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Abstract 

This thesis presents a method based on fracture mechanics to predict the high cycle 

fatigue life of structures with induced compressive residual stress and to calculate the 

minimum autofrettage pressure required to achieve crack arrest. 

For high cycle fatigue life assessment, the total fatigue life of a component is 

calculated as the sum of crack initiation life and crack propagation life. Three finite 

element models are included in the proposed method. In the first model, the residual 

stress distribution is determined using the tested monotonic stress-strain curve of the 

material. The second model simulates crack propagation, where the crack 

propagation life is evaluated by superimposing the applied load and residual stress 

fields. In the third model, an equivalent stress amplitude is calculated based on mean 

stress correction and applied to obtain the crack initiation life from a stress-crack 

initiation life curve, generated based on an assumed crack initiation length. 

For crack arrest analysis, these three models are employed to determine an effective 

stress intensity factor. Crack arrest is then defined by comparing the effective stress 

intensity factor with the thresholds of crack propagation from various models. Finally, 

the minimum autofrettage pressure required to cause crack arrest is determined under 

a given working load cycle. 

Two types of double-notched specimens made from 316L stainless steel and S355 

low carbon steel are investigated to validate the accuracy of the proposed method. 

Numerical results show good agreement with experimental observations for both 

fatigue life prediction and crack arrest analysis. The proposed method is also applied 

to practical components from literature, demonstrating good applicability in the 

design of pressure vessels, valves, and pipes. 
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Chapter 1 Introduction 

Pressure vessels, pumps, valves and pipes are important components of industrial 

systems to store, handle or transport liquids and gases at a wide range of pressures 

and temperatures. In the design of these industrial structures, sufficient strength, 

stiffness and fatigue life are basic conditions that must be met, otherwise design 

errors may have severe impact on the safety and environment. Fatigue failure is one 

of the main causes of failure of engineering structures. Critical equipment is subject 

to cyclic loading, thermal fluctuations and wind or seismic loads in special cases 

throughout their service time. These repeated loadings can lead to the nucleation of 

cracks and the development of crack propagation, which can undermine the 

structural integrity and the safety of these components and ultimately disable the 

entire industrial systems. The maximum value of the cyclic load is often smaller than 

the safe load estimated by static ductile fracture analysis. Therefore, the issue of 

fatigue failure in these components has received considerable attention among 

engineers and researchers. Engineers have developed several methods for extending 

the fatigue life of structures by inducing residual stress such as shot peening, swage 

autofrettage and hydraulic autofrettage. Then, estimating the fatigue life becomes a 

challenge for researchers. 

Several standards have been proposed to assess the fatigue life of structures, 

including the Forschungskuratorium Maschinenbau (FKM) guideline [1] developed 

in Germany, ASME Boiler and Pressure Vessel Code [2] developed in America. 

These structural safety assessment procedures have been successfully applied in 

design by engineers. However, based on some research, the results of fatigue life 

obtained by these standards may be conservative [3]. Additionally, for situations 

involving induced residual stress, the approaches in standards may not be suitable 

and require adjustment by introducing factors related to the residual stress. However, 

as the residual stress is induced by different approaches, simply adding "residual 

stress factors" to the standards may not be suitable. 
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1.1 Objectives 

Autofrettage is one of the fatigue life extension methods which can be applied widely 

in industrial fields such as the aerospace industry, oil and gas industry, etc. However, 

it is unrealistic to verify or observe the influence of autofrettage through experiments 

due to the huge cost of experiments. Therefore, the purpose of this study is to 

propose a numerical method based on Finite Element Analysis (FEA) to predict the 

influence of autofrettage on the fatigue life and the fatigue limit. To achieve the 

purpose, double-notched specimens were designed for the fatigue tests to be 

compared with the numerical results from the proposed method. Furthermore, the 

proposed method is applied to some practical 3D structures for validation. 

1.2 Outline of the Thesis 

This thesis consists of eight chapters and the topics of these chapters are outlined as 

follows. 

Chapter 2 introduces the definition of the fatigue, some fatigue life enhancement 

methods and summarizes three main fatigue life assessment methods. Among which, 

the stress-based approach and the fracture mechanics approach are focused on. 

Chapter 3 presents the monotonic stress-strain curve and the cyclic stress-strain curve 

and some constitutive models applied to fit these curves based on the obtained 

experimental data. 

Chapter 4 proposes a methodology to assess the fatigue life under compressive 

residual stress. The total life of structures with induced compressive residual stress 

can be calculated by adding the crack initiation life with the crack propagation life. 

The crack initiation life is obtained by the stress-crack initiation life (𝑆 − 𝑁𝑖) curve 

determined by an assumed crack initiation length and the simulation of the crack 

growth on the smooth specimen. The crack propagation life with induced residual 

stress is obtained by an effective stress intensity factor (∆𝐾𝑒𝑓𝑓) that consists of the 

effect of the stress intensity factor of residual stress (𝐾𝑟𝑠), applied forces (∆𝐾𝑎𝑝𝑝) and 

the stress ratio. A new method based on the superposition method and FEA is applied 

to calculate the 𝐾𝑟𝑠. 
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Chapter 5 focuses on the application of the proposed methodology, double-notched 

specimens are designed and tested to determined their fatigue life with and without 

the residual stress. The numerical obtained fatigue life based on the proposed method 

is then validated by the experimental results. 

Chapter 6 focuses on the application of the proposed method on the practical 

structures. Cross bore blocks and injection system components in diesel engines from 

literatures are employed to be investigated by the proposed method. The influence of 

structure responses on the crack growth simulation is discussed. 

Chapter 7 extends the application of the proposed method to the determination of the 

minimum autofrettage pressure. The effective stress intensity factors obtained from 

various autofrettage pressures can be compared with the thresholds in different stages 

of crack propagation to find the minimum autofrettage pressure that causes the crack 

arrest. The influences of two kinds of threshold models on the crack arrest analysis 

are also discussed. 

Chapter 8 summarizes the conclusions from each chapters and provides the future 

work of this thesis. 
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Chapter 2 Fatigue Life Assessment 

Fatigue life refers to the number of cyclic loads to which a material or structure is 

subjected until failure. From the development process of fatigue damage, fatigue can 

be divided into three stages as crack initiation, crack propagation and final fracture as 

shown in Figure 2.1. The number of cycles from the start of loading to the crack 

reaching a given crack initiation length is the crack initiation life. Thereafter, the 

number of cycles from the crack initiation extending to the final crack length is the 

crack growth life. In the last stage, the structure goes through rapid fracture and the 

life is significant short. 

 

Figure 2.1．Three stages of fatigue life model. 

2.1 Fatigue Life Enhancement Through Induced Residual Stress 

Residual stress is an internal stress in a component even when subjected to no 

external loading. This stress can be induced in practical manufacture due to 

mechanical processes (machining, cutting and grinding) and thermal processes 

(welding). The presence of residual stress can have both negative and positive effects 

on the fatigue life. For instance, in the welding process, the residual stress is induced 

as a consequence of temperature gradients that result in compressive strain along the 

welding path compared to other areas. Once the cooling process is completed, this 
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compressive stress is transformed into tensile residual stress on the critical points 

which can decrease the fatigue life of structures. On the contrary, if compressive 

residual stress is induced, the fatigue life may be increased. Based on this concept, 

engineers and researchers have developed various approaches to induce compressive 

residual stress in regions prone to fatigue crack initiation and propagation, to enhance 

fatigue life. This can be achieved through several different mechanical processes, 

such as shot peening, laser peening, low plasticity burnishing, swaging and 

autofrettage. 

2.1.1 Shot Peening and Laser Peening 

Shot peening and laser peening are both methods used to induce compressive 

residual stress on the surface of structures to increase fatigue life. 

Shot peening is a cold working process where small spherical media are impacted on 

the surface to form small indentations, which can be regarded as plastic deformations. 

After shot peening, compressive residual stress is induced on the surface. This offsets 

the tensile stress under working loads to enhance the structure from the fatigue 

failure. For example, experimental investigations of shot-peened surfaces in 316 

stainless steel have shown that the number of cycles required to form a crack 

increased from 8000 to 500,000 after shot-peening intensity with 12.2N and the 

crack propagation rate was also decreased due to the residual stress. In addition, 

peened specimens can have longer crack initiation life than polished specimens [4]. 

Therefore, shot peening is widely applied in structures such as aircraft engine blades, 

aircraft fuselage and transmission system parts in automobiles. 

In laser peening, a laser with high power density and short pulse is employed to 

induce a strong shock wave within the metal. When the peak value of the shock wave 

is larger than the yield strength of the metal, plastic deformation occurs on the 

surface, resulting in compressive residual stress [5]. Zhang et al. investigated fatigue 

life improvement by laser peening Ti-6AL-4V with a constant load ratio fatigue test. 

According to the experimental investigation, the fatigue life of laser peened 

specimens was increased by 22.2% to 41.7% compared to as-received specimens [6]. 

Laser peening can induce deeper and larger compressive residual stress compared 
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with shot peening [7] and can maintain a clean surface finish. Therefore, it has been 

used to extend the fatigue life of key aviation components. 

2.1.2 Low Plasticity Burnishing 

Low plasticity burnishing developed from traditional ball burnishing and roller 

burnishing techniques. In comparison to these methods, low plasticity burnishing 

controls the pressure applied on the structure by a spherical fluid bearing tool to just 

exceed the yield stress of the material [8]. With this technology, a layer of 

compressive residual stress can be created by the plastic deformation to enhance the 

fatigue life. According to experiments on the fatigue performance for Inconel 718 

after low plasticity burnishing, the surface roughness of specimens declined by 64.3% 

to 70.6% compared with the as-received specimens, and according to the tested 

results of specimens under three different burnishing pressures, the fatigue life of 

specimens was increased by approximately 37.1%, 62.4% and 82.4% respectively [9]. 

Low plasticity burnishing can extend the fatigue life without significantly changing 

the shape and tolerances of components and has been widely applied to the repair of 

commercial aircraft components. 

2.1.3 Swage Autofrettage 

Swage autofrettage is widely applied in the nuclear industry. In swage autofrettage, 

an oversized tapered mandrel is pushed through the bore of the tube inducing plastic 

deformation at the interior wall. After swage autofrettage, compressive residual stress 

is induced on the internal surface, leading to increased the fatigue life [10]. 

According to the experiment results of the fatigue life of thick-walled cylinders 

through a hybrid rotational-swage autofrettage, the fatigue life of different cylinders 

subject to a range of internal pressure can be increased by 15.37 times for SS316 

cylinder and 377.33 times for Al7075-T6 cylinder [11]. 

2.1.4 Hydraulic Autofrettage 

Engineers must explore alternative methods to enhance fatigue life to meet design 

requirements. While increasing wall thickness can reduce maximum stress and 

thereby increase fatigue life, this approach has limitations and can also raise costs. 

Therefore, autofrettage as a localized surface strengthening method becomes a 
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favourable option for fatigue enhancement to eliminate the need to change the shape 

and material of the component. Detailed numerical and experimental analyses of 

hydraulic autofrettage have been carried out by many studies [12-14]. The method of 

hydraulic autofrettage is commonly applied to pressure vessels with thick walls, and 

involves subjecting the components to an intense internal pressure through a 

hydraulic liquid [15].  

In hydraulic autofrettage, the component is subject to internal pressure great enough 

to cause limited plastic deformation in highly loaded regions prior to service. When 

this autofrettage pressure is reduced to zero, the elastically deformed regions of the 

vessel seek to recover their original dimensions but are prevented from doing so by 

the permanent deformation of the plastically deformed material, inducing residual 

compressive stress at these locations. Experimental investigations have shown that 

this procedure can significantly increase the fatigue life of components or vessels in 

subsequent operations. Mughrabi et al. found the fatigue limit can be increased by 

more than 40% by autofrettage [16]. Other autofrettage studies by Rees, Underwood 

et al., Badr et al., Lee and Koh, PoLzl and Schedelmaier, Thumser et al., Sellen et al. 

have reported fatigue strength increase in excess of 60% [17-23]. 

For instance, half of a thick-walled cylinder is  shown in Figure 2.2, considering a 

2D structure, the radial stress and hoop stress based on elastic analysis can be 

calculated analytically [24]. For elastic-perfectly plastic material, the radial and hoop 

stress can be calculated as well by equations [25] and the residual stress can be 

described by equations [26]. 

After hydraulic autofrettage, compressive residual stress can be induced on the 

internal surface as shown in Figure 2.2 (b). With the same internal pressure, the hoop 

stress through the thickness can be changed from Figure 2.2 (a) to Figure 2.2 (c) 

where the maximum tensile hoop stress on the internal surface shown in Figure 2.2 (a) 

encounters the compressive residual stress and then is decreased as shown in Figure 

2.2 (c). 
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Figure 2.2. Theory of autofrettage: (a) Hoop stress of thick-walled cylinder with 

internal pressure; (b) Residual stress distribution; (c) Hoop stress distribution after 

autofrettage. 

 

2.2 Fatigue Categories 

The load that causes a material or structure to fail under monotonic loading is called 

the static strength. The fatigue failure occurs due to the repeated stress or strain and 

the number of times or cycles leading to failure is called fatigue life and the load 

value that corresponds to the fatigue life is fatigue strength. Fatigue can be classified 

from different perspectives. From the perspective of the stress state at the critical 

points, fatigue can be classified as uniaxial fatigue and multiaxial fatigue. Uniaxial 

fatigue refers to the stress state at the critical point of a material or structure that 

experiences only one stress or strain component, as observed in a fatigue test, for 

instance. In contrast, multiaxial fatigue refers to the stress state that experiences two 

or three stress or strain components that independently vary periodically with time. 

Additionally, based on the types of cyclic loadings applied to the structure, fatigue 

can be classified into mechanical fatigue (structures only subject to mechanical 

loadings), thermomechanical fatigue (structures subject to thermal loadings and 

mechanical loadings), creep fatigue (structures under high temperature conditions), 

and corrosion fatigue (structures in chemically corrosive environments) and so on.  
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The fatigue life of a structure at room temperature is determined by the cyclic load. 

Based on the number of cycles to failure, it can be classified as low cycle fatigue 

(LCF) when less than around 104 cycles, high cycle fatigue (HCF) when greater than 

around 104  cycles up to 107  cycles, whereafter it is classified as very high cycle 

fatigue (VHCF).  

In this chapter, only mechanical fatigue is considered, and uniaxial and multiaxial 

fatigue criteria discussed. In addition, the fatigue life assessment methods 

appropriate for different lengths of fatigue life are introduced. There are three 

common methods to estimate fatigue life: the stress-life method, the strain-life 

method and the fracture mechanics method. The stress-life methods and fracture 

mechanics methods are focused on here. 

2.3 Constant Amplitude Stressing 

When the maximum and minimum stress levels of the cyclic loading are constant, as 

shown in Figure 2.3, the cyclic loading is called constant amplitude loading. 

 

Figure 2.3. Cyclic loading with constant amplitude stressing. 

As shown in Figure 2.3, 𝜎𝑚𝑎𝑥 and 𝜎𝑚𝑖𝑛 are the maximum and minimum cyclic stress. 

The stress cycle is characterised by stress range, ∆𝜎. 𝜎𝑎 is the stress amplitude, 𝜎𝑚 is 

the mean stress and R is the stress ratio. The relationships between these stresses are 

shown in equations (2.1) to (2.4). 

∆𝜎 = 𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛 (2.1) 

𝜎𝑎 =
∆𝜎

2
=

𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛

2
 

(2.2) 
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𝜎𝑚 =
𝜎𝑚𝑎𝑥 + 𝜎𝑚𝑖𝑛

2
 

(2.3) 

𝑅 =
𝜎𝑚𝑖𝑛

𝜎𝑚𝑎𝑥
 (2.4) 

Cyclic stressing can be specified in terms of the stress ratio 𝑅. If 𝑅 = −1, 𝜎𝑚 = 0 

and the absolute values of 𝜎𝑚𝑎𝑥, 𝜎𝑚𝑖𝑛 are equal. This fully-reversed cycle is shown 

in Figure 2.4 (a). When 𝑅 = 0, 𝜎𝑚𝑖𝑛 is zero, 𝜎𝑎 = 𝜎𝑚 =
𝜎𝑚𝑎𝑥

2
. This stress cycle is 

called as zero-based or zero-to-tension cycling, as shown in Figure 2.4 (b). These two 

cases of cycling are the most common cases considered in fatigue life assessment 

methods. 

 

Figure 2.4. Two specified cyclic stressing (a) Fully-reversed cycling (b) Zero-based 

cycling. 

 

2.4 Stress Life Approach 

When a structure is subjected to cyclic loading, fatigue cracks form and propagate 

until complete fracture occurs. Higher stresses result in a smaller number of cycles to 

failure, while lower stresses lead to a larger number of cycles. To estimate the fatigue 

life from stress, it is necessary to establish the relationship between nominal stress 

and the number of cycles to failure for several different test stress levels, as 

illustrated in Figure 2.5 (a) where the stress -life data obtained from fatigue tests are 

included. LCF, HCF and VHCF regions are distinguished by the number of cycles to 

failure. The stress-life data can be fitted by a curve called as the stress versus life (S-
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N) curve. It can be applied to calculate the life if the nominal stress amplitude is 

determined. 

 

Figure 2.5. (a) Classical stress-life curve. (b) Stress-life curve of HCF in log-log plot. 

Commonly, S-N curves in HCF region are plotted on log-linear or log-log scales as 

shown in  Figure 2.5 (b) so that the S-N data can be assumed to lie on a straight line 

and can be fitted mathematically as: 

𝜎𝑎 = 𝐶 + 𝐷 log 𝑁𝑓 (2.5) 

where C and D are material constants for log-linear scale. 
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In log-log plot: 

𝜎𝑎 = 𝐴𝑁𝑓
𝐵 (2.6) 

where A and B are also material constants. 

(2.6) can also be expressed as: 

𝜎𝑎 = 𝜎𝑓
′(2𝑁𝑓)𝑏 (2.7) 

(2.7) is called the Basquin equation, which has been widely adopted by researchers, 

where 𝜎𝑓
′ and 𝑏 are material constant for fully reversed cyclic loading. 

2.4.1 Mean Stress Correction 

Although, the stress range is the main feature to affect fatigue failure, it can also be 

influenced by the mean stress. Tensile mean stress trends to decrease the fatigue life 

[27], but compressive mean stress may increase it [28-30].  

The stress-life curve and strain-life curve are generated based on fatigue tests with 

specific stress ratios. To apply these curves across various stress ratios, they are 

typically converted to the fully reversed cyclic loading condition (𝜎𝑚 = 0, 𝑅 = −1) 

using mean stress correction. If the mean stress is not zero, to apply these curves, the 

mean stress is required to be considered by some mean stress correction method. 

Fatigue strength varies with changes in mean stress. To estimate the endurance limit 

under different mean stress conditions, various simple models have been developed. 

For the stress life method, the three widely used models are Gerber model, Goodman 

model and Soderberg model [31] as shown: 

Gerber model 
 𝜎𝑎 = 𝜎−1 [1 − (

𝜎𝑚

𝜎𝑢
)

2

] 
(2.8) 

Goodman model 
 𝜎𝑎 = 𝜎−1 [1 − (

𝜎𝑚

𝜎𝑢
)] 

(2.9) 

Soderberg model  𝜎𝑎 = 𝜎−1 [1 − (
𝜎𝑚

𝜎𝑌
)] 

(2.10) 

where, 𝜎−1 is the fatigue strength under fully reversed cyclic stress and 𝜎𝑢  is the 

tensile strength, 𝜎𝑌 is the yield stress. 
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All three models are shown in Figure 2.6, with the same mean stress, the corrected 

fully-reversed stress amplitude of Gerber model is the largest and the Soderberg 

gives smallest value. Therefore, compared with Gerber and Goodman models, 

Soderberg model is the most conservative for tensile mean stress that the mean stress 

is positive [32]. In addition, all these three models are employed typically with 

tensile mean stress as shown in Figure 2.6 and needs to be updated for the situation 

with negative mean stress. 

 

Figure 2.6. Gerber, Goodman and Soderberg mean stress correction model. 

The Walker equation (2.11) [33] may be a better choice to be applied in the negative 

mean stress region compared with previous three models to calculate the equivalent 

stress amplitude: 

𝜎−1 = 𝜎𝑎(
1

2 − 𝑅
)1−𝛾 

(2.11) 

where, 𝛾 is a material constant.  

A mean correction method included in the FKM guideline [34] is available for a 

wider range of R ratios, as shown in Figure 2.7. The so-called Haigh diagram is 

divided by four regimes by the R ratios as follows: 

 Regime 1: The values of R are larger than 1, but the mean stress is negative. 

In this situation, the maximum stress and the minimum stress are compressive. 
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 Regime 2: -∞ ≤ 𝑅 ≤ 0, the minimum stress is negative or equal to 0. Two 

specific cases are included in this regime that fully reversed cyclic loading 

(𝑅 = −1) and zero-based cyclic loading (𝑅 = 0). 

 Regime 3: 0< 𝑅 < 0.5, both maximum stress and minimum stress are tension. 

 Regime 4: 0. 5 ≤ 𝑅 < 1, the alternating stress in this regime is high. 

For the four regimes shown in Figure 2.7: the equivalent stress amplitude (𝑅 = −1) 

can be corrected from the mean stress as: 

𝜎𝑎𝑟 = 𝜎𝑎 for Regime 1 and 4 (2.12) 

𝜎𝑎𝑟 = 𝜎𝑎 + 𝑀𝜎𝜎𝑚 for Regime 2 (2.13) 

𝜎𝑎𝑟 = (1 + 𝑀𝜎)
𝜎𝑎 + (𝑀𝜎 3)𝜎𝑚⁄

1 + 𝑀𝜎 3⁄
 

for Regime 3 (2.14) 

where, 𝑀𝜎 is the mean stress sensitivity factor: 

𝑀𝜎 = 𝑎𝑀𝜎𝑢 + 𝑏𝑀 (2.15) 

and, 𝑎𝑀 and 𝑏𝑀 are material constants. 

 

Figure 2.7. Four regimes in the FKM-guideline mean stress correction graph. 

Although mean stress can influence the fatigue life, there are some situations where 

the mean stress effect is ignored. For instance, for welded structures where the 

residual stress is induced after a heat-intensive process [35], high longitudinal tensile 

residual stress is present in the weld [36-38]. Initially, researchers believed that this 

induced tensile residual stress could lead to tensile mean stress, resulting in a 
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decrease in the fatigue life [39]. However, further research found that the mean stress 

has no notable effect on fatigue failure since with high tensile residual stress, the 

stress in the welded joints can reach the yield point, even though the applied external 

stress is not large, making the mean stress effect negligible [40]. Nevertheless, some 

researchers argue that the residual stress effect on the mean stress in welded 

structures should be considered due to the relaxation of the residual stress after 

applied load cycles, especially during the first cycle [41-44]. Additionally, there are 

some approaches trying to induce compressive mean stress in the weld to increase 

the fatigue life [45]. 

2.4.2 The Influence of Stress Concentration 

Notches in a structure, such as a sharp change in cross-sectional, can increase the 

stress and strain in the local region of the structure. This phenomenon is called stress 

concentration and can be expressed by stress concentration factor 𝐾𝑇 as (2.16).  

𝐾𝑇 =
𝜎𝑚𝑎𝑥

𝜎𝑛
 (2.16) 

where, 𝜎𝑛 is nominal stress as shown in Figure 2.8.  

Stress concentration is a common phenomenon in structures. Compared with safety 

design under static loading, the effect of stress concentration is more significant in 

fatigue design under cyclic loading. This is because when a structure is subjected to 

cyclic loading, even if the nominal stress is less than the yield stress, plasticity may 

still be induced in local region with high stress concentration factors, causing fatigue 

damage. Therefore, the fatigue life of the entire structure is dependent on the local 

stress and strain. Since the concept of stress concentration factor was proposed, many 

experiments have been performed to obtain the stress concentration factor and the 

longitudinal stress distribution 𝜎𝑦𝑦, shown in Figure 2.8.  
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Figure 2.8. Stress distribution along the notch. 

For instance, in a single notched flat specimen, the stress concentration factor can be 

affected and determined by the radius of the notch root [46, 47]. By multiplying the 

nominal stress with the 𝐾𝑇, the maximum stress, 𝜎𝑚𝑎𝑥 on the notch root, 𝑥0 in Figure 

2.8 can be determined. Then, 𝜎𝑦𝑦  of the vicinity of the notch tip can then be 

estimated from 𝜎𝑚𝑎𝑥  by polynomial functions, but for more complex structures, 

Finite Element Analysis is required. 

Although, stress concentration has significant influence on fatigue strength, the 

theoretical stress concentration factor 𝐾𝑇 can not fully describe those effects. In 

application of the stress life method to notched specimens, if the maximum stress 

calculated from the stress concentration factor is substituted into S-N curve to 

calculate the fatigue life of the structure, the results may be underestimated. For 

instance, in welding structures, researchers have proposed the concept of hot-spot 

stress, which is related to the stress distribution in the front of the weld toe rather 

than directly on the weld toe, to estimate the fatigue life [48]. Therefore, a concept 

called the fatigue notched factor 𝐾𝑓 has been proposed as: 

𝐾𝑓 =
𝑆𝑒

𝑆𝑁
 

(2.17) 
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where, 𝑆𝑒 is the fatigue strength of the smooth structure and 𝑆𝑁 is the fatigue strength 

of the notched structure. Several methods were proposed to determine the value of 

𝐾𝑓. In the line method proposed by Neuber [49], a length L could be selected as 

shown in Figure 2.8, and when the average stress over the length was larger than the 

fatigue strength, fatigue damage would occur. In this theory, the 𝐾𝑓 can be calculated 

from the 𝐾𝑇 as: 

𝐾𝑓 = 1 +
𝐾𝑇 − 1

1 + √
𝑎𝑁

𝜌

 
(2.18) 

where, 𝑎𝑁  is a function of yield stress and it is called the Neuber factor. 𝜌 is the 

radius of the notch tip. Similar to Neuber’s theory, Peterson [50] assumed that the 

fatigue damage occurred when the point stress at a distance from the notch tip was 

larger than the fatigue strength of the smooth structure. Then 𝐾𝑓 can be presented as: 

𝐾𝑓 = 1 +
𝐾𝑇 − 1

1 +
𝑎𝑃

𝜌

 
(2.19) 

𝐾𝑇 is easier to obtain than 𝐾𝑓 by experiments or finite elements analysis. Therefore, 

the value of 𝐾𝑓 is typically determined from 𝐾𝑇 by assessing the ratio of 𝐾𝑇/𝐾𝑓 in the 

FKM guideline [51]. 𝑛𝜎 is employed to represent the ratio which can be determined 

by the related stress gradient (𝐺𝑟), the tensile strength and the width at the notch net 

section.  

The related stress gradient is an important factor in FKM, and for a simple structure 

it can be determined directly by the radius of the notches [52]. However, for more 

complex structures, the values of 𝐺𝑟  have to be obtained from the practical stress 

distribution in the vicinity of the notches shown in Figure 2.8 as (2.20). 

𝐺𝑟 =
1

𝜎𝑚𝑎𝑥

𝜕𝜎𝑦𝑦

𝜕𝑥
|

𝑥=𝑥0

 
(2.20) 

where, 𝑥0 is the coordinate point where the stress is the maximum stress. 
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In both Neuber’s and Peterson’s theories, a length must be determined to calculate 

the average stress or the point stress. A new theory named as the theory of critical 

distance (TCD) was proposed by Taylor [53] to define a critical distance where the 

average of stresses should be calculated. The critical distance 𝐿𝑐 can be calculated by: 

𝐿𝑐 =
1

𝜋
(
Δ𝐾𝑡ℎ

Δ𝜎0
)2 

(2.21) 

where, Δ𝐾𝑡ℎ is the threshold of fatigue crack propagation and Δ𝜎0 is the amplitude of 

the fatigue limit. 

The TCD approach has been proven to have high accuracy when employed to predict 

fatigue failure [54]. However, the length 𝐿𝑐 of (2.21) is mostly used in high cycle 

fatigue prediction. In medium cycle fatigue region, the critical length is assumed as a 

function of the number of cycles as: 

𝐿𝑀 = 𝐴(𝑁𝑓)𝐵 (2.22) 

where, 𝐿𝑀 is the critical length in medium cycle fatigue region and 𝑁𝑓 is the number 

of cycles to failure. A and B are material constants, where 𝐴 > 0 and 𝐵 < 0. 

Two methods can be applied to determine the values of A and B. The first method is 

based on the static and fatigue limits. When the stress amplitude is equal to the static-

limit loading, the life is 𝑁𝑠 . The critical length 𝐿𝑀  versus 𝑁𝑓  relationship can be 

determined as: 

𝐿𝑀 = 𝐿𝑠 =
1

𝜋
(
𝐾𝐼𝑐

𝜎𝑢
)2 

(2.23) 

where, 𝐿𝑠 is the critical length of the static limit, 𝐾𝐼𝑐 is fracture strength and 𝜎𝑢 is the 

ultimate tensile stress. Meanwhile, when the amplitude stress is equal to the fatigue-

limit loading, the life is 𝑁0. The critical length 𝐿𝑀 versus 𝑁𝑓 relationship is: 

𝐿𝑀 = 𝐿0 =
1

𝜋
(
𝐾𝑡ℎ

𝜎0
)2 

(2.24) 

Then 
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𝐵 = −
log (

𝐿𝑠

𝐿
)

log (
𝑁0

𝑁𝑠
)
 

(2.25) 

𝐴 = 𝐿𝑁0
−𝐵 

The second method is dependent on two S-N curves: one for a plain specimen and 

another for a notched specimen. For a given life 𝑁𝑖 , the corresponding amplitude 

stress in plain specimens, 𝜎𝑎,𝑝 should be equal to the stress in the critical length. In 

addition, for the same given life 𝑁𝑖, the result of the corresponding amplitude stress 

in notched specimens, 𝜎𝑎,𝑛 multiplied by 𝐾𝑇, is equal to the maximum stress on the 

notch root. Then the critical length can be calculated by two or more selected 𝑁𝑖, as 

shown in Figure 2.9.  

 

Figure 2.9. Critical length determination in TCD. 

 

2.4.3 Limitation of TCD Method 

In (2.21), the critical length in TCD is determined by the values of Δ𝐾𝑡ℎ and Δ𝜎0. As 

both values are dependent on the stress ratio 𝑅, a key premise of TCD is that the 

stress ratio must be constant. However, after autofrettage with the presence of the 

induced compressive residual stress, the stress ratio and the mean stress are variable, 

such that the TCD approach is not directly applicable. The approach mentioned in the 

Section 2.4.2 can be applied to determine the critical length with a specific 

autofrettage pressure by conducting experiments to generate the S-N curve for 

autofrettaged notched specimens and plain specimens. However, a large number of 

fatigue tests must be conducted for both autofrettaged notch specimens and plain 
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specimens. Moreover, the critical distance varies with different autofrettage pressures. 

Therefore, conducting these tests for the determination of critical length can be 

expensive. 

2.5 Strain Life Approach 

Similar to the stress life approach, in the strain life approach the number of cycles to 

failure is determined by the strain range, and the relationship between strain and the 

fatigue life is expressed by the strain-life (𝜀-N) curve as shown in Figure 2.10. The 

strain life data in this curve is collected by strain controlled fatigue test and for each 

test, amplitudes of strain, stress can be obtained from a hysteresis loop as shown in 

Figure 2.10 as well and for longer fatigue life, the hysteresis loop is smaller with less 

strain amplitude. 

 

Figure 2.10. Classical strain-life curve. 

The 𝜀-N curve can be described by the Manson-Coffin equation, which is the most 

widely used in the form: 

𝜀𝑎 = 𝜀𝑒𝑎 + 𝜀𝑝𝑎 =
𝜎𝑓

′

𝐸
(2𝑁)𝑏 + 𝜀𝑓

′(2𝑁)𝑐 
(2.26) 
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where, 𝜀𝑎 is the total strain amplitude, 𝜀𝑒𝑎 is the elastic strain amplitude and 𝜀𝑝𝑎 is 

the plastic strain amplitude. 𝜎𝑓
′ and b are fatigue strength coefficients, 𝜀𝑓

′ and c are 

fatigue ductility coefficients. All these coefficients should also be obtained from the 

fully reversed cyclic loading test [55]. 

The Manson-Coffin equation consists of elastic parts and plastic parts, as shown in 

Figure 2.10, where, the red line is for plastic and the blue line is for elastic. There is 

an intersection point (𝑁𝑇) of the elastic and plastic lines. When N< 𝑁𝑇, the plastic 

strain plays the main role in fatigue and when N> 𝑁𝑇, the elastic strain has a key 

effect on fatigue. 

2.5.1 Local Stress-strain Approach 

For notched structures, fatigue failure arises from the accumulation of fatigue 

damage in localized areas, which is influenced by the magnitude of local stress and 

strain. In response to this, methods have been proposed to estimate the fatigue life of 

notched structures by local stress-strain analysis [56]. The cyclic stress-strain curve 

and the Neuber rule transforming the nominal stress spectrum into the local stress-

strain spectrum at the critical area is included in this method. Subsequently, life 

estimation is conducted based on the local stress-strain history and the Manson-

Coffin equation (2.26). 

The local stress-strain method is predominantly employed for evaluating LCF, where, 

compared to the HCF, the area around the notch root mostly undergoes plastic 

deformation, as shown in Figure 2.11. The gradient in (2.20) is smaller in the plastic 

zone, so that the stress or strain at the notch root can represent the stress or strain 

distribution around the notch area. However, in elastic stress or strain distribution, 

the gradient is larger and the “average stress” around the notch root cannot be 

represented by a single stress or strain at the notch root. 
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Figure 2.11. Comparison of elastic stress-strain distribution with plastic stress-strain 

distribution around the notch root. 

 

The procedure for estimating the fatigue life of structures by applying the local 

stress-strain method is shown in Figure 2.12. 

(1) Identification of critical point: Mostly, the points or areas on the structure 

with high concentration factors. 

(2) Determination of the nominal stress spectrum and the cyclic stress-strain 

curve for the material of the structure. 

(3) Calculation of the local stress-strain spectrum by FEA or Neuber approximate 

solution. In Neuber's approximate solution, (2.27) with Neuber constant, C 

and (2.28) are employed to calculate the stress and strain range. 

∆𝜎∆𝜀 =
𝐾𝑓

2∆𝑆2

𝐸
= 𝐶 

(2.27) 

∆𝜀

2
=

∆𝜎

2𝐸
+ (

∆𝜎

2𝐾′
)1/𝑛′

 

(2.28) 

The Neuber approximate solution can be described as shown in Figure 2.13. 

In each cycle, nominal stress either increases or decreases, enabling the 

calculation of the Neuber constant based on this change. Then, by solving the 

(2.27) and (2.28), the increment or decrement of stress and strain can be 

determined. Finally, the stress and strain state at the critical point at the end of 

each cycle can be obtained. 
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(4) Calculation of the fatigue life by the strain-life curve and the accumulation of 

fatigue damage. 

 

Figure 2.12. The procedures of local stress-strain method. 

 

Figure 2.13. Neuber approximate solution. 

2.6 Multiaxial Fatigue 

S-N curves are commonly based on 1D stress. However, for real structures 

experiencing 3D stress, the results from 3D analysis need to be related to 1D material 

properties. Several multiaxial fatigue failure criteria have been proposed by 

researchers, among which, the most successful and widely used criterion is the 

critical plane approach [57], which is related to the Tresca yield criterion. Findley 

proposed that variable shear stress on the critical plane was the main factor to 
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generate fatigue damage, and the stress normal to the critical plane affected the 

ability of the material to resist fatigue damage. Based on this theory, he proposed a 

linear function combining the shear stress amplitude and normal stress as a fatigue 

criterion [58]. Kandil proposed a strain critical plane criterion [59] and McDiarmid 

proposed a stress criterion [60]. Brown proposed that the crack generated at the plane 

with the maximum shear stress and propagated along the orientation of the maximum 

normal strain [61]. The influence of the mean stress on the critical plane approach 

can be expressed on the normal strain or stress in Susmel’s work[62] as: 

𝜏𝑠 = 𝜏𝑎 + (𝜎−1 −
𝜏−1

2
) ∙

𝜎𝑐,𝑚𝑎𝑥

𝜏𝑎
 (2.29) 

where, 𝜏𝑎 is the shear stress amplitude on the critical plane,  𝜎𝑐,𝑚𝑎𝑥 is the maximum 

normal stress on the critical plane, 𝜎−1 and 𝜏−1  are the fully reversed tensile and 

shear fatigue limit. In summary, in the critical plane approach, the shear stress 

amplitude and normal stress are employed for the estimation of fatigue failure with 

high accuracy [63]. This fatigue criterion is also included in the ASME BPVC VIII 

Div 3 [64] where the principal stresses are employed to calculate the maximum shear 

stress as show in Figure 2.14. 

 

Figure 2.14. Maximum shear stress around a point. 

As shown in Figure 2.14, the maximum shear stresses on the three planes are: 
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𝜏1 =
𝜎2 − 𝜎3

2
 (2.30) 

𝜏2 =
𝜎3 − 𝜎1

2
 

𝜏3 =
𝜎1 − 𝜎2

2
 

where, 𝜏1,2,3 are three maximum shear stresses on the planes and 𝜎1,2,3 are principal 

stresses. 

The normal stresses on planes are: 

𝜎𝜏1 =
𝜎2 + 𝜎3

2
 

(2.31) 

𝜎𝜏2 =
𝜎3 + 𝜎1

2
 

𝜎𝜏3 =
𝜎1 + 𝜎2

2
 

The procedures included in the ASME BPVC VIII Div. 3 are based on Figure 2.14 to 

determine the fatigue controlling stress components as follows: 

 Determine the values of principal stresses (𝜎1, 𝜎2, 𝜎3) at the interest points 

during the cyclic loading. 

 Calculate the principal stress differences: 

𝑆12 = 𝜎1 − 𝜎2 

𝑆23 = 𝜎2 − 𝜎3 

𝑆31 = 𝜎3 − 𝜎1 

(2.32) 

Determine the stress differences under the maximum cyclic loading (𝑆𝑖𝑗 𝑚𝑎𝑥) 

and the stress differences under the minimum cyclic loading (𝑆𝑖𝑗 𝑚𝑖𝑛). An 

alternating shear stress range 𝑆𝑎𝑙𝑡 𝑖𝑗 ( 𝑖 ≠ 𝑗 = 1,2,3) is defined for each stress 

difference. 

Then, all the alternating stress can be calculated as: 

𝑆𝑎𝑙𝑡 𝑖𝑗 = 0.5(𝑆𝑖𝑗 𝑚𝑎𝑥 − 𝑆𝑖𝑗 𝑚𝑖𝑛) (2.33) 

All stress differences can be obtained as: 𝑆𝑎𝑙𝑡 12, 𝑆𝑎𝑙𝑡 23, 𝑆𝑎𝑙𝑡 31. 
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 The mean stresses are the normal stresses on the planes of the maximum 

shear stresses, calculated as: 

𝜎𝑛 12 = 0.5(𝜎1 + 𝜎2) (2.34) 

𝜎𝑛 23 = 0.5(𝜎2 + 𝜎3) 
 

𝜎𝑛 31 = 0.5(𝜎3 + 𝜎1) 
 

where, 𝜎𝑛 𝑖𝑗  is applied to represent any one of these normal stresses. The 

mean normal stresses can be calculated as: 

𝜎𝑛𝑚 𝑖𝑗 = 0.5(𝜎𝑛 𝑖𝑗𝑚𝑎𝑥 + 𝜎𝑛 𝑖𝑗𝑚𝑖𝑛) For 𝑆𝑖𝑗 𝑚𝑎𝑥 < 𝑆𝑦  and 𝑆𝑖𝑗 𝑚𝑖𝑛 >

−𝑆𝑦 

(2.35) 

𝜎𝑛𝑚 𝑖𝑗 = 0 
For 𝑆𝑎𝑙𝑡 𝑖𝑗 ≥ 𝑆𝑦 

 Finally, the equivalent alternating stress 𝑆𝑒𝑞 𝑖𝑗 can be obtained by the mean 

stress correction method included in the ASME code as: 

𝑆𝑒𝑞 𝑖𝑗 = 𝑆𝑎𝑙𝑡 𝑖𝑗

1

1 − 𝛽𝜎𝑛𝑚 𝑖𝑗/𝑆𝑎
′
 

(2.36) 

where, 𝛽 is a material constant and 𝑆𝑎
′  is the amplitude of fatigue limit with zero 

mean stress and 106 fatigue life cycles. 

One of the limitations of the critical plane approach and Tresca criterion is that the 

fatigue controlling stress is determined by the maximum shear stress, which is not 

invariant. When the principal directions change during the load cycle, the maximum 

shear stress amplitude cannot be determined easily by the procedures above. The 

critical plane must be obtained considering the change of the shear stress plane [65, 

66]. This problem can be easily resolved if the fatigue controlling stress is taken to 

be the von Mises stress, which is invariant. However, when applying the Von Mises 

stress, compressive stress cannot be represented as negative. To solve this problem, a 

method with signed Von Mises stress [67] is proposed as: 

𝜎𝑆𝑉𝑀 =
𝜎𝐴𝑀𝑃

|𝜎𝐴𝑀𝑃|
∙ √

(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2

2
 

(2.37) 

where, 𝜎𝑆𝑉𝑀 is the signed Von Mises stress, 𝜎𝐴𝑀𝑃 is the absolute maximum principal 

stress and is usually defined as 𝜎1 > 𝜎2 > 𝜎3 in FEA. For compressive residual stress, 
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although the value of 𝜎3 is negative, the absolute value of 𝜎3 is larger than 𝜎1, so the 

𝜎𝐴𝑀𝑃  in (2.37) can be defined by 𝜎3 and the value of 𝜎𝑆𝑉𝑀  is negative and in the 

same way, the value of 𝜎𝑆𝑉𝑀 for tensile residual stress is positive. However, there are 

concerns regarding the signed von Mises approach, as it may not provide as accurate 

results as the critical plane approach [68, 69].  

2.7  Fracture Mechanics Fatigue Method 

Fatigue can be studied from various perspectives. Both stress-based and strain-based 

approaches are based on a continuum, focusing on the number of cycles leading to 

failure and relating these cycles to stress and strain. However, from the nature of the 

fatigue mechanism, the process of studying fatigue is also the process of studying 

cracks. Fatigue generally refers to the damage of a structure under repeated loads, 

which includes the following stages: formation of cracks, crack propagation and 

fracture. In more detail, it includes the formation of slip bands, small crack 

propagation, long crack propagation and final fracture. After crack initiation, the 

typical fatigue crack propagation process of metallic materials can be divided into 

three stages, as microstructurally small cracks (MSC), physically small cracks (PSC) 

and long cracks (LC) [70]. The microstructurally small cracks and physically small 

cracks can be considered to be small cracks. The study of fracture mechanics fatigue 

method is based on the analysis of crack length. 

2.7.1 Crack Initiation 

Traditionally, total fatigue life is considered to be the sum of crack initiation life and 

crack propagation life. The crack initiation life is difficult to determine if the crack 

initiation length does not have an exact value and the complexity of micro crack 

monitoring methods. To predict the crack initiation life numerically, engineers often 

assume the crack initiation length based on experience, and the values used are often 

different. The crack initiation length plays an important role in addressing the issue 

of fatigue life prediction, as crack initiation life can be a significant part of the total 

life, especially for high cycle fatigue [71]. It is therefore important to define at which 

length crack initiation terminates and crack propagation starts.  
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The typical fatigue process for metallic materials can be divided into MSC growth 

PSC growth and LC growth. Among these, the nucleation and MSC growth are 

difficult to represent through a numerical model, but the rate of PSC and long crack 

growth can be represented by the Paris law [72]. For engineering applications, it is 

convenient to treat the MSC length as the initiation crack length.  

Investigations of microstructurally small crack growth [73-75] have shown that in the 

early stage, several fatigue cracks occur from persistent slip bands and then stretch 

across one grain. However, most of the cracks stop at the boundary of grains, and the 

crack can only extend when adjacent grains have nearly identical orientations. By 

observing the micro-cracks in the grains of 316L stainless steel, Obrtlik et.al [75] 

gave a crack transition length (𝑎𝑡) which divided the whole fracture process into a 

crack generation region and a crack propagation region. The crack generation was 

limited by reaching 𝑎𝑡, which could be assumed as the crack initiation and was the 

length of one or two average grains sizes. As the average length of grains in their 

investigation was 100𝜇𝑚, the value of 𝑎𝑡  can be assumed as 200𝜇𝑚 . Similarly, 

Angelika and Huang [73] proposed that two-segment cracks were formed when a 

micro-crack in a grain broke through the boundary and grew into another one, and, 

likely, three or more kinks formed by crack growth. Pham and Holdsworth [74] 

proposed that the size of an MSC was affected by the applied strain amplitude and 

the temperature, by observing the first fatigue striation of material 316L steel, for 

which the average grain size is about 60 𝜇𝑚.  

2.7.2 Small Crack Propagation 

The presence of a small crack implies that its dimensions are within the same order 

of magnitude as the structural scale of the material. In such cases, the assumption of 

a macro-continuum can no longer be considered valid. Determining the precise size 

range for what constitutes a "small crack" varies and is often drawn from 

experimental findings specific to a given material. The Kitagawa-Takahashi diagram 

[76] was proposed to define the range of cracks as shown in Figure 2.15. The crack 

growth length is divided into three stages in the KT diagram. Length 𝑑1  is the 

microstructurally small crack length, from 𝑑1 to 𝑑2 is physically small crack growth 

and after 𝑑2 is long crack growth.  



29 

 

 

Figure 2.15. Kitagawa-Takahashi diagram showing the threshold. 

EI Haddad proposed that the structural scale of a material was 𝑎0, where 𝑎0 can be 

determined from the stress intensity factor threshold of LC (∆𝐾𝑡ℎ𝑅) and the fatigue 

strength amplitude at high number of cycles to failure (∆𝜎𝑒𝑅) as: 

𝑎0 =
1

𝜋
(
∆𝐾𝑡ℎ𝑅

∆𝜎𝑒𝑅
)2 

(2.38) 

A crack length less than 𝑎0  should be defined as a small crack. The 𝑎0  in EI 

Hadded’s equation is same as the critical distance in TCD. Based on the applicability 

of linear elastic fracture mechanics, Miller proposed the cracks smaller than 𝑑2 

should be defined as small cracks [77, 78]. 

KT diagram shown in Figure 2.15 is the most widely used tool to describe the short 

crack threshold. There are two available models to describe the curve in the KT 

diagram. One of these is the EI Haddad model [79] where ∆𝐾𝑡ℎ,𝑎 is a function of  

∆𝐾𝑡ℎ𝑅 with crack size and the transition between PSC and LC (𝑑2) as: 

∆𝐾𝑡ℎ,𝑎 = ∆𝐾𝑡ℎ𝑅√
𝑎

𝑑2
 

(2.39) 

where, ∆𝐾𝑡ℎ,𝑎 is the crack size dependent stress intensity factor threshold of PSC. 

The EI Haddad model has been successfully applied in the calculation of ∆𝐾𝑡ℎ,𝑎 in 

the fretting fatigue crack arrest analysis [80, 81]. Another model was proposed by 
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Chapetti. In this model, the nonlinear threshold is considered. In the Chapetti model, 

the types of thresholds during crack propagation can be summarized as the intrinsic 

threshold (∆𝐾𝑡ℎ,𝑑) and the extrinsic threshold (∆𝐾𝐶) as in (2.40) and shown in Figure 

2.16. 

∆𝐾𝑡ℎ,𝑎 = ∆𝐾𝑑𝑅 + ∆𝐾𝐶 (2.40) 

 

Figure 2.16. Threshold of stress intensity factor ranges with crack size. 

For an MSC, only when the applied stress range is larger than the plain fatigue limit 

range ∆𝜎𝑒𝑅, the nucleated crack can break through the microstructural grain barriers 

and continue to grow as a PSC, whereby the ∆𝐾𝑑𝑅  as the intrinsic threshold is 

dependent on the plain fatigue limit and the transition between MSC and PSC (𝑑1), 

as shown in (2.41) 

∆𝐾𝑑𝑅 = 𝑌∆𝜎𝑒𝑅√𝜋𝑑1 (2.41) 

where 𝑌 is the geometrical correction factor which can be assumed as 0.65 as in 

Chapetti’s article [82]. However, in [71], researchers assumed a semi-ellipse crack 

with a specific aspect ratio a/b, where a (initial crack length) is the half length of the 

minor axis and b is the half length of the major axis, and proposed that the value of 𝑌 

should be dependent on the aspect ratio. For example, it can be assumed as 0.746 if 

the aspect ratio is 0.8. The value of 𝑑1 is defined as the strongest microstructural 
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barrier of the material, such as the ferrite grain size in ferrite-perlite microstructure, 

but for engineering applications it is difficult to determine the value without 

experiments, and it is commonly taken to be the average grain size of the material. 

In PSC region, the ∆𝐾𝐶 changes as the extrinsic component of ∆𝐾𝑡ℎ increases from 

∆𝐾𝑑𝑅  to ∆𝐾𝑡ℎ𝑅 , as shown in Figure 2.16. The value of ∆𝐾𝑡ℎ,𝑎  can be obtained by 

(2.42). 

∆𝐾𝑡ℎ,𝑎 = ∆𝐾𝑑𝑅 + (∆𝐾𝑡ℎ𝑅 − ∆𝐾𝑑𝑅)[1 − 𝑒−𝑘(𝑎−𝑑1)] (2.42) 

where, 𝑘 is material constant to fit the curve in (2.42), and can be calculated as (2.43). 

𝑘 =
1

4𝑑1

∆𝐾𝑑𝑅

∆𝐾𝑡ℎ𝑅 − ∆𝐾𝑑𝑅
 

(2.43) 

Finally, when the size of the crack is larger than 𝑑2, the threshold is constant at 

∆𝐾𝑡ℎ𝑅. 

2.7.3 Long Crack Growth 

The predominant focus in fracture mechanics lies in the analysis of long crack 

growth, since the length of such cracks comprises the majority of the total 

propagation. In typical fracture mechanics, various parameters are utilized to 

characterize the energy release rate or stress amplitude at the crack tip, including J-

integral, Stress Intensity Factor (SIF), and Energy-release Rate (G). The prevalent 

approach for simulating crack propagation and computing these parameters is Linear 

Elastic Fracture Mechanics (LEFM). Irwin [83] developed a solution for stress 

distribution surrounding the crack tip in an infinite plate as: 

𝜎𝑥𝑥 =
𝜎∞√𝜋𝑎

√2𝜋𝑟
cos

𝜃

2
(1 − sin

𝜃

2
sin

3𝜃

2
) 

 

𝜎𝑦𝑦 =
𝜎∞√𝜋𝑎

√2𝜋𝑟
cos

𝜃

2
(1 + sin

𝜃

2
sin

3𝜃

2
) 

(2.44) 

𝜏𝑥𝑦 =
𝜎∞√𝜋𝑎

√2𝜋𝑟
cos

𝜃

2
sin

𝜃

2
cos

3𝜃
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where, 𝜎∞  is the remotely applied stress and 𝑟  and 𝜃  are two axes in a circular 

coordinate system, 𝑎  is the crack length as shown in Figure 2.17. When 𝜃=0, it 

becomes 𝜎𝑦𝑦 =
𝜎∞√𝜋𝑎

√2𝜋𝑟
, and note that all three stress equations contain the same 

expression, 𝜎∞√𝜋𝑎. Irwin first used this to describe the stress state at the tip of the 

crack. Therefore, under static loading, the stress intensity factor for cracked 

structures can be determined as: 

𝐾 = 𝑌𝜎√𝜋𝑎 (2.45) 

 

 

Figure 2.17. Stress components on a point around the crack length a.  

Under cyclic loading, crack propagation is determined by the range of stress intensity 

factor: 

∆𝐾 = 𝑌(𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛)√𝜋𝑎 = 𝑌∆𝜎√𝜋𝑎 (2.46) 

The crack growth rate (
𝑑𝑎

𝑑𝑁
) defined as increment crack growth per load cycle can be 

related to the ∆𝐾 as shown in Figure 2.18, where the long crack propagation can be 

divided into three regions. In the first region, the crack can propagate only when the 

stress intensity range is larger than the threshold of long crack. In the second region, 

the crack growth rate is stable and follows linearly with the ∆𝐾 om log-log plot and 

can be defined by Paris Law [84]: 
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𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚 

(2.47) 

where, C and m are material constants. 

In the third region, 𝐾𝑚𝑎𝑥  finally approaches a critical value and ∆𝐾  achieves a 

critical value ∆𝐾𝐶𝑅 . The crack propagates rapidly, and the crack growth rate is 

unstable. 

 

Figure 2.18. Crack growth rate with stress intensity range. 

In LEFM, the energy release rate, G represents the rate at which potential energy is 

released from a elastic structure as a crack propagates. G is given by: 

𝐺 =
𝜋𝜎2𝑎

𝐸
 

(2.48) 

For a single fracture mode, the SIF can be related to G by: 

𝐺 =
𝐾2

𝐸
 

(2.49) 

The J-integral is one of the most widely used parameters in fracture mechanics. It 

represents an integral equation that quantifies the energy released per unit area as the 

crack surface extends. In the context of the first law of thermodynamics, when the 

system is in a static state at ambient temperature, the work performed by external 

forces equals the sum of the mechanical strain energy and the dissipated mechanical 

energy resulting from crack growth. By integral calculation [85], the J-integral can be 
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determined. The J-integral can be applied in both linear elastic and elastic-plastic 

materials. It depends on quantifying the energy release rate, distinguishing it from 

SIF which can be obtained through different modes and possess directionality.  

2.7.4 Effect of Stress Intensity Ratio, R  

The crack growth rate may depends to the stress ratio, such that with same ∆𝐾, an 

increase in the stress intensity ratio may cause a larger crack growth rate. The Paris 

Law, therefore, needs to be corrected for different stress ratios. One of the most 

widely used methods is the Walker equation [33]: 

∆𝐾𝑒𝑞 =
∆𝐾

(1 − 𝑅)1−𝛾
 

(2.50) 

where, ∆𝐾𝑒𝑞 is the equivalent stress intensity range when the stress intensity ratio 

𝑅 = −1. 

The crack closure and opening concept was proposed by Elber [86] who suggested 

that cracks could propagate only when the corrected stress intensity range was larger 

than the crack opening stress intensity factor.  

 

Figure 2.19. Definition of crack closure and opening. 

In the crack closure concept, the effective stress intensity factor range (∆𝐾𝑒𝑓𝑓) is 

obtained from ∆𝐾 by the U ratio of ∆𝐾𝑒𝑓𝑓 and ∆𝐾 as: 

𝑈 =
∆𝐾𝑒𝑓𝑓

∆𝐾
=

𝐾𝑚𝑎𝑥 − 𝐾𝑜𝑝

∆𝐾
 

(2.51) 



35 

 

where, 𝐾𝑜𝑝 is the crack opening stress intensity factor. In addition, according to the 

study of Elber, the value of U depends on R [87] and an improved function to relate 

U to R was proposed by Newman [88]. The effective stress intensity factor can be 

treated as a function of ∆𝐾  and R and the traditional 
𝑑𝑎

𝑑𝑁
 against ∆𝐾  curves with 

different R can be replaced by a main curve.  

Kujawski [89] addressed the crack closure effect by correlating the fatigue crack 

growth rate with a variable stress ratio 𝑅. The driving force for crack growth may 

depend on the material properties, temperature, and environment. For example, in a 

ductile material the driving force is dominated by ∆𝐾, but in a brittle material it is 

controlled by 𝐾𝑚𝑎𝑥 . Kujawski proposed a new form of crack driving force, 𝐾∗ , 

combining ∆𝐾 and 𝐾𝑚𝑎𝑥:  

𝐾∗ = (𝐾𝑚𝑎𝑥)𝛼(∆𝐾+)1−𝛼 (2.52) 

where 𝛼 is a correlation parameter, ∆𝐾+ = ∆𝐾 when R≥ 0 and ∆𝐾+ = 𝐾𝑚𝑎𝑥  when 

R< 0. 

On this basis, the stress intensity factor range ∆𝐾 in the Paris equation is replaced by 

𝐾∗, and the effect of 𝑅 is incorporated by: 

∆𝐾 = 𝐾∗(1 − 𝑅)𝛼 For 𝑅 > 0 (2.53) 

∆𝐾 = 𝐾∗(1 − 𝑅) For 𝑅 < 0 (2.54) 

and the Paris law is correlated as: 

𝑑𝑎

𝑑𝑁
= 𝐶𝑅=0[

∆𝐾

(1 − 𝑅)𝛼
]𝑚𝑅=0 

For 𝑅 > 0 (2.55) 

𝑑𝑎

𝑑𝑁
= 𝐶𝑅=0[

∆𝐾

(1 − 𝑅)
]𝑚𝑅=0  

For 𝑅 < 0 (2.56) 

2.7.5 Crack Tip Plasticity 

Due to the high stress concentration induced by the crack tip, even though the remote 

stress is low, the high value of stress around the crack tip may cause plasticity. LEFM 

is only valid if the small scale yielding criterion is satisfied such that the crack tip 

plastic zone is much smaller than the crack size. Therefore, it is important to 
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determine the plastic zone size. Irwin [90] assumed that in a plastic zone around the 

crack tip, the stress equals the yield stress of the material, and outside the plastic 

zone, the stress distribution is still elastic, as shown in Figure 2.20. In Irwin’s model, 

the crack tip plastic zone is 𝑅𝑝 and to calculate the value of 𝑅𝑝, a fictitious crack tip 

is proposed at x=𝜂. The force represented by area A should be equal to the force 

represented by area B, so that the effect of the elastic-plastic stress zone around the 

real crack length 𝑎 is also equivalent to that of the elastic stress zone around the 

fictitious crack length 𝑎 + 𝜂 [91]. 

 

Figure 2.20. Crack tip plasticity region. 

 

To calculate 𝜂, assuming the area of A is equal to that of B, an equation can be 

proposed as: 

∫ 𝜎𝑦𝑦𝑑𝑥 − 𝜎𝑌
∗𝑟𝑝

𝑟𝑝

0

= 𝜂𝜎𝑌
∗ 

(2.57) 

𝜎𝑦𝑦 =
𝐾𝐼

√2𝜋𝑥
 

For two conditions: 
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𝜎𝑌
∗ = {

𝜎𝑌,                𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑒𝑠𝑠
1

1 − 2𝜈
𝜎𝑌,   𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑎𝑖𝑛

 

(2.58) 

Then 𝑟𝑝 is solved as: 

𝑟𝑝 =
1

2𝜋
(

𝐾𝐼

𝜎𝑌
∗
)2 

 

(2.59) 

Meanwhile, we can also get 𝜂 = 𝑟𝑝, and hence,  

𝑅𝑝 =  𝜂 + 𝑟𝑝 =
1

𝜋
(

𝐾𝐼

𝜎𝑌
∗
)2 

(2.60) 

Based on this theory, concepts of effective crack length (𝑎𝑒𝑓𝑓) and adjusted stress 

intensity factor were proposed by Irwin, who assumed the rule of small-scale plastic 

crack growth is the same as that in LEFM. Assuming inducing an effective crack 

length which equals the physical crack length plus the half size of the plastic zone 

(a+𝑟𝑝): 

𝐾𝐼𝑃 = 𝜎√𝜋𝑎𝑒𝑓𝑓 = 𝜎√𝜋(𝑎 + 𝑟𝑝) = 𝜎√𝜋(𝑎 +
1

2𝜋
(

𝐾𝐼

𝜎𝑌
∗
)2) 

(2.61) 

where, 𝐾𝐼𝑃 is the stress intensity factor determined from plasticity. 

The shape plastic zone is different for different yield criteria and plane stress case or 

plane strain case. Based on (2.44), three principal stresses can be calculated as: 

𝜎1 =
𝐾𝐼

√2𝜋𝑟
cos

𝜃

2
[1 + sin

𝜃

2
] 

 

𝜎2 =
𝐾𝐼

√2𝜋𝑟
cos

𝜃

2
[1 − sin

𝜃

2
] 

(2.62) 

𝜎3 = {

0,                                                𝑃𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑒𝑠𝑠

2𝑣
𝐾𝐼

√2𝜋𝑟
cos

𝜃

2
,                       𝑃𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑎𝑖𝑛
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According to the Tresca yield criterion and von Mises yield criterion, the plastic zone 

estimated by plane stress and plane strain can be shown in Figure 2.21 and Figure 

2.22. 

 

Figure 2.21. Plastic zone based on Plane stress (a) Tresca yield criterion (b) Von 

Mises criterion. 

 

Figure 2.22. Plastic zone based on Plane strain (a) Tresca yield criterion (b) Von 

Mises criterion. 
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Chapter 3 Plasticity Modelling 

3.1 Monotonic Stress-strain Curve 

The monotonic stress-strain curve is a major fundamental graphical representation 

within the field of materials science and engineering to define the mechanical 

characteristics of materials under external forces. Materials deform under external 

forces in two main ways: elastic deformation and plastic deformation, as shown in 

Figure 3.1. Elastic deformation occurs when the stress is less than the yield stress, 𝜎𝑌 

and refers to the ability of a material to return to its original shape and size after 

being subject to a certain amount of deformation from external forces, making the 

process of elastic deformation reversible. In the elastic region, the response of strain 

to the tensile stress is linear, obeying Hook’s law, therefore, the elastic deformation 

can be represented by a linear segment with a slope equal to the elastic modulus, 𝐸 as 

shown in Figure 3.1. Plastic deformation occurs when the stress exceeds the yield 

stress, causing a material to be unable to fully return to its original shape and size. 

Unlike elastic deformation, plastic deformation is irreversible and results in 

permanent changes to the shape of the material. The response is nonlinear in the 

plastic region, and the strain in the curve increases faster than the stress, known as 

strain hardening. 

 

Figure 3.1. True stress-strain curve and engineering stress-strain curve. 
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The monotonic stress-strain curve is generated by tensile test. Engineering stress and 

strain are calculated based on the original specimen geometry as: 

𝜎 =
𝑃

𝐴0
 

(3.1) 

𝜀 =
𝐿 − 𝐿0

𝐿0
 

where, 𝐴0 and 𝐿0 are the cross-sectional area and length of the original specimen and 

𝐿 and 𝐴 are the transient length and cross-sectional area, 𝑃 is the tensile load. 

However, since the length and cross-sectional area of the specimen are constantly 

changing during the tensile test, the engineering stress and strain cannot accurately 

reflect the true stress strain responses of the material during deformation. Therefore, 

the concept of true stress and strain is proposed. Since the volume of the specimen is 

constant, as  𝐿𝐴 = 𝐿0𝐴0 , the true stress and strain can be calculated from the 

engineering stress and strain as: 

𝜀𝑡𝑟𝑢𝑒 = ln (1 + 𝜀) (3.2) 

𝜎𝑡𝑟𝑢𝑒 = 𝜎(1 + 𝜀) 

The difference between the engineering stress and strain and the true stress and strain 

is small unless the large deformation is considered. Therefore, in this thesis, only 

engineering stress and strain are considered. 

3.2 Bauschinger Effect 

The stress-strain response in the loading process is described by the line OAB in 

Figure 3.2. After extension to point B, the material is unloaded, and reloaded in the 

reverse direction to the opposite plastic region, shown as the BCD curve. After 

tensile or compressive deformation, the reversed load may cause the yield strength of 

the material to be lower than in continuous deformation. Here, the yield stress at the 

reverse yield point C is decreased to 𝜎𝑌
′, compared with the tensile yield stress at 

point A. This phenomenon is the Bauschinger effect. To quantify the Bauschinger 

effect, the Bauschinger effect factor (BEF) is proposed to define the ratio of the 
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reversed yield stress to the initial yield stress, which can be a function of plastic 

strain [92]. 

 

Figure 3.2. Engineering stress-strain curve with Bauschinger effect. 

 

3.3 Cyclic Hardening and Softening of Metallic Materials 

The stress-strain curve of a material under cyclic loading is called the cyclic stress-

strain curve. This plays a vital role in describing the stress-strain behaviour of a 

structure under cyclic loading. When the stress-strain response on the material is 

within the elastic region of the material, there is no plasticity induced and, after 

unloading, no residual strain. However, when the external load on the material causes 

plastic deformation, the repeated cyclic loading can form a hysteresis loop, as shown 

in Figure 3.3.  

 

Figure 3.3. Stress-strain hysteresis loop for cyclic loading. 
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The shape of the hysteresis loop depends on the Bauschinger effect of the material 

and when cyclic load is applied to a material, causing plastic deformation, the plastic 

flow behaviour of the metal can be changed due to the repeated plastic deformations. 

This phenomenon can either increase or decrease the ability of material to resist 

deformation, known as cyclic hardening and softening.  

The cyclic hardening or softening properties of materials can play a critical role in 

calculation of the fatigue life of cyclically loaded structures. Therefore, a large 

amount of work has been conducted to measure these properties. Manson and 

Hirschberg described the hardening or softening behaviour by the ratio of the 

ultimate tensile strength to the yield stress. If the ratio is larger than 1.4, the 

behaviour of metal is cyclic hardening and if the ratio is less than 1.2, the behaviour 

is cyclic softening[93]. Lopez and Fatemi tried to predict the cyclic softening 

behaviour from the ultimate strength and the hardness of steels. They found 

approximate 90% of steels with greater than 920 MPa tensile strength and 250HB 

hardness had softening behaviour, and proposed a method to predict the cyclic stress-

strain behaviour from the monotonic stress-strain curve [94].  

The behaviour of cyclic hardening and softening materials differs under stress-

controlled cyclic loading and strain-controlled cyclic loading.  

 Under stress-controlled cyclic loading, for cyclic hardening material, the 

strain range decreases, but for cyclic softening material, the strain range 

increases. 

 Under strain-controlled cyclic loading, for cyclic hardening material, the 

stress range increases, but for cyclic softening material, the stress range 

decreases. 

Commonly, the behaviour of cyclic hardening or softening of materials is significant 

at the beginning of the fatigue test, then gradually weakens and becomes stable. This 

phenomenon is seen in the shape of the hysteresis loop. The steady cyclic stress-

strain curve of a material describes the stress-strain relationship when the transient 

behaviour reaches a relatively stable state, by connecting the cusps of the steady 

hysteresis loops at various strain-controlled levels, as shown in Figure 3.4.  
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Figure 3.4. Steady cyclic stress-strain curve. 

In contrast to the monotonic stress-strain curve, significant differences can be found 

in the two kinds of cyclic steady stress-strain curves as shown in Figure 3.5 where, 

for cyclic hardening material, the steady cyclic stress-strain curve is higher than the 

monotonic curve, but for cyclic softening material, the steady cyclic curve is lower 

than the monotonic curve. However, whether the material is cyclic hardening or 

softening, Young’s modulus of the material in the elastic region of the cyclic curves 

are the same as the slope in the monotonic curve.  

 

Figure 3.5. Cyclic steady stress-strain curves with monotonic stress-strain curve. 

Compared to the steady cyclic stress-strain curve, the transient cyclic stress-strain 

curve is more complex because the shape of the hysteresis loop varies with the 

number of cycles until it stabilizes. To generate the transient cyclic stress-strain curve 

with different numbers of cycles, the yield stress is adjusted to describe the cyclic 

hardening and softening behaviour in each cycle. The Young’s modulus and the 

curve in the plastic region can be assumed to be constant. As the number of cycles 

increases, the yield stress is adjusted to increase in hardening materials or decrease in 

softening materials [95].  
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3.4 Shakedown and Ratchetting 

When subjected to cyclic loading above the yield point, a structure will not fail in the 

first load cycle as long as the induced plastic deformation is lower than the static 

failure threshold. However, additional plastic deformation may accumulate with each 

load cycle, leading to an expansion of the plastic zone. This increment of plastic 

deformation can eventually cause failure, which is commonly named as ratcheting, as 

shown in Figure 3.6 (a). If no increment plastic deformation is induced, two types of 

shakedown may occur: elastic shakedown and plastic shakedown.  

For elastic shakedown, after the first few cycles, the structure exhibits a purely 

elastic response throughout the loading cycles in Figure 3.6 (b). In contrast, plastic 

shakedown occurs when the plastic deformation induced in the loading parts equals 

the reverse plastic deformation in the unloading parts within the cycle, resulting in a 

net zero plastic strain over subsequent cycles, as shown in Figure 3.6 (c). 

 

 

Figure 3.6. (a) Ratcheting response. (b) Elastic shakedown response. (c) Plastic 

shakedown response. 

These states of structural responses under cyclic loading can occur under both 

thermo-mechanical load conditions and mechanical only conditions. For the situation 

of thermo-mechanical load, the Bree diagram can describe the states 

comprehensively where the structural responses are divided into different zones as 

pure elastic, elastic shakedown, plastic shakedown, ratcheting and plastic collapse. 

Through calculating the normalized cyclic thermal stress and the normalized constant 
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mechanical stress, the unique zone for the states of structural responses can be 

obtained. For the conditions with both thermo-mechanical load and only mechanical 

loading, the states of structural responses can be determined by FEA as well. Based 

on the definition of these responses, the equivalent plastic strain is applied to be 

investigated in FEA to obtain the states as shown in Figure 3.7. 

 

 

 

Figure 3.7. Time dependent equivalent plastic strain (a) Elastic shakedown (b) 

plastic shakedown (c) Ratcheting. 

For elastic shakedown, as no plastic strain is induced after the first few cycles, 

therefore, the equivalent plastic strain is constant with time, as shown in Figure 3.7 

(a). For plastic shakedown, the net plastic strain is zero, therefore, no additional 

equivalent plastic strain is induced, but for each loading and unloading process, the 
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equivalent plastic strain changes as shown in Figure 3.7 (b). For ratcheting, the net 

equivalent plastic strain increases for each cycle as shown in Figure 3.7 (c). It is 

necessary to determine the states of structural responses by FEA since the residual 

stress distribution after the first cycle may be redistributed, which will be shown in 

the following section. 

3.5 Constitutive Model 

Constitutive model is a major area of interest within the field of materials science 

and mechanical engineering. It has been the subject of studies in describing the 

mechanical behaviour of materials under various loadings by a mathematical 

framework that relates stress and strain. The constitutive model plays a critical role in 

ensuring the accuracy of numerical analysis, so it is essential to use constitutive 

models tailored to specific materials. Since materials exhibit different characteristics 

on cyclic hardening or softening, a number of constitutive models are available. In 

this section, materials that dominate selection in pressure vessel manufacture are 

discussed. Among these materials, cyclic hardening is the most commonly 

investigated material behaviour under cyclic loading. According to the different 

hardening rules, constitutive models can be developed as isotropic hardening model 

and kinematic hardening model, and the most significant difference between these 

two constitutive modes is the evolution of the yield surface. 

3.5.1 Isotropic Hardening Model 

For the isotropic hardening model, as the post-yield load is increased, the yield 

surface remains the same shape, but expands with increasing stress as shown in 

Figure 3.8, where the yield surface expands from the initial red curve to the final blue 

curve and the value of yield stress also increases from 𝜎𝑌 to 𝜎𝑌
′ by adding 𝜎𝑖𝑠𝑜. 
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Figure 3.8. Yield surfaces in isotropic hardening. 

The yield function is applied to describe the yield surface, as 𝑓(𝜎) − 𝐾ℎ, where 𝐾ℎ is 

a hardening parameter representing the expanded part of the yield surface. If only 

isotropic hardening model is applied in calculating the cyclic stress-strain loop, the 

hysteresis loop will expand due to the continuum expansion of the yield surface, as 

shown in Figure 3.9 (a). This behaviour is unrealistic. If the objective of FEA is to 

calculate the stress-strain response under static loading, or to predict the residual 

stress distribution after the first cycle only under without the consideration of the 

Bauschinger effect, isotropic hardening is acceptable. However, to predict the 

structural response under the continuum cyclic loading, the isotropic hardening 

model may not suitable, and the kinematic hardening in the Section 3.5.2 may be a 

more accurate selection. 

 

Figure 3.9. Cyclic stress-strain curve simulated by (a) Bilinear isotropic hardening 

model. (b) Bilinear kinematic hardening model. 
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3.5.2 Kinematic Hardening Model 

In isotropic hardening, only the expansion of the yield surface is considered and the 

shape of the yield surface is constant. However, due to the Bauschinger effect, the 

yield surface cannot remain the same shape as shown in Figure 3.10 where the initial 

yield surface remains the same size, but transforms from the red curve to the blue 

curve. The yield function for the kinematic hardening model is then 𝑓(𝜎 − 𝛼), where 

𝛼 is the back stress tensor, applied to describe the transformation of the yield surface. 

In the linear kinematic hardening material model proposed by Prager [96], the back 

stress tensor was related to the plastic strain as: 

𝑑𝛼 =
2

3
𝐶ℎ𝑑𝜀𝑝𝑙

 
(3.3) 

where, 𝐶ℎ is the initial hardening modulus and 𝑑𝜀𝑝𝑙
 is the plastic strain tensor.  

In FEA, two types of linear kinematic hardening models are included which are 

bilinear kinematic hardening model and multilinear kinematic hardening model, as 

shown in Figure 3.11. The distinction between them is that for the bilinear kinematic 

hardening model, the plastic curve after the yield point is described by a straight line 

with a tangent modulus, but for the multilinear kinematic hardening model, the 

plastic curve is represented by several lines. The accuracy of these two models is 

dependent on how well they fit the experimental plastic response of the material. 

 

Figure 3.10. Yield surfaces in kinematic hardening model. 
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Figure 3.11. Linear kinematic model (a) Bilinear kinematic model (b) Multilinear 

kinematic model. 

 

The bilinear and multilinear kinematic hardening models are commonly used to 

accurately represent the monotonic stress-strain curve and effectively simulate the 

stress and strain response following the first loading and unloading cycle. However, a 

limitation of the linear hardening model is its inability to predict ratcheting behaviour 

under uniaxial loading conditions as shown in Figure 3.9 (b) since the 𝑑𝛼 in (3.3) is 

proportional to the 𝑑𝜀𝑝𝑙
 which means the back stress increases with the increase of 

plastic strain. Even under large cyclic loading conditions there is still no incremental 

plastic deformation, only plastic shakedown may occur. 

The cyclic hardening behaviour of material is commonly strong at the first few loops, 

then gradually weakens and stabilizes until a hysteresis loop occurs. To reflect this 

phenomenon, Armstrong and Frederick [97] improved the Prager’s model by 

proposing a fading memory term as: 

𝑑𝛼 =
2

3
𝐶ℎ𝑑𝜀𝑝𝑙

− 𝛾ℎ𝛼𝑑𝑝𝑙,𝑎𝑐𝑐 
(3.4) 

where, 𝛾ℎ is used to define the rate where the hardening modulus starts decreasing 

and 𝑑𝑝𝑙,𝑎𝑐𝑐  is an increment of accumulated plastic strain that represents the 

development of plastic strain. With the development of the plastic strain and the 
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accumulation of the plastic strain, the value of 𝑑𝑝𝑙,𝑎𝑐𝑐 increases to modify the back 

stress. 

By integrating the (3.4) with respect to 𝑑𝜀𝑝𝑙
, the back stress can be calculated as: 

𝛼 = 𝜑
𝐶ℎ

𝛾ℎ
+ (𝛼0 − 𝜑

𝐶ℎ

𝛾ℎ
) exp [−𝜑𝛾ℎ(𝜀𝑝𝑙 − 𝜀𝑝𝑙0)] 

(3.5) 

where, 𝜑 defines the flow direction, for tension,  𝜑 is 1 and for compression, it is -1. 

Assuming zero initial plastic strain and zero initial back stress, the back stress 

becomes: 

𝛼 =
𝐶ℎ

𝛾ℎ
[1 − exp (−𝛾ℎ𝜀𝑝𝑙)] 

(3.6) 

Finally, through (3.6), for uniaxial loading case and non-initial plastic strain, the 

stress based on the nonlinear kinematic hardening can be calculated as: 

𝜎 = 𝜎𝑌 +
𝐶ℎ

𝛾ℎ

(1 − 𝑒−𝛾ℎ𝜀𝑝) 
(3.7) 

For the case of cyclic loading, two cusps of the hysteresis loops shown in Figure 3.3 

are applied, and the equation with stress amplitude 𝜎𝑎 and plastic strain amplitude 

𝜀𝑎𝑝 is as: 

𝜎𝑎 = 𝜎𝑌 +
𝐶ℎ

𝛾ℎ
tanh(𝛾ℎ𝜀𝑎𝑝) 

(3.8) 

According to the nonlinear kinematic hardening model proposed by Armstrong and 

Frederick, the saturation value of the back stress is given by 𝐶ℎ/𝛾ℎ. However, for 

some realistic materials, no saturation effect is observed with plastic strain. Therefore, 

Chaboche improved this model by introducing the back stress α through the 

superposition of 𝑀 terms in (3.9) and for describing cyclic stress-strain curves. (3.8) 

then becomes: 

𝜎𝑎 = 𝜎𝑌 + ∑
𝐶𝑖

𝛾𝑖
tanh (𝛾𝑖𝜀𝑎𝑝)

𝑀

𝑖=1

 

(3.9) 
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The Chaboche kinematic model shown in (3.9) is applied in the following chapters to 

fit the cyclic stress-strain curves. However, when applying the Chaboche model to 

cyclic loading conditions, it has a property that the mean back stress tends to relax to 

zero to make the stress distribution stable [98-100]. This behaviour is purely 

mathematical. Actual material behaviour can show redistribution phenomena such as 

ratcheting and mean stress relaxation, which the standard Chaboche model may not 

properly predict. Consequently, numerous modifications to the Chaboche model have 

been proposed to capture these phenomena [101]. Therefore, for accurately capturing 

stress redistribution after autofrettage, more advanced models should be employed. 

While the Chaboche model can still provide a preliminary estimation, caution is 

advised in interpreting the results. The predictions may either be overly conservative, 

overestimating the redistribution, or non-conservative, underestimating it. This 

depends on the ratio between the initial yield stress and 𝐶ℎ/𝛾ℎ in the model, as well 

as the loading ratio of external loading. 

3.5.3 Mixed Hardening Model 

Cyclic hardening behaviour of most materials can be described by the superposition 

of isotropic and kinematic hardening rules, as shown in Figure 3.12, where the initial 

yield surface expands and moves. The Chaboche kinematic hardening model 

mentioned in Section 3.5.2 can be applied for the motivation of the yield surface. In 

addition, the expansion of the yield surface can be described by the nonlinear 

isotropic hardening rule as: 

𝑑𝑅 = 𝑏(𝑅∞ − 𝑅)𝑑𝑝 (3.10) 

where, 𝑅∞  is the saturation value of the yield surface and 𝑏  is the speed of 

stabilization. 

If 𝑅∞ is negative, the initial yield stress will be reduced with plastic deformation 

which means that material softens. If it is positive, the initial yield stress will be 

increased with plastic deformation and material behaviour will harden. 
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Figure 3.12. Yield surfaces in mixed kinematic hardening model. 

The mixed kinematic model of the Chaboche kinematic model and the nonlinear 

isotropic model can be expressed as: 

𝜎𝑎 = 𝑘 + 𝑅∞(1 − 𝑒−𝑏.𝑝) + ∑
𝐶𝑖

𝛾𝑖
tanh (𝛾𝑖𝜀𝑎𝑝)

𝑀

𝑖=1

 

(3.11) 

where, k is the initial yield stress and 𝑝 is the accumulated plastic strain by the 

integral calculation of the incremental plastic strain. 

Assume the monotonic stress-strain curve and the stable cyclic stress-strain curve are 

obtained by tests, the following procedures can be applied to determine the 

parameters in the mixed hardening model. 

 The initial yield stress, k, can be assumed to be constant, the value of 𝑘 +

𝑅∞(1 − 𝑒−𝑏.𝑝) should be adjusted as small as possible in the stable cyclic 

stress-strain curve. 

 The parameters included in the Chaboche kinematic hardening model (M=3) 

can be determined based on decomposed back stresses 𝛼1 and 𝛼2 which have 

the same strain ranges as the stable loop as shown in Figure 3.13 by: 

𝐶1

𝛾1
+

𝐶2

𝛾2
+ 𝜎𝑌 = 𝜎𝑎 − 𝐶3 ∙ 𝜀𝑎𝑝 

(3.12) 

            where, 𝛾1  is typically determined between 2000 and 10000, and the      

experimental data of plastic strain range, ∆𝜀𝑝in the domain 0.02% to 1% is employed 
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to obtain 𝐶1, 𝐶2 and 𝛾2 [102]. The third back stress 𝛼3  can be linear and pass the 

original point [103]. 

 After determining the parameters in the kinematic model, the parameters 

included in the isotropic model can be obtained by plotting the normalized 

maximum stress as a function of p, as shown in Figure 3.14. 

 

Figure 3.13. Parameters of Chaboche kinematic hardening model (M=3). 

 

Figure 3.14. Parameters of nonlinear isotropic hardening model. 
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Chapter 4 Fatigue Life Assessment with Residual Compressive Stress 

The fatigue life of components subject to repeated or cyclic loading can be enhanced 

by inducing compressive residual stress in regions prone to fatigue crack initiation 

and propagation. This can be achieved by several different mechanical processes, 

such as shot peening, laser peening, low plasticity burnishing, swaging and 

autofrettage [104-107] mentioned in Section 2.1. These processes result in a self-

equilibrating residual stress system in the component at zero load, with compressive 

residual stress at critical locations. The resulting increase in fatigue life can be 

described in terms of inter alia the stress life analysis and fracture mechanics 

approaches to fatigue.  

Traditionally, low cycle fatigue of components is assessed using the strain-life 

method, while high cycle fatigue is evaluated using the stress-life method. For 

autofrettaged components, high cycle fatigue is more common. Therefore, the stress-

life method, which depends on linear elastic calculation of nominal stress at the point 

of investigation and fatigue data in the form of S-N curves, is employed. To account 

for notch effects, methods such as Neuber's rule, Peterson's method, and the Theory 

of Critical Distances (TCD) discussed in Section 2.4.2 are utilized. However, when a 

component has been subject to autofrettage prior to operation, the compressive 

residual stress changes the stress gradient at the notch. Consequently 𝑅 varies over 

the characteristic length and the TCD approach is not directly applicable [108]. 

Therefore, methodology presented here offers a new approach the fatigue analysis of 

notched components with compressive residual stress. It combines smooth fatigue 

specimen S-N data, a fracture mechanics crack growth model, and Finite Element 

Analysis through the ANSYS SMART crack growth modelling tool and so on. The 

method uses three Finite Element Analysis, FEA, models as shown in Figure 4.1. 

The first stage in the analysis is to determine the residual stress distribution in the 

component after autofrettage. This is done using FEA Model 1, which has an elastic-

plastic material model based on a monotonic material stress-strain curve. The 
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calculated residual stress distribution is then exported as an initial stress state to two 

other finite element models.  

Model 2 is an elastic-plastic model based on a cyclic stress-strain curve. This is used 

to calculate the stress amplitude, 𝜎𝑎, resulting from the combined applied pressure 

and residual stress, and mean stress correction is applied to determine the equivalent 

stress amplitude, 𝜎𝑎𝑟. The fatigue assessment point is identified as the location of the 

maximum value of 𝜎𝑎𝑟, where of crack initiation is assumed to occur.  

Model 3 is used to analyse crack propagation from the identified initiation location 

using the ANSYS SMART crack growth tool. SMART is used to calculate stress 

intensity ranges with increasing crack length 𝑎 with and without residual stress. A 

superposition method is then applied to calculate the stress intensity range for the 

applied pressure, ∆𝐾𝑎𝑝𝑝 and the residual stress SIF, 𝐾𝑟𝑠 , from which the effective 

stress intensity range, ∆𝐾𝑒𝑓𝑓 is calculated. 

 

Figure 4.1. Flow diagram of analysis methodology. 
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For the life prediction, the methodology assumes a crack initiation length based on 

the material's average grain size. A stress-crack initiation life curve is then developed 

based on this assumed crack initiation length, allowing for the calculation of the 

crack initiation life. By adding the numerical results obtained from the crack 

propagation simulation, the method successfully predicts the total fatigue life of the 

specimens. Compared with the traditional stress-life method used in fatigue analysis, 

this methodology considers the influence of compressive residual stress more 

adequately by applying fracture mechanics by advanced simulation tools to provide 

an entire framework for predicting the fatigue life of notched components, making it 

available for the fatigue design and assessment of such structures. 

4.1  Calculating the S-𝑵𝒊 Curve by SMART Crack Growth Tool  

Several approaches have been proposed to estimate the crack initiation life from 

various factors such as strain [109], stress [110], a combination of strain range with 

crack length [111] and shear stress range [112]. Here, a new method is proposed, 

where the crack initiation life is determined by a stress-life method based on a 

derived stress vs number of cycles to crack initiation, S-𝑁𝑖 , curve for smooth fatigue 

specimens. A conventional S-N curve defines the total number of cycles to specimen 

failure, encapsulating the crack initiation life and crack propagation life. Here, the 

crack initiation life is determined by subtracting the calculated crack propagation life, 

considering an assumed initial crack length, from the total fatigue life. The crack 

propagation life is calculated by finite element method by ANSYS shown in the next 

sub-section. 

4.1.1 Crack Growth Simulations by SMART 

Numerical modelling of crack propagation can be achieved within a Finite Element 

environment, using methods such as Cohesive Zone Modelling (CZM) [113], 

Extended Finite Element Method (XFEM) [114, 115], and Ansys Separating 

Morphing and Adaptive Remeshing Technology (SMART) [116-119]. In CZM, the 

crack growth path must be predetermined by adhesive attachment between two 

surfaces. XFEM allows for crack growth by splitting existing elements, which 

increases the number of elements and consequently slows down the simulation, 

causing computational inefficiencies. SMART is the newest tool innovated by Ansys. 
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Compared with XFEM, the Unstructured Mesh Method utilized in SMART can 

regenerate the meshes on the crack front during crack growth to save computational 

effort.  

In the SMART crack growth tool, either stress intensity factors or J-integrals can be 

calculated, As the mode-I 𝐾𝐼  and mode-II 𝐾𝐼𝐼  can not be distinguished in a single 

value of J-integral, stress intensity factors are used as fracture criteria here. In 

SMART, the stress intensity factors of two modes are obtained by interaction integral 

method which includes the application of an auxiliary field on the J-integral [120]. 

4.1.2 Calculating the S-𝑵𝒊 curve of 316l Stainless Steel 

AISI 316L stainless teel is selected for an example of the calculation of the S-𝑁𝑖 

curve. In the context of AISI 316L stainless steel,  the average size of two grains can 

be selected as the crack initiation length based on experimental observations from 

[74]. As a result, the initial crack length is assumed to be 200𝜇𝑚, a value also 

consistent with the TCD methodology [6], where cracks are assumed to emanate 

from a length equal to two material characteristic lengths (224𝜇𝑚 for AISI 316L). 

Additionally, 0.2mm assumed crack initiation length is also suitable to the low 

carbon steel [121]. 

Huang et al. [122] performed fatigue tests for 316L with load ratio 𝑅 = 0.2, using a 

plain cylindrical tensile test specimen following ASTM E466 [123]. The results were 

presented in the form of  a maximum stress (𝑆𝑚𝑎𝑥)-total fatigue life (𝑁𝑡) curve. 

From the data, a corresponding S-𝑁𝑖 curve is derived for a 200𝜇𝑚 crack initiation 

length by calculating the crack growth life using the ANSYS SMART tool.  

A finite element model of the test specimen of Huang et al. created in ANSYS 

Workbench is shown in Figure 4.2. An initial semi-elliptical crack of length 200𝜇𝑚 

is located in the gauge section. From previous investigations of the shape of surface 

cracks in round bars under constant axial loading [124, 125], the crack minor to 

major axis aspect ratio was defined as 0.6. The entire model is meshed by SOLID 

187 with 33283 nodes and 20991 elements. The material properties were Young’s 

modulus 𝐸 =200GPa, Poisson’s ratio 𝜈 = 0.3  and Paris Law constants 𝐶 =
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5.61x10−9  
mm / cycle

(𝑀𝑃𝑎√m)
𝑚  and 𝑚 = 3.25 [56]. The specimen is fixed at the bottom end 

and uniformly distributed cyclic force is applied at the top end as 70MPa. 

 

Figure 4.2 Finite element model of cracked smooth specimen, showing the overall 

finite element mesh and zoomed view of the crack region. 

 

The SMART facility was used to compute the number of cycles from the assumed 

initial crack length to the final failure (𝑁𝑔) during the process of crack growth under 

an axial cyclic stress 𝛥𝜎𝑛. Subsequently, 𝑁𝑖 was determined from the 𝑆𝑚𝑎𝑥-𝑁𝑡 curve 

provided in [29], such that 𝑁𝑖 = 𝑁𝑡 − 𝑁𝑔 . To generate the S-𝑁𝑖  curve, multiple 

SMART analyses were conducted for various load magnitudes. Alternatively, a more 

computationally efficient approach involves performing a single SMART analysis to 

capture the evolution of the stress intensity factor range ∆𝐾 with increasing crack 

length a for a nominal stress range 𝛥𝜎𝑛 . ∆𝐾 can then be defined as a continuous 

function of 𝑎 by fitting a polynomial equation of order 𝑛 to the numerical results, 

such that: 

∆𝐾 = 𝑓(𝑎) = 𝐴𝑛𝑎𝑛 + 𝐴𝑛−1𝑎𝑛−1 + ⋯ + 𝐴0𝑎0 
(4.1) 
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where 𝐴n, 𝐴𝑛−1, … , 𝐴𝑜  are constants. A corresponding function for configuration 

factor 𝑌 is thus defined as: 

𝑌(𝑎) =
1

𝛥𝜎𝑛√𝜋𝑎
 𝑓(𝑎) 

(4.2) 

The fatigue life for any stress range Δ𝜎 can then be determined analytically from the 

Paris law in the form: 

𝑑𝑎

𝑑𝑁𝑔
= 𝐶(∆𝐾Δ𝜎)𝑚 

(4.3) 

where 

∆𝐾Δ𝜎 =  𝑌(𝑎) √𝜋𝑎 ∆𝜎 (4.4) 

The crack growth life 𝑁𝑔 for stress range Δ𝜎 is thus: 

𝑁𝑔 = ∫
1

𝐶(𝐾Δ𝜎)𝑚

𝑎𝑓

𝑎0

   
(4.5) 

where 𝑎0 and 𝑎𝑓 are initial crack length and final crack length respectively. 

𝑁𝑖 is plotted against the corresponding maximum stress in Figure 4.3. It is seen that 

with the proportion of crack initiation life to total life declines with increasing of 

maximum stress. This trend agrees with results from Santus and Taylor, who 

calculated the 𝑁𝑖 through physically short crack propagation in several metals [71]. 

From this trend, log (𝑁𝑖) can be assumed to vary linearly with maximum stress in the 

high cycle fatigue range. 
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Figure 4.3. Total life curve (R=0.2) and proposed stress-crack initiation life of 316L. 

The same method can also be applied to other materials. Pegues et al [126] 

investigated micro-cracks in 304L stainless steel by interrupted high cycle fatigue 

tests, under a fully reversed load with a stress amplitude of 330MPa. Tests were 

interrupted every 10,000 cycles to observe nucleation of micro-cracks by scanning 

electron microscope (SEM), and then interrupted every 3000-5000 cycles to 

investigate the propagation of MSC until cracks were approximately 200𝜇𝑚, where 

the crack nucleation and MSC growth were completed. Results showed a total 

fatigue life 𝑁𝑡 of around 5 × 105 cycles, and a combined life of nucleation and MSC 

crack growth, here taken to be the initiation life 𝑁𝑖, of around 1× 105 cycles.  

In the present investigation, the specimen from [126] was modelled in ANSYS 

Workbench using the SMART crack growth method to simulate crack growth. The 

results showed that when Y is taken as 0.65, the predicted initiation life 𝑁𝑖  is 

approximately 1.7 × 105, which is close to the value given in [126].  

The same procedures are also applied to S355 low carbon steel to generate the S-𝑁𝑖 

curve as shown in Figure 4.4. 
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Figure 4.4. Total life curve (R=-1) and proposed stress-crack initiation life of S355. 

4.1.3 Influence of Physically Small Crack 

If the long crack (LC) growth is directly linked to microstructurally small crack 

(MSC) growth, the development of physically small cracks (PSC) is included in the 

LC. However, it's important to note that the crack growth rate in PSC cannot be 

characterized using the same Paris law parameters typically used for LC growth. 

Therefore, the influence of PSC on the total life is discussed here. 

When considering the influence of PSC, the threshold of PSC (∆𝐾𝑡ℎ,𝑎) is induced in 

the Paris Law as: 

𝑑𝑎

𝑑𝑁
= 𝐶(∆K − ∆𝐾𝑡ℎ,𝑎)𝑚 

(4.6) 

When the PSC regime is neglected, the variable threshold of PSC in (4.6) can be 

replaced by the constant intrinsic threshold ∆𝐾𝑑𝑅. Santus and Taylor [71] constructed 

multiple curves for the propagation of PSC and crack initiation with stress 

amplitudes based on the Chapetti model. In this context, the curves for Ti-6Al-4V at 

a stress ratio of 0.1 are selected to exemplify the impact of PSC life on crack 

initiation life. The material properties utilized for calculating PSC propagation life 

are provided in Table 4.1. 
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Table 4.1. Material properties of Ti-6Al-4V (R=0.1). 

𝑑1/mm 𝑑2/𝑚𝑚 C/
𝑚/𝑐𝑦𝑐𝑙𝑒

𝑀𝑃𝑎√𝑚
𝑚 m ∆𝐾𝑡ℎ,𝑅/ 𝑀𝑃𝑎√𝑚 

0.02 0.2 2.7e-9 1.54 4.3 

 

The results of PSC propagation life and crack initiation life from [71], the calculated 

PSC propagation life and the calculated life neglecting PSC are shown in Figure 4.5. 

 

Figure 4.5. Predicted propagation life with and without PSC against initiation life 

compared with [71]. 

The calculated PSC propagation life in Figure 4.5 is similar to the results of Santus 

and Taylor, and shows that the difference in calculated fatigue life with and without 

the PSC increases with reducing stress amplitude. The maximum difference of 8,190 

cycles, 2.4% of the corresponding crack initiation life, is relatively small. This 

indicates that the S-𝑁𝑖 curve created by assuming the PSC is included in the LC is 

acceptable.  
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4.2 Residual Stress Effect 

Two approaches have been proposed in the literature to represent the influence of 𝐾𝑟𝑠 

on crack propagation: the crack closure method [86, 127-131] and the superposition 

method [132, 133]. Here, the superposition method is utilised. The total stress 

intensity factor, 𝐾𝑡𝑜𝑡 , is typically decomposed into two components: the applied 

stress intensity factor, 𝐾𝑎𝑝𝑝, and the residual stress intensity factor, known as 𝐾𝑟𝑠. 

The maximum stress intensity factor, 𝐾𝑚𝑎𝑥,𝑡𝑜𝑡, and minimum stress intensity factor 

𝐾𝑚𝑖𝑛,𝑡𝑜𝑡 are thus: 

𝐾𝑚𝑎𝑥,𝑡𝑜𝑡 = 𝐾𝑚𝑎𝑥,𝑎𝑝𝑝 + 𝐾𝑟𝑠 (4.7) 

𝐾𝑚𝑖𝑛,𝑡𝑜𝑡 = 𝐾𝑚𝑖𝑛,𝑎𝑝𝑝 + 𝐾𝑟𝑠 (4.8) 

The total stress intensity factor range ∆𝐾𝑡𝑜𝑡 is therefore: 

∆𝐾𝑡𝑜𝑡 = 𝐾𝑚𝑎𝑥,𝑡𝑜𝑡 − 𝐾𝑚𝑖𝑛,𝑡𝑜𝑡 = 𝐾𝑚𝑎𝑥,𝑎𝑝𝑝 + 𝐾𝑟𝑠 − 𝐾𝑚𝑖𝑛,𝑎𝑝𝑝 − 𝐾𝑟𝑠 

which is independent of the residual stress and equal to ∆𝐾𝑎𝑝𝑝: 

∆𝐾 = 𝐾𝑚𝑎𝑥,𝑎𝑝𝑝 − 𝐾𝑚𝑖𝑛,𝑎𝑝𝑝 = ∆𝐾𝑎𝑝𝑝 (4.9) 

The effective stress intensity ratio 𝑅𝑒𝑓𝑓 can then be obtained as: 

𝑅𝑒𝑓𝑓 =
𝐾𝑚𝑖𝑛,𝑡𝑜𝑡

𝐾𝑚𝑎𝑥,𝑡𝑜𝑡
=

𝐾𝑚𝑖𝑛,𝑎𝑝𝑝 + 𝐾𝑟𝑠

𝐾𝑚𝑎𝑥,𝑎𝑝𝑝 + 𝐾𝑟𝑠
 

(4.10) 

According to the Paris Law and the superposition method, the crack growth rate can 

be defined as a function of ∆𝐾𝑒𝑞𝑣 and 𝑅𝑒𝑓𝑓: 

𝑑𝑎

𝑑𝑁
= 𝐶𝑅𝑒𝑓𝑓

 (∆𝐾𝑒𝑓𝑓)
𝑚𝑅𝑒𝑓𝑓  

(4.11) 

where 𝐶𝑅𝑒𝑓𝑓
 and 𝑚𝑅𝑒𝑓𝑓

 are the Paris law parameters corresponding to stress ratio 

𝑅𝑒𝑓𝑓. 

The value of 𝑅𝑒𝑓𝑓  varies throughout the process of crack growth, requiring the 

determination of Paris law parameters for different R values. In the SMART crack 

growth method, the Walker equation is employed to establish a correlation between 
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the Paris law and R, calculating the ∆𝐾𝑒𝑓𝑓 from ∆𝐾𝑎𝑝𝑝 while disregarding the effects 

of crack closure. However, when including the impact of compressive residual stress, 

it is important to note that the values of 𝑅𝑒𝑓𝑓  in the compressive residual stress 

region turn negative. In such cases, the values of 𝐾𝑚𝑎𝑥  provide a more suitable 

representation of the crack closure and opening effects when compared to ∆𝐾 based 

on the crack closure concept. 

Kujawski's equations consider the crack closure effect. Following Kujawski's 

equations, two additional equations are proposed to estimate crack growth life which 

include the values of 𝐾𝑎𝑝𝑝  and 𝐾𝑟𝑠  while considering various ranges of R. To 

determine the crack growth rate in the presence of induced residual stress, ∆𝐾𝑎𝑝𝑝 

from equation (4.9) and 𝑅𝑒𝑓𝑓 from equation (4.10) can be substituted into equations 

(2.55) and (2.56). 

The number of cycles to grow a crack from the initial length 𝑎0 to final length 𝑎𝑓 is 

thus: 

𝑁 = ∫
1

𝐶 (
∆𝐾

(1 − 𝑅)𝛼)
𝑚

𝑎𝑓

𝑎0

= ∫
1

𝐶 (
𝐾𝑎𝑝𝑝

(1 −
𝐾𝑟𝑠

𝐾𝑎𝑝𝑝 + 𝐾𝑟𝑠
)

𝛼)

𝑚

𝑎𝑓

𝑎0

 
𝑅 > 0 (4.12) 

𝑁 = ∫
1

𝐶(
∆𝐾

(1 − 𝑅)
)𝑚

𝑎𝑓

𝑎0

= ∫
1

𝐶(
𝐾𝑎𝑝𝑝

(1 −
𝐾𝑟𝑠

𝐾𝑎𝑝𝑝 + 𝐾𝑟𝑠
)

)𝑚

𝑎𝑓

𝑎0

              
𝑅 < 0 (4.13) 

4.3 Determining 𝑲𝒓𝒔 and ∆𝑲𝒆𝒇𝒇 

Several models have been proposed for crack growth analysis in the presence of 

induced residual stress. These approaches mainly focus on determining the stress 

intensity factor for the residual stress field, 𝐾𝑟𝑠 [132, 134, 135]. 

𝐾𝑟𝑠 may be calculated by a weight function approach, proposed by Buechner [136] 

as: 
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𝐾𝑟𝑠 = ∫ 𝜎𝑟𝑠𝑚(𝑥, 𝑎)𝑑𝑥

𝑥=𝑎

𝑥=0

 

(4.14) 

where, 𝜎𝑟𝑠  is residual stress and 𝑚(𝑥, 𝑎) is the weight function. The basis of the 

weight function method is to calculate the stress intensity factors directly from the 

stress distribution around the crack, rather than the remote loading. Weight function 

for edge cracks [137] or a corner crack [138] can be obtained by constant and linear 

crack face pressure fields, and weight functions for different combinations of cracks 

and structures have been obtained [139-141]. 

As the weight function method is difficult to apply in complex 3D models, therefore, 

the effect of induced residual stress on crack growth is determined using the 

superposition method here. This requires the evaluation of ∆𝐾 = ∆𝐾𝑎𝑝𝑝 (4.9) and 

𝑅𝑒𝑓𝑓 (4.10). a numerical method based on the superposition method is proposed to 

calculate 𝐾𝑟𝑠.  

The residual stress distribution in the component under investigation is evaluated by 

elastic-plastic FEA for a given initial autofrettage overload. As the SMART tool is 

restricted to linear elastic material behaviour, it cannot be applied in a plastically 

deformed model. However, the effect of residual stress on crack propagation can be 

represented by importing the calculated residual stress distribution into a similar 

linear elastic model as an initial state of stress. 

Two linear elastic models with identical meshes are used to determine the stress 

intensity factor of the residual stress 𝐾𝑟𝑠. The first model considers the component 

with no autofrettage. The elastic model is subject to an applied cyclic load 𝑃𝑎𝑝𝑝 , 

representing the operating conditions of the component. The stress intensity range 

calculated with increasing crack length using this model is ∆𝐾𝑎𝑝𝑝 . In the second 

condition, the residual stress calculated in the elastic-plastic solution is imported into 

the elastic model as an initial state of stress, and cyclic load 𝑃𝑎𝑝𝑝 applied. The stress 

intensity range calculated by this model is ∆𝐾𝑎𝑝𝑝 + 𝐾𝑟𝑠. The variation of the stress 

intensity of the residual stress 𝐾𝑟𝑠  with crack length 𝑎 is then evaluated by stress 

superposition, by subtracting ∆𝐾𝑎𝑝𝑝 from the second condition results. 
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After determining the 𝐾𝑟𝑠, the 𝑅-ratio correction method proposed by Kujawki and 

Dinda [89] was applied to calculate the ∆𝐾𝑒𝑓𝑓 . This 𝑅-ratio correction method is 

based on the crack closure concept, in this method, the crack driving force as the 

𝐾∗ is dominated by either ∆𝐾 or 𝐾𝑚𝑎𝑥 , and  ∆𝐾𝑒𝑓𝑓 can be calculated as shown in 

(4.15). 

∆𝐾𝑒𝑓𝑓 = 𝐾∗ =
∆𝐾

(1 − 𝑅𝑒𝑓𝑓)𝛼
 

For 𝑅𝑒𝑓𝑓 > 0 
(4.15) 

∆𝐾𝑒𝑓𝑓 = 𝐾∗ = 𝐾𝑚𝑎𝑥 =
∆𝐾

(1 − 𝑅𝑒𝑓𝑓)
 

For 𝑅𝑒𝑓𝑓 < 0 
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Chapter 5 Fatigue Life of Double Notch Specimens 

The proposed procedure for calculating the fatigue life and the fatigue limit in a 

notched component with an induced residual stress system is shown schematically in 

Figure 4.1. The effectiveness of this approach is demonstrated through experimental 

investigation of the fatigue life and fatigue limit of preloaded double-notch uniaxial 

test specimens made from AISI 316L austenitic stainless steel and S355 low carbon 

steel.  

The test specimens incorporate a feature where compressive residual stress can be 

induced in the notched region through limited axial overloading prior to fatigue 

testing. This preloading results in a localized compressive stress distribution at the 

notch intersections, resembling the stress distribution typically found at stress raisers 

in pressure components after autofrettage processes. 

Crack propagation in notched elastic components with no residual stress can be 

calculated directly by FEA SMART analysis, in the same way as the plain fatigue 

specimen of Chapter 4. When more than one load level is considered, separate 

SMART analyses can be performed for each load level considered. Alternatively, a 

polynomial representation of the stress intensity range (4.1) can be determined from 

a single SMART analysis and a continuous function for configuration factor (4.2) 

obtained. This can then be substituted into the Paris law (4.12) and (4.13) and 

integrated for each individual stress range considered. The latter approach requires 

less FEA computing resource and is used here to determine the fatigue life in regions 

of compressive residual stress. 

5.1 Notched Specimen and Material Properties 

The geometry and dimensions of the square cross-section specimens are shown in 

Figure 5.1 and Table 5.1. The double-notch specimen is more representative of the 

3D stress distribution in pressure components with local stress raisers, such as 

pressure vessels, pump bodies and valve housings, than a single notch specimen. It 

can also be designed to include a larger stress concentration factor, leading to higher 
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residual stress when experimentally investigating the influence of residual stress on 

fatigue life. Two types of double-notched tensile test specimens, Type A and Type B 

are considered [108, 142]. Among these, Type A in [142] is designed and tested by 

author. The geometry and dimensions of the specimens are shown in Figure 5.1. For 

specimen type A, W is 14mm and L is 150mm and for specimen type B, W is 21mm, 

L is 180mm. 

 

Figure 5.1. Double-notch fatigue test specimen. 

 

Table 5.1. Double notch specimens dimensions. 

Dimension Type A Type B 

W 14mm 21mm 

L 150mm 180mm 

Radius of notch 3mm 3mm 

 

A monotonic stress-strain curve for the 316L material was obtained by tensile test. 

Following ASTM E8 [143], the tensile test specimen was designed as shown in 

Figure 5.2. Two monotonic stress-strain curves were obtained by two standard 

specimens without heat treatment, as shown in Figure 5.3. 
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Figure 5.2. Tensile test specimen geometry [mm]. 

 

Figure 5.3. Monotonic stress-strain curves for two 316L specimens. 

Figure 5.3 shows the 316L stainless steel exhibits continuous yielding. As such, there 

is no distinct yield point and yield stress is usually defined with reference to a 

specific plastic strain offset, such as the 0.2% proof stress used in general 

engineering. The 0.2% offset definition is not suitable for a detailed elastic-plastic 

analysis as presented here [144]. Alternative definitions of the offset strain [145-147] 

have been reviewed by Abdel-Karim, ranging from 0.01% to 0.1% [148]. In the 

present study, to identify the plastic behaviour more accurately, 0.01% offset strain 

was selected, giving a yield stress of 225MPa. Young’s Modulus was obtained as 

200GPa. 

To calculate the crack initiation life in the presence of compressive residual stress, 

the cyclic stress-strain curve for the material is required for use in FEA. Here, the 
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Chaboche model parameters (3.9) are determined from data from stable cyclic stress-

strain tests of Dutta et al [149]. The four red data points used to fit the model are 

shown in Figure 5.4, along with the monotonic stress-strain curve from the present 

investigation (Figure 5.3). Comparison of the monotonic and cyclic stress-strain data 

illustrates the cyclic hardening behaviour of 316L stainless steel [150]. This 

hardening phenomenon can also be investigated in S355 low carbon steel as shown 

as the blue points and line in Figure 5.4 representing the stable cyclic stress-strain 

data and the monotonic stress-strain curve. 

 

Figure 5.4. 316L monotonic stress-strain curve and cyclic stress-strain data from 

[149], showing material cyclic hardening. 

 

As shown in the Figure 5.4, the yield stress and the Young’s modulus of these two 

steels are similar. The material properties of these two materials are summarized in 

Table 5.2. 
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Table 5.2. Material properties of two stainless steels. 

Material S355 low carbon steel 316L stainless steel 

Young’s Modulus /Pa 2 × 1011 2 × 1011 

Poisson’s ratio 0.3 0.3 

Yield stress/ MPa 255 255 

Paris Law parameter C 

(reference unit m) 

1.43 × 10−11 5.61 × 10−11 

Paris Law parameter m 2.75 3.25 

Chaboche material constant 

𝐶1/MPa 

30489 63400 

Chaboche material constant 

𝛾1 

135.41 303.41 

 

The preload force and working force amplitude applied to the models correspond to 

the full-specimen test values given in Table 5.3. 

Table 5.3. Preloads and working cyclic loads (𝑅 = 0) for specimen Types A and B. 

 Preload 𝑘𝑁 Working Force Amplitude 𝑘𝑁 

Specimen A 21 7.5, 8, 8.5, 9 

Specimen B 75 21, 22, 23, 24, 25 

 

5.2 Notched Specimen without Residual Stress 

The double-notch specimen was modelled in ANSYS Workbench using the SMART 

crack growth tool, using SOLID 187 10 node tetrahedral structural solid elements 

with the mesh refined towards the crack front. The crack initiation can be determined 

by experiments. Figure 5.5 illustrates the comparison between the intact specimen 

and half of the fractured specimen in which the crack initiation can be investigated 

on the notch root.  
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An initial semi-elliptical crack with an aspect ratio of 0.6 located at the intersecting 

notch root of the model was considered, as shown in Figure 5.6. A coordinate system 

defined at the crack has 𝑋 in the direction of the crack path and 𝑌 perpendicular to 

the crack surface. 

Preliminary finite element investigations showed a lengthwise quarter-symmetry 

model of the specimen gave similar results to a full model with the same mesh 

density for the crack growth range considered. With the same crack growth length, 

the results obtained based on these two models are close when the mesh size is same. 

A quarter model was therefore used in the analysis to reduce computing requirements.  

The material properties were as given in Section 4.1.2 for the smooth fatigue 

specimen model. The quarter-model was fully fixed at one end and symmetry 

boundary conditions were applied on the planes of symmetry. Cyclic axial force 

varying between zero to a maximum value was applied to the free end of the model. 

Analysis was performed for three maximum force values, corresponding to 8kN, 

8.5kN and 9kN as shown in Table 5.3 on a full test specimen.  

A convergence study was performed by investigating the effect of mesh density on 

the calculated configuration factor 𝑌, (4.2). Results of 𝑌 distribution for two mesh 

densities are shown in Figure 5.7:  Mesh 1 had 28525 elements (42727 nodes) and 

Mesh 2, shown in Figure 5.8, had 14532 elements (22580 nodes). Figure 5.7 shows 

that the values of 𝑌 calculated for a range of relative crack depths are similar for both 

meshes. Mesh 2 was therefore selected for analysis to minimise computing 

requirements. 
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Figure 5.5. Comparison of intact specimen with fractured specimen. 

 

Figure 5.6. Failed test specimen and quarter symmetry model showing the location 

of crack initiation. 
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Figure 5.7. Configuration factor Y for a crack in the double-notch specimen for two 

different mesh densities. 

 

Figure 5.8. Finite element mesh used in analysis (Mesh 2). 

Figure 5.7 shows that in the notched specimen 𝑌 decreases with increasing crack size, 

possibly due to the stress gradient, and then has a slight increase at the end. As the 

stress decreases with distance from the notch root, the nominal stress 𝛥𝜎𝑛 in (4.2) 

varies with crack propagation and must be updated. The trend of 𝑌 in Figure 5.7 is 
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similar to that of Schijve [151], who determined the stress intensity factor of cracks 

at notches by considering the influence of the stress concentration factor.  

The same procedures are applied to the type B specimens with the loadings shown in 

Table 5.3 as well. The numerical results for ∆𝐾𝑎𝑝𝑝 obtained for the applied loads are 

shown in Figure 5.9. As the values of ∆𝐾𝑎𝑝𝑝 are thus determined, the crack growth 

life without the residual stress can be calculated from the Paris law. 

 

 

Figure 5.9. Variation in of stress intensity factor range 𝛥𝐾𝑎𝑝𝑝 with increasing crack 

length a) type A b) type B. 
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5.3 Notched Specimen with Residual Stress 

Residual stress can be induced in double-notch specimens by tensile preloading prior 

to fatigue testing, causing local plastic deformation at the notch root on loading and 

inducing compressive residual stress on unloading. 

5.3.1 Residual Stress Calculation 

The notch root residual stress was calculated by elastic-plastic Finite Element 

Analysis in ANSYS workbench. A quarter-symmetry finite element model was used, 

with a mesh similar to the crack growth model of Section 4 prior to insertion of the 

SMART crack. A multilinear kinematic hardening plasticity material model based on 

the monotonic stress-strain curve of Figure 5.3 was used. The finite element model 

was fully fixed at one end and symmetry boundary conditions were applied on the 

planes of symmetry. The preload was simulated by applying a uniformly distributed 

axial tensile force equivalent to 21kN on a full specimen to the free end of specimen 

A and 75kN to specimen B, then reducing the force to zero.   

When the axial force was applied, plastic deformation occurred locally at the notch 

root. When the force was then reduced to zero, a compressive residual stress system 

was established at the notch root due to elastic recovery of the elastically deformed 

regions of the specimen. The distribution of minimum principal residual stress in the 

notch region and along the predicted crack path are shown in Figure 5.10. 
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Figure 5.10. Minimum principal stress distribution (residual stress) at the notch root 

after preloading and local distribution along the crack path [MPa] a) type A b) type 

B. (c) Residual stresses along the bisector. 
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5.3.2 Stress Intensity Factor of Residual Stress 

When the distribution of residual stress is known, 𝐾𝑟𝑠 can be calculated by treating 

the residual stress field as an initial condition in Finite Element Analysis. Here, a 

superposition method is proposed to calculate the 𝐾𝑟𝑠 , using the SMART crack 

growth method. First, the calculated residual stress distribution is exported from the 

elastic-plastic solution and imported into a similar LEFM model as an initial state of 

stress prior to SMART crack growth simulation. The initial crack cannot propagate 

with only residual stress, so crack propagation is simulated using an applied arbitrary 

axial load. With the arbitrary load, the value of ∆𝐾𝑎𝑝𝑝 + 𝐾𝑟𝑠 with changing crack 

length a is obtained and based on the superposition method, the value of 𝐾𝑟𝑠 can be 

determined by subtracting ∆𝐾𝑎𝑝𝑝. The calculated variation of 𝐾𝑟𝑠 with crack length 

is shown in Figure 5.11. The values of 𝐾𝑟𝑠 can also be represented by a polynomial 

equation (4.1), and combined with the values obtained for ∆𝐾𝑎𝑝𝑝  (Figure 5.9) to 

determine the crack growth life with induced residual stress from equations (4.12) 

and (4.13). 

 

Figure 5.11. Stress intensity factor of residual stress against the crack length. 
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5.3.3 Crack Initiation Life Prediction 

Both specimen Type A and specimen Type B are discussed in this section, the Type A 

is taken for an example to show the procedures to predict the crack initiation life. The 

crack initiation life is determined from the stress-crack initiation curve shown in 

Figure 4.3 by calculating the equivalent stress amplitude experienced by the 

specimen during cyclic loading. The equivalent stress is calculated from a FEA 

model similar to the preload model, but with a Chaboche kinematic hardening 

plasticity material, obtained by curve-fit of the cyclic stress-strain data of Figure 5.4. 

For specimen A with a preload-induced residual stress field, the residual stress 

distribution is exported from the original preload elastic-plastic finite element model 

and imported into the cyclic load model as an initial stress condition. Three different 

cyclic axial force amplitudes of 8kN, 8.5kN and 9kN were applied to investigate the 

cyclic stress behaviour for specimens. 

Results for 8kN force amplitude with and without residual stress are shown in Figure 

5.12. The maximum stress amplitude of 240.1MPa occurs at the notch root. The 

mean stress for the non-preloaded specimen is 74.4MPa. When the preload is 

included, this reduces to -0.1MPa.  In the stress-life method, the decrease in mean 

stress leads to a lower equivalent stress amplitude, increasing the calculated fatigue 

life of the specimen. 

 

Figure 5.12. Stress amplitude and mean stress in notch region. 
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For no residual stress, the equivalent stress is calculated using the maximum stress 

amplitude shown as the red line in Figure 5.12.  When residual is present, the mean 

stress shown as the yellow line in Figure 5.12 is used. The crack initiation life is 

calculated from a proposed crack initiation S-𝑁𝑖 curve in Figure 4.3, based on von 

Mises equivalent stress amplitude. Considering the multiaxial fatigue, the effective 

mean stress is assumed to be proportional to the hydrostatic stress [56]. The stress 

amplitude 𝜎𝑎 and effective mean stress 𝜎𝑚 can be calculated by (5.1) and  (5.2). 

𝜎𝑎 =
1

√2
√(𝜎𝑥𝑎 − 𝜎𝑦𝑎)2 + (𝜎𝑦𝑎 − 𝜎𝑧𝑎)2 + (𝜎𝑧𝑎 − 𝜎𝑥𝑎)2 + 6(𝜏𝑥𝑦𝑎

2 + 𝜏𝑦𝑧𝑎
2+𝜏𝑥𝑧𝑎

2)   
(5.1) 

 

𝜎𝑚 = 𝜎𝑥𝑚 + 𝜎𝑦𝑚 + 𝜎𝑧𝑚  (5.2) 

The Walker Equation (2.11) is used to correlate the influence of mean stress. The 

calculated 𝜎𝑎𝑟 for force amplitude of 8kN, 8.5kN and 9kN are then substituted into 

S-𝑁𝑖 curve to obtain the crack initiation life with and without induced residual stress. 

Similar procedures are applied to specimen B. 

5.4 Experimental Investigation 

Three 316LSS double-notch specimens with no induced residual stress and 5 

specimens with a 21kN preload were tested under 8kN, 8.5kN and 9kN force 

amplitude (R=0) cyclic loads on a 100kN servo-hydraulic fatigue testing machine as 

shown in Figure 5.13. All tests were under force control at 20 Hz. The test fatigue 

life results for the specimens with induced residual stress are shown in Figure 5.14, 

along with the fatigue life calculated using the proposed method.  

In traditional stress-life fatigue analysis, prediction is based on stress at a point. 

Averaged or nominal stress may be used at notch locations to account for stress 

gradient effects, but it is difficult to determine the appropriate characteristic length to 

obtain the average stress when residual stress is present, due to the variation in stress 

ratio. In such cases, the maximum stress is selected for substitution into the S-N 

curve, rather than an average stress. If the maximum stress amplitude is directly 
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substituted into Huang’s S-N curve, the predicted life is calculated as shown in 

Figure 5.14. 

 

 

Figure 5.13. Fatigue tests by 100kN servo-hydraulic fatigue testing machine. 

Both the proposed method and conventional stress-life method were also applied to 

the fatigue life evaluation of specimens without residual stress. The numerical and 

experimental results are shown in Figure 5.15, which illustrates the beneficial effect 

of induced compressive residual stress on the fatigue life of the specimens. All 

numerical and experimental results are summarized in Figure 5.16, which shows that 

the traditional stress-life method results in underestimation of fatigue life and the 

proposed fracture mechanics method gives a closer approximation of the measured 

fatigue life. 

The experimental results for type A are tested by author [142] and type B are 

collected from [108], These results show good agreement between experiment and 

prediction based on S355 low carbon steel shown in Figure 5.17, indicating that the 
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numerical fracture method based on ANSYS SMART crack growth simulation is 

suitable for calculating high cycle fatigue life with induced residual stress.  

 

Figure 5.14. Calculated and experimental fatigue life for double-notch specimen with 

induced residual stress for type A. 

 

Figure 5.15. Calculated and experimental fatigue life for double-notch specimens 

with and without induced residual stress for type A. 
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Figure 5.16. Comparison of calculated and experimental fatigue life results for type 

A. 

 

 

Figure 5.17. Calculated and experimental fatigue life for double-notch specimen 

including S-N curve of type B. 
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5.5 Discussion of Fatigue Life Prediction Method 

In the present experimental investigation, consideration is limited to 316L stainless 

steel and S355 low carbon steel. However, the method extends established fracture 

mechanics methods and is therefore expected to be appropriate for a high cycle 

fatigue analysis of other materials under a cyclic loading regime where LEFM is 

valid. The analysis procedure requires definition of a material dependent initial crack 

length, proposed to be equivalent to the length of two material grains. For steels, this 

length was assumed to be 200𝜇𝑚. The assumed crack initiation length for other 

materials will vary depending on material grain size but may be defined in a similar 

manner.  

The method currently incorporates Physically Short Crack growth in the Long Crack 

growth model. More detailed consideration of the PSC would be expected to improve 

crack initiation life prediction. A further area for investigation is the use of 

polynomial equations to define variation in stress intensity factors with crack length. 

This approach enables a relatively simple application of the superposition method 

when calculating crack growth life for a varying stress ratio. However, minor 

differences in fracture parameters in the compressive residual stress region can 

significantly affect the calculated fatigue life, and further work is required to 

investigate the most appropriate fitting technique and to investigate the validity of 

the method when applied to other materials and component configurations.  
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Chapter 6 Fatigue Life Assessment of 3D Components 

This section focuses on validating the accuracy of the proposed method by 

modifying the autofrettage loading from a tensile loading, as seen in the double-

notched specimen, to an internal pressure which is common in industrial components. 

In addition, the validation process also incorporates considerations of the material. 

Furthermore, for complex components, more details such as the redistribution of the 

residual stress, the structure response after autofrettage and the influence of the crack 

tip plasticity will be discussed. Likewise, the calculated total fatigue life includes the 

crack initiation life and the crack growth life and the fatigue life obtained by the 

proposed method is compared to the tested results to investigate the accuracy of the 

method. 

6.1 High-cycle Fatigue Life Estimation of Autofrettaged Blocks 

The structural configuration of many valve and pump bodies can be simplified to a 

solid block of material with intersecting cross bores. Therefore, cross-bore blocks can 

be selected as a suitable instance to apply the methodology. Furthermore, the 

geometry of these blocks can also resemble the valve body or pump body. Therefore, 

the tested notched blocks shown in [31] is employed to validate the proposed method. 

6.1.1 Notched-blocks and Material Properties 

The geometry of the tested blocks in [31] is shown in Figure 6.1, which is a fluid end 

of a pump. There is a cross bore inside the block where the stress distribution is 

similar to it in double-notched structure as well. The critical point is located at the 

cross bore intersection where the highest stress concentration factor is. The 

component is made of 4340 austenitic steel, which is high strength steel used in the 

manufacturing of pressure vessels, aircraft landing gear, etc. The monotonic stress-

strain curve of 4340 steel is fitted by the Ramberg-Osgood equation [152]. The 

material properties of 4340 austenitic steel [31, 153] are summarized in Table 6.1. 
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Figure 6.1. The geometry of the notched blocks [31]. 

 

Table 6.1. Material properties of 4340 steel. 

 4340 steel 

E/MPa 202462 

𝜎𝑌/MPa 620 

𝜎𝑢/MPa 790 

𝑛′ 0.07 

𝐾′ 881 

C/
𝑚𝑚/𝑐𝑦𝑐𝑙𝑒

(𝑀𝑃𝑎√𝑚)𝑚 3.7× 10−8 

m 2.5 

 

6.1.2 Residual Stress Distribution and 𝑲𝒓𝒔 

Two autofrettage pressures, 103MPa and 122MPa, are considered to assess their 

impact on fatigue life. The compressive residual stress at the critical point on the 
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cross bore intersection is calculated using FEA. A quarter of the component with 

symmetry boundary conditions is considered. The mesh and boundary conditions are 

shown in Figure 6.2 (a), where the mesh around the notch is refined by smaller 

elements. As only a quarter of the component is considered, frictionless supports are 

applied on the symmetry surfaces. The displacement Y on the bottom surface is 0 and 

the internal pressures are the autofrettage pressures, which are 103MPa and 122MPa. 

A multilinear kinematic hardening material model is employed, and the results of 

residual stress distribution are shown in Figure 6.3. 

The maximum compressive residual stress under both autofrettage pressures 

considered is located at the notch root, with value 532.06MPa for a pressure of 

122MPa and 355.17MPa for a pressure of 103MPa. After elastic-plastic analysis, the 

calculated residual stress distribution is exported to the crack propagation model. 

 

Figure 6.2. A quarter of notched-block. (a) Mesh results (b) Boundary conditions. 

 

Figure 6.3. Residual stress (Normal stress on Y direction) distribution with different 

autofrettage pressure. (a) 122MPa (b) 103MPa. 
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Crack growth simulation is performed using the SMART crack growth tool. A 

0.2mm crack initiation length is assumed at the notch root. An arbitrary internal 

pressure is applied, and the values of ∆𝐾𝑎𝑝𝑝 + 𝐾𝑟𝑠  calculated. Then, by the 

superposition method proposed in Section 4.3, the values of 𝐾𝑟𝑠 can be obtained by 

subtracting the results of ∆𝐾𝑎𝑝𝑝  (4.9) from the ∆𝐾𝑎𝑝𝑝 + 𝐾𝑟𝑠  and fitted by a crack 

length by polynomial function. The calculated results of 𝐾𝑟𝑠  for the two applied 

autofrettage pressures are shown in Figure 6.4. With varying autofrettage pressures, 

the minimum value of 𝐾𝑟𝑠 also varies. At an autofrettage pressure of 103MPa, the 

minimum value of 𝐾𝑟𝑠  is observed when the crack length is approximately 2mm. 

However, with an increase in autofrettage pressure to 122MPa, the minimum value 

occurs at a crack length of approximately 3mm. The calculated values of 𝐾𝑟𝑠 can 

thus be applied to calculate the crack growth life with the induced residual stress. 

 

Figure 6.4. The results of 𝐾𝑟𝑠 with crack length under different autofrettage pressures. 

6.1.3 Crack Growth Simulation and ∆𝑲𝒂𝒑𝒑 

The applied working pressure on the blocks after autofrettage is from 0 to 68.91MPa. 

The same procedures used in double-notched specimens in Chapter 5 is applied in 

this section to calculate ∆𝐾𝑎𝑝𝑝. The coordinate system is created on the crack plane 

to determine the direction of the crack growth. The boundary conditions shown in 

Figure 6.2 (b) are also employed in crack growth simulation. The variation in ∆𝐾𝑎𝑝𝑝 

with crack length is shown in Figure 6.5. As the crack propagates, the value of ∆𝐾𝑎𝑝𝑝 

initially increases rapidly, followed by a slower rate of increase. Combining the 
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results of 𝐾𝑟𝑠 obtained in Figure 6.4, the crack growth life with different autofrettage 

pressures can be calculated from (4.12) and (4.13). 

 

Figure 6.5. Calculated ∆𝐾𝑎𝑝𝑝 of 68.91MPa applied pressure. 

 

6.1.4 Crack Initiation Life with Residual Stress 

The crack initiation life with induced residual stress is calculated by a 𝑆 − 𝑁𝑖 curve, 

which is created by the crack growth simulation described in Chapter 4. Based on an 

assumed crack initiation length, the crack growth life for different loads on a smooth 

standard tensile specimen can be calculated by FEA. The crack initiation life 

corresponding to the crack initiation length can then be determined by subtracting the 

crack growth life from the total life. The 𝑆 − 𝑁𝑡 curve of 4340 steel based on the 

standard tested specimens is taken from Dowling [56], as shown as the solid line in 

Figure 6.6. The crack initiation life is calculated from the FEA and shown in Figure 

6.6. The 𝑆 − 𝑁𝑡  curve can be fitted by the Basquin equation (2.7) with 𝜎𝑓
′ =

907.5786MPa and 𝑏 = −0.066. 
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Figure 6.6. Crack initiation life and total life of 4340 steel. 

The values of stress amplitude and mean stress for the different autofrettage 

pressures and single operating pressures and the experimental results of the total 

fatigue life are given in Table 6.2. Mean stress correction is performed using the 

Walker equation (2.11) to calculate the equivalent stress amplitude, which is 

substituted into Figure 6.6 to calculate the crack initiation life. 

Table 6.2. Tested total fatigue life from [31]. 

Autofrettage 

Pressure/MPa 

Operating 

Pressure/MPa 

𝜎𝑎/MPa 𝜎𝑚/MPa 𝑁𝑓 

103 68.91 413.47 13.78 246,313 

103 68.91 413.47 13.78 283,181 

122 68.91 413.47 -80.90 422,426 

  

6.1.5 Calculation of the Total Life 

The crack propagation life with different autofrettage pressures is obtained by 

combining the results of 𝐾𝑟𝑠 shown in Figure 6.4 and ∆𝐾𝑎𝑝𝑝 in Figure 6.5. The total 
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fatigue life is determined by adding the crack initiation life from Section 6.1.4. 

Results for the calculated life, including the crack initiation life and the crack growth 

life, are shown in Table 6.3. For 68.91MPa operating pressure, when the autofrettage 

pressure is 103MPa, the calculated total life based on the proposed method is around 

259,600 cycles. Comparing this with the experimental results provided in Table 6.2, 

where the experimental results range between 246,313 cycles and 283,181 cycles, the 

calculated result falls within this range. The errors are 5.39% and 8.33% respectively, 

both of which are small in the estimation of fatigue life. Only one test is reported for 

autofrettage pressure 122MPa, resulting in a tested fatigue life of 422,426 cycles. 

The calculated fatigue life is 502,170 cycles with an error of 18%. Although this 

error is larger than when the autofrettage pressure is 103MPa, the scatter factor is 

only 1.2 which is less than 2 and still acceptable for fatigue life prediction. 

Table 6.3. Calculated total life by proposed method. 

Autofrettage 

Pressure/MPa 

Operating 

Pressure/MPa 

𝑁𝑔 𝑁𝑖 𝑁𝑡 

103 68.91 190,600 69,000 259,600 

122 68.91 402,170 100,000 502,170 

 

6.1.6 Discussion of the Notched Block Fatigue Life Prediction 

In this section, the proposed method applied for the double-notched specimens is 

employed to predict the fatigue life of autofrettaged notched blocks made of 4340 

steel. For a constant 68.91MPa operating pressure, the fatigue life is obtained for two 

autofrettage pressures, and the calculated fatigue lives have good agreement with the 

experimental results. Therefore, the feasibility of the proposed method discussed in 

Section 5.5, including the assumption of crack imitation, the determination of the 

stress intensity factor of residual stress and its influence on the stress ratio, can be 

validated. Additionally, due to the universality of the geometry of the notched block, 

the proposed method can be used in many industrial structures with notches, such as 

pumps, valves and pipes.  
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All of the analyses are based on the realm of high cycle fatigue, with a specific 

emphasis on elastic shakedown. After autofrettage, the structure response under 

subsequent cyclic loading may be either ratcheting or shakedown.  

Thus far, the analysis has been assumed elastic shakedown. The following section 

will consider both elastic shakedown and plastic shakedown, which means the 

structure response will be considered with more complex components.  

6.2 Fatigue Life Estimation of Autofrettaged Injection System Components 

In industrial equipment such as injection pumps and engines, injection systems are 

widely used under high cyclic injection pressure. Once the injection pressure is 

determined, the structure must be designed to meet the fatigue life requirements 

under these cyclic pressures. If the shape and material of a component, and no 

additional methods are employed to enhance its fatigue resistance, then the fatigue 

life and limit are constant. Therefore, since no structure changes can be made, 

autofrettage is applied to injection system component to increase the fatigue life and 

the proposed method can then be employed to estimate the fatigue life. 

6.2.1 Injection System Component and Material Properties 

An injection system component for a diesel engine [107] is considered to validate the 

proposed fatigue life method. The component is simplified as shown in Figure 6.7. 

 

Figure 6.7. (a) The geometry of the entire component. (b) The geometry of the half of 

the component. 
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The component material is 42CrMo4. A mixed hardening model (3.11) is applied for 

cyclic stress-strain analysis. The mixed hardening model consists of nonlinear 

isotropic hardening model and Chaboche kinematic hardening model (3.9). The 

material properties of 42CrMo4 under room temperature [107] applied in the 

constitutive model are shown in Table 6.4. 

Table 6.4. Material properties of 42CrMo4. 

 42CrMo4 

Isotropic elasticity  

E 200 GPa 

v 0.3 

Nonlinear isotropic hardening  

k 910 MPa 

𝑅∞ -283.17 

b 11.527 

Chaboche kinematic hardening  

𝐶1 6.758× 10−6 MPa 

𝛾1 5123 

𝐶2 9303 MPa 

𝛾2 1281 

𝐶3 80269.9 

𝛾3 320 

𝐶4 4.589× 10−4 MPa 

𝛾4 80 

𝐶5 12295.6 

𝛾5 20 
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6.2.2 Autofrettage and Residual Stress Distribution 

The autofrettage pressure applied to the structure is 850 MPa. During loading, 

plasticity is induced in the high stress concentration area identified in Figure 6.8. The 

residual stress distribution on unloading is simulated using FEA. Subsequently, the 

component is subjected to cyclic working pressure ranging from 350 MPa to 5 MPa.  

One sixteenth of the component, with appropriate symmetry boundary conditions, is 

modelled to calculate the compressive residual stress. The structure is meshed using 

tetrahedral elements, with refined meshing around the notch root area, which is the 

high stress concentration region. The mesh comprises 8685 elements and 15334 

nodes, as shown in Figure 6.8.  

 

Figure 6.8. Mesh results of one sixteenth of the structure. 

Symmetry boundary conditions are applied on three surfaces of the model, with the 

autofrettage pressure applied on the internal surface, as shown in Figure 6.9. 

 

Figure 6.9. Boundary conditions of one sixteenth structure. 
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The compressive residual stress is represented by the normal stress perpendicular to 

the crack surface. The residual stress of the entire model after the 850 MPa 

autofrettage is shown in Figure 6.10 (a). The residual stress distribution around the 

notch root, along the expected crack path from point 1 to point 2 is shown in Figure 

6.10 (b). 

 

 

Figure 6.10. Residual stress (Normal stress perpendicular to the section) distribution 

due to autofrettage pressure. (a) Residual stress on the entire structure. (b) residual 

stress along the path. 

As shown in Figure 6.10, compressive residual stress is distributed around the notch 

root, with a value of 951.55 MPa at the critical point (point 1). Tensile residual stress 
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is then distributed away from the notch root to balance the compressive stress 

distribution. 

6.2.3 Residual Stress Redistribution  

After autofrettage, the structure's response to cyclic loading, with the induced 

compressive residual stress, can be classified as elastic shakedown, plastic 

shakedown, or ratcheting, as discussed in Section 3.4. If plastic shakedown occurs, 

redistribution of residual stress must be considered, and the redistributed 

compressive residual stress can be assumed as the compressive stress of the stable 

hysteresis loop. To determine whether such redistribution should be accounted for, 

the plastic strain state is a crucial factor for assessment. If the plastic strain remains 

constant under subsequent cyclic loading following autofrettage, the structural 

response can be assessed as elastic shakedown, as illustrated by the blue line in 

Figure 6.11. When the subsequent cyclic loading range is from 5MPa to 100MPa, the 

equivalent plastic strain is constant after the autofrettage. However, when the 

subsequent cyclic loading range is from 5MPa to 350MPa, the plastic strain varies in 

each step in the first few cycles, as shown by the red line in Figure 6.11. Plastic 

shakedown may then occur in the following cycles. Therefore, to obtain the 

redistributed residual stress, stress-strain analysis needs to be applied for more load 

cycles. 
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Figure 6.11. Equivalent plastic strain with various pressure ranges. 

The autofrettaged structure is subjected to subsequent cyclic pressure ranging from 

350 MPa to 5 MPa for a total of 250 cycles. The results of redistributed residual 

stress on the critical point for each load step are shown in Figure 6.12, where the 

residual stress becomes stable after around 50 cycles. In addition, the results of 

residual stress along the path after various cycles are also shown in Figure 6.13. The 

compressive residual stress on the critical point decreases from the original 

951.55MPa to 786.81MPa after 250 cycles, and the redistributed residual stress is 

also different. After 20 cycles, the redistributed compressive residual stress is around 

800MPa and be stable with the increasing of the cycles. The residual stress becomes 

stable after approximately 100 cycles. Therefore, the redistributed residual stress 

after 100 cycles can be used for the following fracture mechanics analysis when the 

pressure range is from 5MPa to 350MPa. 
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Figure 6.12. Residual stress on the critical point for each step. 

 

 

Figure 6.13. Residual stress redistribution after various cycles. (a) Path length to 

3.5mm. (b) Path length to 0.5mm. 

With different pressure ranges, the calculated compressive residual stress at the 

critical point also varies. The results of the redistributed residual stress along the path 

after 250 cycles under three pressure ranges are shown in Figure 6.14. The stable 

compressive residual stress at the critical point increases with the increasing pressure 

ranges after 250 cycles. Residual stress distributions around the notch root vary 

under different pressure ranges within 0 to 0.8mm along the path, but beyond 

approximately 1mm, the residual stress gradually converges to the same value. 
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Figure 6.14. Redistributed residual stress after 250 cycles with various pressure 

ranges. 

The determined redistributed residual stress is then applied in the following crack 

growth simulation. 

6.2.4 Stress Intensity Factor of Applied Pressure 

The SMART tool is used to simulate crack growth, employing a quarter of the 

component for this purpose. An assumed initiation crack, inserted as a semi-elliptical 

crack with a length of 0.2mm, is placed at the notch root. A quarter of the component 

is meshed using tetrahedral elements, with refinement around the crack front as 

shown in the Figure 6.15. The mesh includes 30643 elements with 44705 nodes. 

 

Figure 6.15. Mesh results of a quarter of the structure with crack initiation. 

As a quarter of the structure is modelled, with appropriate symmetry boundary 

conditions, and internal pressure applied. In addition, displacement constrain is 
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imposed on the bottom plane as Y=0. All boundary conditions are shown in Figure 

6.16. 

 

Figure 6.16. Boundary conditions of quarter of the structure. 

Several internal pressures are applied to the model for crack growth simulation to 

calculate the results of stress intensity factors, as shown in Figure 6.17. Although, 

stress intensity factors may vary with changes in internal pressures, the configuration 

factor Y remains constant and is dependent only on the geometry of the structure. 

Consequently, Y can be employed to assess mesh sensitivity and, once obtained, can 

be applied to calculate the SIFs for any internal pressure. The values of Y with crack 

length based on the mesh results shown in Figure 6.15 are shown in Figure 6.18. 

Although, the pressures applied to the structure are different, the calculated results of 

Y are same. A second mesh with different refinement is analysed to evaluate mesh 

sensitivity by comparing the values of Y. Since increasing mesh density also leads to 

longer computational times, the comparison is conducted only for crack lengths 

ranging from 0.2mm to 1mm. The results of Y obtained based on different mesh 

densities are shown in Figure 6.19. 



101 

 

 

Figure 6.17. Stress intensity factors of various internal pressures. 

 

Figure 6.18. Configuration factor Y with crack length. 



102 

 

 

Figure 6.19.ConfigurationfactorY with different mesh densities. 

As shown in Figure 6.19, the mesh around the crack tip is refined leading to an 

increase in the number of elements from 15349 in Mesh 2 to 30643 in Mesh 1. 

Initially, there is a small difference in the results of Y, but with the growth of the 

crack initiation, the difference diminishes and finally two lines representing Y 

converge into one line after approximately 0.8mm. Considering the insensitivity of Y 

values to mesh density and the significant increase in computational time, the mesh 

with 15349 elements is employed in the subsequent analysis. 

6.2.5 Crack Tip Plasticity Correction 

The SMART crack growth tool in ANSYS is employed to simulate the crack growth 

and calculate the applied stress intensity factors. It is based on the LEFM, which 

assumes small scale yield (Section 2.7.5). In the small scale yield assumption, the 

plastic zone at the crack tip should be much smaller than the crack length itself. To 

define this “much smaller” assumption, the minimum required dimensions of the 

crack, according to Dowling [56] and ASTM standard [154], is: 
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(6.1) 

 where, a is crack length, 𝑊 − 𝑎  is ligament length, and h is height. In this 

component, only one dimension, crack length, is considered as the SIFs are already 

correlated to the crack length by fitting functions. (6.1) can then be solved to find the 

minimum crack length to satisfy the small scale yield assumption. The solutions of 

the minimum crack length with various maximum applied pressures are shown in 

Table 6.5. 

Table 6.5. Calculated minimum crack length with applied pressures. 

Applied pressure/MPA 400 350 300 250 200 150 

Calculated Crack length/mm 1.3 1 0.7 0.44 0.2 0.11 

 

As shown in Table 6.5, the calculated minimum crack length decreases with the 

decrease of the applied pressure. Since, the SMART crack growth is based on the 

LEFM, to investigate the plastic zone induced with plasticity, the FEA of elastic-

plastic fracture mechanics is employed. However, unlike the SMART crack growth 

tool which can simulate the process of crack propagation continuously, incorporating 

plasticity into the calculation does not allow continuous simulation. The stress 

distributions around the crack tip depicted by the equivalent stress under 400 and 200 

maximum applied stress are illustrated respectively as Figure 6.20. The description 

of the plastic zone obtained by the plastic material model when the maximum applied 

pressure is 200MPa is shown in Figure 6.20 (a). Compared to the Figure 6.20 (c), 

determined by the 400MPa, the plastic zone under 200MPa is smaller. 
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Figure 6.20. Stress distributions described by equivalent stress (a) 200MPa, 

plasticity (b) 200MPa, elasticity (c) 400MPa, plasticity. (d) 400MPa, plasticity 

(magnified displacement view). 

In addition, when the applied pressure is 200MPa, although, the value of the 

calculated equivalent stress under the elastic material model is different from that 

under the plastic material model, the shape and size of plastic zones in different loads 

are similar, as shown in Figure 6.20 (a) and (c). However, in the same situation, the 

result of the plastic zone with 400MPa applied pressure in plastic model has a 

significant difference compared to the stress distribution in the elastic model, as 

shown in Figure 6.20 (b) and (d).  

The structure response under the various applied pressures in Table 6.5 is determined 

from the equivalent plastic strain. As mentioned in Section 3.4, if there is no net 

increment in the plastic strain, the structure response can be defined as a shakedown. 
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If the plastic strain is constant during any loading steps, the stress-strain response is 

termed as elastic shakedown, and if the plastic strain varies under loading and 

unloading steps, but the net plastic strain is zero, the stress-strain response is 

identified as a plastic shakedown. The calculated equivalent plastic strain under 

various applied pressures are shown in Figure 6.21. When the applied pressure is 

200MPa, following autofrettage, the equivalent plastic strain remains constant during 

subsequent loading, indicating that the structure's response is characterized by elastic 

shakedown. However, as the applied pressure increases to either 300MPa or 400MPa, 

plastic shakedown occurs. 

 

Figure 6.21. Equivalent plastic strain with applied pressures. 

Considering the results shown in Table 6.5, the calculated minimum crack length is 

small (around 0.2mm) when the structure response is an elastic shakedown. As the 

length of assumed initiation crack is 0.2mm, the plastic influence on the simulated 

stress intensity factors can be ignored when elastic shakedown occurs. However, if 

plastic shakedown occurs, the calculated minimum crack length is larger than 0.7mm, 

which is larger than the assumed crack initiation length. The plasticity influence 

should hence be considered for the crack propagation from the 0.2mm crack 

initiation length to the calculated minimum crack length. However, as the SMART 

crack growth tool in ANSYS is based on the LEFM, other methods need to be 
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employed. Here, the stress intensity factor with plasticity is determined by multistep 

analysis that the process of crack growth before the minimum crack length is divided 

into several steps, for each step, the SIF is calculated independently. For instance, if 

the minimum crack length is larger than 0.2mm, the crack growth path between 

0.2mm and the minimum crack length are divided by multistep and the value of SIF 

of each step is calculated based on elastic-plastic material model. Then, the SMART 

crack growth tool is employed until the 0.2mm crack initiation grows to the 

minimum crack length. 

To determine the range of stress intensity factors, the minimum SIFs obtained by the 

minimum pressure 5 MPa are calculated based on the configuration factor shown in 

Figure 6.19, as in (4.2) in Section 4.1.2. Several ranges of SIFs under various ranges 

of applied pressures are then calculated, as shown in Figure 6.22. 

 

Figure 6.22. Range of stress intensity factors with minimum pressure 5 MPa. 

 

6.2.6 Stress Intensity Factor of Residual Stress 

As noted in Section 4.3, the stress intensity factor of residual stress, 𝐾𝑟𝑠  can be 

determined by the weight function method, which is the method applied in [107]. 
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However, this is difficult to apply in 3D models. Therefore, the FEA method based 

on the superposition method of Section 5.3.2 is applied to determine 𝐾𝑟𝑠.  

The redistributed residual stress is exported from the mixed hardening material 

model and employed as the initial stress state for the crack simulation. An arbitrary 

pressure, sufficiently large to induce crack growth with the residual stress, is applied 

to the structure. Following the crack growth simulation, the values of ∆𝐾𝑎𝑝𝑝 + 𝐾𝑟𝑠 

are determined along with the crack length a. Additionally, another crack growth 

simulation is conducted with only the same arbitrary pressure applied to obtain the 

values of ∆𝐾𝑎𝑝𝑝. Consequently, the results of 𝐾𝑟𝑠 can be determined by subtracting 

∆𝐾𝑎𝑝𝑝  from ∆𝐾𝑎𝑝𝑝 + 𝐾𝑟𝑠 . The value of 𝐾𝑟𝑠  can then be calculated as shown in 

Figure 6.23. 

 

Figure 6.23. 𝐾𝑟𝑠 with crack length. 

6.2.7 Calculation of Crack Initiation Life with and without Residual Stress 

To calculate the crack initiation life, the methodology shown in the Section 4.1 is 

applied. The stress-total fatigue life curve is collected from the reference [155]. 

Assuming a 0.2mm crack initiation length, the crack growth life for the smooth 

specimen illustrated in Figure 4.2 is calculated based on Paris law (4.5) with the 

Paris law parameters for 42CRMo4, where C is 6.08× 108  MPa√𝑚 and m is 2.3 
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[156]. Finally, the crack initiation life based on the assumed crack initiation length 

for the smooth specimen is calculated for different applied stresses and a stress-crack 

initiation life, 𝑆 − 𝑁𝑖, curve for 42CrMo4 is generated, as shown in Figure 6.24.  

With the stress amplitude obtained from the FEA, the crack initiation life is 

determined by applying the calculated stress amplitude to the 𝑆 − 𝑁𝑖  curve. After 

autofrettage and 250 working load cycles, the stress state response is as shown in 

Figure 6.25. The results of equivalent stress amplitude after mean stress correction 

based on several cyclic loading are summarized in Table 6.6. 

 

 

Figure 6.24. Crack initiation life of 42CrMo4 under various stress amplitude. 
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Figure 6.25. Illustration of stress response due to autofrettage and cyclic loading. 

 

Table 6.6. Calculated equivalent stress amplitude with residual stress by FEA. 

Cyclic pressure range/MPa Equivalent stress amplitude/MPa 

400 817.02 

375 792.74 

350 767.36 

Without autofrettage, the stress state response to applied pressures can be either 

elastic shakedown or plastic shakedown. The results of equivalent stress amplitude 

corresponding to the applied pressures and stress-stain states are summarized in 

Table 6.7. 

Table 6.7. Calculated equivalent stress amplitude without residual stress by FEA. 

Cyclic pressure range/MPa Equivalent stress amplitude/MPa 

300 928.78 

200 681.9 

150 595.5 
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6.2.8 Calculation of Crack Growth Life with and without Residual Stress 

Equations (4.12) and (4.13) are applied to calculate the crack propagation life 

considering residual stress. ∆𝐾𝑎𝑝𝑝 , 𝐾𝑟𝑠  and 𝑅𝑒𝑓𝑓  are functions of crack length, 

enabling calculation of crack propagation life by integrating over crack length. Three 

maximum working pressures ranging from 5 MPa to 405MPa, 380MPa and 355MPa 

are applied. The range of SIFs for the applied pressures, ∆𝐾𝑎𝑝𝑝, are obtained from 

the configuration factor shown in Figure 6.18. The results of crack propagation life 

without the residual stress can be calculated directly by ∆𝐾𝑎𝑝𝑝 from (4.5) and by 

combining the values of 𝐾𝑟𝑠  and the influence of 𝑅𝑒𝑓𝑓 , the results of crack 

propagation life can be calculated. These results are then combined with the crack 

initiation life determined in Section 6.2.7 to calculate the total fatigue life with and 

without residual stress.  

The comparison of the total life results considering residual stress obtained by the 

proposed method with the results included in the Reference [107] is illustrated in 

Figure 6.26. In [107], a strip yield model incorporating plastic effect is employing 

the concept of a fictitious crack tip, is applied to estimate the crack growth life. The 

results of predicted fatigue life based on this model are shown as the red line in 

Figure 6.26. The results of fatigue life obtained by LEFM calculation and 

experiments [107] are shown as the blue line and green line respectively. The fatigue 

life results obtained by the proposed method, shown as the black symbols in Figure 

6.26, are between the linear calculation and the strip yield model. Compared to the 

weight function method, the determination of 𝐾𝑟𝑠  in the proposed method is 

significantly easier in 3D model and with plasticity correction on the proposed 

method, the FEA results can also provide closer results on the fatigue life compared 

with LEFM. 
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Figure 6.26. Prediction of total fatigue life with residual stress by various methods. 

The results of total life without the residual stress are shown in Figure 6.27. The 

calculated fatigue life by strip yield model, linear calculation and FEA method 

proposed are included. The calculated results by FEA without the residual stress are 

also seen to give good agreement with experimental results.  

 

Figure 6.27. Prediction of total fatigue life without residual stress by various 

methods. 
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6.2.9 Discussion 

The method proposed in Chapter 4 to assess fatigue life with induced residual stress 

through the crack growth model with an assumed initial crack was applied to double-

notched specimens of 316L stainless steel and low carbon steel in Chapter 5. As the 

redistributed residual stress varies after initial cyclic loadings before stabilizing, the 

residual stress after approximate 100 cyclic loadings is taken as the final 

redistributed residual stress. The crack initiation length is assumed as 0.2mm. Based 

on the assumed crack initiation, the values of SIF under various applied pressures are 

determined by the SMART crack growth tool. However, the small scale yield 

assumption in LEFM may not be satisfy before the 0.2mm assumed crack initiation 

length is established. The minimum crack length required to satisfy the small-scale 

yield assumption varies with different applied pressures and corresponds to the 

structure's response. In cases where the structure response is identified as a plastic 

shakedown, the minimum crack length satisfying the assumption is larger than 

approximately 0.7mm. However, under the condition of elastic shakedown, the 

minimum crack length is approximately 0.2mm, which aligns with the length of the 

assumed crack initiation. Therefore, when the response of a structure is elastic 

shakedown, if the crack initiation length is 0.2mm, the influence of plasticity on the 

crack tip can be ignored, but for the plastic shakedown, the plasticity should be 

considered in the calculation of SIF. Here, the SIF with plasticity is calculated by 

multistep analysis of the initial crack length and SMART crack growth is applied 

after the minimum crack length. 

Based on the assumed crack initiation length, the 𝑆 − 𝑁𝑖 curve of 42CrMo4 can be 

generated. Same procedures included in the proposed method in Figure 4.1 are 

applied. By adding the crack initiation life, the total life is obtained as shown in 

Figure 6.26 and Figure 6.27. For the situation with the residual stress, the deviations 

between the calculated fatigue life and experimental results are close for both the 

strip yield model and LEFM calculation method. The calculated life using the 

proposed method closely resembles the LEFM calculation, but with less deviation. 

For the situation without the residual stress, compared with the strip yield model, the 

results from the linear calculation can have less deviation and the calculated life by 

the proposed method can provide a good agreement as well. 



113 

 

Chapter 7 Crack arrest 

From a design perspective, the aim of autofrettage for a given working load cycle 

may be to achieve a specific finite fatigue life, typically 106 to 107 cycles for high 

cycle fatigue, or infinite fatigue life. The minimum autofrettage pressure required to 

achieve this aim can be determined by applying a stress life or fracture mechanics 

methodology to a component with induced compressive residual stress, calculated by 

elastic-plastic analysis. Here, a method is proposed to determine the minimum 

autofrettage pressure according to crack arrest analysis. The calculated ∆𝐾𝑒𝑓𝑓 (4.15) 

is compared with a crack threshold model to determine if the crack will propagate or 

be arrested as shown in Figure 7.1. The minimum autofrettage pressure can be 

determined at which the crack arrest occurs. 

 

Figure 7.1. Flow diagram of crack arrest analysis. 

This chapter investigates the incorporation of the crack arrest models and the 

threshold of EI Haddad [79] and Chapetti [82] in the methodology. Both models are 
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initially considered in fatigue analysis of double notch tensile test specimens with 

compressive residual stress induced by initial tensile overload. Results are compared 

with fatigue test results from the literature and experiments. The procedure with the 

Chapetti crack arrest model is then applied to a complex 3D valve body with 

autofrettage residual stress, previously considered by Sellen et al.[157] 

7.1 Crack Arrest Theory 

Crack arrest analysis can be applied for the assessment of autofrettage to make sure 

the preload in the autofrettage process can improve the total fatigue life larger than at 

least 106 cycles. The crack arrest analysis can be employed by comparing the SIFs 

with the thresholds mentioned in Section 2.7.2. Crack arrest analysis based on the EI 

Haddad and Chapetti models has been considered in several investigations. Arau j́o 

and Nowell [80] and de Pannemaecker [81] adopted the EI Haddad model for crack 

arrest analysis in fretting fatigue. Chapetti [158] assessed fatigue strength by 

comparing the threshold curve with ∆𝐾. Chapetti assumed a semicircular crack, with 

𝑌 = 0.65. Santus and Taylor [71] have proposed a semi-ellipse form where 𝑌  is 

dependent on the aspect ratio, with 𝑌 = 0.746 assumed for an aspect ratio of 0.8. A 

similar IBESS approach [159] was proposed for the fatigue assessment of welding 

structures.  

Crack arrest analysis taking account of autofrettage pressure was investigated for 

cruciform specimens by Thumser et.al [160] in terms of ∆𝐾𝑑𝑅. This applies to cracks 

within the MSC region, but when defining crack arrest in general it is necessary to 

consider variation in the PSC threshold with 𝑎, ∆𝐾𝑡ℎ,𝑎, as illustrated in Figure 2.16. 

Even if ∆𝐾  exceeds ∆𝐾𝑑𝑅 , there is still a possibility of arresting the crack by 

increasing ∆𝐾𝑡ℎ,𝑎.  

7.2 Crack Arrest Assessment on Double-notched Specimens 

Two types of double-notched specimens shown in Figure 5.1 are investigated. The 

material properties required to calculate the thresholds are summarized in Table 7.1. 
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Table 7.1. Experimental and collected material properties of 316L and S355 (R=0) 

[56, 108, 142, 161, 162]. 

Material 𝜎𝑌 

(𝑀𝑃𝑎) 

𝐸 

(𝐺𝑃𝑎) 

∆𝜎𝑒𝑅 

(𝑀𝑃𝑎) 

∆𝐾𝑡ℎ𝑅 

(𝑀𝑃𝑎√𝑚) 

𝑑1 

(𝑚𝑚) 

∆𝐾𝑑𝑅 

(𝑀𝑃𝑎√𝑚) 

𝑘 

(𝑚𝑚−1) 

316L 255 200 292 5.5 0.024 1.64 4.46 

S355 255 200 344 8 0.055 2.94 2.64 

 

The EI Haddad (2.39) and Chapetti (2.42) fatigue threshold models for 316L and 

S355 determined from the material properties of  Table 7.1 are shown in Figure 7.2, 

where ∆𝐾𝑡ℎ for the Chapetti model assumes 𝑌 = 0.65. 

 

Figure 7.2. Calculated fatigue threshold models for 316L and S355. 

As a PSC develops from an MSC, crack arrest will occur if the effective SIF range 

∆𝐾𝑒𝑓𝑓 for a given crack length 𝑎 is below the corresponding fatigue crack threshold 

∆𝐾𝑡ℎ. The effective SIF range for Specimens A and B can be determined from the 

numerical results for ∆𝐾𝑎𝑝𝑝, 𝐾𝑟𝑠 and 𝑅𝑒𝑓𝑓, ∆𝐾𝑒𝑓𝑓 calculated from (4.15).  

The threshold and effective SIF ranges for Specimens A and B are plotted against 

crack length 𝑎 for Specimens A and B in Figure 7.3 (a) and (b) respectively. For 

Specimen A, the Chapetti model predicts crack arrest for applied forces of 6.5kN, 
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7.0kN and 7.5kN. The EI Haddad also predicts crack arrest for these forces and for 

the higher force of 8.0kN. For Specimen B, the Chapetti model predicts crack arrest 

in the PSC region for applied force amplitude 21kN and 22kN. The EI Haddad model 

predicts crack arrest for 21kN. 

 

 

Figure 7.3. Calculated ∆𝐾𝑒𝑓𝑓 compared with ∆𝐾𝑡ℎ a) Specimen A and  b) Specimen 

B. 
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Test results for fatigue cycles to failure for the Specimen A and Specimen B [108] are 

summarised in Figure 7.4(a) and (b) respectively where the fatigue limit (more than 

at least 2 × 106) are marked as red points. 

 

Figure 7.4. Experimental results of fatigue tests of preloaded double-notched 

specimens a) Specimen A and b) Specimen B[108]. 

 

The results for Specimen A show a finite fatigue life for an applied working force of 

8kN and above. This shows that crack arrest does not occur at 8kN, as predicted 

using the El Haddad model. Test results corresponding to the Chapetti model 

prediction of crack arrest at working load 7.5 kN show run-out at 2x106 and 2x107 

cycles. The Specimen B results show finite fatigue life for a working force of 22 kN 

and above, showing that crack arrest does not occur at 22kN as predicted using the El 

Haddad model. A single test corresponding to the Chapetti prediction of crack arrest 

at 21kN shows run-out at 3x106 cycles.  

Comparison with fatigue test results indicates that the El Haddad model does not 

give a conservative estimate of crack arrest within the framework of the proposed 

method. However, the results given by the Chapetti model indicate that it is a 

potentially viable approach, within the limits of the run-out data available.  

7.3 Influence of Aspect Ratio 

For crack propagation simulation in FEA, the crack initiation can be assumed as 

semicircular, straight-fronted or semi-ellipse, but commonly the shape of crack 

initiation is considered as either semicircular or semi-ellipse. Based on Chapetti's 



118 

 

theory, the value of 𝑌 can be generally determined as 0.65. In Taylor’s work, he 

refined the value of 𝑌 through the specific shape of semicircular crack initiation and 

by assuming the aspect ratio is 0.8 to obtain 𝑌=0.746. Therefore, for more accurate 

prediction, it is necessary to consider the influence of aspect ratio on crack 

propagation simulation and the fatigue limit prediction. Although, the aspect ratio 

changes with the crack propagation, the aspect ratio of the initial crack length is 

commonly assumed between 0.2 and 1.0 [124]. According to initial aspect ratios, the 

value of the corresponding 𝑌 is based on [124]. 

Since the ∆𝐾𝑡ℎ dependent on Chapetti model has been considered in Figure 7.2 and 

aspect ratio of 0.2 is rarely applied in crack growth simulation, only aspect ratios of 

0.4, 0.6 and 0.8 are discussed. For crack propagation simulation, the crack initiation 

length a is still constant at 0.2mm. Based on several aspect ratios, different sizes of  

semi-ellipse cracks are applied in two kinds of specimens, with the same procedures 

to calculate the values of ∆𝐾𝑎𝑝𝑝, 𝐾𝑟𝑠 and ∆𝐾𝑒𝑓𝑓. The results of ∆𝐾𝑒𝑓𝑓 and ∆𝐾𝑡ℎ with 

different aspect ratios for the two specimens are shown in Figure 7.5. 

For specimen A, 8kN force amplitude is applied and 23kN force amplitude is applied 

on specimen B. Based on Figure 7.4, both of these selected force amplitudes are 

close to the fatigue limit forces of the corresponding specimens. 

 

Figure 7.5 Calculated ∆𝐾𝑒𝑓𝑓 compared with ∆𝐾𝑡ℎ with aspect ratios of 0.4, 0.6 and 

0.8 a)316Lss b)S355 carbon steel. 

It is observed in Figure 7.5 that for each crack configuration, the lines of ∆𝐾𝑒𝑓𝑓 for 

different aspect ratios will coincide to a similar line. This is because although the 
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initial aspect ratios and corresponding 𝑌  vary, with crack propagation the crack 

aspect ratio will finally converge. This trend is also seen in Carpinteri’s and 

Caspers’s research [124, 163], where the crack aspect ratio converges in the range of 

0.6 to 0.7. However, even though the final crack aspect ratios are similar, the initial 

crack aspect ratios vary, and the difference between these ratios can affect the 

judgment of crack arrest, especially in short crack region.  

Comparing the results shown in Figure 7.5(a), when ∆𝐾𝑡ℎ for EI Haddad model is 

considered, although the applied forces are same, with various initial aspect ratios, 

the results of crack arrest analysis are different. As for a/b= 0.8 and 0.6 (red and 

yellow lines), the crack is arrested in PSC, but for a/b=0.4 (blue line) the crack can 

continue to propagate to LC and fail. This situation is also present in Figure 7.5(b), 

where only the initial crack configuration with a/b=0.4 can continue to propagate.  

The situation of the initial crack with a/b=0.4 for specimen B is selected to compare 

with the results of Figure 7.4 (b) to clarify the influence of the crack aspect ratio on 

the fatigue limit. The results of ∆𝐾𝑒𝑓𝑓 and ∆𝐾𝑡ℎ with a/b=0.4 are shown in Figure 7.6, 

where based on EI Haddad model, the force leading to the fatigue limit is in the 

range of 22kN-23kN. According to Figure 7.4 (b), when the force amplitude is 

between 23kN and 22kN, the crack is also nearly arrested in PSC. So, for the EI 

Haddad model, the aspect ratio has no significant influence on the crack arrest 

analysis. However, for the Chapetti model, the results of the calculation with 0.4 

aspect ratio are approximately 22kN, which is larger than the result for 0.6 aspect 

ratio. The reason for the difference in the results of the two models is that in Chapetti 

model, ∆𝐾𝑡ℎ  is dependent on the value of 𝑌 , but for EI Haddad model, ∆𝐾𝑡ℎ  is 

independent on the value of 𝑌, so the fatigue limit is the same. Therefore, when the 

Chapetti model is selected with a specific aspect ratio of 0.4, the fatigue limit will be 

underestimated. 

For engineering applications, both models can be employed to describe ∆𝐾𝑡ℎ, but the 

initial crack configuration should be considered carefully, as this can affect the 

calculated fatigue limit. For the two types of double-notched specimens shown in this 

thesis, the crack configurations with aspect ratios 0.6 and 0.8 may have better 

agreement on experimental results compared with aspect ratio 0.4. 
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Figure 7.6 Calculated ∆𝐾𝑒𝑓𝑓 compared with ∆𝐾𝑡ℎ of S355 carbon steel (a/b=0.4). 

Based on the simulation and experimental results, the following conclusions can be 

summarized: 

 ∆𝐾𝑑𝑅 or ∆𝐾𝑡ℎ𝑅 along cannot represent the entire thresholds, even if the crack 

size is larger than the MSC (∆𝐾 > ∆𝐾𝑑𝑅), the crack can still be arrested in 

PSC region due to the increasing of the threshold. The completed threshold 

stress range for MSC, PSC and LC must be considered. 

 Compressive residual stress can increase the fatigue limit, and the fatigue 

limit force of notched specimens with induced residual stress can be 

calculated by the method proposed here by comparing calculated ∆𝐾𝑒𝑓𝑓 with 

∆𝐾𝑡ℎ.  The numerical results show good agreement with the experimental 

results. The method can also be easily extended to other notched structures to 

calculate the fatigue limit for safe design. 

 When applying crack growth simulation to calculate ∆𝐾𝑒𝑓𝑓  or ∆𝐾𝑡ℎ , the 

initiation crack is commonly modelled as semicircular, and it is necessary to 

consider the influence of aspect ratio of the initial crack configuration. With 

crack propagation, the aspect ratio can converge, but in the short crack region, 

the values of ∆𝐾𝑒𝑓𝑓 with various aspect ratios are different, which can affect 

determination of the fatigue limit.  
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7.4 Valve Body Analysis 

Sellen et al [157] presented a stress-life design procedure for autofrettage of the 

complex 3D aluminium AW-6082-T6 valve body shown in Figure 7.7, validated 

through experimental observation. Their proposed criterion for required autofrettage 

pressure is crack arrest under post-autofrettage working loads. They proposed that a 

simple, conservative condition for this to occur is the maximum post-autofrettage 

SIF under working loads is always 𝐾𝑚𝑎𝑥 ≤ 0 . From the definition of SIF, this 

condition is satisfied if the corresponding maximum stress normal to the crack plane 

is always 𝜎𝑁 ≤ 0.  

Sellen et al considered an operational pressure range from zero to 87.5 MPa, and 

three autofrettage pressures: 180MPa, 270 MPa, and 350MPa. Experimental analysis 

showed that crack arrest did not occur for 180MPa autofrettage, but the observed 

irregular crack growth suggested the effective SIF range was close to the threshold 

value.  The 270MPa autofrettage test was stopped after 106 cycles, at which very 

small cracks were observed. A similar observation was made for autofrettage 

pressure 350MPa. 

 

Figure 7.7. Geometry of half of the valve body [157]. 

Crack arrest in the valve body of  [157] is analysed here using the procedure of 

Figure 4.1. The material properties, material models and boundary conditions used in 
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FEA are those defined in [157]. Considering the double notch specimen analysis 

results, the Chapetti model was selected for the assessment of crack arrest. 

7.4.1 Material Properties 

The material properties used in the FEA and crack propagation threshold model 

obtained from the literature are given in Table 7.2. Following [157], the valve body 

material is assumed to be bilinear kinematic hardening material. In constructing the 

Chapetti model, the value of ∆𝜎𝑒𝑅  was determined from SN curves ∆𝐾𝑡ℎ𝑅  was 

obtained from [164, 165] and the value of ∆𝐾𝑡ℎ𝑅 was obtained from [166, 167] and 

the average grain size was collected from [168]. The parameters of Chapetti model 

calculated by (2.41) (2.42), and (2.43) are shown in Table 7.2. 

Table 7.2. Collected material properties of AW-6082-T6. 

Material 𝜎𝑌 

(𝑀𝑃𝑎) 

𝐸 

(𝐺𝑃𝑎) 

𝐸𝑇 

(𝑀𝑃𝑎) 

∆𝜎𝑒𝑅 (𝑅 = 0) 

(𝑀𝑃𝑎) 

∆𝐾𝑡ℎ𝑅 

(𝑀𝑃𝑎√𝑚) 

𝑑1 

(𝜇𝑚) 

∆𝐾𝑑𝑅 

(𝑀𝑃𝑎√𝑚) 

𝑘 

(𝑚𝑚−1) 

6082-

T6 

371 76.5 843 150 2.184 32.3 0.982 6.325 

The Chapetti fatigue threshold models for AW-6082-T6 based on the material 

properties of Table 7.2 is shown in Figure 7.8. 

 

Figure 7.8. Thresholds of aluminium AW-6082-T6 calculated by Chapetti model. 
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7.4.2 Finite Element Model 

The valve body was modelled in ANSYS Workbench using SOLID 187 tetrahedral 

structural solid elements. The crack-free component has 3 planes of symmetry, and 

the monotonic and cyclic stress analysis stages of the assessment procedure can be 

performed for a 1/8 model with appropriate symmetry boundary conditions. However, 

if crack initiation occurs on a symmetry plane, the material on both sides of the plane 

must be modelled when applying ANSYS SMART and a 1/4 model is required.  

To obtain the location of crack initiation, 1/8 of the valve body was meshed as shown 

in Figure 7.9a. The applied boundary conditions are shown in Figure 7.9b. Symmetry 

boundary conditions are applied on the 3 symmetry planes. The real component is 

sealed by plugs at the end of the conical transition section of the cross-holes. 

Pressure was applied to the surfaces within the seal, and the pressure force acting on 

the plugs was represented by axial thrust forces acting on the larger bores.  

 

Figure 7.9. a) Finite element mesh and b) Applied boundary conditions for 1/8 valve 

body model. 

Results from cyclic stress analysis shown in Section 7.4.4 indicated that the crack 

formed on the horizontal symmetry surface of Figure 7.9. A 1/4 model with a similar 

mesh density was therefore created for crack growth analysis, with boundary 

conditions shown in Figure 7.10. In addition, the pressures are also applied on the 

crack flanks. 
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Figure 7.10. Quarter valve structure and applied boundary conditions. 

The valve was analysed for an operating pressure cycle from zero to 87.5MPa and 

five autofrettage pressures: 150MPa, 160MPa, 170MPa, 180MPa, 185MPa and 

190MPa.  

7.4.3 Preloading and Residual Stress 

Elastic-plastic FEA Model 1 was used to calculate the residual stress field induced in 

the autofrettage process, assuming a bilinear kinematic hardening material model 

based on material properties of Table 7.2. The distribution of residual stress normal 

to the symmetry plane for autofrettage pressure 180MPa is shown in Figure 7.11. 

 

Figure 7.11. Residual stress normal to the symmetry surface at cross-hole 

intersection after autofrettage. 
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7.4.4 Crack Initiation 

For actual pressure vessels, the fatigue analysis is multiaxial and therefore, multiaxial 

criteria should be applied to estimate the critical point. As mentioned in Section 2.6, 

researchers have proposed many improved and innovative multiaxial fatigue failure 

criteria based on stress and strain by analysing a large set of fatigue data. Among 

these criteria, the most successful and widely used criteria is based on the critical 

plane approach [63, 66, 169] where the variable shear stress and strain are considered 

to be the main cause of fatigue failure and the normal stress in the plane of the shear 

stress also affects fatigue. According to this theory, Brown [61] proposed that in 

multiaxial fatigue, cracks are generated in the plane of maximum shear strain and 

propagate along the direction perpendicular to the normal strain. The fundament of 

the critical plane approach may be incorporated in the Tresca criterion where the 

maximum shear stress is also employed as a criterion. The difference is that as a 

method of fatigue analysis, the core of the critical plane approach is to find the plane 

with the maximum alternating shear stress or strain.  

However, essentially, the maximum shear stress is not one of the stress invariants, 

but von Mises stress (7.1) is, as the consequence of the variant of shear stress on the 

orientation, the critical plane approach cannot be applied easily among engineers.  

𝜎𝑉 = √
(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2

2
 

(7.1) 

where, 𝜎𝑉 is the von-Mises stress and 𝜎1−3 are three principal stresses. 

As shown in (7.1), when the von-Mises stress is applied in FEA, the value of stress is 

always positive, which is contrary to the nature of compressive residual stress: if 

tensile residual stress is defined as positive, compressive residual stress should be 

negative. This phenomenon can affect the calculation of mean stress. To solve this 

issue, the mean stress which is affected by the compressive residual stress can be 

assumed to be proportional to the hydrostatic pressure, or, as in [108], the sum of the 

three mean normal stresses. This assumption can be applied accurately in double-

notched specimens, but may need further investigation to define the proportional 

value when applied in complex structures. 
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7.4.5 Crack Orientation 

After determining the critical point, the orientation of the crack must be defined. In 

the critical plane approach, the crack initiation can be easily determined as the plane 

with maximum alternating shear stress, and propagate along the direction 

perpendicular to the normal stress of the plane. However, if the critical point and the 

fatigue controlling stress components are determined based on von-Mises stress, 

there is no method to find the orientation of cracks. Here, fracture Mode I, which is 

the most studied and most common mode in practice, is discussed. In Mode I, normal 

in-plane loading is employed perpendicular to the crack and therefore, the crack 

plane can be defined by the normal stress. 

Sellen et al. [157] determined the crack plane in a whole structure under unit pressure 

by the elastic analysis. Then the crack plane orientation can be derived as normal to 

the first principal stress at this notch [157]. This method can be easily applied, but 

still has some disadvantages. If the crack grows based on a single static load, the way 

to determine the orientation of the crack by first principle stress is acceptable, but for 

fatigue crack growth, the range of stress intensity factor is the main factor to control 

the crack growth and calculate the fatigue growth life from the Paris law (2.47). 

As shown in the Paris law, the first principal stress as a result of unit pressure alone 

may not represent the range of stress intensity factor. In addition, in some studies 

based on fracture mechanics, the orientation of the crack is also assumed to be 

perpendicular to the direction of nominal stress in a flat specimen [170] or the 

residual hoop stress in a specimen with crossing holes [105]. The assumption of 

crack initiation should be considered in more detail. 

7.4.6 Determination of Crack Initiation by Critical Plane Approach 

In stress life fatigue analysis, crack initiation is usually assumed to occur at the 

location of maximum stress on a free surface [171], referred to as the critical point. 

The von Mises equivalent stress distribution at the cross-bore intersection for a valve 

body without autofrettage at maximum operating pressure 87.5 MPa is shown in 

Figure 7.12(a). The critical point occurs on the surface at the intersection between the 

cross-holes, where the maximum stress occurs. When compressive residual stress is 

present, the value and location of the maximum stress can change. This is seen in 
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Figure 7.12(b), which shows the von Mises equivalent stress distribution at the same 

pressure for a valve body previously subjected to 180MPa autofrettage pressure. The 

maximum von Mises stress now occurs internally, close to the cross-hole intersection. 

However, this does not represent the critical point. As the valve structure experiences 

3D stress, the von Mises stress is not suitable for identifying the location of crack 

initiation and a multiaxial fatigue criterion is required.  

 

 

Figure 7.12. Von Mises equivalent stress distribution at maximum operating pressure 

87.5 MPa (a) no autofrettage and (b) 270 MPa autofrettage pressure. 
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Several multiaxial fatigue failure criteria have been proposed, based on both stress 

and strain. In the critical plane approach [63, 66, 169], fatigue failure is dependent on 

the maximum shear stress range over the load cycle and the mean stress normal to 

the shear plane [64]. The location of crack initiation and orientation of the crack 

plane are determined by considering the stress cycle at specific nodes in the model. 

Depending on the FEA software used, this may be done for all nodes through post-

processor load case calculations, application of internal macros or exporting stress 

results to an external program for further processing. At each node, the maximum 

shear stress plane is identified by the maximum shear stress range between the 

minimum and maximum loads. This may be defined in terms of principal stress if the 

principal directions do not change over the load range. If the principal directions 

change over the cycle, the calculation should be based on the stress component range.  

The principal stress differences at a node are defined as shown in (2.32). An 

alternating shear stress range 𝑆𝑎𝑙𝑡 𝑖𝑗 ( 𝑖 ≠ 𝑗 = 1,2,3)  is defined for each stress 

difference, and the maximum alternating stress range at each node determined as 

(2.33). These equations are also included in the ASME code when the principal stress 

direction is constant. However, the direction can be changed due to the autofrettage 

process. 

Due to the change in principal stress direction with autofrettage, relying on stress 

magnitude calculations becomes inadequate. Hence, it's important to incorporate 

stress transformation calculations to adjust stress components post-autofrettage. The 

procedures of stress transformation are illustrated in Figure 7.13, where Q is the 

transform matrix. 
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Figure 7.13. Stress transformation to determine the maximum range of normal stress. 

1. Export the results of stress components after autofrettage and autofrettage & 

reload from elastic-plastic FEA. 

2. Select another coordinate system 𝛾 , do stress transformation to calculate 

stress components. 

3.  Calculate the shear stress difference based on the coordinate system 𝛾. 

4. Repeat the Step 2 and 3 for all coordinate systems to determine the maximum 

shear stress range. 

5. The plane with the maximum shear stress range can be obtained as the crack 

plane. 

The most difficult procedure above is Step 4: to determine the crack plane by 

repeated calculation of stress transformation. Therefore, an improved method is 

proposed here to obtain the plane from the amplitude of stress components. 

Assume the coordinate system after stress transformation is known as coordinate 

system 𝛾  and the stress components from the autofrettaged structure and 

autofrettaged & reloaded structure are based on a global coordinate system. The 

procedures to calculate the stress range can be simplified as: 

∆𝜎𝛾
′ = 𝑄 ∙ 𝜎𝛼 ∙ 𝑄𝑇 − 𝑄 ∙ 𝜎′𝛼 ∙ 𝑄𝑇 = 𝑄 ∙ ∆𝜎𝛼 ∙ 𝑄𝑇 (7.2) 

 where, ∆𝜎𝛾
′  is the range of transformed stress, 𝜎𝛼 and 𝜎′𝛼  are stress components 

from autofrettaged structures and reloaded structures respectively, and ∆𝜎𝛼  is the 

range of stress, such that ∆𝜎𝛼 = 𝜎𝛼 − 𝜎′𝛼 . From (7.2), ∆𝜎𝛾
′  based on arbitrary 
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coordinate systems can be directly obtained from the ∆𝜎𝛼 if the original coordinate 

system of  𝜎𝛼 and 𝜎′𝛼 is the same. Additionally, the maximum shear stress range can 

be directly determined from three principal stresses of ∆𝜎𝛼, which means the plane 

with the maximum shear stress range can be determined from ∆𝜎𝛾
′, which can also 

be determined from the ∆𝜎𝛼 . Step 4 can thus be simplified to determine the 

maximum shear stress from the amplitude of the stress components. 

For instance, with 180MPa autofrettage pressure, if the change of coordinate systems 

of principal stresses is ignored, the ASME code [64] can be directly applied to 

calculate the shear stress ranges, as shown in Figure 7.14. The maximum shear stress 

range is thus obtained as 107.34MPa. 

Contour plots of the alternating shear stress in the valve body with autofrettage based 

on the proposed improved method are shown in Figure 7.15. The highest value of 

147.9MPa occurs on the surface at the cross-hole intersection, as highlighted in 

Figure 7.15. This is therefore defined as the crack initiation location. The crack plane 

is also defined by the principal stress directions, such that the crack surface 

corresponds to the plane where the alternating shear stress is 𝑆𝑎𝑙𝑡 31 . This is in 

agreement with experimental findings in [157].  

 

Figure 7.14. Contour plots of alternating stress 𝑆𝑎𝑙𝑡 𝑖𝑗  MPa with 180MPa 

autofrettage pressure based on ASME code without considering orientation of 

principal stresses. 
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Figure 7.15. Contour plots of alternating stress 𝑆𝑎𝑙𝑡 𝑖𝑗  MPa with 180MPa 

autofrettage pressure based on the improved method. 

The results of the maximum shear stress range with and without the consideration of 

the direction of the principal stresses are different, the value of maximum shear stress 

changes from around 147.9MPa to 107.3MPa when the autofrettage pressure is 

180MPa.  

The ASME code and improved procedures are also applied to the structure with 

270MPa autofrettage pressure. As shown in Figure 7.16, the maximum shear stress 

range without considering the direction of principal stress is approximately 

143.78MPa. Using the proposed method, the maximum shear stress range calculated 

based on the amplitude stress component is also 147.9MPa for 270MPa autofrettage 

pressure. To determine which method is more accurate, the theory of  superposition 

is used. Considering the residual stress and subsequent stress induced by applied 

pressure, the stress amplitude can be calculated as: 

𝜎𝑎 =
𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛

2
=

(𝜎𝑎𝑝𝑝,𝑚𝑎𝑥 + 𝜎𝑟𝑠) − (𝜎𝑎𝑝𝑝,𝑚𝑖𝑛 + 𝜎𝑟𝑠)

2
=

∆𝜎𝑎𝑝𝑝

2
 

(7.3) 

where, 𝜎𝑎  is the stress amplitude, 𝜎𝑚𝑎𝑥  and 𝜎𝑚𝑖𝑛  are the maximum and minimum 

stress with induced residual stress, 𝜎𝑎𝑝𝑝,𝑚𝑎𝑥  and 𝜎𝑎𝑝𝑝,𝑚𝑖𝑛  are the maximum and 

minimum stress as results of applied internal pressure, 𝜎𝑟𝑠 is the residual stress and 
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∆𝜎𝑎𝑝𝑝 is the alternating applied stress. Based on the superposition method, the value 

of 𝜎𝑎 is only dependent on the applied pressure as 
∆𝜎𝑎𝑝𝑝

2
, regardless of the value of 

autofrettage. This theory can be utilized in the calculation of shear stress range. The 

maximum shear stress range calculated by the proposed method is approximately 

147.9MPa, whether the autofrettage pressure is 180MPa or 270MPa. However, if the 

orientation of principal stress is ignored, based on the ASME Code the maximum 

shear stress range with 180MPa autofrettage pressure is 107.34MPa and with 

270MPa autofrettage pressure, it increases to 143.78MPa. This improvement of the 

maximum shear stress range is contrary to the theory of superposition. Therefore, the 

proposed method considering the amplitude of stress components can provide more 

accurate determination of the shear stress range.  

 

Figure 7.16. Contour plots of alternating stress 𝑆𝑎𝑙𝑡 𝑖𝑗  MPa with 270MPa 

autofrettage pressure based on ASME code without considering orientation of 

principal stresses. 
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Figure 7.17. Contour plots of alternating stress 𝑆𝑎𝑙𝑡 𝑖𝑗  MPa with 270MPa 

autofrettage pressure based on the improved method. 

 

7.4.7 Determination of Crack Initiation by Signed von-Mises Stress 

The theory of application of signed von Mises stress to find the critical point is the 

same as the critical plane approach: to find the largest fatigue controlling stress 

components on the structure. In general, the stress amplitude as von Mises stress is 

determined by FEA first and by the mean stress correction methods such as 

Goodman, Gerber and Soderberg mean stress correction [31], an equivalent stress 

amplitude is calculated to determine the critical point. In (7.3), the stress amplitude is 

only dependent on the applied pressure, but the stress ratio used in mean stress 

correction is dependent on the residual stress as: 

𝑅 =
𝜎𝑚𝑖𝑛

𝜎𝑚𝑎𝑥
=

𝜎𝑎𝑝𝑝,𝑚𝑖𝑛 + 𝜎𝑟𝑠

𝜎𝑎𝑝𝑝,𝑚𝑎𝑥 + 𝜎𝑟𝑠
 

(7.4) 

In FEA, the result of stress amplitude according to (7.3) is shown in Figure 7.18. 
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Figure 7.18. The result of stress amplitude with internal pressure. 

The positive von Mises stress is widely used to describe the stress distribution of the 

structure, but the compressive residual stress should be negative by definition. 

Signed von Mises stress [172] is applied in this section to describe the residual stress 

and calculate the mean stress. Equation (2.37) is applied with the FKM mean stress 

correction (2.12) to (2.15) in the following calculations. In addition, according to 

FKM, for wrought aluminium alloys, 𝑎𝑀 = 0.001 and 𝑏𝑀 = −0.04. 

According to (2.12) to (2.15), the results of residual stress, mean stress based on 

signed von Mises stress, and equivalent stress amplitude are shown in Figure 7.19(a), 

(b) and (c). In Figure 7.19(a), the maximum compressive residual stress is in the 

notch root and the tensile residual stress surrounds around the notch to balance the 

stress. In addition, the mean stress also decreases from zero to negative, which is 

beneficial for fatigue life, as shown in Figure 7.19(b). Finally, based on the 

calculation of equivalent stress amplitude as shown in Figure 7.19(c), the critical 

point can be obtained at the notch root,  which is the same as determined by 

alternating maximum shear stress in Section 7.4.5. Therefore, combining these two 

results, the assumption of the crack initiation on the notch root is acceptable, and 

compared with the method based on elastic analysis only, the method proposed here 

is more rigorous where plasticity, shear stress, and signed von Mises stress with 

mean stress correction are all included. 
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Figure 7.19. The results of (a) 𝜎𝑟𝑠 (b) 𝜎𝑚 (c) 𝜎𝑎𝑟 .  

7.4.8 Determination of Orientation of Crack Plane 

In [157], the orientation of the crack was obtained from the direction of the first 

principal stress of under unit pressure. However, in fatigue fracture, crack growth is 

determined by the range of stress intensity factor, so a method is proposed to 

determine the orientation of crack plane from the maximum range of normal stress. 

Similarly, the maximum range of normal stress can be determined directly from the 

first principal stress of the stress range 𝜎1,∆𝜎. This can save computational time in 

FEA. The result of the first principal stress of ∆𝜎 is shown in Figure 7.20, where the 
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direction of the 𝜎1,∆𝜎 is normal to the diagonal plane. Therefore, the crack orientation 

can be assumed normal to the 𝜎1,∆𝜎. 

 

Figure 7.20.  The results of 𝜎1,∆𝜎, x direction. 

7.4.9 Crack Growth Simulation 

An initial semi elliptical crack with an aspect ratio of 0.6 [124, 125] was inserted in 

the model of Figure 7.10 at the identified crack initiation site, as shown in Figure 

7.21. The crack plane lies on the triad X-Z plane. Crack propagation analysis was 

performed using the ANSYS SMART crack growth tool. 

 

Figure 7.21. Location of crack initiation and crack plane orientation. 

 

Crack growth analysis was performed for six models under cyclic working pressure 

range of zero to 87.5MPa (𝑅 = 0), one with no residual stress and others with initial 
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residual stress corresponding to autofrettage pressures of 150MPa, 160MPa, 170MPa, 

180MPa, 185MPa and 190MPa imported from elastic-plastic analysis. The calculated 

variation in 𝐾𝑚𝑎𝑥 with increasing crack length for each model is shown in Figure 

7.22, where the final crack profile illustration represents the termination of the 

simulation.  

 

Figure 7.22. Variation in  𝐾𝑚𝑎𝑥  with crack length under working pressure for six 

autofrettage conditions. 

Figure 7.22 shows that at shorter crack lengths, within the compressive residual 

stress region, 𝐾𝑚𝑎𝑥 decreases significantly with increasing autofrettage pressure. As 

the crack propagates through the residual stress region, 𝐾𝑚𝑎𝑥 approaches a similar 

value for all the autofrettage conditions considered and beyond the compressive 

stress zone, after around 3mm, there is little difference in the curves. A similar 

response is found for the variation in 𝐾𝑚𝑖𝑛 with crack length, as shown in Figure 

7.23. Within the residual stress region, 𝐾𝑚𝑖𝑛 decreases significantly with increasing 

autofrettage pressure but the curves approach a similar value as the crack grows 

beyond this. 
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Figure 7.23. Variation in 𝐾𝑟𝑠 with crack length after autofrettage, with the residual 

stress normal to the crack plane inset. 

7.4.10 Crack Arrest Assessment 

The values of ∆𝐾𝑒𝑓𝑓  with different autofrettage pressures calculated by (4.15) are 

compared with the Chapetti threshold SIF range ∆𝐾𝑡ℎ  in Figure 7.24. As the 

autofrettage pressure increases from 150MPa to 180MPa, the ∆𝐾𝑒𝑓𝑓 curves approach 

the threshold curve, but crack arrest is not predicted. Crack arrest did not occur for 

autofrettage pressure 180MPa in the experimental investigation of [157] but, the 

180MPa autofrettage pressure can increase the fatigue life significantly from 150000 

cycles to 368000 cycles and based on the form of notch cracks observed in the failed 

test piece, it was presumed that the effective SIF range was close to the threshold 

value. This presumption was investigated here by considering the slightly higher 

autofrettage pressure of 185MPa. Figure 7.24 shows the ∆𝐾𝑒𝑓𝑓 curve for 185MPa 

crosses the Chapetti crack propagation threshold boundary, indicating crack arrest in 

the PSC region. 
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Figure 7.24. Comparison of ∆𝐾𝑒𝑓𝑓 with ∆𝐾𝑡ℎ. 

7.4.11 Discussion 

The method was applied to two types of preloaded double notch specimens, one 

stainless steel and the other low carbon steel, and a 3D aluminium alloy valve body 

design. Comparison with experimental fatigue life data for preloaded double notch 

specimens showed that the El Haddad model did not result in a conservative estimate 

of the required preload. The Chapetti model satisfied the necessary condition for 

crack arrest based on finite run-out data, but this data alone is not sufficient to state 

crack arrest occurred. A more detailed experimental investigation measuring crack 

propagation in the compressive residual stress region is required to fully establish the 

conditions for crack arrest. Experimental investigation of the 3D valve [157] showed 

that crack arrest did not occur for the minimum autofrettage pressure of 180MPa 

considered, but presumed that the effective SIF range was close to the threshold 

value. Application of the proposed method showed no crack arrest at autofrettage 

pressure of 180MPa, but that crack arrest did occur at the slightly higher pressure of 
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185MPa, supporting the presumption stated in [157]. Further experimental 

investigation is required to establish the actual minimum autofrettage pressure 

required to cause crack arrest in the valve body under the given working cycle, which 

was shown to occur for the significantly higher autofrettage pressures of 270MPa 

and 350MPa in [157]. 

The comparison with available experimental data shows that the proposed 

methodology is a promising tool for defining the minimum autofrettage pressure 

required for crack arrest and hence infinite fatigue life. The method can also be used 

to determine the required autofrettage pressure for a specific finite fatigue life, 

following the procedure of [132]. The SMART crack growth tool is based on LEFM, 

where the small-scale yield assumption applies. Future work should investigate the 

effect of more extensive plastic deformation, with a possible extension of the method 

by incorporating J-integral correction of the SIF, and the influence of initial crack 

aspect ratio on crack propagation modelling.  
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Chapter 8 Conclusion 

The proposed method aims to enhance high cycle fatigue stress-life assessment of 

components with induced residual stress through the application of a fracture 

mechanics crack growth model and a derived stress-crack initiation life curve. The 

crack initiation length is assumed dependent on the average grain size of the material 

and based on the assumed crack initiation length, the number of cycles to crack 

initiation, 𝑁𝑖, is determined from a S-𝑁𝑖 curve obtained from standard S-𝑁 data and 

application of the ASNSYS SMART crack propagation tool. 

The S-𝑁𝑖 curve can be used to determine the crack initiation life of cyclically loaded 

components with both notch and residual stress effects. The crack propagation life of 

the component is evaluated by FEA, using the ANSYS Workbench SMART tool. In 

components with residual stress, the variation of stress intensity factor with 

increasing crack length is obtained in the form of polynomial equations and the crack 

propagation life is obtained by superposition of the applied load stress distribution 

and residual stress distribution. The SMART crack growth tool is currently limited to 

linear elastic FEA, and the residual stress field resulting from preloading must be 

imported as an initial state of stress.  

Physical testing of double-notch 316L stainless steel and S355 carbon steel 

specimens showed the expected enhanced fatigue life in specimens with induced 

residual stress. Application of the proposed method to the analysis of specimens both 

with and without induced residual stress gave an improved estimation of fatigue life 

compared to the standard stress life approach. Subsequently, the same proposed 

method is also employed to the fatigue life prediction of cross-bore blocks made by 

4340 steel shown in Section 6.1, the numerical results also have good agreement with 

the experimental results. 

To validate the method, a practical structure made of different materials was 

considered, hence the 42CrMo4 injection system component considered in Section 

6.2. The same analysis procedures are applied to the component but, different to the 
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structure response of the double-notched specimens, plastic shakedown was 

investigated to occur for several working pressures. To evaluate the structure 

response, the post-autofrettage equivalent plastic strain is checked over a number of 

working cycles. If the plastic shakedown response occurs, the redistribution of 

residual stress is considered and the redistributed residual stress is exported to the 

following fracture simulation.  

Compared with the research in double-notched specimens, the results of injection 

system components are considered, including the redistribution of the residual stress. 

The proposed method can also provide good agreement. By investigation, the 

proposed method demonstrates good performance when the structure response is 

characterized by elastic shakedown. When the structure response shifts to plastic 

shakedown, plasticity effect is required to be accounted for in the FEA, in the 

proposed method, the small scale yield assumption is checked firstly by the 

calculation of the minimum crack initiation length and the plasticity effect is 

considered by multistep analysis. Considering plasticity effect, the proposed method 

provides less deviation compared to LEFM.  

Another new methodology for determining the autofrettage pressure required to 

achieve crack arrest and hence infinite fatigue life in pressure components subject to 

varying loads was proposed. In this method, the residual stress distribution due to 

autofrettage is also obtained by elastic-plastic analysis and exported as an initial 

stress state to a crack propagation model and the ANSYS SMART crack growth tool 

is applied to simulate crack propagation. The location of crack initiation and fracture 

plane orientation are determined based on the maximum shear stress amplitude 

which is determined by the improved method mentioned in Section 7.4.6. The 

condition for crack arrest is determined by comparing the effective SIF of the 

growing crack with a crack propagation threshold model for MSC, PSC and LC. The 

crack threshold models of El Haddad and Chapetti were considered. For the valve 

body structure considering in the Section 7.4, the proposed method can have better 

agreement with the experimental results when the Chapetti model is selected to 

obtain thresholds and through the proposed method based on the crack arrest analysis 

the minimum autofrettage pressure can be determined. 
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Although the framework of the proposed method is created and successfully applied 

in several components, but future work is recommended as: 

1. Plasticity correction can be considered more accurate even though the small scale 

assumption is already satisfied. 

2. During the simulation of crack propagation, numerical results are sensitive when 

the crack length is very short (around 0.5 mm). Currently, this sensitivity is 

managed by refining the mesh around the crack tips. However, this refined mesh 

increases computational time. Therefore, a more effective method is needed to 

balance mesh refinement and computational efficiency. 

3. To validate the accuracy of the proposed method, it is necessary to test more 

practical components made from a variety of materials. While the current focus is 

primarily on steels, it is important to include other common industrial materials 

such as cast iron, aluminium, and titanium. 

  



144 

 

 Reference 

 1. Maschinenbau, F. and E. Haibach, Analytical strength assessment of 

components in mechanical engineering. 2003: VDMA-Verlag. 

2. Boiler, A., Pressure Vessel Code Division 3. Alternative Rules for High 

Pressure Vessels, 1998. 

3. Deardorff, A.F. and J.K. Smith, Evaluation of conservatisms and 

environmental effects in ASME code, section III, class 1 fatigue analysis. 

1994, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States); 

Structural …. 

4. De los Rios, E., et al., Fatigue crack initiation and propagation on shot-

peened surfaces in A316 stainless steel. International Journal of Fatigue, 1995. 

17(7): p. 493-499. 

5. Chahardehi, A., F.P. Brennan, and A. Steuwer, The effect of residual stresses 

arising from laser shock peening on fatigue crack growth. Engineering 

Fracture Mechanics, 2010. 77(11): p. 2033-2039. 

6. Zhang, X., et al., Improvement of fatigue life of Ti–6Al–4V alloy by laser 

shock peening. Materials Science and Engineering: A, 2010. 527(15): p. 

3411-3415. 

7. Gujba, A.K. and M. Medraj, Laser peening process and its impact on 

materials properties in comparison with shot peening and ultrasonic impact 

peening. Materials, 2014. 7(12): p. 7925-7974. 

8. Zhuang, W. and B. Wicks, Multipass low-plasticity burnishing induced 

residual stresses: three-dimensional elastic-plastic finite element modelling. 

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of 

Mechanical Engineering Science, 2004. 218(6): p. 663-668. 

9. Hua, Y., et al., Surface modification through combination of finish turning 

with low plasticity burnishing and its effect on fatigue performance for 

Inconel 718. Surface and Coatings Technology, 2019. 375: p. 508-517. 

10. Parker, A., G. O’Hara, and J. Underwood, Hydraulic versus swage 

autofrettage and implications of the Bauschinger effect. J. Pressure Vessel 

Technol., 2003. 125(3): p. 309-314. 

11. Aziz, F., S. Kamal, and U. Dixit, Enhancing Fatigue Life of Thick-Walled 

Cylinders through a Hybrid Rotational-Swage Autofrettage-Induced Residual 

Stresses. Journal of Materials Engineering and Performance, 2024: p. 1-18. 

12. Shim, W., et al., A study on hydraulic autofrettage of thick-walled cylinders 

incorporating Bauschinger effect. Experimental Mechanics, 2010. 50: p. 621-

626. 

13. Kamal, S. and U. Dixit, A comparative study of thermal and hydraulic 

autofrettage. Journal of Mechanical Science and Technology, 2016. 30: p. 

2483-2496. 



145 

 

14. Shufen, R. and U.S. Dixit, A review of theoretical and experimental research 

on various autofrettage processes. Journal of Pressure Vessel Technology, 

2018. 140(5): p. 050802. 

15. Alegre, J., P. Bravo, and M. Preciado, Fatigue behaviour of an autofrettaged 

high-pressure vessel for the food industry. Engineering Failure Analysis, 2007. 

14(2): p. 396-407. 

16. Mughrabi, H., B. Donth, and G. Vetter, Low‐temperature autofrettage: an 

improved technique to enhance the fatigue resistance of thick‐walled tubes 

against pulsating internal pressure. Fatigue & Fracture of Engineering 

Materials & Structures, 1997. 20(4): p. 595-604. 

17. Rees, D., A bounding method for predicting the fatigue life of plain and 

autofrettaged thick-walled cylinders. International journal of fatigue, 1991. 

13(1): p. 59-67. 

18. Parker, A. and J. Underwood, Stress intensity, stress concentration, and 

fatigue crack growth along evacuator holes of pressurized, autofrettaged 

tubes. 1996. 

19. Badr, E.A., J.R. Sorem Jr, and S.M. Tipton, Evaluation of the autofrettage 

effect on fatigue lives of steel blocks with crossbores using a statistical and a 

strain-based method. Journal of testing and evaluation, 2000. 28(3): p. 181-

188. 

20. Lee, S.-I. and S.-K. Koh, Residual stress effects on the fatigue life of an 

externally grooved thick-walled pressure vessel. International journal of 

pressure vessels and piping, 2002. 79(2): p. 119-126. 

21. Po  ̈ lzl, M. and J. Schedelmaier. Fatigue Strength Curves of Thick Walled 

Tubes Under Consideration of Autofrettage. in ASME Pressure Vessels and 

Piping Conference. 2003. 

22. Thumser, R., et al., Variable amplitude fatigue of autofrettaged diesel 

injection parts. Materialwissenschaft und Werkstofftechnik: Entwicklung, 

Fertigung, Prüfung, Eigenschaften und Anwendungen technischer Werkstoffe, 

2008. 39(10): p. 719-725. 

23. Sellen, S., et al., Improved design of threaded connections by autofrettage in 

aluminium compounds for cyclic high pressure loading: design calculations 

and experimental verification. Fatigue & Fracture of Engineering Materials & 

Structures, 2015. 38(6): p. 714-729. 

24. Urade, S.D., D. Bhope, and S. Khamankar, Stress analysis of multilayer 

pressure vessel. Int. J. Eng. Tech. Res, 2014. 2(9): p. 34-43. 

25. Livieri, P. and P. Lazzarin, Autofrettaged cylindrical vessels and Bauschinger 

effect: an analytical frame for evaluating residual stress distributions. J. 

Pressure Vessel Technol., 2002. 124(1): p. 38-46. 

26. Kamal, S., Analysis of residual stress in the rotational autofrettage of thick-

walled disks. Journal of Pressure Vessel Technology, 2018. 140(6): p. 061402. 



146 

 

27. Furuya, Y. and E. Takeuchi, Gigacycle fatigue properties of Ti–6Al–4V alloy 

under tensile mean stress. Materials Science and Engineering: A, 2014. 598: 

p. 135-140. 

28. Hensel, J., T. Nitschke-Pagel, and K. Dilger, Effects of residual stresses and 

compressive mean stresses on the fatigue strength of longitudinal fillet-

welded gussets. Welding in the World, 2016. 60: p. 267-281. 

29. Toparli, M., A. Özel, and T. Aksoy, Effect of the residual stresses on the 

fatigue crack growth behavior at fastener holes. Materials Science and 

Engineering: A, 1997. 225(1-2): p. 196-203. 

30. Carpinteri, A., R. Brighenti, and S. Vantadori, Influence of the cold-drawing 

process on fatigue crack growth of a V-notched round bar. International 

journal of fatigue, 2010. 32(7): p. 1136-1145. 

31. Badr, E.A. and J. Ishak, High-cycle fatigue behavior of type 4340 steel 

pressurized blocks including mean stress effect. International Journal of 

Pressure Vessels and Piping, 2021. 194: p. 104535. 

32. Ince, A., A mean stress correction model for tensile and compressive mean 

stress fatigue loadings. Fatigue & Fracture of Engineering Materials & 

Structures, 2017. 40(6): p. 939-948. 

33. Dowling, N., C. Calhoun, and A. Arcari, Mean stress effects in stress‐life 

fatigue and the Walker equation. Fatigue & Fracture of Engineering Materials 

& Structures, 2009. 32(3): p. 163-179. 

34. McKelvey, S.A., Y.-L. Lee, and M.E. Barkey, Stress-based uniaxial fatigue 

analysis using methods described in FKM-guideline. Journal of failure 

analysis and prevention, 2012. 12: p. 445-484. 

35. Goldak, J., A. Chakravarti, and M. Bibby, A new finite element model for 

welding heat sources. Metallurgical transactions B, 1984. 15: p. 299-305. 

36. Venkatkumar, D. and D. Ravindran, Effect of boundary conditions on residual 

stresses and distortion in 316 stainless steel butt welded plate. High 

Temperature Materials and Processes, 2019. 38(2019): p. 827-836. 

37. Jiang, W., et al., Fatigue life prediction of 316L stainless steel weld joint 

including the role of residual stress and its evolution: Experimental and 

modelling. International Journal of Fatigue, 2021. 143: p. 105997. 

38. Guo, Y., et al., Study on residual stress distribution of 2024-T3 and 7075-T6 

aluminum dissimilar friction stir welded joints. Engineering Failure Analysis, 

2020. 118: p. 104911. 

39. Barsoum, Z. and I. Barsoum, Residual stress effects on fatigue life of welded 

structures using LEFM. Engineering failure analysis, 2009. 16(1): p. 449-467. 

40. Maddox, S., Fatigue design rules for welded structures, in Fracture and 

fatigue of welded joints and structures. 2011, Elsevier. p. 168-207. 

41. Zaroog, O.S., et al., Modelling of residual stress relaxation: a review. J Sci 

Technol, 2009. 17: p. 211-8. 



147 

 

42. Farajian, M., T. Nitschke-Pagel, and K. Dilger, Mechanisms of residual stress 

relaxation and redistribution in welded high-strength steel specimens under 

mechanical loading. Welding in the World, 2010. 54: p. R366-R374. 

43. Lee, Y.-B., et al., Effects of redistributing residual stress on the fatigue 

behavior of SS330 weldment. International Journal of Fatigue, 1998. 20(8): p. 

565-573. 

44. Shahani, A.R., I. Shakeri, and C.D. Rans, Effect of residual stress 

redistribution and weld reinforcement geometry on fatigue crack growth of 

butt welded joints. International Journal of Fatigue, 2020. 139: p. 105780. 

45. Murakawa, H., Residual stress and distortion in laser welding, in Handbook 

of laser welding technologies. 2013, Elsevier. p. 374-400e. 

46. Glinka, G. and A. Newport, Universal features of elastic notch-tip stress 

fields. International Journal of Fatigue, 1987. 9(3): p. 143-150. 

47. Shin, C., K. Man, and C. Wang, A practical method to estimate the stress 

concentration of notches. International Journal of Fatigue, 1994. 16(4): p. 

242-256. 

48. Poutiainen, I., P. Tanskanen, and G. Marquis, Finite element methods for 

structural hot spot stress determination—a comparison of procedures. 

International journal of fatigue, 2004. 26(11): p. 1147-1157. 

49. Neuber, H., Theory of notch stresses: principles for exact calculation of 

strength with reference to structural form and material. Vol. 4547. 1961: 

USAEC Office of Technical Information. 

50. Peterson, R. and R. Plunkett, Stress concentration factors. Journal of applied 

mechanics, 1975. 42(1): p. 248. 

51. SANDEROW, H.I., THE SUPPORT EFFECT AND ITS IMPACT ON THE 

DESIGN OF COMPLEX-SHAPED SINTERED PM PARTS. International 

Journal of Powder Metallurgy, 2019. 55(4). 

52. Filippini, M., Stress gradient calculations at notches. International Journal of 

Fatigue, 2000. 22(5): p. 397-409. 

53. Taylor, D., The theory of critical distances. Engineering Fracture Mechanics, 

2008. 75(7): p. 1696-1705. 

54. Susmel, L. and D. Taylor, A critical distance/plane method to estimate finite 

life of notched components under variable amplitude uniaxial/multiaxial 

fatigue loading. International Journal of Fatigue, 2012. 38: p. 7-24. 

55. Manson, S., Fatigue behavior in strain cycling in the low and inter. Cycle 

Range. Fatigue-An Interdisciplinary Approach. 1969, Syracuse University 

Press. 

56. Dowling, N.E., K.S. Prasad, and R. Narayanasamy, Mechanical Behavior of 

Materials: Engineering Methods for Deformation, Fracture, and Fatigue. 

2013: Pearson. 

57. Wang, Y.-Y. and W.-X. Yao, Evaluation and comparison of several multiaxial 

fatigue criteria. International Journal of Fatigue, 2004. 26(1): p. 17-25. 



148 

 

58. Findley, W.N., A theory for the effect of mean stress on fatigue of metals 

under combined torsion and axial load or bending. Journal of Engineering 

for Industry, 1959. 81(4): p. 301-305. 

59. FA, B.M.K. and K. Miller, Biaxial low cycle fatigue of 316 stainless steel at 

elevated tempertaures. Metals Soc., London, 1982. 

60. McDiarmid, D., A general criterion for high cycle multiaxial fatigue failure. 

Fatigue & Fracture of Engineering Materials & Structures, 1991. 14(4): p. 

429-453. 

61. Brown, M.W. and K. Miller, A theory for fatigue failure under multiaxial 

stress-strain conditions. Proceedings of the Institution of Mechanical 

engineers, 1973. 187(1): p. 745-755. 

62. Susmel, L., R. Tovo, and P. Lazzarin, The mean stress effect on the high-cycle 

fatigue strength from a multiaxial fatigue point of view. International Journal 

of Fatigue, 2005. 27(8): p. 928-943. 

63. Wang, C. and M. Brown, On plastic deformation and fatigue under multiaxial 

loading. Nuclear engineering and design, 1996. 162(1): p. 75-84. 

64. Engineers, T.A.S.o.M., ASME Boiler and Pressure Vessel Code Division 3, in 

Alternative Rules for High Pressure Vessels. 2015: New York. 

65. Papadopoulos, I.V., Critical plane approaches in high‐cycle fatigue: on the 

definition of the amplitude and mean value of the shear stress acting on the 

critical plane. Fatigue & Fracture of Engineering Materials & Structures, 

1998. 21(3): p. 269-285. 

66. Gao, D., et al., A multiaxial fatigue life prediction method for metallic 

material under combined random vibration loading and mean stress loading 

in the frequency domain. International Journal of Fatigue, 2021. 148: p. 

106235. 

67. Singh, A. and V. Rohilla, Optimization and Fatigue Analysisof a Crane Hook 

Using Finite Element Method. Int. J. Recent Adv. Mech. Eng, 2015. 4: p. 31-

43. 

68. Gates, N. and A. Fatemi, Multiaxial variable amplitude fatigue life analysis 

including notch effects. International Journal of Fatigue, 2016. 91: p. 337-351. 

69. Engin, Z. and D. Coker, Comparison of equivalent stress methods with 

critical plane approaches for multiaxial high cycle fatigue assessment. 

Procedia Structural Integrity, 2017. 5: p. 1229-1236. 

70. Zerbst, U., et al., About the fatigue crack propagation threshold of metals as 

a design criterion–a review. Engineering Fracture Mechanics, 2016. 153: p. 

190-243. 

71. Santus, C. and D. Taylor, Physically short crack propagation in metals during 

high cycle fatigue. International Journal of Fatigue, 2009. 31(8-9): p. 1356-

1365. 

72. Pugno, N., et al., A generalized Paris’ law for fatigue crack growth. Journal 

of the Mechanics and Physics of Solids, 2006. 54(7): p. 1333-1349. 



149 

 

73. Brückner-Foit, A. and X. Huang, Numerical simulation of micro-crack 

initiation of martensitic steel under fatigue loading. International journal of 

fatigue, 2006. 28(9): p. 963-971. 

74. Pham, M. and S. Holdsworth, Role of microstructural condition on fatigue 

damage development of AISI 316L at 20 and 300 C. International journal of 

fatigue, 2013. 51: p. 36-48. 

75. Obrtlı́k, K., et al., Short fatigue crack behaviour in 316L stainless steel. 

International journal of fatigue, 1997. 19(6): p. 471-475. 

76. Kitagawa, H., Applicability of fracture mechanics to very small cracks or the 

cracks in the early stage. Proc. of 2nd ICM, Cleveland, 1976, 1976: p. 627-

631. 

77. Miller, K., The short crack problem. Fatigue & Fracture of Engineering 

Materials & Structures, 1982. 5(3): p. 223-232. 

78. Miller, K., The two thresholds of fatigue behaviour. Fatigue & Fracture of 

Engineering Materials & Structures, 1993. 16(9): p. 931-939. 

79. El Haddad, M., K. Smith, and T.H. Topper, Fatigue crack propagation of 

short cracks. 1979. 

80. Araújo, J. and D. Nowell, Analysis of pad size effects in fretting fatigue using 

short crack arrest methodologies. International Journal of Fatigue, 1999. 

21(9): p. 947-956. 

81. de Pannemaecker, A., S. Fouvry, and J. Buffiere, Reverse identification of 

short–long crack threshold fatigue stress intensity factors from plain fretting 

crack arrest analysis. Engineering Fracture Mechanics, 2015. 134: p. 267-

285. 

82. Chapetti, M.D., Fatigue propagation threshold of short cracks under constant 

amplitude loading. International Journal of Fatigue, 2003. 25(12): p. 1319-

1326. 

83. Irwin, G.R., Analysis of stresses and strains near the end of a crack 

traversing a plate. 1957. 

84. Paris, P. and F. Erdogan, A critical analysis of crack propagation laws. 1963. 

85. Stamenkovic, D. and B.M. Eng. Determination of fracture mechanics 

parameters using FEM and J-integral approach. in Finite element simulation 

of the high risk constructions, Special Session, within 2nd WSEAS 

International Conference on Applied and Theoretical Mechanics 

(MECHANICS'06), Eds Mijuca, D and Maksimovic, S., Venice. 2006. 

86. Elber, W., The significance of fatigue crack closure. 1971. 

87. Correia, J.A., et al., Crack closure effects on fatigue crack propagation rates: 

application of a proposed theoretical model. Advances in Materials Science 

and Engineering, 2016. 2016. 

88. Newman Jr, J.C., A crack opening stress equation for fatigue crack growth. 

International Journal of fracture, 1984. 24. 



150 

 

89. Dinda, S. and D. Kujawski, Correlation and prediction of fatigue crack 

growth for different R-ratios using Kmax and ΔK+ parameters. Engineering 

Fracture Mechanics, 2004. 71(12): p. 1779-1790. 

90. McClintock, F. and G. Irwin, Plasticity aspects of fracture mechanics. 1965: 

ASTM International West Conshohocken. 

91. Sun, C.-T. and Z. Jin, Fracture mechanics. 2011: Academic press. 

92. S.L. Pu, G.T.S., The bauschinger effect of reverse yield stress reduction on 

radial crack growth of a cylindrical pressure vessel. Engineering Fracture 

Mechanics, 1987. 26(4): p. 519-531. 

93. Smith, R.W., M.H. Hirschberg, and S. Manson, Fatigue behavior of materials 

under strain cycling in low and intermediate life range. 1963: National 

Aeronautics and Space Administration Washington, DC, USA. 

94. Lopez, Z. and A. Fatemi, A method of predicting cyclic stress–strain curve 

from tensile properties for steels. Materials Science and Engineering: A, 2012. 

556: p. 540-550. 

95. Skallerud, B. and P. Larsen, A uniaxial cyclic plasticity model including 

transient material behaviour. Fatigue & Fracture of Engineering Materials & 

Structures, 1989. 12(6): p. 611-625. 

96. Prager, W., A new method of analyzing stresses and strains in work-hardening 

plastic solids. 1956. 

97. Armstrong, P.J. and C. Frederick, A mathematical representation of the 

multiaxial Bauschinger effect. Vol. 731. 1966: Berkeley Nuclear Laboratories 

Berkeley, CA. 

98. Halama, R., J. Sedlák, and M. Šofer, Phenomenological modelling of cyclic 

plasticity. Numerical modelling, 2012. 1: p. 329-354. 

99. Lee, C.-H., V.N. Van Do, and K.-H. Chang, Analysis of uniaxial ratcheting 

behavior and cyclic mean stress relaxation of a duplex stainless steel. 

International Journal of Plasticity, 2014. 62: p. 17-33. 

100. Novak, J.S., et al. Estimation of material parameters in nonlinear hardening 

plasticity models and strain life curves for CuAg alloy. in IOP Conference 

Series: Materials Science and Engineering. 2016. IOP Publishing. 

101. Okorokov, V., et al., New formulation of nonlinear kinematic hardening 

model, Part I: A Dirac delta function approach. International Journal of 

Plasticity, 2019. 122: p. 89-114. 

102. Chaboche, J., Unified Model of Cyclic Viscoplasticity Based on the Nonlinear 

Kinematic Hardening Rule, in Handbook of Materials Behavior Models. 2001, 

Elsevier. p. 358-367. 

103. Bari, S. and T. Hassan, Anatomy of coupled constitutive models for ratcheting 

simulation. International Journal of Plasticity, 2000. 16(3-4): p. 381-409. 

104. Li, H., R. Johnston, and D. Mackenzie, Effect of autofrettage in the thick-

walled cylinder with a radial cross-bore. 2010. 



151 

 

105. Herz, E., O. Hertel, and M. Vormwald, Numerical simulation of plasticity 

induced fatigue crack opening and closure for autofrettaged intersecting 

holes. Engineering Fracture Mechanics, 2011. 78(3): p. 559-572. 

106. Okorokov, V., D. MacKenzie, and Y. Gorash. Fatigue and corrosion fatigue 

life assessment with application to autofrettaged parts. in Pressure Vessels 

and Piping Conference. 2018. American Society of Mechanical Engineers. 

107. Vormwald, M., et al., Fatigue strength of autofrettaged diesel injection system 

components under elevated temperature. International Journal of Fatigue, 

2018. 113: p. 428-437. 

108. Okorokov, V., et al., High cycle fatigue analysis in the presence of 

autofrettage compressive residual stress. Fatigue & Fracture of Engineering 

Materials & Structures, 2018. 41(11): p. 2305-2320. 

109. Kamaya, M., Fatigue crack tolerance design for stainless steel by crack 

growth analysis. Engineering Fracture Mechanics, 2017. 177: p. 14-32. 

110. Murthy, A.R., et al., Prediction of fatigue crack initiation life in SA312 Type 

304LN austenitic stainless steel straight pipes with notch. Nuclear 

Engineering and Technology, 2022. 54(5): p. 1588-1596. 

111. Hu, Y., Z. Hu, and S. Cao, Theoretical study on Manson-Coffin equation for 

physically short cracks and lifetime prediction. Science China Technological 

Sciences, 2012. 55: p. 34-42. 

112. Xu, J., Z. Zhang, and T. Wu. Residual fatigue lives assessment of riveted lap 

joints based on a crack growth model. in Structures. 2021. Elsevier. 

113. Needleman, A., A continuum model for void nucleation by inclusion 

debonding. 1987. 

114. Belytschko, T. and T. Black, Elastic crack growth in finite elements with 

minimal remeshing. International journal for numerical methods in 

engineering, 1999. 45(5): p. 601-620. 

115. Moës, N., J. Dolbow, and T. Belytschko, A finite element method for crack 

growth without remeshing. International journal for numerical methods in 

engineering, 1999. 46(1): p. 131-150. 

116. Doğan, O., C. Yuce, and F. Karpat, Effects of rim thickness and drive side 

pressure angle on gear tooth root stress and fatigue crack propagation life. 

Engineering Failure Analysis, 2021. 122: p. 105260. 

117. Ignatijev, A., et al., Fatigue crack initiation and propagation in a PM-gear 

tooth root. Engineering Failure Analysis, 2022. 138: p. 106355. 

118. Lee, Y.F. and Y. Lu, Advanced numerical simulations considering crack 

orientation for fatigue damage quantification using nonlinear guided waves. 

Ultrasonics, 2022. 124: p. 106738. 

119. Shittu, A.A., et al., Structural reliability assessment of offshore wind turbine 

support structures subjected to pitting corrosion ‐ fatigue: A damage 

tolerance modelling approach. Wind Energy, 2020. 23(11): p. 2004-2026. 



152 

 

120. Yu, H. and M. Kuna, Interaction integral method for computation of crack 

parameters K–T–A review. Engineering Fracture Mechanics, 2021. 249: p. 

107722. 

121. Celada-Casero, C., et al., The influence of the austenite grain size on the 

microstructural development during quenching and partitioning processing of 

a low-carbon steel. Materials & Design, 2019. 178: p. 107847. 

122. Huang, J.-Y., et al., High-cycle fatigue behavior of type 316L stainless steel. 

Materials transactions, 2006. 47(2): p. 409-417. 

123. ASTM, E.-. Standard practice for conducting force controlled constant 

amplitude axial fatigue tests of metallic materials. West Conshohocken, 2021. 

124. Carpinteri, A., Shape change of surface cracks in round bars under cyclic 

axial loading. International Journal of Fatigue, 1993. 15(1): p. 21-26. 

125. Carpinteri, A., C. Ronchei, and S. Vantadori, Stress intensity factors and 

fatigue growth of surface cracks in notched shells and round bars: two 

decades of research work. Fatigue & Fracture of Engineering Materials & 

Structures, 2013. 36(11): p. 1164-1177. 

126. Pegues, J.W., M.D. Roach, and N. Shamsaei, Influence of microstructure on 

fatigue crack nucleation and microstructurally short crack growth of an 

austenitic stainless steel. Materials Science and Engineering: A, 2017. 707: p. 

657-667. 

127. Newman Jr, J., A crack opening stress equation for fatigue crack growth. 

International Journal of fracture, 1984. 24. 

128. Garcia, C., et al., Fatigue crack growth in residual stress fields. International 

Journal of Fatigue, 2016. 87: p. 326-338. 

129. Lam, Y. and K. Lian, The effect of residual stress and its redistribution of 

fatigue crack growth. Theoretical and Applied Fracture Mechanics, 1989. 

12(1): p. 59-66. 

130. Gardin, C., et al., Numerical simulation of fatigue crack propagation in 

compressive residual stress fields of notched round bars. Fatigue & Fracture 

of Engineering Materials & Structures, 2007. 30(3): p. 231-242. 

131. Newman Jr, J. and S. Daniewicz, Predicting crack growth in specimens with 

overloads and cold-worked holes with residual stresses. Engineering Fracture 

Mechanics, 2014. 127: p. 252-266. 

132. Ma, Y.E., et al., Size effects on residual stress and fatigue crack growth in 

friction stir welded 2195-T8 aluminium–Part II: Modelling. International 

Journal of Fatigue, 2011. 33(11): p. 1426-1434. 

133. Ma, Y.E., et al., Size effects on residual stress and fatigue crack growth in 

friction stir welded 2195-T8 aluminium–Part I: Experiments. International 

Journal of Fatigue, 2011. 33(11): p. 1417-1425. 

134. Al‐Mukhtar, A., Consideration of the residual stress distributions in fatigue 

crack growth calculations for assessing welded steel joints. Fatigue & 

Fracture of Engineering Materials & Structures, 2013. 36(12): p. 1352-1361. 



153 

 

135. Kashaev, N., et al., On the prediction of fatigue crack growth based on weight 

functions in residual stress fields induced by laser shock peening and laser 

heating. Fatigue & Fracture of Engineering Materials & Structures, 2021. 

44(12): p. 3463-3481. 

136. Bueckner, H., Weight functions for the notched bar. ZAMM‐Journal of 

Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik 

und Mechanik, 1971. 51(2): p. 97-109. 

137. Glinka, G. and G. Shen, Universal features of weight functions for cracks in 

mode I. Engineering Fracture Mechanics, 1991. 40(6): p. 1135-1146. 

138. Zheng, X., G. Glinka, and R. Dubey, Stress intensity factors and weight 

functions for a corner crack in a finite thickness plate. Engineering fracture 

mechanics, 1996. 54(1): p. 49-61. 

139. Guo, K., R. Bell, and X. Wang, The stress intensity factor solutions for edge 

cracks in a padded plate geometry under general loading conditions. 

International journal of fatigue, 2007. 29(3): p. 481-488. 

140. Al-Mukhtar, A., Residual stresses and stress intensity factor calculations in T-

welded joints. Journal of failure analysis and prevention, 2013. 13: p. 619-623. 

141. Bao, R., X. Zhang, and N.A. Yahaya, Evaluating stress intensity factors due 

to weld residual stresses by the weight function and finite element methods. 

Engineering Fracture Mechanics, 2010. 77(13): p. 2550-2566. 

142. Xiao, X., V. Okorokov, and D. Mackenzie, High cycle fatigue life assessment 

of notched components with induced compressive residual stress. 

International Journal of Pressure Vessels and Piping, 2023: p. 105069. 

143. ASTM, E., Standard test methods for tension testing of metallic materials. 

Annual book of ASTM standards. ASTM, 2021. 

144. Gorash, Y. and D. MacKenzie, On cyclic yield strength in definition of limits 

for characterisation of fatigue and creep behaviour. Open Engineering, 2017. 

7(1): p. 126-140. 

145. Khan, A.S., A. Pandey, and T. Stoughton, Evolution of subsequent yield 

surfaces and elastic constants with finite plastic deformation. Part III: Yield 

surface in tension–tension stress space (Al 6061–T 6511 and annealed 1100 

Al). International Journal of Plasticity, 2010. 26(10): p. 1432-1441. 

146. Michno Jr, M.J. and W.N. Findley, An historical perspective of yield surface 

investigations for metals. International Journal of Non-Linear Mechanics, 

1976. 11(1): p. 59-82. 

147. Ishikawa, H., Subsequent yield surface probed from its current center. 

International Journal of Plasticity, 1997. 13(6-7): p. 533-549. 

148. Abdel-Karim, M., Effect of elastic modulus variation during plastic 

deformation on uniaxial and multiaxial ratchetting simulations. European 

Journal of Mechanics-A/Solids, 2011. 30(1): p. 11-21. 



154 

 

149. Dutta, A., S. Dhar, and S. Acharyya, Material characterization of SS 316 in 

low-cycle fatigue loading. Journal of Materials Science, 2010. 45(7): p. 1782-

1789. 

150. Xie, X.-f., et al., Cyclic hardening/softening behavior of 316L stainless steel 

at elevated temperature including strain-rate and strain-range dependence: 

Experimental and damage-coupled constitutive modeling. International 

Journal of Plasticity, 2019. 114: p. 196-214. 

151. Schijve, J., The stress intensity factor of small cracks at notches. Fatigue & 

Fracture of Engineering Materials & Structures, 1982. 5(1): p. 77-90. 

152. Kamaya, M., Ramberg–Osgood type stress–strain curve estimation using 

yield and ultimate strengths for failure assessments. International Journal of 

Pressure Vessels and Piping, 2016. 137: p. 1-12. 

153. Milella, P.P., Fatigue and corrosion in metals. 2012: Springer Science & 

Business Media. 

154. Standard, A., Standard test method for measurement of fatigue crack growth 

rates. (No Title), 2002. 3. 

155. Strzelecki, P., J. Sempruch, and T. Tomaszewski, Analysis of selected 

mathematical models of high-cycle SN characteristics. Technical Sciences, 

2017. 20(3): p. 227-240. 

156. Dong, J., et al., Fatigue crack propagation experiment and numerical 

simulation of 42CrMo steel. Proceedings of the Institution of Mechanical 

Engineers, Part C: Journal of Mechanical Engineering Science, 2020. 234(14): 

p. 2852-2862. 

157. Sellen, S., et al., Design rules for autofrettage of an aluminium valve body. 

Fatigue & Fracture of Engineering Materials & Structures, 2016. 39(1): p. 68-

78. 

158. Chapetti, M.D. and L.F. Jaureguizahar, Fatigue behavior prediction of welded 

joints by using an integrated fracture mechanics approach. International 

Journal of Fatigue, 2012. 43: p. 43-53. 

159. Zerbst, U., et al., The IBESS approach for the determination of the fatigue life 

and strength of Weldments by fracture mechanics analysis, in Fatigue and 

Fracture of Weldments. 2019, Springer. 

160. Thumser, R., J.W. Bergmann, and M. Vormwald, Residual stress fields and 

fatigue analysis of autofrettaged parts. International Journal of Pressure 

Vessels and Piping, 2002. 79(2): p. 113-117. 

161. Mohammad, K., et al. Fatigue behavior of austenitic type 316L stainless steel. 

in IOP conference series: materials science and engineering. 2012. IOP 

Publishing. 

162. Wang, M., et al., Characterization of Grain Size in 316L Stainless Steel Using 

the Attenuation of Rayleigh Wave Measured by Air-Coupled Transducer. 

Materials, 2021. 14(8): p. 1901. 



155 

 

163. Caspers, M., C. Mattheck, and D. Munz, Propagation of surface cracks in 

notched and unnotched rods. 1990: ASTM International. 

164. Jíša, D., et al., Small fatigue crack growth in aluminium alloy EN-AW 

6082/T6. International Journal of Fatigue, 2010. 32(12): p. 1913-1920. 

165. Lukács, J., Á. Meilinger, and D. Pósalaky, High cycle fatigue and fatigue 

crack propagation design curves for 5754-H22 and 6082-T6 aluminium 

alloys and their friction stir welded joints. Welding in the World, 2018. 62: p. 

737-749. 

166. Borrego, L., J. Ferreira, and J. Costa, Fatigue crack growth and crack closure 

in an AlMgSi alloy. Fatigue & Fracture of Engineering Materials & Structures, 

2001. 24(4): p. 255-265. 

167. Mann, T., The influence of mean stress on fatigue crack propagation in 

aluminium alloys. International journal of fatigue, 2007. 29(8): p. 1393-1401. 

168. Li, D.-f., X.-j. Wang, and Z.-l. Zhao, Grain orientation and texture analysis of 

6082 aluminum alloy friction plug welded joints. Journal of Materials 

Research and Technology, 2022. 18: p. 1763-1771. 

169. Li, J., et al., Multiaxial fatigue life prediction for various metallic materials 

based on the critical plane approach. International Journal of Fatigue, 2011. 

33(2): p. 90-101. 

170. LaRue, J. and S. Daniewicz, Predicting the effect of residual stress on fatigue 

crack growth. International Journal of Fatigue, 2007. 29(3): p. 508-515. 

171. Ding, F., M. Feng, and Y. Jiang, Modeling of fatigue crack growth from a 

notch. International journal of plasticity, 2007. 23(7): p. 1167-1188. 

172. Papuga, J., M. Vargas, and M. Hronek, Evaluation of uniaxial fatigue criteria 

applied to multiaxially loaded unnotched samples. Engineering Mechanics, 

2012. 19(2): p. 3. 

 


