, error bars represent one 

standard deviation. 

 

Maximum flexion angles were greatest 6 weeks following surgery, however minimum 

flexion was limited postoperatively (Figure 5-34), this is evidenced particularly in the 

stance phase at 1-week postoperatively. 
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5.3.1.2 Walking Speed and Cadence 

Walking speed, cadence and stride length is summarised in Table 5-18. No significant 

differences were observed between each time point for both walking speed and 

cadence (p > 0.05).  

Table 5-18. Mean treadmill walking speed and cadence (SD) results for the TKA population at each time 
point. 

                                                      Mean (± SD) 

 
Walking Speed 

(m/s) 

Cadence 

(steps/min) 

Stride length 

(m) 

Preoperative 0.56 (0.15) 88.3 (18.0) 0.81 (0.31) 

1 Week postoperative 0.42 (0.18) 79.5 (21.2) 0.69 (0.37) 

6 Weeks postoperative 0.60 (0.27) 90.8 (19.8) 0.85 (0.42) 

 

Spearman’s correlation coefficients were calculated between preoperative measures 

of BMI, ROM and walking speeds and cadence against 6 weeks postoperative ROM. 

Results of the analysis highlighted that preoperative BMI (r = -0.60), preoperative ROM (r 

= 0.51), preoperative cadence (r = 0.72), and preoperative walking speed (r = 0.50) had 

strong correlations with 6 weeks postoperative ROM, Table 5-19. 

Table 5-19. Spearman's correlation coefficients for the TKA populations baseline measures and their 6 
week postoperative ROM 

Correlation Coefficient (𝝆) 

 6 Weeks postoperative ROM 

Preoperative BMI*** -0.60 

Preoperative ROM*** 0.51 

Preoperative Walking Speed*** 0.50 

Preoperative Cadence*** 0.72 

*Weak correlation 
**Moderate correlation 
***Strong correlation 
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The PROM scores are presented in Table 5-20. The PROM scores have all been scaled 

to a score out of 100, with 100 representing perfect knee health or total satisfaction, 

the best possible outcome. For all PROM questionnaires 6 weeks post-surgery reported 

the highest values, and therefore better patient satisfaction compared to the baseline 

measure and 1 week after surgery.  

 

Table 5-20. Mean PROM score (SD) results for the TKA population at each time point. 

 FJS OKS KOOS JR 

Preoperative 15.1 (13.3) 37.8 (15.0) 41.3 (9.7) 

1 Week postop 12.5 (15.3) 38.5 (19.0) 46.4 (12.0) 

6 Weeks postop 36.3 (38.3) 55.7 (13.3) 57.3 (7.7) 

Postop: Postoperative, FJS: Forgotten Joint Score, OKS: Oxford Knee Score, KOOS JR: Knee injury and 
Osteoarthritis Outcomes Score for Joint Replacement. 
 

 

No significant differences were observed between the different time intervals and the 

same PROM questionnaire measure (p > 0.05), though this may be as a result of the 

limited sample size 1 week postoperatively. However, during the preoperative session 

the FJS revealed significant differences to both the OKS and the KOOS JR (p < 0.01). 

Furthermore, postoperatively, the FJS reported significantly different values compared 

to KOOS JR (p <0.05) 1-week postoperatively.   

When considering all three PROMs at each time point, significant differences (p < 0.05) 

were only observed between the preoperative measures and the 6 weeks postoperative 

results for the KOOS JR score. However, no other significant differences were reported. 

Notably, the FJS consistently scores lower at each time point compared to the other 

PROM measures.  
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Figure 5-35. Mean TKA population PROM scores (and SD) for each questionnaire for the TKA population 
collected at each laboratory session. 

 

Figure 5-35 presents the mean population PROM scores for each questionnaire at each 

time point. For FJS and OKS, 1-week post TKA presents lower results compared to the 

TKA groups baseline preoperative measures. However, by week 6 postoperatively, an 

increase in all PROM scores is observed compared to both baseline and 1-week 

postoperative measures.  

Spearman’s coefficients of correlation were determined between the different PROM 

scores and ROM during walking both preoperatively and at 6 weeks post TKA. Moderate 

to strong coefficients of correlation were found (FJS: -0.34, OKS: 0.49, KOOS JR: 0.46) 

between the PROM scores and walking ROM at week 6, moreover, weak correlations 

were presented preoperatively (FJS: 0.16, OKS: 0.17, KOOS JR: -0.10) between PROM 

scores and ROM. This trend suggests that better functional outcome measures relate 

to better patient reported outcomes, and ultimately greater patient satisfaction, 

consequently, lower PROM scores may represent reduced ROM, Table 5-21. 
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Table 5-21. Spearman’s correlation displaying the relationships between preoperative and postoperative 
PROM scores to ROM 

Correlation Coefficient (𝝆) 

 PROM 
Questionnaire 

Preoperative ROM 
6 weeks 

Postoperative ROM 

Preoperative 
Assessment 

FJS 0.16* -0.36** 

KOOS JR -0.10* 0.60*** 

OKS 0.17* 0.53*** 

6 Weeks 
Postoperative 
Assessment 

FJS 0.01* -0.34** 

KOOS JR 0.60*** 0.46*** 

OKS 0.33** 0.49*** 

*Weak correlation 
**Moderate correlation 
***Strong correlation 

 

Figure 5-36. Mean subjective (PROM scores and +SD) and objective walking measures (± SD) for the pooled 
TKA population at each time point, the error bars represent one standard deviation. 
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Figure 5-36 displays both subjective and objective measures at each time point. By 6 

weeks post-surgery ROM had improved compared to 1-week postoperative measures, 

with mean PROM measures reflecting those functional improvements. Conversely, 1-

week following surgery the TKA population displayed a reduction in both ROM and 

cadence, with mean PROM measures following the same trend. PROM measures reveal 

agreement to the reduction in joint function.  

 

 

 

 

 

 

 

 

 

 

 

 



 

267 

 

5.3.2 Recovery on an Individual Patient Level 

In this subsection the data of an individual patient is presented. Data is of a 71-year-old 

female who volunteered and consented to the study, she attended all three testing 

sessions. The data presented demonstrates the usability of the MotionSense™ 

wearable device, all data presented has been recorded from the commercial device. 

The participant had a TKA performed on her right knee. Walking and stair navigation 

data was collected preoperatively, 1-week and 6 weeks postoperatively. All data 

presented is of her operated leg, ten gait cycles were analysed for walking, while only 

one step was analysed for the stair navigation exercise. 

 

Table 5-22. Descriptive statistics of the TKA participant at each time point. 

 Weight (kg) BMI (kg/m2) 

Preoperative 90.5 31.1 

1 Week postop 88.2 30.3 

6 Weeks postop 85.0 29.2 
Postop: Postoperatively, BMI: Body Mass Index. 

 

5.3.2.1 Peak ROM Measures 

Table 5-23 presents the operated knee angle data both pre- and postoperatively for 

stair navigation and treadmill walking, displaying both the minimum and maximum 

knee angles for all activities at each time point. 
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Table 5-23. Mean Knee angle (SD) results for each activity for the TKA participant. 

Activity Time point 
Max Flexion 

(°) 
Min Flexion 

(°) 
ROM 

(°) 

Walking 

Preoperative 42.2 (1.9) 11.7 (0.5) 30.5 (1.8) 

1 Week Postop 52.7 (1.5) 15.7 (0.8) 37.0 (2.0) 

6 Weeks Postop 56.6 (0.7) 11.1 (0.5) 45.5 (0.8) 

Stair Ascent 

Preoperative 48.3 6.8 41.5 

1 Week Postop 53.3 19.0 34.3 

6 Weeks Postop 91.6 12.3 79.4 

Stair 
Descent 

Preoperative 37.4 7.0 30.4 

1 Week Postop 46.4 13.7 32.7 

6 Weeks Postop 90.7 8.3 82.4 

Postop: Postoperative Max: Maximum; Min: Minimum, ROM: Range of Motion (and pooled SD). 

The participant’s ROM considered across all activities at 6 weeks post TKA showed a 

significant difference compared to ROM measures preoperatively and one week 

postoperatively (p < 0.05). Furthermore, the participant’s maximum flexion angle 

considered across all activities at 6 weeks post TKA showed a significant difference 

compared to maximum flexion preoperatively (p < 0.05).  
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Figure 5-37. Maximum and minimum knee flexion angles for each activity for the TKA participant at each 
time point. 

 

The participant’s maximum flexion angle increased for all activities at both 1week 

postoperatively and at 6 weeks postoperatively compared to her baseline measures. 

While her ROM increased at 6 weeks postoperatively compared to her baseline 

measures for all activities. Minimum flexion improved by 6 weeks post-surgery 

compared to her 1-week postoperative measures, however, by 6 weeks postoperative, 

her minimum flexion angle had not yet been restored or improved compared to her 

baseline measurements (Figure 5-37). 

5.3.2.2 Walking Speed and Cadence 

This participant walked with a walking aid both pre- and postoperatively (Figure 5-38). 

Preoperatively and 6 weeks postoperatively she used a walking frame, however, at the 

1-week postoperative stage she used crutches.  

Walking speed and cadence is presented in Table 5-24. Both walking speed and 

cadence showed the same trend, 1-week post TKA, speed and cadence reduced from 
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her preoperative baseline. However, by 6 weeks postoperatively both cadence and 

walking speed was higher than both the preoperative baseline and 1-week post TKA 

measures.  

 

Table 5-24. Gait parameters for the TKA participant at each time point. 

 Walking speed 
(m/s) 

Cadence 
(steps/min) 

Stride length 
(m) 

Preoperatively 0.64 84.40 0.91 

1 Week postop 0.56 73.04 0.92 

6 Weeks postop 0.69 90.00 0.92 

Postop: Postoperative. 

 

 

 

5.3.2.3 Biomechanical Alignment 

Preoperatively the patient displayed excessive bilateral valgus deformity (Figure 5-39), 

with a valgus angle ranging between 6° - 10° throughout the gait cycle. Her affected 

knee displayed a greater degree of valgus when her leg was weighted in the stance 

phase compared to the swing phase.  

Figure 5-38. Walking aids used by participant preoperatively and postoperatively. 
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Figure 5-39. Walking during the preoperative session. 

Figure 5-40. Walking at 1 week post-TKA. 

Figure 5-41. Walking at 6 weeks post-TKA. 
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Postoperatively the patient showed a reduction in valgus angle, with her non operated 

leg revealing a larger degree of valgus compared to her operated leg (Figure 5-40 and 

Figure 5-41). This observation reveals an improvement in valgus deformity following 

surgery. 

5.3.2.4 PROMS 

All three PROM scores are displayed in Table 5-25 and Figure 5-42 at each time period. 

Table 5-25. Patient reported outcome measures (PROMs) for each time point for the TKA participant. 

 FJS OKS KOOS JR 

Preoperatively 8 31 28 

1 Week postop 31 44 42 

6 Weeks postop 48 56 64 
Postop: Postoperative 

All three PROM scores showed an improvement from the patients’ preoperative 

baseline score, with 6 weeks postoperatively exhibiting significantly different PROM 

values compared to the patients’ preoperative baseline (p < 0.05), Figure 5-42. 

 

Figure 5-42. Patient reported outcome measures at each session for the TKA participant (Post op: 
Postoperatively). 
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Figure 5- 43 compares functional measures against the patient’s subjective measures. 

The patient’s outcome measures and ROM improved from baseline, however, a small 

decrease in cadence was observed 1-week postoperatively, yet this improved from 

baseline by 6 weeks postoperatively. The same general trend is observed between all 

variables, postoperative function is greater compared to 1-week postoperatively and 

preoperative scores.  

Figure 5-43. Objective and subjective outcomes for the TKA patient, PROM scored out of 100, Cadence 
measured in steps/min and ROM measured in degrees. 

 

Spearman’s correlations were calculated between PROM scores and ROM measures at 

each time point respectively, preoperatively ROM and average PROM scores resulted in 

a strong correlation of r = 0.61, 1-week post-surgery resulted in a strong negative 

correlation, r= -0.69 and 6 weeks post-TKA resulted in a strong positive correlation of 

0.91. Higher PROM scores are generally observed to correlate with better functional 

outcome measures, Table 5-26. 
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Table 5-26. Correlation of Coefficients between subjective and objective measures throughout the 
recovery period, from preoperative base measures to the 6 week postoperative time point. 

Correlation Coefficient (𝝆) 

 Preoperative 
PROM Scores 

1 Week 
Postoperative 
PROM Scores 

6 Weeks 
Postoperative 
PROM Scores 

Preoperative 
ROM 

1 Week 
Postoperative 

ROM 

Preoperative 

ROM 

0.61*** 0.60*** 0.04* 1.00*** 0.17* 

1 Week 
Postoperative 

-0.68*** -0.69*** -0.98*** 0.17* 1.00*** 

6 Weeks 
Postoperative 

0.98*** 0.98*** 0.91*** 0.45*** -0.81*** 

*Weak correlation 
**Moderate correlation 
***Strong correlation 
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6 Chapter 6. Discussion 

6.1 Validation of MotionSense™  

Following TKA patients often experience an initial decline in passive knee ROM due to 

postoperative pain and swelling caused by surgical trauma (Kort et al., n.d.). This 

reduction in ROM is accompanied by decreased performance in functional tasks such 

as walking and stair climbing speed (Bade, Kohrt and Stevens-Lapsley, 2010). Failure to 

regain walking speed postoperatively, even when pain is resolved, has been linked to 

both poor functional outcomes and the onset of new comorbidities (White et al., 2011).  

Improved ROM facilitates more effective muscular contractions during exercise, 

enhancing strength and contributing to recovery (Alrawashdeh et al., 2021). Notably, 

the most significant improvements in flexion and extension occur within the first four 

weeks following surgery (Kornuijt et al., 2019), with greater ROM and mobility 

correlating with higher patient satisfaction (Van Onsem et al., 2018). To safely resume 

ambulation and other ADL’s, restoring functional ROM is crucial and typically achieved 

through structured rehabilitation programs. 

Wearable technologies offer promising support in early stages of recovery by enabling 

continuous, remote monitoring of patient progress. These tools can enhance home-

based rehabilitation and alert clinicians to potential concerns (Vrints et al., 2011). 

However, their clinical utility depends on the accuracy of motion tracking. Evidence 

suggests that devices evaluated under realistic conditions produce more reliable data 

(Cutti et al., 2010; Fernandez et al., 2018; Kavanagh and Menz, 2008; Mannini and 

Sabatini, 2010; Mayagoitia, Nene and Veltink, 2002; Wang et al., 2023).  

This study compared the MotionSense™ IMU to the gold-standard opto-electronic 

Vicon motion capture system in both healthy individuals and TKA patients across 

various ADL’s. The MotionSense™ IMU maintained accuracy within a 5° clinical 

threshold, demonstrating agreement with Vicon opto-electronic motion capture and 

supporting its potential use in clinical rehabilitation. 
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6.1.1 Walking activity 

Walking revealed a strong agreement between the two technologies, with a RMSE < 3° 

in both older and younger healthy adults and in the TKA clinical population. This 

represented a closer agreement compared to other similar gait studies, all reporting 

results within a larger threshold of < 5° (Cho et al., 2018; McGrath and Stirling, 2022; 

Patel et al., 2022). 

Most recently in healthy populations, McGrath and colleague (McGrath and Stirling, 

2022), Berner and colleagues (Berner et al., 2020), and Rekant and colleagues (Rekant 

et al., 2022) conducted validation analyses between motion capture and IMU sensors 

reporting knee flexion RMSE values between 3.30 to 3.77° and strong coefficients of 

multiple correlation values of 0.84 to 0.99, respectively. Of the previous research all 

was conducted in a smaller group of young healthy adults over 6 - 15 gait cycles of 

treadmill walking (Cho et al., 2018; McGrath and Stirling, 2022; Patel et al., 2022). 

Similarly to the study reported in this thesis, Cornish et al (Cornish et al., 2024) 

evaluated the accuracy of IMU devices within a TKA clinical population at the 1-year 

post robotically assisted TKA time point. Cornish et al, compared two approaches (a 

proprietary kinematic model sensor algorithm and a quaternion-based approach) of 

determining knee angle from an IMU device against optical motion capture technology, 

however, used ground reaction forces to determine precise gait events. Their study 

made use of three IMU sensors, one placed on top of the foot, one anteriorly positioned 

on the thigh and the final placed anteriorly on the shank. The study included multiple 

activities, though, only analysed a single gait cycle per participant. As in agreement 

with this thesis, reported knee angles presented by Cornish and colleagues included 

the relative knee joint angle, which were determined by subtracting the average knee 

angle from the complete data set to mitigate any calibration or offset bias.  

Cornish and colleagues, reported RMSE values between 3.14° to 13.28° for both 

approaches, which is significantly greater than RMSE values reported in this study (p < 

0.05), with the walking activity reporting closer agreement compared to stair 

navigation, in line with the findings presented by the healthy population of this study, 
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however, for our TKA population stair navigation (ascent and descent) reported the 

lowest RMSE, followed by walking. Furthermore, Cornish et al revealed neither sensor 

algorithm superior to the other. Correlation coefficients reported by Cornish et al, 

agreed with values reported by this study, evidencing strong correlations across all 

population groups. Additionally, in agreement with findings reported by Cornish et al, 

IMU devices tended to over-estimate knee angle during the swing phase and under-

estimated knee angle during the stance phase, which is particularly evident in the 

healthy younger population of this study.  

Despite the different age groups, and significantly slower gait speeds of the older adults 

compared to the healthy younger adults, there were no statistical differences recorded 

between both healthy groups RMSE in our study, possibly due to gait speed being within 

the range required for accurate IMU angle measurements (Lützner et al., 2014).  

Previous literature has reported gait speeds of 1.0 – 2.2 m/s have the highest accuracy 

for IMU sensors (Cho et al., 2018), with lower accuracy reported above and below this 

range (Cooper et al., 2009). Although the older healthy adults and TKA population 

presented in this research study walked, on average, below this threshold it was not 

enough to affect the RMSE of the IMU device. 

During walking the results of this study did not exceed a RMSE of 2.57° across the entire 

population of healthy and clinical participants (44 participants) for level walking. The 

lowest RMSE was reported by the TKA population at 1-week postoperatively (1.48°), 

while the largest RMSE was recorded in the TKA population, during their preoperative 

assessment (2.57°). These results are partially consistent with the findings of Wang et 

al. (2025), who evaluated IMU technology against motion capture during walking in 

both healthy and clinical populations. In their study, the healthy control group 

demonstrated an RMSE of less than 5°, aligning with our findings. However, their large 

clinical cohort of 240 patients with either hip or knee pathology exhibited higher RMSE 

values, ranging from 2.5° to 8°. Similarly, a study by Hafer et al. (2020) found that IMUs 

can accurately measure knee joint angles during walking when compared to motion 

capture. Like our study, they assessed three distinct populations: 10 healthy younger 

adults, 10 healthy older adults, and 10 individuals with osteoarthritis. Their results 
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showed high accuracy across all groups, with a maximum RMSE of just 0.8°. This higher 

level of accuracy may be attributed to differences in experimental methodologies, 

particularly in sensor-to-segment alignment protocols. 

Our results are, however, within clinically acceptable thresholds (Bonnefoy-Mazure et 

al., 2020; Deckey et al., 2023; Hullfish et al., 2019), suggesting that these sensors could 

be utilised within healthcare settings, though are greater than those reported by (Hefer 

et al., 2020).  

No statistically significant differences existed between RMSE values of the healthy 

populations and the TKA group. The higher level of accuracy found within the clinical 

population at 1-week postoperatively may be due to the TKA population walking with 

more limited and controlled ROM early in the postoperative period, where movements 

are slower and more constrained, due to pain and swelling/stiffness which allows the 

IMUs to capture knee angles with greater precision (Cornish et al., 2024). 

The accuracy of the IMU sensors in comparison to the opto-electronic motion capture 

system varied across the gait cycle. The difference between the measurements was 

greater during the swing phase. During the stance phase, the foot is in contact with the 

ground, and the body's weight is supported by the instrumented leg. This phase 

typically involves less rapid movement and fewer dynamic changes compared to the 

swing phase. Consequently, there is less noise and fewer artifacts in the sensor data 

during this phase given less associated movement of the muscle and underlying 

tissues, leading to more accurate measures (Jordan et al., 2021; Mcgrath, 2021; Taylor, 

Miller and Kaufman, 2017). This explanation may also account for the lower errors 

associated with the 1-week postoperative data. This high level of control and 

consideration exhibited during this stage of recovery when walking may reduce the 

errors caused due to noise within the measurements.  

At the 1-week postoperative session, the standard deviation for the clinical population 

was notably greater during the swing phase compared to the stance phase, particularly 

between 60% and 80% of the gait cycle. This discrepancy can be attributed to the small 

sample size at this session (two individuals), which amplifies the variability in individual 
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gait patterns. Since gait cycles are highly personal and the data analysis considered the 

segmented portion of data from heel strike to heel strike, gait events (such as the 

transition from stance to swing) may occur at slightly different points for each 

participant. In this case, one participant's slightly longer stance phase relative to 

another's contributes to the observed increase in standard deviation. However, though 

the gait cycles differ between the participants, these unique variations are accurately 

captured by both measurement system, with both technologies reflecting the same 

patterns in standard deviations.  

These findings presented in our research are in line with results from previous studies 

reporting greater differences between angle measures in swing phase compared to 

stance phase (Cornish et al., 2024; Jordan et al., 2021; Mcgrath, 2021; Taylor, Miller and 

Kaufman, 2017). Overall findings reported in this study align with previous studies (Cho 

et al., 2018; Cornish et al., 2024; Jakob et al., 2013; Kobsar et al., 2020; Mcgrath, 2021; 

Mundt et al., 2019; Nüesch et al., 2017; Papi et al., 2015; Patel et al., 2012; Rhudy et al., 

2024; Taylor, Miller and Kaufman, 2017) results. 

6.1.2 Stair Navigation  

Few studies (Zhang et al., 2013; Mundt et al., 2019) have evaluated the accuracy of 

IMUs when measuring sagittal knee angles in a healthy adult population for stair 

navigation. With only one study comparing the accuracy of an IMU device across stair 

navigation in a TKA population (Cornish et al., 2024), however this study did not 

evaluate the accuracy within a clinical population at various time points throughout 

recovery, but rather measured knee flexion at 1-year postoperatively robotic assisted 

surgery. 

Stair navigation revealed an agreement of < 3° across all populations and at all time 

points for the clinical population. RMSE values ranged from 0.86° to 2.83°, with lower 

RMSE values reported in the TKA population for both stair ascent and stair descent 

compared to the healthy adults.  



 

280 

 

The techniques used by the TKA population to navigate the stairs was different to the 

healthy populations and should be noted when interpreting the results. These 

differences in stair navigation approach may lead to discrepancies. The healthy 

population adopted a step over step method, with each leg alternatively climbing a 

different step, resulting in faster movements but requiring more muscular control and 

balance. However, the TKA population navigated the stairs using the step-by-step 

technique, that requires more time and more control to safely navigate the stairs. This 

method ensures maximum stability as both feet are on the same step before moving 

onto the next step. The lower RMSE values presented by the TKA population may be due 

to these slower movement patterns associated with this step-by-step approach. This 

reduction in speed results in more stable and less noisy signals improving the sensor 

accuracy. 

The results reported for the healthy population partially support those of Zhang and 

colleagues (Zhang et al., 2013), who conducted a comparison between IMU and 3D 

motion capture technologies across 10 young healthy individuals, evaluating the 

absolute difference between the technologies across a single gait cycle. For the sagittal 

plane Zhang et al, (Zhang al., 2013) reported the greatest difference between the 

technologies was found during stair descent followed by walking and then stair ascent 

(p > 0.05). In contrast, the results from this study found that walking had the greatest 

agreement, followed by stair descent, and then stair ascent with the poorest 

performance evidenced in the healthy population compared to the clinical group. 

However, like Zhang and colleagues (Zhang et al., 2013) this did not reach statistical 

significance. Furthermore, the results presented in this study for both stair ascent and 

stair descent in the healthy population are significantly smaller than RMSE values 

reported in (Mundt et al., 2019) that reported errors of between 9.9° to 11.9° for stair 

navigation across a population of 12 individuals, evaluating a single movement cycle. 

Mundt et al (Mundt et al., 2019), reported similar findings, with stair descent revealing 

the highest level of accuracy followed by stair ascent and with the largest errors 

associated with level walking, but too did not reach statistical significance. 

Whereas in a similar clinical study evaluating IMU accuracy against motion capture 1-

year postoperatively within a TKA population, Cornish and associates (Cornish et al., 
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2024) reported walking to have the highest accuracy, with stair ascent and descent 

performing significantly worse (p < 0.05). Though, findings reported in our study 

evaluates both preoperative and postoperative measures, with the preoperative 

measures recorded in the acute recovery phase following surgery. These sensors 

performed accurately in both stair ascent and stair descent across all three visits, 

reporting a maximum RMSE of 2.62° during stair descent at 6 weeks postoperatively. 

Cornish and colleagues (Cornish et al., 2024) reported errors of between 6.78° to 

12.06° for stair navigation. The MotionSense™ sensor used in this study performed 

significantly better (p < 0.05) for both stair ascent and stair descent at all three time 

points compared to (Cornish et al., 2024) which used the same approach as our 

research to account for offset differences between the IMU technology and motion 

capture. The differences in study results may be attributed to variations in the 

participants’ mobility levels and the timing of data collection. Our study captured data 

very shortly after surgery, when patients are likely to be moving more slowly and 

cautiously. In contrast, Cornish (2024) assessed participants at a later stage of 

recovery, where participants would be moving at quicker rates and more confidently, 

potentially explaining the lower error observed in our findings. 

When comparing the accuracy between the healthy and the clinical TKA population no 

statistically significant differences existed between RMSE values (p > 0.05). The TKA 

population showed lower RMSE values 1-week post operatively which may be due to 

the slower more controlled approach this population adopted to carefully navigate the 

stairs.  

Moreover, during the stair navigation exercise at the 1-week postoperative session, the 

standard deviation for the clinical population was greater during the swing phase 

compared to the stance phase. This trend is similar to the findings observed during 

treadmill walking and can be explained by the same factors. The small sample size at 

this session highlights individual variability in stair navigation patterns. 

Stair navigation introduces additional biomechanical challenges, such as the need for 

greater joint control and stability, which can further emphasise individual differences 

(Gallagher, VandenBussche and Callaghan, 2013; Igawa and Katsuhira, 2014). 
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Movement cycles were segmented from heel strike to heel strike, however, during stair 

navigation, the timing and coordination of gait events may vary more significantly 

between participants. For instance, one individual may take slightly longer in the 

stance phase to stabilise before initiating the swing phase, while another may 

transition more quickly. These differences in movement strategies contribute to the 

larger standard deviation observed during the swing phase. 

Larger differences were observed during greater degrees of flexion for the stair 

navigation activity which is further supported by similar findings reported in (Mundt et 

al., 2019). As the TKA population displayed a reduced ROM and limited peak flexion this 

may have resulted in the clinical population having lower errors compared to the 

healthy population. All populations reported excellent coefficients of correlations for 

both stair ascent and stair descent, reporting higher levels of agreement compared to 

previous research (Cornish et al., 2024; Mundt et al., 2019).  

6.1.3 Flexion/Extension   

Maximum flexion and extension movements are commonly performed to evaluate TKA 

recovery progress, however, is often evaluated either visually or measured using a 

goniometer as part of clinical assessments. Previous studies (Edwards et al., 2004; 

Mcgrath, 2021) have reported that visual methods can be off by up to 5° in 45% of 

cases, while goniometer readings can be off by up to 5° in 22% of cases (McGrath, 

Fineman and Stirling, 2018). 

In this study the commercial IMU MotionSense™ sensor was evaluated across both 

healthy and clinical TKA groups, with RMSE values reported between 3.21° to 4.70°. The 

largest RMSE was reported in the TKA population 6 weeks post operatively, however, 

RMSE values are consistent with similar studies evaluating flexion/extension using IMU 

devices across a TKA population of 8 individuals, with data captured within three 

months postoperatively (Antunes et al., 2021) and within a healthy population 

consisting of 5 individuals (Mitternacht et al., 2022). 
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Larger differences in measurements were reported in peak flexion across both healthy 

groups and within the TKA population, with the commercial MotionSense™ device more 

commonly under reporting peak flexion values. IMU algorithms tend to struggle to 

accurately determine larger flexion angles due to the knee joint's non-linear nature. 

Rotations and translations are more pronounced at higher flexion angles and this 

higher degree of freedom present during maximum flexion may amplify these 

differences (Schall et al., 2016). Furthermore, these differences may be further 

compounded by soft tissue artifacts, sensor drift, and gravitational influences, making 

it harder for the algorithms to accurately model the knee's movement during maximum 

ROM activities (Ferrari et al., 2008; Garling et al., 2007; Mitternacht et al., 2022; Peters 

et al., 2010). These discrepancies are not unexpected and frequently occur in 

movements that reach the sensors end of range, limited by sensor calibration and 

resolution, resulting in larger errors occurring in extreme measurements (Antunes et 

al., 2021; Torino, 2021). 

Minimum flexion differences should also be noted, the TKA population displayed much 

larger minimum flexion angles postoperatively compared to their preoperative baseline 

measures and to the healthy adults’. This reduction in minimum flexion of the TKA 

cohort may as a result of pain and swelling following surgery (Hewitt and Shakespeare, 

2001; McClelland et al., 2017; Yoshida et al., 2008). This reduced ability for the leg to 

move into extension may cause difficulties in leg registration and possible challenges 

when calibrating the zero angle of the sensor. These associated calibration limitations 

may have resulted in the differences between the measurement systems as the 

commercial IMU wearable device would be reporting angles with an associated offset 

bias. 

Moreover, greater variability within the data for all population groups was observed 

during the flexion/extension exercise, where the broader limits of agreement in Bland-

Altman plots (Figure 5-16) may reflect differences in participant strength, mobility, and 

muscular control (Pavol, Michael and  Grabiner, 2000). Full flexion/extension exercises 

test the limits of motion, so individual physiological differences may contribute to 

variability in ROM measures, particularly in the TKA population, accounting for this 

variability. 
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Though this activity tested the extreme measurement boundaries resulting in a high 

degree of variability within measurements across each population group, the IMU 

device measured knee flexion angle within a clinically acceptable agreement of < 5°, 

resulting in measures in line with available literature (Antunes et al., 2021; Mitternacht 

et al., 2022)  

6.1.4 Cycling   

The cycling activity was only performed by the healthy population of older and younger 

adults. These results did not exceed a RMSE of 4.57°. Despite age differences, no 

significant differences in RMSE were recorded between the age groups. However, older 

participants pedalled at a significantly slower cadence than younger participants 

(67.99 ± 9.01 rpm vs. 60.25 ± 9.98 rpm, mean ± SD, p < 0.05, younger vs older adults 

respectively), with all participants cycling at a lower cadence compared to a previous 

similar study (Obradović and Stančin, 2023), though pedalled within the same range as 

(Marin-Perianu et al., 2013). 

Cycling had the highest RMSE compared to all the activities performed by the healthy 

population, (4.05 ± 2.49 vs 4.57 ± 1.46, mean ± SD, younger vs older participants), likely 

due to the high degree of flexion required and the dynamic changes in velocity 

throughout the pedal stroke. Though larger RMSE values were found within the cycling 

activity, these results are in line with results reported by previous research (Cordillet et 

al., 2019; Marin-Perianu et al., 2013; Obradović and Stančin, 2023) all reporting RMSE 

between 3.74° to 8.49°. With larger errors similarly reported during faster pedalling 

compared to slower pedalling (Marin-Perianu et al., 2013). 

Of the previous research available, RMSE values of 4.81 ± 8.23° (mean ± SD) for 10 

pedal strokes across 8 healthy participants were reported by (Obradović and Stančin, 

2023), while larger RMSE of 6.73° and 8.49° were reported by (Cordillet et al., 2019) and 

(Marin-Perianu et al., 2013) respectively. This study reported smaller RMSE values 

across both younger and older healthy adults, compared to the previous research.  
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The variability of knee angle within the cycling measures may be attributed to 

differences in participant saddle height. Since the participants were not experienced 

cyclists and chose saddle heights based on comfort, maximum knee flexion angles 

may have varied. This variability is largely linked to the differences in saddle height 

rather than sensor accuracy. A limitation of the cycling activity is the difficulties in 

marker occlusion, particularly with those markers associated with the ASIS. This 

limitation further highlights the advantage of using IMU devices compared to traditional 

motion capture technologies. 

MotionSense™ accuracy varied throughout the pedal stroke, with the greatest error 

observed at 50% of the cycle, at maximum flexion, and at the beginning of the next 

pedal stroke. Larger errors presented at the beginning of the pedal stroke, may be due 

to the force exerted through the pedal, when pulling the leg upwards, causing rapid 

changes in leg direction. This force and direction change may result in perturbations 

through the leg's soft tissue, contributing to measurement system discrepancies 

(Akbarshahi et al., 2010; Garling et al., 2007), the same situation would occur in the 

power phase of the pedal stroke as the leg exerts force downwards onto the pedal. 

The larger errors in cycling may further be explained due to the rapid cyclic nature of the 

movement, which can push the limits of the sensors' dynamic range and filtering 

algorithms. Dynamic and repetitive movements measured by IMUs often suffer from 

drift, as noted in literature (Cordillet et al., 2019), though techniques like the Kalman 

filter can mitigate drift, they may not completely eliminate errors. This drift might 

contribute to the higher RMSE when comparing the sensors to Vicon (Cordillet et al., 

2019; Obradović and Stančin, 2023), though these findings were not observed for the 

walking activity. 

When evaluating maximum flexion angle and cadence during cycling, the results 

reported in this study reported lower cadence and smaller flexion angles than those 

found in literature (Cordillet et al., 2019; Obradović and Stančin, 2023), though within 

similar cadence to that reported by (Marin-Perianu et al., 2013). These differences in 

flexion angle and cadence may be due to differences in saddle height. The participants 

in this study, were not regular cyclists and used a stationary bicycle, while the 
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participants in (Obradović and Stančin, 2023) and (Marin-Perianu et al., 2013) were 

experienced cyclists using their own bicycles specifically set up to the riders’ 

specifications. Higher saddle heights are associated with reduced knee flexion and 

increased knee extension, likely resulting in lower cadences (Chang et al., 2016). 

Therefore, our participants are likely cycling with saddle heights slightly too high 

compared to the other research (Chang et al., 2016; Cordillet et al., 2019; Marin-

Perianu et al., 2013; Obradović and Stančin, 2023). 

A further shortcoming of the cycling activity was the difficulty in capturing full datasets 

on the motion capture system as ASIS marker obstruction was a common limitation 

(Boddy et al., 2019). Though this resulted in the researcher asking the participants to 

adjust their cycling posture, this common challenge associated with marker occlusion 

further builds the case for the opportunity IMUs pose in the field of motion analysis. 

Our study, which included a larger and more age-diverse population, reported cycling 

RMSE values consistent with or lower than those in similar studies (Cordillet et al., 

2019; Marin-Perianu et al., 2013; Obradović and Stančin, 2023) with a strong 

correlation between the measurement systems.  

6.1.5 Sit to Stand and Stand to Sit Activities 

The MotionSense™ IMU accurately measured knee flexion angle in both the sit-to-stand 

and stand-to-sit activity for the healthy population, with RMSE values < 3°. The results 

in our study outperformed similar studies (Cornish et al., 2024; El Fezazi et al., 2023; 

Lebel et al., 2017), including those studies isolating these movements from a get-up-

and-go protocol across 7 participants and evaluating the technology against the PIG 

optoelectronic motion capture kinematic model (El Fezazi et al., 2023). 

As with previous activities, errors were greatest during periods of higher joint 

accelerations and larger flexion angles. In the stand to sit activity, this was observed as 

the participant began moving toward the stool, with errors stabilising once seated. 

During the sit to stand activity, errors remained consistent while seated but increased 
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as the participant raised themselves from the stool, particularly during the momentum 

transfer phase, where joint angle accelerations are at their highest.  

Our study aligns with similar research (El Fezazi et al., 2023), also reporting smaller 

RMSE values in the stand-to-sit movement compared to sit-to-stand when isolating 

these movements from a get-up and go movement. Biomechanically, sit to stand 

movements require more coordination and muscle engagement to generate enough 

force to stand, leading to higher acceleration and rapid joint angle changes. These 

dynamic changes increase the potential for IMU measurement errors due to drift and 

alignment issues. In contrast, the stand-to-sit movement is slower, more controlled, 

and smoother, leading to more accurate measurements with fewer sudden changes in 

acceleration and orientation. 

Consistent with previous research (El Fezazi et al., 2023; Uhlenberg and Amft, 2024), 

stand-to-sit movements generally exhibit smaller RMSE due to their more predictable 

and controlled nature, which minimises sensor drift and alignment issues. This is 

further supported by the smaller limits of agreement in Bland-Altman plots for stand-

to-sit movements compared to sit-to-stand movements  

6.1.6 Summary of Findings  

The accuracy of the MotionSense™ commercial IMU device varied within populations 

and between activities. However, RMSE of < 5 ° for all activities and across all 

populations, with strong coefficients of correlation were reported. 

A strength of this study is the large population size (44 participants), comprising of two 

healthy control groups (34 participants) of varying ages (20 - 84 years old) and abilities, 

and a TKA clinical population (10 patients), with data collected both pre- and 

postoperatively. Furthermore, a wide range of activities across this varied population 

was evaluated.  

It is important to highlight that in studies evaluating the accuracy of IMU devices for 

measuring knee angle, the reliability and generalisability of findings are highly 
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dependent on sample size and demographic diversity. A larger sample provides greater 

statistical power and reduces the influence of individual variability, which is particularly 

important when assessing biomechanical measurements, this is particularly relevant 

for the clinical population. Furthermore, achieving a balanced distribution across age 

and gender is crucial, as factors such as joint flexibility, muscle mass, and movement 

patterns can vary significantly across different demographic groups. Without such 

representation, results may not accurately reflect the performance of IMU devices 

across the broader population, limiting the clinical and practical applicability of the 

findings. Including a diverse and sufficiently large participant pool enhances 

confidence in the accuracy and usability of IMU technology in real-world settings. 

The accuracy of the commercial IMU sensor in comparison to the motion capture 

system varied depending on the activity, stage of movement cycle, ROM and speed of 

movement. For example, when considering the accuracy of the device during the gait 

cycle the difference between the measurements was greater during the swing (60 - 

100%) versus the stance phase (0 - 60%) for all activities. The stance phase involves 

less rapid movement and fewer dynamic changes compared to the swing phase, as the 

limb is in contact with the ground. Consequently, there is less noise and fewer artifacts 

in the sensor data during this phase given less associated movement of the muscle and 

underlying tissues.  

The stance phase is thought to lead to more accurate measurements of joint angles of 

the IMUs as the orientation between the IMU and anatomical coordinate frames is 

reduced (Taylor, Miller and Kaufman, 2017). Furthermore, during stance phase there is 

minimal movement in the frontal and transverse planes increasing accuracy of 

MotionSense™ and limiting the inaccuracies of the PIG hinge model of the knee joint 

(Ferrari et al., 2008).  

Moreover, across all activities and populations MotionSense™ more commonly 

underestimated peak flexion angle, resulting in positive differences between the 

measurement system, while overestimated minimum flexion angles resulting in 

negative differences, this is in agreement with findings reported by (Ferrari et al., 2008). 

These differences may further be accounted due to difficulties in leg registration when 
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calibrating the sensor resulting in mechanical misalignments causing measurement 

bias.  

Soft tissue artefacts influence motion analysis differently across body segments and 

technologies. Research indicates that the thigh experiences greater translational and 

rotational errors than the shank (Garling et al., 2007; Peters et al., 2010). These 

artefacts also affect measurement technologies differently; for instance, IMU devices 

tend to overestimate sagittal plane knee angles during stance and underestimate them 

during swing, due to soft tissue interference (Ferrari et al., 2008). Similarly, limitations 

in motion capture systems such as Vicon, including assumptions about 

anthropometrics, kinematic joint definitions, and marker placement variability, 

contribute to inaccuracies (McGrath and Stirling, 2022).  

The Cardan angles used to describe knee joint motion; flexion/extension, 

abduction/adduction, and internal/external rotation, which are not orthogonal (Wu et 

al., 2002), meaning significant motion in one plane, especially during high knee flexion, 

can affect measurements in another due to angular crosstalk (Leardini et al., 2014). 

Misalignment in the flexion/extension axis during calibration further exacerbates this 

issue by introducing errors in the transverse and frontal planes, particularly at greater 

flexion angles.  

The physical differences between MotionSense™ IMUs and opto-electronic Vicon 

motion capture reflective markers, such as size, shape, and placement also contribute 

to variation in recorded motion (Ferrari et al., 2008; Leardini et al., 2005; Peters et al., 

2010; Stagni et al., 2005; Torino, 2021). Additionally, participant heterogeneity, 

including differences in body composition, sensor placement, and gait technique, likely 

amplifies these discrepancies. These effects are especially pronounced in activities 

involving sustained knee flexion, such as stair navigation and flexion/extension tasks, 

which show higher RMSE compared to walking. Nevertheless, all activities across all 

population groups showed a strong correlation and clinically acceptable RMSE < 5°. 

These findings support the use of IMUs for measurement of sagittal plane knee 

measures for various ADLs.  



 

290 

 

The methodology adopted within this research should be taken into consideration 

when interpreting results and comparisons made between previous findings in 

available literature. Though similar approaches have been used in prior research (Hafer 

et al., 2020; Mcgrath, 2021; Jiang et al., 2022; McGrath and Stirling, 2022; Cornish et al., 

2024) it is important to re-emphasise the method used to eliminate the offsets between 

the wearable technology and the motion capture system. Due to manual application of 

both devices onto the leg this can result in different zero angle for the knee. These 

differences are associated with differences between the calibration methods of each 

system and differences in marker and sensor placement on the body. Therefore, to 

account for this offset the difference was reduced by adjusting the sensor angle so that 

its mean value equalled that of the mean Vicon angle across the entire activity. The 

challenge associated with accurate sensor placement and its associated offset error 

may impact clinical usability and the resulting clinical data. However, such offsets may 

be overcome through the implementation of calibration protocols or minimising the 

offset through methods as described above. 

This study presented findings from a larger cohort of healthy individuals than previously 

reported on (Ajdaroski et al., 2020 – 8 healthy participants; El Fezazi et al., 2023 – 7 

healthy participants; Henkel, 2016 – 1 healthy participant; Hafer et al., 2020 – 20 

healthy participants; Leardini et al., 2014 – 5 healthy participants; Papi et al., 2015 – 14 

healthy participants; Patel et al., 2022 – 15 healthy participants; Robert-Lachaine et al., 

2017 – 12 healthy participants; Zhou et al., 2020 – 5 healthy participants), including 

both younger and older adults, as well as a smaller cohort of TKA patients both 

preoperatively and postoperatively.  

Results from a wide range of activities is presented, for all population groups, enabling 

comparisons between activities but also between clinical and healthy population 

groups which is a strength of the research. Furthermore, TKA postoperative data is 

presented in the acute recovery stages (1-week following surgery) which is not 

commonly documented (Al-Amri et al., 2018; Antunes et al., 2021; Cutti et al., 2010; 

Ferrari et al., 2010; Hullfish et al., 2019; Prill et al., 2021) and across a larger population 

than results presented by (Antunes et al., 2021 – 8 TKA participants; Chen et al., 2018 – 

5 TKA patients). 
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Although the IMU MotionSense™ wearable sensor is intended for a TKA population, 

performing a validation across a healthy population of both older and younger adults is 

an asset of this research. This is due to the largest errors being reported in deep flexion 

at end of ROM and during periods of rapid movement. Given that the TKA population 

displayed reduced ROM and slower movement patterns the accuracy of the IMU device 

is more greatly tested in a healthy population compared to the TKA clinical, suggesting 

that the device is more appropriately used in a clinical population.  

An additional advantage of the findings presented in this research is the wide range of 

activities and ROM presented for the TKA population at various time points. By 

evaluating sensor accuracy both pre- and postoperatively it becomes possible to 

determine whether IMU sensors are sensitive enough for recovery monitoring in the 

acute recovery period. 
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6.2 Validation of the Seel Algorithm  

Clinically, the recovery of patients following TKA is commonly assessed through gait 

analysis and PROMs (Abu-Faraj et al., 2015; Davis, 1997; Hulleck et al., 2022). These 

assessments are typically conducted at specific follow-up intervals, resulting in 

sporadic snapshots of patient progress. The accuracy of these evaluations varies 

significantly depending on the resources available. Advanced facilities may use motion 

capture laboratories to obtain accurate joint biomechanics, whereas resource-limited 

settings often rely on visual and manual measurements of knee flexion angle (Hulleck 

et al., 2022). 

However, these conventional methods lack the ability to continuously monitor ROM, 

particularly after hospital discharge when patients continue recovery at home. 

Currently, no standardised clinical system exists for ongoing knee angle monitoring 

outside clinical settings (Davis, 1997; Hulleck et al., 2022). In response, IMUs have 

garnered attention due to their capacity for continuous data collection throughout the 

postoperative period (Al-Amri et al., 2018; Chapman, Moschetti, and Van Citters, 2021; 

Ois Routhierid et al., 2020). 

IMUs offer dual advantages: they can enhance rehabilitation compliance by remotely 

monitoring functional improvements and delivering real-time feedback via mobile 

applications (Bolam et al., 2021; Parrington et al., 2021). Additionally, the high-

resolution data these devices generate can facilitate early detection of atypical 

recovery trajectories, allowing timely interventions that may prevent the need for 

revision surgery (Atallah et al., 2011; Kornuijt et al., 2019). 

Although various commercial IMU systems are available (Jebeli, Bilesan, and Arshi, 

2017), they often entail substantial costs, including upfront device expenses, licensing 

fees, software maintenance, and data access charges. Furthermore, these systems are 

frequently constrained by proprietary algorithms and limited access to raw data, 

hindering customisation and scalability across different clinical environments.  
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A potentially more flexible and cost-effective alternative is the use of off-the-shelf IMU 

devices combined with open-source processing methods, such as the Seel algorithm, 

to compute knee angle measurements. This approach could offer a customisable and 

scalable solution capable of matching the accuracy of commercial systems, while 

remaining adaptable to various clinical needs. 

For this to be viable in practice, however, the Seel algorithm must demonstrate 

sufficient accuracy to ensure that the resulting data is clinically meaningful and 

accurately reflects patients’ functional outcomes. Therefore, this study aimed to 

validate the algorithm, based on the method developed by Seel and colleagues (2014), 

for determining knee angle measurements in both healthy individuals and patients who 

have undergone TKA. 

6.2.1 Healthy Control Group 

The algorithm demonstrated accurate performance across all activities when 

compared to the gold-standard opto-electronic motion capture system. The maximum 

RMSE was 4.60° during the flexion/extension activity, while the lowest RMSE recorded 

was 2.92° during cycling, averaged over 50 pedal strokes. The Seel algorithm 

consistently underestimated peak knee flexion and overestimated minimum flexion 

compared to Vicon, with the largest signed difference of 8.14° during peak flexion in the 

flexion/extension task and -3.68° during minimum flexion in cycling. 

Previous validation studies focused primarily on slower, controlled movements such as 

walking (Boonstra et al., 2006; Huddleston et al., 2006; Tong and Granat, 1999), or used 

less accurate reference systems (Dejnabadi et al., 2006). For instance, Favre et al. 

(2009) examined IMU accuracy during walking but required a standing calibration 

protocol for accurate sensor-to-segment alignment to. 

Compared to similar studies (Boonstra et al., 2006; Cooper et al., 2009; Cuesta-Vargas, 

Galan-Mercant and Williams, 2010; Ghattas and Jarvis, 2021; Hu et al., 2021; 

Huddleston et al., 2006; Jiang et al., 2022; Kavanagh and Menz, 2008; Kobsar et al., 

2020; Lim, Kim and Park, 2020; Luinge and Veltink, 2005; Mayagoitia, Nene and Veltink, 
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2002; McGrath and Stirling, 2022; Mundt et al., 2019; Narváez, Árbito and Proaño, 2018; 

Nüesch et al., 2017; Obradović and Stančin, 2023; Ortigas Vásquez et al., 2023; Papi et 

al., 2015; Picerno, Cereatti and Cappozzo, 2008; Poitras et al., 2019; Rhudy et al., 2024; 

Seel, Raisch and Schauer, 2014; Taylor, Miller and Kaufman, 2017; Tong and Granat, 

1999; Uhlenberg and Amft, 2024; Versteyhe et al., 2020; Zhang et al., 2013; Zhou et al., 

2020), this study reports lower or comparable RMSE values, achieved over more 

repetitions, a broader range of activities, or within a larger sample size. Commonly, 

earlier studies include 3 to 12 healthy participants and assessed 4 to 30 gait cycles, 

while this study involved 20 participants and evaluated 50 cycles for both walking and 

cycling. 

Errors within 5° are generally accepted as clinically acceptable (Robertson et al., 2014), 

as they do not significantly impact rehabilitation outcomes. This study remained within 

this threshold across all activities. A strong correlation (r = 0.99) between IMU and 

Vicon measurements was observed across all tasks, which is greater than those 

reported in Al-Amri et al. (2018), Chapman et al. (2019), and Deckey et al. (2023), and 

aligning with Zhang et al. (2013). 

Methodological differences likely explain discrepancies across these studies. For 

example, Al-Amri et al. (2014) studied 26 adults across three functional tasks, while 

this study assessed five tasks in 20 participants aged 20 to 36. Only the walking task 

was common to both and could be compared directly. Al-Amri et al. also focused on 

within- and between-rater reliability using opto-electronic motion capture and IMUs 

across different sessions, in addition to validity. However this study only emphasised 

validity between the technologies. Differences in data collection and processing also 

existed between the two studies. Al-Amri et al. used a trigger to ensure simultaneous 

data collection as well as MATLAB functions for accurate synchronisation and 

resampling and identified heel strike using methods as described by Zeni et al. (2008). 

Despite differences, both studies corrected offset bias to improve comparability. 

Collectively, these variations in experimental design and analytical approaches likely 

contributed to the differences in outcomes observed between the studies. 

Nonetheless, findings from previous research remain valuable in contextualising the 
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current results and contribute meaningfully to the broader understanding of IMU 

system performance in clinical movement analysis. 

Observed discrepancies in measurements during faster movements or larger flexion 

angles are consistent with prior research (Hullfish et al., 2019). These deviations are 

attributed to soft tissue artifacts, where tissue movement relative to the bone during 

full flexion or rapid motion affects IMU accuracy (Akbarshahi et al., 2010; McGrath and 

Stirling, 2022; Taylor, Miller and Kaufman, 2017). Such artifacts are particularly evident 

during high-speed motions or abrupt direction changes, introducing sensor vibration 

and data noise (Akbarshahi et al., 2010; McGrath and Stirling, 2022; Taylor, Miller and 

Kaufman, 2017). Additional errors may stem from sensor drift or limitations in filter 

optimisation, especially in tasks involving variable speeds (Guignard et al., 2021; 

Ludwig, 2018; Madgwick, 2010; Schreven, Beek and Smeets, 2015). Filters tailored for 

specific movements may not generalise well, affecting measurement accuracy. 

In walking, the swing phase (60%-100% of the gait cycle) exhibited higher errors than 

the stance phase due to greater dynamic motion. Stair navigation showed RMSE values 

comparable to previous studies (Lebleu et al., 2020; Mundt et al., 2019; Zhang et al., 

2013), though this study found greater accuracy during ascent than descent, contrary 

to Zhang et al. (2013). Similar to walking, larger discrepancies occurred at higher flexion 

angles and during swing phases. 

Cycling produced the lowest RMSE (2.92°), lower than reported by Cordillet et al. 

(2019). Errors were greatest during pedal stroke transitions, particularly at 20%-35% 

(recovery phase) and 70%-80% (start of power phase), when joint acceleration changes 

direction. These phases involve significant shifts in angular velocity and soft tissue 

deformation, affecting sensor alignment (Akbarshahi et al., 2010; Garling et al., 2007; 

Page et al., 2014; Peters et al., 2010; Solav et al., 2014). 

Greater errors were noted at extremes of flexion and extension, as in the 

flexion/extension task, due to complex rotations and translations that challenge 

accurate joint tracking. IMUs were powered on and off between trials, introducing 
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potential calibration variation and drift. Collecting continuous data could mitigate 

these inconsistencies by reducing startup variability. 

The accuracy of IMU-based measurements is influenced by calibration protocols (Cutti 

et al., 2010; de Vries et al., 2010; Fradet et al., 2017). Misalignment between sensor 

and segment axes is a major error source (Cordillet et al., 2019; Fradet et al., 2017; 

Pacher et al., 2020), with studies showing a linear relationship between alignment 

precision and measurement accuracy (Brennan, Deluzio and Li, 2011). Calibration 

could thus enhance measurement accuracy, but improper implementation may 

compromise results. 

Although no formal calibration was used in this study, offset correction ensured mean 

knee angles from IMU matched those from Vicon, a method supported in prior research 

(Mcgrath, 2021; Jiang et al., 2022; McGrath and Stirling, 2022; Cornish et al., 2024). The 

measurements align with existing literature (Ajdaroski et al., 2020; Cooper et al., 2009; 

Favre et al., 2009; Jakob et al., 2013; Jiang et al., 2022; Narváez, Árbito and Proaño, 

2018; Obradović and Stančin, 2023; Oliveira, Park and Barrance, 2023; Rhudy et al., 

2024; Tadano, Takeda and Miyagawa, 2013; Takeda et al., 2009; Tognetti et al., 2015; 

Tong and Granat, 1999; Watanabe and Saito, 2011; Zhou et al., 2020) and fall within 

clinically acceptable thresholds (Cooper et al., 2009; Favre et al., 2006; Lebleu et al., 

2020; Liu et al., 2009; Mcgrath, 2021; Poitras et al., 2019; Seel, Raisch and Schauer, 

2014; Versteyhe et al., 2020). 

The IMU system reliably measured knee joint angles across 50 trials for each activity. 

The findings suggest IMUs are a viable alternative to traditional motion capture systems 

for assessing knee flexion, with potential applications in rehabilitation monitoring and 

post-TKA recovery. A notable strength of the method is its lack of need for calibration or 

predefined poses, simplifying usage (Duong et al., 2019; Hu et al., 2021; Pacher et al., 

2020; Tognetti et al., 2015; Versteyhe et al., 2020). Yet, this may be a limitation in 

clinical settings, where leg alignment is harder to assess without calibration, 

particularly post-surgery (Antunes et al., 2021; Mayagoitia, Nene and Veltink, 2002; 

Picerno, Cereatti and Cappozzo, 2008). Introducing a calibration protocol could 

enhance accuracy in these contexts. 
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6.2.2 TKA Clinical Population 

Although patients often report satisfaction with their outcomes following TKA, the 

function of the knee post-surgery frequently differs from its state prior to the onset of 

disease and surgery. While TKA typically improves mobility, gait and joint biomechanics 

often remain altered compared to pre-disease and pre-surgical patterns. Common 

deviations include a prolonged stance phase on the operated limb, reduced knee 

flexion during swing, and altered load distribution. Additional changes such as slower 

walking speeds, shorter stride lengths, and decreased limb symmetry can persist due 

to lasting impacts on muscle function and joint mechanics. 

Despite the procedure’s success in restoring much of the knee’s function and 

alleviating pain, it often results in a knee that moves and feels different from a natural 

healthy joint, particularly in motion patterns and proprioceptive feedback. These 

changes are shaped by surgical techniques, prosthetic design, and preoperative 

patient-specific factors like muscle strength and joint alignment, all of which may 

contribute to altered knee kinematics, muscle function, ligament stability, and joint 

loading. 

Given the significant differences in kinematics, movement patterns, and gait 

parameters observed after surgery compared to a healthy knee joint, it is essential to 

assess the accuracy of wearable devices in measuring knee flexion angles in these 

clinical populations. As these devices are intended to support rehabilitation and 

monitor recovery, reliable data is critical for clinical decision-making. 

The Seel algorithm (Seel, Raisch and Schauer, 2014) demonstrated accurate 

measurement within a TKA clinical population during preoperative and postoperative 

walking. A maximum RMSE of 4.78° was recorded preoperatively, with a minimum 

RMSE of 3.36° reported 1-week postoperatively, no significant differences were 

observed between each time point for walking (p > 0.05).   

While prior validation studies (Antunes et al., 2021; Cornish et al., 2024) have assessed 

wearable devices in clinical populations, most focus on healthy individuals. Among the 
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clinical studies, many evaluate fewer gait cycles or later postoperative stages. In 

contrast, this study included 5 TKA patients assessed both preoperatively and one 

week postoperatively, analysing 50 gait cycles per participant. The RMSE values (3.36° 

to 4.78°) reported here outperform those in similar studies, such as Allseits et al. 

(2018), which reported an RMSE of 6.50° across 40 gait cycles in healthy participants, 

and Cornish et al. (2024), who observed RMSE values of 5.76° to 7.00° in 14 TKA 

patients assessed one-year post-surgery. 

Consistent with prior findings (Allseits et al., 2018; Antunes et al., 2021), this study 

found that IMU devices tend to underestimate peak knee flexion angles compared to 

gold-standard motion capture systems. This discrepancy was more pronounced in the 

preoperative data, where patients demonstrated greater ROM and maximum flexion 

than at one week postoperatively. Specifically, the Seel algorithm underestimated 

maximum flexion by up to 9.18° preoperatively, while the maximum discrepancy in 

minimum flexion reached -2.46° at one week post-TKA. 

Larger errors tended to occur during phases of greater flexion, particularly during the 

swing phase, as also noted by Cornish et al. (2024) and Ferrari et al. (2008). 

Contributing factors include post-surgical challenges with leg registration and soft 

tissue movement, which can distort sensor and marker placement (Johnson et al., 

2020). These soft tissue artifacts increase with greater knee angles due to enhanced 

displacement of the skin and underlying tissue (Akbarshahi et al., 2010; McGrath and 

Stirling, 2022). Thus, larger discrepancies observed preoperatively and at six weeks 

may be linked to greater achievable flexion during these periods compared to one week 

postoperatively, when swelling and pain are at their peak. 

Strong correlations were observed between the IMU and Vicon systems across all three 

data collection points (r = 0.95 to 0.97), aligning with results from Huang et al. (2020), 

who evaluated the accuracy of IMU technology against professional rehabilitation 

technology across 11  TKA patients.  

The IMU showed agreement in measuring knee flexion during treadmill walking both 

before and after surgery. Bland-Altman–like plots confirmed this, showing narrow limits 
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of agreement (within 15° across percentiles), with previous results (Guignard et al. 

2021) supporting these findings and a small systematic bias of -1.37° at one week 

postoperatively. Despite this, the close clustering around the mean difference line 

suggests the systems can effectively be considered equivalent. 

The Seel algorithm consistently measured knee flexion with RMSE values below 5° 

across all time points, demonstrating its ability to accurately measure subtle 

improvements in ROM from one to six weeks post-TKA. These values fall within 

clinically acceptable thresholds (Bonnefoy-Mazure et al., 2020; Hullfish et al., 2019), 

supporting the potential of IMU devices for clinical application in monitoring early-

stage rehabilitation and tailoring patient-specific care. 

However, limitations exist. This study included only five participants, one of whom had 

a severe valgus deformity, and focused solely on level treadmill walking. Future work 

should expand to larger samples and a broader range of movements, speeds, and 

flexion angles to validate the algorithm’s robustness. Although prior work (Appendix 3, 

Chapter 11) demonstrated high accuracy under sensor placement offsets, further 

research is needed for broader clinical adoption. 

Additionally, incorporating a standardised calibration protocol may improve accuracy. 

Swelling in the acute postoperative phase often limits full extension, complicating zero-

point calibration. Including a bent-knee calibration step could reduce offset errors and 

improve alignment. Finally, continuous accuracy throughout recovery should be further 

explored to ensure these devices can reliably monitor patient progress at a granular 

level across all stages of rehabilitation. 

6.2.3 Summary of Findings 

Comparisons between the Seel algorithm and Vicon opto-electronic motion capture 

underscore the potential of IMUs to transform motion analysis in clinical and 

rehabilitation contexts. While the Seel algorithm demonstrated higher accuracy in the 

healthy population compared to the TKA group, all results remained within clinically 

acceptable thresholds (Deckey et al., 2023; Hullfish et al., 2019). No significant 
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differences in RMSE were observed for walking between the two populations (p > 0.05), 

and results aligned with findings from similar validation studies (Cornish et al., 2024; 

Jiang et al., 2022; Kobsar et al., 2020; McGrath and Stirling, 2022; Nüesch et al., 2017). 

Among the activities tested, cycling in the healthy younger adult group demonstrated 

the highest agreement (RMSE = 2.92°), while preoperative walking in the TKA group 

showed the lowest (RMSE = 4.78°). Despite the TKA cohort exhibiting limited ROM and 

restricted peak flexion, especially during stance at 1-week post-op, the Seel algorithm 

effectively characterised knee flexion across both populations, with strong correlation 

coefficients across all activities. 

The IMU algorithm consistently underestimated peak flexion, particularly during high-

speed movements or those involving abrupt directional changes. However, these 

variations did not significantly impair overall accuracy, as all measurements remained 

within clinically acceptable thresholds (Al-Amri et al., 2018; Chapman, Moschetti and 

Van Citters, 2021; Deckey et al., 2023). These findings are consistent with previous 

research validating IMU performance in both clinical and healthy populations (Antunes 

et al., 2021; Cornish et al., 2024; Cutti et al., 2010; McGrath and Stirling, 2022; 

Versteyhe et al., 2020; Zhang et al., 2013; Zhou et al., 2020). 

However, limitations inherent to the PIG model must be acknowledged. At higher 

degrees of knee flexion, errors related to crosstalk and coordinate system 

misalignment become more pronounced. Discrepancies between the IMU and PIG 

coordinate systems can also lead to systematic bias, particularly as Vicon opto-

electronic motion capture uses a calibration routine based on joint centres, while the 

IMU system relies on kinematic assumptions for orientation estimation (Seel, Schauer 

and Raisch, 2012; Guignard et al., 2021). 

Measurement inaccuracies can arise in both systems. In Vicon opto-electronic motion 

capture system, these may stem from manual misplacement of retroreflective 

markers, leading to incorrect segment alignment. In IMUs, they may result from 

simplifications within the algorithm or soft tissue artifacts affecting sensor stability, 

challenges shared by both systems (Johnson et al., 2020; Akbarshahi et al., 2010). 
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Attaching reflective markers directly to IMU sensors could reduce alignment errors, 

enabling more precise technical comparisons between systems. Nonetheless, 

analysing IMU outputs independently remains valuable, as it reflects the practical, real-

world application of these devices outside of controlled lab environments. 

A key strength of this study lies in its inclusion of both healthy younger adults and post-

TKA patients, as well as the diversity of activities performed by the healthy cohort. 

Notably, this study evaluated a greater number of gait cycles (50 per participant) and 

included earlier postoperative time points than many prior investigations. 

The strong agreement observed across both populations, and a range of ROMs 

highlights the accuracy and adaptability of the algorithm. Yet, for successful clinical 

integration, further attention must be paid to sensor calibration, data interpretation, 

system integration, and user training. With these considerations addressed, IMUs hold 

significant promise in enhancing the accessibility and effectiveness of rehabilitation 

and diagnostics. 
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6.3 Recovery Biomechanics of a TKA Population  

Knee joint biomechanics play a vital role in shaping both objective and subjective 

outcomes following TKA. Quantitatively, greater knee ROM is often interpreted as an 

indicator of improved joint function postoperatively (Moghtadaei et al., 2012), and is a 

key metric for evaluating surgical success. However, PROM questionnaires are equally 

as important (Churruca et al., 2021; Tew et al., 2020; Vogel et al., 2020), offering  

insights into patient satisfaction and perceived recovery by capturing elements such as 

pain, mobility, and quality of life.  

While PROMs provide valuable subjective data, their interpretation requires caution. 

Woolhead et al. (2005) noted that patients often feel a strong desire to report positive 

perceptions of surgical outcomes despite ongoing pain or mobility limitations. This 

phenomenon underscores the complex relationship between clinical indicators and 

personal expectations. Yet Kahlenberg et al. (2018) highlighted that unmet expectations 

can lead to dissatisfaction, even when objective outcomes are favourable, emphasising 

the importance of managing expectations throughout the surgical journey. 

Thus, evaluating TKA success demands a balance between biomechanical metrics and 

patient-reported experiences. Improvements in knee ROM, while useful, may not align 

with a patient’s subjective sense of recovery. A more comprehensive assessment is 

achieved by examining both biomechanical and PROM data pre- and postoperatively. 

This dual approach allows for a fuller understanding of recovery and supports more 

individualised care. 

Incorporating preoperative assessments to predict recovery trajectories can further 

enhance clinical care. By managing expectations and personalising rehabilitation 

plans, clinicians can improve outcomes and promote patient-centred care. This 

holistic strategy ensures that success is not defined solely by surgical or mechanical 

improvements but also by how recovery is experienced by the patient. 
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Additionally, interpreting TKA recovery requires consideration of both population-level 

trends and individual patient variability (Cushner et al., 2024; Kittelson et al., 2020; 

Kornuijt et al., 2019; Woolhead et al., 2005). While population averages offer 

benchmarks for clinical outcomes and help standardise care, they cannot capture the 

nuances of each patient’s goals, needs, and definitions of success. Personalised care 

plans that reflect individual recovery patterns enable clinicians to respond proactively 

to atypical progress, potentially preventing complications. 

Ultimately, combining population-level benchmarks with tailored, patient-specific 

interventions forms the foundation of effective, holistic TKA management (Castellarin 

et al., 2023; Churruca et al., 2021). This dual perspective ensures outcomes are both 

clinically sound and personally meaningful. 

6.3.1 Group Results 

6.3.1.1 Objective Metrics 

The results of this study highlight that recovery following TKA is highly individualised 

and influenced by several factors, including preoperative physical and mental health, 

surgical complexity, and patient activity levels, findings that align with previous 

research (Dash et al., 2017; Kahn et al., 2013; Lingard et al., 2004; Sharma et al., 1996). 

By six weeks postoperatively, significant improvements were observed, particularly in 

knee ROM, which increased across all activities. Notably, for walking, improvements 

were also seen in stride length, cadence, and speed, consistent with the data reported 

by Cushner et al. (2024). 

Cushner et al. (2024) also documented substantial interpatient variability during the 

early postoperative period, influenced by sex, age, and preoperative health status, 

patterns similarly observed in this study. These findings underscore the wide range of 

recovery trajectories seen following TKA. 

Although postoperative ROM improved overall, the improvements were not uniform 

across all parameters. Maximum knee flexion increased from baseline by six weeks, but 
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knee extension did not return to preoperative levels during the same period. These 

findings are consistent with previous studies reporting persistent deficits in extension 

post-TKA (Mutsuzaki et al., 2017). Possible causes include pain, swelling, stiffness, and 

anxiety, which can restrict full leg extension in the early recovery phase. 

Additionally, surgical trauma to the extensor mechanism and preexisting quadriceps 

weakness may contribute to limited extension (Mizner and Petterson, 2005). 

Quadriceps weakness can persist for several years postoperatively and has been linked 

to long-term functional impairments (Rowe et al., 2000). While surgeons often observe 

full ROM intraoperatively (Kornuijt et al., 2019), this does not always translate to 

functional performance in the early postoperative phase. 

In the initial weeks after surgery, pain and stiffness tend to improve rapidly, while gains 

in ROM and function occur more gradually. Despite variability in timelines, most 

patients experience meaningful improvement within the early recovery phase (Bade et 

al., 2010; Hatfield et al., 2011; Levinger et al., 2013; Liebensteiner et al., 2008; Mizner 

and Petterson, 2005; Pua et al., 2015; Ro et al., 2020; Tibesku et al., 2011; van den 

Boom et al., 2014). 

This study supports the findings of Kornuijt et al. (2019), showing that knee flexion and 

extension recovery follows a nonlinear trajectory, with flexion improving more 

consistently than extension. For most daily activities, including stair navigation, a knee 

ROM of 0° – 100° is required (Rowe et al., 2000). However, in this study, patients had not 

achieved this threshold by six weeks; for instance, stair descent showed a maximum 

ROM of only 82.42°. 

Despite this, the results align with comparable studies that have reported similar early 

postoperative ROM measures (Cushner et al., 2024; Kittelson et al., 2020; Mizner et al., 

2011; Pua et al., 2015). However, the literature also highlights inconsistencies, with 

some studies reporting significant flexion improvements (Hatfield et al., 2011; Tibesku 

et al., 2011), while others found minimal or no change (Levinger et al., 2013; 

Liebensteiner et al., 2008; van den Boom et al., 2014), often depending on the activity 

measured, sample size, and follow-up period. 
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In line with Cushner et al. (2024) and Liebensteiner et al. (2008), this study also 

observed improved gait speed within six weeks postoperatively. However, previous 

research has noted that gait parameters do not consistently return to preoperative 

norms (Bączkowicz et al., 2018; Benedetti et al., 2003; Fantozzi et al., 2003; 

Liebensteiner et al., 2008), with improvements occurring at different stages for different 

individuals. 

Strong correlations were found in this study between preoperative BMI, ROM, and 

walking speed and postoperative ROM at six weeks, echoing findings by Cushner et al. 

(2024), Liebensteiner et al. (2008), and Ro et al. (2020). However, Pua et al. (2015) 

reported no strong link between BMI and postoperative ROM, indicating continued 

debate on the role of BMI in recovery outcomes. 

Further support comes from Chiang et al. (2017), who used IMU sensors to assess knee 

joint angles in TKA patients and found that ROM at six weeks had returned to 

preoperative levels. While they did not observe strong predictive relationships between 

preoperative or perioperative factors and outcomes, they emphasised the highly 

individualised nature of recovery, a theme consistent with our findings. 

While this study observed statistically significant improvements in knee ROM and 

flexion by six weeks postoperatively, its small sample size and variable participant 

numbers at each time point warrant caution when generalising the results. Additionally, 

as the study focused exclusively on early postoperative outcomes, long-term functional 

conclusions cannot be drawn. Existing literature suggests that functional recovery may 

continue for up to a year post-surgery (Zeni and Snyder-Mackler, 2010). Nonetheless, 

capturing early ROM measures may be valuable in identifying atypical recovery 

patterns and informing patient-specific rehabilitation strategies. 

6.3.1.2 Subjective Metrics 

Despite the clinical success of TKA, little information can be found in the literature 

about the relationship between PROMs and functional joint outcomes, particularly 

whether links can be made between functional ROM, preoperative health and PROM 
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scores. Evidence suggests (Sharma et al., 1996; Lingard et al., 2004; Woolhead, 

Donovan and Dieppe, 2005; Kahn, Soheili and Schwarzkopf, 2013; Spiering et al., 2024) 

that mental and emotional health as well as patient expectation influences 

postoperative PROM scores. Specifically, patients who exhibit worse preoperative 

emotional and mental states tend to have reduced functional scores postoperatively, 

and in turn lower postoperative PROM scores. Moreover, in those patients that have 

good functional scores preoperatively, yet have high postoperative expectations, PROM 

scores associated with these patients reveal lower outcome scores, than perhaps their 

functional ability suggests. 

Directly following TKA there is a reduction in ROM, which may impair function and, 

therefore, could deteriorate quality of life, stall rehabilitation progress and patient 

recovery motivation which may have a knock-on effect to reduced patient satisfaction 

(Bullens et al., 2001; Liebensteiner et al., 2008). However, this may work in the reverse, 

where functional outcomes may be limited, yet patients are satisfied with their 

outcomes, which results in a positive response to rehabilitation compliance, improved 

joint function and increased postoperative ROM. Therefore, it is important to consider 

the recovery process through both subjective and objective measures, determining the 

relationship between these two factors and what they mean in terms of improved 

patient recovery.  

PROM scores revealed higher satisfaction scores across all three questionnaires by 6 

weeks post TKA compared to both preoperative and 1-week post-surgery scores. These 

scores are not unexpected, 1-week postoperatively the patient will still be experiencing 

pain and reduced joint functionality as a result of stiffness and pain. Therefore, the 

apparent reduction in PROM scores is reflective of this (Bullens et al., 2001; 

Liebensteiner et al., 2008). 

KOOS JR consistently scored higher results at all three visits compared to the other 

questionnaires, with the FJS consistently scoring the lowest. The OKS and FJS revealed 

lower results at 1-week post-surgery compared to their preoperative scores, indicating 

a reduction in function, and an increase in joint pain and joint awareness post-TKA 

compared to baseline measures. Though these questionnaires score different 
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outcomes, comparing them together provides a clearer indication of what aspects of 

recovery patients value most.  

Though all PROMS attempt to measure the success of TKA from the patient’s 

perspective, few specifically address patient satisfaction, but rather focus on pain, 

function and quality of life (Bullens et al., 2001; Sajjadi et al., 2019; Spiering et al., 

2024). By highlighting aspects that patients deem as important, postoperative 

outcomes may be better managed and planned for. 

Moderate but statistically significant correlations were reported between PROM scores 

and ROM at 6 weeks post-surgery (Table 5-21), suggesting that patient perceived 

outcomes are indeed related to functional outcomes. These finding are similar to 

results reported in previous studies (Padua et al., 2007; Liebensteiner et al., 2008; 

Devers et al., 2011), though (Devers et al., 2011) reports a correlation between knee 

ROM and patient satisfaction their findings were not statistically significant. However, 

findings showed that patients that experienced an increase in knee flexion had a 

significant positive association with achievement expectation and functional 

improvement. These findings allude to the complex nature of recovery and patient 

perceived outcomes, as although (Devers et al., 2011) reports that the degree to which 

a patient’s function restores does not directly affect their satisfaction, it does indeed 

influence fulfilment of expectations, functional ability and knee perception. 

6.3.1.3 Summary 

The findings of this study should be interpreted in light of several limitations. Most 

notably, the small sample size of TKA patients, combined with inconsistent attendance 

across assessment sessions, limits the generalisability of the results. In such a small 

cohort, individual patient data can disproportionately influence group averages, 

making the dataset more susceptible to outliers. Consequently, the large standard 

deviations observed are likely due to the impact of individual variability rather than a 

true representation of the broader TKA population. Additionally, the study population 

was drawn from a single catchment area in Scotland, and all participants were white, 
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generally overweight, and demonstrated low preoperative health. This homogeneity 

restricts the applicability of the findings to more diverse populations. 

Several dynamic factors can influence knee function before and after TKA, including 

changes in pain, stiffness, joint alignment, and soft tissue balance. These variables 

complicate the task of isolating the key drivers behind observed improvements. 

Emotional well-being and patient expectations also play a substantial role in both 

functional outcomes and PROM scores. A larger, more diverse cohort and multivariate 

statistical modelling would be required to accurately determine which specific factors 

most strongly influence recovery. 

Despite these limitations, the study reinforces that TKA recovery is highly 

individualised. Patients with better preoperative health metrics; such as lower BMI, 

greater joint function, and higher activity levels; tended to demonstrate superior 

objective and subjective outcomes by six weeks postoperatively. However, when these 

patients held unrealistic expectations, they often reported lower PROM scores, despite 

improved functional performance. 

Conversely, patients with poorer baseline function or higher pain levels often reported 

the greatest relative improvement in PROM scores, even if their absolute postoperative 

function remained below that of their healthier peers. These findings underscore the 

complex relationship between subjective satisfaction and objective recovery metrics. 

Predicting postoperative ROM remains inherently difficult due to the range of 

influencing factors, including age, sex, diagnosis, baseline ROM, surgical technique, 

implant design, mental health, and the quality of rehabilitation (Bullens et al., 2001; 

Cushner et al., 2024; Liebensteiner et al., 2008; Woolhead et al., 2005). Nevertheless, 

improving the accuracy of ROM predictions could benefit clinical practice by fostering 

more informed preoperative discussions and managing patient expectations around 

functional recovery. 

A significant implication of this study is the value of integrating objective measures 

(such as ROM and gait metrics) with subjective PROM data into a composite score of 
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overall postoperative health. Such a measure could better represent surgical success 

by equally weighting functional capacity and patient perception. However, interpreting 

these composite outcomes must still be done on an individual basis, given the 

personal nature of recovery trajectories. Although trends in the data indicated that 

patients with higher PROM scores also demonstrated improved ROM, walking speed, 

and cadence, these associations were not uniform across all participants (see Table 

5.19). This variability further reinforces the need for individualised assessment when 

evaluating recovery progress. 

These findings are consistent with prior literature (Bączkowicz et al., 2018; Devers et 

al., 2011; Liebensteiner et al., 2008; Padua et al., 2007), which also report positive 

correlations between functional improvements and increased patient satisfaction. The 

results highlight the importance of involving patients in preoperative discussions to 

determine which aspects of recovery are most important to them. This approach can 

guide both surgical planning and rehabilitation strategies, enabling better alignment 

between clinical goals and patient expectations. 

In summary, while this study observed functional improvements across all activities 

compared to baseline, the degree of improvement varied significantly between 

individuals. These findings underscore the importance of personalised rehabilitation 

programs tailored to each patient’s preoperative condition, recovery goals, and 

functional requirements, thereby enhancing both clinical outcomes and patient 

satisfaction. 

6.3.2 An Individual TKA Patient  

This study presented detailed recovery data from a single patient to examine how 

objective measures (representing surgical goals) and subjective experiences (reflecting 

patient-perceived outcomes) evolve over time. By comparing these individual-level 

insights with broader population trends, the study aimed to explore the added value of 

personalised assessment in understanding functional recovery and patient 

satisfaction. Furthermore, it demonstrated the potential of IMU-based wearable 
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technologies to capture nuanced movement patterns that support tailored 

rehabilitation approaches. 

Ultimately, integrating objective and subjective measures at the individual level may 

improve how success is defined and achieved in TKA, ensuring that both clinical and 

patient goals are meaningfully addressed in postoperative care. 

6.3.2.1 Objective Metrics 

The results of this study revealed that recovery is individualised and non-linear. While 

the patient assessed in this study exhibited improvements in ROM across all activities 

by six weeks post-surgery, these improvements were not uniform across flexion and 

extension angles. Notably, maximum flexion increased as early as one week 

postoperatively, although the change was not statistically significant at that stage. By 

six weeks, however, this improvement reached statistical significance (p < 0.05). 

In contrast, minimum flexion initially declined one week after surgery compared to 

preoperative values but showed improvement by six weeks, though it had not yet 

returned to baseline. These findings align with previous literature (Hewitt & 

Shakespeare, 2001; Kornuijt et al., 2019; Mizner et al., 2011), which similarly reported 

non-linear patterns of recovery in knee flexion and extension. Kornuijt et al. (2019) 

specifically noted that postoperative extension may be limited due to pain, swelling, 

soft tissue healing, and patient anxiety. 

At six weeks postoperatively, the patient achieved a maximum flexion angle of 92° and 

an overall ROM of 82°. While this indicates functional improvement, further progress is 

needed, as a flexion range of 0° to 110° is generally required for safe performance of 

most activities of daily living (Mizner et al., 2011). Other studies report ROMs within this 

range are typically achieved by 7–8 weeks post-surgery (Mizner et al., 2011; Pua et al., 

2015; Kornuijt et al., 2019). Since the current data extend only to the six-week mark, no 

conclusions can be drawn regarding later-stage recovery. 
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Relative to the group averages reported in this thesis, this patient began with a lower 

baseline ROM across all tasks but achieved six-week postoperative values comparable 

to the cohort (p > 0.05), with superior ROM during stair navigation. Temporal gait 

parameters followed a similar trend, with walking speed and cadence improving by six 

weeks compared to both baseline and one-week postoperative values. These results 

support findings by Saari et al. (2005), and are consistent with evidence suggesting that 

increased walking speed can influence knee angles during gait (Andriacchi and 

Alexander, 2000). By six weeks, the patient’s gait parameters exceeded the population 

average, further indicating positive functional recovery. 

Moreover, the high degree of valgus deformity exhibited by this patient preoperatively 

should be taken into consideration as this may have had an impact on the patients 

postoperative outcomes, and influenced her preoperative function. Literature suggests 

that TKA in valgus knees significantly improves joint function and patient quality of life 

by reducing pain, correcting deformity and increasing mobility (Rajgopal et al., 2018). 

The success of a TKA on a valgus knee depends on a well-positioned implant with a 

stable construct that correctly restores the normal mechanical axis of the limb and 

joint line to a neutral alignment of approximately 3° (Rossi et al., 2014). Valgus knee 

deformities are not uncommon with 10% of patients who undergo TKA exhibiting a 

greater degree of valgus (Alesi et al., 2022). It is well established that excessive 

preoperative malalignment of the knee joint predisposes the patient to a greater level of 

risk of surgical failure compared to well-aligned knees (Rossi et al., 2014). For this 

reason, it is important to correct the deformity during surgery even if it does not 

completely eliminate the increased risk of failure.  

Preoperative assessment also revealed a significant valgus deformity, which likely 

affected both baseline function and postoperative outcomes. Valgus alignment, 

observed in roughly 10% of TKA cases (Alesi et al., 2022), is known to increase surgical 

complexity but can result in marked functional improvement when successfully 

corrected (Rajgopal et al., 2018). Effective outcomes depend on achieving proper 

implant positioning and restoring neutral limb alignment (Rossi et al., 2014). Although 

excessive malalignment is associated with increased risk of surgical failure, correcting 

deformity remains essential, even if risk cannot be entirely eliminated. 
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Though this section examined absolute MotionSense™ angles, this patient's valgus 

deformity did not compromise the accuracy of knee angle measurements obtained 

using these IMU sensors. Validation data presented in Appendix 3 (Chapter 11) 

confirmed that IMU systems maintain measurement reliability even in the presence of 

known angular offsets. Thus, the application of wearable technology in complex cases 

remains viable for accurate monitoring and rehabilitation guidance. 

Improvement in valgus alignment was observed as early as one week postoperatively, 

and by six weeks, the patient demonstrated significant improvements in ROM (p < 

0.05), walking speed, and cadence compared to baseline. Although valgus knees are 

considered more complex, studies suggest no consistent association between the 

degree of preoperative deformity and postoperative functional outcomes (Alesi et al., 

2022; Liu et al., 2024; Rossi et al., 2014), which is reflected in this case. 

Throughout the recovery timeline, the patient used assistive devices, initially relying on 

treadmill handrails preoperatively and transitioning to crutches postoperatively. The 

use of such devices is known to influence gait, particularly cadence and walking speed 

(Joo et al., 2024; Liu et al., 2009). At one week post-surgery, discomfort, pain, and 

unfamiliarity with the crutches likely contributed to the reduced gait metrics. 

When comparing this patient’s functional measures to group averages, no statistically 

significant differences were found (p > 0.05). This may reflect the limited sample size 

used for comparison. Nevertheless, the patient’s outcomes; ROM, gait speed, and 

cadence, fall within ranges previously reported in the literature (Cushner et al., 2024; 

Dash et al., 2017; Mizner et al., 2011; Wang et al., 2019; Zeni & Snyder-Mackler, 2010), 

suggesting a positive early recovery trajectory despite her preoperative valgus 

alignment and baseline functional limitations. 

6.3.2.2 Subjective Metrics 

The PROMs assessed in this study revealed early and sustained postoperative 

improvements. Notably, improvements were evident as early as one week post-surgery, 

with substantial increases across all PROMs by six weeks following TKA. Among the 
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three PROMs used, the FJS consistently yielded the lowest results across all time 

points. 

Although the patient initially reported lower preoperative PROM scores compared to 

the study’s TKA population averages, her scores surpassed the population means by 

one week postoperatively and continued to improve through the six-week mark. These 

results underscore both individual progress and the variability in recovery experiences 

relative to group norms. 

It is critical to acknowledge that the choice of PROM tool can significantly shape how 

recovery is interpreted. Each questionnaire targets specific dimensions of recovery; 

such as pain, function, or joint awareness; and uses unique scoring systems that can 

lead to divergent conclusions about patient outcomes. To facilitate cross-comparison, 

all PROMs in this study were scaled to a standardised 0–100 range, where 100 

represents the best possible outcome. While this method enhances comparability, it 

does not eliminate the intrinsic variability in scope, sensitivity, and focus across 

PROMs. 

The disparity in results between PROMs was particularly evident in the patient's FJS 

scores, which indicated a high level of joint awareness both before and after surgery. 

Despite this, the patient did not report dissatisfaction with the surgical outcome. In 

contrast, PROMs assessing pain and functional ability (e.g., KOOS JR and OKS) showed 

marked improvements postoperatively, suggesting meaningful clinical progress. 

This highlights a critical point: if interpreted in isolation, the FJS could suggest a 

suboptimal recovery due to persistent joint awareness. However, when considered 

alongside PROMs that capture pain reduction and improved physical function, a more 

accurate narrative of recovery emerges. This reinforces the need for a multidimensional 

approach to PROMs rather than reliance on a single metric, especially when aiming to 

understand the full scope of a patient's postoperative experience. 

An aggregated approach, incorporating multiple PROMs that assess various aspects of 

recovery, such as function, pain, awareness, and psychological adaptation, offers a 
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more comprehensive and nuanced perspective. This also reflects the diverse values 

that patients place on different elements of recovery, further emphasising the 

importance of tailoring rehabilitation and outcome evaluation to the individual. 

This variation in subjective outcomes supports findings from recent literature (Deckey 

et al., 2023; Spiering et al., 2024; Sutton et al., 2023; van Schie et al., 2024), which have 

shown that PROM results can vary depending on the specific tool used and the 

patient’s own recovery priorities. These studies reinforce the value of setting realistic 

expectations preoperatively and ensuring patients have a clear understanding of the 

TKA procedure and anticipated outcomes. 

By analysing average PROM scores across all tools used, this study presented a more 

holistic view of patient satisfaction over time. At six weeks post-TKA, the patient's 

PROM scores were comparable to or exceeded those reported in previous studies 

(Carlson et al., 2018; Churruca et al., 2021; Spiering et al., 2024; Yap et al., 2021). Her 

OKS at one week was higher than values reported by Yap et al. (2021), who evaluated 

satisfaction across 536 patients up to one year post-TKA. While her baseline KOOS JR 

was initially lower than the cohort in Spiering et al. (2024), by six weeks, her scores 

aligned with that study’s three-month outcomes—suggesting a strong recovery 

trajectory, especially in pain reduction and functional improvement. 

It is important to note that recovery continues well beyond the six-week mark. Carlson 

et al. (2018) report that many patients “forget” about their artificial joint between six 

and twelve months post-surgery. Given this, the improvements observed in this study, 

though encouraging, should be interpreted with caution, as they likely represent only 

an early stage in the full recovery process, where residual pain and inflammation may 

still be present. 

In conclusion, the key insight from this study is that subjective recovery outcomes are 

strongly influenced by the choice of PROM and the weight patients assign to different 

recovery domains. Evaluating recovery through an aggregated, multidimensional PROM 

framework provides a more accurate and balanced representation of the patient's 
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postoperative experience. This approach supports more effective personalisation of 

care and enhances alignment between clinical goals and patient expectations. 

6.3.2.3 Summary 

This study examined the postoperative trajectory of a single patient presenting with 

severe bilateral valgus deformity, a factor that introduces surgical complexity and may 

impact recovery outcomes. Given this patient's atypical preoperative condition, 

interpretation of the findings requires context and caution. However, the outcomes 

reported are consistent with previous literature, such as Van Onsem et al. (2018), who 

found that improvements in ROM and functional ability were strongly associated with 

increased patient satisfaction following TKA. 

While it is essential to define what constitutes meaningful improvement in patients 

with complex presentations, generalising these results to broader populations should 

be approached carefully. The presence of valgus deformity and the patient's reduced 

preoperative function increased the procedural challenge, yet the early postoperative 

outcomes, both functional and subjective, were comparable to group averages and 

consistent with established recovery patterns reported in the literature. 

These findings reinforce the importance of evaluating TKA success not only through 

surgical metrics but by considering the patient’s baseline status, their perceived 

improvements, and their specific recovery goals. Despite TKA’s well-documented 

success in managing knee osteoarthritis (Graichen, 2014; Kahn et al., 2013; Sajjadi et 

al., 2019), patient outcomes are not uniform. Expectations, baseline function, and 

comorbidities all contribute to the variability in postoperative trajectories, often leading 

to discrepancies between objective scores and perceived recovery. 

Importantly, this study also highlights the potential role of IMU technologies in 

capturing detailed, continuous, and individual-specific functional data throughout 

recovery. The granular insights provided by wearable IMUs offer a promising avenue for 

more responsive and personalised rehabilitation monitoring, particularly valuable in 
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complex cases where standard measures may fall short of fully capturing recovery 

nuances. 

In conclusion, while this single-patient case cannot be generalised, it illustrates how 

individual characteristics, especially preoperative functional status and structural 

deformities, can influence recovery. The alignment of this patient’s outcomes with 

broader population trends supports the utility of wearable technologies like IMUs in 

enhancing recovery assessment and promoting personalised care in TKA rehabilitation. 
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6.4 Holistic Discussion 

Defining successful outcomes following TKA remains a multifaceted challenge, owing 

to the intricate interplay between objective biomechanical function, subjective patient 

experiences, and the diverse expectations of different healthcare stakeholders (Bullens 

et al., 2001; Padua et al., 2007; Tew et al., 2020; van Schie et al., 2024). While clinicians 

often assess surgical success based on functional gains, such as ROM, stability, and 

gait restoration, patients may evaluate their recovery based on pain reduction, return to 

valued activities, or psychosocial well-being. Thus, success must be redefined as a 

convergence of quantifiable biomechanical outcomes and qualitative PROMs. Such a 

paradigm requires rehabilitation strategies that are not only functionally effective but 

also responsive to individual patient profiles and their own recovery trajectories. 

One of the key findings of this study based on the evaluation of functional movements 

pre- and post-operatively in a cohort of 10 TKA patients, was the significant variability 

observed in recovery dynamics. For instance, improvements in maximum knee flexion 

ranged from 1.61° for the walking activity to 35.40° for stair navigation within six weeks 

post-surgery, with notable standard deviations presented for each activity 

postoperatively. Importantly, despite this range, minimum flexion lag persisted in 

several patients until the sixth postoperative week. These results underscore the non-

linear and heterogeneous nature of functional recovery post-TKA, as previously 

established in the literature (Mizner et al., 2011; Kornuijt et al., 2019; Yoshida et al., 

2008). 

By focusing solely on population averages, clinicians risk overlooking individual outliers 

whose recovery deviates substantially from the norm. This has important clinical 

implications. Patients failing to meet averaged recovery benchmarks may either be 

over-treated or under-supported if their unique profiles are not accounted for. The 

correlations identified in this study between preoperative function (e.g., ROM, BMI, and 

walking speed) and postoperative outcomes (ROM and PROMs) reinforce the predictive 

value of preoperative baselines (Hamilton et al., 2020; Bade, Kohrt, and Stevens-

Lapsley, 2010). These findings argue persuasively for personalised rehabilitation 
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protocols that adapt to individual physiological and functional baselines rather than 

conform to aggregated normative curves. 

PROMs such as the OKS, KOOS JR, and the FJS add critical subjective dimensions to 

outcome evaluation. In this study, PROM improvements correlated with objective gains 

in ROM and gait performance. However, when outcomes were reviewed at the 

individual patient level, variability was observed. This reinforces the notion that 

subjective satisfaction is not solely dictated by biomechanical restoration but also by 

the extent to which functional recovery aligns with a patient’s preoperative 

expectations and lifestyle demands (Dash et al., 2017; Woolhead et al., 2005; Vogel et 

al., 2020). Such variation between patients further supports the call for recovery 

pathways tailored not only to biomechanical deficits but also to patient-defined goals 

and satisfaction metrics. 

In light of these findings the potential of wearable IMU devices to support personalised 

rehabilitation strategies is contingent upon their ability to deliver clinically accurate 

data. In this study, both the commercial MotionSense™ system and an IMU 

implementation using the Seel algorithm (Seel, Raisch, and Schauer, 2014) were 

validated against gold-standard Vicon opto-electronic motion capture, across both 

healthy and clinical populations.  

IMU accuracy fell within a clinically acceptable RMSE range of 0.86°–4.78°, with strong 

correlation coefficients (0.95–0.99). These results are consistent with previously 

reported benchmarks for IMU performance in dynamic tasks (Cutti et al., 2010; Mundt 

et al., 2019; Cornish et al., 2024). However, several biomechanical and algorithmic 

challenges were observed. For example, zero-angle registration difficulties were 

common among TKA participants due to post-surgical swelling and limited extension at 

rest. This compromised the device’s ability to accurately calculate the ‘zero’ value of 

the system. Additionally, intermittent signal desynchronisation (49–51 Hz) and sensor 

reinitialisation caused minor phase offsets, occasionally impacting ROM 

measurements. These challenges were reduced by accounting for the differences in 

‘zero’ angles by applying an offset bias to the IMU measures to ensure the mean value 

equalled that of Vicon opto-electronic motion capture, while the fluctuations in phase 
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were minimised by segmenting the measurement data into movement cycles and then 

time synchronising these movement cycles by maximining the correlation between the 

technologies. Despite these difficulties, the knee angle data reported from the IMUs 

were visually and temporally consistent with those from the opto-electronic Vicon 

system, with reported differences below clinically meaningful thresholds (Bonnefoy-

Mazure et al., 2020; Deckey et al., 2023). 

These findings confirm that IMU devices possess the technical fidelity required for 

accurate tracking of sagittal knee motion during key ADLs, directly addressing the 

research question. When used appropriately, they provide a feasible method for 

continuous, remote monitoring of joint kinematics in real-world settings. The strength 

of IMU technology lies not only in its biomechanical accuracy but also in its potential to 

close the feedback loop between patient performance and rehabilitation planning. 

IMUs, when integrated into cloud-based systems, enable real-time data capture and 

remote clinician oversight (Papi et al., 2015; Atallah et al., 2011; Parrington et al., 2021). 

This facilitates early intervention in cases of poor recovery progression, preventing 

avoidable long-term deficits and reducing the burden of costly revision surgeries. 

Furthermore, the real-time tracking of metrics such as ROM, with the potential 

inclusion of cadence, stride length, etc, provides actionable information for 

dynamically adjusting rehabilitation protocols to meet individual patient needs. 

Moreover by incorporating PROM data into remote rehabilitation platforms, these 

systems can also track subjective progress in parallel with objective measures, 

providing a more comprehensive view of recovery. This holistic feedback structure 

enhances clinical decision-making and supports patient engagement and adherence, 

both of which are known to be low in post-surgical rehabilitation (Campbell et al., 2001; 

Chakrabarti, 2014). 

Personalised, remote rehabilitation presents a scalable solution to the increasing 

demand for joint replacement surgeries, especially in health systems facing resource 

constraints. For rural, housebound, or mobility-limited patients, wearable IMUs offer 

accessible, cost-effective alternatives to frequent in-person assessments. As this 

study demonstrates, wearable technology can accurately track early postoperative 
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recovery, a phase often underrepresented in current research yet critical for identifying 

complications and modulating interventions. 

This study extends the current literature in several ways. While prior research (Boonstra 

et al., 2006; Cooper et al., 2009; Cuesta-Vargas, Galan-Mercant and Williams, 2010; 

Ghattas and Jarvis, 2021; Hu et al., 2021; Huddleston et al., 2006; Jiang et al., 2022; 

Kavanagh and Menz, 2008; Kobsar et al., 2020; Lim, Kim and Park, 2020; Luinge and 

Veltink, 2005; Mayagoitia, Nene and Veltink, 2002; McGrath and Stirling, 2022; Mundt et 

al., 2019; Narváez, Árbito and Proaño, 2018; Nüesch et al., 2017; Obradović and 

Stančin, 2023; Ortigas Vásquez et al., 2023; Papi et al., 2015; Picerno, Cereatti and 

Cappozzo, 2008; Poitras et al., 2019; Rhudy et al., 2024; Seel, Raisch and Schauer, 

2014; Taylor, Miller and Kaufman, 2017; Tong and Granat, 1999; Uhlenberg and Amft, 

2024; Versteyhe et al., 2020; Zhang et al., 2013; Zhou et al., 2020), has validated IMU 

technology in controlled settings, this work confirms its viability in a clinical 

postoperative context, including early-stage TKA recovery, which remains 

underexplored (Antunes et al., 2021; Chapman et al., 2019; Cornish et al., 2024; Hafer 

et al., 2020; Wang et al., 2025) and is a period marked by altered gait patterns and high 

variability in movement. The strong agreement with opto-electronic motion capture 

supports the technical robustness of IMUs under realistic functional tasks, such as 

walking and sit-to-stand transitions for example.  

Furthermore, by simultaneously evaluating functional outcomes and patient-reported 

metrics and directly comparing IMU-derived data to gold-standard motion capture 

systems this study bridges the gap between technical validation and clinical 

translation. 

Moreover, the findings advance the conversation around personalisation in orthopaedic 

recovery. Findings indicate that PROM improvements do not always correspond with 

biomechanical recovery, suggesting that subjective measures alone may not capture 

the full scope of post-operative function. With postoperative function further 

describing the heterogeneity of TKA recovery, supported by (Moffet et al., 2004). Where 

many rehabilitation programs remain protocol-driven and group-based, our results 
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argue for a patient-specific model of care, informed by real-time data sensitive to 

individual trajectories.  

In sum, personalised, remote rehabilitation leveraging wearable IMU technology offers 

a viable path toward optimising TKA recovery. The multifactorial nature of surgical 

success demands integration of biomechanical precision, patient-reported outcomes, 

and adaptable care delivery. By establishing the validity of IMU-derived metrics and 

their alignment with clinical outcomes, this work lays the groundwork for translating 

sensor-based monitoring into remote rehabilitation platforms. IMUs enable this 

integration by accurately measuring quantitative knee joint ankle and have scope to 

record qualitative recovery metrics, supporting early, individualised intervention, and 

enhancing patient compliance. As healthcare shifts toward data-driven and patient-

centric models, these tools provide the technological infrastructure to deliver high-

quality, equitable postoperative care, tailored not to the population average, but rather 

to each individual patient. 
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6.5 Limitations and Future Work 

Several limitations should be acknowledged when interpreting these findings. 

The sample size, particularly within the TKA cohort, was limited. While this is 

consistent with precedent in similar sensor validation studies involving clinical 

populations (Chen et al., 2015; Chapman et al., 2019; Antunes et al., 2021; Cornish et 

al., 2024), it restricts the generalisability of inter-subject comparisons and statistical 

correlations.  

Future studies should aim for larger, stratified samples to better assess population-

wide applicability. Limited sample sizes were due to challenges in participant 

recruitment and patient dropouts during the study period. Although recruitment rates 

did improve following the introduction of participant incentives, the available 

timeframe for data collection had elapsed, preventing further enrolment. 

Moreover the study was confined to only the early postoperative phase (~6 weeks post-

TKA). Consequently, it does not capture the full continuum of recovery, including long-

term kinematic adaptations or sustained improvements in PROMs. Longitudinal 

studies are needed to establish whether IMUs can detect clinically meaningful changes 

across the entire recovery trajectory, with patient usability and adherence accessed 

throughout this timeframe. 

The current implementation of the Seel algorithm focuses on sagittal plane motion 

only. While knee flexion/extension is a critical component of TKA recovery, important 

insights may be missed without tracking frontal and transverse plane motions. The 

current 2D Seel algorithm should be refined to improve calibration accuracy and 

reduce drift in clinical populations. Once optimised, it should be extended to 3D 

tracking to capture more comprehensive joint mechanics, potentially improving clinical 

insight and functional evaluation. 

Although validated in clinical settings, the IMU systems were not tested in 

unsupervised, home-based environments. This limits our understanding of their real-
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world feasibility, especially when sensors are self-applied by patients. Future validation 

in home environments is crucial for assessing usability, data quality, and compliance 

under remote care conditions.  

Finally, future research should explore whether integrating IMU-derived kinematic data 

with PROMs collected both preoperatively and postoperatively, alongside 

intraoperative metrics and baseline patient information, can improve the prediction of 

recovery trajectories following TKA. Investigating this combination of data sources may 

support the development of robust predictive models capable of identifying patients at 

risk of poor outcomes. Such models could facilitate more personalised rehabilitation 

strategies and enhance clinical decision-making. These future studies would be critical 

for transitioning toward fully autonomous remote rehabilitation platforms.  
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7 Chapter 7. Conclusions 

This thesis sought to establish whether IMU devices are accurate enough to detect 

clinically significant changes in knee flexion angle following TKA surgery. Sensor 

accuracy was evaluated across a broad range of ADLs in both a diverse healthy 

population of varying age groups and within a clinical population of TKA patients. 

Sensor measures were evaluated against the gold standard motion capture system, 

Vicon.  

This thesis comprised of three studies, each with its own objectives. 

Firstly, the accuracy of a commercial wearable device, MotionSense™ was established 

within a population of both healthy and TKA participants across a broad range of 

activities. The results presented in this study demonstrated that the commercial 

wearable device accurately measured knee ROM within a 5° margin of error in both 

population groups and across all ADL’s. These findings align with previous research, 

confirming the device’s potential utility in clinical and rehabilitation settings. However, 

the device exhibited less accuracy during deep flexion and activities involving rapid or 

multidirectional movements, highlighting areas for potential improvement in wearable 

technology for dynamic motion tracking. These findings provide good confidence in the 

inclusion of such technologies into healthcare systems, and the impact they can have 

on improving rehabilitation compliance and enhancing functional outcomes. 

The subsequent study went on to evaluate the feasibility of using any IMU device with 

the Seel algorithm (Seel, Raisch and Schauer, 2014) to track knee ROM across different 

ADLs in a healthy younger population and during preoperative and postoperative 

walking within a TKA population. The algorithm functioned in a similar manner to that of 

the commercially available MotionSense™ device and accurately captured knee ROM, 

with RMSE reported < 5 ° for all population groups and across all activities. As found 

within the commercial wearable devices, larger discrepancies were also found in 

angles of deep flexion or during faster movements. However, as the TKA population 
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exhibited reduced ROM and was found to have characteristically slower movements 

these errors do not largely affect this population.  

These findings align with previously reported values and the measures presented by the 

MotionSense™ commercial wearable device, both falling within clinically acceptable 

thresholds. These results suggest that IMU-based devices, coupled with the Seel 

algorithm, could be effectively integrated into clinical settings to support rehabilitation 

monitoring and feedback in TKA recovery. Additionally, the algorithm’s customisability 

and adaptability enhance its utility for various applications. 

However, for wearable devices to be effectively implemented within treatment plans an 

insight into TKA recovery needed to be understood to ensure recovery and 

rehabilitation may be appropriately managed and accurately captured by these 

technologies. Therefore, the final study mapped the general recovery pathways 

following TKA surgery, discussing both objective and subjective improvements and how 

these measures were interlinked. This study provided a practical clinical example into 

the usability of such wearable technologies. TKA patients’ recovery was evaluated by 

tracking their ROM preoperatively and postoperatively across multiple activities, 

alongside PROM scores. Results indicated that patients with better preoperative 

function tended to have improved postoperative outcomes, with strong correlations 

between functional outcomes and PROM scores. Though there are nuances within this 

statement, with results from the group study and the individual patient study 

highlighting that population averages do not always reveal individual outcomes and 

that an ideal treatment plan is one which considers patients individually.  

Functionally, patients that exhibit good health before surgery, often display more 

successful postoperative function and improved mobility, yet PROM scores may not 

truly capture these improvements. This is because patients that are healthier going into 

the surgery often have higher surgical expectations, and these expectations often result 

in reduced satisfaction. However, for the most part, subjective and objective scores do 

show positive correlations, whereby improvements in one more often than not reveal 

improvements in the other. This variability within patient health, expectation, 
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postoperative recovery, etc highlights the importance of individualised patient care and 

the necessity for personalised recovery management. 

By monitoring early improvements in ROM after TKA, we identified a threshold to assess 

the wearable device’s sensitivity in detecting subtle changes, reinforcing the device's 

value in tracking progress during early rehabilitation. Though we do acknowledge the 

limitations within the small sample size and range of activities evaluated, these results 

were found to be in agreement with previous research. Furthermore, the results 

presented in this thesis provides strong evidence and highlight the clinical these 

devices hold within clinical settings. 

Overall, this thesis underscores the potential of wearable devices to accurately 

quantify sagittal plane knee motion across different ADLs in both healthy and TKA 

populations. Both commercial and wired IMU sensors demonstrated strong agreement 

with Vicon opto-electronic motion capture, with all results falling within clinically 

acceptable thresholds < 5°. Wearable technologies show significant promise for 

clinical applications, serving as valuable tools for postoperative care by providing real-

time data to guide rehabilitation and improve patient outcomes. 
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9 Chapter 9. Appendix 1- Practical Information 

9.1 Study Protocol 

Study title: Performance and Activity Classification post Total knee arthroplasty (PACT) 
 
Summary of study: Total knee arthroplasty is becoming more prevalent with more than 
100,000 procedures taking place in the United Kingdom each year. Relative to 
biomechanical issues, post-operative knee stiffness and reduced knee movement are 
common difficulties and factors associated with patient dissatisfaction following 
surgery. 
 
Greater knee movement postoperatively indicates a better long-term knee mobility 
recovery. Therefore it is vital that patients receive adequate rehabilitative care and 
those who experience reduced knee range of motion are detected as soon as possible 
and assisted promptly. 
 
Postoperative rehabilitation is predominately now home-based. However, home-based 
rehabilitation has been associated with poor compliance. There is therefore an 
increased demand for guidance and surveillance of patients on rehabilitation programs 
once in their home environment.  
 
Wearable technologies present a solution to remotely monitor patients and enabling 
assessments of patient progress to be reviewed and performed at home.  
EnMovi Ltd (a Scottish subsidiary of Stryker) have developed MotionSense™ including 
two IMU wearable sensors and an app to remotely support post-operative knee 
replacement rehabilitation (Figure 1).  
 
This provides personalised rehabilitation, tracking of home exercises and daily activity, 
and enables healthcare professionals to continuously monitor rehabilitative progress 
remotely. IMU technology is ubiquitous nowadays, such as in your mobile phone to 
determine whether the orientation is landscape or portrait, and MotionSense™ has 
been through FDA approval.  
 

 
 
 
 
 
 
 
 
 
 

Figure 1. MotionSense box (left), IMU wearables in box (middle) and attached to leg (right). 
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The objective of this study is the collection of data using the EnMovi Ltd wearable 
sensors to enable the development and training of algorithms to classify function of the 
knee and monitor knee movement. The data should also be accurate and reliable, and 
include a broad level of functionality, for performance of all abilities to be monitored 
accurately during rehabilitation. Only once this is achieved can healthcare 
professionals make informed decisions regarding patients.  
 
Study objectives: The primary objective of this study is to develop algorithms to 
classify whole body movement based on knee movement in a TKA population. This 
requires a large database to be generated using the EnMovi Ltd wearables, and needs 
to be conducted across a broad level of functionality and tasks to enable performance 
monitoring during rehabilitation and daily activity using artificial intelligence.  
 
The secondary objective is to assess the accuracy and reliability of knee movement 
using the wearable sensors to validate the data collected from the IMU wearables. 
Outcomes will be compared to gold-standard motion analysis when completing 
various activities of daily living. 
 
Study population: The study will recruit a TKA population and an age-matched control 
group (healthy group). Each group is important given that the TKA population is the 
intended population for the MotionSense™, and the control group can provide 
normative data which can be used to identify how close to normal knee function is. This 
will aid the monitoring process when developing the algorithms. 
 
Study protocol: TKA patients will visit the laboratory three times to complete an 
assessment before surgery, 1-week after surgery, and 6-weeks after surgery. Healthy 
participants will visit the laboratory once only. 
 
Participants will be asked to bring a signed consent form with them to their laboratory 
appointment. Participants will already have been sent a participant information sheet 
prior to booking a time to come to the laboratory and signing the consent form, 
however a participant information sheet will also be available to review on entering the 
laboratory. All questions about the upcoming experiment will be answered. Additional 
copies of the consent form will be available if required. 
 
Participants will need to wear appropriate clothing so that accurate motion of the body 
can be recorded. Participants will be required to wear tight cycling type shorts (eg. 
Lycra) and a sports t-shirt.  
Participant’s should wear their own shoes – flat trainers that do not cover or rise higher 
than the ankle. It is the participant’s choice to wear socks or not with their shoes. 
Appropriate clothing will be provided to participants if it is not an option to supply their 
own clothes. Shoes and socks will not be provided. Between uses all clothing will be 
quarantined for 72 hours and then washed. 
 
Once appropriately clothed, retroreflective markers will be attached to the lower limb 
for lower body kinematic data to be collected. Bony landmarks will be palpated and 
identified by the researcher for marker placement.  
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Concurrently, the EnMovi Ltd sensors will be attached to the lower limb.  
There are 2 types of EnMovi Ltd sensors to be attached to the body: 
• Commercial sensor (works via Bluetooth) 
• Research sensor (works using wires and a data logger) 
 
Both devices use the same hardware, however the research sensor is connected to a 
data logger with wires, and the commercial sensor connects to the App via Bluetooth. 
The commercial sensor uses algorithms and outputs predetermined outcomes (eg. 
knee flexion, number of steps, range of motion, and time spent weightbearing). The 
research sensor enables raw acceleration and gyroscope data to be extracted from the 
experiment. 
 
Similar to other wearable devices, the sensors for both will attach to the thigh and leg 
(see Figure 1 above). 
 
The following tasks will be performed to make up the biomechanical assessment (see 
below). The order of the assessment will be randomly assigned using an online random 
number generator. 
 
Before any information and data  is collected from the participant the consent form will 
be signed and dated, any questions the participant may have will be answered and the 
researcher will explain the protocol and activities before proceeding.  
 
PROMs questionnaires will be completed by the TKA group. Three different surveys 
(promis 10, koos jr and the oxford knee score) will be read and completed before the 
ADL protocol begins.  
 
Time up and go test - Participant is instructed to stand up from a chair, walk 3m, turn, 
walk 3m back to chair, and sit back down again. This should be completed at a 
comfortable and normal pace for the participant. 
 
Active and passive range of motion - Participant will be asked to perform a knee 
flexion/extension movement by themselves. The tester will then repeat this movement 
with the participant by moving their leg for them as the participant remains passive 
 
Wearable sensor calibration movements - Participant will stand with one foot on a 
small box for knee flexion angle to be calibrated. Participant will lie on floor with leg 
extended for leg extension angle to be calibrated. Participant will sit on chair with knee 
flexed and foot flat on floor. Foot will slide forward to extend the knee. Participant will 
sit on chair with knee flexed and foot flat. In this position foot will be slide up and down 
wall keeping toe in contact with the wall. 
 
5 minutes of level, treadmill walking - Participant will walk at a comfortable pace 
Stair ascent and stair descent Participant will be instructed to climb up a flight of stairs 
to the top (4 steps) and then descend the stairs (4 steps) on portable stairs in the 
biomechanics laboratory. 
 
Healthy participants only will also conduct the following additional tasks: 
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5 minutes of Cycling - Participant will cycle on stationary bike in the biomechanics 
laboratory at a steady and comfortable pace. 
Vertical Jumps/Hops - Participant will be asked to perform countermovement jumps 
and hops in the biomechanics laboratory. 
 
For all the above activities, a 12 camera Vicon Nexus motion analysis system, including 
sagittal plane optical video (only utilised if participant consents), will track the 
retroreflective markers. Individual trials (except level walking) shall be performed three 
times with the devices removed between trials to assess attachment-re-attachment 
intra-subject variability. Participants will also be given rest breaks between each 
condition tested to minimise the physical endurance required during the data 
collection session. 
 
Following laboratory testing, and only for those who have consented to video being 
taken, a short outdoor circuit will be completed. This has been included as a real-world 
environment, including pavement walking, and stair ascent and descent. In the Golden 
Jubilee National Hospital this circuit will take place inside the hospital opposed to 
outdoors so that stair ascent and descent can be included. This circuit will only be 
undertaken if the participant feels confident, competent, and comfortable to do so. 
They will also determine the pace of the walk. Volunteers will be constantly videoed 
using a GoPro in addition to the wearable collecting data, enabling synchronisation of 
data and activity. They have been provided by the University of Strathclyde. Prior to 
walking outside all markers will be removed and participants will be changed into their 
own clothes. The wearable sensors will remain attached. Water will be available after 
completion.  
 
Videos are optional for participants in the laboratory as they are useful in the laboratory 
as a visual check to refer back to in case the wearable kinematics have uncertain 
output and the proprietary algorithms do not classify the movement appropriately. In 
such situations a review of the movement is necessary. Videos are required out with the 
laboratory as this is the only way movements can be classified accurately (to the 
nearest second).  
 
The participants will then be thanked for their time and participation. After the final visit 
to the laboratory participants will be eligible to receive a £50 Love2Shop voucher to 
thank them for their participation. This will be emailed or handed to the participant at 
the final laboratory visit. Participants must complete all specified visits to be eligible to 
receive the voucher. Data analysis will be carried out by the above named researchers.  
 
Inclusion criteria: 
TKA patients: 
1. On wait list for TKA surgery on one knee only (at the time of study). The implant, 
surgeon, or surgical protocol does not effect eligibility to be part of this study. 
2. Indicated for primary TKA with a primary indication of osteoarthritis will be identified 
by a consultant orthopaedic surgeon 
3. Able to perform specific activities of daily living (detailed in 2 Participant Information 
Sheet.docx) 
4. over 18 years old 
5. BMI < 35 
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Healthy Participants: 
1. Able bodied 
2. normal lower limb function 
3. Free from lower limb musculoskeletal injuries and no prior lower limb surgeries 
4. Able to perform specific activities of daily living (detailed in 2 Participant Information 
Sheet.docx) 
5. Over 18 years old 
6. BMI < 35 
 
Exclusion criteria: 
TKA patients: 
1. Contralateral knee pain 
2. Contralateral knee arthroplasty 
3. Any other lower limb impairments (apart from the affected knee) or neurological 
conditions which inhibit normal functional movement 
4. BMI > 35 
5. Participation in any other clinical trial or study 
6. Pregnancy or thought to be pregnant 
7. Symptoms of Covid-19 (temperature, loss of taste/smell, or cough) 
8. Are self-isolating due to Covid-19 
9. Not having negative results from 2 lateral flow tests performed in the week prior to 
testing These criteria are included within the participant information and consent forms 
(attached), which must be completed by all participants. 
 
Healthy participants: 
1. Any known underlying musculoskeletal, neurological or cognitive condition that may 
affect motor control and/or 
movement 
2. BMI > 35 
3. Pregnancy or thought to be pregnant 
4. Symptoms of Covid-19 (temperature, loss of taste/smell, or cough) 
5. Are self-isolating due to Covid-19 
6. Not having negative results from 2 lateral flow tests performed in the week prior to 
testing These criteria are included within the participant information and consent forms 
(attached), which must be completed by all participants. 
 
Study location:  
Human Performance Laboratory 
Clinical Research Facility 
New Lister Building 
Glasgow Royal Infirmary 
G31 2ER 
 
Motion Analysis Laboratory, 
Clinical Research Facility, 
Golden Jubilee National Hospital, 
Beardmore Street, 
Glasgow, 
G81 4HX 
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The University of Strathclyde, 
Department of Biomedical Engineering, 
Biomechanics laboratory, 
WC106, 
Woflson Centre, 
106 Rottenrow East, 
G4 0NW. 
 
 
Study recruitment:  
TKA patients 
 
Glasgow Royal Infirmary: 
TKA patients on the waiting list for TKA surgery at either GRI or Stobhill hospital will be 
contacted by the NHS Trauma and orthopaedics research team at the GRI with 
information about the study. This will be a letter sent in the post (Participant 
Recruitment Letter.docx).  
 
Potential participants will be identified by Mr Blyth, Miss Ligeti, and Dr Forsyth on the 
NHS computers in the GRI from the waiting list for TKA. To complete this we will request 
Miss Ligeti and Dr Forsyth are permitted access to the facility and this information 
under supervision of Mr Blyth and Dr Doonan.  
This will enable patients to be identified for the recruitment letter to be sent out to from 
the NHS and the letters to be updated with names and addresses. The information 
used will be accessed on an NHS computer, will not leave the NHS facility, and will be 
under NHS supervision of Mr Blyth.  
 
Only once the patient has directly contacted the researchers when interested in the 
study will the researchers be able to contact the patient.  
 
Patients who are interested will contact the researchers directly for more information 
about taking part in the study. Patients will then be sent the full participant information 
sheet (PIS) and consent form by Miss Ligeti, one of the researchers, and encouraged to 
ask any questions they might have. At least 48 hours after receipt of the PIS Miss Ligeti 
will contact the potential volunteer to arrange the test time in the lab should they wish 
to participate. The patient will have the option for this to be at the pre-operative 
appointment or at another time more suitable to the patient prior to surgery (but within 
3 weeks of the surgery).  
 
Before commencement of the trial the PIS and consent form will be reviewed with the 
researcher and the participants shall be required to sign the consent form if they still 
wish to participate in the study. 
 
Golden Jubilee National Hospital:  
For the following process the term “GJNH orthopaedic research team” refers to Dr 
Alistair Ewen (orthopaedic research coordinator), Hollie Leonard (research 
physiotherapist), Swati Chopra (research physiotherapist), and research nurse (Elaine 
Matthews) who are NHS staff employed in the GJNH orthopaedic research centre. The 
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University of Strathclyde research team include Alexandra Ligeti, Dr Lauren Forsyth, 
and Dr Philip Riches.  
  
The clinical team is the consultants, their fellow or physicians associate at the GJNH.  
  
All potential TKA patients on the clinic lists of the participating consultant orthopaedic 
surgeons at the Golden Jubilee National Hospital (GJNH) will be screened (1-2 days 
before clinic) in relation to the inclusion/exclusion criteria for the study. On the morning 
of clinic, the GJNH orthopaedic research team inform the direct clinical team of 
potential study patients and discuss together who could be suitable. The consultant 
will let the patient know of the research study and if the patient is happy to speak to a 
member of the GJNH orthopaedic research team, the consultant will transfer the 
patient to a GJNH orthopaedic research team member.  
 
This GJNH orthopaedic research team member will discuss the study further and 
provide the patient with a Patient Information Sheet (PIS). Patients will be given at least 
one day from receiving the PIS before they are contacted by phone for verbal consent 
by Alexandra Ligeti, if the patient has not already made contact using the contact 
details on the PIS. The intention is to contact all potential participants who have been 
given a copy of the PIS by telephone a few days after receipt to ask for verbal consent, 
answer any further questions, and organise the first laboratory visit.  
 
This is for practical reasons to allow time to provide Alexandra Ligeti with the necessary 
telephone numbers, check laboratory and researcher availability between the GJNH 
orthopaedic and Strathclyde research teams, and to organise the biomechanical 
testing. The patient will attend research study visit and have time to discuss any 
queries before going through the informed consent process with Alexandra Ligeti. For 
the further two follow up testing sessions the patient will either communicate with 
Alexandra Ligeti to arrange a suitable time for these either on day of previous testing or 
Alexandra Ligeti will phone the patient to arrange this. 
 
A screening log is kept to record the clinics, documenting why patients were not 
suitable, who declined, who is interested and the dates they were seen etc. This 
provides evidence of the dates patients were approached, consented etc and that due 
process was followed (ie. regarding patient selection). 
 
For all participants (GRI and GJNH) there The participant will havewill be the option for 
testing to be at the pre-operative appointment or at another time more suitable to the 
participant prior to surgery (but within 3 weeks of the surgery). Participants will also 
have the option to complete testing at the hospital from which they were recruited or 
the Wolfson Centre at the University of Strathclyde. 
 
For TKA patients the experiment offers a £50 Love2Shop voucher and travel costs of up 
to £40 will be reimbursed. Participants must complete all specified visits to be eligible 
to receive the voucher.  
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Healthy Participants 
Healthy participants will be recruited by an email sent to all Biomedical Engineering 
staff and students at the University of Strathclyde (3 Participant Recruitment 
Email.docx) via the departmental office to inform of the project and provide contact 
details of the researcher (Alexandra Ligeti) so those interested can request a 
participant information sheet. 
 
Miss Ligeti will provide the full PIS and consent form (attached), and encourage 
potential volunteers to ask any questions they might have. At least 48 hours after 
receipt of the Participant Information Sheet Miss Ligeti will contact the potential 
volunteer to arrange a test time in the lab should they wish to participate. Before 
commencement of the trial the PIS and consent form will be reviewed with the 
researcher and the participants shall be required to sign the consent form if they still 
wish to participate in the study. 
 
The experiment offers no incentives nor reimbursements to any potential participants. 
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9.2 Participant Information Sheets 

9.2.1  Healthy Population Information Sheet 

Participant Information Sheet 
Name of department: Biomedical Engineering    
Title of the study: Accuracy and repeatability assessment of the EnMovi Ltd wearable 
devices 
 
Introduction 
The objective of this study is to assess the accuracy and repeatability of knee 
kinematics using EnMovi Ltd wearable sensors, used in conjunction with the app. 
These will be compared to gold-standard motion analysis using healthy participants 
when completing various activities of daily living. This data will be provided to EnMovi 
Ltd for further product development. 
 
The study is part of a collaboration between University of Strathclyde and EnMovi Ltd. 
The study will be conducted as part of Miss Ligeti’s PhD, supervised by Dr Riches and 
supported by Dr Forsyth.  
 
What is the purpose of this investigation? 
The MotionSense™ app has been developed to remotely support post-operative knee 
replacement rehabilitation. This provides personalized rehabilitation, tracking of home 
exercises and daily activity, and enables healthcare professionals to continuously 
monitor rehabilitative progress remotely.  
 
It is important that the data collected is accurate and reliable. Therefore the purpose of 
this study is to validate the accuracy and reliability of the wearable sensors in a healthy 
population, used in conjunction with the app.  
 
Do you have to take part? 
No. It is your decision to take part in this investigation and you can refuse to participate 
before or during the investigation itself without giving any reason whatsoever. Up until 
your data is anonymised, you can ask for it to be removed from the study. Not taking 
part in this study or withdrawal will not affect your standing or your relationship with the 
University or the external company in any way. 
 
What will you do in the project? 
You will be asked to attend a session (location given below) for 1.5-2 hours at an agreed 
time between January 2022 and May 2022.  
You will need to wear appropriate clothing so that accurate motion of the body during 
the biomechanical assessment can be recorded. You will be required to wear tight 
cycling type shorts and a sport t-shirt. Furthermore, you will be asked to bring sport-
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type shoes (flat trainers that do not cover or rise higher than the ankle). It is your choice 
to wear socks. Appropriate clothing (not socks/shoes) can be provided if necessary, 
although you may prefer to wear your own clothes. To track your movement individual 
reflective markers will be stuck externally onto your body using medical grade non-
allergic tape (figure 3).  
 
Be aware that placing markers requires physical contact. Alongside the markers, 
EnMovi Ltd sensors will be attached to the lower limb.  
 
There are 2 types of EnMovi Ltd sensors: 

• Commercial sensor  
• Research sensor  

 
Both devices will be attached to the body. The commercial sensor is controlled using 
an app, and the research sensor enables raw acceleration data to be extracted from the 
experiment. The sensors for both will attach to the thigh and leg, and also on the lower 
back for the research sensor.  
 
Videos may be taken if you agree to this beforehand on the consent form. This is 
optional for the biomechanical assessment but essential for the campus walk. Videos 
will be not anonymised. If you wish to take part but do consent to being video you can 
complete the biomechanical assessment only.  
 
The experiment offers neither incentives nor reimbursement. The laboratory session 
will take place in the following location: 
 
The University of Strathclyde, 
Department of Biomedical Engineering, 
Biomechanics laboratory, 
WC106, 
Woflson Centre, 
106 Rottenrow East,  
G4 0NW. 
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Figure 1). Locations for Plug-in-Gait markers (image: 
c-motion.com) 

Figure 2. Commercial sensors attached to right limb. Research 
sensor (not pictured) will be attached next to source and fusion, 

plus an additional sensor attached to the lower back. 

Source 

Fusion 
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Once prepared you will carry out a series of tasks as part of the biomechanical 
assessment (table 1). Individual trials (except level walking) shall be performed three 
times. The order for completing these tasks will be randomly generated. Participants 
will also be given rest breaks between each condition tested to minimise the physical 
endurance required during the data collection session. 

 

 

Following the tasks in table 1, only if you have consented to video and the weather is 
suitable, you will complete a campus-based circuit (figure 4). This includes rough-
ground walking and stair ascent and descent.  

Volunteers will be constantly videoed using a smart phone in addition to the wearable 
collecting data, enabling synchronisation of data and activity. Videos give a visual 
check to refer back to when a review of the movement is necessary. Videos are required 
outdoors as this is the only way we can accurately (to the nearest second) classify 
movements. Prior to walking outside all markers will be removed and you will be 
changed into your own clothes. The wearable sensors will remain attached. Water will 
be available after completion. 

Task Description 

Time up and go test 

Participant is instructed to stand up from a chair, walk 3m, turn, 
walk 3m back to chair, and sit back down again. This should be 
completed at a comfortable and normal pace for the 
participant. 

Active and passive range 
of motion 

Participant will be asked to perform a knee flexion/extension 
movement by themselves. The tester will then repeat this 
movement with the participant by moving their leg for them as 
the participant remains passive 

Wearable sensor 
calibration movements 

Participant will stand with one foot on a small box for knee 
flexion angle to be calibrated. 
Participant will lie on floor with leg extended for leg extension 
angle to be calibrated. 
Participant will complete a selection of toe and heel slides. 

5 minutes of level, 
treadmill walking 

Participant will walk at a comfortable pace and harness will be 
worn for safety 

Bicycle spin 
Participant will spin at a comfortable pace for two minutes at 
various seat heights. 

Jumps and hops Participant will be required to do a selection of jumps and hops. 

Stair ascent and stair 
descent 

Participant will be instructed to climb up a flight of stairs to the 
top (4 steps) and then descend the stairs (4 steps) on portable 
stairs in the biomechanics laboratory. 

Table 1). Biomechanical assessment 
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Why have you been invited to take part?  
 
The chosen participants will be over 18 years of age and self-report to meeting the 
following criteria: 
 
Inclusion criteria 

• Able bodied 
• normal lower limb function 
• Free from lower limb musculoskeletal injuries and no prior lower limb surgeries  
• Able to perform specific activities of daily living (see table 1) 

 
Exclusion criteria 

• Any known underlying musculoskeletal, neurological or cognitive condition that 
may affect motor control and/or movement  

• Weight >135 kg /300 lbs/21 stones 3.62 lbs 
• Pregnancy or thought to be pregnant 
• Symptoms of Covid-19 (temperature, loss of taste/smell, or cough) 
• Are self-isolating due to Covid-19 
• Not having performed 2 lateral flow tests in the week prior to testing session 

 
What are the potential risks to you in taking part? 
You might observe some skin irritation from the tape which will last no more than one 
day. The biomechanical assessment requires performance of activities of daily living. 
These should be carried out routinely by all participants, however there is a risk of 
tripping or falling.  
There is a risk for transmission of COVID-19. Face masks will be worn by everyone 
(participant/staff/students) during testing and government/university guidelines will be 
followed at all times.  

Figure 3). Route for campus walk 
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What happens to the information in the project?  
You will be asked to consider whether you wish to provide consent for the following: 
• Consent to being videoed as part of the project. 
 
Any identifiable information 
The consent form will be kept confidential, stored in a locked cabinet in the 
Department of Biomedical Engineering. These forms will be available to Strathclyde 
University staff and the Strathclyde University members of the research team only.  
 
An ID code will link the experimental data to the participant. The code list will be stored 
in a locked cabinet in the Department of Biomedical Engineering. The coded list will 
only be available to Strathclyde University staff and the Strathclyde University members 
of the research team.   
 
EnMovi Ltd will not have access to this data and it will be destroyed 2 years after 
completion of the study. At this point data will become completely anonymous. Data 
will be securely stored and its access and destruction will be in accordance with the 
University of Strathclyde Data Protection Policy. All computing systems holding 
electronic data, and all hard data will be stored within lock & key, and/or, magnetic 
swipe card security access enabled offices and laboratories within the Department of 
Biomedical Engineering of the University of Strathclyde.  
 
All pseudo-anonymous experimental data will be stored on Microsoft Teams with 
secure access only by the research team from Strathclyde University and EnMovi Ltd. 
Video data  will only be shared with EnMovi Ltd if you give explicit consent since this 
data is not anonymised.  
 
In addition, anonymised data will be made publicly available for further study. All the 
information will be saved as a backup on password protected University of Strathclyde 
computers and on a password protected folder on external hard drives.  
 
The University of Strathclyde is registered with the Information Commissioner’s Office 
who implements the Data Protection Act 1998. All personal data on participants will be 
processed in accordance with the provisions of the Data Protection Act 1998. 
 
What happens next? 
Once you understand the information given above and would like to take part in this 
research study, you can contact Alexandra Ligeti (see details below) to schedule your 
appointment. Please bring your signed consent form with you to your appointment.  
In the case that you do not wish to be involved in the project, then the investigators of 
this study would like to take the opportunity to thank you for taking interest in this 
study. 
 
If you would like to receive feedback about the progress of the study post-analysis you 
can contact any of the investigators on the contact details given below.  
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Researcher contact details: 
Researcher: Alexandra Ligeti 
Department of Biomedical Engineering 
Wolfson Centre 
Glasgow G4 0NW 
E-mail: alexandra.ligeti.2016@strath.ac.uk 
 
 
Researcher: Lauren Forsyth 
Department of Biomedical Engineering 
Wolfson Centre 
Glasgow G4 0NW 
E-mail: lauren.forsyth@strath.ac.uk 
 
This investigation was granted ethical approval by the Department Ethics Committee. If 
you have any further questions/concerns, during or after the investigation, or wish to 
contact an independent person to whom any questions may be directed or further 
information may be sought from, please contact: 
 
Linda Gilmour 
Secretary to the Departmental Ethics Committee 
Department of Biomedical Engineering 
Wolfson Centre,  
106 Rottenrow East 
Glasgow G4 0NW 
Tel: 0141 548 3298  
E-mail: linda.gilmour@strath.ac.uk 
 

 

 

  

mailto:alexandra.ligeti.2016@strath.ac.uk
mailto:lauren.forsyth@strath.ac.uk
mailto:linda.gilmour@strath.ac.uk
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9.2.2 TKA Population Information Sheet 

Participant Information Sheet 
Name of department: Biomedical Engineering    
Title of the study: Performance and activity classification post total knee arthroplasty 
 
Introduction 
The University of Strathclyde is working with a company, Enmovi Ltd, to develop an App 
that can improve the rehabilitation of people who have had a knee replacement. The 
App will take data from sensors placed above and below the knee and determine what 
activity they are doing, for example whether someone is walking, standing up, sitting 
down, going up stairs etc.  
 
The App will also be able to determine how much the knee bends, which is a good 
indicator of how well someone is recovering from their operation. To achieve this, we 
require a large database of movement data to be collected across a broad range of 
people with different levels of knee function and across a large number of typical 
activities of daily living. These data will be collected in either the clinical research 
laboratory of the Glasgow Royal Infirmary or Golden Jubilee National Hospital, or the 
Wolfson Centre at the University of Strathclyde, and also outside the laboratory around 
and about the hospital or university.  
 
All research data collected, including video data of your movement, during the sessions 
be anonymised and then shared with EnMovi Ltd for App development. Personal data, 
such as your name and contact details, will not be shared. 
 
The study will be conducted as part of a PhD thesis for Miss Alexandra Ligeti, who will 
be supervised by Dr Philip Riches and additionally supported by Dr Lauren Forsyth.  
 
What is the purpose of this investigation? 
Total knee arthroplasty is becoming more prevalent with more than 100,000 procedures 
taking place in the United Kingdom each year. Post-operative knee stiffness and reduced 
knee movement are the most common difficulties and factors associated with patient 
dissatisfaction following surgery. Greater knee movement postoperatively indicates a 
better long-term knee mobility recovery.  
 
Postoperative rehabilitation is predominately home-based. However, home-based 
rehabilitation has been associated with poor compliance. There is therefore an 
increased demand for guidance and surveillance of patients on rehabilitation programs 
once in their home environment. Wearable technologies present a solution to remotely 
monitor patients, enabling assessment of patient progress to be reviewed and 
performed at home. However, the wearable technologies need to work across a wide 
range of activities if the resulting data is to be trusted.  
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The app has been developed to remotely support post-operative knee replacement 
rehabilitation and monitor recovery progress. This study will provide this data to enable 
further development of this system to allow for the functionalities of this system may be 
improved.  
 
Do you have to take part? 
No. It is your decision to take part in this investigation and you can refuse to participate 
before or during the investigation itself without giving any reason whatsoever. Up until 
your data is anonymised, you can ask for it to be removed from the study, however once 
the data has been deleted after a period of three years removing your data from this 
project will not be possible.  
 
On completion of the study you will receive a £50 Love2Shop voucher. This will be 
emailed or handed to you after your final visit. You must attend all required sessions to 
be eligible for the voucher. 
 
Please also note that travel expenses up to £40 per visit will be covered, therefore you 
are required to keep a receipt of all travel relating to this study. 
 
What will you do in the project? 
 
You will be asked to attend a session (location given below) for 1.5- 2 hours at an 
agreed time between August 2022 and August 2024. You will need to wear appropriate 
clothing so that accurate motion of the body during the biomechanical assessment can 
be recorded. You will be required to wear tight cycling type shorts and a sport t-shirt. 
Furthermore, you will be asked to bring sport-type shoes (flat trainers that do not cover 
or rise higher than the ankle). It is your choice to wear socks.  
Appropriate clothing (not socks/shoes) can be provided if necessary, although you may 
prefer to wear your own clothes. To track your movement individual reflective markers 
will be stuck externally onto your body using medical grade non-allergic tape (figure 3). 
Be aware that placing markers requires physical contact. Alongside the markers, 
EnMovi Ltd sensors will be attached to the lower limb.  
 
There are 2 types of EnMovi Ltd sensors: 
 
• two sensors that communicate via Bluetooth, and 
• two sensors that work using wires and a data logger. 
 
Both devices will be attached to the body. The bluetooth sensor uses an existing 
development algorithm and outputs measurements to a phone. The wired sensor 
enables raw acceleration data to be extracted from the movement and this shall be 
used to determine knee flexion from literature models. 
 
Videos may be taken if you agree to this beforehand on the consent form. This is 
optional for the biomechanical assessment but essential for the outdoor walk. Videos 
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will be not anonymised. If you wish to take part but do not consent to being videod you 
can complete the biomechanical assessment only.  
The laboratory session will take place in one of the following locations: 
 

Human Performance Laboratory, 
Clinical Research Facility, 
New Lister Building, 
Glasgow Royal Infirmary 
8-16 Alexandra Parade, 
Glasgow,  
G31 2ER 
 
 
 
Motion Analysis Laboratory, 
Clinical Research Facility, 
Golden Jubilee National 
Hospital, 
Beardmore Street, 
Glasgow,  
G81 4HX 
 
 
 
The University of Strathclyde, 
Department of Biomedical 
Engineering, 
Biomechanics laboratory, 
WC106, 
Woflson Centre, 
106 Rottenrow East,  
G4 0NW 
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Task Description 

Questionnaire You will be asked to complete three short surveys about your knee function.  

Time up and go 
test 

You will be asked to stand up from a chair, walk 3m, turn, walk 3m back to chair, and sit 
back down again. This should be completed at a comfortable and normal pace for you. 

Active and 
passive range of 
motion 

You will be asked to perform a knee flexion/extension movement by yourself. The 
researcher will then repeat this movement by physically moving your leg for you as you 
remain passive 

Wearable sensor 
calibration 
movements 

You will be asked to stand with one foot on a small box (20cm in height) while resting their 
other foot on the floor directly next to the box for knee flexion angle to be calibrated. 
You will be asked to slide your toe up and down a vertical wall while maintaining your foot 
parallel to the ground. 
You will be required to slide your foot forwards and backwards along the floor in seated 
position. 

5 minutes of 
level, treadmill 
walking 

You will be asked to walk at a comfortable pace and harness will be worn for safety. Do not 
worry if you are unable to walk for 5 minutes, this is an upper limit. You may use a walking 
aid if you normally use one. 

Stair ascent and 
stair descent 

You will be asked to climb up a short flight of stairs to the top (4 steps) and then descend 
the stairs (4 steps) at a comfortable pace. There are handrails should you need them. 
This activity is not completed if you are visiting the laboratory at the Golden Jubilee 
National Hospital. 

Figure 1). Locations for Plug-in-Gait markers  

Table 1). Biomechanical assessment 

Figure 2. Commercial sensors attached to right limb. 
Research sensor (not pictured) will be attached next to 
source and fusion, plus an additional sensor attached to 
the lower back.  

Source 

Fusion 
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Upon entry you will be required to read and sign a consent form, any questions will be 
answered. Following this, the markers and sensors will be placed on your body as 
explained above. Once prepared you will carry out a series of tasks as part of the 
biomechanical assessment (table 1). Individual trials (except level walking) shall be 
performed three times. The order for completing these tasks will be randomly 
generated. You will be given rest breaks between each condition tested to minimise the 
physical endurance required during the data collection session. 

Following the tasks in table 1, and only if you have consented to video and the weather 
is suitable, you will complete a circuit outside the laboratory. At the Glasgow Royal 
Infirmary or University of Strathclyde this be outdoors (figure 3) and includes rough-
ground walking and stair ascent and descent. At the Golden Jubilee National Hospital 
this walk will take place inside the hospital. It will include stair ascent and descent. 

Prior to walking outside all markers will be removed and you will be changed into your 
own clothes. The wearable sensors will remain attached. You will be videoed using a 
smart phone. These videos give us a visual check of the movement and are required 
outdoors as this is the only way we can accurately (to the nearest second) classify 
movements. Water will be available after completion. 

 

 

Why have you been invited to take part?  
The chosen participants will be over 18 years of age and self-report to meeting the 
following criteria: 

Inclusion criteria 

• Received total knee replacement surgery on one knee only (at the time of study) 
• Indicated for primary total knee replacement surgery with a primary indication of 

osteoarthritis as identified by a consultant orthopaedic surgeon 
• Able to perform specific activities of daily living (see table 1) 

Figure 3). Route for outdoor walk for Glasgow Royal Infirmary (left) and University of Strathclyde 
(right) 
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Exclusion criteria 

• Contralateral knee pain 
• Contralateral knee arthroplasty 
• Any other lower limb impairments (apart from the affected knee) which inhibit normal 

functional movement 
• BMI > 35 
• Participation in any other clinical trial or study 
• Pregnancy or thought to be pregnant 

What are the potential risks to you in taking part? 

You might observe some skin irritation from the tape which will last no more than one 
day. The biomechanical assessment requires performance of activities of daily living. 
These should be carried out routinely by all participants, however there is a risk of 
tripping or falling. There is a risk for transmission of COVID-19.  If you prefer, face masks 
will be worn by everyone (participant/staff/students) during testing and 
government/university guidelines will be followed at all times.  

What happens to the information in the project?  

You will be asked to consider whether you wish to provide consent for the following: 

• Consent to being videoed as part of the project. 

Any identifiable information 

The consent form will be kept confidential, stored in a locked cabinet in the 
Department of Biomedical Engineering. These forms will be available to Strathclyde 
University staff and the Strathclyde University members of the research team only.  

An ID code will link your experimental data to you. The code list will be stored in a 
locked cabinet in the Department of Biomedical Engineering. The coded list will only be 
available to Strathclyde University staff and the Strathclyde University members of the 
research team.  EnMovi Ltd will not have access to this data and it will be destroyed 2 
years after completion of the study. At this point data will become completely 
anonymous. Data will be securely stored and its access and destruction will be in 
accordance with the University of Strathclyde Data Protection Policy. All computing 
systems holding electronic data, and all hard data will be stored within lock & key, 
and/or, magnetic swipe card security access enabled offices and laboratories within 
the Department of Biomedical Engineering of the University of Strathclyde.  

All experimental data will be stored pseudo-anonymously, and coded with an ID-
number. All the research data will be saved as a backup on password protected 
University of Strathclyde computers in the biomechanics laboratory.  
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Research data will be shared with EnMovi Ltd as external collaborators under the 
auspices of a data sharing agreement which adheres to UK law and ensures GDPR 
compliance. Pseudo-anonymous experimental data will be transferred via the network 
and stored upon Microsoft Teams, as well as video data if explicit consent given, 
thereby providing access to all members of the research team including EnMovi Ltd as 
external collaborators.  

The phones on which the videos are recorded on are research phones and do not have 
SIMS. The phones are stored at the University and will only be used for this project for 
the duration of the project. Once the videos are extracted from the phone, they shall be 
deleted from the phone. The phones will be wiped of all videos before being re-used. 

Anonymised data will be made publicly available for further study. All the information 
will be saved as a backup on password protected University of Strathclyde computers 
and on a password protected folder on external hard drives.  

The University of Strathclyde is registered with the Information Commissioner’s Office 
who implements the Data Protection Act 1998. All personal data on participants will be 
processed in accordance with the provisions of the Data Protection Act 1998. 

What happens next? 

Once you understand the information given above and would like to take part in this 
research study, you can contact Alexandra Ligeti (see details below) to schedule your 
appointment. In the case that you do not wish to be involved in the project, then the 
investigators of this study would like to take the opportunity to thank you for taking 
interest in this study. 

If you would like to receive feedback about the progress of the study post-analysis you 
can contact any of the investigators on the contact details given below. A lay summary 
of your results will be made available to you upon completion of this study. 

Researcher contact details: 
Researcher: Alexandra Ligeti 
Department of Biomedical Engineering 
Wolfson Centre 
Glasgow G4 0NW 
E-mail: alexandra.ligeti@strath.ac.uk 
 
Researcher: Lauren Forsyth 
Department of Biomedical Engineering 
Wolfson Centre 
Glasgow G4 0NW 
E-mail: lauren.forsyth@strath.ac.uk 
  

mailto:alexandra.ligeti@strath.ac.uk
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9.3 Consent Forms 

9.3.1 Healthy Population Consent Form 

Consent Form for Participants 

Name of department: Biomedical Engineering    
Title of the study: Accuracy and repeatability assessment of the EnMovi Ltd wearable 
devices

▪ I confirm that I have read and understood the Participant Information Sheet for the above 
project and the researcher has answered any queries to my satisfaction.  

▪ I confirm that I have read and understood the Privacy Notice for Participants in Research 
Projects and understand how my personal information will be used and what will happen to 
it (i.e. how it will be stored and for how long). 

▪ I understand that my participation is voluntary and that I am free to withdraw from the 
project at any time, up to the point of completion, without having to give a reason and 
without any consequences. 

▪ I understand that I can request the withdrawal from the study of some personal information 
and that whenever possible researchers will comply with my request. This includes the 
following personal data:  

o video recordings of physical tests that identify me; 
▪ I understand that anonymised data (i.e. data that do not identify me personally) cannot be 

withdrawn once they have been included in the study. 
▪ I understand that any information recorded in the research will remain confidential and no 

information that identifies me will be made publicly available.  
▪ I consent to being a participant in the project. 

Optional: 

▪ I consent to the use of videography as part of the project.  Yes/ No

Full Name of Participant:  

Signature of Participant: Date: 
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9.3.2 TKA Population Consent Form 

Consent Form for Participants 

IRAS ID: 314702 

Centre Number:  CRF Glasgow Royal Infirmary 

   Golden Jubilee National Hospital 

Wolfson Centre University of Strathclyde 

Study Number: 1 

Participant Identification Number for this trial: 

Name of department: Biomedical Engineering    
Title of the study: Performance and Activity Classification post Total knee arthroplasty 

 

1. I confirm that I have read and understood the Participant Information Sheet for the above 
project  dated …………  and the researcher has answered any queries to my satisfaction.  

2. I confirm that I have read and understood the Privacy Notice for Participants in Research 
Projects and understand how my personal information will be used and what will happen to 
it (i.e. how it will be stored and for how long).   

3. I understand that relevant sections of my medical notes/records will be accessed by the 
researcher and that data collected during the study, may be looked at by individuals from 
the University of Strathclyde and Enmovi Ltd where it is relevant to my taking part in this 
research. I give permission for these individuals to have access to my records. 

4. I understand that the information collected about me will be used to support 
other research in the future, and may be shared anonymously with other researchers. 

5. I understand that my participation is voluntary and that I am free to withdraw from the 
project at any time, up to the point of completion, without having to give a reason and 
without any consequences. 

6. I understand that I can request the withdrawal from the study of some personal information 
and that whenever possible researchers will comply with my request, and that I understand 
this is not possible after a period of 3 years has passed once data has been destroyed 

This includes the following personal data:  
Video recordings of physical tests that identify me. 
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7. I understand that anonymised data (i.e. data that do not identify me personally) cannot be 
withdrawn once they have been included in the study.  

8. I understand that any information recorded in the research will remain confidential and no 
information that identifies me will be made publicly available.  

9. I understand anonymised data will be shared with Enmovi Ltd to help improve the 
functionality of the MotionSense™ wearable device. 

10. I consent to being a participant in the project.  

 

Optional: 

 

11. I consent to the use of videography as part of the project.    Yes/ No 

12.  I consent to the videos taken being shared with EnMovi Ltd   Yes/ No

Full Name of Participant:  

Signature of Participant: Date: 
 

Full Name of Researcher seeking 
consent:  

Signature of Researcher seeking consent: Date: 
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Privacy Notice for Participants in Research Projects 

Introduction 

This privacy notice relates to individuals participating in research projects led by the University of 
Strathclyde. It explains how the University of Strathclyde will use your personal information 

and your rights under data protection legislation.   It is important that you read this notice prior 
to providing your information.  
Please note that this standard information should be considered alongside information provided 
by the researcher for each project, which is usually in the form of a Participant Information Sheet 
(PIS). The PIS will include further details about how personal information is processed in the 
particular project, including: what data is being processed; how it is being stored; how long it will 
be retained for, and any other recipients of the personal information. It is usually given to 
participants before they decide whether or not they want to participate in the research.  

Data controller and the data protection officer 

The University of Strathclyde is the data controller under data protection legislation. This means 
that the University is responsible for how your personal data is used and for responding to any 
requests from you in relation to your personal data. 
Any enquiries regarding data protection should be made to the University’s Data Protection 
Officer at dataprotection@strath.ac.uk.  

Legal basis for processing your personal information 

If you are participating in a research project, we may collect your personal information. The type 
of information that we collect will vary depending on the project. Our basis for collecting this 
information is outlined below: 

Type of information Basis for processing 

Personal information and associated research data 
collected for the purposes of conducting research. 

It is necessary for the performance of a 
task carried out in the public interest. 

Certain types of personal information such as 
information about an individual’s race, ethnic origin, 
politics, religion, trade union membership, genetics, 
biometrics (where used for ID purposes), health, 
sex life, or sexual orientation are defined as ‘Special 
Category’ data under the legislation. 

It is necessary for the performance of a 
task carried out in the public interest  
and 
It is necessary for scientific or historical 
research purposes in accordance with the 
relevant legislation (Data Protection Act 
2018, Schedule 1, Part 1, Para 4).  

Criminal conviction / offence data It is necessary for the performance of a 
task carried out in the public interest and 
is processed in accordance with Article 
10 of the General Data Protection 
Regulation and the Data Protection Act 
2018, Schedule 1, Part 1, Para 4. 

Details of transfers to third countries and safeguards  

For some projects, personal information may be transferred outside the UK. This will normally 
only be done when research is taking place in locations outside the UK. If this happens, the 
University will ensure that appropriate safeguards are in place. You will be fully informed about 
any transferring of data outside the UK and associated safeguards, usually in the Participant 
Information Sheet. 

Sharing data 

mailto:dataprotection@strath.ac.uk
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If data will be shared with other individuals or organisations, you will be advised of this in the PIS. 

Retention of consent forms 

If you participate in a research project, you may be asked to sign a participant consent form. 
Consent forms will typically be retained by the University for at least as long as the identifiable 
research data are retained. In most cases they will be retained for longer, the exact time frame 
will be determined by the need for access to this information in the unfortunate case of an 
unanticipated problem or a complaint. 5 years after the research is completed will be suitable 
for many projects, but beyond 20 years will be considered for any longitudinal or ‘high risk’ 
studies involving children, adults without capacity or a contentious research outcome. 
 

Data subject rights 

You have the right to: be informed about the collection and use of your personal data; request 
access to the personal data we hold about you; request to have personal data rectified if it is 
inaccurate or incomplete; object to your data being processed; request to restrict the processing 
of your personal information; and rights related to automated decision-making and profiling. To 
exercise these rights please contact dataprotection@strath.ac.uk. 
Please note, many of these rights do not apply when the data is being used for research 
purposes.  However, we will always try to comply where it does not prevent or seriously impair 
the achievement of the research purpose.   

Right to complain to supervisory authority  

If you have any concerns/issues with the way the University has processed your personal data, 
you can contact the Data Protection Officer at dataprotection@strath.ac.uk. You also have the 
right to lodge a complaint against the University regarding data protection issues with the 
Information Commissioner’s Office (https://ico.org.uk/concerns/). 

 

 

 

 

 

  

mailto:dataprotection@strath.ac.uk
mailto:dataprotection@strath.ac.uk
https://ico.org.uk/concerns/
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9.4 Ethics Approval 

9.4.1 Departmental Ethics Approval  

 

To: Dr Phil Riches Date: 01 August 2025 

From: Departmental Ethics Committee Ref: KR/LG 

 

Paper DEC/BioMed/2021/305 – Accuracy and repeatability assessment of the 
EnMovi Ltd wearable devices 

 

The above paper was discussed by the DEC at the meeting held on 7 September 
2021. The decision of the Committee was that the application could be approved 
by Convener’s Action, subject to the following points/recommendations being 
undertaken: 

 

Application Form 

Section 4 – Non-Strathclyde collaborating investigator(s) 

While it is clear data will be shared with non-Strathclyde investigators it is not clear 
whether they are going to contribute to the investigation? 

It is stated later on in the application there will be a data sharing agreement in place; 
this must be approved by RKES and needs to be in place before the research 
commences.  A copy of the data sharing agreement should be provided to Linda 
Gilmour to be kept with the application. 

We have been communicating with RDMS and EnMovi and the data sharing plan is 
nearing completion. It will be finalised and approved before commencement of the 
project. 

Section 6 – Location of the investigation 
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This should also include details of the proposed outdoors circuit.  

Sentence & route map added:  

‘Proposed outdoor circuit route around campus starting from the above address. See 
route below.’ 

Section 10 – Ethical issues 

It is unclear why video and photographs are required.  This should be clarified in 
Section 16 and also in the PIS.  It would appear given that these aspects are optional 
they may not be essential for the research.  If indeed they are required, researchers 
should consider whether participants with identifiable features which could not easily 
be pixilated should actually be excluded from participating (add to exclusion criteria). 

The option for photographs has been removed, however video remains an option/is 
required for outside part of study. The consent form, PIS, and application have been 
amended. Video information has been clarified in section 10 paragraph 4 and last 
paragraph, section 16 second last paragraph, and PIS in paragraph before table in 
section What will you do in the project?  

‘Video is optional in the lab as it is useful as a visual checker to review if movement is 
not classified correctly by the sensors. However, video outside of the lab is required as 
this is the only way movements can be classified accurately (to the nearest second). 
Video will be not be anonymised, but will only shared with EnMovi if explicit consent 
given.’ 

In the PIS page 2 second paragraph reads to highlight that the videos are not 
anonymous but can still take part:  

Videos may be taken if you agree to this beforehand on the consent form. This is 
optional for the biomechanical assessment but essential for the campus walk. Videos 
will be not anonymised. If you wish to take part but do consent to being video you can 
complete the biomechanical assessment only. 

Please provide further clarification on storage of photographs and video.  If full 
anonymisation has not been possible is it still the intention to share this with 
collaborators EnMovi? 

Video data will be extracted from the phones and stored alongside the pseudo-
anonymous experimental data. Only if explicit consent given will video data be shared 
with EnMovi. This is clarified in the final paragraph where it now reads: 
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‘All pseudo-anonymous experimental data shall be securely saved as a backup on 
password protected University of Strathclyde computers in the biomechanics 
laboratory and then transferred and stored upon Microsoft Teams, thereby providing 
access to all members of the research team including EnMovi Ltd as external 
collaborators. Video data will only be extracted from the phones to password protected 
University of Strathclyde computers in the biomechanics laboratory and only 
transferred to Microsoft Teams if explicit consent is given.’ 

Add a paragraph regarding ethical issues associated with close proximity e.g. intimate 
palpation for marker placement and in relation to Covid; also include the issue 
pertaining to tightly fitting clothing for the indoor testing. New paragraph 3 has been 
added and reads: 

‘On the day of testing the participant will be required to wear tight fit clothing in the lab 
to accurately track body movement during testing. This will also require palpation of 
bony landmarks where tester will be in close proximity to the participant. The 
researcher will wash their hands beforehand and only be in close proximity for the 
minimum time required. Once the need for close contact has ended the researcher will 
wash their hands and markers, as written in RA2658.’ 

Section 12 – Participants 

Inclusion criteria 

No. 3 – “no prior surgeries” – clarification that this would only relate to those impacting 
mobility or balance etc. Have clarified lower limb surgeries. 

Exclusion criteria 

Include aspects pertaining to covid19 in line with government and university guidelines; 
e.g. exclude those with covid symptoms, those isolating etc; for research and teaching 
with physical contact, new risk assessments identify that parties are required to 
provide 2 negative lateral flow tests.. 

Suggest excluding participants with tattoos or other physical body markings that could 
not be easily pixelated. Added. Exclusion criteria now has the below added: 

• Symptoms of Covid-19 (temperature, loss of taste/smell, or cough) 
• Are self-isolating due to Covid-19 
• Not having performed 2 lateral flow tests in the week prior to testing session 

Section 14 – Method of recruitment 
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1st Para – 1st sentence – please remove “as well as other students attending Biomedical 
Engineering classes”. Removed. 

2nd Para – 4th line – Remove “only if they have not already contacted Miss Ligeti within 
this 48 hour time period”, as this maybe unnecessary and limit potential participants.  
Researchers could propose a date by which any interested parties may respond. 
Removed. 

Section 16 – Methodology 

Page 5 - Test Session: Change 1.5 hours – suggest maximum time limit for the session. 
Have stated will last from 1.5-2 hours. 

Page 6 3rd Para – All clothing will be washed between users – this needs to be 
quarantined for 72 hours before washing in line with current risk assessments. Added. 

4th Para – Clarification with regards to what sensors/markers will be attached to each 
participant, an image indicating the number of sensors and locations of sensors and 
included in the PIS would be  helpful. Image of marker locations/sensor locations 
added to application and PIS. 

Table 

Harness – There needs to be in place Covid infection protocol for the harness – there is 
a risk assessment in place for this – see Dr A Kerr – which must be referred to in the 
application and must be read and signed by all researchers. On reflection a harness 
will not be worn on the treadmill, and this has been deleted from the table. Participants 
are healthy and will be given time to become comfortable walking on the treadmill 
before any trials are recorded. 

Stair ascent and stair descent – please clarify these are stairs within the biomechanics 
lab? Have clarified. The stairs are portable and assessment will be carried out within 
biomechanics laboratory. 

Last Para – It appears that the video footage will be taken by a smart phone which is not 
a piece of research equipment assigned specifically to this project.  If this data is going 
to be captured on a personal phone there needs to be full consideration of data 
protection. 

Clarification has been added to the paragraph stating: 

‘These are research phones and do not have SIMS. They have been provided by EnMovi 
and are the only phones to have the EnMovi MotionSense™ App running. The phones 
are stored at the University and will only be used for this project for the duration of the 
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project. Once the videos are extracted from the phone, they shall be deleted from the 
phone. The phones will be wiped of all videos before being returned to EnMovi.’ 

Car ingress/egress – lack of information provided here with regards to whom this car 
belongs, there needs to be full consideration of infection control on all touch surfaces 
within the vehicle in relation to Covid. This was still included in error and has been 
removed as is not part of this study. 

Section 18 – Data collection, storage and security 

2nd last sentence – insert “fully anonymised” data. Done. 

Section 19 – Potential risks or hazards 

See previous points regarding risk assessments.  There are multiple risk assessments 
already in place e.g. ER2658 which covers some aspects of this proposed research.  
The researchers must contact the department safety committee to identify which risk 
assessments and protocols are already in place, referring to these in this application 
and ensure all parties read and sign these risk assessments. 

Have added: 

‘Researchers have also read and signed risk assessments RA2658 which identify 
protocols in place regarding work in biomechanics labs during COVID-19.’ 

Section 20 – What method will you use to communicate the outcomes 

Please add “as approved by EnMovi Ltd”. Done. 

Section 21 – How will the outcomes of the study be disseminated 

Please add PhD thesis if appropriate. Done. 

Consent Form 

Please use the newest/updated version of the consent form on the website and add 
additional bullet points as necessary. 

Last bullet point – this conflicts with what was previously stated in the application 
regards data sharing. 

Form updated to newest version. 
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Last bullet point amended to support application 

Participant Information Sheet 

All previous recommendations made in relation to the application form should be 
addressed in the PIS. Done. 

Introduction  

Add details about the research team. Done. 

What is the purpose of this investigation? 

This has clearly been written for a patient group e.g. “This provides your 
personalised……remotely”.  This section must be rewritten for the target audience.  

Now reads: 

‘The MotionSense™ app has been developed to remotely support post-operative knee 
replacement rehabilitation. This provides personalized rehabilitation, tracking of home 
exercises and daily activity, and enables healthcare professionals to continuously 
monitor rehabilitative progress remotely.  

It is important that the data collected is accurate and reliable when using the sensors 
and App. Therefore the purpose of this study is to validate the accuracy and reliability of 
the wearable sensors in a healthy population, used in conjunction with the app.’ 

Please carry out a sense check on the PIS. Done. 

Campus based circuit – make a statement this will only be carried out if weather is 
suitable. Done. 

In relation to Covid: Please include information in line with government guidelines in 
relation to Covid and the need for isolation which must be considered before deciding 
to attend a test session. Additional criteria have been added to inclusion/exclusion 
criteria and clarification has been added to section What are the potential risks to 
you in taking part? 

Recruitment E-mail 

Include inclusion/exclusion criteria. Done 
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3rd Para – amend in line with previous comments. Done 

Expand to include optional outdoor session which will be videoed. Added. 

Include timelines e.g. the duration of the study. Added. 

Risk Assessment 

Student researchers – please sign off risk assessment. All have now signed.  

Please note that investigators MUST have all relevant ethical approval, insurance cover, 
and sponsorship/management approval in place BEFORE the study can begin.  

I would be grateful if you could email the required amendments to the Secretary to the 
Departmental Ethics Committee, Linda Gilmour. When emailing the amended 
application, please summarise in your email your response to each of the points raised 
above (preferably beside each point) and also mark clearly in the amended application 
the changes that you have made e.g. track changes. 

Please contact me if you have any questions. 

Kind Regards 

Karyn Ross 

Convener 

Departmental Ethics Committee 
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9.4.2 NHS Ethics Approval 
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9.5 PROM Questionnaires 

9.5.1  Oxford knee score 
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9.5.2 Knee Injury and Osteoarthritis Outcome Score  
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9.5.3 Forgotten Joint Score 
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10 Chapter 10. Appendix 2- Technical Information 

10.1 MotionSense™ Wearable commercial device 
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10.2 Flowcharts of Data Analysis Process 

10.2.1 Validation of MotionSense™ Code Flowchart 
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10.2.2 Validation of IMU Algorithm Flowchart 
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10.3  MATLAB Scripts 

10.3.1 Seel Algorithm MATLAB Scripts 

10.3.1.1 Two_compare.mat 

clear all 
%% Main code 
 
% Add path where activity files are stored 
%addpath 'C:\...' 
addpath('C:\Users\lexil\Documents\PhD\Patient_Study\Healthy Participants\Participant_data\Experimental_Data')%Young 
 
% Display instructions for selecting data directories and formatting 
disp('Select Data File Location') 
disp('***Make sure file sin in the following format***') 
disp('myDir/H01/Vicon/...') 
disp('myDir/H01/ResearchDevice/...') 
 
myDir = uigetdir; %Gets directory for vicon data 
 
% Folder where activity files are stored 
disp('Select File Location to store Results') 
ResultsDir = uigetdir; %Directory to store Results 
 
% setting of constraints 
fs = 200; % IMU sampling frequency 
fVicon = 100; % Vicon Sampling Frequency 
t_vicon = 1/fVicon; % Timestamp Vicon 
 
 
%% Options 
lamda = 0.01; % To be used for Complementary Filter, value as per Seel paper. 
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fc = 3; % Lowpass Filter Cutoff Frequency 
 
%activity: {'walking','stairs','cycling','F/E'}; 
act_coded = {'T05','T06','T07', 'T03'}; 
 
% Choose activity to analyse: {'walking (1)','stairs (2)','cycling (3)','F/E (4)'}; 
actn = 1; 
 
%Number of gait cycles to analyze: 
%{'walking (1)','stairs (2)','cycling (3)', F/E (4)}; 
nCycles = [50 1 50 3]; 
 
%Time after XCORR to analyze- analysis window 
TimeStart = 0; 
TimeEnd = 70; % Adjust depending on length of files, for shorter files change to ~30 
 
% Side placment of IMUs for each sequential subject 
side = ['R' 'L' 'L' 'L' 'R' 'L' 'L' 'R' 'R' 'L' 'R' 'L' 'R' 'L' 'R' 'L' 'R' 'L' 'R' 'L']; 
 
% Choose which subjects to include in analysis (P1-P20) 
valid = [1:20]; 
 
%% Main 
 
act_code = act_coded{actn}; 
 
for c = 1:length(valid) 
 
    % Build strings to access files 
    pt = valid; 
    if pt(c)<10 
        pts = string(['H0',num2str(pt(c))]); 
    else 
        pts = string(['H',num2str(pt(c))]); 
    end 
 



 

439 

 

    %counter 
    disp(c) 
 
    %% Vicon 
 
    %% Strings to capture vicon Calibration and Activity Files 
    vicon_calib = [myDir,'\',char(pts),'\Vicon\T00_R.c3d']; 
    vicon_file = [myDir,'\',char(pts),'\Vicon\',act_code,'.c3d']; 
 
    % Load Vicon Angles from BTK software 
    [~, viconCalibs] = get_btk_angles(vicon_calib); 
    [~, viconAngles] = get_btk_angles(vicon_file); 
 
 
    % Change Vicon readings for Left or Right side IMU mounting 
    if side(pt(c)) == 'R' 
        viconAngle = viconAngles.RKneeAngles; %Right knee angle 
    end 
    if side(pt(c)) == 'L' 
        viconAngle = viconAngles.LKneeAngles; %Left knee angle 
    end 
 
    alphaVicon_raw = viconAngle(:,1); %Vicon knee angle 
 
    % Algorithm to fill missing or gaps in Vicon data through interpolation 
    t_hold = 1:length(viconAngle); 
    ind = find(viconAngle(:,1) ~= 0); 
    alphaVicon_rem = viconAngle(ind,1); 
    t_rem = t_hold(ind); 
    alphaVicon=interp1(t_rem,alphaVicon_rem,t_hold)'; 
 
 
    %% Research IMU Wired Device 
    %String to load calibration files- static pose capture 
    calibfile_name = [myDir,'\',char(pts),'\ResearchDevice\T00_C.mat']; 
    load(calibfile_name) 
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    % Change IMU readings based on L or R mounting (Vectors will point in 
    % different directions depending on mounting 
    [aSegF, gSegF] = sensor_to_segment_dir(g_F,n_F,side(pt(c))); 
    [aSegS, gSegS] = sensor_to_segment_dir(g_S,n_S,side(pt(c))); 
 
 
%     Performs automatic calibration from IMU coordinate frame to anatomic 
%     frame. ML axis is defined using treadmill walking. Superior/Inferior axis (transverse plane) is defined 
%     using a static calibration - down vector 
    [a1c, a2c, g1c, g2c, j1p, j2p] = standing_calibration(aSegF, gSegF,aSegS, gSegS,side(pt(c)),myDir, pts, act_code); 
 
 
    %Use Seel Code to generate alpha angles from Research wired IMU Device 
    alphaAccGyr_cal = AngleReconstructionCompare(fc,fs,lamda,j1p,j2p,a1c,a2c,g1c,g2c); 
 
 
    %% Analysis 
 
    % Interpolate data so that all vectors are the same size by upsampling 
    % data 
     alphaAccGyr_fs = AngleReconstructionCompare(fc,fs,lamda,j1p,j2p,a1c,a2c,g1c,g2c); 
     alphaAccGyr = interp1((1/fs):1/fs:(1/fs)*(length(alphaAccGyr_fs)),alphaAccGyr_fs,t_vicon:t_vicon:1/fs*(length(alphaAccGyr_fs))); 
     
    pStream = 0.25; % Amount of data to show in the figures to initiate to XCorr. 0.25 - 0.5 is appropriate 
 
    % Function to align data streams based on XCorr 
    [RD_start, vicon_start] = alignDataStreams_2D(pStream, alphaVicon,alphaAccGyr); 
    close all 
 
    SampleStart = TimeStart*fVicon; % Starting point 
    SampleEnd = TimeEnd*fVicon + SampleStart;  % Ending point 
 
 
    % Apply analysis window (Time Start to Time End) 
    alphaVicon_align = alphaVicon(vicon_start+SampleStart:vicon_start+SampleEnd); 
    alpha1D_align = alphaAccGyr(RD_start+SampleStart:RD_start+SampleEnd) ; 
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    %Align the mean values to remove offset bias (RD will reflect the same mean value and Vicon) 
    alpha1D_align = alpha1D_align +(mean(alphaVicon_align)-mean(alpha1D_align )); 
 
    t_align = t_vicon:t_vicon:length(alpha1D_align)*t_vicon; 
 
 
    % Calculate per Gait Cycle Statistics to be used in ResultsPlot.mat 
    [ROM,RMSE,alphaVicon_GC, alpha1D_GC, gc]  = CalcMetrics2D(alphaVicon_align, alpha1D_align, actn, nCycles(actn),26); 
 
    dat_store{c,1} = gc; 
    dat_store{c,2} = alphaVicon_GC; 
    dat_store{c,3} = alpha1D_GC; 
    dat_store{c,4} = ROM; 
    dat_store{c,5} = RMSE; 
 
   % Quick visual Plots of the two technologies 
    figure 
 
    patch([gc,flip(gc)],[mean(alphaVicon_GC)-1.96*std(alphaVicon_GC) flip(mean(alphaVicon_GC)+1.96*std(alphaVicon_GC)) ],[1 0 
0],'facealpha',0.2,'edgealpha',0) 
    hold on 
    patch([gc,flip(gc)],[mean(alpha1D_GC)-1.96*std(alpha1D_GC) flip(mean(alpha1D_GC)+1.96*std(alpha1D_GC)) ],[0 0 
0],'facealpha',0.1,'edgealpha',0) 
    plot(gc ,mean(alpha1D_GC),'k') 
    plot(gc, mean(alphaVicon_GC),'k--') 
 
    grid on 
    ylabel('F/E [\circ]') 
    xlabel('Gait Cycle %') 
 
    xticks([20 40 60 80 100]) 
    xticklabels([{'20%'},{'40%'},{'60%'},{'80%'},{'100%'}]) 
    g(1) = patch(NaN,NaN,[1 0 0],'facealpha',0.2); 
    g(2) = patch(NaN,NaN,[0 0 0],'facealpha',0.2); 
    g(3) = patch(NaN,NaN,[0 0 1],'facealpha',0.2); 
    legend(g,'Vicon Camera-Marker','IMU','location','northwest') 



 

442 

 

    pause 
 
    close all 
 
end 
 
filename = [ResultsDir,'/',act_coded{actn},'.mat']; 
 
filenameA = filename; 
plu = 2; 
 
% So not to overwrite files 
while isfile(filename) 
      
    filename = [filenameA,num2str(plu)]; 
    plu = plu+1; 
end 
 
 
save(filename, 'dat_store') 
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10.3.1.2 Sensor_to_segment_dir.mat 

%Determine the direction of gravity through static file and side of leg 
%Directional vector changes depending on leg mounting (L or R), and so two the coordinate system 
 
function [as,gs] = sensor_to_segment_dir(a,g,side) 
 
%Acceleration data, invert z axis 
as = a; 
as(:,3) = -a(:,3); 
 
%Gyroscope, invert z axis 
gs = g; 
gs(:,3) = -g(:,3); 
 
%Adjust the direction of the accelerometer and gyroscope data to account for the mounting orientation of the IMU sensor on the body 
segment. The axes are flipped accordingly based on whether the IMU is mounted on the left or right leg to standardize the coordinate 
frame for downstream analysis. 
if side == 'R' 
    as(:,1) = -a(:,1); 
    gs(:,1) = -g(:,1); 
end 
 
if side == 'L' 
    as(:,2) = -a(:,2); 
    gs(:,2) = -g(:,2); 
end 
 
 
end 
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10.3.1.3 standing_calibration.mat 

function [a1cal, a2cal, g1cal, g2cal, j1p, j2p] = standing_calibration(g_F,n_F,g_S,n_S,side, myDir, pts, act_code) 
 
% Load treadmill file 
jointAxis_file = [myDir,'\',char(pts),'\ResearchDevice\T05.mat']; 
load(jointAxis_file) 
 
%Adjust sensor reading, g is accelerometer and n is gyroscope, and apply sensor orientations 
[~, g1c] = sensor_to_segment_dir(g_F,n_F,side); 
[~, g2c] = sensor_to_segment_dir(g_S,n_S,side); 
 
% Define (SI Axis) Superior/Inferior axis (transverse plane) to determine down vector, compute median accelerometer values 
stand_a1 = median(g_F); 
stand_a2 = median(g_S); 
 
 %Joint vectors relative to each imu 
[j1p,j2p] = estimatej1j2(g1c',g2c'); 
 
%Estimate ML axis 
% Cross products to define orthogonal coordinate system  
% NORMALIZE the median acceleration to get resting Z-axis (rest_z) 
rest_z1 = stand_a1/norm(stand_a1); 
% COMPUTE approximate forward (progression) vector 
prog_v1 = cross(j1p,rest_z1); %forward vector 
prog_v1 = prog_v1/norm(prog_v1); 
 
% COMPUTE adjusted z axis 
adj_z1 = cross(prog_v1,j1p); 
 
rest_z2 = stand_a2/norm(stand_a2); 
prog_v2 = cross(j2p,rest_z2); 
prog_v2 = prog_v2/norm(prog_v2); 
adj_z2 = cross(prog_v2,j2p); 



 

445 

 

% Build rotation matrices 
 R1 = [prog_v1', j1p, adj_z1']; 
 R2 = [prog_v2', j2p, adj_z2']; 
 
 
%String to load activity files 
activity_file = [myDir,'\',char(pts),'\ResearchDevice\',act_code,'.mat']; 
load(activity_file) 
 
%Apply sensor to segment transformations to get femur and shank a and g. 
[a1, g1] = sensor_to_segment_dir(g_F,n_F,side); 
[a2, g2] = sensor_to_segment_dir(g_S,n_S,side); 
 
% Initialise vectors 
 a1cal = zeros(size(a1)); 
 a2cal = zeros(size(a1)); 
 g1cal = zeros(size(a1)); 
 g2cal = zeros(size(a1)); 
 
 %Apply Rotation to find relative orientation of thigh and shank relating 
 %imu to anatomical coordinate system, Transform all sensor data to anatomical coordinate systems 
for i = 1:length(a1cal) 
 
    a1cal(i,:) = transpose(R1*transpose(a1(i,:))); 
    a2cal(i,:) = transpose(R2*transpose(a2(i,:))); 
 
    g1cal(i,:) = transpose(R1*transpose(g1(i,:))); 
    g2cal(i,:) = transpose(R2*transpose(g2(i,:))); 
 
end 
 
 
end 
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10.3.1.4 thirdOrderApproxDerivitive 

% COMPUTE numerical derivative at index i using 5-point central difference 
% Equation 17 
function g_dot = thirdOrderApproxDerivitive(g, dt) 
 
for i = 3:length(g)-2 
 
    g_dot(1,i) = (g(1,i-2)-8*g(1,i-1)+8*g(1,i+1)-g(1,i+2))/(12*dt); 
    g_dot(2,i) = (g(2,i-2)-8*g(2,i-1)+8*g(2,i+1)-g(2,i+2))/(12*dt); 
    g_dot(3,i) = (g(3,i-2)-8*g(3,i-1)+8*g(3,i+1)-g(3,i+2))/(12*dt); 
 
 
end 
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10.3.1.5 Estimatej1j2.mat 

function [j1,j2] = fun(g1,g2) 
 % INITIALIZE optimization variables 
x0 = [0; 1; 0; 1]; 
opts1=  optimset('display','off'); 
 
% Run non linear least squares optimisation 
[x,~] = lsqnonlin(@(x)error1(x,g1,g2),x0,[],[],opts1); 
 
% Convert optimised angles to joint axis unit vectors 
% joint axis- Equation 20 
j1 = [cos(x(1))*cos(x(2));cos(x(1))*sin(x(2)); sin(x(1))]; 
j2 = [cos(x(3))*cos(x(4));cos(x(3))*sin(x(4)); sin(x(3))]; 
 
% reorient j1,j2 assuming R1to1p,R2to2p close to identity 
j1 = sign(j1(2))*j1; 
j2 = sign(j2(2))*j2; 
 
 
%% Utility functions 
    function r = error1(x,g1,g2) 
        j1 = [cos(x(1))*cos(x(2)); cos(x(1))*sin(x(2)); sin(x(1))]; 
        j2 = [cos(x(3))*cos(x(4)); cos(x(3))*sin(x(4)); sin(x(3))]; 
 
        %equation 18, determine cross products 
        c1 = cross( g1 , repmat(j1,[1 length(g1)]) ); 
        c2 = cross( g2 , repmat(j2,[1 length(g2)]) ); 
 
        %equation 19, difference in vector norms 
        r = vecnorm(c1) - vecnorm(c2);  
         
    end 
end 
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10.3.1.6 Estimateo1o2.mat 

function [o1,o2] = estimateo1o2(g1,g2,g1Dot,g2Dot,a1,a2) 
 
opts1=  optimset('display','off'); 
 
% INITIALIZE estimate of joint center offset vectors 
o_initial= [ones(3,1) ones(3,1)]; 
 
% RUN nonlinear least squares optimization to minimize error2, Optimise o1 and o2 
such that predicted accelerations match measured accelerations 
[o,~] = lsqnonlin(@(o)error2(o,g1,g2,g1Dot,g2Dot,a1,a2),o_initial,[],[],opts1); 
 
% Extract optimised vectors 
o1 = o(:,1); 
o2 = o(:,2); 
 
%% Utility functions 
 
    function r = error2(o,g1,g2,g1Dot,g2Dot,a1,a2) 
        % SPLIT input matrix o into two 3D vectors 
        o1 = o(:,1); 
        o2 = o(:,2); 
 
        % COMPUTE rotational acceleration component 
        c1 = cross( g1 , cross( g1 , repmat(o1,[1 length(g1)]) ) ); 
        c2 = cross( g2 , cross( g2 , repmat(o2,[1 length(g2)]) ) ); 
 
        % ADD tangential acceleration 
        Gamma_o1 = c1 + cross( g1Dot , repmat(o1,[1 length(g1)]) ); 
        Gamma_o2 = c2 + cross( g2Dot , repmat(o2,[1 length(g2)]) ); 
 
        % ESTIMATE linear accelerations at joint centers 
        p1 = a1 - Gamma_o1; 
        p2 = a2 - Gamma_o2; 
 
        %equation 22 
        r = vecnorm(p1) - vecnorm(p2); 
         
    end 
 
end 
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10.3.1.7 projectAngle.mat 

%The projection of the shank IMU's orientation and the thigh IMU's orientation onto 
knee joint coordinate system. 
function alphaAcc = projectAngle(g1, g2, a1, a2, g1Dot, g2Dot, o1 ,o2, j1, j2) 
 
% Calculate the cross products for orientation vectors 
c1 = cross( g1 , cross( g1 , repmat(o1,[1 length(g1)]) ) ); %cross g1 with o1 and 
then with g1  
c2 = cross( g2 , cross( g2 , repmat(o2,[1 length(g2)]) ) ); 
 
% Add tangential acceleration to get total rotational acceleration (Gamma) 
% equation 23 
Gamma_o1 = c1 + cross( g1Dot , repmat(o1,[1 length(g1)]) ); 
Gamma_o2 = c2 + cross( g2Dot , repmat(o2,[1 length(g2)]) ); 
 

%Adjust accelerations for joint coordinates 

a1_joint = a1 - Gamma_o1; %equation 25 
a2_joint = a2 - Gamma_o2; %equation 25 
 
%Define constant reference vector for projection (typically [1;1;1] is used to 
ensure a valid cross product) 
c = [1;1;1]; 
 
%equation 26: local coordinate systems orthogonal to joint axis 
x1 = cross(j1,c); % x1 perpendicular to joint axis j1 
x2 = cross(j2,c); 
 
y1 = cross(j1,x1); % y1 perpendicular to j1 and x1 
y2 = cross(j2,x2); 
 
% Determine dot products for joint accelerations 
% Project joint-centered accelerations onto local coordinate systems 
v1 = [dot(a1_joint,x1.*ones(3,length(a1_joint))); 
dot(a1_joint,y1.*ones(3,length(a1_joint)))]; 
v2 = [dot(a2_joint,x2.*ones(3,length(a2_joint))); 
dot(a2_joint,y2.*ones(3,length(a2_joint)))]; 
 
%Normalise to unit vectors 
v1 = v1./vecnorm(v1);  
v2 = v2./vecnorm(v2); 
 
%relative rotation matrices between projected vectors 
Calpha = v1(1,:).*v2(1,:) + v1(2,:).*v2(2,:); %cos alpha 
Salpha = -v1(1,:).*v2(2,:) + v1(2,:).*v2(1,:); %sin alpha 
 
%Calculate angle of rotation 
alphaAcc = atan2(Salpha,Calpha); %equation 27  
 
end 
 
%% https://www.mdpi.com/1424-8220/18/9/2759  
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10.3.1.8 AngleReconstructionCompare.mat 

function alphaAccGyr = 
AngleReconstructionCompare(fc,fs,lamda,j1,j2,g_S,g_F,n_S,n_F) 
 
%% Get IMU measurements 
 
%% filter parameters 
 
[b,a] = butter(4,fc/(fs/2), 'low'); 
 
%1 is Femur and 2 is tibia 
% Transpose all filtered signals 
g1 = transpose(filtfilt(b, a,n_S)); 
g2 = transpose(filtfilt(b, a, n_F)); 
a1 = transpose(filtfilt(b, a, g_S)); 
a2 = transpose(filtfilt(b, a, g_F)); 
 
 
% Third order approximation of first derivative- used to estimate angular velocity 
derivitives 
%equation 17 
g1Dot = thirdOrderApproxDerivitive(g1,1/fs); 
g2Dot = thirdOrderApproxDerivitive(g2,1/fs); 
 
g1 = g1(:,2:length(g1)-1); 
g2 = g2(:,2:length(g2)-1); 
a1 = a1(:,2:length(a1)-1); 
a2 = a2(:,2:length(a2)-1); 
 
% estimate o1 and o2 
[o1,o2] = estimateo1o2(g1,g2,g1Dot,g2Dot,a1,a2); 
 
% alphaDot from gyros, Equation 21 
alphaDotGyr = dot( g2 , repmat(j2,[1 length(g2)]) ) - dot( g1 , repmat(j1,[1 
length(g1)]) ); 
 
for i = 1 :length(alphaDotGyr) 
 
    %Integration of gyro signal over time using cumulative trapezoidal rule. 
    %Equation 21 
    alphaGyr(i) = 180/pi*trapz(alphaDotGyr(1:i))/fs; 
    
end 
 
% compute alphaAcc via 2D projection  
alphaAcc = 180/pi*projectAngle(g1, g2, a1, a2, g1Dot, g2Dot, o1, o2, j1, j2); 
alphaAccGyr = zeros(length(alphaAcc),1); 
 
% Implement Complementary filter to combine gyro and accelerometer estimates of 
% alpha 
for i = 2:length(alphaAcc) 
 
    alphaAccGyr(i) = lamda*alphaAcc(i)+(1-lamda)*(alphaAccGyr(i-1)+alphaGyr(i)-
alphaGyr(i-1)); % equation 28 
 
 
end 
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10.3.1.9 alignDataStreams_2D.mat 

function [RD_lag, vicon_start] = alignDataStreams_2D(pStream, aVicon, aRD) 
 
%Time synchronise Vicon and the IMU device by manually selecting starting 
%points. 
 
figure() 
%Select point that matches Vicon from the wired IMU 
subplot(2,1,2) 
plot(aRD(1:round(pStream*length(aRD))),'k') 
 
%Select point, analysis starting point 
subplot(2,1,1) 
plot(aVicon(1:round(pStream*length(aVicon))),'b') 
 
xlabel('Sample') 
ylabel('Knee Angle [\circ]') 
title('Select Vicon Starting Cycle (blue)') 
 
vicon_roi = drawcrosshair; 
vicon_start = round(vicon_roi.Position(1)); 
 
figure() 
subplot(2,1,1) 
plot(aVicon(1:round(pStream*length(aVicon))),'b') 
xlabel('Sample') 
ylabel('Knee Angle [\circ]') 
title('Vicon start selected') 
drawcrosshair('Position',vicon_roi.Position); 
 
subplot(2,1,2) 
plot(aRD(1:round(pStream*length(aRD))),'k') 
title('Select IMU Starting Cycle [same point as above] (red)') 
 
clc 
 
RD_roi = drawcrosshair; 
RD_start = round(RD_roi.Position(1)); 
 
%Apply cross correlation to synchronise the two measurement signals. 
[r,lags] = xcorr(aRD(RD_start:end),aVicon(vicon_start:end),100); 
[~,ind_maxCORR] = max(r); 
 
lagAmount = -lags(ind_maxCORR); 
 
RD_lag = round(RD_start-lagAmount); 
clc 
 
 
end 
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10.3.1.10 CalcMetrics2D.mat 

function [RangeVI,RMSE, cyclealphaVq,cyclealpha1Daq,gc]  = 
CalcMetrics2D(alphaVicon,alpha1D,actn,nCycles, offset) 
 
% Find peaks in Vicon and IMU signals 
[pV,locsVf] = findpeaks(smooth(alphaVicon,10),'MinPeakDistance',30); 
[p1,locs1] = findpeaks(smooth(alpha1D,10),'MinPeakDistance',30); 
 
% Apply peak height threshold (activity-dependent) 
thresh = [0.7 0.3 0.3 0.3]; 
 
% Filter peaks above threshold, then apply offset to locate full stride cycles 
locsV = locsVf(pV>max(pV)*thresh(actn))+offset; 
locsf1 = locs1(p1>max(p1)*thresh(actn))+offset; 
 
% Define gait cycle vector 
gc = 0.1:0.1:100; 
 
for i = 1:nCycles 
 
%Interpolate IMU knee angle over gait cycle 
cyclealpha1 = alpha1D(locsf1(i):locsf1(i+1)); 
cycle_length_IMU1D = 0:100/(length(cyclealpha1)-1):100; 
cyclealpha1Daq(i,:)  = interp1(cycle_length_IMU1D,cyclealpha1,gc); 
 
% Interpolate Vicon knee angle over gait cycle 
cyclealphaV= alphaVicon(locsV(i):locsV(i+1)); 
cycle_length_V = 0:100/(length(cyclealphaV)-1):100; 
cyclealphaVq(i,:) = interp1(cycle_length_V,cyclealphaV,gc); 
 
 
% Compute RMSE between Vicon and IMU for the cycle        
RMSE(1,i)= sqrt(mean((cyclealpha1Daq(i,:)-cyclealphaVq(i,:) ).^2)); 
 
% Compute range of motion (ROM) for Vicon and IMU 
RangeVI(i,:) = [min(cyclealphaVq(i,:)) max(cyclealphaVq(i,:)) 
max(cyclealphaVq(i,:))- min(cyclealphaVq(i,:))  min(cyclealpha1Daq(i,:)) 
max(cyclealpha1Daq(i,:)) max(cyclealpha1Daq(i,:))- min(cyclealpha1Daq(i,:))]; 
 
 
 
end 
 
end 
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10.3.1.11 get_btk_angles.mat 

% This function is highly tailored for gait analysis and expects certain standard 
marker labels from vicon, furthermore assumes that BTK library is available and 
configured correctly. 
%Reads in vicon C3D files 
function [frame_number_read, angles] = get_btk_angles(filenameincludinglocation) 
 
 [acq, byteOrder, storageFormat] = btkReadAcquisition([filenameincludinglocation]); 
     
    % markers is a structure containing the 3D trajectory of the markers. 
    markers     = btkGetMarkers(acq); 
      
%     % if a model has been run in Vicon, the following variables may be available 
     angles      = btkGetAngles(acq); 
     forces      = btkGetForces(acq); 
     moments     = btkGetMoments(acq); 
     powers      = btkGetPowers(acq); 
     
    % any analogue data including force plate recordings 
    analogs     = btkGetAnalogs(acq); 
    ratio       = btkGetAnalogSampleNumberPerFrame(acq); 
    analogsDownsampled = []; 
    labels      = fieldnames(analogs); 
    frame_number_read = btkGetAnalogFrameNumber(acq); 
    
    btkCloseAcquisition(acq) 
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10.3.1.12 ResultsPlot.mat 

load ('C:\Users\lexil\Documents\PhD\Patient_Study\Healthy Participants\Participant_data \2D_IMU_Results\20062024\T05.mat') 
 
%If subjects need to be excluded post hoc, you can list the participant number here 
omits = [];  
 
% Initialise variables  
alphaVicon_GC=[]; 
alpha_IMU=[]; 
plot_imu = zeros(1000,4); 
plot_vic = zeros(1000,4); 
 
Vicon_GC=[]; 
IMU_GC=[]; 
 
% dat_store{c,1} = gc; %Gait cycle 0-100 
% dat_store{c,2} = alphaVicon_GC; %Vicon 
% dat_store{c,3} = alpha1D_GC; %RD 
% dat_store{c,4} = ROM; 
% dat_store{c,5} = RMSE; 
 
j=0; 
sz = size(dat_store); 
 
for i = 1:sz(1)-length(omits) % 
 
if i == omits 
 
else 
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% ROM data for Vicon and IMU 
ROM_all = dat_store{i,4}; 
 
ROMIMU_diff(i,:) =  mean(ROM_all(:,1:3))-mean(ROM_all(:,4:6)); 
ROMIMU(i,:)      =  mean(ROM_all(:,4:6));  
ROMVic(i,:)      =  mean(ROM_all(:,1:3)); 
 
% Average gc for each individual 
alphaVicon_GC = [alphaVicon_GC;(dat_store{i,2})]; 
alpha_IMU = [alpha_IMU;dat_store{i,3}]; 
 
% Average gc for each individual 
Vicon_GC = [Vicon_GC;mean(dat_store{i,2})]; 
IMU_GC = [IMU_GC;mean(dat_store{i,3})]; 
RMSE = dat_store{i,5}; 
 
% Extract RMSE 
RMSE_IMU = [RMSE_IMU ;RMSE(1,:)]; 
 
% Extract correlation between vicon and IMU 
CORR_IMU(i) = corr(reshape(dat_store{i,2},[],1),reshape(dat_store{i,3},[],1)); 
 
end 
end 
 
% Convert to column vectors 
Vicon_GC = Vicon_GC'; % Same as alphaVicon_GC but column vector 
IMU_GC = IMU_GC';   % Same as alphaIMU but column vector 
diff = Vicon_GC - IMU_GC; 
ave_diff = mean(Vicon_GC') - mean(IMU_GC'); %population average  
std_diff = std(diff,0,2); 
SE = std_diff/sqrt(i); 
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% Results table  
var = ["alphaIMU"]; 
RMSEtable = [mean(mean(RMSE_IMU,2)) std(mean(RMSE_IMU,2))]; 
table(var,RMSEtable) 
var2 = ["alpha"]; 
CORR = [mean(CORR_IMU) std(CORR_IMU)]; 
table(var2,CORR) 
 
GC_all_IMU = reshape(alphaVicon_GC,[],1)-reshape(alpha_IMU,[],1); 
GC_all_IMU(abs(GC_all_IMU)<30); 
 
RMSE_IMUa = sqrt(mean(GC_all_IMU.^2)); 
 
 
gc = dat_store{1,1}; 
 
sig = 1.96; %95% Confidence intervals  
 
 
%% Plots 
% PLOT 1: Mean ± 1.96 SD of Knee Flexion Across Gait Cycle 
figure 
set(gcf,'Color','w'); 
patch([gc,flip(gc)],[mean(alphaVicon_GC)-sig*std(alphaVicon_GC) flip(mean(alphaVicon_GC)+sig*std(alphaVicon_GC)) ],[0 0 
0],'facealpha',0.2,'edgealpha',0) 
hold on 
patch([gc,flip(gc)],[mean(alpha_IMU)-sig*std(alpha_IMU) flip(mean(alpha_IMU)+sig*std(alpha_IMU)) ],[0 0 
0],'facealpha',0.1,'edgealpha',0) 
plot(gc ,mean(alpha_IMU),'k--','LineWidth',1) 
plot(gc, mean(alphaVicon_GC),'k-','LineWidth',1) 
xlim([0 100]) 
ylim([-40 140]) 
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ylabel('Knee flexion angle (\circ)') 
xlabel('Gait Cycle (%)') 
g(1) = plot(NaN,NaN,'k-','LineWidth',1); 
g(2) = plot(NaN,NaN,'k--','LineWidth',1); 
rgb = [0 0 0]; 
FaceAlpha = (0.1); 
g(3) = patch([NaN],[NaN],rgb,'EdgeAlpha', 0, 'FaceAlpha',FaceAlpha); 
legend(g,'Camera-Marker','IMU','+/- 1.96*SD','location','northwest') 
 
%PLOT 2: Error Analysis Across Gait Cycle 
% Subplot 1: Plot mean IMU and Vicon knee angle 
figure() 
subplot(3,1,1) 
plot(gc ,mean(alpha_IMU),'k--','LineWidth',1) 
hold on 
plot(gc, mean(alphaVicon_GC),'k-','LineWidth',1) 
legend('IMU','Vicon') 
xlabel('Gait cycle %') 
ylabel('Knee Angle (deg)') 
ylim([-40 100]); 
grid on 
 
% Subplot 2: Plot signed error 
subplot(3,1,2) 
plot(gc, (mean(alphaVicon_GC)-mean(alpha_IMU)),'k-','LineWidth',1) 
legend('Signed difference') 
xlabel('Gait cycle %') 
ylabel('Difference (deg)') 
ylim([-10 10]); 
grid on 
 
% Subplot 3:Plot absolute error 
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subplot(3,1,3) 
plot(gc, abs(mean(alphaVicon_GC)-mean(alpha_IMU)),'k-','LineWidth',1) 
legend('Absolute difference') 
xlabel('Gait cycle %') 
ylabel('Difference (°)') 
ylim([-10 10]); 
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10.4 Certificates and Forms 

10.4.1 Good Clinical Practice 
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11 Chapter 11. Appendix 3- Preceding Validation 

Study 

Prior to carrying out this research detailed within this thesis a preceding study was 

conducted to assess the accuracy and reliability of these IMU devices in both static 

and dynamic conditions. This involved testing the IMUs using a combination of double 

and single pendulum systems to simulate both predictable cyclic and chaotic motion. 

To further evaluate sensor performance, IMUs were strategically placed on the 

pendulums at known, preset offset angles, allowing for a systematic investigation into 

the impact of sensor misalignment. These tests were performed across a range of 

predefined speeds and offset angles to assess how well the devices could maintain 

accuracy under varying conditions. The results demonstrated promising reliability and 

accuracy, reinforcing the need for further validation in both healthy and clinical 

populations to determine their effectiveness in real-world rehabilitation scenarios.  

To open and view the preceding validation study please double click on the image 

below and the study will be available to view, alternatively, please access it via this link: 

Validation of sensors_Thesis.pdf 

 

 

https://strath-my.sharepoint.com/:b:/r/personal/alexandra_ligeti_2016_uni_strath_ac_uk/Documents/Masters_Thesis_Ligeti/Validation%20of%20sensors_Thesis.pdf?csf=1&web=1&e=1fccTZ
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