
Theory and simulations of singly resonant
optical parametric oscillators

Domenico Cuozzo

A thesis submitted for the degree of

Doctor of Philosophy

Computational Non Linear and Quantum Optics Group

Department of Physics

University of Strathclyde

Glasgow

2014



Declaration

This thesis is the result of the author's original research. It has been composed by the author and

has not been previously submitted for examination which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the United Kingdom

Copyright Acts as quali�ed by University of Strathclyde Regulation 3.50. Due acknowledgement

must always be made of the use of any material contained in, or derived from, this thesis.

Domenico Cuozzo August 24, 2014

i



Contents

1 Introduction 1

1.1 Parametric down-conversion and optical parametric oscillators . . . . . . . . . . . . 1
1.2 Squeezed states of light in OPOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Pulsed OPOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Transverse pattern formation, cavity solitons, optical turbulence . . . . . . . . . . . 3
1.5 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Squeezed States of Light and the Parametric Ampli�er 10

2.1 Introduction to Nonlinear Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.1 Linear Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Nonlinear Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 De�nition of Squeezed States of Light . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Quantum nature of the squeezed state . . . . . . . . . . . . . . . . . . . . . 14

2.3 Single Mode Quadrature Squeezed States . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Squeezing for a two-photon coherent state . . . . . . . . . . . . . . . . . . . 17
2.3.2 Ideal squeezed states or displaced squeezed states . . . . . . . . . . . . . . . 18

2.4 Two-Mode Quadrature Squeezed States . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Quantum Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 Bipartite separability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.2 Separability criterion for mixed states . . . . . . . . . . . . . . . . . . . . . . 25
2.5.3 Separability criterion for continuous variables. . . . . . . . . . . . . . . . . . 25

2.6 Introduction to Parametric Ampli�ers . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.1 Degenerate Parametric Ampli�er . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6.2 Non Degenerate Parametric Ampli�er . . . . . . . . . . . . . . . . . . . . . 30

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Measuring Squeezing in Optical Parametric Oscillators 33

3.1 Introduction to Optical Parametric Oscillators . . . . . . . . . . . . . . . . . . . . . 33
3.2 Photo-Electric Detection of Squeezed Light . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Ordinary Homodyne Detection . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Balanced Homodyne Detection . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Input-Output Formulation of Optical Cavities . . . . . . . . . . . . . . . . . . . . . 38

I



II

3.4 Heisenberg-Langevin Treatment for a TROPO . . . . . . . . . . . . . . . . . . . . . 42
3.4.1 The Below-Threshold Degenerate Case . . . . . . . . . . . . . . . . . . . . . 43
3.4.2 The Below-Threshold Non-Degenerate Case . . . . . . . . . . . . . . . . . . 44

3.5 Master Equation Approach to Optical Cavities . . . . . . . . . . . . . . . . . . . . . 46
3.5.1 Master Equation Approach for a TROPO . . . . . . . . . . . . . . . . . . . 46

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Squeezing and Quantum Entanglement in a SROPO Below Threshold 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 The Langevin Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Two-Time Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Intensity Di�erence Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5 Quadrature Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6 Quantum Entanglement in SROPO . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.7 Numerical Results for Intensity Di�erence Spectra . . . . . . . . . . . . . . . . . . . 67
4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Short pulse generation in the synchronously pumped SROPO 73

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Mathematical Overview of Non-Normal Operators . . . . . . . . . . . . . . . . . . . 74

5.2.1 The Case of Optical Resonator Eigenmodes . . . . . . . . . . . . . . . . . . 75
5.3 Overview Of the Concept Of Pseudo-Spectra . . . . . . . . . . . . . . . . . . . . . . 77
5.4 The Synchronously Pumped Optical Parametric Model . . . . . . . . . . . . . . . . 80

5.4.1 The SPOPO Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.5 Giant Noise Ampli�cation in SPOPO . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5.1 The Singly Resonant Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5.2 High �nesse singly resonant case . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5.3 The Doubly Resonant and Degenerate Cases . . . . . . . . . . . . . . . . . . 88
5.5.4 Conditions for Giant Noise Ampli�cation in SPOPO . . . . . . . . . . . . . 88

5.6 Giant Ampli�cation of Quantum Noise . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.6.1 Nondegenerate OPO in the time domain . . . . . . . . . . . . . . . . . . . . 93
5.6.2 Propagation inside the crystal . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.6.3 The Langevin Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.6.4 Propagation in the empty part of the cavity . . . . . . . . . . . . . . . . . . 97
5.6.5 Application of Ito calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Self-organization, Pattern Formation, Cavity Solitons and RogueWaves in SRO-

POs 101

6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Mean-�eld models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2.1 The close-to-threshold approximation. . . . . . . . . . . . . . . . . . . . . . 107
6.3 Plane wave steady-states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.1 Linear stability analysis of the SROPO with seeding. . . . . . . . . . . . . . 110
6.4 Turing instabilities and pattern formation . . . . . . . . . . . . . . . . . . . . . . . 110

6.4.1 Numerical patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.5 Optical turbulence, rogue waves and cavity solitons . . . . . . . . . . . . . . . . . . 115



III

6.6 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7 Conclusions 123

7.0.1 Achievements of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.0.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



Acknowledgments

My deep gratitude is addressed to my Supervisor, Prof. Gian-Luca Oppo for his continuous support
in the research work undertaken in this thesis. Continuous, stimulating and lively discussion with
him has been very precious to me. Gian-Luca's support has been crucial to me for the realization
of this work.

I am grateful to Prof. John Je�ers and Prof. Francesco Papo� for their professional advice
and useful discussions. I am also grateful to Strathclyde University which gave me the chance to
reach such an important target and European Union commission through the IST network project
HIDEAS (Grant No. FP7-ICT-221906) which provided me with �nancial support.

I am particularly grateful to Ilaria who supported me for the entire duration of this experience
and for her costant and patient help in running my bad moods as well my good days. Life without
her would have been de�nitely harder, less colorful and empty.

Eventually, I wish to express my gratitude to my parents and to my sister Roberta who always
made me feel at home even from a distance and to all wonderful people I have met.

IV



Papers and Conferences

• �Two-color continuous-variable quantum entanglement in a singly resonant optical paramen-
tric oscillator�, Phys. Rev. A 84, 043810 (2011).

• �Quantum entanglement in strongly non degenerate OPOs: the doubly and singly resonant
cases�, in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD)
(Optical Society of America, 2011), paper EA5_3.

• �Self-organization, Pattern Formation, Cavity Solitons and Turbolence in Singly Resonant
Optical Parametric Oscillator�, Phys. Rev. A 88, 043813 (2013).

• First year PhD Conference at Ross Priory in Glasgow, Scotland. (2009)

• �High Dimensional Entangled Systems� (HiDEaS) in Leiden, Holland. (2009)

• Second year PhD Conference at Ross Priory in Glasgow, Scotland. (2009)

• �High Dimensional Entangled Systems� (HiDEaS) in Paris, France. (2010)

• CLEO/Europe-EQEC Conference in Munich, Germany. (2011)

• �High Dimensional Entangled Systems� (HiDEaS) in Como, Italy. (2011)

V



Abstract

Optical parametric oscillators have been known and used for a long time as e�cient sources of
non-classical states of light both below threshold of oscillation, where they generate squeezed vac-
uum states and bi-partite entangled states, and above threshold of oscillation, where they generate
intensity correlated twin beams. The singly-resonant cavity, where only one of the three �eld
involved in the parametric ampli�cation process is resonated (signal), is in principle a simpler con-
�guration to realize experimentally but, to the best of our knowledge, theoretical investigations
of non-classical features of the light from a singly-resonant OPO (SROPO) are missing. One of
the reasons is that SROPOs operate with strongly non-degenerate frequencies while much of the
literature on squeezing focuses on the degenerate or close to degeneracy cases. Recent interest
in non-classical correlations of the strongly non-degenerate regime of parametric down-conversion
makes the study of entanglement in SROPO important for the optimization of coherent sources
with �uctuations below the shot-noise level. There are clear technical advantages for SROPO con-
�gurations: only resonance of the signal �eld has to be maintained, continuous temperature tuning
and suppression of mode-hopping. As a matter of fact even if the doubly resonant con�guration,
where both the signal and the idler �elds are resonated, has a much lower threshold pump power,
the tuning behavior is complicated and is massively a�ected by changes of the crystal temperature
or pump wavelength, causing the signal and idler wavelengths undergoing jumps, and the tuning is
generally non-monotonous. This is because the operation wavelengths are determined primarily by
the requirement for simultaneous resonance for signal and idler, and not only by a phase-matching
condition as in the case of singly resonant con�guration.

It is in this spirit that in Chapter 4 we apply the input-output theory of optical cavities to
formulate a quantum treatment of a continuous wave singly-resonant optical parametric oscillator.
This case is mainly relevant to largely non-degenerate signal and idler modes. We show that both
intensity and quadrature squeezing are present and that the maximum noise reduction below the
standard quantum limit is the same at the signal and idler frequencies in a way similar to the doubly
resonant case. As the threshold of oscillation is approached, however, the intensity-di�erence and
quadrature spectra display a progressive line-narrowing which is absent in the balanced doubly-
resonant case. By using the separability criterion for continuous variables, the signal-idler state
is found to be entangled over wide ranges of the parameters. We show that attainable levels of
squeezing and entanglement make singly-resonant con�gurations ideal candidates for two-colour
quantum information processes because of their ease of tuning in experimental realizations.

Another very interesting feature of SROPOs which, this time, has no counterpart in the doubly-
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resonant regime is described in Chapter 5 where model equations for the evolution of signal and
idler pulses in a synchronously pumped optical parametric oscillator are derived and numeri-
cally integrated. A novel regime of giant sub-threshold pulses driven by quantum �uctuations is
described through the analysis of stability eigenvalues, growth factors and pseudospectra. Sub-
threshold pulses driven by quantum �uctuations are found at various mirror re�ectivities in the
non degenerate regime where signal and idler have di�erent group velocities. Giant sub-threshold
pulses open the possibility of observing macroscopic continuous variable entanglement with non-
classical features. This important feature is peculiar to the singly-resonant con�guration and has
no counterpart in the doubly-resonant regime.

Very interesting classical features of SROPOs light are investigated in Chapter 6 where we
show that spatio-temporal dynamics of singly resonant optical parametric oscillators with exter-
nal seeding displays hexagonal, roll and honeycomb patterns, optical turbulence, rogue waves and
cavity solitons. We derive appropriate mean-�eld equations with a sinc2 non-linearity and demon-
strate that o�-resonance seeding is necessary and responsible for the formation of complex spatial
structures via self-organization. We compare this model with those derived close to the threshold
of signal generation and �nd that back-conversion of signal and idler photons is responsible for
multiple regions of spatio-temporal self-organization when increasing the power of the pump �eld.



1
Introduction

1.1 Parametric down-conversion and optical parametric os-

cillators

Parametric down conversion is an optical process in which a pump photon of frequency ωp splits in
two photons at di�erent frequencies ωs (signal) and ωi (idler) such that ωp = ωs+ωi by interacting
with a second-order nonlinear crystal. In contrast to atomic transitions where two energy levels
of the Schrödinger equation are involved, in parametric down-conversion the upper level of the
transition is a virtual level that exists for a time smaller than that allowed by the Heisenberg
uncertainty principle for time and energy. For this reason, the process is very rare but at the
same time incredibly fast. Parametric down-conversion is the complementary process to second
harmonic generation where two photons at frequency ωp combine to generate a single photon at
frequency 2ωp. Second harmonic generation originated the entire �eld of laser induced nonlinear
optics with the seminal experiment of P. Franken and collaborators in 1961 [1].

Spontaneous emission, which is intrinsic in this process, is driven by the vacuum �uctuations
of the electromagnetic �eld and produces two photons which have a strong correlation in energy
and momentum. The powers of the signal and idler �eld can be enhanced by seeding a classical
beam of frequency ωs thus stimulating the emission of photons at the frequency of the idler beam.
If the active medium is put in an optical cavity the parametric interaction can overcome the e�ect
of losses thus producing oscillation. This device is called an optical parametric oscillator (OPO).
OPOs were initially used as laser sources due to their wide tunability properties, particularly useful
for applications in spectroscopy [2]. Nowadays there are available OPOs for the down-conversion of
pulsed laser beams, used as light sources in the range between 330 and 2000 nm. These devices are
used as coherent light sources in regions of the spectra where no e�ective laser medium is available,
converting light of Nd:YAG lasers into the mid infrared region [3]. On the other hand quantum
properties of the light emitted from these sources have been investigated and make OPOs among
the most used devices for the production of non-classical states of light [4].

The simplest con�guration of an OPO is obtained by using a singly resonant cavity (SROPO),
in which the cavity is resonant only to the signal �eld while the pump and idler beams make a
single pass interaction in the nonlinear crystal and exit the cavity without any feedback. The
doubly resonant con�gurations (DROPO), in which both signal and idler beams are resonant in
the cavity, can be used in order to reduce the oscillation threshold. While the SROPO allows
for a broad continuous variation of the signal and idler wavelengths in the phase matching range,
the threshold power is much higher when compared with DROPO. On the other hand the doubly

1



1.2. Squeezed states of light in OPOs 2

resonant condition and the energy conservation condition of DROPOs have the e�ect to limit the
output modes to a discrete set of values leading to undesirable mode-hopping.

The threshold power for an OPO can be reduced further by using a cavity which is also resonant
to the pump beam, thus obtaining a triply resonant OPO (TROPO). This type of con�guration
reduced the threshold power to 1mW for CW operation in KTP [5], while the use of new materials
reduced the power to 300µW with quasi phase matched crystal (QPM) [6]. One of the major
applications of OPO below threshold of oscillation is for the production of squeezed states of light.

1.2 Squeezed states of light in OPOs

Squeezed states of light, where the noise in one quadrature of the �elds is reduced below the
vacuum level, are important elements in several applications of quantum information processes.
These include sub-shot-noise phase measurements [7, 8], interferometric detection of gravitational
radiation [9, 10] and quantum information with continuous variables [11]. In the latter case,
squeezed states are used to generate continuous variable entanglement and achieve high �delity
in quantum teleportation protocols [11]. To squeeze quantum �uctuations of the electromagnetic
�eld one needs nonlinear optical e�ects such as parametric down-conversion or four-wave mixing
[12].

Squeezed states of light have been realised and utilized in OPO con�gurations. The �rst realiza-
tion was achieved by R.E. Slusher by means of four wave mixing in atomic sodium [13]. Thereafter
several realization of squeezed states of light have been obtained. Twins beams generated by above
threshold OPOs have been shown to produce non classical noise reduction in intensity di�erence
[14, 15, 16]. Twin beams have been used to enhance performances of optical setup for spectroscopy
[17, 18, 19]. The DROPO have been the subject of many experimental and theoretical works
[20, 21, 22, 23] where the features of OPO where investigated in relation to several parameters
such as cavity dumping coe�cients, degree of excitation below threshold, spurious losses, devia-
tion from resonance condition and pump amplitude/phase �uctuations. Interest has been paid also
to the transition from below to above threshold regime [24] and to the region close to threshold
[25] showing the importance of nonlinear contribution to the dynamic of the system. The singly-
resonant cavity of the SROPO is in principle a simpler con�guration to realize experimentally
but, to the best of our knowledge, theoretical investigations of squeezing and entanglement of the
light from a singly-resonant OPO (SROPO) are missing. One of the reasons is that SROPOs
operate with strongly non-degenerate frequencies while much of the literature on squeezing focuses
on the degenerate or close to degeneracy cases [29, 30]. Recent interest in non-classical correla-
tions of the strongly non-degenerate regime of parametric down-conversion [31] makes the study
of entanglement in SROPO important for the optimization of coherent sources with �uctuations
below the shot-noise level. There are clear technical advantages for SROPO con�gurations: only
resonance of the signal �eld has to be maintained, continuous temperature tuning and suppression
of mode-hopping. It is part of the aim of this thesis to investigate the squeezing and entanglement
properties of SROPO when signal and idler �elds have large frequency separations (two-color case).
Our approach is similar to what has been used in the case of second harmonic generation [32, 14],
namely a two-photon loss model in which a cavity mode is coupled quadratically to a continuum
of output modes rather than linearly as usual in the input-output formulation of optical cavities.
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1.3 Pulsed OPOs

A very interesting feature of OPO can be found in the pulsed-pump regime (synchronously pumped
OPO or SPOPO) where under some conditions the device is able to reduce the duration of the
input pulses at the frequencies of the signal and idler �elds [47]. SPOPOs as sources of ultrashort
pulses have been implemented in several experiments [34, 35, 36, 37, 38, 39]. Mode-locked OPOs
have been used to generate picosecond pulses squeezed light in a degenerate con�guration [40] or
in quasi-degenerate con�gurations [41]. A recent quantum theory of SPOPO have been discussed
by Patera et al. [42] while generation and characterization of multimode quantum frequency
combs in SPOPO has been realized by Pinel et al. [43]. Furthermore quantum correlations and
�uctuations in the pulsed light produced by a SPOPO has been investigated in several works
[44, 45, 46]. In this thesis model equations for the evolution of signal and idler pulses in a SPOPO
are derived and numerically integrated. A novel regime of giant sub-threshold pulses driven by
quantum �uctuations is described through the analysis of stability eigenvalues, growth factors and
pseudospectra. Sub-threshold pulses driven by quantum �uctuations are found at various mirror
re�ectivities in the non-degenerate regime where signal and idler have di�erent group velocities.
Giant sub-threshold pulses open the possibility of observing continuous variable entanglement with
non-classical features.

1.4 Transverse pattern formation, cavity solitons, optical tur-

bulence

Other interesting features that we will investigate in OPO and SROPO models are transverse
pattern formation, autosolitons and cavity solitons which have been the subject of intense research
in nonlinear optics in the last two decades since their original predictions [48, 49, 50, 51, 52].
Unlike in other �elds of science, transverse patterns and dissipative solitons �nd useful applications
in photonics such as optical memories, delay lines and optical registers [53]. Cavity solitons'
counterparts in the propagation direction have also been shown to generate passive mode-locking
in �ber lasers [54].

The formation of transverse spatial structures in quadratic nonlinear cavities was predicted
�rst in optical parametric oscillators (OPOs) [55, 56] and later extended to second harmonic
generation [57, 58]. Early predictions in OPOs were con�ned to the degenerate case where signal
and idler �elds have the same frequency. Experimental evidence of pattern formation was indeed
found in triply resonant degenerate OPOs close to the confocal cavity con�guration [59] and via
conical emissions [60]. Con�rmation of the predictions of [55] was provided in a broad-aperture
degenerate OPOs in a plane-mirror mini-cavity [62]. Degenerate OPOs also display phase domain
dynamics and dark-ring cavity solitons [64]. Finally, OPO models for non-degenerate Type-II cases
in doubly or triply resonant cavity con�gurations have also been shown to display self-organization
and pattern formation [63, 65, 66, 67, 68].

Transverse instabilities in the case of non-degenerate, SROPOs, have been less discussed in the
literature. On the theoretical side pattern formation in SROPOs is expected to replicate results of
the complex Ginzburg-Landau laser case [65]. On the experimental side cw SROPO con�gurations
are notoriously di�cult to operate because of high oscillation thresholds (typically several watts)
in common birefringent crystals [69]. Quasi-phase matching in periodically poled materials has,
however, considerably reduced operation thresholds of cw SROPOs [70] allowing for diode [71] and
�ber [72] laser pumping for spectroscopy applications. A major advantage of cw SROPOs is that
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their wide tunability is monotonic and not a�ected by mode jumps typical of doubly or triply
resonant con�gurations.

In this thesis we investigate the formation and dynamics of transverse structures in SROPOs.
We �rst derive a mean-�eld model in section 6.2 where the nonlinearity is of sinc2 form in agreement
with early studies of SROPO steady states emissions [73, 74, 75]. The analysis builds on approaches
that describe and integrate the propagation equations inside the OPO crystal [76, 77] by considering
transverse e�ects and by carefully separating the mean-�eld and close-to-threshold approximations.
The �nal model equations are capable of describing transverse pattern formation in the presence
of pump depletion, signal-idler recombination and external seeding close to the signal frequency.
External seeding proves to be of fundamental importance for transverse structures in SROPOs
since, in its absence, changes of the cavity length are compensated by changes in the signal (and
idler) frequency thus nullifying the common mechanism of Turing pattern formation in o�-resonant
optical systems [48, 78].

Plane-wave steady states and their stability are then analyzed in the SROPO models with
external seeding, close to and far from threshold. These studies con�rm that no pattern formation
should be expected without a detuned external seed. Analytical expressions for the location in the
parameter space of the loss of stability of homogeneous solutions to spatially modulated structures
are discussed. The thresholds for pattern formation when changing the seeding intensity are then
compared with those obtained from numerical integration of the SROPO dynamical equations with
excellent agreement. Optical turbulence is demonstrated to be the mechanism which generates
rogue waves in the spatio-temporal evolution of the output �elds. Finally, bright and dark cavity
solitons are found in multistable con�gurations with localized hexagonal and honeycomb patterns.

1.5 Outline of the thesis

This thesis is organized as follows:

Chapter 2 is dedicated to an overview of nonlinear optics and to the related argument of quan-
tum squeezing. Quantum entanglement and its connection to quantum squeezing will also be
introduced and will be useful for the understanding of the rest of this thesis. The last part of the
chapter deals with optical parametric ampli�ers (OPA) and their squeezing properties, in both the
degenerate and non-degenerate case.

Chapter 3 is dedicated to the problem of the detection of squeezed light through the ordinary
and balanced homodyne detection schemes. The input-output formulation of optical cavities will
be explained and both the Heisenberg-Langevin and master equation approaches to the optical
cavities problem will be analyzed. Then the last part of the chapter will deal with application of
these theoretical approaches to the case of a triply resonant OPO (TROPO) in the below threshold
degenerate and non-degenerate cases.

Chapter 4 is dedicated to the analysis of squeezing properties and entanglement of a singly
resonant optical parametric oscillator (SROPO) in the cw-regime. It will be shown that squeezing
and entanglement are both present in this regime of singly resonant operation and for di�erent
experimental con�gurations. Since the singly resonant regime is easier to achieve than the doubly
and triply resonant case where the idler, the signal and the pump must be resonated inside the
optical cavity, it seems the case that it should be preferred to the multi-resonant cases for the
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production of squeezed states of light. The necessity of a more powerful pump source to achieve
the threshold for oscillation is not an impossible issue with nowadays available laser sources.

Chapter 5 is dedicated to the issue of short pulse generation and giant noise ampli�cation in
synchronously pumped SROPO. An introduction to non-normal operators and pseudospectra is
provided which is essential for the understanding of the chapter. Since under appropriate conditions
the SPOPO system is capable to show sustained, noise driven oscillation, even below threshold of
oscillation, we will address the question of whether quantum noise can drive those oscillation and
hence if quantum properties, such as squeezing and entanglement survive this regime of operation.
In this case we would have a demonstration of the possibility of macroscopic quantum entangle-
ment of bright beams in SPOPO below threshold.

In Chapter 6 we derive appropriate mean-�eld equations with a sinc2 nonlinearity and demon-
strate that o�-resonance seeding is necessary and is responsible for the formation of complex spatial
structures via self-organization. We compare this model with those derived close to the thresh-
old of signal generation and �nd that back-conversion of signal and idler photons is responsible
for multiple regions of spatiotemporal self-organization when increasing the power of the pump
�eld. It will be shown that the spatiotemporal dynamics of SROPO with external seeding display
hexagonal, roll and honeycombs patterns, optical turbulence, rogue waves and cavity solitons.

Conclusions and future work are provided in Chapter 7.
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2
Squeezed States of Light and the Parametric Ampli�er

To study quantum entanglement in singly resonant optical parameteric oscillators, it is useful
to introduce few elements of nonlinear and quantum optics. In this chapter we review �rst the
notion of quantum squeezing and then the notion of quantum entanglemet and its connection to
squeezing. In particular we obtain a description of parametric ampli�ers which also will be useful
in chapter 3 and chapter 4.

2.1 Introduction to Nonlinear Optics

The regime of nonlinear optics is achieved when the response of material systems, a crystal usually,
is not linear in the electric �eld. In particular the polarization of a medium under the in�uence
of an applied electric �eld is described in terms of a power series in the �eld. It is convenient to
express the power series as [1]:

~P (t) = ~P (0)(t) + ~P (1)(t) + ~P (2)(t) + · · ·+ ~P (n)(t) · · · (2.1)

where ~P (1)(t) is linear in the �eld, ~P (2)(t) is quadratic, and so on. The term ~P (0)(t), which is
independent on the �eld, would represent, for example, the static polarization found in some
crystal. Here we consider the local response, in which the polarization at a point in space in the
nonlinear medium is determined by the electric �eld at that point. The general form of the various
terms in series (2.1) is found by invoking a fundamental physical principle: time-invariance.

What is meant by time-invariance is that the dynamical properties of the system are assumed
to be unchanged by a translation of the time origin; in this case, a time-displacement of the driving
electric �eld merely results in a corresponding time-displacement of the induced polarization.

2.1.1 Linear Response

We apply this principle �rst to determine the form of the linear polarization. Since ~P (1)(t) is linear

in ~E(t), it may be expressed in the form:

~P (1)(t) = ε0

ˆ ∞
−∞

dτ T (1)(t; τ) ~E(τ) . (2.2)

It must be stressed that ~P (~x, t) is the dipole moment per unit volume. If N(~x) is the number of
molecules per unit volume, we must multiply this number distribution for the response of a single

10
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molecule eq. (2.2) and hence:

~P (~x, t) = N(~x)~P (t) , (2.3)

and hence T (1)(t; τ) becomes also a function of ~x, T (1)(~x, t; τ). From the principle of time invariance
we must have:

~P (1)(t) = ε0

ˆ ∞
−∞

dτ χ(1)(t− τ) ~E(τ) . (2.4)

Where χ(1)(t− τ) is called the linear polarization response function (susceptibility) of the medium.
Its form is subjected to two restrictions: First, χ(1)(t − τ) must vanish for negative t − τ to

ensure that ~P (1)(t) depends only on the values of the �eld for time before t, which is the causality
condition.

When the linear polarization response function does not depend on time and hence has the
following form:

χ(1)(t− τ) = χ(1)δ(t− τ) , (2.5)

then the polarization is given by the following expression:

~P (1)(t) = ε0χ
(1) ~E(t) . (2.6)

2.1.2 Nonlinear Response

We may now apply essentially the same arguments to determine the form of the lowest-order
nonlinear polarization, the term ~P (t) which is quadratic in ~E(t). It may be expressed in the form:

~P (2)(t) = ε0

ˆ ∞
−∞

dτ1

ˆ ∞
−∞

dτ2 T
(2)(t; τ1, τ2) ~E(τ1) ~E(τ2) , (2.7)

where T (2)(t; τ1, τ2) is a third-rank tensor which is a function of three times t, τ1 and τ2 .
By applying the principle of time-invariance as we did previously for the linear response func-

tion, we �nd that:

T (2)(t+ t0; τ1, τ2) = T (2)(t; τ1 − t0, τ2 − t0) , (2.8)

for all t, t0, τ1 and τ2. Hence, by setting t = 0 and then replacing the arbitrary time t0 by t, we
�nd that T (2)(t; τ1, τ2) depends only on the two time di�erences t − τ1 and t − τ2 . To make this
fact explicit in our formulas we write:

T (2)(t; τ1, τ2) ≡ χ(2)(t− τ1, t− τ2) . (2.9)

By substituting eq. (2.9) in eq. (2.7) we obtain the canonical form for the quadratic polarization:

~P (2)(t) = ε0

ˆ ∞
−∞

dτ1

ˆ ∞
−∞

dτ2 χ
(2)(t− τ1, t− τ2) ~E(τ1) ~E(τ2) . (2.10)

The tensor χ(2)(t − τ1, t − τ2) may be called the quadratic polarization response function of the
medium. As before the causality requirement dictates that χ(2)(t − τ1, t− τ2) is zero when either
t− τ1 or t− τ2 is negative
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Again, when the quadratic polarization response function does not depend on time and hence
it has the following form:

χ(2)(t− τ1, t− τ2) = χ(2)δ(t− τ1)δ(t− τ2) , (2.11)

then the second order polarization is given by the following expression:

~P (2)(t) = ε0χ
(2) ~E2(t) . (2.12)

The generalization of eq. (2.12) to an arbitrary order is straightforward. The optical response is

described by expressing ~P (t) as a power series of ~E(t) as:

~P (t) = ε0

[
χ(1) ~E(t) + χ(2) ~E2(t) + χ(3) ~E3(t) + · · ·

]
(2.13)

where ~P (i)(t) = ε0χ
(i) ~E(t) is the ith-order polarization and the terms χ(i) are the nonlinear optical

susceptibilities. The e�ect of the nonlinear terms in eq. (2.13) is to generate, once an electric �eld
is injected into a nonlinear crystal, light �elds not only at the frequency of the injected �eld but
also at other frequencies, which are multiple and/or submultiple of the �eld.

Among the nonlinear processes which are allowed by eq. (5.11), in the rest of this thesis we will
consider a particular second order χ(2) process known as parametric down conversion [2]. In this
process an intense pump beam of amplitude Ep and frequency ωp and a weak beam of amplitude
Es at frequency ωs (seed) are injected in a nonlinear crystal. The second order nonlinear term in
eq. (5.11) operates a mixing of these �elds inside the crystal and generates a macroscopic �eld at
frequency ωi = ωp − ωs of amplitude Ei.

From a quantum mechanical point of view the process can be depicted applying a photon energy
level description. The absorption of a photon at frequency ωp excites a virtual atomic level which
then decays emitting two photon whose generation is stimulated by the presence of the photon at
frequency ωs. The presence of the �eld at frequency ωs is not required for the process to occur
but in this case the energy of the pump beam is spread over di�erent signal and idler frequencies
and hence the intensities of the generated �elds are weak. A method to obtain �elds of signi�cant
intensity without using an initial seed is to place the nonlinear crystal inside a optical resonator
and setting the device to be resonant with the frequencies ωs and/or ωi. Such a device is called
an optical parametric oscillator (OPO).

2.2 De�nition of Squeezed States of Light

Squeezed States of the electromagnetic �eld are a very general class of minimum-uncertainties
state, which are quantum states for which the uncertainty principle takes the minimum value
allowed by quantum mechanics. They are de�ned as those states which may have less noise in
one quadrature than a coherent state. The noise in the conjugate quadrature must be greater
than that of a coherent state if the requirement of minimum-uncertainty has to hold. Particular
members of this class of states are the coherent states of the electromagnetic �eld for which there
is equal noise in both quadratures. Our discussion takes place from the de�nition of this family of
minimum-uncertainty states. Let us consider a single-mode electric �eld:

Ê(r, t) =

(
~ω

2V ε0

)1/2 [
X̂1 sin(k · r − ωt)− X̂2 cos(k · r − ωt)

]
, (2.14)
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where X̂1 and X̂2 are Hermitian operators representing the real and imaginary part of the complex
amplitude. They are related to the creation and annihilation operator for a mode by:

X̂1 = â+ â† , (2.15)

X̂2 = −i(â− â†) . (2.16)

They obey the following commutation relation:[
X̂1, X̂2

]
= 2i . (2.17)

From the commutation relation eq. (2.17) and from the general relation:

4A4B ≥ 1

2
|〈[A, B]〉| , (2.18)

where A and B are two Hermitian operators, it is possible to derive a corresponding uncertainty
relation, which is:

4X̂14X̂2 ≥ 1 . (2.19)

This relation with the equal sign de�nes a family of minimum-uncertainty states. It is a charac-
teristic of the coherent state, including the vacuum state, that the dispersion of the dimensionless
quadrature amplitude X̂1 and X̂2 are equal:

4X̂1 = 4X̂2 = 1 , (2.20)

so that the uncertainty relation has its minimum value. The coherent state |α〉 has the mean
complex amplitude α and it is a minimum uncertainty state for X̂1 and X̂2, with equal uncertainties
in the two quadrature operators. A coherent state may be represented by an 'error circle' in
a complex amplitude plane whose axes are X̂1 and X̂2. The center of the error circle lies at
1
2

〈
X̂1 + iX̂2

〉
= α and the radius 4X̂1 = 4X̂2 = 1 accounts for the uncertainties in X̂1 and X̂2.

For a squeezed state the phase space distribution takes on an elliptic shape. There is obviously
a whole family of minimum-uncertainty states de�ned by 4X̂14X̂2 = 1. If we plot 4X̂1 against
4X̂2 the minimum uncertainty states lie on a hyperbole. Only points lying to the right of the
hyperbole correspond to physical states. In summary we can say:

1. Coherent states: 4X̂14X̂2 = 1 and 4X̂1 = 4X̂2 = 1 .

2. Squeezed states: 4X̂14X̂2 ≥ 1 and 4X̂1 < 1 < 4X̂2 .

3. Ideal Squeezed states: 4X̂14X̂2 = 1 and 4X̂1 < 1 < 4X̂2 .

It is important to stress at this point that the de�nition of quadrature operators, X̂1 or X̂2, de�ned
by eqs. (2.42,2.16) can be further extended to include the possibility that the major axis of the
ellipse may point in a direction other than the X̂1 and X̂2 axes. We can then de�ne the more
general variables Q̂ and P̂ for any angle β, by the relations [2]:{

Q̂ = âe−iβ + â†eiβ

P̂ = âe−i(β+π/2) + â†ei(β+π/2) .
(2.21)
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Figure 2.2.1: Representation of coherent and squeezed states of light.

These obey the same commutation and uncertainty relations as X̂1 and X̂2, and their dispersions
are both unity in the vacuum state. In terms of Q̂ and P̂ , Ê(r, t) is given by:

Ê(r, t) =

(
~ω

2V ε0

)1/2 [
Q̂ sin(k · r − ωt+ β)− P̂ cos(k · r − ωt+ β)

]
. (2.22)

The only di�erence between Q̂ and P̂ is that the angle β is incremented by π/2.

2.2.1 Quantum nature of the squeezed state

It is important to analyze in detail what we really mean when we state that the squeezed states of
light are non-classical states. They have a non-classical nature because the diagonal coherent-state
representation of the density operator is not a classical probability density, as we can easily show.

The de�ning property of squeezed state is [2]:

4Q̂ < 1 for someβ . (2.23)

We can now relate, by using eqs. (2.21), the quantity
〈
Q̂2
〉
to the normally ordered expectation,

where all the creation operators are to the left of all annihilation operators in the product,
〈

: Q̂2 :
〉
:

〈
: Q̂2 :

〉
=

〈
â†2
〉
e2iβ +

〈
â2
〉
e−2iβ + 2

〈
â†â
〉
,〈

Q̂2
〉

=
〈
â†â
〉
e2iβ +

〈
â2
〉
e−2iβ +

〈
â†â
〉

+
〈
ââ†
〉
.

Since
[
â, â†

]
= 1 we �nd immediately that:〈

: Q̂2 :
〉

=
〈
Q̂2
〉
− 1 ,

so that:
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: 4Q̂ := 4Q̂− 1 . (2.24)

It follows from the de�nition eq. (2.23) that for a squeezed state:

〈: 4Q̂ :〉 < 0 for someβ . (2.25)

The next step is to express the density operator ρ̂ in the diagonal coherent-state representation:

ρ̂ =

ˆ
P (α)|α〉〈α| d2α . (2.26)

It follows that:

〈: 4Q̂ :〉 =

ˆ
P (α)4Qd2α . (2.27)

Here 4Q is the c-number1 corresponding to : 4Q̂ :, which is obtained by replacing each â by α
and each â† by α∗. The condition for squeezing can now be expressed in the form:

〈: 4Q̂ :〉 =

ˆ
P (α)4Qd2α < 0 for someβ . (2.28)

The reality and non-negative character of 4Q forbid the �probability� distribution, P (α), to be a
classical probability density if the inequality eq. (2.28) must be satis�ed. We have shown in this
way that the quantity P (α) cannot be interpreted as a true probability distribution for a squeezed
state. This is a clear demonstration of the intrinsic quantum nature of the squeezed states of the
electromagnetic �eld.

2.3 Single Mode Quadrature Squeezed States

It is possible to generate a squeezed single-mode state from a non-squeezed one by acting with the
following unitary operator [2]:

Ŝ(ξ) = e
1
2
ξ∗â2− 1

2
ξâ†2 , ξ = reiϑ , (2.29)

which is known as the squeeze operator. It is easy to see that this operator is unitary:

S†(ξ) = S−1(ξ) = S(−ξ) . (2.30)

With the help of the operator expansion theorem [2] which states that given two operators Â and
B̂ that do not necessarily commute, and the function:

f(x) = exÂB̂e−xÂ , (2.31)

it follows that:

f(x) = B̂ + x
[
Â, B̂

]
+
x2

2!

[
Â,
[
Â, B̂

]]
+
x3

3!

[
Â,
[
Â,
[
Â, B̂

]]]
+ · · · (2.32)

1The term c-number (or classical number) is an old nomenclature used by Paul Dirac which refers to real
and complex numbers. It is used to distinguish from operators (q-numbers or quantum numbers) in quantum
mechanics. Although c-numbers are commuting, the term anti-commuting c-number is also used to refer to a type
of anti-commuting numbers that are mathematically described by Grassmann numbers.



2.3. Single Mode Quadrature Squeezed States 16

Hence we �nd that for the unitary transformation of the operator a:{
Ŝ(ξ) = e

1
2
ξ∗â2− 1

2
ξâ†2 = e−Â

Ŝ†(ξ) = e
1
2
ξâ†2− 1

2
ξ∗â2 = eÂ

Ŝ†âŜ = â+
[
Â, â

]
+

1

2!

[
Â,
[
Â, â

]]
+

1

3!

[
Â,
[
Â,
[
Â, â

]]]
+ · · · (2.33)

After annoying operators algebra we get:

Ŝ†âŜ = â− ξâ† +
1

2!
|ξ|2â− 1

3!
|ξ|2ξâ† + · · · (2.34)

Remembering that:

sinh(ξ) =
∞∑
n=0

ξ(2n+1)

(2n+ 1)!
= ξ +

1

3!
ξ3 + · · · = reiθ +

r3

3!
eiϑ + · · · (2.35)

cosh(ξ) =
∞∑
n=0

|ξ|2n

(2n)!
= 1 +

1

2!
ξ2 + · · · = 1 +

r2

2!
+ · · · (2.36)

we can write eq. (2.33) as:

Ŝ†âŜ = â cosh(r)− â†eiθ sinh(r)

= µâ− νâ† , (2.37)

where we have de�ned:

µ = cosh(r)

ν = eiθ sinh(r) . (2.38)

Similarly we obtain the equation:

Ŝ†â†Ŝ = â† +
[
Â, â†

]
+

1

2!

[
Â,
[
Â, â†

]]
+

1

3!

[
Â,
[
Â,
[
Â, â†

]]]
+ · · · (2.39)

and after some algebra:

S†a†S = a† +
1

2!
|ξ|2a† − ξ∗a− |ξ|2ξ∗a

= â† cosh(r)− âe−iθ sinh(r)

= µâ† − νâ , (2.40)

where the quantity µ and ν are the same as in eqs. (2.38). The results in eq. (2.37) and in eq. (2.39)
will be used in the next sections to evaluate expectation values of operators over quantum states.
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2.3.1 Squeezing for a two-photon coherent state

A squeezed coherent state is obtained by the action of the squeezing operator on a displaced
quantum state |α〉 and is often called a two-photon coherent state [3]:

Ŝ(ξ)D̂(α)|0〉 = |ξ, α〉 , (2.41)

〈0|D̂†(α)Ŝ†(ξ) = 〈ξ, α| . (2.42)

In order to prove that the state in eq. (2.41) is squeezed, it is very useful to calculate some
quantities:

〈â〉 = 〈ξ, α|â|ξ, α〉 = 〈0|D̂†(α)Ŝ†(ξ)âŜ(ξ)D̂(α)|0〉
= 〈α|Ŝ†(ξ)âŜ(ξ)|α〉 = α cosh(r)− α∗ exp−iθ sinh(r) , (2.43)

and:

〈â2〉 = 〈ξ, α|â2|ξ, α〉 = 〈0|D̂†(α)Ŝ†(ξ)â2Ŝ(ξ)D̂(α)|0〉
= 〈α|Ŝ†(ξ)â2Ŝ(ξ)|α〉 = 〈α|Ŝ†(ξ)âŜ(ξ)Ŝ†(ξ)âŜ(ξ)|α〉 =

= α2 cosh2(r) + (α∗)2 exp−2iθ sinh2(r)− 2|α|2 exp−iθ sinh(r) cosh(r)

− exp−iθ sinh(r) cosh(r) . (2.44)

Moreover we have that:

〈(â†)2〉 = 〈â2〉∗ . (2.45)

From the expectation values in eqs. (2.43-2.45) it is then possible to calculate the variances for the
�eld quadratures eqs. (2.21):

(4Q̂)2 = 〈Q̂2〉 − 〈Q̂〉2

= cosh(2r)− sinh(2r) cos(θ − 2β) . (2.46)

The choice, β = θ/2 minimizes the variance of Q̂ in eq. (2.46) which then becomes:

(4Q̂)2 = exp(−2r) . (2.47)

Similarly we can repeat the same calculation for the other quadrature and we obtain, by using the
same choice as before for the angle β :

(4P̂ )2 = exp(+2r) . (2.48)

From formulas eqs. (2.47,2.48) it is clear that the �uctuations for the variable Q̂ are below those
for the vacuum level, which are equal to one, while those for P̂ are bigger than the vacuum
state �uctuations. On the other hand the product of uncertainties remains unity and it is then the
minimum possible allowed by the Heisenberg's uncertainty principle. It is easy to see by combining
eqs. (2.22,2.43) that for a vacuum squeezed-coherent state the expectation value of the electric �eld
is zero:
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〈Ê(r, t)〉 = 〈ξ, 0|Ê(r, t)|ξ, 0〉 = 0 . (2.49)

Let us consider the mean number of photons in a two-photon coherent state:

〈ξ, α|â†â|ξ, α〉 = 〈0|D̂†(α)Ŝ†(ξ)â†âŜ(ξ)D̂(α)|0〉 = 〈α|S†(ξ)â†(S(ξ)S(ξ)†)âS(ξ)|α〉
= 〈α|[â† cosh(r)− â exp−iθ sinh(r)][â cosh(r)− â† expiθ sinh(r)]|α〉
= |α|2

(
cosh2(r) + sinh2(r)

)
− (α∗)2 sinh(r) cosh(r) expiθ

− α2 sinh(r) cosh(r) exp−iθ + sinh2(r) , (2.50)

where we have used eqs. (2.40,2.37). For a squeezed vacuum state (|α| = 0):

〈ξ, 0|â†â|ξ, 0〉 = sinh2(r) , (2.51)

from which it is clear that a squeezed coherent vacuum state is not vacuum in the sense of a zero
average photons number but only in the sense that the average value of the electric �eld is zero in
such a state as it is shown in eq. (2.49).

2.3.2 Ideal squeezed states or displaced squeezed states

We have just seen that a two-photon coherent state can be obtained by acting with the squeezing
operator Ŝ(ξ) on a displaced quantum state |α〉. Another way to produce a squeezed state of the
electromagnetic �eld consists in acting on the vacuum state with the same operator but in the
reverse order. The state that we obtain with such operation is:

D̂(α)Ŝ(ξ)|0〉 = |α, ξ〉 , (2.52)

and is usually called an ideal squeezed state or a displaced squeezed state.
The states |ξ, α〉 and |α, ξ〉 are di�erent from each other because the operators D̂(α) and Ŝ(ξ)

do not commute, but they can be related by the following relation [2]:

|α, ξ〉 = |ξ, α+〉 ,
|ξ, α〉 = |α−, ξ〉 , (2.53)

where:

α± = µα± να∗ , (2.54)

where µ and ν are given by eqs. (2.38). From eqs. (2.53) follows that since the two-photon coherent

state |ξ, α〉 is squeezed, also the ideal squeezed state |α, ξ〉 is squeezed. The name ideal for the
state |α, ξ〉 is made clear once that we calculate the expectation value of the annihilation operator
â on this state:

〈â〉 = 〈α, ξ|â|α, ξ〉 = α . (2.55)

On the other hand we have already calculated the same value for the two-photon coherent state in
eq. (2.43):
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〈â〉 = 〈ξ, α|â|ξ, α〉 = α− , (2.56)

where we have used eq. (2.54). Since the quantity 〈â〉 gives an indication of the center of the phase
space distribution for the state, we see from eqs. (2.55,2.56) the substantial di�erence between the
ideal and the two-photon coherent state. For the |α, ξ〉 state, the action of the squeezing operator
Ŝ(ξ) makes the circle around the origin in the (Q,P ) plane into an ellipse, which is then shifted
of a quantity α by the displacement operator D̂(α). On the other hand for the |ξ, α〉 state, the
action of the displacement operator D̂(α) shifts the circle in the origin of a quantity α while the
action of the squeezing operator Ŝ(ξ) not just turns the circle in an ellipse but also has the e�ect
to translate the center of the ellipse to the point α−. It is exactly the absence of this additional
translation in the phase space that accounts for the name ideal used for the state |α, ξ〉. These
considerations have a pictorial representation in �g. (2.3.1) where the dimensions of circles and
ellipses the noises in the Q and P quadratures.

Similarly to what we have done for the two-photon coherent state in section (2.3.1) we can show
that the ideal state |α, ξ〉 in eq. (2.52) is indeed squeezed. Let us �rst introduce the following
relations:

D̂†(α)âD̂(α) = â+ α ,

D̂†(α)â†D̂(α) = â† + α∗ . (2.57)

From the relations in eqs. (2.57) we can easily calculate some quantity of interest. We have already
calculated in eq. (2.55) the expectation value for the annihilation operator â and we now move to
evaluate the expectation value for the number operator n̂ = â†â :

〈α, ξ|n̂|α, ξ〉 = 〈0|Ŝ†(ξ)D̂†(α)â†âD̂(α)Ŝ(ξ)|0〉
= 〈0|Ŝ†(ξ)D̂†(α)â†D̂†(α)D̂(α)âD̂(α)Ŝ(ξ)|0〉
= |α|2 + sinh2(r) , (2.58)

where we have used the unitarity property of the displacement operator D̂(α) , namely:

D̂†(α)D̂(α) = D̂(α)D̂†(α) = 1 . (2.59)

We can also calculate the variance (4n̂)2 in the number of photons, which after some operator
algebra can be cast in the following formula:

〈α, ξ|(4n̂)2|α, ξ〉 = |α cosh(r)− α∗ exp−iθ sinh(r)|2 + 2 cosh2(r) sinh2(r) . (2.60)

It is than an easy task, but quite a boring one, to calculate the variances for the quadrature
operators in eqs. (2.21). We only report the results:

(4Q̂)2 = exp(−2r) , (2.61)

(4P̂ )2 = exp(+2r) , (2.62)

where we have made again the choice β = θ/2 . We conclude by saying that both states, the
two-photon coherent states |ξ, α〉 and the ideal squeezed states |α, ξ〉, are indeed squeezed as their
names suggest.
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Figure 2.3.1: Generation starting from the vacuum state |0〉 of (a) the ideal squeezed state |α, ξ〉
and (b) two-photon coherent state |ξ, α〉.

2.4 Two-Mode Quadrature Squeezed States

It is possible to generate a two mode quadrature squeezed state [4]:

|α1, α2, ξ〉 = D̂(α1)D̂(α2)Ŝ(ξ)|0〉 , (2.63)

where:

Ŝ(ξ) = eξ
∗â1â2−ξâ†1â

†
2 , (2.64)

and D̂(αi) are displacement operators and ξ = reiϑ. The transformation of the creation and
destruction operators under the action of the operator Ŝ(ξ) is the following:

S†a1S = a1 + [A, a1] +
1

2!
[A, [A, a1]] +

1

3!
[A, [A, [A, a1]]] + · · ·

S†a1S = a1 + (χt)a†2 +
1

2!
(χt)2a1 +

1

3!
(χt)3a†2 =

= a1 cosh(χt) + a†2 sinh(χt) , (2.65)

and similarly for the others. We can summarize the results in the following way:
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
S†a1S = a1 cosh(r) + a†2e

iθ sinh(r)

S†a2S = a2 cosh(r) + a†1e
iθ sinh(r)

S†a†1S = a†1 cosh(r) + a2e
−iθ sinh(r)

S†a†2S = a†2 cosh(r) + a1e
−iθ sinh(r) .

(2.66)

The results summarized above are very important for the evaluation of expectation values of
operators over quantum states. The generalized quadrature operators are de�ned as:

Q± =
1√
2

[
(a1e

iβ ± a†2e−iβ) + c.c
]

= Q1 ±Q2 (2.67)

P± =
ı√
2

[
(a1e

iβ ∓ a†2e−iβ) + c.c
]

= P1 ∓ P2 .

It is worth noting that since [Qi, Pj] = iδij then:

[Q±, P∓] = 0 . (2.68)

Hence the uncertainty relation imposes that the total variance for the linear combination of quadra-
tures in eq. (2.68) is:

〈(4Q)2
±〉ρ + 〈(4P )2

∓〉ρ ≥ 0 . (2.69)

From operator transformations eqs. (2.66) it can be found that, if the system starts in the vacuum
state (α1 = α2 = 0) the variances of the quadrature operators of eq. (2.67) are (in the simpli�ed
case β = 0):

(4Q±)2 = e±2r cos2(
θ

2
) + e∓2r sin2(

θ

2
) (2.70)

(4P±)2 = e±2r sin2(
θ

2
) + e∓2r cos2(

θ

2
) ,

which show that, one we operate a choice for the phase of the pump �eld θ, while the individual
quadrature Qi and Pi become very noisy for large squeezing parameter r, the relative position and
the total momentum Q± and P± become quiet.

2.5 Quantum Entanglement

It is possible to associate to the state of a quantum system a projector operator such that:

|ψ〉 → ρ = |ψ〉〈ψ| , (2.71)

where ρ is called density operator relative to the pure state |ψ〉. The description of the system by
|ψ〉 or ρ is, in this case, equivalent, but the second tool is more general. Given an observable A
and its eigenstates {|aj〉}, it is possible to introduce the projectors on these states:

Mj = |aj〉〈aj| , (2.72)
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hence the probability to �nd the system in a state |aj〉 after a measure of the observable A is given
by:

pj = Tr[Mjρ] , (2.73)

and the expectation value of the observable A is given by:

〈A〉 = Tr[Aρ] . (2.74)

Generally the physical state of a quantum system is not know with certainty, this is why it is
useful to introduce a statistical approach. The system is no longer described by a pure state but
by an ensemble of states (not necessarily orthogonal to each other), to which is associated a given
probability: 

|ψ1〉 → p1

|ψ2〉 → p2

...
...

|ψ2〉 → pn

,
∑
j

pj = 1 (2.75)

In this case the expectation value for the operator A is given by a quantum and ensemble mean:

〈A〉 =
∑
j

pj〈ψj|A|ψj〉 . (2.76)

Once we introduce the following de�nition of the density operator in the general case, as:

ρ =
∑
j

pj|ψj〉〈ψj| , (2.77)

it is possible to de�ne the expectation value of A as:

〈A〉 = Tr[Aρ] , (2.78)

and the probability to measure the system in the state |ψj〉 as:

p(aj) = Tr[ρMj] . (2.79)

The density operator ρ satis�es the following properties:
(i) ρ is Hermitian
(ii) ρ is non negative:

〈χ|ρ|χ〉 ≥ 0 ∀ |χ〉 . (2.80)

(iii) ρ has unit trace:

Tr(ρ) = 1 . (2.81)

(iv) The quantity P = Tr[ρ2], which is called purity, is such

0 ≤ P ≤ 1 , (2.82)

where P = 1 only for pure states. It is possible to show that P is minimum when all the eigenvalues
of ρ have the same value λj = 1/N (where N is the dimension of the system Hilbert space), in
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this case we have P = 1/N. This case is the maximally mixed state, the one in which the lack of
information is maximum. Hence we can set more precise extreme values for P :

1

N
≤ P ≤ 1 . (2.83)

Hence the purity P gives an indication about the degree of purity of a quantum state. The closer
ρ to the unity, the closer the state to a pure quantum state.

Systems composed by di�erent parts A, B,. . . , N are also represented by density operators, but
now acting on a vectorial space H with a tensorial structure:

H = HA ⊗ HB ⊗ . . .⊗ HN , (2.84)

where HA, HB and HN are the Hilbert spaces for each part.
It is in this tensor product spaces that the notion of entanglement arises but for the moment let

us consider the case of bipartite systems, which are quantum systems composed of two subsystems
that we call A and B. The Hilbert space is in this case:

H = HA ⊗HB . (2.85)

If we call ρAB the density matrix of the composite system we can de�ne a new density matrix,
called reduced density matrix, for only one of the two subsystem. The reduced density matrix for
the subsystem A is:

ρA = TrB[ρAB] , (2.86)

where TrB means the trace operation on system B degrees of freedom. In a completely symmetric
way we can de�ne the reduced density matrix for the system B as :

ρB = TrA[ρAB] . (2.87)

Starting from the reduced density operator it is possible to introduce the notion of separable and
entangled states.

2.5.1 Bipartite separability

Bipartite separable states are those which can be written as a convex combination of tensor prod-
ucts of density matrices, i.e. : ρ ∈ HA ⊗HB is separable if:

ρ =
∑
i

piρ
A
i ⊗ ρBi , (2.88)

where pi is a probability distribution. Alternatively, states that cannot be written in this form are
called entangled. Let us consider, for example, the following pure state:

|ψAB〉 =
1√
2

[|0A0B〉+ |1A1B〉] . (2.89)

The state in eq. (2.89) is an example of a bipartite entangled state. The density matrix of the
system is:

ρAB = |ψAB〉〈ψAB| , (2.90)
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while the reduced density matrices are:

ρA =
1

2
[|0A〉〈0A|+ |1A〉〈1A|]

ρB =
1

2
[|0B〉〈0B|+ |1B〉〈1B|] . (2.91)

Hence while the state of the whole system is pure, the states for the individual subsystem are
in a statistical mixture, which in this particular case is also a maximal mixture. As a matter
of fact, while we have the maximum of information about the whole system, the information on
the subsystems is minimal. This fact is clear if we consider the von Neumann entropy for the
composite system which is:

SAB = −tr{ρAB log2 ρAB} = 0 , (2.92)

while for the two subsystems:

SA = SB = −tr{ρA log2 ρA} = 1 . (2.93)

There exist a useful separability criterion for bipartite pure state [5, 6, 7] which makes use of the
notion of Schmidt decomposition. Let us consider a bipartite system with dimensions dA < dB. A
general state for the system can be written as:

|ψ〉 =

dA∑
n=1

dB∑
k=1

cn,k|αn〉|βk〉 =

dA∑
n=1

|αn〉|φ̄n〉 , (2.94)

where |αn〉 and |βk〉 are basis in A and B and the states |φ̄n〉 are de�ned as:

|φ̄n〉 =
∑
k

cn,k|βk〉 , (2.95)

and they are not necessarily orthonormal. Let us consider the reduced density matrix relative to
the state of smaller dimension:

ρA = TrB{|ψ〉〈ψ|} , (2.96)

and let us suppose we have chosen the base |αn〉 such that ρA is diagonal in this base:

ρA =
∑
n

pn|αn〉〈αn| =
∑
n,m

〈φ̄m|φ̄n〉|αn〉〈αm| . (2.97)

This hypothesis implies that 〈φ̄m|φ̄n〉 = pnδn,m and hence:

|φn〉 =
|φ̄n〉√
pn
, (2.98)

are orthonormal. In this way we can decompose the initial state in terms of the product of
orthonormal vectors belonging to the two distinct subspaces:

|ψ〉 =
∑
n

λn|φn〉B|αn〉A . (2.99)
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Using eq. (2.99) one can obtain the reduced density matrix for the subsystems:

ρA =
∑
n

λ2
n|αn〉〈αn|

ρB =
∑
n

λ2
n|φn〉〈φn| , (2.100)

that is, ρA and ρB have the same eigenvalues. It is possible to introduce a quantity called Schmidt
number which indicate the number of non zero λn. The Schmidt number is related to the entan-
glement between the two subsystems. In particular:

• For separable states: m = 1.

• For entangled states: m > 1.

• For maximally entangled states: m = dA with λn = 1
dA
.

Although the Schmidt decomposition is a very useful criterion for measuring entanglement, it can
be applied only to pure states. The �rst entanglement criterion for mixed states was proposed by
A. Peres and uses the notion of partial transposition [8].

2.5.2 Separability criterion for mixed states

If we write a bipartite state ρAB in a product basis {|ij〉}:

ρAB =
∑
ij,kl

λij,kl|ij〉〈kl| , (2.101)

where λij,kl are the matrix elements of ρAB in this basis, then the partial trasposition of ρAB is
de�ned as:

ρTBAB =
∑
ij,kl

λij,kl|il〉〈kj| . (2.102)

Peres has shown that if ρAB is separable then ρTBAB is a positive operator, hence his criterion can
be stated as follow: if ρTBAB has a negative eigenvalue, ρAB is entangled.

The Peres criterion is able to detect bipartite entangled states only for system of dimension
smaller than 6. For higher dimension there exist entangled states with positive partial trasposition
[9].

2.5.3 Separability criterion for continuous variables.

An inseparability criterion for two-mode continuous-variable systems was derived by R. Simon [10]
and independently by Duan et al [11]. They found that for any separable continuous variable
states the total variance of a pair of Einstein-Podolsky-Rosen (EPR) type operators is bounded
from below by a certain value resulting from the uncertainty relation, while for entangled states
this bound can be violated. Hence a violation of this bound provides a su�cient condition for
inseparability of the state. In particular, if we consider a pair of EPR-like operators:
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u = |a|x1 +
1

a
x2 (2.103)

v = |a|p1 −
1

a
p2 , (2.104)

where a is a non-zero real number and xi and pj are such that [xj, pk] = iδjk (j, k = 1, 2), then for
any separable quantum state ρ the following relation holds:

〈(4u)2〉ρ + 〈(4v)2〉ρ ≥ a2 +
1

a2
. (2.105)

In particular for inseparable states, the total variance of eq. (2.105) is required by the uncertainty
relation to be larger than or equal to |a2 − 1

a2
| which reduces to zero for a = 1.

The generalized quadratures of eqs. (2.67) are a realization of the EPR operators of eqs. (2.103-
2.104) with the particular choice of a = 1. Hence the separability criterion for Q and P operators
becomes:

〈(4Q)2〉ρ + 〈(4P )2〉ρ ≥ 2 . (2.106)

Since for a coherent or vacuum state4Q = 4P = 1, we are sure that these orthogonal quadratures
of the harmonic oscillator are correlated above the classical allowed limit.

On the other hand, if the state of the oscillator is a squeezed state starting from an initial
vacuum state we know from eqs. (2.67) (with the choice θ = 0) that:

(4Q±)2 = e±2r (2.107)

(4P±)2 = e∓2r . (2.108)

Hence applying the separability criterion to the quadratures Q− = Q1−Q2 and P+ = P1 +P2 one
obtains:

〈(4Q−)2〉+ 〈(4P+)2〉 = 2e−2r ≤ 2 . (2.109)

In particular the minimum value allowed by quantum mechanics (which corresponds to the max-
imum correlation) is attained for r → ∞. In general we get imperfect correlation between or-
thogonal quadratures of the oscillators, these correlations being always below what is permitted
classically.

2.6 Introduction to Parametric Ampli�ers

In the absence of an optical resonator no oscillations take place and the only phenomena are single
pass interactions inside the nonlinear crystal. This is the simplest situation we can analyze. In this
case the system is de�ned to be a parametric ampli�er and the net result is the ampli�cation of
the �eld at frequency ωs (signal �eld) by pumping the crystal with a coherent beam at frequency
ωp (pump beam). As speci�ed in paragraph 2.1.2 an input seed at frequency ωi (idler �eld) can
be injected inside the crystal to stimulate the parametric ampli�cation process. To describe the
parametric ampli�er we make use of the parametric down conversion process in which a pump
photon of frequency ωp is annihilated and two photons at frequencies ωs and ωi are generated.
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Conservation of energy and momentum require the frequencies and momentum of the photons to
satisfy the following relations:

ωp = ωs + ωi (2.110)

~kp = ~ki + ~ks ,

where kξ is the wave vector for the ξ-�eld.
The nonlinear Hamiltonian which describes the evolution of the the three �elds is [4]:

HNL =
∑
ξ

~ωξa†ξaξ + ı~χ(2)(a†pasai − apa†sa
†
i ) , (2.111)

where aξ is the annihilation operator for the electromagnetic �eld ξ-mode oscillating at frequency
ωξ. The commutation relations for the bosonic operators of the �elds are:

[aξ, al] = 0 (2.112)[
aξ, a

†
l

]
= δξ,l .

The �rst term in the Hamiltonian eq. (2.111) describes the free evolution of three independent
harmonic oscillators which are modes of interest of the electromagnetic �eld. The second part of
the same Hamiltonian represents the nonlinear interaction of the three modes which is responsible
for the parametric down conversion process.

When the pump �eld is provided by a laser source, as usually happens in the vast majority
of experiments, and the non-linear interaction is weak (which is a very usual condition since the
nonlinear susceptibility χ(2) is very low), the pump amplitude is not signi�cantly depleted during
the short time of interaction in the crystal and we are allowed to replace the bosonic operator ap
with a classical amplitude Ap. The validity of this approximation is restricted to the following
limit [12]:

χ(2)τ → 0 (2.113)

Ap → ∞

which imposes a large amplitude for the pump �eld in such a way that it is minimally a�ected
by traversing the crystal and at the same time a small conversion e�ciency, which is obtained by
requiring that χ(2)τ is small. The two conditions in eq. 2.113 can be summarized in the following
way:

χ(2)τAp = constant , (2.114)

where τ is the interaction time inside the crystal.

2.6.1 Degenerate Parametric Ampli�er

When the idler and signal �elds have the same frequency ω and polarization the the system
operates in the so called degenerate con�guration. In this case the two modes are no longer
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distinguishable and we can describe them with a single boson annihilation operator a . The
Hamiltonian for this system is:

H = ~ωa†a+ ı~
χ

2
(a†

2

e−2ıωt − a2e2ıωt) , (2.115)

where we have considered a classical pump beam of frequency 2ω and we have collected in the
parameter χ,the pump amplitude Ap and the nonlinear susceptibility χ(2):

χ = χ(2)Ap . (2.116)

In the interaction picture we have the time independent Hamiltonian:

H = ı~
χ

2
(a†

2 − a2) , (2.117)

and hence in this representation the unitary operator for the time evolution of the degenerate
parametric ampli�er is:

U(t) = e

[
χt
2

(a†
2−a2)

]
. (2.118)

Comparison with eq. (2.29) shows that U(t) is the unitary squeezing operator S(ξ) with ξ = −χt.
Since the nonlinear Hamiltonian in eq. (2.115) is responsible for the squeezing of the mode a we are
now able to give a physical interpretation of the two-photon coherent state described by eq. (2.41).
This state, which is obtained by �rst displacing the vacuum and then squeezing it, can be achieved
by pumping a non-linear crystal with a coherent laser �eld of amplitude Ap and simultaneously
injecting a coherent �eld at the frequency of the mode we want to squeeze.

An obvious physical interpretation can be given also for a squeezed coherent vacuum. Such
a state can be generated by injecting a pump laser �eld in a non-linear crystal governed by a
degenerate parametric ampli�er interaction Hamiltonian (2.115) but this time there is no need for
the injection of another coherent �eld at the frequency of the mode we want to squeeze.

On the other hand the realization of a displaced squeezed state described in eq. (2.52) can
be achieved by either combining a squeezed vacuum (obtained as previously described) with a
coherent �eld (local oscillator) at a beam splitter matching the frequency of the squeezed vacuum,
or by injecting the squeezed vacuum in a laser ampli�er for the squeezed mode.

From the discussion in 2.3.1 and 2.3.2 we can obtain the squeezing amount in the quadrature
�elds for a state initially in the vacuum or in a coherent state for which (4Q̂)2 = (4P̂ )2=1:

(4Q̂)2 = exp(−2χt) (2.119)

(4P̂ )2 = exp(2χt) .

Hence the parametric ampli�er a�ects the amount of noise of the system. In particular it reduces
the noise in the Q quadrature and increases the noise in the P quadrature. Equations (2.119)
show that the de-ampli�ed quadrature has less quantum noise than the vacuum level and that
the amount of noise reduction is proportional to the strength of the nonlinearity, the amplitude of
the pump and the interaction time. In particular, once we have chosen the nonlinear crystal and
hence the χ(2) coe�cient it is possible to increase the noise reduction by increasing Ap and the
interaction time t. The interaction time can be increased, for example, by placing the nonlinear
crystal in a resonant cavity.
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The quantum evolution of quadratures themselves is a�ected. The Heisenberg equations of
motion for the operators a and a† in the interaction picture are:

da

dt
=

1

ı~
[a,H] = χa† (2.120)

da†

dt
=

1

ı~
[
a†, H

]
= χa .

The solution to this equation is:

a(t) = a(0) cosh(χt) + a†(0) sinh(χt) . (2.121)

In terms of the �eld quadratures de�ned by eqs. (2.21), the Heisenberg equations of motions (2.120)
diagonalize:

dQ

dt
= χQ (2.122)

dP

dt
= −χP .

The equations for the quadratures demonstrate that the parametric ampli�er is phase sensitive
because it ampli�es one quadrature and attenuates the other:

Again, by using the results of 2.3.1 and 2.3.2 it is possible to analyze the photon statistics
produced by the parametric ampli�er. In particular we have for a displaced squeezed state eq. (2.52)
a mean number of photons given by:

〈α, ξ|n̂|α, ξ〉 = |α|2 + sinh2(χt) , (2.123)

and a variance in the photon number given by:

〈α, ξ|(4n̂)2|α, ξ〉 = |α cosh(χt)− α∗ exp−iθ sinh(χt)|2 + 2 cosh2(χt) sinh2(χt) . (2.124)

From eqs. (2.123,2.124) we argue that if the mode a is initially in a coherent vacuum state (α = 0),
there is an ampli�cation of the photon number and at the same time of the vacuum �uctuations.
After a time t sinh2(χt) photons are generated. An interesting result concern the photon number
distribution for an initial coherent vacuum state (α = 0) [13]:

p2n+1 = 0 n = 0, 1, 2, . . . (2.125)

p2n =

(
2n
n

)
1

22n coshχt
(tanhχt)2n .

The absence of an odd photon number distribution in eq. (2.125) is a manifestation of the fact
that the squeezed vacuum, by its nature, originates from a two photon process and hence can only
contain pairs of photons.
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2.6.2 Non Degenerate Parametric Ampli�er

The condition of non degeneracy is achieved when the �elds generated by the nonlinear interaction
are distinguishable. This condition can be realized either if the signal and idler �elds have di�erent
frequencies or equal frequencies but di�erent polarization. The Hamiltonian for the process of non
degenerate parametric ampli�cation is the following:

H = ~ωsâ†sâs + ~ωiâ†i âi + i~χ
(
â†sâ
†
ie
−2iωt − âsâie2iωt

)
, (2.126)

where again we have considered a classical pump beam of frequency 2ω. The Hamiltonian of
eq. (2.126) is a particular case of eq. (2.111) where only the signal and idler �elds are considered
as quantum �elds while the pump is treated as a classical �eld. Hence, in the interaction picture
the unitary operator for time evolution of the non degenerate parametric ampli�er is:

U(t) = e[χt(â
†
sâ
†
i−âsâi)] . (2.127)

Again comparison with eq. (2.63) shows that U(t) is the unitary squeezing operator S(ξ) with
ξ = −χt. Hence the Hamiltonian of eq. (2.126) is responsible for the quadrature squeezing that
we have analyzed in paragraph 2.4. In particular from the previous analysis it is clear that the
squeezing is due to quantum correlations in the signal and idler modes. Moreover it is possible to
show that the individual modes are not squeezed.

In the end we can argue from eqs. (2.70) that the squeezed �elds are not the as and ai separately
but their combinations:

X+ =
1√
2

(as + ai) (2.128)

X− =
ı√
2

(as − ai) .

At this point one can make clear the connection between squeezing and entanglement. Assume
that we induce an evolution of the entangled oscillator A and B by the action of a unitary operator:

R = exp[
π

4
(ab† − a†b)] . (2.129)

This means, in the Heisenberg picture that the boson operators are transformed as:

a1 = R†aR = (b+ a)/
√

2

a2 = R†bR = (b− a)/
√

2 . (2.130)

In terms of the new independent operators a1 and a2, the two-mode squeezing operator is written
as:

SAB(z) = exp(
z∗

2
a2

1 −
z

2
a†21 −

z∗

2
a2

2 +
z

2
a†21 ) = S1(z)S2(−z) , (2.131)

that is, as two individual squeezing operators for each of the new modes. These relations shows that
one can entangle two oscillators by squeezing them along two orthogonal direction in phase space,
and then make them interact according to the unitary operator in eq. (2.129) which correspond to
a 50/50 beam splitter. Hence one can generate two entangled optical beams by mixing in a beam
splitter two beams that have been previously squeezed.
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2.7 Conclusions

In this chapter I have introduced very important concepts in quantum optics, such as squeezing
and entanglement and the connection between them. I have also shown how squeezed states of the
electromagnetic �eld can be obtained via a three �elds interaction in a non-linear crsystal. The
last part of the chapter has been devoted to the standard study of optical parametric ampli�ers
(OPA) and their squeezing properties, in both the degenerate and non-degenerate case. All the
results included in the present chapter are standard in quantum optics text-books but usually the
derivation of the �nal results is left to the reader.
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3
Measuring Squeezing in Optical Parametric Oscillators

This chapter is dedicated to the problem of the detection of squeezed light through the ordinary
and balanced homodyne detection schemes. The input-output formulation of optical cavities will
be explained and both the Heisenberg-Langevin and master equation approaches to the optical
cavities problem will be analyzed. Then the last part of the chapter will deal with application of
these theoretical approaches to the case of a triply resonant OPO (TROPO) in the below threshold
degenerate and non-degenerate cases. All the notions introduced in this chapetr will be crucial to
the understanding of Chapter 4.

3.1 Introduction to Optical Parametric Oscillators

In Chapter 1 we illustrated the process of parametric down conversion in which a pump photon
of frequency ωp splits in two photons at di�erent frequencies ωs (signal) and ωi (idler) such that
ωp = ωs + ωi by interacting with a second order nonlinear crystal. The spontaneous emission
which is intrinsic in this process is driven by the vacuum �uctuations of the electromagnetic �eld
and produces two photons which have a strong correlation in energy and momentum. The power
of the signal and idler �elds can be enhanced by using a classical beam of frequency ωs thus
stimulating the emission of photons at the frequncy of the idler beam. If the active medium is put
in an optical cavity the parametric interaction can overcome the e�ect of losses thus producing
oscillation. This device is called an Optical Parametric Oscillator (OPO). OPOs were initially
used as laser sources due to their wide tunability properties, particularly useful for application in
spettroscopy [1]. Nowdays there are available OPOs for the downconversion of pulsed laser beams,
used as light sources in the range between 330 and 2000 nm. These devices are used as coherent
light sources in regions of the spectra where no e�ective laser medium is available, converting light
of Nd:YAG lasers into the mid infrared region [2]. On the other hand quantum properties of the
light emitted from these sources have been investigated and make OPOs among the most used
devices for the production of non classical state of light in quantum technologies.

The simplest con�guration of an OPO is obtained by using a singly resonant cavity (SROPO), in
which the cavity resonates only the signal �eld while the pump and idler beams make a single pass
interaction in the nonlinear crystal and exit the cavity without any feedback. The doubly resonant
con�guration (DROPO), in which both signal and idler beams are resonated in the cavity, can be
used in order to reduce the oscillation threshold. While the SROPO allows a broad continuous
variation of the signal and idler wavelength in the phase matching range, the threshold power is
much higher when compared with DROPO. On the other hand the double resonant condition and
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the energy conservation condition have the e�ect to limit the output modes to a discrete set of
values.

The threshold power can be reduced further by using a cavity which is also resonant to the
pump beam, thus obtaining a triply resonant OPO (TROPO). This type of con�guration reduced
the threshold power to 1mW for CW operation in KTP [3], while the use of new materials reduced
the power to 300µW with quasi phase matched crystal (QPM) [4].

3.2 Photo-Electric Detection of Squeezed Light

In this Chapter we will review some results for the non-classical aspects of the light produced with
OPOs devices with particular attention to quadrature squeezing e�ect in the case of TROPOs
systems, but we need �rst to show how quantum squeezing measurement can be achieved for a
general quantum �eld. This is why in the present section we review the principles of the photo-
electric detection of squeezed light.

The principal object is the spectral density of photocurrent �uctuations de�ned by [5]:

Φ (ω) =

+∞ˆ

−∞

〈4i(t)4i(t+ τ)〉e−ıΩτdτ , (3.1)

where the autocorrelation function for the current �uctuations is given by:

〈4i(t)4i(t+ τ)〉 = 〈i(t)i(t+ τ)〉 − 〈i〉2 . (3.2)

We consider the situation in which a �eld A(t) is responsible for a sequence of photo-electric
emissions. The time axis is broken into a series of small intervals 4t (only zero or one event is
possible within the interval 4t), with pk as the coordinate of the kth time interval. In particular
pk is a random variable, with pk = 0 for no photo-ionization occuring at time tk within 4t, and
pk = 1 for the occurrence of an event at tk within 4t. The photo-current i(t) can be written as:

i(t) =
∑
k

Q(t− tk)pk , (3.3)

with Q(t) indicating the shape of the current pulse that results from the emission at time t = 0.
The autocorrelation of the current becomes:

〈i(t)i(t+ τ)〉 = 〈
k=∞∑
k=−∞

Q(t− tk)pk
j=∞∑
j=−∞

Q(t+ τ − tj)pj〉

=
∑
k

Q(t− tk)Q(t+ τ − tk)〈pk〉

+
∑
k 6=j

Q(t− tk)Q(t+ τ − tj)〈pkpj〉 , (3.4)

where we have used the fact that p2
i = pi. The expectation values in eq. (3.4) can be related to

the properties of the input �eld by noting that:

〈p1p2 . . . pk〉 = Wk (t1, t2, . . . tk)4t14t2 . . .4tk , (3.5)
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Figure 3.2.1: Schematic diagram for ordinary homodyne detection. The trasmittivity T of the
beam splitter is such that T � R.

where Wk (t1, t2, . . . tk) is the joint probability per unit time for photoemission in t1 to t1 +4t1
and t2to t2 +4t2 and . . . tk to tk +4tk and is related to the statistical properties of the incident
�eld by [2]:

Wk (t1, t2, . . . tk) = αk〈: I(t1)I(t2) . . . I(tk) :〉 , (3.6)

where I is the �eld operator A†A, the colons indicate normal and time ordering and α is the
detection quantum e�ciency. Hence passing to the continuous limit and assuming that:

Q(t− t′) = Q0δ(t− t
′
) , (3.7)

we �nd the following result for the autocorrelation function of i(t):

〈i(t)i(t+ τ)〉 = Q2
0α〈: I(τ) :〉δ(τ) +Q2

0α
2〈: I(t)I(t+ τ) :〉 . (3.8)

Thus:

〈4i(t)4i(t+ τ)〉 = Q2
0α〈: I(τ) :〉δ(τ) +Q2

0α
2C(τ) , (3.9)

where:

C(τ) = 〈: I(t)I(t+ τ) :〉 − 〈: I(t) :〉2 . (3.10)

In eq. (3.9) there are two contributions to the autocorrelation of the photo-current. The �rst
term arises from the self-correlation of individual random photo-emissions and express the obvious
result that the product of the current with an identical copy of itself (τ = 0) will yeld a non-
zero correlation independently from the distribution of the pulses. The second term addresses
the question of the manner by which the intensity correlations of incident �eld modify this basic
overlap near τ = 0 due to the correlated photo-electric emissions and specify the range in τ over
which correlations persists.

3.2.1 Ordinary Homodyne Detection

Equation (3.9) is the basic result which we will now apply to the detection of squeezing. In this
detection scheme two �elds ALO (local oscillator) and As (signal �eld) are combined at a beam



3.2. Photo-Electric Detection of Squeezed Light 36

splitter of high transmission t for the signal �eld As. A small fraction r of the local oscillator �eld
is re�ected and combined with As to give an output �eld A from the beam splitter for subsequent
photo-detection (see �g.(3.2.1)), with:

A = rALO + tAs . (3.11)

We assume a coherent state for ALO, with 〈ALO〉 = A0e
−ı(ωLOt+θ) and take rA0 to be large compared

to either the mean value of the signal �eld or of its �uctuations (strong local oscillator limit).
Keeping only the leading terms in A0, and choosing the frequency of the local oscillator �eld ALO
equal to the frequency of the signal �eld As (ωLO = ωs) we are able to �nd the following result:

C(τ) = RTA2
0[e−2ıθ〈As(t+ τ), As(t)〉+ e2ıθ〈A†s(t), A†s(t+ τ)〉

+ 〈A†s(t), As(t+ τ)〉+ 〈A†s(t+ τ), As(t)〉] , (3.12)

where R = r2 and T = t2. After the introduction of the quadrature phase amplitude of the signal
�eld:

Xθ(t) = As(t)e
−ıθ + A†s(t)e

ıθ , (3.13)

the correlation function of eq. (3.12) can be written in the following compact form:

C(τ) = RTA2
0〈: Xθ(t), Xθ(t+ τ) :〉 . (3.14)

Equation (3.14) once it is inserted in eq. (3.9) gives:

〈4i(t)4i(t+ τ)〉 = Q0i0 [δ(τ) + αT 〈: Xθ(t), Xθ(t+ τ) :〉] , (3.15)

where i0 = Q0αRA
2
0 is the mean photocurrent. The Fourier transform of eq. (3.15) then gives the

spectral density Φ (Ω, θ) for photocurrent �uctuations at the Fourier component Ω for a speci�ed
local oscillator phase relative to the signal As input:

Φ (Ω, θ) = Q0i0 [1 + αTSs(Ω, θ)] , (3.16)

where the spectrum of squeezing Ss(Ω, θ) is de�ned by:

Ss(Ω, θ) =

ˆ
〈: Xθ(t), Xθ(t+ τ) :〉e−ıΩτdτ . (3.17)

Remembering that the theoretical signature of nonclassical squeezed light is that Ss(Ω, θ) < 0
for some phase θ, we can say that the experimental signature of squeezed light is the �nding
Φ (Ω, θ) < 1 for some θ.

It is important to note that a non-perfect transmission of the beam splitter (T 6= 1) and a non-
perfect e�ciency of the detector (α 6= 1) will reduce the squeezing amount respect to the optimal
value Ss(Ω, θ) = −1. In particular the ratio R(Ω, θ) of Φ (Ω, θ) in the presence of squeezing to
Φ (Ω, θ) with a vacuum-state input for the signal �eld (|As〉 = |0〉) is simply:

R(Ω, θ) = 1 + αTSs(Ω, θ) . (3.18)

At this point we can show how squeezing manifests itself in sub-Poissonian statistics in homodyne
detection. First of all let recall that a �eld i(t) shows a sub-Poissonian statistics whenever:
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Figure 3.2.2: Schematic diagram for balanced homodyne detection. M1 and M2 are two perfectly
re�ecting mirrors, and the beam splitter is a 50% re�ecting and 50% transmitting.

(i2(t))−
(
i(t)
)2

< i(t) . (3.19)

Now eq. (3.15) can be written as:

〈i(t)i(t+ τ)〉 − 〈i〉2 = Q0i0 [δ(τ)− αT + αT 〈Xθ(t), Xθ(t+ τ)〉] , (3.20)

where we have used the fact that:

〈: Xθ(t), Xθ(t+ τ) :〉 = 〈Xθ(t), Xθ(t+ τ)〉 − 1 . (3.21)

Remembering that for squeezed light 〈Xθ(t), Xθ(t)〉 < 1 we can see that for τ = 0 eq. (3.20)
implies a sub-Poissonian statistics. Note, however, that the intensity measurements in homodyne
detection are di�erent from those in direct detection, in fact intensity �uctuations in this case
measure the �uctuations in a quadrature of the �eld and the signal and its variance depends upon
the local oscillator phase angle, which is an external parameter.

3.2.2 Balanced Homodyne Detection

The second case that we will consider in this section is the balanced homodyne detection scheme.
In this case the beam splitter is 50% transmitting and 50% re�ecting and gives two �elds (A1 and
A2), which are both detected to produce photo-currents (i1 and i2), which are then combined to
give i± = i1 ± i2 (see �g.(3.2.2)). Now the objects of interest are the spectral densities Φ± (Ω, θ),
de�ned as:

Φ± (Ω, θ) =

ˆ
〈4i±(t)4i±(t+ τ)〉e−ıΩτdτ . (3.22)

Specializing the result for i− we �nd:
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〈4i±(t)4i±(t+ τ)〉 = α1Q
2
1〈: I1(t) :〉δ(τ) + α2Q

2
2〈: I2(t) :〉δ(τ)

+ α2
1Q

2
1C11(τ) + α2

2Q
2
2C22(τ)

− α1α2Q1Q2 [C12(τ) + C21(τ)] , (3.23)

where Q1 and Q2 are the total charges for the two detectors D1 and D2 and their quantum
e�ciencies are α1 and α2, respectively. The functions Cij(τ) are generalizations of the previously
de�ned function C(τ) and are given by:

Cij(τ) = 〈: A†i (t)A
†
j(t+ τ)Aj(t+ τ)Ai(t) :〉 , (3.24)

with i, j = 1, 2 referring to the total �elds (A1, A2) which are incident upon detectors (D1, D2). In
the limit of a strong local oscillator in a coherent state with 〈ALO〉 = A0e

−ı(ωLOt+θ), we �nd after
evaluating each of the functions Cij and after taking the Fourier transform, the result:

Φ− (Ω, θ) = Q0i0
[
1 + αη2Ss(Ω, θ)

]
, (3.25)

with Ss(Ω, θ) refers to the spectrum of squeezing for the signal �eld at the input of the balanced
detectors. We have also assumed an ideal detectors arrangement in the sense that α1 = α2 = α
and Q1 = Q2 = Q0. The factor η2 takes into account the spatial overlap of the signal and local
oscillator �elds across the face of the photo-detector, and is given by:

η = |
ˆ ˆ

d2r u∗(r) · v(r)| , (3.26)

where u(r) and v(r) are the normalized mode functions for the signal and local oscillator �elds
(
´ ´

d2r |u(r)|2 = 1).
Once again one can introduce the ratio R(Ω, θ) of Φ− (Ω, θ) in the presence of squeezing to

Φ− (Ω, θ) with a vacuum-state input for the signal �eld (|As〉 = |0〉):

R(Ω, θ) = 1 + αη2Ss(Ω, θ) , (3.27)

where the term �1� gives the shot noise term which is determined by blocking the input �eld As.
The advantage of balanced homodyne detection over ordinary homodyne detection is due to the

fact that this scheme eliminates the large local oscillator term of the �uctuations in the ordinary
case by taking the photocurrent di�erence between the two exit ports.

3.3 Input-Output Formulation of Optical Cavities

In order to describe the e�ect of an OPO cavity the system must be imagined as merged into
an heat bath made up of in�nite harmonic oscillators. This ensemble of oscillators describes the
damping of a �eld mode inside a cavity with lossy mirrors and consists of a large number of
phonon-like modes in the mirrors [6].

The quantum mechanical Hamiltonian for the system in the rotating-wave approximation is:

H = Hsys +Hbath +Hint , (3.28)

where Hsys is the Hamiltonian for the system under consideration and that we will leave unde�ned
for the moment; Hbath is the free energy of bosonic heat bath modes c(ω) providing a description
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of the �eld external to the cavity and coupled to the signal because of non-perfect re�ection of the
mirrors [7]; Hint in the Hamiltonian (3.28) represents the interaction of the mode with this heat
bath, describing the damping of the mode caused by the non-zero transmittivity of the cavity. In
the rotating wave approximation, these terms have explicit forms given by:

Hbath = ~
ˆ ∞
−∞

dω ωc†(ω)c(ω) , (3.29)

Hint = i~
ˆ ∞
−∞

dω κ(ω)
[
c†(ω)a− c(ω)a†

]
. (3.30)

Two main idealizations have been made in the form of the Hamiltonian eqs. (3.29,3.30), the rotating
wave approximation and the fact that the range of integration over frequencies extends from
(−∞,+∞) rather than from (0,∞). These approximations are closely connected as follows [8].

• Without the rotating wave approximation the form of Hint would be:

Hint = i~
ˆ ∞
−∞

dω κ(ω)
[
c†(ω) + c(ω)

] [
a− a†

]
. (3.31)

The smallness of Hint is such that the motion of the operators a and a† is governed by the free
Hamiltonian and hence the time dependence of a† is of the form eıΩt. Then terms like a†c†(ω)
have a time dependence of the form eı(ω+Ω)t which is rapidly oscillating while ac†(ω) has a time
dependence of the form eı(ω−Ω)t which is almost constant near resonance ω = Ω.

• Only terms which are almost resonant are important and this allows one to extend the lower
limit to −∞. Note thaht this extension is possible only in the rotating wave approximation.

• These simpli�cations generate a very simple formalism which is a formulation of white noise.

We also consider the following commutation relations for the mode a and c:

[a, a†] = 1 ,

[c(ω), c†(ω
′
)] = δ(ω − ω′) , (3.32)

while all the other commutators are identically zero. The Heisenberg equation of motion for the
bath operator c(ω) is:

dc(ω)

dt
= − i

~
[c(ω), H] = −iωc(ω) + κ(ω)a . (3.33)

The solution to eq. (3.33) may be written in two ways depending on whether we choose to solve in
terms of initial conditions at time t0 < t (input) or in terms of the �nal conditions at time t1 > t
(output). The two solution are, respectively:

c(ω) = c0(ω)e−iω(t−t0) + κ(ω)

ˆ t

t0

dt
′
e−iω(t−t′ )a(t

′
) (3.34)

c(ω) = c1(ω)e−iω(t−t1) − κ(ω)

ˆ t

t0

dt
′
e−iω(t−t′ )a(t

′
) , (3.35)
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where b0(ω) is the value of b(ω) at t = t0 and b1(ω) is the value of b(ω) at t = t1.
The Heisenberg equation for the mode a is:

da

dt
= − i

~
[as, H]

= − i
~
{[a,Hsys] + [a,Hbath] + [a,Hint]}

= − i
~

[a,Hsys]−
ˆ +∞

−∞
dω κ(ω)e−iω(t−t0)co(ω)

−
ˆ +∞

−∞
dω κ2(ω)

ˆ t

t0

dt
′
e−iω(t−t′ )a(t

′
) . (3.36)

At this point it is usual to choose κ(ω) independent of frequency. This introduce the �rst approx-
imation necessary to obtain the Markov process. Thus we set:

κ2(ω) =
γ

π
. (3.37)

We also de�ne an input �eld operator:

ain(t) = − 1√
2π

ˆ +∞

−∞
dω e−iω(t−t0)c0(ω) , (3.38)

which satis�es the following commutation relation:[
ain(t), a†in(t

′
)
]

= δ(t− t′) . (3.39)

At this point it is easy task to �nd the Heisenberg equation for the mode a starting from eq. (3.36):

da

dt
= − i

~
[a,Hsys]− γa(t) +

√
2γain(t) . (3.40)

To derive the eq. (3.40) we have used the following properties of the Dirac Delta:

1.
´ +∞
−∞ dω e−iω(t−t′ ) = 2πδ(t− t′)

2.
´ t
t0
dt
′
f(t

′
)δ(t− t′) =

´ t1
t
dt
′
f(t

′
)δ(t− t′) = 1

2
f(t) (t0 < t < t1)

The eq. (3.40) is a Langevin equation for a damped amplitude a(t) in which the noise term appears
explicitly as the input �eld. In a similar manner we may express the solution in term of the �nal
condition and we get the time reversed Langevin equation:

da

dt
= − i

~
[a,Hsys] + γa(t)−

√
2γaout(t) . (3.41)

At this point it is possible to derive a relation between the external and intracavity �elds, known
as input-output relation, by subtraction of eq. (3.40-3.41) [7, 9]:

aout(t) + ain(t) =
√

2γa(t) . (3.42)

It is interesting to note that the presence of the noise operator ain(t) in eq. (3.40) is necessary to
preserve the commutation relation for the mode operator a(t) at all times:
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[
a(t), a†(t)

]
= 1 . (3.43)

Moreover the presence of the noise term along with the damping term in eq. (3.40) is also a man-
ifestation of the �uctuation-dissipation theorem of statistical mechanics. Dissipation phenomena
are always accompained by �uctuations.

From the statistical properties of the heath bath, described by the operator c(ω), it is now
possible to derive the statistical properties of the input �eld ain(t). Let us suppose, for example,
that the heat bath is in thermal equilibrium at temperature T , then we have [6]:

〈c(0, ω)〉R = 〈c†(0, ω)〉R = 0

〈c†(0, ω)c(0, ω
′
)〉R = δ(ω − ω′)n̄(ω)

〈c(0, ω)c†(0, ω
′
)〉R = (n̄(ω) + 1)δ(ω − ω′)

〈c(0, ω)c(0, ω
′
)〉R = 〈c†(0, ω)c†(0, ω

′
)〉R = 0 , (3.44)

where the term n̄(ω) is the mean number of heath bath quanta at frequency ω and is described by
the Planck distribution:

n̄(ω) =
1

e~ω/kT − 1
. (3.45)

From now on we will consider the case in which the heat bath is at zero temperature so that:

n̄(ω) = 0 . (3.46)

From eqs. (3.43, 3.46) and the de�nition of the input noise in eq. (3.38) we obtain:

〈ain(t)〉R = 〈a†in(t)〉R = 0

〈a†in(t)ain(t
′
)〉R = 0

〈ain(t)a†in(t
′
)〉R = δ(t− t′)

〈ain(t)ain(t
′
)〉R = 〈a†in(t)a†in(t

′
)〉R = 0 . (3.47)

The �rst and second order correlations in eqs. (3.47) are a formalization of a particular noise,
which in literature is called white noise.

Very useful relations can be obtained for the two-time normally ordered correlation functions
of the output �eld aout in terms of the input noise �eld ain and the intracavity �eld a in the case
of coherent or vacuum input [9]:

〈a†out(t), aout(t
′
)〉 = 2γ〈a†(t), a(t

′
)〉

〈aout(t), aout(t
′
)〉 = 2γ〈: a(t), a(t

′
) :〉

〈a†out(t), a
†
out(t

′
)〉 = 2γ〈: a†(t), a†(t′) :〉 , (3.48)

where the symbol (::) means time ordering and must be intended in the sense that annihilation
operators are ordered with earlier times to the right, while creation operators are ordered with
earlier times to the left [10]. In eqs. (3.48) the following notation has been used:
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〈U, V 〉 = 〈U V 〉 − 〈U〉〈V 〉 . (3.49)

A natural extension of eq. (3.40) and of the input-output relations of eq. (3.42) requires the
introduction, for each loss mechanism, of a damping term of the form γa(t) and a noise term of
the form

√
2γain(t).

3.4 Heisenberg-Langevin Treatment for a TROPO

The method of section 3.3 can be applied to the case of the nonlinear Hamiltonian of eq. (2.115).
This is what we are going to do in the present and next sections in order to show how one can
apply all the physical concepts and mathematics previously illustrated to a concrete case. The
derivation of the main results is not original but nevertheless very pedagogical and will be useful
for a better understanding of some of the results in the next chapters. The Heisenberg-Langevin
equations for the intracavity modes are:

das
dt

= −γas + χ(2)apa
†
i +
√

2γAs(t)

dai
dt

= −γai + χ(2)apa
†
s +
√

2γAi(t)

dap
dt

= −γap − χ(2)aias + Ap +
√

2γpa
in
p (t) , (3.50)

where Ap represent the external coherent pump �eld and we have considered an equal loss rate γ
for the signal and idler �elds. In eqs. (3.50) we have considered the case in which two coherent
beams (seeds) are injected inside the cavity as input for the signal and the idler modes. The input
signal and idler �elds entering the mirror are:

Aξ(t) = A+ ainξ (t), ξ = s, i , (3.51)

A representing the non-zero mean amplitude of the seed and ainξ (t) the vacuum �uctuations con-
tribution. These equations are nonlinear in the bosonic operators and are usually solved by lin-
earization of operator a around the stationary values using the following representation [11]:

a→ α + δa . (3.52)

The steady state amplitude α is obtained by eqs. (3.50) when considering da/dt = 0 = ain(t).
Letting α = αs = αi, we obtain the following equation:

α3 − χ(2)Ap − γγp
(χ(2))2

α = 0 . (3.53)

From eq. (3.53) we argue that the solution for the steady state depends on the value of Ap.
In particular, for Ap ≤ Ath = γγp/χ

(2) there is only one stable solution, α = 0. In this case the
system is said to be below threshold and the pump stationary value is αp = Ap/γp.

If Ap ≥ Ath = γγp/χ
(2) the steady state values for αs and αi exibit a pitchfork bifurcation and

eq. (3.53) admits non null stable solution:
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α = ±

√
2

(
Ap
χ(2)
− γpγ

(χ(2))2

)
= ±

[
2

χ(2)
(Ap − Ath)

]1/2

, (3.54)

and the pump stationary value is αp = γ/χ(2). The existence of a threshold condition expresses
the fact that in presence of losses, the pump has to be strong enough so that the losses e�ect can
be conpensated by the parametric ampli�cation in the nonlinear crystal.

3.4.1 The Below-Threshold Degenerate Case

The linearization of eqs. (3.50) around the below-threshold steady state (αξ = 0, αp = Ap/γp) is
obtained by considering the pump as an undepleted beam of amplitude αp = Ap/γp and neglecting
the quantum equation for the mode ap. Moreover in the following we will consider the case of
unseeded OPO for which A = 0. Since αξ = 0, the equation for the operators aξ and those for
their �uctuations coincide:

daξ
dt

= −γaξ + Σa†ξ +
√

2γainξ (t), ξ = s, i , (3.55)

with Σ = χ(2)Ap/γp.
In the case of degenerate OPO (DOPO) that we are considering in this section, the equations

for as and ai become indistinguishable. Up to now we have considered the case in which the only
loss mechanism is due to the only coupling mirror of the optical cavity (single ended cavity). More
general results can be obtained if we consider a double ended cavity or if we take into account
other loss mechanisms, such as crystal absorption and di�raction. In the following γ1 will indicate
the damping associated to the cavity input mirror and γ2 the damping associated to the other loss
mechanisms. Hence Langevin eq. (3.55) generalizes into:

da

dt
= Σa†ξ − (Γ + ıψ) a+

√
2γ1a

in(t) +
√

2γ2b
in(t) , (3.56)

where Γ = γ1 + γ2, ψ is the detuning of mode a with respect to cavity resonance and ain and bin

are the input �eld due to γ1 and γ2. The �eld outside the cavity, which is the one of interest,
can be obtained by using the input-output relation of eq. (3.42) with γ = γ1 and by going to the
Fourier space. In this case the Langevin equation for the operators a and a† become an algebraic
equation which can be easly solved. The result for the output �eld aout(ω) is [7]:

aout(ω) =

[
(γ1 − ıψ)2 − (γ2 − ıψ)2 + Σ2

]
ain(ω) + 2Σγ1a

in†(−ω)

(Γ− ıω) + ψ2 − Σ2

+ 2
√
γ1γ2

(Γ− ıω − ıψ) bin(ω) + Σbin†(−ω)

(Γ− ıω) + ψ2 − Σ2
. (3.57)

At this point it is possible to calculate the squeezing spectra which is obtained by the following
expression:

〈4Xθ〉2 =
(
1 + 4〈: 4X2

θ :〉
)
. (3.58)

For zero detuning (ψ = 0) it has been shown that [7]:



3.4. Heisenberg-Langevin Treatment for a TROPO 44

S+(ω) = 〈4Xout(ω)〉2 =

(
1 + 4

γ1Σ

(Γ− Σ)2 + ω2

)
S−(ω) = 〈4Y out(ω)〉2 =

(
1− 4

γ1Σ

(Γ + Σ)2 + ω2

)
, (3.59)

while the quadrature variance product is:

〈4Xout(ω)〉2〈4Y out(ω)〉2 =

(
1 +

16γ1γ2Σ2(
(Γ− Σ)2 + ω2

) (
(Γ + Σ)2 + ω2

)) , (3.60)

The eqs. (3.57) show that the output �elds exibit a noise enhancement for the amplitude quadrature
Xout and noise reduction on the phase quadrature Y out. The optimal noise reduction correspond
to the case ω = 0 (cavity resonance) and for a pump amplitude equal to the threshold value, say
for Σ = Γ:

〈4Y out(0)〉2 =
(

1− γ1

Γ

)
. (3.61)

For the ideal case in which the only loss mechanism is due to the coupling mirror (γ2 = 0), the
OPO output has a complete noise suppression:

〈4Y out(0)〉2 = 0 . (3.62)

For double ended cavity the squeezing level is optimized by the choice γ1 = γ2 6= 0, known as
symmetrical cavity. In this case, which is the best obtainable for a given choice of γ1 and γ2, the
noise level in the squeezed quadrature is:

〈4Y out(0)〉2 =
1

2
, (3.63)

which is one half of the input state noise 1.
The prediction of zero noise level at threshold for a single ended cavity with no detuning is

unphysical because it implies an in�nite noise in the amplitude quadratureXout which is impossible.
The heart of the problem resides in the linearization procedure used to obtain these results and a
perturbative approach shows that the nonlinear corrections become important in the region close
to threshold, hence correcting the bad behaviour of the squeezing spectra in this regime [12].

3.4.2 The Below-Threshold Non-Degenerate Case

In this section we will consider the case of a non-degenerate OPO (NOPO) below threshold of oscil-
lation and in frequency degenerate condition with cross polarized signal and idler �elds. Moreover
we will extend the results to the general case of a seeded NOPO. The steady state value for the
pump and signal-idler �elds are:

αp =
γ

χ(2)
− A√

2γχ(2)α

0 = α3 − χ(2)Ap − γγp
(χ(2))2

α− γpA√
2γ(χ(2))2

. (3.64)
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In the case A = 0 the equations for signal and idler �elds reduce to those for the unseeded NOPO
while in the case A 6= 0 where the threshold becomes [13]:

Ath =
γγp
χ(2)

+ 3

(
A2γp
4χ(2)

)1/3

. (3.65)

Below threshold of oscillation eq. (3.64) has only one stable solution which remains stable even
above threshold where the system admits two other solutions, one stable and the other unstable.
Equations (3.74) can be linearized around the steady state solution for the pump αp and signal-idler
�elds α to obtain:

dδaξ
dt

= −γδaξ + χ(2)αpδa
†
ξ + αδap +

√
2γainξ

dδap
dt

= −γpδap − χ(2) [δas + δai] +
√

2γpa
in
p , (3.66)

where we explicitly used the �uctuations of the �elds because the steady state values for signal
and idler are di�erent from zero and hence the equations for the �elds and for �uctuations are
di�erent. The coupled eqs. (3.66) can be diagonalized by introducing the �elds d± = 1√

2
(as ± ai)

and their quadratures X± and Y±.
In the case A = 0 we have:

dδX±
dt

= −
(
γ ∓ χ(2)αp

)
δX± +

√
2γX in

±

dδY±
dt

= −
(
γ ± χ(2)αp

)
δY± +

√
2γY in

± , (3.67)

The squeezing spectra for δX± and δY± outside the cavity have been calculated and the result is
[14]:

S+(ω) =

(
1 + 4

χ(2)αpγ

(γ − χ(2)αp)
2

+ ω2

)
= 〈4δXout

+ (ω)〉2 = 〈4δY out
− (ω)〉2

S−(ω) =

(
1− 4

χ(2)αpγ

(γ + χ(2)αp)
2

+ ω2

)
= 〈4δXout

− (ω)〉2 = 〈4δY out
+ (ω)〉2 . (3.68)

Equations (3.68) show that the �eld combination d+is antisqueezed on the amplitude quadrature
while it is squeezed on the phase quadrature, where perfect noise suppression occurs at threshold,
χ(2)αp = γ. Conversely, the �eld combination d− is antisqueezed on the phase quadrature while it
is squeezed on the amplitude quadrature.

On the other hand the �uctuations of the signal and idler �elds are phase insensitive and satisfy
the following relation:

S(ω) =

(
γ2 + (χ(2)αp)

2 + ω2
)2

+ 4γ2(χ(2)αp)
2

(γ2 − (χ(2)αp)2 − ω2)
2

+ 4γ2ω2
. (3.69)

This equation demonstrates that signal and idler �elds are not individually squeezed but only the
measure of the combination d± shows non classical e�ect.
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3.5 Master Equation Approach to Optical Cavities

An alternative method to include loss mechanisms in optical processes is described in this section.
Once again the system of interest will be considered as being coupled to a heat bath or reservoir.
Hence one can derive an operator master equation for the density operator in the Schrödinger or
interaction picture. Equations of motion for the expectation values of the system operators may be
derived from the operator master equation. Hence using the quasi-probability representation for
the density operator [15, 8], the operator master equation can be converted to a c-number Fokker-
Planck equation, then using method familiar in stochastic preocesses the Fokker-Planck equation
can be converted into an equivalent set of stochastic di�erential equations. In this Chapter we will
analyze the case of TROPO and we will show a well known general result whereby the evolution
equations of the Wigner �eld amplitudes are the same as the Heisenberg equations of motion of
the quantum �eld amplitudes, whenever these are linear.

3.5.1 Master Equation Approach for a TROPO

The Heisenberg picture Hamiltonian that describes this open system is given by [16]:

H =
2∑
i=0

~ωia†iai + ı~χ
(
a†1a

†
2a0 − a1a2a

†
0

)
+ ı~

(
Ee−iω0ta†0 − E∗eiω0ta0

)
+

2∑
i=0

aiΓ
†
i + a†iΓi , (3.70)

where E is the external coherent driving pump �eld at frequency ω0. The operators a0, a1 and
a2 represent the pump, signal and idler �elds, respectively. They satisfy the following frequency
matching condition:

ω0 = ω1 + ω2 . (3.71)

The terms Γi represent damping reservoir operators which are a useful description of the non-
perfect re�ection of the �elds on the cavity mirrors:

Γi =
∑
j

bje
−ıωjt , (3.72)

where bj are boson annihilation operators for the thermal bath and χ is the nonlinear coupling
constant due to the second order polarizability of the nonlinear crystal.

The master equation for the reduced density operator, after tracing out the heat bath is given
by [16]:
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∂ρ

∂t
= −ı

2∑
i=0

ωi

[
a†iai, ρ

]
+ χ

[
a†1a

†
2a0, ρ

]
− χ

[
a1a2a

†
0, ρ
]

+ Ee−iω0t
[
a†0, ρ

]
− E∗eiω0t [a0, ρ]

+
2∑
i=0

γi

(
2aiρa

†
i − a

†
iaiρ− ρa

†
iai

)
, (3.73)

which is valid for a heat bath at thermal equilibrium at temperature T = 0.
The density matrix can be treated in a much simpler way as a quasi-probability distribution

in phase space. We can use a Wigner distribution of the �eld in phase space, where one has the
replacement of the operators (ai, a

†
i ) of the �elds by complex amplitudes (αi, α

†
i ). The density

matrix is also replaced by a quasi-probability distribution in phase space, leading to Fokker-Planck
equation [15]. An important characteristic of the Wigner representation is that the operators are
replaced by classical variables that can be interpreted as an average value plus a �uctuation term.
This leads to a simple interpretation of the �eld as a classical �eld with added vacuum �uctuations.
The crucial properties of the Wigner representation is that the ensemble average of any polynomial
of the random variables α and α∗ weighted by the Wigner density corresponds to the Hilbert-space
expectation of the corresponding symmetrized product of the annihilation and creation operators
a and a†, respectively. That is:

〈P (α, α∗)〉 =

ˆ
P (α, α∗)W (α, α∗)d2Mα

= Tr
{
ρS
[
P (a, a†)

]}
, (3.74)

where M is the number of α variables and S[ ] means symmetrization, which consists of taking the
average of all possible orderings of the operators. For instance:

S
[
a†a
]

= 1/2
[
a†a+ aa†

]
. (3.75)

We can write the master equation (2.111) in the Wigner representation by using the following
characteristic function:

χw(z, z∗) = Tr(ρeız
∗a†+ıza)

= Tr(ρeız
∗a†eızae−|z|

2/2) , (3.76)

so that the Wigner distribution can be written as a Fourier transform of the characteristic function:

W (α, α∗) =
1

π2

ˆ +∞

−∞
d2z χw(z, z∗)eız

∗a†eıza . (3.77)

The phase space Wigner equation for the TROPO that correspond to the master equation (2.111)
is:
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∂W ({αj})
∂t

=

{
∂

∂α0

(
ıω0α0 + γ0α0 + χα1α2 − Ee−iω0t

)
+

∂

∂α∗0

(
−ıω0α

∗
0 + γ0α

∗
0 + χα∗1α

∗
2 − E∗eiω0t

)
+

∂

∂α1

(ıω1α1 + γ1α1 − χα∗2α0)

+
∂

∂α∗1
(−ıω1α

∗
1 + γ1α

∗
1 − χα2α

∗
0)

+
∂

∂α2

(ıω2α2 + γ2α2 − χα∗1α0)

+
∂

∂α∗2
(−ıω2α

∗
2 + γ2α

∗
2 − χα1α

∗
0)

+ γ0
∂2

∂α0∂α∗0
+ γ1

∂2

∂α1∂α∗1
+ γ2

∂2

∂α2∂α∗2

+
χ

4

(
∂3

∂α1α2α∗0
+

∂3

∂α∗1α
∗
2α0

)}
W ({αj}) , (3.78)

where the vector {αj} has six terms for the �elds and their complex conjugates (α1, α1, α3, α
∗
1, α

∗
2, α

∗
3).

This is not a Fokker-Planck equation due to the third order derivative term, but in the case χ
is small enough this term can be dropped. The truncated equation obtained in such a way is a
genuine Fokker-Planck equation with positive de�nite di�usion term and eq. (3.78) can be written
in the following way:

∂W ({αj})
∂t

= −
3∑
j=1

∂

∂αj
AjW ({αj})

+
1

2

∑
j,k

∂

∂αj

∂

∂αk

[
BBT

]
jk
W ({αj}) , (3.79)

where the vector A is called the drift vector, and the matrix product BBT is the di�usion matrix.
The Fokker-Planck equation (3.79) is equivalent to a set of Stochastic Di�erential Equation

(SDE), also known as Langevin equations:

dαj
dt

= Aj + [Bξ(t)]j , (3.80)

where ξ(t) is a vector of �uctuating variables ξi(t) with zero mean value 〈ξi(t)〉 = 0 and the
property that:

〈ξi(t)ξj(t
′
)〉 = δijδ(t− t

′
) , (3.81)

In the rotating frame (α̃j = αje
ıωjt with j = 0, 1, 2) the system of SDE corresponding to the

Fokker-Planck equation (3.79) is:
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dα̃1

dt
= −γ0α̃0 + E − χα̃1α̃2 +

√
γ0ξ0(t)

dα̃2

dt
= −γ1α̃1 + χα̃0α̃

∗
2 +
√
γ1ξ1(t)

dα̃3

dt
= −γ2α̃2 + χα̃0α̃

∗
1 +
√
γ2ξ2(t) . (3.82)

By comparison between eqs. (3.82) and eqs. (3.50) it is clear that the quantum Heisenberg equation
for amplitude operators are the same as the c-�elds amplitude equation of motion in the Wigner
representation. This important result will be used in the next chapter in which we will consider
the squeezing properties of a singly resonant optical parametric oscillator.

3.6 Conclusions

Chapter 3 has been devoted to the problem of the detection of squeezed light through the ordinary
and balanced homodyne detection schemes. The input-output formulation of optical cavities has
been explained and both the Heisenberg-Langevin and master equation approaches to the optical
cavities problem have been analyzed. Then in the last part of the chapter, I have shown an
application of these theoretical approaches to the case of a triply resonant OPO (TROPO) in the
below threshold degenerate and non-degenerate cases.
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4
Squeezing and Quantum Entanglement in a SROPO

Below Threshold

4.1 Introduction

Squeezed states of light, where the noise in one quadrature of the �elds is reduced below the vacuum
level, are important elements in several applications such as sub-shot-noise phase measurements
[1, 2], interferometric detection of gravitational radiation [3, 4] and quantum information with
continuous variables [5]. In the latter case, squeezed states are used to generate continuous variable
entanglement and achieve high �delity in quantum teleportation protocols [5]. To squeeze quantum
�uctuations of the electromagnetic �eld one needs nonlinear optical e�ects such as parametric down
conversion or four-wave mixing [6]. In parametric down conversion a pump photon at frequency
ωp splits into a photon at frequency ωs, the signal, and another at ωi, the idler, by interacting
with a nonlinear crystal with a second order nonlinear susceptibility χ(2) [6]. Strong nonlinearities
required to achieve large noise reductions are however uncommon in many crystals. To overcome
this limitation optical cavities are used to form an optical parametric oscillator (OPO). In this
case, by setting the device into resonance at the desired frequencies, the oscillation build-up inside
the cavity increases noise reduction by considerably extending the interaction time. Theoretical
and experimental e�orts in non-degenerate cases have mainly concerned the doubly (or even triply)
resonant con�gurations where both the signal and idler �elds are resonated [7, 8, 9]. The singly-
resonant cavity is in principle a simpler con�guration to realize experimentally but, to the best of
our knowledge, theoretical investigations of squeezing and entanglement of the light from a singly-
resonant OPO (SROPO) are missing. One of the reasons is that SROPOs operate with strongly
non-degenerate frequencies while much of the literature on squeezing focuses on the degenerate
or close to degeneracy cases [10, 11]. Recent interest in non-classical correlations of the strongly
non-degenerate regime of parametric down-conversion [12] makes the study of entanglement in
SROPO important for the optimization of coherent sources with �uctuations below the shot-noise
level. There are clear technical advantages for SROPO con�gurations: only resonance of the signal
�eld has to be maintained, continuous temperature tuning and suppression of mode-hopping. It is
the aim of this chapter to investigate the squeezing and entanglement properties of SROPOs when
signal and idler �elds have large frequency separations (two-colour case). Our approach is similar
to what has been used in the case of second harmonic generation [13, 14], namely a two-photon
loss model in which a cavity mode is coupled quadratically to a continuum of output modes rather
than linearly as usual in the input-output formulation of optical cavities.
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αp

1

ina

s

outa

outbinb

Figure 4.2.1: The singly-resonant OPO cavity scheme. αp is the input pump amplitude, ain1 and
bin are the input signal and idler �elds, aouts and bout are the output signal and idler �elds.

4.2 The Langevin Equation

We consider parametric down conversion in a monolithic cavity, resonant to the signal �eld only
and pumped with a monochromatic classical beam at frequency ωp (see Fig. 4.2.1).

By assuming perfect collinear phase matching and considering energy conservation, one has [6]:

~kp = ~ks + ~ki, (4.1)

ωp = ωs + ωi, (4.2)

where ~kp, ~ks and ~ki are the wave vectors of the pump, the signal and the idler �elds respectively. In
the case of perfect phase matching the frequencies of the signal and idler �elds depend only on the
frequency of the pump and the orientation of the crystal with respect to the direction of the pump
beam. The quantum mechanical Hamiltonian for the system in the rotating-wave approximation
is:

H = Hsys +Hbath,1 +Hbath,2 +Hint,1

+Hint,2 +Hint,3. (4.3)

where Hsys is the sum of the free energies for the single signal mode as and the continuum of idler
modes b(ω) treated here within the approach of [15]; Hbath,1 is the free energy of bosonic heat bath
modes c1(ω) providing a description of the �eld external to the cavity and coupled to the signal
because of non-perfect re�ection of the mirrors [16]; Hint,1 in the Hamiltonian (4.3) represents the
interaction of the signal mode with this heat bath, describing the damping of the signal mode
caused by the non-zero transmittivity of the cavity; Hbath,2 is the free energy of di�erent bosonic
heat bath modes c2(ω) while the term Hint,2 is the interaction between the signal �eld and these
modes, describing the damping of the signal mode associated with other loss mechanisms like
other mirror transmissions or crystal absorptions and di�raction; the term Hint,3 is the interaction
between signal and idler modes and the pump �eld αp describing the process of parametric down
conversion inside the nonlinear crystal [6]. In the rotating wave approximation, all these terms
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have explicit forms given by:

Hsys = ~ωsa†sas + ~
ˆ ∞
−∞

dω ωb†(ω)b(ω), (4.4)

Hbath,1 = ~
ˆ ∞
−∞

dω ωc†1(ω)c1(ω), (4.5)

Hbath,2 = ~
ˆ ∞
−∞

dω ωc†2(ω)c2(ω), (4.6)

Hint,1 = i~
ˆ ∞
−∞

dω κ1

[
c1(ω)a†s − c

†
1(ω)as

]
, (4.7)

Hint,2 = i~
ˆ ∞
−∞

dω κ2

[
c2(ω)a†s − c

†
2(ω)as

]
, (4.8)

Hint,3 = i~
ˆ ∞
−∞

dω κ3

[
b†(ω)a†sαp − b(ω)asα

∗
p

]
.

(4.9)

The coupling constants κ1, κ2, and κ3 are considered to be independent of the frequency ω according
to the Markov approximation. We also consider the following commutation relations for the modes:

[as, a
†
s] = 1, (4.10)

[ci(ω), c†i (ω
′
)] = δ(ω − ω′), (4.11)

[b(ω), b†(ω
′
)] = δ(ω − ω′), (4.12)

where i = 1, 2 while all the other commutators are identically zero. For the non resonant idler �eld
we use the theory of Collett and Levien [13] who showed that systems described by a continuum of
mode operators b̄(ω) and possessing an isolated mode of particular interest, can be redescribed in
terms of an orthonormal set formed by this one mode and a new continuum b(ω). The Heisenberg
equation of motion for the bath operator b(ω), which describe the idler �eld, is:

db(ω)

dt
= − i

~
[b(ω), H] = − i

~
{[b(ω), Hbath,2] + [b(ω), Hint,2]}

= −i
[
b(ω),

ˆ +∞

−∞
dω
′
b†(ω

′
)b(ω

′
)ω
′
]

+

+

[
b(ω),

ˆ +∞

−∞
dω
′
κ2(ω

′
)
[
b†(ω

′
)a†sαp − α∗pasb(ω

′
)
]]

(4.13)

We obtain:

db(ω)

dt
= −iωb(ω) + κ2(ω)a†sαp (4.14)

The solution to eq. (4.14) may be written in two ways depending on whether we choose to solve in
terms of initial conditions at time t0 < t (input) or in terms of the �nal conditions at time t1 > t
(output). The two solution are, respectively:

b(ω) = b0(ω)e−iω(t−t0) + κ2(ω)

ˆ t

t0

dt
′
e−iω(t−t′ )a†s(t

′
)αp(t

′
) (4.15)

b(ω) = b1(ω)e−iω(t−t1) − κ2(ω)

ˆ t

t0

dt
′
e−iω(t−t′ )a†s(t

′
)αp(t

′
) (4.16)
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where b0(ω) is the value of b(ω) at t = t0 and b1(ω) is the value of b(ω) at t = t1.
We can derive similar equations for the ci(ω) �elds. The Heisenberg equation for the signal

mode as is:

das
dt

= − i
~

[as, H] = − i
~
{[as, Hint,1] + [as, Hint,2] + [as, Hint,3]}

= µas|α0|2 −
√

2µb†inα0 − (γ1 + γ2)as +
√

2γ1a
in
1 +

√
2γ2a

in
2 (4.17)

where bin is the idler �eld noise, γ1 = κ2
1π is the signal cavity damping rate and ain1 the input

vacuum modes entering the cavity from the environment. The term γ2 = κ2
2π is the intracavity

loss rate, mainly due to absorption by the crystal, and ain2 the quantum noise associated with this
loss and de�ned in the usual way [15]. We also consider γ = γ1 + γ2 as the total damping rate and
we de�ne, µ = κ2

3π .
To derive the eq. (4.17) we have used the following properties of the Dirac Delta:

1.
´ +∞
−∞ dω e−iω(t−t′ ) = 2πδ(t− t′)

2.
´ t
t0
dt
′
f(t

′
)δ(t− t′) =

´ t1
t
dt
′
f(t

′
)δ(t− t′) = 1

2
f(t) (t0 < t < t1)

and we have de�ned the input �eld operators:

bin(t) = − 1√
2π

ˆ +∞

−∞
dω e−iω(t−t0)b0(ω) (4.18)

aini (t) = − 1√
2π

ˆ +∞

−∞
dω e−iω(t−t0)c0,i(ω) (4.19)

From equation (4.17) we can �nd the pump threshold value for oscillation, which is obtained by
putting at zero the left-hand side and the noise terms. The result is:

αtrp =

√
γ

µ
(4.20)

At this point we can rewrite eq. (4.17) parametrized respect to the pump threshold value, αp = εαth
by introducing a pump parameter ε, whose range is: 0 < ε < 1.

das
dt

= asε
2γ −

√
2γεb†in − γas +

√
2γ1a

in
1 +

√
2γ2a

in
2 (4.21)

which can be reordered in the following way:

das
dt

= asγ(ε2 − 1)−
√

2γεb†in +
√

2γ1a
in
1 +

√
2γ2a

in
2 (4.22)

In a similar way we may substitute the solution in terms of the �nal conditions eq. (2.6) to obtain
the time reversed Langevin equation:

das
dt

= asγ(ε2 − 1) +
√

2γεb†out −
√

2γ1a
out
1 −

√
2γ2a

out
2 (4.23)

By equating eq. (4.22) and eq. (4.23) we can obtain a set of input-output relations:
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{
aout1 = −ain1 +

√
2γ1as

bout = −bin +
√

2γεa†s
(4.24)

Note that the input-output relation of the signal �eld is written at the cavity mirror of the SROPO
while that of the idler �eld makes explicit the propagation of the idler �uctuations through the
crystal (see Fig. 4.2.1). The formal solution of eq. (4.22) is:

as(t) = as(0)eγ(ε2−1)t +
√

2γ1

ˆ t

0

dt
′
ain1 (t

′
)eγ(ε2−1)(t−t′ )

+
√

2γ2

ˆ t

0

dt
′
ain2 (t

′
)eγ(ε2−1)(t−t′ )

−
√

2γε

ˆ t

0

dt
′
b†in(t

′
)eγ(ε2−1)(t−t′ ) (4.25)

4.3 Two-Time Correlation Functions

Integrating eq. (4.15) over ω provides:

ˆ +∞

−∞
dω b(ω) =

ˆ +∞

−∞
dω b0(ω)e−iω(t−t0) +

ˆ +∞

−∞
dω κ2(ω)

ˆ t

t0

dt
′
e−iω(t−t′ )a†s(t

′
)αp(t

′
)

= −
√

2πbin(t) + ε
√
γπa†s(t) (4.26)

which can be rewritten in the form:

bin(t) = ε

√
γ

2
a†s(t)−

1√
2π

ˆ +∞

−∞
dω b(ω) (4.27)

From eq. (4.27) we can derive the following commutators:

1. [as(t), b
in(t)] = ε

√
γ
2

[
as(t), a

†
s(t)
]

(t
′
= t)

2.
[
as(t), b

in(t
′
)
]

= 0 (t
′
> t)

3.
[
as(t), b

out(t
′
)
]

= 0 (t
′
< t)

The value at equal times easily comes by inserting eq. (4.27) in the commutator, while the second
and third ones re�ect the fact that as(t) can be a function of bin(t

′
) only for earlier times t′ < t

and of bout only for later times t′ > t . From the last commutator and from eq. (4.24) we have:[
as(t), b

in(t
′
)
]

= ε
√

2γ
[
as(t), a

†
s(t
′
)
]

(t
′
< t) (4.28)

Putting together these expressions we get:[
as(t), b

in(t
′
)
]

= ε
√

2γθ(t− t′)
[
as(t), a

†
s(t
′
)
]

(4.29)

where we have de�ned the theta function in the following way:
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θ(t− t′) =


1 (t > t

′
)

0 (t < t
′
)

1
2

(t = t
′
)

(4.30)

The commutator of as and a
in
1 is the usual one:[
as(t), a

†in
1 (t

′
)
]

=
√

2γ1θ(t− t
′
)
[
as(t), a

†
s(t
′
)
]

(4.31)

Now we can evaluate some output correlation functions which will be all useful for the calculation
of the spectra in the following sections:

〈
a†out(t), aout(t

′
)
〉

=
〈
−a†in1 (t) +

√
2γ1a

†
s(t),−ain1 (t

′
) +

√
2γ1as(t

′
)
〉

=
〈
a†in1 (t), ain1 (t

′
)
〉

+ 2γ1

〈
a†s(t), as(t

′
)
〉

−
√

2γ1

〈
a†in1 (t), as(t

′
)
〉
−
√

2γ1

〈
a†s(t), a

in
1 (t

′
)
〉

= 2γ1

〈
a†s(t), as(t

′
)
〉

〈
b†out(t), bout(t

′
)
〉

=
〈
−b†in(t) +

√
2γεas(t),−bin(t

′
) +

√
2γεa†s(t

′
)
〉

=
〈
b†in(t), bin(t

′
)
〉

+ 2γε2
〈
as(t), a

†
s(t
′
)
〉

−
√

2γε
〈
b†in(t), a†s(t

′
)
〉
−
√

2γε
〈
as(t), b

in(t
′
)
〉

= 2γε2
〈
as(t), a

†
s(t
′
)
〉

〈
b†out(t), a†out(t

′
)
〉

=
〈
−b†in(t) +

√
2γεas(t),−a†in1 (t

′
) +

√
2γ1a

†
s(t
′
)
〉

=
〈
b†in(t), a†in1 (t

′
)
〉

+ 2
√
γ1γε

〈
as(t), a

†
s(t
′
)
〉

−
√

2γ1

〈
b†in(t), a†s(t

′
)
〉
−
√

2γε
〈
as(t), a

†in
1 (t

′
)
〉

= 2
√
γ1γε

〈
as(t), a

†
s(t
′
)
〉
−
√

2γε
〈
as(t), a

†in
1 (t

′
)
〉

= 2
√
γ1γε

〈
as(t), a

†
s(t
′
)
〉
−
√

2γε
〈[
as(t), a

†in
1 (t

′
)
]〉

= 2
√
γ1γε

〈
as(t), a

†
s(t
′
)
〉
− 2
√
γ1γε

〈[
as(t), a

†
s(t
′
)
]〉
θ(t− t′)

It follows that:

〈
b†out(t), a†out(t

′
)
〉

=

{
2
√
γ1γε

〈
a†s(t

′
), as(t)

〉
(t > t

′
)

2
√
γ1γε

〈
as(t), a

†
s(t
′
)
〉

(t < t
′
)
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〈
bout(t), aout(t

′
)
〉

=
〈
−bin(t) +

√
2γεa†s(t),−ain1 (t

′
) +

√
2γ1as(t

′
)
〉

=
〈
bin(t), ain1 (t

′
)
〉

+ 2
√
γ1γε

〈
a†s(t), as(t

′
)
〉

−
√

2γ1

〈
bin(t), as(t

′
)
〉
−
√

2γε
〈
a†s(t), a

in
1 (t

′
)
〉

= 2
√
γ1γε

〈
a†s(t), as(t

′
)
〉
−
√

2γ1

〈
bin(t), as(t

′
)
〉

= 2
√
γ1γε

〈
a†s(t), as(t

′
)
〉
−
√

2γ1

〈[
bin(t), as(t

′
)
]〉

= 2
√
γ1γε

〈
a†s(t), as(t

′
)
〉

+ 2
√
γ1γε

〈[
as(t

′
), a†s(t)

]〉
θ(t
′ − t)

It follows that:

〈
bout(t), aout(t

′
)
〉

=

{
2
√
γ1γε

〈
a†s(t), as(t

′
)
〉

(t > t
′
)

2
√
γ1γε

〈
as(t

′
), a†s(t)

〉
(t < t

′
)〈

a†out(t), b†out(t
′
)
〉

=
〈
−a†in1 (t) +

√
2γ1a

†
s(t),−b†in(t

′
) +

√
2γεas(t

′
)
〉

=
〈
a†in1 (t), b†in(t

′
)
〉

+ 2
√
γ1γε

〈
a†s(t), as(t

′
)
〉

−
√

2γ1

〈
a†s(t), b

†in(t
′
)
〉
−
√

2γε
〈
a†in1 (t), as(t

′
)
〉

= 2
√
γ1γε

〈
a†s(t), as(t

′
)
〉
−
√

2γε
〈
a†s(t), b

†in(t
′
)
〉

= 2
√
γ1γε

〈
a†s(t), as(t

′
)
〉
−
√

2γε
〈[
a†s(t), b

†in(t
′
)
]〉

= 2
√
γ1γε

〈
a†s(t), as(t

′
)
〉
− 2
√
γ1γε

〈[
a†s(t), as(t

′
)
]〉
θ(t− t′)

It follows that:

〈
a†out(t), b†out(t

′
)
〉

=

{
2
√
γ1γε

〈
as(t

′
), a†s(t)

〉
(t > t

′
)

2
√
γ1γε

〈
a†s(t), as(t

′
)
〉

(t < t
′
)〈

aout(t), bout(t
′
)
〉

=
〈
−ain1 (t) +

√
2γ1as(t),−bin(t

′
) +

√
2γεa†s(t

′
)
〉

=
〈
ain1 (t), bin(t

′
)
〉

+ 2
√
γ1γε

〈
as(t), a

†
s(t
′
)
〉

−
√

2γ1

〈
as(t), b

in(t
′
)
〉
−
√

2γε
〈
ain1 (t), a†s(t

′
)
〉

= 2
√
γ1γε

〈
as(t), a

†
s(t
′
)
〉
−
√

2γε
〈
ain1 (t), a†s(t

′
)
〉

= 2
√
γ1γε

〈
as(t), a

†
s(t
′
)
〉
− 2
√
γ1γε

〈[
ain1 (t), a†s(t

′
)
]〉

= 2
√
γ1γε

〈
as(t), a

†
s(t
′
)
〉

+ 2
√
γ1γε

〈[
a†s(t

′
), as(t)

]〉
θ(t
′ − t)
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Figure 4.4.1: Signal or idler spectrum of eq. (4.33) for ε = 0.8.

It follows that:

〈
aout(t), bout(t

′
)
〉

=

{
2
√
γ1γε

〈
as(t), a

†
s(t
′
)
〉

(t > t
′
)

2
√
γ1γε

〈
a†s(t

′
), as(t)

〉
(t < t

′
)

The results of this section will be crucial for the evaluation of quantities of physical interest, such
as spectra of squeezing and of intensity di�erence.

4.4 Intensity Di�erence Correlation

Quantities that can be readily calculated are the signal and idler output spectra. For the signal
�eld, the spectrum is de�ned as:

Ss(ω) =

ˆ +∞

−∞
dτ
〈
: a†outs (0)aouts (τ) :

〉
eiωτ , (4.32)

where the symbols 〈::〉 denote time averaging and normal ordering, respectively, and with an
analogous expression valid for the idler �eld. By using formal solutions of the Langevin eq. (4.22),
it is possible to evaluate the signal and idler spectra as a function of the normalized pump amplitude
ε:

Ss|i(Ω) =
(1− ε2)2

(1− ε2)2 + Ω2
s|i
, (4.33)

where we have de�ned Ωs|i = (ω − ωs|i)/γ and normalized to the value of the spectrum at reso-
nance. The spectrum of eq. (4.33) is shown in Fig. 4.4.1; the spectra for signal and idler �elds
are two Lorentzians centred at the signal and idler frequencies, respectively. Although the idler
is not resonated, this �eld still experiences the presence of the cavity because of the frequency
entanglement which is peculiar to the process of parametric down conversion in the crystal.

Direct detection of intensity �uctuations of signal and idler �elds is the simplest type of mea-
surement one can perform in a two-colour OPO. A reduction in the intensity di�erence �uctuations
below the shot noise level in doubly resonant OPOs above the threshold of oscillation was calcu-
lated by Reynaud et al. [17] and Lane, Reid and Walls [18] and demonstrated by Heidmann et al.
[19] for a Type II non-degenerate OPO. Here we extend those approaches to include the study of
signal-idler intensity �uctuations in singly resonant OPO below the threshold of oscillation. In this
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type of measurement the signal and idler �elds hit two di�erent photodetectors and then the re-
sulting di�erence intensity �uctuations are analyzed with a power spectrum analyzer. Specializing
the analysis of section 3.2 to the case of intensity di�erence correlations we obtain from eq. (3.9,
3.10) that the measurable output is related to the Fourier transform of the intensity di�erence
correlation function:

〈∆IoutD (0),∆IoutD (τ)〉
〈Iouts 〉+ 〈IoutI 〉

= δ(τ) +
〈: IoutD (0), IoutD (τ) :〉
〈Iouts 〉+ 〈IoutI 〉

(4.34)

which is:

SD[ω]

S0

= 1 +
1

S0

ˆ +∞

−∞
dτ
〈
: IoutD (0), IoutD (τ) :

〉
eiωτ , (4.35)

In eq. (4.35) we have introduced the quantity, IoutD (t) = Iouts (t) − IoutI (t) , where Iouts (t) =
a†outs (t)aouts (t) and IoutI (t) = b†out(t)bout(t) are the output intensity operators for signal and idler
�elds, S0 is the shot noise level, which in this case is given by the sum of the intensities of signal
and idler beams, S0 = Iouts + IoutI . Furthermore, for any operators A and B:

〈A,B〉 = 〈AB〉 − 〈A〉 〈B〉 . (4.36)

We de�ne:

G
(2)
si (τ) =

〈
:
(
Iouts (t)− Iouti (t)

) (
Iouts (t+ τ)− Iouti (t+ τ)

)
:
〉

G
(2)
si (τ) can be rewritten in the following way:

G
(2)
si (τ) =

〈
: Iouts (t)Iouts (t+ τ) :

〉
+
〈
: Iouti (t)Iouti (t+ τ) :

〉
(4.37)

−
〈
: Iouts (t)Iouti (t+ τ) :

〉
−
〈
: Iouti (t)Iouts (t+ τ) :

〉
Let us calculate the �rst one of the terms that appear in eq. (4.37):

〈
: Iouts (t)Iouts (t+ τ) :

〉
=

〈
: â†outs (t)âouts (t)â†outs (t+ τ)âouts (t+ τ) :

〉
=

〈
â†outs (t)â†outs (t+ τ)âouts (t)âouts (t+ τ)

〉
(4.38)

For coherent or vaccum input eq. (4.38) can be factorized in the following way:

〈
: Iouts (t)Iouts (t+ τ) :

〉
=

〈
â†outs (t)â†outs (t+ τ)

〉 〈
âouts (t)âouts (t+ τ)

〉
+

〈
â†outs (t)âouts (t)

〉 〈
â†outs (t+ τ)âouts (t+ τ)

〉
+

〈
â†outs (t)âouts (t+ τ)

〉 〈
â†outs (t+ τ)âouts (t)

〉
= 4γ2

1

〈
â†s(t)âs(t)

〉 〈
â†s(t+ τ)âs(t+ τ)

〉
+ 4γ2

1

〈
â†s(t)âs(t+ τ)

〉 〈
â†s(t+ τ)âs(t)

〉
(4.39)

= 4γ2
1AB + 4γ2

1C
2 (4.40)

A similar expression can be derived for the second term in (4.37):
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〈
: Iouti (t)Iouti (t+ τ) :

〉
= 4γε2T

〈
âs(t)â

†
s(t)
〉 〈
âs(t+ τ)â†s(t+ τ)

〉
+ 4γε2T

〈
âs(t)â

†
s(t+ τ)

〉 〈
âs(t+ τ)â†s(t)

〉
(4.41)

= 4γ2AB + 4γ2C2 (4.42)

Let us now calculate the third term in (4.37):

〈
: Iouts (t)Iouti (t+ τ) :

〉
|τ<0 =

〈
â†out(t)âout(t)b̂†out(t+ τ)b̂out(t+ τ)

〉
=

〈
â†out(t) ˆaout(t)

〉〈
b̂†out(t+ τ) ˆbout(t+ τ)

〉
+

〈
â†out(t)b̂†out(t+ τ)

〉〈
âout(t)b̂out(t+ τ)

〉
+

〈
â†out(t)b̂out(t+ τ)

〉〈
âout(t)b̂†out(t+ τ)

〉
= 4γγ1ε

2
〈
â†(t)â(t)

〉 〈
â(t+ τ)â†(t+ τ)

〉
+ 4γγ1ε

2
〈
â(t+ τ)â†(t)

〉 〈
â(t)â†(t+ τ)

〉
(4.43)

= 4γγ1AB + 4
γγ1

ε2
C2 (4.44)

〈
: Iouts (t)Iouti (t+ τ) :

〉
|τ>0 = 4γγ1AB + 4γγ1ε

2C2 (4.45)

〈
: Iouti (t)Iouts (t+ τ) :

〉
|τ<0 =

〈
b̂†out(t)b̂out(t)â†out(t+ τ)âout(t+ τ)

〉
=

〈
b̂†out(t) ˆbout(t)

〉〈
â†out(t+ τ) ˆaout(t+ τ)

〉
+

〈
b̂†out(t)â†out(t+ τ)

〉〈
b̂out(t)âout(t+ τ)

〉
+

〈
b̂†out(t)âout(t+ τ)

〉〈
b̂out(t)â†out(t+ τ)

〉
= 4γγ1ε

2
〈
â(t)â†(t)

〉 〈
â†(t+ τ)â(t+ τ)

〉
+ 4γγ1ε

2
〈
â†(t+ τ)â(t)

〉 〈
â†(t)â(t+ τ)

〉
= 4γγ1AB + 4γγ1ε

2C2 (4.46)

〈
: Iouti (t)Iouts (t+ τ) :

〉
|τ>0 = 4γγ1AB + 4

γγ1

ε2
C2 (4.47)

G
(2)
si (τ) = 4γ2

1(AB + C2) + 4γ2(AB + C2)−
[
8γγ1AB + 4

γγ1

ε2
C2 + 4γγ1ε

2C2
]

(4.48)

We have de�ned:

A =
〈
â†(t)â(t)

〉
B =

〈
â†(t+ τ)â(t+ τ)

〉
C =

〈
â†(t+ τ)â(t)

〉
(4.49)
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Figure 4.4.2: (a) Intensity di�erence correlation spectrum of (4.52) plotted for a range of input
powers and Γ = 1. Curves correspond to ε = 0.2 (black-dotted line), ε = 0.4 (blue-dashed line),
ε = 0.6 (green-dash-dotted line), ε = 0.8 (red-solid line). (b) Intensity di�erence correlation
spectrum of (4.53) plotted for a range of Z = γi/γs values. Curves correspond to Z = 1 (black-
dotted line), Z = 4 (blue-dashed line), Z = 6 (green-dash-dotted line), and Z = 10 (black-solid
line). Ω = 0 is the cavity resonance condition.

The intensity di�erence correlation function is then:

〈∆IoutD (0),∆IoutD (τ)〉
〈Iouts 〉+ 〈IoutI 〉

= δ(τ) +
G

(2)
si (τ)

2Aγ + 2Aγ1

(4.50)

The Intensity-Di�erence Spectrum is then:

SD[Ω]

S0

= 1 +
8(−Γ + ε2)(1− Γε2)

(1 + Γ) [4(−1 + ε2)2 + Ω2]
, (4.51)

where we have de�ned Γ = γ1/γ and we have introduced the variable:

Ω=
ω

γ

The spectrum (4.51) is plotted in Fig. 4.4.2(a) for di�erent values of the pump parameter ε
and for Γ = 1 (i.e. γ2 = 0). In this case (4.51) reduces to:

SD[Ω]

S0

= 1− 4

4 + [Ω/(1− ε2)]2
, (4.52)

where a narrowing of the spectrum when approaching threshold clearly con�rms the plots of
Fig. 4.4.2. The dependence of the spectrum (4.51,4.52) on the pump parameter which leads to
the narrowing of the spectral lines when threshold is approached is peculiar to the singly-resonant
case. No dependence on the pump is observed in the doubly-resonant OPO where the spectrum
has the following analytical expression [7, 20].

SD[Ω]

S0

= 1− 4

Ω2

γsγi
+
[√

γs
γi

+
√

γi
γs

]2 . (4.53)

One could be tempted, in order to study the behaviour of the singly-resonant con�guration, to �nd
the limit of eq. (4.53) as the signal or idler cavity damping rates, γs and γi respectively, approach
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Figure 4.5.1: Typical experiment for correlation in nondegenerate parametric oscillation. The
input mirror IM is higly re�ective at the signal and idler fequencies. The output mirror OM is
more transmissive. The two beam splitter are highly re�ecting and the local oscillators LO(1) and
LO(2) have the same frequencies of the signal and idler �elds, respectively.

in�nite. In this case the eq. (4.53) reaches the asymptotic value of 1 (see Fig. 4.4.2(b) where
Z = γi/γs is increased from 1 to 10), meaning that no squeezing would be observable in such a
measurement. Such a limit, however, is not well posed because in doing so we break the mean
�eld limit approximation from which eq. (4.53) is derived. Our calculation predicts, in fact, that
suppression of the shot noise is indeed possible in the singly-resonant con�guration. It is worth
noting that, analogous to the doubly-resonant case, perfect suppression of noise below the shot
noise level at resonance (Ω = 0) is independent of the pump power.

4.5 Quadrature Correlations

The intensity correlation function calculated in section 4.4 contains no phase information since it is
a measure of the �uctuations in the photon numbers. A useful approach to characterize squeezing
is a phase sensitive scheme that measures the variance of a quadrature of the �eld as shown in
[21, 22]. Such a scheme is based on homodyne detection and consists of superimposing the input
�eld with the �eld from a strong local oscillator (LO). In this section we consider the case in which
the signal and idler beams from the SROPO are spatially separated and then combined separately
with their own local oscillator, one at the frequency of the signal and the other at the frequency of
the idler �eld, before hitting two di�erent photodetectors (see Fig.(4.5.1)). The �uctuations in the
signal-idler intensity di�erence are then investigated with the use of a power spectrum analyzer.
Specializing the analysis of section 3.2.1 to the case of intensity di�erence correlations we obtain
from eq. (3.15, 3.16) that the measurable output is related to the Fourier Transform of signal-idler
quadrature di�erence �uctuations:

VD[ω] = 1 +

ˆ +∞

−∞
dτ
〈
: Xout

D (0)Xout
D (τ) :

〉
eiωτ , (4.54)
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Figure 4.5.2: (a) Quadrature squeezing spectrum (4.28) for a range of input powers and Γ = 1.
Curves correspond to ε = 0.2 (black-dotted line), ε = 0.4 (blue-dashed line), ε = 0.6 (green-dash-
dotted line), ε = 0.8 (red-solid line). (b) Quadrature squeezing spectrum in the doubly-resonant
case for a range of input powers and Z = γi/γs = 1. Curves correspond to ε = 0.2 (black-dotted
line), ε = 0.4 (blue-dashed line), ε = 0.6 (green-dash-dotted line), ε = 0.8 (red-solid line). Only
minimal �uctuations corresponding to θ+φ = 0 are shown. Ω = 0 is the cavity resonance condition.
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Figure 4.5.3: Quantum Fluctuations of the signal-idler quadrature di�erence at ω = ωs/i for several
values of the pump parameter ε and Γ = 1. φ is kept constant while θ is scanned linearly. Curves
correspond to ε = 0.2 (black-dotted line), ε = 0.4 (blue-dashed line), ε = 0.6 (green-dash-dotted
line), ε = 0.8 (red-solid line).

where Xout
D (t) = Xs,out

θ (t)−X i,out
φ (t) and

Xs,out
θ (t) = 1√

2

[
aouts (t)e−i(θ+ωst) + a†outs (t)e+i(θ+ωst)

]
,

X i,out
φ (t) = 1√

2

[
bout(t)e−i(φ+ωit) + b†out(t)ei(φ+ωit)

]
, (4.55)

are the quadrature operators for signal and idler beams corresponding to the angles θ and φ
respectively.

The squeezing spectrum for the output quadratures is:

: Sout(ω, θ, φ) :=

ˆ +∞

−∞
dτ
〈
: Xs,out

θ (t)X i,out
φ (t+ τ) :

〉
e−iωτ (4.56)
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This normally ordered spectrum : Sout(ω, θ) : is related to the squeezing spectrum of the quadrature
by the following relation:

VD[ω] = 1+ : Sout(ω, θ, φ) : (4.57)

Let us explicitly calculate the expression 4.56:

: Sout(ω, θ, φ) : =
1

2

ˆ +∞

−∞
dτ [
〈
: Xs,out

θ (t), Xs,out
θ (t+ τ) :

〉
+
〈
: X i,out

φ (t), X i,out
φ (t+ τ) :

〉
−

〈
: Xs,out

θ (t), X i,out
φ (t+ τ) :

〉
+−

〈
: X i,out

φ (t), Xs,out
θ (t+ τ) :

〉
(4.58)

we can rewrite eq. (4.58) as:

: Sout(ω, θ, φ) :=
1

2

(
: Soutss (ω, θ, φ) : + : Soutii (ω, θ, φ) : − : Soutsi (ω, θ, φ) : − : Soutis (ω, θ, φ) :

)
(4.59)

we can express the elements in the sum of eq. (4.59) in terms of internal �elds as follows:

: Soutss (ω, θ, φ) : =

ˆ +∞

−∞
dτ
〈
: Xs,out

θ (t), Xs,out
θ (t+ τ) :

〉
=

ˆ +∞

−∞
dτ
〈
aouts (t), aouts (t+ τ)

〉
exp(−2ı̀θ)

+

ˆ +∞

−∞
dτ
〈
a†outs (t+ τ), aouts (t)

〉
+

ˆ +∞

−∞
dτ
〈
a†outs (t), aouts (t+ τ)

〉
+

ˆ +∞

−∞
dτ
〈
a†outs (t), a†outs (t+ τ)

〉
exp(2ı̀θ) (4.60)

The second and �fth terms in eq. (4.60) are zero, hence we are left with:

: Soutss (ω, θ, φ) := 2γ1T

ˆ +∞

−∞
dτ
〈
a†s(t+ τ), as(t)

〉
+
〈
a†s(t), as(t+ τ)

〉
(4.61)

where the symbol T means temporal ordering.
A similar calculation leads to:

: Soutss (ω, θ, φ) : = 2γ1T

ˆ +∞

−∞
dτ
〈
a†s(t+ τ)as(t)

〉
+
〈
a†s(t)as(t+ τ)

〉
(4.62)

: Soutii (ω, θ, φ) : = 2γε2T

ˆ +∞

−∞
dτ
〈
as(t+ τ)a†s(t)

〉
+
〈
as(t)a

†
s(t+ τ)

〉
: Soutsi (ω, θ, φ) : = T

ˆ +∞

−∞
dτ
〈
aout(t)bout(t+ τ)

〉
exp(−ı̀(θ + φ)) +

〈
a†out(t)b†out(t+ τ)

〉
exp(̀ı(θ + φ))

: Soutis (ω, θ, φ) : = T

ˆ +∞

−∞
dτ
〈
bout(t)aout(t+ τ)

〉
exp(−ı̀(θ + φ)) +

〈
b†out(t)a†out(t+ τ)

〉
exp(̀ı(θ + φ))
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where:

T
〈
aout(t)bout(t+ τ)

〉
= 2ε

√
γ1γ

[
ϑ(τ)

〈
as(t)a

†
s(t+ τ)

〉
+ ϑ(−τ)

〈
a†s(t+ τ)as(t)

〉]
T
〈
a†out(t)b†out(t+ τ)

〉
= 2ε

√
γ1γ

[
ϑ(τ)

〈
as(t+ τ)a†s(t)

〉
+ ϑ(−τ)

〈
a†s(t)as(t+ τ)

〉]
T
〈
bout(t)aout(t+ τ)

〉
= 2ε

√
γ1γ

[
ϑ(τ)

〈
a†s(t)as(t+ τ)

〉
+ ϑ(−τ)

〈
as(t+ τ)a†s(t)

〉]
(4.63)

T
〈
b†out(t)a†out(t+ τ)

〉
= 2ε

√
γ1γ

[
ϑ(τ)

〈
a†s(t+ τ)as(t)

〉
+ ϑ(−τ)

〈
as(t)a

†
s(t+ τ)

〉]
(4.64)

Lengthy calculations (but feasible by well prepared PhD students) provide the quadrature squeez-
ing spectrum:

VD[Ω] = 1 +
4ε
[
(1 + Γ)ε−

√
Γ(1 + ε2) cos(θ + φ)

]
(−1 + ε2)2 + Ω2

. (4.65)

The spectrum (4.65) is plotted in Fig. 4.5.2(a) for di�erent values of the pump parameter ε and
for Γ = 1. In this case eq. (4.65) reduces to:

VD[Ω] = 1− 4ε

(1 + ε)2 + [Ω/(1− ε)]2
, (4.66)

showing again a line narrowing when approaching threshold. Such result should be contrasted with
the doubly-resonant OPO where one obtains the same formula (4.66) after replacing Z = γi/γs
and Ω/(1− ε) = ∆ and where no line narrowing is observed [8, 22]. This is made clear in the plots
of Fig. 4.5.2(b). Singly and doubly resonant cases, however, have coincident spectra at Ω = 0.
The squeezing spectrum is symmetric around Ω = 0, which corresponds to the local oscillators
frequencies ωs/i. One di�erence with the intensity case of Section 4.4.2 is that a progressive growth
in the squeezing level when approaching threshold of oscillation is observed.

Another useful way to visualize squeezing is shown in Fig. 4.5.3 where we plot the quantum
�uctuations of the signal-idler quadrature di�erence at ω = ωs/i in a decibel scale with respect to
the shot noise level obtained by blocking the SROPO pump. The plot is obtained by keeping the
phase φ of one of the two local oscillators �xed while varying the phase θ of the other. The shot
noise level or standard quantum limit (SQL) is represented by the zero black line. It is evident
that a large amount of squeezing (-19 dB) can, in principle, be obtained in this situation.

Fig. 4.5.4 displays the noise spectrum as a function of the normalized pump amplitude in the
case in which the signal �eld experiences other losses besides those due to the mirror transmittance
(Γ = 0.8 in this plot). Fig. 4.5.5 shows the signal-idler quadrature �uctuations for Γ = 0.8 for
several values of the pump parameter as a function of θ, the phase of the signal local oscillator.
It is clear from these �gures that the squeezing level is severely a�ected by other asymmetric loss
mechanisms and that squeezing degradation becomes more important as we approach threshold.
The degradation of squeezing in Fig. 4.5.4 and Fig. 4.5.5 re�ects the di�culty to achieve noise
cancellation in the signal-idler intensity for an asymmetric cavity in the presence of growth of
the single beam noise. It is, however, possible to compensate for this behaviour by introducing
the optimal squeezing angle [8]. In the case in which signal and idler beams experience other
asymmetric losses the symmetric combination of quadrature operators in eq. (4.54) is no longer
the best choice and we have to use a more general linear combination of signal-idler quadrature
operators parametrized by an angle ψ.

XD(t) = cos(ψ)Xs
θ (t)− sin(ψ)X i

φ(t). (4.67)

In this, more general, case the calculated squeezing spectrum turns out to be:
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Figure 4.5.4: Noise power at resonance as a function of normalized pump amplitude. Here Γ = 0.8.
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Figure 4.5.5: Quantum �uctuations of the signal-idler quadrature di�erence at ω = ωs/i for several
values of the pump parameter ε and Γ = 0.8. Curves correspond to ε = 0.2 (black-dotted line),
ε = 0.4 (blue-dashed line), ε = 0.6 (green-dash-dotted line), ε = 0.8 (red-solid line). φ is kept
constant while θ is scanned linearly in time.

VD[Ω] = 1 +
4ε
[
2ε cos2[ψ] + 2Γε sin2[ψ]−

√
Γ(1 + ε2) sin[2ψ]

]
(−1 + ε2)2 + Ω2

. (4.68)

The optimization of signal-idler correlations is achieved by minimizing eq. (4.68) with respect
to ψ for a given �xed value of all the other parameters and by choosing the frequency Ω where
minimal �uctuations occur (in our case Ω = 0). The optimal angle ψ0 is found from:

tan(2ψ0) =

√
Γ(1 + ε2)

(1− Γ)ε
. (4.69)

The squeezing spectrum plotted in Fig. 4.5.6 for Γ = 0.8 and ε = 0.8 shows a non-optimal choice
of the angle ψ (narrower curve) and an optimal one (broader curve). From this �gure it is evident
that by operating at the optimal choice of the angle ψ one obtains an improvement in the squeezing
level.
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Figure 4.5.6: Optimized quadrature spectrum. In this case Γ = 0.8, ε = 0.8 and ψ = π/4
(blue-solid line), ψ = ψ0 (red-dashed line).

4.6 Quantum Entanglement in SROPO

In order to claim state inseparability and consequently entanglement for the signal-idler state we
apply the separability criterion of Simon-Duan [23, 24] introduced in eq. (2.105) of section 2.5 to
quadrature operators of eq. (4.55) which satisfy the condition of the separability theorem for two
mode continuous variable systems, as to say:

[Xs
θ , X

s
θ+π/2] = i (4.70)

[X i
φ, X

i
φ+π/2] = i (4.71)

Hence according to the Simon-Duan criterion a su�cient condition for state inseparability is that
the quantity:

S =
〈
[Xs

θ −X i
φ]2
〉

+
〈
[Xs

θ+π/2 +X i
φ+π/2]2

〉
(4.72)

is such that:
S < 2. (4.73)

We have calculated S = 0.024 for the case where ε = 0.8 and Γ = 1, S = 0.67 for ε = 0.8,
Γ = 0.8 and ψ = π/4. Finally S = 0.5 for Γ = 0.8, ε = 0.8 and ψ = ψ0. Hence we conclude
that the signal and idler beams are in an entangled state for wide ranges of parameters values and
di�erent con�gurations of SROPO operation. The dependence of the amount of entanglement on
the normalized pump value is shown in Fig. 4.6.1 where the dB scale is evaluated with respect to
the value 2 which sets the limit of state separability in eq. (4.72).

4.7 Numerical Results for Intensity Di�erence Spectra

We can derive the relation between the intensity di�erence correlation function eq. (4.50) written
in terms of normally ordered operators and the c-numbers α in the Wigner representation using
the following substitutions [21]:
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Figure 4.6.1: Amount of entanglement as a function of the normalized pump value. The dB scale
is evaluated respect to the value 2 which sets the limit of state separability in eq. (4.72). Γ = 1 in
this �gure.

〈
â†(t)â(t)

〉
= 〈α∗(t)α(t)〉W −

1

2〈
â†(t+ τ)â(t+ τ)

〉
= 〈α∗(t+ τ)α(t+ τ)〉W −

1

2〈
â†(t+ τ)â(t)

〉
= 〈α∗(t)α(t+ τ)〉W − (〈α∗(t)α(t+ τ)〉W )0 (4.74)

where:

〈α∗(t)α(t)〉W =

ˆ
W (α∗, α)|α|2d2α

〈α∗(t+ τ)α(t+ τ)〉 =

ˆ
W (α∗, α)|α|2d2α

〈α∗(t)α(t+ τ)〉W − (〈α∗(t)α(t+ τ)〉W )0 =

ˆ
W (α∗, α)|α|2d2α

−
(ˆ

W (α∗, α)|α|2d2α

)
0

(4.75)

where the subscript �0� means that we have to evaluate the mean value in the vacuum state, that
is we have to set to zero the input pump �eld.

In order to solve numerically the quantum equation for SROPO in eq. (4.22) we consider that,
as showed in the previous chapter, the evolution equations of the Wigner �eld amplitudes are
the same as the Heisenberg equations of motion of the quantum �eld amplitudes, whenever these
are linear. Having this in mind we can consider the annihilation operator a of eq. (4.22) to be a
classical c-number α and numerically integrate the semi-classical equation of motion for SROPO.
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Figure 4.7.1: Numerical intensity di�erence correlation spectrum plotted for a range of input
powers. Curves corresponds to ε = 0.6 (blue line), ε = 0.7 (red line), ε = 0.8 (yellow line), ε = 0.9
(green line). Black dotted lines correspondes to the theoretically predicted spectra.
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We have solved the equation of motion using a split-step method with gaussian noise. From the
numerical solution for the �eld α it is possible to obtain, by using eqs. (4.74,4.75) and eq. (4.50),
the intensity di�erence spectra for the SROPO system.

The results of the simulations are illustrated in Fig. 4.7.1 where intensity di�erence spectra
are plotted for di�erent values of pump parameter (solid lines) and also the analytical results are
inserted as black dotted lines. The �gure shows a very remarkable agreement between numerical
and theoretically predicted spectra of eq. (4.52).

4.8 Conclusions

We have applied the input-output theory of [16] to study the quantum �uctuations of singly reso-
nant optical parametric oscillators. The model has been used to calculate intensity and quadrature
squeezing spectra. We have shown that below threshold of oscillation the �uctuations in the light
outside the cavity at the frequencies of the signal and the idler �elds are squeezed below the shot
noise as much as the doubly resonant case. We have also shown that signal and idler �elds are en-
tangled over a wide range of pump parameter values in SROPO by using the Simon-Duan criterion
of state separability.

One major di�erence of the SROPO from the doubly resonant case is that we observe an
unexpected dependence of the intensity di�erence spectrum on the pump parameter leading to
a narrowing of the spectral line as the threshold of oscillation is approached. An analogous de-
pendence of the quadrature spectrum on the pump parameter is also found. A peculiar feature
of singly-resonant con�gurations is that the narrowing of the spectral lines does not a�ect the
squeezing minimum which is capable to reach values similar to those of the doubly-resonant case
as threshold is approached. Since the singly resonant cavity is one of the most simple OPO con-
�guration to realize and since there is no di�erence in the squeezing properties of the light coming
from this device with respect to the doubly resonant cavity, we conclude that the singly reso-
nant con�guration could be an ideal candidate for the realization of two-color entangled light in
quantum information processes.
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5
Short pulse generation in the synchronously pumped

SROPO

5.1 Introduction

The usual way to analyze optical propagation systems and optical resonators is the search for
the eigenmodes of these systems. The motivation of this approach is the assumption that the
�elds in such optical systems can be expanded in a complete set of such eigenmodes, which are
usually called �normal modes� of the system. The word �normal� in this context means that the
eigenmodes of the system un are orthogonal to each other in the usual sense and can be normalized
to one, as to say:

ˆ
u∗n(x)um(x) dx = 0 (5.1)
ˆ
u∗n(x)un(x) dx = 1 (5.2)

where the integrals are over all the coordinates of the eigenfunctions.
In optical system these modes, resonant or propagating, are eigensolutions of a linear operator

which describes the electro-magnetic �eld inside the material under study. In most cases this linear
operator is Hermitian and it is then rigorously true that the eigenmodes of this operator and hence
the modes of the optical system, are orthogonal as de�ned in equations (5.1-5.2).

However many optical systems, such as unstable resonator and gain-guided ampli�ers, are
described by modes which are not orthogonal in the usual sense. These systems are described
in terms of eigenmodes, referred to as Fox-Li modes [1], of a propagation operator which is non-
Hermitian and hence they are not orthogonal in the usual sense, as we will see later in this chapter.

Closely related to non-normality is the notion of pseudospectra, which we will analyze later in
this chapter. Let's say that spectra and eigenvalues are imperfect tools for analyzing non-normal
matrices and operator because they are not e�cient means to understand the behaviour of physical
system described by non-Hermitian matrices.

73
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5.2 Mathematical Overview of Non-Normal Operators

In general it is possible to �nd the eigenmodes of a system whose evolution is described by an
operator L by means of an operator equation of the type:

Lun(x) = γnun(x) (5.3)

where L can be a di�erential or integral operator which admits a set of eigenfunctions un(x)
and eigenvalues γn which satisfy the equation for the system and at the same time the boundary
conditions.

Now the crucial point is that for many real systems the operator L does not satisfy neither the
Hermitianity condition:

L = L† = (L∗)T (5.4)

where L† is the Hermitian adjoint of the operator L, while (L∗)T indicates the transposition and
complex conjugation of the operator L, nor the �normality� condition:[

L,L†
]

= 0 (5.5)

Note that normal matrices, de�ned by eq. (5.5), include along with Hermitian matrices all those
which are skew-Hermitian, unitary, circulant as well as others.

The important consequence of the lack of �normality� is that it does not garantee the existence
of a set of eigenfunctions and even in the case this set exists it cannot be guaranteed that the
eigenmodes are orthogonal to each other in the sense of equations (5.1-5.2). Hence if we consider
two di�erent eigenmodes of the system un and um [2, 3]:

ˆ
u∗n(x)um(x) dx 6= 0 (5.6)

It is always possible to show that these eigenmodes can be normalized to unit such that:

ˆ
u∗n(x)un(x) dx = 1 (5.7)

In the case that the operator L has a set of eigenmodes un then the Hermitian adjoint operator
L† will have a set of eigenmodes, vn, which satisfy the equation:

L†vn(x) = γ∗nvn(x) (5.8)

It can than been shown that the eigenmodes un and vn will be bi-orthogonal to each other in the
sense that:

ˆ
u∗n(x)vm(x) dx = δnm (5.9)

As in the case of the eigenmodes of the operator L, also the eigenmodes vn of the operator L
† are

not orthogonal to each other and it can also be shown that if the set un is properly normalized to
unity than the set vn is such that:

ˆ
v∗n(x)vn(x) dx > 1 (5.10)
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In order to show the last property consider the function:

vn(x) = u∗n(x) + ∆u∗n(x) (5.11)

and its complex conjugate. The function ∆u∗n(x) represents the di�erence between the eigenmode
un and the eigenmode v∗n having the same eigenvalue γ∗n. The bi-orthogonality of the two sets of
eigenmodes and the normalization to one of the set un leads to:

ˆ
un(x)∆u∗n(x) dx =

ˆ
u∗n(x)∆un(x) dx = 0 (5.12)

and so the normalization of the vn eigenmodes becomes:

ˆ
vn(x)v∗n(x) dx = 1 +

ˆ
∆un(x)∆u∗n(x) dx ≥ 1 (5.13)

and this integral is greater than unity unless the di�erence ∆u∗n(x) is identically zero.

5.2.1 The Case of Optical Resonator Eigenmodes

Consider a pulse of radiation making a complete round trip around an optical cavity. After
a complete round trip the pattern of the �eld E(1)(s, z) at a de�nite reference plane z will be
di�erent from its starting pattern E(0)(s, z) before the round trip because of di�raction, re�ection
and aperturing e�ects. Moreover after a second round trip the pattern E(2)(s, z) may again be
still di�erent. We have used the notation s = (x, y) to indicate the transverse coordinates in the
optical cavity and z to indicate the longitudinal coordinate.

What we ask is if it is possible to �nd patterns, call them En,m(s, z), such that if a pulse is
launched with an initial transverse pro�le matching one of these transverse mode patterns, it will
return one round trip later with the same transverse pattern at any reference plane z but possibly
with a reduced amplitude because of di�raction or other losses during round trip. These self-
reproducing transverse patterns are what is known in the literature under the name of transverse
mode.

Mathematically the propagation through one round trip in an optical resonator can be described
by a propagation integral of the following form:

E(1)(s, z + p) = e−ıkp
ˆ
A

ds0K(s, s0, z)E
(0)(s, z) (5.14)

where k is the propagation constant at the carrier frequency of the optical signal and p is the
lenght of the round trip. The di�erential ds = dx0dy0 is integrated over the full cross section A
of the resonator at the selected reference plane z. The function K(s, s0, z) appearing in eq. (5.14)
is called the propagation kernel, generally similar to Huygen's integral and its particular form will
depend on the reference plane chosen, on mirror apertures and on the intracavity optics in the
optical structures. In other words this integral describes the propagation of the optical pulse from
the chosen reference plane z to the corresponding reference plane z + p one period p later.

Hence the self reproducing transverse pattern En,m(s, z) must be such that each of them, after
one round trip, satisfy the round trip propagation expression:

E(1)
n,m(s, z) = e−ıkp

ˆ
A

ds0K(s, s0, z)E
(0)
n,m(s0, z) = γn,mE

(0)
n,m(s, z) (5.15)
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If eigensolutions that satisfy eq. (5.15) exist, then these eigensolutions will provide the self repro-
ducing transverse eigenmodes that we are looking for. Hence if we launch an optical pulse in the
form of any single one of these eigenmodes in the proper direction at the selected reference plane,
then after one round trip the �eld at the same plane will be:

E(1)
n,m(s, z) = γn,me

−ıkpE(0)
n,m(s, z) (5.16)

As it is clear from eq. (5.16), the �eld after one round trip will have the same transverse pattern but
will be reduced in amplitude by the eigenvalue γn,m. In fact if we deal with open-sided resonators
with �nite diameter mirrors, for example, some of the radiation will spread out past the mirror
edges at each round trip, and the magnitude of the transverse eigenvalues will be less than unity
(if no gain mechanisms are present in the resonator):

|γn,m| < 1 (5.17)

Hence even with perfectly lossless mirrors the n,m-th mode of an optical resonator will always have
a power loss for round trip given by:

Ploss = 1− |γn,m|2 (5.18)

It is usual to consider that such resonant eigenmodes always exist and this is because one often
deals with closed cavities with lossless walls where the wave equation describing the propagation of
the �elds is an Hermitian operator. In this case the existence of a complete set of normal modes can
be rigorously proven and at the same time also its orthogonality. This means that any arbitrary
�eld pattern inside the cavity can be expanded using this set of eigenmodes as the basis set:

E(s, z) =
∑
n,m

cn,m(z)En,m(s, z) (5.19)

which satisfy an orthogonality property similar to the one of eq. (5.6):

ˆ
A

dsEn,m(s, z)Es,p(s, z) = δn,pδm,q (5.20)

where δn,p is the Kronecker delta function.
On the other hand, for the case of an open resonator there is a problem related to the fact

that the round trip propagation kernel K(s, s0, z) is not in general an Hermitian operator. This
means that the existence of a complete and orthogonal set of eigenfunctions of eq. (5.15) is not
guaranteed in advance and must be proven mathematically in each case so that the expansion in
eq. (5.19) and the property in eq. (5.20) are no more automatic.

As an example consider the fundamental equation governing the evolution of electric �eld
E(s, z) in an empty optical resonator of longitudinal length L:[

∇2 + k2(x)
]
E(s, z) = 0 (5.21)

and since one is concerned with the propagation in the z direction, we replace E by the variable u
de�ned by E(s, z) = e−ıkzu(s, z). The solution of this equation is the well known Huygens-Fresnel
integral representing the solution at position z in terms of the solution at z = 0:

u(s, z) =

√
ık

2πz

ˆ +∞

−∞
dt e−ık(s−t)2/2zu(t, 0) (5.22)
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This integral operator mapping u(s, 0) to u(s, z) is unitary and hence normal and energy conserving.
The existence of a complete set of orthogonal eigenfunctions is guaranteed. The search for the
eigenmodes and eigenvalues of the system leads, by means of the Fox and Lie method [1] to an
integral equation of the type:

ˆ
A

K(s, s0, z)un,m(s0, z)ds0 = γn,mun.m(s, z) (5.23)

where K is the Huygens integral for propagation once around the optical cavity which in this case
is given by:

K(s, s0, z) =

√
ık

2πz
e−ık(s−s0)2/2z (5.24)

On the other hand if we consider the case of an open cavity of length L and transverse dimensions
with endpoints s = (x, y) = (±1,±1) the signal �eld inside the resonator after one round trip will
evolve according to the truncation of eq. (5.22):

u(s, z) = Au(s, z0) =

√
ık

2πL

ˆ +1

−1

dt e−ık(s−t)2/2Lu(t, 0) (5.25)

In this situation a pulse of light starts to propagate with transverse �eld given by u(s, 0) and as it
reaches the second mirror, its portion with |s| ≤ 1 re�ects, while its portion with |s| > 1 radiates
to in�nity and is lost. Matematically the operator in eq. (5.25) is a compact operator but it is not
Hermitian and hence all the problems about the existence of a complete set of eigenfunctions and
on their eventual orthogonality arise.

5.3 Overview Of the Concept Of Pseudo-Spectra

The crucial role of eigenvalues in science lies in the fact that in most cases these entities are what
one observes in the �rst place in physical systems. For example the frequencies of oscillation of
strings and drums are immediately perceived by human ears while the energy levels of atoms and
molecules are identi�ed, by quantum mechanics, to be eigenvalues of a self-adjoint Schrödinger
operator. Historically the search for eigenmodes and eigenvalues started in connection with the
analysis of Hermitian matrices and self-adjoint linear operators.

Eigenvalues problems are also important, as we know, because they are used to investigate the
stability of �xed points of a dynamical system [4]. It is well known that �xed points are stable if
all the eigenvalues of the linearized equations have negative real part implying in this case that
any small perturbation of the initial conditions decays asymptotically to zero. Where the spectral
analysis fails is in the lack of prediction of transient growth of the solution of the system before
decaying monotonically to the steady state. This problem arises in connection with the study of
systems whose evolution is described by non-normal operators. In these cases the eigenvalues and
eigenvectors are imperfect tools for analyzing the behaviour of the system because they do not
dominate anymore the evolution of the highly non normal systems.

Consider for example a dynamical system governed by the following di�erential equation:

d~u

dt
= A~u (5.26)

where ~u is a vector and A is a matrix. The formal solution for eq. (5.26) is :
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Figure 5.3.1: ‖eAt‖ versus t for the matrices A1 and A2.

~u(t) = ~u(0)eAt (5.27)

Consider now the two matrices:

A1 = (
−1 1
0 −1

), A2 = (
−1 5
0 −2

) (5.28)

The matrix A1 has a stable �xed point at ~u(t) = (0, 0) with eigenvalues and eigenvectors:

λ1,2 = −1, v1,2 = (1, 0) (5.29)

while the matrix A2 has a stable �xed point at ~u(t) = (0, 0) with eigenvalues and eigenvectors:

λ1 = −2, v1,2 = (−5, 1); λ2 = −1, v1,2 = (1, 0); (5.30)

The eigenvalue -1 of A1 is defective and therefore some growth must be expected in the transient
before decay. On the other hand the eigenvalues of A2 are distinct and negative and so no growth
should occur. Looking at �gure 5.3.1 , where the 2-norm of etA versus time is shown, tells a di�erent
story. In fact while the function ||etA1||2 decays monotonically, the function ||etA2||2 grows in a
transient phase before decaying to the steady state. The di�erence between the prediction based on
the eigenvalues of A and the behaviour of ||etA||2 is the fact that the eigenvectors are not orthogonal.
A linear combination of these eigenvectors may have large coe�cients but small norm because of
cancellation. If the coe�cients drift out of phase with increasing time the cancellation may be
lost, the norm of the linear combination may increase even though each individual component is
decaying monotonically (negative eigenvalues).
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From eq. (5.27) it is clear that the maximum growth at any time t of the solution ~u(t) is given
by:

Sup
~u(0)

||~u(t)||2
||~u(0)||2

= ||eAt||2 (5.31)

and the maximum transient growth is:

Sup
t>0

||eAt||2 (5.32)

In simple cases, like the one we have presented in this section, it is possible to calculate analytically
the transient growth of the system. In more complicated situations an analytical or a numerical
tool is necessary to investigate the magnitude of the transient growth. In particular it is useful to
know the frequency dependence of the ampli�cation factor of a periodic forcing term.

Let's consider the response of a linear system:

~̇x = M~x+ ~f(t) (5.33)

to a modulation ~f(t) = ~f0e
zt with z ∈ C. The asymptotic behaviour is given by:

~x∞ = (zI −M)−1 ~f0 (5.34)

provided that the eigenvalues of M have negative real part. The ampli�cation factor is:

Sup
~f(0)

||~x∞||2
||~f0||2

= ||(zI −M)−1|| = ||R(z,M)|| (5.35)

Where R(z,M) is the resolvent of the matrix M . This equation tells us that the norm of the
resolvent of M is the ampli�cation factor of an exponential perturbation with complex exponent
z. Let us consider as function of z, the norm of the resolvent (zI−M)−1. When z is an eigenvalue
of M, ||(zI −M)−1|| is in�nite, otherwise it is �nite.

If the matrix M is normal then:

||(zI −M)−1|| = 1

dist(z, S(M))
(5.36)

where dist(z, S(M)) represents the distance of z form the spectrum of M , S(M):

dist(z, S(M)) = Inf
λ∈S(M)

d(z, λ) (5.37)

Hence, in the normal case the surface ||(zI −M)−1|| is determined entirely by the eigenvalues.
On the other hand for non normal matrices eq. (5.36) is only a lower bound and the shape of the
surface cannot be inferred from the eigenvalues. For example ||(zI −M)−1|| can have values as
great as 1010 or 1020 even when z is far from the spectrum of M .

It is then natural to de�ne the ε−pseudospectrum [6, 5], for each ε > 0, by:

Λε(M) = {z ∈ C : ||zI −M ||−1 ≥ ε−1} (5.38)

The ε−pseudospectra of M are closed, strictly nested sets with Λ0(M) = Λ(M). If M is normal,
eq. (5.36) implies that Λε(M) is equal to the union of the closed ε− balls about the eigenvalues of
M. In general it may be much larger.
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The norm of (zI −M)−1 is its largest singular value, i.e. the inverse of the smallest singular
value of (zI −M). Therefore an equivalent de�nition of the pseudospectrum is:

Λε(M) = {z ∈ C : σN(zI −M) ≤ ε} (5.39)

This is also the usual way pseudospectra of matrices are computated numerically.
The pseudospectrum is also related to the magnitude of the transient growth, Sup

t>0
||e(tM)||. It

can be shown that [6]:

Sup
t>0
||e(tM)|| ≥ K(M) (5.40)

where the constant K is the Kreiss constant of the matrix M which is de�ned as:

K(M) = Sup
ε>0

αε(M)

ε
= Sup

R(z)>0

R(z)||R(z,M)|| (5.41)

where αε(M) is the largest real part of all the elements of the set Λε(M).
This concepts naturally extend to the case of maps, which are relations that express the state

of a system at stage n+ 1, x(n+1), in terms of its previous state as:

x(n+1) = Mxn (5.42)

where M is a matrix which usually is obtained by linearizing a non linear map around one of its
�xed point. The de�nition of pseudospectrum remains the same of eq. (5.38), while the Kreiss
constant for maps is de�ned as [6]:

K = Sup
ε>0

Kε, Kε =
ρε(M)− 1

ε
(5.43)

where ρε(M) is the radius of the smallest circle in the complex plane that contains Λε(M). Geo-
metrically, Kε is the maximun distance of the boundary of Λε(M) from the unitary circle divided
by ε.

5.4 The Synchronously Pumped Optical Parametric Model

Synchronously pumped optical parametric oscillator (SPOPO) is a concrete example in which
non-normality plays a crucial role in the evolution of the system. A SPOPO is an OPO with the
characteristic that the cavity-round trip time is equal to the delay between successive pulse of
the pumping laser (TR), so that the successive intense pump pulses add coherently reducing the
oscillation threshold of the device.

5.4.1 The SPOPO Model

All electromagnetic phenomena are governed by the Maxwell's equation for the electric and mag-
netic �elds E(~r, t) and B(~r, t) which are [7] :
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∇× E(~r, t) = −∂B(~r, t)

∂t

∇×H(~r, t) =
∂D(~r, t)

∂t
+ J(~r, t)

∇ · E(~r, t) = ρ(~r, t)

∇ ·B(~r, t) = 0 (5.44)

where

D(~r, t) = ε0E(~r, t) + P (~r, t) (5.45)

and where J(~r, t) and ρ(~r, t) are the current and charge densities, respectively. They are related
by the charge conservation law:

∇ · J(~r, t) +
∂ρ(~r, t)

∂t
= 0 (5.46)

D(~r, t) is the displacement �eld within the medium, B(~r, t) is the magnetic �ux density, E(~r, t) is
the electric �eld strength, H(~r, t) is the magnetic �eld strength and P (~r, t) is now the only time-
varying source term. In general, P (~r, t) is a function of E(~r, t) that describes fully the response
of the medium to the �eld, and it is often known as the constitutive equation. If we could just
write the constitutive equation and �nd the solution for the resulting set of Maxwell's equations
with appropriate boundary conditions, then all optical phenomena would be predictable and easily
understood. Unfortunately, this seldom is possible. Physically reasonable approximations must be
resorted to in order to make the mathematical solution of the equations feasible.

We are primarily interested in the solution of these equations in the regions of space that
contain no free charges, so that

ρ(~r, t) = 0 (5.47)

We assume that the material is nonmagnetic, so that

B(~r, t) = µ0H(~r, t). (5.48)

It is well known that optical beams are propagating electromagnetic �elds. To describe these
propagating �elds two Maxwell's equations can be combined to form a single decoupled wave
equation that will describe the electric or magnetic �eld. To get an equation that describes the
electric �eld propagating within a material, the electric and magnetic �eld in Maxwell's equation
must be decoupled. For the electric �eld this can be done by taking the curl of the �rst of eqs. (5.44),

∇×∇× E(~r, t) = − ∂

∂t
(∇×B(~r, t)) = − ∂

∂t
(∇× µ0H(~r, t)) (5.49)

since the spatial and temporal derivatives can commute. Then substituting the second of eqs. (5.44)
into (5.49),

∇×∇× E(~r, t) + µ0
∂

∂t
J(~r, t) + µ0

∂2

∂t2
D(~r, t) = 0. (5.50)

We now use (5.45) to eliminate D(~r, t) from this equation, and we obtain the expression
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∇×∇× E(~r, t) + µ0
∂

∂t
J(~r, t) +

1

c2

∂2

∂t2
E(~r, t) = −µ0

∂2P (~r, t)

∂t2
. (5.51)

where we have used the following relation:

c =
1

√
ε0µ0

(5.52)

It is often convenient to split P (~r, t) into its linear and nonlinear parts as

P (~r, t) = P (1)(~r, t) + P (NL)(~r, t). (5.53)

Here P (1)(~r, t) is the part of P (~r, t) that depends linearly on the electric �eld strength E(~r, t). We
can similarly decompose the displacement �eld D(~r, t) into its linear and nonlinear parts as

D(~r, t) = ε0E(~r, t) + (P (1)(~r, t) + P (NL)(~r, t)) = D(1)(~r, t) + P (NL)(~r, t). (5.54)

In terms of this quantity, the wave equation (5.50) becomes

∇×∇× E(~r, t) + µ0
∂

∂t
J(~r, t) + µ0

∂2

∂t2
D(1)(~r, t) = −µ0

∂2P (NL)(~r, t)

∂t2
. (5.55)

Using the vector identity:

∇×∇× E(~r, t) = ∇ (∇ · E(~r, t))−∇2E(~r, t) (5.56)

we can rewrite the eq. (5.55) as:

∇2E(~r, t)− µ0
∂2

∂t2
D(1)(~r, t)− µ0

∂

∂t
J(~r, t) = µ0

∂2P (NL)(~r, t)

∂t2
(5.57)

In the Fourier space for the time coordinate we have:

∂2

∂z2
E(z, ω) + µ0ω

2ε(ω)E(z, ω) + iωµ0σE(z, ω) = −ω2µ0P
NL(z, ω) (5.58)

where we have used the relations:

D(1)(z, ω) = ε(1)(ω)E(z, ω)

J(z, ω) = σE(z, ω)

and where ε(1)(ω) = ε0εr is the linear dielectric constant. The three �elds that interact in the
medium are:

E1(z, t) =
1

2

[
A1(z, t)ei(k1z−ω1t) + c.c

]
(5.59)

E2(z, t) =
1

2

[
A2(z, t)ei(k2z−ω2t) + c.c

]
(5.60)

E3(z, t) =
1

2

[
A3(z, t)ei(k3z−ω3t) + c.c

]
(5.61)
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all measured in V · m−1. The symbols ki and ωi represent the wave number and the frequency,
respectively, of the three �elds. The constant µi are such that the slowly varying envelopes Ai are
adimensional. They are de�ned as:

µi =
c

deffL

√(
ni+1ni+2

ωi+1ωi+2

)
where c is the speed of light in vacuum, deff is the e�ective nonlinear coe�cient for the three-wave
interaction, ni is the refractive index of the �eld i, and the subscripts permute cyclically.

If we scale time to the time taken by the pump �eld to cross the crystal and the coordinate z
to the crystal length, so that the crystal extend from z = 0 to z = 1:

z = z̄/L

t = t̄/T

where T = L/v1, where v1 = [d k(ωi)/dω]−1 is the group velocity of the �eld Ai. Note that in these
units v1 = 1. By introducing the following quantities:

βi = − 1

2L
v2

1

∂2k(ω)

∂ω2
|ω=ωi (5.62)

ρi =
σωicµ0

2ni
L (5.63)

we obtain the following equations:

∂A1

∂z
= −v−1

1

∂A1

∂t
+ iβ1

∂2A1

∂t2
− ρ1A1 − A2A3e

−i(4k)z (5.64)

∂A2

∂z
= −v−1

2

∂A2

∂t
+ iβ2

∂2A2

∂t2
− ρ2A2 + A1Ā3e

+i(4k)z (5.65)

∂A2

∂z
= −v−1

3

∂A3

∂t
+ iβ3

∂2A3

∂t2
− ρ3A3 + A1Ā2e

+i(4k)z (5.66)

where 4k = k3 − k2 − k1 is the pahse mismatch between the three waves. If we �nally de�ne the
�elds as follows:

E1 = A1e
+i(4k)z

E2 = A2

E3 = A3

we obtain:

∂E1

∂z
= −v−1

1

∂E1

∂t
− (ρ1 − i4k)E1 + iβ1

∂2E1

∂t2
− E2E3

∂E2

∂z
= −v−1

2

∂E2

∂t
− ρ2E2 + iβ2

∂2E2

∂t2
+ E1Ē3

∂E3

∂z
= −v−1

3

∂E3

∂t
− ρ3E3 + iβ3

∂2E3

∂t2
+ E1Ē2 (5.67)
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In the end we write the SPOPO eqs. (5.67) in the reference frame of the pump pulse. We indicate
with (z′, t′) the coordinates in the laboratory frame and with z = z′ and t = t′ + v−1

1 z′ the
coordinates in the pump pulse reference frame. The SPOPO equations in this coordinates become:

∂E1

∂z
= − (ρ1 − i4k)E1 + iβ1

∂2E1

∂t2
+−E2E3 + A1ξ1

∂E2

∂z
= −γ2

∂

∂t
E2 − ρ2E2 + iβ2

∂2E2

∂t2
+ E1Ē3 + A2ξ2

∂E3

∂z
= −γ3

∂

∂t
E3 − ρ3E3 + iβ3

∂2E3

∂t2
+ E1Ē2 + A3ξ3 (5.68)

where the quantity γi = v−1
i − v−1

1 was introduced and we have also added complex functions
ξj = ξj(z, t) which represent stochastic noise terms whose real and immaginary parts are Gaus-
sian distributed around zero with standard deviation equal to one. These noise terms are delta
correlated in both space and time and they represents noise sources inside the crystal:

〈ξ∗i (z, t)ξj(z′, t′)〉 = δijδ(z − z′)δ(t− t′) (5.69)

The real parameters Aj are a measure of the strength of these noise terms.

5.5 Giant Noise Ampli�cation in SPOPO

Equations (5.68) are the starting point of the work of [8, 9] in which giant noise ampli�cation
in SPOPO has been investigated in relation to the condition of non-normality of the linearized
dynamic matrix of the system. Although the singly resonant OPO case was considered there, the
cavity losses were large and only classical noise was included in the treatment. We will �rst extend
the results of the singly resonant case to larger cavity �nesses and then introduce a treatment of
the quantum �uctuations to see if these can be capable to drive the SPOPO in the regime of giant
pulses due to quantum noise ampli�cation (see section 5.6)

5.5.1 The Singly Resonant Case

In the case we deal with in this section the only resonated �eld in the cavity is the signal �eld,
with cavity round trip time Tc, while the mirrors are transparent to the pump and idler �elds.

The e�ect of the cavity, which is resonant only for the signal �eld, is considered by means of
the boundary conditions:

E1(0, t) = P (t) + ψ1(t)

E2(0, t) = exp(−iθ)
√
RE2(1, t+ 1 + γ2 − Tc) + ψ2(t)

E3(0, t) = ψ3(t) (5.70)

where P (t) = P (t+ TR) is the pump pro�le, assumed to be periodic with period TR. In particular
in [8, 9] they consider a Gaussian pump pro�le:

P (t) =

{
Pae

(−t2/τp) −TR ≤ t < TR

P (t+ TR) = P (t)
(5.71)
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Figure 5.5.1: Singly resonant SPOPO

of amplitude Pa and width τp � TR. Tc is the signal cavity round trip time, R is the total intensity
re�ection coe�cient of the cavity, θ is the phase shift acquired per pass by the signal �eld if its
carrier frequency does not coincide with the cavity resonance, ψj(t) is a delta correlated Gaussian
noise of amplitude Bj that represent external (classical) noise sources on the �eld Ej.

The crucial point is that the SPOPO equations can be seen as a mathematical map which
expresses the pulses at one round trip in terms of the pulses at a previous one.

In absence of noise (Aj = Bj = 0) the SPOPO map with initial condition E
(n)
1 = P (τ) and with

E
(n)
1 (z, τ) given at each round trip by the solution of the �rst of eqs. (5.68), admits a zero signal-

idler solution, E
(n)
2 = E

(n)
3 = 0. The condition for the stability of this solution can be investigated

by linearization of eqs. (5.68) around the zero signal-idler solution. The linearization procedure

has the e�ect to decouple the perturbation of the pump, e
(n)
1 (z, τ), from those of the other �elds,

e
(n)
j (z, τ), which are then driven by the unperturbed pump �eld. In this way the equations for
the perturbations of the signal �eld from one round trip to another can be reacast using a linear
operator L into:

e
(n)
2 (0, τ) = Le

(n−1)
2 (0, τ) (5.72)

The stability properties are given by the study of the spectrum of the operator L. In particular
it is well know that the solution will be stable if the spectral radius, ρ(L), of the operator L is
smaller than one. In other words, if the largest eigenvalue of the operator L is smaller than one,
the SPOPO is below threshold and the steady state is stable. Otherwise the SPOPO is above
threshold and the steady state is unstable.

The study of the spectrum of L does not give us information about the noise sensitivity of the
SPOPO system, which can still amplify random noise and produce macroscopic pulses even if it
is below threshold of oscillation. This is the case when the system is strongly non-normal and
the boundaries of the pseudospectrum are su�ciently far from the unitary circle ccorresponding
to threshold.

The presence of a pulsed pump �eld makes it impossible to solve the eqs. (5.68) and their
linearization in an analytic form. In [8, 9] the equations of the SPOPO dynamics have been solved
in a numerical way by using a split-step method, with a Fourier transform in the time domain and
a second-order Runge-Kutta in the longitudinal coordinate.

In performing a linear stability analysis below threshold of the equations (5.68), (5.72) and a
correlated study of the pseudospectrum can tell us if perturbations of certain magnitude and phase
can grow exponentially or not. Fig. 5.5.2 shows the stability eigenvalues and the pseudospectra
for perturbations of amplitude 10q and generic phases. The dots represent the eigenvalues of the
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Figure 5.5.2: Stability analysis of a singly resonant SPOPO. The dots are the stability eigenvalues
of the solution below threshold. The stability threshold is the unit circle. The contour curves
correspond to the growth of the perturbations with initial magnitude 10q where q is the number
reported close to the curves. Parameters are: Bj = 0, Aj = 10−8, ρi = 0, ∆k = θ = 0, γ

i
=

{0, 0.0166, −0.0117} R = 0.137, Tc−TR = −0.0173 and normalized input peak pump of P = 3.6.

linear stability analysis and the fact that they are all inside the unit circle in the complex plane
means that the system is below threshold. If a given curve is outside the unit circle, perturbations
of that size and phase are exponentially ampli�ed. In this light Fig. 5.5.2 shows that for the given
parameters values, the stationary solution is stable (below threshold) while noise �uctuations of
amplitude as small as 10−10 can be ampli�ed. The pseudospectra have been computed using the
singular value decomposition routine in Matlab.

Upper panel of Fig. 5.5.3 shows the signal intensity as a function of time via the round trip
number for the same parameters setting of Fig. 5.5.2. Noise amplitudes Bj in the cavity are 10−8 in
normalized units. It is important to point out that self sustained noisy oscillations occur in spite of
the system working below threshold. The time jitter in the generation of the pulses is a signature
of noise ampli�cation instead of deterministic signal generation. Lower-left and lower-right panels
of Fig. 5.5.3 show the last two signal pulses of the numerical simulation and the amplitudes of
pump and signal �elds averaged over the duration of the simulation, respectively. The generation
of signal pulses below threshold due to noise ampli�cation and non-orthogonality is enormous and
depletes the pump pulse.
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Figure 5.5.3: (upper panel) Signal intensity as function of time via the round trip number. (lower-
left) The last two pulses of the giant noise ampli�cation of the signal �eld presented in the upper
panel. (right panel) The averaged pump (blue line) and signal (red line) during signal noise
ampli�cation. Parameters are as in Fig. 5.5.2.
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5.5.2 High �nesse singly resonant case

Previous work [9] has focused on giant noise ampli�cation in cavities with low mirror re�ectivities
and classical noise sources (see the value of R = 0.137 in the simulations presented in Figs. 5.5.2
and 5.5.3). Treatments of quantum �uctuations in optical cavities are however performed within
the limit of validity of mean-�eld models with high mirror re�ectivities (high cavity �nesse). For
this reason we have written new codes for the numerical integration of the SPOPO equations
and the evaluation of the pseudospectra in this regime. We have then progressively increased the
mirror re�ectivity R from 0.137 to 0.9 while maintaining the conditions of giant noise ampli�cation.
The transients to reach stationary pulse generation due to noise ampli�cation increase in duration
with the mirror re�ectivity making it unpractical to use values of R above 0.9. Fig. 5.5.4 shows
the stability eigenvalues and the pseudospectrum for R = 0.9. Although the phase range of the
growing perturbations is reduced with respect to the low re�ectivity case, giant pulses driven by
�uctuations are predicted in the high �nesse cavity case too. Upper panel of Fig. 5.5.5 shows
the signal intensity as a function of time via the round trip number for the same parameters
setting of Fig. 5.5.4. Noise amplitudes Bj in the cavity are 10−8 in normalized units. Again, self
sustained noisy oscillations occur in spite of the system working below threshold. The time jitter
in the generation of the pulses is a signature of noise ampli�cation instead of deterministic signal
generation. Lower-left and lower-right panels of Fig. 5.5.5 show the last two signal pulses of the
numerical simulation and the amplitudes of pump and signal �elds averaged over the duration of
the simulation, respectively. Even for high-�nesse cavities (R = 0.9) the generation of signal pulses
below threshold due to noise ampli�cation and non-orthogonality is enormous and fully depletes
the pump pulse.

5.5.3 The Doubly Resonant and Degenerate Cases

We have also tried to identify a regime of giant pulse generation from noise for high cavity �nesse, at
equal group velocities for signal and idler and at frequency degeneracy for Type-I OPOs where the
signal and idler �elds have the same polarization. Fig. 5.5.6 shows that at equal group velocities
of the signal and idler �elds, the stability spectrum of eigenvalues develops horns that are well
above the threshold line. The situation is even worse at frequency degeneracy (see Fig. 5.5.7)
where one observes a shift of the pseudospectrum of exponential growth of �uctuations to much
larger amplitudes than the singly resonant case of the previous subsection. Similar situations have
been observed in the equal group velocity and equal frequency cases for decreasing values of the
re�ectivity R. This means that at present we have not been able to observe the phenomenon
of giant sub-threshold pulses at degeneracy. The non-degenerate, singly resonant con�guration
appears to o�er far more �exibility of operation than the degenerate setup for the observation of
noise induced pulses in parametric oscillators.

5.5.4 Conditions for Giant Noise Ampli�cation in SPOPO

In conclusion we can say that three main conditions are preferential for giant noise ampli�cation
in SPOPOs below threshold:

• Large Non-Degeneracy. Non degeneracy of the signal-idler frequencies is of fundamental
importance since the phenomenon does not appear to survive in the degenerate case. In
a SPOPO experiment performed at University of Southampton with a periodically poled
lithium niobate crystal, short SPOPO pulses have been observed [15]. For one sign of the
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Figure 5.5.4: The blue dots are the stability eigenvalues of the solution below threshold. The
stability threshold is the unit circle (in black). The contour curves correspond to the growth of
the perturbations with initial magnitude 10q where q is the number reported close to the curves.
Parameters are: Bj = 0, Aj = 10−8, ρi = 0, ∆k = θ = 0, γ

i
= {0, 0.014, −0.01}, R = 0.9,

Tc − TR = −0.0002 and normalized input peak pump of P = 0.84.
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Figure 5.5.5: (upper panel) Signal intensity as function of time via the round trip number. (lower-
left) The last two pulses of the giant noise ampli�cation of the signal �eld presented in the upper
panel. (lower-right) The averaged pump (blue line) and signal (red line) during signal noise am-
pli�cation. Parameters are as in Fig. 5.5.4.
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Figure 5.5.6: The dots are the stability eigenvalues of the solution below threshold. The stability
threshold is the unit circle. The contour curves correspond to the growth of the perturbations with
initial magnitude 10q where q is the number reported close to the curves. In this case we have equal
group velocity and parameters: Bj = 0, Aj = 10−8, ρi = 0, ∆k = θ = 0, γ

i
= {0, −0.01, −0.01},

R = 0.9, Tc − TR = −0.0002 and normalized input peak pump of P = 0.85
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Figure 5.5.7: The dots are the stability eigenvalues of the solution below threshold. The stability
threshold is the unit circle. The contour curves correspond to the growth of the perturbations with
initial magnitude 10q where q is the number reported close to the curves. In this case we have equal
frequency and parameters: Bj = 0, Aj = 10−8, ρi = 0, ∆k = θ = 0, γ

i
= {0, −0.064, −0.064},

R = 0.9, Tc − TR = −0.0008 and normalized input peak pump of P = 0.8.
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pump-signal detuning the SPOPO pulses were shortened but appeared to be jittery. This
may be a precursor of the Giant-Pulse Ampli�cation described theoretically earlier. In the
experiment of [15] the idler and signal frequencies are hugely di�erent, of the order of 1013Hz.

λp = 1.047µm νp = 2.86× 1014Hz

λs = 1.700µm νs = 1.76× 1014Hz

λi = 2.726µm νi = 1.10× 1014Hz

νs − νi = 6.6× 1013Hz

• Large loss asymmetry. In fact in the experiment of [15] the signal �eld is resonated while the
idler �eld is not. The singly resonant con�guration studied in this thesis appears to be the
optimal for the observation of giant noise ampli�cation.

• Di�erent group velocities. Finally, non-orthogonality and non-normality appear to be asso-
ciated with di�erent speed of propagation of the signal and idler pulses in the crystal.

5.6 Giant Ampli�cation of Quantum Noise

The theoretical approach described above assumes that the noise in the cavity has a classical origin
(thermal �uctuations). In quantum optics, however, it is important to assess if noise induced
phenomena can be driven by quantum �uctuations. In this section we provide the theory and
simulations of SPOPOs under the action of quantum noise.

5.6.1 Nondegenerate OPO in the time domain

We consider a unidirectional ring cavity with a non-degenerate OPO with only the signal resonant
to the cavity [9]. We consider pulses on a single transverse mode; the total length of the cavity
is L, the crystal is between z = 0 and z = Lcr, the empty part of the cavity is between z = Lcr
and z = L. We do not repeat the derivation of the commutation relations that are assumed to be
those found in [10]. We then write a Hamiltonian that is consistent with the classical equations
and �nd the noise terms for the corresponding Langevin equations.

5.6.2 Propagation inside the crystal

The classical equations in dimensional units are:

∂tA
′

1 = [−γ1 + i4k − v1 (∂z − ib1∂tt)]A
′

1 − v1g
′
A
′

2A
′

23

∂tA
′

2 = [−γ2 − v2 (∂z − ib2∂tt)]A
′

2 − v2g
′
A
′

1A
′
3

∂tA
′

3 = [−γ3 − v3 (∂z − ib3∂tt)]A
′

3 − v3g
′
A
′

1A
′
2 (5.73)

where 1, 2, 3 refer to pump, signal and idler, respectively, A′i = (ni/ωi)
1/2Ei, with ni being the

refractive indices and ωi the group frequencies, γi are the overall loss for the i-�eld in the material
due to scattering and partial re�ection at the ends of the crystal, vi are the group velocities, and
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∆k is the phase mismatch. Note that although we use the same Greek letters, γi and ∆k have now
di�erent dimensions and in particular di�erent sizes from those of the previous notes since they
have been multiplied by vi. In order to have the nonlinear terms multiplied by the same constant,
we introduce the transformation Ai = A′i/

√
vi:

∂tA1 = [−γ1 + i4k − v1 (∂z − ib1∂tt)]A1 −
√
v1v2v3g

′
A2A3

∂tA2 = [−γ2 − v1 (∂z − ib1∂tt)]A1 −
√
v1v2v3g

′
A1A3

∂tA3 = [−γ3 − v3 (∂z − ib23∂tt)]A3 −
√
v1v2v3g

′
A1A2 (5.74)

In the following we neglect dispersion, i.e. bi = 0. We consider the pump as a classical �eld, while
we use the approach of Ref. [10] for signal and idler, i.e. continuous mode quantized �elds for
the traveling waves instead of discrete cavity modes. In particular, we use the narrow bandwidth
approximation to reduce eq. (5.7) of [10] as follows

Êi(z, t) =

ˆ
dω

[
~ω

4πε0cSni(ω)

]1/2

âi(ω) exp [−iω(t− ni(ω)z

c
)]→

[
~ωi

2ε0cSni

]1/2

âi(vit− z), (5.75)

where c is the speed of light in vacuum and S is the section of the beam.
The commutation relation should be[

âi(vit− z), â†i (vit
′ − z′)

]
= δ(vit− z − vit′ + z′). (5.76)

Note that the creation and destruction operators are dimensional, with [âi(vit − z)] = z−1/2. In
order to �nd the correct scaling for the noise terms, we introduce variables ai as follows

Ai =

(
ni
ωi

)1/2( ~ωi
4πε0cSni

)1/2

ai =

(
~

2viε0cS

)1/2

ai. (5.77)

The dynamical equations for the variables ai are:

∂ta1 = [−γ1 + i4k − v1∂z] a01 − ga2a3

∂ta2 = [−γ2 − v2∂z] a2 − ga1ā3

∂ta23 = [−γ3 − v23∂z] a3 − ga1ā2 (5.78)

where

g =

(
~v1v2v3

2ε0cS

)1/2

g′. (5.79)

At this point, we write the Hamiltonian for the operators ai, see ref. [11, 12] with transverse
derivatives replaced by the longitudinal one :

H = H0 +Hint (5.80)

H0 = −~
ˆ
dz a†i (ıvi∂z) ai (5.81)

Hint = ı~g
ˆ
dz
(
a1a

†
2a
†
3 − ā1a2a3

)
(5.82)
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and the Lindblad irreversible terms of the density matrix as:

Λρ =

ˆ
dz γi

(
2aiρa

†
i − ρa

†
iai − a

†
iaiρ

)
(5.83)

with i = 1, 2 and sum over repeated indexes.

5.6.3 The Langevin Equation

The equation for the density matrix is:

∂tρ = − i
~

[H0 +Hint, ρ] + Λρ (5.84)

For the derivation of the drift terms in the Fokker-Plank equation, one de�nes

η(αi, ᾱi) = exp

ˆ
dz(ζia

†
i − ζ iai) (5.85)

and uses the following correspondences

Tr

[ˆ
dz a†aρη

]
=

ˆ
dz

(
ᾱ− 1

2
∂α

)(
α +

1

2
∂ᾱ

)
W (5.86)

Tr

[ˆ
dz ρa†aη

]
=

ˆ
dz

(
α− 1

2
∂ᾱ

)(
ᾱ +

1

2
∂α

)
W (5.87)

Tr

[ˆ
dz(a†aρ− ρa†a)η

]
=

ˆ
dz(∂αα− ∂αα)W (5.88)

where the identity
∂ααW − α∂αW = W (5.89)

has been used and where W is the Wigner distribution de�ned as:

W
(
ζi, ζ̄i

)
=

1

π2

ˆ
d2ζi e

−ı(ζiᾱi+ζ̄ia)η(αi, ᾱi) (5.90)

For the equations containing space derivatives, we assume that all functions vanish at the extrema
of the integration range, which should be true for pulses that are well separated from one another.
Putting all of these together, one gets

− i
~

[H0, ρ]→ −
ˆ
dz (∂αi(vi∂z)αi + c.c.)W. (5.91)

For the interaction Hamiltonian we get

− i
~

[Hint, ρ]→ −
ˆ
dz(∂α1a0α2 + ∂α2a0α1 + c.c.)W. (5.92)

with i, j = 1, 2, i 6= j. For the Liuvillian, one gets

ˆ
dzaiρa

†
iη →

ˆ
dz

(
αiαi +

1

2
∂αiαi +

1

2
∂αiαi −

1

2
+

1

4
∂αiαi

)
W, (5.93)
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that gives ˆ
dzΛρη →

ˆ
dzγi(∂αiαi + ∂αiαi + ∂αiαi)W. (5.94)

Using Ito calculus, the Langevin equation and its corresponding Fokker-Planck equation are given
by the formulae (4.3.21) and (4.3.22) in [13], which are

dx = Adt+Bdw (5.95)

∂tp = −
∑
i

∂i [Aip] +
1

2

∑
i,j

∂i∂jDijp (5.96)

where x = (α, α)T , A(x, t) is a vector of so called drift terms, B(x, t) is a matrix, D = BBT ,
w(x, t) is a multivariable Wiener process and the sums are over α and α. In order to have α and
α the complex conjugated of one another, it must be

Āα = Aᾱ (5.97)

B̄α,α = Bᾱ,ᾱ (5.98)

B̄ᾱ,α = Bα,ᾱ (5.99)

We get

Dα,α = B2
α,α +B2

α,ᾱ = 0 (5.100)

Dᾱ,ᾱ = B2
ᾱ,ᾱ +B2

ᾱ,α = 0 (5.101)

Dα,ᾱ = Bα,αBᾱ,α +Bᾱ,ᾱBα,ᾱ = γ (5.102)

These equations are solved by

Re {Bα,α} = −Im {Bα,ᾱ} (5.103)

Im {Bα,α} = Re {Bα,ᾱ} (5.104)

Re {Bα,α} = Im {Bα,α} =

√
γ

2
(5.105)

From these relations we get the Langevin equations

∂tα1 = [−γ1 + i4k − v1∂z]α1 − gα2α3

∂tα2 = [−γ2 − v2∂z]α2 − gα1ᾱ3 +
√
γ2χ2

∂tα3 = [−γ3 − v3∂z]α3 − gα1ᾱ2 +
√
γ3χ3 (5.106)

where χi are noise terms with dimension (tl)−1/2 and correlation

〈χ̄i(z, t)χj(z′, t′)〉 = δijδ(z − z′)δ(t− t′) (5.107)

Finally one can exchange the role of the space and time derivatives for computational convenience
by introducing the new variables a′1 =

√
v1a1 and α

′
i =
√
viαi:
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∂zα
′

1 =
1

v1

[−γ1 + i4k − ∂t]α1 −
gα2α3√
v1v2v3

∂zα
′

2 =
1

v2

[−γ2 − ∂t]α2 −
gα1ᾱ3√
v1v2v3

+

√
γ2

v2

χ2

∂zα
′

3 =
1

v3

[−γ3 − ∂t]α3 −
gα1ᾱ2√
v1v2v3

+

√
γ3

v3

χ3 (5.108)

Note that in this case there is no di�erence between the equation in the Ito calculus and in the
Stratonovich calculus because the di�usion coe�cients do not depend on the variables α,α.

5.6.4 Propagation in the empty part of the cavity

From [9], the initial condition for the signal in dimensional units is

A2(0, t) = exp (iθ)
√
RA2(Lcr, t0 = t− L− Lcr

c
), (5.109)

with R the re�ectivity of the mirror. By distributing outside the crystal the dissipation caused by
the mirror, we can replace the boundary condition in eq. (5.109) with the equation

∂tA2 =

(
c
iθ + ln

√
R

L− Lcr
− c∂z

)
A2. (5.110)

The formal solution of eq. (5.110) is

A2(z, t) = exp

[
c(t− t0)

iθ + ln
√
R

L− Lcr

]
A2(z − c(t− t0), t0), (5.111)

which, for z = L and t = L/c such that t0 = Lcr/c, corresponds to eq. (5.109) (note that z = L and
z = 0 coincide with each other in a ring cavity). By using the narrow bandwidth approximation
of eq. (2.8) of [14],

Êi(z, t) =

ˆ
dω

[
~ω

4πε0cS

]1/2

âi(ω) exp [−iω(t− z

c
)]→

[
~ωi

2ε0cS

]1/2

âi(ct− z), (5.112)

eq. (5.110) can be transformed into the Langevin equation

∂tα2 =

(
c
iθ + ln

√
R

L− Lcr
− c∂z

)
α2 +

√
c
| ln
√
R|

L− Lcr
χ(z, t), (5.113)

where χ is a noise term with dimension (tl)−1/2 and correlation as in eq. (5.107). Again, one needs
to enter a �nal renormalization of the variable α′2 =

√
cα2 when transforming these equations into

those with the space di�erentials for numerical integration to obtain:

∂zα
′
2 =

(
iθ + ln

√
R

L− Lcr
− c−1∂t

)
α′2 +

√
| ln
√
R|

L− Lcr
χ(z, t), (5.114)
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5.6.5 Application of Ito calculus

This last equation can be integrated using Ito's calculus [16]. We can rewrite it as an Ornstein-
Uhlenbeck process for a stochastic process Xz,

dXz = µXz dz + σdBz (5.115)

with

µ =
ln(
√
R)

L− 1
− i θ

L− 1
= µR + iµI

σ =

√
| ln(
√
R)|

L− 1
. (5.116)

In writing these equations we have assumed that the longitudinal variable z is non-dimensional
and scaled to the crystal length Lcr.

The solution of (5.115) is given by the stochastic integral

XL = eµ(L−1)X2 + σ

ˆ L−1

0

eµ(z−s) dBs . (5.117)

The integral is a stochastic variable with normal distribution (it is the limit of the sum of normally
distributed random variables). Hence we need to compute only the expectation value and variance
of XL to have a complete description of its distribution. The expectation value of the integral is
zero (the integral is a random walk starting from the origin). Hence

E(XL) = eµ(L−1)X2. (5.118)

The real and imaginary parts of Xz = Rz + iIz are independent random variables with the same
distribution. We can compute their variance using Ito's isometry. This states that

E

[(ˆ T

0

f(t, ω) dBt

)2
]

= E

[ˆ T

0

f 2(t, ω) dt

]
(5.119)

where f(t, ω) is a function of the parameter t and the stochastic variable ω. In other words, for
the purpose of computing the variance we can replace the stochastic integral over the Brownian
motion Bt with a standard time dependent integral.

We now apply the Ito isometry to the variance of (5.115) keeping in mind that Bz is a complex
Brownian motion with independent real and imaginary parts,

Bz = B1z + iB2z. (5.120)

Therefore,

Var(RL) = Var(IL) = E
[
R2
L

]
= σ2E

[(ˆ L−1

0

eµR(z−s) cos [µI(z − s)] dB1z

)2
]

+ σ2E

[(ˆ L−1

0

eµR(z−s) sin [µI(z − s)] dB2z

)2
]

= σ2

ˆ L−1

0

e2µR(z−s) dz = − σ2

2µR

(
1− e2µR(L−1)

)
=

1−R
2

.

(5.121)
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By normalizing the variables we are led to consider quantum �uctuation as Gaussian noise of
amplitude around 10−9 ∼ 10−8. One can now note that the quantum Langevin equations (5.108)
are mathematically equivalent to the classical equations integrated earlier (see eqs.5.68) in the case
of high-�nesse (the narrow bandwidth approximation). The important result is that the quantum
�uctuations correspond to noise of magnitude 10−9 ∼ 10−8. This means that quantum �uctuations
can induce giant noise ampli�cations in SPOPO in the singly resonant case with re�ectivities of
order R = 0.9, as reported in Fig. 5.5.4 and Fig. 5.5.5.

5.7 Conclusions

In this Chapter model equations for the evolution of signal and idler pulses in a SPOPO are derived
and numerically integrated. A novel regime of giant sub-threshold pulses driven by quantum �uctu-
ations is described through the analysis of stability eigenvalues, growth factors and pseudospectra.
Sub-threshold pulses driven by quantum �uctuations are found at various mirror re�ectivities in
the non-degenerate regime where signal and idler have di�erent group velocities. As a matter of
fact we have shown that quantum �uctuations, which are of amplitude around around 10−9 ∼ 10−8,
can induce giant noise ampli�cations in SPOPO in the singly resonant case with re�ectivities of
order R = 0.9. Now the question that remains to be addressed is if giant sub-threshold pulses,
driven by quantum �uctuations, still retain the non classical features typical of below threshold
SPOPOs. In other words, if we want to move towards the realization of macroscopic continuous
variable entanglement in SPOPOs we need to understand if quantum entanglement in OPOs below
threshold survives the necessary conditions for Giant Pulse Ampli�cation.

A positive answer to this question, which we have not fully investigated, would be very useful
for pratical implementation in which strong entangled beams are required, besides the obvious
theoretical importance of such a phenomenon.
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6
Self-organization, Pattern Formation, Cavity Solitons and

Rogue Waves in SROPOs

6.1 Introduction.

In the last two chapters we have seen and investigated quantum and stochastic properties of singly
resonant optical parametric oscillators (SROPO) below threshold of operation. To complete this
thesis, we analyse in this chapter novel and somewhat unexpcted properties of SROPOs above the
threshold of operation. In particular we study the formation of spatial transverse patterns, cavity
soltions and even optical turbulence in these optical systems. Optical turbulence, being a form of
noise ampli�cation, closes the circle of the investigations of the stochastic properties of SROPOs.

Transverse pattern formation, autosolitons and cavity solitons have been the subject of intense
research in nonlinear optics in the last two decades since their original predictions [1, 2, 3, 4, 5].
Unlike in other �elds of science, transverse patterns and dissipative solitons �nd useful applica-
tions in photonics such as optical memories, delay lines and optical registers [6]. Cavity solitons
counterparts in the propagation direction have also been shown to generate passive mode-locking
in �ber lasers [7].

Formation of transverse spatial structures in quadratic nonlinear cavities was predicted �rst in
optical parametric oscillators (OPOs) [8, 9] and later extended to second harmonic generation [10,
11]. Early predictions in OPOs were con�ned to the degenerate case where signal and idler �elds
have the same frequency. Experimental evidence of pattern formation was indeed found in triply
resonant degenerate OPOs close to the confocal cavity con�guration [12] and via conical emissions
[13, 14]. Con�rmation of the predictions of [8] was provided in a broad-aperture degenerate OPOs
in a plane-mirror mini-cavity [15]. Degenerate OPOs also display phase domain dynamics and
dark-ring cavity solitons [17]. Finally, OPO models for non-degenerate Type-II cases in doubly or
triply resonant cavity con�gurations have also been shown to display self-organization and pattern
formation [16, 18, 19, 20, 21].

Transverse instabilities in the case of non-degenerate, singly resonant OPOs (SROPOs), where
the signal �eld is the only resonated �eld in an optical cavity, have been less discussed in the
literature. On the theoretical side pattern formation in SROPOs is expected to replicate results of
the complex Ginzburg-Landau laser case [18]. On the experimental side cw SROPO con�gurations
are notoriously di�cult to operate because of high oscillation thresholds (typically several watts)
in common birefringent crystals [22]. Quasi-phase matching in periodically poled materials has,
however, considerably reduced operation thresholds of cw SROPOs [23] allowing for diode [24] and
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�ber [25] laser pumping for spectroscopy applications. A major advantage of cw SROPOs is that
their wide tunability is monotonic and not a�ected by mode jumps typical of doubly or triply
resonant con�gurations.

In this chapter we investigate the formation and dynamics of transverse structures in SROPOs.
We �rst derive a mean-�eld model in section 6.2 where the nonlinearity is of sinc2 form in agreement
with early studies of SROPO steady states emissions [26, 27, 28]. The analysis builds on approaches
that describe and integrate the propagation equations inside the OPO crystal [29, 30] by considering
transverse e�ects and by carefully separating the mean-�eld and close-to-threshold approximations.
The �nal model equations are capable of describing transverse pattern formation in the presence
of pump depletion, signal-idler recombination and external seeding close to the signal frequency.
External seeding proves to be of fundamental importance for transverse structures in SROPOs
since, in its absence, changes of the cavity length are compensated by changes in the signal (and
idler) frequency thus nullifying the common mechanism of Turing pattern formation in o�-resonant
optical systems [1, 31].

In section 6.3 plane-wave steady states and their stability are analyzed in the SROPO models
with external seeding, close to and far from threshold. These studies con�rm that no pattern
formation should be expected without a detuned external seed. Analytical expressions for the
location in the parameter space of the loss of stability of homogeneous solutions to spatially
modulated structures are then provided in section 6.4. The thresholds for pattern formation when
changing the seeding intensity are then compared with those obtained from numerical integration of
the SROPO dynamical equations with excellent agreement. Section 6.5 investigates when spatially
periodic spatial structures break down to either optical turbulence for small seeding intensities or
to cavity solitons for large pump and seeding intensities. Optical turbulence is demonstrated to be
the mechanism which generates rogue waves in the spatio-temporal evolution of the output �elds.
Finally, bright and dark cavity solitons are found in multistable con�gurations with localized
hexagonal and honeycomb patterns.

6.2 Mean-�eld models.

We consider parametric down conversion in a χ(2) crystal of length L at perfect phase matching,
a condition that can also describe the average e�ect of quasi-phase matching in periodically poled
crystals. In this case the propagation of the pump, signal and idler �elds in the crystal along the
z direction are described by [32]:

∂zE0 +
n0

c
∂tE0 =

i

2k0

∇2E0 − αE1E2

∂zE1 +
n1

c
∂tE1 =

i

2k1

∇2E1 + µαE0E
∗
2 (6.1)

∂zE2 +
n2

c
∂tE2 =

i

2k2

∇2E2 + ναE0E
∗
1 .

where Ej with j = 0, 1, 2 are the slowly varying amplitudes of pump, signal and idler �elds,
respectively, with wave-numbers kj = njΩj/c and∇2 is the transverse Laplacian operator along the
x and y directions perpendicular to the propagation axis z. The frequency constraint Ω0 = Ω1 +Ω2

is rewritten as µ + ν = 1 where Ω1 = µΩ0, Ω2 = νΩ0 and the e�ective coupling parameter α is
given by

α =
4πΩ0χ

(2)

nc
(6.2)
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Figure 6.2.1: Schematic diagram of a SROPO cavity of length L with a single partially re�ecting
mirror R and containing a parametric down-conversion crystal of length L.

where χ(2) is the second order susceptibility of the crystal, n = n0 = n1 = n2 is the common
refractive index of the three waves that guarantees phase matching and c is the speed of light in
vacuum.

We assume that the parametric down conversion crystal is contained in an optical cavity of
length L where the signal �eld is the only one to be resonated (see Figure 6.2.1). The steps
involved in taking the mean-�eld approximation are the same as those reported in [21] although
in the SROPO case there is only one resonated �eld. Hence we will consider only the following
equation:

∂zE1 +
n1

c
∂tE1 =

i

2k1

∇2E1 + µαE0E
∗
2 (6.3)

We set z = 0 at the entrance of the crystal and write the longitudinal boundary condition as :

E1(x, y, 0, t) = eD E1

(
x, y, L, t− L− L

c

)
+
√
TEIN(x, y); (6.4)

D = ln
√
R− iδ + (L − L)

i

2k
∇2; (6.5)

δ =
ωc − Ω1

c
L ; T = 1−R, (6.6)

where R (T ) is the mirror re�ectivity (transmittivity) for the signal �eld, EIN is a complex input
�eld of frequency ωIN close to Ω1, normally known as the seeding., while ωc is the frequency of the
longitudinal cavity mode closest to Ω1. Note that if the seeding is zero, the detuning is also zero
since the frequency Ω1 shifts to the cavity mode by changing the idler frequency while maintaining
the relation Ω0 = Ω1 + Ω2. In the following we use the transmittivity T of the output mirror as a
small parameter, i.e. √

T = ε� 1 . (6.7)

In order to impose the boundary condition (6.4) on the propagation equation (6.3), the usual Mean
Field Limit (MFL) transformation is entered:

z′ = z

t′ = t+

[
L − L
c

]
z

L
. (6.8)
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Under condition (6.8), we obtain

∂z = ∂z′ +

[
L − L
cL

]
∂t′ ; ∂t = ∂t′ ; (6.9)

∂z +
n

c
∂t = ∂z′ +

[
L − L
cL

]
∂t′ +

n

c
∂t′ = ∂z′ +

[
L+ (n− 1)L

cL

]
∂t′ . (6.10)

By introducing the new �eld variable F such that

F = ΓE1 +
√
TEIN

z

L
with Γ = exp

(
D z
L

)
(6.11)

we obtain

∂t′F +
cL

L+ (n− 1)L
∂z′F

=
cL

L+ (n− 1)L

[
D
L

(
F −
√
TEIN

z

L

)
+ Γ

(
∂zE1 +

n

c
∂tE1

)
+
√
TEIN

1

L

]
=

cL

L+ (n− 1)L

[
D
L

(
F −
√
TEIN

z

L

)
+ Γ

(
i

2k1

∇2E1 + µαE0E
∗
2

)
+
√
TEIN

1

L

]
. (6.12)

The longitudinal boundary conditions (6.4) are now transformed into

F (x, y, 0, t′) = F (x, y, L, t′) (6.13)

i.e. the �eld is periodic at the same time t′. The standard MFL conditions are:

ε � 1; δ = O(ε)� 1;

αL = O(ε)� 1; (L − L)/2k1 = O(ε)� 1 (6.14)

One then obtains:

D ≈ −T
2
− iδ + i

L − L
2k1

∇2 ; Γ ≈ 1 +
D
L
z, (6.15)

since

ln
√
R = ln

√
1− T ≈ ln

(
1− T

2

)
≈ −T

2
. (6.16)

At the �rst order in ε eq. (6.12) becomes:

∂t′F +
cL

L+ (n− 1)L
∂z′F

= − c T/2

L+ (n− 1)L
F − i c δ

L+ (n− 1)L
F + i

cL
2k1[L+ (n− 1)L]

∇2F

+
c
√
T

L+ (n− 1)L
EIN +

c L

L+ (n− 1)L
µαE0E

∗
2 . (6.17)
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For convenience, we introduce the parameters

τ =
L+ (n− 1)L

c
; γ =

T

2
; a =

L
2k1

. (6.18)

One then obtains:

τ ∂t′F + L ∂z′F = −γF − iδF + ia∇2F + µαLE0E
∗
2 +

√
2γEIN . (6.19)

Since the new longitudinal boundary condition (6.13) is now synchronous and periodic, one can
use an expansion in longitudinal Fourier modes.

The �nal equation for the normalized signal �eld reads as:

τ ∂t′E1 + L ∂zE1 = −γE1 − iδE1 + ia∇2E1

+ µαLE0E
∗
2 +

√
2γEIN . (6.20)

Under the MFL conditions, however, only the longitudinal mode closest to Ω1 has components
di�erent from zero if all the terms on the right hand side of equation (6.17) are independent of
z′. However, the term that contains E0E

∗
2 is, in principle, a function of z′. The requirement

for consistency with F , i.e. E1, independent of z′ is that the nonlinear term is also required
to be independent of z′. There are two possibilities to accomplish this: 1) both E0 and E2

are also independent of the propagation direction and 2) the signal is a�ected by the average
of the propagation of the pump and wave �elds along the crystal. The z−variation per pass of
the resonated signal �eld, E1, hence can be neglected when it is a�ected by the average of the
propagation of the pump and idler waves along the crystal [30], i.e.

E1 =
1

L

ˆ L

0

E0(z)E∗2(z)dz . (6.21)

To obtain an explicit dependence of pump and idler �elds along the direction of propagation we
consider the �rst and third equations of the system (6.1) and neglect di�raction in the crystal:

dzE0(z) = −αE1E2(z) (6.22)

dzE2(z) = ναE0(z)E∗1 (6.23)

where the signal amplitude E1 is now independent of z. By taking the second derivative of (6.22)
and using (6.23), one obtains

d2
zE0(z) = −(να2I1)E0(z) (6.24)

which shows that the pump �eld oscillates along the propagation direction with a frequency that
depends on the signal intensity I1. Integrating this equation we �nd

E0(z) = A0 cos
(
α
√
νI1z

)
, (6.25)

where A0 is the amplitude of the pump �eld at the entrance of the crystal [30]. From (6.22),

E2(z) = − 1

αE1

dzE0 = A0E
∗
1

√
ν

I1

sin
(
α
√
νI1z

)
(6.26)

in agreement again with [30].
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We can now calculate the spatial average (6.21):

1

L

ˆ L

0

E0(z)E∗2(z)dz = |A0|2
E1

2αLI1

sin2
(
αL
√
νI1

)
(6.27)

and insert it into (6.19):

τ ∂t′E1 + L ∂zE1 = −γE1 − iδE1 + ia∇2E1 (6.28)

+ µ|A0|2
E1

2I1

sin2
(
αL
√
νI1

)
+
√

2γEIN .

By expanding in longitudinal Fourier modes and retaining only the longitudinal mode closest to
Ω1, corresponding to ∂z′E1 = 0, we �nally obtain:

∂t′E1 = κ[−(1 + iθ)E1 + iâ∇2E1

+ µ|A0|2
E1

2γI1

sin2
(
αL
√
νI1

)
+ ÊIN ] (6.29)

where

κ =
γ

τ
=

γc

L+ (n− 1)L
; â =

a

γ
=
L

2k1γ
;

θ =
δ

γ
=

(ωc − Ω1)L
cγ

; ÊIN =

√
2

γ
EIN . (6.30)

Finally, we renormalize the transverse space variables x and y by dividing them by
√
â, the time

variable by multiplying it by κ and the �eld amplitudes according to

E = αL
√
ν E1 ; |E0|2 = |A0|2

µνα2L2

2γ

EIN = αL
√
ν ÊIN (6.31)

to obtain

∂τE = ∂κt′E = EIN − (1 + iθ)E (6.32)

+ |E0|2
E

I
sin2

(√
I
)

+ i∇2E .

The analysis of eq. (6.32) is the main focus of the research presented here. It will be referred to
as the sinc2model since sin2(

√
I)/I = sinc2(

√
I).

We note that in SROPO con�gurations the frequency of the signal �eld, Ω1, is tuneable by
corresponding changes of the idler frequency, Ω2, while maintaining the energy conservation con-
dition Ω0 = Ω1 + Ω2. This means that with no external seeding (EIN = 0) the detuning θ is also
zero since the SROPO tunes its signal frequency to the closest longitudinal cavity mode ωc. With
an external seeding di�erent from zero and detuned with respect to the cavity, it is advantageous
to consider the external frequency ωIN as reference and introduce

θ =
(ωIN − Ω1)L

cγ
. (6.33)

Under these conditions EIN should be considered to be real and equation (6.32) remains unchanged.
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It is interesting to investigate the behaviour of the pump and idler �elds inside the OPO crystal
as provided by Eqs. (6.25) and (6.26). Figure 6.2.2 shows the pump and idler intensities during
propagation for three sample values of |E0|2, namely 1.2, 2.0 and 8.0. While at |E0|2 = 1.2 (black
lines) the changes of pump and idler per pass are limited, for |E0|2 = 2.0 (red lines) and |E0|2 = 8.0
(blue lines) they are substantial. In particular, full pump depletion and substantial back-conversion
of signal and idler �elds into the pump are clearly visible in Figure 6.2.2 for |E0|2 = 8.0. In the
SROPO case these phenomena are not incompatible with the mean �eld approximation and are at
the base of the sinc2 nonlinearity of model (6.32). The mean �eld approximation implies that the
signal intensity remains almost constant with respect to its input value during propagation in the
χ(2) medium with large changes taking place over several cavity round-trips. No such constrains
apply to pump and idler �elds as shown in Fig. 6.2.2.
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Figure 6.2.2: Pump intensity (solid lines) and idler intensity (dashed lines) in the SROPO crystal
for |E0|2 = 1.2 (black lines), |E0|2 = 2.0 (red lines) and |E0|2 = 8.0 (blue lines). The intensities are
normalized to the input pump values |E0|2. The propagation distance is normalized to the crystal
length.

Note that the cos2 and sin2 nature of the pump and idler intensities, respectively, guarantees
conservation of the energy density in every point along the SROPO crystal. Energy conservation
in turn guarantees the validity of the Manley-Rowe relations about the variations of the energy
densities Ni per �eld along the crystal:

dN0

dz
= −dN1

dz
− dN2

dz
(6.34)

since dN1/dz = 0. These facts are a-posteriori con�rmations that the physical processes described
in Eqs. (6.1) are compatible with the application of the mean-�eld limit to the signal �eld even
for large values of the pump and seeding intensities.

6.2.1 The close-to-threshold approximation.

Close to the signal generation threshold it is possible to obtain partial di�erential equations in the
mean-�eld limit where the nonlinear terms are in a polynomial form and thus easier to analyze.
The scaling of the mean �eld limit requires that the nonlinear coe�cient per pass, αL, has to be
of the order of the mirror transmittivity, 1 − R. This implies that the argument of the sin2 term
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in equation (6.27) may become large for large signal intensities without breaking the mean-�eld
conditions. Close to threshold, however, the signal intensity satis�es I1 < 1 and the sin2 term can
be approximated by a power expansion. In this case pump and idler display small changes per pass
across the crystal meaning that pump depletion and back-conversion do not take place in a single
pass. Equations (6.25) and (6.26), however, tell us that while the pump can be approximated to
�rst order to a constant value A0, the idler has to grow along z from its initial value. This is in
agreement with previous analysis below threshold where the important noise term is associated
with the idler �uctuations at the entrance of the crystal [33]. In the case of SROPOs close to
threshold, we can approximate E0 and E2 in (6.25) and (6.26) with

E0(z) ≈ A0

(
1− νI1α

2z2

2

)
(6.35)

E2(z) ≈ A0E
∗
1

(
ναz − ν2I1α

3z3

6

)
. (6.36)

By using these expressions to evaluate the average (6.21) one obtains:

1

L

ˆ L

0

E0(z′)E∗2(z′)dz′ ≈ ναL|A0|2E1

2

(
1− να2L2I1

3

)
.

By repeating the same steps of the mean-�eld limit as described in the previous subsection we
obtain:

∂τE = EIN − (1 + iθ)E + |E0|2
(
E − EI

3

)
+ i∇2E (6.37)

which describes the spatio-temporal behaviour of the SROPO close to threshold in the presence of
an external seeding EIN and will be referred to as the cubic model.

6.3 Plane wave steady-states

As mentioned in section 6.2, when there is no external seeding, EIN = 0, the detuning is zero since
the SROPO automatically adjusts its frequency to the closest cavity resonance. The plane wave
steady-state intensities, Is, are implicit for the sinc2 model (see [26, 27, 28]) and explicit for the
cubic model:

Is = |E0|2 sin2
(√

Is

)
(6.38)

Is = 3(|E0|2 − 1)/|E0|2

The steady-state signal intensity of the SROPO as a function of the pump intensity, |E0|2, is shown
in Figure 6.3.1 for the sinc2 model (solid line) and the cubic approximation (dashed line). These
are trivially complemented by the zero-intensity state that is stable below threshold, |E0|2 < 1, and
unstable above. In the cubic case the stationary intensity above threshold asymptotes to the value
3 for large pump intensities and is always stable. The steady-state curve for the sinc2 model, on the
other hand, becomes multivalued at large values of the input pump intensity (|E0|2 > 20, not shown
here) [27, 28]. Here, however, we are interested in values of the pump intensity below 10, as these
are more realistic with respect to present state-of-the-art of broad area SROPO realisations. In
adimensional units for the amplitude and remembering that the threshold for oscillation is attained
for |E0|2 = 1 (see the second of eqs. 6.38), a value of |E0|2 = 10 means 10 times above threshold. In
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Figure 6.3.1: Intensity of the SROPO steady-state for the sinc2 model (solid line) and the cubic
approximation (dashed line) with increasing pump intensities for EIN = 0 and θ = 0. All variables
are dimensionless.

this regime it is possible to prove that, above threshold, the non-zero steady-state intensities in the
sinc2 model are also stable [28]. Note that when comparing the sinc2 and the cubic models, there
is a substantial di�erence between their steady-state intensities even below |E0|2 = 2. At twice
above threshold this di�erence becomes considerable and the close to threshold (cubic) model has
to be discarded.

Analogously to lasers, the �eld phase is decoupled from the steady-state equations and is
a�ected by �uctuations and drift processes. When there is external seeding, EIN > 0, the phase
of the SROPO locks to that of the external beam, depending on the magnitude of the detuning
θ and the input intensity. Such behaviour strongly di�ers from that of EIN = 0. In the case of
EIN 6= 0 the steady-state intensities are given by

E2
IN = Is

[(
1− |E0|2f(Is)

)2
+ θ2

]
(6.39)

where

f(Is) = sinc2(
√
Is) (6.40)

f(Is) = 1− Is/3 (6.41)

for the sinc2 and cubic models, respectively. The steady-state curves of the SROPO intensity
versus the input intensity become S-shaped, a behaviour typical of injected optical systems, as
shown in section 6.4.

For the cubic model without di�raction it is possible to obtain analytical results. For example,
for |θ| < (|E0|2 − 1)/

√
3 the plane-wave steady-state curves are S-shaped, and the positions of

the turning points [(E2
IN)−, I−s ] and [(E2

IN)+, I+
s ] can be determined by �nding the maxima and

minima of (6.39):

I±s =
2(|E0|2 − 1)± ((|E0|2 − 1)2 − 3θ2)

1/2

|E0|2
(6.42)
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and then using these values in (6.39). At resonance, θ = 0, the turning points are located at:[
(E2

IN)+, I+
s

]
=

[
0, 3(|E0|2 − 1)/|E0|2

]
(6.43)[

(E2
IN)−, I−s

]
=

[
4(|E0|2 − 1)3/(9|E0|2),

(|E0|2 − 1)/(3|E0|2)
]
.

Note that the + turning point at resonance corresponds to the zero seeding case of SROPO intensity
given by eq. (6.38).

6.3.1 Linear stability analysis of the SROPO with seeding.

The linear stability analysis of the steady-states given in the previous section produces two stability
eigenvalues:

λ± = ξ ±
√
β2 − θ2 (6.44)

where for the sinc2 model

ξ = |E0|2sinc(2
√
Is)− 1 (6.45)

β = |E0|2
cos(2

√
Is) +

√
Is sin(2

√
Is)− 1

2Is
(6.46)

and for the cubic model

ξ = |E0|2 − 1− 2|E0|2Is/3 (6.47)

β = −|E0|2Is/3 .

For the sinc2 model, the stability eigenvalues are implicit functions of the steady-state intensity, Is.
It is, however, easy to display the stability of the stationary states graphically along the S-shaped
curves by picking increasing values of Is, evaluating λ± and reporting the stability result on the
diagram, as displayed in Figures 6.3.2 and 6.4.1. Here black solid lines correspond to two negative
real eigenvalues (sinks), turquoise solid lines to stable complex eigenvalues (foci), dot-dashed blue
lines to at least one positive real eigenvalue (saddles or sources) and red dashed lines to complex
eigenvalues with positive real part (unstable foci). In terms of bifurcations, the intersection of a
black solid line and a blue dot-dashed line signals a saddle-node bifurcation, while the transition
of a turquoise solid line into a red dashed line signals a Hopf bifurcation.

We �nd that the turning points of the S-shaped curves always correspond to either saddle-node
(the [(E2

IN)+, I+
s ] points) or saddle-source (the [(E2

IN)−, I−s ] points) bifurcations corresponding
to a change of sign of one real eigenvalue. For the cubic model this fact can be demonstrated
analytically. In the lowest branch of the S-curve, the two real eigenvalues turn complex (see the
red dashed line in Figures 6.3.2 and 6.4.1). This means that the lowermost part of the S-curve is
Hopf unstable.

6.4 Turing instabilities and pattern formation

In this section we describe instabilities of the stationary states of the SROPO to transverse per-
turbations due to di�raction with and without external seeding. By moving to the spatial Fourier
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Figure 6.3.2: Plane wave steady-state stability and pattern formation for (a) the sinc2 model (6.32)
of a SROPO and (b) the cubic model (6.37) of a SROPO close to threshold. The solid (black),
dot-dashed (blue) and dashed (red) lines correspond to stable, unstable and Hopf unstable plane
wave steady states, respectively. The black dotted (black dashed) lines correspond to the minimum
and maximum of the intensity of stationary hexagonal (roll) patterns. The vertical dotted line
corresponds to the instability of hexagons leading to optical turbulence. Parameters are |E0|2 = 2
and θ = −0.3. All variables are dimensionless.

space of the transverse wave-vector k and repeating the linear stability steps of the previous section,
we obtain the two stability eigenvalues of (6.44) but with the detuning θ replaced by

θk = θ + k2 (6.48)

which introduces an explicit dependence on the transverse spatial scale. Note that since both θ
and k have no physical dimensions, also θk is an adimensional quantity.

We start with the analysis of possible Turing instabilities without external seeding (EIN = 0)
and with zero detuning θ = 0. In this case, the evaluation of the stability eigenvalues with the
appropriate factor (6.48) is done only at the values of Is given by (6.38). In the cubic case the
eigenvalues reduce to:

λ± = −(|E0|2 − 1)±
√

(|E0|2 − 1)2 − k4 . (6.49)

The largest eigenvalue has a zero value for the plane-wave case, k = 0, corresponding to the
uncoupled phase of the SROPO models without seeding as studied in the previous section. For
large wave-vectors the eigenvalues can become complex, i.e. one may observe damped oscillations.
However, the presence of di�raction cannot make the real part of the eigenvalues positive which
means that, for the SROPO alone, there are no spatio-temporal instabilities and hence no pattern
formation. We obtain the same result for the sinc2 model within the pump intensity ranges studied
here although the implicit nature of the steady-state (6.38) requires straightforward numerical
evaluations of the stability eigenvalues for given wave-vectors k.

We now consider the case of external seeding where the detuning, θ, can be non-zero. By using
the expressions (6.44) with θ replaced by θk (6.48) one observes that the transverse wave-vector
can destabilise the system only when it counterbalances the detuning and that this is most e�ective
when

k2 = −θ (6.50)
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i.e. the o�-resonance mechanism for pattern formation typical of optical systems [1, 8]. We refer
to the o�-resonance mechanism as Turing pattern formation since it has been demonstrated that
all the requirements of Turing instabilities are fully satis�ed [31].

The condition (6.50) provides us with the value along the steady-state curves at which we
expect pattern formation to occur, Ics . This value simply corresponds to the steady-state value of
the plane wave solution at zero detuning (6.38) since for θk = 0 the stability eigenvalues (6.44)
reduce to λ± = ξ ± β, where ξ and β are given by (6.45) for the sinc2 model and (6.47) for the
cubic model. By tracing a horizontal line at the Ics value on the diagrams of Figures 6.3.2 and 6.4.1
one obtains the corresponding value of |Ec

in|2 of the seeding intensity where the Turing instability
takes place. The bifurcation from the homogeneous states to steady transverse patterns is obtained
when decreasing the seeded amplitude EIN so that the locked plane wave state progressively
approaches the upper turning point of the S-shaped steady-state curve (the [(E2

IN)+, I+
s ] point).

Before reaching it, the stationary plane wave intensity reaches the value Ics and a stationary roll
pattern is formed supercritically while a hexagonal pattern is formed subcritically in agreement
with [35]. This bifurcation scenario is in agreement with early analysis of complex Ginzburg-
Landau models in the presence of injection [36, 37]) although our cubic model does not contain
di�usion or purely imaginary nonlinearities. It is also in remarkable agreement with numerical
simulations, as demonstrated in section 6.4.1.
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Figure 6.4.1: Same as Fig. 6.3.2 but for parameter values |E0|2 = 8 and θ = −1 (all variables
are dimensionless). The solid turquoise lines correspond to stable plane wave steady states with
complex stability eigenvalues. For seed intensities above 20, minima and maxima of the intensity
of stable hexagonal patterns H+ (dotted lines), of stable roll patterns R (solid lines) and of stable
honeycomb patterns H− (dashed lines) are displayed.

We have also investigated instabilities of the plane wave to pattern structures for large values of
both the input pump and the seeding intensity as shown in Fig. 6.4.1. These instabilities have no
counterpart in the close-to-threshold regime and can be estimated analytically by using the stability
eigenvalues (6.44) with (6.45) and θk = 0 for the most unstable wave-vector (6.50). Figure 6.4.2
shows the instability eigenvalue λ+ versus the stationary SROPO intensity for di�erent values of
the input pump |E0|2. Above a threshold value of |E0|2 ∼ 4.37 (corresponding to a critical value
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Figure 6.4.2: Stability eigenvalue λ+ versus the SROPO stationary intensity. Parameters are
θ = −1, |E0|2 = 4 (lowermost dashed-dotted blue line), |E0|2 = 4.5 (solid black line), |E0|2 = 5
(dashed black line), |E0|2 = 6 (dotted black line), |E0|2 = 7 (uppermost dashed-dotted black line)
and |E0|2 = 8 (uppermost solid red line). All variables are dimensionless.

of Is = 14.5), there is a range of values of the SROPO intensity where the plane wave solution is
unstable to spatial patterns. The limit values of the SROPO intensity are the zeroes of the λ+

curve shown in Figure 6.4.2 with the lower (upper) intersection corresponding to an instability
when increasing (decreasing) the seeding intensity.

In Figure 6.4.3 we show the plane-wave instability range in the parameter space of the SROPO
intensity versus the seed intensity for di�erent values of the pump intensity. In section 6.4.1 we
show that the bifurcations at the boundaries of the instability ranges are subcritical in nature and
that there are extended regions of bistability between patterns and stable plane waves to support
cavity solitons. The ranges displayed in Fig. 6.4.3 provide a minimum size of the parameter region
where pattern formation is expected. For example, the plane-wave instability range for |E0|2 = 8
evaluated analytically from the stability eigenvalues is approximately between |EIN |2 = 22 and
|EIN |2 = 26 (see Fig. 6.4.3) while the numerical simulations �nd stable patterns between |EIN |2 =
20 and |EIN |2 = 28 because of subcriticality (see Fig. 6.4.1).

6.4.1 Numerical patterns

We have �rst numerically integrated the sinc2 (6.32) and cubic (6.37) models for |E0|2 = 2 and
θ = −0.3. We have started with relatively large values of the seeding amplitude, EIN = 0.45,
where the stable plane-wave solution has been recovered. By progressively decreasing EIN , a
supercritical roll pattern is observed to appear at around EIN = 0.424, Ics = 1.9 for the sinc2

model and EIN = 0.374, Ics = 1.5 for the cubic model, in excellent agreement with the theoretical
predictions given in section 6.4. By further decreasing the seeding intensity, the amplitude of the
roll pattern increases (see black dashed lines in Fig. 6.3.2 until it merges into a hexagonal structure.
Having located the hexagonal pattern (see Fig. 6.4.4 (a) for its transverse intensity structure), we
have traced it with increasing and decreasing values of the external seeding intensity. Note the
period of the patterns in �g. (6.4.4) is of the order of 10−6m. For small seeding intensities, Figures
6.3.2 and 6.4.1 show the maximum and minimum intensity of the hexagonal pattern (dotted lines)
and show that these change linearly with decreasing seeding intensity. The bifurcation back to
the steady plane-wave solution is subcritical although the regime of sub-critical bistability is very
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intensity) parameter space. Parameters are θ = −1, |E0|2 = 4.5 (solid black line), |E0|2 = 5
(dashed black line), |E0|2 = 6 (dotted black line), |E0|2 = 7 (uppermost dashed-dotted black line)
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Figure 6.4.4: Intensity of transverse patterns in a SROPO. (a) Hexagons for |EIN |2 = 3. (b)
Hexagons for |EIN |2 = 22. (c) Rolls for |EIN |2 = 24. (d) Honeycombs for |EIN |2 = 27. Parameters
are |E0|2 = 8 and θ = −1. All variables are dimensionless. The period of the patterns is of the
order of 10−6m.

small and di�cult to detect on the scales of the diagrams. When further decreasing the external
seeding, one observes a sudden destabilisation of the hexagonal pattern into a region of optical
turbulence. The abrupt transition from stable patterns to turbulence is clearly displayed in Figures
6.3.2 and 6.4.1 by the almost vertical line on the left hand side of these diagrams that corresponds
to a sudden jump in the values of the minima and maxima intensities observed in the transverse
section during the turbulent evolution.
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For larger values of the input pump, |E0|2, new regions of pattern formation arise in the SROPO
with seeding in a way similar to what has been described for nascent optical bistability [4]. These
new regions can only be observed in the sinc2 model since the cubic model can only display stable
plane wave solutions for large |E0|2 and large E2

IN . Moreover, the cubic model is not accurate
away from threshold. For the numerical simulations presented here we have selected the value
of |E0|2 = 8 where the minimum size of the pattern region is more than 15% of the maximum
value of the seed intensity in order to guarantee relevance to possible experimental realizations.
In Fig. 6.4.1 we present the intensities of the observed patterns together with the steady-state
plane wave curves for the selected value of |E0|2 = 8. At low seed intensities the phenomenology
is similar to that described for |E0|2 = 2 above. However, at larger seeding intensities the upper
branch of the S-shaped plane-wave steady-state curve suddenly increases. The steady-state �rst
develops damped oscillations and then becomes unstable to a Hopf bifurcation (see dashed red
lines around the seed intensity of 23 in Figure 6.4.1). Around such bifurcation, a new region
of stationary patterns develops. We have identi�ed rolls R (solid lines), hexagons H+ (dotted
lines) and honeycombs H− (dashed lines). The intensities of the di�erent transverse patterns are
displayed in Figure 6.4.4. We note that none of the patterns observed at large input pumps and
seeding intensities are present in the cubic model. Finally, pattern bistability is observed between
rolls and hexagons and rolls and honeycombs.

6.5 Optical turbulence, rogue waves and cavity solitons

When the seeding is small, the input energy is not su�cient to lock the SROPO to the external laser.
These unlocked regimes are typical of lasers with injected signals [38]. The larger the detuning,
θ, between the external laser and the SROPO cavity, the larger the seed intensity necessary for
locking. Since the lower branch of the S-shaped steady-state curves is always Hopf unstable for
small seeding, one expects to observe dynamical regimes where locking and unlocking alternate in
space and time. In comparison with purely temporal systems, the presence of transverse degrees
of freedom elongates the locking region to lower values of the seeding intensity, as displayed in
Figures 6.3.2 and 6.4.1 where stable hexagons are observed well into the region where plane wave
solutions are unstable. As the seeding intensity is decreased, unlocking eventually takes place and
stable patterns develop defects [39, 37] that induce �rst phase and then amplitude instabilities.
The resulting regime corresponds to optical turbulence since one observes a sudden (exponential)
decrease of the spatio-temporal correlation function [40]

C(ρ) =
Re [〈E(r, t)E∗(r′, t)〉 − 〈E(r, t)〉〈E∗(r, t)〉]
Re [〈E(r, t)E∗(r, t)〉 − 〈E(r, t)〉〈E∗(r, t)〉]

(6.51)

where r and r′ identify separate positions on the transverse plane, ρ = |r − r′|, Re denotes the
real part and 〈·〉 corresponds to temporal averages. Such behaviour is demonstrated in Figure
6.5.1 where the correlation function C(ρ) is calculated for the hexagonal pattern (dashed line), the
turbulent regimes for |E0|2 = 2 (solid line) and |E0|2 = 8 (dot-dashed line). Fitting exponentials
to the correlation functions shows that in the turbulent regimes the correlation length is reduced
by at least a factor of six.

In the regime of optical turbulence, large variations of the SROPO intensity are observed in
both space and time. In Figures 6.3.2 and 6.4.1 we display the range of variation of the SROPO
intensity at a given time t at the onset of optical turbulence. The wide increase in the maximum
SROPO intensity when changing the seed strength below the hexagon instability is clearly visible.



6.5. Optical turbulence, rogue waves and cavity solitons 116

0 L/2

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

L/4

Distance on transverse plane, ρ

C
o

rr
el

at
io

n
 f

u
n

ct
io

n
, 

C
(
ρ

)

Figure 6.5.1: Spatial correlation function C(ρ) as in (6.51) for the hexagonal pattern (red dashed
line, |E0|2 = 2, θ = −0.3, |EIN |2 = 0.09), optical turbulence close to threshold (black solid line,
|E0|2 = 2, θ = −0.3, |EIN |2 = 0.04) and away from threshold (blue dot-dashed line, |E0|2 = 8,
θ = −1.0, |EIN |2 = 2.19). All variables are dimensionless.

To characterize the regime of optical turbulence we have considered the temporal evolutions of
the maximum SROPO intensity, the spatial average of the SROPO intensity and its standard de-
viation. As displayed in Figure 6.5.2, the spatial statistics is large enough to guarantee probability
distributions of well de�ned averages and deviations. Larger values of the pump power increase
the size of the probability distribution of the SROPO intensity and that of the �uctuations of its
maximum value (compare Figures 6.5.2(a) and (b)). Such an increase results in the occurrence
and propagation of transverse rogue waves.

Following the generally accepted de�nition of rogue waves in systems with injection [41], we
plot the temporal evolution of

q(τ) = IMax
x,y (τ)− 〈〈I〉x,y〉τ − 8〈〈σ〉x,y〉τ (6.52)

corresponding to transverse pulse maxima, IMax
x,y , above or below a threshold given by the average

value of the intensity, 〈I〉x,y, plus eight times the standard deviation, στ,x,y, of the SROPO intensity
for the sinc2 model in the dashed-dotted red lines of Figures 6.5.2(a) and (b). The presence of
peaks of a rogue wave is signalled by positive values of q(τ) [41]. With pump intensities a few
times above threshold (Figure 6.5.2(a)), the rogue wave test fails (q(τ) remains negative) and the
optical turbulence generated by the unlocking of the seed laser and the SROPO is relatively mild.
With larger values of the pump power, however, rogue waves are commonplace and a�ect the
spatio-temporal evolution of the SROPO �eld for long durations of the temporal evolution (see
Figure 6.5.2(b)). When comparing these results with those related to lasers with injections [41], we
note that our simulations are fully spatio-temporal and show that the material dynamics, typical
of semiconductor media, is not essential in the generation and maintenance of rogue waves during
optical turbulence. The main mechanism underlying rogue waves in SROPOs is the absence of
locking between master and slave devices leading to intermittent phase jumps. Full investigations
of optical turbulence in injected (seeded) optical devices will be presented elsewhere.

Finally, we have studied the presence and stability of cavity solitons (CS) in SROPOs with a
particular focus on localised structures induced by the sinc2 nonlinearity, i.e. away from threshold
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Figure 6.5.2: Temporal evolution of the maximum SROPO intensity (solid black line), the spatially
averaged SROPO intensity (dashed black line), its standard deviation (dotted black line) and q(τ)
for the sinc2 model (6.32). Parameters are (a) |E0|2 = 2, θ = −0.3, |EIN |2 = 0.04 and (b) |E0|2 = 8,
θ = −1, |EIN |2 = 2.19. All variables are dimensionless.

and with large seeding from an external laser. CS have been described in a variety of OPO devices
without seeding from degenerate [42, 43, 44, 17] to non-degenerate triply resonant con�gurations
[20, 45, 46]. CS in degenerate OPOs have also been numerically extended to include the presence of
seeding [47]. In the case of the non-degenerate SROPOs investigated here, the resonance condition
of SROPO operation rules out any CS in the absence of seeding. It is then important to stress
that all CS solutions described in this section are due to the external seeding �eld and have no
counterpart in the case of EIN = 0.

Since we have introduced the sinc2 nonlinearity in spatio-temporal models of SROPOs to de-
scribe self-organization when pump depletion and back�conversion take place, we focus here on CS
in the limit of large pump powers. From Figures 6.4.1 and 6.4.3 we see that there are broad ranges
of the parameter space where bistability between the plane wave solution and pattern structures
is observed. For example, we �nd coexistent hexagons and homogeneous solutions for |EIN |2 be-
tween 19.98 and 21.90 and coexistent honeycombs and homogeneous solutions for |EIN |2 between
26.00 and 28.09. Note that we even observe tri-stability among plane waves, hexagons and rolls for
|EIN |2 between 21.25 and 21.90 and among plane waves, honeycombs and rolls for |EIN |2 between
26.00 and 26.52. In the two wide regions of homogeneous-pattern bistability we have been able
to locate single peak (bright) and single trough (dark) CS as shown for example in Figure 6.5.3
(a) and (d), respectively. The onset and nature of these CS are again similar to those observed
in nascent optical bistability [4]. Together with the single unit bright and dark CS we have also
found many multi-peak [48] and multi-trough localized structures that correspond to clusters of CS
(also referred to as localized patterns [49]). A few examples of these bright and dark clusters are
displayed in Figure 6.5.3. The range of existence of single unit CS and CS clusters is displayed in
Figure 6.5.4. Snaking of both bright and dark CS is observed with stability branches of larger and
larger clusters approaching the pattern stability lines in the parameter space (see Figure 6.5.4).
The details of the bifurcations and of the number of branches of bright and dark CS for changing
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Figure 6.5.3: Stable bright (a)-(c) and dark (d)-(f) CS con�gurations of the SROPO model (6.32).
Parameters are |E0|2 = 8, θ = −1, |EIN |2 = 20.8 for (a)-(c), |EIN |2 = 26.5 for (d) and |EIN |2 = 27.1
for (e)-(f). All variables are dimensionless.

|E0|2 are too long to be described here and will be the subject of future work.

6.6 Conclusions.

Self-organization and pattern formation in OPOs has been known for a number of years in degener-
ate [8] or doubly or triply resonant non-degenerate con�gurations [19, 20, 21]. The case of a widely
non-degenerate SROPO has, however, been overlooked because of experimental limitations, now
overcome, and the fact that o�-resonance operation is inhibited because of its intrinsic tuneability.
Here we have shown that under the action of a detuned injection close to the signal frequency, one
can �nd an extremely rich variety of self-organized structures, from regular co-existing patterns
to clusters of CS and even optical turbulence. In particular, we have derived mean �eld mod-
els for SROPOs with external seeding and shown that, away from threshold, cubic nonlinearities
should be replaced by sinc2 terms. The sinc2 nonlinearity is capable of describing regimes of pump
depletion and back-conversion. In these regimes, the external seeding generates hexagonal, roll
and honeycomb patterns as well as bright and dark CS. Note that CS in SROPOs o�er positional
control associated to the generation of entangled photons with vastly di�erent frequencies.

In contrast to laser systems, the fast material dynamics of χ(2) media makes a SROPO with
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external seeding an ideal candidate for comparisons between theory and experiments of optical self-
organization. The fast material dynamics is also bene�cial to the investigation of spatio-temporal
structures in the regime of short pulse generation where many of the results presented here can
�nd useful extensions. These investigations together with the full characterization of the turbulent
regimes are the subject of present research.
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Figure 6.5.4: Stability range of clusters of CS for bright (main �gure) and dark (inset) CS. Solid,
dashed and dot-dashed black lines correspond to the maximum SROPO intensity in clusters of
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and θ = −1. All variables are dimensionless.
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7
Conclusions

7.0.1 Achievements of the thesis

The subject matter of this Thesis is the study of Singly Resonant Optical Parametric Oscillators
in both the below-threshold and above-threshold regimes (Chapters 4-6) as sources of non classical
radiation and as sources of complex spatial structures via self-organization. In Chapter 4 we have
applied the input output theory of [1] to the study of quantum �uctuations of singly resonant
optical parametric oscillators. The model has been used to calculate intensity and quadrature
squeezing spectra. We have shown that below the threshold of oscillation the �uctuations in the
light outside the cavity at the frequencies of the signal and the idler �elds are squeezed below the
shot noise as much as in the doubly resonant case. We have also shown that the signal and the
idler �elds are entangled over a wide range of pump parameter values in the SROPO by using the
Simon-Duan et al. criterion of state separability.

One major di�erence of the SROPO from the doubly resonant case is that we observe an un-
expected dependence of the intensity-di�erence spectrum on the pump parameter, leading to a
narrowing of the spectral lines as the threshold of oscillation is approached. An analogous de-
pendence of the quadrature spectrum on the pump parameter is also found. A peculiar feature
of singly resonant con�gurations is that the narrowing of the spectral lines does not a�ect the
squeezing minimum, which can reach values similar to those of the doubly resonant case as thresh-
old is approached. Since the singly resonant case is one of the simplest OPO con�gurations to
realize, and since there is no di�erence in the squeezing properties of the light coming from this
device respect to the doubly resonant cavity, we conclude that the singly resonant con�guration
could be an ideal candidate for the realization of two-color entangled light in quantum information
processes.

In Chapter 5 we have introduced the phenomena of giant sub-threshold ampli�cation in the
contest of synchronously pumped parametric oscillator. We have shown that a crucial ingredient
for giant ampli�cation is that the device is making it operate in the singly resonant strongly non-
degenerate con�guration. As a matter of fact the phenomena do not survive the doubly resonant
and frequency degenerate regime. We have derived a quantum picture of this situation and we have
shown that quantum noise of the magnitude of (10−8 − 10−9)V/m can be magni�ed of a factor
of 1010 thus becoming macroscopic even below the threshold of oscillation for the SPOPO. The
question which remains unanswered is if this quantum noise-driven macroscopic signal keeps all the
quantum properties typical of SPOPO below threshold, i.e. quantum squeezing and entanglement.
In this case it would be possible to have a macroscopic quantum squeezing and entanglement using
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this device in the giant ampli�cation regime.
In Chapter 6 we have studied self-organization and pattern formation in OPOs which has

been known for a number of years in degenerate [2] or doubly or triply resonant non-degenerate
con�gurations [3, 4, 5]. The case of a widely non-degenerate SROPO has, however, been overlooked
because of experimental limitations, now overcome, and the fact that o�-resonance operation is
inhibited because of its intrinsic tuneability. We have shown that under the action of a detuned
injection close to the signal frequency, one can �nd an extremely rich variety of self-organized
structures, from regular co-existing patterns to clusters of CS and even optical turbulence. In
particular, we have derived mean �eld models for SROPOs with external seeding and shown that,
away from threshold, cubic nonlinearities should be replaced by sinc2 terms. The sinc2 nonlinearity
is capable of describing regimes of pump depletion and back-conversion. In these regimes, the
external seeding generates hexagonal, roll and honeycomb patterns as well as bright and dark CS.
Note that CS in SROPOs o�er positional control associated to the generation of entangled photons
with vastly di�erent frequencies.

In contrast to laser systems, the fast material dynamics of χ(2) media makes a SROPO with
external seeding an ideal candidate for comparisons between theory and experiments of optical self-
organization. The fast material dynamics is also bene�cial to the investigation of spatio-temporal
structures in the regime of short pulse generation where many of the results presented here can
�nd useful extensions. These investigations together with the full characterization of the turbulent
regimes will be the subject of future communications.

7.0.2 Future work

The research work presented in this thesis has focused on SROPO con�gurations, both below and
above threshold, when pumped with a homogeneous or single Gaussian mode pump �eld. A lot
of work has been done in recent years about states of the electromagnetic �eld containing Optical
Angular Momentum (OAM) [6]. One very interesting extension of our work would be to study the
e�ect of OAM structures in OPOs. A �rst step in this direction was made in [7] where pumps with
OAM were studied in the degenerate Type-I OPO case. It would be natural to see what happens
to such con�guration in the SROPO case. For example would the signal and idler �eld share the
input OAM as in the degenerate case or would the OAM a�ect the two output �eld di�erently. In
the latter case, what percentage of OAM would a�ect the signal and the idler �elds, respectively?
Is the process of OAM distribution a statistical process? If so, with what distribution?

The large variety of SROPO models introduced and investigated in this thesis allows also
for novel and intriguing question. What happens when the SROPO is pumped and seeded with
beams carrying OAM? What variations to the optical turbulence regimes would be observed? How
the OAM beams interact in the down-conversion crystal when they a�ect di�erent regions of the
transverse space? What would happen to a SPOPO pumped by pulsed beams carrying OAM?

These considerations can be successfully extended to the quantum regime where, for example,
entanglement and squeezing with OAM has been recently observed [8] in a spatially non-degenerate,
frequency-degenerate OPO. In these experiments small seeding at the signal frequency were used
for stabilisation purposes. The �rst natural extension of our work would be to �nd out if squeezing
and entanglement survive to the non-degenerate SROPO case. Secondly one would be able to
use our results to investigate how OAM on the pump and/or seeding �elds a�ects such quantum
entanglement an how the control of the input OAM can be used in quantum information processes
such as secure key distribution in quantum cryptography.

We believe that the re-discovered interest in the fundamentals and application of OPOs will
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bene�t from the achievements of the work presented in this thesis since SROPO con�gurations are
becoming more and more commonplace due to the amazing developments of material science and
quasi-phase matched crystals.
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