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Abstract 

The process modelling of autoclave composites has received much attention 

over the years. This thesis concentrates on two types of processes namely the 

prepreg processing method and the resin infusion processing method. The 

work focuses on the modelling and simulation of the resin flow, heat transfer 

and cure processes of the composites during processing. 

The Hercules 3501-6/AS4 composite was chosen for the simulation and the 

data for its thermal properties was obtained from Loos and Springer [12]. The 

composite is considered as a multilayered system consisting of prepregs or dry 

fibre layers with alternate layers of resin. A similarity analysis for the prepreg 

process was carried out allowing the velocity field, in both the prepreg and 
the resin, to be analytically determined. This then permitted the temperature 

and the degree of cure to be computed numerically. A similar, but different 

analysis was then carried out for the resin film infusion process, allowing the 

temperature and rate of cure to be computed directly. 

The simulation results of the prepreg case of Hercules 3501-6/AS4 were 

compared to known experimental results and good agreement has been found. 

Experimental work was performed on the flow dynamics of the resin infusion 

case and good agreement has also been observed. 
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Chapter 1 

Introduction 

Composite materials are now well established in many industries. Their high 

specific stiffness and strength-to-weight ratio in addition to their tendency 

to offer cost savings are their principal advantages. Composite materials are 

made up of reinforcements in the form of unidirectional fibres, stitched-fibres 

or woven fibres. These are held by a matrix material which can be either 

polymeric, ceramic or metallic. The resulting composite will generally be 

composed of layers (laminae) of the fibre material and the matrix stacked to 

achieve the desired properties in one or more directions. This will produce 

material properties that will be influenced by the individual properties of the 

selected reinforcement material and the matrix material. This in effect allows 

the designer to obtain either isotropic or anisotropic properties of the material 

according to the requirements of the design. Figure 1.1 shows a schematic 

diagram of fibre weave lay-up and Figure 1.2 displays the actual dry fibre 

weave. 

Composites of metal-matrix and ceramic-matrix are suitable for high - 

temperature uses whereas polymer matrix composites offer significant cost 

savings (see Dominy [1]). Polymer-based structural composites are usually re- 

inforced with continuous fibres. The mechanical properties of the components 

built from such materials depend not only on the material type but also on 

5 
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the fibre volume fraction, distribution, and orientation. This gives the designer 

the freedom to tailor the stiffness and strengths of the structural elements to 

meet the specific design requirements. 

Fibre-reinforced polymer composites may be classified according to the fi- 

bre reinforcement employed. These fibres, such as graphite, boron, Kevlar 

or glass fibres, may be discontinuous or they may be continuous, usually 

in the form of a weave. Composites can be further classified according to 

whether they are thermoset or thermoplastic matrix composites. Thermoset 

resins have network structures called crosslinks, which are set by chemical 

reactions. Crosslinks are irreversible, and hence, once made, thermoset com- 

posite parts cannot be reshaped. On the other hand, thermoplastic resins have 

long molecular chains that are held together by secondary bonds, chain en- 

tanglement and/or crystal phases. With increasing temperature, these bonds 

become weaker and the crystals eventually melt. Hence, the heat process in 

thermoplastic resins is fully reversible where it can be repeatedly melted and 

solidified. 

The high strength or stiffness-to-weight ratios of the advanced composites 

and their non-corrosive behaviour are well known: they provide better per- 

formance and a longer life time for the structures. The advantages offered 

by these composite materials have stimulated much work and research to find 

ways of replacing conventional materials such as metals by composites in many 

structural parts; for example, in the transportation industry, composites are 

used in the airplanes, automobiles and small ships or boats and in the leisure 

industry they are used in the manufacture of many sporting goods such as 

tennis, squash and badminton rackets and golf clubs. 
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1.1 Manufacturing Processes 

The goal of processing is to make a good quality fibre reinforced composite 

where the resin forms a void-free continuous phase, surrounds each filament, 

is evenly distributed, is present in the desired amount relative to the fibre and 
is fully cured. 

Figure 1.3 displays the wide range of options involved in the selection of 

material, preform and processing techniques. When constituent materials have 

been selected, the designer has to select the best composite fabrication process 

which will provide an acceptable quality component at the lowest possible 

cost. High-performance laminates usually of fibre-reinforced-epoxy systems 

are usually produced using the autoclave process. This process is usually 

chosen for its reproducibility, high quality, low void content and reasonable 

production rates. Its main drawback is the high cost of material involved 

in production. For large complex-shaped composite structures, non-autoclave 

curing methods such as ovens or presses are used. Major issues related to 

non-autoclave methods are effective compaction of plies and elimination of 

trapped interlaminar and intralaminar air pockets. Interlaminar air pockets 

are air bubbles that occurs between the laminates during the lay-up process 

and intralaminar air pockets are the air voids that are present within each 

individual layer. 

Resin Transfer Moulding (RTM) offers low processing cost and fast cycle 

times. RTM is a closed mould process in which matched male and female 

moulds, preplaced with fibre preform are clamped to form composite com- 

ponents. Mixed resins are then injected into the cavity through ports which 

displace the air escaping through vents thus avoiding dry spots. A schematic 
diagram of the RTM process is shown in Figure 1.4. The cure cycle of the 

process is dependent on part thickness, type of resin and temperature of the 

mould and resin. The cured part is normally heated by a controller and is re- 

moved from the mould after sufficient green strength has been achieved. The 
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RTM process has been successfully used for moulding parts such as cabinet 

walls, water tanks, bathtubs and boat hulls. Other processes similar to RTM 

includes Structural Reaction Injection Molding (SRIM), and hybrid versions 

of vacuum assisted RTM. The difference between SRIM and RTM is mainly 

in the resin reactivity employed by the two processes (see Mallick [2]). 

For aerospace and aircraft applications, most components are produced 

using the autoclave. Flat or curved composite panels are some of the parts 

produced by autoclave moulding. This technique ensures high quality, but 

is labour intensive and expensive. Autoclave moulding is mainly used for 

processing thermosetting composites, because thermoplastic composites can 

be more quickly and less expensively processed using other methods. The 

material most often employed in autoclave moulding is composite prepregs 
(see Hoa [3]). In this process, the pre-impregnated unidirectional or woven 

fibres or prepregs, are stacked on the mould surface and covered with a flexible 

bag where the assembly is then placed in the autoclave for consolidation and 

curing to take place by the application of an external pressure at an elevated 

temperature. Figure 1.5 shows the basic components of the tooling for vacuum 

bag or autoclave processed components and Table 1.1 shows the function of 

each part of the system. 

For several decades, there has been a great deal of activity in modelling., 

the fabrication process of composites using an autoclave. In this study, two 

autoclave processes of manufacturing flat plate composites will be investigated. ýi 

The first process involves the use _of prepregs and the second involves the 

infusion of resin through initially dry fibre layers. In both processes, the 

laminae are stacked on a tool plate, vacuum bagged and placed in an autoclave 

to be acted upon by simultaneous heat and pressure. For the prepreg lay- 

up, the applied pressure will force out excess resin and entrapped volatiles 

from the saturated fibre layers of the laminate and the elevated heat will 

initiate the curing reactions and the polymerization process of the thermoset 

resin. In the case of the infusion process, the applied pressure will force the 
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resin which are interspersed in between the dry fibre layers to infiltrate and 
impregnate the fibre layers as well as eliminating the voids. Both fabrication 

procedure, thus, involves a combination of processes involving resin flow, heat 

transfer of the laminate and polymerisation: it is vital (certainly in the case 

of resin film infusion) that the resin infiltrates the fibre completely before the 

chemical reactions start to take place. Currently, the Seemann Composites jI 
( Resin Infusion Manufacture Process (SCRIMP) [4,5] and the Resin Infusion 
º 

under Flexible Tooling (RIFT) [5] process have been widely and successfully 

used in industry. In Hasko et al. [6], variations in the processing techniques 

of RTM, RFI and SCRIMP process are described. Guy et al. [7] successfully 
demonstrated the use of the RFI process to construct a low-cost, large scale, 
low observable (LO), high performance aircraft structure. 

1.2 Process Modelling 

In fabricating composite parts of high quality, the selection of the the auto- 

clave temperature and pressure, i. e. the cure cycle, is important. Figure 1.6 

displays a typical autoclave stepped cure cycle and its relationship with the 

resin viscosity for a typical 120 deg C curing epoxy resin system [8]. It can be 

observed that the resin viscosity changes considerably, typically in the order 

of 0(102), as the temperature is varied in the cure cycle. Typically, the vis- 

cosity, p, of a thermosetting resin during the curing process is a function of 

cure temperature T, shear rate ý, and degree of cure a: 

µ= µ(T«y, a). 

For thermoplastics, since no in-situ chemical reaction occurs during processing, 

its viscosity function is significantly different from that of thermosets, i. e., 

only dependent on temperature and shear rate (see Mallick [2]). Using this 

information (usually available from material suppliers), a cure cycle can be 

defined to obtain maximum performance in fabricating a specific composite 
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structure. The cure cycle becomes more important as the structure becomes 

more complex. 

There are various ways that can help the fabricator choose the appropriate 

cure cycle. One procedure is to follow the manufacturer's recommendation of 
the cure cycle but this is limited since it is clearly very dependent on the part 

geometry and thickness. For a part that does not satisfy the manufacturer's 

recommended specification, then a trial and error experimental procedure can 
be performed but this is not cost-effective. 

A more cost effective and convenient means of determining the cure cycle 
is by an on-line control through in-situ expert system of sensors, a decision 

making program and closed loop control. The expert system controls the 

processing parameters by detecting the physical and chemical changes in the 

resin through the in-situ sensors [9] (Figure 1.7). 

Alternatively, the parameters of the cure cycle can be selected using pro- 

cessing models which describe the physical processes based on conservation 
laws, and computer simulations can be performed using the codes developed 

for the numerical procedures [9] (Figure 1.8). 

\ý 1.2.1 Resin Flow and Consolidation Model 

The resin flow problem in composite processing is usually treated as flow 

through fibrous pQrous media. The equation of motion used to describe the 

average or macroscopic flow properties is in the form of Darcy's law which re- 

lates the volumetric flow per unit area, v, to the pressure gradient, Vp driving 

the flow through the porous medium. The anisotropic form of this equation 

is, 

v=- µ-1KVp (1.1) 
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Figure 1.7: The expert system approach for selecting the autoclave cure cycle. 

AUTOCLAVE 

Composite 

CONTROLS 

Heater 

Cooler 

Pressure 

MODEL 

ST =( ... ) 

St 

101 

St 

E. =(... ) 
St 

1 

ý 
. le -------------- 

Figure 1.8: The processing model approach for selecting the autoclave cure 

cycle. 



CHAPTER 1. INTRODUCTION 19 

where µ is the viscosity of the resin and K is the permeability tensor. In 

general, the permeability tensor is 

K= 

Kxx rbxy lxz 

'cyx nyy nyz 

izx izy izz 

(i. 2) 

For isotropic medium, if the principal components of K are aligned to the flow 

directions, then (1.2) reduces to 

I 
Kxx 00 

K=0r. YY 0, where rcxx = Kyy = Kzz = K. (1.3) 

L00r. ZZ 

Resin Flow in Prepregs 

Various consolidation and cure models, based on physical laws, have been 

proposed to simulate the autoclave curing process of prepreg laminates. Lindt 

[10] presented a two-dimensional squeeze flow model due to the compaction of 

the laminates. In his model, the composites are treated as layers of aligned 

fibres in parallel rows and columns and suspended in a viscous fluid. Subject 

to the external force applied normal to the tool, the fibres are assumed to 

move vertically downwards resulting in the relative motion of the resin. The 

squeezing action between the vertical fibres causes horizontal flow below the 

fibres and normal flow in the vertical gaps between the fibres. In practice, the 

fibres may not all be completely aligned in rows and columns. 

Gutowski [11] presented a one-dimensional flow model of the composite 

in the direction of the fibres. Loos and Springer [12] developed a thermo- 

chemical flow model and provided a one-dimensional solution of the cure and 

temperature distribution for flat-plate composites. They calculated the flow 

variables by considering the normal and parallel directions separately, and as- 

sumed a non-deformable porous system. In contrast to the Loos and Springer 

rbxy 

tC 
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[12] flow model, Gutowski [13] and Dave et al. [14] independently proposed a 

squeezed sponge three-dimensional flow model with coupled vertical and hor- 

izontal directions and one-dimensional consolidation of the composite. They 

also considered a deformable unidirectional fibre reinforcement system where 

the load is shared by the fibre network and the resin. Dave [15] presented a 

generalized theory of resin flow and applied the unified flow model to differ- 

ent processing techniques such as bleeder ply moulding, autoclave processing, 

pultrusion and resin transfer moulding. Young [16] extended the general three- 

dimensional_flow model of Gutowski [13] and Dave et al. [14Jby considering 

multi-directional fibre arrangements and predicted the pressure, velocity and 
laminate thickness. Young [17] proposed a viscoelastic solid model for the con- 

solidation of the laminate and considered variable permeability and thermal 

properties due to the change in fibre volume content during processing. 

The conventional autoclave cure cycle recommended by the manufactur- 

ers is usually successful for processing thin laminates. For thick laminates (e. g. 

100 plies or approx. 15 mm in thickness), studies have shown that the conven- 

tional cure cycle resulted in temperature overshoot at the centre of laminate 

due to the exothermic reactions of the resin. This can cause matrix degrada- 

tion and thermal residual stress. Hojjati and Hoa [18] used a control-volume 

method combined with an alternating-direction explicit method to solve a 

one-dimensional heat conduction equation coupled with the flow equations. 

Kinsey et al. [19] solved the three dimensional heat conduction problem using 

an alternating-direction implicit (ADI) finite difference method. Kim and Lee 

[20] developed an autoclave cure cycle with cooling and reheating steps to re- 

duce the temperature overshoot using a finite difference scheme. In order to 

validate the Loos and Springer [12] flow model, experimental measurements 

have been performed by Ciriscioli et al. [21] on Hercules 3501-6 and Fiberite 

976 prepreg system; no indication is supplied as to the accuracy of these re- 

sults. 

In most of the previous studies, thermal material properties have been 
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taken to be constant. Yi and Hilton t22] have considered the thermal properties 

to be dependent on temperature and degree of cure. They investigated the 

effects of thermal conductivities, fibre volume fraction ratios, thicknesses of 

laminates and bagging materials on the viscosity, temperature and degree of 

cure. They used a non-linear transient heat transfer finite element scheme for 

the simulation. 

The presence of voids, often caused by entrapped air which is not evac- 

uated before resin gelation, reduces the strength bearing capabilities of the 

part, creates stress risers and can contribute to surface finishing and cosmetic 

problems. Ahn et al. [23] developed a technique to measure air permeation 

through the prepreg laminate during the consolidation and the curing process. 

Harper [24] et al. found that an optimum cure temperature gave maximum 
fibre volume fraction and composite density, and minimum void content. They p 

proposed a linear relationship between cure pressure and fibre volume fraction 

to model the void content of the laminate. 

Resin Infusion Process 

Resin film infusion is an alternative method of fabricating composite materials 

to the prepreg technique. The lay-up of the infusion process is similar to the 

prepreg process where in this case the initially dry fibre plies, each separated 

by a layer of resin, are enclosed in a vacuum bag and placed in an autoclave 

for curing to take place. Simultaneously heat and pressure are applied to 

the set-up; this initiates an exothermic chemical reaction and forces the resin 

to infuse through the dry fibres. As the resin completely impregnates the 

dry fibres and consolidation takes place, it gels and solidifies into the desired 

finished product. In the SCRIMP process, the resin infiltrates through the dry 

fibres by the action of negative pressure. 

Several investigators have studied and proposed models for the RFI/RTM 

processes used in composites manufacturing. Resin flow through the dry fibres 
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is conventionally modelled as unsaturated flow through porous media where 
Darcy's Law is employed. The determination of the exact location of the 

flow front is an important feature in the analysis of the simulation. When 

high pressure gradients are applied, it is necessary to treat the fibre layers as 
deformable and a recent study of this fluids-structure interaction problem has 

been_ treated by Ambrosi and Preziosi [25]. 

As in the prepreg process, proper selection of the cure cycle of the auto- 

clave is important in order to produce a high quality part where full resin 

wet-out and complete, uniform curing are achieved at the end of the process. 
For steady flow through a wall-bounded porous medium, Givler and Altobelli 

[26] have used the Brinkman-Forchheimer equation to model the flow. They 

noted that when a porous flow domain contains an interface, the Brinkman 

term (µe02v), a diffusion term, is an important determinant in predicting the 

development of boundary layers which emanates from the interface. However, 

inaccurate determination of Pe, the effective viscosity, has in the past tended 

to hamper the usage of this term. The Forchheimer term, (CIvIv), C constant, 

is a quadratic drag term to account for nonlinear behaviour of high velocity 
flow in porous media (see Nield and Bejan [27]). However, in composites man- 

ufacturing where the flows are small -_ 1, the use of Darcy's Law is sufficient. 

A comprehensive study of single fluid flow in porous media with application 

to cylindrical beds of fibrous mats has been presented by Liu and Masliyah 

[28]. A comprehensive discussion of flow in porous media with application 

to composite processing has also been presented by Tucker and Dessenger in 

Advani [29]. 

Permeability is strongly dependent on the fibre volume fraction i. e. the 
11 
iporosity of the reinforcement. A common theoretical model used in describing 

the permeability of the reinforcement is the Carman-Kozeny model, 

D203 
K 

16 k0(1 - 0)2 
(1.4) 

where 0 is the porosity, Df is the fibre diameter and ko is the Kozeny constant, 
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which is usually determined experimentally. The reinforcement material can 

take different forms such as woven, stitched or unidirectional and flow along a 

fibre direction has higher permeability compared to the flow in the transverse 

direction. The use of orthotropic permeability models would be a further 

improvement. Parnas et al. [30] proposed a database containing a set of 

permeability results, developed by the National Institute of Standards and 

Technology. The database, based on carefully controlled measurements for 

both saturated and unsaturated flows in glass fabrics, could have been used to 

characterize the fibre reinforcement. Ni et al. [31] investigated a two-regional 

flow introducing an equivalent permeability parameter for the flow in the fibre 

free region. 

Another important issue is the elimination of trapped air where minimizing 
the presence of voids can significantly improve the quality of the composite. 

Pearce et al. [32] conducted experiments to investigate flow behaviour inside 

moulds where flow fronts converged due to multiport injection in RTM pro- 

cessing. They found that when flow fronts meet at a mould edge , they merge 

and act as a single front and when the flow fronts meet head-on, voids can 

be formed. One method of reducing the amount of void content and improv- 

ing fibre wet-out is by locating vents in the set-up to allow for the entrapped 

volatiles to escape and by using of vacuum impregnation techniques (see Abra- 

ham and Mcllhagger [33]). The growth and collapse of gas bubbles in relation 

to process modelling of composites has been studied theoretically and exper- 

imentally by Wood and Bader [34,35]. They proposed a model based on the 

diffusion theory where, assuming a spherically symmetrical bubble of radius 

R, the rate of bubble growth or collapse can be described by 

dR 
_ 

D(C8 - Cam) (1 
+R1 (1.5) 

dt pR 
L (7rDt) 1/2 J 

In the above equation, C3 is the concentration of the mobile species, C,,,, the 

concentration in the bulk fluid, p the density of the gas within the bubble and 

D is the diffusion coefficient. In their model, the growth or collapse of the gas 
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bubbles depends upon whether the solution is oversaturated or undersaturated 
and they suggested that in composite processing, the long curing process may 

allow for the transient term, R/(7rDt)'/2 to be neglected, which yields the 

asymptotic steady-state solution 

R2 = Rö - 
2D (Cs - Coot (1.6) 
p 

where Ro is the bubble radius at t=0. 

Chui et al. [36] developed a two-phase model to study the formation and 

migration of macrovoids (< 1 mm diameter). Their model predicts a pressure 
dependence of the residual air saturation level where increasing the local pres- 

sure would mobilize the entrapped bubbles in the preform. In their two-phase 

model describing the transport of the voids, which is based on the Buckley- 

Leverett equations, they denoted S,. and Sa respectively to be the saturation 

of the resin phase and the air phase relative to the available pore space. These 

satisfy 

(ý. 7) sr+Sa =1 

since both phases occupy the available pore space. 
They defined ¢ to be the interfibre preform porosity which is the volume frac- 

tion not occupied by the fibre and for the incompressible phases and constant 

0, the mass conservation equations are 

atr=V"qr=o 
(1.8) 

=o (1.9) Drin =Vq,, 

where q, and qn are the volumetric velocities of the two phases described by 

Darcy's law; they expressed these as 

rel'r KVP (1.10) Qr = 
µr 
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Qa - 
rel, a KV P (1.11 
µa 

where they denoted µ, and p,, as the phase viscosities, kree, a, and krej, a, the 
4 

relative phase permeabilities, P the pressure, and K is the absolute preform 

permeability. 

Both finite element and finite difference approaches have been employed 

to solve the macroscopic and microscopic models. Coulter and Güceri [37] 

developed a numerical code, TGIMP, for computing a two-dimensional Darcy 

isothermal resin flow model based on a finite difference method using boundary- 

fitted coordinates with numerical grid generation. They determined the resin 
front by relocating the computational nodes using the resultant surface ve- 
locities and a pre-determined time increment. Coulter and Güceri [381 then 

performed experimentation and found reasonable agreement with results pre- 

dicted by the TGIMP code. 

Ahn et al. [39] proposed a model for the RFI vacuum process which predicts 
the final resin content of the laminate and the desired autoclave processing 

cycle required to eliminate voids. They defined a dimensionless parameter, 

the Infusion Flow Number, which describes the degree of impregnation of a 

preform based on the total pressure, resin viscosity, resin velocity, preform 

permeability and thickness of fibre preform. They controlled the resin content 

in the final composite by changing the initial amounts of resin in the bleeder 

and they detected no voids using this process. This compared well with the 

prepreg process which displayed voids due to air pockets trapped in between 

the prepregs layers during the lay-up. Bruschke and Advani [40] presented 

a non-isothermal viscous flow model, using a finite element control volume 

method, to predict the free surface of a shear-thinning resin injected through 

a fibre preform on the in-plane direction of a thin part. 

Wymer and Engel [41] developed a numerical model to study the flow 

of a thermoset resin through, and parallel to a heated unidirectional fibre 

array, with temperature dependent viscosity. They considered a micro-model 
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of the nonisothermal incompressible flow of the resin employing the Crank- 

Nicholson finite difference scheme to the steady one-dimensional convective 

energy equation of the RTM process. Kang et al. [42] presented numerical 

and experimental studies of the simulation of resin transfer moulding (both 

non-isothermal mould filling and curing) using a finite element control volume 

technique. 

Malkin et at. [43] proposed a model for the impregnation of liquid above a 

porous layer and applied the model to moulding of low viscous resin. Sadiq et 

al. [44] investigated experimentally the transverse flow through aligned cylin- 
ders and provided data for the progress of the flow front and the formation 

of voids through a heterogeneous fibre bed. Loos and MacRae [45] developed 

an analytical model to simulate the non-isothermal infiltration of resin in the 

resin film infusion process for manufacturing a blade-stiffened panel. Their 

model predicts the temperature, resin viscosity, and extent of cure during in- 

filtration of an anisotropic fibre preform using a finite element/control volume 

technique. 

Williams et al. [5] presented a comprehensive review of the Resin Infusion 

under Flexible Tooling process (RIFT) which is a variant of the vacuum-driven 

RTM in which one of the solid tool faces is replaced by a flexible polymeric film. 

This process potentially is a safer and more economical method of production 

where resin is drawn into the dry reinforcement in an evacuated vacuum bagged 

tool using only a partial vacuum to drive the resin. Mogavero and Advani [46] 

performed flow experiments through preforms composed of multiple layers of 

reinforcement material and investigated the effect of varying the order of the 

lay-up of a fixed number of plies and the impact of varying the thickness of 

individual layers of a thick preform. They found that the weighted average 

scheme provided a reasonable estimate for the effectiveness of the preforms. 

Yu and Young [47] proposed an RTM simulation model integrated with genetic 

algorithms to search for the process parameters (the mould heating rate, mould 

temperature, resin filling and curing temperatures) that could reduce cycle 



CHAPTER 1. INTRODUCTION 27 

time and enhance the uniformity of the final product. 

Ambrosi and Preziosi [25] proposed a model of resin flow under isothermal 

conditions for an injection moulding process. Their model allows for deforma- 

tion of the reinforcing network of the dry and the wetted part of the preform 

generated by the infiltration process. Pillai and Advani [48] performed simu- 
lations of unsaturated flow of resin in woven and stitched fibre mats used in 

RTM using an adaptation of the Finite Element/Control Volume (FEM/CV) 

technique. A dual scale porous media was modelled and the inlet pressures, 
inlet fill times, and mat saturation were studied. Lekakou and Bader [49] pro- 

'posed a macro- and a micro-infiltration model based Darcy's law incorporating 

{nechanical, capillary and vacuum pressures. 

1.2.2 Thermo-chemical Model 

Parts and structures constructed from fibre-reinforced thermosetting resin 

composites are manufactured by arranging the uncured fibre-resin mixture 

into the desired shape and then curing the material by exposure to elevated 

temperatures and pressures for a predetermined length of time. The tempera- 

ture distribution, the degree of cure of the resin, and the resin viscosity inside 

the composite depend on the rate at which heat is transmitted from the en- 

vironment into the material. The temperature inside the composite can be 

calculated using the conservation. of energy together with the appropriate ex- 

pression for the cure kinetics. In general, the heat transfer process is described 

by the energy equation which, neglecting convection, can be expressed as 

a(pCT) 0 OTl 
+ö 

ýk äT1 
at ax äx ay ay J 

+ý 
(kz ýT) 

+P 
dd (1.12) 

where p and C are the density and the specific heat of the composite, kx, ky 

and kZ are the thermal conductivities and T is the temperature. 
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The rate of heat generation by chemical reaction is defined as 

dH 
= HR 

dt (1.13) 

where HR is the total heat of reaction evolved during the process of cure and 
is dependent on the type of resin. 
The cure rate is a function of degree of cure a and temperature T 

da 
= dt 

F(a, T); (1.14) 

this can be characterized using a modified Arrhenius type equation, with the 

relevant constants of the model determined experimentally using differential 

scanning calorimetry [50,51,52]. 

Loos and Springer [12] considered a one-dimensional coupled equation. Bo- 

getti and Gillespie [53] performed a two-dimensional cure simulation of thick 

composites using a heat conduction equation coupled to the cure kinetics of the : 

thermoset. They employed a finite difference scheme on a boundary fitted co- 

ordinate system (BFCS) and found that spatial gradients of temperature and 

cure induced warpage and residual stress during the curing process. The BFCS 

technique is a mapping technique in which coordinates in a physical curvilin- 

ear coordinate system (x, y), are transformed into a computational rectangular 

coordinate system(, 77). Their motivation for using the technique is its advan- 

tage to easily accommodate complex shaped geometries. Once the governing 

equations and boundary equations are transformed into the computational 

domain, a straightforward finite difference solution technique is applied. 

Telikicherla et al. [54] considered a two-dimensional time-dependent heat 

conduction equation with a heat generation term and employed an Alternat- 

ing Direction Explicit (ADE) finite difference procedure. They considered 

the effects of the different thermal properties of the materials such as the 

bleeder/vacuum bag and the tool plate in the heat transfer process between 

the composite and the autoclave environment. Tredoux and Westhuizen [55] 
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proposed a numerical code based on finite element formulations to simulate the 

heat transfer, resin flow and compaction during composites processing. They 

also concluded that the finite element method was suitable for modelling the 

arbitrarily shaped parts and tooling geometry. Young [56] performed numer- 
ical simulations of the consolidation and cure' process of thick laminates (400 

plies with dimensions 15.24 cm x 15.24 cm) and studied the effects of com- 

pacting forces and cure cycles on the degree of consolidation. His findings 

showed that the compacting pressure is the major factor affecting the final 

degree of consolidation and the cure cycle only controls the thermal response 

and resin reaction in the laminate and had limited effect on the final degree of 

consolidation. They used different compacting pressures for the consolidation 

simulations of the laminate with the same cure cycle. They found that the 

final consolidation thickness of the laminate decreased with increasing com- 

pacting pressure, and the region without any consolidation was smaller using 

a higher compacting pressure. 

Kim and White [57] proposed a staged curing technique for dealing with 

thermal spiking and non uniform consolidation. In the first step of this pro- 

cedure, a relatively thin stack of material is built up (either by hand lay-up 

or using automated methods). This stack is then partially cured (stage 1 cure 

cycle) where the material is gelled, consolidated and some of the exothermic 

energy released. Subsequently, another incremental stack of material is placed 

on top of the first and the entire structure is again subjected to a partial cure 

cycle. This procedure is repeated until the desired thickness is reached. After 

the entire structure has been built up and subjected to the stage 1 curing, the 

final cure is performed in stage 2 cycle where the remaining exothermic energy 

is released and complete cure is reached. Their results showed no degradation 

of quality and they also demonstrated the feasibility of reducing the void con- 

tent. They proposed that this technique addresses two of the major problems 
in manufacturing of thick composites: non-uniform consolidation and thermal 

spiking. 



CHAPTER 1. INTRODUCTION 30 

In Kim and Lee [20], an autoclave cure cycle is developed for thick com- 

posites which reduced temperature overshoots by determining the cure rate 

and temperature at the centre of a laminate using a finite difference scheme. 

Buckmaster and Vedarajan [58] predicted the possibility of temperature spikes 

of thermoset autoclave cure of large specimens using stability analysis. They 

presented a two-dimensional stability results, and showed that, for nth-order 
kinetics, the one-dimensional results will suffice. It is necessary to select a 

cure cycle that could reduce these thermal spikes as it could lead to matrix 
degradation and thermal residual stress. 

1.3 Scope and framework of this thesis 

The scope of this thesis is to study and compare the fabrication process of 

thermoset laminates by two processing techniques namely the autoclave curing 

using prepregs and the autoclave resin infusion process. The composite is 

treated as consisting of layers of reinforcements interspersed with layers of 

resins where in the case of the infusion process, the reinforcement layers are 

initially dry. 

During the curing process of the composite where it is placed in the auto- 

clave and exposed to heat and pressure, the resin undergoes chemical reactions 

and changes in viscosity. In the case of the prepreg, excess resin is allowed to 

escape while in the infusion process, the resin flows through and saturates the 

initially dry reinforcement layers. Further, polymerization of the resin then 

causes the resin to solidify into the desired product. 

In both the fibre-free resin regions and the wetted fibre regions, constant 

flow parameters, such as viscosity and porosity, are assumed in order to de- 

couple the flow equation and the heat equation. This is not unreasonable as 

the thermal conduction time scale is small when compared with the viscous 

time scale. In the fibre-free resin regions, Stokes's slow flow equations are 
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used. The resin flow in the saturated fibre regions are treated as flow through 

porous media and Darcy's law is employed. 

In both the regions, a similarity solution is developed for the approxi- 

mately isothermal flow of the resin. The known velocity components are then 

employed in the convection-diffusion heat equation, which itself is coupled to 

the cure kinetics of the thermoset, to calculate the temperature and cure pro- 

files of the laminate using the Alternating Direction Implicit Method (ADI), 

an implicit finite difference scheme. The cure kinetic models of Hercules 3501- 

6 prepreg system formulated by Lee et al. [51] were used in the simulation, 

and the numerical computations in the prepreg case were compared with the 

experimental results obtained by Loos and Springer [12]. Voidage was not 

considered in this model as it would involve a two-phase model. 

In Chapter 2, the autoclave curing of thermoset prepregs is described. The 

simulated results are compared with selected experimental results, and good 

agreement is obtained considering the limitations of the model. 

In Chapter 3, the autoclave curing of thermoset resin by the infusion pro- 

cess is described. The model of resin flow, heat transfer and curing of the 

thermoset laminates is derived. The results and discussion of the simulation 

results are presented. Experimental work is also given and compared with the 

simulated result. 

Chapter 4 presents an overview of the conclusion to the work and lists a 

number of problems which will have to be solved in the future and recommen- 

dations for the continuation of the work. 



Chapter 2 

Prepreg Processing 

2.1 Introduction 

In this study, the convective term is included in the heat equation which 
itself is coupled to the cure kinetics of the thermoset. By decoupling the ve- 

locity from the temperature and making other assumptions, the Navier-Stokes 

slow flow equations (Stokes's equations) can be solved analytically. A finite 

difference numerical scheme developed by McKee et al. [59] is then employed 

to simulate the temperature and cure distribution of the composite laminate, 

using the now known velocity components. The cure kinetic and viscosity 

models of Hercules 3501-6 prepreg system formulated by Lee et al. [51] were 

used in the simulation, and the numerical computations were compared with 

the experimental results obtained by Loos and Springer [12]. Voidage was not 

considered in this model. 

2.2 Modelling the Heat Flow 

The temperature and the degree of cure distribution in the multilayered com- 

posite, as shown schematically in Figure 2.1, is modelled by a system of coupled 

32 
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heat and rate of cure equations. The multilayer composite system consists of 

n layers of prepreg, each layer interspersed with a layer of resin. Thus the kth 

layer of prepreg is defined to lie between y= h2k_1(t) and y= h2k(t). Note the 

layers, move and change thickness with time as the resin is squeezed from the 

system under the action of external force, Fa,, acting at the top y= hen+1(t), 

where n is the number of prepreg layers. 

The two dimensional convection-diffusion heat equation with internal heat 

generation by the cure reaction is given by 

aT, f2 +u +vfaTf Kf (a2Tf a2Tf1 OPrHRas 2.1 + + at ax ay J p fc f at ax2 aye 

aTr + ur 
aTr 

r ra yr x( = +v a2y r1+ HR as (2.2) a2T' 
+ at ax ý C, axe a2J at 

where Tf(x, y, t) is the temperature in the wetted or saturated fibre layer, 

Tr(x, y, t) is the temperature in the resin layer, cx(x, y, t) is the degree of cure 

of the resin and ui = u=(x, y, t) and vi = v'(x, y, t), i=r, f are the velocity 

components along the x and y directions respectively in the resin and saturated 

fibre layers. The porosity of the fibre layer or, equivalently, the voidage is 0 

and HR is the heat of reaction of the resin. The thermal diffusivities in the 

resin and fibre layers are given by 

Ks=i , i=r, f (2.3) 
pir-i 

where ki is the thermal conductivity, pi the density and cs is the specific heat 

capacity in the respective resin and saturated fibre layers. The thermal con- 

ductivity and heat capacity of the saturated fibre layer are defined by the rule 

of mixtures [27], 

kf = cbk, +(1 -0)kdf, 

CfPl = 'GPr + (1 
- 

0)Cdf Pdf 

where again r denotes the thermal properties of the resin and df denotes 

thermal properties of the dry fibre. A more accurate approach would be to 
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treat the material as being two-phase, but this would very much complicate 

the computational solution. The exothermic rate of the degree of cure equation 
for a thermoset resin is obtained from Lee et al. [51]: 

as 
= (cl + c2ca) (1 - a) (0.47 - a) for a<0.3 , 

(2.4) 
at 
aa 

= c3 (1 - a) for a> 0.3. (2.5) 
at 

The temperature dependent functions, ci, i=1,2,3 are given by 

-AE e; = Ai exp\ RTt) , z=1,2,3 (2.6) 

where Ai are specified pre-exponential factors, DES are the known activation 

energies, R is the universal gas constant and T represents the temperature 

in the resin or fibre layer, accordingly. As the degree of cure is temperature 

dependent, it is consequently spatially dependent. 

The initial temperature is known and is taken to be uniform; also the multi- 
layer composite system is assumed to be insulated at the sides (i. e. x= ±L), 

although in practice there may be a small amount of temperature flux dissi- 

pation. Thus 

Tf (x, y, O) = T+' (X, Y, O) = Toni (2.7) 

and 

Tr (x, O, t) _ Tr (x, han+l(t), t) = Ta (t) (2.8) 

äf (-L, y, t) =äf (L, 

for yE [h2k-l (t), hak (t)], k=1,2,..., n-1 (2.9) 
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Öf (-L, y, t) = r(L, ýJýtý _ 0, 

for yE [hzk (t), hzk+l (t)], k=0,1, ..., n (2.10) 

where T1, Li is a prescribed known temperature and Ta, (t) is a prescribed known 

function of temperature which can be expressed as 

Ttni + of 
,t< t" 

T, t>t, 
(2.11) 

where ,ß is the heat-up or ramp rate and t, is the time to reach the cure 

temperature T. 

The continuity conditions for temperature and flux imposed at the interfaces 

are given by 

Tf (x, hk (t), t) = T,. (x, hk (t), t), k=1,2, ... , 2n , 
(2.12) 

kj 
ýf 

(x, hk(t), t) = kr 
ayr 

(x, hk(t), t), k=1,2, 
... , 

2n. (2.13) 

The initial degree of cure is 

a(x, y, 0) =0 (2.14) 

and theoretically reaches a value of 1 when the composite is fully cured[12]. 

2.3 Fluid Flow 

The composite is considered to consist of alternating layers of resin and resin- 

saturated fibre mats. The set-up for this model is schematically indicated in 
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Figure 2.1. In total there are 2n+1 layers comprising of n fibre regions and 

n+1 resin regions. The fibre regions are assumed to be of constant thickness 

(i. e. incompressible and non-deformable) with isotropic permeability and the 

resin in the resin regions is assumed to be both isothermal and Newtonian 

with an approximately constant viscosity. These assumptions are, of course, 

not strictly valid, but they do allow us, as we shall see, to obtain approximate 

analytic solutions for the flow field, thus reducing the computational effort 

considerably. 

2.3.1 Fluid Flow Equations 

High values for viscosity lead to a Reynolds number considerably less than 

unity, and so the viscous terms tend to dominate the inertial terms in the full 

Navier-Stokes equations for an incompressible resin. Hence, in the resin layers, 

it will be assumed that the flows are quasi-steady so that the accelerative terms 

may be omitted; the conditions for Stokes's (slow) flow are thus satisfied and 

will henceforth be assumed together with the continuity equation. In the 

principal regions of interest (see Figure 2.3, for viscosity values < 10 Pa. s), it 

is not unreasonable to assume that µ is constant and this will be assumed here. 

The fibre plies are treated as incompressible movable porous layers saturated 

with resins and therefore an amended Darcy's Law and the continuity equation 

are utilised. 

The quasi-steady flow equations in the resin layers are 

V. u''=0, (2.15) 

_Vpr + µV2u'' = 0, (2.16) 

for (x, y) E [-L, L] x [h2k(t), h2k+1(t)], k=0,1, ..., n (2.17) 
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while the flow equations in the saturated fibre layers are 

V. uf =0, (2.18) 

of =W- 
Kopf (2.19) 
µ 

for (x, y) E [-L, L] x [h2k_I (t), h2k (t)], k=1,2, ..., n (2.20) 

where w= (0, h2k (t) )T 
, ic is the isotropic permeability of the fibre mat, p is 

the (assumed) constant viscosity of the resin and h2k (t) is the velocity of the 

moving fibre mats for the respective fibre layers. The pressures in the resin 

and saturated fibre layers are denoted by p'' and pf respectively. Note that 

incompressibility implies that h2k_1(t) = h2k (t), for k=1,2, ... , n. 

Boundary conditions for the flow are that there is no-slip and no-flow at the 

base and at the top plate within which the composite is held so that 

u'(x, 0, t) =0 and v'(x, 0, t) = 0, xE [-L, L] , 
(2.21) 

u'(x, han+i(t)it) =0 

and v''(x, h2n+i(t), t) = han, +i (t), xE [-L, L] (2.22) 

and that there is continuity of velocity at the resin-prepreg interfaces 

Ur(x, hk(t), t) = of (x, hk(t), t) (2.23) 

and v' (x, hk(t), t) = of (x, hk(t), t), k=1,2,..., 2n. (2.24) 

We shall also require continuity of the pressure at the resin-prepreg interface 

PT (x, hk(t), t) = pf (x, hk(t), t), k=1,2, 
... , 2n. (2.25) 
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We shall further assume that the pressure is constant, say p= po at x= fL 

(for all y). Since the pressure only appears in (2.15)-(2.19) as a derivative, we 

shall use 

pr (±L, y, t) = pf (±L, y, t) = 0. (2.26) 

The boundary conditions at the resin-prepreg interface are questionable. An 

alternative would be to use the Beaver-Joseph boundary condition 

äyr (x, hk(t), t) _ ý2 (uf (x, hk(t), t) - ur(x, hk(t), t)), 

k=1,2,..., 2n. (2.27) 

where aBj is dimensionless and is independent of the viscosity of the fluid but 

depends upon the material parameters that characterize the structure of the 

permeable material within the boundary region (see Beavers and Joseph[60]). 

The continuity of normal stress could also be used. This results in 

Pf (x, hk(t), t) = P" (x, hk(t), t) -µr ay (x, hk(t), t), 

(2.28) 

However, since the object here is to obtain fluid equations which will admit 

a similarity solution, we restrict ourselves to the boundary conditions (2.23) 

and (2.24) which are a reasonable approximation for a loosely woven fibre. 

2.3.2 A Similarity Solution 

A similarity solution is sought in both the resin and the fibre (prepreg) re- 

gions (see Blest[61]). We shall begin by denoting the velocity and the pressure 
in the resin region [-L, L] X [h2k, h2k+1] by ulk+1 and p2k+1 and the 

velocity and pressure in the fibre region [-L, L] x [h2k_1i h2k] by ulk and 
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2X(- hen 6) + hen+l (t) 
- 

hen (t) /' 
(2.36) 

v2n+i (x, y) t) = hen+i (t) +A [y3 
- 3h2n+1 (t)y + 2h2n+1(t) 

3z 
-2 

(y 
- hen+l(t) 

x 
(hen (t) + hen+l (t) - hen+l (t) - hen (t) /J' 

(2.37) 

Pen+l(xl y, t) = 3µA [y2 
- x2 + L2 -h2 n(t) -(y - h2n(t)) 

x 
(hen (t) + hen+1(t) - %z2n+1(t) 

2 r. 

- h2n(t) /1 
(2.38) 

where A(x, y, t) can be expressed as 

A(X, y, t 
Fa )= 

4pL(3ic + L2) 
(2.39) 

For a typical intermediate kth resin layer, the velocities and pressures can be 

computed to be 

U k+i (x, y) t) = -3Ax 
Ky- h21(t)) (y 

- hak+l (t)) - 2r, ], (2.40) 

V k+1(X' y, t) = h2k(t) 
- 3, cA 

[2y 
- (h2k-i (t) + h2k (t))] 

+A [y3 -21 h2k (t) + h2k+1(t) J y2 

+3h2k(t)h2k+1(t)y+ 2h2k(t) - 2h2k(t)h2k+i(t)] 

(2.41) 

Päk+i(x, Y) t) = 3uA[(y - h2k (t)) (y 
- hak+i(t)) - x2 + L2, (2.42) 

fork=1,2,..., n-1. 

For a typical intermediate kth fibre layer, the velocities and pressures take the 
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form 

u2k(X, y, t) = 6i Ax 
, 

(2.43) 

vzk(X, y, t) = h2k(t) - 3icA[2y - 
(h2k_l(t) 

+ hak(t)), 1 
(2.44) 

pik (x, y, t) = 3µA [ (y 
- h2k_ i (t)) `y - h2k (t)) - x2 + L2] (2.45) 

fork=1,2,..., n-1. 

As for the first and topmost resin layer the constant A is given by 

A(x, y, t) = 
Fa 

(2.46) 
4pL(3rc + L2) 

It is possible to write down a system of differential equations for the rate of 

change of the thickness of each of the resin layers, that is, the rate at which 

resin is squeezed from the layers as a result of the applied pressure : 

hl(t) _ -2Ahl(t) 
(hi (t) + 6k), (2.47) 

h2k+l(t) 
- 

h2k (t) 
2AL 

(h2k+l (t) 
- 

hak (t))3 

+6, c(2h2k+l(t) - 2h2k(t) + dk + dk+i)), 

k=1,2,..., n- 1 (2.48) 

h2n+1(t) - h2n (t) =-2 A[(h2n+1(t) 
- h2n (t) )3 

+6/ß (hen+l (t) - h2n(t) + dn)] (2.49) 

where dk = h2k(t) - h2k_l(t) represents the thickness of the incompressible 

fibre layer, that is, dks are constants. Recall that this implies that h2k(t) = 
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h2k_1(t). Note also that this allows the different formulation of (2.47)-(2.49) : 

So(t) _ -2ASo(t)(5(t) + 6K) (2.50) 

5k (t) _ -1 A [5k (t) + 6K (2Sk (t) + dk + dk+1) ], k=1,2, ... ,n-1 
(2.51) 

ý -(t) = -1 A [5n (t) + 6n (5 (t) + d"), (2.52) 

where bk (t) = h2k+l(t) - h2k(t), the thickness of the kth resin layer. 

To solve this system we require the thickness of the prepreg layers and the 

initial thickness of the resin layers, that is 

dk, k=1,2, ... ,n and Sk (0), k=0,1, ... , n. (2.53) 

We can then solve (2.50)-(2.52) by any standard numerical method. This will 

provide the time taken for any two prepregs to come together, or alternatively 

the time taken to squeeze out all the excess resin. Note that this time will in 

general be different for different layers. Here, a 2'ßd-order Runge-Kutta method 

was used to compute the solution of the system for the rate of change of resin 

layer thickness equations (2.50)-(2.52) and the decreasing average thickness 

of the resin layer against time is displayed in Figure 2.2 for the case n= 32 

ply for the Hercules 3501-6 resin for different heating rates. It can be seen 

that the time computed for the laminates to be compacted is independent of 

the heating rate for the model with constant viscosity. However, it is possible 

to solve this system analytically. For constant known prepreg thickness the 

equations decouple. Thus the kth equation may be written as 

b=a (ö(t)3 + bb(t) + c) (2.54) 

where the subscripts have been omitted. 
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Clearly (2.54) has the solution 

at =1 (6) + constant (2.55) 

where 

I (S) 
,ý 

63 +M+ c* 
(2.56) 

Following factorization of the denominator, the integral has a closed form 

solution 

() _1 
y-P Ib (P-Q)2+R2 

In 
y2-2Qy+Q2+R2 

+ 
(Q 

R 
P) 

arctan 
(y 

RQ) J (2.57) 

where 

=B 
2b 2 58 P60() 

_ 
-B b (2.59) Q 
12 

+9R= 

ý(- 12 +b (2.60) 

for 0 defined by 

0= (12Vl-2b3 ++ 81c2 - 108c)'/3. (2.61) 

The constant in equation (2.55) is determined by the initial condition S(0) _ 

So. 
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2.3.3 Variable Viscosity 

In general, viscosity is a function of temperature and cure[51] and can be 

expressed as 

µ(x, y, t) =p exp(U/RT + Xa) (2.62) 

where p is a constant, U is the activation energy for viscosity, X is a constant 

which is independent of temperature, and R is the universal gas constant. 
The graph of the computed viscosity against time is shown in Figure 2.3 which 

agrees with known data (see Lee et al. [511). As the temperature increases, 

the resin becomes less and less viscous until polymerisation commences and 

consequently becomes viscous again. We also observe that, independent of the 

heat-up rate, the viscosity is very high initially and it then drops substantially 
to around 0.3 Pa. s. Thus, the mathematical model for the fluid flow may still 
be employed: where initially, no fluid flow takes place, but heat is nonetheless 

conducted to the centre of the laminate; when the resin begins to flow, viscosity 

remains approximately constant about a value of 1.0 Pas. Thus the values of 

the flow variables can be obtained from the analytic solutions of (2.33)-(2.34), 

(2.36)-(2.37), (2.40)-(2.41) and (2.43)-(2.44), and substituted, as before, into 

the convection-diffusion equation (2.1) and (2.2). 

2.4 Numerical Solution Techniques 

Equations (2.1), (2.2), (2.4) and (2.5) are nondimensionalized using the follow- 

ing scalings 

_Ti-Tini 
xyi ui i- vt 

_Krt T' 
Tc-Tini) x_ de y d, u V, v V) 

t 
d2 

for i=r, f in the respective resin and saturated fibre layer. Recall that T1 

is the initial temperature of the composite, TT is the cure temperature applied 
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to the top and bottom of the composite, d is the typical thickness of a fibre 

layer, and V is the known velocity of the upper tool plate, h2, ß+1(t). Applying 

these transformations and omitting tildes for clarity gives 

f+ Pe 
(uf of a f) + of DI 

x 
Tf 

+ fl (2.63) + Jf ä t O a ay t 

r+ Pe 
\ur 

-r 
ý 

+ yr 
o 

rI = 
(ax r+ 

ay 
r+ 

', r 

ýt 
(2.64) 

t x y 2 2 

and 

as 
= (Cl + C2a) (1 - a) (0.47 - a) for a<0.3 (2.65) ät 

-= C3 (1 - a) for a> 0.3 (2.66) 
ät 

where D, Jf and Jr are the dimensionless constants given by 

Df if 
cf P T, - Tini)' 

Jr 
cr(T 

,R 
Kr Tini) 

Pe is the Peclet number 

Pe = 
Kd (2.67) 

and the constants C; is given by 

2 
C; =Ki=1,2,3. (2.68) 

K, 

The initial and boundary conditions become 

7'r(ýý Y, 0) = T, - 
(x, Y, 0) =0 (2.69) 

and 

0< Tf(x, 0, t) = T,. (x, h2n+1(t)/d, t) <1, (2.70) 
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a 
i' 

(-Ll d, y, t) =af (LI d, y, t) = 0, 

for yE[ h2k_l(t)/d, h2k(t)/d 1, k=1,2, 
... ,n 

(2.71) 

0 

9T. 
ax 

(-Lld, y, t) = (LId)y)t) = 0, 

for yE[ h2k(t)/d, h2k+l(t)/d ], k=1,2, 
... , n. (2.72) 

The continuity of temperature and flux at the resin-fibre interface layers be- 

come 

T1(x, hk(t)/d, t) = T, - (x, hk(t)/d, t) ,k=1,2, ... , 2n (2.73) 

D* äf (x, hk (t)l d, t) = 
ä_ (x, hk (t) l d, t) =0, k =1,2, ... , 2n 

where D* = kt/kr. 

The initial degree of cure remains 

a(x, 

2.4.1 Discretization 

(2.74) 

(2.75) 

The nondimensionalised coupled heat and rate of cure equations, i. e. equations 

(2.63)-(2.66) for each layer, are discretized by applying the finite-difference 

Alternating-Direction-Implicit Method (ADI)[59]. Before providing a descrip- 

tion of the implementation of the method it is necessary to discuss the con- 

struction of the moving mesh. 
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Moving mesh 

Since the fibre regions are assumed incompressible they do not change shape; 
however, resin is continuously being squeezed from the resin layers and so 

they are monotonically decreasing in thickness. Fortunately, we have, from 

the solution of (2.50)-(2.52), a good approximation for each layer of the rate 

at which this occurs. Thus, we shall use a fixed grid in the saturated fibre 

layers in the vertical direction (y-direction) and a fixed grid in the horizontal 

direction (x-direction) in all layers. However, we shall employ a moving grid 
in the vertical direction in the resin layers. The essential strategy will be 

to employ v(= 2"1, vi E N+) points in each resin layer (independent of their 

individual thickness) in the y-direction so that the mesh spacing is 

Ay(-) = (h2k+l(tm) - h2k(tm))/V = 52k+l(tm)/v (2.76 

The number of points v will then be held fixed until t= t* such that 

S2k+1 (t) <1 52k-f ý0ý (2.77) 

whereupon v is replaced by v/2 equally spaced points and appropriate inter- 

polation is performed where necessary. This is continued vl times(in practice 

vl = 3) and thereafter the number of points are decreased no longer. The 

resin is deemed to have been removed from that layer when 52k+1(t) is less 

than some prescribed tolerance. The 62k+1(t) are determined from solving 

equations (2.50)-(2.52) by a second order Runge-Kutta method. 

In the x-direction we define the fixed grid 

Ox = 2L/A , 
(A E ICY+) (2.78) 

both for the resin and saturated fibre layers. In the saturated fibre layers, we 

also define the fixed grid in the y-direction 

AY = dk/'Y 
, 

('Y E N) 
, dk = h2k(t) - h2k-l(t)" (2.79) 
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When dk =d the saturated fibre layers have the same thickness. 

2.4.2 ADI Method 

The scheme used for a typical fluid layer is given by 

r ra 2 pu''Pe 
m+l" 

2211,7 L 
r1 

=1+ saöy - qvT PeVy +2 Sx - 
pP2 u 0x1 (T,. ) 

113 + %tJrg (a ., (Tr) m) 

(2.80) 

f1_ 2ay+ý1ý'2yrVj(Tr) +' 
- -Y 213 

= (T*)ä 1ý- 
[2av-qP2yrOv 

(Tr) (2.81) 

and the scheme for a typical fibre layer is given by 

f rl 
- 

r2aby + pu2PeVxl (Tf) 1ý 
LJ 
=1+ saby - qvf PeV y+2 52 - 

pP2 uf D, (Tf) .+ ztJfg (a'., (Tf) ) 

(2.82) 

sa 2 gPevf m+l 
[1 

2y+2Vd (T1):, 
3 

_ (Tf)m±i" _ 
rsa82 

_ 
gPevf 

lT 
"`. (2.83) 

17 12 b2 vJ 
(T )i, 

3 

where 

VXT, ý =Tý- Tmlj 

v 77 = Tij -Tim"i -i 
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b2T = T! ' S-1,3 - 21 3-T 
+1, j 

m- Tm b2Tm = Tm -2T y tj 10-1 t, j t, j+l 

with Ttm denoting an approximation to T(iix, jLy, mOt) where At is the 

time-step and Ax Ay are the spatial sizes in the x- and y- directions respec- 

tively (see Appendix C). The subscripts r and f denote values in a typical 

resin fluid layer and a saturated fibre layer respectively. Other parameters are 
defined as follows: 

D for fibre layer 
a= 

1 for resin fluid layer, 

p= At/Ax 
,r= Ot/0x2 

,q= 
At/Ay 

,s= Ot/Dy2 , 

and 

(_ 
äa m 

at 
)i, 

j 
( 

Öa m 
91ým, 7 

(Tf) )= (--)i, 

j 

are the exothermic reaction functions. 

Note (T,. ) and (T1) 1' denote an intermediate (non-physical) stage in 

the calculation. 

The mesh spacing in the y-direction in the resin layers is, of course, not 

a constant: it is monotonically decreasing according to (2.76). However, At 

is chosen so that the decrease in Ay from t= t1z to t=t.,,,, +1 is small. This 

allows us to calculate (T,. ) tI* from (Tr) ` on a fixed grid, ie. Ox, Ay(m) and 

At. The new grid is then constructed and the values of Tr on the new grid are 

taken to be identically those of the old grid. Only if 6(t,,,,. ) < 2L 5(0) are half 

the points omitted and the necessary interpolation then undertaken. 
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2.5 Numerical Results and Discussion 

The system of ordinary differential equations (2.50)-(2.52) (the rate of thick- 

ness equations) are first solved by a 2nd-order Runge-Kutta Method. This 

allows the velocity of the fluid, both in the resin and the prepreg, to be 

determined through equations (2.33)-(2.34), (2.36)-(2.37), (2.40)-(2.41) and 
(2.43)-(2.44). The velocities are then substituted into the convection-diffusion- 

reaction equations (2.63)-(2.64) and the ADI method described previously is 

solved in tandem with the 2'ßd-order Runge-Kutta Method for the rate of cure 

equation. The simulation to obtain the temperature distribution and the de- 

gree of cure distribution during the process is performed for different thickness 

of composite, namely 16,32,52 and 64 plies. The cure cycle with heat-up rates 

of 2.8 deg K/min and 11.1 deg K/min with a constant force of 586 kN were 

used in the simulation. 

The material constants for the fibre and Hercules 3501-6 resin employed 

which can be found in Loos and Springer [12] are listed in Table 2.1. The 

porosity and half-length of the composite, obtained from Blest[61], are given 

in Table 2.2. The value of constants used in the curing equations are obtained 

from Lee et al. [51] are given in Table 2.3. 

Figure 2.3 shows the graph of the computed viscosity against time at dif- 

ferent heating rates at the centre of the laminate. It can be seen that, as 

expected, at the lower heat-up rate, the time at which the minimum viscosity 

occurs is larger than that for the higher heat-up rate. This is important since 

it is desirable that all excess resin and trapped air is squeezed out before gela- 

tion takes place. The gel point of the resin is assumed to occur at 100 Pa. s 

[12] and the model predicted the time to gelation with satisfactory precision. 

Figures 2.4,2.5 and 2.6 provide a comparison between the temperature 

computed from the model at different positions through the composite thick- 

ness and those measured (by thermocouples) in Loos and Springer[12] for a 64 

ply composite. It can be seen that the model agrees well with the data at the 
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Resin density, pr 1.26x 103 kg/m3 

Specific heat of resin, c,. 1.26x 103 J/(kg. K) 
Thermal conductivity of resin, k,. 1.67x10-1 W/(m. K) 
Heat of reaction of resin, HR 474 J/g 
Fiber density, pdf 1.79x 103 kg/m3 

Specific heat of fibre, cdf 7.12 x 102 J/(kg. K) 
Thermal conductivity of fibre, kdf 2.60 x 101 W/(m. K) 

Gas constant, R 8.31435 J/Kmol 
Applied Force, F. 586 kN 
Permeability of porous mat, r, 10-16 m-2 
Thickness of a prepreg, d 0.0001 m 
Initial ambient temperature, T;,,, a 300 K 
Applied cure temperature, Tc 450 K 

Table 2.1: Material properties of Hercules 3501-6 resin and fibre. 

Resin viscosity, p1 Pa. s 
Porosity, q 0.5 
Half-Length of composite, L 0.5 m 

Table 2.2: Flow parameters from Blest [61]. 

three locations inside the composite. 

51 

Figures 2.7 and 2.8 display the temperature profiles at the centre of the 

composite for heating rates of 2.8 and 11.1 deg K/min respectively for a number 

of different plies. It can be seen that no matter how many number of plies, 

no significant thermal spiking occurs for the applied temperature of 450 K for 

either of the two different heat-up rates although the small temperature spike, 

as would be expected, increases with increasing number of plies. 
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the prepreg thickness is increased the lag becomes more pronounced, indicat- 

ing that heat diffusion is no longer "instantaneous"; the thermal spiking is 

due to the exothermal reaction of the curing process and the more material 

there is the greater the amount of heat released. The thermal spiking may be 

overcome to some degree by introducing recooling and reheating steps into the 

thermal cure cycle (see Kim and Lee [20]). 

Figures 2.12 and 2.13 display the curing profile at the vertical midplane 

of the laminate for 16 and 64 plies laminate, respectively. It can be seen that 

the model predicts the cure for both thickness is fairly uniform throughout the 

composite at the low heat-up rate of 2.8 K/min. 

2.6 Concluding Remarks 

A mathematical model has been developed for the prepreg curing process of 

a composite laminate with n layers of prepregs. It was shown, subject to 

certain assumptions, that the velocity components for the flowing resin (both 

in the resin layers and the prepregs) could be reduced to a problem of solving 

a system of first-order ordinary differential equations which, in the case where 

the layers of prepreg are of equal thickness, admit a closed analytic solution. 

The convection-diffusion equation with a heat generation term was solved by 

an alternating-direction implicit method (for the temperatures in the prepregs 

and the excess resin layers) coupled with a 2d-order Runge-Kutta method for 

the cure. Numerical results have been compared with experimental data and 

found to give good agreement, particularly with regard to the temperature of 

the composite. 

This flow model is clearly useful in providing simple solutions to the flow prob- 
lem but it has its limitations. The resin itself is in general a non-Newtonian 
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fluid, its rheology determining the precise form of the constitutive relationship 

to be employed. Another simplification used in the model was to assume that 

the permeability is isotropic; in general this will not be the case. The min- 

imisation of voidage or its complete elimination is important to the composite 

manufacturer; this has not been addressed in this thesis. Finally, the perme- 

ability is likely to change as curing take place. Indeed, variable permeability 

models (in the context of filtration through coffee granules) have already been 

discussed (see Baldini and Petracco[62]). The case when the fibre weave is 

deformable has recently been treated by Ambrosi and Preziosi[25]. 
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Figure 2.2: Comparison of average resin thickness vs time of 32 ply for different 

heating rates. 
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Figure 2.3: Comparison of the computed (variable) viscosity (see equation 
(2.62)) versus time for different heating rates for 64 ply laminate at the centre 

of the composite. 
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Figure 2.4: Comparison of temperature at y/h2n+1(t)=0.25 with experimental 
data of Loos and Springer[12] for 64 plies. 
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Figure 2.5: Comparison of temperature at the centre of the composite with 
experimental data of Loos and Springer[12] for 64 plies. 
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Figure 2.6: Comparison of temperature at y/hen+1(t) = 0.75 with experimental 
data of Loos and Springer[12] for 64 plies. 
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Figure 2.7: Comparison of the temperature versus time at the centre of com- 

posite for Hercules 3501-6 resin for the heating rate 2.8 K/min. 
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Figure 2.8: Comparison of temperature versus time at the centre of composite 

for Hercules 3501-6 resin for the heating rate 11.1 K/min. 
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Figure 2.9: Comparison of the degree of cure versus temperature at centre of 

composite for Hercules 3501-6 resin for different heating rates. 
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Figure 2.10: Comparison of the degree of cure versus time at the centre of 

composite for different heating rates for varying thickness. 
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Figure 2.11: Comparison of the temperature versus time at the centre of a 64 

ply laminate for varying prepreg thickness for the heating rate 2.8 K/min. 
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Figure 2.12: Through-the-thickness degree of cure of 16 ply laminate for the 
heating rate 2.8 K/min. 
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Figure 2.13: Through-the-thickness degree of cure of 64 ply laminate for the 

heating rate 11.1 K/min. 



Chapter 3 

Resin Infusion Process 

3.1 Introduction 

This chapter deals with the modelling and simulation of resin flow, heat trans- 

fer and the curing of a multilayer thermoset composite by the resin film infusion 

process. For approximately isothermal flows, the model is based on Darcy's 

Law and Stokes's equations where a similarity solution is obtained and subse- 

quently used in a two-dimensional convection-diffusion heat equation coupled 

with a rate of cure equation. A finite difference scheme is applied to the energy 

equation on a moving grid and simulations for varying laminate thicknesses 

and number of plies are performed. 

3.2 Modelling the Resin Flow 

The schematic diagram for the set-up, with the chosen coordinate axis, is 

shown in Figure 3.1. A one-dimensional model is developed where the resin is 

assumed to be Newtonian with constant viscosity and the flow is in direction 

of the applied vertical force normal to the dry fibre plies. The flow through the 

dry fibre plies is considered as a flow through porous medium where Darcy's 

68 
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and pressure in the resin region [-L, L] x [h2k, h2k+1] are denoted by v2k+1 

and p2k+1 while in the lower wetted fibre region [-L, L] x [h2k_1,62k-11, the 

velocity and pressure are denoted by v2k` 1 and p"' 1 and in the upper wetted 
" fibre region [-L, L] X [S2k, h2k], the velocity and pressure are denoted by v2k 

and p"u for k=1,2, 
... , n. 

In a typical (2k - 1) fibre-free layer, k=1,2, 
... ,n+1, indicated by the 

superscript r, resin is assumed to flow only in the y-direction. Hence, the 

incompressiblity condition can be written as 

OV 
k-1 

=0, (3.1) 
8y 

and the momentum equation in the x direction yields 

0P2k-1 
= o. 

ax 
(3.2) 

Given the high viscosity of the resin and considering quasi-steady state as- 

sumption, Stokes's equation is employed to model the flow in the y-direction 

where 

a2v_k-I aprk-I (3.3) 
axe - ay 

In the dry fibre plies, as the resin can flow from above or below each ply, an 

upper and lower wetted region is identified for the pressure and velocity of 

each ply. The wetted regions of the 2k layer are defined by 

h2k_1(t) <y<5 k_1(t) and 62k(t) <y< h2k(t) ,k=1,2, ... ,n 
(3.4) 

where 5 k_1(t) and 5 (t) are the lower and upper free surfaces respectively. 

The flow in the wetted regions, denoted by the superscript w, can be described 

by the continuity equation and the momentum equations in the x and y di- 

rections of an amended Darcy's law, taking account of the vertical motion of 
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the dry fibre plies, as 

,i 0V2k 
_0, (3.5) 

y 
0P2 k1 

= 0, (3.6) 
ex 

w, i 

v2ki 
hzk(t) 

= -fL 
öp2k 

(3.7) 
µ ay 

for k=1,2, ... ,n where i=1, u denotes the lower or upper wetted region 

respectively, h2k(t) is the velocity of each dry fibre ply, is is the permeability 

of the fibre ply and µ is the dynamic viscosity of the resin. In this work, both 

the parameters is and µ are taken to be constant. 

The boundary conditions for the velocities in the above set-up are : 

. At the top and bottom plate, y= hen+1(t) and y. =0 respectively, the 

no-slip condition is imposed. Thus, 

r %n+l (x, h2n+1 (t» t) = h2n+1 (t) 

v1 (x, O, t) = 0. 

(3.8) 

(3.9) 

" At the resin-wet fibre interfaces, the continuity condition is imposed 

whereby 

vik-i (X, h2k-I(t)et) = v2kl (x, hak-i (t), t) , 
(3.10) 

vsk(x, h2k(t), t) = v2' (x, h2k(t), t) 
, 

(3.11) 

for k=1,2, ... , n. 

" At the free surfaces, y= 8k (t), k=1,2, 
... , 2n., the kinematic condition 

is applied whereby 

v2k' - 
h2k-I(t) = 002k-l(t) - 

h2k-i(t))) (3.12) 

v2ku - h2k(t) = (Ä(a2k(t) - %t2k(t)) (3.13) 
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for k=1,2, ... ,n and 0 is the porosity of the fibre ply. 

The boundary conditions for the pressure are : 

. At the top bounding plate, the external force F,,, acts normal to the 

plate at y= hen+1(t) in the negative y-direction. Thus, applying a force 

balance over the plate of length 2L gives the pressure condition as 

Pen+1(x, h2n+1(t)7 t) = 2L 
(3.14 

where L is the half-length of the ply. 

" At the bottom bounding plate, the pressure condition is 

ýr y (x, 0, t) = 0. (3.15) 

" At the resin-wet fibre interfaces, y= hk (t), k=1,2, ... , 2n, the conti- 

nuity condition is imposed whereby 

P2k-1(x, hak-1(t), t) _p (x, h2k-i (t), t), (3.16) 

Psk (x, h2k (t), t) = PZku (x, h2k (t), t), (3.17) 

fork=1,2,..., n. 

. At the free surfaces, y= Jk(t), k=1,2, 
... , 2n, the pressures are taken 

to be zero. Thus, 

h (x3 a2k-1(t) t) = 0, (3.18) 

P2k"(X762k(t)ýt) = 0, (3.19) 

fork=1,2,..., n. 
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Flow Equations 

A similarity solution is sought for the pressure and velocity in both the fibre- 

free and the wetted fibre or saturated regions (see Blest[61]) 
. 

In the fibre-free 

layers, the pressure is in terms of t only (see Appendix B), 

Pi(t) = P3(t) _ """ = P22n+1 (t) = 2L 
(3.20) 

In a typical dry fibre ply of the 2k layer, the pressure in the upper wetted 
region is 

A2 tl(y, t) _ 
ý(h2k 

- a2k)(y - a2k) (3.21) 

and the (2k + 1) resin layer is 

P2k+1(t) = P2ku (h2k (t), t) 
_ý 

(hzk 
(t) 

- a2ý (t)/ 
(h2k(t) 

- a2k (0). (3.22) 

In the upper wetted region of the 2k dry fibre ply, imposing the free surface 

kinematic condition gives 

v2k"(t) _ h2klt) + 0(S2kýtý - h2k(t)J (3.23) 

At the bottom resin layer, imposing the no-slip boundary condition at y=0 

yields 

v; (t) =o 

. 
Pressure in the first resin layer is 

Pi (3.24) 
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The position of the bottom fibre ply is 

(3.25) hl(t) = h1, o - 
ýLµ 

In the lowermost fibre ply, the free surface of the lower wetted region is 

bl (t) _1 hl (t) + h1, o. (3.26) 

and in terms of its initial position, eliminating hl (t) in (3.26) using (3.25) 

yields 

1L Fat 
81(t) = hl, o - (1 -) Lµ 

(3.27) 

At the top resin layer, the velocity is 

v2n+t (t) = hen+l(t) (3.28) 

and from (3.22) with k=n, the pressure is 

P2n+l(t) =-K 
(h2n(t) 

- a2n(t)) (/2+1(t) 
- h'2n(t)) (3.29) 

In terms of its initial position, the position of the top plate is 

hsn+i(t) = fan+i, o - (2n + 1) kLFO't. (3.30) 
µ 

From the initial condition 82k (0) = h2k(O) = h2k, o, the position of the free 

surfaces of the upper wetted regions in the 2k fibre ply can be found to be (see 

Appendix B) 

52k(t) = h2k(t) - 
EF,, t 

,k1,2, ... , n. (3.31) 
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The position of the free surfaces in the lower wetted regions in the 2k fibre 

plies are 

E, F 
JZk+i W= h2k+l (t) + Lµq5 ,k=0,1, ... ,n-1. 

(3.32) 

Hence, the heights of the resin-fibre interfaces and the free surface flow fronts 

for a typical k layer, are 

= hzk+l, o - ffw- 
L 

(2k + 1) 
Lµ 

a h2k+1 w>k=0,1 n (3.33) , ... , 

h2k = h2k-1 +d, k=1,2, 
... ,n 

(3.34) 

1 ) LLµ°t 
,k=0,1, ... ,n-1 

(3.35) 52k+1 = h2k+1, o - 
(2k 

+1- 

62k = h2k, o - 
(2k 

-1+11 
ýýFat 

Lµ ,k=1,2, ... ,n 
(3.36) 

where recall that n is the total number of fibre layers and d is the constant 

thickness of a fibre layer. 

Thus, differentiating (3.33)-(3.36), we obtain both velocities of the fibre layers 

and the free surface fronts 

h2k+i =- 
(k + 21 v Ltit 'k=0,1, ... ,n 

(3.37) 

h2k = h2k-1 ,k=1,2, ... ,n 
(3.38) 

bsk+i = -2(2k+1- 
1) 

V 
ýO 

t, 
k=0,1,..., n (3.39) 

ý Lµt 

sek = -2 
(2k-1+ 

Vjjit ,k=1,2,..., n. (3.40) 
Lµt 

3.3 Heat Transfer Model 

ýtFat 
V Lµ ' 

The heat applied in the autoclave initiates an exothermic heat reaction of the 

resin. As the resin flows into the dry fibre layers there are three different 
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regions through which the heat transfer process will occur, namely the fibre- 

free resin regions, the wetted fibre regions and the dry fibre regions. 
In the fibre-free resin layers, the two-dimensional convection-diffusion heat 

equation can be expressed as 

) .ý 
HR äa qtr 

+ yr f= Kr 
(ax 

r+a 02 T 

y2y 22 / Cr ät 
(3.41) 

while in the wetted fibre layers which is considered as saturated porous layers, 

the heat transfer in this layer is described by 

t 
3.42) 

at 
v' 

-I- v"' Oy 
w= Kw 

(aax 
w+ aay wT 

)+ ýCwR 

ac9a 

and in the dry fibre layers, in the absence of resins, only the conduction mode 

occur, hence 

aTf 
_ 

(02Tf a2Tj 
at - 

Kf 
ax2 

+ 
ay2 

(3.43) 

where T' =T (x, y, t), i=r, w, f denote the temperature, vi, i=r, w denote 

the vertical velocity flow component, a(x, y, t) is the degree of cure of the resin 

and the suffices r, w and f denote the resin, wetted fibre and dry fibre layers 

respectively. Ks, i=r, w, f are the thermal diffusivities, ci, i=r, w, f are the 

thermal specific heats, ¢ is the voidage of the fibre layer and HR is the heat 

of reaction of the resin. 

The thermal diffusivities are defined by 

Ki = -, for i=r, w, f 
PiCi 

(3.44) 

where tci are the thermal conductivities and p1 are the densities of the respec- 

tive regions. 
In the wetted fibre regions, the values of the thermal conductivity and heat 
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capacity are expressed by the rule of mixtures[27], 

lbw = ¢k,. + (1 - O)k j, (3.45) 

C. P. = Oc p, + (1 - O)Cfpf, (3.46) 

where the suffices r and f again denoting the resin and dry fibre properties 

respectively. The expressions for the rate of degree of cure for the thermoset 

resin are obtained from [51] which are 

Oa (al + a2a)(1 - a)(0.47 - a) a<0.3 (3.47) 
at a3(1-a) a>0.3 

where the temperature-dependent a1, i=1,2,3 are 

ai=AiexpI RT' I, i=1,2,3. 

Ai are specified pre-exponential factors, DE; are the known activation energies, 

and R is the universal gas constant. The degree of cure takes a value zero 

initially and 1 when fully cured. 

Boundary Conditions 

The initial temperature, Tj, j, is assumed to be uniform across the different 

regions and also assumed known, 

T, (x, Y, 0) = T. (x, Y, 0) = Tf (x, Y, 0) = Tini 
" 

(3.48) 

The prescribed autoclave temperature, T,,, is assumed known and is imposed 

at the top and bottom bounding plates of the laminates at y= hen+1(t) and 

y=0 respectively. Thus 

Tr (X, O, t) = Tr (x, h2n+1(t), t) _ Ta. (3.49) 
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The laminates are also assumed to be insulated at the ends x= ±L thus 

ffr 
(-L, y, t) = 

ffw 
(-L, y, t) = 

äTf 
(_L, y, t) = 0, (3.50) 

öx äx äx 
ýr(L, 

y, t) = 
'9 w(L, y, t) =. (L, y, t) = 0. (3.51) 

öx ax ex 

Continuity conditions for the temperature and flux are imposed at the interface 

of the saturated fibre and the fibre-free layers, 

Tr(x, hk(t), t) = Tw(x, hk(t), t) 
' 

k, - 
äy (x, hk (t) 3 t) =k aay (x, hk (t), t) 

}k=12... 
2n. 

and at the free surfaces, 

Tw(x, Sk(t), t) = Tf(x, ök(t), t) , 
}k=12... 

2n. 
k (x, 6k (t), t) _kf (x, Sk (t), t) 

3.4 Solution Techniques 

3.4.1 Scaling 

The following non-dimensionalised variables are introduced to facilitate the 

numerical solution procedure, 

tK, 
x=x_y -i = 

vs - (T1 - Tini) 
and i= y d' V' 

T=, an (T. - Tini) d2 

for i=r, w, f where d is the thickness of a dry fibre layer and V is the velocity 

of the uppermost plate, h2, ß+1(t). 
In the fibre-free resin layers, the non-dimensinalise heat equation becomes 

T2 'T OTr 
+ Pev' 5 yr \ äx 

r+ 
äy 

rI+ Jr 
ät 

(3.52) 
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while in the wetted fibre layers, equation (3.42) transforms to 

2 -Tw 
+ Pevti' 

ffw 
=D 

(ax2 a Tw 
+ 

a2T wl + (3.53) 
at aye / 

J. 
at 

and in the dry fibre layers, equation (3.43) manifests itself as 

a2T 2 af= 
Df 

\ äx 
f+ 3Tf) 

(3.54) 
y2 

Note that the tilde has been omitted. The dimensionless numbers are 

Pe = 
Kd, (3.55) 

Jr 
HR 

Ci. (Ta - Tini) 
(3.56) 

Jw = 
OPrHR 

(3.57) 
C. P. M. 

- Tipi) 

Df= 
Kf (3.58) 

Dw = 
Kw 
Kr 

(3.59) 

The rate of degree of cure equation (3.47) becomes 

öa 
_ 

(Cl + C2a) (1 - a) (0.47 - a) a<0.3, (3.60) 
at CO -a) a>0.3 

where 

d2ai 
C=!, 

Kr, 
i=1,2,3. (3.61) 

The solutions to the coupled, non-dimensionalised temperature and degree of 

cure equations (3.52), (3.53), (3.54) and (3.60) are carried out in a domain 

which changes with time. 
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The modified Euler method is used to discretize the first order rate of degree 

of cure equation (3.60). The predictor-corrector method can be expressed as 

an+l = an + At f (an) predictor (3.62) 

an+l = an + 
20t[ 

f (a, ) +f (a*+l)] corrector. (3.63) 

The Alternating Direction Implicit (ADI) finite difference scheme with the 

appropriate upwinding, proposed by McKee et al. [59], is employed to discretize 

the energy equations (3.52), (3.53), (3.54). The ADI method in split form is 

given by 

l1 2J 
(T1) 1' 

_ 
[1 + saby - gvtPeV, +2 52] (TI) + OtJig(a , 

(T1) ) 

(3.64) 

sa gv'Pe m+l 
[1 

2+2 vy] (T1)t, 
i 

(Tt) 1r+ öß-qv2 eý11l (Ti)m (3.65) 
[2 t 

J 

where (T, ), l=r, w, f represents the approximate temperature in the respec- 

tive 1 layer of resin, wet fibre or dry fibre at the mth time level for the node 
(i, j) where xi = xo + iLx, iEN and yj = yo + joy, jEN. 

The difference notation used are 

V (T 

vy(Tý) (T, ) 
-I 

Sx(T! )%J (T1)m 
1, J - 2(T, ) 

- (T! 
) +1,. 

7 

ay(T, ) = (7't) 
-i - 2(? - (T1) 

+i 
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and 

D,,, for the wetted fibre region 

a=Df for the dry fibre region 
1 for the resin layer 

p, q, r and s are defined as 

p= At/Ax, q= At/Ay, r= Ot/0x2 and s= Ot/Dy2 (3.66) 

and g (a 
, 7k (T, )!. ) is the exothermic reaction function from (3.60). 

3.5 Numerical Result 

The simulation to obtain the temperature distribution and the degree of cure 

distribution during the process is performed for 16,32 and 52 plies of fibres 

which are initially dry. The thermal material constants employed can be found 

in Loos and Springer[12] are given in Table 2.1. Other data constants for the 

flow properties used for the simulation are given in Table 2.2 (Blest[61]). The 

value of constants used in the curing equations are given in Table 2.3. 

Figure 3.2 shows the computed change in the non-dimensional thickness 

of the resin layers with time as pressure is applied to laminates consisting of 

three different number of plies. It is observed that for the given magnitude of 

force and viscosity (p =1, constant), the resin infiltration into the dry fibres 

and the consolidation of the saturated plies are almost instantaneous for all 

the thicknesses. 

Figures 3.3 and 3.4 shows temperature versus time at the centre of a com- 

posite consisting of different number of plies at heating rates of 2.8 K/min and 

11.1 K/min respectively. At both rates of heating, exotherms are observed to 

occur for all the composites and the magnitude of the exotherms is seen to 
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increase for thicker composites. The exotherms occur due to the fact that the 

rate of heat generated by the exotherms is higher than the rate of heat loss to 

the surrounding medium, thus the rapid rise in temperature. The increased 

magnitude of the exotherms is expected because the low thermal conductivity 

of the resin acts as a thermal barrier (see Kim and Lee [20]). 

Figures 3.5 and 3.6 shows the degree of cure versus time at the centre of 

a composite consisting of a different number of plies at heating rates of 2.8 

K/min and 11.1 K/min respectively. It can be seen that the predicted time for 

maximum cure to be achieved increases as laminate thickness increases. The 

graphs also show that a higher heating rate also increases the curing process. 

Figure 3.7 compares the temperature at the centre of a 16 ply composite 
for heating rates of 2.8 K/min and 11.1 K/min respectively. It can be seen 

that for the same thickness, higher exotherms are predicted for higher heating 

rates. Figure 3.8 compares the cure at the centre of a 16 ply composite for two 

different heating rates and it can be seen that the time to achieve maximum 

cure increases as the heating rate increases. 

Figures 3.9 and 3.10 show a one-dimensional profile of temperature through 

the thickness at different times for a 16 ply and a 32 ply composite at heating 

rate of 11.1 K/min. From the graphs, the model predicts a fairly uniform 

temperature distribution for the selected cure cycle throughout the process. 

The figures also display the effects of the exotherms as the composite thickness 

increases. 
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Figure 3.2: Resin thickness vs Time. 
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Figure 3.3: Temperature vs Time at the centre of the composites at heating 

rate 2.8 K/min. 
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Figure 3.4: Temperature vs Time at the centre of the composites at heating 

rate 11.1 K/min. 
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Figure 3.5: Cure vs Time at the centre of the composites at heating rate 2.8 

K/min. 
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Figure 3.6: Cure vs Time at the centre of the composites at heating rate 11.1 

K/min. 
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Figure 3.7: Comparison of Temperature vs Time at the centre of the compos- 
ites at different heating rates. 
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Figure 3.8: Comparison of Degree of cure vs Time at the centre of the com- 

posite at different heating rates. 
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Figure 3.9: Temperature vs Normalized height at different times during the 

process for n=16 plies. 
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Figure 3.10: Temperature vs Normalized height at different times during the 

process for n=32 plies. 
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3.6 Experimental Investigation 

In an experimental investigation carried out by P. Marshall of British Aerospace 

of the Sowerby Research Centre, 4 layers (equivalently, 8 plies) of stitched fab- 

ric were used. The plies in each layer were oriented alternatively at +45 degrees 

and -45 degrees to obtain a composite with uniform "strength" properties in 

both in-plane directions. Two separate cases were investigated: in the first, 

resin was distributed at the top and bottom of the stack of fibers, and in the 

second the same amount of resin was applied at the top only. The applied 

pressure was 85 psi (5.86 x 105 Nm-2), and the temperature quickly ramped 

to 175 degrees C and held for a 30 minute period. Here it may be remarked 

that the resin utilised begins to gel after such a length of time at this temper- 

ature. In each case the final thickness of the laminar was approximately 3.5 

mm. 

For the first case, Micrograph 1 shows complete impregnation of all plies 

although the 5th ply from the top indicates some small defects. However when 

the same experimental regime was applied to the stack with resin at the top 

only, only 6 out of 8 plies were impregnated, as is indicated in Micrographs 2 

and 3. It is clear that when the resin was placed at both ends of the stack of 

fibers, the infusion process is more successful and achieved full penetration in 

a shorter time; this was of course predicted by the model, and entirely to be 

expected. 

For a one resin, one fiber set-up, equations (3.36) and (3.35) for the imper- 

meation depth reduce to 

b= (3.67) 

where P here denotes the pressure. 

Additional experimentation on the resin alone, over a cure cycle equivalent 

to that of the infusion process, shows that the viscosity is below 10 Pas. Given 
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the very large changes in the viscosity over the cure cycle (as much as from 

1 to 105 Pas), an estimated viscosity of 10 Pas with an impermeation period 

of 15 minutes was adopted for the purpose of representing the cycle. The 

permeability, rc, more difficult to obtain, is estimated to lie between 5x 10-3 

and 5x 10-4 m2 and 10-3 was adopted for the order of magnitude calculation. 
Typical values of the porosity lie near 0.5. With these values, 

5=3.25mm (3.68) 

Given the average values taken for the parameters this is a reasonable match 
for the measured value of 3.5 x (6/8) = 2.625 mm. 

Finally, there was no evidence of distinctly differing resin distributions 

away from the centres of the micrographed sections, allowing some support for 

the one-dimensional model of the fluid flow offered in this thesis. 
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Figure 3.13: Micrograph 3. 
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3.7 Concluding Remarks 

A mathematical model has been developed for the resin infusion process of 

a composite laminate with n layers of dry fibres, each separated by layers of 

resin. As in the prepreg case, the velocity components for the flowing resin (in 

both the resin and the saturated fibre layers), could be reduced to a problem of 

solving a system of first-order ordinary differential equations, which admits a 

closed analytic solution. In addition, the use of a kinematic condition resulted 

in the solution for the free surface boundary of the resin as it infiltrates through 

the dry fibre layers. 

Three different regions resulted in this process namely the resin region, 

the saturated fibre region and the dry fibre region. Convection-diffusion equa- 

tions for the temperatures in the resin and the saturated fibre layers with a 

heat generation term were solved by an alternating-direction implicit method 

coupled with a 2"d-order Runge-Kutta method for the cure. In the dry fibre 

layers, in the absence of the resin, the diffusion equations were solved for the 

temperatures. 

An experimental investigation was performed to investigate the fluid dy- 

namical aspects of the process. Two cases of impregnation were performed 

where in the first case resin was distributed on top of a stack of fibres and in 

the second case the resin was distributed both on top and at the bottom of 

the stack. In both cases, the depth of impregnation agreed well with the value 

predicted by the model. 

It has been shown that the one-dimensional flow model is useful in mod- 

elling the resin flow process of the Resin Infusion technique. The one-dimensional 

assumption was not unreasonable because the flow is being restricted due to 

the dam being imposed at the edges of the composite. The temperature cal- 

culated also provided a good prediction of the behaviour of the process when 

different heat-up rates were applied thus validating further the usefulness of 

the model. 



Chapter 4 

Conclusion and 
Recommendation 

A mathematical model has been developed for both the prepreg curing process 

and the resin infusion process of a composite laminate with n layers of prepregs. 

Simulations are performed to predict the resin flow, heat transfer and curing 

of both processes. It was shown, subject to certain assumptions, that the 

velocity components for the flowing resin (both in the resin layers and in the 

saturated fibre layers) could be reduced to a problem of solving a system of 
first-order ordinary differential equations which, in the case where the layers 

of the saturated fibres are of equal thickness, admit a closed analytic solution. 

In the resin infusion flow model, the use of a kinematic condition enabled the 

free surface boundary of the resin to be determined, as it infiltrates through 

the dry fibre layers. 

A system of convection-diffusion equations with heat generation terms was 

solved by an alternating-direction implicit method (for the temperatures in the 

prepregs and the excess resin layers) coupled with a 211-order Runge-Kutta 

method for the cure. In the prepreg case numerical results have been compared 

with experimental data and found to give good agreement, particularly with 

regard to the temperature of the composite. In the resin infusion case, ex- 

98 



CHAPTER 4. CONCLUSION AND RECOMMENDATION 99 

perimental investigations have been performed and good agreement has been 

found between the experimental values and the computed values with regard 

to the penetration depth of the resin through the dry fibre layers. It has been 

been shown that the flow models, validated by the temperature simulations 

are useful for modelling the resin flow of both processes. 

Variable viscosity of the resin could have been considered in the flow model. 

The temperature-dependent viscosity would then couple the energy equation 

with the flow equations and a similarity solution of the flow model would 

not have been possible. A fully numerical procedure would be required to 

solve the Stokes's equation and the Darcy's equation which would then be 

employed in the heat equation to solve for the temperature of the laminate. For 

the Hercules 3501-6 resin, which is widely used in composites fabrication, the 

empirical function given by- (2.62) could have been employed in the simulation. 

This would have resulted in the complexity of the numerical model being 

increased significantly to the point where it would have been nearly intractable. 

The use of permeability models would further enhance the flow model. 

The Carman-Kozeny model (1.4) could be employed. For unsaturated flows 

in glass fabrics, the permeability database of Parnas [30] could be used for the 

characterization of the material. Further, as the degree of crosslinking of the 

polymer resins increases and the resin begins to solidify, the permeability of 

reinforcement is thus also dependent on the fluid viscosity and the degree of 

cure of the resin. 

The reinforcement which is made of fibrous porous material will, in general, 

deform under stress. Several studies have proposed a deformable porous media 

flow model in the prepregs and RTM processes. One deformable saturated 

media model is to consider it to behave like a sponge which when placed 

under stress will experience a decrease in volume [14,15]. For a deformable 

porous media which is initially dry, a model is proposed based on the theory 

of mixtures and using the momentum equation of both the elastic solid part 

and the wet part of the preform with a constitutive relation for the partial 
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stress tensor and internal body force [25]. 

Voidage is also an important issue which needs to be addressed. The pres- 

ence of voids in the final stages of the process degrades the quality of the 

composite and the minimisation or reduction of voids is one of the most im- 

portant objective of the fabrication process. In prepregs, voids are present 
due to entrapped volatiles between the layers during the lay-up process. In 

RTM and Resin Infusion, voids are present during the filling stage of the dry 

preforms. A two-phase model, proposed by Wood and Bader [34,35] and Chui 

[36] could be incorporated into the model to further enhance the simulation 

procedure. 



Appendix A 

Derivation of Prepreg Flow 

Equations. 

For arbitrary k consider the resin layer [-L, L] x [h2k, h2+1]. The quasi-steady 
flow equations are 

Ukk 1=0 (A. 1) 

VP k+i + 11O2U2k+l =0 (A. 2) 

where ulk+1, P k+1 are the velocity and pressure respectively in the resin layer 

[-L, L] x [h2k, hak+i], k=0,1, ... , n. 

Introduce the function f2k+1 (y) t) and set 

,. xafik+l (y, t) 

2k+l ay 
V k+i = f2k+i (Y) t) 

Inspection of the above equations indicates that 

5ýýý+1 
= 0, so that 

a ßy4+1 
=0 

y 

(A. 3) 

(A. 4) 

101 



APPENDIX A. DERIVATION OF PREPREG FLOW EQUATIONS. 102 

which may be integrated to give 

f2k+1(y, t) = A2k+1(t) y3 +B 2k+1 (t)y2 + C2k+1(t) y+ D2k+1(t) 
. (A. 5) 

In a similar manner, consider the saturated fibre regions 
[-L, L] x [hak-1, h2k], k=1,2, 

... , n. 

The flow equations are 

V"u2, ß=0 (A. 6) 

Uk-k W2k - -Opik (A. 7) 

where u k, Pf are the velocity and pressure respectively in the fibre layer 

[-L, L] x [h2k_l, h2k], k=1,2, 
... , n, and W2k = (0, h2k(t)). Introduce the 

function g2k (y, t) and set 

ulk - -x 
a2 92k (y, t) (A. 8) 

y 

112k = %l2k + 
ayk 1yß tý (A. 9) 

The continuity equation is automatically satisfied; substituting these velocity 

components into ( A. 7) yields 

1 
92k (y, t) =1 Q2k (t)y2 + R2k (t)y + Sek (t) 

" (A. 10) 

Let us return to the resin layer and consider (A. 2) and (A. 5). Differentiating 

(A. 3) and (A. 4) appropriately then gives 

aP2k+1 
= _6pA2k+lx äx (A. 11) 
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____1 äy = 2µ(3A2k+iy + Bak+l) (A. 12) 

where the explicit dependency on the arguments has been neglected for clarity. 

Integrate (A. 11) with respect to x to obtain 

P k+i = -3µA2k+ix2 + 6k+1 (A. 13) 

where 6k+1 is an arbitrary function of y and t. 

Differentiating (A. 13) with respect to y and equating with (A. 12) gives, after 

integration, 

elk+i = /t(3A2k+iy2 + 2B2k+iy) +'02k+i (A. 14) 

where V)2k+1 is an arbitrary function of t. 

Elimination of 6k+1 in (A. 13) yields 

+ 2µB2k+iy + 1b2k+i. (A. 15) P2k+l = 31A2k+i(y2 - x2) 

Applying the boundary conditions 

P2k+l =0 at x= ±L and y= h2k 
ik=0,1, ... ,n 

gives 

'02k+l = 3pA2k+l(L 2- h2k) - 2pB2k+lh2k (A. 16) 

so that the pressure p2k+1 is, from (A. 15), 

Pzk+i = 3µAzk+i(yz - xz + L2 - h2k) + 2pB2k+l(J - "2k). (A. 17) 
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From (A. 3), (A. 4) and (A. 5) we obtain immediately that 

ulk+i = -x(3A2k+iy2 + 2B2k+iy + C2k+l) (A. 18) 

V k+i = Alk+iy3 + Bak+iy2 + C2k+1Y + D2k+i" (A. 19) 

A similar analysis may be performed for the saturated fibre layers, 

[-L, L] x [h2k_1, hzk], k=1,2, 
... , n. We note from (A. 7), that 

apf f 2k 
u2' ̀µ OX 

I"aP2fk 

ay 
Thus, using (A. 8) - (A. 10), we obtain 

f a2 aP2k 

2 
92kx 

_ 
µQ2kx (A. 20) 

ax ic ay Ic 
and 

f 

-f _ (h2k - v%) 
y 

a äßk =-P (Q2kY + R2k) (A. 21) 

Integrating (A. 21) with respect to y yields 

f_ (Q2kv2 1r 
2k(X) t). (A. 22) P2k 

ý+ 
R2kY) +( 

Now differentiate (A. 22) with respect t6, equate 
aýx 

(x, t) to (A. 20), perform 

an integration with respect to x and substitute the expression for (2k (x, t) in 

(A. 22). This results in 

P2k =- 
ZýQ2k (Y2 - x2) -L R2kY + (A. 23) 
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where 0 is a function of t only. 

Using the boundary conditions for pressure, notably, 

pf =0atx=±L, y=h2k_l, k=1,2,..., n, 

results in 

P2k _ -2ýQ2k(y2 - x2 - h2k-1 + L2) - 
Rýak 

(y - hak-i). (A. 24) 

The velocity components are then obtained immediately from (A. 8) - (A. 10), 

ulk = -Q2kx (A. 25) 

V 2k = h2k + Q2kY + R2k. (A. 26) 

So far, the velocity components and pressure have been obtained to within 

arbitrary functions of time in each resin and saturated fibre layer. To deter- 

mine those arbitrary functions, it is necessary to consider the fluid boundary 

conditions at the top and bottom layer and the continuity conditions across 

each layer. 

At y=0 there is fixed impermeable plate. Consequently, there will be no-slip 

and no-flow, ie ui =0 and vi = 0. Applying these conditions to (A. 18) and 

(A. 19) result in 

ui = -x(3A1y2 + 2Bly) (A. 27) 

vi = A1y3 + Bly2. (A. 28) 

At the first fibre-resin interface y= hi we equate pi(hl) and p2 (hi) (equations 

(A. 17) and (A. 24)) to obtain 

3µA1 (-x2 + L2) + 3pAlhi + 2µBlh1 

=- 
2Q2 (-x2 + L2) (A. 29) 



APPENDIX A. DERIVATION OF PREPREG FLOW EQUATIONS. 106 

using ho = 0. Equaling coefficients of (-x2 + L2) gives 

-µQ2 3 Al or Q2 = -6rAl (A. 30) 
2 r. 

Equating horizontal velocity components at the first interface, y= hl, implies 

u2(x, hi, t) = ti(x, hi, t) 

ie. - Q2x = -(3Aih2 + 2B1hl)x 

or, using (A. 30), 

Bl = -6A1, c - 3Alhi 
2h1 

(A. 31) 

Thus , the velocities and pressure in the first layer are 

ui(x, y, t) _ -3Aixy IY - hl(t) 
h2(t)J 

(A. 32) 

vi (x, y, t) =2 Aiy2 
[2Y_ 

3 
(hi(t) 

+ h2 (t) /J 
(A. 33) 

pi (x, y, t) = 3µA1 I y2 - x2 + L2 - 
(hl(t) 

+ h2 (t) / 
yJ . 

(A. 34) 

The equation of the second velocity component at y= hl then gives a differ- 

ential equation for hl ie. 

hl =-1 Alhi (t) (hi (t) + 6K) (A. 35) 

At this point we have established (to within an arbitrary function of time) 

the rate at which the bottom-most resin layer decreases in thickness as resin 

is squeezed out at the sides (ie x= ±L). We now focus on the top-most layer 

where we perform a similar analysis and a force balance. 
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Applying a no-slip condition and a no-flow condition (through the moving 

plate) at y= hen+1 results in, after some manipulations, 

usn+t = -2(3A2n+1(y2 -h en+1) + 2B2n+1(y - hen+1)) (A. 36) 

v2n+1 = h2n+1 + A2n+1(y3 - 3h22 3 
n+1y + 2h2n+1) 

+B2n+1(y - hen+1)2. (A. 37) 

At the interface y= h2n(t) the pressures in the resin and fibre layer become 

P22n+I = 314A2n+1(-X2 + L2) (A. 38) 

Pen = 
r. 

( h- x2 + L2 - lt2n-i) - 
µR2n (hen - hen-i). (A. 39) 

2 rü 

Equating, and comparing the coefficients of x2 - L2 and the remaining terms 

results in 

Q2n -6sA2n+1 

Ren = 3icA2n+l(h2n + hen-1)" 

(A. 40) 

(A. 41) 

Applying a force balance at the top plate, where the vertical applied force is 

-Fa, gives 

IL F. =J p2n+1(x, h2n+1 (t), t) dx 

L 

= 311A2n+ý (2L(h+1 + L2 - hen) - 3L3) 

+4L/2B2n+i(h2n+1 - hen) using (A. 17). 

Solving for Bz�+t gives 

F. - 61iLA2n+1((h2n+t - hen)+2L 2) 
Ben+1 = (A. 42) 

4{iL(h2n+I - hen) 
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We now match the horizontal components of velocity, (A. 25) and (A. 36), on 
the interface y= hen ie we equate 

/f u2ni-1(x, h2n(t), t) 
- 

(x, h2n(t), t), 

that is, 

-x(3A2n+1(h2n - hen+1) + 2B2n+l(h2n -1z2n+1) : -- -Q2nx, (A. 43) 

Eliminating Q2n using (A. 40) yields 

en - hen+ý + 2r. ) B2n+1 = -3-A2n+1 
(h 

(A. 44) 
2 (h2n 

- h2n+1) 

We now match the vertical components of velocity, (A. 26) and (A. 37), on the 

interface y= h2, ß ie. we equate 

v2n+l(x, h2n(t), t) = v2n(x, h2n(t), t), 

that is, 

hen+l + A2n+l(h2n - 3h2n+lh2n + 2h2n+l) + B2n+l(h2n - hen+l)2 

= h2n + Q2nh2n + R2n" 

Eliminating B2, t+1i Q2n and R2� using (A. 44), (A. 40) and (A. 41) results in 

hen+1 - 
h2n =- A2n+i(h2n - 3h2n+th2n + 2h2n+1) 

3 2ý 
+- A2n+1 (h2n + h2n+1 + (h2n - h2n+1)2 

2\ (h2n - h2n+1) 

-6iA2n+lh2n + 3kA2n+l(h2n + hen-l). (A. 45) 
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To determine the unknown A2n+1 we must equate (A. 42) to (A. 44) which 

results in 

Fa - 6µLA2n+1((h2n+1 - hen) +3 L2) 
_3 

A2n+1(hän -hen+1 + 2ic) 
4µL(h2n+1 - h2n) 2 (h2n - h2n+1) 

or, upon rearranging and simplifying, 

A2n-1 = 
Fa 

(A. 46) 41LL(3nc + LL) 

Eliminating Ben+1 in (A. 36), (A. 37) and (A. 17) (with k= n) using (A. 44) 

results in 

u2nr +i(x)ylt) = -3Azn+ix y- h2n+i(t) x 

2 (y 
- h2n(t) + hen+l(t) 

- 
h2n(t)) 

(A. 47) 

v2n+1(XI y, t) = h2n+1(t) + A2n+1 [y3 
- 3h2n+1(t)y 

+2h2n+1(t) -2 
(y 

- h2n+1(t)) 
2x 

Ch2n (t) + h2n+1(t) 
hen+1(t) 

2- 
h2n (t) /1 

(A. 48) 

pen+1 ýx, yý t) = 3IiA2n+l [y2 
- x2 + L2 -h en (t) - 

(y 
- hen (t)) x 

(h2n (t) + h2n+1 (t) - h2n+1(t) 

2 r. 

- h2n (t) /J 
(A. 49) 

We are now in the position to tackle the general 2k saturated fibre layer and 

the 2k +1 resin layer. The expressions for the pressure and velocity in the 

resin layer are given by (A. 17) - (A. 19) while the expressions for the pressure 

and velocity in the saturated fibre layer are given by (A. 24) - (A. 26). We now 

equate pressure and velocity at the interface y= h2k. Matching the pressure 

gives 

P2k+1(x, h2k (t) 
i 

t) = P2k (x, h2k (t), t) 
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or 

3pA2k+i(-x2 + L2) _ -µý2 (h 2k - x2 - h2k-i + L2) 22 

-µR 
k (h2k - h2k_1)" (A. 50) 

Comparing coefficients of (-x2 + L2) yield 

Q2k =- 6f£A2k+1 

and comparing the remaining terms give 

R2k = 3IcA2k+i (h2k + hak-l) 

Matching the horizontal velocity components, that is, 

ulk+l (x, hak (t), t) = ulk (x, hak (t), t), 

gives 

-x 
(3A2k+lh2ik + 2B2k+ih2k + C2k+i) =- xQ2k 

or 

(A. 51) 

(A. 52) 

C2k+l =- 6nA2k+l - 3A2k+ih2k - 2B2k+lh2k. (A. 53) 

Similarly, matching the vertical velocity components, that is, 

V k+l (x, hak+i (t), t) =V 2k (x, hak (t), t), 

gives 

D2k+l = hak + 3KA2k+i(h2k + h2k-1) + 2A2k+lh2k + B2k+lh2k. (A. 54) 
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The next step involves the matching of -the pressure and velocity components 

at the interface y= h2k+1. 

Matching the pressure at y= h2k+1 (from (A. 17) and (A. 24)) gives 

P2k+1 (x, h2k+1 (t» t) =P k+2(x, 
h2k+1 (t), t) 

ý 

that is, 

+ L2 -h2 3MA2k+1(h2k+l - X2 k) +2 LB2k+1(h2k+l - h2k) 

Q2k+2(-x2 + L2). (A. 55) --A Tr. 

Equating the coefficients of (-x2 + L2) yield 

Q2k+2 =- 6r. Aak+l (A. 56) 

while equating the coefficients of the remaining terms give 

Bak+i =-2 Aak+i (1ýak+i + h2k) 
. 

(A. 57) 

Matching the horizontal velocity components from (A. 18) and (A. 25) at y= 

h2k+1 gives 

,= ulU k+i 
(X, h2k+i (t)t 

k+2 
(x, h2k+1 (t), t), 

that is, 

2 
-x 

(3A2k+1 t2k+1 + 2B2k+1 h2k+1 + C2k-f l) 
Q2k+2x 

which gives 

C2k+i = Q2k+2 - 3A2k+Ih k+l - 2B2k+lh2k+i" (A. 58) 
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Elimination of Q2k+2 and B2k+1 using (A. 56) and (A. 57) results in 

C2k+l = (-6k + 3h2kh2k+i)A2k+1" (A. 59) 

Matching the vertical velocity components (from (A. 19) and (A. 26)) at 

y= h2k+1 gives 

väß+i (x, hay+i (t» t) =V k+2 (x, hak+l (t), t), 

that is, 

A2k+1h k+i + Bak+ih2k+l + C2k+lhak+l + D2k+i 

= h2k+2 + Q2k+2h2k+i + R2k+2. (A. 60) 

Elimination of D2k+1, Q2k+2, B2k+1 and C2k+1 using (A. 54), (A. 56), (A. 57) and 
(A. 59) respectively allows us to solve for R2k+2 : 

R2k+2 = 3A2k+1K(hak + h2k_1) 

2A2k+i(h3 2k+i - 3hzk+lhak - h2k + 3h2kh2k+i) 

- 
h2k+2 + h2k. (A. 61) 

Since the saturated fibre layers are being treated as incompressible, a pressure 
balance may be applied over the fibre layer lying between y= h2k+l and 

y= h2k+2, that is, 

L JL (p+2(x, 
h2k+2 (t), t) - P2k+2 (x, h2k+1(t) 

j 
t) 1 dx = 0. 

Substituting from (A. 24) (with k replaced by k+ 1) and integrating yields 

-pQ2k+2 (h k+2 - hzk+1) - 
ILRý +2 (h2k+2 - h2k+1) = 0. 
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Elimination of Q2k+2 using (A. 56) then gives 

R2k+2 = 3KA2k+1(h2k+2 + h2k+1)" (A. 62) 

Equations (A. 51) and (A. 56) imply that Q2k = Q2k+2. Furthermore, they also 

imply that Alk+1 = A2k_1. But k(1 <k< n) is arbitrary. Thus we may set 

A2n+1 = A2n-1 = ... =A3=Ai = A, say. 

However, from (A. 46) 

FQ 
A2n+I - 4jL(3r. + L2) 

and so 

A= 
FQ 

4EzL(3ic + L2) 
(A. 63) 

Hence, eliminating D2k+1, B2k+l and C2k+1 in (A. 17)-(A. 19) using (A. 54), (A. 57) 

and (A. 59) respectively yields 

unk+i fix, y, 0_ -3Ax 
[ (y 

- h2k(t)) (Y 
- h2k+1(t)) - 2r, ] , 

(A. 64) 

v4k+i (x, y, t) = h2k (t) - 3rcA [2y 
- 

(hak-l(t) + h2k (t)/ ] 

+A I y3 -2 
(h2k(t) + hak+l(t)) y2 + 3hak(t)h2k+l(t)y 

+2 2k(t) - Zhzk(t)h2k+i(t)] , 
(A. 65) 

Psk+ý(x, y, t) = 3FzA[(y - h2k(t)) (y 
- hak+l(t)) - x2 + L2] . 

(A. 66) 

In the saturated fibre layer, substituting (A. 56) and (A. 61) into (A. 24)-(A. 26) 

yields 

u2k(x, y, t) = 6icAx (A. 67) 
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Vk (x, y, t) = h2k (t) - 3rcA [2y 
- hak-1(t) + hak (t)) ] (A. 68) 

Pk (x, y, t) = 3µA [ (y 
- h2k_1(t)) (y 

- h2k (t)) - x2 + L2] (A. 69) 

Equating (A. 61) and (A. 62) gives, after rearrangement, 

1 h2k+2 - 
h2k _ -3i A(h2k+2 + hak+i - h2k - h2k_1) -1 A(hzk+i - h2k)3. 

(A. 70) 

Finally, we recall our assumption that the prepreg is non-deformable, that is, 

h2k = h2k l+ dk, k=1,2,... 
1 n. (A. 71) 

This, in turn, implies that 

' 2k = hak-i, k=1,2,... 
, n. (A. 72) 

The system of differential equations (A. 70) may be rewritten, on elimination 

of h2k_1 and h2k+2 using (A. 71) and (A. 72), as 

hak+i - h2k =-2A 
[(h2k+i 

- h2k)3 + 61c(2h2k+i - 2h2k + dk + dk+i)] 
, 

k=1,2, ... ,n-1 
(A. 73) 

where A is given by (A. 63). 

Simplifying (A. 45) and using (A. 71) yields 

hen+i - hen 
2A 

[(h2n+i 
- h2n)3 + 6s (h2n+i - h2n + dn) ]. 

(A. 74) 

To close this system we also require (A. 35) 

hl =- 
2Ah1 (hi + 6rc) . 
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together with the fact that hen+1 =V say, a known measurable velocity. 

Initial conditions h2k (0), k=1,2, ... , n, are simply obtained from the initial 

thickness of the resin. 



Appendix B 

Derivation of RFI Flow 

Equations. 

We first note that an "internal" layer, whether it be fibre or resin has (geomet- 

rical) symmetry. The bottom resin layer (k=1) and the top layer (k = 2n + 1) 

must be considered separately. 
We begin, however, by making a number of observations for all layers. 

Firstly, in the fibre-free (2k - 1) layer of resin, integrating the incompressibilty 

condition (3.1) yields 

VT 2k_1 = V2k_i (x, t) (i. e. v4k_1 is not a function of y) 

and integrating the momentum equation (3.2) yields 

P k-1 = p2k_1(y, t) (i. e. P2k_I is not a function of x). (B. 1) 

Hence, differentiating (B. 1) with respect to x, reduces the Stoke's equation 
(3.3) to 

Ö3yr arg-1 

ax3 
116 
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which, upon integration, yields 

v2k-1(X, t) = A2k-1(t)x2 + B2k-l(t)x + C2k-1(t)" (B. 2) 

Similarly, in a typical (either upper or lower) wetted regions of the 2k fibre 

layer, defined by (3.4), integrating (3.5) and (3.6) respectively yields 

w, i w, i 
V2k = v2k (x) t) (B. 3) 

P2kt - P2kt(Y, 0 (B. 4) 

where i=u, l denotes upper or lower regions respectively. Hence, differentiat- 

ing (3.7) with respect to y gives, 

a2 
i 

yy 1Z 
(y, t) =o 

which on integrating the above yields the pressure 

Pzku(Y t) = Q2ky + Rik (B. 5) 

p(y, t) = 
Qzky +R, (B. 6) 

2k` 

where Q and R are functions of t. 

Further, the velocity expressions in the lower and upper wetted regions may 

be obtained from (3.7) 

v2ku(t) = 1L2k(t) - µQ2k v 
(B. 7) 

V2k1 W= fl2k-l (t) - AQl (B. 8) 
r 

2k' 

The dependence of p2k_1(y) t) and V k_l(x) t) on t only will now be established. 

Recall that 

v2k-l(x, t) = Alk-1(t)x2 + B2k-1(t)x + C2k-1(t) (B. 9) 
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and 

v2k1 (x, t) = h2k-1 (t) 
- -Q2k 

(t) 
" (B. 1O) 

At y= h2k_1(t) the continuity of the normal velocity is assumed, that is 

ýB. 11ý V2k-1(X, t) = v2k`(x, t) 

which implies, upon equating coefficients of powers of x, 

A2k-1 = B2k-1 =0 (B. 12) 

and 

C2k-1 = h2k-l(t) - 
6Q2k(t). (B. 13) 

Thus v2k_1(x, t) is a function of t only, and henceforth shall be denoted by 

v2k_1(t). Note that this argument holds for all k=1,2, ... , n. 

(The assumption of continuity of normal velocity is only really valid for high 

porosity (i. e. 4 1); the more accurate requirement might be continuity of 

flux that is 

V2k-1(x, t) = v2k'(x, t) etc). 

Now consider the pressure in the general resin layer. 

From (3.3) 

2 

OyPU-1 =52 V2k-1 =0 (B. 14) 

using the fact that v2k_1 has now been shown to be a function of t only. This 

demonstrates that p2k_1 is independent of y. However, from (3.2), p k_1 is also 
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independent of x, and so can only be a function of t. 

Henceforth, we shall write 

P2k-1(Y) t) = p2k-i(t) 

Note again that this is true for all resin layers, k=1,2, 
... , n. 

The fact that the p2, ß+1(y, t) 
is also a function oft only is established later (eg. 

see (B. 39)). 

Now from (B. 5), applying the zero pressure condition of the upper free surface, 

y= 52k (t), yields 

4k =- Q2kö2k (t) (B. 15) 

The pressure is assumed to be continuous on the interface y= h2k(t), that is, 

P2k+1 (t) = P2ku(h2k (t), t) =Q h2k (t) + `°2k 

using (B. 5). However, from (B. 15) we have 

P2r k+1 
ýtý 

- 
Q2k 

lh2k 
(t) 

- °2k (t)) 
, 

(13.16) 

(B. 17) 

(Note since we have shown pr is independent of y, this is true for all 
yE [h2k, h2k+1]. ) 

But, imposing the free surface kinematic condition, (3.13), in the upper wetted 
2k fibrous layer, gives 

V2k"(t) = leak + cb(62k - 
h2k) (B. 18) 

and comparing this with (B. 7) yields 

Q2k =-K (52k - 
/12k)" (B. 19) 
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Thus, inserting (B. 19) into (B. 17) gives 

Päk+i(t) = Piýu(h2k, t) _ 
o(h2k 

- S2k)(h2k - Jak)- (B. 20) 
rAl 

Also, inserting (B. 15) and (B. 19) into (B. 5) gives 

P2ku(y, t) : -- 
o(hak 

- b2k)(y - 52k)" (B. 21) 
ril 

We shall now consider k=1 separately. 

At y=0 we have 

(B. 22) 

and since we have demonstrated that vI is not a function of y (i. e. the resin 
in the bottom layer is static) we have 

vi (t) =0 for all yE[0, hl (t) ]. 

At y= hl (t) we assume continuity of flow, that is 

vr W= vw, 12N 
Q12 

Y 

which implies 

hl(t) =µQ2. (B. 23) 

However, we require the continuity of pressure across y= hl (t), that is 

p', (t) = P"(hi(t), t) = Q2 hl(t) + R. (B. 24) 

But the pressure #, "(t) has been shown to be independent of y and so 

pi (t) = Q'hi (t) + R2 for all yE [0, hl (t)] 

= 
µhl(t)hl(t)+RZ from (B. 23). (B. 25) 
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Further on the free surface y= 61(t), there is zero pressure 

Pi'1(al (t) , t) =0 

which implies that 

R Q2a1(t) 

so that 

Pi (t) = hi (t) (hi(t) 
- Sl (t) (B. 26) 

At y= bl (t), there is also the kinematic condition that is 

v2 'ý - 
hl (t) =¢ 

(s1(t) 
- hl (t)) 

. 
(B. 27) 

But this expression is independent of y and so must hold for all yE [hl (t), Sl (t)]. 

Equating (B. 27) with the velocity vi (=0) at y= hl (t) gives 

-hl 
(t) = O(bl (t) 

- 
hl (t)) 

which, after rearranging and integrating, gives 

(1 - 0)hi(t) + 05, (t) = constant. 

The constant may be determined by applying the initial condition for the free 

surface 

bl (0) = hl (0) = hl, o 

yielding 

bl (t) =1 hl (t) + h1, o. (B. 28) 
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and so, eliminating Sl (t) in (B. 26), yields 

Pi (t) _ 

±-hi(h, 

- hi, o). (B. 29) 
r. 0 

We consider the fibre layer k=n where the velocity and pressure in the upper 

wetted layer are 

v2nult) = h2n(t) - µ` 2n1 
(B. 30) 

p2nu(ýJ, t) = Q2nY + Ren (B. 31) 

From the continuity conditions at the interface y= h2n(t), pressure is 

P2n+1(h2n) t) = Q2nh2n -{" Ren. (B. 32) 

Applying the zero free surface condition at y= ben gives 

0= Q2nb2n + R2, ß. 
(B. 33) 

Hence, 

R2n =- Q2nb2n. (B. 34) 

Applying the kinematic condition (3.13) at y= 52, E gives 

R2n =- 
µ0(tS2n 

- IL2n) 
. 

(B. 35) 

Hence, velocity and pressure in the 2n layer are 

V2nu(t) = h2n + 02n 
- h2n), (B. 36) 

P2nu(YY 0=- (82n 
- 

1Z2n)(2J 
- 

ý2n) (B. 37) 
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We now consider the topmost resin layer where the velocity of the top plate 
is v2n+1(t) = hen+1(t). Matching this velocity with the velocity of the upper 

wetted fibre layer (B. 7), at y= h2, ß, yields 

Q2n =- 
(h2n+1 

- 112n)" (B. 38) 

In (B. 5), applying the zero pressure condition at y= c52n(t) and substituting 
(B. 38), k=n gives, 

p2n+1(t) = P24u(h2n(t)i t) (h2n 
- a2n)(h2n+1 

- h2n)" (B. 39) 

We now turn our attention to the top resin layer, y= hen+1, where the applied 
force, -Fa is opposed by the viscosity of the resin. A force balance over the 

top plate of length 2L gives 

L 

Fa =f Pen+l(t)dx (B. 40) 
L 

and on integration yields 

Pen+I (t) = 2L 
(B. 41) 

Since the pressure in this layer is a function of t only, 

P2n+1(t) - 2L 
for YE [h2n, h2n+1]. (B. 42) 

Furthermore, since the fibre layers are assumed incompressible, the next resin 

layer will experience the same pressure and so on. We can therefore conclude 

that 

Pi (t) =Ps (t) _- 2L 
(B. 43) ... = Pen+1(t) 
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Equation (B. 20) now becomes a differential equation in h2k - 82k 

(h2k - a2k)(h2k - 82k) = 
r. Fn 

(B. 44) 
2Lp 

Integrating, and applying the initial condition Sek (0) = h2k (0) = h2k, o, results 
in 

: 
r. Fat 

82k = h2k - Lµo 7k=1,2, ..., n. (B. 45) 

From the geometry (see Figure (3.1)), Sek < h2k and consequently the minus 

sign has been chosen. This relates the moving front from S2k(t) to h2k(t). 

However, we also require an expression for Sek+1(t) 
. To obtain this we return 

to p2,, +, (t) and p"' 2k+2 (t) 

Requiring continuity at y= h2k+1(t) implies 

P2k+i(t) = P2k+2(hak+i(t), t) = Qäk+ah2k+i(t) + Rak+a. (B. 46) 

From (B. 6), applying the zero surface condition at the lower surface y= 82k+1 

implies 

112k+2 -- 
Q2k+262k+1 (t)" (B. 47) 

Again, we have the kinematic condition (3.13) 

v2k+z(t) = hak+i + c5(S2k+i - hak+i) (B. 48) 

which implies 

Q2k+2 =- 
ý02k+1 

- 12k+i)" (B. 49) 
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Thus 

P2k+i (t) _-5 (Sak+i - h2k+i) (h2k 4l- J2k+i) 
" (B. 50) 

Using (B. 43) we obtain the differential equation 

(b2k+1 
- 

h2k+1)(a2k+1 
- h2k+1) - 

KFa (B. 51) 2Lµq 

Integrating the above yields 

2 
(82k+1 - h2k+1)2 = 2Lµat + constant. (B. 52) 

But, constant =0 since h2k+1(0) = 82k+1(0) = h2k+1, o" 

Therefore 

Fdt (ä2k+1 
- h2k+1) =t Lµ0 

V 
jFd 

Lµß 
from physical/geometrical argument. 

(B. 53) 

Rearranging the above gives, 

62k+1 = h2k+1 + Lµß 
,k=0,1, ... ,n-1. 

(B. 54) 

For the general 2k +1 resin and 2k fibre regions, we have 

V2k+1 = V2k+2 = h2k 
F1 + 0(S2k+1 - 

h2k+l) (B. 55) 

w, u V2k = h2k + 0(b2k - h2k)" (B. 56) 

At y= h2k 7V k+l = v2k" so that 

h2k+1 - h2k + +002k+1 - h2k+1) - 0(a2k - /12k) =0 (B. 57) 
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or, upon rearranging, 

h2k+1 - h2k = 0[ (b2k+1 
- s2k) - 

(ilk+1 
- '12k) ý 

(B. 58) 

(ý - 1)(h2k+1 - h2k) _ O(ä2k+1 - (52k) (B. 59) 

1 
: 
r. F l 

= at ) [ (h2k+i 
+2L 

µý 

(-1 KFQ ll (B. 60) -1h2k 2 Lm tIJ 

[(2k+1 
- h2k) + VLt 

,. (B. 61) 

Thus h2k+1 - h2k _ -ý 
Lý 
ýF 

µýt 
(B. 62) 

ýýFQ 
and so h2k+1 - hzk =- Lµt 

(B. 63) 

Integrating and using 

hak+i = h2k+i, o and h2k = h2k, o when t=0 (B. 64) 

gives 

ILgFQt 
hak+i (B. 65) - h2k = hak+2, o - h2k, o -2 Lµ 

Consider (B. 27), where now 

M= Pi (t) = hl (hi - hl, o). (B. 66) 

Integrating this gives 

() ! ýOF°t (B. 67) hl t= hl, o -µL 
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We now prove the following: 

h2k+i(t) = h2k+1, o - (2k + 1) ,` a' (B. 68) 

b2k+l(t) = h2k+1, o - (2k +1-) 
OF t 

(B. 69) 

82k(t) = h2k, o - (2k +1+)I 
Fat 

(B. 70) 

with h2k = h2k+1 + d. 

Consider 

k=0,1, 
... , n. (B. 71) hak+1(t) = hak+1, o - (2k + 1) ýýL° t 

Setting k=0, we obtain 

frcq Fat 
hl(. 72) t) = hl, o - (B. 72) 

µ 

which is none other than (B. 67). 

Assume (B. 71) is true for k=v-1 

FoýýF; 
h2�_1 = h2�_1,0 - (2v - 1) (B. 73) 

Thus (B. 65) for k=v becomes 

I 
lcc5Fat 1iav+1 = h2v + h2 +1, o - h2 

,o-2L µ 

ýcýFQt 
_ (hav-1 + d) + ha�+1,0 - (h2v-1,0 + d) -2 ýL 

Iq Fat 

VµL 

_Fat cbF t 
_ 

(h2_1,0 
- (2v - 1) _ 

µL 
)+ h2,. +1,0 - h2Y_1,0 -2 

kýL z 
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ýýFat (B. 74) = h2ý+l, 0 - (2v + 1) 
L µ 

which completes the induction argument. 

From (B. 54) we have 

62k+l(t) = h2k+i (t) +L (B. 75) 

Therefore 

ýF; t icq5Fat Sak+1(t) (h2k+1, 
o - (2k + 1) J+ 

lýL 

= h2k+1,0 - (2k +1- (B. 76) 
L 

Similarly 

- 

EFt 
bak (t) = h2k 

ýýL 

h lýFat 
= ak-i +d- 

µýL 

= h2k-1, o -(2(k - 1) + 1) ! 1tLat 
+d- 

LQt 

1 ýýFat 
= h2k, o - (2k -1+) µL 

(B. 77) 

Thus (B. 68)-(B. 70) have been demonstrated to be true. 

We now consider the top layer resin layer. Eliminating the pressure in (B. 39) 

using (B. 43) and eliminating Sen, (t) using (B. 45) with k=n results in 

h2n+1 - hen =-V 4Lµt 
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Integrating the above yields 

V 
lý(ýFat hen+1 = hen + hen+l, o - h2n, o -L (B. 79) 

But 

hen =h 2n, p - 2n 
Lµ (B. 80) 
Fnt 

Hence 

- 2n 
Lµ + hzn+1,0- h2n, o - Lµ = 

(h2,0 /COFat 
/V 

kcFat 

(2n + 1) Lý Fl ° = han+1, o -Lp (B. 81) 

In summary, the heights of the resin-fibre interfaces and the free surface flow 

fronts for a typical k layer, are 

h2k+1 = h2k+1, o - (2k + 1) -Lµ a' 
,k=0,1, ... ,n 

(B. 82) 
L 

h2k = h2k_1 +d, k=1,2, 
... ,n 

(B. 83) 

J2k+1 = h2k+1, o - 
(2k +1- ýLA°t 

, k=0)11 =0,1,..., n-1 (B. 84) 

82k = h2k, o - 
(2k 

-1+)ýLµnt, k=1,2, ... ,n 
(B. 85) 

where recall that n is the total number of fibre layers and d is the constant 

thickness of a fibre layer. 

Thus, differentiating (B. 82)-(B. 84), we obtain both velocities of the fibre layers 

and the free surface fronts 

noFnt 
Lµ ' 

Alk+i =- 
(k + 

2) Ltk=0,1, 
... ,n 

(B. 86) 
µ 
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h2k = h2k_1 
,k=1,2,.. ., n (B. 87) 

hak+i =2 
(2k +1- 

1) Lµ 
'k=0,1, ... ,n 

(B. 88) 

52k =-2 
(2k 

-1+V 
Lµta 

'k=1,2, ... , n. (B. 89) 



Appendix C 

ADI Method 

The purpose of this appendix is simply to illustrate the essential ideas of 

the implementation of the ADI procedure. We shall consider the application 

of ADI to the prepreg case (see Chapter 2). For clarity of exposition, both 

convection and reaction are neglected. It is not difficult to reinstate them, 

but the expressions become unnecessarily complicated and clarity is lost. The 

non-dimensionalised heat equation, for an isotropic medium, is rewritten below 

as 

22 
0 'T 

(C. 1) 
Täaý 

ax +ä2T y 

where a is the dimensionless constant defined by 

a_f 
Jf =D in saturated fibre region (C 2) 
Jr =1 in resin region. 

In equation (C. 1), T=T (x, y, t) represents the temperature of in the respec- 

tive domains of the fibre-free and fibre regions with the initial and boundary 

conditions given by equations (2.69)-(2.72). 

Discretizing equation (C. 1) using the ADI implicit scheme given in Douglas- 

Rachford split form (see equations (2.80)-(2.83), see also McKee et al. [59]), 

131 
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gives 

ll 
-2 8i] T +1* _ 

[1 
+ say +2 öx] Ti 

+1 _T m+,. sa 
2d _ye, Tip. 

2y 
Timi 

132 

(C. 3) 

(C. 4) 

At each time step this is a two-stage process. An intermediate temperature, 

Tý"1*, is calculated along lines in the x direction (omitting the interfaces) 

and the final temperature, T J+1, is computed along lines the y direction. 

The intermediate temperature at the interfaces (see equations (2.73)-(2.74)) 

is calculated from 

(Tf) ä 1ý _ (T,. ) 1w (C. 5) 

n`+' D* ((Tf)i, 
j+l - (Tfý! 'tl*) 

s, j / 
)m+1* _ (Tr)s, j m+l" - (Tri, j-1 (C. 6) 

for {i, j} E Ek, k=1,2, ... , 2n, where Ek denotes the set of nodal points on 

the kth interface. The subscripts f and r denote the fibre and resin layers 

respectively. 

The temperature, T 7, denotes an approximation to T (izx, joy, mzit) which 

is defined on a moving mesh with mesh ratios 

_ 
At of (c. 7) r (0x)2 'S (L\ )2. 

Note that the explicit dependence upon time is not displayed; it is only Ay in 

the resin layers that decreases with increasing time, as the resin is squeezed 

from the resin layer. 

The central difference is defined as 

byý =T +jj - 27 71 + Ti"! � j (C. 8) 
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with the corresponding definition for Jy. 

To illustrate the ADI procedure, consider the case of an layer prepreg con- 

sisting of alternate layers of impregnated fibre on a simple rectangular grid of 

p[2n(v + 1) + v] nodes where n is the number of prepregs, it is the number of 

horizontal nodes and v is the number of vertical internal nodes in each layer of 

resin and fibre (see Figure C. 1). The number of nodes are invariant to time, 

that is Ay decreases in such a manner as to maintain v is fixed. 

Applying the above difference equations to each layer of the fibre and the 

resin for the intermediate time step yields 

(I +2 H)Tm+1* _ (I -2H- saV)Tm +b (C. 9) 

where 

flu 

nv 

WIL 

nv 

H- 
[K 

i-l i 

K 

WV 
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for the 2n +1 layers. The matrix H is µ[2n(v + 1) + v] x µ[2n(v + 1) + v]. 

The block matrices Wk 
Ik=1,2, ... ,v are defined as 

2 -2 

-1 2 -1 
71k -, k=1,2, 

... , v. (C. 10) 

-1 2 -1 
L -2 2 

xµ 

where the `-2`s appear as a consequence of the derivative boundary conditions. 

The block matrix 1C is 

1 
1 

K= 

1 

-(D* + 1) 
-(D*+1) 

D* 
D*.. 

-(ý* + 1) 

that is, 

JC =I Iµ - (1 + D`)Iµ D`II] 
LJ µx3µ 

Note that the matrix, K is apx 3µ matrix and 'overlaps' with the previous 

matrix ? {� and the next matrix Iii. Thus H is a block matrix except at 

the 'interface'. This allows the essential idea of ADI to be exploited, the 

values on the interfaces or the intermediate step being computed explicitly in 

Gauss-Seidel fashion after the intermediate temperatures of the resin and fibre 

have been calculated. Using the latest updates to calculate the intermediate 
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temperature on the interfaces implies that ft takes the form of. 

n1 

ýv 

L0 

ýv 

0 
H= 

ý1 

135 

flu 

0 
flu 

7v 

7 

where [0] is the µx 3µ null matrix. 

The matrix fl is µ[2n(v + 1) + v] x a[2n(v + 1) + v]. 
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The matrix V is " 

Vl 
V2 

vi, 
L 0 

V1 

V= 

where 

VII 
[ o ] 

v1 

V� 

136 

17 

- Iµ] , 
(C. 11) Vl = 

[2111 

Vk = 
[-Iµ 

2Iu - Iu] ,k=1.... ,v, 
(C. 12) 

and 

V� = [-Iu : 2I,, ] . (C. 13) 

The matrix V is p[2n(v + 1) + v] x µ[2n(v + 1) + v]. 

The vector b is 

b=[ bi, bz,.... bµ, 0,..., 0, bi, bai..., bý ]T (C. 14) 
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where 

bi = saTe ,i=1,2, ... , µ. (C. 15) 

In the intermediate step, the matrix H is almost tridiagonal. The individual 

matrices Ilk are tridiagonal and the corresponding vector temperature values 

are computed directly using the Thomas algorithm (see Varga [63]). When this 

is accomplished, we return to the temparature nodes on the interfaces and then 

computed them explicitly from the values of 7+1. which have already been 

computed. 

To calculate the temperature value T +1, the order of the nodes are rear- 

ranged. Instead of an ordering along lines parallel to the x-axis, a new ordering 

is introduced along lines parallel to the y-axis. The resultant matrix is then 

block diagonal with each block a tridiagonal matrix each of which may be 

solved by the Thomas algorithm. 

As time progresses, the resin layers are reduced (recall that the fibre layers 

are assumed incompressible and hence have a fixed thickness) and consequently 

in these regions the mesh moves. To take account of this, after each time step, 

the position of the mesh is computed and linear interpolation in the y-direction 

is employed to compute the corrected value of the temperature on that new 

mesh. The scheme for the final time step is 

1+2 vl T'+' = Tom, +' + [cT} Tm. (C. 16) 
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The tridiagonal matrix V can be expressed as 

v= 

V1 
V2 

Vt, 
K 

V1 

vtl 
[Kl 

vi 

vv-1 

vv 
- 

and the matrix V is 

V1 
V2 

vi, 
0 

V1 

v= 

v&, 
[0] 

vl 

vt, _ 1 
VP. 
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Note that this matrix is µ[2n(v + 1) + v] x µ[2n(v + 1) + v] and that V1, V. 

and Vk, (k = 1,2, ... , v) have all been defined previously (eg. (C. 11)-(C. 13)). 

The solution to the linear system of tridiagonal matrix is obtained directly 

using the Thomas algorithm (see Varga [63]). 

For the matrix equation 

Az =b (C. 17) 

where 

d1 c1 0 ... 0 b1 

a2 d2 c2 0 b2 

A= 00 and b= (C. 18) 

an-1 do-1 Cn-1 bn-1 

0 ... 0 an do bn 

defining 

Cl Ct 
wl =; wt =, 2<i< n- 1, (C. 19) 

d1 di 
-a w{-1 

and 

bi bi - aigi-I 2<i<n (C. 20) 
dl di - aiwi_i 

the components of zi of the solution vector z are then given recursively by the 

following backward substitution procedure 

Zn = 9n; zi = 9z - w; zi+l, 1<i<n-1. (C. 21) 
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