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1 Abstract 

 

The pharmaceutical industry continues to face mounting fiscal, political and regulatory 

challenges developing the next generation of innovative medicines. Drug discovery 

scientists are directly challenged with the task of trying to overcome the challenge of poor 

R&D productivity by improving the quality of new chemical entities progressing into drug 

development to reduce drug attrition. This project focusses on early drug discovery and 

investigates the potential of a concept called Drug Efficiency (DE). DE was originally 

introduced by the Psychiatry CEDD (Centre of Excellence for Drug Discovery at 

GlaxoSmithKline) as an in vivo pharmacokinetic (PK) and PK-pharmacodynamic (PD) 

parameter to try and improve the quality of compounds progressing into in vivo PKPD 

models.  

 

The aim was to select compounds which would achieve higher free concentrations in the 

CNS, and therefore increase target engagement and improve efficacy. The focus of this 

project was to show how DE (and it’s in vitro biomimetic derived equivalent HPLC DEmax) 

can be used for projects involving intravenous (IV), oral and pulmonary routes of 

administration to select compounds with improved physicochemical properties (low MW, 

lipophilicity and solubility) and therefore more likely to have a low efficacious clinical dose 

during early lead optimisation.  

 

The combination of HPLC DEmax and in vitro potency makes it possible to estimate a 

clinical dose that would result in an efficacious steady-state free concentration at the site 

of action. The influence of the potential discrepancies between the  

in vitro and a later stage in vivo DEmax, the whole blood potency, volume of distribution 

and clearance on the dose estimation has been investigated using data from a GSK 

programme profiled during lead optimisation. It was found that drug potency had the 

greatest influence on estimating the clinical dose. When the estimated dose was low, the 

impact of small changes in PK parameters such as the volume of distribution and 

clearance had less effect and typically did not affect compound ranking. 

 

For inhaled pulmonary drugs, the physicochemical and PK properties are often 

considered to be the opposite of drugs administered by the IV and oral routes. The 

biggest challenge in the design of inhaled drugs is achieving the optimum balance of lung 
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retention and pharmacological duration of action without causing lung toxicity. Unlike 

extravascular drugs, where there have been multiple physicochemical analyses and 

concepts proposed to help select the right balance of properties for successful drug 

design, there are very few drug design concepts beyond solubility and permeability for 

inhaled drug design. This project shows how HPLC DEmax can be used as a third critical 

parameter alongside solubility and permeability to help design inhaled small molecules 

which have “intrinsic” lung retention, pharmacological duration of action and improved 

lung safety. 

 

Lung retention was measured for a set of small molecule JAK inhibitors, which all had 

similar solubility and permeability, but different intrinsic lung retention. It was found that 

compounds with drug efficiencies (DEmax) of around 1% had extended lung exposure. 

Introducing DEmax as an additional parameter has shown that biomimetic binding can 

provide further information to help identify compounds with the improved potential to 

become drug candidates with the desired lung residency when administered via the 

pulmonary route. 
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2 Introduction 

 

2.1 The Drug Discovery Process and the Importance of Effective Early 

Discovery 

 

Starting in the late 1980’s through to the 2000’s, pharmaceutical companies have relied 

heavily on high throughput screening technologies (HTS), to identify new chemical 

entities (NCE) for therapeutic targets of interest. HTS approaches have helped identify 

templates with acceptable baseline target affinities which could then be optimised further 

to achieve the desired target product profile (TPP), with potency being a key 

component/focus of the TPP, closely followed by an appropriate ADME (Absorption, 

Distribution, Metabolism & Elimination) and safety profile.  

 

After discovering and validating potential targets, the drug discovery process usually 

continued by screening large compound libraries against a target receptor, enzyme or 

protein to identify potential lead molecules or chemical templates, which can then be 

further optimised towards the desired TPP [1]. Pharmaceutical companies have typically 

established large compound libraries (ca. 0.5-4 million compounds) to increase the 

likelihood of identifying potential leads [1]. Compound libraries or collections are typically 

based on commercially available compounds and active in-house lead optimisation 

programs of work, including both present and past. These are compounds selected from 

optimised lead series templates which will have reached certain milestones e.g. a 

candidate selection, a new drug application (NDA), or more often of no further interest to 

specific programs due to a suboptimal profile based on the TPP. This may be due to a 

lack of affinity or selectivity to the target of interest, or suboptimal ADME properties. 

Compound libraries are normally carefully managed to ensure only drug-like templates 

are present and broad chemical space is represented. This is to ensure target relevant 

hits represent appropriate drug like chemical space for lead optimisation. Compounds in 

an HTS library would usually be considered as “fragments” or “small molecules” if they 

are in the molecular weight (MW) range of 200-600Da, with potency/affinity in the low 

micromolar – high nanomolar range. If compounds fall within this parameter range they 

would often be considered as hits or compounds of further interest [2]. However, 

compounds often come from existing lead optimisation programs and these molecules 

may be on the upper end of small molecule space for initial hits, as a result of parameter 
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optimisation for previous targets. Ideally, early leads or hits would be <300Da as the 

process of lead optimisation often increases molecular size by 100-120Da’s whilst 

addressing target affinity and ADME issues [2][3]. Compound libraries expand over time 

as newer compounds are synthesised and submitted to respective libraries to generate 

compound diversity and novelty.  

 

Combinatorial chemistry is also a technique which can generate large numbers of 

compounds but often with similar properties to the leads they were based upon.  The 

disadvantage here is that large numbers of compounds with very little molecular diversity 

become part of the compound library. The advantage of combinatorial chemistry is the 

rapid and efficient synthesis of many NCEs, some of which are structural analogues of 

existing compounds and some which are novel [4].   

 

The process by which compounds are filtered and then selected to become part of the 

compound library is fundamental to maintaining chemical diversity. Careful management 

of compound libraries is a fundamental requirement to maximise the chances of a 

successful HTS campaign against new targets. This should increase the chance of 

identifying and selecting several relevant and diverse chemical templates for lead 

optimisation, which then have greater potential of meeting a program team’s TPP.  

 

Large scale chemical syntheses using combinatorial chemistry in conjunction with HTS 

have been used since their widespread adoption in the1990’s, to enable medicinal 

chemists to rapidly scan through many compounds for “hit like” structures or  templates 

against an in vitro target [4]. The size and nature of an HTS depends upon the program 

of work being employed, with the larger pharmaceutical companies committing to as 

many as thirty screening campaigns per year, across several therapeutic areas. 

Fundamentally, the industrialisation of drug discovery using the HTS approach works in 

two ways [3]: 

 

 Previously developed compounds are scanned against many targets to find 

a previously unknown affinity. 

 Previously developed compounds are scanned against many specific 

targets that are known to have an affinity for specific functional groups.  
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The number of NCEs identified through HTS and progressed as lead compounds were 

reported to be substantially less than 1% (around 1 in 100,000) in 2003, but by 2006 had 

increased to over 50% [5][6]. The growth of success was mapped in a study of 58 HTS 

laboratories, in which it was shown that 18 had a combined total of 46 candidate 

compounds undergoing clinical trials in 2000, and in 2004 this had increased to a total of 

104 candidates from 26 laboratories [5]. This represents a 226% increase over a four-

year period and shows that the increased use of HTS in early stage compound 

identification has been successfully implemented into research. However, the quality of 

those hits may be questioned with the quantity of candidates being delivered becoming 

the metric of success rather than the quality. This is demonstrated by the number of 

NDA’s remaining low, or even reducing proportionally to R&D expenditure, with the 

reasons for failure continuing along familiar themes; lack of efficacy and toxicity [7][8]. Or 

to express in more general terms, a lack of compound quality with respect to the balance 

of physiochemical properties, ADME and pharmacology [8,9].  

 

2.2 Biopharmaceutical Classification System (BCS) 

 

The BCS was developed as a framework correlating in vitro drug dissolution, solubility 

and gastrointestinal (GI) permeability to in vivo bioavailability which was first proposed by 

Amidon et al. in the early 1990’s [10]. The principle of the BCS is to recognise that drug 

dissolution, solubility and GI permeability are fundamental parameters for human drug 

absorption. The original purpose of the system was part of the Food and Drug 

Administration (FDA) guidance designed to aid in the regulation of post-approval changes 

and generic drugs to give potential biowaivers for in vivo bioequivalence studies [11] 

based on in vitro data. 

 

The BCS model places oral drugs into four categories or classes: 1) high solubility and 

high permeability; 2) low solubility and high permeability; 3) high solubility and low 

permeability and 4) low solubility and low permeability as shown in Figure 2.2-1. 
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Figure 2.2-1 The Biopharmaceutical Classification System Model [11]. 

 

 
 

Figure 2.2-1 shows the BCS Model as defined by the FDA for solubility and permeability,  

Classes I-IV [11]. A compound must completely dissolve at its highest dose in 250 mL water over 

a pH range of 1-7.5 at 37°C to be classed as highly soluble. 

 

Although the original purpose of the BCS model was as a tool for the FDA, it has helped 

drug discovery teams to improve the efficiency of drug development by identifying 

compounds/chemical series with inherent oral absorption characteristics (class I) or with 

good permeability that require formulation enhancement to achieved in vivo absorption 

(class II). The model can also be used to direct project teams away from areas of 

chemical space which have poor absorption characteristics (low solubility and 

permeability, class IV) that are more difficult to develop and have a higher probability of 

failure. 

 

A complimentary system to the BCS is the biopharmaceutics drug disposition 

classification system (BDDCS) which was proposed by Wu and Benet [12]. Both models 

utilise solubility and permeability as their primary parameters, but the major difference is 

BCS focuses on predicting oral absorption potential, whilst the BDDCS predicts drug 
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disposition and potential drug-drug interactions in the liver and intestine. This 

complementary model was developed because Wu and Benet recognised that drugs 

which have high intestinal permeability are typically eliminated via metabolism, whereas 

drugs which have low intestinal permeability are eliminated as unchanged drug in the 

urine or faeces, Figure 2.2-2 shows each class for the BDDCS [12,13]. 

 

Figure 2.2-2 Metabolism and Transporter Effects of Solubility and 

Permeability 

 

 
 

Figure 2.2-2 shows drug transporter and metabolism predictions based on the BDDCS proposed 

by Wu and Benet [12,13] 

 

2.2.1 Property-Based Design and Properties Influential to Developability of 

Oral Products 

 

The seminal work by Lipinski et al. 1997 [4,14] highlighted the importance of 

physicochemical properties of putative drug molecules that have an effect on their ADME 

properties, specifically oral absorption. Despite the “Rule of 5” being over 20 years old it 

still has importance in today’s drug discovery environment. Since then, there has been 
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multiple analysis focussing on the importance of “drug-like” chemical space, which 

include Astex “Rule of 3” [2], Pfizer’s 3-75 [15], “Three Pillars” analysis [16], and 

Gleeson’s “ADMET Rules of Thumb” [17], to mention but a few. Despite the compelling 

evidence put forward by Lipinski et al. for controlling physicochemical properties, many 

pharmaceutical companies and drug discovery groups have continued to progress 

candidate molecules which occupy suboptimal or chemical space outside of what is 

considered to be desirable for oral absorption [9,18].  

 

In developing the “Rule of 5”, Lipinski [4] focused attention on the calculated properties 

of the United States Adopted Name (USAN) database to define what were the preferred 

physicochemical properties of compounds to achieve successful progression into clinical 

trials based on ADME properties. It was assumed that most compounds with suboptimal 

properties would have been filtered out during preclinical safety testing and phase I 

studies as a result of safety alerts such as hERG or sub-optimal human exposure [4]. 

 

Lipinski’s analysis identified solubility and permeability as essential requirements to oral 

absorption. He acknowledged that the change in the properties of drug discovery 

compounds between the 1970’s through to the 1990’s was largely due to the 

industrialisation of the pharmaceutical industry, since it had become feasible to quickly 

synthesise and screen large chemical libraries as a result of technological advances. One 

of Lipinski’s observations was that “the physicochemical profile of current leads no longer 

depends on compound solubility sufficient for in vivo activity” [4], but instead depends on: 

 

1. The medicinal chemistry principles of relating SAR to in vitro activity 

2. The nature of the HTS screen 

3. The physiochemical profile of the screening set 

4. “Human decision making, both overt and hidden for defining compound 

acceptability as a starting point for medicinal chemistry.” 

 

One of the most reliable ways for a medicinal chemist to improve in vitro potency is to 

incorporate a properly positioned lipophilic group. For example, a methyl group can add 

0.7kcal/mol to the binding energy [4] if orientated in a way that occupies a receptor 

pocket. By contrast, manipulation of polar groups involved in ionic interactions has little 

impact on increasing potency unless you can accurately target an ionic interaction within 

the target receptor [4]. By focussing lead template optimisation in this way, it is little 
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surprise that the process of improving affinity/potency alone by the addition of lipophilic 

groups results in a diametrically opposing relationship with ADME properties [17][19].  

 

The “Rule of 5” states that poor absorption and permeation are more likely when: 

 

1. There are more than 5-H bond donors (expressed as the sum of OH and 

NH’s) 

2. The molecular weight is over 500 

3. The LogP is over 5 (or MLogP is over 4.15) 

4. There are more than 10 H-bond acceptors (expressed as the sum of N and 

O’s) 

 

Figure 2.2-3 Lipinski’s Rule of 5 Highlighting the Importance of Lipophilicity 

[4] 

 

 

The naming of the rule derives from each of the four parameters being close to, or a 

multiple of, 5, not the common misconception that there are 5 rules! Almost 90% of orally 

active drugs achieving a phase II milestone meet the rule of 5 criteria [4].  

 

Lipinski et al subsequently performed a retrospective analysis of the Pfizer compound 

collection pre- and post the HTS revolution in drug discovery of 1989. Table 2-1 highlights 
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the percentage of compounds being synthesised pre- and post-1989, where molecular 

obesity [29] really started to become apparent when compared to commercial or 

marketed compounds.  

 

Table 2-1 Percentage of Compounds with MWT (Inc. Salt) above 500 [4] 

 

 
 

Table 2-1 C A Lipinski et al Advanced Drug Delivery Reviews 46 ( 2001 ) [4] 

 

In the drug discovery environment, the majority of program teams’ lead optimisation 

strategies have traditionally been for medicinal chemists to assume that maximising in 

vitro potency will translate into low dose clinically efficacious therapies [19][21]. This has 

led to a primary screening cascade approach where in vitro potency sits as the primary 

filter for newly synthesised compounds. The net result of this is often a lead optimisation 

strategy which results in a diametrically opposed relationship between physicochemical 

properties associated with high in vitro potency and ADMET properties [22].  

 

Given the acceptance of the rule of 5 and the substantial empirical evidence that control 

of fundamental physical properties, especially lipophilicity, are important for eventual 

success, it is perhaps a surprise to see that much of the chemistry from the patent 

literature occupies the upper ranges of the rule of 5 drug-like spectrum  [9]. The average 

oral drug marketed since 1983 has a cLogP of 2.7 and Mol Wt of 358, whereas the 

average patented compound from four large pharmaceutical companies in the period 

2003—2007 has cLogP of 4.1, and Mol Wt of 450 [23] (Figure 2.3-2). By analysing the 



27 
 

trend in lipophilicity and molecular weight throughout the pharmaceutical sector over a 

decade (1996-2006), Leeson and co-workers concluded that companies such as 

AstraZeneca and Pfizer have actively targeted “drug like space” by focusing attention on 

reducing lipophilicity and molecular weight, but others appeared to have remained static 

or failed to make progress in optimising these properties. This included companies  such 

as GSK, Johnson & Johnson and Wyeth [23], (Figure 2.2-4).  

 

Figure 2.2-4 Trends in Molecular Mass and cLogP in Approved Compounds 

[9] 

 

 
 

Figure 2.2-4 Show the trend in molecular mass and cLogP for approved compounds over a  

20-year period 
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Figure 2.2-5 Changes in Physical Properties of Patented Compounds by 

Target Over Time [14]. 

 

 

 
 

Figure 2.2-5 Shows the trend in molecular mass and cLogP for patented compounds by the major 

pharmaceutical companies 2000-2010. 

 



29 
 

As indicated already, the main causes of attrition have been identified as a lack of 

preclinical safety or clinical efficacy. Pfizer published data they acquired from internal 

sources on 44 Phase II programs that reached a decision point between 2005 and 2009 

[16]. Their aim was to identify the reasons for high levels of Phase II drug attrition across 

the pharmaceutical sector from their previous experience of failed programs, in order to 

improve strategic project management and secure a higher chance of success for their 

current and future assets. They developed the concept that there were three main 

elements required to increase the chance of successful progression to Phase III,  which 

they termed the ‘Three Pillars of Survival’ [16]: 

 

1. Suitable compound exposure over a desired period of time at the target. 

2. Sufficient compound-target binding to cause the desired effect. 

3. Sufficient target modulation to cause a pharmacological effect. 

 

The study was aimed more at improving the chances of compound survival and improving 

the risk management of their assets, rather than focusing directly on compound quality in 

lead optimisation. However, it is clear that there is a need to identify compounds with 

optimal physicochemical properties to ensure that the Three Pillars paradigm can be met 

and should be a central strategy in any lead optimisation program. This is because the 

concept effectively links the optimisation of target binding, potency, and compound 

exposure, which are all vital elements of developing clinically efficacious drugs. 

 

The ‘Three Pillars’ confidence matrix shows the importance of establishing an 

understanding of target engagement to maximise project success rates and drive down 

compound attrition. Having confidence in all Three Pillars equates to optimising the 

properties of the molecule such that they give the desired exposure and binding at the 

target site, which amounts to a pragmatic and logical approach to drug discovery  

(Figure 2.2-6).  
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Figure 2.2-6 Three Pillars Concept as a Confidence Matrix [12] 

 

 

Figure 2.2-6 Three Pillars confidence matrix as described by Morgan et al. [16] 

 

An assessment of the Three Pillars Concept is now incorporated into many lead 

optimisation programs (see Figure 2.2-7) within GSK to encourage program teams to 

focus on the relationship of pharmacokinetics and pharmacodynamics (PKPD) in pre-

clinical space all the way through to clinical development. By adopting this approach, the 

hope is that there will be an increase in productivity and success in programs developing 

low dose (<100mg) drugs, which have the intended efficacy and safety in the clinic. 
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Figure 2.2-7 PKPD and Human Clinical Dose Estimation Matrix Used at GSK 

 

 
 

Figure 2.2-7 the GSK human dose prediction confidence matrix 

 

3 A Brief Description of the Project  

 

The most influential properties of compounds or chemical templates for developability are 

lipophilicity, solubility, permeability, protein binding and acid/base character. In this work, 

the aims are to investigate how these properties: 

 

 Influence drug efficiency and dose estimation based on measured and 

calculated physicochemical and biomimetic properties that are available to 

early drug discovery program teams for lead optimisation.  

 

 Can drug efficiency and dose prediction be used to rank compounds for 

further studies to improve the efficiency of the lead optimisation process. 

 

Early clinical dose prediction [24][25] is an accepted but relatively new approach in drug 

discovery, for increasing the chance of selecting optimal molecules which have the 

greatest chance of engaging the target of interest in the clinic. We would like to 

understand if the concept of drug efficiency has the potential to direct lead chemical 
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series development, and aid selection of molecules which are likely to have a low clinical 

dose.  

 

A low clinical dose (<100mg) is central to GSK and the wider pharmaceutical industry’s 

vision of candidate quality because high clinical dose (>100mg) has consistently been 

associated with poor drug developability or toxicity. It is therefore expected that focusing 

on lowering clinical dose would enhance the developability prospect of candidate drugs 

through the reduction of toxicity and idiosyncratic adverse reactions, see Table 3-1 [26].  

 

Table 3-1 Drug Withdrawals in the United States between 1980-2006 [26] 

 

 

Table 3-1 Highlights drug withdrawn from the market in the US between 1980-2006. The clinical 

dose and reason for drug withdrawal is given. The risk of toxicity increases as the clinical dose 

increases, typically >100mg’s. 

 

Early dose prediction has the potential to help lead optimisation teams to design lead 

series and select molecules with desired physicochemical properties and PK profiles, 

which are likely to translate to good clinical PK, and therefore be selected as candidate 

molecules. At the early stages of drug discovery, we usually know the in vitro enzyme or 

cellular potency of compounds, which is then used to build SAR along with some simple 

physicochemical parameters to enable decision making. This project will aim to evaluate 

whether bio-mimetic based drug efficiency (Drugeff) in combination with clinical dose 

400Zomepirac
200Trovafloxacin
400Troglitazone
300Tolcapone120Terfenadine

600Temafloxacin100Mibefradil
400Ticrynafen100Rapacuronium

800Suprofen400Grepafloxacin25Rofecoxib
300Remoxiprine15Fenfluramide100Flosequinan
125Nomifensine15Dexfenfluramide150Encainide
100Bromfenac40Cisapride0.3Cerivastatin
600Benoxaprofen10Astemizole1.0Alosetron

Daily Dose
(mg)

DrugDaily Dose
(mg)

DrugDaily Dose
(mg)

Drug

Direct Direct Organ(sOrgan(s))
ToxicityToxicity

Secondary Secondary 
PharmacologyPharmacology

Primary Primary 
PharmacologyPharmacology

400Zomepirac
200Trovafloxacin
400Troglitazone
300Tolcapone120Terfenadine

600Temafloxacin100Mibefradil
400Ticrynafen100Rapacuronium

800Suprofen400Grepafloxacin25Rofecoxib
300Remoxiprine15Fenfluramide100Flosequinan
125Nomifensine15Dexfenfluramide150Encainide
100Bromfenac40Cisapride0.3Cerivastatin
600Benoxaprofen10Astemizole1.0Alosetron

Daily Dose
(mg)

DrugDaily Dose
(mg)

DrugDaily Dose
(mg)

Drug

Direct Direct Organ(sOrgan(s))
ToxicityToxicity

Secondary Secondary 
PharmacologyPharmacology

Primary Primary 
PharmacologyPharmacology



33 
 

estimation techniques, increases the drug discoverer’s potential to identify high quality 

candidates with increased potential of become efficacious medicines.  

 

The concept of drug efficiency was introduced by Braggio et al. [27] in 2010. Drug 

efficiency is a pharmacokinetic term which is defined as the percentage of the dose 

administered that is in the bio-phase of interest in vivo which is freely available to exert a 

pharmacological effect. A more complete definition of drug efficiency will be detailed in 

Section 4.2.4. 
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Figure 2.2-1 PhD Project Plan 

  

 
 

To explore the relationship between drug efficiency and dose prediction, three drug 

discovery programs were selected that were differentiated by their routes of 

administration design paradigms: IV, oral and inhalation.  This was to explore whether 

the concept was more suitable to specific types of drug discovery projects 
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3.1.1 Property-Based Design of Selected Intravenous, Oral and Inhaled 

Programs a Brief Description 

 

A more detailed description of each program will be given on Section 5. 

 

3.1.2 Pi3Kγ IV Program 

 

The PI3Kγ program was chosen for the design of good pharmacodynamic properties for 

compounds administered intravenously. In this program compounds are designed for 

acute lung injuries for hospitalised patients where the intravenous administration is 

advantageous. 

 

3.1.3 Pi3Kδ Oral Program 

 

A set of marketed drugs and the PI3Kδ oral program were selected to investigate the 

design principles for low dose orally administered compounds.  

 

3.1.4 JAK Inhaled Program 

 

The pan JAKi (1/2/3) program compounds have been studied as an example for the 

design of inhaled drugs with long lung retention for treatment of chronic inflammation in 

asthma.  

 

A more detailed description of project objectives and each of the above targets is 

presented in chapter 5. 
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4 ADME - Absorption, Distribution, Metabolism and Excretion 

in Dose Prediction. 

 

A simple description of ADME and a definition of each term is described in Figure 2.2-1. 

 

Figure 2.2-1 Basic Definition of ADME 

 

 

 

The clinical dose depends on several pharmacokinetic parameters and to potency or 

minimum effective concentration (MEC) against the target, this is described by the dose 

calculation equations: Equation 38 and Equation 39 detailed later in Section 4.3. The 

potency or MEC is one of the most influential parameters in achieving a low clinical dose. 

The in vitro affinity of a compound is typically expressed as an EC50 for agonists or pIC50 

but ideally a pKi value should be determined for antagonists. From these data, the free 

concentration of the drug molecule that would be needed at the site of action in order to 

exert half of the maximum biological activity can be estimated. However, there are several 

ADME parameters that affect the free concentration at the site of action, particularly the 

intrinsic clearance, absorption and the distribution of the compound in the body. Drugs 

can be administered in various ways that produce different pharmacokinetic profiles. In 
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this project, different dose estimation approaches have been investigated after 

intravenous, oral and inhaled (intranasal) administration. After administering a drug, it is 

either absorbed from an extravascular site of administration (e.g. gastrointestinal tract, 

lung etc…) or is directly administered to the systemic circulation (IV). Upon reaching the 

general circulation, the drug is distributed into the tissues and other compartments in the 

body. It will also begin to be cleared from the body by various pathways (metabolic, 

hepatic and renal clearance) with different elimination rates. The basic terms that are 

generally used in describing the ADME profile of a compound are now defined. 

 

4.1.1 Absorption 

 

There are several ways by which a drug can be administered, such as intravenous, 

subcutaneous, topical, inhaled, intranasal, and most commonly the oral route. We 

typically think of absorption with respect to orally delivered small molecules and their 

absorption from the gastrointestinal tract (GI).  GI absorption is the process that a drug 

undergoes following oral administration resulting in its appearance in the central 

compartment (systemic blood). The fraction of drug that was dosed and appears in the 

central compartment is referred to as oral bioavailability (F) and normally expressed as 

percentage bioavailability (%F).   

 



38 
 

Figure 2.2-2 Process of Absorption of a Drug from the GI Tract 

 

 
 

Figure 2.2-2 Shows a simple schematic of the processes involved in a drug reaching the systemic 

circulation following oral administration 

 

For orally administered drugs, if taken in a solid form such as a tablet, dissolution must 

precede the release of the active pharmaceutical ingredient (API) that will then dissolve 

in the GI fluid, in accordance with its solubility.  Following gastric emptying, the drug will 

pass through the duodenum, jejunum and ileum where most of the absorption through 

the GI wall will occur. The fraction absorbed (Fa) is the proportion of the administered 

dose which permeates the GI wall/reaches the enterocytes before entering the hepatic 

portal vein. 

 

Following absorption, the drug will pass through to the portal vein, where it will then be 

presented to the liver. The liver is the principle organ in the body responsible for the 

metabolism of the vast majority of small molecules/drugs, due to the high expression of 

metabolising enzymes such as the cytochrome P450’s. Any parent drug which then 

enters the central compartment is referred to as the fraction which escapes hepatic 

extraction (Fh) or often referred to as first pass extraction. The fraction of drug which then 

reaches the central compartment following oral delivery, is referred to as the oral 
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bioavailability (F) (see Equation 1). The oral bioavailability is an important 

pharmacokinetic term for a drug, as this is this fraction of administered drug which 

reaches the systemic circulation in order to bind to its target (e.g. receptor or enzyme) 

and elicit a pharmacological effect. Bioavailability will be 100% when a drug is 

administered intravenously, whereas oral bioavailability is typically below 100%, as its 

physicochemical properties and first pass metabolism through the liver  

(Equation 1) normally reduces the amount of parent compound appearing in the central 

compartment. Metabolism may start in the gut as enzymes and efflux transporters are 

expressed in the GI wall. Oral bioavailability may approach 100% due to complete 

absorption (Fa =1), and low hepatic extraction (Fh ≤ 1).  Clearance and Metabolism will 

be discussed later in Section 4.1.3. 

 

Equation 1 

F ൌ F. Fୟ. F୦ 

 

F=Bioavailability, Fg=Fraction of drug escaping gut metabolism, Fa=Fraction of drug absorbed 

from the GI Tract, Fh=Fraction of drug that escapes hepatic extraction 

 

Equation 2 

Fh ൌ 1 െ ER 

where ER ൌ
େ

୕
 

 

Fh=Fraction of drug that escapes hepatic extraction, ER=Extraction Ratio, CL=Clearance, 

Q=Organ Blood Flow 

 

The underlying physicochemical processes of absorption are an area of significant 

importance to pharmaceutical development and DMPK scientists and can be investigated 

in several ways using in silico, in vitro and in vivo systems. If a drug is administered as a 

solid such as in a standard compressed tablet, the tablet has to disintegrate, and the drug 

becomes solubilised before it is able to permeate the intestinal wall; this is determined by 

the dissolution rate and solubility.  From the stomach to the large intestine, the pH of the 

gut lumen has a large pH range and can change from being very acidic (pH 1.5), to very 

alkaline (pH 10).  This means that ionization plays a significant role in the solubility and 

absorption of small molecules. Small molecules can be in different ionization states in 

different parts of the GI tract.  Importantly the ionized species are more soluble than the 
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non-ionized species.  Therefore, acidic molecules with pKa’s which result in unionized 

species at low pH are less soluble in the stomach than basic compounds that are readily 

ionized at low or physiological pH. 

 

There are several other endogenous phospholipids such as micelles and enzymes in the 

intestinal lumen that may aid solubility.  The most important micelles are taurocholate 

and phosphatidyl choline. Lipophilic drug molecules can partition into micelles, which can 

help to accelerate the dissolution rate.   

 

When the drug molecule is in solution, there is a high probability that it will permeate 

through the intestinal wall. The passive absorption process is governed by the rate of 

permeation that follows Fick’s law of diffusion (see Equation 3), which describes the flux 

of molecules from higher concentration to the lower concentration. The major 

physicochemical driving force of absorption is the concentration difference between the 

intestinal lumen (apical) and the other side (basolateral) of the intestinal wall. The 

intestinal wall is densely networked with blood vessels. The continuous blood flow creates 

a concentration gradient which reduces the drug concentration and drives the 

permeability through the intestinal wall. Very small molecules can also be absorbed para-

cellularly through small gap junctions between the intestinal cells, whereas most drug 

molecules diffuse through the cells, which means they have to go through several 

phospholipid bilayers, which reduces their absorption rate. 

 

Equation 3 

𝐽 ൌ െ𝐷
𝑑𝜑
𝑑𝑥

 

 

J is the diffusion flux with the dimension amount per unit time, D is the diffusion coefficient with 

the dimension of area per unit time, ᵠ is the concentration with the dimension amount per unit 

volume, x is position with dimension length. 

 

There are also active transport processes that can carry molecules through the intestinal 

wall to enhance absorption rates and active efflux processes which can significantly limit 

absorption. A well-known and important example is P-glycoprotein (P-gp), which can limit 

absorption from the intestine as well as other organs throughout the body (e.g. CNS 

uptake).  These efflux transporters have evolved to protect the body from potentially 
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harmful xenobiotics. There are metabolising enzymes present in the GI tract and cells, 

which can directly metabolise drug molecules to reduce the fraction of drug reaching the 

portal vein and therefore limiting bioavailability.  

 

Besides the physicochemical aspects of absorption, there are also several other 

important physiological factors. For example, the effect of food can influence the GI pH, 

enzyme expression and gut motility. There are large individual variations in the size of 

the absorption surface in the gut, depending on age, gender, and disease state. The 

usual way to estimate absorption in vivo during the drug discovery and development 

process is to measure the systemic blood or plasma concentrations of a drug over time, 

and then construct a concentration-time profile. From these curves it is possible to 

calculate parameters such as, maximum concentration (Cmax), elimination rate (Kel) and 

the Area Under the Curve (AUC). The AUC is the basis for non-compartmental 

pharmacokinetic (NCA) evaluation, which is one of the most frequently used methods of 

determining pharmacokinetic parameters such as clearance.  The bioavailability of the 

drug can be calculated by comparing the AUC values after oral and intravenous 

administration and expressed as a percentage (%F). The first pass metabolism or 

extraction ratio can be estimated from the IV clearance. The absorption can then be 

estimated from the bioavailability and extraction ratio using Equation 1 and Equation 2 

described earlier in this section. 

 

As the absorption process involves complex physicochemical and biological processes, 

it is very difficult to predict absorption solely from chemical structure. However, there are 

now some effective computational Physiological Based Pharmacokinetic (PBPK) models 

such as GastroPlus™, which can help predict absorption from the GI tract. This will be 

discussed further in Section 6.10. 

 

When compounds are absorbed from the GI tract they enter the circulating blood via the 

hepatic portal vein, before entering the liver. The purpose of the liver is to protect the 

body and act as a barrier to xenobiotics reaching the systemic circulation, which may be 

harmful/toxic. The liver metabolises xenobiotics to less toxic or inactive metabolites, 

which are generally more polar and can be easily excreted via the renal system or back 

to the GI tract via the bile where they can be excreted.   
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It is generally much easier to directly measure bioavailability than absorption in pre-

clinical studies, bioavailability is also generally more relevant parameter when assessing 

systemic exposure of an oral drug. However, absorption can be directly measured in vivo 

if required by sampling from the portal vein and systemic circulation in rodents. These 

models are generally more complex and require more invasive surgical techniques to 

cannulate blood vessels to enable repeated blood sampling. 

 

4.1.2 Distribution 

 

Distribution is defined as the reversible transfer of a drug between one compartment to 

another and in pharmacokinetic terms referred to as volume of distribution. Volume of 

distribution (Vd) represents one of the most important pharmacokinetic parameters of a 

drug, and often one of the most misunderstood and is defined as, the fluid volume that 

would be required to contain the amount of drug present in the body at the same 

concentration as in the plasma. Both Vd and clearance (CL) are the predominant factors 

which affect the duration of action and dosing frequency of a drug due to their relationship 

to half-life and are related by Equation 4 [28]. 

 

Equation 4 

CL ൌ 𝑉ௗ. 𝐾 

 

CL=Systemic clearance, Vd= Volume of distribition, Kel=Elimination rate constant 

 

Once the absorption process has occurred and the parent drug has escaped first pass 

metabolism (F≤1), the compound reaches the systemic blood circulation and distributes 

around the body. The circulating blood volume allows the drug to be transported around 

the body and partition into the different tissues and organs. Clearance continues via the 

liver and/or kidneys as the compound is recirculated through these organs. Various 

pharmacokinetic models can describe the distribution of the drug as a function of time, 

often using a non-compartment method (NCA) or linear regression of a log linear 

concentration-time profile to determine CL (blood or plasma), Vd and half-life (T½).  

However, in reality the body is made up of many tissues which can be represented as 

several compartments. The simplest compartmental model involves one compartment, 

although two compartment models are probably more consistent with most concentration-

time profiles and are more representative of a physiological system, using a central 
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compartment (blood/plasma) and a tissue compartment (rest of the body). Concentration-

time curves using compartmental models are more complex to analyse and require 

differential equations to describe the body as a multi-compartment system. As 

compounds often distribute more slowly to tissues that have a low blood supply, such as 

adipose, muscle or skin, then multi-compartment models are required to accurately 

describe the concentration-time curve obtained from in vivo experiments. One of the 

better approaches to modelling this type of complex data and which has emerged in 

recent years is PBPK modelling, which will be described in more detail in Section 6.10.  

 

Vd is a proportionality factor between the total amount of drug administered to the body 

and the concentration measured in the blood or plasma. Blood or plasma represents the 

reference space where the drug concentration is measured. Therefore, the Vd is the 

calculated theoretical volume that would be necessary to contain the amount of 

administered drug at the same concentration as it is in the blood or plasma.  

 

There are three simultaneous processes which govern Vd following IV bolus 

administration: the initial intravascular distribution of the drug throughout the 

blood/plasma pool; the distribution of the drug by diffusion into tissues; and the 

irreversible elimination of the drug from the body. 

 

Although only a theoretical parameter, the Vd of small molecules is typically related to 

tissue volumes as a helpful means to contextualise how a molecule distributes throughout 

the body. DMPK scientists typically rank compounds into low (0.6 L/kg), moderate (0.6-5 

L/kg) and high (>5 L/kg) volumes. Figure 2.2-3  shows how the physiological body fluid 

volumes for human Vd is normally divided and provides drug discovery scientists with a 

general indication of where a compound is likely to distribute based on its measured Vd. 
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Figure 2.2-3 Physiological Body Fluid Volumes for Human [28] 

 

 
 

Figure 2.2-3 Physiological volumes of body fluids in human. Adapted from reference [28] 

 

How a drug/molecule distributes into tissues is driven by several physicochemical 

properties and physiological processes, but one of the most significant factors is its 

acid/base classification. Basic molecules tend to have affinity for binding to α1-acid-

glycoprotein and albumin in plasma, and this affinity is often related to lipophilicity (see 

section 4.2.1) [28], and have moderate to large volumes in the order of 1-25 L/kg. Basic 

molecules also tend to partition into the phospholipids as they bind to the negatively 

charged phospholipid head groups of these proteins: phosphatidylcholine and 

phosphatidylserine are the major phospholipids in plasma and tissues, respectively. 

Concentrations of phosphatidylserine reflect closely the ranking of the tissue partition 

coefficients (Kp) of many basic drugs in tissues (lung > kidney > liver > muscle and heart 

> brain), which are ionized at physiological pH [28]. Figure 2.2-4 and Figure 2.2-5 help to 

visualise the process of distribution between the blood/plasma and tissues 

compartments. 
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Figure 2.2-4 The Schematic Illustration Free Drug Partitioning Between the 

Plasma and Tissue Compartments. 

 

 
 

Figure 2.2-4 Shows how the unbound/free compound distributes between the plasma and tissue 

compartments 

 

Neutral molecules have no charge related interaction and their Vd’s tend to be directly 

related to lipophilicity and are in the moderate range (0.6 – 5 L/kg). Lipophilicity is also 

important for acids; however, the dominant interaction of these molecules tends to be 

their high affinity for albumin resulting in a very low free fraction in plasma (fup). This, 

along with their negative charge at physiological pH that is responsible for low affinity for 

phospholipid head groups and low tissue binding (high fut) results in acidic compounds 

having low Vd’s that are similar to plasma protein or total body water (0.04 – 0.6 L/kg). 

This is illustrated in Figure 2.2-5. 
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Figure 2.2-5 A Physiological Schematic Describing Volume of Distribution 

Illustration of a Drug’s Partitioning Between the Plasma and Tissue 

Compartments 

 

 
 

Image downloaded  on April 20th 2018 from 

http://tmedweb.tulane.edu/pharmwiki/doku.php/introduction_to_pharmacokinetics  

 

There are typically three volume terms which can be calculated and used to describe the Vd: the 

volume of the central compartment (Vdc), the volume at steady state (Vdss) and the volume of 

distribution area (Vdβ). Each volume term is defined by different points of a concentration-time 

curve following bolus intravenous administration of a drug (Figure 2.2-6). 
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Figure 2.2-6 Description of Volume Terms from Concentration-Time Curve 

 

 
 

Figure 2.2-6 describes the different volume of distribution terms which are derived from a 

concentration time curve, [28]. 

 

The different Vd terms can be described by Equation 5, Equation 6 and  

Equation 7. 

 

Equation 5 

Vୢୡ ൌ
ୈ୭ୱୣ

େబ
    

 

Vdc is the volume of the central compartment, dose is the amount of drug administered, C0 is the 

concentration at time zero.   
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Equation 6 

Vୢୱୱ ൌ Dose .
େ

ሺେሻమ ൌ CL . MRT   

 

Vdss is the volume of distribution at steady state, dose is the amount of drug administered, AUC 

is the area under the time concentration curve, AUMC is the area under the first moment time 

concentration curve, MRT is the mean residence time, CL is the systemic clearance. 

 

Equation 7 

Vୢஒ ൌ
CL
Kୣ୪

 

 

Vdβ is the volume of distribution area, CL is the systemic clearance, Kel is the elimination rate 

constant 

 

Vdc is the apparent volume immediately after a bolus IV dose. This volume is generally 

lower than the Vdss as it assumes instantaneous distribution, and therefore does not give 

a good estimate of apparent volume when distribution for a compound is slow, for 

example when it perfuses slowly into tissues such as adipose and muscle. Vdss is the 

most widely quoted value for Vd in drug discovery, as it represents the apparent volume 

under steady state conditions, which is the dosing conditions for most compounds being 

developed. Vdβ is derived from the terminal phase, but is often confounded by a poorly 

profiled terminal phase of the concentration-time curve and/or low analytical sensitivity. 

This volume term is also a function of clearance and will therefore change with time and 

is not considered to be a pure measure of Vd.  

 

Equation 8 is another useful way to describe Vdss, as it is based on physiological 

descriptors of Vd.  This relationship follows the principles of Fick’s Law, which describes 

the process of passive diffusion of unbound drug as a determinant of Vd and is illustrated 

by Figure 2.2-4. 
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Equation 8 

Vୢୱୱ ൌ V୮  V୲. ቀ
୳౦

୳౪
ቁ  

 

Vdss is the volume of distribution at steady state, Vp is the volume in the plasma compartment, is 

the volume in the tissue compartment, fup is the fraction unbound in plasma, fut is the fraction 

unbound in tissue   

 

 

Equation 8 can be also be expressed as Equation 9, where Kp is the partition coefficient 

between plasma and tissue compartments. 

 

Equation 9 

Vୢୱୱ ൌ V୮  V୲. K୮  

 

Vdss is the volume of distribution at steady state, Vp is the volume in the plasma compartment, Vt 

is the volume in the tissue compartment, Kp is the plasma tissue partition coefficient. 

 

It can be seen how the biomimetic measurements of phospholipid and albumin binding 

described in Section 4.2.1 relate to volume of distribution because of the physiological 

importance of these lipids and proteins. As a result, these measurements can be used to 

model Vdss to help with decision making in the early stages of drug discovery. An 

advantage of the biomimetic approach is the ability to generate data for large number of 

compounds relatively cheaply in early discovery, unlike in vivo Vdss, which can only be 

measured for a relatively small number of compounds for both practical and ethical 

reasons. 

 

4.1.3 Metabolism and Elimination - Clearance  

 

Metabolism and excretion are the processes by which a drug or molecule is cleared from 

the body. These two processes are often collectively referred to as clearance. The 

important role or consequence of metabolism is to deactivate or reduce the 

pharmacological activity of the parent molecule. 

 

Metabolism and transporter processes are defense mechanisms to protect the body from 

xenobiotics. Metabolism occurs in most tissues in the body, although the liver is the 
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primary organ for metabolism due to the high expression of metabolising enzymes. The 

extent of metabolism differs widely across other organs and tissues such as the gut wall, 

kidney, skin, lung and blood/plasma. Metabolism is the process by which molecules are 

catalytically changed / bio-transformed to a metabolite. Small molecules are typically 

metabolised by one or two general processes known as Phase I and Phase II 

metabolism.  The most common Phase I process involves redox reactions in the liver 

catalyzed by a family of proteins call the Cytochrome P450 enzymes. Cytochrome P450s 

(CYPs) are the major drug metabolising enzymes, responsible for ~75% of human drug 

metabolism, with the main CYPs of interest being 3A4, 2D6, 2C19, 2C9 and 1A2.  CYP 

3A4 and 2D6 are responsible for the metabolism of approximately 50% of all small 

molecules. Other Phase I processes include hydrolysis of esters and amides by 

esterases and amidases and oxidation of aldehydes and alcohols by oxidases and 

dehydrogenases to name a few. These processes generally produce metabolites with 

increased polarity and solubility, which can be excreted directly through the hepatobiliary 

or renal systems, or undergo further Phase II metabolism by conjugation with 

endogenous polar molecules before they are excreted via the bile or renal systems. Table 

4-1  provides a list of the most common Phase I and II reactions.  

 

Table 4-1 The Most Common Phase I and II Reactions 
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Small molecules and their metabolites can be excreted from the body via the 

hepatobiliary (Figure 2.2-7) or renal systems (Figure 2.2-8), with the route often 

dependent on their physicochemical properties and functional groups. The lung is also a 

site of excretion for specific drug types such as volatile anaesthetics.  

 

Figure 2.2-7 Physiological Schematic of the Hepatobiliary System and 

Upper GI Tract 

 

 
 

Figure 2.2-7 Shows the major features of the hepatobiliary system and GI tract. Reproduced from 

[29] 
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Figure 2.2-8 Physiological Schematic of the Renal System  

 

 
 

Figure 2.2-8 Shows a nephron which is the microscopic structural and function unit of the kidney 

(glomerular filtration system - GFR). Reproduced from [30]. 

 

Excretion of small molecules can occur via the hepatobiliary system via active uptake, 

metabolism (Phase I, II or a combination) or biliary transport as shown below in Figure 

2.2-9. Understanding the mechanism of biliary elimination is important in drug 

development but the rate of elimination is difficult to scale from pre-clinical species to 

human. Currently there are very few options to characterise this process with confidence 

in vitro. 
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Figure 2.2-9 Hepatobiliary Uptake  

 

 
 

Figure 2.2-9 Shows a schematic of the main transporters present in hepatocytes. BCRP-Breast 

Cancer Resistance Protein, BSEP-Bile Salt Export Pump, CYP-Cytochrome P450, GSH-

Glutathione, GST-Glutathione S-Transferases, MCTR-Monocarboxcylic Acid Transporter, MDR-

Multi Drug Resistance Protein, MRP-Multidrug Resistance Associated Protein, NTCP-Sodium 

Dependent Taurocholate Co-transporting Polypeptide, OATP-Organic Anion Transporting 

Polypeptides, OCT-Organic Cation Transporters, UGT-UDP-Glucuronosyltransferases [31] 

 

Metabolism and excretion are collectively described by the pharmacokinetic term 

clearance. Clearance reflects the ability of the body or an organ to eliminate a drug 

molecule from the systemic circulation. Clearance is a rate term with units of L/h and is 

normally expressed in terms of the blood flow rate of the liver, as this is the major organ 

responsible for clearance of the majority of small molecules. 

 

At the early stages of drug discovery, it is not economically viable or ethical to generate 

in vivo clearance data for large numbers of compounds, many of which would not 

represent potential drug candidates. In vitro methods are used to help screen out the 

majority of compounds prior to in vivo testing. These in vitro systems of clearance include 

microsomes, S9, cytosol and hepatocytes that can be used to measure a compound’s 

metabolic stability in pre-clinical species of interest and human. The data generated from 

these systems can then be used to estimate the in vivo clearance and help justify the 

progression of a compound into an animal model. 

 

 



54 
 

4.2 Important Physicochemical Properties 

 

It is a common misconception by drug discovery teams that high in vitro potency at the 

biological target or targets of interest will result in low clinical dose therapeutics. As a 

result of this hypothesis, many pharmaceutical companies have developed industrialised 

screening cascades to enable high throughput in vitro potency screening as an early filter 

for medicinal chemists to screen large numbers of synthesised NCE’s [19]. However, it 

has become apparent over the past two decades that this approach has introduced a 

physicochemical bias into many chemical lead series and individual NCE’s, which has 

almost inevitably resulted in many compounds being developed with exquisite in vitro 

potency, as a result high molecular weight and lipophilicity, which then leads to a 

diametrically opposing relationship between target potency and achieving the desired 

ADMET properties for a successful NCE [19]. 

 

However, when physicochemical properties are taken into consideration early in the drug 

discovery process, there is a higher probability of producing more drug-like candidate 

molecules during drug development for clinical use. The impact of key physicochemical 

properties are considered in the following sections. 

 

4.2.1 Lipophilicity – Octanol/Water Partition (LogP) and Property Forecast 

Index (PFI) 

 

Lipophilicity has been recognised as one of the most important physicochemical 

parameters in drug discovery and design for many years [20]. Almost all of the rules that 

have been proposed and most discovery teams have lipophilicity as a primary parameter, 

or it is in some way implicit in these drug design rules. The reason lipophilicity is 

fundamental to drug design is that it contributes to both the PD and ADMET 

characteristics of a drug, where it influences solubility and permeability through 

membranes, potency, selectivity (and therefore promiscuity), metabolism, PK and 

toxicological characteristics [4][15][19–28].  

 

The biological distribution of a compound is most often characterised by a measure of its 

lipophilicity, usually the logarithm of the octanol/water partition coefficient (LogP) [33]. It 

describes the compound's affinity for the lipophilic solvent relative to the aqueous buffer 

and it is equal to the ratio of the equilibrium concentrations in the two immiscible solvents 
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and has traditionally involved the ‘shake-flask’ method. The octanol/water partition 

coefficient (LogP) for the neutral form and distribution coefficient at a particular pH 

(LogD), which differs from the LogP for ionizable compounds, have been measured for 

hundreds of thousands of compounds over several decades of pharmaceutical research. 

Based on compiled data, numerous in silico software packages are now commercially 

available for the in silico calculation of LogP values (e.g. cLogP). In order to calculate the 

distribution coefficient (LogD) at a particular pH of ionizable compounds, the pKa values 

need to be determined/calculated. Using the Henderson Hasselbalch equation (shown 

by Equation 10) the percentage of the ionized form can be calculated and LogD values 

determined. 

 

Equation 10 

LogD୮ୌ ൌ Log൫ P. 10ୡ୦ሺ୮ି୮ୌሻ  D୳୪୪୷ ୧୭୬୧ୱୣୢ ୭୰୫൯ െ Log൫1  10ୡ୦ሺ୮ୟି୮ୌሻ൯ 

 

where ch is the charge which is -1 for acids and +1 for bases.  

 

The octanol/water lipophilicity has been shown to correlate with pharmacological activity 

data. According to the Hansch approach [33], the logarithmic value of the octanol/water 

partition coefficient can describe the movement of a drug to its site of action.  As 

described above, Lipinski’s Rule of Five [4] includes the lipophilicity, stating that there 

should be a LogP less than 5, in order to expect oral absorption. Arguably a LogP of <5 

is a very high number and should be considerably lower for high quality drug candidates. 

With the evolution of combinatorial chemistry and the hunt for more potent compounds 

the drug discovery library of compounds has become more lipophilic. Lipophilic 

compounds do not favour an aqueous environment, and bind to any available non-polar 

biological surfaces, such as proteins causing non-specific and promiscuous binding. For 

these reasons, experimental measurement and in silico calculation of octanol/water 

lipophilicity are now wide-spread in drug discovery. Several ligand efficiency parameters 

were also introduced [34] such as BEI (Binding Efficiency Index), LE (Ligand Efficiency 

Index), LLE (Lipophilic Ligand Efficiency Index), which all relate the potency of a molecule 

at its target to some sort of lipophilicity parameter. This focus on lipophilicity has resulted 

in a shift by medicinal chemistry teams to design less lipophilic molecules but which still 

retain potency for their targets. 

 



56 
 

Techniques to measure octanol/water partition coefficients have been designed to 

achieve higher throughput by reducing the volume of the solvents in which the partition 

takes place in a 96-well plate format. However, this approach increased the ratio between 

the solvent interface and volume and distorted the results for amphiphilic molecules 

(having both hydrophilic and hydrophobic parts). A sensitive and robust analytical 

technique using chromatographic lipophilicity measurements is now commonly employed 

to determine partition coefficients. 

 

In reversed-phase chromatography, retention is the result of the dynamic equilibrium 

constant of the compounds between the aqueous mobile and the non-polar C-18 

stationary phase. The chromatographic method has numerous advantages over the 

traditional method for measuring liquid/liquid partition coefficients. A much smaller 

amount of compound is required for the reversed-phase retention measurements, and 

small impurities do not alter the results as they are separated from the main components. 

Furthermore, chromatographic measurements can be easily automated, and retention 

time measurements are inherently more precise than the concentration determination 

process for the shake-flask method. As a consequence of automation, higher throughput 

can be achieved (over 100 compounds per day per instrument can be measured). 

 

The chromatographic partitioning equilibrium of the compound between the mobile phase 

and the stationary phase occurs on a very large surface, which is similar to a physiological 

system where the partitioning of compounds is between the circulating blood and tissues. 

There has been a large numbers of publications since the early 1980’s describing the 

methods and applications of reversed phase chromatographic retention and the 

correlation with lipophilicity expressed by partition coefficients [34–37]. The main 

principles of the most often used approaches will be discussed here to give enough 

background information and context into how these methods are used to generate in vitro 

drug efficiency and other matrix binding measurement in early drug discovery. 

 

Most of these methodologies have been based on isocratic measurements of reversed-

phase retention, which is then normalised by the dead time of the system and expressed 

as a retention factor shown by Equation 11. 
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Equation 11 

k ൌ
௧ೃି௧బ

௧బ
     

 

where k is the retention factor, tR  is the retention time and t0 is the dead time [38]. 

 

The retention factor (k) is equal to the proportion of the average number of molecules in 

the stationary and mobile phases and can be directly related to the logarithmic distribution 

coefficient (LogK) of the compound. The concentration of the compound in the two 

phases (to get the partition coefficient) is expressed by introducing the volume ratio of 

the stationary and mobile phases, Vs and Vm [38], respectively, which is a constant in a 

given chromatographic system (see Equation 12): 

 

Equation 12 

Log K ൌ Log k  Log ቀ
ೞ


ቁ     

 

Where LogK – logarithm distribution coefficient, Logk – logarithm of the retention factor, Vs and 

Vm - volume of the stationary and mobile phases 

 

One of the main disadvantages of using isocratic measurements is that compounds with 

a wide range of lipophilicities would need to be measured using different mobile phase 

compositions, which is time consuming for large numbers of compounds. In these cases, 

it would be necessary to change the mobile phase composition and mix the aqueous 

buffer with various concentrations of miscible organic solvents (usually acetonitrile or 

methanol). Higher organic phase concentrations in the mobile phase will reduce the 

retention of more lipophilic compounds. The measured retention factor (Logk) needs to 

be extrapolated to the same mobile phase composition, usually to pure aqueous mobile 

phase. To be able to measure the relationship between reversed-phase retention and the 

concentration of the organic phase, the mobile phase compositions have been analysed 

and described in detail by Valko et al [39]. Equation 13 describes the linear relationship 

between the retention factor and the organic phase concentration as volume percentage 

(φ) in the mobile phase and may provide a solution for such extrapolation. 
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Equation 13 

Log k ൌ aφ  b        

 

Logk - retention factor, φ - hydrophobicity index, a & b are the gradient and intercept 

There is a linear relationship between Logk and the % organic in the mobile phase (φ), 

constants for the equation of the line a and b can be determined by carrying out the Logk 

measurements using 3 to 5 different organic phase concentrations (φ) in the mobile 

phase. The a constant is the gradient, and the b constant is the extrapolated Logk 

(intercept) value to a zero-organic phase concentration, i.e. neat water (buffer) often 

referred to as Logk0. The Organisation for Economic Co-operation and Development 

(OECD) [40] suggested the extrapolated logarithmic retention factor (Logk0) for the 

determination of lipophilicity. A set of standard compounds can be used to calibrate the 

system to the octanol/water scale by plotting the logarithm of the octanol/water partition 

coefficients (LogP) as a function of Logk0 values. A straight line should be obtained with 

slope and intercept values used to convert the Logk0 values to LogP values.  

 

As discussed above, the isocratic retention measurements have to be carried out using 

different organic phase concentrations, plotting the obtained Logk values as a function of 

the organic phase concentration and, by fitting a straight line, extrapolating the Logk 

values to zero organic phase concentration to get Logk0. This is a time-consuming 

procedure even where the process has been automated.  

 

A study by Valko et al [41] has shown that the organic phase concentration (φ0 ) which 

gives the Log k0, showed a good correlation with the octanol/water partition coefficients 

(LogP) for more than 500 diverse compounds [41]. This organic phase concentration that 

is a characteristic for the compound is called the chromatographic hydrophobicity index 

(CHI). The φ0 values are in the measurable range and express the composition of the 

mobile phase when the compound has an equal distribution between the stationary and 

the mobile phases. It was later found to have a good linear correlation with the gradient 

retention times (tR)  for a wide variety of compounds [38][42]. Thus, by a simple 

calibration, the gradient retention times can be converted to the CHI, which showed a 

linear correlation to the Logk0 values. The CHI can be calculated using Equation 14 and 

is equivalent to the isocratic hydrophobicity index (φ) [38,43]. 
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Equation 14 

φ ൌ CHI ൌ atୖ  b  

 

φ - hydrophobicity index, CHI - chromatographic hydrophobicity index, tR - gradient retention time, 

a & b are the gradient and intercept of the line 

 

The introduction of generic gradient reversed phase methods for the analysis of a wide 

variety of drug discovery research compounds for quality analysis has had a huge impact 

on the measurement of gradient retention times for lipophilicity determination. This means 

that compounds with a wide range of lipophilicities could be analysed by a single fast 

gradient method without the loss of resolution. To achieve a fast gradient reversed phase 

analysis, high flow rate, fast gradient and short column length should be used: this 

enables the achievement of the same separation efficiency as with a slow gradient [44] 

 

To get lipophilicity data that is comparable when obtained in different laboratories that 

use different instruments or reversed phase columns, it is always advisable to use a 

calibration set of compounds (see section 6.2.3 Measurements of Chromatographic 

Lipophilicity), with fixed CHI values at three different mobile phase pH’s to standardise 

the gradient retention times [45]. 

 

On the CHI scale, the lipophilicity ranges from 0 to 100. As the octanol/water partition 

coefficient (LogP) is widely used and preferred by drug discovery scientists and medicinal 

chemists, the CHI scale of lipophilicity has been converted to a more familiar CHILogD 

scale using Equation 15, based on the fitted data of 76 known drug molecules with 

measured CHI and LogP values [29]. The LogP can also be estimated by using the CHI 

of the neutral species (CHIN). The parameters for expressing CHI lipophilicity based on 

calculated LogP data for more than 20K compounds is shown by Equation 16 and called 

ChromLogD [30]. 

 

Equation 15 

𝐶𝐻𝐼LogD ൌ 0.054𝐶𝐻𝐼 െ 1.467   
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Equation 16 

𝐶ℎ𝑟𝑜𝑚LogD ൌ 0.0857𝐶𝐻𝐼 െ 2             

 

GSK have over half a million compounds with measured ChromLogD values that have 

provided the input for the in-house in silico ChromLogD calculations, which had a very 

good correlation with the measured values (Figure 4.2-1). 

 

Relatively recently, Young et al [8] introduced the Property Forecast Index (PFI) which is 

the sum of ChromLogD and the number of aromatic rings in the molecule (Equation 17). 

 

Equation 17 

PFI ൌ ChromlogD  Number of Aromatic Rings  

 

where PFI is - Property Forecast Index 

 

Aromaticity has been shown to increase crystal lattice energy, to reduce solubility in 

general and should be avoided or reduced to improve developability of candidate 

molecules [46]. The PFI concept means that there should be scope to optimise the 

lipophilicity of the molecule if necessary, as long as we do not increase aromaticity. 
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Figure 4.2-1 Plot of Measured and Calculated ChromLogD Values for Mixed 

Project Compounds. Source Data Downloaded from GSK Corporate 

Database April 2018 

 

 

Figure 4.2-1 shows the measured and calculated ChromLogD Values for Mixed Project 

Compounds of the different molecule classes for a selection of cross project GSK small molecules 

 

Table 4-2 shows how the binned PFI values can be related to other properties of the 

molecules, such as solubility, albumin binding, p450 inhibition, clearance, hERG 

inhibition, and promiscuity. 

 

The HPLC platform provides a high throughput for measuring a compound’s lipophilicity 

expressed as CHILogD or ChromLogD. Combining this parameter with the number of 

aromatic rings in the molecules provides a general property forecast index that can be 

used as a general guideline for the medicinal chemist. It is suggested that PFI values 

should be less than 6 for a candidate molecule. It should also be mentioned that very low 

PFI values (less than 3) are not necessarily advantageous as the permeability of very 

polar compounds are compromised [8]. 
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Table 4-2 Percentages of Compounds Achieving Defined Target Values in 

Various Developability Assays Categorised by PFI or iPFI Bins [8]. 

 

 

 

Neither the octanol/water, nor the C-18 reversed phase chromatographic systems are the 

same as the biological partition system. We can, however, use chemically bonded 

proteins and immobilized phosphatidylcholine stationary phases in chromatography to 

better model biological partitions. 

 

4.2.1 Biomimetic Properties (HSA, AGP and IAM binding) 

 

The development of chemically bonded columns with physiologically relevant proteins 

the same as the components of in vivo proteins has become a useful tool for measuring 

the physicochemical characteristics of compounds. Figure 4.2-2 shows the common 

stationary phase proteins which are commercially available for determining protein 

binding to physiologically relevant proteins. 
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Figure 4.2-2 Common Stationary Phase Proteins which are Commercially 

Available 

 

 

 

Plasma protein binding has been recognised [32] as an important property of drug 

molecules that effects distribution and may alter the pharmacodynamic effects of potential 

drugs under certain conditions. Chromatography can be used to provide higher 

throughput measurements of protein binding compared to traditional plasma protein 

binding measurements by equilibrium dialysis [48] or by ultrafiltration methods [49].  

 

The predominant plasma protein of interest is human serum albumin (HSA) which is 

normally present in the systemic circulation at a concentration of 40 to 75 g/L. Based on 

the definition of the isocratic retention factor that approximates the proportion of the 

average number of molecules in the stationary phase and the mobile phase, the 

percentage binding can be calculated from Equation 18.  

 

Equation 18 

%HSA bound ൌ 100 ቀ
୩

ଵା୩
ቁ        

 

Where k is the retention factor and HSA is Human Serum Albumin 
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In this equation, we consider all of the specific and non-specific binding of the compound 

to the HSA stationary phase. Moreover, the binding is considered as a partition 

equilibrium between the free-flowing aqueous mobile phase and the albumin stationary 

phase that also contains adsorbed water molecules which do not move with the mobile 

phase.  

 

The principal characteristic of the partition process is that the partition coefficient is 

independent of the amount of the partitioning compound, while the stoichiometric binding 

constant depends on the concentration of the ligand and the protein. When using HPLC 

protein phases, the protein concentration is much higher than the ligand concentration, 

as it will occupy only a very small part of the column at any point throughout the gradient 

time. To express the binding constant from the % HSA data, Equation 19 can be used 

[45]: 

 

Equation 19 

Log k ሺHSAሻ ൌ Log
%ୌୗ ୠ୭୳୬ୢ

ଵି%ୌୗ ୠ୭୳୬ୢ
െ LogሾHSAሿ                       

 

Where HSA is Human Serum Albumin and Logk (HSA) is the binding constant 

 

Another important protein type is the glycoprotein family. Alpha-1-acid glycoprotein (AGP) 

can be found in the plasma at 1.5% (0.7 g/L) of the total plasma protein concentration. 

Although the role of this protein is poorly understood, strong binding of drugs to AGP can 

cause variable efficacy in clinical studies [50][51]. The main reason for this is that the 

AGP concentration can vary in a disease state, and with gender, age, and pregnancy, 

etc.  Inflammation, cancer, cardiovascular disease, infections, and injuries may cause an 

increase in AGP concentration in plasma [50], which may affect a drug’s plasma protein 

binding [52] and distribution. AGP contains 46% carbohydrate and sialic acid moiety with 

a negative charge and therefore can be expected to bind positively charged basic drug 

molecules, which can be very important for how a compound is distributed and retained 

by a tissue, e.g. lung. The variability of AGP type and level in patients means it is 

important to know the AGP binding of putative drug molecules before candidate selection 

is made to avoid progressing compounds with strong binding affinities that can lead to 

later problems in clinical efficacy. 
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The logarithmic retention times from the AGP column can be plotted against the literature 

Log k values that can be obtained from % binding values analogous to Equation 19 with 

AGP replacing the HSA term. 

 

These biomimetic HPLC measurements provide information about the compound’s 

interaction with the actual protein. As the chromatographic retention factor depends on 

the experimental conditions, it is important to calibrate the chromatographic system by 

measuring the retention data for a set of compounds for which the binding data is also 

available from other methodologies such as equilibrium dialysis, ultrafiltration or capillary 

electrophoresis frontal analysis [53]. In this way, the obtained data would be comparable 

between laboratories and reproducibility improved.  

 

Phospholipids as well as proteins are also important components in the body and in 

tissues. Drug molecules may partition into phospholipids and as a result, their distribution 

will be altered. Pidgeon et al. [54] designed and patented stationary phases that model 

the lipid bilayer of the cells by immobilizing phosphatidylcholine on the silica surface.  

Various commercially available Immobilised Artificial Membrane (IAM) phases are 

manufactured by Regis Technologies Inc (Morton Grove, IL USA). The stationary phase 

has a phosphatidylcholine head group but only a single chain hydrocarbon connects it to 

the silica surface. The free silanol groups are treated to avoid secondary interactions with 

the compounds being analysed. The similarity between the lipid bilayer and the IAM 

stationary phase is shown in Figure 4.2-3. The principle of determining compound 

partitioning into IAM is the same previously described for C18, HSA and AGP uHPLC 

reversed phase chromatography.  
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Figure 4.2-3 The Similarity of the Phosphatidylcholine Membrane Bilayer 

and the Immobilized Artificial Membrane (IAM) Stationary Phase. 

 

 

 

As previously described for HSA and AGP experiments, the gradient retention times can 

be converted to CHI IAM values using a standard calibration mixture of compounds. For 

inter-laboratory comparison of the results, it is essential to use the same set of 

compounds and their CHI IAM values that have been established isocratically; this is 

described in Section 6.2.2 [55]. 

 

The correlation between chromatographic partition and a biological partition is not always 

aligned. However, it has been shown that it is possible convert one to the other by 

introducing additional variables to achieve a better correlation [45]. This can be achieved 

by including the H-bond donor count or H-bond acidity parameter with the CHI, which has 

been measured using an acetonitrile gradient to achieve a better correlation with the 

octanol/water LogP values [56]. Equation 20 and Equation 21 describe the relationship 

between the CHI values of the neutral form of the compounds, and the LogP values that 

were measured for a set of 86 diverse drug molecules [45][56]. 
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Equation 20 

𝐶𝐻𝐼Log P ൌ 0.047CHI  0.36HBC െ 1.10    

n=86  r2=0.89  s=0.39    F=336 

 

Equation 21 

𝐶𝐻𝐼Log P ൌ 0.054CHI  1.32A െ 1.88    

n=86   r2=0.94   s=0.29  F=655 

 

where n refers to the number of compounds used to calculate the equation, r2 is the multiple 

regression coefficient, s is the root mean square error and F is the Fischer-test value 

 

where n refers to the number of compounds, r2 is the multiple regression coefficients, s 

is the root mean square error and F is the Fischer-test value, CHI refers to the CHI 

obtained by acetonitrile gradient on C-18 reversed phase column, HBC stands for the 

count of H-bond donor groups on the molecules, while A is the Abraham H-bond acidity 

parameter. Equation 20 and Equation 21 were reported to give the best correlation 

between the chromatographic lipophilicity and the octanol/water partition (LogP) for 

neutral compounds only [45].  

 

The chromatographic lipophilicity can also be measured using the IAM stationary phase 

in the same way as the C-18, HSA and AGP stationary phases to generate a CHI, which 

can then be compared to the octanol/water partition (LogP). The CHI IAM values can be 

converted to the octanol/water scale using Equation 22 and Equation 23 [45][57]. 

 

Equation 22 

Log k IAM ൌ 0.046CHI IAM  0.42 

 

Equation 23 

Log K IAM ൌ 0.29e୭ ୩ ୍  0.7  

  

Equation 23 was obtained by plotting the Logk (IAM) values for the acetophenone 

homologue series as a function of the octanol/water partition (LogP) [45][57]. Figure 4.2-4 

shows the plot used to obtain Equation 23 where Logk (IAM) is transformed to LogK (IAM) 

by an exponential function to produce a linear relationship [57]. 
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Figure 4.2-4 The Logk (IAM) Values of the Acetophenone Homologues up to 

Octanophenone as a Function of their LogP Values [45]. 

 

 

According to Valko [45], the acetophenone homologue series was selected for the scale 

conversion as these were all neutral molecules with only one H-bond acceptor group and 

one aromatic ring. A similar curvature as the one seen for Logk IAM was reported by 

Valko [45] and Hollosy [57] when the Logk values obtained from a HSA column for the 

acetophenone series were plotted as a function of octanol/water partition coefficients  

(see Figure 4.2-5).  

 

Equation 24 shows how Logk (HSA) is converted to LogK (HSA) using an exponential 

function to produce a linear relationship [57]. 

 

Equation 24 

Log K ሺHSAሻ ൌ e୭ ୩ ୌୗ   
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Figure 4.2-5 The Plot of the Logk (HSA) Values for the Acetophenone 

Homologues as a Function their LogP Values [45]. 

 

 

4.2.2 Biomimetic Properties and Tissue Distribution 

 

Biomimetic binding properties, such as human serum albumin and phospholipid binding 

have similar selectivity towards the molecular descriptors as the octanol/water partition 

system. However, there is a significant difference when charged compounds are 

investigated. Barbato [94] has reviewed published IAM partition data and compared it 

with the octanol/water partition, liposome partition and other biological partition data for 

neutral and charged compounds. It has been demonstrated that the octanol/water 

partition fails to model biological partition for positively charged compounds [9][59–

61][82]. The octanol/water and other liquid/liquid partition systems are very sensitive to 

the presence of charge, and charged molecules do not partition into octanol. However, 

positively charged compounds are attracted to the negatively charged surface of the IAM 

stationary phase, and therefore positively charged basic drugs are retained by the 

negatively charged phosphate groups.   

 

Ottiger and Wunderli-Allenspach [62] systematically investigated the effect of pH on IAM 

retention and compared it with the liposomal partition. In general, they found good 

agreement between the two, although there were some exceptions at pH’s 5 to 8. Barbato 

et al. [59] reported that protonated β-blockers were retained more strongly than lipophilic 

neutral compounds. As a general approximation, it can be assumed that the electrostatic 

interaction between the opposite charges compensates for the effect of reduced 
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lipophilicity by the charge and the IAM retention is proportional to the LogP octanol/water 

instead of the LogD octanol/water despite the pH being of around 7. Li et al. [60][63] 

amended the solvation equation with an ionization parameter that can be calculated from 

the pKa values of basic compounds. This improved the statistical parameters of the 

solvation equation; moreover, they could model the IAM retention data of 55 diverse drug 

molecules by using the calculated LogP values and the charge descriptors. However, 

negatively charged compounds have shown less retention on IAM stationary phase than 

one would expect from their LogD at pH 7.4 [64]. 

 

It is interesting to note that HSA binding is much stronger for negatively charged 

compounds than would be expected from their LogD values at pH 7.4 as shown in  

Figure 4.2-6. This is because albumin has positively charged binding sites for fatty acids 

and it repels positively charged compounds. So, we can conclude that although the 

octanol/water partition system seems to be a good model for IAM and HSA binding of 

compounds, this is true only for neutral compounds that have no charge at physiological 

pH. When the two types of binding (IAM and HSA) are plotted is shown in Figure 4.2-6, 

strong differentiation between the positively and negatively charged drug molecules can 

be seen. 

 

Figure 4.2-6 shows the plot of the HSA and IAM binding of ca. 2000 cross project GSK 

molecules. The colour shows the presence of a positive or negative charge on the 

molecules at physiological pH. Positively charged compounds bind with higher affinity to 

phospholipids (IAM), while negatively charged compounds bind with higher affinity to 

albumin. The weak acids, weak bases and neutral compounds tend to have a similar 

affinity for both HSA and IAM. This would explain the observed large volume of 

distribution values often associated with basic drugs compared to the very low values 

seen with acidic drugs, which tend to bind strongly to plasma proteins. The octanol/water 

partition system is not sensitive to the charge of a compound unlike the biomimetic 

partitioning which is arguably more physiologically relevant for assessing the partition of 

compounds through its greater charge sensitivity. Charged molecules simply do not 

partition into the octanol and the LogD drops regardless whether it is a positive or a 

negative charge. The volume of distribution model determined from biomimetic binding 

data that was published by Hollosy et al  [65] revealed that the difference between the 

IAM and HSA binding correlated very well the human clinical volume of distribution data 
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of over 150 known drug molecules. It can be seen from Figure 4.2-6 that the same trend 

is evident with 2000 cross project molecules from the GSK corporate database. 

 

Figure 4.2-6 The Plot of the HSA and IAM Binding of 2000 Cross Project 

Compounds. This Data was Downloaded from the GSK Database in March 

2018 

 

Figure 4.2-6 shows the HSA and IAM stationary phase biodistribution of different acid/bases 

classes for a selection of cross project GSK small molecules 

 

The volume of distribution at steady state is one of the most important pharmacokinetic 

parameters that can be obtained only by in vivo experiment after the administration of a 

known amount of compound (dose) intravenously and then measuring the steady state 

plasma concentration by repeated dose. The volume of distribution is then calculated as 

the dose divided by the steady state plasma concentration and it is essentially 

proportional to the compound distribution between the moving plasma and the stationary 

tissue compartments. Lombardo et al. [66][67], published a model for estimating the 

volume of distribution of neutral and basic drugs using  chromatographically determined 

ELogD values [67], the plasma protein binding data and the fraction of ionized molecules 

at pH 7.4 calculated from the pKa of the compounds at physiological pH’s. The model did 
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not work for acids, as the parameter for the fraction of ionized molecules in the equation 

referred only to the positively charged compounds. In principle, the measured ELogD was 

too low for describing the tissue distribution of the acidic compounds. Later, in 2006 

Hollosy et al. [57] published an improved volume of distribution model using biomimetic 

IAM and HSA binding data using acidic, basic and neutral drug molecules. It was found 

that the difference between the IAM and HSA binding resulted in a good model of in vivo 

human volume of distribution for over 150 known drugs, which is shown by Equation 25. 

 

Equation 25 

Log 𝑉ௗ௦௦ ሺHUMANሻ ൌ 0.44 Log K ሺIAMሻ െ  0.22 Log K ሺHSAሻ െ  0.66  

n=179,  r2=0.76,   s=0.33,   F=272 

 

where n refers to the number of compounds used to calculate the equation, r2 is the multiple 

regression coefficient, s is the root mean square error and F is the Fischer-test value 

 

where n refers to the number of compounds used to calculate the equation, r2 is the 

multiple regression coefficient, s is the root mean square error and F is the Fischer-test 

value. Log Vdss is the logarithm of the steady state volume of distribution obtained from 

human clinical studies after intravenous administration; LogK (IAM) is the measured IAM 

binding using the gradient method and the CHI (IAM) values scaled to the octanol/water 

LogP scale as described earlier by Equation 22 and Equation 23, while the LogK (HSA) 

is also the measured albumin binding on immobilised HSA stationary phase and scaled 

to the octanol/water scale by using Equation 24. The coefficients of the two biomimetic 

parameters were obtained by using regression analysis of 176 known drug data. As both 

variables are scaled to the same octanol/water LogP scale, the regression coefficients 

were comparable and more meaningful [57]. 

 

The mechanistic model shows that compound partitioning into tissues from the plasma 

compartment depends on the difference between the two types of binding (IAM and 

HSA). The IAM binding represents the tissue affinity, while the HSA binding represents 

the plasma protein binding of the compounds. It can be seen in Figure 4.2-6 that the 

major difference between the two types of binding is due to their different sensitivities to 

charge. Positively charged molecules tend to partition into the tissues, whereas the 

negatively charged molecules stay in the plasma compartment.  It is more difficult to 

estimate the binding differences of neutral compounds. IAM and HSA binding is 
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dependent on the shape of the molecules. Interestingly a similar model that was 

generated for rat volume of distribution [57] had slightly different regression coefficients 

as shown in Equation 26. 

 

Equation 26 

Log Vdss ሺRATሻ ൌ 0.27. Log K ሺIAMሻ െ  0.29 Log K ሺHSAሻ െ 0.30      

n=247   r2=0.66    s=0.35     F=234 

 

where n refers to the number of compounds used to calculate the equation, r2 is the multiple 

regression coefficient, s is the root mean square error and F is the Fischer-test value 

 

It seems that the rat has less fatty tissue than human, therefore containing less 

phospholipid relative to the plasma, resulting in a smaller regression coefficient of LogK 

(IAM). This is because most rat PK studies are run in young lean animals, which is much 

different to a diverse clinical population.  Obviously, these models are very crude as they 

include only the two major binding types in the body. Some drug molecules may bind 

strongly to other proteins or lipids that are present in smaller quantities. Also, the model 

is not dynamic and therefore excludes the effect of active transport, which can be an 

important factor in distribution [68]. The root means square error of the above mechanistic 

models is 0.35, which may represent the variation that is due to active the transport of 

some compounds along with non-specific binding to other components in the body. In 

addition, when a compound is very lipophilic it prefers to bind to hydrophobic components 

and this may also influence how a compound is distributed. 

 

The unbound volume of distribution (Vdu) is becoming a more widely used term. A simple 

definition is the dose divided by the free plasma/blood concentration. The Vdu will always 

be high when the free fraction of a compound is low.  Based on the free drug hypothesis 

[69][70], the free concentration of the compounds should be the same in all compartments 

in the body, assuming there is no active transport.  Therefore, the unbound volume of 

distribution can be used to estimate the unbound concentration of the compounds in the 

tissue [71]. The biomimetic model for unbound volume of distribution [72] showed that 

the sum of the IAM and HSA binding data correlated to the measured Vdu for a diverse 

set of 70 drugs [72]; this model is shown below by Equation 27. 
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Equation 27 

Log Vdu ൌ 0.43L og K ሺIAMሻ   0.23 Log K ሺHSAሻ െ  0.72   

n=70  r2=0.84  s=0.32   F=129 

 

where n refers to the number of compounds used to calculate the equation, r2 is the multiple 

regression coefficient, s is the root mean square error and F is the Fischer-test value. 

 

The unbound fraction in tissues inversely correlates with the sum of the two types of 

binding as described by Equation 28 [72]: 

 

Equation 28 

Log f୳୲ ൌ െ0.52 Log KሺIAMሻ െ 0.66 Log K ሺHSAሻ  0.55               

n=70    r2=0.85  s=0.58   F=182 

 

where n refers to the number of compounds used to calculate the equation, r2 is the multiple 

regression coefficient, s is the root mean square error and F is the Fischer-test value.  

 

These models are simple mechanistic models that take into account the major binding 

components in the body, namely the phospholipid and albumin protein binding and 

therefore intuitively should be a solid foundation for a model of distribution. A big 

advantage of the biomimetic approach over traditional octanol/water partition is the 

system is able to show the effect of charge, which gives a more physiological 

representation of lipophilicity. 

 

4.2.3 Estimating the absorption potential from solubility and artificial 

membrane permeability 

 

To estimate the dose of orally administered compounds it is important to assess the 

absorption rate. The relationship between in vivo absorption and physicochemical 

properties of drugs is dependent on a wide range of factors, which include drug related 

properties and the physiological conditions of the system. The physicochemical 

properties of the drug which affect absorption include solubility, dissolution rate of the 

solid drug substance, particle size, crystal form of the solid drug substance and ionization 

properties. The physiological variables which will affect absorption include the volume of 
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the fluid in the GI tract or specifically stomach, composition of the intestinal fluids (fed or 

fasted state) and pH, gut motility, the permeability and surface area of the intestinal wall, 

and blood flow. It is very difficult to include all of these parameters into a single model to 

estimate absorption of NCE’s. Dressman et al. [73] have tried to include as many 

variables as possible into one single dimensionless number which they have classified 

as the absorption potential (AP).  Excluding the effect of the first-pass metabolism and 

metabolism in the gut, the fraction of a dose absorbed (Fabs) is a function of the 

permeability of the gut wall (Pw), the aqueous permeability of the drug (Paq), the intrinsic 

aqueous solubility of the neutral form of the drug (S0), the dose (X), the unionized fraction 

of the drug at pH 6.5 (Fnon) and the volume of the luminal content (VL). This is shown in 

Equation 29 [73]. 

 

Equation 29 

Fabs = f (Pw, Paq, S0, X, Fnon, VL)  

 

Where Fabs is the fraction absorbed, Pw permeability of the gut wall, Paq is the aqueous 

permeability, Fnon is the unionized fraction, S0 is the intrinsic aqueous solubility, VL is the volume 

of the luminal content and X is the dose   

 

By further simplifying the conditions of absorption, such as only considering the neutral 

form of the drug will be permeable, and the average pH of the small intestinal lumen (inc. 

duodenum, jejunum, and ileum where most of the absorption takes place) is pH 6.5, the 

primary parameters of interest can be arranged into a dimensionless number, called 

absorption potential (AP) as described by Equation 30 [73]. 

 

Equation 30 

𝐴𝑃 ൌ Log ቀ𝑃 ∗ 𝐹 ∗ ௌబ∗ಽ


ቁ  

 

Where AP is the absorption potential, P is the aqueous permeability, Fnon is the unionized 

fraction, S0 is the intrinsic aqueous solubility, VL is the volume of the luminal content and X is the 

dose 

    

The authors have shown data for a few known drugs, where the AP followed a sigmoid 

relationship with the fraction absorbed. In principle, the absorption potential is 

proportional to the product terms of intrinsic solubility, permeability and the fraction of the 
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non-ionized form of the molecule at pH 6.5 [73]. It means that if any of the product terms 

are close to zero, (i.e. either the solubility or the permeability is poor) the absorption will 

be poor. The VL parameter can be considered constant using the average volume of the 

intestinal fluid in the lumen. For a given series of drug discovery compounds, a given 

dose (X) can also be considered constant. Therefore, the product terms of solubility, 

permeability and the fraction of non-ionized form can be used for assessing and ranking 

drug discovery compounds with regards to their absorption potential. Measured data 

exists for solubility and permeability both at pH 7.4. Ni et al. [74] have demonstrated that 

when the solubility and the partition coefficient were measured at the same pH, the 

product term remains constant. The explanation for this is that ionization affects solubility 

in an opposite way to lipophilicity. Ionization decreases lipophilicity while it increases 

solubility as shown in Figure 4.2-7, which is an example of a basic drug [74]. 

 

Measured solubility (µM) and permeability (nm/sec) data generated for project 

compounds GSK can be multiplied with the logarithm of the product term used calculate 

a version of the absorption potential. Based on the obtained data, the compounds were 

put into a low absorption category if the calculated absorption potential (Log (DMSO 

solubility [µM] x AMP permeability [nm/s]) was below 4, because if one of the parameters 

(solubility or permeability) is low, the absorption should be low and the absorption 

potential cannot be higher than 4. High absorption compounds should have both high 

permeability and high solubility. Solubility is considered high when the DMSO 

precipitative solubility in phosphate buffer saline at pH 7.4 is higher than 200 µM. High 

permeability is considered when the compound’s AMP permeability is greater than 200 

nm/s. The absorption potential would be high for such compounds Log(200x200), i.e. 

4.78. So, compounds with an absorption potential greater than 5 were considered to be 

high.  
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Figure 4.2-7 A Theoretical Plot Showing the Independence of the Product 

Term of Lipophilicity and Solubility (LogD*S) from pH. Adapted from 

Reference [74]. 

 

 
 

Figure 4.2-7 Shows a plot for a theoretical base of Lipophilicity – LogD; Aq Solubility – LogS; 

Product term Lipophilicity x Solubility – Log (D.S) with respect to pH. [74]. 
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Table 4-3 Example Solubility and Lipophilicity for a Theoretical Base 

Showing the Independence of the Product Term from pH. See Data Plot in 

Figure 4.2-7 

 

Solubility (mg/mL) Lipohilicity (o/w) 
Product 

Term 
 

S 
Log 

S 
D 

Log 

D 
Log D*S pH 

100000 5 0.0001 -4 1.30 1 

100000 5 0.0001 -4 1.30 2 

79432.82347 4.9 0.0001 -3.9 1.28 3 

50118.72336 4.7 0.0002 -3.8 1.25 4 

10000.00000 4 0.0003 -3.6 1.16 5 

1584.89319 3.2 0.0010 -3 0.98 6 

199.52623 2.3 0.0100 -2 0.66 7 

10.00000 1.00 501.1872 2.7 0.43 8 

0.03162 -1.5 3162.2777 3.5 0.72 9 

0.01000 -2 10000.0000 4 0.90 10 

 

 

4.2.4 What is Drug Efficiency? 

 

In 2010 Braggio et al [27] introduced the concept of drug efficiency (DRUGeff ) as an 

efficient tool for optimising the structure of a lead molecule into a successful drug. Instead 

of focussing on individual ADME properties, drug efficiency combines them into a single 

parameter. The authors defined drug efficiency as the percentage of the dose that is 

available in the bio-phase concentration in vivo to exert the pharmacological activity, as 

shown in Equation 31. 

 

Equation 31 

% DRUGୣ ൌ
Free Bio െ phase Concentration

Dose
. 100 
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An illustration of what drug efficiency is and means from an in vitro and in vivo 

perspective is shown in Figure 4.2-8. 

 

Figure 4.2-8 The DRUGeff Definition – Dose and Effect (PKPD) 

 

 

 

Abs= absorption, CLb= clearance, Vd= volume of distribution, TB= tissue binding, P-gp = P-

glycoprotein efflux, Perm.= permeability, MoA= mode of action, pKi is the negative logarithm of 

the dissociation constant of the drug and receptor. 

 

For antibacterial targets, GPCR receptors and ion channel blockers, it is generally 

accepted that following oral administration it is the free concentration of the compound in 

the blood, that is proportional to the actual clinical efficacy [75][76]. Therefore, in these 

cases, drug efficiency is essentially the reciprocal value of the unbound volume of 

distribution (Vdu), which is proportional to the dose divided by the free blood/plasma 

concentration, see Equation 32 and Equation 33. 

 

Equation 32 

𝑉ௗ௨ ൌ
Dose

Unbound Concentration
 

 

Where Vdu is the unbound volume of distribution 
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Equation 33 

% DRUGୣ ൌ
100
Vௗ௨

 

 

Valko et al. have used the unbound volume of distribution model [72] they developed 

from HSA and IAM biomimetic binding data, to estimate the clinical drug efficiency of 115 

known drug molecules [77]. The in vitro Drugeff max model is shown by Equation 34, which 

is the biomimetic description of Equation 33 

 

Equation 34 

 

Log  ሺin vitro DRUGୣ ୫ୟ୶ሻ ൌ 2 െ ሺ0.23LogKሺHSAሻ   0.43 Log K ሺIAMሻ െ 0.72ሻ 

 

The Drugeff max is defined as the maximum drug efficiency that can be achieved assuming 

100% absorption (bioavailability) when there is no permeability barrier for the compound. 

There are some broad assumptions and limitations to drug efficiency because of the static 

nature of the model which will be discussed later. A plot of the measured in vitro  

DRUGeff max and the in vivo DRUGeff max of 115 drugs obtained from the clinical PK studies 

can be seen in Figure 4.2-9.  
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Figure 4.2-9 The Plot of In Vivo and In Vitro Log DRUGeff max for 115 Known 

Drug Molecules. Shape and Colour are According to the Target Class the 

Drugs Belong [77] 

 

 

Figure 4.2-9 Shows a plot of in vivo DRUGeff max versus in vitro DRUGeff max. Colours represent 

different target classes Pink – 7TM (7-Trans Membrane), Blue – Enzyme, Green – Ion channel, 

Yellow – Nuclear receptors, Orange – Not classified, Grey – Unknown. 

 

Although the correlation coefficient is much lower (r2 = 0.64) than was obtained for the 70 

drug molecules measured using the unbound volume of distribution model (r2=0.84) as 

described by Equation 27, this should still be considered as a reasonably good correlation 

between the in vitro and in vivo human DRUGeff max when the fact that this is a diverse set 

of drugs from multiple therapeutic areas is taken into consideration. A correlation 

coefficient of greater than ≥0.6 would typically be considered as a reasonable correlation 

when building QSAR models.  

 

DRUGeff max should not be considered as a prediction tool, but rather a ranking tool for the 

early drug discovery stage of compound progression. The in vivo property can be 

estimated by using the biomimetic binding data from only two major components of the 
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body, albumin type proteins, and phosphatidylcholine phospholipid. From this simple in 

vitro model the correlation to the complex in vivo system is remarkably good, underlying 

the fact that these are the two major non-specific binding sites in the body and are 

important factors in the distribution of a drug to its target enzyme or receptor. The in vitro 

drug efficiency concept incorporates several drug-like properties (physical properties) 

and the pharmacodynamic profile of the compound (target concentration).  

 

Optimising compounds using drug efficiency intrinsically includes a number of 

physicochemical properties that improve the chance of finding a successful molecule that 

can be turned into a drug. The drug efficiency can be estimated in vitro in the early stages 

of lead identification or lead optimisation, and when compounds are selected for further 

progression to in vivo studies, the in vivo DRUGeff max can be confirmed, although in vivo 

DRUGeff will always be lower than the in vitro derived value, which is due to minimal non-

specific binding in an in vitro system as described by Figure 4.2-8. When significant 

deviation in the general trend is observed between the in vitro and in vivo data, it could 

indicate a possible active transporter effect, poor absorption or the existence of a 

permeability barrier between the body compartments. As the drug efficiency is inversely 

proportional to the sum of the albumin and phospholipid binding, this in principle should 

show a good correlation with LogP and would support the use of LogP for characterising 

the proportion of the dose that has the potential to reach the target. In this respect, LogP 

is more important than LogD as it describes the intrinsic lipophilicity of a drug molecule 

and is not affected by ionisation.   

 

An evolution of the DRUGeff max concept which was subsequently introduced was the drug 

efficiency index (DEI) [78]. DEI was defined as the sum of potency (expressed as Kd or 

IC50) and the logarithm of drug efficiency (Equation 35). DEI combines two important 

properties of putative drug molecules, namely the in vitro potency and the drug efficiency. 

It has also been shown [77] that the in vitro DEImax had an excellent inverse correlation 

with the ligand lipophilicity efficiency (LLE) proposed by Leeson et al. [9] (Figure 4.2-11). 

The agreement is superficially good as both parameters contain the pXC50 values, and it 

has been shown that cLogP and the in vitro DRUGeff max have a good inverse correlation 

[77].  
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Equation 35 

DEI ൌ pICହ  Log ሺ %DE୫ୟ୶ሻ 

 

DEI is the drug efficiency index  

 

Equation 36 

LLE ൌ pICହ െ LogP 

 

LLE is the ligand lipophilicity efficiency  

 

Figure 4.2-10 Agreement Between In Vitro DEImax (pXC50+Log DRUG eff max) 

and LLE (pXC50 – cLogP) [77] 

 

 
Figure 4.2-10 Shows a plot of in vivo DEImax verses LLE. Colours represent different target 

classes Pink – 7TM (7-Trans Membrane), Blue – Enzyme, Green – Ion channel, Yellow – 

Nuclear receptors, Orange – Not classified, Grey – Unknown. 
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The drug efficiency (DRUGeff) concept introduced by Braggio et al. [27], was proposed as 

a new tool to guide drug discovery program teams, as it relates the free drug 

concentration in the target bio-phase relative to the administered dose (Figure 4.2-9 and 

Equation 31).  

 

The efficacious concentration of a compound that is high enough to sufficiently engage a 

biological target and produce a certain response can be estimated from in vitro potency 

measurements. Under in vitro assay conditions, DRUGeff is typically >99%, with any non-

specific binding having only a marginal impact on the free concentration. However, at this 

stage, it is very difficult to estimate the dose that will be required to produce an equivalent 

efficacious free bio-phase concentration in vivo when minimal measured data, particularly 

pharmacokinetic data, is available. 

 

The drug efficiency equation previously quoted (Equation 31) includes the dose as one 

of the parameters, so by re-arranging the equation we can express the dose as the ratio 

of the unbound bio-phase concentration and the DRUGeff  (Equation 37). 

 

Equation 37 

Dose ൌ
୰ୣୣ ୠ୧୭ି୮୦ୟୱୣ ୡ୭୬ୡୣ୬୲୰ୟ୲୧୭୬

ୈୖୋ
   

   

The required free (or unbound) bio-phase concentration of drug is the concentration 

which would be sufficient to engage the target and produce the desired pharmacological 

effects. The unbound bio-phase concentration would normally refer to a steady state 

concentration. This might appear to limit the utility of the drug efficiency approach since 

DRUGeff assumes steady state conditions as there is not drug elimination accounted for 

in the equation.  

 

4.3 Approaches for Early Dose Estimation 

 

For a high-quality drug candidate, we are aiming for low dose (below 100 mg) in order to 

reduce the probability of failure during drug development [26]. Therefore, it is essential to 

estimate the efficacious dose as early as possible.  If we know the required dose, we can 

set up other physicochemical requirements, such as the solubility required for final 

formulation. 
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The essence of the dose estimation procedures is to estimate the minimum effective 

concentration of the compound at the site of action using the in vitro potency data. The 

available free concentration of the drug can be estimated using the drug efficiency 

concept or using bioavailability, volume of distribution and clearance data. Thus, the dose 

includes all important properties such as potency, physicochemical properties, 

bioavailability, clearance, etc. in one parameter. 

 

An early prediction of clinical dose at the hit to lead phase or lead optimisation enables 

program teams to rank compounds within a chemical template or across chemical 

templates at early discovery phases. An improved understanding of the physicochemical 

characteristics and their relationship to ADME properties can then be translated to target 

engagement and the PKPD relationship, thus helping to identify and progress higher 

quality molecules to fully explore the clinical concentration response curve for a given 

biological target. The importance of having the potential to explore the complete dynamic 

range of the concentrations curve enables a full evaluation of a drug’s clinical relevance 

in the disease(s) of interest. 

 

At high doses, drugs are more likely to show toxicity [15][79][80], which generally 

speaking is due to the high exposure burden. Targeting a low dose and exposure is 

important to avoid adverse effects. The study of Wager et al. [81] showed that the 

occurrence of in vivo toxicity correlated with the exposure. They found that if the total 

human efficacious plasma concentration was less than 250 nM and the free drug 

concentration was less than 40 nM, the failure rate of exploratory compounds due to 

animal toxicity was reduced significantly.  

 

The clinical dose depends on the absorption rate, elimination rate and volume of 

distribution as has been described by McGinnity et al. [24], and shown by Equation 38. 
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Equation 38 

Dose ቆ
ౣౝ
ౡౝ

ୢୟ୷
ቇ ൌ

మర
ಜ

େ.ೞೞ.ሺ୩ି୩ౢሻ

.୩ሺ
భ

భష౮౦൫షౡౢ.ಜ൯ 
ି

భ
భష౮౦ሺషౡ.ಜሻ

ሻ
   

 

Where τ is the dosing interval, MEC is the minimum effective concentration (which can be 

estimated from e.g. pIC50/90 or Ki), Vdss is the volume of distribution at steady state, ka is the first 

order absorption rate constant, kel is the elimination rate constant, and F is the bioavailability 

expressed as the fraction of orally administered drug dose-normalised area under the curve 

relative to that following IV administration. Multiplying the result by 70 expresses the actual daily 

human dose in mg/day for an average 70 kg human. 

 

A simplified version of Equation 38 can be used where the absorption rates are removed 

and is shown in Equation 39, which can be used as an alternative when predicting doses 

for intravenous administration where absorption rates (ka) are not relevant. 

 

Equation 39 

Dose ቆ
ౣౝ
ౡౝ

ୢୟ୷
ቇ ൌ

మర
ಜ

େ.ೞೞ.ሺୣ୶୮ሺ୩ౢ.தሻିଵሻ


   

 

where τ is the dosing interval, MEC is the minimum effective concentration, Vdss is the volume of 

distribution at steady state, kel is the elimination rate constant, and F is the bioavailability 

expressed as the fraction. Multiplying the result by 70 expresses the actual daily human dose in 

mg/day for an average 70 kg human  

 

The equations are based on a simple empirical one-compartment pharmacokinetic model 

including a first order absorption rate constant. McGinnity et al. [24] have shown that the 

equation could be used to successfully predict the clinical dose of 28 known drugs when 

they used an MEC value obtained from clinical data, following administration of the 

efficacious dose as described on the product label. They also highlighted the difficulties 

of predicting the human steady-state volume of distribution (Vdss) without in vivo 

experiments, and the elimination rate (kel) using in vitro intrinsic clearance.  

 

Decisions based on predictions of human PK and clinical dose have a significant impact 

on drug candidate selection, as well as on the number of animal studies that are likely to 

be required to support it. Other methods for PK predictions using allometric scaling 
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[82][83][84] or physiologically based pharmacokinetic (PBPK) modelling [85][86] also 

require measured or in silico calculated parameters as inputs.  

 

In summary, there is no single method which gives a definitive prediction of the human 

PK parameters listed above, and ultimately the effective clinical dose. However, by using 

a combination of these established methods it is possible to predict a realistic range within 

which these parameters are most likely to fall. This can help with the decision-making 

process of selecting compounds that are most likely to meet the anticipated requirements 

for progress to clinical development [9]. At very early stages, prior to synthesis, only in 

silico estimates of the volume of distribution, clearance, and DRUGeff max are possible, 

while as the lead optimisation process develops, in vitro and then in vivo measurements 

can be made on a small selection of compounds.  

 

In this project, I have evaluated the utility of the DRUGeff max concept as an alternative 

method to predict clinical dose in early drug discovery. This was initially done using a set 

of known marketed drug molecules. Using the data of the marketed set of compounds, 

the estimated dose has been compared when using various methods and compared to 

the actual clinical dose. Since HPLC DEmax values can be generated early in a compound 

screening cascade using HPLC-based measurements before any more in-depth  

in vitro / in vivo drug metabolism and pharmacokinetic screening is carried out, the two 

different approaches to dose prediction are represented in Figure 4.3-1 as DMPK-DP 

using the one compartment approach described by McGinnity [24], or the DE-DP which 

utilises the DRUGeff max concept and is the focus of this project. The potential utility of this 

parameter has been investigated as an early indication of compound quality using real 

project compounds from three drug discovery programs which will be described in 

Section 5: Objectives. 
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Figure 4.3-1 DMPK Dose Prediction (DMPK-DP) and DEmax Dose Prediction 

(DE-DP) Schematic 

 

 
 

Figure 4.3-1 shows the pharmacokinetic parameters required for predicting clinical dose using a 

single compartment method (DMPK-DP) and the DEmax method (DE-DP). Adapted from 

McGinnity et al. [24]   

 

5 Project Context, Design and Objectives 

 

The Respiratory Therapeutic Area represents an important area of pharmaceutical 

research within GSK’s R&D organisation due to the success of several blockbuster 

asthma and COPD treatments over the past 50 years. These include Ventolin, a fast 

acting β agonist (salbutamol) delivered using as a metered dose inhaler (MDI), Seretide 

a steroid (fluticisone proprionate, FP) and long acting β agonist (salmeterol) combination, 

delivered as an inhaled dry powder via the Diskus® Device, and more recently a portfolio 

of 2nd generation of inhaled steroid, long acting β agonist (flucticasone furoate, FF and 

vilanterol) and muscarinic antagonist (umeclidinium) medicines, all delivered as dry 

powders using the latest Ellipta® Device. These medicines can be delivered as individual 

components or as various combinations of steroid, β agonist, β agonist & muscarinic 

antagonist, depending on the symptoms or condition being treated. The very latest 

product to be approved by the FDA and EMA is a triple combination product delivering 

all three classes of drug in a single inhaler device. 
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With a continued vested interest to identify the next generation of inhaled respiratory 

medicines to remain at the forefront of these conditions, GSK maintains multiple 

discovery and development research programs. I have worked within the Respiratory 

therapeutic area for the last 8 years, so it was a natural extension of my work to 

investigate how the physicochemical and biomimetic properties of drugs being developed 

can be utilised to improve the development process, aid dose prediction via different 

routes of administration and explore parameters that affect lung retention.  

 

The project seeks to address the following objectives: 

 

a. Develop new dose estimation models based on the drug efficiency concept and the 

required free concentration at the site of action. Search for methodology with 

available high throughput properties at GSK that can be used to streamline the early 

drug discovery/lead optimisation process 

 

b. Compare the new models with the traditional models used at later stages in the drug 

discovery process. Evaluate how the new models perform by comparison with the 

traditional dose estimation models based on one compartmental pharmacokinetics. 

 

c. Explore in vitro methodology that can be introduced and applied in dose estimation 

models. Search for new in vitro methodology that can be applied for early compound 

characterization with a predictive potential for later stage in vivo properties. 

 

d. Investigate the effects of potential variability of the estimated parameters (potency, 

volume of distribution, clearance, drug efficiency) on the early dose prediction, 

monitor the possible error and confidence of the predictions and check the statistical 

characteristics of the model at every stage of the lead optimization process.  

 

e. Apply and evaluate the new approaches in the following drug discovery programs 

that involve three different levels of complexity: 

i. PI3K Gamma/Delta program (IV administration) 

ii. PI3K Delta program (oral administration) 

iii. Pan JAKi program (inhaled delivery) 
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To address these objectives, the following approaches were adopted: 

 

1. Analysis of drug efficiency with marketed compounds – can the clinical dose be 

retrospectively predicted for these marketed compounds? 

 

2. Development of a simple model to evaluate dose estimation using compounds that 

are administered via the intravenous (IV) route to establish conceptually whether the 

drug efficiency method of dose prediction works in a lead optimisation setting to filter 

and identify “higher quality”. A GSK compound database for the Pi3Kgamma / delta 

program was used for this analysis.  

 

3. Development of a more complex model that introduces oral pharmacokinetic 

parameters. A different GSK compound database for the oral Pi3K delta program was 

used for this analysis 

 

4. Finally, develop a very complex model targeting the lung where inhaled delivery of 

small molecules is the focus. A third GSK database for the JAK inhaled (JAKi) 

program was used for this analysis. 

 

5.1 Analysis of Drug Efficiency with Marketed Drugs 

 

A set of marketed drugs was selected from various target classes for which the majority 

of data was available for early dose estimation. Thus, the in vitro potency (pIC50), the in 

vivo human volume of distribution, clearance and absorption, as well as the actual clinical 

dose and the frequency of the administration were known parameters. The aim of the 

study was to investigate how the various dose estimation approaches work and to 

compare the results with the actual clinical dose. The analysis of the marketed drugs data 

would provide a benchmark for the dose estimation approaches and would reveal 

expected discrepancies between the predicted and actual dose. Though the set had the 

advantage that clinical data were available it had a disadvantage that drugs from various 

target classes from different therapeutic areas were mixed together. Any significant 

conclusions from this set however can be considered as generally valid for a diverse set 

of compounds (drugs).  
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5.2 Using the Intravenous (IV) Route for Dose Estimation: The Pi3Kγ 

Project 

 

This target was selected as a recent example of a lead optimisation program aiming to 

treat Acute Lung Injury (ALI) and the acute respiratory distress syndrome (ARDS), both 

clinical syndromes of acute respiratory failure that results in substantial morbidity and 

mortality. My role in this program was as the DMPK/QP lead scientist, with responsibility 

for DMPK strategy, PK analysis and modelling, and clinical dose predictions.  

 

The program team’s aim was to identify selective phosphoinoside 3-kinase gamma 

(PI3Kγ) inhibitors which were expected to impact on neutrophils in several ways.  The 

release of NFκB-dependent pro-inflammatory cytokines (e.g. TNFα, IL-1β) will be 

suppressed through inhibition of the PI3K/Akt/NFκB pathway along with neutrophil 

respiratory burst (reduction of tissue-damaging ROS and MMPs) [87][88][89].  Secondly, 

chemotaxis of neutrophils to the lung is governed by several chemo-attractants such as 

interleukin-8 (IL-8), GM-CSF, C5a, and the formulated peptide fMLP and will be 

attenuated through inhibition of Pi3Kγ [90]. Thirdly, the Pi3K/Akt pathway has been 

reported to be an important survival pathway for neutrophils and therefore inhibition of 

PI3Kγ should be a powerful means of evoking neutrophil apoptosis [91]. A drug candidate 

developed to target the Pi3Kγ enzyme would be indicated in the treatment of acute lung 

injury in hospitalised patients.  Acute lung injury (ALI) is a syndrome of hypoxemic 

respiratory failure with acute and persistent lung inflammation and increased vascular 

permeability caused by direct or indirect lung injury. There are no effective pharmacologic 

therapies for the treatment or prophylaxis of ALI. 

 

The pathogenic mechanisms of ALI include changes in alveolocapillary permeability, 

inflammation, extracellular matrix remodeling and abnormal alveolar micromechanics 

[92] [93].  Neutrophils are believed to be the major cell type contributing to lung damage 

in ALI. Studies have shown that circulating neutrophils are activated in ALI/ARDS and it 

has also been shown that after developing ALI the severity of lung injury correlates with 

the extent of neutrophil influx into the air spaces of the lung [93]. In some patients, the 

persistence of neutrophilia is associated with higher mortality [94]. Despite the clinical 

association, it should be borne in mind that this does not necessarily mean that 

neutrophils are responsible for lung damage in ALI. As ALI patients are generally 

hospitalized, a medicine administered intravenously has the advantage of a rapid onset 
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of action in very seriously injured patients who might not be able to swallow any 

medication. The intravenous administration route has different pharmacokinetic and 

pharmacodynamic profiles from the oral and inhaled routes and therefore the dose 

estimation approaches for this scenario will focus on parameters that do not involve 

absorption. 

 

 Figure 5.2-1 Neutrophil Fate and Function in ALI (ARDS) 

 

 
 

Figure 5.2-1 Shows the some of the functional effects of Pi3Kγ inhibition on neutrophils from 

ARDS samples 

 

5.3 Using the Oral Route for Dose Estimation: The Pi3Kδ Project  

 

To study an active project at GSK that introduced a higher level of complexity through 

oral administration, compounds that have been developed to inhibit the phosphoinoside 

3-kinase delta (Pi3Kδ) enzyme has been selected. My involvement in this program was 

to perform the complex pre- clinical PKPD analysis of a functional in vivo model of lung 

inflammation. 

 

PI3Kδ is a lipid kinase expressed predominantly in leucocytes, where it regulates 

activation, proliferation and the function of multiple cell types, thereby modulating immune 
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responses [95]. Pi3Kδ inhibition will prevent recruitment of inflammatory cells, including 

T lymphocytes or eosinophils. It also inhibits the release of pro-inflammatory mediators 

from neutrophils such as cytokines, chemokines, reactive oxygen species, and proteolytic 

enzymes [96]. In addition, targeting the PI3Kδ pathway improves innate immune 

responses to infections by promoting neutrophil and T cell mediated host defense. 

Inhibition of PI3Kδ may restore steroid effectiveness under conditions of oxidative stress.  

There are a number of immune cell types which contribute to allergen-induced asthma, 

including T-cells, eosinophils, B-cells and mast cells. In allergic asthma, the pre-dominant 

subset of effector T-cells, Th2 cells, produce IL (interleukin)-4, IL-5, IL-9 and IL-13. IL-4 

promotes the secretion of allergen specific IgE, which activates mast cells to release 

mediators such as histamines, prostaglandins and leukotrienes, leading to tissue 

inflammation [97]. Additionally, IL-5 stimulates B-cell growth and immunoglobulin (Ig) 

secretion as well as being a key mediator of eosinophil activation [97]. 

 

A selective Pi3Kδ inhibitor is predicted to block T-cell activation in the lung, reducing the 

production of pro-inflammatory Th2 cytokines. Pi3Kδ is also involved in B-cell and mast 

cell activation which are key contributors to asthma pathogenesis. Therefore, the 

inhibition of PI3Kδ should dampen down the inflammatory cascade involved in the 

asthmatic response through a wide breadth of pharmacology.  Pi3Kδ blockade may 

prevent Th2, Th17, B-cell and mast cell activation. Unlike current medicines, PI3Kδ 

inhibitors may affect a broad spectrum of cell types [97][98]. In addition, PI3Kδ inhibitors 

may have anti-viral properties as seen in Influenza infection models [99].  

 

The Pi3Kδ program offered GSK the opportunity to develop an oral medicine for the 

treatment of asthma following a successful program to develop an inhaled Pi3Kδ. An oral 

program was based on the growing evidence of a systemic effect of Pi3Kδ in asthma and 

safety information generated from the inhaled program. In addition, the commercial 

opportunity for an oral treatment of asthma is very high: with the exception of Montelukast 

there are currently no effect commercially successful oral treatments of asthma.  

 

The analysis of the Pi3Kδ oral program provided the opportunity to apply the approaches 

directly to a real drug discovery program and provide a proof-of-concept for the proposed 

dose estimation methodologies. 
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Figure 5.3-1 Cells Involved in Atopic Asthma which are Targets of Current 

Therapies. 

 

 

 

Figure 5.3-1 Shows some of the major functional effects of Pi3Kδ inhibition on key inflammatory 

cells 

 

5.4 Using the Pulmonary Route for Dose Estimation: The JAK Project  

  

For the most complex model for dose prediction, an active inhaled lead optimisation 

program has been selected, where compounds were developed as pan-JAK inhibitors for 

the treatment of moderate to severe asthma. There are four members of the JAK family 

(JAK1, JAK2, JAK3, TYK2) which control the signalling of numerous cytokines, which 

have been implicated in the pathogenesis of inflammatory diseases [100][101]. As 

described previously, there are a number of immune cell types which contribute to 

allergen-induced asthma, including T-cells, eosinophils, B-cells and mast cells. In allergic 

asthma, the pre-dominant subset of effector T-cells, Th2 cells, produce IL4, IL-5, IL-9 and 

IL-13. IL-4 and IL-13 promote the secretion of allergen specific IgE, which activates mast 

cells to release pro-inflammatory mediators. More specifically to JAK, upon binding to its 

receptor, signalling via the JAK-STAT pathway is initiated (Signal Transducer and 

Activator of Transcription). The JAK-STAT signal transduction pathway is utilised by 
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cytokines with a wide variety of differing functions including both pro- and anti-

inflammatory activities. Therefore targeting JAK 1/2/3 in the lung is attractive 

therapeutically in order to reduce the chronic inflammation that is associated with asthma 

[101], as shown in Figure 5.4-1, Figure 5.4-2 and Figure 5.4-3.  

 

The inhaled route of administration was selected for the JAK program based on the safety 

profile of other commercially available JAK inhibitors. Tofacitinib is an oral JAK inhibitor 

marketed for the treatment of rheumatoid arthritis (RA) and prescribed where patients 

have an inadequate response to, or who are intolerant of, methotrexate which is the 

standard of care for RA. Tofacitinib has a black box warming limiting its use and dose 

level due to immune suppression. Therefore, the GSK strategy was to develop an inhaled 

JAK inhibitor which would potentially have an improved therapeutic index. This would be 

achieved by restricting its primary pharmacological effect to the lung by minimising 

systemic exposure and reduce the risk of immune suppression. 

 

Figure 5.4-1 Cytokine Binding and JAK Signalling 

 

 
 

Figure 5.4-1 Shows the JAK-STAT signal transduction pathway following cytokine receptor binding 
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Figure 5.4-2 Consequences of JAK Activation 

 

 
 

Figure 5.4-2 Shows some of the functional inflammatory effects of JAK 1/2/3 activation suggesting 

the potential benefit of a JAK inhibitor in inflammatory airway disease 
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Figure 5.4-3 Mechanisms of Allergic Inflammation in Asthma (adapted from 

[102]) 

 

 
 

Figure 5.4-3 Shows some of the inflammatory processes involved in asthma 

 

The analysis of the JAK inhaled delivery program provided the opportunity to raise the 

level of complexity of the model under development and apply the methodologies directly 

to an active drug discovery program and assess its performance as a further proof-of-

concept for the approach. Whether there are specific physicochemical and biomimetic 

properties that affect lung retention that can be focussed on and optimised an inhaled 

delivery program was also assessed.  The unique challenges associated with drugs 

delivered by the pulmonary route are summarised in the following section. 
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5.4.1 Balancing Drug Retention and Systemic Distribution Requirements in 

Respiratory Medicines Development. 

 

Inhaled administration is especially advantageous for local treatment of various lung 

diseases, particularly when treating inflammatory lung disorders such as asthma and 

Chronic Obstructive Pulmonary Disease (COPD). From a drug development perspective, 

for a once daily dosage regime to succeed via pulmonary delivery, it is now recognised 

that to ensure sustained engagement of small molecules to their targets in the lung, good 

or prolonged “intrinsic” lung retention is a desirable property.  

 

Despite reports of substance inhalation from early history, it is only technological 

advances in the second half of the 20th century that have made inhaled drug 

administration a viable, effective and preferred method to treat lung disorders. Although 

isoprenaline was introduced as an inhaled medicine for the treatment of asthma in 1951, 

the pulmonary delivery of drugs was initially considered impractical, inefficient and 

unreliable to accurately deliver a defined dose of an inhaled drug due to limitations in the 

technology available. Devices that accurately administer metered inhaled doses to the 

lung have now been developed (e.g. Ventolin®, Seratide®), and in recent years, the FDA 

has also approved inhaled drugs that do not directly target the pulmonary system. For 

example, in 2006 an inhaled version of human-derived insulin to treat diabetes was 

developed and approved, although this was subsequently withdrawn due to toxicological 

reasons. Despite this set-back, inhalation is still recognised as a rapid and efficient 

systemic delivery method for small-molecule therapeutics via the large surface area 

presented by the epithelial cells in the trachea and in the alveoli.  

 

From a DMPK perspective, pulmonary drug delivery offers several advantages. Pre-

systemic drug metabolism is reduced because metabolising enzymes have low 

expression levels in the lungs [103][104], and absorption correlates well with CaCo2 and 

MDCK cell permeability [105]. Furthermore, polar drugs with large polar surface areas 

and H-bond potential can also permeate through the epithelial lung cells.  The pulmonary 

epithelial barrier is more permeable than the intestinal mucosa and the blood brain barrier 

[106], and compounds that are substrates for P-gp efflux transporters [107] are also often 

absorbed well through the lungs. Therefore, for molecules that are poorly absorbed from 

the GI tract, inhaled administration potentially offers an alternative route to the systemic 

circulation. However, the rapid absorption associated with this route also poses 
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enormous challenges for drug discovery teams developing small molecules against 

targets in lung tissues or cells [104], where retention is a primary requirement, rather than 

systemic distribution. 

 

In order to investigate the parameters that affect the absorption and pharmacodynamic 

profiles of drug molecules via inhaled administration, it is necessary to consider the 

anatomical parameters of the lungs, the formulation of the active material and the 

inherent properties of the active molecules. While the surface area of the upper airways 

is only a few square metres in humans, for the alveoli it is more than 100 m2 [108]. The 

airways are mainly lined with mucus-secreting goblet cells, which are pseudostratified 

ciliated columnar cells that help to quickly remove any solid particles which are deposited. 

Insoluble particles that are inhaled and deposit in these airways are therefore quickly and 

efficiently evicted by the mucus-ciliary escalator [109]. Solid particles that reach deeper 

into the airways can remain for as long as 24 hours [110]. The air-side surface of each of 

the 500 million alveoli in the human lungs is protected by 12-14 of alveolar macrophages 

[111][112] that can digest insoluble particles that are deposited, although there are 

insoluble, non-digestible particles that can deposit deep in the alveoli and remain for 

years [111]. For example, coal dust remains trapped for a lifetime and can result in 

silicosis [111]. Using insoluble drug to increase lung retention is therefore not necessarily 

the best approach to adopt, primarily because slow dissolution rates are not compatible 

with the high concentrations required for efficient target engagement, but also because 

of an increased risk of lung irritancy and toxicity [113]. Figure 5.4-4 is adapted from 

reference [111] and shows a schematic illustration of the lung epithelial cells in different 

parts of the lung that cover a large surface area promoting permeability. Depending on 

the position of the target (in the lung, in the epithelial cells), we may want to design 

compounds that are retained in the lung and not reach the general circulation.  

Alternatively, if the lung is to be the route for systemic delivery against a target which is 

not in the lung, we may want the drug to reach the general circulation rapidly.  Ideally, 

compounds that target the lungs for the treatment of asthma or lung infections should 

avoid the general circulation either by being poorly absorbed or rapidly cleared in order 

to avoid potential side effects. To develop drugs with reasonably long lung retention 

profiles, it is important to have access to methods that can measure the compound 

concentration time profile not only in the systemic circulation, but also in the lung itself.  
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Figure 5.4-4 The Illustration of Epithelial Cells in Different Parts of the Lung 

 

 

 

Figure 5.4-4 Shows a schematic of main cell types and dimensions of the lung [111] 

 

Inhaled particulates can cause adverse pathology in the lungs, which is characterised by 

the formation of foamy macrophages in the alveolar [113][114][115]. Where specifically 

in the lungs it is best to deposit a drug to achieve optimum absorption has not been yet 

identified and probably target specific, but several hypotheses are emerging which are 

dependent on a number of factors [111][116]. Firstly, the nature of the therapeutic 

intervention needs to be considered: is a local pharmacological response to the drug 

required (such as treating asthma) or is the aim to achieve rapid systemic absorption i.e. 

is the aim to use the pulmonary/inhaled route to overcome poor oral ADME properties? 

Due to differences in surface area, morphology and permeability in the epithelial cells of 

the trachea and the alveoli, the particle size of the inhaled active ingredient (Active 

Pharmaceutical Ingredient – API) can be modulated to reach different regions of the lung 

and airways. Aerosol particles with an average aerodynamic diameter of about 1 to 2 µM, 

if slowly and deeply inhaled, can reach deep into the lungs with an efficiency of up to 90% 

in the peripheral regions, which are rich in alveoli [111]. 
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Besides the formulation developed to deliver the drug, its inherent physicochemical 

properties, primarily solubility, lipophilicity and permeability, will also play a key role in 

determining lung retention times and bioavailability: for example, small molecules with 

moderate lipophilicity can have extremely rapid absorption kinetics from the lungs [106]. 

In 2003 Tronde et al [117] published a comprehensive analysis of the structure – lung 

absorption relationship for 34 inhaled drugs based on rat in vivo pharmacokinetics, 

although  the set cannot be considered to be particularly diverse, comprising mostly 

steroids or β2-agonists. Generally, rapid absorption was observed through the lungs for 

drugs that were more polar and therefore less lipophilic than associated with optimal oral 

absorption. Moreover, retained good absorption from the lung was evident with drugs 

with low permeability when measured in vitro. Drug absorption rate correlated with the 

molecular polar surface area, H-bonding potential and apparent permeability measured 

in CaCo-2 cell monolayers.  They also noted high lung absorption rates for Talinolol and 

losartan, both of which are substrates for P-gp efflux in the gastrointestinal tract, and 

suggests that these transporters have a less important role in the lungs.  One possible 

explanation for this are the high local concentrations associated with dry powder 

dissipation that perhaps saturate potential P-gp transporters in the lung [118].  

 

In a study by Ritchie at al  [119][120] involving  81 marketed respiratory drugs, they also 

demonstrated that this class was associated with higher polar surface area, a greater 

number of  hydrogen bonds and higher molecular weight than the majority of oral 

drugs.  In addition, while the lipophilicity of the inhaled drugs was generally lower than 

that of the oral drugs, other properties such as total ring count were similar for both 

classes. Edwards et al [105] studied the lung retention expressed as Lung T1/2 (min) of 

17 marketed inhaled drugs using an isolated perfused ventilated rat lung (IPRLu) model, 

which was also used to assess the lung retention of 82 drug discovery compounds at 

GlaxoSmithKline. They developed a partial least square QSAR model to estimate the log 

% solubilized dose in the lung perfusate. Based on this model, the most significant 

variables that positively influenced lung absorption were in silico permeability, 

bioavailability P-gp score and MDCK cell permeability, while the number of positively 

chargeable groups, rotatable bonds, and H-bond donors negatively influenced the lung 

absorption. 
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These previous studies identify that for drugs to be safely administered via the pulmonary 

route and achieve longer lung retention to maximise duration of the pharmacological 

effect, they should have moderate solubility, permeability and lipophilicity in order to 

minimise the formation of foamy macrophage and prevent systemic distribution.  

 

I will further investigate physicochemical and biomimetic properties that may affect lung 

retention and the estimated dose for inhaled compounds using the PAN JAK inhibitor 

project compounds as a case study. 

 

6 Experimental and Computational Methods 

 

At GSK, there are various organisational units with unique expertise in in silico model 

building and calculations. The Computational Chemistry Unit helps the program teams to 

identify the relevant in silico properties to use during lead optimization and ensures that 

the models are available for the chemist in a user-friendly way. Similarly, the various in 

vitro and physicochemical measurements are performed by separate expert groups. 

Experimental details of physicochemical measurements and in silico/in vitro methods 

providing data for the project are described below. 

 

6.1 In Vivo Studies performed at GSK 

 

All animal studies were ethically reviewed and carried out in accordance with Animals 

(Scientific Procedures) Act 1986 and the GSK Policy on the Care, Welfare and Treatment 

of Animals. 

 

6.2 Experimental Conditions of Physicochemical and Biomimetic 

Measurements 

 

As described in the introduction, the maximum drug efficiency can be calculated from the 

measured albumin and phospholipid binding data [77]. These measurements are run by 

the Physicochemical Characterisation Group and the data are deposited in the company 

database where it is then available via an excel search tool called Helium. 
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6.2.1 Measurements of Human Serum Albumin Binding 

 

The measurements were run on a ChiralPak-HSA column with dimensions of 50 x 3 mm 

using Agilent 1200 HPLC equipment with plate based auto sampler and diode array 

detector. The ChrialPak-HSA columns were obtained from Chiral Technologies Inc. The 

mobile phase A is 50 mM ammonium acetate buffer adjusted to pH7.4 in order to be 

similar to physiological pH conditions. 100% HPLC grade iso-propanol was used as 

mobile phase B. The 6 min gradient run was timed as: 0 to 3.0 min 0 to 30% iso-propanol 

3 to 5 min at 30% isopropanol; 5 to 5.2 min then back to 100% pH 7.4 ammonium acetate 

buffer and the column re-equilibrated in a 6 min run time. The mobile phase flow rate was 

1.8 mL/min and the separation took place at an elevated temperature of 40oC (in order to 

reduce column back pressure and imitate physiological conditions).  Before the assay 

plates were run, the retention times were calibrated using a set of known drug molecules 

as listed in Table 6-1. Using the plasma protein binding % data from the literature they 

were converted to Logk data using Equation 19. The logarithm of the gradient retention 

time was plotted against the linearised Logk HSA data from the literature. The slope and 

intercept values of the obtained straight lines were used to convert a new compound’s 

retention data to HSA binding data. Typical calibration data are shown in Table 6-1 [55].  
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Table 6-1 Typical calibration data for the HSA binding measurements using 

an HSA column  

 

Compound Literature Plasma 

protein binding 

(%PPB) 

Linearised 

PPB 

(Logk) 

gtR(min) Log(gtR) 

Nizatidine 35.00 -0.28 0.94 -0.03 

Bromazepam 60.00 0.17 1.20 0.08 

Carbamazepine 75.00 0.46 1.63 0.21 

Budenoside 88.00 0.83 1.84 0.26 

Nicardipine 95.00 1.20 3.01 0.48 

Indometacine 99.00 1.69 3.84 0.58 

Piroxicam 94.50 1.16 2.82 0.45 

Diclofenac 99.80 1.92 4.20 0.62 

Flurbiprofen 99.96 1.98 4.30 0.63 

 

A typical HPLC chromatogram for the standard calibration mixture is shown in Figure 

6.2-1. 

 

Figure 6.2-1 An Example Chromatogram of Known Drugs using Immobilized 

Human Serum Albumin (ChiralPak-HSA) HPLC Column. 

 

 
 
Figure 6.2-2 shows a typical calibration line for the gradient retention times. 



105 
 

Figure 6.2-2 Calibration Plot for the Gradient Retention Times and HSA 

Binding for the Calibration Set of Compounds (GSK data). 

 

 

 

Using the slope and intercept of the straight line, the unknown HSA binding can be 

calculated using an excel template where Logk (HSA) = slope x Log tR(HSA)+ intercept.  

Table 6-2 shows GSK NCE program compound values calculated from the HSA 

calibration plot Figure 6.6-2 

 

Table 6-2 Excel Calculations for the HSA Binding from the Gradient 

Retention Time Obtained on the ChiralPak-HSA Column. 

 

GSK Number tR(HSA) 

Slope 0.3054 

Intercept 0.0564 

%HSA Logk (HSA) 

GSK700917A 1.2 73.31 0.42 

GSK703971A 3.5 93.96 1.13 

GSK703972A 2.5 87.72 0.82 

GSK700143A 3.1 91.88 1.00 

GSK700142A 2.6 88.51 0.85 
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The HPLC column integrity can also be checked by injecting the racemic mixture of 

warfarin. When two peaks were observed, it indicated that the major binding site (warfarin 

binding site) remained intact on the immobilised albumin (Figure 6.2-1). 

 

6.2.2 Measurements of Phospholipid Binding using Immobilized Artificial 

Membrane HPLC Column 

 

Commercially available Immobilized Artificial Membrane HPLC columns were obtained 

from Regis Technologies (Morton Grove Il, USA). An IAMPC.DD2 100 x 4.6 mm column 

with an acetonitrile gradient was used. The run time was 6 min and the buffer contained 

50 mM ammonium acetate at pH 7.4. The gradient profile was: 0 to 2.5 min 0 to 80% 

acetonitrile then kept at 80% acetonitrile for 3 min; then from 3 to 3.2 min back to 100% 

buffer and re-equilibration of the column by the end of the 6-min run. The gradient 

retention times were calibrated using a set of compounds for which the chromatographic 

hydrophobicity indices (CHI) had been measured isocratically according to reference [64]. 

The calibration set of compounds are listed in Table 6-3 A typical chromatogram is shown 

in Figure 6.2-6. 

 

Table 6-3 The Calibration set of Compounds used for Obtaining the IAM 

Binding Parameter CHI (IAM) 

 

Compound tR 7.4 

CHI 

(IAM) 

Octanophenone 5.296 49.4 

Heptanophenone 5.069 45.7 

hexanophenone 4.813 41.8 

Valerophenone 4.518 37.3 

Butyrophenone 4.175 32 

Propiophenone 3.767 25.9 

Acetophenone 3.169 17.2 

Acetanilide 2.776 11.5 

Paracetamol 2.201 2.9 
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Figure 6.2-3 A Typical Chromatogram of the IAM Calibration Set of 

Compounds (Paracetamol, Acetanilide Acetophenone, Propiophenone, 

Butyrophenone, Valerophenone, Hexanophenone, Heptanophenone and 

Octanophenone) 

 
 

 
 

 

Figure 6.2-3 shows a typical calibration chromatogram; each peak is in order of the compounds in 

the figure title and that of Table 6-3. 
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Figure 6.2-4 A Typical Calibration Plot used to Calculate CHI IAM Values 

from the Measured Gradient Retention Times of Drug Discovery 

Compounds. 
 

 

 

6.2.3 Measurements of Chromatographic Lipophilicity 

 

The lipophilicity of the drug discovery compounds was determined by HPLC using C-18 

reversed phase columns. A fast acetonitrile gradient was used, starting with a 100% 

aqueous mobile phase. Three measurements of the gradient retention times were made 

using pH 2 0.01M phosphoric acid, pH 7.4 50 mM ammonium acetate and pH 10.5 50 

mM ammonium acetate buffer as starting mobile phases.  

 

Table 6.4 shows a calibration set of compounds with fixed CHI values at three different 

mobile phase pH’s that can be used to standardise of the gradient retention times. The 

CHI data for the test mix shown in Table 6-4 has been suggested for the calibration of 

the gradient retention times at pH 2.6, pH 7.4, and pH 10.5 [45].  

 

Figure 6.2-5 shows a typical chromatogram of the test mix at pH 7.4. As previously 

discussed, the use of the same CHI values for calibration of the actual gradient retention 

times should enable the CHI values then obtained to show good inter-laboratory 

agreement even if they were obtained with slightly different reversed phase column 
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dimensions and conditions. Some of the compounds of the calibration set have retention 

times which are sensitive to slight variation in the mobile phase pH. Thus, low correlation 

coefficients (r2 below 0.99) indicate differences in mobile phase pH or non-linearity of the 

gradient and the calibration is a useful guide for system suitability and changes to 

experimental conditions. 

 

Table 6-4 The Chromatographic Hydrophobicity Index Values for the 

Calibration [45] 

 

Compound CHI at pH 

2.6 

CHI at pH 

7.4 

CHI at pH 

10.5 

Theophylline 19.9 18.4 5.0 

Phenyltetrazole 42.2 23.6 16.0 

Benzimidazole 6.3 34.3 30.6 

Colchicine 43.9 42.0 43.9 

Phenyltheophylline 51.7 51.2 51.3 

Acetophenone 64.1 65.1 64.1 

Indole 72.1 71.5 72.1 

Propiophenone 77.4 77.4 77.4 

Butyrophenone 87.3 87.5 87.3 

Valerophenone 96.4 96.2 96.4 

 

Figure 6.2-5 shows typical calibration plots obtained at three pH’s on C-18 column for the 

determination of the Chromatographic Hydrophobicity Index (CHI) values. Chromatogram peaks 

in Figure 6.2-5 are in the order listed in Table 6-4 
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Figure 6.2-5 A Typical uHPLC Chromatogram  

 

 

 

Figure 6.2-5 shows a typical uHPLC chromatogram of the standard test mix in Table 6-4 run at  

pH 7.4. Each chromatogram peak is in order of the compounds listed in Table 6-4. 
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Figure 6.2-6 Calibration Plots for the CHI Determination on C-18 Reversed 

Phase Columns at Three Different Starting Mobile Phase pH: a) pH2.6; b) 

pH7.4; c) pH10.5 

a. 

 

b.  
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c. 

 

 

6.2.4 Measurements of High Throughput Solubility and Artificial Membrane 

Permeability 

 

6.2.4.1 The Kinetic Solubility Assay Developed at GSK 

 

A 5µL of 10mM DMSO stock solution of test compound was diluted in 100 µL (0.5mM) in 

pH7.4 phosphate buffered saline, equilibrated for 1 hour at room temperature, filtered 

through Millipore MultiscreenHTS-PCF filter plates (MSSL BPC). The filtrate was then 

quantified by suitably calibrated flow injection using a Chemi-Luminescent Nitrogen 

Detector (CLND) [121]. The maximum solubility in phosphate buffer saline under the 

assay condition was equivalent to the amount of compound that was diluted in the buffer. 

If the compound’s DMSO solution provided for the assay was 10 mM, it was equivalent 

to 500 µM. If no compound had precipitated during the 1 h equilibration time with the 

buffer, then the solubility was reported to be higher than 500 µM. When no compound 

was detected in the buffer filtrate, then the solubility was reported to be less than 1 µM, 

which was the detection limit. Compounds that had no nitrogen atoms in their structure 

could not be detected by CLND. The detector signal was calibrated using various 

concentration of caffeine that has 4 nitrogen atoms. The detector signal was proportional 
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to the number of nitrogen atoms per mole. A correction factor was used when the 

molecules contained adjacent nitrogen atoms. The standard error of the CLND solubility 

determination was ±30 µM, the upper limit of the solubility was 500 µM when working 

from 10 mM DMSO stock solution. Compounds that had less than 50 µM solubility were 

considered low solubility, while solubility was high when greater than 200 µM. As the 

concentration was expressed in weight of the active material, the µM solubility values 

were often converted to µg/mL concentration. However, larger molecular weight 

compounds seemingly have higher µg/mL solubility so when comparing discovery 

compounds solubility, the molar concentration should be used. 

 

6.2.4.2 Artificial Membrane Permeability Assay 

 

An artificial membrane permeability assay has been developed internally at GSK. This 

assay was based on the application of black lipid membrane between two buffer 

compartments (donor and acceptor compartments). 2.5 µL of a 10 mM sample solution 

in pH 7.4 phosphate buffer was added to the donor compartment. To enhance solubility, 

0.5% hydroxypropyl-cyclodextrin (encapsin) was added to the buffer.  The artificial black 

lipid membrane was prepared from 1.8% phosphatidyl choline and 1% cholesterol in 

decane solution and applied to the porous filter between the donor and acceptor 

compartments. The application of the membrane and buffer solutions were made by a 

Tecan robot. To improve efficiency, the membrane had to be solvated by the buffer within 

a short period of time in order to retain the natural bi-layer form. The sample concentration 

in both the donor and acceptor compartment was determined by LC-MS after a 3 h 

incubation and gentle shaking at room temperature [122]. The permeability (LogPapp) 

measuring how fast molecules passed through the black lipid membrane was expressed 

in nm/s. The average standard error of the assay was around ±30 nm/s that can be higher 

at the low permeability range. The usual permeability values that are measured by this 

methodology ranged between 3 to 600 nm/s. When the permeability was less than 50 

nm/s, it was considered to be low. When the permeability was greater than 300 nm/s, it 

was considered to be high. The absorption potential of the oral PI3Kδ compounds was 

estimated by using the product term of the measured CLND solubility and the artificial 

membrane permeability values as described in section 4.2.3. The cut-off values were 

determined in order to consider if any of the values were low then absorption potential 

would also be low. 
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6.3 Experimental Methods for the Measurement of In vitro Clearance 

 

The liver is the most important site of drug metabolism in the body. Approximately 60% 

of marketed drugs are cleared by hepatic CYP enzyme mediated metabolism. The 

Intrinsic clearance is the ability of the liver to remove the drug in the absence of flow 

limitations and binding to cells or proteins in the blood.  

Figure 6.3-1 illustrates the hepatic extractions and the calculation of the hepatic extraction 

ratio. 

 

Figure 6.3-1 The Schematic Illustration and Calculation of Hepatic 

Extraction Ratio. 

 

 

 

Previously referred to Equations 1 and 2 

Equation 1 

F ൌ F. Fୟ. F୦ 

F – Bioavailability, Fg – Fraction escaping gut metabolism, Fa – Fraction absorbed, Fh – Fraction 

escaping metabolism by the liver 
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Equation 2 

Fh ൌ ሺ1 െ Eሻ 

 

Fh – Fraction escaping first pass metabolism by the liver, E -Extraction ratio 

 

6.3.1 Measurement of In vitro Clearance in Liver Microsomes 

 

Liver microsomes are subcellular fractions which contain membrane bound drug 

metabolising enzymes, notably CYP450s and MOA’s (Table 4-1). To measure the in vitro 

intrinsic clearance a pool of human liver microsomes was used. In order to understand 

the species differences rat and minipig microsomes were also used. The metabolic 

activity of P450 enzyme was checked using standard methodology [123], appropriate 

control compounds were included with each species.  

 

Compounds were incubated at a concentration of 0.5 µM in 0.5 mg liver microsomes, 

0.1M phosphate buffer (pH7.4) and NADPH at 37 °C for a maximum of 1 h (incubation 

volume 25 µL). At each time point, typically 0, 5, 15, 30 and 45 min the reaction was 

terminated by adding 50 µL of protein precipitation solvent with an internal standard at 

an assay well. The samples were centrifuged, and a volume of supernatant combined as 

a cassette of up to 4 compounds before being analysed by LC-MS/MS analysis. For each 

compound a single exponential decay equation was calculated from a time response plot.  

 

The equation for a single exponential decay is:  

 

Equation 40 

ktey  .A 0  

 

Where A0 = initial value, k = Elimination rate constant, t = time, e = exponential. This equation 

should be applicable for most datasets.  

 

Equation 41 

CL୧୬୲ ቌ

µL
min
mg

proteinቍ ൌ

Ln2
k

Assay Protein Concentration
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Equation 42 

CLint ሺmL/minሻ/g liverሻ ൌ CLint ሺµL/min/mgሻ. SF ൬
g

kg
൰ 

 

CLint = Intrinsic clearance, k = Elimination rate constant, SF = Scaling factor 

 

6.3.2 Measurement of In vitro Clearance in Hepatocytes 

 

Hepatocytes are liver cells with intact membranes and physiological concentrations of 

Phase I and II metabolising enzymes and cofactors, notably CYP450s, MOA’s, 

glucuronidation and conjugation reactions (Table 4-1), which are believed to be a model 

close to the whole liver for drug clearance measurements [124]. In order to understand 

the species differences rat, minipig and human hepatocytes were used. 

 

Suspensions of cryopreserved hepatocytes were used. Incubations were performed at a 

test or control compound concentration of 0.5µM at 37°C. The cell density is 0.5x10^6 

viable cells/mL. Control incubations were also performed in lysed cells to reveal any non-

enzymatic degradation. Appropriate control compounds were included with each species. 

Samples (50µL) are removed from the incubation mixture at 0, 5, 10, 20, 40 and 60min 

(control sample at 60min only) and added to methanol, containing internal standard, 

(100µL) to stop the reaction. The samples were centrifuged, a volume of supernatant 

combined as a cassette of up to 4 compounds before being analysed by LC-MS/MS 

analysis. 

 

The results of the intrinsic in vitro clearance were expressed as µL/min/million cells or 

mL/min/g of liver. For each compound a single exponential decay equation was 

calculated from a time response plot Equation 40. 

 

Equation 43 

CL୧୬୲  ቌ

µL
min

million
cellsቍ ൌ

Ln2
k

Assay Cell Density
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Equation 44 

CLint ሺmL/minሻ/g liverሻ ൌ Clint ሺµL/min/million cellsሻ. SF ቆmillion
cells

g
ቇ 

 

CLint = Intrinsic clearance, k = Elimination rate constant, SF= Scaling factor 

 

The hepatocyte clearance was converted to the whole liver intrinsic clearance using an 

appropriate scaling method described below [83] (also see Figure 6.3-2 for examples of 

scaling methods).  

 

Data from either the microsomal or hepatocyte assays were used to calculate the in vivo 

metabolic clearance with the following listed assumptions: 

 

1. Distribution into the liver is perfusion rate limited and no diffusional barrier exists. 

2. Only unbound drug crosses the cell membrane and occupies the enzyme site. 

3. The hepatic enzymes have a homogenous distribution in the liver. 

 

When these assumptions are considered, three models can be used: the well-stirred 

model; the parallel-tube model and the dispersion model (Figure 6.3-2). The well-stirred 

model is by far the simplest and most widely used, although variants are also used 

depending on the available data. Non-restrictive and restrictive versions of the equation 

are frequently used. The non-restrictive model is where protein and matrix binding are 

not taken into account, and the restrictive model is where protein binding as a minimum, 

and matrix binding can both be taken into account. The well-stirred model assumes 

homogeneous distribution of the drug in the liver, and that the drug concentration coming 

out of the liver is the same as the intracellular drug concentration. 
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Figure 6.3-2 The Schematic Illustration of Various Liver Models used to 

Estimate the In Vivo Hepatic Clearance from In Vitro Microsomal Stability 

Data [31]. 

 

 
 

Figure 6.3-2 shows the different liver models used to estimate the in vivo hepatic clearance from 

in vitro stability data. DN -system mixing rate, fB – fraction unbound in blood, CLint – intrinsic 

clearance, QL – liver blood flow. 

 

DN denotes the dispersion number and indicated that in the well stirred model the 

concentration throughout the liver was identical, whereas the parallel tube model 

represented the other end of the spectrum where there is no flow and therefore a 

concentration gradient across the liver. The Dispersion model is somewhere in between 

the two. There are other more complex zonal models of clearance, but these have not 

been considered and will not be referred to. 

 

The well-stirred model was used here to calculate the estimated in vivo hepatic clearance 

from in silico or in vitro CLi data, which was assumed to be the same as total clearance 

but did not account to any extra hepatic clearance that may have occurred in vivo.  
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Equation 45 

CL୦ ሺWSM non resሻ ൌ
ሺCL୧୬୲. SFሻ. Q୦

ሺCL୧୬୲. SFሻ  Q୦
 

 

Equation 46 

CL୦ ሺWSM resሻ ൌ
ቀ

CL୧୬୲
Fuinc . SF. f୳ୠቁ . Q

൬CL୧୬୲
f୳୧୬ୡ

. SF. f୳ୠ൰  Q

 

 

Where CLint = in vitro clearance, fub = fraction unbound in blood, SF = scaling factor, fuinc = fraction 

unbound in the matrix and Qh = liver blood flow. 

 

6.4 Experimental Methods to Measure Aldehyde Oxidase Metabolism 

from Cytosol and Lung Tissue 

 

Aldehyde oxidase (AO) is an enzyme that is predominantly expressed in liver, however it 

is also known to be expressed in other tissues such as the respiratory, digestive and 

endocrine [125], but typically at much lower levels. AO is not related to Cytochrome P450, 

but is known to catalyse the oxidation of a wide range of endogenous and exogenous N-

heterocycles and aldehydes, AO metabolism was first described by Beedham et al [126]. 

A standard metabolic stability screening strategy using microsomes (CLint) would not 

detect whether a compound is a substrate for aldehyde oxidase. The method below was 

used as an in vitro procedure to determine if a chemical entity was a substrate for AO 

biotransformation, using liver cytosol or lung homogenate and LC-MS/MS for parent 

molecule or AO metabolite detection. Aldehyde Oxidase Liver Cytosol Multiple Species  

 

In these liver cytosol studies, each test compound and a positive control from the GSK 

library was prepared as a 5 mM DMSO stock solution. A specific AO inhibitor isovanillin 

was also prepared at starting concertation of 11.1 mM. Liver Cytosol was purchased 

frozen in 1mL vials at a protein concentration of 10 or 20 mg/mL.  For each assay, vials 

of cytosol for the relevant species being tested were thawed rapidly in a water bath at 

37oC and pooled. The Cytosol was diluted with 50mM potassium phosphate buffer in 

order to obtain a 2.2 mg/mL protein concentration. 

The AO inhibitor isovanillin was diluted to 1.1 mM with 50 mM potassium phosphate 

buffer. This solution was then incubated at 37°C, along with a separate aliquot of 50 mM 
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potassium phosphate buffer. Each test compound (potential AO substrate) was diluted to 

50 µM with 10% DMSO (v/v aq). 

For each compound and species duplicate wells containing 450 µL of 2.2 mg/mL cytosol 

and 45 µL either AO inhibitor (isovanillin at 1.1 mM in 50 mM potassium phosphate buffer) 

or buffer (50 mM potassium phosphate buffer) were prepared. This plate was maintained 

at 37°C in a heated water bath and referred to as the incubation plate. 

An aliquot of 95:5 (v/v) acetonitrile:ethanol (extraction buffer), containing a suitable 

internal standard was added to each sample well of a 96 deep well plate in accordance 

with a pre prepared sample reference plate map.  This plate was referred to as the 

extraction Plate.  

To start the assay a 5 µL aliquot of test compound was added to allocated test wells of 

the Incubation plate (total incubation volume 500 µL - 2mg/mL cytosol, 0.5µM test 

compound and were appropriate 100uM on isovanillin). Immediately after compound was 

added, a 0 min sample aliquot (50 µL) from each incubation well was taken and 

dispensed into the allocated wells of the extraction plate. Further samples were taken 

from the incubation plate at pre-defined times e.g. 3, 6, 9, 15, 30, 45, 60 min and 

dispensed into the extraction plate. After the last sample was taken, the extraction plate 

was then centrifuged at 3500 rpm for 10 min. A volume of each supernatant was placed 

into a fresh 96 well plate and diluted with water. Each well was then assayed for test 

compound and internal standard in using LC-MS/MS. 

 

6.4.1 Aldehyde Oxidase Mouse and Human Lung Homogenate 

 

Lung tissue was weighed and transferred into Precellys™ homogenising tubes each 

containing ceramic beads. A volume of buffer (PBS -100 mM sodium phosphate + 150 

mM sodium chloride pH 6.9 -7.2) was added to each tube before being homogenised in 

a Precellys 24 for 2 x 20 sec at 5500 rpm. The resulting lung homogenate was pooled 

into a single sterilin pot. An additional dilution step was performed to produce a 1:6 diluted 

lung homogenate.  

 

For each compound and species duplicate vials containing 450 µL of lung homogenate 

and 45 µL either AO inhibitor (isovanillin at 1.1 mM in 50 mM potassium phosphate buffer) 
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or buffer (50 mM potassium phosphate buffer) were prepared. These vials were 

maintained at 37°C in a heated water bath. 

 

An aliquot of 95:5 (v/v) acetonitrile:ethanol (extraction buffer), containing a suitable 

internal standard was added to each sample well of a 96 deep well plate in accordance 

with a pre prepared sample reference plate map.  This plate was referred to as the 

extraction Plate.  

 

To start the assay a 5 µL aliquot of test compound was added to allocated test wells of 

the Incubation plate (total incubation volume 550µL - 150mg/mL lung tissue, 0.5µM test 

compound and were appropriate 100uM on isovanillin). Immediately after compound was 

added, a 0 min sample aliquot (10 µL) from each incubation well was taken and 

dispensed into the allocated wells of the extraction plate. Further samples were taken 

from the incubation plate at pre-defined times e.g. 10, 20, 30, 60, 120, 180, 240 min and 

dispensed into the extraction plate. After the last sample was taken, the extraction plate 

was then centrifuged at 3500 rpm for 10 min. A volume of each supernatant was placed 

into a fresh 96 well plate and diluted with water. Each well was then assayed for test 

compound, the assumed MZ of the test compounds AO metabolite i.e. +16 of the test 

compound, isovanillin and internal standard, using LC-MS/MS. 

 

6.4.2 Data analysis, interpretation and reporting  

 

For each compound, a single exponential decay equation was calculated from the time 

response plot generated from the procedure above. Equation 40 represents a single 

exponential decay function used to calculate the elimination rate constant k.  

 

Equation 40 

ktey  .A 0     

 

Where A0 = initial value, k = Elimination rate constant, t = time, e = exponential. This equation 

should be applicable for most datasets.  

 

For stable compounds displaying a low elimination rate constant there was a minimum 

value that could be quoted, i.e. at least 15% disappearance of parent was required by 
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the last time point (e.g. in a 60 min assay, the elimination rate constant must be higher 

than 0.0027/ min (< -0.0027)) for an absolute value to be quoted). A 15% loss of parent 

was based on the inherent variability of the LC-MS/MS system, which determined the 

limit of quantification of the assay. 

 

Regression statistics using a 95% confidence level were generated using an excel data 

analysis tool, which was calculated to ensure that the elimination rate constant measured 

was statistically different from zero based on a 95% confidence interval. 

 

A compound was defined as an AO substrate when the turnover of parent compound had 

been fully inhibited in the presence of the AO inhibitor. Parent turnover continuing in the 

presence of the AO inhibitor may suggest that the compound could be a substrate for 

other cytosolic components, or degradation by other incubation conditions. If this 

occurred, the test compound could be confirmed as an AO substrate. 

 

6.5 Experimental Methods to Measure Solubility in Simulated Lung Fluid 

(SLF) and Cell Permeability using MDCK Cells 

 

6.5.1 SLF Solubility  

 

Duplicate 1 mg compound samples were accurately weighed into two separate 2 mL 

glass screw cap vials. The standard vial (A) was dissolved in 1 mL DMSO. The second 

sample vial (B) had 1 mL of SLF added to it. The composition of SLF was phosphate 

buffer (pH 6.9) and 0.75 mM lecithin with 1 mg/mL bovine serum albumin (BSA). The 

sample vials were placed on a Tecan™ robot plate shaker for 4 hours at room 

temperature, shaking at 900 rpm. A 175 µL sampling was then taken from each vial and 

dispensed into a 96-well filter plate, which was then vacuum filtered. The filtrate was 

quantified by HPLC relative to the standard peak area obtained from the compound 

standard (A) dissolved in DMSO. If there was no compound precipitation from the SLF 

sample (B) during the 4 h equilibration time, then the solubility of the compound was 

reported as 1 mg/mL. If no compound was detected in the SLF filtrate, then the solubility 

was reported to be less than 1 µg/mL, which was the standard detection limit of the HPLC 

system. The standard error of the solubility determination was ±30 µg/mL. Compounds 

that had less than 10 µg/mL solubility were considered to have low solubility, while 

compounds that had a measured concentration of over 300 μg/mL were considered to 
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have high solubility. Larger molecular weight compounds generally appear to show higher 

µg/mL solubility using this system, so when comparing the solubility of compounds that 

the molar concentration was used. 

 

6.5.2 Cell Permeability 

 

The Madin-Darby Canine Kidney (MDCK) cell permeability assay is based on the 

application of a MDCK cell monolayer between two buffer compartments (donor and 

acceptor compartments). The cell integrity on the 24-well Millipore filter plate was tested 

using Lucifer Yellow and fluorescence plate reader. The trans-epithelial electrical 

resistance (TEER) of the cell monolayers was measured to check the cell monolayer 

integrity. Elacridar was added to the donor compartment to inhibit the drug efflux 

transporter P-gp. The concentration of the test compound added to the donor 

compartment was 3 µM. The system was then equilibrated for 90 min and the 

concentrations of the compound in the donor and acceptor compartments were measured 

by LC-MS. The drug transport across the cell monolayers was measured in the apical to 

basolateral direction. The permeability (LogPapp) was expressed in nm/s. The average 

standard error of the assay was approximately ±30 nm/s, however, it can be higher in the 

low permeability range. The typical permeability values measured by this method range 

between 3 to 600 nm/s. When permeability was measured as less than 10 nm/s, the 

compound was classed as low permeability. When the permeability was measured to be 

above 100 nm/s it was classed as high permeability. 

 

6.6 Experimental Methods for Determining In Vivo IV Pharmacokinetics 

and Lung Retention. 

 

6.6.1 Determining IV Pharmacokinetics in Mice 

 

IV PK was generated using surgically cannulated male mice (n= 3). The jugular vein was 

used for drug administration and direct venepuncture of the tail vein used for blood 

sampling. Compounds were typically dosed as a 1 h infusion at 1 mg/kg at an infusion 

rate of 5 mL/kg/h, formulated as solutions using 10% w/v kleptose. 
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Serial blood samples were taken at: 

 

IV:       0.5 h, 1 h (end of infusion), 1.083 h, 1.25 h, 1.5h, 2 h, 4 h, 7 h, 12 h & 24 h. 

 

All blood samples were taken into heparinised containers. Individual aliquots of blood 

were transferred directly into micronics tubes containing an equal volume of sterile water 

and stored frozen at -20ºC prior to analysis by LC-MS/MS.  

Preparation of diluted blood calibration standards: 

 

A calibration line was prepared using a 1 mg/mL stock solution. The stock solution was 

diluted to 200 µg/mL by diluting 20 µL in 80 µL acetonitrile:water (50:50 by volume).  

 

The 200µg/mL solution was then used to prepare a 2000 ng/mL standard. This was done 

by adding 2.5 µL of the 200 µg/mL solution to 247.5 µL of diluted blood (equivalent to a 

concentration of 4000 ng/mL in whole blood). The equivalent blood concentration was 

used for analysis as this corrects for the sample dilution. Standard curves were prepared 

for a blood concentration range of 1 to 4000 ng/mL by serial dilution in diluted blood. A 

final sample volume of 20 µL was used. 

 

Preparation of blood samples for analysis: 

 

All of the 20 µL aliquots standards were all transferred in to micronic tubes for extraction 

along with a 50 µL aliquot of control matrix which was used as a matrix blank sample. 

 

 All diluted blood samples and standards were extracted by protein precipitation by 

adding 400 µL of 95:5 ACN: Water containing 100 ng/mL of internal standard to each 

sample.  The samples were then mixed on a plate shaker for at least 5 minutes. The 

samples and standards were centrifuged for at least 10 minutes at 3500rpm and then 20 

µL aliquots of each supernatant was removed and transferred to a fresh 96-well plate 

where 300 µL of water was then added. The samples were then mixed on a plate shaker 

for at least 5 minutes before being analysed by LC-MS/MS. 

 

The resulting concentration-time data were used to determine various PK parameters 

such as CLb, Vdss, T½, Cmax and AUC using WinNonlin non-compartmental analysis (NCA). 
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6.6.2 Determining IV Pharmacokinetics in Rats 

 

IV PK was generated using surgically cannulated male Wistar Han rats (n=1 to 3). The 

femoral vein was used for drug administration and the jugular vein for blood sampling. 

Compounds were typically dosed as a 1 h infusion at 1 mg/kg at an infusion rate of 5 

mL/kg/h, formulated as solutions using 10% w/v kleptose. Rats were individually housed 

in metabolism cages where urine was collected over 24 h and used to measure the 

contribution of renal elimination. 

 

Serial blood samples were taken at: 

 

IV:       pre-dose, 0.25 h, 0.75 h, 1 h (end of infusion), 1.083 h, 1.25 h, 1.5h, 1.75 h, 2 h, 

3 h, 5 h, 8 h, 13 h & 24 h. 

 

All blood samples were taken into heparinised containers. Individual aliquots of blood 

were transferred directly into micronics tubes containing an equal volume of sterile water 

and stored frozen at -20ºC prior to analysis by LC-MS/MS.  

 

Preparation of diluted blood calibration standards: 

 

A calibration line was prepared using a 1mg/mL stock solution. The stock solution was 

diluted to 200 µg/mL by diluting 40 µL in 160 µL acetonitrile:water (50:50 by volume).  

 

The 200 µg/mL solution was then used to prepare a 2000 ng/mL standard. This was done 

by adding 5µL of the 200 µg/mL solution to 495 µL of diluted blood (equivalent to a 

concentration of 4000 ng/mL in whole blood). The equivalent blood concentration was 

used for analysis as this corrects for the sample dilution. Standard curves were prepared 

for a blood concentration range of 1 to 4000 ng/mL by serial dilution in diluted blood. A 

final sample volume of 50 µL was used. 

 

Preparation of blood samples for analysis: 

 

All of the 50 µL aliquots standards were all transferred in to micronic tubes for extraction 

along with a 50 µL aliquot of control matrix which was used as a matrix blank sample. 
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All diluted blood samples and standards were extracted by protein precipitation by adding 

250 µL of 95:5 ACN: EtOH containing 100 ng/mL of internal standard to each sample.  

The samples were then mixed on a plate shaker for at least  

5 minutes. The samples and standards were centrifuged for at least 10 minutes at 

3500rpm and then 100 µL aliquots of the supernatants was removed and transferred to 

a fresh 96-well plate where 200 µL of water was then added. The samples were then 

mixed on a plate shaker for at least 5 minutes before being analysed by LC-MS/MS. 

 

The resulting concentration-time data were used to determine various PK parameters 

such as CLb, Vdss, T½, Cmax and AUC using WinNonLin non-compartmental analysis 

(NCA) 

 

6.6.3 Determining IV Pharmacokinetics in Minipig 

 

IV PK was generated using male Göttingen minipigs (n=2). Temporary cannula were 

placed in a hind leg vein (e.g saphenous vein) and was used for drug administration and 

a temporary cannula was also placed in an ear vein or minimise the use of direct 

venepuncture for blood sampling. The leg vein cannula was used for blood sampling for 

later timepoints if required once the cannula had been flushed and enough time had 

passed to ensure no dosed remained at the site of administration. Compounds were 

typically dosed as a 10-minute infusion at 1 mg/kg at an infusion rate of 6 mL/kg/h, 

formulated as solutions using 10% w/v kleptose. 

 

Serial blood samples were taken at: 

 

IV:  0min (pre-dose), 10min (end of infusion), 15min, 40min, 1h, 2 h, 4 h, 7 h,  

12 h & 24 h. 

 

All blood samples were taken into heparinised containers. Individual aliquots of blood 

were transferred directly into micronics tubes containing an equal volume of sterile water 

and stored frozen at -20 ºC prior to analysis by LC-MS/MS.  
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Preparation of diluted blood calibration standards: 

 

A calibration line was prepared using a 1 mg/mL stock solution. The stock solution was 

diluted to 200 µg/mL by diluting 40 µL in 160 µL acetonitrile:water (50:50 by volume).  

 

The 200 µg/mL solution was then used to prepare a 2000 ng/mL standard. This was done 

by adding 5 µL of the 200 µg/mL solution to 495 µL of diluted blood (equivalent to a 

concentration of 4000 ng/mL in whole blood). The equivalent blood concentration was 

used for analysis as this corrects for the sample dilution. Standard curves were prepared 

for a blood concentration range of 1 to 4000 ng/mL by serial dilution in diluted blood. A 

final sample volume of 50 µL was used. 

 

Preparation of blood samples for analysis: 

 

All of the 50 µL aliquots standards were all transferred in to micronic tubes for extraction 

along with a 50 µL aliquot of control matrix which was used as a matrix blank sample. All 

diluted blood samples and standards were extracted by protein precipitation by adding 

250 µL of 95:5 ACN: EtOH containing 100ng/mL of internal standard to each sample.  

The samples were then mixed on a plate shaker for at least 5 minutes. The samples and 

standards were centrifuged for at least 10 minutes at 3500 rpm and then 100 µL aliquots 

of the supernatants was removed and transferred to a fresh 96-well plate where 200 µL 

of water was then added. The samples were then mixed on a plate shaker for at least 5 

minutes before being analysed by LC-MS/MS. 

 

The resulting concentration-time data were used to determine various PK parameters 

such as CLb, Vdss, T½, Cmax and AUC using WinNonLin non-compartmental analysis 

(NCA) 

 

6.6.4 Determining Lung Exposure in Mice 

 

A lung PK/Exposure study utilised 18 female Balb/C mice n=3/observation to generate a 

blood and lung PK profile. The mice were placed under light anaesthesia using isoflurane 

to facilitate intranasal (IN) administration of an IN dose volume sufficient to result in lung 

delivery of the test compound, before being allowed to recover.   
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The dose for lung retention studies was typically 1 mg/kg for lung retention studies, with 

a dose volume of 50 µL (this dose volume had been determined internally within GSK by 

imagining techniques, eLNB reference N4373-30): the dose concentration was 0.4 

mg/mL. The dose formulation was saline (0.85% NaCl w/v pH6) or 10% w/v kleptose 

depending on the solubility of the molecule being administered, to ensure the dose was 

administered as a solution. The compound was administered as a solution to determine 

the “intrinsic lung retention” by removing low solubility as a factor which would enhance 

lung retention.  

 

Serial blood samples were taken at 10 min, 30 min, 1, 3, 5, 8 and 12 h after dosing, with 

terminal blood and lung samples collected (n=3 per time point) at the times indicated 

above to establish serial blood and composite blood and lung profiles. All blood samples 

were taken into heparinised containers. Individual aliquots of blood were transferred 

directly into micronics tubes containing an equal volume of sterile water and stored frozen 

at -20ºC prior to analysis by LC-MS/MS.  

Preparation of diluted blood calibration standards: 

 

A calibration line was prepared using a 1mg/mL stock solution. The stock solution was 

diluted to 200 µg/mL by diluting 20 µL in 80 µL acetonitrile:water (50:50 by volume).  

 

The 200 µg/mL solution was then used to prepare a 2000 ng/mL standard. This was done 

by adding 2.5 µL of the 200 µg/mL solution to 247.5µL of diluted blood (equivalent to a 

concentration of 4000 ng/mL in whole blood). The equivalent blood concentration was 

used for analysis as this corrects for the sample dilution. Standard curves were prepared 

for a blood concentration range of 1 to 4000 ng/mL by serial dilution in diluted blood. A 

final sample volume of 20 µL was used. 

 

Preparation of blood samples for analysis: 

 

All of the 20 µL aliquots standards were all transferred in to micronic tubes for extraction 

along with a 50 µL aliquot of control matrix which was used as a matrix blank sample. All 

diluted blood samples and standards were extracted by protein precipitation by adding 

400 µL of 95:5 ACN: Water containing 100 ng/mL of internal standard to each sample.  

The samples were then mixed on a plate shaker for at least 5 minutes. The samples and 

standards were centrifuged for at least 10 minutes at 3500 rpm and then 20 µL aliquots 
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of each supernatant was removed and transferred to a fresh 96-well plate where 300 µL 

of water was then added. The samples were then mixed on a plate shaker for at least 5 

minutes before being analysed by LC-MS/MS. 

 

Preparation of compound standards in tissue homogenate: 

 

A calibration line was prepared using a 1 mg/mL stock solution by taking 8µL of the 1 

mg/mL stock solution and pipetting directly onto a control mouse lung in a Precellys® 

homogenising tube containing ceramic beads to which 1mL of water was added. The lung 

was then homogenised using a Precellys® 24 for 2x20sec at 6500 rpm, a further 1 mL of 

was then added and the sample was mixed. This homogenate now contained the highest 

standard concentration of 8000 ng/lung and was then used to generate the remaining 

standard line range by serial dilution across a range of 0.4-8000 ng/lung.  

 

All in vivo study lungs were homogenised as detailed above. 

 

A 20 µL aliquot of homogenate from each standard and in vivo sample was transferred 

to a clean micronic tubes for extraction along with an additional 20 µL aliquot of blank 

control matrix to be run as a matrix blank sample. All standards and in vivo samples were 

extracted by protein precipitation by adding 400 µL of 95:5 ACN:Water containing 100 

ng/mL of internal standard to each sample.  The samples were then mixed on a plate 

shaker for at least 5 minutes. The samples and standards in the micronic tubes were then 

centrifuged for 10 minutes at 3500 rpm. A 20 µL aliquot of the supernatants was then 

transferred to a new 96-well plate and 300 µL of water was added to each sample. The 

plate was then mixed on a plate shaker for at least 5 minutes before being analysed by  

LC-MS/MS. The lung concentrations were converted from ng/lung to ng/g using the 

individual tissue weights.  

 

Concentration-time data were used to determine various PK parameters such as Cmax 

and AUC in both blood and lung using WinNonLin non-compartmental analysis.  

 

6.6.5 Details of the Intra-Nasal Dose Technique 

 

The IN dose was administered to mice under light isoflurane-induced anaesthesia. The 

dose was applied to the external nares (25 μL each side, 50 μL in total). Care had to be 
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taken to avoid application of the dose to the lips or mouth.  The animals were returned to 

holding cages and continuously observed until they had recovered from anaesthesia.  

 

Dosing solutions were stored at room temperature before and after dosing (to limit the 

risk of precipitation) and kept for dose analysis if required. 

 

The same IN dosing technique was used for PKPD experiments. However, due to animal 

PD model tolerability, the compounds were only formulated using a simple saline 

formulation with pH adjustment if required. 

 

6.6.6 Inhalation Studies in Rodents 

 

In vivo inhalation studies are complex due to multiple variables that effect these studies 

such as respiration rate, location of animals on dosing towers due to different API cloud 

concentrations (Figure 6.6-1), particle size of the API being dosed and doses are 

calculated as whole body doses rather than delivered dose. 

 

An important starting point for inhalation studies prepare the API for inhalation and 

determine API particle size to ensure it is within the respirable range. The API particle 

size was measured by the Product Development group at GSK to ensure the particle size 

was in the respirable range of 1-5 μM. The particle size was described as the Mass 

Median Aerodynamic Diameter (MMAD), which was the average diameter if API particles 

following micronisation. This value is specific for each batch of micronised compound. 

The batch of GSK3454697 dose in vivo had an MMAD of 2.1μM. The PK data generated 

from an in vivo inhaled mouse study using GSK3454697 was used to validate the PBPK 

model.  

 

The MMAD was generated using a device called a cascade impactor, the data generated 

from the filters in this device indicated 48% of particles on stage 6, with an average of 

80% stages 6, 7 & 8. The cascade impactor is a multistage column, containing 9 stages 

with each stage separated by a filter, drug particles were drawn through the cascade 

impactor using a vacuum pump. Each filter becomes finer moving along the column: 

particles moving down the column were captured by the filters separating the larger from 

the smaller particles. The respirable range is generally considered to be between 1 and 

5 µM and are typically captured by stage 6. 
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A pre-study inhalation dose test was performed before every inhaled in vivo study using 

an aerosol generator, either a Wrights Dust Feeder (WDF) or Capsule Based Aerosol 

Generator (CBAG) along with the dosing tower to be used during the planned in vivo 

study (Figure 6.6-1 and Figure 6.6-2, respectively). To help set and calibrate the correct 

dose a pre study run was done with a cascade impactor as described above, which was 

placed on a port on the dosing tower. The inhalation dose was then calculated based on 

the flow rate, concentration of API on the different filters along with the respirable rate of 

the species being dosed. This process would be repeated for each batch of API material. 

Once a pre-study dose was determined that falls within the target dose range, the same 

CBAG settings were used for the in vivo inhaled mouse study, or the process was 

repeated to adjust the equipment to achieve the desired target dose.   

 

Once the API and towers have been prepared following pre-study dose runs. Inhaled 

disposition data was generated using male Balb/C mice (up to  

n= 33/tower). Animals were placed dosing tubes and connected to the tower ports. 

Inhalation time was 20 min at a flow rate to achieve the target dose. 

 

Lung samples and composite blood samples (n=3) 

 

IH:  0.25 h (inhalation period) IAD, 0.5 h, 1 h, 2 h, 4 h, 7 h, 12 h & 24 h. 

 

All blood samples were taken into heparinised containers. Individual aliquots of blood 

were transferred directly into micronics tubes containing an equal volume of sterile water 

and stored frozen at -20 ºC prior to analysis by LC-MS/MS.  

 

Blood and lung samples were extracted, and concentrations of test compound were 

quantified as described in Section 6.6.4. 

 

Concentration-time data were used to determine various PK parameters such as Cmax 

and AUC using WinNonLin non-compartmental analysis 
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Figure 6.6-1 An Inhalation Tower with a Wrights Dust Feeder (for Aerosol 

Generation) for Rodent Inhaled Dose Studies 

 

 
 

Figure 6.6-1 Shows a picture of a large-scale inhalation dosing tower with a WDF attached used 

for rodent PK and PKPD studies. The red ports are where the animal holding tubes are attached, 

the tower can hold up to 33 dosing tubes. 
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Figure 6.6-2 An Inhalation Tower with a Capsule Based Aerosol Generator 

(CBAG) used for Low Dose Rodent Inhaled Dose Studies 

 

 

Figure 6.6-2Figure 6.6-2 Shows a picture of a small-scale inhalation dosing tower with a CBAG 

attached used for rodent PK and PKPD studies. The red ports are where the animal holding tubes 

are attached, the tower can hold up to 9 dosing tubes. 

 

6.7 In Vitro Enzyme and Cellular Potency Measurements of PAN JAK 1/2/3 

Inhibitors 

 

A commercially available kit provided by Perkin-Elmer was used. The LANCE Ultra time-

resolved fluorescence resonance energy transfer (TR-FRET) assay uses a proprietary 

europium chelate donor dye, W-1024m with Ulight, a small molecular weight acceptor 

dye with a red-shifted fluorescent emission. The kinase assay utlilises the binding of a 

EU-labelled antiphospho-substrate antibody to the phosphorylated Ulight labelled 

substrate, which brings donor and acceptor molecules into close proximity. After 

irradiation of the kinase reaction at 320 or 340 nm, the energy from the EU-donor is 

transferred to the EU acceptor dye which, in turn, light is emitted at 665 nm. The intensity 

of the light emission is proportional to the level of Ulight substrate phosphorylation. TR-

FRET assay measures the phosphorylation of the tyrosine kinase phosphorylation site 
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Tyr-1023 based on the synthetic substrate peptide (CAGAGAIETDKEYYTVKD) which 

has been derived from the JAK-1 phosphorylation site. The kinase assay was performed 

in 96-well plates using buffer that contained 10 mM MgCl2, 50 mM/L HEPES (pH7.5) and 

1 mM/L dithiotreitol (DTT) and 0.01% bovine serum albumin (BSA). The enzyme reaction 

contained 50 µM/L of peptide, ATP was added at the apparent Km for the assay  

(1.8 µM/L for PAN JAK 1/2/3). Reactions were incubated for 90 min at room temperature 

and stopped with a detection mixture containing Eu-PT66 Antibody. Plates were then 

incubated for another 30 min before reading the TR-FRET signal using an excitation 

setting of 320 nm and emission collection at 665nm and 665 nm. 

 

The cytokine-stimulated pSTAT5 (Signal Transducer and Activator of Transcription) 

detection assay were carried out using human lung fibroblasts. Cells were pre-treated 

with the compounds for 30 min at 37oC followed by stimulation with IL-30. The control 

well contained unstimulated fibroblast cells that were exposed only to buffer. 

 

6.8 Assessment of Unbound Drug Fraction in Blood and Lung 

Homogenate by Rapid Equilibrium Dialysis (RED) 

 

The unbound fraction of each test compound was determined in blood and lung 

homogenate, using the RED device for rapid equilibrium dialysis and by LC-MS/MS 

analysis. 

 

The assay procedure was as follows: a fresh or frozen mouse lung (typical weight 0.2g) 

was weighed and placed in a 2mL Precellys™ homogenising tubes which were prefilled 

with ceramic beads. 1mL of buffer was also added (PBS – 100 mM sodium phosphate + 

150 mM sodium chloride, pH 6.9 - 7.2) before being homogenised (2 x 20 s at 6500 rpm). 

The resulting homogenate was further diluted with 0.8 mL PBS buffer to create a 1 in 10 

to buffer to tissue ratio.  

 

Fresh blood (from the species required) was collected in hepronised tubes prior to the 

study and diluted 1:1 (v/v) with PBS (100 mM sodium phosphate + 150 mM sodium 

chloride, pH 6.9 - 7.2). 

 

A 1 mg/mL DMSO stock solution for each test compound was prepared before being 

further diluted to 200 µg/mL using acetonitrile:water (50:50 v/v). 10 µL of the 200 µg/mL 
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solution added to a 1990 µL aliquot of diluted blood result in a nominal starting 

concentration of 1µg/mL containing <1% organic solvent.  

For each compound and species 3 buffer chambers were pre-loaded with the relevant 

volume of dialysis buffer in line with manufacturers recommendations. The relevant 

volume of spiked sample matrix in line with manufacturers recommendations was then 

placed in the 3 corresponding sample chambers of RED insert identified by red ring. 

The RED plate was then covered with sealing tape and incubated at 37°C at 

approximately 100rpm on an orbital shaker for a minimum of 4 hours (no greater than 18 

hours). 

At the end of the incubation period a sample from each well was transferred and 

individually matrix matched with either control buffer, diluted blood or lung homogenate 

in a clean 96-well plate. All samples then underwent precipitation using 95:5 ACN: EtOH 

containing an internal standard compound. This plate was then centrifuged at 3500 rpm 

for 10 mins before an aliquot of supernatant was removed and diluted with water for LC-

MS/MS analysis. The fraction of compound bound to protein was calculated using the 

peak area ratio. A correction factor was used to account for the blood dilution or lung 

homogenate dilution. This methodology has been previously described by Kalvass and 

Maurer [127]. 

 

6.9 Computational and Visualization Tools Applied in the Data Analysis 

and Evaluation of the Reliability of Various Dose Prediction Methods 

 

Project compounds that are discussed in this project and used as examples for dose 

estimation did not all have in vitro and in vivo data available depending on their 

progression point. In such cases in silico calculated data was used from computation 

models that had been developed and validated by GSK computational chemists. A brief 

description of these in silico models is given below. 
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6.9.1 In silico Volume of Distribution Model (Model not published) 

 

Volume of distribution has been described in Section 4.1.2 is an experimental in vivo PK 

parameter. Therefore, reduce the use of animals in silico models can help to give initial 

estimations to help with compound design at the early stages of a drug discovery 

program.  

 

The GSK QSAR volume of distribution model was built by computational modellers at 

GSK using in vivo rat data this section gives a general overview of how the model was 

built indicating what properties were most influential to the model output. Vdss data was 

expressed as L/kg which was converted to a logarithmic scale to Log normalise the data. 

A dataset of 1178 compounds was divided into training and test sets at the beginning of 

the model build. Any data that had been reported as less than or higher than values were 

not included in the model. Once the model was built, a validation set of compounds was 

used which was also downloaded from the company database; these data had been 

posted after the model build and was used to further validate the accuracy of the model. 

The in silico model was based on the assumption that the chemical structure and the 

physicochemical properties of the compounds would relate to the in vivo volume of 

distribution. 

 

Standard in silico physicochemical properties, such as, lipophilicity, log P, log D, polar 

surface area, molecular weight, H-bond donor and acceptor groups and fragment E-state 

parameters (topological physical properties) were calculated for each data set. Models 

were initially built using all of the descriptors, but after a principal component analysis 

only the first three principal components were used as dependent variables. The models 

were further refined based on the coefficients and loading plots. Descriptors with minimal 

influence on the first two principal components were removed. Ultimately, a sufficient 

number of descriptors were removed to afford the generation of a simple linear regression 

model (MLR). Using this approach, a QSAR model was generated. The model predictions 

are illustrated in Figure 6.9-10. 

 

The results show that approximately 50% of the variance in the dataset was described 

by the model in the training, test and validation seta. Although there is a slight drop off in 

the predictive ability from the training/test set to the validation set, examination of the root 

mean square error shows only a small difference, indicating the model prediction error 
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did not change. The statistically significant descriptors in the model correspond to the 

previous knowledge of structural factors affecting the volume of distribution, such as the 

ionisation of acids decreases the volume of distribution, while ionisation of bases typically 

increased volume of distribution. More lipophilic compounds generally have a higher 

volume of distribution. The E-stat F sum descriptor showed the number of fluorine atoms 

in a compound, while the NHR2acuc_sum descriptor shows the number of acyclic 

secondary NH groups (like amine, amide, urea) that significantly influenced the model. 

The third significant parameter was the basic NH_sum, showing the number of basic NH 

groups influenced the volume of a compound.  

 

Figure 6.9-1 Plot of observed vs predicted volume of distribution for a) 

training set; b) test set and c) validation set of compounds. 

 

a) 
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b) 

 

c) 

 
 

Figure 6.9-1 Red contours represent areas of maximum density while blue areas represent the 

areas of lowest density. 

 

We can see in Figure 6.9-1 (a, b and c) that visually the model error is quite substantial 

at 0.7 – 1 Log Vdss unit (L/kg). However, it is still very useful as this data can be used in 

the early dose estimation equation. 
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6.9.2 In silico Clearance Model (This model has not been published) 

 

The GSK QSAR CLi model was built by computational modellers at GSK using human in 

vitro microsomal data. This section gives a general overview of how the model was built 

indicating what properties were most influential to the model output The continuous 

intrinsic model is based on physicochemical properties, and E-state descriptors. The 

model includes the in silico prediction of Cytochrome P450 inhibition and smart 

fragments. The model predicted the clearance value with a 3-fold error (equivalent to a 

0.5 log unit error). The model also provided a categorical prediction for clearance. The 

categorical prediction placed compounds with less than 2 mL/min/g tissue as low 

clearance, 2 to 10 mL/min/g tissue as medium clearance and over 10 mL/min/g tissue as 

high clearance. The clearance models were built based on the data of 9,000 compounds, 

with approximately 3,000 compounds for each clearance category. The model was 

validated using a set of 18,644 compounds from the GSK database. All values were Log 

transformed to ensure there was a normal distribution of the data prior to the modelling 

work. 

 

The correlation was limited experimental and predicted data (r2=0.37). These results 

show that the model is able to predict 37% of the variance. The prediction error of 0.5 

Log units was comparable with the errors obtained in other GSK in silico models for CYP 

P450 inhibition. The statistical characteristics of the model shows how difficult it was to 

predict the metabolic stability of the compounds using only fragments and simple 

physicochemical properties. The limited accuracy of this type of model is because it was 

unable to describe a compound’s interaction with multiple enzymes with different 

specificities using simple physicochemical parameters. It is important to understand that 

enzyme binding also depends on the 3D structure and this model only used a 2D 

description of the compounds. In general, clearance increased with increased lipophilicity 

and size of a compound. Acid and base character and polarity can lower intrinsic 

clearance. The number of rotatable bonds was observed to increase the clearance in this 

model, this was associated with inhibition of CYP3A4.  

 

The model was reported to have been applied in 25 GSK projects showing that 25% of 

measured in vitro data was predicted resulting in a correlation coefficient of 0.6. Observed 

verses predicted CLint is shown in Figure 6.9-2. 
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Figure 6.9-2 Observed and Predicted Intrinsic Clearance for a Set of 

Selected Projects. The Colours are Based on “Daylight” Clustering 

(similarity >0.7). 

 

 
 

Figure 6.9-2 Colours represent different chemical series within each project   
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6.10 Physiologically Based Pharmacokinetic Modelling  

 

Physiologically Based Pharmacokinetic (PBPK) models represents an increasingly 

important and complex method of modelling PK profiles and estimating dose. I have used 

PBPK in this project to help understand the relationship between concentration and effect 

for the inhaled JAK program. This section describes the some of the background and 

concepts used in PKPB modelling. 

 

The PBPK models differ from the classical pharmacokinetic PK models in that they 

include specific tissues as separate compartments that are involved in exposure, toxicity, 

biotransformation and clearance and they are connected by the blood flow. The 

schematic diagram of PBPK models are shown in Figure 6.10-2. 

 

The ACAT model (advanced compartmental absorption and transit model) is a series of 

differential equations which enables a mathematical description and interpretation of in 

vivo drug behaviour Figure 6.10-1, shows there are a total of nine compartments, where 

each compartment is further divided into four sub compartments: unreleased, 

undissolved, dissolved, and enterocyte (pink boxes). Each arrow in Figure 6.10-1 

represents a process, and therefore is described mathematically by a differential 

equation. 

 

The unreleased row of sub compartments is used only for controlled release dosage 

forms. For controlled release, the drug can be released into solution (dissolved) or as 

solid particles (undissolved). Undissolved drug undergoes dissolution and only then 

becomes available for absorption, carrier-mediated transport, and luminal degradation. 

Undissolved (solid particles) and dissolved (drug in solution) drug undergoes first order 

transit through the GI tract. The transit of unreleased drug is modified for Gastric Release. 

An oral drug is eventually excreted from the colon if it is not absorbed before the end of 

the transit process. 

 

An oral drug is only considered to have been absorbed from the GI tract in the ACAT 

model when it enters the enterocytes. This definition of absorption is used by the FDA 

and others in the pharmaceutical industry. Many earlier definitions of “absorption” in the 

literature often referred to the fraction reaching the portal vein, and some use it to mean 

to the fraction of drug which reached the systemic circulation (bioavailability). It is 
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important to distinguish among these definitions, especially when comparing the results 

of simulations generated by GastroPlus™ to other PBPK software with values reported 

in literature. To help compare literature values, GastroPlus™ helpfully reports Fa, FDp 

(fraction dose reaching portal vein), and F. Drug absorption can be passive process, 

driven by the concentration gradient across the apical barrier, or it can be a transporter 

mediated process as a result of uptake and efflux transporters in the enterocytes. It is 

important to note that when absorbed a drug can also be subject to metabolism in the 

enterocytes. Once drug crosses the basolateral intestinal barrier, it reaches the portal 

vein and then the liver. Both arterial and venous blood mix in the liver. First pass 

extraction and systemic extraction of drug both take place in the liver. Drug escaping 

metabolism reaches the systemic circulation from where it can distribute to peripheral 

compartments. The peripheral compartments can then be described by a classic 

empirical Compartmental PK model, or by numerous physiological tissues in a PBPK 

model (see Figure 6.10-2). Renal and other forms of elimination can occur from the 

central compartment.  

 

Compartments and blood flows are described using physiologically meaningful 

parameters, such as tissue sizes and compositions, which allows for interspecies 

extrapolation by altering the physiological parameters appropriately [128]. The 

advantages of PBPK modelling are that factors influencing absorption, distribution, 

metabolism and excretion can be incorporated into the models in a meaningful way. This 

mechanistic aspect is supported by physiological parameters influencing absorption such 

as pH, transit times and differences between species can also be explained. Empirical 

PK modelling has been used to a great extent for interspecies extrapolation, both among 

animal models and predicting human PK based on animal data [85]. The PBPK approach 

has several advantages over other PK modelling approaches. It creates models from 

physiological, biochemical and anatomical information. It evaluates the mechanisms by 

which biological processes govern disposition of a wide range of compounds. The 

development of PBPK modelling is based on the research between blood and tissue 

concentrations and administered dose and can be used to explain pharmacological action 

by the presence of the free drug at the site of action. It can be applied in safety evaluation 

[128]. 

 

Initially the PBPK models provided a set of equations for uptake, distribution and 

elimination of drugs in the body. The simplified equations treated the metabolism, 
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distribution and elimination processes as first-order, meaning that the rates changed in 

direct proportion to drug concentration. Later it was realised that saturation of elimination 

path-ways made it difficult to derive exact solutions to the equations. It was also realised 

that the blood flow rather than the metabolic capacity of an organ might limit the 

clearance. This meant that the blood-flow limited the metabolism in an organ and that the 

elimination rate could not increase indefinitely as the metabolic capacity increased [129]. 

The PBPK models require physiological, physicochemical and biochemical parameters 

as input.  Over the past 10 years, the capabilities of PBPK models that can simulate PK 

for humans or preclinical species based on the combination of physicochemical 

properties and in vitro data has advanced significantly. PBPK models can be constructed 

using program packages such as MATLAB. Powerful commercially available PBPK 

simulation tools are also available such as GastroPlus™ (Simulations Plus Inc.), 

SimCyp™ (SimCyp Inc) or PK-SIM™ (Bayer Technology Services).  

 

The current applications of PBPK in the pharmaceutical industry is widespread and it 

starts with the lead optimisation process or earlier. PBPK modelling can be used in the 

design of pre-clinical animal experiments. In the lead optimisation stage, the first 

information generated for NCE’s are the in silico calculated physicochemical parameters, 

such as lipophilicity expressed cLogP, pKa, solubility, permeability (Peff) and protein 

binding. In vitro measurements of metabolic stability (measured by microsomes or 

hepatocytes) are used as inputs, while the physiological parameters for various species 

are built into the software. Many in silco parameters will be followed up with in vitro 

measurements to increase confidence in the models for example plasma protein binding 

might then be measured to determine if a compound will have sufficient free 

concentration for therapeutic efficacy [130]. 

 

6.10.1 The Advanced CAT (ACAT) model 

 

The original compartmental absorption and transit (CAT) model was developed under the 

direction of Gordon Amidon at the University of Michigan to estimate the fraction of dose 

absorbed and the rate of drug absorption for passively transported drugs in immediate 

release products [131].  The CAT model was a dynamic model designed to simulate and 

predict how the fraction of an oral drug was absorbed through the human gastrointestinal 

(GI) tract [131]. The CAT was developed as a dynamic model as it included time in the 

mathematical coding. GI transit time is a fundamental element of GI absorption and the 
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CAT model is referred to as a transit model because it describes the flow of a drug 

through the GI tract. 

 

In the original CAT model, the GI tract was divided into a set of seven small intestinal 

compartments. The transit of drugs through the seven compartments was described by 

a set of ordinary differential equations with equal transit times. 

 

This model did not account for the finite rate of dissolution, the pH dependence of 

solubility of drugs, controlled release, absorption in the stomach or colon, gut metabolism, 

carrier-mediated transport, exsorption/secretion, pharmacokinetics, or regional changes 

in such factors as surface area, influx or efflux transporter densities, and other factors 

within the intestinal tract. For drugs that are absorbed in the colon, the CAT model could 

be made more accurate by treating the colon as an additional absorbing compartment. 

In many cases, colonic absorption is a negligible fraction of the total for immediate release 

formulations; however, many immediate release and most controlled release 

formulations can have significant colonic absorption, frequently exceeding absorption in 

the small intestine. Simulations Plus, Inc, developed a new more sophisticated and 

complex model called the Advanced Compartmental Absorption and Transit model 

(ACAT) to include all of the effects listed above (see Figure 6.10-1). 
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Figure 6.10-1 ACAT Model (Taken from the GastroPlus™ User Guide) 

 

 
 

Figure 6.10-1 shows the different compartments and directional flow of the ACAT model. 

Following the arrows from the stomach illustrates the theoretical paths a drug would follow 

through the GI tract and potential absorption into the systemic circulation depending on the 

biopharmaceutical properties of the drug substance being administered. 
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Figure 6.10-2 The Schematic Illustration of the Principals of the 

Physiologically Based Pharmacokinetic (PBPK) Modelling Approach for the 

ACAT Model [132]. 

 

 

 

Figure 6.10-2 Shows the ACAT model and its interface with a multi tissue PBPK model 

 

There is also a nasal-pulmonary module available in GastroPlus™. The Nasal-Pulmonary 

Compartmental Absorption & Transit Model (N-PCAT model) can also be linked to a 

PBPK model for drugs delivered via either the inhaled or nasal-pulmonary routes in a 

similar way to the ACAT model for oral drugs as previously described. This new nasal-

pulmonary model takes into account the deposition and distribution to the lung and 

absorption through the lung based on the anatomical and physiological attributes of the 

lung.  
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The nasal-pulmonary model can simulate a variety of dosage forms which are currently 

used in the clinic and describe how they can be distributed in the pulmonary 

compartments (including the anterior nasal passage) or primarily the nose. This 

implementation includes up to five compartments: an optional nose (containing the 

anterior nasal passages), extrathoracic (naso- and oro-pharynx and the larynx), thoracic 

(trachea and bronchi), bronchiolar (bronchioles and terminal bronchioles) and alveolar-

interstitial (respiratory bronchioles, alveolar ducts and sacs and interstitial connective 

tissue). A schematic diagram of how the different compartments are connected to one 

another and the rest of the body is shown in Figure 6.10-3.  

 

Figure 6.10-3 Nasal-Pulmonary Compartmental Absorption & Transit Model 

(N-PCAT Model) 

 

 
 

Figure 6.10-3 N-PCAT Model schematic interface showing the main compartments and 

directional flow of the nasal-pulmonary system.  

 

Figure 6.10-4 shows a more detailed description of the 5 compartments of the pulmonary 

module described in Figure 6.10-3, which help explain how a solid drug particle moves 

through the lung once deposited in the nasal-pulmonary system to eventually dissolve 
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and reach the systemic or lymph systems, or be cleared from the pulmonary system via 

the mucocilliary transfer or escalator. 

 

Figure 6.10-4 A Schematic Illustration of the Principals of Nasal-Pulmonary 

Compartmental Absorption & Transit Model (N-PCAT Model), Applying 

Similar Principles to those used for the ACAT model. 

 

 

 

Figure 6.10-4 Shows N-PCAT Model in GastrolPlus™ 

 

Figure 6.10-5 shows how both the ACAT and N-PCAT models are integrated onto the 

PBPK functionality of GastroPlus™ to enable PK models to be developed and simulations 

run to help describe the PK profile of a drug in both pre-clinical species and ultimately to 

human simulations to predict the exposure and efficacy (PKPD) of a drug. 
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Figure 6.10-5 The Schematic Illustration of the Principles of the PBPK 

Modelling Approach Combining the N-PCAT and ACAT Models. 
 

 

Figure 6.10-5 Shows how both the ACAT and N-PCAT models are integrated in a PBPK model 

(GastroPlus™). The ACAT and N-PCAT models are shown in greater detail and higher resolution 

on Figures 6-1-1 and 6-10-4 
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Figure 6.10-6 The Model Window in GastroPlus™ for Inhaled Drug 

Deposition, Distribution and Absorption. 

 

 

 

Figure 6.10-6 Nasal-Pulmonary GUI GastroPlus™ 

 

GastroPlus™ was used to model and simulate the PK and PK/PD data from the lung 

retention studies and PKPD studies for the PAN JAK inhibitor program which will be 

discussed in a later (Section 7.8).  

 

6.10.2 Physiologically Based Pharmacokinetic Modelling using GastroPlus 

using an Early Lead JAK Inhibitor to Establish Mouse Physiological 

Settings 

 

For the PBPK analysis the GastroPlus standard physiology parameters are set for 

multiple species (e.g. mouse rat, dog, monkey and human). However, for the pulmonary 

PBPK module of GastroPlus standard lung physiologies are available for mouse, rat and 

human but they are not as well defined as the GI physiologies. The standard mouse 
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physiology was the least described and used many of the rat parameters. Therefore, it 

was important to update the mouse physiology to ensure it would be as representative 

as possible to enable effective PBPK models to be generated.  

 

The surface area for each lung compartment was reduced by 10-fold, based on alveolar 

area being 10-fold lower in the mouse than rat [133](p.123). Airway mucus thickness was 

assumed to be the same as a rat, which was based on rat and human values being similar 

[133] (p.621). Pulmonary cell thickness was assumed to be the same as a rat based the 

values being reported in a similar range [133] (p.66). The systemic absorption rate 

constants (SARC) were set to 0.983/s in the nose and alveolar interstitial (AI) 

compartments, this value scaled on body weight between rat and mouse. The upper and 

lower bronchiolar was set to 4.9e-9/s based on similar scaling as the nose and AI 

compartments. Total lung volume was 0.184mL [134]. 

 

The systemic concentration time profile output for GastroPlus is plasma. Therefore,  

in vivo concentration time data generated from whole blood was converted to plasma 

using Equation 47. 

 

Equation 47 

fup = fub.(B/P) 

 

fup, is the fraction unbound in plasma, fub is the fraction unbound in blood, B/P is the blood/plasma 

ratio 

 

Therefore, if the B:P for a compound was 0.8:1, then the blood concentration would be 

lower than in plasma due to a compounds higher affinity for whole blood. So, when blood 

levels are measured from an in vivo study then the blood/plasma partition has to be used 

to convert the concentration to an effective plasma concentration. When compounds 

were administered to mice via the intranasal (IN) route, they were often dosed as 

suspensions. To account for this in the dose administered in a PBPK model a mixed 

multiple dosing (MMD) setting was used. This enabled the dose to be split into dissolved 

and undissolved fractions based on a compounds solubility when prepared as an IN 

suspension dose. For example, an MMD used was 0.003mg (ca. 15%) in solution, 

0.017mg (ca. 85%) powder. The purpose of this was to ensure a model was able to 

correctly estimate the deposition and lung retention.  
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It was noted that the version of GastroPlus™ used had several software bugs. One 

example was the need to switch between mixed multiple dose input and a standard 

pulmonary dose to enable model adjustments in the pulmonary module before switching 

back to the MMD setting to run simulation. To optimise the lung deposition profile the 

following parameters were used: Final Deposition profile = Nose 50% Extra Thoracic 

24.5% Thoracic 0.25% Bronchiolar 0.25% Alveolar 25%. These setting were used to build 

additional pulmonary PBPK models with only minor adjustments required to correctly 

prediction compound deposition and absorption. 

 

Figure 6.10-7 shows the screen shot from GastroPlus™ for mouse physiology, 

highlighting the nose and lung compartments which are characterised in the nasal 

pulmonary module of GastroPlus™.  
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Figure 6.10-7 Naso-Pulmonary Module Screen Shots for Mouse Physiology 

 

 
 

Figure 6.10-7 Shows a schematic of the nose and lung compartments and parameters such as 

pulmonary solubility and drug deposition applied to the Naso-Pulmonary module of GastroPlus™. 

 

Screen shots from GSK3454697 model as an example. This screenshot is a simple 

schematic of the main features of the pulmonary module. It is within each component that 

the pulmonary settings were adjusted as described earlier. It should be noted that 

permeability, lung tissue and cell binding values are compound specific but physiology 

which include SARC values, mucus thickness, epithelial thickness and mucociliary transit 

times should transfer between models.  For unbound concentrations in mucus, whole 

blood binding or PPB binding and for estimating the unbound concentration of the drug 

in cells the lung tissue binding data were used. Adjustment of deposition profile was 

required, Figure 6.10-8 shows an example of how this was done for GSK3454697. 
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Figure 6.10-8 Regional Deposition Profile Settings within GastroPlus 

 

 
 

Figure 6.10-8 shows a schematic of the reginal disposition used in the Naso-Pulmonary module 

of GastroPlus™. The species physiology can be selected, and the deposition profile of the drug 

can be adjusted here. 

 



155 
 

7 Results and Discussion  

 

7.1 Evaluation of Methods for Dose Prediction at the Early Stages of Lead 

Optimisation: A Comparison using the Data of Known Drug Molecules 

 

The drug efficiency (DRUGeff) concept introduced by Braggio et al [27] and described in 

section 4.2.4, was proposed as a new tool to guide drug discovery program teams, as it 

relates to the free drug concentration in the target bio-phase relative to the administered 

dose (Equation 31).  

 

In this analysis, clinical data such as the volume of distribution, clearance, dose, and 

dosing frequency of 136 marketed drug molecules were obtained from various databases 

(www.drugbank.ca/drugs and www.Drugs.com) and are listed in Table 7-1 and Table 7-2 

together with their in vitro pIC50 values. The biomimetic albumin and phospholipid binding 

of these drugs were measured using albumin and immobilised artificial membrane (IAM) 

HPLC stationary phases as described in references [135] & [136]. The HPLC DEmax 

values were calculated from the measured albumin and phospholipid binding for the 

known drug molecules listed in Table 7-3, using the sum of the two types of binding as 

described in the model published by Valko et al. [77]. The lipophilicity of the compounds 

has also been measured by an HPLC method using the Chromatographic Hydrophobicity 

Index (CHI) approach [137]. The CHILogD values have been measured across a pH 

range of pH 2, pH 7.4 and pH 10.5 to obtain the CHILogD, CHILogP, and the acid/base 

character for each compound as described by Valko et al. [138]. Based on the lipophilicity 

at three pHs, the acid/base character of each drug molecule was determined indicating 

the presence of positive, negative or no charge. The acid/base classification has been 

shown on all plots in order to reveal if there are significant trend differences depending 

on the charge state. 

 

The compounds in Table 7-1 to Table 7-3 have been coloured coded to define the acid / 

base class, which shows the colour key for the acid / base class and matches the legend 

keys in all graphs where the acid / base class has been defined. 
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Table 7-1 The Various In Vivo ADME Properties for the 136 Marketed Drugs.  

 

Acid/Base 

Class 

Colour 

Key 

Acidic   

Basic   

Neutral   

Weak Acid   

Weak Base   

Amphoteric   

Zwitterionic   

Not Classified   
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ACETYLSALICYLIC ACID 1200 5.5 4 353.4 4.92   

ALLOPURINOL 300 5.3 1 370.4 5.36   

AMILORIDE (HCl) 5 5.5 1       

CANDESARTAN CILEXETIL 8 10.5 1 <0.1 6.11   

DIAZOXIDE 150 4.7 3 13.5 3.62   

DIFLUNISAL 1000 4.2 2 66.1 3.06   

ETODOLAC 600 6.2 2 7.3 4.26   

FLURBIPROFEN 200 6.2 4       

FUROSEMIDE 80 5 2 243.8 5.48   

GLIBENCLAMIDE 3 5.3 1 138.4 7.07   

GLIMEPIRIDE 1 5.4 1 47.1 7.05   

GLIPIZIDE 3 5.5 1 34.7 6.66   

INDOMETACIN 75 6.5 3 7.1 5.46   

IRBESARTAN 150 9.3 1   5.48   
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KETOPROFEN 225 7.6 3 0.4 4.92   

MYCOPHENOLIC ACID 1440 8 2 0.3 4.31   

NAPROXEN 1000 5.2 2       

NIMESULIDE 400 4.4 2       

OXAPROZIN 1200 5.7 2       

PIROXICAM 20 6.7 1       

PRAVASTATIN SODIUM 40 8.2 1 1.9 6.84   

PROBENECID 1000 3.8 2 496.8 3.52   

SULFINPYRAZONE 100 3.3 1 3322.1 4.8   

TOLMETIN SODIUM 1800 6.8 3       

ZAFIRLUKAST 40 8.4 2 0.5 6.5   

ACEBUTOLOL (HCl) 400 6.8 2 26.9 5.59   

ALBUTEROL SULFATE 8 7.4 4 3.4 7.03   

AMITRIPTYLINE (HCl) 50 6.2 1 55 6.19   

AMOXAPINE 300 6.5 3       

ARIPIPRAZOLE 10 9.7 1 <0.1 6.23   

ATOMOXETINE (HCl) 40 8.7 1 0.2     

BUPROPION (HCl) 300 6.3 1       

CABERGOLINE 0 10 0       

CITALOPRAM (HBr) 20 8.3 1 0.3 6.5   

CLEMASTINE FUMARATE 3 8.6 2       

CLOMIPRAMINE (HCl) 25 7.9 1 1.6 6.68   

CLONIDINE (HCl) 0 8.5 1 0.1 8.02   

DESLORATADINE 5 9.4 1       

DIPHENHYDRAMINE (HCl) 75 8.1 3 0.9 6.19   

DOMPERIDONE 30 9.8 3   6.79   
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DONEPEZIL (HCl) 5 8.2 1 0.3 6.87   

EBASTINE 60 7.7 3       

FEXOFENADINE (HCl) 60 7.3 2       

FLUOXETINE (HCl) 60 8.6 1       

FLUVOXAMINE MALEATE 50 8.3 1       

GRANISETRON (HCl) 2 9.9 2 <0.1 7.82   

GUANABENZ ACETATE 8 8.2 2       

HALOPERIDOL 2 10 2   7.83   

IMIPRAMINE (HCl) 75 6.6 1 47.2 6.35   

LOXAPINE SUCCINATE 40 8.3 2       

MAPROTILINE (HCl) 75 4.4 3 7219.8 6.37   

MEFLOQUINE (HCl) 1250 4.5 1 218.5 3.71   

METERGOLINE 8 9.4 1       

METOCLOPRAMIDE (HCl) 20 8.4 2 0.3 6.59   

MIANSERIN 60 8.1 2       

MIBEFRADIL (Di HCl) 50 6.2 1 64.5 6.26   

NEOSTIGMINE BROMIDE 15 7.4 1 3.4 6.8   

NORTRIPTYLINE (HCl) 75 9 3 0.1 6.21   

OLANZAPINE 10 7.5 1 3.1 7.01   

PERGOLIDE MESYLATE 0 8.9 1       

PIMOZIDE 8 9.6 2       

PRIMAQUINE PHOSPHATE 15 5.4 1 257 6.66   

PROCHLORPERAZINE 
MALEATE 

15 8.5 3 1 7.26   

PROMETHAZINE (HCl) 50 8.2 2 1.2 6.56   

PROPAFENONE (HCl) 450 5.7 3 502.1 5.75   

PROPRANOLOL (HCl) 160 9.4 2 0.1 5.95   
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PROTRIPTYLINE (HCl) 15 5.6 3       

QUININE SULFATE 1800 6.3 6 14.2 4.2   

SELEGILINE (HCl) 10 8.1 1 1.4 7.24   

SUMATRIPTAN 75 8.1 3 2.2 6.54   

TAMSULOSIN (HCl) 2 11 2 <0.1 6.86   

VENLAFAXINE (HCl) 75 7.7 2 3.3 6.38   

VERAPAMIL (HCl) 120 6.9 3 47.4 6.5   

ZOLMITRIPTAN 8 8.1 3 0.7 7.07   

BICALUTAMIDE 50 6.1 1       

CAFFEINE 150 4.7 3 227.7 4.92   

CARBAMAZEPINE 800 4.6 1       

CELECOXIB 400 8.5 2 0.3 5.46   

DAPSONE 100 4.8 1 82.7 4.74   

FELBAMATE 1200 3.4 3 2030.1 3.66   

FELODIPINE 5 9.8 1 <0.1 7.59   

FLUTAMIDE 750 5.9 3       

ISRADIPINE 5 6.6 2 111.7 7.95   

LEFLUNOMIDE 100 4.9 1       

LETROZOLE 3 7.9 1 0.1 6.47   

LORAZEPAM 3 8.9 3 <0.1 6.69   

LOVASTATIN 10 9.5 1 <0.1 7.13   

METHYLPREDNISOLONE 4 6.3 1 56.5 7.42   

METOLAZONE 3 5.7 1       

NEVIRAPINE 200 8 1 <0.1 4.26   

NIMODIPINE 120 9.6 4 0.1 6.38   

NISOLDIPINE 20 9.8 1 <0.1 7.13   
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NITRENDIPINE 20 7.6 2 9.5 7.32   

PENTOXIFYLLINE 800 3.7 2 10000 5.8   

PROCYCLIDINE (HCl) 8 8.6 3   6.18   

ROLIPRAM 1 6.7 1       

SPIRONOLACTONE 100 4.7 1       

THIOTHIXENE (HCl) 6 9.7 3       

VALDECOXIB 10 8.4 1       

ZILEUTON 2400 6.5 2       

BENDROFLUMETHIAZIDE 3 3.4 1       

DIDANOSINE 250 8 2 1.2 5.68   

INDAPAMIDE 1 4.2 1       

PHENYTOIN 90 4.2 1       

ZIDOVUDINE 500 8 5 3.1 5.79   

ABACAVIR 600 7.2 2 12.1 5.46   

ACRIVASTINE 32 8.5 4       

ALOSETRON (HCl) 1 7.3 2 5.9 8.07   

AMINOGLUTETHIMIDE 500 4.9 2       

DIPYRIDAMOLE 200 6.7 2 13.3 5.54   

FENOFIBRATE 145 4.7 1 59 4.35   

KETOCONAZOLE 200 4.7 1       

LAMOTRIGINE 25 4 1 620.6 5.43   

MEBENDAZOLE 200 6.7 2 41.7 6.01   

NICARDIPINE (HCl) 60 5.6 2 639.1 6.61   

PINACIDIL 10 5.9 1       

PRAZOSIN (HCl) 2 8.9 3 0.1 7.74   

RILUZOLE 100 4.4 2       
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SAQUINAVIR 2000 8.3 2 2 5.3   

TRAZODONE (HCl) 150 6.3 1 13.5 5.2   

TRIAMTERENE 150 5.3 2 3682.5 6.69   

VOGLIBOSE 1 4.6 3       

ZIPRASIDONE (HCl) 40 8.8 2 0.2 6.38   

TELMISARTAN 20 8 1 1.8 7   

ZALCITABINE 2 6.9 3 7.7 7.38   

CETIRIZINE (HCl) 5 8.5 1       

CILOSTAZOL 200 6.7 2       

EFAVIRENZ 600 8.9 1       

FINASTERIDE 5 7.3 1 4.2 7.21   

HYDROCHLOROTHIAZIDE 50 4.7 2       

LANSOPRAZOLE 15 7.1 1 6.7 6.7   

MERCAPTOPURINE 3 4.8 1 1591.7 7.62   

MIFEPRISTONE 600 8 1       

NADOLOL 40 8.9 1 0.1 6.01   

PIOGLITAZONE (HCl) 15 4.5 1       

ROXITHROMYCIN 450 6.8 3       

SIMVASTATIN 40 8.4 1       
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Table 7-2 Literature Data of Known Drug Molecules 

(www.drugbank.ca/drugs and www.Drugs.com). 
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ACETYLSALICYLIC ACID 0.22 12 0.68 0.3 0.3   

ALLOPURINOL 0.58 11 0.97 0.9 0.8   

AMILORIDE (HCl) 5       7.5   

CANDESARTAN CILEXETIL 0.13 0.37 0.01   9   

DIAZOXIDE 0.21 0.06 0.06 58 48   

DIFLUNISAL 0.1 0.1 <0.001 14 10   

ETODOLAC 0.39 0.82 0.01   7.3   

FLURBIPROFEN 0.12   <0.001   5   

FUROSEMIDE 0.12 1.6 0.01 1.3 2.5   

GLIBENCLAMIDE 0.13 1.3 0.01   1.6   

GLIMEPIRIDE 0.19 0.5 0.01 6.3 10   

GLIPIZIDE 0.16 0.56 0.02 4.8 3.3   

INDOMETACIN 0.1 1.3 0.01 1.2 1.4   

IRBESARTAN 0.94 2.3 0.1 6.8 14   

KETOPROFEN 0.13 1.6 0.08 1.4 2.1   

MYCOPHENOLIC ACID 0.77 2 0.02   12   

NAPROXEN     0.01   15   

NIMESULIDE     0.03   2.8   

OXAPROZIN 14   0.01   54.9   

PIROXICAM 0.14   0.06   58   

PRAVASTATIN SODIUM 0.46 14 0.5 0.6 0.8   

PROBENECID 0.13 0.25 0.13 8.7 5.9   

SULFINPYRAZONE 0.12 0.34 0.02 5.9 6.2   

TOLMETIN SODIUM             
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ZAFIRLUKAST 1 4.76 0.01   10   

ACEBUTOLOL (HCl) 1.7 10 0.74 2.8 3.5   

ALBUTEROL SULFATE 1.9 7.8 0.92 4.1 2.4   

AMITRIPTYLINE (HCl) 8.7 6.1 0.07 24 17   

AMOXAPINE             

ARIPIPRAZOLE 4.9 0.83 0.01 98 75   

ATOMOXETINE (HCl) 0.85 9.3 0.02 1.5 5.2   

BUPROPION (HCl)     0.16   24   

CABERGOLINE   45.71 0.6   65   

CITALOPRAM (HBr) 12 4.3 0.2 47 33   

CLEMASTINE FUMARATE             

CLOMIPRAMINE (HCl) 13 8.2 0.03 26 26   

CLONIDINE (HCl) 3.3 4 0.56 14 7.6   

DESLORATADINE     0.15   50   

DIPHENHYDRAMINE (HCl) 6.5 9.8 0.19 11 9.3   

DOMPERIDONE 3.4 9.5 0.08 6 7.5   

DONEPEZIL (HCl) 12 2.17 0.04   70   

EBASTINE             

FEXOFENADINE (HCl)     0.35   14.4   

FLUOXETINE (HCl) 32.5   0.06   48   

FLUVOXAMINE MALEATE 25   0.2   15.6   

GRANISETRON (HCl) 3.7 9.1 0.35 6.7 5.2   

GUANABENZ ACETATE     0.1   6   

HALOPERIDOL 17 7.8 0.08 36 35   

IMIPRAMINE (HCl) 12 13 0.08 15 16   

LOXAPINE SUCCINATE         4   

MAPROTILINE (HCl) 45 14 0.11 54 51   
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MEFLOQUINE (HCl) 20 0.43 0.02   504   

METERGOLINE             

METOCLOPRAMIDE (HCl) 3.2 5.7 0.6 9.4 7.2   

MIANSERIN     0.1   13.5   

MIBEFRADIL (Di HCl) 3.1 4 0.01 13 13   

NEOSTIGMINE BROMIDE 0.74 9.2   1.3 1.3   

NORTRIPTYLINE (HCl) 22 10 0.12 37 30   

OLANZAPINE 14.3 7.14 0.07   37.5   

PERGOLIDE MESYLATE     0.1   27   

PIMOZIDE         29.3   

PRIMAQUINE PHOSPHATE 4 5.8   11 7.1   

PROCHLORPERAZINE MALEATE 22 16   23 9   

PROMETHAZINE (HCl) 14 14 0.09 17 14   

PROPAFENONE (HCl) 2.2 16 0.04 2.2 2.1   

PROPRANOLOL (HCl) 3.1 12 0.13 4.3 3.4   

PROTRIPTYLINE (HCl) 22           

QUININE SULFATE 1.8 1.9 0.3 16 11   

SELEGILINE (HCl) 1.9 20 0.13 1.6 1.3   

SUMATRIPTAN 1.7 19 0.83 1.5 1.7   

TAMSULOSIN (HCl) 0.21 0.62 0.01 5.6 6.8   

VENLAFAXINE (HCl) 4.4 14 0.73 5.2 5   

VERAPAMIL (HCl) 3.7 18 0.09 3.4 2.8   

ZOLMITRIPTAN 1.8 6.7 0.75 4.6 3.6   

BICALUTAMIDE     0.07   144   

CAFFEINE 0.63 1.4 0.64 7.5 4.9   

CARBAMAZEPINE     0.24   17   

CELECOXIB 6.13 6.59 0.03   11   
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DAPSONE 0.83 0.48 0.25 29 22   

FELBAMATE 0.76 0.5 0.7   22   

FELODIPINE 4.4 11 <0.001 6.7 10   

FLUTAMIDE     0.05   6   

ISRADIPINE 1.5 26 0.04 1 3.3   

LEFLUNOMIDE 0.13   0.01   336   

LETROZOLE 1.9 0.57 0.41 59 45   

LORAZEPAM 1.3 1 0.09 22 17   

LOVASTATIN 0.87 7.2 0.04 1.3 1.4   

METHYLPREDNISOLONE 1.2 6.1 0.23 3.5 2.3   

METOLAZONE     0.67   14   

NEVIRAPINE 1.3 0.3 0.32 81 53   

NIMODIPINE 1.1 15 0.02 1.2 1.3   

NISOLDIPINE 5.5 15 <0.001 6.5 11   

NITRENDIPINE 6.1 25 0.02 4.1 8.2   

PENTOXIFYLLINE 1.8 39 0.3 0.8 1.2   

PROCYCLIDINE (HCl) 0.74 0.86   14 12   

ROLIPRAM             

SPIRONOLACTONE     0.1   0   

THIOTHIXENE (HCl)             

VALDECOXIB             

ZILEUTON 1.2   0.07   2.5   

BENDROFLUMETHIAZIDE     0.04   8.5   

DIDANOSINE 0.77 11 0.95 1.2 1.4   

INDAPAMIDE     0.21   14   

PHENYTOIN     0.1   22   

ZIDOVUDINE 1.8 25 0.8 1.2 1.3   
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ABACAVIR 0.84 13 0.5 1.1 1   

ACRIVASTINE         1.5   

ALOSETRON (HCl) 1.1 8.7 0.18 2.1 1.6   

AMINOGLUTETHIMIDE     0.77   12.5   

DIPYRIDAMOLE 1.75 3 0.01   0.7   

FENOFIBRATE 30 0.29 <0.001   20   

KETOCONAZOLE     0.01   2   

LAMOTRIGINE 1.1 0.58 0.45   25   

MEBENDAZOLE 1.2 15 0.09 1.3 1.1   

NICARDIPINE (HCl) 1 11 0.01 1.5 4.1   

PINACIDIL             

PRAZOSIN (HCl) 0.73 4.7 0.06 2.6 2   

RILUZOLE     0.04   12   

SAQUINAVIR 3.6 13 0.03 4.6 13   

TRAZODONE (HCl) 0.52 1.4   6.2 7.3   

TRIAMTERENE 13 63 0.42 3.4 4.3   

VOGLIBOSE             

ZIPRASIDONE (HCl) 1 5.1 <0.001 3.3 3.1   

TELMISARTAN 5.3 8.4 <0.001 11 20   

ZALCITABINE 0.54 5.6   1.6 1.2   

CETIRIZINE (HCl)             

CILOSTAZOL     0.02   12   

EFAVIRENZ     <0.001   47   

FINASTERIDE 0.89 4.7 0.16 3.2 3   

HYDROCHLOROTHIAZIDE     0.32   8   

LANSOPRAZOLE 0.28 4.4 0.02 1.1 1   

MERCAPTOPURINE 1 15 0.85 1.1 1   
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MIFEPRISTONE     0.02   18   

NADOLOL 1.9 2.9 0.14 11 9.2   

PIOGLITAZONE (HCl) 0.63   0.01   5   

ROXITHROMYCIN     0.04   12   

SIMVASTATIN     0.05   3   

 

Table 7-3 The Measured In Vitro Biomimetic Data of the Investigated Known 

Drug Molecules.  
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ACETYLSALICYLIC 
ACID 

66.4   -1.2 1.06 -1.31 1.06       

ALLOPURINOL 19.2 2 -1.64 -1.16 -2.51 -1.16 54.9 1.41   

AMILORIDE (HCl) 38.6 2.56 -0.53 -0.1 -0.18 -0.1 27.3 2.12   

CANDESARTAN 
CILEXETIL 

97.9 3.8 2.65 4.17 2.26 4.17 1.07 0.813   

DIAZOXIDE 77.6 2.05 1.02 1.4 -0.08 1.4 27.3 0.733   

DIFLUNISAL 98.8 2.49 1.21 3.29 1.04 3.29 2.57 0.138   

ETODOLAC 95.6 2.51 1.48 3.06 0.94 3.06 6.52 0.396   

FLURBIPROFEN 98.6 1.99 0.95 3.01 0.93 3.01 4.77 0.095   

FUROSEMIDE 89.7 2.14 0.2 1.59 0.4 1.59 12.4 0.367   

GLIBENCLAMIDE 98.0 2.7 2.07 3.17 1.21 3.17 2.99 0.251   

GLIMEPIRIDE 98.0 2.53 2.29 3.25 1.39 3.25 3.61 0.216   

GLIPIZIDE 95.8 1.83 0.99 2.07 0.52 2.07 12 0.187   

INDOMETACIN 98.6 2.34 1.43 3.3 1 3.33 3.33 0.133   

IRBESARTAN 96.1 2.17 1.21 1.48 0.62 1.48 8.18 0.249   

KETOPROFEN 98.4 2.18 0.7 2.43 0.46 2.43 4.3 0.127   
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MYCOPHENOLIC 
ACID 

95.5 1.83 0.81 2.25 -0.31 2.25 12.7 0.2   

NAPROXEN 99.9 1.96 0.63 2.59 0.28 2.59 1.55 0.026   

NIMESULIDE 98.0 2.32 2.5 2.83 0.92 2.83 4.4 0.174   

OXAPROZIN 98.7 2.08 1.24 2.83 1.05 2.83 3.91 0.093   

PIROXICAM 97.3 1.9 0.54 1.12 0.31 1.12 8.14 0.142   

PRAVASTATIN 
SODIUM 

40.3 1.83 0.64 1.34 0.38 1.34 54 0.97   

PROBENECID 95.4 1.81 1.02 2.72 0.84 2.72 13.2 0.199   

SULFINPYRAZONE 97.2 2.11 0.92 2.61 0.69 2.61 6.83 0.181   

TOLMETIN SODIUM 95.0 1.59 0.73 2.34 0.42 2.34 16.6 0.162   

ZAFIRLUKAST 99.1 3.67 2.34 4.12 1.96 4.12 
0.78

9 
0.44   

ACEBUTOLOL (HCl) 32.7 1.59 0.32 -0.14 1.2 1.2 72.1 0.806   

ALBUTEROL 
SULFATE 

22.0 1.55 -0.69 -0.99 -0.11 -0.11 81.6 0.843   

AMITRIPTYLINE 
(HCl) 

90.1 6.3 2.65 0.94 5.21 5.21 
0.30

8 
37.3   

AMOXAPINE 88.4 6.64 1.93 0.73 3.14 3.14 0.24 58.4   

ARIPIPRAZOLE 97.8 6.08 3.74 0.86 4.15 4.15 
0.12

9 
9.15   

ATOMOXETINE (HCl) 87.5 5.28 1.76 0.78 5.24 5.24 
0.92

2 
15   

BUPROPION (HCl) 73.9 3.21 2.33 0.19 3.34 3.34 9.7 2.66   

CABERGOLINE 83.6 6.41 1.7 -0.36 3.62 3.62 
0.36

6 
57.1   

CITALOPRAM (HBr) 72.4 4.85 1.59 0.71 4.32 4.32 2.12 15   

CLEMASTINE 
FUMARATE 

96.0 7.6 3.13 1.24 4.46 4.46 
0.04

8 
74.4   

CLOMIPRAMINE 
(HCl) 

94.4 7.6 2.43 1.47 5 5 0.06 95.1   

CLONIDINE (HCl) 37.7 1.96 0.36 -0.73 1.26 1.26 48.9 1.14   

DESLORATADINE 88.5 6.13 1.32 -0.25 4.03 4.03 0.39 34.3   

DIPHENHYDRAMINE 
(HCl) 

68.7 2.98 1.59 0.6 3.61 3.61 13.3 2.28   

DOMPERIDONE 92.2 3.96 1.37 0.37 2.13 2.13 2.43 2.76   
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DONEPEZIL (HCl) 86.1 3.68 1.98 0.5 3.71 3.71 4.45 2.99   

EBASTINE 98.7 6.98 5.02 1.98 6.54 6.54 
0.03

7 
15.5   

FEXOFENADINE 
(HCl) 

74.1 2.64 1.17 0.83 1.91 1.91 16.6 1.45   

FLUOXETINE (HCl) 91.2 6.19 2.02 0.92 3.8 3.8 
0.30

5 
29.4   

FLUVOXAMINE 
MALEATE 

72.3 5.15 1.98 0.86 3.34 3.34 1.59 20.5   

GRANISETRON (HCl) 69.0 4.34 0.79 -0.01 2.5 2.5 3.57 9.28   

GUANABENZ 
ACETATE 

88.1 4.85 1.02 0.14 1.43 1.43 1.36 9.27   

HALOPERIDOL 90.4 4.6 2.16 0.7 3.5 3.5 1.46 6.04   

IMIPRAMINE (HCl) 86.3 4.23 2.05 0.88 4.6 4.6 2.63 5.31   

LOXAPINE 
SUCCINATE 

92.7 5.28 3.27 0.56 3.79 3.79 
0.65

8 
10.4   

MAPROTILINE (HCl) 86.0 6.7 2.03 0.87 4.79 4.79 0.25 69.3   

MEFLOQUINE (HCl) 96.9 1.18 2.18 1.03 4.22 4.22 17.7 0.074   

METERGOLINE 96.0 6.41 2.55 0.95 3.31 3.31 
0.14

9 
21.5   

METOCLOPRAMIDE 
(HCl) 

58.9 3.54 0.53 -0.21 1.99 1.99 8.87 4.69   

MIANSERIN 91.9 5.47 3.24 0.6 3.85 3.85 
0.59

5 
13.7   

MIBEFRADIL (Di HCl) 93.6 6.3 2.93 0.73 3.99 3.99 
0.23

1 
27.3   

NEOSTIGMINE 
BROMIDE 

87.6 1.68 -0.42 -1.17 0.47 0.47 28.1 0.35   

NORTRIPTYLINE 
(HCl) 

86.2 5.66 1.86 0.84 4.74 4.74 
0.67

3 
23.5   

OLANZAPINE 86.2 5.06 1.83 -0.77 2.76 2.76 1.2 12.5   

PERGOLIDE 
MESYLATE 

85.2 5.71 2.47 0.54 3.81 3.81 
0.67

2 
26.1   

PIMOZIDE 98.6 5.61 3.43 1.1 4.31 4.31 
0.14

2 
3.9   

PRIMAQUINE 
PHOSPHATE 

79.2 4.6 1.14 -0.04 4.5 4.5 2.31 10   

PROCHLORPERAZIN
E MALEATE 

96.9 7.67 2.84 0.59 4.51 4.51 
0.03

7 
65.2   

PROMETHAZINE 
(HCl) 

92.5 7.2 1.99 0.76 4.18 4.18 
0.10

7 
77.8   

PROPAFENONE 
(HCl) 

88.0 4.38 2.23 0.89 3.47 3.47 2.1 5.61   

PROPRANOLOL 
(HCl) 

72.7 4.45 1.35 0.41 3.03 3.03 3.04 9.79   
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PROTRIPTYLINE 
(HCl) 

83.8 5.42 1.72 0.81 4.7 4.7 
0.92

9 
20.2   

QUININE SULFATE 78.1 5.19 1.04 -0.67 2.09 2.09 1.35 18.8   

SELEGILINE (HCl) 89.6 6.96 1.71 0.43 3.17 3.17 0.17 76.4   

SUMATRIPTAN 28.0 2.68 0 -0.68 1.01 1.01 26.5 2.61   

TAMSULOSIN (HCl) 68.9 2.84 1.37 0.41 2.01 2.01 14.8 1.94   

VENLAFAXINE (HCl) 35.0 3.19 1.27 0.25 3.71 3.71 15.5 4.2   

VERAPAMIL (HCl) 88.1 3.59 2.39 0.96 3.94 3.94 3.93 2.18   

ZOLMITRIPTAN 61.4 2.78 -0.07 -0.58 1.03 1.04 16.3 1.89   

BICALUTAMIDE 96.8 3.21 2.75 2.78 2.8 2.8 2.66 0.646   

CAFFEINE 26.8 1.22 -0.17 -0.16 -0.19 -0.16 108 0.578   

CARBAMAZEPINE 79.9 2.34 1.68 1.68 1.72 1.72 19.7 0.925   

CELECOXIB 97.1 3.9 3.38 3.4 3.5 3.5 1.24 1.16   

DAPSONE 80.6 2.07 0.93 0.74 0.98 0.98 25 0.684   

FELBAMATE 68.7 1.76 1.07 1.11 1.09 1.11 42.3 0.648   

FELODIPINE 95.9 4.45 3.74 3.71 3.71 3.74 
0.96

5 
2.8   

FLUTAMIDE 94.3 3.48 3.1 3.16 3.11 3.16 3.11 1.33   

ISRADIPINE 94.4 3.48 3.25 3.21 3.29 3.29 3.05 1.3   

LEFLUNOMIDE 92.6 3.37 3.01 3.11 2.95 3.1 4.07 1.42   

LETROZOLE 59.3 2.42 1.9 2.13 1.94 2.13 25.7 1.47   

LORAZEPAM 91.1 3.16 1.89 1.92 1.97 1.97 5.67 1.33   

LOVASTATIN 95.5 4.09 4.06 4.06 4.26 4.26 1.47 2.1   

METHYLPREDNISOL
ONE 

71.9 2.6 1.54 1.56 1.53 1.56 18.2 1.47   

METOLAZONE 83.8 2.49 1.65 1.67 1.55 1.67 15.2 0.958   

NEVIRAPINE 54.0 1.89 0.93 0.61 1 1 45 0.898   

NIMODIPINE 92.0 3.09 3.08 3.06 3.11 3.11 5.64 1.14   

NISOLDIPINE 91.0 3.16 3.68 3.56 3.71 3.71 5.67 1.33   

NITRENDIPINE 93.9 3.59 3.15 3.15 3.19 3.19 2.88 1.55   
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PENTOXIFYLLINE 25.9 1.47 0.53 0.55 0.47 0.55 85.5 0.75   

PROCYCLIDINE (HCl) 86.1 4.49 3.31 3.33 3.22 3.33 1.72 5.7   

ROLIPRAM 79.1 2.17 1.85 1.7 1.71 1.82 23.6 0.791   

SPIRONOLACTONE 86.7 3.02 2.82 2.91 2.97 2.97 8.24 1.49   

THIOTHIXENE (HCl) 97.8 3.93 3.18 3.2 3.22 3.22 1.02 1.01   

VALDECOXIB 94.0 2.91 2.27 2.31 2.28 2.32 5.54 0.761   

ZILEUTON 89.7 2.53 1.43 1.47 1.39 1.49 
10.4

6 
0.689   

BENDROFLUMETHIA
ZIDE 

64.4 2.95 2.31 2.31 1.69 2.31 12.7 2.06   

DIDANOSINE 27.5   -0.72 -0.78 -1.66 -0.65       

INDAPAMIDE 75.1 2.6 1.96 1.97 1.47 1.97 17.1 1.38   

PHENYTOIN 83.4 2.51 1.72 1.81 0.43 1.81 15.1 0.987   

ZIDOVUDINE 11.9 1.17 0.12 0.17 -0.39 0.17 127 0.631   

ABACAVIR 31.9 1.77 0.14 -0.62 0.24 0.24 60.9 0.986   

ACRIVASTINE 82.5 2.68 1.42 0.71 1.29 1.42 13.2 1.22   

ALOSETRON (HCl) 75.5 2.68 0.91 0.06 1.11 1.11 15.8 1.48   

AMINOGLUTETHIMID
E 

25.9 1.53 0.87 -0.72 0.95 0.95 81 0.808   

DIPYRIDAMOLE 88.2 4.03 2.18 0.76 2.21 2.21 2.93 3.9   

FENOFIBRATE 97.9 4.45 4.76 4.4 5.01 5.01 
0.59

2 
1.64   

KETOCONAZOLE 94.6 3.59 2.68 0.47 2.86 2.86 2.69 1.44   

LAMOTRIGINE 59.5 1.99 0.81 -0.11 0.81 0.81 38.5 0.931   

MEBENDAZOLE 92.9 3.07 1.76 1.07 1.68 1.76 5.25 1   

NICARDIPINE (HCl) 95.8 4.23 4 0.86 4.24 4.24 1.21 2.28   

PINACIDIL 58.3 2.44 1.39 0 1.29 1.39 25.4 1.51   

PRAZOSIN (HCl) 85.2 2.47 1.09 0.1 1.29 1.29 14.6 0.884   

RILUZOLE 94.2 3.29 2.29 1.24 2.3 2.3 3.71 1.09   

SAQUINAVIR 95.2 3.77 3.31 1.11 3.39 3.39 2.07 1.57   
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TRAZODONE (HCl) 92.0 3.04 2.3 0.4 2.49 2.49 5.81 1.07   

TRIAMTERENE 59.5 2.14 0.48 -0.43 0.47 0.48 33.4 1.09   

VOGLIBOSE 92.8 3.24 2.38 1.35 2.32 2.35 4.53 1.22   

ZIPRASIDONE (HCl) 97.2 4.64 2.89 0.61 3.02 3.02 
0.59

6 
2.47   

TELMISARTAN 97.1 3.16 1.5 0.6 1.12 1.53 2.55 0.557   

ZALCITABINE 23.6   -1.13 -1.72 -1.59 -1.13       

CETIRIZINE (HCl)                   

CILOSTAZOL 89.9 3.02 2.14 2.15 2.61 2.61 6.97 1.24   

EFAVIRENZ 97.3 4.34 3.36 3.47 3.91 3.91 
0.77

7 
1.76   

FINASTERIDE 88.4 3.34 2.42 2.48 2.68 2.68 5.55 1.89   

HYDROCHLOROTHI
AZIDE 

45.4 1.62 0.14 -0.01     63.3 0.74   

LANSOPRAZOLE 90.5 2.66 1.71 0.51 1.14 1.79 9.45 0.811   

MERCAPTOPURINE 41.2   -2.28 -2.38 -1.28 -1.28       

MIFEPRISTONE 95.5 4.2 3.72 0.92 3.5 3.84 1.33 2.34   

NADOLOL 39.7 1.76 -0.11 -0.03 0.92 0.92 58.5 0.923   

PIOGLITAZONE (HCl) 97.9 2.76 2.16 0.5 1.28 2.17 2.97 0.28   

ROXITHROMYCIN 46.6 5.37 1.95       1.88 39.5   

SIMVASTATIN 96.6 4.49 4.35 4.45 5.14 5.14 
0.82

3 
2.55   

 

The in vitro intrinsic clearance was obtained using human liver microsomes or 

cryopreserved liver hepatocytes in a similar way to the methodology described by 

Jacobson et al. [139]. The volume of distribution was estimated either using GSK in silico 

rat volume of distribution model as described in section 6.9.1 (which was based on 

internally sourced in vivo rat data and regression analysis using physical property data), 

or via the published human model by Hollósy et al. [65]. These models of the volume of 

distribution and the HPLC DEmax data were estimated from HPLC-based biomimetic 

measurements of human serum albumin (HSA) binding [136] and Immobilized Artificial 

Membrane binding (IAM) [135]. 
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The various methods used in this analysis for estimating the clinical dose are listed below 

in Table 7-4 which shows the different dose estimation methods used to calculate the 

clinical dose and the data required for each method. The minimum effective concentration 

(MEC) was calculated from the measured in vitro pIC50 (the logarithm of the molar 

concentration causing a 50% inhibition of the target response) of the compounds. Caution 

ought to be applied when predicting in vivo efficacy by using in vitro affinity or potency 

values since they are often assay specific, which are not likely to translate directly to the 

in vivo situation. In addition to this, competitive inhibitors often require higher levels of 

target occupancy (>90%) to give a pharmacological effect, which can be observed or 

considered biologically relevant in vivo. The minimum effective concentration (MEC) was 

calculated using Equation 48 from the literature pIC50 values for the marketed drugs. It 

should be noted that the compounds represent different target classes, which means the 

that the pIC50 data were obtained from various types of in vitro measurements, and that 

the Ki values were not available for a more systematic and comparable evaluation of the 

MEC values for the marketed drugs. 

 

Equation 48 

MEC ൌ 1000. mw. 10ିଵሺ୮୍େହሻ   

 

Where MEC is the minimal effect concentration, mw is the molecular weight of the compound and 

pIC50 is the concentration causing a 50% inhibition of the target response. 

 

The elimination rate (kel) was calculated from the human total clearance as described in 

Equation 49 

 

Equation 49 

kୣ୪ ൌ ሾHuman Total Clearanceሺwsmሻሿ


ଵ
. 10୭ ೞೞ   

 

Where the Human Total Clearance was calculated using the well-stirred model [17], as shown by 

Equation 50. 

 

Equation 50 

Human Total Clearance ሺwsmሻ ൌ
ሺେ౪ሺ୫୪ ୮ୣ୰ ୫୧୬ ୮ୣ୰ ሻଶସ.ହሻ.ଵ଼

ሺେ౪ሺ୫୪ ୮ୣ୰ ୫୧୬ ୮ୣ୰ ሻଶସ.ହሻାଵ଼
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The kel therefore can be calculated using either in silico intrinsic clearance estimates or 

measured in vitro intrinsic clearance data.  

 

When drug efficiency was used to express the dose, this method of dose prediction was 

called HPLC DEmax-DP (Drug Efficiency-based Dose Prediction). When albumin (HSA) 

and phospholipid binding (IAM) data were available, HPLC DEmax was calculated using 

Equation 51 based on the model described by Valko et al. [77]. Equation 52 describes 

the simplest method for dose prediction and was used when the potency (pIC50) data and 

the HPLC DEmax data were available. 

 

Equation 51 

HPLC DE୫ୟ୶ ൌ
ଵ

ଵሺబ.మర ౮౦ሺైౝౡ ౄఽሻశబ.భమ ౮౦ሺైౝౡ ఽሻషబ.రሻ   

 

In order to express the dose for an average 70 kg human, the dose calculated by  

Equation 39 was multiplied by 70,000 to give a prediction of clinical dose in mg for an 

average 70 kg human. 

 

Equation 52 

Dose ቀ
୫

୩
ቁ ൌ

୫୵.ଵషభሺ౦ిఱబሻ

ୌେ ୈ୫ୟ୶
     

 

The dose values calculated using HPLC DEmax-DP (Equation 52) were compared with 

those calculated by the DMPK-DP method (Equation 38 and Equation 39). 

 

Table 7-4 below shows the different dose estimation methods used to calculate the 

clinical dose and the data required for each method.  
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Table 7-4 The Summary of the Various Dose Estimation Methods that were 

used to Compare the Clinical Dose Estimations for the Known Drugs  

 

Methods / 

Input needed  

pIC50  Drug 

Efficiency  

Clearance  Volume  Bioavailability  

In silico DE-DP  Yes  Yes (in silico)  No  No  No  

HPLC DE-DP Yes  Yes 

(biomimetic 

data)  

No  No  No  

In silico DMPK-

DP  

Yes  No  Yes 

 (in silico)  

Yes  

(in silico)  

Yes 

(in silico)  

In vitro DMPK-DP  Yes  No   Yes (in vitro 

microsomal 

clearance)  

Yes (in vitro 

biomimetic 

data)  

Yes (in silico or 

estimates based 

on solubility and 

permeability)  

In vivo DMPK-DP  Yes  No  Yes (in vivo)  Yes (in vivo)  Yes (in vivo)  

 
In vivo DMPK-DP refers to rat in vivo PK parameters 

Firstly, the predicted dose for the Marketed Drugs was investigated using Equation 38  

(In vivo DMPK-DP), using published clearance and volume of distribution data where 

available.  A value of 3 h-1 for the absorption rate constant was used for all drugs. The 

assumption made for the absorption rate constant calculation was that the typical rate of 

absorption is generally fast for an oral drug, resulting in a Tmax of 1 to 2 hours. A dosing 

interval three times a day (TID) was used, although for several drugs, different dosing 

intervals are suggested to provide an efficacious daily dose.  

 

Figure 7.1-1 shows the trend between the predicted and actual daily dose. This single 

compartment method of dose prediction is the simplest approach when data for the 

volume of distribution, clearance, and pIC50 values are available [24][25]. At earliest 

stages of drug discovery, only the in silico values for volume of distribution and clearance 

are available. The in vitro clearance data and the HPLC DE max data become available as 

compounds of interest progress to these assays. 

 

The green line in Figure 7.1-1 is the line of unity.  The size of the circle denotes the 

magnitude of the pIC50 values, while the colour (shape) refers to the acid/base class of 
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the compounds. It can be seen by reference to the line of unity, that the overall predicted 

dose is in a similar range as the actual dose, although it is clear from the plot that the 

correlation is very poor. Compounds with lower in vitro potency (smaller pIC50 values 

indicated by smaller symbols) showed a tendency to predict a higher than actual dose.  

 

Figure 7.1-1 The Actual vs The Estimated Daily Dose for Marketed Drugs 

using the In Vivo DMPK-DP Method (Equation 38).  

 

 

 

Figure 7.1-1 shows a plot of the predicted clinical dose verses reported clinical dose for marketed 

compounds. Compounds are marked according to their Acid/Base character. The green line is the 

line of unity. The size of the data points highlights the difference in potency, the smaller markers 

refer to a lowerer pIC50 and the larger markers indicate higher pIC50. 

 

However, for the majority of drugs, the predicted doses were lower than the actual clinical 

dose. One potential reason for this is that drugs which have strong non-specific binding 

to lipids and proteins may require a higher clinical dose to achieve the appropriate free 

concentration available at the site of action (biophase), to deliver clinical efficacy. When 

the clinical dose was calculated using our in vitro method, the assumption was made that 

the free plasma concentration was the same as the free biophase concentration at steady 

state, based on the free drug hypothesis. To investigate this hypothesis, the measured 
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HPLC DEmax to refine the MEC value. HPLC DEmax assumes the principles of the free 

drug hypothesis and therefore gives a revised estimation of MEC which may be a more 

relevant clinical value (MEC(HPLC DEmax)) was incorporated as shown by Equation 53. 

Using MEC (HPLC DEmax) to estimate dose using Equation 53 the predicted and the 

actual doses are spread more evenly around the line of unity, as is shown in Figure 7.1-2. 

 

Equation 53 

MECሺHPLC DEmaxሻ ൌ
ୌେ ୈ ౣ౮

ଵ
. MEC       

 

Where MEC is the minimal effective concentration  

 

Figure 7.1-2 A Plot of Actual Daily Dose verses Dose Estimated Using MEC 

(HPLC DEmax) and In Vivo Data in Equation 38 for the Marketed Drugs. 

 

 
 

Figures 7.1-2 shows a plot of the predicted clinical dose (MEC adjusted for DEmax) verses actual 

clinical dose 
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This observation helps to support the incorporation of HPLC DEmax to estimate the true 

biophase concentration in calculating the minimum effective concentration (MEC) from 

the pIC50 values.  

 

Another source of error in the dose prediction method is the estimation of MEC based on 

pIC50. In their dose prediction analysis, McGinnity et al. [24] used the observed plasma 

concentration in patients after the administered efficacious dose as the MEC, and not the 

measured in vitro pIC50 values. In this way, they effectively validated the single 

compartmental pharmacokinetic model, which is the basis of Equation 38. As previously 

indicated, the idea that an IC50 generated from an in vitro assay will translate directly to 

in vivo efficacy is probably unlikely, but it is a useful starting point and a good way to 

compare compounds.  

 

In order to check this hypothesis, the pIC50 values were back calculated from the MEC 

values using Equation 38 and the actual clinical dose of the marketed drugs. These back 

calculated pIC50 values showed a good inverse correlation with the actual clinical dose 

as shown in in Figure 7.1-3. 
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Figure 7.1-3 The Plot of the Actual Clinical Dose and the Calculated pIC50 

(Clinical MEC) Values of Marketed Drugs. 

 

 
 

Figure 7.1-3 shows a plot of the actual clinical dose verses the calculated IC50 based on clinical 

plasma concentrations 

 

Unfortunately, the trend between the actual reported in vitro pIC50, and the back 

calculated pIC50 is quite poor and therefore suggests that the prediction of the efficacious 

in vivo concentration from in vitro potency assays is very difficult. Unfortunately, for drug 

discovery teams this is typically the only target related affinity value that is available in 

early drug discovery programs. At a later stage in the drug discovery process, it is likely 

that in vivo data could be included for the estimation of the MEC, which might be 

considered a more reliable or relevant value for dose prediction. Therefore, the use of a 

more translatable biophysical value of affinity is encouraged such as Ki, rather than pIC50 

data. Ki should be considered a more pharmacologically relevant value for MEC that is 

closer to the clinical target endpoint and assay independent. It is also important to 

understand the pharmacology behind the efficacy, as the drug target interaction may 

initiate several biological responses or pathways that may increase or decrease the 

clinical efficacy. For that reason, the clinical dose may differ significantly from the pre-
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clinical or even earlier dose predictions. McGinnity et al [24]  showed that typically the 

MEC was 3x higher than the IC50. This observation is also more in line with the idea that 

most biological systems have a large amount of receptor reserve, and it is therefore likely 

that for a competitive inhibitor, it would be necessary to inhibit the target protein by at 

least 90% to give a clinically relevant effect. As the Ki data were not available for the 

marketed drugs, the comparison of pIC50 data and pKi data could only be investigated for 

GSK project compounds where the data was generated and stored in a consistent format. 

 

7.2 Dose Estimation Analysis used for the Pi3Kγ Program  

 

Applying dose prediction methods such as drug efficiency analysis to compounds that 

cover multiple targets assessed in different projects using various assessment methods 

inevitably introduces significant variability into the data. Using an in-house project 

focussed on a single target offered the opportunity to evaluate compounds assessed in 

a more consistent manner.  

 

7.2.1 Comparison of Various Dose Estimation Methods used in the Pi3Kγ 

Program for Intravenous Administration in Acute Lung Injury 

 

As has been described in section 5.2, Pi3Kγ kinase is involved in several immunological 

processes related to the pathology of ALI & ARDS.  

 

The Pi3Kγ program involved the development of an intravenous drug for the treatment of 

an acute disease. Therefore, the bioavailability was fixed at 100%, so F=1 was used in 

Equation 38 and the absorption rate (ka) in Equation 38 could also be considered as 

instantaneous, thus simplifying the dose estimation equation to Equation 39.  

 

Equation 39 

Dose ቆ
ౣౝ
ౡౝ

ୢୟ୷
ቇ ൌ

మర
ಜ

.େ.ೞೞሺ୶୮ሺ୩ౢ.தሻିଵሻ


  

 

At the earliest stages of a drug discovery program, typically the only data available for 

making an early dose prediction are pIC50 and the HPLC based DEmax data. In vitro 

intrinsic clearance and an established, in-house in silico Vdss data (see Section 4.1.2) can 
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also be used at an early stage in the In vitro DMPK-DP method. Figure 7.2-1 shows the 

plot of the predicted dose using the two methods.  

 

Figure 7.2-1 The Plot of the Predicted Dose for the Pi3Kγ Compounds using 

the DE-DP Method Based on In Vitro Potency and the HPLC DEmax and the 

In Vitro DMPK-DP Method using In Vitro Clearance and Volume of 

Distribution Data (Equation 37). 

 
 

Figure 7.2-1 shows a plot of the in vitro DMPK-DP versus the HPLC DEmax-DP (DE-DP). The 

black line is the regression and the green line is the line of unity. 

 

It can be seen that the rank order of the predicted dose is very similar. When the 

clearance and volume of distribution is included in the in vitro DMPK-DP method, the 

estimated dose values are generally higher. A few compounds with extremely high 

intrinsic clearance showed the largest discrepancies between the two types of dose 

prediction. It can also be seen that the DE-DP method provides the best-case scenario 

for the prediction of dose, as they were lower than the predicted values by the DMPK-DP 

method. Compounds can be discarded confidently from further studies when the 

estimated dose by the best-case scenario HPLC DE-DP method is too high or beyond 

the scope a program team has set for an optimised drug molecule. 
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Figure 7.2-2 represents the full compound set (1130 compounds) analysed for the Pi3Kγ 

program in this dose prediction analysis. All subsequent plots are based on the same 

compound set. However, fewer data points will be seen for plots where measured in vitro 

data has been included. 

 

Figure 7.2-2 The Rank Order of Dose Prediction Methods Shows the Original 

Hit GSK2829189 and the Final Lead Compound GSK3203207 using the  

In silico DMPK-DP and HPLC DE-DP Methods. 

 

 
Figure 7.2-2 shows the in silico DMPK-DP verses the HPLC DE-DP (DEmax) 

 

It has been demonstrated that the in silico DMPK-DP and in vitro DMPK-DP methods 

predict the rank order of the initial hit GSK2829189 through to the final lead compound 

GSK3203207 (Figure 7.2-1 and Figure 7.2-2), but the simplest method using the HPLC 

DE-DP approach where a dose prediction can be generated very early in the screening 

cascade also predicted the rank order equally well, suggesting that any to these tools can 

be used for prioritizing compounds. Although the drug efficiency-based dose prediction 

shows the best-case scenario with the caveat that bioavailability is at maximum and no 

active transport or permeability barrier exists, it demonstrates that DEmax can be used as 
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a method of dose prediction to help prioritize large numbers of compounds and potentially 

identify lead-like compounds with minimal data. Table 7-5 and Table 7-6 show the 

improvement in physicochemical properties and pharmacology of the quinoline series 

from the initial hit GSK2829189 to the final lead compound GSK3203207; this overall 

improvement is captured by DEmax.  

 

Table 7-5 Summary of Physicochemical Properties for Pi3Kγ Hit Compound 

(GSK2829189) to Lead (GSK3203207) 

 

 

 

Table 7-5 show the relative improvement in physicochemical properties from the original hit 

GSK2829189 to the eventual lead compound GSK3203207 

 

Table 7-6 Summary of In Vitro and In Vivo Pharmacology for Pi3Kγ Hit 

Compound (GSK2829189) to Lead (GSK3203207) 

 

  

 

Table 7-6 show the relative improvement in In vitro and In vivo pharmacology from the original 

hit GSK2829189 to the eventual lead compound GSK3203207 

 

 

 

 

GSK2829189 8.2 5.3 ≤0.5, ≤0.5, ≤0.5 ≤0.86, 3.048, 1.16 3 750 13 542 99.6, 97.6, 98.9

GSK3203207 8.7 6.4 ≤0.5, ≤0.5, ≤0.5 ≤0.86, ≤0.86, ≤0.86 24 244 7.4 55 90.2, 86.5, 87.7

r-rat, mp-minipig & h-human

WBB r, mp, h 
(%)

MP CLb 

(mL/min/kg)

MP CLb,u 

(mL/min/kg)
Compound ID

CLi mic r, mp, 
h (mL/min/g)

CLi hep r, mp, h 
(mL/min/g)

Rat CLb 

(mL/min/kg)

Rat CLb,u 

(mL/min/kg)

pIC50 

(Enz)

WB 

pIC50
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7.2.2 Sensitivity analysis, the effect of the potency measured in enzyme 

assay or in whole blood 

 

In order to assess our dose estimation approaches, a dose sensitivity analysis on various 

parameters was carried out, such as potency (enzyme and whole blood), volume of 

distribution (in vitro estimates and in vivo animal volumes) and clearance (in silico and in 

vitro), using compounds from an early discovery lead optimisation program. The aim of 

this exercise was to demonstrate the impact of the parameters involved in estimating 

clinical dose and their effect on the compound selection process. 

 

The impact of the in vitro potency value on the estimated dose was clearly demonstrated 

in the case of the marketed drugs. The impact of using whole blood potency instead of 

the in vitro enzyme potency on our predicted dose was also evaluated.  Figure 7.2-3 

shows the plot of the estimated dose obtained by the enzyme and whole blood (WB) IC50 

values. All other parameters in the dose estimation equation remained the same. The 

compounds shown in Figure 7.2-3 are the same as those plotted in Figure 7.2-2, 

however, there is less data as WB potency was not measured for all compounds.  
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Figure 7.2-3 The Plot of the Estimated Dose Obtained When Using the 

Enzyme and the Whole Blood pIC50 Values. 

 
 

Figure 7.2-3 Shows a plot of the in silico DMPK-DP WB (whole blood potency) versus the  

in silico DMPK-DP enzyme potency. The line of unity is green and the regression line is black. 

 

Although the predicted doses show a reasonably good correlation, the differences can 

be large and the scatter is wide. The whole blood potency using the predicted dose was 

generally higher than the predicted value using the enzyme potency. This is what would 

be expected, as cellular derived IC50 is often at least half a log unit lower than an enzyme 

derived IC50. The question arises as to which potency should be relied upon when 

calculating dose predictions for large numbers of compounds where the aim is to identify 

the most interesting compounds for progression. The whole blood potency drop off can 

be due to multiple reasons, such as differences in assay conditions, which would directly 

influence the IC50, low permeability, or the high non-specific binding that would reduce the 

actual free concentration. It is therefore advisable to investigate the reasons for the 

potency drop off on a compound by compound basis, and to determine if the drop off is 

consistent across the chemical space being analysed. Therefore, when performing a 

dose prediction analysis on a large number of compounds, either value can be used when 
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they have been established and program teams are simply ranking compounds against 

one another. It is however, important to be consistent with the value being used for each 

analysis. 

 

7.2.3 Sensitivity Analysis of the Effect of the Errors on Early Estimation of 

the Volume of distribution and Intrinsic Clearance of the Compounds 

 

The volume of distribution is related to the elimination rate of the compounds in the dose 

estimation equation, but it may also influence the required efficacious dose depending on 

where the target is in the plasma or in a tissue compartment [28].  

Figure 7.2-4 shows the impact of Vdss on the estimation of dose. To assess sensitivity of 

this parameter on the predicted dose has been illustrated by taking the in silico Vdss and 

adding 2 L/kg to it. This has then been plotted against the original in silico DMPK-DP 

dose prediction. 
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Figure 7.2-4 The Difference in the Estimated Dose Caused by a Small Fixed 

Increase in Vdss Using In Silico Estimated Vdss in Eqaution 38, for all Pi3Kγ Project 

Compounds. 

 

 
 

Figure 7.2-4 shows a sensitivity analysis of Vdss for the in silico DMPK-DP (Vdss + 2) versus  

in silico DMPK-DP. The line of unity is green and the regression line is black. 

 

The discrepancies between the predicted doses can be large, but it is clear from the plot 

that the larger the estimated dose the larger these discrepancies can be. It is reassuring 

that the variability on the dose estimation seems to be smaller when the estimated dose 

is low. It can also be seen that the acid/base character influenced the sensitivity of the 

volume of distribution change on the dose estimation. When the volume of distribution is 

larger, the estimated dose is smaller as shown by all the points being below the line of 

unity. The correlation between the estimated dose values is around 0.6, but it can also 

be seen that the change in the volume of distribution did not appear to affect the estimated 

dose for certain compounds (they are positioned on the line of unity in  

Figure 7.2-4). There was a trend towards zwitterionic compounds here, although this was 

not exclusive, and the number of compounds was quite small.  
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7.2.4 Sensitivity Analysis of the Effect of Errors in the Estimation of 

Intrinsic Clearance 

 

The impact of clearance on the estimated dose was investigated by increasing the 

clearance by a small fixed value of 0.5 mL/min/kg for each compound. A small increase 

was to see how sensitive the dose estimation method was to this parameter across the 

wide dose range of this analysis, as opposed to an exaggerated increase in clearance 

which would result in large changes across the analysis. The plot of the originally 

estimated dose and the estimated dose with the increased clearance can be seen in 

Figure 7.2-5. 
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Figure 7.2-5 Plot of the Predicted Dose for the Pi3Kγ Compounds Using In 

Silico Clearance and In Vitro Vdss Data to Predict Dose Using a Small Fixed 

Increased Clearance (0.5 mL/min/kg) for Each Compound Using  

Equation 38 

 

 
 

Figure 7.2-5 shows a sensitivity analysis of clearance for the in silico DMPK-DP (CL + 0.5) 

versus in silico DMPK-DP. The line of unity is green and the regression line is black. 

 

It can be seen that the predicted dose increased when the clearance was increased. The 

trend between the two methods of dose estimation is good, and the difference is smaller 

at the lower dose range estimates. The correlation between the estimated dose by the 

two method is very good (r2>0.9), indicating that the effect of clearance was relatively 

small and less impactful than the Vdss at higher doses. 

 

In order to reveal the effect of the DRUGeff in the dose estimation, the modified MEC was 

incorporated into the HPLC DEmax value as described by Equation 53. The theory is that 

only a fraction of the available drug will be free at the site of action, which is proportional 

to the HPLC DEmax. As expected, the predicted dose is slightly higher when the drug 
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efficiency is taken into account. However, the rank order of the compounds is very similar 

and the correlation between the two types of estimates is high (r2=0.87), as shown in 

Figure 7.2-6.  

 

Figure 7.2-6 The Plot of the Estimated Dose Using Equation 38 and the 

Modified Equation 34 by the MEC(HPLC DEmax) for the Pi3Kγ Project 

Compounds. 

 
 

 

 

Figure 7.2-7 shows the in silico DMPK-DP with HPLC DEmax adjusted MEC versus  

in silico DMPK-DP. The line of unity is green and the regression line is black. 

 

It can be seen in Figure 7.2-6 that the difference between the estimated dose values is 

much greater at the higher estimated dose range. However, at the lower dose range the 

difference between a 50 mg and a 100 mg clinical dose can be considered significant in 

respect of the potential side effects and also in the expense of drug manufacture.  

Therefore, it is suggested to use a modified version of Equation 38, where the MEC 

values are estimated from the in vitro potency and the in vitro HPLC DEmax as described 

by Equation 54.  
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Equation 38 previously shown 

Dose ቌ

mg
kg

day
ቍ ൌ

24
τ . MEC. 𝑉ௗ௦௦ሺkୟ െ kୣ୪ሻ

F. kୟሺ
1

1 െ expሺെkୣ୪τሻ െ
1

1 െ expሺെkୟτሻሻ
 

 

 

Equation 54 

Dose ቌ

mg
kg

day
ቍ ൌ

24
τ . MECሺHPLC DE୫ୟ୶ሻ. Vୢୱୱሺkୟ െ kୣ୪ሻ

F. kୟሺ 1
1 െ expሺെkୣ୪τሻ െ 1

1 െ expሺെkୟτሻሻ
 

 

The investigation of dose calculation procedures for program compounds designed for IV 

administration was simplified by assuming an instant absorption rate. However, the 

maximum dose that a patient can receive by this route of administration depends greatly 

on the solubility of the compound. When a bolus injection is considered, the solubility of 

the compound should be high enough to enable the dose to dissolve in a maximum of 10 

mL of aqueous solvent compatible for IV injections. This means that for a 50 mg dose, 

the solubility should be above 10 mg/mL, which can be challenging for small drug 

molecules. When an IV infusion dose is considered, then slightly lower solubility is 

acceptable as dose concentrations can be reduced. 

 

An additional consideration for ALI patients is the dose volume as oedema is a major 

symptom of the disease, which means that there are strict limits on the amount of fluids 

that can be safely administered to patients. 

 

7.3 Aldehyde Oxidase: A Special Case 

 

During the optimisation phase for the quinoline series from the initial hit GSK2829189 to 

the final lead compound GSK3203207, an issue of drug metabolism was revealed when 

evaluating unbound blood clearance, which would otherwise have not been evident 

based on the total clearance. This arose because of the metabolising enzyme aldehyde 

oxidase (AO), which is becoming increasingly important in drug discovery for molecules 

with certain N-containing aromatic heterocycles. 
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Aldehyde Oxidases (AO) are a small group of highly conserved molybdoflavoproteins, 

along with xanthine oxidoreductase (XOR) [140] whose physiological role is largely 

unknown from an evolutionary perspective. In the drug discovery process they are 

emerging as extremely important enzymes, which need to be considered because of 

profound interspecies variation in their expression and activity toward various substrates 

of both medicinal and toxicological interest [140]. Historically, AO was generally 

considered a human specific drug metabolizing enzyme and responsible for a number of 

drug candidates being negatively impacted in drug development, due to a lack of 

understanding of AO metabolism and difficulty in predicting high clearance in human 

[141]. However, there is mounting evidence to show that there are forms of AO expressed 

in the majority of preclinical species used in drug discovery e.g.  mouse, rat, minipig and 

non-human primate that can be used to help assess the risk of this route of metabolism 

in human [126,140–143].  

 

Figure 7.3-1 shows there are several genes coding for distinct AO isoforms in different 

pre-clinical species, although AOX1 is the only active AO isoform expressed in human. 

Aox1, 3, 4 & 311 are expressed in rodent, and primates generally express an active form 

of AO similar to human AOX1, as a result primate has often been the pre-clinic species 

to identify an AO liability risk for human [144]. However, there can be a risk that AO 

metabolism in pre-clinical species will not translate to human. One such example was 

carbazeran, which showed good pre-clinical exposure and efficacy, but had poor oral 

bioavailability due to high clearance in human, which had not been predicted. The high 

human clearance was due to AO metabolism [145].  
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Figure 7.3-1  Cross Species Variability in Aldehyde Oxidase Expression 

[140] 

 

 
 

Figure 7.3-1 Different genes responsible for AO expression in human, rhesus monkey, mouse, rat 

and dog 

 

The physicochemical features of drug molecules are an important aspect of AO 

metabolism and a good understanding of these can help identify compounds with the 

potential for AO metabolism by the use of an in vitro assay [142].  

 

Figure 7.3-2 Some Common Substrates for AO Metabolism 
 

 
 

Figure 7.3-2 Shows the potential sites of oxidation due to AO metabolism.  
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Figure 7.3-3 Understanding Risks Factors for Aldehyde Oxidase Metabolism 

 

 
 

Figure 7.3-3 Shows the main points which need to be considered when assessing AO 

metabolism 

 

It is important think carefully about template liabilities with respect to functional 

metabolism during lead optimisation. The drive to improve physicochemical properties of 

NCE’s in recent years has resulted in a trend to replace lipophilic groups such as phenyl 

rings with aromatic N-heterocycles, which often help to reduce lipophilicity (LogP) and 

reduce aromatic CYP 450 oxidation. However, these motifs are now known to increases 

the potential for non-CYP P450 metabolism by enzymes such as AO. It is therefore 

important to consider profiling early series exemplars of these types of molecule using 

appropriate in vitro metabolising systems, such as liver cytosol, which explicitly express 

AO. Along with other metabolic transformations, it is necessary to identify, understand 

and address AO metabolism early in lead optimisation to avoid suboptimal clinical PK 

later in development, such as the carbazeran example described earlier. If AO 

metabolism cannot be blocked by modification of the chemical template, then an 

alternative template should be identified, because unlike generally well understood  

Phase I and Phase II routes of metabolism, which can be scaled from pre-clinical species 

to human clearance with reasonable confidence, the AO route of metabolism and scaling 

of human clearance is not well understood and this route typically results in high rates of 

clearance in human [145]. 
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7.3.1 The Importance of Considering Unbound Clearance 

 

The initial chemical template starting point for the Pi3Kγ program was from a quinoline 

series, and the first compound of significant interest was GSK2829189 (Figure 7.3-4). 

 

Figure 7.3-4 GSK2829189 Structure 

 

 

 

It can be seen from the compound structure that the quinoline core has a sulfonamide 

substituent at the 3-position, and a 2-amino pyrimidine at the 6-position of the quinoline.  

This compound met the program team’s physicochemical criterial of MW <400 and a 

cLogP<3 along with good target potency (pIC50) against PI3Kγ and PI3Kδ of 8.2 and 7.2 

respectively and low intrinsic clearance across species rat, minipig and human  

<0.5 mL/min/g. In a rat IV profile generated to assess the in vivo PK, GSK2829189 had 

low in vivo blood clearance (CLb) of 3 mL/min/kg (see Figure 7.3-5) and a volume of 

distribution of 0.4 L/kg which resulted in a half-life of ca. 3 h.  
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Figure 7.3-5 GSK2829189 Quinolone Series Lead Compound In vitro and In 

vivo Rat PK Profile 

 

 
 

Figure 7.3-5 shows an in vitro and in vivo summary of the main physicochemical and DMPK data 

for GSK2829189. Intravenous dose of 1mg/kg. 

 

This was very promising pre-clinical data for an initial hit compound despite two potential 

sites of AO metabolism at the alpha carbons of the quinoline, and 2-amino pyrimidine. 

However, based on the in vitro CLi and in vivo CLb, it did not appear that there were any 

significant risks of any major routes of metabolism for this compound, and as a result 

there was very little interest in pursuing further metabolism studies despite the risk of AO 

metabolism in human with this type of template. 
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Figure 7.3-6 In Vitro and In Vivo Profiles of GSK2829189 and its Non-Phenyl 

Analogue GSK3180869 

 

 
 

Figure 7.3-6 shows an in vitro and in vivo summary of the main physicochemical and DMPK data 

for GSK2829189 and GSK3180869. Intravenous dose of 1mg/kg. 

 

It can be seen from Figure 7.3-6 that there is a large difference in the total blood clearance 

(CLb) between the phenyl analogue GSK2829189 and its non-phenyl analogue 

GSK3180869 3mL/min/kg and >85mL/min/kg (liver blood flow), respectively. This data 

would suggest there was difference in the route of metabolism or a difference in 

metabolising enzyme specificity, resulting in very different rates of CLb. However, if we 

convert CLb to unbound blood clearance (CLb,u), it can be seen there is very little 

difference in the CLb,u between these two analogues see Figure 7.3-6, suggesting a 

similar rate and possibly route of metabolism. The reason these two analogues now look 

very similar with respect to the rate of clearance (CLb,u) is that only the free drug is 

available to be metabolised/cleared. 
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Figure 7.3-7 Results from Rat and Human In Vitro Cytosol AO Assay 

 

  

 

Figure 7.3-7 shows results of an in vitro liver cytosolic AO assay for a set of Pi3Kγ compounds. 

SB-277011 is a known human AO substrate and represents a positive control for the assay. 

 

The in vitro cytosol AO assay data illustrated in Figure 7.3-7 shows that both 

GSK2829189 and its non-phenyl analogue GSK3180869 are both substrates for AO 

metabolism, along with another analogue GSK1346856 which does not have the 

sulfonamide group attached to the quinolone.  Notably, the naphthyl analogue 

GSK3184135 is also an AO substrate, which suggested that AO metabolism was not at 

the quinolone ring but involves the 2-amino pyrimidine (2-AP). Metabolite identification 

analysis was performed to confirm the site of AO metabolism for each of the compounds 

listed in Figure 7.3-7 and Figure 7.3-8 shows the metabolite for each compound. It can 

be seen that AO metabolism resulted in oxidation at either the quinoline and 2-AP, but 

the site of metabolism was dependant on the substitution of the quinoline at the  

3-position. From these analyses it also appeared that AO metabolism in human liver 

cytosol tended to favour the 2-AP, whereas in rat liver cytosol the quinoline was typically 

favoured if the quinoline was not sterically hindered by the presence of the sulfonamide 

group. SB-277011 is a known human AO substrate and used as a positive control: 

interestingly it is not an AO substrate in rat [144], highlighting the potential problem of 

using preclinical species to predict human metabolism. 
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Figure 7.3-8 Metabolite Identification of Pi3Kγ Lead Series Compounds 

 

 
 

Figure 7.3-8 shows routes of metabolism analysis from the in vitro cytosolic AO assay for a set of 

Pi3Kγ compounds in Figure 7.3-7 

 

7.3.1.1 The effect of a “Magic Methyl” group on AO metabolism 

 

Based on the positive AO data and MET ID information (Figure 7.3-8), a methyl was 

introduced onto the quinoline core at the 7-position which reduced metabolic 

susceptibility (Figure 7.3-9). The reason the 7-position was initially targeted by the 

medicinal chemistry team was to sterically hinder access to the 2-amino pyrimidine by 

AO and reduce susceptibility to nucleophilic attack of the electron deficient carbon atom 

by AO. From a synthetic perspective, the 7-position was readily accessible, and this 

position was less likely to negatively impact potency. In practice the 7-methyl substitution 

blocked the AO metabolism and increased potency by an order of magnitude. 
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Figure 7.3-9 The Effect of a “Magic Methyl” Group on AO Metabolism 

 

 

 

Figure 7.3-9 shows results of an in vitro liver cytosolic AO assay for Pi3Kγ compounds with and 

without a methyl at the 7 positions of the quinoline ring 

 

Once the effect of the 7-methyl on AO metabolism was shown in vitro, a translation to 

reduce in vivo clearance was assessed. GSK2829189 and GSK3180869 along with their 

7-methyl analogues GSK3203206 and GSK3203207 were profiled in both rat and minipig 

in vivo PK studies (Figure 7.3-10 and Figure 7.3-11). There is an increase in potency of 

almost a log unit for the methyl analogues of GSK2829189 and GSK3180869. It was 

interesting to note that the microsomal stability of GSK3203206 was reduced, indicating 

there was an increase in P450 or other phase I metabolism by introducing this methyl 

group, which was likely to the increase in lipophilicity from a relatively high baseline for 

GSK2829189 of cLogP from 2.5 to 2.7. The microsomal stability was not affected by the 

methyl group on GSK3203207 where the lipophilicity was only increased from 0.89 to 

1.1. The metabolic stability was confirmed for each compound using an in vitro 

hepatocyte assay which have both Phase I and II enzymes (Figure 7.3-11). 

 

It can also be seen that the in vivo CLb for GSK3203206 increased relative to 

GSK2829189, which was consistent with the increase in in vitro clearance, whereas the 

CLb for GS3203207 was substantially reduced relative to its non-methyl analogue 

GSK3180869 (>LBF CLb). Importantly, the effect on CLbu can be seen with GSK3203207. 
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This reduction in unbound clearance shows that the lead optimisation to address the AO 

metabolic liability of the quinoline template was successfully achieved.  

 

Figure 7.3-10 Rat PK With and Without a “Magic Methyl” 

 

 
 

Figure 7.3-10 shows the in vivo rat PK profiles for the methyl and non-methyl analogues. 

Intravenous dose of 1mg/kg 

 

As previously discussed the dog is not a good preclinical PK model where AO metabolism 

could occur as it does not express an active form of the enzyme. This was discussed 

earlier in this section and highlighted by the carbazeran example. To increase confidence 

in the human PK predictions as second preclinical species was selected. The minipig has 

become the preferred non-rodent species in recent years, however, there is generally 

limited published PK and metabolism information available for this species. The Pi3Kγ 

program presented an opportunity to investigate AO metabolism and PK in the minipig. 

This additional workstream resulted in the Pi3K AO substrates and methyl analogues 

being profiled using in vitro minipig microsomes, liver cytosol and hepatocytes, in vivo PK 

profiles were also generated.  
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Figure 7.3-11Figure 7.3-11 shows the in vitro and in vivo data generated using the 

minipig.  It can be seen there were some species differences, with minipig in vitro and in 

vivo clearance for GSK3203206 being lower than its non-methyl analogue. The minipig 

also confirmed what had been seen with the rat that GSK3203207 had lower CLbu 

indicating that the AO liability had been addressed and increasing confidence that the 

human in vitro AO data should translate to human PK. This work which was also part of 

a larger analysis has also helped establish the minipig as an alternative non-nodent PK 

species to the dog which does express AO and is a useful second species to predict 

human PK.  

 

Figure 7.3-11 Minipig an Alternative Pre-Clinical Species to Help Predict 

Human AO Metabolism  

 

 
 

Figure 7.3-11 shows the in vivo rat PK profiles for the “magic” methyl and non-methyl analogues 

of the quinoline series. Intravenous dose of 0.5mg/kg 
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7.4 Investigation of the Estimated Dose using Various Methods for the 

Pi3Kδ Program for Oral Administration in Asthma 

 

As has been described in section 5.3, Pi3Kδ kinase is involved in several processes 

related to the pathology of asthma. The Pi3Kδ program involved the development of an 

oral drug for the treatment of asthma and COPD, and therefore introduced additional 

parameters that required consideration when applying dose prediction.  

 

Following on from previous work, I extended my evaluation of the various dose prediction 

methods that are available for an early oral drug discovery program to an oral therapy, in 

order to address the following questions:  

 

1. What is the impact of the parameters of potency, volume of distribution and clearance 

on the predicted dose when we only have in silico or in vitro estimates for these 

parameters?  

2. How do these parameters affect our decision-making process on compound ranking 

and progression? 

3. How does the estimated dose change when our preliminary input data is 

subsequently refined? 

 

All of compounds that are registered under the PI3Kδ program code 17951 were retrieved 

(10th October 2017). The measured physicochemical and biomimetic data were retrieved 

using the Physchem Summary Table in Helium for excel and the compounds removed 

that had no AGP, HSA, IAM and HPLC DEmax. The in vitro potency data named as 

Pi3KD_TRFRET_SM as well as the cellular potency data (Pi3KDELTA_WB_CYTOSTIM) 

were retrieved.  Altogether a complete dataset for 1509 compounds was available for 

dose estimation analysis.  From the parent smiles / structures, so called “simple 

physchem properties” were calculated (molecular weight, polar surface area, number of 

proton donor and acceptor groups and the number of rotatable bonds). The in silico rat 

volume of distribution, intrinsic clearance, and DEmax data have been calculated using the 

derived property server (DPS) associated with the GSK repository database. The 

measured intrinsic clearance and rat volume of distribution data that were available for a 

much smaller number of compounds were then retrieved. The data was then merged 

using Tibco™ Spotfire® program.  
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The following parameters were also calculated for this analysis as they are required 

inputs for the complex McGinnity dose estimation method (Equation 38) for oral drugs. 

 

Equation 38 

Dose ቌ

mg
kg

day
ቍ ൌ

24
τ . MEC. 𝑉ௗ௦௦. ሺkୟ െ kୣ୪ሻ

F. kୟሺ
1

1 െ expሺെkୣ୪τሻ െ
1

1 െ expሺെkୟτሻሻ
 

 

7.4.1 Absorption Rate 

 

The CLND solubility was multiplied with the measured AMP permeability at pH 7.4. The 

logarithmic values of the product term were used to classify the compounds into low, 

medium and high absorption compounds as described in the introduction (section 4.2.3). 

Based on the estimated absorption categories different absorption rates (kab or ka) were 

used in the complex dose estimation method (Equation 38) [24]. 

 

7.4.2 Elimination Rate 

 

The elimination rate (kel) was calculated using Equation 55. 

  

Equation 55 

kୣ୪ ൌ
CL

Vௗ௦௦
 

 

The clearance was calculated using the well-stirred model according to  

Equation 50 

 

Equation 50 

Human Total Clearance ሺwsmሻ ൌ
ሺCL୧୬୲ሺmLper min per gሻ24.5ሻ. 18

ሺCL୧୬୲ሺmL per min per gሻ24.5ሻ  18
 

 

The CLint value was estimated using the in silico model described in section 6.9.2, or 

measure using an in vitro hepatocyte assay as described in section 6.3.  
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7.4.3 Estimating Clinical Dose from DEmax (HLPC DE-DP) 

 

The dose estimation based on the drug efficiency (DEmax) concept (HPLC DE-DP) was 

carried out using Equation 37. 

 

Equation 37 previously shown 

Dose ሺmgሻ ൌ
mw. 10ିଵሺ୮୍େఱబሻ

HPLC DEmax
 

Where the HPLC DEmax was calculated using Equation 34.  

 

The estimated oral dose considering twice a day administration has been calculated 

using Equation 38 [24], with the input of in silico absorption, volume of distribution and 

clearance. The estimated dose has been named in silico DMPK-DP. Using the absorption 

potential derived from the measured solubility and permeability data, the human volume 

of distribution was calculated based on the measured HSA and IAM data, and the in silico 

clearance model data was used. The estimated dose was calculated and is referred to 

as in vitro DMPK-DP. In both cases the dose was estimated using both the enzyme and 

whole blood cellular potency, as well as incorporating the HPLC DEmax into the calculation 

of MEC, as described by Equation 53. As potency has the greatest impact on the dose, 

it is important to investigate the observed differences between the enzyme and cellular 

potency. For the whole blood value, the actual free compound concentration can be 

different from the incubation concentration that has been applied to the cell, due to 

solubility, cellular permeability, and the non-specific binding of test compounds. It is also 

important to consider the target substrate concentrations will be different in a whole cell 

assay. Therefore, IC50 is not a translatable value across in vitro assays. The fundamental 

relationship between IC50 and Ki was described by Cheng and Prusoff in the 1970’s [146], 

and is a critical concept in pharmacology which is often overlooked. As a result, IC50 is 

frequently misused or taken as an absolute value which will translatable across in vitro 

and in vivo assays. Equation 56 describes the relationship between IC50 and Ki. 
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Equation 56 

K୧ ൌ  
ICହ

1  ቀ
S

Kmቁ
 

 

Ki is the inhibition constant, IC50 is concentration of inhibitor which causes 50% inhibition, Km is 

the Michaelis constant for the substrate (S), S is the substrate concentration  

 

The plot of the Pi3Kδ enzyme and cellular potency for the compounds is shown in  

Figure 7.4-1. 

 

Figure 7.4-1 The Plot of the Measured In Vitro Enzyme and Whole Blood 

Pi3Kδ Potency of the Compounds 

 

 
 

Figure 7.4-1 shows a plot of WB (Whole blood) potency verses enzyme potency. The line of 

unity is green, and the regression line is black. 

 

Figure 7.4-1 clearly highlights that there are differences between the two types of potency 

data. A higher concentration of the compounds is needed to achieve the 50% inhibition 
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(IC50) using the whole blood assay. The acidic compounds (marked as red squares) which 

typically bind more strongly to serum albumin, show the biggest discrepancy/offset. 

 

The simplest dose estimation that can be carried out very early in the drug discovery 

process is based only on the measured potency and estimated drug efficiency of the 

compounds. This has been described earlier as the DE-DP approach using Equation 37. 

The in vitro potency is only considered in this DE-DP calculation equation, as the drug 

efficiency includes the nonspecific binding of the compounds, which effectively reduces 

the actual biophase concentration. However, during the whole blood potency assay, other 

effects of the compounds are also included, as previously indicated. Therefore, it is 

important to investigate how these processes affect the estimated dose.  Figure 7.4-2 

shows the plot obtained for the estimated dose (on a logarithmic scale) when the Pi3Kδ 

enzyme and whole blood potency data are used in Equation 37. 
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Figure 7.4-2 The Plot of the DE-DP Dose Estimation Method using the Pi3Kδ 

Enzyme and Whole Blood Cellular Potency Data. 

 

 
 

Figure 7.4-2 shows a plot of the predicted dose for HPLC DE-DP (WB) verses HPLC DE-DP 

enzyme. The line of unity is green and the regression line is black. 

 

It can be seen in Figure 7.4-2 that the estimated dose is higher when the whole blood 

(WB) potency is used, where a higher concentration is expected to produce the same 

effect as in the isolated enzyme assay. This is especially evident for the acidic 

compounds marked as red squares. A similar trend is seen when comparing the enzyme 

and WB potencies (Figure 7.4-1). The basic compounds have similar upwards shifts in 

the estimated dose when the whole blood potency is considered, although it is less 

dramatic than that seen with the acid compounds and is indicative of the nature of the 

binding to HSA over IAM. The correlation between the two dose estimates is reasonably 

good (r2 above 0.77). This correlation is reassuring and highlights that as long as potency 

is considered in a consistent manner when analysing compounds, then either value can 

be used. However, it is important to be mindful that enzyme-based potency values will 

always represent a best-case scenario, and it is advantageous to switch to a cellular 
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potency value when possible, particularly when refining dose estimations in the later 

stages of lead optimisation.  

 

The differences between the estimated dose calculated by applying the different potency 

data in Equation 38 are compared in the plot of the in silico DMPK-DP, which is shown in 

Figure 7.4-3. The correlation between the two estimated dose values using the whole 

blood and the enzyme potencies is even higher when the in silico DMPK-DP dose 

prediction is employed. This could be explained by the equation containing absorption 

and elimination rates, in addition to the volume of distribution, and not only the potency 

and binding data used in the HPLC DE-DP estimation method. As the other 

pharmacokinetic inputs were the same in both axis of the dose estimation methods, the 

observed differences between the applications of the enzyme and whole blood potency 

are much smaller (the correlation coefficient was above 0.9). 
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Figure 7.4-3 A Comparison of the Estimated Dose using In Silico Inputs in 

the DMPK-DP Method Using Enzyme Potency and Whole Blood Cellular 

Potency Data. 

 

 
 

Figure 7.4-3 shows a plot of in silico DMPK-DP using WB potency verses in silico DMPK-DP 

using enzyme potency. The line of unity is green and the regression line is black. 

 

Figure 7.4-3 shows the plot of the calculated dose using the in vitro DMPK-DP method 

by Equation 38, with the enzyme potency and whole blood potency data as inputs, and 

using the in vitro volume of distribution, intrinsic clearance measured using hepatocytes, 

and the absorption rate that was estimated from the measured kinetic solubility and 

artificial membrane permeability data. 
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Figure 7.4-4 The Plot of the Estimated Dose using the In Vitro DMPK-DP 

Method with In Vitro Inputs of Vdss, Intrinsic Clearance and Absorption Rate 

with Enzyme and Whole Blood Potency Data.  

 

 
 

Figure 7.4-4 shows a plot of in vitro DMPK-DP using WB potency verses in vitro DMPK-DP 

using enzyme potency. The line of unity is green and the regression line is black. 

 

It can be seen that the impact of the potency data is even smaller when the  

in vitro volume of distribution, clearance and absorption rate data are used in the 

equation. A substantial factor influencing this is that the majority of the acidic compounds 

and compounds that showed high potency drop off in the whole blood assay were not 

submitted for in vitro clearance measurements meaning the number of compounds 

included in the plot is substantially less. From the previous plot shown in Figure 7.4-3, it 

was clear the acidic compounds showed the biggest discrepancy between the estimated 

dose between the enzyme and whole blood potency dose estimation data. Clearly, the 

Pi3Kδ program team deselected the majority of acidic compounds prior to in vitro DMPK 

profiling. Based on this dose estimation analysis, the deselection of these compounds 

appears to be the correct decision, as the in vitro DMPK-DP estimation approach 

indicates they would represent very high clinical dose compound relative to others within 
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the lead optimisation process. A pharmacokinetic reason for the high clinical dose 

estimation is driven by the nature of acidic compound distribution. The VDss of acid class 

compounds is typically very low, which is an important observation when considering the 

HPLC DE-DP dose estimation method.  

 

The difference between the calculated dose when using the in silico and in vitro input in 

Equation 38 is shown in Figure 7.4-5. It is interesting to observe that the estimated dose 

for acidic compounds is much greater when the actual in vitro clearance data are used in 

the dose estimation equation. The explanation for this is the in silico clearance, 

elimination rate, volume were underestimated when compared with the measured in vitro 

data for these parameters. 

 

Figure 7.4-5 The Plot of the DMPK-DP Estimated Dose Method with In Silico 

and In Vitro Inputs of Vdss, Clearance and Absorption Rate.  

 

 
 

Figure 7.4-5 shows a plot of in vitro DMPK-DP using WB potency verses in silico DMPK-DP 

using WB potency. The line of unity is green and the regression line is black. 
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The estimated dose for the majority of the basic compounds was very similar when the 

in silico and the in vitro PK parameters were used in the equation, especially around the 

low dose range <100mg. The discrepancies are much more significant for compounds 

for which the estimated dose was very large. It can be concluded from the plot that the 

error is proportionally larger when the predicted dose is large. However, the rank order is 

what is really important here, and the high dose compounds can easily be identified by 

either method. 

 

Figure 7.4-6 shows the trend between the estimated dose using the simple HPLC DE-

DP Equation 37 with measured cellular potency and the dose estimated using the in silico 

DMPK-DP method using Equation 38. The discrepancies between the estimated dose 

values are much larger than expected. However, when used as a ranking tool, it can be 

seen that both the DE-DP and in silico DMPK-DP methods show the progression of an 

early lead compound for the Pi3Kδ program. This can be seen in Figure 7.4-6 where 

GSK3343837 represents a relatively early lead series compound of interest and 

GSK3493251 is the eventual candidate molecule from what was referred to as the short 

hinge series.  
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Figure 7.4-6 The Plot of the Estimated Dose Using the DE-DP Method Using 

Whole Blood Potency Data and the In silico DMPK-DP Method Using Whole 

Blood Potency Data. Lead Series Progression Has Also Been Shown With 

GSK3343837 and GSK3493251. 

 

 
 

Figure 7.4-6 shows a plot of in silico DMPK-DP using WB potency verses HPLC DE-DP using 

WB potency. The line of unity is green and the regression line is black. 

 

The advantage of using in silico data is there are fewer limitations to the number of 

compounds that can be analysed in the early stages of drug discovery, as there is less 

reliance on expensively acquired in vitro data, such as from in vitro clearance assays. 

However, in silico analysis relies on the quality of the in silico model or models being 

used, which need to be both predictive and accurate. When using the in silico DMPK-DP 

based approach, there are several in silico models that can be used, including CL, Vdss 

and Ka. Without evidence for the accuracy of the in silico DMPK-DP method, it is 

reasonable to question the validity of this approach for effectively filtering compounds for 

further progression. To help evaluate whether the in silico DMPK-DP predictions are 

consistent with measured parameters, Figure 7.4-7 shows the comparison of HPLC DE-

DP and in vitro DMPK-DP. It can be seen that by including measured in vitro data in 
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Equation 38, the same rank order as seen with the in silico approach was achieved, which 

is emphasised by highlighting early lead compound GSK3343837 and the eventual 

candidate GSK3493251 have the same rank order as in the previous Figure 7.4-6. 

 

Figure 7.4-7 The plot of the estimated dose using the DE-DP method with 

equation 38 and the whole blood potency data and the in vitro DMPK-DP 

method using equation 31 with in vitro measured data input and the whole 

blood potency. 

 

 
 

Figure 7.4-7 shows a plot of in vitro DMPK-DP using WB potency verses in vitro DMPK-DP 

using WB potency. The line of unity is green and the regression line is black. 

 

When performing this type of early dose prediction analysis, it is important that the dose 

estimation methodology is used in a pragmatic way, and to recognise that the absolute 

dose estimation value is not the primary consideration. In a drug discovery setting, the 

ability to predict the rank order is more important than the absolute accuracy of the dose 

prediction.  This helps guide the selection process to progress compounds or groups of 

compounds to more expensive, in-depth and labour intensive in vitro and in vivo assays, 
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where the output can then be used to further refine the dose estimation approaches and 

thus improve the accuracy of prediction. By applying this type of approach, the goal of 

achieving improved physicochemical properties with good ADME properties should be 

possible.  

 

In Figure 7.4-8, a comparison of in vitro DMPK-DP and in vivo DMPK-DP has been 

plotted. It might be considered that in vivo data would offer the greatest opportunity to 

give the most accurate estimation of clinical dose. However, this is open to debate, as 

the accuracy of scaling in vivo preclinical PK data to human is modest, although this has 

been and continues to be a commonly used method of predicting human 

pharmacokinetics [147] [148] Figure 7.4-8 shows the dose prediction methods that 

compare in vivo data and in vitro data to enable the rank order of compound progression 

to be identified. GSK3343837, and the eventual candidate GSK3493251 are highlighted 
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Figure 7.4-8 The Plot of the Estimated Dose Using In vitro DMPK-DP and In 

vivo DMPK-DP Data with and the Whole Blood Potency Data Using  

Equation 31. 

 

 
 

Figure 7.4-8 shows a plot of in vivo rat DMPK-DP using WB potency verses in vitro DMPK-DP 

using WB potency. The line of unity is green, and the regression line is black. 

 

An important comparison is between the in vivo DMPK-DP and HPLC DE-DP 

methodology to establish if very early dose estimation can successfully identify the lower 

dose compounds and reduce the reliance on extensive in vitro and in vivo testing required 

for the in vitro and in vivo DMPK-DP approaches (Figure 7.4-9). Once again, this figure 

shows how the simplest high throughput HPLC DE-DP method tracks the important trend 

identifying the progression of the short hinge series, from GSK3343837 to the eventual 

candidate GSK3493251. This is despite the obvious limitations of the HPLC DE-DP 

method for estimating dose. This approach enables the identification of compounds with 

enhanced physiochemical and ADME properties linked to a cluster of chemical space 
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where a candidate quality molecule may sit.  This can be performed with a fraction of the 

data required for classical dose estimation using the in vitro or in vivo DMPK-DP methods.  

 

Figure 7.4-9  The plot of the Estimated Dose using the DE-DP Method with 

Whole Blood Potency Data and the In vivo DMPK-DP Method with In Vitro 

Measured Data Inputs and Whole Blood Potency Data 

 

 
 

Figure 7.4-9 shows a plot of in vivo rat DMPK-DP using WB potency verses HPLC DE-DP using 

WB potency. The line of unity is green, and the regression line is black. 

 

Table 7-7 shows physicochemical properties of the short hinge sulphonamide series were 

maintained throughout the lead optimisation process which is captured in the single 

parameter DEmax. The reason for the lower estimated dose for GSK3493251 is the 

improved potency. 
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Table 7-7 Summary of Physicochemical Properties for Pi3Kδ Hit Compound 

(GSK3343837) to Lead (GSK33493251) 

 

 
 

Table 7-7 show the maintenance of physicochemical properties from the original hit GSK3343837 

to the eventual lead compound GSK3493251, and improvement in the pharmacology was the 

main difference. 

 

Given that the compounds under development were for oral administration, one final 

consideration was to assess the importance of including the additional complexity of 

absorption rate in the McGinnity equation (Equation 38). Does the inclusion of other 

parameters such as Ka substantially improve the quality of the dose estimation approach? 

To evaluate this, the Ka parameter was removed, to take us back to the simpler  

DMPK-DP equation (Equation 39) used in the IV analysis for the Pi3Kγ program. 

 

Equation 38 Previously shown 

Dose ቌ

mg
kg

day
ቍ ൌ

24
τ MEC. 𝑉ௗ௦௦. ሺkୟ െ kୣ୪ሻ

F. kୟሺ
1

1 െ expሺെkୣ୪. τሻ െ
1

1 െ expሺെkୟ. τሻሻ
 

 

Equation 39 Previously shown 

Dose ቌ

mg
kg

day
ቍ ൌ

24
τ MEC. 𝑉ௗ௦௦. ሺexpሺkୣ୪. τሻ െ 1ሻ

F
 

 

It can be seen in  

Compound 
ID

IC50 
Enzyme

IC50 
WB

MW cLogp LogD
FaSSIF 

Solubility 
(ug/mL)

%HSA %AGP CHI IAM
 DEmax

%
PFI

Acid/Base 
Class

Permability 
(nm/s)

GSK3343837A 8.2 7.3 511.6 0.957 1.91 1000 84.2 54.8 23.16 24.2 4.91 Zwitterionic 13

GSK3493251A 9 8.2 584.7 4.478 1.78 1000 83.2 54.5 26.08 21.1 3.78 Zwitterionic 19
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Figure 7.4-10 where the comparison of in silico DMPK-DP without Ka to the HPLC DE-

DP is plotted, that there is an almost identical correlation to that seen in Figure 7.4-6, 

which is a plot of in silico DMPK-DP and HPLC DE-DP (the correlation coefficients of 

these analysis are 0.227 and 0.314, respectively). 

 

Figure 7.4-10 The plot of the Estimated Dose Using the DE-DP Method and 

the In Silico DMPK-DP Method Without Ka. 

 

 
 

Figure 7.4-10 shows a plot of in silico DMPK-DP with no absorption constant (Ka, Equation 39) 

using WB potency verses HPLC DE-DP using WB potency. The line of unity is green, and the 

regression line is black. 

 

This analysis shows that the majority of compounds in the low dose range (<100mg) were 

common to both dose estimation methods with varying degrees of data complexity within 

the DMPK-DP method. Much larger discrepancies in the magnitude of the dose 

estimation were observed when the estimated dose was large (above 1000 mg). 
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The conclusion from this study is that within one program of compounds, the estimated 

dose shows a good trend regardless of the dose estimation method used. The potency 

value, clearance and the volume of distribution all have an impact on the estimated dose. 

The absorption potential appears to be less important, and as such, the simple DMPK-

DP Equation 39 could be considered for oral programs with minimal loss of predictivity, 

although further analysis with other programs is required to confirm this. 

 

Although there is a poor correlation coefficient between the in silico clearance and the in 

vitro clearance, the trend in the estimated dose within the series is consistent, and 

highlighted by the lead (GSK33433837) and candidate (GSK3493251) examples 

throughout this analysis.  This suggests that there is value in using the simple dose 

estimation method as a tool that can be used to filter and rank large numbers of 

compounds early in drug discovery to select compounds to progress to more complex 

and in-depth in vitro and ultimately in vivo studies. 

 

7.5 Do the Properties of Inhaled/Pulmonary Drugs Differ from Oral Non-

CNS and Oral CNS Drugs? 

 

In contrast to oral drugs, the physicochemical properties required for optimal inhaled 

therapies are less well-defined. To identify the principle descriptors for inhaled drugs, the 

biomimetic properties of known drugs administered via the inhaled route, JAK inhaled 

project compounds, oral drugs targeting non-CNS disorders and oral drugs targeting CNS 

disorders were evaluated. The aim was to determine which physicochemical features 

clearly define drugs that are delivered by a specific route by selecting examples from 

what would be typically considered the major small molecule drug classes alongside a 

set of project compounds from an inhaled lead optimisation program. A major challenge 

when investigating properties of inhaled drugs is the limited number of marketed drugs in 

this class. Generally, there is a relatively small number of inhaled drugs approved by the 

regulatory authorities relative to the oral drug space. An additional challenge for the 

inhaled space is its domination by inhaled steroids, β agonists and a few muscarinic 

antagonists. This differs substantially from the oral space where the breadth of biological 

targets is much more extensive.  

 

When comparing the known properties of oral, inhaled, inhaled JAKi and CNS drugs 

(Table 7-8), no significant differences could be identified by analysing the box plots for 
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albumin binding (Log k HSA), AGP binding (Log k AGP), cLogP or total polar surface 

area (tPSA) as can be seen in Figure 7.5-1 to Figure 7.5-7. 
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Table 7-8 Physicochemical Properties of Known Drugs for Oral, Oral CNS, 

Inhaled Drug Administration and GSK Inhaled JAK Lead Optimisation 

Compounds.   

 

Application 
Colour 

Key 

CNS   

Inhaled   

JAKi   

Oral/Systemic   
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Venlafaxine CNS 277.4 32.7 3.27 -0.43 0.03 2.06   

Diflunisal CNS 250.2 57.5 4.40 1.65 -0.01 1.82   

Tolmetin CNS 257.3 59.3 2.21 1.08 -0.91 1.17   

Amitriptyline CNS 277.4 3.2 4.85 0.91 1.05 2.96   

Amoxapine CNS 313.8 36.9 3.41 0.85 1.06 3.02   
Aripiprazole CNS 448.4 44.8 5.31 1.46 1.22 2.9   
Cabergoline CNS 451.6 71.7 4.17 0.68 0.67 2.98   
Citalopram CNS 324.4 36.3 3.13 0.40 0.44 2.66   

Clomipramine CNS 314.9 6.5 5.92 1.16 1.18 3.17   
Donepezil CNS 379.5 38.8 4.60 0.77 0.52 2.33   
Fluoxetine CNS 309.3 21.3 4.57 0.99 0.99 2.94   

Fluvoxamine CNS 318.3 56.8 3.32 0.40 0.59 2.73   
Haloperidol CNS 375.9 40.5 3.85 0.76 0.73 2.46   

Loxapine CNS 327.8 28.1 3.98 1.05 1.06 2.76   
Maprotiline CNS 277.4 12.0 4.52 0.77 0.99 3.03   
Mianserin CNS 264.4 6.5 3.76 1.00 1.01 2.8   

Nortriptyline CNS 263.4 12.0 4.32 0.77 1.03 2.84   
Olanzapine CNS 312.4 30.9 3.01 0.77 0.72 2.71   
Pergolide CNS 314.5 19.0 4.40 0.73 1.04 2.85   
Pimozide CNS 461.6 41.0 6.40 1.41 1.47 2.83   

Protriptyline CNS 263.4 12.0 4.87 0.69 1.03 2.79   
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Selegiline CNS 187.3 3.2 3.02 0.89 1.12 3.07   
Sumatriptan CNS 295.4 65.2 0.74 -0.42 -0.04 1.92   
Tomoxetine CNS 255.4 21.3 3.94 0.81 0.74 2.76   
Zolmitriptan CNS 287.4 57.4 1.29 -0.10 -0.03 1.93   

Carbamazepine CNS 236.3 46.3 2.38 0.50 0.51 1.75   
Procyclidine CNS 287.4 23.5 4.59 0.91 0.80 2.57   

Rolipram CNS 275.3 47.6 1.72 0.56 0.79 1.62   
Phenytoin CNS 252.3 58.2 2.09 0.68 0.15 1.83   

Lamotrigine CNS 256.1 90.7 2.53 0.16 -0.33 1.49   
Trazodone CNS 371.9 45.8 3.85 1.02 0.56 2.09   

Ziprasidone CNS 412.9 48.5 4.21 1.42 1.09 2.62   
Benzonatate Inhaled set 603.7 121.4 2.54 0.44 0.32 2.24   

Dextromethorphan Inhaled set 271.4 12.5 3.95 0.34 0.55 2.8   
Oxolamine Inhaled set 245.3 42.2 2.39 1.08 0.38 2.37   
Pranlukast Inhaled set 481.5 123.0 5.07 1.67 0.85 2.38   
Trospium Inhaled set 392.5 46.5 -1.16 0.18 0.63 2.14   

Umeclidinium Inhaled set 428.6 29.5 1.60 0.62 0.87 2.55   
Xylometazoline Inhaled set 244.4 24.4 5.38 0.01 0.51 2.74   
Xylometazoline Inhaled set 244.4 24.4 5.38 0.02 0.45 2.98   

SB-332235 Inhaled set 410.7 121.5 2.61 1.68 0.72 2.29   
Ramatroban Inhaled set 416.5 88.4 3.97 1.34 0.16 1.95   
Seratrodast Inhaled set 354.4 71.4 4.95 1.50 0.58 2.15   

Tranilast Inhaled set 327.3 84.9 3.99 1.40 0.20 1.81   
Elubrixin Inhaled set 463.3 110.8 3.32 1.47 0.75 2.65   

GSK1004723 Inhaled set 641.3 50.6 8.61 1.42 1.58 2.82   
GSK240928 Inhaled set 380.4 125.9 2.92 0.49 0.37 1.77   
GSK922892 Inhaled set 381.9 38.1 4.04 0.91 1.04 2.85   
GSK256066 Inhaled set 518.6 131.7 3.80 0.95 0.68 2.2   

Albuterol Inhaled set 239.3 72.7 0.06 -0.55 -1.22 1.1   
Ambroxol Inhaled set 378.1 58.3 2.33 0.60 0.73 2.5   

Brompheniramine Inhaled set 319.2 16.1 3.30 0.68 0.68 2.8   
Butamirate Inhaled set 307.4 38.8 4.08 -0.09 0.52 2.52   
Cetirizine Inhaled set 388.9 53.0 2.08 0.85 0.23 2.28   

Chlophedianol Inhaled set 289.8 23.5 3.63 0.40 0.67 2.63   
Cloperastine Inhaled set 329.9 12.5 5.38 1.05 1.00 2.92   

Dimethoxanate Inhaled set 358.5 42.0 4.21 0.74 0.87 2.8   
Ipratropium Inhaled set 332.5 46.5 -2.19 0.36 0.02 1.67   
Ipratropium Inhaled set 332.5 46.5 -2.19 -0.55 0.05 1.8   
Mabuterol Inhaled set 310.7 58.3 2.77 -0.34 0.43 2.43   

GSK1645469 Inhaled set 447.6 71.5 4.32 0.96 0.90 2.74   
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GSK1645469 Inhaled set 447.6 71.5 4.32 1.01 0.91 2.77   
GSK1399686 Inhaled set 821.1 197.1 4.17 0.18 0.43 2.66   

Oxymetazoline Inhaled set 260.4 44.6 4.61 -0.06 0.45 2.7   
Phenyltoloxamine Inhaled set 255.4 12.5 4.23 0.80 0.76 2.79   

Pimethixene Inhaled set 293.4 3.2 4.92 1.21 1.13 3.05   
Promethazine Inhaled set 284.4 6.5 4.40 0.94 0.97 2.99   

Pyrilamine Inhaled set 285.4 28.6 3.23 0.44 0.49 2.56   
Tiotropium Inhaled set 392.5 59.1 -1.71 -0.38 0.51 2.05   

GSK1247150 Inhaled set 655.7 122.7 5.72 1.41 1.04 2.6   
SB-731445 Inhaled set 478.4 100.3 3.85 0.97 0.51 1.9   

GSK1223684 Inhaled set 529.4 113.5 3.47 1.09 0.62 2.07   
GW784568 Inhaled set 526.6 80.7 4.14 1.28 0.89 2.47   

6-Methoxy-3-
nitroquinoline 

Inhaled set 204.2 67.9 2.18 0.90 -0.10 1.87   

Beclomethasone 
dipropionate 

Inhaled set 521.0 107.0 4.26 1.14 0.85 2.43   

Budesonide Inhaled set 430.5 93.1 2.91 0.88 0.37 2.19   
Ciclesonide Inhaled set 540.7 99.1 5.25 1.35 1.01 2.61   

Cyclosporin A Inhaled set 1202.6 278.8   0.79 0.31 2.18   
Dexamethasone Inhaled set 392.5 94.8 1.79 0.41 -0.08 1.89   

Fluticasone furoate Inhaled set 538.6 93.8 4.26 1.23 1.02 2.46   
Fluticasone 
propionate 

Inhaled set 500.6 80.7 3.80 1.01 0.27 2.4   

Ibudilast Inhaled set 230.3 34.4 3.25 0.99 0.49 2.19   
Isofluprednone Inhaled set 378.4 94.8 1.27 0.10 -0.13 1.71   
Losmapimod Inhaled set 383.5 71.1 3.98 0.70 0.21 2.04   

Metaproterenol Inhaled set 211.3 72.7 0.08 0.28 -1.01 1.42   
Mometasone furoate Inhaled set 521.4 93.8 4.12 1.28 0.90 2.43   

GSK678361 Inhaled set 410.4 97.1 3.75 0.96 0.48 2.1   
Ozagrel Inhaled set 228.3 55.1 1.60 0.35 -1.97 0.94   

Procaterol Inhaled set 290.4 85.4 0.66 -0.59 -0.86 1.56   
GW842470 Inhaled set 458.3 84.2 4.58 1.40 1.26 2.48   

Theophylline Inhaled set 180.2 72.7 -0.03 -0.42 1.00 0.58   
GW846428 Inhaled set 993.1 357.5   1.03 0.61 2.5   
GW766994 Inhaled set 451.4 96.7 3.08 0.95 0.59 1.87   
Fenoterol Inhaled set 303.4 93.0 0.98 -0.13 -0.11 2.14   

Formoterol Inhaled set 344.4 90.8 1.26 -0.12 0.21 2.2   
Formoterol Inhaled set 344.4 90.8 1.26 -0.04 0.29 2.41   

GSK1367441 Inhaled set 497.0 76.5 3.71 1.01 0.93 2.32   
GSK1000064 Inhaled set 392.4 94.7 4.62 1.23 0.72 2.16   
Oseltamivir Inhaled set 312.4 90.7 2.13 -0.55 0.05 2.07   
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Terbutaline Inhaled set 225.3 72.7 0.48 -0.58 -0.88 1.57   
Tiaramide Inhaled set 355.8 65.8 0.67 -0.13 0.04 1.83   

GSK159802 Inhaled set 521.6 106.6 3.99 1.46 1.30 3.37   
Indacaterol Inhaled set 392.5 85.4 2.97 1.17 1.03 3.18   

GSK3336961A JAKi 566.6 126.9 4.38 1.61 0.98 2.93   
GSK3686622A JAKi 469.5 111.2 3.89 1.27 0.76 2.98   
GSK3733362A JAKi 526.6 140.3 2.98 1.38 1.10 2.28   
GSK3901000A JAKi 423.5 88.6 2.36 1.13 0.70 2.48   
GSK3901790A JAKi 423.5 83.4 2.28 1.18 0.77 2.40   
GSK3896132A JAKi 437.5 74.6 2.64 1.19 0.76 2.00   
GSK3376417A JAKi 521.0 100.4 3.67 0.69 0.47 2.06   
GSK3532706A JAKi 481.9 100.4 3.28 0.97 0.70 2.66   
GSK3780731A JAKi 395.5 87.3 3.62 1.17 0.85 2.96   
GSK3800430A JAKi 469.6 93.5 5.01 1.32 0.88 1.22   
GSK3816662A JAKi 454.5 99.1 3.41 1.30 0.83 2.68   
GSK3859782A JAKi 568.7 130.9 5.33 1.37 0.93 3.11   
GSK3860551A JAKi 438.5 79.1 4.49 1.27 0.93 2.54   
GSK3861033A JAKi 509.6 99.4 3.95 1.22 0.93 2.56   
GSK3863783A JAKi 415.4 101.2 1.47 0.95 0.52 2.74   
GSK3845209A JAKi 398.4 94.6 2.19 1.17 0.43 3.18   
GSK3074811A JAKi 410.8 108.1 2.13 0.75 0.32 1.47   
GSK3454697A JAKi 489.9 97.2 3.08 0.90 0.33 2.42   
GSK3487568A JAKi 479.9 100.4 2.88 0.76 0.30 3.12   
GSK3489723A JAKi 519.9 117.4 2.15 0.59 0.12 2.57   
GSK3515539A JAKi 450.9 97.1 2.67 0.94 0.42 1.90   
GSK3519625A JAKi 475.9 117.4 2.71 1.02 0.45 2.53   
GSK3901334A JAKi 474.6 84.1 3.85 1.49   2.16   
GSK3635481A JAKi 356.4 104.3 3.28 1.25 0.66 0.50   
GSK3908922A JAKi 409.5 97.4 2.00 1.18 0.76 1.55   
Montelukast Oral/Systemic 586.2 70.4 8.47 1.78 1.43 2.5   
Zafirlukast Oral/Systemic 575.7 115.7 7.09 1.67 0.78 2.4   

Prednisolone Oral/Systemic 360.4 94.8 1.42 0.07 -0.37 1.68   
Cilostazol Oral/Systemic 369.5 81.9 3.53 0.91 0.33 2.08   
Efavirenz Oral/Systemic 315.7 38.3 3.73 1.43 0.98 2.53   

Finasteride Oral/Systemic 372.5 58.2 3.01 0.85 0.45 2.21   
Lansoprazole Oral/Systemic 369.4 67.9 2.60 0.94 0.40 1.91   
Mifepristone Oral/Systemic 429.6 40.5 4.65 1.24 1.03 2.49   

Nadolol Oral/Systemic 309.4 82.0 0.38 -0.22 -0.16 1.3   
Pioglitazone Oral/Systemic 356.4 68.3 3.53 1.50 0.51 1.96   

Roxithromycin Oral/Systemic 837.1 216.9 2.29 -0.07 0.60 2.78   
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Simvastatin Oral/Systemic 418.6 72.8 4.48 1.34 0.96 2.57   
Telmisartan Oral/Systemic 514.6 72.9 7.29 1.36 0.68 2.52   
Amiloride Oral/Systemic 229.6 156.8 0.11 -0.27 -0.13 1.85   

Candesartan cilexetil Oral/Systemic 610.7 143.3 7.08 1.51 1.12 2.37   
Diazoxide Oral/Systemic 230.7 58.5 1.20 0.52 -0.68 1.54   
Etodolac Oral/Systemic 287.4 62.3 3.43 1.25 0.32 1.83   

Flurbiprofen Oral/Systemic 244.3 37.3 3.75 1.60 -0.05 1.49   
Furosemide Oral/Systemic 330.7 122.6 1.90 1.09 -1.16 1.6   
Glimepiride Oral/Systemic 490.6 124.7 3.96 1.51 0.40 1.84   

Glipizide Oral/Systemic 445.5 130.2 2.57 1.27 0.03 1.36   
Glyburide Oral/Systemic 494.0 113.6 4.24 1.52 0.39 1.93   

Indomethacin Oral/Systemic 357.8 68.5 4.18 1.65 0.18 1.7   
Irbesartan Oral/Systemic 428.5 87.1 6.04 1.30 1.10 1.62   
Ketoprofen Oral/Systemic 254.3 54.4 2.76 1.57 -0.79 1.63   

Mycophenolic acid Oral/Systemic 320.3 93.1 2.29 1.24 -0.83 1.36   
Naproxen Oral/Systemic 230.3 46.5 2.82 1.95 -1.06 1.47   

Nimesulide Oral/Systemic 308.3 101.2 3.21 1.51 0.09 1.72   
Oxaprozin Oral/Systemic 293.3 63.3 2.95 1.64 0.51 1.56   
Piroxicam Oral/Systemic 331.4 99.6 1.89 1.42 0.23 1.42   

Pravastatin Oral/Systemic 424.5 124.3 2.05 -0.18 -0.54 1.36   
Acebutolol Oral/Systemic 336.4 87.7 1.71 -0.32 0.63 1.12   
Bupropion Oral/Systemic 239.7 29.1 3.21 0.44 0.57 2.16   
Clonidine Oral/Systemic 230.1 36.4 1.43 -0.24 0.15 1.47   

Desloratadine Oral/Systemic 310.8 24.9 3.83 0.85 1.05 2.93   
Diphenhydramine Oral/Systemic 255.4 12.5 3.45 0.33 0.60 2.06   

Domperidone Oral/Systemic 425.9 78.8 4.27 1.02 0.92 2.42   
Ebastine Oral/Systemic 469.7 29.5 6.94 1.63 1.34 3.12   

Fenofibrate Oral/Systemic 360.8 52.6 5.23 1.46 1.11 2.58   
Fexofenadine Oral/Systemic 501.7 81.0 1.96 0.45 0.02 1.9   
Granisetron Oral/Systemic 312.4 50.2 1.72 0.35 0.52 2.53   
Guanabenz Oral/Systemic 231.1 74.3 2.98 0.83 0.82 2.66   
Mefloquine Oral/Systemic 378.3 45.2 3.67 1.38 1.11 0.5   
Metergoline Oral/Systemic 403.5 46.5 4.69 1.28 1.09 2.98   

Metoclopramide Oral/Systemic 299.8 67.6 2.23 0.15 0.23 2.28   
Mibefradil Oral/Systemic 495.6 67.5 6.36 1.10 1.11 2.96   

Neostigmine Oral/Systemic 223.3 29.5 -2.81 0.82 -0.53 1.22   
Primaquine Oral/Systemic 259.4 60.2 2.60 0.56 0.81 2.68   

Prochlorperazine Oral/Systemic 373.9 9.7 4.38 1.37 1.39 3.18   
Promethazine Oral/Systemic 284.4 6.5 4.40 1.04 0.99 3.11   
Propafenone Oral/Systemic 341.4 58.6 3.64 0.84 0.92 2.54   
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Propranolol Oral/Systemic 259.3 41.5 2.75 0.42 0.84 2.56   
Quinidine Oral/Systemic 324.4 45.6 2.79 0.54 0.85 2.74   

Tamsulosin Oral/Systemic 408.5 99.9 2.17 0.36 0.60 2   
Verapamil Oral/Systemic 454.6 64.0 4.47 1.01 0.58 2.48   

Bicalutamide Oral/Systemic 430.4 107.3 2.71 1.36 0.32 2.16   
Celecoxib Oral/Systemic 381.4 78.0 4.37 1.41 1.31 2.4   
Dapsone Oral/Systemic 248.3 86.2 0.89 0.60 0.04 1.55   

Felodipine Oral/Systemic 384.3 64.6 5.30 1.28 0.91 2.56   
Flutamide Oral/Systemic 276.2 74.9 3.34 1.15 0.27 2.26   

 
Isradipine 

Oral/Systemic 371.4 103.6 3.92 1.16 1.32 2.26   

Leflunomide Oral/Systemic 270.2 55.1 2.32 1.02 0.51 2.22   
Letrozole Oral/Systemic 285.3 78.3 1.43 0.15 -0.60 1.78   
Lovastatin Oral/Systemic 404.5 72.8 4.08 1.24 0.87 2.46   
Metolazone Oral/Systemic 365.8 92.5 2.06 0.69 0.57 1.82   
Nevirapine Oral/Systemic 266.3 58.1 2.65 0.06 -0.15 1.41   
Nimodipine Oral/Systemic 418.4 119.7 4.00 0.98 0.70 2.03   
Nisoldipine Oral/Systemic 388.4 110.5 4.58 0.96 0.65 2.14   
Nitrendipine Oral/Systemic 360.4 110.5 3.73 1.13 0.69 2.3   

Pentoxifylline Oral/Systemic 278.3 78.9 0.12 -0.46 -1.92 0.97   
Spironolactone Oral/Systemic 416.6 60.4 0.00 0.78 0.50 2.12   

Valdecoxib Oral/Systemic 314.4 86.2 1.83 1.13 0.90 2.03   
Zileuton Oral/Systemic 236.3 66.6 2.48 0.98 0.78 1.88   

Bendroflumethiazide Oral/Systemic 421.4 118.4 1.73 0.42 0.27 2.05   
Indapamide Oral/Systemic 365.8 92.5 2.96 0.46 0.42 1.88   
Zidovudine Oral/Systemic 267.2 133.1 0.04 -0.88 -1.71 0.49   

Abacavir Oral/Systemic 286.3 101.9 0.81 -0.34 0.02 1.31   
Acrivastin Oral/Systemic 348.4 53.4 1.46 0.65 0.10 1.92   
Alosetron Oral/Systemic 294.4 53.9 1.74 0.47 0.51 1.92   

Aminoglutethimide Oral/Systemic 232.3 72.2 0.77 -0.48 -0.30 1.05   
Clemastine Oral/Systemic 343.9 12.5 5.45 1.25 1.18 3.19   

Dipyridamole Oral/Systemic 504.6 145.4 1.49 0.84 0.82 2.44   
Ketoconazole Oral/Systemic 531.4 69.1 3.64 1.17 0.75 2.31   
Mebendazole Oral/Systemic 295.3 84.1 3.08 1.07 1.00 2.1   
GSK527886 Oral/Systemic 371.5 74.6 2.70 1.06 0.91 2.17   
Nicardipine Oral/Systemic 479.5 113.7 5.23 1.25 0.94 2.58   

Pinacidil Oral/Systemic 245.3 73.1 1.91 0.14 -0.17 1.79   
Prazosin Oral/Systemic 383.4 107.0 2.03 0.74 0.53 1.81   
Riluzole Oral/Systemic 234.2 48.1 3.24 1.13 0.37 2.18   

Triamterene Oral/Systemic 253.3 129.6 1.61 0.16 -0.09 1.6   
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Figure 7.5-1 The Box Plot of MW for Marketed Oral, Oral CNS, Inhaled Drugs 

and Inhaled JAK Project Compounds  

 

 

 

Figure 7.5-1 is a box plot of MW versus different target class molecules (oral, oral CNS, Inhaled, 

and Inhaled Lead Optimisation JAK program compounds). The righthand panel rings represent a 

confidence interval (CI) analysis showing statistical analysis between the different classes based 

on a 95% CI 
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Figure 7.5-2 The Box Plot of Albumin Binding (HSA) for Marketed Oral, Oral 

CNS, Inhaled Drugs and Inhaled JAK Project Compounds 

 

 

 

Figure 7.5-2 is a box plot of HSA binding versus different target class molecules (oral, oral CNS, 

Inhaled, and Inhaled Lead Optimisation JAK program compounds). The righthand panel rings 

represent a confidence interval (CI) analysis showing statistical analysis between the different 

classes based on a 95% CI 
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Figure 7.5-3 The Box Plot of α-1-Acid-Glycoprotein Binding (AGP) for 

Marketed Oral, Oral CNS, Inhaled Drugs and Inhaled JAK Project 

Compounds  

 

 
 

Figure 7.5-3 is a box plot of AGP binding versus different target class molecules (oral, oral CNS, 

Inhaled, and Inhaled Lead Optimisation JAK program compounds). The righthand panel rings 

represent a confidence interval (CI) analysis showing statistical analysis between the different 

classes based on a 95% CI 
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Figure 7.5-4 The Box Plot of Immobilised Artificial Membrane (IAM) Binding 

Marketed Oral, Oral CNS, Inhaled Drugs and Inhaled JAK Project 

Compounds  

 

 
 

Figure 7.5-4 is a box plot of IAM binding versus different target class molecules (oral, oral CNS, 

Inhaled, and Inhaled Lead Optimisation JAK program compounds). The righthand panel rings 

represent a confidence interval (CI) analysis showing statistical analysis between the different 

classes based on a 95% CI 
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Figure 7.5-5 The Box Plot of cLogP for Marketed Oral, Oral CNS, Inhaled 

Drugs and Inhaled JAK Project Compounds  

 

 

 

Figure 7.5-5 is a box plot of cLogP binding versus different target class molecules (oral, oral CNS, 

Inhaled, and Inhaled Lead Optimisation JAK program compounds). The righthand panel rings 

represent a confidence interval (CI) analysis showing statistical analysis between the different 

classes based on a 95% CI 
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Figure 7.5-6 The Box Plot of Total Polar Surface Area (TPSA) for Marketed 

Oral, Oral CNS, Inhaled Drugs and Inhaled JAK Project Compounds  

 

 
 

Figure 7.5-6 is a box plot of TPSA binding versus different target class molecules (oral, oral CNS, 

Inhaled, and Inhaled Lead Optimisation JAK program compounds). The righthand panel rings 

represent a confidence interval (CI) analysis showing statistical analysis between the different 

classes based on a 95% CI 
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Figure 7.5-7 The Box Plot of DEmax for Marketed Oral, Oral CNS, Inhaled 

Drugs and Inhaled JAK Project Compounds  

 

 
 

Figure 7.5-7 is a box plot of DEmax binding versus different target class molecules (oral, oral CNS, 

Inhaled, and Inhaled Lead Optimisation JAK program compounds). The righthand panel rings 

represent a confidence interval (CI) analysis showing statistical analysis between the different 

classes based on a 95% CI 
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Figure 7.5-8 The Box Plot of PFI for Marketed Oral, Oral CNS, Inhaled Drugs 
and Inhaled JAK Project Compounds 

 

 

 

Figure 7.5-8 is a box plot of PFI versus different target class molecules (oral, oral CNS, Inhaled, 

and Inhaled Lead Optimisation JAK program compounds). The righthand panel rings represent a 

confidence interval (CI) analysis showing statistical analysis between the different classes based 

on a 95% CI 

 

Figure 7.5-1 to Figure 7.5-8 show that there very few significant differences in the 

physicochemical and biomimetic properties of marketed oral, oral CNS and inhaled 

drugs. The range of certain properties, for example the inhaled JAK project compound 

also have a slightly higher molecular weight, which suggests that it may be possible to 

go outside the accepted physicochemical property space for marketed oral drugs 

(Lipinski’s rule of 5) when we consider inhaled administration. There is separation for the 

TPSA for CNS drugs which underpins the targeting of TPSA of <75 as a design feature 

of CNS lead optimisation to penetrate the blood brain barrier (BBB). This is due to the 

tight gap junctions associated with the BBB which helps to protect the CNS from exposure 

to xenobiotics. 

 

When compared with the JAKi project compounds, some significant differences in the 

physicochemical and biomimetic properties were more apparent, most notably HSA and 
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IAM binding, which was higher and ultimately determined that the DEmax of the JAKi 

compounds was significantly lower than the other drug classes. An objective for our JAK 

program team was to develop compounds with lower DEmax to improve lung retention, the 

rationale and approach adopted to achieve this is described in detail in Section 7.6. 

 

7.6 Investigating Lung Retention and Dose in the JAKi Program for Inhaled 

Administration in Asthma 

 

When targeting the lung/pulmonary system lung retention is believed to be an important 

characteristic for maintaining efficacy and reducing dosing frequency. Fast-systemic 

absorption can be a major disadvantage when using the inhaled route of administration 

as active compound may not be retained in the lung for long enough to maintain 

efficacious concentrations. This is particularly relevant for antagonist targets where high 

levels of target engagement are required for efficacy 

 

There are several ways in which lung retention can be modulated, for example through 

the use of dry powder formulations with a defined particle size to reach deeper in the 

lung, or aerosol droplets with controlled hydrodynamic diameters [111]. The inherent 

molecular properties of the active ingredients also play an important role in lung retention. 

From previous examples of inhaled drugs targeting the lung and in-house studies, it can 

be concluded that longer lung retention, which does not result in lung toxicity, is promoted 

when molecules have medium solubility and lipophilicity [105]. Lung toxicity or irritancy is 

often identified by the presence of foamy macrophages [114], which is an unwanted side 

effect of delivering poorly soluble compounds to the lung.  

 

The JAKi program was selected to study of a series of compounds being actively 

developed for the treatment of moderate to severe asthma by inhalation, where the aim 

was to achieve extended lung exposure only in the lung and minimise systemic exposure 

and associated adverse pharmacology for the same target. It was during lead 

optimisation of JAKi program that the potential of DEmax as an optimisation parameter 

for inhaled small molecules was identified.   
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7.7 JAK Pharmacology in Asthma and COPD 

 

As previously described in section 5.4, small molecules that interact with the JAK 

pathways have become the focus of interest for many pharmaceutical research groups 

developing new treatments for immune inflammatory disorders. Therefore, a PAN JAKi 

an attractive therapeutic target in the lung in order to reduce the chronic inflammation 

that is associated with asthma [101] as shown in Figure 7.7-1 

 

Figure 7.7-1 The Pharmacological Pathway for JAK Inhibitors for Reducing 

Chronic Inflammation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7-1 Schematic showing cytokine binding to resulting in activation of the JAK pathway and 

STAT proteins 

 

By inhibiting JAK and the phosphorylation of the STAT proteins subsequent gene 

transcription is inhibited and the production of inflammatory cytokines via this mechanism 

is blocked. This should then suppress the immune response associated with asthma. 

 

 

X 

X

JAK inhibitor 
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7.7.1 JAK Program Target Product Profile 

 

Based on the physicochemical properties of inhaled drugs described in section 5.4.1, the 

program team set up a target profile targeting high levels of lung retention which would 

result in a long duration of action to achieve a once a day dose regimen. The target profile 

of a candidate compound was set up to have less than 1 mg dose (1 mg represents the 

maximum deliverable clinical dose for an inhaled dry powder using a preferred delivery 

device, GSK’s Ellipta® device). To achieve this, compounds should be very potent and 

also at least 100-fold selective against other kinases. Furthermore, for a compound to 

progress, it should have low or no oral bioavailability and high systemic clearance when 

it gets into the general circulation in order to avoid systemic pharmacologically related 

side effects. Data generated by GSK‘s inhaled sciences group has indicated that 

compound solubility in simulated lung fluids (SLF) should ideally be higher than 250µg/mL 

of crystalline material in order to avoid foamy macrophage formation around the solid 

particles [113]. For reasonably long lung retention, compounds should have medium 

permeability and solubility [149], as described in section 5.4. Alternatively, in-house data 

suggested that target permeability could be set to 100 nm/s in an MDCK cell permeability 

assay and the solubility of the solid material should be 10µg/mL or higher in SLF. As the 

target is inside the cell, a certain degree of permeability must be maintained, and the 

solubility cannot be too low to avoid safety related concerns due to toxicity/irritancy. To 

achieve an inherent physicochemical profile that drives intrinsic lung retention and lung 

safety, Figure 7.7-2 illustrates the balance required between solubility and permeability.  

 

Figure 7.7-2 Balancing the Solubility and Permeability for Lung Retention 

 

 

 



240 
 

One way to visualise and distinguish compounds with different solubility and permeability 

properties and the potential for differentiated lung retention profiles is to use a 9 – Box 

Model (Figure 7.7-3). This visualisation was developed during JAK lead optimisation to 

simply classify compounds and determine which compounds would be of further interest 

to profile in vivo. Low SLF solubility and MDCK permeability would increase lung 

residency but increase the risk of lung toxicity with the retention of undissolved 

compounds. This undissolved compound would be unlikely to engage the target and elicit 

a pharmacological effect, particularly for intracellular targets. High solubility and 

permeability would increase the rate of absorption from the lung and reduce the lung 

residency of a compound and therefore potentially reduce the duration of 

pharmacological activity. Ideally a balance of these properties is required for the duration 

of action and safety. 

 

Figure 7.7-3 A 9-Box Model Plot of Solubility and Permeability 

  

 
 

Figure 7.7-3 is a 9-box plot of solubility and permeability used to help select compounds with the 

desired lung retention profiles 

 

The solubility in simulated lung fluid (SLF) and the MDCK cell membrane permeability of 

24 JAK inhibitor compounds were measured and plotted in Figure 7.7-4. Using a 9-box 
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model with defined ranges for solubility and permeability, the compounds were classified 

as low, moderate and high for each parameter. The majority of the compounds had 

medium to high permeability, while the solubility ranged from low to high. 

  

Based on our assumption for long lung retention, we require medium permeability and 

moderate to high solubility for our compounds. In the plot shown in  

Figure 7.7-4, the top middle square should capture compounds of interest with the 

potential of having the right physicochemical profile for an inhaled drug molecule. 

However, if compounds captured within this square could be differentiated further, the 

number requiring profiling using in vivo lung retention studies could potentially be 

reduced. To achieve this, a third parameter DEmax was added to this visualisation to see 

if it was possible to differential compounds within a single box.  

 

The biomimetic binding properties of human serum albumin (HSA), α-1-acid-glycoprotein 

(AGP) and immobilized artificial membrane (IAM) have been investigated for their 

contribution to the modulation of lung retention. Mucus binding has previously been 

described to correlate well with AGP binding [150] and lung tissue binding has also be 

modelled by the albumin and phospholipid binding measured by the biomimetic HPLC 

stationary phases [150]. The drug efficiency has been characterised as a sum of the HSA 

and IAM binding [55][77] and denoted as HPLC DEmax (see section 4.2.4). Here, the 

biomimetic binding properties HSA, AGP and IAM been investigated for their contribution 

to the modulation of lung retention. 

 

In the plot shown in Figure 7.7-4, the size of the markers shows the measured HPLC 

DEmax and allows visualisation of compounds with low and high drug efficiency in 

association with other physicochemical properties.   
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Figure 7.7-4 The 9-box Plot Classification of Compounds Based on 

Solubility and Permeability and DEmax 

 

 

 

Figure 7.7-4 A 9-box plot of solubility, permeability and DEmax. 

 

The derived drug efficiency (HPLC DEmax) showed a wide range (<0.1% to 25%) for 

compounds that were within the same class square based on their solubility and 

permeability. These compounds also showed large differences in in vivo lung retention 

studies. It can be seen in Figure 7.7-5 which shows that their lung retention profiles are 

very different and cannot be explained by their solubility and permeability alone (it is 

important to note that the compounds were administered as solutions to ensure solubility 

was not a confounding factor). The major difference is in their non-specific binding to 

proteins and lipids as exemplified by their biomimetic properties and DEmax as shown in 

Table 7-9.  

 

Comparison of for example, GSK3489723 and GSK3532706 (DEmax 24.9 and 1.26, 

respectively) shows that the former is very poorly retained in the lung, dropping to a lung 

concentration of 15 ng/g after only 90 minutes, whereas the latter has good lung retention 

with exposure remaining above 100 ng/g for over 8 hours. These two compounds really 

exemplify the hypothesis linking between DEmax and lung retention.  
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However, the first compound which was profiled in vivo which helped to identify the 

potential link between DEmax and lung retention was GSK3376417, its biomimetic binding 

profile resulted in lower DEmax despite its low cLogP, suggesting that a direct relationship 

between lipophilicity and binding is more complex and it is important to also consider the 

composition of the biophases in which the targets are located. 

 

Figure 7.7-5 illustrates that compounds with high HPLC DEmax (above 5%) have short 

lung retention regardless of their solubility and permeability. This is due to the low non-

specific binding of the compounds to lung tissue. Although a high DEmax is in general 

advantageous because describes global physicochemical properties and distribution of 

a drug, it also means more rapid absorption of drug from the lung into the systemic 

circulation.  

 

Table 7-9 also shows the measured and calculated physicochemical and biomimetic 

properties as well as the potency and drug efficiency index (DEI) values that are the sum 

of the pIC50 and the log HPLC DEmax. The objective here was to establish which properties 

of the compounds play pivotal roles in lung retention. The data demonstrates that all eight 

compounds are broadly within the typical druggable range for small molecules with 

respect to their basic physicochemical properties of MW and cLogP (ca. <550 MW and 

<3.5 respectively). However, GSK3489723 had lipophilicity in the lower range and 

significantly lower biomimetic binding in all three phases (HSA, AGP and IAM) with the 

IAM binding being much lower together with GSK3454697, which resulted in much higher 

drug efficiency. Although the potency of GSK3489723 was the lowest, the DEI value, 

which is described below, was still high (DEI 8) relative to the other compounds because 

the higher DEmax compensates for the low potency. 

 

The DEI is the Drug Efficiency Index and based on the Drug Efficiency concept as 

described in section 4.2.4, which combines drug efficiency with the potency into a single 

parameter, as described in Equation 57. which was previously stated in Section 4.2.4. 

 

Equation 57 

DEI ൌ pICହ  Log ሺ %DEmaxሻ 
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Table 7-9 The Measured and Calculated Physicochemical Properties of 

Selected JAK Inhibitor Compounds. 

 

 

 

Table 7-9 shows the measured calculated properties of selected JAK inhibitors with different lung 

retention profiles. 

 

Compound ID Structure MW cLogP 
HSA 
(%) 

AGP 
(%)

CHI 
IAM

DEmax 
(%)

Fibroblast 
pIC50 (IL-13)

DEI

GSK3532706A 482 3.3 91.2 84.1 48.1 1.26 8.0 8.1

GSK3489723A 520 2.2 80.3 57.3 24.8 24.9 6.6 8.0

GSK3635481A 356 3.3 95.6 83.0 40.1 2.52 7.6 8.0

GSK3780731A 395 3.6 94.6 88.5 56.7 0.14 7.8 6.9

GSK3376417A 521 1.9 84.0 75.3 44.2 3.36 6.8 7.3

GSK3901790A 423 2.3 94.8 86.3 53.6 0.29 7.6 7.1

GSK3816662A 455 3.4 96.2 87.9 61.8 0.02 7.3 5.7

GSK3454697A 490 3.5 89.8 68.8 28.1 13.8 7.7 8.8
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The DEI value reflects the expected in vivo potency of the compounds as the nonspecific 

binding to proteins and phospholipids has been taken into account for the reduced free 

concentration in vivo. We can see that the DEI value of GSK3532706 is almost the same 

as GSK3489723 (8.1 and 8.0, respectively), although GSK3489723 has a lower in vitro 

potency. The lung tissue binding (LTB%) was measured by equilibrium dialysis and also 

estimated by the HPLC based biomimetic binding measurements (HPLC LTB (%)). 

 

Table 7-10 contains the lung retention, solubility and permeability of the selected eight 

compounds. The lung tissue binding (LTB%) was measured by equilibrium dialysis using 

mice lung tissue, while the HPLC LTB% was obtained from the model by using the 

measured HSA and AGP binding using Equation 58 [150]. 

 

Equation 58 

Log k ሺHPLC LTBሻ ൌ 0.73 Log k HSA  1.13Logk AGP  0.077   

n=76         r2=0.78  sem=0.36 

 

(where n is the number of compounds, R2 is the multiple regression coefficient and s is the 

standard error of the estimate.) 

 

Equation 59 was used to convert Logk values to percentage bound (%bound) for HSA, 

AGP and HPLC_LTB. 

 

Equation 59 

Bound ൌ
100. 10୭୩

1  10୭୩  

     

Where n refers to the number of compounds considered in the model, r2 is the multiple 

regression coefficient, sem is the standard error of the estimate, cMR is the calculated 

molar refractivity. ChromLogP is the chromatographic lipophilicity obtained on the C-18 

stationary phase for the neutral form of the molecule. 

 

It can be seen in Table 7-10 that compounds predicted to have higher lung retention, 

have higher lung tissue binding, and lower HPLC DEmax, regardless of their solubility and 

permeability.  
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Table 7-10 The Measured and Calculated Physicochemical Properties of 

Selected JAK Inhibitor Compounds. 

 

 
 

Table 7-10 shows that reasonably long lung retention can be achieved without decreasing the 

solubility (below 100 µg/mL) down to a level with the potential to compromise safety by foamy 

macrophage formation around the solid particle of the inhaled drug. 

 

Compound ID
Solubility 
(μg/mL)

Permeability 
(nm/s

DEmax 
(%)

  LTB 
(%) 

HPLC  
LTB 
(%) 

Predicted 
Lung 

Retention

Observed
Lung 

Retention
GSK3532706A 319 66.0 1.26 97.9 97.4 High High
GSK3489723A 662 23.0 24.9 91.1 81.4 Low Low
GSK3635481A 92.0 732 2.52 98.7 98.2 High High
GSK3780731A 32.0 207 0.14 98.3 98.7 High Low
GSK3376417A 665 12.0 3.36 61.0 92.8 Moderate Moderate
GSK3901790A 767 113 0.29 99.5 98.5 High High
GSK3816662A 509 24.5 0.02 95.1 98.9 High High
GSK3454697A 10.0 181 13.8 95.2 92.8 Low Low
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Figure 7.7-5 Total Lung Concentration Measured After Intra Nasal Dose 

Administration in Solution to Female BalbC Mice 

 

 
 

Figure 7.7-5 Shows the lung concentration time profiles of 7 JAKi compounds following IN dosing 

to mice 

 

With compound solubility removed from the in vivo lung retention profiles and all 

compounds demonstrating a degree of permeability necessary to engage an intracellular 

target, the major differences between compounds with high “intrinsic” lung retention and 

low “intrinsic” lung retention were identified as their albumin, α-1-acid-glycoprotein and 

phospholipid parameters. Although AGP is not a component of the  DEmax equation 

analysis by Valko et al [77], it demonstrates that IAM and AGP are highly correlated.  

 

Furthermore, lung tissue contains mucus that consists mostly of glycoproteins, which 

suggests AGP binding is significant in order to retain the compound in the airways and 

on the surface of the alveoli, particularly for positively charged compounds  

(see Section 4.2.1). Consequently, to achieve long lung retention times, developing 



248 
 

compounds which have lower drug efficiency would appear advantageous, as 

exemplified by GSK3816662.  

 

Table 7-9 shows that the major difference between high and low “intrinsic” lung retentions 

is the AGP and IAM binding, which are much weaker for a compound such as 

GSK3489723 resulting in much shorter lung retention.  

 

7.7.2 Aldehyde Oxidase Metabolism in the Lung? 

 

Lung metabolism is not typically considered a major risk, due to limited expression of the 

main metabolizing enzymes (P450’s or MOA’s), and limited practical evidence that the 

lung represents a major organ involved in the clearance of small molecules [151]. For 

inhaled drugs, metabolism external to the lung can be advantageous if it helps to 

minimise systemic exposure should any adverse pharmacology of the drug be a concern 

(both on- and off-target). AO metabolism of a drug could therefore be of benefit to 

increase systemic elimination and improve its therapeutic index (TI).  However, there is 

emerging evidence that AO is expressed in the respiratory tissues, and this may 

represent a potential risk for maintaining active concentrations of drug within the lung if it 

is a substrate for this enzyme [143][152]. 

 

In Section 7.3 describing the PI3K drug discovery programs, AO metabolism was 

identified as a potential issue when compounds were being developed to treat diseases 

of the lung by IV or oral delivery.  For compounds being developed for pulmonary delivery 

in the JAKi program, Table 7-10 illustrates an important caveat when examining the 

properties that influence lung retention, which is also related to AO metabolism. [151]. 

GSK3780731 was identified as an outlier in this DEmax “intrinsic” lung retention analysis 

because the DEmax was measured to be 0.14%, which should have resulted in good lung 

retention, however, in vivo the lung retention was very low. The reason for this poor 

prediction of lung retention was because the compound was a substrate for AO 

metabolism, which was identified during lead optimisation of the quinazoline series. This 

template contained a potential AO liability [141], but because AO in the lung was 

considered to have little significance (see Section 7.7.2 [151]) for drugs being developed 

for administration via the inhaled route, it was considered to be of potential benefit with 

respect to safety. If an inhaled compound entered the systemic circulation, AO 
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susceptibility could enhance its clearance and potentially increase the therapeutic index 

by reducing systemic exposure to JAK inhibition. 

 

Figure 7.7-6 JAK Lead Templates Aldehyde Oxidase Metabolism Risks 

 

 
 

Figure 7.7-6 shows compounds from the J5 and quinazoline series and their potential sites of 

metabolism by AO 

 

The compounds shown in Figure 7.7-6 are from the J5 and quinazoline series, the 

potential sites of AO metabolism have been highlighted. The quinazolines but not the J5 

series were confirmed as AO substrates using in vitro liver cytosolic assays for mouse, 

rat and human (see Table 7-11). 
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Table 7-11 Quinazoline AO Metabolism as Identified In Vitro using both 

Mouse, Rat and Human Liver Cytosol Assays 

 

 

 

Table 7-11 In vitro liver cytosol results in mouse, rat or human for examples compounds from the 

J5 and quinazoline series. Compounds are shown as AO substrates (Y), non-substrates (N) or 

not determined (ND) 

 

The absence of any AO-induced metabolism in the J5 series at the α-carbons of the 

pyrimidine and pyrazole rings was probably limited by either steric hindrance or by the 

electron withdrawing Cl substituent in the pyrimidine series [153].Table 7-12 illustrates 

which tissues express AO in rat and human, with the highest levels in liver and kidney. 

Notably, AO expression is also evident in pulmonary tissue, albeit at a lower level based 

on immunostaining. 
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Table 7-12 Tissues Expressing AO in Rat and Human [125] 

 

 
 

Table 7-12 shows the AO distribution following immunostaining of multiple tissues in rat and 

human  
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Figure 7.7-7 Immunostaining of AO in Human Lung Tissue [125] 

 

 

 

Figure 7.7-7 shows Images of immunochemical staining of AO in the human respiratory system. 

(a) trachea and bronchium immunostaining in epithelial cells. (c) Immunostaining showing AO 

expression in the alveoli. (b & d) are control sections treated with normal IgG do not show staining. 

 

Figure 7.7-7 and Table 7-12 show that AO is expressed in respiratory tissues and other 

organs such as bladder, kidney and liver in both rat and human  
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Figure 7.7-8 In Vitro Stability of GSK3780731 and GSK3635481 in Mouse 

Lung Homogenate 

 

 
 

Figure 7.7-8 shows the percentage loss over time of GSK3635481 and GSK3780731 after being 

incubated in fresh mouse lung homogenate at a concentration of 0.5 µM, 10 µL samples were 

taken at regular intervals and immediately extracted using protein precipitation. The samples were 

then analysed by LC-MS/MS. 

 

GSK3780731 and its related analogue GSK3635481 when assessed in vivo both 

demonstrated unexpectedly poor lung exposure (Figure 7.7-5). A lung stability assay 

showed both were unstable in mouse lung homogenate (Figure 7.7-8) and had a +16 

metabolite in liver cytosol in common when analysed by LC-MS/MS indicating a potential 

AO metabolite. 
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Figure 7.7-9 Confirming AO Metabolism in Mouse Lung GSK3635481 and 

GSK3780731.  

 

 
 

Figure 7.7-9 shows the results of an in vitro mouse lung homogenate stability assay. Fresh mouse 

lung homogenate was incubated with GSK3635481 and GSK3780731at a concentration of 0.5µM 

and in the presence of an AO inhibitor Isovanillin.  

 

Figure 7.7-9 shows a +16 metabolite was detected for both GSK3635481 and 

GSK3780731 following incubation of in fresh mouse lung homogenate. Metabolism of 

both compounds was inhibited in the presence of isovanillin indicating the loss of 

compound was a result of AO metabolism in the lung [126]. It was also noted that 

isovanillin was unstable in lung tissue, which was possibly due to the presence of 

aldehyde dehydrogenase. It can be seen that as the concentration of isovanillin falls so 

does the concentrations of both GSK3635481 and GSK3780731 and the +16 metabolite 

was formed in both compounds.  
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Figure 7.7-10 GSK3635481 In Vitro AO Metabolism in Human Lung 

 

 
 

Figure 7.7-10 shows the results of an in vitro human lung homogenate stability assay. Human lung 

tissues which has been stored frozen was thawed and homogenised. GSK3635481 was incubated 

alone at a concentration of 0.5µM and in the presence of an AO inhibitor Isovanillin. A 10µL sample 

were taken at regular time intervals and extracted using protein precipitation. The supernatant was 

then analysed by LC-MS/MS for parent and the parent +16 metabolite. Only the 120 minute 

responses are shown in this figure. 

 

Based on an in vitro human lung homogenate assay, it does appear that AO metabolism 

can to occur in human lung tissue. This has not typically been considered previously as 

the lung is generally considered of little metabolic interest [151]. However, for an inhaled 

drug where lung exposure and duration of exposure is a fundamental aspect of the project 

target profile, AO metabolism could impact upon lung exposure and duration of action in 

human which would require either an increase in the therapeutic dose or the frequency 

of dosing. 

 

Based on these data from murine models, subsequent experiments using a human lung 

homogenate assay (Figure 7.7-10) also suggested GSK3635481 was a substrate for AO 

metabolism in human lung tissue.  Taken together, these experiments indicate the 

importance of cross-validating all parameters being evaluated.  For an inhaled drug 
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where lung exposure and duration of exposure is a fundamental aspect of the project 

target profile, where retention and efficiency measurements can play an important role in 

guiding compound optimisation, idiosyncratic factors such as AO metabolism require 

monitoring.  

 

At the beginning of the project, GSK3780731 was identified as an outlier that was was 

predicted to have good lung retention based on the DEmax analysis. However, in vivo lung 

retention studies indicated GSK3780731 had very poor lung retention due to unexpected 

AO metabolism in the lung.  

 

Further lead optimisation of the quinazoline series enabled the team to identify 

compounds which were not substrates for AO as shown in Table 7-13. After extensive 

analysis of this series, it became evident that the 2-position of the bicyclic ring was 

important in determining binding orientation in the AO enzyme. Using computational 

techniques, it was possible to build an in silico crystal structure model based on a 

publication by Coelho et al.  [154]. Based on the description of substrate docking with the 

enzyme (molybdenum cofactor) it was proposed that an extended functional group at 2-

amino position would block the enzyme cofactor (molybdenum) from engaging with the 

enzyme active site and therefore blocking oxidation of the 4-position on the quinazoline 

ring by AO (Figure 7.7-11).  
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Table 7-13 Quinazoline Series Compounds which were Substrates and Non-

Substrates for AO 

 

 
 

Table 7-13 shows AO substrates from the quinazoline series with their metabolites and 

compounds from the same series which were shown not to be AO substrates 
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Figure 7.7-11 Aldehyde Oxidase Substrate Binding Model  

 

 
 

Figure 7.7-11 shows a proposed AO substrate binding model of the active site and enzyme 

cofactor (Molybdenum cofactor). This work is referenced to the internal communication, Lewell, 

N59079-33. 

 

7.7.3 Understanding the Pharmacodynamic and Pharmacokinetic (PKPD) 

Relationship in the JAKi Drug Discovery Project 

 

To demonstrate target engagement and relate compound concentration to effect over 

time, a multiple time point dose response study was designed to assess the PKPD 

relationship and to develop a physiological based pharmacokinetic model (PBPK) [155], 

see section 7.8. The purpose of the PKPD and PBPK modelling was to help put into 

context the lead optimisation process which utilised DEmax to develop and select 

compounds with improved lung retention by linking target engagement and efficacy to the 

physicochemical characteristics of the JAKi inhibitors. This type of modelling is ultimately 

used to understand the concentration effect relationship with the aim of building a more 

complete understanding of the pharmacology and target engagement, this information 

can then be used to understand and predict clinical dose of lead compounds which have 

the potential of being selected for development and progression to clinical studies. 
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The criteria for JAK inhibitors are different from general inhaled administration such as β-

agonists or muscarinic antagonists where the receptor is on the surface of the airways. 

In this project, an intracellular lung target is involved, raising the importance permeability 

from the perspective of accessing the target, but also regarding pulmonary absorption 

from the lung and the unwanted systemic consequences.  

 

To assess whether long lung duration was advantageous for the desired pharmacological 

activity, PKPD experiments were designed at multiple time points unlike the traditional 

one-time point (usually at the Cmax) studies.   Figure 7.7-12 and Figure 7.7-13 show the 

classical and more informative multiple time point longitudinal PD profiles for 

GSK3532706. However, experiments expressed in this way do not show the fundamental 

link between PK and PD which is required to fully understand target engagement. 

GSK3532706 was selected because of its good lung retention profile based on the 

numerous experimental parameters discussed earlier and was used as a tool compound 

during the lead optimisation phase of the JAK program in this PKPD, PBPK and PBPK/PD 

analysis. 
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Figure 7.7-12 A Classical PD study Design and the Results Obtained for 

GSK3532706 

 

  
 

Figure 7.7-12 Shows a classical mouse PD study looking at IL4/13 cytokine induced pSTAT 

response in the lung using in female BalbC mice, n=6/dose group, vehicle control n=4. The IL4/13 

cytokine was given intranasally 30 minutes before the animals were terminated and lungs removed 

for analysis. 
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Figure 7.7-13 The PKPD Profile of GSK3532706 using a Longitudinal PKPD 

Model 

 

 

 

Figure 7.7-13 shows a time course mouse PD study looking at IL4/13 cytokine induced pSTAT 

response in the lung using in female BalbC mice, n=6/group, vehicle control n=4. The IL4/13 

cytokine was given intranasally 30 minutes before the animals were terminated and lungs removed 

for analysis. 

 

Figure 7.7-14 to Figure 7.7-16 show the total lung, total blood and unbound drug 

concentration and the observed %pSTAT5 cytokine inhibition, the biomarker for target 

engagement with JAK as described in Section 5.4. We can see in Figure 7.7-14 and 

Figure 7.7-15 that higher tissue or blood concentrations of drug results in greater 

inhibition of cytokine induced pSTAT response. 



262 
 

Figure 7.7-14 The Lung Tissue Concentration Versus %pSTAT Response. 

 

 

 

Figure 7.7-14 Shows a PKPD plot showing drug concentration in lung tissue following an 

intranasal dose over a range of 0.1-10mg/kg versus pSTAT response, following IL4/13 cytokine 

induction in the lung using female BalbC mice, n=6/dose group. The IL4/13 cytokine was given 

intranasally 30 minutes before the animals were terminated and lungs removed for analysis. 

Vertical lines represent the IC50 and IC90 measured in vitro using lung fibroblasts. 

 

Figure 7.7-14 shows that the lung tissue concentrations of GSK3532706 do not vary 

significantly across the dose range (0.1-1mg/kg), however, the blood concentrations from 

the same experiment in Figure 7.7-15 are clearly separated for each dose group. A more 

pharmacologically relevant way to express these data was to express the blood 

concentrations of GSK3532706 as unbound or free blood concentrations as shown in 

Figure 7.7-16. 
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Figure 7.7-15 The Blood Concentration Versus %pSTAT Response. 

 

 

 

Figure 7.7-15 is a PKPD plot showing drug concentration in blood following an intranasal dose 

over a range of 0.1-10mg/kg verses pSTAT response, following IL4/13 cytokine induction in the 

lung using female BalbC mice, n=6/dose group. The IL4/13 cytokine was given intranasally 30 

minutes before the animals were terminated and lungs removed for analysis. Vertical lines 

represent the IC50 and IC90 measured in vitro using lung fibroblasts. 
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Figure 7.7-16 The Unbound Blood Concentration Versus %pSTAT 

Response. 

 

 

 

Figure 7.7-16 is a PKPD plot showing unbound drug concentration in blood following an intranasal 

dose over a range of 0.1-10mg/kg verses pSTAT response, following IL4/13 cytokine induction in 

the lung using female BalbC mice, n=6/dose group. The IL4/13 cytokine was given intranasally 30 

minutes before the animals were terminated and lungs removed for analysis. Vertical lines 

represent the IC50 and IC90 measured in vitro using lung fibroblasts. 

 

It can be seen from Figure 7.7-16 that unbound blood concentration clearly shows 

separation between each dose group and can now be related to the pharmacological 

effect, with greater confidence that these concentrations are more directly related to the 

concentration in the lung. The reason for this is based on the free drug theory, where only 

the free drug is available to bind to the target receptor of enzyme, the free concentration 

should be the same or similar in all tissues at steady state and for a drug delivered via 

the lung the free blood concentration must be in solution and have the opportunity to bind 

the target of interest (JAK) as it passes through the lung. In addition to this, the lung blood 
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interface is approximately one cell thick, that the blood concentrations should be very 

close to the pharmacologically relevant free lung concentrations.  

 

We can see that higher concentrations of the compound in all the three matrices (lung 

tissue, blood, unbound blood:  (Figure 7.7-14, Figure 7.7-15 & Figure 7.7-16) can be 

related to the pharmacological inhibition that is expressed as pSTAT5 following cytokine 

induction.  

 

To help build a more robust PKPD profile, GSK3532706 was dosed at 10 mg/kg IN 

(suspension) in a longitudinal duration of action study, where a lung pSTAT5 profile was 

measured at 1, 1.5, 2.5 and 4.5 hours post dose of the JAK inhibitor (Figure 7.7-13). The 

IL4/13 challenge was given 0.5 h before each terminal timepoint due to the transient 

nature of the pSTAT5 response that would be measured. Robust inhibition of pSTAT5 

has been observed at 1, 1.5 and 2.5 h post dose, however, no inhibition was observed at 

4.5 hours. This was despite our knowledge that the lung retention PK study had shown 

good lung retention with concentrations of approximately 200 ng/g of compound in lung 

at 8 hours post IN dose (dosed from solution, see Figure 7.7-5).  

 

An important factor for the PKPD model is doses administered were typically delivered 

as suspensions and this affects the lung retention profile. The reason the PD model was 

dosed as IN suspensions was primarily due to the higher dose concentration being 

required to deliver a high IN 10 mg/kg dose to the lung (50 µL dose volume), which 

exceeded the solubility of GSK3532706 and most other compounds subsequently dosed 

in this model. In addition, the cytokine PD model did not tolerate the PK solubilised 

formulation necessitating the use of a simple pH adjusted saline formulation. The impact 

of administering the compound as a suspension resulted in much higher lung retention, 

which was driven by a slower compound dissolution rate. The problem when determining 

lung concentration following administration as a suspension or powder is that it is not 

possible to measure what fraction of the lung concentration is in solution. This is because 

when the lungs are homogenised for analysis, any undissolved compound is dissolved. 

This means an unknown fraction of the total lung concentration measured is available to 

engage the target. The impact of this can be seen in Figure 7.7-17, where there is no 

obvious separation in lung concentration across the time course of this experiment: 

increased lung retentions illustrated by data clustering means it is not possible to relate 

lung concentration to the pharmacological effect. However, in Figure 7.7-18 where 
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unbound blood has been plotted against the pSTAT response, there is a clear separation 

between the sample times resulting in a robust PKPD correlation.  This is shown by an 

increase in GSK3532706 blood concentration that reduced pSTAT5 inhibition back to 

baseline control levels, which was statistically significant based on a 95% confidence 

interval, with the maximum inhibition being observed between 1.5 and 2.5 hours after 

administration (Figure 7.7-19). 

 

Figure 7.7-17 A Longitudinal PKPD Plot Showing the Total Lung 

Concentration of GSK3532706 Versus %pSTAT Response. 

 

 

 

Figure 7.7-17 is a PKPD plot showing total concentration in lung following an intranasal dose of 

10mg/kg over a time course of 1 to 4.5 hours verses pSTAT response, following IL4/13 cytokine 

induction in the lung using female BalbC mice, n=6/dose group. The IL4/13 cytokine was given 

intranasally 30 minutes before the animals were terminated and lungs removed for analysis. 

Vertical lines represent the IC50 and IC90 measured in vitro using lung fibroblasts. 
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Figure 7.7-18 A Longitudinal PKPD Plot Showing the Unbound Blood 

Concentration of GSK3532706 Versus % pSTAT Response 

 

 

 

Figure 7.7-18 is a PKPD plot showing unbound drug concentration in blood following an intranasal 

dose of 10mg/kg over a time course of 1 to 4.5 hours verses pSTAT response, following IL4/13 

cytokine induction in the lung using female BalbC mice, n=6/dose group. The IL4/13 cytokine was 

given intranasally 30 minutes before the animals were terminated and lungs removed for analysis. 

Vertical lines represent the IC50 and IC90 measured in vitro using lung fibroblasts. 
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Figure 7.7-19 The Blood Concentration of GSK3532706 and %pSTAT5 

Response as a Function of Time. 

 

 

 

Figure 7.7-19 is a PKPD plot showing unbound drug concentration in blood following an intranasal 

dose of 10mg/kg and the pSTAT response over a time course of 1 to 4.5 hours, following IL4/13 

cytokine induction in the lung using female Balb/C mice, n=6/dose group. The IL4/13 cytokine was 

given intranasally 30 minutes before the animals were terminated and lungs removed for analysis. 

 

As expected, Figure 7.7-19 shows high blood concentration corresponds with strong 

inhibition at the 1 h time point, however, after 1.5 and 2.5 hours the blood concentration 

dropped but the inhibition remained high, indicating a slight offset between the Cmax and 

the Emax (maximum concentration and maximum effect), which could be attributed to an 

indirect effect. By plotting the blood concentration and % pSTAT5 inhibition as the 

measure of the pharmacological activity in Figure 7.7-20, a hysteresis loop was observed, 

which could be due to an indirect effect, or alternatively to a compound bio-distribution 

delay with respect to inhibition of the cytokine induced pSTAT response (Figure 7.7-20).  
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Figure 7.7-20 Hysteresis of % pSTAT5 Inhibition Verse the Blood 
Concentration of GSK3532706A 

 

 
 

Figure 7.7-20 is a PKPD plot showing a hysteresis loop when the pSTAT response is plotted 

against drug concentration in blood following an intranasal dose of 10mg/kg observations were 

taken over a time course of 1 to 4.5 hours, following IL4/13 cytokine induction in the lung using 

female BalbC mice, n=6/dose group. The IL4/13 cytokine was given intranasally 30 minutes before 

the animals were terminated and lungs removed for analysis.  
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Figure 7.7-21 The Temporal Displacement Between the Blood Concentration 

(Central Compartment) and the Pharmacological Effect Observed in the 

Lung. 

 

 

 

Figure 7.7-21 is a schematic describing an Effect Compartment (Link) PKPD model, where K01 is 

the absorption rate, K01 is the elimination rate, K12/21 is the transfer rate between the peripheral 

and central compartments and Keo is the rate constant between the PK compartment and effect 

compartment 

 

The data shown in Figure 7.7-19 indicates that there is a temporal delay between the 

drug concentration and effect time courses, this type of delay could be due to several 

factors such as drug tissue distribution, active metabolites or slow ligand-receptor on / off 

rates. The reasons for the delay seen in the pSTAT response is most likely due to 

distribution or slow enzyme kinetics, particularly as there is no evidence to suggest an 

active metabolite of GSK3532706 is being formed. This type of delayed response can be 

described by either an Effect Compartment (Link) or Turnover PKPD model, which will 

be described in later in Section 7.8.  
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Figure 7.7-21 is a schematic of a Link model. If there is a delay between observed 

pharmacological effect and the blood/plasma concentration, a plot of the response verses 

the concentration will result in a hysteresis loop that is seen in the pSTAT PKPD study 

shown Figure 7.7-20. The Link model is valid where there is an apparent temporal 

displacement between concentration and response. The purpose of fitting an effect 

compartment is to estimate the Keo, which is the rate constant describing the delay 

between the central compartment concentrations (C), the effect compartment 

concentrations (Ce) and the pharmacodynamics which is described by an Emax/Imax 

model for a competitive inhibitor. The Emax/Imax model is described by Equation 60. 

 

Equation 60 

E ൌ 1 
୫ୟ୶.େొ

େହାେొ  or E ൌ E0 െ
୍୫ୟ୶.େొ

୍େହାେొ 

 

E is the response, Emax is the maximum effect, C is the compound concentration, EC50 is the half 

maximal effect of the compound and N is the hill slope. Imax is the inhibitory equivalent, either 

form of the equation can be used.  

 

When an appropriate PK model is fitted to model the blood concentration time course, 

the Keo can be then be correctly determined, which results in the hysteresis loop 

collapsing to allow prediction of the effect compartment concentrations. The relationship 

between the concentration and effect can then be analysed using a simple Emax/Imax 

model (Equation 60). The result of this process can be seen in Figure 7.7-22 (Graph B) 

where the Link model predicts the observed pSTAT.  
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Figure 7.7-22 The PKPD Data Modelled Using a Link Model  

 

A)        

 

B) 

 
 

Figure 7.7-22 Graph A. show the PK/PD effect vs blood concentration hysteresis loop and the 

collapsed hysteresis loop for the effect vs effect concentration. Graph B. shows the predicted 

pSTAT vs time profile and the experimental observations (red circles). 
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Figure 7.7-23 shows the simulated blood and effect compartment concentration-time 

curves and the effect-time curve from the PKPD data in Figure 7.7-18. It can be seen that 

the effect compartment concentration now inversely correlates (mirrors) with the pSTAT 

response as you would see for a direct effect. 

 

Figure 7.7-23 Simulated Blood and Effect Compartment Concentration-Time 

Curves and the Effect-Time Curve 

 

 

 

Figure 7.7-23 shows the simulated blood and effect compartment concentration time curves and 

the effect time curve from the PKPD data in Figure 7.7-18 and modelled using the Link model 

described in Figure 7.7-21. 

 

Table 7-4 below shows the different dose estimation methods used to calculate the 

clinical dose and the data required for each method.  

Table 7-4Table 7-14 shows the output parameters from the Link model these include 

Imax, IC50, Gamma (Hill slope) and Keo for GSK3532706, these can be used to predict the 

effect at different doses to avoid further in vivo studies or to help refine the design future 
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in vivo PKPD experiments. These parameters could also be employed in more complex 

clinical PKPD and dose predictions using appropriate scaling techniques. 

 

Table 7-14 Link Model Output Data for the PKPD Response to GSK3532706 

 

Parameter Value 

E0 (%) 100 

Imax 98 

IC50 (ng/mL) 233 or [23]u 

Gamma 3.4 

Keo (1/h) 0.48 

 

 

Table 7-14 shows the Link model output parameter for GSK3532706. The human In vitro fibroblast 

cell potency was 5 ng/mL. 

 

The Link model built based on the 10mg/kg data for GSK3532706 was then used to 

predict the pSTAT profile for doses of 3 and 30 mg/kg (Figure 7.7-24). It can be seen 

from this simulation that a 3mg/kg dose was predicted to have very low pSTAT inhibition, 

but the 30mg/kg data indicated 100% pSTAT inhibition for an extended period of up to 4 

hours with ca. 60% inhibition being maintained for up to 6 to 7 hours. To help validate the 

Link model, an in vivo PKPD study was performed at 30mg/kg: the observed data has 

been overlaid on the simulated data in Figure 7.7-24. The data shows that the model did 

predict the 30mg/kg pSTAT profile in terms of Emax and duration, no additional model 

fitting was done, the error bars represent 95% confidence intervals (CI). 
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Figure 7.7-24 Modelled pSTAT vs Time Profile for a 3, 10 & 30mg/kg IN Doses 

with Experimental Observations Overlaid 

 

 

 

Figure 7.7-24 shows the predicted pSTAT vs time profile for a 3 & 30mg/kg IN dose and the 

experimental observations (black circles with 95% CI, 30mg/kg only). The predicted data is based 

on the 10mg/kg Link model.  

 

7.7.4 Confirming Lung Duration is Required for Target Engagement and 

Cytokine Induced pSTAT5 Inhibition. 

 

The lung retention profiles described in Figure 7.7-5 clearly showed that the tool 

compound GSK3532706 had an extended lung retention profile up to 8 hours,  whereas 

GSK3489723 was poorly retained, with no quantifiable levels in the lung 1 hour post IN 

dose  (NB these profiles were all generated from solution doses to determine “intrinsic” 

lung retention). To confirm that lung retention was required for efficacy (TE), a cytokine 

duration of action PKPD study was performed at 10 mg/kg IN in mice with GSK3489723 

(Figure 7.7-25 and Figure 7.7-26).  
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The unbound blood concentrations are clearly very low for GSK3889723  

(Figure 7.7-25) and are below the fibroblast IC50 at each timepoint, which was not the 

case for GSK3532706, where unbound blood concentrations were above the IC50 at all 

efficacious timepoints and above the IC90 at 1hour post dose. Whilst lung concentrations 

at the earlier timepoints for GSK3889723 were above the fibroblast IC50 (Figure 7.7-26), 

as previously discussed with GSK3532706, they do not truly reflect active compound due 

to its formulation as a suspension. At these earlier timepoints, the percentage of active 

drug was low and therefore no efficacy was seen: as the compound dissolved it would be 

absorbed (removed) from the lung very quickly, therefore TE was not sufficient to inhibit 

pSTAT.  

 

Comparing the PKPD profiles of GSK3889723 and GSK3532706 retrospectively confirms 

that the drug efficiency and retention parameters can be used to select compounds for 

progression through a pulmonary delivery focussed drug discovery project.   
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Figure 7.7-25 The Measured Unbound Blood Concentration and the 

%pSTATS Cytokine Inhibition GSK3489723A. 

 

 
 

Figure 7.7-25 is a PKPD plot showing unbound drug concentration in blood following an intranasal 

dose of 10mg/kg over a time course of 1 to 4.5 hours verses pSTAT response, following IL4/13 

cytokine induction in the lung using female BalbC mice, n=6/dose group. The IL4/13 cytokine was 

given intranasally 30 minutes before the animals were terminated and lungs removed for analysis. 

Vertical lines represent the IC50 and IC90 measured in vitro using lung fibroblast cells. 
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Figure 7.7-26 The Measured Total Lung Concentration and the %pSTATs 

Cytokine Inhibition GSK3489723A. 

 

 
 

Figure 7.7-26 is a PKPD plot showing drug concentration in lung following an intranasal dose of 

10mg/kg over a time course of 1 to 4.5 hours verses pSTAT response, following IL4/13 cytokine 

induction in the lung using female BalbC mice, n=6/dose group. The IL4/13 cytokine was given 

intranasally 30 minutes before the animals were terminated and lungs removed for analysis. 

Vertical lines represent the IC50 and IC90 measured in vitro using lung fibroblasts. 

 

7.8 PBPK and PBPKPD Analysis of JAK Inhibitors 

 

An alternative to the empirical PK and PKPD modelling utilised previously and discussed 

in Section 7.7.3 is PBPK, which utilises the physiological composition of various tissues 

and estimates a compound’s distribution. This PBPK model can then be linked to a PD 

model to create a dynamic PBPKPD model. Another advantage of PBPK is that it opens 

up the possibility to look at exposure and potential pharmacology in other compartments, 

which are not typically accessible from in vivo studies or would require large number of 

animals to generate composite profiles. This PBPK based simulation approach can be 
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helpful in not only understanding drug efficacy but also safety, which can offer new insight 

into how program strategy should evolve to improve the therapeutic index of a compound. 

 

Figure 7.8-1 Why Use PBPK? 

 

 
 

Figure 7.8-1 is a schematic showing the advantages of PBPK over simple PK profiles of the central 

compartment. 

 

As most drugs exert their pharmacological effect in tissue compartments other than the 

systemic circulation (blood/plasma), understanding their concentration-time profile and 

distribution in different biophases is an important factor in drug discovery. However, it is 

impractical to measure the exposure profiles in many compartments such as lung, liver 

or brain because of their inaccessibility to repeat sampling. PBPK is a mechanistic tool 

that can be used to help understand the profile of a drug in multiple compartments in the 

body in both pre-clinical species and human. By understanding the PK and distribution in 

multiple compartments, it then becomes possible to link the pharmacological effect to the 

PK and to link PBPK to PKPD. 
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7.8.1 Building a PBPK Model Using the Tool Molecule GSK3532706 

 

It is possible to build a PBPK model using minimal measured data: for certain programs 

such as GastroPlus™, it is possible to build one purely from the structure of a compound. 

However, in vitro and in vivo inputs are required to help validate the output from these 

models, which can then be used to understand the in vivo data, or design better in vivo 

studies by predicting future PK and PKPD outcomes. 

 

To build a mouse PBPK model for GSK3532706, in vitro CLi, whole blood binding, lung 

tissue binding, biomimetic data along with IV and IN in vivo data was used. The IV in vivo 

data ensures that the underlying PK model is accurate with respect to CLb, Vdss and half-

life.  
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Figure 7.8-2 Intravenous Mouse Blood and Intranasal Blood and Lung 

Profiles for GSK3532706 

 

 

 
 

Figure 7.8-2 shows the in vivo IVinf blood and IN blood and lung concentration time profiles in 

Balb/C mice following doses of 1mg/kg 

 

GSK3532706 was dosed to mice as an IV infusion (1 mg/kg) and as an intranasal solution 

(1 mg/kg). In vivo lung and blood concentration profiles are described in the graphs above 
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in Figure 7.8-2, Graph A shows the IV  infusion blood concentration time profile and Graph 

B shows the lung and blood concentration profiles following IN dosing. The IV PK 

characteristics of GSK3532706 were high blood clearance (ca. 126 mL/min/kg or mouse 

liver blood flow), a large Vdss (7.4L/kg), low F (<10%) and good lung retention based on 

the DEmax hypothesis as described earlier in Section 7.6. The IN blood profile shows flip 

flop kinetics where the absorption rate (Ka) is smaller than the elimination rate (Ke). The 

effect of this switch in Ka and Ke rates is the downward curve becomes a reflection of 

actual ka while the upward part of the curve is the actual representation of ke. Therefore 

the "flip-flop" part of curve is the so-called flip-flop kinetics. 
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Figure 7.8-3 Mouse PBPK Model for GSK3532706, IV Blood/Plasma, IN 

Blood and IN Lung Profiles 

 

A. 

 

B. 
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C. 

 
 

Figure 7.8-3 shows the PBPK model simulation outputs. Graphs A. IVinf plasma concentrations, 

B. IN Plasma concentrations and C. IN Pulmonary concentrations. The models were developed 

using mouse PK data from a mouse IV infusion study and an intra nasal lung retention study, 

where lung and blood profiles were generated from the same study. The model simulations show 

the model has been parametrised to give a good fit of both the IV plasma and intra nasal lung and 

plasma in vivo profiles. A B:P (Blood:Plasma) ratio of 0.8:1 was used to convert blood to plasma 

or plasma to blood as required. 

 

The IV data was modelled to establish the underlying pharmacokinetic profile of 

GSK3532706. In vitro and in silico physicochemical, in vitro intrinsic clearance and in vivo 

data were used to help refine the model, depending on availability of data. The in vivo IV 

blood/plasma profile was well described by the model as can be seen in Figure 7.8-3. 

The mouse pulmonary physiology as described in Section 6.10.2 was then used to build 

a model to describe the IN lung and blood concentration time profiles. The in vivo IN lung 

and blood/plasma profiles were also well described by the models. 
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Figure 7.8-4 GSK3532706 Blood and Lung Profiles after 10mg/kg IN Dose 

(Suspension) 

 

A. 

 

B. 

 
 

Figure 7.8-4 shows 10mg/kg PBPK simulations using the PBPK model in Figure 7.8-3. Graphs A. 

IN Plasma concentrations and B. IN Pulmonary concentrations. The experimental in vivo data was 

generated from a 10mg/kg study (suspension dose) using female Balb/C mice n=3/timepoint, the 

in vivo experimental data has been overlaid on the simulations. 
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As the aqueous solubility of GSK3532706 was in the low to moderate range  

(ca. 0.400-0.600 mg/mL), doses ≥1 mg/kg (0.4 mg/mL) were administered as 

suspensions. If modelling in vivo PK with a PBPK model is to be of value, predicting these 

suspension doses with reasonable accuracy is necessary. To help account for the 

fraction of dose which will be dissolved versus undissolved, an input function within 

GastroPlus™ called mixed multiple dosing (MMD) was used to help model the lung 

deposition and absorption. 

 

Figure 7.8-4 shows that the blood and lung concentrations for GSK3532706 after a 10 

mg/kg IN dose (suspension) were predicted well by the PBPK model: ca. 100,000 ng/g 

was predicted vs ca. 50,000 ng/g measured in lung 1 hr post dose and ca. 400 ng/mL 

was predicted vs ca. 500 ng/mL measured in blood 1 hr post dose. Concentrations from 

IN suspension doses at 3 and 30 mg/kg were also well predicted by the model, as were 

blood/plasma and lung concentrations from IN doses over a range of 0.1, 0.3 & 1 mg/kg 

where the dose was typically in solution. 

 

7.8.2 Linking PBPK to PKPD to Build an Integrated PBPKPD Model 

 

As described in Section 7.7.3, PKPD modelling can be performed using direct effect 

models i.e. where the PD response mirrors the PK exposure profile. Indirect 

concentration response profiles can be modelled using a Link model which has been 

discussed and shown in Section 7.7.3 and Figure 7.7-21, which can be used where there 

is an offset in the peak PK concentration and the PD response. However, an indirect 

response model or Turnover model can also be used to describe this type of PKPD offset. 

 

Indirect response models have been described in detail by Jusko et al. [156]. There are 

four basic indirect response models which have been characterised by Dayneka et al 

[157] which describe the indirect PD response after drug administration, and are detailed 

in Figure 7.8-5. This type of model is based on the effect a drug has on a biological 

system by either inhibition or stimulation of factors that control the production or loss of a 

response. The model can help interpret PD effects that are not solely due to 

biodistribution effects but rather where a drug is affecting the production or loss of a 

response; the PD response from each model is described in Figure 7.8-5. 
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Figure 7.8-5 Description of the Different Indirect Response Models and how 

they Describe the Pharmacodynamic Response of a Drug [157] 

 

 

 

A Class I indirect response model using the differential equation shown in Figure 7.8-6 

can also be used to describe this offset between compound exposure and PD response 

for the JAK in vivo pSTAT PD model. This model is also semi-mechanistic with respect 

to the pharmacological processes of the target.  
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Figure 7.8-6 An Alternative Approach to Explain the Slight Offset of the 

Blood Concentration (Central Compartment) and the Effect Observed in the 

Lung. 

 

 
 

Figure 7.8-6 shows a schematic of the JAK pathway and an inhibitory turnover model with the 

differential equation which mathematically describes the change in response with time. 

dR/dt = change in response with time, Kin = turnover rate, the rate of input of production, kout = 

fractional turnover rate or loss, R = response to a drug, I(C) = Imax model 

 

 

 

 

 

 



289 
 

Figure 7.8-7 PBPKPD Modelling for GSK3532706 using a Turnover Model 

A. 

 

B.   

 
 

Figure 7.8-7  Graph A shows the model predicts for the observed IN PK and pSTAT inhibition at 

10 mg/kg, the predicted IN blood/plasma PK profile is shown by the solid green line and the 

observed in vivo PK concentrations are overlaid as green squares. the predicted pSTAT profile is 

shown by the solid red line and the observed pSTAT vales are overlaid as red squares. Graph B 

shows the predicted PKPD profiles for a 30mg/kg IN dose 
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It can also be seen in Figure 7.8-7 that the pSTAT5 PD response model also fits the 

experimental data very well, the predicted effect is shown by the red line and the observed 

data by the square red boxes. The PBPK model had already been established and 

discussed, see Figure 7.8-4. This then enabled a prospective model of a 30mg/kg IN 

PKPD profile to be simulated: the resulting PKPD in vivo data has been overlaid on the 

modelled data in Graph B. The in vivo data and the model correlate very well without any 

further optimisation required to fit the data. This model was then used to predict and 

design more complex in vivo PKPD studies such as the 8-Day Cytokine Model and House 

Dust-Mite Model, which are described in the sections below. 

 

Table 7-15 A Comparison of the Link PKPD and PBPKPD Model Output 

Parameters 

 

 
 

Table 7-15 shows a comparison of the output for the Link and indirect PKPD models for 

GSK3532706 in the mouse pSTAT in vivo model 

 

As can be seen from Table 7-15, the IC50’s from this PBPKPD indirect turnover model 

and the link model are similar to each other.  The unbound in vivo potency is also similar 

to the in vitro human fibroblast cell data (6 ng/mL) indicating these models show some 

correlation with human in vitro data and could be used to help predict human clinical 

target engagement. 
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7.8.3 Developing More Complex 8-Day Cytokine Mouse Model  

 

The 8-Day Cytokine Mouse model which is a pre-clinical model of airway inflammation is 

described in Figure 7.8-8. This model was used to measure a functional lung eosinophilic 

response to daily IN repeat administration of IL-4/13 cytokine. After repeated challenge 

with IL-4/13 to the lungs, there is an activation of inflammatory processes which include 

the release of IL-5 response in these tissues, which results in the migration of eosinophils 

to the lung.  Eosinophils, along with mast cells are key cells involved in the innate immune 

response [158]. Lung eosinophils are a classical immunoinflammatory response in 

allergic asthma and used as a biomarker for compound activity as described in  

Section 5.4, Figure 5.4-2 and  Figure 5.4-3. Although there are other models of airway 

inflammation which are similar and have been published [159], the 8-day Cytokine Mouse 

Model was developed as part of the JAK program.  

 

Figure 7.8-8 An 8-Day Cytokine Challenge PKPD Model 

 

 
 

Figure 7.8-8 shows a schematic of the 8-day cytokine challenge mouse model of airway 

inflammation, the compound dosing regimen and PD endpoints 
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Figure 7.8-9 The PBPKPD Analysis of the Effect of GSK3532706 in the 8-Day 

Repeat Cytokine Mouse Model 

 

 

 

Figure 7.8-9 shows the modelled PBPKPD data for GSK3532706 with observed experimental PK 

and PD data from the 8-day cytokine mouse model 

 

The data shown in Figure 7.8-9  for GSK3532706 provided confidence in the models’ 

ability to predict the pSTAT5 target engagement response. They were then used to help 

define a dose level and dosing regimen to maximise unbound lung exposure and 

associated target engagement in order to produce a functional response that could be 

measured by inhibition of eosinophils in the lung. Although GSK3532706 was not optimal 

in terms of lung exposure and retention, it represented the best tool compound within the 

program to test the efficacy of an inhaled JAK inhibitor in terms of target engagement and 

functional efficacy. 

 

Figure 7.8-9 shows the predicted outcomes of the PK exposure following repeat dosing 

of GSK3532706 and its expected effect on target engagement and lung eosinophilia. This 

figure describes the predicted unbound blood concentration following BID 10 mg/kg 

intranasal dosing, which was set to achieve maximum target engagement in the lung 
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without any adverse pharmacology in the animal. The plot has been annotated with 

various potency markers, which include an in vivo IC50 from the pSTAT5 TE model and 

an in vitro whole cell fibroblast IC50. Measured blood concentrations are also overlain with 

the predicted blood profiles to show how predictive the PK model is. The figure shows 

that the average concentration (Cave) is above the fibroblast potency for approximately 6 

hours of the dosing interval and only above the in vivo potency for about 1 hour. The 

pSTAT5 inhibition profile is taken from the model to show the expected level of target 

engagement throughout the dosing interval. The eosinophil inhibition was measured on 

day 8 in lung tissue and indicates a significant effect by up to 60% based on a 95% CI. 

These data demonstrate that PBPKPD analysis can helps predict potential outcomes for 

a bespoke in vivo model and relate these to the in vivo PKPD data in terms of target 

engagement and functional response. 

 

7.8.4 House Dust-Mite (HDM) Mouse In Vivo Efficacy Model 

 

A second mouse model (the HDM model; Figure 7.8-10) was used to measure a 

functional lung eosinophilic response to HDM sensitised and re-challenged mice. The 

HDM model is an accepted disease relevant model of airway inflammation for compound 

evaluation in asthma [157].  Asthma is a chronic disease resulting from intermittent or 

continued aeroallergen exposure leading to airway inflammation [159] and HDM is a 

known allergen which plays a part in allergic inflammation of the airways.  Continuous 

exposure to HDM elicits severe and persistent eosinophilic airway inflammation in mouse 

models of airway inflammation [159].  
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Figure 7.8-10 Schematic of a House Dust-Mite (HDM) Mouse In Vivo Efficacy 

Model 

 

 
 

Figure 7.8-10 shows a schematic of the HDM sensitisation period, HDM re-challenge, the 

compound dosing options and PD endpoints. 

 

After repeated challenge with HDM to the lungs during a 3-week period of 

sensitisation, there is an activation of inflammatory processes which include the 

release of IL-5 response in the lungs, which following activation of inflammatory 

mechanisms as previously described, results in the migration of eosinophils to the 

lung.  Figure 7.8-11 shows a schematic of the proposed events following the HDM 

sensitisation and re-challenge in a pre-clinical mouse model of airway 

inflammation. The aim of a JAK inhibitor is to inhibit the inflammatory processes 

described in Figure 7.8-11 and therefore produce clinical efficacy in moderate to 

severe asthma where the current standard of care is not effective. 
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Figure 7.8-11 Proposed Inflammatory Processes of HDM Re-Challenge 

Model (not published) 

 
 

Figure 7.8-11 is a schematic showing the proposed immune inflammatory processes that occur 

following HDM sensitisation and re-challenge. The schematic is based on in vivo HDM model 

observations but does not represent a quantitative analysis of the inflammatory processes 

described. 

 

The positive efficacy seen in 8-Day Cytokine model with GSK3532706 allowed 

progression to the established disease relevant HDM model. The data shown in Figure 

7.8-12 shows the predicted outcomes of the PK exposure following repeat dosing of 

GSK3532706 and its expected effect on target engagement and lung eosinophilia 

following BID 10 mg/kg intranasal dosing and is annotated with the same potency 

markers as the 8-Day model. The model appears to generally under predict the Cmax and 

blood exposure in this study. Cave is above the fibroblast potency for approximately 6-7 

hours of the dosing interval, and only above the in vivo potency for about 1 hour, which 

is similar to the 8-Day Cytokine model duration of exposure.  

 

The predicted pSTAT5 inhibition profile was taken from the PBPKPD turnover model 

(acute challenge IL4/13 PD model) to show the expected level of target engagement, 

because the PK and potency limitations of this tool molecule rendered full and continuous 

TE throughout the dosing interval impossible. As with the 8-Day Cytokine model 

eosinophil inhibition was measured on day 8 in lung tissue, and produced a very similar 
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eosinophil inhibition (inhibition by up to 60% based on a 95% confidence interval (CI)). 

Importantly in this experiment, a measure of pSTAT5 was also incorporated in the study 

protocol, which was taken 4 hours after the HDM re-challenge. The importance of this 

pSTAT measurement was to give an observed measure of TE (pSTAT) from the in vivo 

model to overlie and compare to the simulated pSTAT profile that was built from the acute 

Cytokine PD model (Figure 7.8-7).  It can be seen from Figure 7.8-12 that there was 

significant inhibition of pSTAT5 based on a 95% CI and this response overlays the TE 

model well, despite the data being taken from different models. By connecting 

concentration of the compound at the site of action (PK) with a measure of target 

engagement (pSTAT5 inhibition), followed by an associated functional response 

(eosinophil inhibition), agreement with the Three Pillars validation of efficacy has been 

accomplished [16]. A repeat of this study was completed to confirm repeatability and 

robustness the data. 

 

Figure 7.8-12 Effect of GSK3235706 in the Mouse HDM Model Experiment 1 

 

 
 

Figure 7.8-12 shows the modelled PBPKPD data for GSK3532706 with observed experimental 

PK and PD data from the HDM mouse model 
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Figure 7.8-13 shows the results from the second HDM re-challenge study which was 

performed to show reproducibility and robustness of the first experiment shown in Figure 

7.8-12.  It can be seen that in this second study the measured blood exposures are lower 

than predicted and approximately 10 times lower than observed in the experiment 1. The 

Cave concentration is only above the fibroblast potency for approximately 3 hours of the 

dosing interval, and above the in vivo potency for <1 hour. Furthermore, when the 

eosinophil inhibition was measured on day 8, the response is not significantly inhibited 

based on a 95% confidence interval (CI).  

 

Although it was not possible to give an exact reason for the 10 times lower exposure in 

experiment two, there are several factors which could have caused or contributed to it. 

Different batches of crystalline GSK3532706 were used which may have produced 

differences in dose suspension, which may have impacted up both deposition and 

dissolution rate. The IN-dosing technique is a potential source of variability due to the use 

of anaesthesia which effects both the depth and rate of respiration.  These are all factors 

in highlighting why it is important to measure drug concentration in PKPD experiments 

and not rely on dose alone.  
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Figure 7.8-13 Effect of GSK3235706 in the Mouse HDM Model Experiment 2. 

Using PBPKPD Analysis to Understand a Negative Result  

 

 
 

Figure 7.8-13 shows the modelled PBPKPD data for GSK3532706 with observed experimental 

PK and PD data from the HDM mouse model 

 

Importantly, a measure of pSTAT5 was successfully incorporated into experiment 1 which 

enabled us to confirm TE and link this to a functional response. In the second experiment, 

a more extensive pSTAT profile was incorporated into the study protocol providing a 

pSTAT5 profile with data at 2, 4 and 7 hours after the HDM re-challenge. It can be seen 

from this pSTAT profile there was no significant inhibition of pSTAT5 at any of the 

measured timepoints based on a 95% CI (Figure 7.8-14). 
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Figure 7.8-14 PBPK/PD Analysis Enables us to Understand a Negative 

Result (2) 

 

 
 

Figure 7.8-14 shows the modelled PBPKPD data for GSK3532706 with observed experimental 

PK and pSTAT data from the HDM mouse model where TE wasn’t achieved 

 

This important result revealed that a lower PK exposure (10x less) did not result in 

effective TE and thus no functional response (no eosinophil inhibition) was observed. 

These data highlight the importance of fully understanding the PKPD response (TE) and 

then linking it to a functional pharmacological endpoint. In this second experiment, none 

of the Three Pillars conditions were met, but using this framework explained why the 

negative result occurred. Understanding the reasons for a negative result is more 

valuable for a program teams development in understanding the target pharmacology 

and molecule properties required for efficacy than only seeing positive efficacy data.   
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7.8.5 PBPK Enables us to Dig Deeper into other Compartments of Interest 

 

One of the biggest challenges in PKPD study design is understanding drug concentration 

at the site of action, which is particularly challenging in Respiratory PKPD models where 

the biophase of interest is the lung and it is not possible to repeatedly sample from this 

tissue. Figure 7.8-15 shows that PBPK modelling allows a more comprehensive 

understanding of the influence of compartments on a compound’s profile, providing an 

opportunity to identify correlations which would be otherwise inaccessible using standard 

in vivo PK analysis. Although it was only possible to build a correlation with TE based on 

measured blood concentration in these PK/PD analyses, PBPK provides an 

approximation of concentrations in different lung compartments that can be related to 

efficacy.  These are mathematically derived profiles, but they are representative and 

physiologically relevant to the compartment being modelled, which have been taken from 

mutliple literature sources by the developers of GastroPlus™. 
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Figure 7.8-15 Predicting the Exposure of GSK3532706 in different 

Compartment in the Lung using the Mouse HDM PKPD Model 

  

 
 

Figure 7.8-15 shows the predicted concentration of GSK3532706 in different lung compartments  

 

Figure 7.8-16 extends the use of the theoretical PBPK exposures to compare the 

predicted exposure in alveoli cells to the PD response in the HDM model. This is a further 

example of how PBPKPD modelling opens up the opportunity to explore drug 

concentration in tissues that would otherwise be inaccessible and compare the 

concentration to a PD response. 
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Figure 7.8-16 Predicting the Exposure of GSK3532706 in Alveolar Cells in 

the Lung using the Mouse HDM PBPKPD Model 

 

 

 

Figure 7.8-16 shows the predicted unbound concentration of GSK3532706 in alveolar cells, the 

observed unbound blood concentration, the observed and predicted pSTAT profile and the 

function eosinophil response. 

 

It can be seen from Figure 7.8-16 that the predicted free concentration in alveola cells 

was very similar to the observed free blood concentration. Based on the lung physiology 

the alveola space has only a single cell layer separating the air blood interface therefore 

the free concentration at this interface should be very similar. The observation in this 

model helps to further validate the use of free blood concentration as a surrogate for free 

lung concentration to build the PKPD correlation. 
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8 Concluding Discussion 

 

8.1 Drug Attrition 

 

The journey to discover and develop new medicines is a long and expensive one with 

many challenges to navigate along the way, and come primarily in the form of safety, 

efficacy, ADME properties, cost and changes in strategic priorities. The Association of 

British Pharmaceutical Industries (ABPI) suggest the average drug development cost is 

reported to be around £1.15 billion and 12 years [160] (Figure 8.1-1). Every year, a dozen 

or so drugs are approved by the medicine’s agencies such as the FDA and EMEA, but to 

achieve this, thousands of NCE’s and drug candidates fall by the wayside. As a drug 

discovery scientist, I know all too well the highs and lows of working in this field, but being 

part of a team that could make a breakthrough and deliver a transformative and effective 

medicine to patients motivates us as research scientists, even when the odds are stacked 

so heavily against success. 

 



304 
 

Figure 8.1-1 The Association of British Pharmaceutical Industries (ABPI) – 

The Medicine Development Process 

 

 

 

Drug attrition remains a key challenge for the pharmaceutical industry to overcome, with 

less than 1% of NCE’s and less than 10% of drug candidates tested in clinical studies 

becoming medicines. Consequently, even small improvements in efficiency will result in 

substantial savings in both time and money. Failure to achieve clinical approval for new 

medicines is the primary challenge for the pharmaceutical industry and if we are to 

address this, we need to embrace it and use the knowledge to improve decision making. 

Within this context, the key aim of this project was to assess the value of Drug Efficiency 

in early estimates of likely human therapeutic dose and establish whether it can be used 

to select compounds with better physicochemical properties.  This in turn would lead to 

compounds having better ADME properties and PKPD efficacy thus improving the quality 

of drug candidates and ultimately help to reduce drug attrition.   

 

Some success has been achieved with respect to improving the drug 

discovery/development process by focussing on solubility and permeability through the 

BCS classification system [10] or Lipinski’s Ro5 [4,14], both of which were aimed at 
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improving small molecule oral absorption and human pharmacokinetics. Another 

complimentary system to the BCS is the biopharmaceutics drug disposition classification 

system (BDDCS) proposed by Wu and Benet [13]. The BCS focuses on the 

pharmaceutical properties of solubility and permeability whilst the BDDCS predicts drug 

disposition and potential drug-drug interactions in the liver and intestine. This modification 

was made because Wu and Benet recognised that drugs which have high intestinal 

permeability are typically eliminated via metabolism, whereas drugs which have low 

intestinal permeability are eliminated as unchanged drug in the urine or faeces [13]. 

 

Our improved understanding of pharmacokinetics and the recognition for the need to 

focus on ADME/DMPK properties during lead optimisation, and along with safety and 

efficacy, has helped reduce drug attrition in Phases I and II [161]. However, Figure 8.1-2, 

highlights that  from 2000 to 2010, based on an analysis from four major pharmaceutical 

companies (AstraZeneca, Eli Lilly, GSK and Pfizer) published in 2015 [161], that the 

reasons for drug attrition remain largely the same as those reported by Kola et al. [162] 

a decade earlier. Progress had been made in selecting and progressing compounds with 

improved clinical pharmacokinetics and bioavailability, but poor PK still remains a 

significant cause of attrition in Phase I studies. As the purpose of a Phase I study is 

largely to assess the clinical PK in human, it is probably not surprising that there are a 

high proportion of terminations at this stage. 
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Figure 8.1-2 An analysis of the Attrition of Drug Candidates from Four Major 

Pharmaceutical Companies [161] 

 

 

 

One of the most surprising reasons for attrition is portfolio rationalisation, which raises 

questions as to why this figure is so high. Simplistically, it could be poor target selection 

or validation, or poor judgement and short term thinking by senior management and 

shareholders around the level of commitment the drug discovery process requires.  This 

then leads to a search for “quick win projects” which rarely exist, in an industry where 

history shows that a long-term commitment is required to develop an effective medicine 

(Figure 8.1-1). 

 

An interesting review by Cook et al. from AstraZeneca (AZ) [163] discusses a five 

dimensional framework based on a retrospective analysis of their 2005-2010 AZ portfolio, 

which is similar to the Three Pillars concept by Pfizer and describes the five R’s: the right 

target, the right patient, the right tissue, the right safety and the right commercial potential 

(Figure 8.1-3). 
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Figure 8.1-3 Lessons Learned from the Fate of AstraZeneca’s Drug Pipeline: 

A Five-Dimensional Framework [163] 

 

 

 

It expands on the Three Pillars and adds greater granularity to the pharmacological 

descriptors which are important to establish confidence in the biological target with 

respect to the disease and the molecule being developed. They also considered the 

commercial aspect of the drug being developed: was the target and molecule a first-in-

class, an improvement to the standard-of-care and would health care providers be 

prepared to pay for this “new” medicine.   

 

The right target, right tissue essentially focuses in on the pharmacology of the target and 

its link to the disease of interest, the ability to deliver the molecule to the site of action 

(PK), and the link between pharmacology and concentration at the site of action (PKPD), 

all to reduce attrition. The importance of establishing a clear link between PK, PKPD and 

a functional response was shown in with the HDM mouse in vivo efficacy model in  

Section 7.8.4. 
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8.2  Lipophilicity 

 

It has often been suggested by drug discovery scientists who have analysed 

physicochemical properties looking for trends or correlations with ADME properties, that 

in the vast majority of cases, LogP is the parameter which is consistently highlighted 

above all others. This is despite the introduction of several other parameters or 

approaches such as LE, LLE, BEI, PFI etc., which have been devised to help identify 

molecules with optimal or improved physicochemical properties. It should be noted that 

all of these approaches have their own individual merits, but it appears that logP or 

lipophilicity/hydrophobicity dominates ADME properties and generally describes the 

overall picture of small molecules very well.  

 

Of course, there are subtleties of how the measure of lipophilicity can be used and 

expressed to characterise small molecules in drug discovery. The typical measures are 

LogP or LogD and the simplicity of how they can be measured and how the number can 

be easily interpreted highlights its importance in the key areas of drug design, and make 

a very compelling argument for why it is such a relevant parameter to focus on in drug 

design.  

 

In recent years there has been greater focus on LogD, given the impact of ionisation on 

the lipophilicity of acids and bases at physiological pH (pH7.4). For ionisable molecules 

there can be substantial differences in the LogD of a molecule from its neutral form to 

that at physiological pH. The influence of charge can be advantageous to a medicinal 

chemist when highlighting their molecules improved physicochemical properties over 

molecules from the same or similar series or those of a competitor. It is also important to 

note that a charged species can still bind to proteins, so acids will favour albumin and 

bases will favour phospholipids. Importantly, this behaviour is not captured in a classical 

octanol/water system.  In addition to this, further caution should be used when 

considering LogD as a measure of lipophilicity, as pH is not constant in a physiological 

system. It is for this reason that LogP and LogD should always both be considered, when 

assessing a molecule’s properties: LogP because it represents the intrinsic properties of 

a molecule and LogD because it can take into account the impact of environment.  

 

Although LogP represents an extremely important parameter to help describe the 

properties of a molecule, there is a need to understand that the binding and distribution 
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of a molecule are not only influenced by lipophilicity. It is too broad a statement to suggest 

that all ADME properties relate back to lipophilicity and oversimplifies the challenge of 

designing small molecules that have the potential to become successful medicines. This 

is where understanding the nature of how a compound distributes is important, and to 

understand this we need to think beyond general terms like LogP to develop a greater 

understanding of the intrinsic properties of small molecules.  This can be achieved by 

adopting the use of Drug Efficiency, or more specifically DEmax. 

 

8.3 Drug Efficiency 

 

Why is DEmax an important consideration alongside LogP, and is it different? DEmax is 

different and offers greater insight into the nature of how a molecule interacts with a 

physiological system because of how it is calculated. DEmax is the inverse term of the 

unbound Vdss, and in vitro Vdss and unbound Vdss can be calculated from biomimetic HPLC 

methods that employ HSA and IAM stationary phases, which are two highly relevant 

components of physiological systems and have clear relevance in the way a drug 

distributes [55]. The combination of HSA and IAM effectively forms the basis of a 

simplistic PBPK system. The reason this analogy is important is because PBPK software 

essentially involves a series of complex volume of distribution calculators, which calculate 

multi-compartment partition coefficients to work out the overall Vdss for a compound. 

 

The focus on Drug Efficiency and early dose estimation in this project should be 

considered as a complementary approach to the Three Pillars analysis as well as aspects 

of the five-dimension framework [16][163]. Using DEmax as a complementary parameter 

to help improve the selection of NCE’s can help ensure there is an  improvement in the 

quality of the physicochemical properties at the centre of compound design, and help 

facilitate an improvement in ADME properties [19].   

 

The importance of balancing the physicochemical properties of small molecules has been 

the focus of numerous publications since the seminal analysis by Lipinski and the rule of 

5 in the mid 1990’s [4] and the theoretical basis of the BCS which was described by 

Amidon [10], both of which link the importance of solubility with permeability when 

designing orally available small molecules. The analyses I have performed with different 

compound libraries described in Section 6.10 suggests that including DEmax as an 

additional global DMPK parameter to the early stage drug discovery selection process 



310 
 

can help with compound development during hit-to-lead optimisation. This has been 

demonstrated for both the Pi3Kγ and Pi3kδ programs with their early hit-to-lead 

compounds (Table 7-5 and Table 7-7).  

 

8.4 Dose Estimation of Systemically Delivered Compounds  

 

Various dose estimation procedures have been investigated that require different input 

parameters. I have studied the recently developed simple approach to estimate the dose, 

using only the potency and drug efficiency of the compounds, which is referred to as the 

drug efficiency-based dose prediction (HPLC DE-DP). I have investigated the estimated 

dose using the HPLC DE-DP method applying the HPLC based DEmax values and various 

potency values, such as in vitro and cellular potency of Pi3Kϒ and Pi3Kδ program 

compounds. While the in vitro and cellular potency showed wider discrepancies due to 

the different mechanisms involved, the predicted dose using the DE-DP method showed 

reasonably good agreement with a shift towards higher doses when the cellular potency 

values are used in the prediction (Figure 7.2-3 and Figure 7.4-4). This was not a major 

surprise, as cellular based systems typically result in slightly lower potencies, compared 

to enzyme systems. The reason for this is a combination of the physicochemical 

properties of the molecule, such as solubility, lipophilicity and permeability, and the 

pharmacology of a cellular system due to the difference in concentration of the target 

substrate. For example, ATP levels in an enzyme system are typically added at the Km 

of the enzyme, but in a cellular system the ATP levels will be 100 times greater than the 

Km, which will result in a lower measure of IC50 as described by the Cheng-Prusoff 

correction [146]. 

 

The HPLC DE-DP methodology is available for medicinal chemists to assess a 

compound that has been proposed as a next iteration before they actually make it by 

assuming a good in vitro potency (pIC50 8 to 9) based on previous SAR of related 

compounds and by using an in silico calculated DEmax, which is available within GSK via 

in an Excel Helium based tool using the derived property server (DPS). The in silico 

calculated DEmax and in vitro DEmax correlate very well because the in silico model was 

built using the measured HSA and IAM data stored in the GSK database.  Using this in 

silico approach is a good way to quickly check the potential of a new series or set of 

compounds being considered prior to synthesis, as the retrospective analysis I have 

performed with the two Pi3K inhibitor series has shown. Although a degree of caution 
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should always be taken when using predicted data, it allows medicinal chemists valuable 

insight into the potential of new molecules or arrays of molecules prior to synthesis which 

could help save time and guide optimisation. When the compounds are synthesised, the 

albumin and phospholipid binding can be measured using biomimetic HPLC stationary 

phases in a high-throughput manner, and is available for medicinal chemists at the same 

time as the in vitro potency data. It should be noted that this dose prediction method 

provides the best-case scenario because it is a static system i.e. it does not include 

dynamic elements such as clearance or absorption/bioavailability of the compounds. The 

estimated dose refers to the steady-state plasma concentration assuming 100% 

bioavailability. Depending on the clearance and volume, the predicted dose may be 

required more frequently (high clearance compounds and/or low volume of distribution). 

 

In early stage drug discovery programs, it is common that input parameters to guide the 

decision-making process towards compound selection and development are not 

available. Therefore, I have investigated the effect of the errors in the in silico prediction 

of these input parameters for the dose estimation equations. The impact of potency, 

clearance, volume of distribution and absorption were assessed using the DMPK-DP 

based dose estimation approach.  

  

8.4.1 Potency  

 

As previously discussed, the impact of pharmacology was assessed in terms of potency 

in an enzyme system or cellular system, which had systematic differences due to the 

assay formats highlighted above.  The result was that the whole blood potency using the 

predicted dose was generally higher than the predicted value using the enzyme potency. 

This was to be expected, as cellular derived IC50 is often at least half a log unit lower than 

an enzyme derived IC50 and is why the biophysical measure of affinity (Ki) is preferable, 

although it may not be as widely available because of the way HTS potency screens are 

setup. 

 

8.4.2 Volume of Distribution  

 

The impact of Vdss on dose prediction using the DMPK-DP method was explored using 

compounds from the Pi3Kγ program. It was apparent that discrepancies between the 
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predicted doses can be large when Vdss is increased, for example the largest variability 

is seen when the dose estimation was high ( 

Figure 7.2-4), although this is an area of chemical space which is not of interest. It was 

far more reassuring to see that the variability in the dose estimation was smaller when 

the estimated dose was low, which is the preferred area of chemical space in which 

program teams are most interested  

( 

Figure 7.2-4). It was also evident that the acid/base character appeared to influence the 

sensitivity of the Vdss on dose estimation ( 

Figure 7.2-4); this is not surprising given that acids tend to bind to plasma proteins but 

bases typically bind to phospholipids. When the Vdss was larger, the estimated dose was 

generally smaller, which is due to the change in shape of the PK profile and the impact 

Vdss has on dosing frequency by typically increasing the half-life. This can be both of 

benefit and concern: a higher Vdss has the potential to increase duration of action, but it 

can also increase the risk of adverse pharmacology in non-target related tissues, so the 

on-target and off-target pharmacology could be more difficult to balance.   

 

8.4.3 Clearance  

 

It should be of very little surprise that an increase in clearance will result in an increase 

in the dose (Figure 7.2-5), and a reduction in clearance will reduce the dose. However, it 

is fundamentally important that the free clearance (or more correctly referred to as the 

intrinsic clearance, CLint) is considered rather than the total clearance in lead optimisation, 

which is because it is the free clearance that will affect the free concentration. Therefore, 

to improve the efficiency of a drug  in vivo, it is important to reduce the free clearance 

(CLint) [70]. The only caveat to focussing on reducing the CLint, is that the in vitro assays 

used to measure it typically cannot generate a quantifiable value below 0.5 mL/min/g 

liver. When this in vitro value is scaled to in vivo using the well-stirred model (WSM), this 

equates to approximately 20% liver blood flow for a rat, and 40% for human. As the lower 

limit of quantification for human is close to 50% liver blood flow, it is clear to see how 

difficult it is to be confident that an optimised molecule will have low in vivo human CLint 

(free clearance) based on in vitro data alone. 
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Clearance is a PK parameter which most scientists developing new medicines can relate 

to. Clearance is simply a mathematical description of the rate of removal of drug from the 

body. However, the key effect of clearance is on the magnitude of the dose; its influence 

on the frequency of dosing is less significant, unlike Vdss. This is highlighted by the 

sensitivity analysis in Section 7.2.4, where the trend between the two methods of dose 

estimation is good, with the correlation coefficient being very high (r2>0.9)  

(see Figure 7.2-5) and confirms that the effect of clearance was relatively small and less 

impactful than the Vdss at higher doses. 

 

8.4.4 Absorption  

 

As the complexity of the dose prediction method was increased with the application to 

the oral Pi3Kδ program, Equation 39 was replaced with  

 
Equation 38 to include an absorption rate. The absorption rate (Ka) is not a parameter 

that is readily available in drug discovery for dose prediction and a standardised value is 

often applied based on preclinical in vivo observations. This type of approach is not 

possible for early discovery compounds where in vivo data is not available and therefore 

an estimation of absorption was generated based on an early measure of solubility 

(CLND) multiplied by the early permeability estimate (AMP) at pH 7.4. The value was 

classified as low, moderate or high for each compound and applied to Equation 38. The 

overall conclusion when comparing the simple DMPK-DP Equation 39 with the more 

complex DMPK-DP Equation 38 was that this derived Ka parameter added only a very 

limited improvement in the dose prediction when the two methods were compared  

(r2 0.314 Figure 7.4-6 and r2 0.227  

Figure 7.4-10). 

 

We can therefore conclude that there is little value in adding a derived value for Ka to the 

DMPK-DP estimation approach, and the simple methodology using Equation 40 is just 

as effective when performing early dose estimations. Importantly the HPLC DE-DP 

method still gives the same rank order of initial hit-to-lead and can be used without the 

need to generate more complex data in the early stages of drug discovery. 

 

The overall conclusion is that HPLC DE-DP can be used to identify the chemical space 

associated with lower dose compounds or early leads with a good physicochemical 
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property profile to direct optimisation of the overall pharmacology and ADME 

characteristics into a lead and onwards. Retrospective analyses of other drug discovery 

program databases should help support this approach and coupled with its application to 

live lead optimisation programs, the methodology could be evaluated in real-time 

scenarios. Throughout the analysis, the HPLC DE-DP approach showed the same trend 

towards a reduction in dose from early hits to the candidate molecule for both the Pi3Kγ 

and Pi3Kδ programs when compared to the more complex in silico, in vitro and in vivo 

DMPK-DP methods. 

 

8.4.5 Aldehyde Oxidase and Unbound Clearance 

 

Whilst it is extremely valuable to have models or parameter estimations such as DEmax to 

enable discovery scientists to gain valuable insight around whether a series of 

compounds has the potential to be developed to drug-like endpoint, it is important that 

they do not to rely on models or data in isolation from their drug discovery knowledge and 

experience if good decision making is to be promoted.   

 

AO metabolism is one such example, where drug discovery experience, and in particular 

DMPK knowledge and awareness, was critical to the recognition of how data can be 

misleading, particularly when outliers in a series become apparent.  The example of 

GSK2829189 in the Pi3Kγ program illustrates this, where experience of certain chemical 

features presenting a higher risk of metabolism [145] allowed data misinterpretation to be 

avoided. 

 

The isoquinoline core of the initial hit/lead template GSK2829189 represented a potential 

point of metabolism [141][164] and by simply taking into account only the low total in vivo 

clearance in rat for GSK2829189 (3 mL/min/kg), a metabolic liability would have been 

missed and a risk in lead optimisation overlooked. It was only as a result of understanding 

the structural features of the template that the α-carbon of the quinoline ring represented 

a potential substrate for AO metabolism. The underlying metabolic liability was further 

exemplified by comparing the unbound in vivo clearance (CLbu) in rat of GSK2829189 

and a close analogue GSK3180869, which had high total clearance in rat (ca. liver blood 

flow clearance) but similar intrinsic in vivo clearance (CLbu): their structural similarities 

(isoquinoline core) suggested they were likely to have the same metabolic liability. 

Profiling both compounds in an in vitro cytosolic liver assay demonstrated that they were 
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substrates for AO with the same routes and similar rates of metabolism. By understanding 

that only unbound drug was available for metabolism and therefore cleared in vivo, the 

risks within the GSK2829189 template were recognised, and the site of AO metabolism 

could be blocked by the introduction of the “magic methyl” group (Figure 7.3-9). 

 

8.5 DEmax and Inhaled Delivery Compounds 

 

Traditionally, the approach to designing inhaled drugs with extended lung retention 

profiles has been to reduce solubility or permeability. However, the reduced solubility 

approach often led to an increased risk of lung toxicity, which manifested itself in the form 

of foamy macrophages [113]. Reducing permeability also carried the risk of compounds 

being unable to access intracellular targets, which is of particular importance when many 

current pulmonary drug targets are kinases. A key aim of this analysis was to identify 

alternative technologies in addition to solubility and permeability to aid the selection of 

compounds with extended lung retention profiles. We have shown that compounds falling 

into the same solubility and permeability class can be further differentiated by the HPLC 

DEmax values toward this end. 

 

The results from the JAK inhaled delivery project have shown for the first time that it is 

possible to increase lung retention for compounds that have good solubility and 

permeability by decreasing the DEmax via an increase in non-specific binding to tissue 

components, such as albumin, glycoprotein and phospholipids. Whilst the DEmax of 

compounds with extended lung retention ranged from 0.02-1.26% (Table 7-9) indicated 

higher HSA and IAM binding, binding to AGP, another important protein present in the 

lung that is not directly captured in the DEmax model, was also monitored. These higher 

binding values resulted in greater lung tissue binding in vivo and extended the “intrinsic” 

lung retention. Despite the higher tissue binding for these high lung retention compounds, 

the free fraction in lung tissue was still >1%. It is important to maintain a free fraction to 

ensure sufficient free concentration can be reached to achieve target engagement for 

efficacy. Compounds with much higher DEmax values, ranging from >3.36 to 24.9%  

(Table 7-8) correlated with a higher free fraction in lung tissue, and as a result low 

“intrinsic” lung retention. 

 

These results demonstrate the importance of using biomimetic HPLC measurements in 

inhaled delivery programs in order to optimise lead chemical series by selecting 
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compounds with non-specific binding to albumin, glycoprotein and phospholipids. 

Compounds with a higher probability of having “intrinsic” lung properties can be identified 

much earlier in the screening cascade, which could then progress to in vivo studies to 

confirm an extended lung retention profile and reduce the number of animal experiments.  

 

It should be acknowledged that increasing lung tissue binding could result in the free 

concentrations of drug being too low to achieve levels of target engagement required for 

robust efficacy. At this point it important to reflect on what determines the free 

concentration in vivo. Under sink conditions the magnitude of the free concentration will 

be determined by the binding of the compound to proteins but the free concentration in a 

dynamic system will ultimately be determined by the rate of removal of the unbound drug. 

In the lung this will be mostly through absorption into the systemic circulation. The higher 

binding serves to provide a depot of drug and prolong the T½ in the lung.   

 

Inhaled delivery has the unique potential to achieve temporal high local concentration in 

lung tissue.  From this analysis we can see that the free fraction does not fall below 1%, 

even for high “intrinsic” lung retention compounds and is therefore sufficient, given an 

appropriate level of potency relative to the biological target of interest, to generate a 

response, potency is the other key factor as most inhaled medicines have very high 

affinity for their target. When delivering an inhaled drug to the target, its effect in the lung 

requires an extended lung retention to achieve duration of action. The HPLC DEmax values 

for compounds with “intrinsic” lung retention, should ideally be over the range of ca. 0.1 

to 3%. Compounds that have a high HPLC DEmax (>5%) are absorbed from the lung very 

quickly into the central compartment/systemic circulation, where their fate will be 

determined by their systemic pharmacokinetic properties. If the biological target of 

interest is in the central compartment (systemic), or a combination of the lung and the 

central compartment, a higher drug efficiency for inhaled drugs targeting the whole body 

and not just locally in the lung could be an advantage. This could provide an alternative 

route of administration that offers rapid and efficient bioavailability to the systemic 

circulation when oral delivery has been discounted as an option for other ADMET 

reasons. 

 

By identifying the link between DEmax and “intrinsic” lung retention, this approach offers 

lead optimisation scientists a simple parameter based on physiologically relevant in vitro 

binding data that is relatively high throughput very early in the screening cascade. DEmax 
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has a further advantage over early solubility screening because it is not affected by the 

physical form of the molecule and dependant on formulation, and cellular permeability 

screening, which involves a low throughput assay that can be very costly to measure for 

large numbers of compounds.  

 

8.5.1 Aldehyde Oxidase in the Lung – Implications for Drug Discovery in 

Inhaled Delivery Programs 

 

As with the Pi3Kγ program, an unexpected but very interesting observation within the 

JAK program was identified with respect to AO metabolism.  In this case, it was 

metabolism in the lung when profiling GSK3780731, a compound selected for 

progression to an in vivo mouse model of lung retention based on its DEmax. The DEmax 

was low, implying increased in vivo lung retention. GSK3780731 had already 

demonstrated good cellular potency in vitro and therefore was of significant interest to 

the program team. The potential AO liability in its quinazoline core was identified and the 

compound was subsequently profiled in a human, rat and mouse in vitro liver cytosol 

assay and shown to be an AO substrate. Other analogues with the template were tested 

in the same assay and were also shown to be AO substrates, indicating clearly that there 

was a template liability. However, the JAK program was employing inhaled delivery to 

maximise lung exposure and minimise systemic exposure to reduce on-target systemic 

pharmacology and increase the therapeutic index. The AO liability in the liver was 

therefore considered a potential benefit for an inhaled drug, as the higher systemic 

elimination could further increase its safety.  This would in essence produce a “soft” drug 

with a high rate of metabolism once it was absorbed into the systemic circulation [165]. 

The lung itself is generally considered to be of limited metabolic interest, so metabolism 

of inhaled compounds is generally not a concern [151].  

  

It was therefore a surprise to find that when GSK3780731 was administered in vivo to 

determine its lung retention profile, no compound was detected following a 1mg/kg 

intranasal (IN) dose. The subsequent analysis determined that the compound was rapidly 

metabolised in mouse lung as a consequence of AO metabolism (Section 7.7.2). Further 

analysis identified that GSK3780731 was metabolised in minipig and a +16 metabolite in 

human lung tissue was observed, which although at low intensity, was sufficient to cause 

concern for the development of an inhaled compound. Given that extended lung retention 

and duration of action were principal goals for the program, any potential metabolism that 
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would reduce them presented a substantial risk to the efficacy and once daily dose 

envisaged by the TPP. Even with a low possibility of AO lung metabolism in human, the 

cost of drug development made this potential drug development risk too high to allow 

compounds which were AO substrates to progress. 

 

This observation that the lung appeared to express AO in a pre-clinical mouse model to 

a level that resulted in extensive metabolism of a small molecule has resulted in a 

strategic change in how we develop inhaled small molecules within GSK. It highlighted 

the importance of having a strong DMPK focus when developing new chemical entities 

and the need to ensure data is correctly interpreted to enable program teams to make 

the right adjustments to program strategy and maximise the chanced of achieving project 

goals. As the pharmaceutical industry continues its drive to externalise more and more 

resources to help control costs, it is important that integrated scientific knowledge and 

expertise is not lost as a result, as this could lead to a false economy. 

 

8.5.2 PKPD and PBPKPD Modelling and Simulation in the Inhaled Delivery 

Project   

 

An effective PKPD program strategy requires the integration of in vitro and in vivo 

concentration-time, response-time and concentration-response relationships to ultimately 

link this information to a disease or disease state (Figure 8.5-1) [166].  PK characteristics 

are both important and linked to the magnitude and duration of the pharmacological 

response for a given target. An integrated PKPD approach helps to focus program 

questions around what PD properties are required or need to be improved for a 

compound to maximise target engagement and the pharmacological response. 
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Figure 8.5-1 Integrated PKPD  

 

 

Figure 8.5-1 shows the relationships between concentration response, concentration time and 

response time [166]. 

 

As already discussed, DEmax can be used to help select compounds with intrinsic lung 

retention and therefore a greater chance of achieving lung concentrations which result in 

pharmacological activity. The use of “classic empirical” PKPD analysis during the lead 

optimisation phase of the JAK program helped to characterise an indirect concentration-

response relationship and to predict the response for future in vivo PD studies. Figure 

8.5-2 shows a schematic of the JAK biology which was characterised by using an acute 

in vivo mouse cytokine model. The model was designed and validated as a means to 

measure target engagement as part of the JAK project, as it was specific to the biology 

of the JAK program. Whereby the induction of a pSTAT response was induced by IL4/13 

which are cytokines that are known to be important mediators of the immune response 

following allergen challenge in asthma. This approach of using an in vivo model which 

was target specific was consistent with pillars one and two of the Three Pillars concepts.  

The output from these in vivo target engagement studies was modelled using both link 

and indirect PKPD analysis as shown in Figure 8.5-2. Both models were applied to 

explore the hysteresis that was observed between the PK (peak compound concentration 

in the blood) and PD response (peak pSTAT response measured in the lung), which could 

have been due to two different effects: a slight time delay in the biological response 
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following compound engaging with the target, or most likely because the PK and PD were 

measured in different biophases. A combination of both could also apply. The important 

factor in this PKPD analysis was to recognise the offset between PK and PD response, 

identify if a hysteresis was present and then apply an appropriate PKPD model to ensure 

the model could then predict future outcomes with a reasonable degree of confidence 

which the results in Sections 7.7.3 and 7.8.2 have shown.  

 

This meant the PKPD models could subsequently be used to refine the design of future 

PKPD studies by helping to select dose, dose regimens, sampling times and sample size 

distribution design in the next set of PKPD studies. The aim here was to establish and 

validate these models against in vivo data to then help with clinical dose predictions in 

combination with PK scaling techniques for the candidate molecule for potential use in 

clinical trials. 

 

Figure 8.5-2 PKPD Models Used to Describe JAK PD Effect – Link and 

Indirect Models  

 

 
 

Figure 8.5-2 shows the different PKPD models used to model the JAK pharmacology 
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Building a robust relationship between the concentration of drug and its pharmacological 

response is always a challenge, and with inhaled programs there is the added complexity 

of understanding the concentration-response in a relatively inaccessible tissue. An 

additional problem is that the dosing volumes to the lung are often quite small, for 

example an intranasal dose volume to a mouse for pulmonary delivery is only 50 µL. This 

small dose volume often means a high dose concentration and can result in many 

compounds being dosed as suspensions if they have solubility issues. Consequently, if 

terminal lung samples are taken to quantify the lung concentration from an in vivo PD 

study, the concentration measured in the lung tissue will be a mixture of dissolved and 

undissolved compound. This effectively means a proportion of the compound delivered 

is dependent on dissolution rate, and therefore can only engage with the target once this 

process has occurred. It is therefore very difficult to ascertain what the active 

concentration is, and the associated concentration-response relationship that relates to 

the level of target engagement is likely to be lower than expected due to the proportion 

of undissolved and therefore inactive drug in the lung.  

 

To overcome this problem, I reanalysed the mouse cytokine PKPD model data by relating 

the unbound blood concentration of GSK3532706 to the cytokine induced pSTAT 

response in the lung to establish a more accurate concentration-response relationship. 

This was based on the assumption that the concentration of the compound measured in 

blood had to have been in solution to be absorbed from the lungs, and therefore would 

have had the chance to bind to the biological target (JAK). By assessing the unbound 

concentration rather than the total, this would be more representative of the free 

concentration in the lung based on the free drug theory [129]. By focussing on the free 

concentration of drug this meant the exposure was proportionally lower relative to the 

WBB/PPB of the compound, but it meant the pharmacologically active blood 

concentration was more comparable to in vitro measures of potency which was one 

criteria being used in lead optimisation and selection of future compounds. Even if steady-

state conditions were not achieved in the lung, it is reasonable to assume that the 

unbound blood concentration will be more representative of the active lung concentration, 

although this in itself could still be a conservative estimate of the true value. The more 

realistic concentration-response relationship established by this approach was used to 

relate in vitro to in vivo potency to direct subsequent lead optimisation and clinical dose 

prediction strategies. 
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To gain a deeper understanding of the PKPD relationship in the JAK program, PBPK and 

PBPKPD modelling was also used to analyse the compound distribution and 

concentration-time profiles with respect to the different biophases of the tissue 

compartments remote from the systemic circulation (blood/plasma) and where most 

drugs actually exert their pharmacological effect. Although it is often impractical to 

measure the concentration-time profiles in many compartments within the body because 

of their inaccessibility to repeat sampling, PBPK models can represent these tissue and 

organ spaces with their physical volumes as show in Figure 8.5-3. By understanding the 

PK and distribution in multiple compartments, it then becomes possible to link the 

pharmacological effect to the PK in the primary biophase of interest e.g. blood, lung or 

lung compartment by linking the PBPK model to a PKPD model. This approach can give 

greater understanding of the pharmacologically active concentration and therefore the 

dose required to achieve this concentration. A PBPK model also allows consideration of 

exposure in compartments/organs where there may be a safety or toxicity (e.g spleen, 

liver or accumulation in adipose) this type of analysis is particularly relevant to an inhaled 

delivery program where systemic distribution needs to be avoided because of potential 

target related pharmacology outside of the lung. The JAKi program was actively trying to 

avoid systemic exposure to avoid more general immunosuppression which could 

increase the risk of viral infections in patients. 
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Figure 8.5-3 An Example of a Physiology Based Model 

 

 
 

Figure 8.5-3 Is a schematic of a Physiologically Based Pharmacokinetic model. The 

compartments represent tissues and organs, the arrows represent the blood supply; ST is the 

stomach; SPL is the splanchnic organs; and CLint is the intrinsic hepatic clearance. [167] 

 

PBPK modelling for the JAK program not only enabled robust predictions of lung and 

blood/plasma concentration profiles for GSK3532706, but also allowed the prediction of 

compound concentrations in other tissues such as unbound alveolar cell concentrations 

and mucus concentrations. This information was then used to further link concentration 

to effect, and design future pre-clinical studies to maximise exposure in those tissues. 

Once the PBPK model has been built and validated with in vivo data, the model can be 

linked to a relevant PD model as previously described with the empirical PKPD modelling 

in Section 7.8.2.  

 

Having evaluated and established the PKPD relationship for GSK3532706, to finally 

address the Three Pillars requirements of demonstrating: (1) drug concentration in the 

relevant biophase (2) target engagement and (3) a related pharmacological response, a 

HDM mouse model was used to measure a functional lung eosinophilic response to HDM 
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sensitised and re-challenged mice, which is an accepted disease relevant model of 

airway inflammation for compound evaluation in asthma. Figure 7.8-12 shows the 

outcomes (actual and predicted) of the PK exposure following repeat dosing of 

GSK3532706 and its effect on target engagement and lung eosinophilia following 

intranasal dosing.  Significant inhibition of pSTAT5 was evident based on a 95% CI and 

this response was related to the target engagement model.  Agreement with the Three 

Pillars validation of efficacy for tool compound GSK3532706 was therefore achieved: (1) 

connecting concentration of the compound at the site of action (PK) with (2) a measure 

of target engagement (pSTAT5 inhibition), followed by (3) an associated functional 

response (eosinophil inhibition). 

 

In conclusion, in the JAK inhibitor program we have shown for the first time that it is 

possible to increase lung retention for compounds by decreasing the DEmax, which helped 

to direct selection and development of compounds with a higher probability of having 

“intrinsic” lung properties, an extended lung retention profile and reduce the number of 

animal experiments. Pulmonary PBPK models have been developed to predict lung and 

blood drug concentrations in vivo following intranasal and inhaled administration. These 

PKPD and PBPK models had an impact on further in vivo study design and dose 

regimens for target validation and functional in vivo studies in an active drug discovery 

program. Integration of PBPK and PKPD approaches to establish a PBPKPD model 

helped to refine the PD study design and compound profiles. Finally, PBPK and PKPD 

methodology has been established that can be used to help predict the clinical dose of 

lead and candidate molecules emerging from this program. Now this approach has been 

established it can and is beginning to be applied to other inhaled programs within GSK.  
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8.6 Summary of key findings of this work within the GSK Respiratory 

Therapeutic Area 

 

Systemic Programs 

 

 DEmax was both conceived and applied to discovery programs within GSK 

 DEmax is a valuable tool for predicting the dose for systemically delivered 

compounds 

 The DEmax and HPLC DE-DP approach consistently identified the progression 

path from early hits to lead/candidate molecules in the Pi3Kγ and Pi3Kδ drug 

discovery programs 

 It is important to consider the unbound in vivo clearance when optimising in vivo 

PK 

 AO metabolism can be easily overlooked in pre-clinical in vitro and in vivo PK 

profiling, which has important implications when the drive towards more polar 

molecules often involves introducing aromatic nitrogens in modern drug design 

 

Inhaled Programs 

 

 DEmax is an emerging concept for inhaled drug design where there are few design 

guides available for inhaled drug design, unlike oral drugs  

 DEmax has been used to help identify compounds with extended lung retention 

 A lung retention link has been established for duration of target engagement with 

the JAK program  

 The application of DEmax to inhaled drug design is currently a unique approach 

used by GSK inhaled drug discovery teams 

 Innovative approaches to data visualisation have now been embedded within 

Respiratory DMPK for PKPD analysis.  

 This was the first application of inhaled PKPD modelling in the Respiratory TA at 

GSK.  

 This was also the first application of inhaled PBPKPD in a lead optimisation 

program at GSK 

 AO metabolism was a previously unknown risk in the lung 
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 The Three Pillars framework was successfully applied to an inhaled target in lead 

optimisation for the first time at GSK.  
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9 Future Work 

 

Following on from this project there are several areas of research that could be either 

initiated or expanded using the techniques and practices highlighted in this study.  

These could include: 

 

 The investigation and expansion of research into factors influencing lung 

permeability 

 The influence of ionisation on absorption has been extensively studied for oral 

drugs, but not for the lung 

 Establish whether permeability, solubility and DEmax studies could form the basis 

for a pulmonary equivalent of the BCS for oral drugs 

 Continue to apply DEmax to other inhaled projects to gain a greater understanding 

of its influence and value when designing small molecules with extended lung 

retention. This is now happening at GSK for other inhaled programs within the 

Respiratory TA at GSK.  

 Continue to develop new pulmonary PBPK and PBPKPD models to continue to 

help understand this challenging route of administration and predict the effective 

clinical dose. 
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     Equation 39 

 

ktey  .A 0         Equation 40 
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CL୧୬୲ ቆ
µై

ౣ

୫
proteinቇ ൌ

ైమ
ౡ

ୱୱୟ୷ ୰୭୲ୣ୧୬ େ୭୬ୡୣ୬୲୰ୟ୲୧୭୬
    Equation 41 

 

CL୧୬୲ ሺmL/minሻ/g liverሻ ൌ CL୧୬୲ ሺµL/min/mgሻ. SF ቀ


୩
ቁ   Equation 42 

 

CL୧୬୲  ቆ
µై

ౣ

୫୧୪୪୧୭୬
cellsቇ ൌ

ైమ
ౡ

ୱୱୟ୷ େୣ୪୪ ୈୣ୬ୱ୧୲୷
     Equation 43 

 

CLint ሺmL/minሻ/g liverሻ ൌ Clint ሺµL/min/million cellsሻ. SF ቆmillion
cells

g
ቇ 

Equation 44 

 

CL୦ ሺWSM non resሻ ൌ
ሺେ౪.ୗሻ.୕

ሺେ౪.ୗሻା୕
        Equation 45 

 

CL୦ ሺWSM resሻ ൌ
ቀ

ిై౪
ూ౫ౙ

.ୗ.౫ౘቁ.୕

൬
ిై౪
౫ౙ

.ୗ.౫ౘ൰ା୕

        Equation 46 

 

fup = fub.(B/P)         Equation 47 

      

MEC ൌ 1000. mw. 10ିଵሺ୮୍େହሻ      Equation 48  

 

kୣ୪ ൌ ሾHuman Total Clearanceሺwsmሻሿ


ଵ
. 10୭ ೞೞ    Equation 49 

 

Human Total Clearance ሺwsmሻ ൌ
ሺେ౪ሺ୫ ୮ୣ୰ ୫୧୬ ୮ୣ୰ ሻଶସ.ହሻ.ଵ଼

ሺେ౪ሺ୫ ୮ୣ୰ ୫୧୬ ୮ୣ୰ ሻଶସ.ହሻାଵ଼
   Equation 50 

 

HPLC DE୫ୟ୶ ൌ ଵ

ଵሺబ.మర ౮౦ሺైౝౡ ౄఽሻశబ.భమ ౮౦ሺైౝౡ ఽሻషబ.రሻ    Equation 51 
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Dose ቀ
୫

୩
ቁ ൌ ୫୵.ଵషభሺ౦ిఱబሻ

ୌେ ୈ୫ୟ୶
       Equation 52 

 

MECሺHPLC DEmaxሻ ൌ ୌେ ୈ ౣ౮

ଵ
. MEC     Equation 53 

 

Dose ቆ
ౣౝ
ౡౝ

ୢୟ୷
ቇ ൌ

మర
ಜ

.େሺୌେ ୈౣ౮ሻ.ౚ౩౩ሺ୩ି୩ౢሻ

.୩ሺ
భ

భష౮౦൫షౡౢಜ൯
ି

భ
భష౮౦ሺషౡಜሻሻ

    Equation 54 

 

kୣ୪ ൌ େ

ౚ
         Equation 55 

 

K୧ ൌ  
୍େఱబ

ଵାቀ


ేౣ
ቁ
         Equation 56 

 

DEI ൌ pICହ  Log ሺ DEmax%ሻ      Equation 57 

 

Log k ሺHPLC LTBሻ ൌ 0.73 Log k HSA  1.13Logk AGP  0.077  Equation 58 

 

Bound ൌ
ଵ.ଵైౝౡ

ଵାଵైౝౡ         Equation 59 

 

E ൌ 1 
୫ୟ୶.େొ

େହାେొ  or E ൌ E0 െ
୍୫ୟ୶.େొ

୍େହାେొ    Equation 60 
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11 Appendix II 

 

Table 11-1 Table Marketed Drugs with all Structures with Application and 

Acid / Base Class 

 

Application 
Colour 

Key 

CNS   

Inhaled   

JAKi   

Oral/Systemic   

 

Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Diflunisal GI235401 CNS Acidic 

 

Tolmetin SB-213421 CNS Acidic 

 

Amitriptyline CCI11220 CNS Basic 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Amoxapine GF120454 CNS Basic 

 

Aripiprazole SB-731710 CNS Basic 

 

Cabergoline GSK574550 CNS Basic 

 

Citalopram GR60414 CNS Basic 

 

Clomipramine CCI22861 CNS Basic 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Donepezil GR220235 CNS Basic 

 

Fluoxetine GR61267 CNS Basic 

 

Fluvoxamine GW367767 CNS Basic 

 

Haloperidol CCI3748 CNS Basic 

 

Loxapine GR41691 CNS Basic 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Maprotiline GI201081 CNS Basic 

 

Mianserin GR119163 CNS Basic 

 

Nortriptyline GR84804 CNS Basic 

 

Olanzapine GR189721 CNS Basic 

 

Pergolide GR55895 CNS Basic 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Pimozide GR30676 CNS Basic 

 

Protriptyline GR230212 CNS Basic 

 

Selegiline GR35846 CNS Basic 

 

Sumatriptan GR43175 CNS Basic 

 

Tomoxetine GW769340 CNS Basic 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Zolmitriptan GR183544 CNS Basic 

 

Carbamazepine GR84641 CNS Neutral 

 

Procyclidine GR35842 CNS Base 

 

Rolipram GI115674 CNS Neutral 

 

Venlafaxine SB-416332 CNS Base 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Phenytoin CCI23818 CNS Weak Acid 

 

Lamotrigine GI267119 CNS Weak Base 

 

Trazodone AH8919 CNS Weak Base 

 

Ziprasidone SB-254628 CNS Weak Base 

 

6-Chloro-3-{[(2,3-

dichlorophenyl)carbamo

yl]amino}-2-

hydroxybenzenesulfona

mide 

SB-332235 Inhaled set Acidic 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Ramatroban GSK603598 Inhaled set Acidic 

 

Seratrodast GW615523 Inhaled set Acidic 

 

Tranilast GSK2286993 Inhaled set Acidic 

 

Elubrixin SB-656933 Inhaled set Amphoteric 

 

2-{[1-(4-{4-[3-(Azepan-

1-

yl)propoxy]phenyl}butyl)

pyrrolidin-2-yl]methyl}-4-

(4-

chlorobenzyl)phthalazin

-1(2H)-one 

GSK1004723 Inhaled set Basic 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

4-(3-Cyanoanilino)-8-

methyl-6-

(methylsulfonyl)quinolin

e-3-carboxamide 

GSK240928 Inhaled set Basic 

 

4-(4-Chlorobenzyl)-2-[2-

(1-methylpyrrolidin-2-

yl)ethyl]phthalazin-

1(2H)-one 

GSK922892 Inhaled set Basic 

 

6-{[3-

(Dimethylcarbamoyl)ph

enyl]sulfonyl}-4-(3-

methoxyanilino)-8-

methylquinoline-3-

carboxamide 

GSK256066 Inhaled set Basic 

 

Albuterol AH3365 Inhaled set Basic 

 

Ambroxol GF119847 Inhaled set Basic 

 



353 
 

Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Brompheniramine GF120370 Inhaled set Basic 

 

Butamirate GW613152 Inhaled set Basic 

 

Cetirizine GR99941 Inhaled set Basic 

 

Chlophedianol GI177616 Inhaled set Basic 

 

Cloperastine SB-408309 Inhaled set Basic 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Dimethoxanate SKF-7497 Inhaled set Basic 

 

Ipratropium AH14211 Inhaled set Basic 

 

Ipratropium SB-452594 Inhaled set Basic 

 

Mabuterol GSK2286999 Inhaled set Basic 

 

N-(4-{4-[(6-

Butylquinolin-8-

yl)oxy]piperidin-1-

yl}butyl)ethanesulfonam

ide 

GSK1645469 Inhaled set Basic 

 



355 
 

Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

N-(4-{4-[(6-

Butylquinolin-8-

yl)oxy]piperidin-1-

yl}butyl)ethanesulfonam

ide 

GSK1645469 Inhaled set Basic 

 

N-[3-(2-Ethyl-

3,4,10,11,13-

pentahydroxy-

3,5,8,10,12,14-

hexamethyl-15-oxo-1-

oxa-6-

azacyclopentadecan-6-

yl)propyl]-9-fluoro-11-

hydroxy-16-methyl-3-

oxoandrosta-1,4-diene-

17-carboxamide 

GSK1399686 Inhaled set Basic 

 

Oxymetazoline AH1105 Inhaled set Basic 

 

Phenyltoloxamine SKF-6639 Inhaled set Basic 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Pimethixene SKF-34226 Inhaled set Basic 

 

Promethazine CCI3993 Inhaled set Basic 

 

Pyrilamine AH7521 Inhaled set Basic 

 

Tiotropium GW696257 Inhaled set Basic 

 

1-[3-(4-{[4-(5-Fluoro-2-

methoxyphenyl)-2-

hydroxy-4-methyl-2-

(trifluoromethyl)pentyl]a

mino}-6-methyl-1H-

indazol-1-

yl)benzoyl]prolinamide 

GSK1247150 Inhaled set Neutral 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

4-(2,4-Difluorophenyl)-

2-[(1,3-

dihydroxypropan-2-

yl)amino]-8-(2,4,6-

trifluorophenyl)pyrido[2,

3-d]pyrimidin-7(8H)-one 

SB-731445 Inhaled set Neutral 

 

5-Amino-N-(2-{[(2,6-

difluorobenzoyl)(ethyl)a

mino]methyl}-3,3,3-

trifluoro-2-

hydroxypropyl)-1-(4-

fluorophenyl)-1H-

pyrazole-4-carboxamide 

GSK1223684 Inhaled set Neutral 

 

6,9-Difluoro-17-

{[(fluoromethyl)thio]carb

onyl}-11-hydroxy-16-

methyl-3-oxoandrosta-

1,4-dien-17-yl 1-

methylcyclopropanecar

boxylate 

GW784568 Inhaled set Neutral 

 

6-Methoxy-3-

nitroquinoline 
GSK1160274 Inhaled set Neutral 

 

Beclomethasone 

dipropionate 
AH15270 Inhaled set Neutral 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Budesonide GR160288 Inhaled set Neutral 

 

Ciclesonide GW834917 Inhaled set Neutral 

 

Cyclosporin A GR92424 Inhaled set Neutral 

 

Dexamethasone CCI847 Inhaled set Neutral 

 

Fluticasone furoate GW685698 Inhaled set Neutral 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Fluticasone propionate CCI18781 Inhaled set Neutral 

 

Ibudilast GW308612 Inhaled set Neutral 

 

Isofluprednone CCI3677 Inhaled set Neutral 

 

Losmapimod GW856553 Inhaled set Neutral 

 

Metaproterenol GR270868 Inhaled set Base 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Mometasone furoate GR226838 Inhaled set Neutral 

 

N-(2,2-Dimethylpropyl)-

6-[3-fluoro-2-methyl-5-

(1,2-oxazol-3-

ylcarbamoyl)phenyl]nico

tinamide 

GSK678361 Inhaled set Neutral 

 

Ozagrel GW311465 Inhaled set Base 

 

Procaterol GR32561 Inhaled set Neutral 

 

Benzonatate SKF-5459 Inhaled set Not Classified 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Dextromethorphan GR87911 Inhaled set Acid 

 

Oxolamine SKF-9976 Inhaled set Base 

 

Pranlukast SB-205312 Inhaled set Acid 

 

Trospium GW335683 Inhaled set Not Classified 

 

Umeclidinium GSK573719 Inhaled set Not Classified 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Xylometazoline SKF-26013 Inhaled set Base 

 

Xylometazoline CCI23820 Inhaled set Base 

 

N-(3,5-Dichloropyridin-

4-yl)-2-[1-(4-

fluorobenzyl)-5-

hydroxy-1H-indol-3-yl]-

2-oxoacetamide 

GW842470 Inhaled set Weak Acid 

 

Theophylline CCI4079 Inhaled set Weak Acid 

 

2-(2-Ethyl-2H-tetrazol-5-

yl)-5-[6-({4-[(9-[5-(2-

ethyl-2H-tetrazol-5-yl)-

3,4-

dihydroxytetrahydrofura

n-2-yl]-2-{[2-(1-methyl-

1H-imidazol-4-

yl)ethyl]amino}-9H-

purin-6-

yl)amino]cyclohexyl}ami

GW846428 Inhaled set Weak Base 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

no)-2-{[2-(1-methyl-1H-

imidazol-4-

yl)ethyl]amino}-9H-

purin-9-

yl]tetrahydrofuran-3,4-

diol 

4-{[({[4-(3,4-

Dichlorobenzyl)morpholi

n-2-

yl]methyl}carbamoyl)am

ino]methyl}benzamide 

GW766994 Inhaled set Weak Base 

 

Fenoterol GR123442 Inhaled set Weak Base 

 

Formoterol GR96676 Inhaled set Weak Base 

 

Formoterol GW577790 Inhaled set Weak Base 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

N-[2-(2-{[4-(4-

Chlorobenzyl)-1-

oxophthalazin-2(1H)-

yl]methyl}pyrrolidin-1-

yl)ethyl]-4-

methoxybutanamide 

GSK1367441 Inhaled set Weak Base 

 

N-[2-(2-{[4-(4-

Chlorobenzyl)-1-

oxophthalazin-2(1H)-

yl]methyl}pyrrolidin-1-

yl)ethyl]-4-

methoxybutanamide 

GSK1367441 Inhaled set Weak Base 

 

N-Propyl-4-({4-[(2,2,2-

trifluoroethyl)amino]-7H-

pyrrolo[2,3-d]pyrimidin-

2-yl}amino)benzamide 

GSK1000064 Inhaled set Weak Base 

 

Oseltamivir GW396512 Inhaled set Weak Base 

 

Terbutaline SKF-51066 Inhaled set Weak Base 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Tiaramide SKF-81296 Inhaled set Weak Base 

 

8-Hydroxy-5-{1-

hydroxy-2-[(2-{4-[(6-

methoxy[biphenyl]-3-

yl)amino]phenyl}ethyl)a

mino]ethyl}quinolin-

2(1H)-one 

GSK159802 Inhaled set Zwitterionic 

 

Indacaterol GW872435 Inhaled set Zwitterionic 

 

GSK3896132A GSK3896132A JAKi Amphoteric 

 

GSK3376417A GSK3376417A JAKi Basic 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

GSK3532706A GSK3532706A JAKi Basic 

 

GSK3780731A GSK3780731A JAKi Basic 

 

GSK3800430A GSK3800430A JAKi Basic 

 

GSK3816662A GSK3816662A JAKi Basic 

 

GSK3859782A GSK3859782A JAKi Basic 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

GSK3860551A GSK3860551A JAKi Basic 

 

GSK3861033A GSK3861033A JAKi Basic 

 

GSK3863783A GSK3863783A JAKi Neutral 

 

GSK3336961A GSK3336961A JAKi Not Classified 

 

GSK3686622A GSK3686622A JAKi Not Classified 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

GSK3733362A GSK3733362A JAKi Not Classified 

 

GSK3901000A GSK3901000A JAKi Base 

 

GSK3901790A GSK3901790A JAKi Not Classified 

 

GSK3845209A GSK3845209A JAKi Weak Acid 

 

GSK3074811A GSK3074811A JAKi Weak Base 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

GSK3454697A GSK3454697A JAKi Weak Base 

 

GSK3487568A GSK3487568A JAKi Weak Base 

 

GSK3489723A GSK3489723A JAKi Weak Base 

 

GSK3515539A GSK3515539A JAKi Weak Base 

 

GSK3519625A GSK3519625A JAKi Weak Base 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

GSK3901334A GSK3901334A JAKi Weak Base 

 

GSK3635481A GSK3635481A JAKi Zwitterionic 

 

GSK3908922A GSK3908922A JAKi Zwitterionic 

 

Montelukast GW483100 Oral/Systemic Acidic 

 

Zafirlukast GR138714 Oral/Systemic Acidic 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Amiloride GR77494 Oral/Systemic Base 

 

Candesartan cilexetil GW615775 Oral/Systemic Acidic 

 

Diazoxide CCI6817 Oral/Systemic Acidic 

 

Etodolac GW289865 Oral/Systemic Acidic 

 

Flurbiprofen GR62550 Oral/Systemic Acidic 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Furosemide GR118989 Oral/Systemic Acidic 

 

Glimepiride GW425329 Oral/Systemic Acidic 

 

Glipizide GR231784 Oral/Systemic Acidic 

 

Glyburide GR94296 Oral/Systemic Acidic 

 

Indomethacin CCI120 Oral/Systemic Acidic 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Irbesartan GW622791 Oral/Systemic Acidic 

 

Ketoprofen AH5057 Oral/Systemic Acidic 

 

Mycophenolic acid GR60857 Oral/Systemic Acidic 

 

Naproxen CCI23760 Oral/Systemic Acidic 

 

Nimesulide GR87272 Oral/Systemic Acidic 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Oxaprozin GSK275458 Oral/Systemic Acidic 

 

Piroxicam GR33000 Oral/Systemic Acidic 

 

Pravastatin GR70487 Oral/Systemic Acidic 

 

Acebutolol GR192446 Oral/Systemic Basic 

 

Bupropion GR67205 Oral/Systemic Basic 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Clonidine GR63987 Oral/Systemic Basic 

 

Desloratadine GW787034 Oral/Systemic Basic 

 

Diphenhydramine CCI3839 Oral/Systemic Basic 

 

Domperidone GR61265 Oral/Systemic Basic 

 

Ebastine SKF-95914 Oral/Systemic Basic 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Fenofibrate GF145020 Oral/Systemic Basic 

 

Fexofenadine GW300671 Oral/Systemic Basic 

 

Granisetron GR75205 Oral/Systemic Basic 

 

Guanabenz GI121045 Oral/Systemic Basic 

 

Mefloquine GW335366 Oral/Systemic Basic 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Metergoline GR61317 Oral/Systemic Basic 

 

Metoclopramide GR34950 Oral/Systemic Basic 

 

Mibefradil GI146356 Oral/Systemic Basic 

 

Neostigmine GR73226 Oral/Systemic Basic 

 

Primaquine CCI4308 Oral/Systemic Basic 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Prochlorperazine GR32696 Oral/Systemic Basic 

 

Promethazine CCI3993 Oral/Systemic Basic 

 

Propafenone GF119411 Oral/Systemic Basic 

 

Propranolol CCI4001 Oral/Systemic Basic 

 

Quinidine GR36768 Oral/Systemic Basic 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Tamsulosin GI138525 Oral/Systemic Basic 

 

Verapamil CCI20557 Oral/Systemic Basic 

 

Prednisolone CCI22 Oral/Systemic Neutral 

 

Bicalutamide GW703803 Oral/Systemic Neutral 

 

Celecoxib GW388185 Oral/Systemic Acid 

 



380 
 

Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Dapsone AH23463 Oral/Systemic Neutral 

 

Felodipine GR64334 Oral/Systemic Neutral 

 

Flutamide AH14524 Oral/Systemic Neutral 

 

Isradipine GI116108 Oral/Systemic Neutral 

 

Leflunomide GI99296 Oral/Systemic Neutral 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Letrozole GR119497 Oral/Systemic Neutral 

 

Lovastatin GR78367 Oral/Systemic Neutral 

 

Metolazone GF120403 Oral/Systemic Neutral 

 

Nevirapine GR152114 Oral/Systemic Neutral 

 

Nimodipine GR33914 Oral/Systemic Neutral 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Nisoldipine GR33913 Oral/Systemic Neutral 

 

Nitrendipine GR38393 Oral/Systemic Neutral 

 

Pentoxifylline GR91295 Oral/Systemic Neutral 

 

Spironolactone CCI9371 Oral/Systemic Neutral 

 

Valdecoxib GW560108 Oral/Systemic Neutral 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Zileuton GR104104 Oral/Systemic Neutral 

 

Cilostazol GSK518332 Oral/Systemic Not Classified 

 

Efavirenz GW410886 Oral/Systemic Not Classified 

 

Finasteride GR89244 Oral/Systemic Not Classified 

 

Lansoprazole GW585829 Oral/Systemic Not Classified 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Mifepristone GI202328 Oral/Systemic Not Classified 

 

Nadolol GR90871 Oral/Systemic Not Classified 

 

Pioglitazone GR126777 Oral/Systemic Not Classified 

 

Roxithromycin GW622788 Oral/Systemic Not Classified 

 

Simvastatin GF207280 Oral/Systemic Not Classified 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Telmisartan GW467678 Oral/Systemic Not Classified 

 

Bendroflumethiazide CCI22819 Oral/Systemic Weak Acid 

 

Indapamide GF113815 Oral/Systemic Weak Acid 

 

Zidovudine GR63367 Oral/Systemic Weak Acid 

 

Abacavir GI265235 Oral/Systemic Weak Base 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Acrivastin GW313734 Oral/Systemic Weak Base 

 

Alosetron GR68755 Oral/Systemic Weak Base 

 

Aminoglutethimide GR73674 Oral/Systemic Weak Base 

 

Clemastine GF127680 Oral/Systemic Weak Base 

 

Dipyridamole CCI11224 Oral/Systemic Weak Base 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Ketoconazole GR33859 Oral/Systemic Weak Base 

 

Mebendazole GF133426 Oral/Systemic Weak Base 

 

N-(2-Furylmethyl)-3-

oxo-2-(piperidin-1-yl)-

3,4-dihydro-2H-1,4-

benzothiazine-6-

carboxamide 

GSK527886 Oral/Systemic Weak Base 

 

Nicardipine GR38392 Oral/Systemic Weak Base 

 

Pinacidil GR94365 Oral/Systemic Weak Base 
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Drug Name Parent 

Compound 
Application Acid/Base Class STRUCTURE 

Prazosin AH16682 Oral/Systemic Weak Base 

 

Riluzole GR91291 Oral/Systemic Weak Base 

 

Triamterene SKF-8542 Oral/Systemic Weak Base 
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