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Abstract 

Ultrasonic non-destructive evaluation (NDE) is employed extensively across many 

industries to ensure the integrity of safety critical infrastructures. Where the structure 

is formed of coarse-grained materials, such as austenitic steel and Inconel, ultrasonic 

NDE presents a significant challenge arising from their heterogeneous structures and 

elastic anisotropy. The Thesis addresses two longstanding problems encountered in 

ultrasonic NDE of coarse-grained materials: phase aberration and backscattering noise.  

Phase aberration denotes that the wavefronts from elements of a phased array undergo 

phases shifts. A phase aberration correction approach based on microstructural 

characterisation and finite element modelling is evaluated in the third chapter. The 

validation of an emerging microstructural characterisation technique is presented. This 

embodies two approaches to simplifying measured crystallographic orientation data to 

construct finite element models, a reduction of computational overhead by 20 times is 

achieved whilst maintaining model fidelity. 

The split-spectrum processing (SSP) technique has been widely used to suppress 

backscattering noise by employing a bank of bandpass filters followed by a 

combination operator. However, conventional combination algorithms are either 

ineffective or sensitive to the variations of material characteristics. The use of two 

artificial neural network (ANN) techniques and the best linear unbiased estimator 

(BLUE), as the combination algorithms of SSP is investigated in the fourth and fifth 

chapters, in order to improve its robustness and performance. The performance of two 

ANN techniques in terms of effectiveness in improving SNR and computational 

efficiency are compared to instruct the selection between the two techniques in various 

cases. The BLUE algorithm can improve image contrast by an average of 80% for 

combining three sub-band images. Another algorithm based on the statistical analysis 

of frequency components is also proposed in the sixth chapter to reduce speckle level. 

This algorithm is observed to reduce speckle level by an average of 15 dB. 
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CHAPTER 1. Introduction 

This chapter firstly gives a general overview of NDE techniques with emphasis on the 

development and applications of ultrasound inspection. Subsequently, the problems 

encountered in ultrasonic inspection of coarse-grained materials are described. Finally, 

Thesis outline and contribution to knowledge are introduced along with the publications 

arising from the Thesis. 

1.1 Non-destructive evaluation 

NDE consists of a broad range of techniques aiming to detect and characterise flaws in 

materials, components or structures [1, 2]. The essential feature of NDE is that the test 

process produces no physical damage to the objects. The term NDE is often 

exchangeable with non-destructive testing (NDT). NDE procedures are widely used in 

the quality control of manufactured products, in-service inspections and also condition 

monitoring of operating components.    

1.1.1 Background of NDE 

NDE history dates back to more than 150 years ago. One of the earliest NDE methods 

was called as “Oil and Whiting” for crack detection in the railway industry [3]. 

Inspectors immersed a cleaned object into diluted oil and then wiped out the oil on the 

object surface. The object surface was then coated with a white chalk. The residual oil 

that had penetrated the surface-breaking cracks caused discoloration of the white chalk 

thus allowing such cracks to be more readily identified. This method is considered as a 

precursor to modern liquid penetrant testing (PT) as they share some principles, such 
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as using “capillary action” to allow oil/liquid to enter the surface breaking cracks. In 

the year of 1895, Wilhelm Rontgen discovered “an unknown kind of radiation” which 

now is known as X-rays [4]. In the subsequent few decades, scientists developed 

radiographic testing (RT) and imaging techniques operating with X-ray beams [5].  

Modern NDE began in the 1920s from when inspectors started to gain the awareness 

of the presence of various inspection methods. A milestone in the NDE development 

arrived during World War II. That is, the establishment of the American Industrial 

Radium and X-ray Society (now named as the American Society for Non-destructive 

Testing) indicated that NDE became as an independent discipline.  

As some NDE techniques have greatly improved over time, the purpose of NDE has 

extended from the basic flaw detection in in-service components to the quality control 

of original equipment manufacturer (OEM) products. One such example is that NDE 

techniques can be employed to evaluate the conformance of as-manufactured 

composites to their design specifications which opens the opportunity to use both 

lighter and more cost-effective OEM composites in the aerospace industry [2, 6]. The 

evolution of NDE techniques is also manifested in that they are required not only to 

detect flaws but also to characterise flaws, e.g., obtain quantitative information of the 

flaws such as size and orientation. With the knowledge of the characteristics of a fatigue 

crack flaw and load cycles, fracture mechanics based models can be applied to predict 

the growth rate of the crack and the remaining service life of the fatigue component [7].  

Contemporary NDE techniques are used in a diverse range of fields, including nuclear 

power generation, civil engineering, aerospace, petrochemical industry, manufacturing 

and so on [8]. 

1.1.2 NDE techniques 

Contemporary NDE techniques encompass a diverse array of techniques, including PT, 

RT, eddy current testing (ECT), magnetic particle inspection (MPI), ultrasonic testing 

(UT) and so on. The working principle of PT has been described. The working 

principle, as well as the advantages and disadvantages of ECT, MPI, RT, UT, are 

introduced as below. 
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1.1.2.1 ECT 

In standard ECT, a specimen is placed near to a circular coil. Eddy current is induced 

in the specimen if an alternating current is passed through the coil. The presence of 

defects can be identified from the change of magnitude and phase of the eddy current 

[9]. ECT can be performed without contacting specimen surface so it is particularly 

advantageous in inspecting products with corrosion conditions or at elevated 

temperature environment. However, ECT is only applicable to electrically conductive 

materials and can only detect surface-breaking and subsurface flaws due to limited 

penetration of the eddy current. 

1.1.2.2 MPI 

A specimen is magnetised as the first step of MPI. A surface-breaking defect will create 

a local flux leakage field. The iron particles will be attracted by and so cluster at the 

flux leakage field, hence forming visible flaw indications [10]. MPI can provide 

immediate indications of surface-breaking imperfections of the specimen with less 

expense. However, it is restricted to ferromagnetic materials and is unable to inspect 

some commonly used materials such as austenitic stainless steel. Furthermore, it can 

only detect surface-breaking defects. 

1.1.2.3 RT 

In RT, a specimen is sandwiched between a Gamma or X-ray radiation source and a 

detection film. The radiated ray penetrates through the specimen and is captured by the 

detection film. The changes in atomic number or density of the specimen result in 

different intensity in the detection film, from which the defects can be identified [5]. 

RT can detect both surface-breaking and internal flaws. Disadvantages of RT include 

the hazard of the radiation to inspectors and the high cost arising from the necessary 

plant downtime. Traditional RT is unable to provide information on defect depth. X-

ray computed tomography gives an indication of defect depth at a premium both 

regarding cost and time.  

1.1.2.4 UT 

In UT, the transmission and reception of ultrasound are typically afforded by 

transducers made of piezoelectric materials coupled to the surface of the specimen. The 



Methodologies for Enhancing Ultrasonic NDE of Coarse-grained Materials – Bo Xiao 

 

4 

 

transmitter emits a short ultrasound pulse with centre frequencies usually ranging from 

0.1 MHz to 25 MHz, into a specimen. If a flaw is present within the propagation path 

of the pulse in the specimen, some of the sound energy will be reflected and/or 

diffracted by the flaw and then captured by the receiver. In many cases, coupling media 

including gels, various oils and water may be applied between the transducer and 

specimen surface to enhance the ultrasound energy transfer efficiency. UT is often more 

cost-effective than RT and can be performed in-situ using portable devices. Also, UT 

has no radiation hazard and typically needs access to only one side of the specimen. 

However, the coarse grains found in certain materials, e.g., concrete, austenitic steels, 

result in an acoustically noisy propagation channel which may mask flaws and cause 

spurious indications [11].  

1.1.3 Development of UT  

Ultrasound pulse-echo is a fundamental and widely used UT mode. In a pulse-echo 

system, a single-element ultrasonic transducer emits an ultrasound pulse and receives 

the sound wave reflected back from discontinuities within the specimen. The received 

signals are displayed in the form of the amplitude of the received echo as a function of 

time-of-flight (TOF). This is the A-scan presentation. The envelope of an A-scan is 

extracted in some cases which is usually referred to the envelope-detected A-scan 

whilst the original A-scan is referred to as the radio-frequency (RF) A-scan. Fig. 1.1 

shows the presentations of an RF A-scan and an envelope-detected A-scan.  

The position and size of a defect can be estimated from the TOF and the amplitude of 

the received echo in the A-scan, respectively. However, defect sizing based on the 

received amplitude is often unreliable since the amplitude is strongly dependent on the 

orientation of the defect relative to the ultrasound beam direction. The time-of-flight 

diffraction (TOFD) technique uses the TOF of an ultrasonic pulse instead of signal 

amplitude to determine the size and position of a defect [12]. TOFD systems employ 

the pitch-catch UT mode. That is, as shown in Fig. 1.2, a pair of single-element 

transducers are placed on opposite sides of the region under inspection and on the same 

side of the specimen - one is used as the transmitter and the other one is used as the 

receiver. For an undamaged specimen, the receiver will receive two signals: one is the 
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reflection of the backwall of the specimen and the other is the lateral wave propagating 

along the surface of the specimen. If a defect is present in the specimen, the top and 

bottom tips of the defect will diffract the ultrasound beam and contribute two additional 

signals that will also be detected at the receiver. Through simple trigonometric 

calculations, the depths of the two defect tips can be calculated using the measured 

TOFs of the ultrasonic pulse, the size of the defect is, therefore, determined [12]. 

 

Fig. 1.1: Presentations of an RF A-scan and an envelope-detected A-scan 

 

Fig. 1.2: Schematic diagram of time-of-flight diffraction technique 
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Interpretation of A-scan traces requires one to have a great deal of experience in 

analysing ultrasonic data. B-scan imaging which displays a cross-sectional profile 

through one vertical slice of the specimen is easier to interpret. To produce a B-scan 

image, the sound beam is scanned along the surface of the specimen and an A-scan 

trace is acquired at each scanning location, then beamforming is applied to construct a 

B-scan image from the acquired A-scan traces. B-scan imaging requires a conventional 

monolithic probe (i.e., a single-element transducer) to move mechanically along the 

surface of the specimen. Alternatively, a phased array probe can be employed to 

electronically scan the sound beam along the surface of the specimen removing the 

requirement for mechanical scanning. Therefore, the use of phased array probes can 

greatly speed up the inspection of a component [13].  

Commercial phased array probes firstly appeared in the early 1970s for medical 

diagnostic imaging [14]. A phased array probe consists of a number of small elements 

each of which is individually addressable. Except faster inspection speed, another key 

advantage of phased array probes over monolithic probes is that they provide higher 

flexibility in the inspection. Particularly, they can steer and focus ultrasound beams via 

electronic control of the element excitation scheme, a schematic of such an excitation 

scheme is depicted in Fig. 1.3. Beam steering allows for specimens to be inspected at a 

range of angles without moving the probe. This can greatly facilitate the inspection of 

materials with complex geometry and also significantly increases flaw detectability 

[13]. As shown in Fig. 1.3, a phased array can steer and focus the ultrasound beams at 

a location beyond the edge of the array, greatly increasing inspection coverage. 

Moreover, beam focusing significantly enhance the signal-to-noise ratio (SNR) and 

improve the spatial resolution at the focal point. The disadvantages of phased array 

probes over monolithic probes include a higher capital cost of the probes and the 

associated drive and reception electronics. 
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Fig. 1.3: Schematic plot of beam steering and focusing through electronic control of excitation scheme 

In UT, a coupling liquid such as water may be applied to couple the sound field in the 

component under inspection with reduced losses. However, the coupling liquid can 

flow into the component such as in carbon-fibre–reinforced polymer (CFRP) used in 

the aerospace industry and mask the presence of flaws like delamination. Moreover, 

some components such as honeycomb structures cannot be wet. Air-coupled method 

can be applied to inspect such components [15]. Air-coupled inspection typically 

employs the through-transmission UT mode where a pair of transducers are placed on 

the opposite sides of the component - one is used as the transmitter and the other one is 

used as the receiver. Due to the huge acoustic impedance mismatch between air and 

any solid component, transducers and electronics have to design to maximise 

transmission efficiency and reception sensitivity.  

In order to automate ultrasonic inspection in the nuclear industry, the two 

complimentary software packages named Micropulse Inspection Processing Software 

(MIPS) and Graphical Ultrasonic Image Data Evaluation (GUIDE) have been 

developed over 30 years for automatically acquiring and analysing data, respectively 

[16, 17]. Being used by many companies such as EDF Energy (London, UK), Doosan 

Babcock (Renfrew, UK), MIPS and GUIDE have been accepted as the UK Nuclear 

Industry standard for the inspection of safety critical component. 
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1.2 Problem definition 

1.2.1 Coarse-grained materials 

Coarse-grained microstructures can form in many metalworking processes such as 

casting and welding. In a common process of metal casting, molten metal is poured into 

a mould with a designated shape and size and then cooled down to a solid state. When 

the solidification commences, atoms of the molten metal start to bond together at 

random nucleation sites and begin to form crystals. For each individual crystal, the 

constitutive atoms are typically distributed in a repeating pattern in three-dimensional 

space. As the solidification proceeds, the crystals grow separately in size until adjacent 

crystals come into contact with each other.  Due to the randomness of the locations of 

the nucleation sites and the growth direction of the crystals, the crystals are formed in 

various size and orientation, forming polycrystalline materials [18]. A crystal is usually 

referred to as a grain in engineering materials and the interface between adjacent grains 

is named a grain boundary. 

The average grain size of a polycrystalline material is dependent on the number of 

nucleation sites which is a function of the cooling rate and the presence of impurities 

[19]. Slow cooling generally allows the grains to grow larger (a coarse-grained 

microstructure) whilst rapid cooling generally results in smaller grains (a fine-grained 

microstructure). Alloying elements which can induce nucleation are often added to 

increase the number of grains thus to refine the grain size [19]. Fine-grained materials 

have more grains, therefore, have a larger area of grain boundaries than the coarse-

grained counterparts. Since grain boundaries are the barriers to the movement of 

dislocations, coarse-grained materials typically exhibit lower hardness, ductility and 

strength than the fine-grained counterparts.  

Fine- and coarse-grained materials exhibit different elastic properties. Each grain itself 

is typically elastically anisotropic. For a fine-grained material, since there are a large 

number of randomly oriented grains in the medium, at the microscopic scale the grains 

can exhibit anisotropy. However, at the macroscopic scale, grain anisotropy tends to 

cancel out and the overall material often behaves as elastically isotropic. In contrast, for 
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a coarse-grained material, the anisotropic properties of the grains are unable to cancel 

each other out so that the material is elastically anisotropic. 

1.2.2 UT of coarse-grained materials 

Coarse-grained materials such as austenitic steel and concrete are extensively used to 

form parts of safety critical infrastructures across many industries so that it is absolutely 

vital to ensure their integrity. However, UT of such materials suffers from various 

undesirable effects due to their anisotropic and inhomogeneous microstructures – 

examples include the local variations in the velocity of the propagating wavefront, beam 

skewing, and beam scattering and so on. These undesirable effects result in three major 

problems: phase aberration, backscattering noise and attenuation. The three problems 

lead to UT of coarse-grained materials extremely challenging.  

1.2.2.1 Phase aberration 

The problem of phase aberration occurs when attempting to focus the ultrasound pulses 

emitted by different elements of a phased array. As shown in Fig. 1.3, to focus the beam 

at a point of interest, a bank of time delays is applied to array elements to ensure that 

the wavefront of each element arrives at the focal point in phase and at the appropriate 

point in time. The bank of time delays is typically calculated based on the difference in 

geometric path length of the array elements to the focal point for, an often assumed, 

constant ultrasound velocity in the direction of propagation. This bank of time delays 

is often referred to as an isotropic focal law. 

However, for the coarse-grained materials where elastic anisotropy can be observed, 

the spatial fluctuation in the elastic properties of the material as well as the effect of 

beam skewing and distortion arising from the interaction of the wavefront with grain 

boundaries, give rise to concomitant variations in the velocity of the propagating 

wavefront. The resultant effect is that the sound velocity exhibits a degree of direction 

dependence. Therefore, the wavefront propagating from each element of the array 

arrives at the desired focal point at a different time than anticipated by the isotropic 

focal law. As a result, the wavefront undergoes a phase shift that degrades constructive 

interference required for focusing. This problem in array imaging is termed phase 
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aberration [20]. The phase aberration problem is particularly prominent for the coarse-

grained materials with preferred crystallographic orientations due to the large 

variability of the sound velocity in different directions. Such materials include 

austenitic steel welds, which are characterised by elongated columnar-grained 

microstructures. This will be discussed in more details in Section 3.4.2.2.  

Phase aberration leads to the shifting and widening, or more severely, the fragmentation 

of the mainlobe, which is the acoustic pressure in the direction of the programmed 

angle. Phase aberration also leads to the increase of the sidelobe, which is produced by 

the leakage of acoustic pressure from array elements at different angles from the 

mainlobe. In UT imaging, the distorted mainlobe and increased sidelobe would give 

rise to inaccuracy in defect positioning and sizing. Moreover, phase aberration reduces 

the mainlobe amplitude, indicating the reduced sensitivity of the UT imaging system to 

small defects. 

1.2.2.2 Backscattering noise 

UT typically suffers to some extent from noise interference in the acquisition process. 

There are two contributing factors to noise: incoherent noise and coherent noise. 

Incoherent noise typically arises in the drive and reception electronics and is usually 

caused by thermal effects on electronic circuitry. It is time-variant, and from a statistical 

perspective, it follows a Gaussian distribution and is zero mean. Therefore, it can be 

removed at the acquisition stage by applying time domain signal averaging. In most 

cases, the incoherent noise is considered to be negligible in comparison to coherent 

noise.  

Coherent noise arises since numerous grain boundaries of coarse-grained materials 

diffusively scatter the sound wave as the wave travels through the medium. The 

backscattered waves interfere with each other and form noisy signals in an A-scan trace. 

These noisy signals are usually referred to as grain noise. Grain noise is time-invariant 

so that it cannot be eliminated by applying time domain averaging. Moreover, since the 

flaw echoes and grain noise occupy similar portions of the frequency band of the 

transduction system, conventional bandpass filtering techniques also fail to suppress 

grain noise without affecting the information comprising the flaw echoes [21]. When 

beamforming techniques are applied to a set of A-scan traces to construct a B-scan 
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image, grain noise in the A-scan traces aggregates to form speckle pattern on the B-

scan image [11, 22].  

The grain noise and speckle pattern can significantly decrease SNR and defect 

detectability, indicating the reduced probability of detection (POD). Furthermore, they 

can give rise to spurious indications of flaws and hence the increased probability of 

false alarm (PFA), which can result in unnecessary plant downtime and repairs. 

Generally, the amplitude of backscattering noise is proportional to the fourth power of 

inspection frequency and the cubic power of grain diameter [23]. Using lower 

frequency to inspect can reduce the amplitude of backscattering noise, but at the price 

of degraded spatial resolution. 

1.2.2.3 Acoustic attenuation 

The problem of attenuation is a combination result of the grain scattering and beam 

absorption. Grain scattering denotes that the sound wavefront is redirected and beam 

absorption refers to that ultrasound energy is converted to other forms of energy, such 

as thermal energy. Attenuation detrimentally decreases the sound penetration depth so 

that the inspection range is reduced. Using lower frequency to inspect can decrease 

attenuation and so increase the sound penetration depth, but again at the price of spatial 

resolution.   

1.3 Thesis outline 

The overall aim of this Thesis is to improve defect detection by improving existing and 

developing new methodologies to address the two problems in the UT of coarse-grained 

materials using bulk waves: phase aberration and backscattering noise. The Thesis 

consists of seven chapters which are introduced as below. 

Chapter 1 gives a general overview of NDE techniques with emphasis on ultrasound 

inspection. Three problems, i.e., phase aberration, backscattering noise and attenuation, 

faced by ultrasound inspection of coarse-grained materials are described.  

Chapter 2 introduces background knowledge related to the research topics of the Thesis. 
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Existing methods for phase aberration correction and the reduction of grain noise and 

speckle are reviewed and the potential improvement areas are identified. Finally, 

experimental arrangements and the specifications of a number of material samples to 

be studied in the reminder of the Thesis will be described.  

Chapter 3 investigates an approach to correcting phase aberration in both columnar-

grained and equiaxed-grained materials (coarse-grained materials with random 

orientation). This approach uses an accurate finite element model of the material under 

inspection to estimate the elemental phase shifts of the phased array. The material model 

is constructed using crystallographic orientation data of the material acquired by two 

microstructural characterisation techniques: Electron Backscatter Diffraction (EBSD) 

and Spatially Resolved Acoustic Spectroscopy (SRAS). Validation of the emerging 

SRAS technique is presented. Two approaches to processing orientation data are 

proposed in order to establish computationally efficient finite element models of coarse-

grained materials. A strategy of estimating the elemental phase shifts through 

simulation analysis is explored. 

Chapter 4, 5 and 6 focus on developing and evaluating innovative approaches for the 

reduction of grain noise and speckle.  

Chapter 4 firstly presents an analytical model describing grain scattering process, 

followed by the evaluation of the prevalent split-spectrum processing (SSP) technique 

for grain noise reduction. The combination of SSP with artificial neural network (ANN) 

techniques is proposed to improve the performance of SSP in terms of grain noise 

suppression. The efficacy and efficiency of two ANN models, i.e. multi-layer 

perceptron (MLP) and radial basis function (RBF), used in conjunction with SSP are 

compared at various conditions.  

Chapter 5 proposes the combination of a statistical signal processing algorithm, best 

linear unbiased estimator (BLUE), with SSP to attain enhanced speckle reduction. 

Parametric studies of the BLUE techniques are performed in order to give an indication 

of the optimal value ranges of the two parameters of BLUE.  

Chapter 6 proposes an innovative signal processing algorithm for speckle reduction, 

called distribution dissimilarity imaging (DDI). This algorithm measures the 
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dissimilarity coefficient between a reference distribution and the statistical distribution 

of the magnitudes of frequency components. The dissimilarity coefficient is associated 

with the possibility of the presence of a flaw. Two DDI approaches with a different 

measure of the distribution dissimilarity are investigated. 

Chapter 7 concludes the Thesis and provides suggestions of future work to the work 

presented in Chapter 3~6. 

It should be noted that the work presented in the Thesis is attempting to improve defect 

detection only and is unrelated to defect characterisation. However, it can be considered 

as complementary to defect characterisation since the higher sensitivity and SNR 

exhibited by improved defect detection can undoubtedly facilitate defect 

characterisation. 

1.4 Contributions to knowledge 

 The accuracy of the emerging SRAS technique in characterising the 

microstructure of complex polycrystalline materials has been validated through 

comparing with the well-established EBSD technique. SRAS is more practically 

applicable in phase aberration correction than EBSD since it has no restriction on 

sample size and needs less surface preparation. 

 Two approaches to processing the orientation data of equiaxed-grained materials 

acquired by EBSD and SRAS have been implemented, in order to construct an 

accurate and cost-effective finite element model of the materials. They have 

remarkably reduced the computational overhead of the wave propagation 

simulation in equiaxed-grained materials whilst maintaining model fidelity.  

 A new time reversal method has been proposed and it provides a more reliable and 

rapid solution of the establishment of anisotropic focal laws in the simulation than 

conventional approaches. The simulation results have shown that equiaxed-

grained materials are almost free from the phase aberration problem and the 

focusing quality of columnar-grained materials can be restored using the 
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anisotropic focal laws generated in the simulations. 

 Three signal and imaging processing algorithms have been developed to increase 

SNR and image contrast to allow coarse-grained materials to be inspected with 

reduced error and greater confidence.  

 The performance of SSP can be enhanced by combining it with ANN techniques. 

Most of the previous research focus on the MLP model whereas other ANN 

models have been rarely explored. The comparison of the MLP model and RBF 

model used in conjunction with SSP in terms of SNR improvement and 

computational efficiency have been presented. RBF model is observed to have 

higher SNR improvement when less noise training samples are used and the flaw 

location is known. MLP model is found to be superior when more noise training 

samples are used and the flaw location is known as well as when the sample 

location is unknown. RBF model is observed to be 35 times more efficient than 

MLP model on average. 

 The statistical signal processing algorithms have received little consideration in 

the NDE community. The combination of SSP with BLUE has been investigated. 

BLUE has been observed to provide higher image contrast enhancement than 

conventional approaches whilst the spatial resolution is maintained. The optimal 

value ranges of the parameters of BLUE have been provided via parametric 

studies. It has been observed that BLUE can also effectively reduce sidelobe level 

used in conjunction with SSP. 

 It has been observed in DDI analysis that the presence of a flaw can change the 

statistical distribution of the magnitudes of frequency components. Two DDI 

approaches with a different measure of distribution dissimilarity have been 

investigated. Both DDI approaches remarkably reduce the speckle intensity, 

offering better image quality than the conventional delay-and-sum approaches. 
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CHAPTER 2. Literature review 

2.1 Introduction 

Firstly, background knowledge relevant to the research topics of the Thesis is 

introduced in this chapter, in order to provide some key information and terminology. 

Subsequently, the literature review of existing methods for phase aberration correction 

and the reduction of grain noise and speckle is presented. Next, the research gaps in 

phase aberration correction and noise reduction are defined and the general descriptions 

of Chapter 3~6 are presented. The experimental arrangement of data acquisition and 

the specifications of material samples used in the Thesis are described in the end. 

2.2 Background knowledge 

This section provides a review of the techniques typically employed in ultrasonic NDE, 

it is presented in order to define key terminology and nomenclature that will be 

employed throughout the literature review and Thesis. The first two subsections 

introduce the phased array techniques and commonly used array imaging algorithms. 

The next two subsections present some key information on crystallography and 

microstructural characterisation techniques. Some modelling techniques are described 

in the final subsection. 

2.2.1 Phased array techniques 

As described in Chapter 1, phased array probes are faster and more flexible in 

inspection than monolithic probes. These advantages have led to a dramatic increase in 
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the uptake of phased array probes by the NDE community. Present phased array 

transducers for NDE applications typically employ piezoelectric composite materials. 

Piezoelectric composites consist of a diced piezoelectric material substrate and a 

polymer material filling the void of the substrate. Ceramic materials such as PZT (Lead 

Zirconate Titanate) are commonly used as the active piezoelectric material within the 

device and an epoxy resin is typically selected as the passive polymer phase [24]. The 

advantages of piezoelectric composite materials over single piezoelectric ceramic 

materials include the increased electromechanical coupling efficiency, increased 

bandwidth, opportunity to tailor the transducers to the imaging task, etc.   

Piezoelectric composites can be categorised according to the connectivity of the two 

constitutive materials. Connectivity is defined as the number of dimensions in which a 

constitutive material is continuous – by convention the first number represents the 

connectivity of the ceramic component and the second number represents the 

connectivity of the polymer. Fig. 2.1 shows a schematic diagram of a 1-3 connectivity 

piezoelectric composite [25-27].  

 

Fig. 2.1: Schematic representation of a piezoelectric composite with 1-3 connectivity. 

A phased array probe is an assembly of ranging from 16 to as many as 256 individually 

addressable elements - each element is electrically isolated from its neighbours. When 

connected to appropriate drive electronics, each element can be excited in a specific 

order, defined by the focal law, to affect focusing and steering of the beam in the load 

medium, as depicted in Fig. 1.3.  
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Phased array elements can be arranged in either one- or two-dimensional patterns [13]. 

Fig. 2.2(a) shows the schematic diagram of the geometry of a 1D array with nine 

elements, each element is denoted as a rectangle in the diagram. Throughout the Thesis, 

the Cartesian coordinate system in Fig. 2.2 is used. Here, the axial direction z is the 

direction of wave propagation and x and y are the lateral and elevation directions, 

respectively. The beam is scanned in the x direction and the produced B-scan image is 

in the x-z plane. Typical 1D arrays for NDE use have their length in the y direction, L, 

much longer than their element width, e. Fig. 2.2(b) shows the schematic diagram of a 

2D matrix array with 16 square elements evenly distrusted in the x-y plane. 2D array 

probes are able to generate 3D images of the inspected volume. They can steer and 

focus the ultrasound beam in 3D space in the front of array surface, they, therefore, can 

provide more accurate defect sizing than 1D array probes. 1D array probes have been 

used exclusively in the work that will be presented in the following chapters, although 

there is no reason why they cannot be extended to 2D array probes or other complex 

array layouts.  

 

(a) 

 

(b) 

Fig. 2.2: Schematic geometry of (a): a 1D array with nine elements; (b): a 2D array with 16 square 

elements 
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The array geometry is required to be prudently designed to avoid problems such as 

grating lobes. Grating lobes denote the beam patterns formed at an angle to the 

mainlobe and are generated due to the periodic spacing of the small individual array 

elements [28]. The angular positions of the grating lobes, 𝛽𝑔𝑟𝑎𝑡𝑖𝑛𝑔, can be described by 

 𝛽𝑔𝑟𝑎𝑡𝑖𝑛𝑔 = sin−1(𝑚λ
𝑝⁄ ), m= ,....3,2,1   Eq. 2.1 

where λ is the ultrasound wavelength corresponding to the central frequency of the 

array, p is the element pitch size which is the distance between the centres of two 

adjacent elements, as shown in Fig. 2.2. The value of p must be smaller than λ/2 to 

avoid the formation of grating lobes [28].  

A backing layer is usually bonded to the rear face of the active elements of a phased 

array. It aims to maximise the energy loss at the rear face of the array and has the effect 

of reducing the ring-down time of the array. It, therefore, shortens the length of the 

emitted pulse leading to an increase in bandwidth and axial resolution of the array, this 

is achieved at the expense of sensitivity [28].  

In some cases, one or more matching layers are attached at the front face of a phased 

array, aiming to maximise energy transfer efficiency between the probe and the load 

material [29-31]. The matching layer can improve the sensitivity of the array to small 

defects in the specimen. The simplest guideline in designing a matching layer is to 

maximise the transmission coefficient, Ti, which is formulated as 

 
𝑇𝑖 =
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Eq. 2.2 

where Z1, Z2 and Z3 are the acoustic impedances of the composite material layer, 

matching layer and the load material, respectively, L and 𝑘  are the thickness and 

wavenumber of the matching layer, respectively. If L is equal to an odd number of 

quarter wavelengths and 𝑍2 = √𝑍1𝑍3, perfect transmission (Ti=1) may be obtained. 
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2.2.2 Array imaging algorithms 

Phased array probes are conventionally employed to emulate monolithic probes. That 

is, a number of array elements are excited with pre-defined time delays to form a 

physically focused and/or steered wavefront in the medium during the inspection. The 

received signals are summed and the results are stitched together to form B-scan images 

in real time during inspection.  

Holmes et al. proposed a data acquisition approach which enables B-scan images to be 

generated offline in post-processing  [32]. The data acquisition approach is named full 

matrix capture (FMC). FMC data are acquired by sequentially firing each element of a 

phased array while all elements are used as receivers. For a phased array with N 

elements, N2 RF A-scan traces are acquired and form the FMC data volume for a given 

specimen and array position/orientation. The FMC data acquisition approach enables 

the beam focusing and steering to be emulated offline via post-processing FMC data. 

In such cases, the ultrasound beam is synthetically focused and steered offline with no 

physically focused or steered wavefront generated during the inspection. Comparing 

with conventional phased array systems, the FMC approach requires much easier 

inspection arrangement due to no requirement for the computation of complicated focal 

laws and has the potential to offer larger inspection coverage.  

Note that if the performance of each element of an array is assumed to be consistent, 

data redundancy is observed in FMC data. That is, the A-scan trace from a transmitter-

receiver pair XY is a temporal reciprocal of the A-scan trace from the pair YX. 

Therefore, FMC data could be reduced into half matrix captured (HMC) data by 

removing either the lower or the upper triangular section of the matrix.  

Array imaging algorithms include the plane B-scan, focused B-scan, sectorial B-scan, 

and the total focusing method (TFM) [32]. The first three algorithms can be applied as 

standard inspection techniques in conventional phased array systems and can also be 

implemented by post-processing FMC data. TFM constructs images from FMC data so 

that it can only be applied in post-processing. The four image algorithms are introduced 

and compared below.  
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2.2.2.1 Plane B-scan 

Plane B-scan is the most fundamental array inspection technique. To obtain enhanced 

sensitivity and lateral resolution, a group of elements which is termed an aperture are 

fired simultaneously, as shown in Fig. 2.3(a). The received time domain signals by all 

the elements in the aperture are then summed to generate a single A-scan trace. The 

aperture is shifted along the array by an element at each time of excitation. All the 

acquired A-scan traces are stitched to form a plane B-scan image. The lateral resolution 

of a plane B-scan image is equal to the array pitch size.  

In post-processing of FMC data, results are computed from the A-scan traces of only 

pulse-echo mode (i.e., transmitter and receiver are the same element) acquired by the 

elements in an aperture. The image intensity at an arbitrary location (𝑥1, 𝑧1)  in a 

Cartesian coordinate system as indicated in Fig. 2.3(a) could be computed as:  

 

𝑎(𝑥1, 𝑧1) = ∑ ℎ𝑡𝑥,𝑟𝑥 (
2𝑧1

𝑐⁄ )

𝑁

𝑡𝑥=1,𝑟𝑥=𝑡𝑥

 Eq. 2.3 

where N is the number of array elements in the aperture, ℎ𝑡𝑥,𝑟𝑥 is the A-scan trace of a 

transmitter-receiver pair (tx=rx for plane B-scan), and c is the propagation velocity of 

the ultrasound wave. Plane B-scan does not employ focusing in neither transmission 

nor reception so that it gives poor lateral resolution when compared to other algorithms.  

2.2.2.2 Focused B-scan 

In conventional phased array systems, the elements within an aperture are applied with 

a symmetric focal law in transmission to focus the beam at a particular depth, as 

illustrated in Fig. 2.3(b). The received time domain signals undergo the same time delay 

as on transmission and are then summed to generate a single A-scan trace. Then all of 

the A-scan traces are stitched to form a focused B-scan image, usually focusing at a 

particular depth or feature within the field of view.  

In post-processing of FMC data, results are often computed from A-scan traces of both 

pulse-echo mode and pitch-catch mode (i.e., transmitter and receiver are two different 

elements). If the beam is focused at the location (𝑥1, 𝑧1), as shown in Fig. 2.3(b), the 

image intensity at an arbitrary location (𝑥1, 𝑧𝑛) can be computed as 



Methodologies for Enhancing Ultrasonic NDE of Coarse-grained Materials – Bo Xiao 

 

22 

 

𝑎(𝑥1, 𝑧𝑛)

= ∑ ∑ ℎ𝑡𝑥,𝑟𝑥 (
√(𝑥𝑡𝑥 − 𝑥1)2 + 𝑧1

2 + √(𝑥𝑟𝑥 − 𝑥1)2 + 𝑧1
2 + 2(𝑍𝑛 − 𝑍1)

𝑐
)

𝑁

𝑟𝑥=1

𝑁

𝑡𝑥=1

 
Eq. 2.4 

where 𝑥𝑡𝑥 is the lateral coordinate of the transmitter, and 𝑥𝑟𝑥 is the lateral coordinate 

of the receiver, other symbols are as previously defined.  

A focused B-scan image has a better lateral resolution at the focal depth than a plane 

B-scan image. Resolution at other depths could be improved by applying focal laws 

with different time delay sequences in transmission and/or reception. This is often 

termed Dynamic Depth Focusing (DDF). Applying different focal laws in transmission 

leads to multiple firings which reduces the frame rate. Applying different focal laws in 

reception results in no frame rate penalty, with the only limitation being computational 

resources. Therefore, DDF is usually implemented with coarser and finer focal control 

in transmission and reception, respectively [33].  

In post-processing of FMC data, infinite focal laws can be applied in both transmission 

and reception. If one focal law is applied in transmission to focus the beam at (𝑥1, 𝑧1) 

and numerous focal laws are applied in reception, the DDF image intensity at an 

arbitrary location (𝑥1, 𝑧𝑛) is given as 

𝑎(𝑥1, 𝑧𝑛)

= ∑ ∑ ℎ𝑡𝑥,𝑟𝑥 (
√(𝑥𝑡𝑥 − 𝑥1)2 + 𝑧1

2 + √(𝑥𝑟𝑥 − 𝑥1)2 + 𝑧𝑛
2 + 𝑧𝑛 − 𝑧1

𝑐
)

𝑁

𝑟𝑥=1

𝑁

𝑡𝑥=1

 
Eq. 2.5 

Focused B-scan is similar to the synthetic aperture focusing technique (SAFT) which 

is widely used in medical diagnostic imaging, both radar and sonar systems [22]. In 

SAFT, a monolithic probe is laterally moved to form a synthetic aperture, and a pulse-

echo A-scan is acquired at each lateral location. All the A-scan traces are post-

processed to produce a focused B-scan image.  

2.2.2.3 Sectorial B-scan 

Sectorial B-scan steers the ultrasound beam with a certain angle to facilitate the 

inspection of a component not immediately underneath the aperture. In conventional 

phased array systems, in transmission the elements within an aperture are applied with 

time delay sequences to steer the beam in a certain direction, as illustrated in Fig. 2.3(c). 
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The received time domain signals by the aperture are applied with same time delays as 

in transmission and then summed up to generate a single A-scan trace. An A-scan trace 

is obtained at each incremental steering angle and all the A-scan traces are combined 

as a sectorial B-scan image. Unlike plan and focused B-scan, sector B-scan conducts 

an angular sweep so that a polar coordinate system (𝑟, 𝜃) is often employed, where 𝑟 

and 𝜃 represent the axial and angular coordinates, respectively, as illustrated in Fig. 

2.3(c).  

In post-processing of FMC data, the image intensity at an arbitrary location (𝑟1, 𝜃1), 

where 𝑟1is the distance from the aperture centre to the point and 𝜃1 is the angle between 

the aperture surface normal and the steered beam, can be computed as 

 

𝑎(𝑟1, 𝜃1) = ∑ ∑ ℎ𝑡𝑥,𝑟𝑥 (
2𝑟1 + 𝑥𝑡𝑥 sin 𝜃1 + 𝑥𝑟𝑥 sin 𝜃1

𝑐
)

𝑁

𝑟𝑥=1

𝑁

𝑡𝑥=1

 Eq. 2.6 
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(a) (b) 

  

(c) (d) 

Fig. 2.3: Schematic diagram of: (a) plane B-scan, (b) focused B-scan, (c) sector B-scan, and (d) TFM. 

Shaded array elements constitute the active aperture of the phased array.  
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2.2.2.4 Total focusing method 

TFM is an advanced imaging algorithm which can only be practically performed 

offline. It combines the full matrix of FMC data, i.e., it sums time-delayed A-scan traces 

from all the transmitter-receiver pairs, as illustrated in Fig. 2.3(d). In TFM, the imaging 

region meshes into a regular grid with a pre-defined resolution size and then the beam 

is synthetically focused at each node of the grid. The intensity at an arbitrary node 

(𝑥1, 𝑧1) is given as 

 𝑎(𝑥1, 𝑧1)

= ∑ ∑ ℎ𝑟𝑥,𝑡𝑥 (
√(𝑥𝑡𝑥 − 𝑥1)2 + 𝑧1

2 + √(𝑥𝑟𝑥 − 𝑥1)2 + 𝑧1
2

𝑐
)

𝑁

𝑡𝑥=1

𝑁

𝑟𝑥=1

 
Eq. 2.7 

where N is the number of array elements.  

TFM is more computationally expensive than the other three previously described 

algorithms. Recently, an effort has been made to produce TFM images on the graphic 

processing unit (GPU) [34]. In this approach, the image intensity of each pixel is 

computed in parallel on a GPU device, consequently, the generation of TFM images is 

several orders of magnitude faster than the CPU-based approaches. 

The TFM imaging algorithm has been extended for various applications. Vector TFM 

algorithm has the capability of defect characterisation since it can extract an angular 

scattering distribution of each scatterer [35]. Multi-mode TFM algorithm uses different 

reflections and mode conversions to improve the detection of angled defects whose 

reflections are outside the direct coverage of the array [36]. The autofocusing algorithm 

is exploited to enhance TFM imaging of components with complex surfaces [37]. 

2.2.2.5 Comparison 

TFM algorithm performs better than the other three aforementioned conventional 

algorithms in terms of SNR and sensitivity to small defects [32, 38]. This is because 

TFM uses the maximum amount of available information for each imaging point so that 

the spatially uncorrelated grain noise can be suppressed to the largest extent, as 

compared to the other three algorithms. There exist other array imaging algorithms that 

can achieve better noise reduction than TFM. A detailed review of these algorithms will 

be given in Section 2.4. 
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TFM algorithm is also superior to the other three algorithms with regard to the spatial 

resolution that denotes the ability of an imaging system to resolve closely spaced flaws 

in the medium. Spatial resolution can be assessed by the point spread function (PSF) 

which describes the response of the imaging system to a point-like reflector. Holmes et 

al. used array performance indicator (API) as a quantitative measure of PSF and 

validated that TFM reduces API by 80% on the basis of plane B-scan [32]. 

Nevertheless, the spatial resolution of TFM is diffraction limited, known as Rayleigh 

limit [39]. Super-resolution techniques can be applied to enhance the spatial resolution 

beyond the Rayleigh limit. Time reversal with multiple signal classification (TR-

MUSIC) is a widely used super-resolution technique and has been investigated to 

achieve ultrasonic super-resolution phased array imaging in [40, 41]. Fan et al. 

compared TR-MUSIC with TFM in terms of spatial resolution and robustness to noise 

and observed that TR-MUSIC produces significantly lower API than TFM at the low 

noise cases whilst TFM yields lower API at the high noise cases [39]. 

As illustrated in Eq. 2.3-Eq. 2.7, the time delays applied to different array element pairs 

are calculated using a constant ultrasound velocity c. However, as previously described, 

this approach leads to the phase aberration problem in the inspection of coarse-grained 

materials exhibiting elastical anisotropy. The review of methods developed to tackle 

phase aberration will be given in Section 2.3. 

It should be noted that the images produced by any algorithms are generally absolute 

valued, normalised to the maximum value and then logarithmically compressed prior 

to being displayed on a computer screen. This is because the dynamic range of image 

intensity is usually very large and logarithmical compression can significantly reduce 

the dynamic range. 

2.2.3 Crystallographic orientation 

As previously mentioned, a crystal consists of atoms distributed in a repeating pattern 

in the three-dimensional space. Crystals can be classified into seven crystal systems 

according to their shape of atomic pattern or lattice. The seven systems include cubic, 

monoclinic, orthorhombic, rhombohedral, tetragonal, hexagonal, and triclinic [42]. 
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Many coarse-grained metals employed in various applications in the nuclear and 

petrochemical industries have cubic crystal system.  

The orientation of a crystal is defined as its coordinate system relative to a reference 

coordinate system. Typically, the sample coordinate system is usually selected as the 

reference coordinate system. There are several methods of representing 

crystallographic orientations [43]. Four commonly used methods are: 

 (hkl)[uvw]. In crystallography, the orientation of a crystal plane is represented by 

Miller indices (hkl), which denotes that the plane intercepts with the x, y and z axes 

of the reference coordinate at a/h, a/k and a/l, respectively, where a is a constant. 

Directions in the crystal are referred to a set of coordinates [uvw] in the reference 

coordinate. The orientation of a crystal can be presented as a combination of the 

Miller indices (hkl) of the crystal plane parallel to the x-y plane and the coordinates 

[uvw] of the direction parallel to the x axis. Fig. 2.4(a) displays the crystallographic 

orientation (001)[110] as an example in the cubic crystal system in which the yellow 

cube is the crystal lattice and the blue rectangular cuboid is the sample.  

 Axis-angle. The crystal coordinate system can become coincident with the reference 

coordinate system by a single rotation that is parameterised by a rotation axis and a 

rotation angle. It is a relatively efficient method of representing orientations.  

 Rodrigues vector - this combines the two parameters of the Axis-angle 

representation by multiplying the rotation axis with a certain function of the rotation 

angle. It is more concise but difficult to interpret than the Axis-angle representation. 

 Euler angle - this consists of three rotation angles required to make the crystal 

coordinate system coincide with the reference coordinate system. There are a few 

different definitions of Euler angle which differ in how the three rotations are 

conducted. Firstly, the rotations could be applied either by rotating the crystal 

coordinate system and fixing the reference coordinate system or by rotating the 

reference coordinate system and fixing the crystal coordinate system, which are 

named positive rotation and passive rotation, respectively. Secondly, the rotation 

could be applied by rotating around the fixed coordinate system (extrinsic rotation) 

or the rotating coordinate system (intrinsic rotation). Finally, there are six possible 

sequences of rotation axes – zxz, xyx, yzy, zyz, xzx, and yxy. The Bunge-passive 



Methodologies for Enhancing Ultrasonic NDE of Coarse-grained Materials – Bo Xiao 

 

28 

 

definition in which the rotation is passive, intrinsic and in zxz order is the most 

commonly used. Its rotation process is schematically drawn in Appendix A. The 

three Euler angles of the Bunge-pass definition are often expressed as (φ1, φ, φ2).  

Due to the symmetry of crystal systems, equivalent crystal planes and directions exist. 

Planes equivalent to a plane (hkl) are denoted as {hkl} and directions equivalent to a 

direction [uvw] are denoted as <uvw> [43]. Fig. 2.4(b) shows three equivalent {110} 

planes of the cubic crystal system as an example. The ranges of the three Euler angles, 

φ1, φ, and φ2, are 0o~360o, 0o~180o, and 0o~360o
.  By applying symmetry, the ranges of 

φ, and φ2 can both be reduced to 0o~90o. For the orientations falling out of the reduced 

range, their equivalent orientations inside the reduced range can be found by performing 

the two following transformations.  

 (φ1+180o, 360o-φ, φ2+180o) = (φ1, φ, φ2) 

(φ1+360o, φ+360o, φ2+360o) = (φ1, φ, φ2)   
Eq. 2.8 

Similar symmetric properties apply to the Axis-angle and Rodrigues vector methods. 

 

(a) 

 

 

(b) 

Fig. 2.4: (a) The crystallographic orientation (001)[110]  in the cubic system; (b) three equivalent 

{110} planes in the cubic system. 



Methodologies for Enhancing Ultrasonic NDE of Coarse-grained Materials – Bo Xiao 

 

29 

 

2.2.4 Microstructural characterisation techniques 

Several techniques are described in the literature that find application in the 

characterisation of polycrystalline microstructures. There exist two prevailing 

techniques, X-ray Diffraction (XRD) and Electron Backscatter Diffraction (EBSD), 

and one emerging technique, namely, Spatially Resolved Acoustic Spectroscopy 

(SRAS). The fundamentals of each technique will be introduced, followed by a 

comparison between EBSD and SRAS. 

2.2.4.1 XRD 

XRD is a technique that determines crystallographic characteristics based on the 

interference patterns of X-ray beams diffracted by crystals [44]. In this method, a 

(white) X-ray is incident on a single crystal surface at an angle. The atomic planes of a 

crystal reflect the incident beams of the X-ray and the reflected beams interfere with 

each other once they leave the surface to form diffraction patterns. This phenomenon 

is named X-ray diffraction. The interference between the reflected X-ray beams is 

governed by Bragg’s law 

 2𝑑0 sin 𝜃 = 𝑛𝜆 Eq. 2.9 

where 𝑑0 is the spacing between two atomic planes, θ is the angle between the incident 

beams and the lattice planes, λ is the wavelength of the incident beam, and n is an 

integer (1, 2, 3, etc.), as shown in Fig. 2.5. Constructive interference occurs at several 

wavelengths from the broad spectrum satisfying Bragg’s law. Crystal orientations can 

be deduced from the analysis of the diffraction pattern using a Greninger chart [45].  

 

Fig. 2.5: Illustration of Bragg’s diffraction 
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2.2.4.2 EBSD 

EBSD is a well-established technique to determine the crystallographic characteristics 

of polycrystalline materials using scanning electron microscope (SEM) [43, 46]. The 

test sample is tilted with an angle of 70° to the horizontal and placed in an SEM 

chamber, and an electron beam is incident onto the sample surface. The atoms on the 

sample surface interact with the incident beam and scatter a fraction of the electrons. A 

phosphor screen is attached to the SEM chamber to capture the diffraction pattern 

formed by the scattered electrons. The interference between the scattered electrons also 

obeys Bragg’s law due to the wave-particle duality of electrons. The scattered electrons 

satisfying Bragg’s law produce characteristic lines called Kikuchi bands on the 

phosphor screen. The pattern of Kikuchi band is dependent on the orientation of the 

lattice planes onto which the electrons are incident. Then the Kikuchi bands undergo 

Hough transformation into points in the Hough space from which the orientation of the 

lattice planes represented by (hkl)[uvw] is subsequently extracted. The (hkl)[uvw] 

representations of crystallographic orientations are transformed into Euler angles in 

some cases. 

EBSD scans the electron beam in a grid over the sample surface, and the 

crystallographic orientation is measured at each node of the grid. Then the 

misorientation angle, i.e., the minimum angular displacement between two 

neighbouring grains, is defined and used to reveal the position of the grain boundaries. 

EBSD have several drawbacks. It is implemented over relatively small areas on a 

sample surface since the dimensions of SEM typically are in the order of 10 mm. 

Moreover, it is only tolerant to nanometre(nm)-scale surface roughness due to the 

limited free mean path of scattered electrons [47]. Consequently, samples must be 

accurately polished to obtain a highly reflective surface.  

2.2.4.3 SRAS 

SRAS is based on the spectroscopy technique and uses the acoustic characteristics of 

surface acoustic wave (SAW). A laser pulse is used to illuminate a region of the 

specimen surface and then gives rise to thermoelastic expansion and pressure in the 

region which induces the generation of  SAW [48-50]. The SAW travels along the 

sample surface where a second laser acting as a detector is used to determine SAW 
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velocity. SRAS determines the orientation of a grain from the velocities of SAW 

measured in a number of directions. 

There are two different methods of obtaining an SAW velocity: K-SRAS and F-SRAS. 

For the K-SRAS, a narrowband laser beam with a fixed modulation frequency f passes 

through a spatial light modulator whose fringe spacing can be changed, as illustrated in 

Fig. 2.6. When the fringe spacing period matches λ, the SAW will have the largest 

amplitude. Then the SAW velocity c is calculated as 

 c = λf Eq. 2.10 

For the F-SRAS, a wideband laser beam passes through a spatial light modulator whose 

fringe spacing are fixed, and the SAW velocity is calculated at the frequency with 

highest SAW amplitude. 

 

Fig. 2.6: Schematic diagram of K-SRAS, reproduced from [51]. 

By rotating the sample, SAW velocities at different directions are measured at a 

scanning location which in total are called as the measured velocity surface of the 

location. The crystallographic orientation of the scanning point is obtained by fitting 

the velocity surface to an SAW velocity model in which the velocity surface is 

calculated as a function of crystallographic orientation. Through an iterative search in 

the model, the orientation at which the corresponding calculated velocity surface most 

closely matches the measured velocity surface is deemed to be the orientation of the 

scanning location.  

The SAW velocity model is calculated using the Christoffel equation with the prior 

information of the mass density and stiffness moduli of the material [42]. The 

Christoffel equation is 
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 𝜌𝑐2𝛿𝑖𝑘 − 𝐶𝑖𝑗𝑘𝑙𝑛𝑗𝑛𝑙 = 0 Eq. 2.11 

where 𝜌  is the density of the material, c is the sound velocity in the propagation 

direction specified by 𝑛𝑗  and 𝑛𝑘, 𝛿𝑖𝑙 is the so-called Kronecker delta: 𝛿𝑖𝑘 = 1 if i = k; 

𝛿𝑖𝑘 = 0 otherwise, 𝐶𝑖𝑗𝑘𝑙 is the stiffness tensor which is symmetric for a cubic crystal 

system 

 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘 = 𝐶𝑗𝑖𝑙𝑘 Eq. 2.12 

SRAS scans the laser over the sample surface to obtain microstructural characteristics 

of the whole sample surface. EBSD allows the step size to be in ten-nanometre scale, 

however, SRAS, as an emerging technique, can scan with the step size only in ten-

micrometres scale. This is considered as one of the major limitations of the current 

SRAS technique. On the other hand, EBSD requires the surface roughness less than 10 

nanometres and the sample size is limited by the SEM chamber. In contrast, SRAS can 

tolerate surface roughness on the scale of 100 nanometres and has no restriction on 

sample size. Some validation work of SRAS in determining crystallographic orientation 

will be presented in Chapter 3. 

2.2.5 Modelling techniques 

Modelling allows a wide range of virtual inspection scenarios to be carried out to 

develop, evaluate and optimise the methods for tackling the problems of phase 

aberration and backscattering noise in a time and cost-effective manner. To simulate 

the ultrasonic inspection of coarse-grained materials, the model should describe not 

only the ultrasonic wave propagation but also the interaction between the wave and the 

defects and grain boundaries in the materials. There are two major categories of 

modelling methods: (semi-) analytical methods and numerical methods.  

Analytical models have a closed form solution to the elastodynamic equations used to 

describe the wave propagation and the interaction between wavefront and the defects 

and grain boundaries. That is, the solution can be expressed as an analytical function. 

Commonly used analytical modelling methods include multi-Gaussian beam method 

[52], Pencil method [53] and ray tracing model [54].  
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Analytical models are limited to simulating wave propagation in simple materials. For 

the complex coarse-grained materials of interest, analytical models no longer efficiently 

or even cannot simulate the wave propagation in the medium since each of the excessive 

grain boundaries present within the wave propagation path require a unique solution 

[55]. Therefore, simplifications are required in order that analytical models can provide 

an approximated solution to the wave propagation in a reasonable solution time. For 

instance, the interaction process between the interrogating wave and grain boundaries 

is simplified into a single parameter in [38]. Analytical models are also limited to 

simulating the interaction of the wavefront with regularly shaped defects. Kirchhoff 

approximation [56] and Born approximation [57] have been implemented into 

analytical models in order to efficiently and accurately simulate the interaction between 

the wavefront and irregularly shaped defects.  

Common numerical methods include finite difference method, boundary element 

method, finite element method (FEM) [58]. FEM discretises the continuum field being 

analysed into a number of small non-overlapping sub-regions named elements. Each 

element can be separately assigned with elastic properties. The computation with 

respect to wave propagation and interaction with grain boundaries and defects is 

performed at the discrete connecting points called nodes. The element shape in a finite 

element (FE) model can be adjusted to fit different boundary conditions.  

While FE models are inherently more computationally expensive than analytical 

models for simple materials, where the problem space encompasses complex coarse-

grained materials exhibiting a multitude of grain boundaries, the computation workload 

for analytical models rapidly increases. However, the additional complexity does not 

present a significant computational overhead for FE models. This leads to FEM being 

a much more viable tool in modelling wave propagation in coarse-grained materials. 

Moreover, efforts have been made to accelerate the simulation of wave propagation in 

FE models by using GPU-based parallel computing techniques [59]. 

There are numerous commercial and proprietary FE modelling packages. PZFlex 

(Weidlinger Associates Inc., New York, USA) is used to conduct FE modelling studies 

introduced later in this Thesis. PZFlex code is a fast, large, explicit, time-domain solver 

that specialises in modelling wave propagation within the complex materials. It also 
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incorporates an implicit solver to model the behaviours of a transducer made of piezo 

materials. 

Analytical modelling and FE modelling are commonly combined as hybrid modelling. 

For instance, Zhang et al. combined an analytical model for simulating backscattering 

grain noise and an FE model for describing the interaction between the interrogating 

wave and defects [56]. Recently, the French Alternative Energies and Atomic Energy 

Commission (CEA) coordinated the SIMPOSIUM project which aimed to provide a 

single and efficient hybrid simulation platform for NDE by linking the semi-analytical 

modelling package CIVA (Extende, Massy, France) with other FE simulation tools 

[60]. An example outcome of this project is that researchers at Imperial College 

developed a generic hybrid coupling method and applied it to link CIVA with their 

open-source GPU-driven FE code called Pogo [61]. 

2.3 Review of phase aberration correction methods 

It has been explained in the Section 1.2.2.1 that the phase aberration problem in the 

inspection of coarse-grained materials arises since the wavefronts from different array 

elements propagate at different velocities due to the heterogeneity and anisotropy of the 

materials. The fundamental principle of phase aberration correction is to ensure the 

wavefronts from different array elements arrive at desired focal points at the same time 

and in phase to constructively produce a maximum in sound pressure. To achieve this, 

the time delays applied to array elements in the isotropic focal law should be modified 

to compensate for not only the geometric path length difference but also the phase shift 

as a result of directionally variant sound velocity. The modified focal law is usually 

referred to as an anisotropic focal law.  

Many methods have been proposed in medical diagnostic imaging and ultrasound NDE 

to correct phase aberration. According to how anisotropic focal laws are generated, 

these methods can be generally classified into two main groups: data processing 

methods and model-based methods. Data processing methods generate anisotropic 

focal laws by correcting the elemental phase shifts via processing acquired data. Model-
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based methods use the models of the materials under inspection to estimate the TOFs 

from array elements to focal points based on which anisotropic focal laws are generated. 

These two approaches will now be reviewed in turn. 

2.3.1 Data processing methods 

Many methods of correcting phase aberration through adaptively estimating time delay 

were proposed in the medical diagnostic sector. Flax and O’Donnell developed the 

nearest neighbour cross-correlation (NNCC) method which determines the phase shifts 

by a similarity (cross-correlation coefficient) measure between the signals of 

neighbouring array elements [62, 63]. Beardsley et al. applied NNCC for array self-

focusing in NDE [64]. In the first iteration of NNCC, a signal segment of the first array 

element is used as the reference signal and the cross-correlation coefficients between 

the reference signal and a signal segment with a varying centre of the second array 

element are computed. The segment centre at which the highest cross-correlation 

coefficient is obtained is considered to have the correct arrival phase. In the second 

iteration, the phase-corrected signal segment of the second element is used as the 

reference signal to estimate the arrival phase of the third element. This process proceeds 

until the arrive phase of the last array element is obtained. Behar extended the NNCC 

technique by enriching the choice of the reference signal [20]. One such example is to 

use the sum of all previously phase-corrected signals as the reference signal. The 

beamsum (i.e., the sum of signals from all elements) can also be used as the reference 

signal to correct phase aberration assuming the phase errors of all elements are zero 

mean [65]. Other methods of estimating time delay include maximising mean speckle 

brightness in the region of interest [66] and minimising the sum of absolute differences 

between the signals of all array elements [67]. 

These adaptive time delay methods are effective and efficient to some cases in medical 

diagnostic imaging in which the phase aberration problem is induced by a thin 

aberrating layer close to the array surface. However, their results are observed to be 

disappointing in the case of the aberrators being distributed in the whole tissue volume 

[68]. This is because the temporal shape of a pulse is severely distorted by the 

volumetric aberrators via diffraction and multiple scattering. In such a case, the 
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methods based on estimating time delay typically fail to effectively correct phase 

aberration. For the same reason, these methods are also not effective in UT of coarse-

grained materials with distributed inhomogeneity. Moreover, high backscattering grain 

noise may mask the flaw echoes which will induce errors in the similarity measure 

between the signals of array elements [69].  

The time reversal mirror (TRM) technique was developed to correct phase aberration 

in inhomogeneous materials [70, 71]. In the process of TRM, the reflection signal 

received by a probe is recorded and then the probe retransmits the time-reversed version 

of the reflection signal. Compared to the adaptive time delay methods, the TRM method 

can refocus better since it not only corrects the phase shifts but also compensates the 

pulse distortions induced by the distributed inhomogeneity, however, at the expense of 

requiring programmable electronics for synthesising the time-reversed reflection signal 

for each array element. Iterative TRM process is typically required in the inspection of 

ultrasonically scattering materials such as titanium billet due to the strong grain noise 

interference [69]. 

DORT (French acronym for decomposition of the time reversal operator) method, as 

an extension of TRM, can avoid the iterative process by eliminating the grain noise 

interference and also allow the simultaneous phase aberration corrections of closely 

spaced flaws [69]. In this process, the scattering matrix is obtained from the phased 

array data and then the time-reversal matrix is computed as 

 𝑇(𝜔𝑐) = 𝑆∗𝑇(𝜔𝑐)𝑆(𝜔𝑐) Eq. 2.13 

where 𝜔𝑐 is the centre frequency of the phased array, 𝑆(𝜔𝑐) is the scattering matrix and 

the superscript ‘*T’ is the complex conjugate transpose operator of the matrix. Then the 

time-reversal matrix is eigenvalue decomposed. The number of significant eigenvalues 

is equal to the number of flaws or strong reflectors and larger eigenvalues correspond 

to the flaws with stronger reflectivity. The corresponding eigenvector of each 

significant eigenvalue indicates the phased array response to the corresponding flaw. 

Each eigenvector contains the amplitude and phase information that should be applied 

to the phased array in order to correct phase aberration at the corresponding flaw 

location. Grain scatterers typically have weaker reflectivity than the flaws so that they 

correspond to the insignificant eigenvalues. Since their corresponding eigenvectors are 
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not applied to the phased array, the interference of grain noise on phase aberration 

correction is avoided.  

Besides, since DORT can separate the closely spaced flaws as illustrated above, it can 

also be applied to improve the spatial resolution of array imaging. Indeed, the super-

resolution array imaging algorithm TR-MUSIC which has been mentioned in Section 

2.2.2 is based on the DORT method.  

2.3.2 Model-based methods 

Many methods of overcoming phase aberration with the use of modelling techniques 

have been proposed. Most of them deal with austenitic stainless steel welds which are 

favoured for use as the components of pressure vessels and piping in the nuclear and 

petrochemical industries. In these methods, anisotropic focal laws are not calculated 

mathematically, instead, wave propagation in the material under inspection is simulated 

in the model of the material and the TOFs from array elements to focal points are 

measured in the model to instruct the generation of anisotropic focal laws. These 

methods differ in how the material model is obtained and TOFs are estimated. 

The Ogilvy weld map is a well-recognised approximation to the microstructures of 

austenitic stainless steel welds [54]. The crystallographic orientations in the Ogilvy 

weld map are given as a function of the shape and dimensions of the weld. With the 

knowledge of the mass density and stiffness matrix of austenitic stainless steel, the 

sound velocity profile as a function of crystallographic orientation and sound incident 

angle can be calculated using the Christoffel equation. Connolly et al. employed this 

model to predict ray tracing of ultrasound waves within the stainless steel weld, such 

that TOFs from array element to a focal point were determined in simulations [72]. The 

ray tracing is estimated based on Fermat’s principle of least time, stating that ray always 

takes the path between two points which costs the least time. Conventional ray-tracing 

algorithms typically follow an iterative trial-and-error procedure, hence, they can be 

computationally expensive. Two path-finding algorithms, Dijkstra and A* algorithms, 

have been proposed to rapidly find ray traces [73]. 
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Although the Ogilvy weld map is widely used as the material model of austenitic steel 

weld materials, in reality, the microstructural characteristics of welds vary with the 

parameters of the fabrication process. Therefore, an accurate description of the 

microstructure of the weld is required in order to produce an accurate estimate of ray 

traces in the weld. Indeed, it is reported by Apfel et al. that too simplified structural 

descriptions of the weld give rise to incorrect results [74]. A number of methods have 

been developed to obtain the microstructural of the weld. Inverse models based on a 

genetic algorithm [75] and Monte Carlo Markov Chain [76] were created to estimate 

unknown microstructural anisotropy from experimentally acquired array data. The 

estimation was achieved by iteratively minimising the error between a forward model 

of welds and experimental array data. Researchers in EDF (Paris, France) developed 

the MINA model to describe the microstructural anisotropy of an austenitic steel 

multipass weld [77]. This model can produce a corresponding weld map with the input 

parameters such as the welding notebook, number of weld runs, etc.  

More recently, TWI (Cambridge, UK) carried out considerable work to correct phase 

aberration and so to maximise the inspection sensitivity with the use of EBSD and the 

CIVA package [78-80]. In their approach, an austenitic steel weld was measured by 

EBSD scanning to obtain its crystallographic orientations represented with Euler 

angles. The crystallographic orientations were processed with a misorientation angle of 

20o to reveal the positions of grain boundaries. Then the weld map with identified grain 

boundaries was processed to generate a 2D CAD drawing which was then read into 

CIVA to construct a material model of the weld. In addition, a 2 MHz linear phased 

array was also simulated coupled to the material model. The propagation of sound 

beams was simulated by the CIVA model where the TOFs from the array elements to 

focal points were determined in simulations. According to the TOFs, anisotropic focal 

laws which were adapted to the anisotropic properties of the weld were generated in 

simulations, following the criteria that the wavefronts from array elements must arrive 

at desired focal points at the same time and in phase to constructively produce a 

maximum in sound pressure. This approach for correction phase aberration is termed 

high-fidelity modelling in the Thesis, since EBSD can provide microstructural 

descriptions of welds with high fidelity and CIVA, as a well-recognised ultrasound 

modelling package, can accurately simulate ultrasound wave propagation in the model.  
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The preliminary semi-analytical model configured in CIVA was observed to be 

extremely computationally inefficient due to the excessive grain boundaries present in 

the model. To reduce the number of grain boundaries, the measured crystallographic 

orientations were processed to unify them to several dominant orientations (the 

orientations of columnar grains) and grain boundaries were redefined. Nevertheless, the 

time cost of wave simulation in the semi-analytical model was still considerable.  

Harvey et al. extended the TWI work by constructing an FE model of the same weld in 

PZFlex which can obtain TOFs within a much shorter time period than the semi-

analytical model [55]. This is because PZFlex code is specialised in simulating wave 

propagation in the complex medium, as previously stated. 

2.4 Review of noise reduction methods 

Historically, many methods have been developed in order to suppress grain noise and 

speckle observed in ultrasonic imaging applications in both ultrasonic diagnostic 

imaging in biomedicine and NDE. As per signals or images being processed prior to or 

after the formation of the final signals or images, existing methods can be classified 

into two groups: pre-processing or post-processing methods.  

2.4.1 Pre-processing methods 

Pre-processing methods attempt to reform the ultrasound field spatially and/or 

spectrally to eliminate or reduce grain noise and speckle. These methods involve 

modifications to signal acquisition and image formation. Examples of these methods 

include spatial compounding, frequency compounding, phase coherence imaging [81], 

TRM [69], etc. This section will review spatial and frequency compounding methods 

with the emphasis on frequency compounding since it forms the basis of the relevant 

research described in Chapter 4~5 of the Thesis. 
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2.4.1.1 Spatial compounding 

Spatial compounding methods are based on spatial diversity which denotes the 

variation of received signals when a target region is insonified from different angles. 

Generally, grain noise and speckle patterns vary significantly in different insonification 

angles whilst flaw reflections are relatively coherent. By averaging signals or images 

acquired using slightly shifted transducer positions, noise reduction is attained. 

Advanced beamformers, such as TFM, inherently operate with spatial diversity [32]. 

TFM sums images acquired by different transmitter-receiver pairs of a phased array 

thus coherent reflections are enhanced.  

Noise suppression by averaging signals or images is compromised if grain noise or 

speckle patterns are spatially correlated [82]. In addition to averaging, Wilhjelm et al. 

exploited other combination operators for spatial compounding, including median, 

geometric mean, etc. [83]. In recent work, Li et al. investigated the application of 

adaptive beamforming by weighting the per-element delayed data samples of the array 

where the weights are tuned according to local statistics [84]. This adaptive beamformer 

has the effect of decorrelating speckle noise acquired by different transmitter elements 

so it can produce an image with lower speckle intensity than TFM. Seo et al. proposed 

another advanced beamforming compounding technique called dual apodization with 

cross-correlation (DAX) for diagnostic imaging [85]. This technique measures the 

correlation between two images formed using two different apodized apertures. The 

measured correlation coefficient matrix is then multiplied with the image formed using 

the full aperture in a point-wise operation to generate the processed image. The authors 

also proposed the use of NNCC technique in conjunction with DAX to correct phase 

aberration in order to improve DAX’s robustness [86].  

2.4.1.2 Frequency compounding 

Frequency compounding combines signals or images acquired at multiple frequencies. 

It determines if a received signal is reflected by a legitimate flaw or grain boundaries 

based on frequency diversity. Frequency diversity, analogous to frequency agility in the 

radar sector [87], states that the grain noise is frequency sensitive whilst the flaw echo 

is frequency insensitive. This is because grain noise indicates a multi-scattering event 

and is the mutual interference result of echoes from spatially unresolvable grain 
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scatterers. Since each individual scatterer has a different phase due to their randomness 

of dimension and spatial distribution, the interference of scatterers’ echoes at different 

frequencies can be either constructive or destructive. On the contrary, a flaw echo 

indicates a sole-scattering event and it contains all the wavelengths comparable to or 

smaller than the flaw size. Therefore, flaw echoes are relatively more coherent than 

grain noise within an appropriate bandwidth. By combining signals or images acquired 

at different frequencies, only the coherent flaw echoes are retained and incoherent grain 

noise or speckle are reduced or eliminated. 

It should be noted that frequency diversity neglects the multiple scattering effects 

between scatterers, which refers to the phenomenon wherein the ultrasound wave 

scattered from a grain scatter is re-scattered by neighbouring scatters [88]. That is, the 

amplitude of the re-scattered signal detected by the transducer is assumed to be 

negligible as compared to the scattered signal. Fortunately, the assumption is tenable 

for the majority of the regime of interest in NDE [38, 89].  

Frequency compounding can be applied in transmission by employing multiple 

transducers or phased arrays with different central frequencies. However, it is best 

applied in reception by decomposing the signals received by a single transducer or array 

into sub-bands signals on condition that the received signals have a wide frequency 

band.  

One representative method of frequency compounding is the split-spectrum processing 

(SSP) which is implemented by decomposing received wideband signals. It was 

introduced in the 1970s to improve SNR in NDT of coarse-grained materials [90]. It 

decomposes a wideband RF A-scan into a set of sub-band signals through a bank of 

bandpass filters and combines filter outputs with either linear algorithms such as 

averaging or nonlinear algorithms such as minimisation. SSP has been extensively used 

for the purpose of noise suppression due to its superior performance [81]. It was initially 

applied to reduce grain noise specifically for processing of individual A-scan traces but 

was subsequently extended to include the processing of each A-scan of array data with 

the aim of enhancing the contrast of medical images [91]. Li et al. applied the SSP 

algorithm to each column of a SAFT image, considering every image column as a 

synthetic A-scan [22].  
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The bandpass filtering step of SSP can be performed either in the time domain or in the 

frequency domain. Fig. 2.7 shows the flow chart of SSP of an A-scan signal with the 

bandpass filtering being performed in the frequency domain. 

 

Fig. 2.7: Flow chart of SSP with a bank of three bandpass filters 

SSP contains two set of parameters: the filter bank specifications and the combination 

algorithms. The filter specifications which have been studied in literature include the 

following five parameters: 

 Total bandwidth  

 The number of filters 

 The bandwidth of each filter 

 Overlap of filter pass-bands 

 Filter type 

In general, the total bandwidth is set to the bandwidth of the inspection probe. In some 

cases of inspecting coarse-grained materials, the upper limit of the bandwidth is 

selected lower than that of the transducer since signal energy at higher frequencies is 

attenuated by the grained structures [92]. The number of filters is generally chosen to 
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be smaller than 10 since it has been reported that SNR enhancement rate rapidly 

decreases when the filter number is greater than 10 [93]. Filters are usually designed 

with equal bandwidth and with their central frequencies equally spaced in the total 

bandwidth. Rodriguez et al. provide a multi-resolution design in which the bandwidth 

of each filter is proportional to the central frequency in order to prevent one band 

overwhelming others [94]. The filter overlap is usually selected as 0%~25% because 

an overlap less than 0% results in loss of frequency information whilst a large overlap 

negates the effect of SSP [93]. Finally, Gaussian type filters are commonly used 

because they provide the best joint time-frequency resolution [90].  

The combination approaches which have been explored in the literature include the five 

algorithms formulated below. For notational convenience, these symbols are used in 

the equations: 𝐴𝑖(𝑛) is the output of ith band at the instant n; K is the number of 

bandpass filters; 𝑌(𝑛) is the processed signal. 

 Mean (MEAN) 

 𝑌(𝑛) =
∑ 𝐴𝑖(𝑛)𝐾

𝑖=1

𝐾
 Eq. 2.14 

 Minimisation (MIN) 

 𝑌(𝑛) = 𝑚𝑖𝑛(|𝐴1(𝑛)|, |𝐴2(𝑛)|, ⋯ |𝐴𝐾(𝑛)|) Eq. 2.15 

 Frequency multiplication (FM) 

 𝑌(𝑛) = √|∏ 𝐴𝑖(𝑛)

𝐾

𝑖=1

|
𝐾

 Eq. 2.16 

 Polarity threshold (PT) 

 
𝑌(𝑛) = 𝐶 · 𝑚𝑖𝑛(|𝐴1(𝑛)|, |𝐴2(𝑛)|, ⋯ |𝐴𝐾(𝑛)|);   where 𝐶

= 1 if all 𝐴𝑖(𝑛) > 0 or <  0;  otherwise, 𝐶 = 0 
Eq. 2.17 

 Polarity threshold with scaling (PTS)  

𝑌(𝑛) = |
𝑃 − 𝑁

𝐾
| · 𝑚𝑖𝑛(|𝐴1(𝑛)|, |𝐴2(𝑛)|, ⋯ |𝐴𝐾(𝑛)|); where 𝑃

= number of cases for 𝐴𝑖(𝑛) > 0, 𝑁 = 𝐾 − 𝑃.   

Eq. 2.18 
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Amongst these five combination algorithms, MEAN, MIN and FM are based on the 

coherence of the magnitudes of the filter outputs. PT and PTS are based on the 

coherence of instantaneous polarities of the filter outputs. The two combination 

algorithms differ in the degree of stringent constraints on the polarity coherence of filter 

outputs. Other combination approaches include the phase deviation method in which 

the original signal is modulated by the standard deviation of the phases of filter outputs 

[95], and Wiener filtering (i.e., weighted MEAN with optimised weights) with the 

knowledge of the flaw and noise spectra [96]. 

Previous studies observed that SSP reduces noise at the expense of axial resolution due 

to the use of narrowband sub-band signals [97]. The loss of axial resolution denotes 

that the minimum distance in the axial direction between two temporally resolvable 

peaks in an A-scan signal or two spatially resolvable objects in a B-scan image is 

increased. Mulholland et al. attempted to increase the transducer bandwidth by 

attaching multiple matching layers in the front face of a transducer to improve the axial 

resolution [29]. Sanchez and Oelze proposed the use of the coded excitation and pulse 

compression technique called resolution enhancement compression (REC) in 

conjunction with SSP in order to enhance the bounds of the trade-off between the axial 

resolution and image contrast enhancement [98]. Dantas et al. proposed the use of a 

bank of wideband 2D directive filters each of which filters the 2D RF data in a given 

direction [99]. The filter outputs were combined by averaging. The results showed that 

speckle level is greatly reduced without apparent resolution loss.   

Another drawback of SSP is that its performance is highly dependent on the selected 

filter specifications [81]. As a result, the practical implementation of SSP necessitates 

a troublesome interactive process of tuning filter specifications, usually following a 

trial-and-error procedure. Moreover, the performance of a tuned SSP system is very 

sensitive to the variations of the spectra information of flaw echoes and grain noise 

which results from the variations of material characteristics. Coarse-grained materials 

exhibit spatial fluctuation in the elastic properties which will give rise to significant 

variations in the spectra of grain noise. As a consequence, an SSP system with tuned 

filter specifications can reduce grain noise or speckle in some regions of the specimen 

but may not as effective in other regions.  
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In order to improve the robustness of SSP, efforts have been made to find methods 

capable of automatically tuning the filter specifications to adapt to different material 

characteristics. The total bandwidth in which SSP should be applied can be determined 

by locating the frequency range with the maximal group delay entropy which implies 

the highest SNR [100]. The optimal number of filters for the minimisation algorithms 

has been found in [101]. Although many efforts have been made, no fully successful 

method of automatically tuning the filter specifications have, to date, appeared in the 

literature. 

Instead of tuning the filter specifications, efforts have also been made to explore other 

combination approaches which are insensitive to the variation of material 

characteristics for given filter specifications. Several pattern recognition techniques 

have been proposed as combination approaches of SSP to improve its robustness. These 

techniques include artificial neural network (ANN) [102, 103], support vector machine 

(SVM) [104], etc. Most of the pattern recognition methods firstly establish a statistical 

training process to train a system with a significant amount of known flaw echoes and 

grain noise. The training process allows the system to acquire the complete statistical 

properties of both flaw echoes and grain noise, the trained system is, therefore, 

insensitive to the variations of the spectra information of flaw echoes and grain noise 

which results from the variations of material characteristics. The trained system is then 

used to classify new inputs as either flaw reflections or grain noise.  

2.4.2 Post-processing methods 

Post-processing methods typically apply signal or image processing techniques to 

suppress noise after the final signal or image is formed and digitised. Examples of these 

methods include statistical analysis, deconvolution, adaptive filtering and so on [105]. 

In medical diagnostic imaging, ultrasonic scattering from tissue scatterers is 

fundamentally a statistical process. The probability distribution function (PDF) of the 

envelope amplitude of the backscattered signals by tissue was analysed to characterise 

tissue, offering parameters of the scatterers constituting the tissue, e.g., scatterer 

number and distribution. The tissue can be classified as malignant or benign with the 
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knowledge of the scatterer parameters [106-108]. Likewise, ultrasonic scattering from 

spatially unresolvable grain scatterers is also a statistical process in the regime of 

ultrasound NDE. For a large number of randomly distributed grain scatterers, the 

observed envelope is characterised by a Rayleigh PDF. If a flaw is present, the PDF of 

the observed envelope changes from the Rayleigh distribution into a post-Rayleigh 

distribution, often known as Rician distribution [107]. Hence, the PDF of the observed 

envelope can give an indication of the presence of flaws in materials.  

An ultrasound image is a convolution result of the point spread function (PSF) of the 

array imaging system with the microstructure transfer function. The PSF of an imaging 

system is spatially variant and is determined by the transducer array configuration, 

excitation pulse and so forth. Deconvolution methods improve image contrast by 

reducing or eliminating the anisotropic effect of the PSF [109]. If the PSF is known, 

deconvolution approaches such as Wiener deconvolution can be applied to eliminate 

the anisotropic PSF effect. If the PSF is unknown, it is typically estimated in the 

cepstrum domain prior to performing deconvolution [110].  

Adaptive filtering techniques smooth homogeneous regions whose statistics resemble 

to speckle statistics and do not smooth other regions so that speckle level is reduced 

and defect signals are preserved. These techniques differ in their filtering mechanism. 

Lee adopted the minimum mean square error as the cost function to design an adaptive 

filter whose output is based on the local mean and variance [111].  Chen et al. used an 

adaptive homogeneity threshold approach to adaptively adjust the homogeneous region 

size in order to avoid the distortion of defect edges [112]. The homogeneous regions 

are smoothed with an arithmetic mean filter and defect edges are processed with a 

nonlinear median filter. One drawback of the adaptive filtering methods is that they 

suppress speckle at the expense of blurred image and reduced spatial resolution.  

Multiscale algorithms linearly decompose the final image into multiple scaled versions 

of the final image. Wavelet filtering is one example of such algorithms. The final image 

is processed with wavelet transformation in which the wavelet coefficients smaller than 

a pre-set threshold are regarded as noise and then removed and coefficients are kept 

otherwise. The processed coefficients are combined to form a processed image [113, 

114].  
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2.5 Definition of improvement areas 

Previous research with regard to high-fidelity modelling mainly employed EBSD for 

microstructural characterisation and analytical or semi-analytical modelling techniques 

for simulating wave propagation. However, the approach is limited in practical use. 

This is because EBSD can only scan small samples due to the limited size of SEM 

chamber and a considerable amount of time is required for sample preparation because 

of EBSD being tolerant to surface roughness only at the nanometre scale. Also, 

analytical modelling techniques have difficulty in coping with complex microstructure. 

It has been reported that CIVA takes 7.5 hours to simulate the wave propagation in a 

round-trip time in a 33.7 x 15.4 mm2 austenitic steel weld [79]. In Chapter 3, the use of 

SRAS with no restriction to sample size and less surface preparation than EBSD and 

the PZFlex package as an efficient modelling platform will be explored, aiming to 

significantly enhance the practicability and operational efficiency of the high-fidelity 

modelling approach. In addition, most of the previous research pertaining to phase 

aberration correction focuses on austenitic steel weld materials with columnar-grained 

microstructure. Therefore, the complementary research for correcting the potential 

phase aberration problem in equiaxed-grained materials will be presented in Chapter 3.  

The literature with respect to the combination of SSP with ANN has been reviewed in 

Section 2.4.1.2 - most of the publications adopted the MLP model of ANN. The MLP 

model typically needs an iterative training process to optimise its weights, as a 

consequence, it may become to an inefficient solution in some cases. Therefore, the 

investigation of combining SSP with other cost-effective ANN models such as RBF is 

prudent. In Chapter 4, the comparison work between the MLP model and the RBF 

model in terms of training time cost and effectiveness in SNR enhancement will be 

presented. Furthermore, in the majority of the prior art, it was assumed that the flaw 

locations were known and the flaw echoes for ANN training were readily accessible. 

However, in real cases of NDE, the knowledge of flaws is typically unavailable or very 

limited. Even if the flaw locations are known, the flaw echoes are commonly seriously 

corrupted by strong grain noise interference. Training an ANN with corrupted flaw 

echoes typically results in a significant classification error rate. For this reason, the 

performance of the MLP model and RBF model in the cases of no flaw information 
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available and flaw echoes being corrupted by grain noise will be also evaluated and 

compared in Chapter 4. 

Statistical signal processing basically denotes the estimation or detection of 

deterministic signals from random noise using statistical techniques. It contains 

algorithms such as maximum likelihood estimation (MLE) and best linear unbiased 

estimator (BLUE) [115]. Ultrasonic backscattering at different frequencies can be 

considered as a stochastic process due to the random phases of the spatially 

unresolvable grain scatterers whilst flaw reflections can be considered as deterministic 

signals due to their coherence across different frequencies. Consequently, statistical 

signal processing algorithms can be applied as the combination algorithms of SSP to 

recover the coherent flaw reflections from noise-corrupted sub-band A-scan traces or 

speckle-corrupted sub-band B-scan images. The combination of SSP with statistical 

signal processing algorithms has been little considered in the literature. Hence, Chapter 

5 will investigate the combination of SSP and the BLUE technique. 

As described in Section 2.4.2, the PDF of the observed envelope can indicate the 

presence of a flaw. In most publications, the PDF of the envelope amplitude is obtained 

from a signal segment of an envelope-detected A-scan trace acquired by a monolithic 

probe. However, in this case, in order to attain enough envelope instances for a fair PDF 

representation, the signal segment is inevitably selected to be very long. Indeed, 

Narayanan et al. obtained the envelope PDF from a signal segment of equivalent 3.7 

cm long [107]. This implies that the spatial resolution and so the accuracy of flaw 

positioning is greatly compromised. With the use of an N-element phased array and the 

FMC data acquisition approach, N2 envelope instances are available at each point. In 

this case, a fair PDF representation is obtained without the drawback of compromised 

temporal resolution as long as the value of N is not too small. The use of phase array 

systems for the generation of PDF information will be investigated in Chapter 6. 

To conclude, Chapter 3 is concentrated on addressing the phase aberration problem. 

Chapter 4~6 investigates novel signal and image processing algorithms for enhanced 

suppression of grain noise and speckle. More specifically, Chapter 4 and 5 are devoted 

to developing new combination algorithms for SSP; Chapter 6 focuses on array data 

processing. 
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2.6 Data acquisition 

Prior to concluding the chapter, it is useful to describe at this point the experimental 

arrangements and material samples used in the Thesis. Fig. 2.8 gives a schematic 

diagram of the array data acquisition arrangement employed throughout the Thesis. The 

computer at the workstation sends a trigger command to a phased array controller 

(PAC) which then sends a pulse to excite the phased array according to the defined 

focal law. The array is placed on the surface of a test sample on which some water is 

applied to enhance the ultrasound energy transfer efficiency. After being stimulated, 

the array emits sound waves and captures the reflected echoes from the test sample 

which are then transferred back through PAC to the computer.  

A commercially available 1D linear 128-element phased array (Vermon, Tours, France) 

was employed to acquire array data used in the Thesis. Details of the phased array are 

listed in Table 2.1. Two PACs were used to control the phased array in the Thesis. Fig. 

2.9 shows the photos of the two PACs: the left one is DYNARAY (Zetec, Snoqualmie, 

USA); the right one is FlawInspecta (Diagnostic Sonar Ltd., Livingston, UK). 

DYNARAY is configured with 256 simultaneously active channels. It allows users to 

choose one sampling frequency from 25 MHz, 50 MHz and 100 MHz, with 100 MHz 

being selected in the Thesis. FlawInspecta is configured with 64 simultaneously active 

channels and so a multiplexing system is present to enable the 128-element phased array 

to be controlled by the FlawInspecta. It has a fixed sampling frequency of 40 MHz. The 

sampling frequencies for both PACs are sufficiently high as the phased array has a 

central frequency of 4.5 MHz. Both PACs sent a -40 volts negative square pulse having 

a time duration of 100 ns as the excitation pulse to the array. Array data were acquired 

in the FMC format and all of the B-scan images were created by post-processing the 

FMC data using the TFM algorithm in Matlab (The MathWorks Inc., Natick, USA).  
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Fig. 2.8: Schematic diagram of experimental data acquisition arrangement 

Table 2.1: Specifications of the phased array 

Centre frequency (MHz) 4.5 

Pitch size (mm) 0.7 

Element number 128 

-6 dB low cut-off frequency (MHz) 3.1 

-6 dB high cut-off frequency (MHz) 6.0 

Fractional bandwidth (-6 dB)  64% 

 

  

(a) (b) 

Fig. 2.9: Two phased array controllers: (a) DYNARAY; (b) FlawInspecta. 
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Table 2.2 lists the six test pieces used in the Thesis. For brevity, these six samples are 

sometimes referred to as their numbers in the remainder of the Thesis.  

Sample 1 is an 85 mm thick austenitic steel weld joining a 316L stainless steel plate 

with a 50D carbon steel plate. This sample is a typical dissimilar joint used as the safe-

end weld of the pressurised water reactor (PWR) in the nuclear industry. This sample 

is provided by TWI and the same as the austenitic steel weld described in Section 2.3.2. 

Crystallographic orientations of a slice of the sample were obtained from the previous 

research projects in TWI which are used in the study of phase aberration correction in 

Chapter 3. 

Sample 2 is a keystone-shaped Inconel (Nickel-Chromium based alloy) 617 alloy block 

provided by E.ON Technologies (Ratcliffe-on-Soar, UK). Inconel alloys are attractive 

construction material components in industries such as aerospace, power plants due to 

an exceptional combination of oxidation resistance and high-temperature modulus 

[116]. A slice of the sample was cut for the examinations of microstructural 

characterisation using EBSD and SRAS and the crystallographic orientation data is 

used in the analysis of phase aberration correction in Chapter 3. 

Experiments were carried out on Samples 3~6 detailed in Table 2.2 to acquire array 

data used in the analysis of noise reduction that will be presented in Chapters 4~6. The 

schematic diagrams of inspection geometry will be drawn in the following chapters. 

Sample 3 is a flaw-free austenitic stainless steel block also provided by E.ON 

Technologies. Austenitic stainless steels are favoured for the use as the primary coolant 

piping of PWRs in nuclear power plants and piping and pressure vessels in the 

petrochemical industry due to their outstanding resistance to corrosion and oxidation as 

well as better plasticity and higher strength versus typical carbon steels [117]. Array 

data were acquired on the arc-shaped surface and so the backwall has a nominal 

thickness of 51 mm. The array data were analysed in Chapter 4 and 6 to reduce grain 

noise and speckle, respectively. 

Sample 4 is a creep resistant ferritic steel block that is often used in the manufacture of 

power plant boilers. It is supplied by Doosan Babcock. It is 80 mm thick and has four 

3-mm-diameter side-drilled holes (SDHs) at the depth of 20 mm, 40 mm, 60 mm and 

75mm, respectively. All the four SDHs are 40 mm long inward. The array data of the 
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deeper three SDHs were acquired separately and were processed in Chapter 4 to reduce 

grain noise. 

Sample 5 is a 160 mm thick Inconel 625 stepped wedge supplied by Siemens AG 

(Berlin, Germany). Its chemical compositions are slightly different from Sample 2. 

Three 5-mm-diameter SDHs are machined at the depth of 10 mm, 60 mm and 105 mm. 

Array data were acquired from the region covering the two deeper SDHs and were 

processed in Chapter 5 and 6.  

Sample 6 is supplied by AMEC (Cheshire, UK) and is made up of two forged 316L 

austenitic stainless steel plates welded with steel 316L filler. The sample is 22 mm 

thick. It contains seven implanted flaws in various size and shape simulating cracks and 

lack of fusion. Array data of a tilted flaw implanted at the weld boundary were acquired. 

The data were processed in Chapter 5 and 6. 

Samples 3~6 are composed of different materials and have different flaw type and size 

which allows the signal and image processing algorithms implemented in the Thesis to 

be evaluated under a wide range of inspection scenarios.  

 

 

Table 2.2: Details of the six test pieces used in the Thesis. 

Sample 

No. 
Photo Composition Note 

1 

[118] 

Austenitic steel 

weld joining a 

316L stainless 

steel plate with a 

50D carbon steel 

plate 

A slice of the 

weldment was cut. The 

slice was polished and 

then examined by 

EBSD 
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2 

 

Inconel 617 

(~60% Ni, ~20% 

Cr, ~10% Co) 

A slice of the sample 

was cut. The slice was 

polished and then 

examined by SRAS 

and EBSD. 

3 

 

Austenitic steel  

block (~18% Cr, 

~8% Mn) 

 

Cut from a larger in-

service part. No flaws 

implanted. 

4 

 

Creep resistant 

ferritic steel 

block (~5% Cr, 

~0.5% Mo) 

A square block with 

four 3-mm-diameter 

SDHs. 

5 

 

Inconel 625 

(~60% Ni, ~20% 

Cr, ~10% Mo) 

A very large sample 

with a size of 

70*160*550 mm. 

Three SDHs were 

machined. 

6 

 

Austenitic steel  

weld plate  

Seven flaws were 

implanted in the 

weldment. 

 

 



Methodologies for Enhancing Ultrasonic NDE of Coarse-grained Materials – Bo Xiao 

 

54 

 

CHAPTER 3. Phase aberration correction 

with high-fidelity modelling 

3.1 Introduction 

This high-fidelity modelling approach for phase aberration correction replicates 

practical inspection scenarios in virtual experiments within a suite of simulation tools. 

The actual TOFs from array elements to the focal point are predicted in the simulations 

to instruct the determination of anisotropic flaws. This approach contains four steps: 

1) Microstructural characterisation  

2) Data processing and model construction 

3) Determination of the anisotropic focal law for the propagation path 

4) Application of the anisotropic focal law in practical inspection 

The first step is to obtain the crystallographic orientation using material characterisation 

techniques introduced in Chapter 2, EBSD and SRAS. In this chapter, the 

microstructural characterisation of two samples is discussed. The austenitic steel weld, 

i.e., Sample 1 listed in Table 2.2, was examined by EBSD. The Inconel 617 alloy, i.e. 

Sample 2 listed in Table 2.2, was examined by SRAS. Researchers at the University of 

Nottingham have conducted considerable validation work of SRAS in determining 

crystallographic orientation, however, most of the validation is limited to single-crystal 

materials [48] or single-crystal alloys [50]. No validation of the orientation data of the 

more commonly used polycrystalline materials like Sample 2 has appeared, to date, in 

the literature. Therefore, five subsections of Sample 2 were also examined by the well-

recognised EBSD and the acquired orientation data will be used as benchmarks for 

validating the orientation data obtained by SRAS in Section 3.2.  
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The second step is to create models which precisely simulate, subject to some 

appropriate assumptions, the practical inspection scenario. In this chapter, the FE 

modelling package suite PZFlex is employed due to its efficiency in simulating wave 

propagation in complex materials. The crystallographic orientation data obtained from 

the first step must undergo some processing prior to FE model construction. This 

process aims to reduce the number of crystallographic orientations required to represent 

the material in the FE model whilst maintaining model fidelity. For example, the 

Inconel 617 sample has ~40,000 distinctive orientations which is unwieldy for 

computationally efficient FE modelling. This will be explored in more details in Section 

3.3. It is noted that the raw EBSD data of the austenitic steel weld were measured by 

TWI and are kept confidential. However, the details of processing the orientation data 

are provided in the publication [79]. Moreover, the FE model created based on the 

processed orientation data by the Harvey et al. [55] is accessible. Therefore, a short 

representation of the orientation data processing for this austenitic steel weld will be 

given in Section 3.3 and the published FE model will be directly used for the analysis 

in next two steps. For the Inconel 617 sample, EBSD and SRAS datasets were generated 

in the course of the work presented in the Thesis by the Universities of Manchester and 

Nottingham, respectively. The measured SRAS data are then subject to the two 

proposed approaches to process the orientation data and then are used to construct FE 

models, this will be further described in Section 3.3. 

The third step is to generate anisotropic focal laws based on the time reversal method. 

A new time reversal method is proposed. It inserts a pressure source at the focal point 

of the constructed FE model and records the TOFs of the wavefronts propagating from 

the focal point to the elements of the array. The TOFs data are then used to generate 

anisotropic focal law. The details regarding the generation of anisotropic focal law will 

be given in Section 3.4. The fourth step is to apply the anisotropic focal law produced 

in the third step into practical inspection. The execution of this step is not introduced in 

this chapter, but discussion will be provided in Section 3.5. 
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3.2 Microstructural characterisation 

The first important parameter to establish for both EBSD and SRAS is the spatial 

scanning resolution which determines the cost in terms of expenses and time.  

For the case of the austenitic steel weld, EBSD scanning of an area 8 mm2 of the weld 

surface at a resolution size of 5 x 5 µm took nearly 12 hours whereas scanning with a 

resolution of 40 x 40 µm took only 12 minutes. In order to assist in defining the 

scanning resolution, the element size of the FE model is typically required to be 

approximate 1/15 of the wavelength for accurately simulating wave propagation and 

can be considered to be identical to the scanning resolution size. If a 1.5 MHz phased 

array is employed to inspect the weld, the generated longitudinal wavelength is 

approximate 4 mm. Since the scanning resolution size of 40 x 40 µm is smaller than the 

1/15 of the wavelength, it is considered to be an appropriate spatial resolution to 

accurately simulate the wave propagation in the weld material at the proposed centre 

frequency of 1.5 MHz.  

A slice was cut from the Inconel 617 alloy and polished for SRAS and EBSD scanning 

which shows in Fig. 3.1. SRAS measurement was conducted on the whole slice with a 

scanning resolution of 25 x 50 µm. The Inconel 617 alloy sample is thinner and less 

scattering than the austenitic steel weld, enabling the use of higher frequency than 1.5 

MHz to inspect. If a 5 MHz phased array is employed, the generated longitudinal 

wavelength is approximate 1.2 mm. The scanning resolution of 25 x 50 µm is smaller 

than 1/15 of the wavelength in both spatial directions, it is therefore considered to be 

sufficient for accurately simulating wave propagation in the model. 

SAW velocity maps were measured in 19 directions, from the top-bottom direction to 

the bottom-top direction with a step of 10°. Fig. 3.2 gives two examples of SAW 

velocity maps. Fig. 3.2(a) refers to the velocity variation when SAW propagates from 

top to bottom while Fig. 3.2(b) presents SAW propagating from left to right. The two 

figures are displayed with a velocity range from 2200 to 3100 m/s. 

In order to validate the crystallographic orientation data obtained by SRAS, five 

overlapping subsections of the same Inconel 617 slice were also examined with EBSD 

with a scanning resolution of 10 x 10 µm. The location of the five subsections is 
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highlighted by a rectangular box in Fig. 3.2(a) and their total dimension is approximate 

2.5 x 8 mm. 

 

Fig. 3.1: Inconel 617 sample slice for SRAS and EBSD measurement 

  
(a) (b) 

Fig. 3.2: Inconel 617 SAW velocity maps in  the propagation direction: (a) from top to bottom and (b) 

from left to right.  
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Before validating the crystallographic orientation data obtained by SRAS technique, it 

would be interesting to compare the microstructure observed in the SAW velocity map 

with the counterparts observed in the EBSD orientation map. A key motivation for 

SRAS is to rapidly image material microstructure and thus to obtain an indication of 

grain orientation distribution using SAW velocity to differentiate crystallographic 

orientations [51]. 

Striking similarities between EBSD orientation image and SRAS velocity image for 

titanium alloys have been reported [51]. For the Inconel 617 sample described here, 

EBSD orientation maps and SRAS SAW velocity (propagating from top to bottom) 

maps for each of the five subsections is compared side-by-side in Fig. 3.3 in which the 

EBSD orientation maps are placed on the left side and SAW velocity maps are placed 

on the right side. In the figure, the EBSD orientation maps are displayed in the 

commonly used inverse pole figure (IPF)–colouring. An exhaustive description of IPF-

colouring would require another section in this chapter so that the reader is referred to 

[43] for a full description. A certain colour corresponds to a certain orientation for the 

IPF orientation maps and a certain velocity for the SAW velocity maps. The colormap 

used for IPF displays is shown at the top of the left figure of Fig. 3.3(e) whilst the 

velocity dynamic range for SAW velocity displays is shown at the right side of the right 

figure of Fig. 3.3(e). Each subsection has an approximate dimension of 2.5 x 2 mm. 

The IPF map has a spatial resolution (i.e., the scanning resolution size) of 10 x 10 µm 

whilst the SAW velocity map has a spatial resolution of 25 x 50 µm. 

The two maps for each subsection are generally in good agreement. The average grain 

size is observed with an equivalent diameter of ~250 µm for both EBSD and SRAS 

cases. However, quite a few grain boundaries are clearly depicted in the IPF maps but 

not as distinct in the SAW velocity maps. For instance, the grain boundary between the 

grain 1 and grain 2 of the second subsection as highlighted in Fig. 3.3(b) is identified 

by the IPF orientation map but not identified by the SAW velocity map. Two reasons 

responsible for these inconsistencies are discussed as follows. Firstly, the IPF maps 

have 12.5 times higher resolution than the velocity maps. In fact, as the velocity maps 

have a resolution size of 25 x 50 µm, they may be unable to recover the shape of grains 

whose equivalent diameter is lower than 100 µm. Secondly, it is possible that the 
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velocities of two neighbouring grains are coincidently similar when the SAW 

propagates from the top to bottom.  

Fig. 3.4 shows the SAW velocity map of the second subsection in which the wave 

propagates at 10
o
 deviation from the top-bottom direction. The boundary between the 

grain 1 and grain 2 is clearly observed for this SAW propagation direction. This 

illustrates the need of SAW velocities in more than one direction in order to describe 

the microstructure accurately. 

 

(a) 

 
(b)

 
(c) 
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(d) 

 
(e) 

Fig. 3.3: Comparisons of EBSD IPF orientation maps (left) and SRAS SAW velocity maps measured 

from top to bottom (right) of the five subsections (a-e) of the sample slice. 

 

Fig. 3.4: SAW velocity map measured at 10-degree deviation from the top-bottom direction of the 

second subsection. 
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In SRAS, the SAW velocities measured at multiple directions are combined and 

processed by a so-called inversion method to obtain crystallographic orientation data 

[42]. In this inversion method, for each scanning point, the central-symmetric velocity 

surface (velocities of any two opposite directions are equal) is obtained from the 

measured SAW velocity maps at the first step. For the Inconel 617 sample, the central-

symmetric velocity surface consisting of SAW velocities in 36 directions with 10o 

separation is obtained from the measured 19 SAW velocities. Then the velocity surface 

is fitted to an SAW velocity model, in which the velocity surface is calculated as a 

function of crystallographic orientation. Essentially, the fitting process calculates the 

cross-correlation coefficient between the measured velocity surface with every 

calculated velocity surface in the database of the SAW velocity model; the orientation 

corresponding to the calculated velocity surface with the best fit, i.e., the largest 

correlation coefficient, is considered to be the orientation of the scanning point.  

To validate the SRAS technique in determining crystallographic orientation, Fig. 3.5 

shows the comparison of IPF orientation map of the five subsections obtained by SRAS 

and the well-recognised EBSD technique. The five subsections are stitched and drawn 

as a whole for the EBSD in the figure. IPF orientation maps of EBSD and SRAS have 

a spatial resolution of 10 x 10 µm and 25 x 50 µm, respectively. It is observed that the 

EBSD result and SRAS result are in high agreement so that the orientation data 

provided by SRAS is proved to be valid. Therefore, the orientation data acquired by 

SRAS will be used to construct an FE model of the Inconel 617 sample. This will be 

discussed in the next section. 
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(a) (b) 

Fig. 3.5: Comparison of IPF orientation maps derived from: (a) EBSD and (b) SRAS. 
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3.3 FE model construction 

3.3.1 FE modelling in PZFlex 

FE modelling was performed in PZFlex due to its efficiency in modelling wave 

propagation in complex materials as compared with other FE simulation packages and 

analytical modelling techniques. 

In PZFlex, each grain of the material can be defined using the density, the elastic moduli 

and a set of rotation angles that define the orientation of the grain in relation to the 

global axes of the model. It is assumed for both the austenitic steel weld and the Inconel 

617 alloy that the stiffness moduli and density are the same for different grains such 

that anisotropy of the samples can be described using rotation angle to define the 

variation of grain orientations. 

For the austenitic steel weld, the stiffness moduli are determined on a single crystal of 

a weld alloy of similar composition to the austenitic steel weld [79]. The cubic stiffness 

moduli are determined to be C11=2.036e11 Pa, C44=1.335e11 Pa, C12=1.298e11 Pa. For 

the Inconel 617 alloy, the stiffness moduli are determined on an Inconel 600 single 

crystal which has quite similar composition to the Inconel 617. The stiffness moduli are 

determined to be C11=2.346e11 Pa, C44=1.262e11 Pa, C12=1.454e11 Pa.  

It is noted that the crystallographic orientation data acquired by both EBSD and SRAS 

are expressed in the form of Euler angles and all the three Euler angles are in the range 

of 0o~360o. Since both the austenitic steel weld and Inconel 617 samples have a cubic 

crystal system, the ranges of φ and φ2 can be reduced to 0o~90o by applying Eq. 2.10. 

Since PZFlex requires the orientation expressed as three rotation angles about the global 

x, y and z-axes of the model, the step of one-to-one conversion from Euler angles to 

rotation angles is required.  
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3.3.2 FE modelling overhead 

Both analytical modelling and FE modelling consist of two stages: the pre-processing, 

or model construction and model execution during the processing phase. As previously 

mentioned, FE modelling provides more rapid execution of simulating wave 

propagation in complex materials than analytical modelling, however, the 

computational requirement of model construction in FE modelling can be significant 

and contributes to the overall computational overhead when compared to analytical 

modelling. The amount of time expended in pre-processing the model can be considered 

as part of the modelling overhead, which in PZFlex is mainly determined by the number 

of distinctive crystallographic orientations that are defined within the model. In the 

current context, where the materials exhibit granular microstructure with large numbers 

of spatially variant crystallographic structure, pre-processing overhead could become 

significant. By way of example, Fig. 3.6 shows that the pre-processing overhead of the 

PZFlex platform increases with the number of distinctive orientations. It is observed 

that the construction of an FE model with 50,000 distinctive orientations in PZFlex 

requires an hour time of pre-processing whereas it takes only 20 seconds to construct a 

model with 500 distinctive orientations. Note that the pre-processing overhead is 

measured on a platform with an AMD (Advanced Micro Devices, Sunnyvale, USA) 

Opteron Processor 6128 running at 2 GHz with 16 GB of RAM. 

 

Fig. 3.6: The pre-processing overhead of PZFlex platform as a function of  the number of distinctive 

orientations. 
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For both samples studied here, the number of distinctive crystallographic orientations 

acquired by EBSD and SRAS is significant due to the polycrystalline microstructure of 

the materials. For example, the SRAS data acquired for the Inconel 617 sample resulted 

in more than 40,000 distinctive orientations being identified. By considering the data 

presented in Fig. 3.6, construction of an FE model with 40,000 distinctive orientations 

will require ~40 minutes of pre-processing alone. This amount of pre-processing time 

is tremendous when compared to the ~2 minutes of processing time required to simulate 

the wave propagation in a round-trip path length of ~150 mm (125λ). 

It is important to emphasise that the problem of significant pre-processing overhead is 

not unique to PZFlex. In fact, other FE modelling packages such as COMSOL 

Multiphysics (COMSOL Ltd., Cambridge, UK) typically takes even longer time than 

PZFlex to construct FE models of complex materials.  

In order to decrease the pre-processing overhead, the crystallographic orientations 

should be processed to quantitatively reduce the number of distinctive orientations prior 

to constructing the FE model. However, it is essential that any reduction of pre-

processing overhead is not at the expense of model fidelity. 

The austenitic steel weld has an excessive number of grain boundaries for cost-effective 

analytical modelling, as described by Nageswaran et al. [79]. But several dominant 

orientations (<12) can be identified due to its columnar-grained microstructure which 

is a result of the partial melting between two weld beads where the grain growth is 

defined by the heat flow [78]. A processing method termed orientation unification was 

proposed to reduce the number of grain boundaries in which an angular spread of 

between 15° and 20° either side of the dominant orientation is set to be the dominant 

orientation. For FE simulations, the orientation unification processing can also be 

applied to significantly reduce the number of distinctive orientations to be as small as 

the number of dominant orientations. Consequently, the overhead arising from model 

pre-processing is trivial when compared to the processing phase of the FE model. 

Therefore, a cost-effective FE model of the austenitic steel weld can be readily 

established. Moreover, since the dominant orientations remain intact after processing, 

the fidelity of the FE model is guaranteed. 
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However, the processing of orientation data of the Inconel 617 alloy becomes an issue 

due to its equiaxed-grained microstructure. Fig. 3.7 shows the distribution of the 

orientation of the Inconel 617 sample measured by SRAS in Euler space, in which the 

measured orientation of each scanning location is drawn as a single point. Each subplot 

is displayed with 10° range of φ2 and a full range of φ (0o~360o) and φ1 (0
o~90o). It is 

observed that the crystallographic orientations have an even distribution in the part of 

Euler space, indicating the randomness of the orientations of the grains. Since no 

dominant orientations can be identified, the straightforward orientation unification 

approach applied to the austenitic steel weld is not applicable to the Inconel 617 sample. 

Therefore, new approaches to process orientation data are required. 

 

Fig. 3.7: Orientation distribution of the Inconel 617 sample expressed in Euler space 

3.3.3 Orientation processing 

One intuitive approach to address a large number of crystallographic orientations would 

be to quantise Euler space into a number of bins and then unify each bin by setting all 

of the orientations in the bin to be equal to the dominant orientation. Thus, the number 

of distinctive orientations is reduced to the number of bins within which at least one 

orientation falls. This method of processing orientations is termed Euler Binning (EB). 

However, it is possible that acquired orientations of a single grain are distributed into 

two or more bins; as a consequence, the grain is separated into two or more grains by 
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the EB processing. The effect of grain separation on model fidelity is discussed as 

follows. 

The interaction of sound waves with the majority of metallic materials, including the 

Inconel 617 alloy sample described here, are generally dictated by Rayleigh scattering 

mechanism, which denotes that sound propagation wave is sensitive to the grains whose 

sizes are comparable to or larger than 1/10 of the wavelength (~120 μm for 5 MHz for 

the Inconel 617 alloy) and is insensitive to the grains of size less than 1/10 of the 

wavelength [79]. This then leads to the division of the overall microstructure into grains 

that affect the sound wave propagation, in the current context termed significant grains, 

and grains that do not satisfy the Rayleigh scattering criterion and therefore only 

marginally affect wave propagation, termed insignificant grains. It is, therefore, 

important that the process to reduce the number of distinctive orientations must ensure 

that any significant grains are not bifurcated. This is essential to maintain appropriate 

fidelity of the model with respect to wave propagation in the material of interest.  

The inspection frequency and selected misorientation angle govern the distribution of 

significant grains that must be retained after orientation processing. Inspection 

frequency is selected based on several factors, including sample size, average grain size 

and so on. It determines the Rayleigh scatterer limit, that is, the 1/10 of the wavelength 

limit, as previously described. The misorientation angle, i.e., the minimum angular 

displacement between two neighbouring grains, is used to define the grain boundaries. 

The higher the misorientation angle, the smaller the number of grain boundaries and 

therefore the larger the averaged grain size in the modelling space. The misorientation 

angle is typically selected as 10o~20o
. Here, it is selected as 10o.  

After the determination of inspection frequency and misorientation angle, the 

significant grains are spatially indexed and then each significant grain is unified to the 

respective dominant orientation prior to binning Euler space and unifying each bin. This 

orientation processing method is termed Grain Unification with Euler Binning (GUEB). 

Four steps of the GUEB method are shown in Fig. 3.8. It is noted that the last two steps 

of GUEB method are the same as the EB method. Unlike the EB method, the GUEB 

method is able to prevent the separation of the significant grains such that model fidelity 

is guaranteed.  
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Fig. 3.8: Four steps of the GUEB method 

The parameter to be established for a computationally cost-effective FE model of the 

sample being studied is the number of bins into which the Euler space is quantised. The 

quantisation level of Euler space directly governs the number of distinctive orientations 

which determines the amount of pre-processing overhead, as depicted in Fig. 3.6. As 

the number of bins decreases, the pre-processing overhead will decrease due to the 

reduced number of distinctive orientations, but the size of the bin (with a unit of 

degree/Euler phase) in Euler space will increase so that the step of bin unification will 

introduce larger error in terms of Euler angles, which deteriorates the model fidelity. 

Conversely, quantising Euler space into more bins introduces smaller error in Euler 

angles meanwhile increases the pre-processing overhead. Therefore, a trade-off 

between pre-processing overhead and model fidelity is identified. In the following, this 

trade-off as a function of the bin size in Euler space is studied for both EB and GUEB 

methods, in order to create an FE model of the Inconel 617 sample which balances the 

competing metrics of pre-processing overhead and model fidelity.  

To quantify the model fidelity, a number of metrics can be considered to assess the 

interrelationship of the original SRAS dataset and the datasets that result from the EB 

and GUEB processes. The first metric would be to quantify the degree of intactness of 

significant grains. This is achieved by considering the cross-correlation coefficient 

between the original binary material map of SRAS dataset and the binary material map 

resulting from orientation processing. To illustrate the concept of the binary material 

map, Fig. 3.9 (a) and (b) show the schematic plots of the distributions of the original 

and the processed significant grains respectively in which the coloured components are 

the significant grains and the white background is for insignificant grains; Fig. 3.9 (c) 

and (d) show the corresponding binary material maps in which the significant grains 

are plotted in red (value 1) and the insignificant grains are plotted in blue (value 0). The 

cross-correlation coefficient C between the two binary material maps is formulated as 
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𝐶 =

∑ ∑ (𝐵0(𝑥, 𝑦) − 𝐵0
̅̅ ̅)(𝐵𝑝(𝑥, 𝑦) − 𝐵𝑝

̅̅ ̅)𝑛
𝑦=1

𝑚
𝑥=1

√(∑ ∑ (𝐵0(𝑥, 𝑦) − 𝐵0
̅̅ ̅)2)𝑛

𝑦=1
𝑚
𝑥=1 (∑ ∑ (𝐵𝑝(𝑥, 𝑦) − 𝐵𝑝

̅̅ ̅)2)𝑛
𝑦=1

𝑚
𝑥=1

 
Eq. 3.1 

where m and n are the numbers of elements in the lateral and axial directions on the 

binary map, respectively; Bo and Bp are the values of the original and processed binary 

map, respectively. 𝐵0
̅̅ ̅ and 𝐵𝑝

̅̅ ̅ are the averaged values of the two binary maps. It is 

obvious that the higher cross-correlation coefficient indicates that more significant 

grains are retained after orientation processing. 

  
(a) (b) 

  
(c) (d) 

Fig. 3.9: Schematic plot of: (a)-(b) the distributions of the original and processed significant grains; 

(c)-(d) the two respective corresponding binary material maps. 
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The second metric considers the root-mean-square error (RMSE) of the Euler angles of 

the elements of the significant grains introduced by bin unification. It is formulated as  

 𝑅𝑀𝑆𝐸 = √
∑ ∑ (𝐸0(𝑖, 𝑘) − 𝐸𝑝(𝑖, 𝑘))23

𝑘=1
𝑁
𝑖=1

3 ∗ 𝑁
 Eq. 3.2 

where N is the number of the elements of the significant grains; Eo and Ep are the 

original Euler angles and the processed ones, respectively. 

By considering RMSE and C, a cost function T, relating the model pre-processing time, 

Time, to these two metrics can be written  

 𝑇 =
𝑅𝑀𝑆𝐸 ∗ 𝑇𝑖𝑚𝑒

𝐶
 Eq. 3.3 

The T has a unit of degree*second and represents the trade-off between pre-processing 

overhead and model fidelity. The trade-off will be optimised when the T reaches its 

minimum. Fig. 3.10 shows how the T changes with the size of the bin for both the EB 

and GUEB processing approaches. The GUEB approach consistently yields lower T 

values than EB approach. This is explained by that the GUEB approach performs better 

in preserving significant grains than the EB approach. Particularly, T value of EB is 

around 47% higher than the GUEB counterpart at the bin size of 15 degrees per Euler 

phase. T is observed to reach the minimum value at the bin size of 15 degrees per Euler 

phase for both EB and GUEB approaches. In this case, for the GUEB approach, the 

RMSE of the Euler angles of significant grains is approximately 4 degrees per Euler 

phase and the pre-processing overhead is measured as only 12 seconds. This amount of 

pre-processing overhead is trivial when compared to the ~2 minutes of processing time 

required to simulate the wave propagation in a round-trip path length of ~150 mm 

(125λ). Therefore, the overall modelling overhead now is ~2.2 minutes. This is contrast 

to the ~42 minutes (the sum of 40 minutes of pre-processing and 2 minutes processing) 

of modelling overhead with no orientation processing applied. This indicates that the 

orientation processing significantly reduces the computational overhead by ~20 times 

for the Inconel 617 sample whilst maintaining model fidelity. 
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Fig. 3.10: The trade-off between pre-processing overhead and model fidelity as a function of the bin 

size. 

Fig. 3.11 displays the distribution of significant grains within the original material map 

in (a), within the material map processed by EB in (b), and within the material map 

processed by GUEB in (c), when the Euler space is quantised at the bin size of 15 

degrees per Euler phase. In all figures, the red region surrounding the keystone shaped 

sample is the background; the irregular and coloured components are significant grains 

and each colour presents a unique orientation; the white background is for insignificant 

grains which are not plotted individually. A large loss of significant grains is readily 

discerned in the EB processing result and the value of C (defined in Eq. 3.1) is 

calculated as approximately 0.62. By contrast, the GUEB approach almost retains all 

the significant grains and C is calculated as approximately 0.95.  

Therefore, the orientation data of the Inconel 617 sample is processed by GUEB with 

the bin size of 15o per Euler phase and misorientation angle of 10o and are then used to 

construct an FE model for later investigation of anisotropic focal law. The existing FE 

model of the austenitic steel weld constructed by the Harvey et al. [55] is also used for 

later investigation of anisotropic focal law.  
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(a) 

 

 

(b) 

 

 

(c) 

 

Fig. 3.11: Distribution of the significant grains in the Inconel 617 sample in the cases of: (a) original 

data; (b) after EB processing; (c) after GUEB processing.  
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3.4 Determination of anisotropic focal law 

3.4.1 Time reversal techniques 

In the process of a common TRM technique [70, 71], the reflection signal received by 

a probe is recorded and then the probe retransmits the reversed version of the reflection 

signal. In the application of time reversal method for generating anisotropic focal laws, 

array elements typically only record the arrival time of the reflection signal by a target 

at the element locations instead of the whole reflection signal, as with [64]. Then the 

time delay sequences applied to array elements in the isotropic focal law are modified 

according to the reversal of the recorded arrival time to generate the anisotropic focal 

law. The anisotropic focal law compensates for both the geometric path length 

difference and the phase shift to each element of the phased array, thus, can provide a 

tight focus at the target. 

To enable the online implementation of time reversal method during the inspection, the 

arrival time of echoes from the defect of interest at array elements, in other words, the 

locations of defect echoes in the signals captured by array elements, must be easily 

identified. For simple materials, the echoes from a defect are readily identifiable in the 

captured signals due to the overwhelming amplitude of defect echoes over grain noise; 

the time reversal method can, therefore, be easily implemented online during inspection 

to achieve tight focus at the defect. Unfortunately, it is usually not the case for 

inspecting coarse-grained materials. Instead, the defect echoes are usually obscured by 

the high level of backscattered noise thus their arrival time at element locations are 

unidentifiable.  

Nageswaran et al. in TWI used the high-fidelity model of the austenitic steel weld to 

estimate the arrival time of the reflected signal by a SDH target at the element locations 

[79]. The model was constructed in CIVA platform and only resolved the interaction 

of the interrogating ultrasound with the SDH target, i.e., the interactions of the 

ultrasound with grain boundaries were not evaluated, such that no backscattered noise 

signals were predicted and so the arrival time is readily identified. In the model, an 

element-by-element pulse-echo time reversal approach was applied to determine the 
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elemental arrival time of the SDH echoes [79]. As schematically plotted in Fig. 3.12 

(a), in this approach a phased array was simulated and positioned above the sample and 

the pulse-echo response (with only SDH echoes due to no prediction of backscattered 

noise) of each element was recorded in turn from which the arrival time was obtained.  

Here another time reversal method is investigated which is schematically plotted in Fig. 

3.12 (b). In this method, an omnidirectional pressure load is applied at the target focal 

point in the simulation, and then the arrival time of the pressure load at each element 

location is measured. The target focal point is active, i.e., emitting sound energy itself, 

in this time reversal method, which is contrary to the aforementioned element-by-

element pulse-echo based approach having a passive target focal point – in the current 

context, the former method is termed active time reversal and the latter is termed 

passive time reversal. The active approach needs the simulation to run only a single-

trip time instead of multiple round-trip times required by the passive time reversal 

approach – this significantly reduces the time in the model of determining the arrival 

time of all array elements.  

  

(a) (b) 

Fig. 3.12: Schematic diagram of the: (a) passive time reversal method and (b) active time reversal 

method 
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3.4.2 Anisotropic focal law analysis 

In order to determine the anisotropic focal law, the simulation of wave propagation 

using the active time reversal method (referred to as time reversal simulation for brevity 

for the reminder of  the Thesis) is conducted within the FE model of the Inconel 617 

sample constructed in Section 3.3 and the FE model of the austenitic steel weld 

constructed by the Harvey et al. [55]. The details for the two samples are sequentially 

given as follows. 

3.4.2.1 Inconel 617 case 

In order to simulate the practical inspection scenario, a 5 MHz linear phased array with 

a pitch size of 0.7 mm and 32 elements is also constructed in the model, placed on the 

top of the sample. The simulated array is configured to exhibit a comparable impulse 

response and corresponding bandwidth to the Vermon array described in Table 2.1. 

Each array element can be stimulated individually which allows the application of any 

focal laws. The model geometry is shown in Fig. 3.13(a), where the yellow background 

is set as water; the green block at the top is the backing layer of the array; the ceramic-

and-polymer layer of the array is sandwiched between the backing layer and the 

material map; different colours in the material map represent different crystallographic 

orientations.  

In order to reveal the phase aberration induced by the complex microstructure, another 

model with isotropic Inconel 617 material is constructed. The model geometry for the 

isotropic case is shown in Fig. 3.13(b). The definition of isotropic materials requires 

the density ρ, longitudinal velocity VL and shear velocity VS to be specified. The two 

velocities are related to the elastic constants of the isotropic material: 

 𝑉𝐿 = √
𝐸(1 − 𝜇)

𝜌(1 + 𝜇)(1 − 2𝜇)
 Eq. 3.4 

 𝑉𝑆 = √
𝐸

2𝜌(1 + 𝜇)
 Eq. 3.5 

where E is the young’s modulus and µ is the Poisson’s ratio. For this Inconel 617 

material, the two velocities are 5870 m/s and 3089 m/s for VL and VS, respectively.  
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Time reversal simulation is conducted within both the isotropic and anisotropic models. 

The differences in the arrival time at the element locations between the isotropic and 

anisotropic models are considered to be the elemental phase shifts. The details are given 

as follows. 

  
(a) (b) 

Fig. 3.13: The FE model of the Inconel 617sample  for the: (a) anisotropic case and (b) isotropic case. 

As shown in Fig. 3.13, five SDHs with a diameter of 0.5 mm (approximate 0.4λ) are 

inserted in both the models in order to investigate the phase aberration at various depths 

and positions. The locations of the five SDHs are listed in Table 3.1. The coordinate 

frame is set with its origin at the intermediate point of the array, shown in Fig. 3.13(b). 

For simplicity purpose, these five SDHs are named as SDH1~5 according to their 

depths. Amongst the five SDHs, SDH5 has the largest distance to the array so that it is 

deemed to exhibit the most severe phase aberration thus is chosen to conduct the time 

reversal simulation. An omnidirectional 5 MHz pressure load with Blackman-Harris 

window shape is applied at the SDH5. The time domain response of each array element 

is recorded. 
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Table 3.1: Coordinates of the five SDHs inserted in the two Inconel 617 models  

SDH No. 1 2 3 4 5 

(x, z) in mm (10, 5) (5, 15) (0, 25) (-5, 35) (-10, 45) 

 

Fig. 3.14 compares the time domain response of the 16th element in the array for the 

isotropic and anisotropic cases. It is observed that the signal amplitude in the 

anisotropic case is much smaller than the isotropic case, indicating strong attenuation 

induced by the complex microstructure. It should be explained that the pressure load 

emanating from the SDH5 is reflected by the two side walls of the material which is 

captured by array elements, resulting in the signal of a considerable high magnitude 

after the first reception of pressure for the isotropic case.   

 

Fig. 3.14: Time response of the 16th array element in the model of the Inconel 617 sample. 

The exact value of arrival time is obtained from the time domain response for each array 

element using zero-crossing detection – the corresponding time of the first sampling 

point at which the received signal has a different sign from the next neighbouring 

sampling point in time sequence is denoted as the arrival time.  

Fig. 3.15(a) compares the arrival time on an element-wise basis for a pressure load 

applied at SDH5 for the isotropic and anisotropic material models. The phase aberration 
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induced by microstructure is manifested in that arrival time of the anisotropic and 

isotropic cases are different. Specifically, the arrival time at the first 12 array elements 

in the anisotropic case are slightly larger than that in the isotropic case while arrival 

time at other elements in the anisotropic case are slightly smaller than their isotropic 

counterparts. The difference in arrival time between the two cases is calculated as a 

phase shift, which can give a direct indication of the severity of phase aberration. The 

calculated phase shifts are also depicted in Fig. 3.15(a). The phase shifts are found to 

have a range of -0.66π~0.47π radians. Such a low variability of phase shift could be 

explained by that although the propagating wavefronts encounter grains exhibiting a 

range of sound velocities arising from the variation of grain orientation, the 

contributions from the velocity variations are statistically neutralised since a large 

number of grains exist within the propagation path of the wavefront and their 

crystallographic orientations are random. Therefore, the sound velocity exhibits no or 

an insignificant degree of direction dependence. The other four SDHs are expected to 

have an even lower variability of phase shift than the SDH5 due to their smaller 

distances to the array.  

From Fig. 3.15(a) since the variability of the phase shift as a function of array element 

position is minimal, it is, therefore, reasonable to expect that performing array imaging 

using isotropic focal laws will result in acceptable focusing quality in such a sample. 

This will be discussed in more detail. 

Fig. 3.15 (b) compares the signal amplitudes of all the 32 array elements between the 

isotropic case and anisotropic case. For both cases, the amplitude profiles have similar 

shape; the highest amplitude occurs at the sixth element which has the shortest distance 

to SDH5 and the amplitudes diminish gradually towards the outermost elements of the 

array. It is observed from the figure that the amplitude differences between two cases 

are in the order of -20 dB. Such strong attenuation for the anisotropic material is 

attributed to the larger number of grain boundaries within the propagation paths 

between the source and receiver positions. Therefore, for the case of the Inconel 617 

sample being inspected with a 5 MHz phased array, the attenuation problem is more 

prominent than phase aberration. 



Methodologies for Enhancing Ultrasonic NDE of Coarse-grained Materials – Bo Xiao 

 

79 

 

  

(a) (b) 

Fig. 3.15: FE model derived comparison of the isotropic and anisotropic cases of the Inconel 617 

sample in terms of: (a) arrival time and (b) signal amplitude.  

To visualise the focusing quality using the isotropic focal laws, the two FE models are 

employed to collect two FMC datasets. The acquired data are then used to construct 

TFM images using isotropic focal laws for both the anisotropic and isotropic cases with 

a velocity of 5870 m/s. The two TFM image are shown in Fig. 3.16 with a dynamic 

range of 40 dB. Reflections from side walls are responsible for the noise at the region 

near to the array in Fig. 3.16(a) for the isotropic case; whilst grain scattering are 

responsible for the speckle noise in Fig. 3.16(b). The isotropic focal law is found to 

perform well for the anisotropic material since all the five SDHs are well-focused. This 

verifies the previous deduction that the phase aberration is inconsequential for the 

equiaxed-grained Inconel 617 material. However, it is readily observed that the image 

of the anisotropic material case has worse spatial resolution than the isotropic 

counterparts and the amplitudes of SDH3~5 on the image are lower than the isotropic 

counterparts. This is attributed to the low-pass filtering effect of the anisotropic material 

resulting from the frequency-dependent attenuation.  
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(a) (b) 

Fig. 3.16: FE model derived TFM images of the Inconel 617 sample for the: (a) isotropic case and (b) 

anisotropic case. 40 dB display range applied. 

3.4.2.2 Austenitic steel weld case 

For the austenitic steel weld case, a 1.5 MHz linear phased array with a pitch size of 2 

mm and 32 elements is constructed in the model, placed on the top of the sample. The 

model geometry is shown in Fig. 3.17(a). In order to reveal the phase aberration induced 

by the complex microstructure, another model with isotropic weld and the same array 

is constructed, shown in Fig. 3.17(b). Using Eq. 3.4 and Eq. 3.5, the longitudinal 

velocity and shear velocity are calculated as 5750 m/s for and 3127 m/s, respectively. 

Similar to the Inconel 617 case, five SDHs with a diameter of 2 mm (0.67λ) are inserted 

in both the models in order to investigate phase aberration at various depths and 

positions. The coordinates of the five SDHs are listed in Table 3.2. Again, the 

coordinate frame is set with its origin at the intermediate point of the array, and for 

simplicity purpose, these five SDHs are named as SDH1~5 according to their depths. 

The time reversal simulation is conducted on SDH3 at the first step of the analysis. An 

omnidirectional 1.5 MHz pressure load with Blackman-Harris window shape is applied 

at the SDH3. The time domain response of each array element is recorded. 
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(a) (b) 

Fig. 3.17: The FE model of the austenitic steel weld for the: (a) anisotropic case and (b) isotropic case. 

Table 3.2: Coordinates of the five SDHs inserted in the two austenitic steel weld models 

SDH No. 1 2 3 4 5 

(x, z) in mm (20, 20) (10, 30) (0, 40) (-10, 50) (-20, 60) 

Fig. 3.18 compares the time domain response of the 16th element in the array for the 

isotropic and anisotropic cases. As with the Inconel sample, the signal amplitude in the 

anisotropic case is found to be much smaller than that in isotropic case, indicating 

strong attenuation induced by the complex microstructure. It is also evident that the 

propagation of the wavefront is affected by the anisotropic microstructure, resulting in 

the arrival time being later than that observed in the isotropic case. 

 

Fig. 3.18: Time  response of the 16th array element in the model of the austenitic steel weld. 
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Fig. 3.19(a) compares the arrival time on an element-wise basis for a pressure load 

applied at SDH3 for the isotropic and anisotropic material models. Again, these arrival 

time are obtained using zero-crossing detection. The phase aberration induced by the 

complex microstructure is revealed by that the arrival time at the 12th~27th elements 

in the anisotropic case are larger than the isotropic case whilst arrival time at other 

elements are smaller. The phase shift between the isotropic case and the anisotropic 

case is calculated and plotted in Fig. 3.19(a) to give an indication of the severity of 

phase aberration. The phase shifts are found to have a range of -2.6π~5.3π radians 

which is much larger than that of the Inconel 617 sample. Such a high variability of 

phase shift could be explained by that the columnar-grained microstructure of the 

austenitic steel weld renders the large elemental variability of sound velocity. 

From Fig. 3.19(a) since the variability of the phase shift as a function of array element 

position is significant, it is, therefore, reasonable to expect that the isotropic focal law 

will not be appropriate in this case and the determination of an anisotropic focal law is 

desirable. This will be described in more detail.  

Fig. 3.19(b) compares the signal amplitudes of all the 32 array elements between the 

isotropic case and anisotropic case. The amplitude profile in the anisotropic case is 

observed to be very different from the profile in the isotropic case; the highest amplitude 

for the anisotropic material occurs at the sixth element instead of the middle element 

which is nearest to the SDH3. The amplitude differences between the two cases are in 

the range of -17~3 dB. The significant variability of amplitude differences indicates the 

attenuation within the anisotropic weld material is directionally dependent arising due 

to the columnar-grained microstructure of the austenitic steel weld. 
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(a) (b) 

Fig. 3.19: FE model derived comparison of the isotropic and anisotropic cases of the austenitic steel 

weld in terms of: (a) arrival time and (b) signal amplitude. 

To visualise the focusing quality using isotropic focal laws, the two models are 

employed to collect two FMC datasets. The acquired data which are then used to 

construct TFM images using isotropic focal laws for both the anisotropic and isotropic 

cases with a velocity of 5750 m/s. The two images are shown in Fig. 3.20(a)-(b) with 

40 dB dynamic range.  It is observed in Fig. 3.20(b) that SDH1 and SDH2 are well 

focused, and SDH3 is poorly focused and its location is shifted, whereas the SDH4 and 

SDH5 are completely unfocused. This is as expected since the deeper SDHs suffer more 

severe phase aberration due to the longer sound propagation path. Therefore, 

anisotropic focal laws are required to restore focusing quality at SDH3~5.  

The corresponding time of the phase shifts drawn as the green dash line in Fig. 3.19(a) 

is subtracted from the isotropic focal law required for normal TFM. The subtraction 

result is the anisotropic focal law which is used along with the FMC data to construct 

the TFM image shown in Fig. 3.20(c). For brevity, this anisotropic focal law generated 

by conducting time reversal simulation at SDH3 are named anisotropic focal law-SDH3 

and other anisotropic focal laws are named in the same manner. It is clearly observed 

in Fig. 3.20(c) that with the use of anisotropic focal law-SDH3 the SDH3 is restored to 

the isotropic case in terms of position and sizing. SDH4 is also restored to the isotropic 

case in sizing but its location is shifted by around 3 mm in the z direction and 2 mm in 

the x direction. The focusing of SDH5 is seen to be slightly enhanced but still very poor 

and its location is greatly shifted. This means the anisotropic focal law-SDH3 is only 
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suitable for removal or alleviation of phase aberration problem for the vicinity region 

of SDH3. In order to restore the SDH4 and SDH5, the time reversal simulation is 

required at their locations to generate anisotropic focal law-SDH4 and anisotropic focal 

law-SDH5. The TFM images using anisotropic focal law-SDH4 and anisotropic focal 

law-SDH5 are shown in Fig. 3.20(d) and (e), respectively. 

To quantify the effect of the application of the anisotropic focal law on improving 

focusing (i.e., sizing), the Array Performance Index (API) is defined as [32] 

 API =
𝐴𝑟𝑒𝑎−6𝑑𝐵

λ2
 Eq. 3.6 

where 𝐴𝑟𝑒𝑎−6𝑑𝐵  is the area within which the intensity is greater than -6dB of the 

maximum value in a defined region on the TFM image, λ is the wavelength. For each 

SDH, the defined region is a 10 x 10 mm square centred at the centre of the SDH on 

images. The maximum value within each region is also recorded as an indicator of the 

inspection sensitivity and defect detectability. In addition, positions of the SDHs on the 

images are also recorded to evaluate the effectiveness of the anisotropic focal law on 

restoring defect positions.  
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(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 3.20: FE model derived TFM images of the austenitic steel weld for the (a) isotropic case; (b) 

anisotropic case with isotropic focal law; (c-f) anisotropic case with anisotropic focal laws-SDH3~5 
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The three metrics, i.e., inspection sensitivity, API, and the defect locations, at various 

cases of materials and focal laws for SDH3~5 are listed in Table 3.3. For each SDH, 

the three metrics in the case of the isotropic weld with isotropic focal law applied are 

used as benchmark values for examining the performance of an anisotropic focal law 

on correcting phase aberration in the anisotropic weld. It is seen from the table that the 

three metrics for each SDH in the case of the anisotropic weld with the anisotropic focal 

law of the SDH applied are close to the benchmark values. However, some 

discrepancies between the two cases are found. For example, for SDH5, the image of 

the anisotropic weld generated with anisotropic focal law-SDH5 has the sensitivity 9 

dB lower, API 0.58 higher than the benchmark values. Also, the location is shifted by 

1.3 mm in the z direction. The reasons for discrepancies are given as follows. 

Attenuation is responsible for the reduced inspection sensitivity; the grain scattering 

effect of the weld distorts and widens the beam wavefront, the API value is, therefore, 

larger than the benchmark one; the grain scattering can redirect the beam so that the 

location of SDH5 is slightly shifted. 

An interesting finding in Fig. 3.20(d) and (e) is that all the SDHs are well focused, 

though some of them are shifted by some distances. To exploit the effectiveness of the 

anisotropic focal law-SDH5 in improving focusing at SDH4, the three metrics at SDH4 

on Fig. 3.20(e) (i.e., the TFM image with the anisotropic focal law-SDH5 applied) are 

measured and listed in Table 3.3. They are found very close to the values measured at 

SDH4 on Fig. 3.20(d) (i.e., the TFM image with the anisotropic focal law-SDH4 

applied). The three metrics at SDH3 on Fig. 3.20(e) are also measured and listed in 

Table 3.3 in order to exploit the effectiveness of the anisotropic focal law-SDH5 in 

improving focusing at SDH3. They are observed to be similar to the values measured 

at SDH3 on Fig. 3.20(c) (i.e., the TFM image with the anisotropic focal law-SDH3 

applied), except the position of SDH3. This would suggest that anisotropic focal laws 

generated for restoring deeper objects are somewhat applicable to the restoration of 

nearer objects. The explanation for this is that the anisotropic focal laws for restoring 

deeper objects correct the phase shifts by a large extent such that the phase shifts for 

nearer objects may also be corrected.  
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Table 3.3: Quantitative analysis of the effectiveness of anisotropic focal laws on improving inspection 

sensitivity, focusing and positioning. 

SDH  

No. 
Material Focal law 

Sensitivity (max 

amplitude in dB) 

Sizing 

(API) 

Positioning ((x, 

z) in mm) 

3 

Isotropic Isotropic -14.03 0.40 (0, 40) 

Anisotropic Isotropic -22.74 0.70 (-4.5,42) 

Anisotropic Anisotropic-SDH3 -18.94 0.43 (0, 40.8) 

Anisotropic Anisotropic-SDH5 -22.39 0.50 (-3.2,40.5) 

4 

Isotropic Isotropic -16.53 0.49 (-10, 50) 

Anisotropic Isotropic -33.44 1.94 (-17.3,53.5) 

Anisotropic Anisotropic-SDH4 -23.20 0.61 (-10, 51) 

Anisotropic Anisotropic-SDH5 -23.41 0.63 (-11,51.7) 

5 

Isotropic Isotropic -20.76 0.66 (-20, 60) 

Anisotropic Isotropic N/A N/A N/A 

Anisotropic Anisotropic-SDH5 -29.80 1.14 (-20, 61.3) 

 

3.5 Discussions 

It has been shown that the orientation map of the Inconel 617 sample obtained by SRAS 

is in agreement with the one obtained by EBSD. This means that the ability of SRAS 

to determine the crystallographic orientation of complex polycrystalline materials is 

validated and it is qualified as an alternative of ESBD. EBSD requires the surface 

roughness less than 10 nanometres and the sample size is often limited by the size of 
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SEM - typically in the order of 10 mm. On the other hand, SRAS can tolerate surface 

roughness on the scale of 100 nanometres, has no restriction on sample size, and is 

completely non-destructive. The use of SRAS can significantly enhance the practical 

applicability of the high-fidelity modelling approach, opening the possibility of the 

application of the approach to a wider range of components. 

The time cost is another important factor to consider. Table 3.4 shows that it costs 60 

milliseconds to obtain the orientation of a scanning point of the Inconel 617 sample 

using EBSD, including acquisition and processing. SRAS technique costs 4 

milliseconds to acquire an SAW velocity for a scanning point of the Inconel 617 

sample. The SAW velocities are measured in 19 directions so that the total acquisition 

time for a scanning point is 76 milliseconds.  The processing time of SRAS for each 

point, i.e., derivation of the orientation from the SAW velocities, is 500 milliseconds 

using a computer with a 4-core processor. That is, for scanning the same material at the 

same step size, the time cost of SRAS is approximately ten times of that of EBSD. It is 

admitted that this is the major disadvantage of the current SRAS technique over EBSD, 

however, it is believed that the processing time and so the total time cost can be 

significantly reduced by applying more computing resources or advanced parallel 

computing techniques. 

Table 3.4: Comparison of scanning resolution and time cost of ESBD and SRAS on examining the 

Inconel 617 sample 

Techniques EBSD SRAS 

Pixel size (m) 10 x 10 25 x 50 

Acquisition time (ms)/point 

60 

4 

Processing time  (ms) /point 500 

 

As the last step of the proposed high-fidelity modelling approach, a matrix of location-

dependent anisotropic focal laws generated within simulations can be programmed into 

a PAC and are applied in the practical inspection. PAC is programmed to choose a 

programmed anisotropic focal law which is generated at a location nearest to the desired 

focal location. Such an approach is effective since an anisotropic focal law can improve 
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beam focusing not only at the position where the time reversal simulation is performed 

but also at its vicinity region, as illustrated in Section 3.4.2.2.  

For both samples described above, only a slice of the material sample was examined by 

EBSD and/or SRAS and its orientation data is input into a 2D FE model to determine 

the anisotropic focal laws. The microstructure is assumed to be uniform along the third 

direction (the welding direction for the austenitic weld). Hence, the applicability of the 

anisotropic focal laws generated in the simulation in improving the beam focusing at 

other regions of the material is uncertain. Fortunately, results in [78] illustrate that the 

crystallographic orientation distribution is consistent and the dominant orientations are 

conserved along the welding direction for the austenitic steel weld materials. Therefore, 

it is suggested that the high-fidelity modelling may be done on a few representative 

samples and the generated anisotropic focal laws may be generic for the materials 

manufactured in a similar way [78]. 

It is worth noting that the high-fidelity modelling approach typically requires much 

higher cost in terms of expenses and time to implement than other phase aberration 

correction methods, therefore, it is only applicable to materials in safety critical 

components such as the safe-end weld of the PWR in the nuclear industry [79]. 

3.6 Conclusions and future work 

The high-fidelity modelling approach for correcting the phase aberration problem 

induced by the complex microstructures has been presented. The approach replicates 

the practical inspection within FE simulations. The crystallographic orientations data 

obtained through material characterisation techniques are processed to construct a cost-

effective FE model with high fidelity. Two methodologies of processing orientation 

data are presented in order to establish computationally efficient FE models of coarse-

grained materials. It is observed that the GUEB methodology can remarkably reduce 

the computational overhead of the FE model of the Inconel 617 sample by 20 times 

whilst maintaining model fidelity. The FE models are then employed to establish 

anisotropic focal law based on a proposed time reversal technique. 
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Previous approaches with regard to the high-fidelity modelling approach mainly 

employ EBSD and analytical modelling which have been found to be impractical and 

inefficient. In this chapter, SRAS and FE modelling are proposed to replace EBSD and 

analytical modelling, respectively. SRAS has been validated as an accurate technique 

for microstructural characterisation. It has no restriction on sample size and needs less 

surface preparation than EBSD, thus can significantly enhance the practicability of the 

high-fidelity modelling approach. The computationally efficient FE simulation 

platform PZFlex in conjunction with the proposed time reversal technique provide a 

reliable and rapid solution of the establishment of anisotropic focal laws in the 

simulation, thus can remarkably improve the operational efficiency of the high-fidelity 

modelling approach. 

Through simulation studies, the Inconel 617 sample, with equiaxed-grained 

microstructure, is found to be macroscopically elastically isotropic so that the phase 

aberration problem is on a negligible scale. However, targets at depths over 30 mm are 

unfocused for the austenitic steel weld which exhibits columnar-grained microstructure. 

It is observed that the anisotropic focal law generated via the proposed time reversal 

technique is effective at restoring focusing quality. More importantly, an anisotropic 

focal law is found to be able to improve the focusing not only at the location of the 

target at which the time reversal simulation is conducted but also for the nearby region. 

Additionally, an anisotropic focal law for restoring the focusing at deeper targets are 

found to be able to improve the focusing at nearer targets by a more or less scale.  

Future work consists of three aspects. 

For FE models of the both samples, the anisotropy is described only with the variation 

of crystallographic orientations and the stiffness moduli are assumed constants. In fact, 

the compositional variation of coarse-grained anisotropic materials has an influence on 

the stiffness moduli of single crystals. In the ideal case, both the variations of 

orientations and stiffness moduli should be considered. However, determination of the 

stiffness moduli of all scanning points is a rather onerous and non-trivial task. 

Therefore, it is worth investigating the impact of compositional variation on the 

stiffness moduli. If it is proved the impact is negligible, the assumption of constant 
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elastic moduli is justified. Otherwise, the stiffness moduli have to be determined point-

by-point. The investigation is considered as one aspect of future work. 

The misorientation angle determines the distribution of grains, consequently determines 

the backscattering level in simulations. The angle is empirically set to 10 degrees; 

however, the value is subject to modification due to the backscattering level measured 

in experiments. This is considered to be another aspect of future work. 

The last aspect of future work is to validate the FE models by applying the anisotropic 

focal laws generated within simulations into practical inspections.  
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CHAPTER 4. Enhanced split-spectrum 

processing with artificial neural network  

4.1 Introduction 

Frequency diversity forms the theoretical basis of the techniques for grain noise 

suppression which are evaluated or developed in this chapter and the subsequent 

Chapter 5. This chapter is arranged as follows. Firstly, an analytical model of the grain 

scattering process, as a combination of the two existing models described in [38, 94], 

is introduced. Subsequently, the prevalent frequency diversity based Split Spectrum 

Processing (SSP) technique for grain noise suppression is evaluated and its combination 

with artificial neural network (ANN) techniques is proposed to increase its robustness 

and performance. The focus will be on comparing the performance of two common 

ANN models used in conjunction with SSP. This chapter concludes with a set of 

recommendations of which model to choose in various cases. 

4.2 Analytical modelling of the backscattering 

For both the development and evaluation of signal processing methods, it is prudent to 

begin with data arising from models of the physical scenario rather than experiment. 

Once validated, the models allow a wide range of virtual experiments to be undertaken 

to assess the performance of a signal processing algorithm in various cases of material 

characteristics and transducer configurations in a time and cost-effective manner. In 

contrast, such an approach from an experimental standpoint would very quickly become 

unwieldy.  
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In this section, a frequency domain based analytical model of the grain scattering 

process is introduced. Under some adequate assumptions and approximations, this 

analytical model can become computationally efficient. The theory and formulation of 

the analytical model are described as follows.  

Ultrasonic scattering occurs where there exists an acoustic impedance mismatch at the 

boundary between adjacent grains. The backscattering amplitude from a grained 

material is dependent on the transducer configurations, grain size, the extent of 

impedance mismatch and grain distribution in the volume. Creation of a material 

backscattering model including all of these factors is rather complicated and somewhat 

challenging. For the purpose of simplicity, the single scattering assumption is adopted 

that the grain size and extent of impedance mismatch can be combined as a single 

parameter, 𝜌𝑠 , representing the scattering amplitude of an individual grain scatterer 

[38]. Moreover, the single scattering assumption dictates that the backscattered grain 

noise can be simply modelled as the superposition of scattering signals from each 

individual grain scatters embedded in a homogeneous material, that is, the multiple 

scattering effects between spatially unresolved scatters are neglected. The single 

scattering assumption is valid only if the wave propagation distance is small and the 

backscattered signal from each grain is weak relative to the flaw reflectivity. 

Fortunately, the majority of the scattering regimes in NDE fall within this regime [89]. 

Importantly, the employment of the single scattering assumption enables the scattering 

of each individual grain scatterers to be simulated in parallel. Therefore, the 

backscattered signals in a grained material can be rapidly simulated with the use of 

advanced parallel computing techniques. 

The other two assumptions made in the analytical model are that: 

 Each grain scatterer is an omnidirectional scatterer regardless of incident angle 

 All grain scatterers have the same reflectivity 

Consider a 2D slice of a load medium coupled to a 1D ultrasonic phased array, as shown 

in Fig. 4.1. A Cartesian coordinate system is employed, where x and z represent 

locations in the lateral and axial directions, respectively. Fig. 4.1 depicts the ultrasound 

wave path from a transmitter element tx at (𝑥𝑡𝑥, 0) to the scatterer i at (𝑥𝑖, 𝑧𝑖)  and the 
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return path to a receiver element rx at (𝑥𝑟𝑥, 0). In the time domain, the received signal 

ℎ𝑡𝑟(𝑡) for any pair of tx and rx, can be analytically expressed as  

 ℎ𝑡𝑟(𝑡) = ∑ 𝜌𝑠𝑖𝑒−𝛼𝑡𝑑𝑖,𝑡𝑟𝑝 (𝑡 −
𝑑𝑖,𝑡𝑟

𝑐⁄ )

𝑀

𝑖=1

 Eq. 4.1 

where 𝜌𝑠𝑖 is the scattering amplitude of the scatterer i, 𝛼𝑡 is the attenuation coefficient, 

𝑑𝑖,𝑡𝑟  is the propagation distance from the tx to the scatter and to the rx, 𝑑𝑖,𝑡𝑟 =

 √(𝑥𝑡𝑥 − 𝑥𝑖)2 + 𝑧𝑖
2 + √(𝑥𝑟𝑥 − 𝑥𝑖)2 + 𝑧𝑖

2 , p(t) is the emitted pulse, M is the number 

of grain scatters and c is the wave propagation velocity in the material.  

Eq. 4.1 gives a quite simple expression of backscattering but ignores the fact, which is 

of particular importance for the frequency analysis, that the scattering amplitude of 

grain scatterers and attenuation coefficient are both frequency-dependent. Therefore, a 

frequency domain approach to modelling backscattering is proposed here. 

 

Fig. 4.1: Schematic diagram for the derivation of the analytical model of backscattering 

The scattering amplitude by the scatterer i as a function of frequency can be written as 

 𝜌𝑠𝑖(𝜔) = 𝑘
𝜔2

𝑑𝑖,𝑡𝑟
 Eq. 4.2 

where k is a characteristic constant of the material determined by the scatterer’s 

reflectivity and geometry and 𝜔 is the angular frequency. It is seen in Eq. 4.2 that the 
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scattering amplitude is proportional to the frequency squared and inversely proportional 

to the propagation distance. 

Based on Eq. 4.2, Gustafsson and Stepinski have conducted detailed mathematical 

derivation and provided an approximation of the attenuation effect 𝐻𝑠𝑖
𝑎𝑡𝑡 as [119] 

 𝐻𝑠𝑖
𝑎𝑡𝑡(𝜔) = 𝑒−𝛼𝑑𝑖,𝑡𝑟𝜔4

 Eq. 4.3 

where α is the material attenuation coefficient and its value depends on the composition 

of the grain scatterers. It is seen in Eq. 4.3 that the attenuation is proportional to fourth 

power of frequency, indicating that the grained material can be considered as a low-

pass filter whose characteristics are determined by the material composition and the 

wave propagation distance. 

By multiplying Eq. 4.2 with Eq. 4.3, the frequency response of the grain scatterer is 

obtained which can be expressed as  

 𝐻𝑠𝑖(𝜔) = 𝑘
𝜔2

𝑑𝑖,𝑡𝑟
𝑒−𝛼𝑑𝑖,𝑡𝑟𝜔4

𝑒
−𝑗𝜔𝑑𝑖,𝑡𝑟

𝑐⁄
 Eq. 4.4 

where the last exponential term denotes the phase shift determined by the wave 

propagation distance and velocity.  

The frequency response of a flaw is considered to be different to that of grain scatterers. 

A flaw reflects all of the wavelengths comparable to or smaller than its size. Therefore, 

the reflectivity of a flaw is regarded as invariant within a wide frequency range. By 

modifying Eq. 4.4, the frequency response of the flaw can be given as 

 𝐻𝑓(𝜔) = 𝜌𝑓𝑒−𝛼𝑑𝑓,𝑡𝑟𝜔4
𝑒

−𝑗𝜔𝑑𝑓,𝑡𝑟
𝑐⁄
 Eq. 4.5 

where 𝜌𝑓 is the reflectivity of the flaw and 𝑑𝑓,𝑡𝑟 is the distance from the transmitter to 

the flaw to the receiver. 

Regarding any element of the phased array, its impulse response in the frequency 

domain is usually modelled as a deterministic Gaussian envelope, 𝐸(𝜔) . This 

frequency response has to be multiplied by two factors in order to include the effects of 

beam directivity and beam spread. Again considering the scatterer i, the beam 

directivity 𝑃𝑠𝑖(𝜔) at the scatterer location can be formulated as 
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 𝑃𝑠𝑖(𝜔) = 𝑠𝑖𝑛𝑐 (
𝜔𝑒 sin(𝛽𝑡𝑥)

2𝑐
) 𝑠𝑖𝑛𝑐 (

𝜔𝑒 sin(𝛽𝑟𝑥)

2𝑐
) Eq. 4.6 

where e is the array element width (assuming e << the element length in the y direction), 

𝛽𝑡𝑥 and 𝛽𝑟𝑥 are the angles between the z axis and the propagation path of transmitter 

and receiver, respectively, as shown in Fig. 4.1.  

The beam spread effect reduces the transducer amplitude at the location of the scatterer 

i to 𝐸𝑠𝑖(𝜔) which is given as 

 
𝐸𝑠𝑖(𝜔) =  

𝐸𝑜(𝜔)

√√(𝑥𝑡𝑥 − 𝑥𝑖)2 + 𝑧𝑖
2√(𝑥𝑟𝑥 − 𝑥𝑖)2 + 𝑧𝑖

2

 
Eq. 4.7 

where  𝐸𝑜(𝜔) is the signal amplitude at unity propagation distance. 

For the flaw, the beam directivity function 𝑃𝑓(𝜔) and the beam spread function 𝐸𝑓(𝜔) 

are formulated as in Eq. 4.6 and Eq. 4.7, respectively. 

Now consider the case of a flaw surrounded by M grain scatterers. In the frequency 

domain, the received spectrum of any tr can be expressed as 

 𝐻𝑡𝑟(𝜔) = ∑ 𝑃𝑠𝑖(𝜔)𝐸𝑠𝑖(𝜔)𝐻𝑠𝑖(𝜔)

𝑀

𝑖=1

+ 𝑃𝑓(𝜔)𝐸𝑓(𝜔)𝐻𝑓(𝜔) Eq. 4.8 

The inverse Fourier transform of 𝐻𝑡𝑟(𝜔) can be performed to obtain the time domain 

signal ℎ𝑡𝑟(𝑡). 

4.3 Initial results of split spectrum processing 

In order to evaluate the effectiveness of the existing combination algorithms for SSP, 

an A-scan signal was simulated using the above analytical model. In the model, a 

single-element transducer was simulated and its spectrum is modelled as a Gaussian 

window centred at 5 MHz with a fractional bandwidth of 60%. The material was 

modelled with the characteristic constant 𝑘 = 5 × 10−18 and attenuation coefficient 

𝛼 = 5 × 10−30 [94]. There were 6000 scatterers randomly distributed within a 10 x 

120 mm structure (c = 5000 m/s), so the density of the scatterers is calculated as 5/λ2. 
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A single flaw was modelled with the reflectivity 𝜌𝑓 = 20 and a distance of 100 mm to 

the transducer. It should be mentioned that the sampling points corresponding to the 

first 10 mm of propagation distance in the A-scan signal were zeroed prior to 

processing. This is to emulate the ring-down effect of the practical transducer leading 

a dead-zone immediately in front of the transducer. Note that the modelling was 

performed in Matlab and the code template for the modelling is given in Appendix B.  

The derived time domain signal is shown in Fig. 4.2(a). The spectral magnitudes of the 

flaw echo and the counterpart of the pulse emitted by the transducer are compared in 

Fig. 4.2(b). Also, the spectral magnitudes of a grain noise segment extracted from the 

A-scan signal are obtained by Fourier transform and also plotted in Fig. 4.2(b). It is 

observed that the spectral magnitude of the flaw echo exhibits a similar shape to that of 

the emitted pulse and has a downward shift due to the effect of frequency-dependent 

attenuation. This is in contrast to the grain noise, which tends to emphasise the upper 

part of the spectrum of the emitted pulse, as the net effect of the frequency-dependent 

attenuation and grain scattering. The spectral difference between flaw echo and grain 

noise illustrates the authenticity of frequency diversity phenomenon. 

  

(a)                                                                         (b) 

Fig. 4.2: (a) a simulated A-scan signal; (b) spectra comparison. 

The simulated A-scan signal was partitioned by 10 equal-bandwidth bandpass Gaussian 

filters with 25% overlap of each other (total bandwidth is selected as 2~8 MHz) to 

generate sub-band signals. See Appendix C for the code template of generating sub-

band signals. The sub-band signals are then combined using the five previously 
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described algorithms formulated as Eq. 2.14~Eq. 2.18. The original A-scan signal and 

the processed results are shown in Fig. 4.3(a). To exemplify the sensitivity of the five 

combination algorithms to the variation of material characteristics, another A-scan 

signal was simulated using the same modelling parameters after modifying the spatial 

distribution of the grain scatterers. This A-scan signal and its processed results by SSP 

using the same filter bank are shown in Fig. 4.3(b).  

The results obtained by MEAN, MIN and FM algorithms show very poor SNR 

improvement irrespective of the grain distribution. PT algorithm provides considerable 

SNR enhancement but also introduces several artefacts in Fig. 4.3(a), moreover, the 

flaw indication at the depth of 100 mm is removed in Fig. 4.3(b). The PTS algorithm 

retains the flaw echo but gives poor SNR improvement in both cases. Therefore, none 

of the five combination algorithms is effective in improving SNR meanwhile robust to 

the variation of material characteristics. In fact, the SNR improvement obtained by the 

five combination algorithms is highly dependent on the selected parameters of the filter 

bank and the suitable parameters of the filter bank are typically different for different 

material characteristics. The sensitivity of the five combination algorithms to the 

material characteristics necessitates a troublesome interactive tuning process of the 

filter bank parameters, usually following a trial-and-error procedure. Furthermore, the 

parameters of the filter bank may require retuning when the material characteristics 

vary. 

Therefore, it is clear that scope exists for an alternative combination algorithm that can 

effectively improve SNR and is insensitive to the variation of material characteristics. 

This can be achieved by ANN techniques which demand a training stage. An ANN 

adapts itself to the selected filter bank and the characteristics of training data after the 

training. If sufficient training data comprising the variability of material characteristics 

are used, the trained ANN is insensitive to the variation of material characteristics, 

therefore, neither tuning nor retuning filter bank parameters is required. Full analysis 

and evaluation of ANN technique used in conjunction with SSP are given in the next 

section. 
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(a)                                                                         (b) 

Fig. 4.3: Conventional SSP processed results of two different realisations of grain distribution, 

displayed as (a) and (b), respectively. 

4.4 Combining SSP with artificial neural network 

4.4.1 Introduction of artificial neural network 

ANN is a branch of pattern recognition discipline that focuses on the recognition of 

underlying trends and regularities of input data. Pattern recognition techniques are 

generally categorised into supervised learning and unsupervised learning according to 

their learning styles. Supervised learning requires a set of prior-known training data 

with each instance being labelled with the desired output. A network which has 

undergone sufficient and appropriate supervised training gains the ability to give 

solutions to unknown input data. On the other hand, unsupervised learning attempts to 

identify the main features of the training data without labelled outputs. A network 

which has undergone unsupervised training determines the output of new input data 
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based on the similarity measure between the main features of the new inputs with the 

counterparts of the training data. 

Inspired by the information processing mechanisms in the biological nervous system, 

an ANN is usually designed as a parallel computational system with many 

interconnected processing elements (called neurons). The computational system 

provides a set of nonlinear algorithms for mapping the input datasets into hyperspaces 

and performing classification in the hyperspaces. This computational paradigm allows 

an ANN to learn the complex nonlinear relationship between input and output and thus 

adapt itself to the training data.  

There are two basic neural network models forming the basis for many ANN 

applications, known as the multilayer perceptron (MLP) and the radial basis function 

(RBF). These two models belong to a general model class referred to as feedforward 

network model. Previous work of combining SSP with ANN techniques mostly used 

MLP model [102, 103]. However, MLP model has several intrinsic limitations which 

can cause the ANN sometimes to be a burden rather than a benefit [120]. One important 

limitation is the time cost of the training process. This is because, as what will be 

described subsequently, MLP model requires an iterative training process to optimise 

the network weights. Moreover, MLP is more like a ‘black box’ inside which the data 

representations and the activations of hidden neurons are difficult to interpret and 

understand. 

In contrast, RBF model typically exhibits a reduced training time and has a much 

simpler architecture. In spite of exhibiting clear benefits, the combination of SSP and 

RBF model has received little attention in the literature and, therefore, is carried out in 

this chapter. In the subsequent analysis, the workflow of the approach of combining 

SSP with the two ANN models are firstly described and then their performances in 

terms of training time cost and effectiveness in SNR enhancement are compared. It is 

noted that all of the training and evaluation of ANN models were conducted in Matlab. 
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4.4.2 Methodology of combining SSP with ANN 

Fig. 4.4 plots the flow chart of ANN techniques used in conjunction with SSP. The 

process consists of five steps described as follows: 

1) The RF A-scan traces are partitioned into K sub-bands A-scan traces by a bank 

of bandpass filters.  

2) A small portion of the sub-band signals consisting of flaw echoes and grain 

noise are selected as the training data. The desired outputs of flaw echoes and 

grain noise are labelled as 1 and 0, respectively. 

3) The training data are used to train the ANN. The ANN recursively adjusts its 

parameters and evolves the decision boundary during the training until the 

termination conditions are met.  

4) All the sub-band signals are processed by the trained ANN. The trained ANN 

classifies each instance of the sub-band signals using the developed decision 

boundary and produces a coefficient within the range of 0~1 indicating the 

possibility of a legitimate flaw signal. 

5) The coefficients are multiplied pointwise with the RF A-scan traces to obtained 

the processed A-scan traces. 

The detailed training processes for the MLP model and RBF model along with their 

network architectures are detailed as follows. Appendix D shows a template code for 

combining MLP and RBF with SSP. 

 

Fig. 4.4: Flow chart of ANN used in conjunction with SSP 
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4.4.2.1 Training process of MLP model 

Fig. 4.5 (a) shows the typical architecture of an MLP model. It is composed of an input 

layer with K inputs, a hidden layer consisting of N neurons and an output layer with a 

single neuron. As previously defined, 𝐴𝑖(𝑛) and 𝑌(𝑛) are the output of the ith band and 

the output of the ANN at the instant n, respectively. The weights between the input 

layer and the hidden layer, Wih, and the weights between the hidden layer and the output 

layer, Who, are randomly initialised as, usually between -1 and 1. All of neurons in the 

hidden layer and the output layer use a sigmoid function as their activation functions. 

The purpose of training a MLP network is to minimise the mean square error (MSE) 

between 𝑌(𝑛) and the target output 𝑇(𝑛) by adjusting the two set of weights iteratively 

using the back propagation (BP) algorithm. In addition, the bias of each hidden neuron 

𝑏ℎ and the bias of the output neuron b are also optimised. The system is trained to 

behave as a binary classifier, that is, 𝑌(𝑛) is forced to be 1 for flaw echo input and is 

forced to be 0 for grain noise input. The training process is described below: 

For each instance 𝑛  of the training sub-band signals, steps 1 and 2 are 

undertaken.  

1) Feedforward: the input signals are fed into the network. They are multiplied 

with weights Wih and then the products are summed. The result is used as the 

input of neurons in the hidden layer which have an activation function of 

   𝑓(𝑥) = 1 (1 + 𝑒𝑥𝑝(−𝑥))⁄  Eq. 4.9 

Hence, the output of the neurons in the hidden layer can be expressed as 

 
𝑆ℎ = 1 (1 + 𝑒𝑥𝑝 (− (𝑏ℎ + ∑ 𝐴𝑖𝑊𝑖ℎ

𝐾

𝑖=1
)))⁄ , ℎ

= 1,2, … , 𝑁 

Eq. 4.10 

The outputs of hidden neurons are multiplied with weights Who and then the 

products are summed. The output of the neuron in the output layer whose 

activation function is also Eq. 4.9 is calculated as 

 𝑌 = 1 (1 + 𝑒𝑥𝑝 (−(𝑏 + ∑ 𝑆ℎ𝑊ℎ𝑜

𝑁

ℎ=1
)))⁄  Eq. 4.11 

2) Weights updating: the error gradient E is calculated at the output layer  
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 𝐸 = 𝑇 − 𝑌 Eq. 4.12 

Then E is propagated backwards through the network. So the changes of the 

two set of weights are calculated as 

 δ𝑤ℎ𝑜
=  𝐸𝑌(1 − 𝑌)𝑆ℎ Eq. 4.13 

 δ𝑤𝑖ℎ
=  δ𝑤ℎ𝑜𝑆ℎ(1 − 𝑆ℎ)𝐴𝑖 Eq. 4.14 

The weights are updated with a pre-set learning rate µ and a pre-set momentum 

η 

 𝑊𝑖ℎ(new) = 𝜂𝑊𝑖ℎ(old) + µ𝛿𝑤𝑖ℎ
 Eq. 4.15 

 𝑊ℎ𝑜(new) = 𝜂𝑊ℎ𝑝(old) + µδ𝑤ℎ𝑜
 Eq. 4.16 

3) Error checking: after all of the time instants have gone through step 2 and 3, the 

MSE is calculated as  

 MSE =  
1

𝐿
∑ (𝑌(𝑛) − 𝑇(𝑛))

2𝐿

𝑛=1
 Eq. 4.17 

where L is the number of training instances.  

The three steps are iteratively performed until the MSE value becomes lower 

than the preset error tolerance (TOL) or the maximum number of allowable 

iterations (epoch) is met.  
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(a) 

 
(b) 

Fig. 4.5: Schematic plot of the architecture and training process of the: (a) multilayer perceptron 

model and (b) radial basis function model. 

4.4.2.2 Training process of RBF model 

Fig. 4.5(b) shows the typical architecture of an RBF model, consisting of an input layer, 

a hidden layer, and an output layer with two neurons. The N neurons in the hidden layer 

usually use the Gaussian function as their activation function. The two neurons in the 

output layer use a linear activation function. The RBF model is based on an intuitive 

idea that input sub-band signals at a time instant can be approximated as the linear 

combination of a set of prototype vectors which are termed basis functions. Parameters 

of each basis function consist of a K x 1 centre and its width. Basis function centres are 

initialised heuristically – usually using the first N K x 1 training instances. The purposes 

of training this network model are to optimise the basis function of each hidden neuron 

and also to obtain the set of hidden-output weights and biases. In the training process, 
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T1 and T2 are set as 1 and 0 for flaw echo input, respectively; they are set as 0 and 1 for 

grain noise input, respectively. The training process is described below: 

1) Basis functions optimisation: the basis functions are optimised using the k-

means clustering method, which firstly clusters the L training instances into N 

(≤L) sets (S = {S1, S2,…, SN}), subsequently, minimises the sum of square 

𝛿𝑆ℎ
(h=1,2,…,N) within each set 𝑆ℎ.  

 𝛿𝑆ℎ
=  ∑ ∑ (𝐴𝑖 − µℎ(𝑖))

2𝐾

𝑖=1𝐴∈𝑆ℎ

, ℎ = 1,2, … , 𝑁 Eq. 4.18 

where µ𝒉 is the centre of the basis function of the hth neuron in the hidden layer. 

The µ𝒉 is iteratively updated until it does not change from the last iteration or 

the epoch is met. Then the width σh of the basis function is set as equal to 𝛿𝑆ℎ
. 

In fact, the value of µ𝒉 is very close to mean value of the training instances in 

the set Sh and σh is very close to the sum of variances of the training instances 

in the set Sh. 

2) Hidden layer computation: after all basis functions are determined, the 

Euclidean distance between each training instances and each basis function is 

calculated and processed by a Gaussian function. So the output 𝑆𝑛ℎ  at the 

neuron h in hidden layer for the training instance n (n=1,2,…,L) is calculated as 

 𝑆𝑛ℎ =  exp (−√∑ (𝐴𝑖(𝑛) − µℎ(𝑖))
2𝐾

𝑖=1
𝜎ℎ⁄ ) Eq. 4.19 

3) Weights calculation: the N x 1 weights vector W between the hidden layer and 

each neuron in the output layer are calculated separately. As both neurons in the 

output layer use a linear transfer function as their activation function, the 

transformation is formulated as 

 𝑺𝑾 =  𝑻 Eq. 4.20 

where 𝑺 is the L x N output matrix of the hidden layer and 𝑻 is the L x 1 vector 

of desired outputs. The weights vector W can be easily solved by using the 

Moore-Penrose pseudoinverse 

 𝑾 =  (𝑺𝑇𝑺)−1𝑺𝑇𝑻 Eq. 4.21 

where the superscript ‘T’ is the transpose operator.  
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It is important to note that RBF model produces two coefficients, 𝑇1 and 𝑇2, by two 

respective neurons in the output layer. For a new input instance of sub-band signals to 

the trained RBF model, the below calculation  

 𝐶 =  
𝑇1

𝑇1 + 𝑇2
 Eq. 4.22 

is carried out to obtain a single coefficient 𝐶 indicating the possibility of a legitimate 

flaw indication. 

The RBF model does not need an iterative training, thus is much faster than the MLP 

model. 

4.4.3 Generalisation comparisons 

4.4.3.1 Introduction of generalisation 

It is important to note that the focus of this chapter is the comparison of the performance 

of MLP model with RBF model used in conjunction with SSP. The performance of a 

trained ANN is determined not by its performance on the training set but that whether 

the network performs well on unseen datasets which do not form part of the training 

set. This is called the generalisation ability of an ANN system [120]. A trained system 

with good generalisation ability truly ‘learns to behave’ from the training samples rather 

than simply memorising the training samples.  

Generally speaking, there are two types of generalisation: interpolation and 

extrapolation. They apply to different distances between the characteristics of the 

training set and the characteristics of the test set. Interpolation applies to the cases in 

which the test set are close to the centres of the training set, and reside inside the 

subspace spanned by the training samples. Extrapolation applies to the cases in which 

the test set is far away from the centres of the training set. A trained network with good 

interpolation ability has an insight into the underlying trends in the training set whilst a 

network with good extrapolation ability is able to ‘see’ beyond the training set, allowing 

some degree of deviation of the characteristics of the test set from that of the training 

set. 
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Interpolation ability of a trained network is mainly determined by the ratio of the 

number of training samples, L, to the number of neurons N in the hidden layer [121]. 

Fig. 4.6 depicts a schematic of the MSE, as defined in Eq. 4.17, of a training set and a 

test set each as a function of L, for a network with a certain value of N. The interpolation 

ability of the trained network can be determined by considering the MSE of the test set. 

As indicated in Fig. 4.6, if too few training samples are used to train the network, the 

training MSE will be small but MSE of the test set will be very large, i.e., the 

interpolation ability of the trained network is very poor. This problem occurs since the 

number of training samples is too less to contain the complete characteristics of the 

data. As shown in Fig. 4.6, the interpolation ability of the trained network increases 

with L until the optimal number of training samples �̅� is reached. The training set 

generally contains noise and outliers. Therefore, if more than �̅� training samples are 

used, the excessive noise and outliers in the training set, would typically result in an 

increase in training MSE and a larger test MSE. The value of �̅� is typically dependent 

on the architecture of the employed network model and the contents of the training set 

and test sets [120].  

 

Fig. 4.6: Schematic plot of the MSE of the training and test as a function of the number of training 

samples.  
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The interpolation ability of a trained network is often reliable as long as the network is 

trained sufficiently and appropriately whereas the extrapolation ability of a trained 

network is notoriously unreliable. This is because the network has fitted itself to the 

training set after training; therefore, its performance in extrapolating to a new dataset 

whose characteristics are significantly different from the counterparts of the training set 

is quite unpredictable. For the case of combining SSP with ANN techniques, the trained 

network is required to have good interpolation ability and sometimes also have good 

extrapolation ability. The reason is given as follows. 

When SSP is combined with an ANN, the training samples of grain noise are usually 

easily accessible. Typically, a large number of grain noise instances at various depths 

are selected as the training samples to ensure the training set encompasses the entire 

range of spectral characteristics of grain noise. In contrast, the selection of training 

samples of flaw echoes is subject to their availability. If the locations of flaws are 

known, the echoes of these flaws are of course selected as the training samples. In such 

cases, the generalisation of a trained network is determined by its interpolation ability. 

However, in most practical inspections, no prior knowledge of flaws can be given. In 

such cases, backwall signals can be used as an alternative training set of flaw echoes 

since they are easy to locate in sub-band signals. Then the trained network is used to 

find the possible flaws. In this case, the backwall can be considered as a deepest semi-

infinite flaw. However, the spectral characteristics of flaws echoes deviate from that of 

backwall due to the frequency-dependent attenuation effect in the propagation channel 

- the larger the distance between the flaw and backwall, the greater the deviation of 

spectral characteristics. The difference in spectral characteristics between flaw echoes 

and backwall signals, therefore, places the demand of extrapolation ability of an ANN. 

In such cases, the generalisation of a trained network is mainly determined by its 

extrapolation ability. 

4.4.3.2 Methods 

The interpolation and extrapolation ability of the two ANN models are sequentially 

investigated in the next two sections. In the section of investigating interpolation ability, 

the echoes of a known defect are used in training the two ANN models and the A-scan 

traces are processed by the two trained models. The resultant SNR improvements with 
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respect to the known defect are measured as an indication of the interpolation ability of 

the two ANN models. In the section of investigating extrapolation ability, the echoes 

of the backwall are used in training the two ANN models and the A-scan traces are 

processed by the two trained models. The resultant SNR improvements with respect to 

the defects in the materials are measured as an indication of the extrapolation ability of 

the two ANN models. For both sections, the SNR improvements obtained by the two 

ANN models are investigated for a range of number of training samples of grain noise. 

Note that the number of training samples of grain noise is expressed as the number of 

the wavelengths corresponding to the central frequency of the employed filter bank. 

In addition to assessing the interpolation and extrapolation ability of the MLP and RBF 

models for ANN implementation, the training time costs of the two ANN models are 

also compared. The training time cost plays a significant role in the practical 

implementation of an ANN, especially when real-time signal processing is required. 

Therefore, it is also considered as an important indicator of the overall performance of 

the two ANN models. It is noted that the training time costs were measured on a 

platform with an AMD (Sunnyvale, USA) Opteron Processor 6128 running at 2 GHz 

with 16 GB of RAM. 

Both simulated and experimentally acquired data are used in the assessment of the 

performance of the two ANN models. For the simulation analysis in the next two 

sections, all of the A-scan traces were simulated using exactly the same modelling 

parameters described in Section 4.3 which were employed to generate the A-scan 

shown in Fig. 4.2(a). However, in order to generate sufficiently challenging data for 

testing the two ANN models, the spatial distribution of the grain scatterers within the 

model was randomised for each of the A-scan traces. 

Experimental FMC data acquired from Sample 3 and Sample 4 were processed to 

further analyse the interpolation and extrapolation performances of two ANN models, 

respectively. The inspection geometries for the two samples are schematically drawn 

in Fig. 4.7. Recall that Sample 3 is an arc-shaped flaw-free austenitic steel block with 

a nominal thickness of 51 mm. Considering its arc-shaped surface, the inspection 

phased array was positioned to allow its 16th element just above the vertex of the 

surface, as illustrated in Fig. 4.7(a). FMC data were acquired using the first 32 elements 
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of the array in which the element-wise pulse-echo A-scan traces were extracted for the 

interpolation analysis of the two ANN models. Recall that Sample 4 is an 80 mm thick 

ferritic steel block with four 3-mm-diameter through SDHs at different depths. Three 

FMC datasets corresponding to the three SDHs at the depths of 40 mm, 60 mm and 75 

mm were acquired separately. To avoid the mutual interference between the three 

SDHs, the array was placed on the sample surface with its aperture perpendicular to the 

plane of the paper, as illustrated in Fig. 4.7(b). 32 A-scan traces of pulse-echo mode 

were extracted from each FMC dataset for the extrapolation analysis of the two ANN 

models.  

For all of the simulation and experimental analysis, each A-scan was firstly normalised 

to its absolute maximum and then was partitioned by 10 equal-bandwidth bandpass 

Gaussian filters with 25% overlap, and the total bandwidth is selected as 2~8 MHz for 

5 MHz array transducers. Refer to Appendix C for the code of generating sub-band 

signals. The sub-band signals were then fed into two ANN models. For both ANN 

models, the number of neurons in the hidden layer was taken from [103] and set as 10. 

TOL=0.002, µ=1.5, η=0.7 were set for MLP. The epoch value was set as 1000 and 100 

for MLP and RBF models, respectively. Besides, each of the A-scan traces displayed 

in the next two sections was normalised to its own absolute maximum. 

 
 

(a) (b) 

Fig. 4.7: Schematic plots of the array and sample geometry labelled in millimetres for experiments on 

the: (a) austenitic steel block; (b) ferritic steel block. 
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4.4.3.3 Interpolation comparison 

Interpolation abilities of the two ANN models are manifested as their capacities to 

improve SNR of a known flaw when the echoes of the known flaw are used as the 

training dataset for the flaw echoes. In this section, simulated and experimentally 

acquired data are sequentially analysed to assess the interpolation ability of the two 

ANN models. 

Recall that the density of the grain scatterers is selected as 5/λ2 in the simulated model 

of backscattering. It is illustrated in [29] that at least 15 realisations of grain scatterer 

distribution are required to yield a converged SNR for this density of grains. Therefore, 

50 A-scan traces were simulated for different random realisations of grain scatterer 

locations, in each case a flaw located at a fixed position of (0, 100) mm was also 

simulated in the model. The SNR values of all the 50 simulated A-scans are averaged 

to obtain a converged SNR. Fig. 4.8(a) shows the 50 stacked original A-scan traces 

from the simulation with a dynamic range of -1~1. Note that the A-scan traces express 

signal amplitude as a function of axial distance instead of TOF in order to facilitate the 

subsequent analysis. 

The training dataset for the flaw echoes was created by windowing the flaw echo 

response in the first simulated A-scan, a 3λ window around the centre of the flaw echo 

(100 mm deep) was used. The training dataset for the grain noise was created by 

windowing the grain noise signals also in the first simulated A-scan, a window with its 

centre at the depth of 70mm and size varying from 2λ to 30λ, with a step of 2λ, was 

used. Both MLP and RBF models were trained using this training set and all the 50 A-

scan traces are processed using the trained MLP and RBF models.  

For the purpose of comparison, Fig. 4.8(b) displays the processed results using the same 

filter bank as the one employed for ANN analysis and the previously described PTS 

combination algorithm. It is clear from Fig. 4.8(b) although the PTS algorithm serves 

to suppress the grain noise, in some instances the flaws are not detected, indicating the 

sensitivity of PTS to the variation of material characteristics. Fig. 4.8(c)-(d) show the 

processed results by MLP and RBF, respectively – in each case 10λ sample of length 

grain noise was used in training the network. Fig. 4.8(e)-(f) show the processed results 

by MLP and RBF, respectively – in each case 30λ sample of length grain noise was 
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used in training the network. From a qualitative point of view, it is clear from Fig. 4.8 

that the RBF model obtains better noise suppression than MLP in the case where 10λ 

of noise training samples was employed and MLP model is slightly superior in the case 

of 30λ. Both models yield better noise suppression when more noise training samples 

are used and their performances are superior to the conventional PTS combination 

approach in terms of both noise suppression and robustness to the variation of material 

characteristics. 
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(a) (b) 

    
(c) (d) 

  
(e) (f) 

Fig. 4.8: Simulated A-scan traces with a flaw at 100mm: (a) original; (b) processed by PTS; (c)-(d) 

processed by MLP and RBF trained with 10λ of noise training samples; (e)-(f) processed by MLP and 

RBF trained with 30λ of noise training samples. 
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The generalisation ability of a trained ANN can be quantified by considering the SNR 

of the processed signal when compared to the original SNR. This can be realised by 

calculating the SNR gain (SNRG) which is defined as the quotient of output SNR 

(SNRout) and input SNR (SNRin) [94] 

 SNRG =  
SNRout

SNRin
 Eq. 4.23 

where  

 SNRin =

1
𝑝

∑ 𝐴2(𝑛)
𝐷+𝑝/2
𝐷−𝑝/2

1
𝑀 − 𝑝 (∑ 𝐴2(𝑛)𝐷−𝑝 2⁄ −1

1 + ∑ 𝐴2(𝑛)𝑀
𝐷+𝑝 2⁄ +1 )

 Eq. 4.24 

where D is the flaw location, p is the pulse length, M is the total number of sampling 

points in an A-scan signal and A is the A-scan signal. An equivalent definition holds 

for SNRout. For the case of interpolation analysis using simulation here, D is the centre 

of the simulated flaw at the depth of 100 mm whilst p is the window size for the 

extraction of the training set of flaw echoes and is equal to 3λ. SNRG can be considered 

a synthetic indicator of POD and PFA. The higher the value of SNRG, the higher the 

classification rate achieved by a trained ANN.  

In order to assess the interpolation ability of the two models in simulation, the average 

SNRG value of all the 50 A-scan traces and the training time, as a function of the 

number of grain noise training samples, are compared in Fig. 4.9. For both models, the 

average SNRG value exhibits a general trend of increase as the increase of the number 

of noise training samples. This implies that optimal number of training samples �̅� is 

larger than 30λ for both models in the simulation analysis. RBF is found to have higher 

SNRG than MLP when the number of noise training samples is less than 17λ. 

Particularly, the SNRG value obtained MLP is observed to be even lower than 1 in the 

cases of 2λ and 4λ of noise training samples. The SNRG of MLP exceeds that of RBF 

when the number of noise training samples is greater than 17λ. This would suggest that 

RBF has a superior interpolation performance when less training samples are used 

whereas MLP interpolates better after sufficient training. 

As indicated in Fig. 4.9(b), the computation costs of training the two ANN models have 

a general trend of increase with the increase of the number of noise training samples. It 
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is important to note that the time cost is natural logarithm transformed to reduce its 

dynamic range. Interestingly, the training time cost of the MLP model is found to be 

20~50 times higher than that of the RBF model. This is attributed to the iterative 

training process of the MLP network. It is worth noting that for MLP the network 

weights are randomly initialised so that sometimes it takes a longer time for the MSE 

of the training set to become lower than the TOL. This explains the fluctuation of time 

cost of the MLP network.  

  

(a) (b) 

Fig. 4.9: (a) Average SNRG and (b) natural log of training time varying with the number of noise 

training samples for simulated data 

Further analysis was undertaken by using experimental FMC data acquired from the 

austenitic steel block. 32 A-scan traces of pulse-echo mode were extracted from the 

FMC dataset for processing. Similar to the preceding simulation analysis, the training 

dataset were extracted from the first A-scan trace. The training dataset consists of the 

backwall echoes within the 3λ window around the centre of the backwall (~51 mm 

deep) and grain noise samples within the window centred at a depth of 35 mm, varying 

in size from 2λ to 30λ with a step of 2λ. Both MLP and RBF models were trained using 

this training set and all the 32 A-scan traces are processed using the trained MLP and 

RBF models.  

Fig. 4.10(a) shows the 32 stacked original A-scan traces from experimental acquisition 

with a dynamic range of -1~1. Results processed using SSP based on PTS are shown in 
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Fig. 4.10(b) and found that the grain noise is suppressed to a certain extent but the 

backwall indications are weaker than their counterparts in the original unprocessed 

data. Fig. 4.10(c)-(d) show the processed results by MLP and RBF, respectively - in 

each case 8λ sample of length grain noise was used in training the network. Fig. 4.10(e)-

(f) show the processed results by the MLP model and the RBF model, respectively – in 

each case 22λ sample of length grain noise was used in training the network. From a 

qualitative point of view, it is clear from Fig. 4.10 that the RBF is slightly superior to 

MLP in terms of noise suppression in the case of 8λ of noise training samples and MLP 

is better in the case of 22λ. Both models yield much better noise suppression when more 

training samples of grain noise are used and outperform the conventional PTS 

combination approach in terms of both noise suppression and robustness to the variation 

of material characteristics. 



Methodologies for Enhancing Ultrasonic NDE of Coarse-grained Materials – Bo Xiao 

 

117 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 4.10: Experimental A-scan traces from the austenitic steel block: (a) original; (b) processed by 

PTS; (c)-(d) processed by MLP and RBF with 8λ of noise training samples; (e)-(f) processed by MLP 

and RBF with 22λ of noise training samples. 
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In order to quantify the interpolation ability of the two ANN models to the data acquired 

from the austenitic steel block, the average SNRG values of all the 32 A-scan traces 

and training time costs, as a function of the number of noise training samples, of the 

two models are compared in Fig. 4.11. Similar to the ANN processing of simulated 

data, RBF performs better than MLP in terms of interpolation when less than 18λ of 

noise training samples are used and MLP is a superior model to RBF after sufficient 

training; and the training of RBF costs much less time than MLP. 

  
(a) (b) 

Fig. 4.11: (a) Average SNRG and (b) natural log of training time varying with the number of noise 

training samples for the experimentally acquired data from the austenitic steel block 

While it is encouraging that the good agreement exists between the experimental and 

simulation results, there are some discrepancies. Firstly, the average SNRG values of 

experimental results were found to be consistently larger than those of simulation 

results for any size of the training set. This is attributed to the fact that the difference 

between the grain noise and flaw echoes in terms of their spectral characteristics in 

experiments is larger than the counterpart observed in simulation, arising since the 

simulation approach implements a similar formalism to represent the frequency 

responses of the grain scattering and flaw reflections, as indicated by Eq. 4.4 and Eq. 

4.5. Secondly, the average SNRG value for RBF model monotonically increases with 

the number of noise training samples in simulations whereas the growth rate of the 

average SNRG value for MLP model quickly asymptotes after 16λ in experimental 

results. This suggests that the optimal number of training samples �̅�  for the 
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experimental analysis may be between16λ and 30λ. This discrepancy arises since, as 

previously stated, the value of �̅� varies for different contents of training set and test set. 

4.4.3.4 Extrapolation comparison 

Extrapolation abilities of the two networks models are manifested as their capacities to 

improve SNR of flaws within the material when the backwall echoes are used as the 

substitutive training samples of flaw echoes. In this section, simulated and 

experimentally acquired data are sequentially analysed to assess the extrapolation 

ability of the two ANN models.  

In order to study the extrapolation ability of the two ANN models in simulation, another 

flaw (also 𝜌𝑓 = 20) was simulated with its distance to the backwall varying from 10 

mm to 55 mm, with an incremental step of 5 mm, in addition to the flaw at 100 mm 

depth which is now treated as the backwall in the extrapolation analysis. For each case 

of flaw location, 30 A-scan traces were simulated for different random realisations of 

grain scatterer locations. 

The ANN training and signal processing were performed separately for different cases 

of flaw location. That is, for each case of flaw location, the training dataset were 

extracted from the first A-scan trace, consisting of the backwall echoes within the 3λ 

window around the centre of the backwall (100 mm deep) and grain noise samples 

within the window centred at a depth of 70 mm, varying in size from 2λ to 30λ with a 

step of 2λ, and both MLP and RBF models were trained using this training set and all 

the 30 A-scan traces are then processed using the trained MLP and RBF models.  

See Appendix B, C and D for the signal simulation, the generation of sub-band signals 

and ANN analysis, respectively. 

Fig. 4.12 depicts the extrapolation results of the simulations, displaying the results 

within the depth range of 40~95 mm. Fig. 4.12(a) shows the 30 stacked original A-scan 

traces from the simulation with a dynamic range of -0.6~0.6 in which the flaw and the 

backwall are separated by 15 mm. Fig. 4.12(b)-(c) display the processed results by MLP 

model and RBF model, respectively – in each case 26λ sample of length grain noise 

was used in training the network. From a qualitative point of view, it is observed that 

both models retain the flaw echoes at the depth of 85 mm and grain noise level is lower 
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in the MLP results. Fig. 4.12(d)-(i) display the original and processed results for the 

cases of the flaw and backwall being separated by 30 mm and 45 mm – in both cases 

26λ sample of length grain noise was used in training the two ANN models. As with 

the case of the flaw and backwall being separated by 15 mm, MLP model obtains better 

noise suppression than RBF model for the cases of 30 mm and 45 mm.  

It would be interesting to note that in this case of the flaw and backwall being separated 

by 30 mm, the trained MLP model fails to detect the flaw at 70 mm depth in a number 

of A-scan traces whilst the trained RBF model effectively retains all the flaw echoes. 

This arises since in this case the flaw location (70 mm deep) coincides with the central 

location of the window for the extraction of the grain noise training samples so that the 

selected noise training samples are corrupted by the flaw echoes. The outperformance 

of RBF model against MLP model indicates that RBF model is more tolerant to the 

corrupted training set. 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Fig. 4.12: The original simulated A-scan traces with the backwall at 100mm and the processed results 

by MLP model and RBF model for the case of the flaw and backwall being separated by: (a)-(c) 15mm; 

(d)-(f) 30mm; (g)-(i) 45mm. 

 



Methodologies for Enhancing Ultrasonic NDE of Coarse-grained Materials – Bo Xiao 

 

122 

 

In order to quantify the extrapolation ability of the two models in simulation, the 

average SNRG values of all 30 A-scan traces, as a function of the flaw-backwall 

distance and the number of noise training samples, obtained by the two ANN models 

are compared in Fig. 4.13(a)-(b). It should be noted that the backwall signals were 

excluded when calculating SNRG. The average SNRG values are observed to generally 

increase when more noise training samples are employed for both models. The average 

SNRG value generally increases as the distance between the flaw and backwall 

decreases. This is attributed to the fact that the spectral characteristics of a flaw closer 

to the backwall are more similar to those of the backwall signals which were used as 

the training data. It is observed that MLP model constantly yields higher average SNRG 

values than RBF model except the case of the distance between the flaw and backwall 

being 30 mm. This exception arises since the flaw location coincides with the central 

location of the window for the extraction of grain noise training samples, resulting in 

corrupted training data, as has been explained above. The outperformance of MLP 

model against RBF model suggests that the MLP network has a better extrapolation 

ability which allows the spectral characteristics of the testing flaw echoes to exhibit a 

larger degree of deviation from those of the training flaw echoes.  

The computation costs of training, as a function of the flaw-backwall distance and the 

number of noise training samples, of the two models are displayed in Fig. 4.13(c)-(d) 

with different dynamic ranges. Similar to the above interpolation analysis, RBF is found 

to be more computationally efficient than MLP. It is interesting to note that the time 

costs for the case of the flaw and backwall being separated by 30 mm are greater than 

the other cases for both models. This occurs since the iterations tend to exhaust during 

training when the training samples of grain noise are corrupted by flaw echoes. 
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(a) (b) 

  

(c) (d) 

Fig. 4.13: (a)-(b) Average SNRG and (c)-(d) natural log of training time varying with the distance 

between the simulated flaw and backwall and the number of noise training samples. 

Experimental exemplifications were undertaken via three FMC datasets acquired from 

the ferritic steel block corresponding to three deeper SDHs. 32 A-scan traces of pulse-

echo mode were extracted from each FMC dataset for processing.  

Same with the preceding simulation analysis for extrapolation, the ANN training and 

signal processing were performed separately for the three SDHs. For each SDH, the 

training data were extracted from the first A-scan trace, consisting of the backwall 

echoes within the 3λ window around the centre of the backwall (80 mm deep) and grain 

noise samples within the window varying in size from 2λ to 30λ with a step of 2λ. 

However, unlike to the preceding simulation analysis for extrapolation, the central 

locations of the window for the extraction of grain noise training samples were set as 

52 mm for the two SDHs at the depths of 40 mm and 75 mm whilst the central location 
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of the window was set to 42 mm for the 60 mm deep SDH, in order to avoid the training 

samples of grain noise being corrupted by the flaw echoes. 

 Fig. 4.14(a) shows the 32 stacked original A-scan traces from the simulation with a 

dynamic range of -0.3~0.3 in which the flaw and backwall are separated by 5 mm. Fig. 

5.14(b)-(c) display the processed results by MLP model and RBF model, respectively 

– in each case, 26λ of grain noise samples was used in training the network. From a 

qualitative point of view, it is observed that both models retain the flaw echoes at the 

depth of 75 mm in most A-scan traces and yield considerable grain noise reduction 

whilst the grain noise level in the RBF results are more significant than the MLP results. 

Fig. 4.14(d)-(i) display the original and processed results for the cases of the flaw and 

backwall being separated by 20 mm and 40 mm – in both cases 26λ of grain noise 

samples was used in training the two ANN models. For both cases, MLP model obtains 

better noise suppression than RBF model.  

The average SNRG values of all 32 A-scan traces and the training time costs, as a 

function of the number of noise training samples, of the two models for the three SDHs 

are compared in Fig. 4.15. Again, the backwall signals at 80 mm deep were excluded 

when calculating SNRG. It is observed that MLP model constantly yields higher 

average SNRG values than RBF model. These experimental results are highly 

consistent with the simulation results. Same with the above interpolation analysis, the 

average SNRG values of experimental results for the extrapolation analysis are found 

to be larger than those observed when processing simulated data. Again, this 

discrepancy occurs since the difference of spectral characteristics between grain noise 

and flaw echoes in experiments are larger than the counterparts in simulations, arising 

since the simulation approach implements a similar formalism to represent both grain 

scattering and the flaw reflections. 
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   (a)          (b) (c) 

   

  (d)     (e) (f) 

   

   (g)     (h) (i) 

Fig. 4.14: The original A-scan traces experimentally acquired from the ferritic steel block (backwall at 

80 mm depth) and the processed results by MLP model and RBF model in the case of the flaw and 

backwall being separated by: (a)-(c) 5mm; (d)-(f) 20mm; (g)-(i) 40mm. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 4.15: Average SNRG and natural log of training time varying with the number of noise training 

samples for the experimentally acquired data from the ferritic steel block in the case of the flaw and 

backwall being separated by: (a)-(b) 5mm; (c)-(d) 20mm; (e)-(f) 40mm. 
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4.4.3.5 Discussion 

The MLP network and RBF network operate with different classification mechanisms 

[122]. For both networks, inputs are mapped as hyperspatial points in a hyperspace in 

the hidden layer. For MLP, the separation of hyperspatial points is achieved by a 

hyperplane or hypersurface based on which the minimum training error can be 

obtained. For RBF, the hyperspatial points are clustered into hyperspheres each of 

which is defined by the activation function and basis functions. Fig. 4.16 shows the 

classification mechanisms in the simple two-dimensional case of hyperspace in which 

the flaw echoes and grain noise are plotted as two different colours. The MLP in Fig. 

4.16(a) separates the flaw echoes and grain noise by an arbitrarily shaped line; while 

the RBF in Fig. 4.16(b) separates the cluster of flaw echo and the cluster of grain noise 

by ellipses.   

Different classification mechanisms of the two models render the difference in their 

extrapolation performance. Because the receptive fields of the neurons in the hidden 

layer of RBF model are localised, the network outputs are decided by only a small 

portion of neurons and thus the decision boundary of RBF are defined locally. Hence, 

the inputs in the hyperspace which are far from the hypersphere of flaw echoes tend to 

yield low outputs. That is, the localised nature of receptive fields of RBF reduces its 

ability to ‘see’ beyond the training set. In contrast, the decision boundary of MLP is 

defined globally since the network outputs are jointly decided by all the neurons in the 

hidden layer and output layer. Thus, inputs in the hyperspace far from the sub-

hyperspace spanned by the training samples of flaw echoes can possibly lead high 

outputs. This indicates that MLP has a better extrapolation ability than RBF which has 

been demonstrated by the above simulation and experimental analysis. 

It is just the localised nature of the receptive fields of RBF that leads RBF to have better 

interpolation ability than MLP when less noise training samples are used. From a 

statistical perspective, the localised nature of receptive fields of RBF allows it to have 

a lower PFA and also a lower POD than MLP. When less grain noise samples are used 

in the training stage, the statistical variation of spectral characteristics of grain noise are 

not fully explored by the ANN, therefore, a grain noise signal is likely to trigger a false 

alarm in the testing stage. In this case, a model with a lower PFA triggers fewer false 
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alarms so that it has better interpolation performance. In contrast, when sufficient grain 

noise training samples are used, the ANN ‘learns’ from the entire range of spectral 

characteristics of grain noise, thus, the testing grain noise signals are less likely to 

trigger false alarms. On this occasion, a model with a higher PD possesses better 

interpolation performance. Therefore, the RBF network interpolates better with less 

training samples and MLP is superior after sufficient training. 

  

(a) (b) 

Fig. 4.16: Classification mechanisms of the: (a) MLP model and (b) RBF model 

Different classification mechanisms of the two models also render their difference in 

the training cost. For a particular training sample, only a small portion of hidden 

neurons of RBF model are involved in processing the training sample. This leads to a 

decoupled two-stage training procedure in which the basis functions are optimised at 

the first stage and the weights of the hidden-output layer are subsequently determined 

at the second stage. Since the activation function of each output neuron in an RBF 

model is usually selected to a linear one, the weights of the hidden-output layer can be 

efficiently calculated using the Moore-Penrose pseudoinverse [123]. In contrast, all the 

neurons in the hidden layer of MLP network are involved for any training input 

samples. Besides, all the neurons in both hidden layer and output layer usually use 

nonlinear sigmoid functions as their activation functions. The resultant slow error back 

propagation greatly reduces the training speed. 
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In the above extrapolation analysis, the backwall signals are used as the alternative 

training set of flaw echoes. It is acknowledged that this approach is effective only if the 

backwall signals are prominent and not corrupted by grain noise. However, for some 

ultrasonically scattering and/or very thick specimens, the backwall signals may be very 

weak and severely corrupted by the scattering of neighbouring grains. In such cases, it 

is proposed that the attenuation coefficient is firstly measured from a specimen of 

similar material composition and then used to estimate the spectral characteristics of 

the backwall signals. 

4.5 Conclusion and future work 

In this chapter, an analytical model of grain backscattering is first described which 

enables the simulation of backscattering data captured by a phased array. Then some 

initial results are presented to exemplify the sensitivity of conventional combination 

algorithms of SSP to the variation of material characteristics. The ANN techniques are 

proposed to be used as the combination algorithms of SSP to increase its robustness 

and effectiveness in improving SNR. With sufficient and appropriate training, an ANN 

can discover the frequency components mapped in a hyperspace at which the 

statistically significant differences between the flaw echoes and grain noise exist. 

Therefore, a trained ANN is insensitive to the variation of the spectral characteristics 

of grain noise.  

The performances in terms of SNR enhancement and computational efficiency of the 

well-known MLP model and RBF model used in conjunction with SSP have been 

compared in various cases through simulation and experimental analysis. The 

comparison results are described as follows. When the echoes of a known flaw are used 

as the training set, RBF is superior if the training data of grain noise is expensive or 

rare whilst MLP is proposed to use if sufficient training data of grain noise are 

accessible. However, the flaw information is inaccessible or unknown in an industrial 

context. In order to implement the ANN techniques in industrial applications, backwall 

echoes can be used as an alternative training set of flaw echoes and then the trained 

network is used to detect unknown possible flaws. The comparison results show that 

MLP model outperforms RBF model in most cases but RBF model performs better if 
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the training set of grain noise coincidently is corrupted by the echoes of the flaw to be 

detected. When the training cost is of significant importance to signal processing, for 

instance, when real-time signal processing is required, RBF is no doubt much more 

superior to MLP.  

Future work consists of two aspects. Although the simulation results are generally 

consistent with experimental results, some discrepancies still exist, arising since the 

simulation approach implements a similar formalism to represent the frequency 

characteristics of grain scattering and the flaw reflections. Therefore, in future work, 

the factor of spatial correlation (i.e., the multiple scattering effects) as a function of 

frequency between neighbouring grain scatterers will be added into the current 

analytical model. Additional work is also required to assess the interpolation and 

extrapolation abilities of the two ANN models for other types of flaws, such as cracks 

and slots. 
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CHAPTER 5. Enhanced split-spectrum 

processing with best linear unbiased 

estimator 

5.1 Introduction 

In the preceding chapter, ANN techniques are combined with SSP to suppress grain 

noise in the scope of A-scan signal processing. This chapter will introduce a statistical 

signal processing algorithm used in conjunction with SSP to reduce speckle by 

combining B-scan images acquired at multiple frequencies. 

When delay-and-sum beamforming techniques are applied to a set of A-scan traces to 

construct a B-scan image, the grain noise in the A-scan traces aggregates to form 

speckle on the B-scan image. Speckle can be considered as an accumulation result of 

the imaging system’s response to spatially unresolvable grain scatterers within a 

volume range which is often known as resolution cell [11]. It is often with a granular 

pattern and not closely linked to actual object structure. The speckle granularity is 

typically equal to the size of the resolution cell. The speckle pattern is undesirable since 

it degrades image contrast and decreases flaw detectability.  

There are two approaches to suppressing speckle: reducing speckle intensity and 

reducing speckle contrast. The next chapter will focus on the reduction of speckle 

intensity. In this chapter, the attention is restricted to reducing speckle contrast with 

SSP. 

When SSP is used to process array data, each A-scan of the array data is decomposed 

into several sub-band signals. An image is constructed in each sub-band and the sub-
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band images are combined. In order to quantify the performance of various combination 

methods of SSP on the reduction of speckle contrast, the Speckle Index (SI) is defined 

as [114] 

 SI =  |
𝜇𝑠

𝜎𝑠
| Eq. 5.1 

where the µs and σs are the mean and standard deviation of the pixel values of a speckle 

region of interest (ROI), respectively. The higher values of SI indicate a reduced 

speckle contrast, leading to an improvement in image contrast and flaw detectability. 

At the extreme case of SI being infinity, the speckle becomes to a constant background 

noise which can be easily removed by changing the dynamic range of the image.  

The simplest method of combining sub-band images is to average them. By averaging 

K white speckle, where the patterns are statistically identical and independent, 𝜇𝑠 

remains unchanged and the 𝜎𝑠  is reduced by a factor of √𝐾, the SI is consequently 

improved by a factor of √𝐾. However, for K coloured speckle, where the patterns are 

statistically unequal and correlated, the averaging approach yields improvements in SI 

of less than √𝐾  [81]. For coarse-grained materials, different speckle variances are 

observed on the sub-band images. Frequency-dependent phenomena such as 

attenuation and element directivity are responsible for this difference. The dissimilarity 

of the speckle variances between sub-band images, which is termed variance 

dissimilarity for brevity, is dependent on the spectral distance of sub-bands and the 

distance of ROI to inspection probe. The speckle correlation is proportional to the 

overlap of frequency sub-bands. Reducing the overlap between sub-bands can decrease 

the speckle correlation but also increase the variance dissimilarity. Increasing the 

overlap between sub-bands can reduce the variance dissimilarity but also increase the 

speckle correlation. The averaging approach therefore yields poor reduction of the 

contrast of coloured speckle at various overlapping conditions. 

It is clear that scope exists for an alternative combining approach for SSP that can 

effectively reduce the contrast of coloured speckle. This can be achieved by pre-

whitening the coloured speckle patterns by statistically equalising and decorrelating the 

speckle prior to averaging. In this chapter, such a combination approach is proposed to 

coherently reduce speckle contrast in ultrasonic imaging of coarse-grained material. In 
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this method, images acquired at different frequencies are adaptively combined in a 

pixel-wise manner using a statistical estimator named Best Linear Unbiased Estimator 

(BLUE) where the combination weights are adaptively tuned based on local statistics 

[115]. The local statistics are extracted from the corresponding local neighbourhoods 

of corresponding pixels on the sub-band images. This combination process statistically 

equalises and decorrelates speckle patterns on the sub-band images prior to averaging 

them with weights, achieving a considerable reduction of speckle contrast whilst 

maintain axial resolution.  

This chapter is arranged as follows. Firstly, the underpinning theory of BLUE is 

introduced. Then the simulation and experiments arrangements are described. 

Subsequently, the pre-whitening effect of BLUE is validated in simulation and the 

comparison of BLUE with conventional combination methods of SSP in terms of image 

contrast enhancement is given for experimentally acquired data. The potential 

improvement to image contrast attained by the BLUE method is studied by considering 

the filter overlap and segment length when extracting the local statistics. Conclusion 

and suggestions for future work are given in the end. 

5.2 Theory 

Consider a 2D geometry with Cartesian coordinates shown in Fig. 5.1, where x and z 

represent locations in the lateral and axial direction, respectively. When an object with 

reflectivity distribution 𝑟(𝑥, 𝑧) is interrogated by an imaging system with point spread 

function (PSF) 𝑝(𝑥, 𝑧), the detected image envelope can be expressed as  

 𝑎(𝑥, 𝑧)  = |∫ ∫ 𝑟(𝑥′, 𝑧′)𝑝(𝑥′, 𝑧′)𝑑𝑧′𝑑𝑥′
𝑧+𝐿/2

𝑧−𝐿/2

𝑥+𝑊/2

𝑥−𝑊/2

+ 𝜂(𝑥, 𝑧)| Eq. 5.2 

where ‘| |’ is the absolute operator and 𝜂(𝑥, 𝑧) is additive white Gaussian noise arising 

from the transduction system and electronic circuit; W and L represent the width and 

length of the resolution cell respectively within which the scatterers have a contribution 

to the object’s echo. The contribution from scatterers outside the resolution cell is 

assumed to be negligible. 
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Assuming that the scatterers in the resolution cell are randomly distributed and 

elastically isotropic, the PSF of an imaging system with TFM beamformer at, for 

example, the point (xa, za) shown in Fig. 5.1, is 

𝑝(𝑥𝑎, 𝑧𝑎)

= ∑ ∑ (
1

𝜋
∫ 𝐴0(𝑤)𝐵(𝛼𝑡𝑥, 𝛽𝑟𝑥, 𝑤)𝑒−𝑗𝑤𝜏𝑡𝑥,𝑟𝑥,𝑥𝑎,𝑧𝑎 𝑒𝑗𝑤𝑡𝑑𝑤

∞

0

) |𝑡=0

𝑁

𝑟𝑥=1

𝑁

𝑡𝑥=1

 
Eq. 5.3 

where 𝐴0 is the frequency spectrum of the signal emitted by array elements; 𝜏𝑡𝑥,𝑟𝑥,𝑥,𝑧 

is the time-of-flight from the emitter tx to the point of interest (xa, za)  and back to the 

receiver rx; B, which is a function of interrogating frequency, the incident angle 𝛼𝑡𝑥, 

and the reflected angle 𝛽𝑟𝑥 , provides the effects of beam divergence and element 

directivity. Note that attenuation effect is ignored in this equation for brevity. 

 

Fig. 5.1: Schematic diagram of an inspection with a phased array. 

If the number of scatterers in the resolution cell is large, it is reasonable to assume the 

reflectivity function 𝑟(𝑥, 𝑧) is nearly constant over the resolution cell. Also assuming 

the additive noise 𝜂(𝑥, 𝑧) is insignificant, Eq. 5.2 can then be simplified into a speckle 

model [124] 

 𝑎(𝑥, 𝑧)  ≅ 𝑟(𝑥, 𝑧)𝑠(𝑥, 𝑧) Eq. 5.4 

where 𝑠(𝑥, 𝑧) represents the multiplicative speckle and is defined as the integral of the 

PSF of the imaging system  
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 𝑠(𝑥, 𝑧) ≜ |∫ ∫ 𝑝(𝑥′, 𝑧′)𝑑𝑧′𝑑𝑥′
𝑧+𝐿/2

𝑧−𝐿/2

𝑥+𝑊/2

𝑥−𝑊/2

| Eq. 5.5 

In SSP, an object is imaged at K shifted frequencies so that K speckle models can be 

obtained 

 𝑎𝑖(𝑥, 𝑧) = 𝑟𝑖(𝑥, 𝑧)𝑠𝑖(𝑥, 𝑧)     𝑖 = 1,2, … , 𝐾 Eq. 5.6 

Since multiplicative noise is difficult to reduce as compared to additive noise, a 

homomorphic transform can be performed to convert the multiplicative speckle to an 

additive one. This homomorphic transformation can be achieved by logarithmic 

transformation. Then the K speckle models become to 

 𝑙𝑜𝑔 𝑎𝑖(𝑥, 𝑧) = 𝑙𝑜𝑔 𝑟𝑖(𝑥, 𝑧) + 𝑙𝑜𝑔 𝑠𝑖(𝑥, 𝑧)      𝑖 = 1,2, … , 𝐾 Eq. 5.7 

Assume that 𝑙𝑜𝑔 𝑟𝑖(𝑥, 𝑧)  and the 𝑙𝑜𝑔 𝑠𝑖(𝑥, 𝑧)  on average are identical at the K 

frequencies. By considering the speckle model as a generalised linear model, for each 

corresponding pixel (𝑥, 𝑧), Eq. 5.7 can be re-written as  

 𝑎𝑙𝑜𝑔[𝑖] = 𝐷𝐶 + 𝑤[𝑖]     𝑖 = 1,2, … , 𝐾 Eq. 5.8 

where DC is the coherent component to be estimated from the measured K x 1 vector 

𝒂𝒍𝒐𝒈 which is corrupted by a K x 1 noise vector w. The w is zero mean and has a K x K 

local covariance matrix Co which is equal to the covariance matrix of the 𝑙𝑜𝑔 𝑠𝑖(𝑥, 𝑧). 

Co of the noise vector w is often unknown as it is the values of  𝒂𝒍𝒐𝒈 that are typically 

available. However, the Co of w can be obtained from the measured 𝒂𝒍𝒐𝒈 because w 

and 𝒂𝒍𝒐𝒈  have the identical covariance matrix due to the DC being assumed to be 

identical in different sub-bands.  

Therefore, the goal of reducing speckle variance is to yield an unbiased estimate of DC 

with reduced variance from the noise-corrupted 𝒂𝒍𝒐𝒈. The unbiased estimate means that 

the estimated 𝐷�̂� is equal to the true DC value on the average and the reduced variance 

means the reduced root mean square error of the 𝐷�̂� from the true DC value. For simply 

averaging of the sub-band images, the variance of 𝐷�̂� on the resultant image is equal 

to the mean value of all entries of Co. 
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 𝜎𝐷�̂�
2 = ∑ ∑

𝐶𝑜[𝑖, 𝑗]

𝐾2

𝐾

𝑗=1

𝐾

𝑖=1

 Eq. 5.9 

If Co = σ2U where U is a K x K identity matrix, the 𝐷�̂� obtained by averaging the sub-

band images has a variance of σ2/K so that the SI is improved by √𝐾. However, unequal 

variances and correlation between the speckle patterns on the sub-band images will 

result in 𝜎𝐷�̂�
2  larger than σ2/K so that the SI improvement is less than √𝐾. 

In order to minimise the variance of 𝐷�̂�, an estimator is required which is able to pre-

whiten the speckle patterns, i.e., decorrelate and equalise the variances of the speckle 

patterns, prior to averaging sub-band images. The proposed BLUE is such an estimator 

which gives the estimation of DC as [115] 

 𝐷�̂� =
𝑰𝑇𝑪𝒐−1𝒂𝒍𝒐𝒈

𝑰𝑇𝑪𝒐−1𝑰
 Eq. 5.10 

where I is a K x 1 identity vector and the superscript ‘T’ denotes the matrix transpose. 

To explain the pre-whitening capability of BLUE, this equation is expanded as follows.  

Since Co is a symmetric, positive definite matrix, 𝑪𝒐−1 can be factored by Cholesky 

decomposition as 

 𝑪𝒐−1 = 𝑫𝑇𝑫 Eq. 5.11 

where matrix D is a K x K invertible matrix. The matrix D acts as a whitening 

transformation when applied to 𝒂𝒍𝒐𝒈, since [115] 

𝐸[(𝑫𝒂𝒍𝒐𝒈) (𝑫𝒂𝒍𝒐𝒈)
𝑇

] = 𝐸[(𝑫𝒘)(𝑫𝒘)𝑇] = 𝑫𝑪𝒐𝑫𝑇 = 

𝑫𝑫−1𝑫𝑇−1
𝑫𝑇 = 𝑰 

Eq. 5.12 

where 𝐸[∙] is the expectation operator. Therefore, the BLUE of DC can be expanded as 

 𝐷�̂� =
𝑰𝑇𝑫𝑇

𝑰𝑇𝑪𝒐−1𝑰
𝑫𝒂𝒍𝒐𝒈 = ∑ 𝑑[𝑖]𝑎𝑙𝑜𝑔′

𝐾

𝑖=1

[𝑖] Eq. 5.13 

where 

 𝒂𝒍𝒐𝒈′ = 𝑫𝒂𝒍𝒐𝒈 Eq. 5.14 
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is the pre-whitened speckle and  𝒅 = 𝑰𝑇𝑫𝑇 𝑰𝑇𝑪𝒐−1𝑰⁄  is the vector of pre-whitened 

weights. Since BLUE pre-whitens the speckle patterns, it is able to provide an 

estimation of DC with a variance [115] 

 𝜎𝐷�̂�
2 =

1

𝑰𝑇𝑪𝒐−1𝑰
 Eq. 5.15 

This is in contrast to the simple averaging method which yields the larger 𝜎𝐷�̂�
2  (as 

formulated in Eq. 5.9) than BLUE for coloured speckle since the averaging method 

implicitly assumes that the speckle patterns on the sub-band images have the same 

variance and are uncorrelated. Because the 𝐷�̂� value at each pixel is used for display 

on a computer screen after normalisation, the minimum 𝜎𝐷�̂�
2  indicates a minimised 

speckle standard deviation and so minimised speckles contrast in the processed image.   

Co is usually calculated over corresponding 2D windows of pixels centred at the pixel 

being estimated. For a window size of M x M, approximate 4M2 and 5M2 arithmetic 

operations are required to obtain each diagonal and off-diagonal entry of Co, 

respectively. The computational cost can be reduced immediately with some 

approximations. Since PSF of the imaging system can be approximately separable as a 

product of lateral PSF and axial PSF, then Co is also separable [106], 

 𝐶𝑜[𝑖, 𝑗] ≅ 𝐶𝑜𝑥[𝑖, 𝑗]𝐶𝑜𝑧[𝑖, 𝑗]       𝑖, 𝑗 = 1,2, … , 𝐾 Eq. 5.16 

where 𝑪𝒐𝒙 and 𝑪𝒐𝒛 are the lateral and axial covariance matrices, respectively. 𝑪𝒐𝒙 and 

𝑪𝒐𝒛  are obtained from the corresponding lateral 1 x M pixel segments and the 

corresponding axial M x 1 pixel segments, respectively. Note that the pixel segments 

are centred at corresponding pixel being estimated. With the PSF being separated, the 

number of arithmetic operations required to obtain each diagonal and off-diagonal entry 

of Co are significantly reduced to 8M and 10M, respectively.  

The whole process of combining SSP with BLUE combination approach is depicted in 

Fig. 5.2 in which the final normalisation step means the BLUE results 𝐷�̂� of all pixels 

are subtracted by the maximum value of 𝐷�̂�. It should be noted that M/2 pixels at all 

four edges of the images are not processed due to an insufficient number of adjacent 

pixels for the covariance matrix calculation, resulting in a reduced size of the imaging 

region after BLUE combination. 
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There are also other linear statistical estimators such as the maximum likelihood 

estimator. The justification of using BLUE is two-fold. First, most of the other 

estimators require complete knowledge of the probability density function (PDF) of 

speckle patterns whereas the logarithmic transform converts the Rayleigh PDF noise 

envelope into a PDF which is mathematically intractable to find. In contrast, BLUE 

only needs the first two moments of the speckle so that it has reduced computational 

complexity and is more suitable for practical implementation. Second, most of the other 

estimators are unbiased only under the condition of Gaussian noise. Conversely, BLUE 

holds its unbiasedness in both Gaussian and non-Gaussian noise environments [115].  
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5.3 Methods 

A 2D plain strain model was configured in the FE modelling suite PZFlex to illustrate 

the speckle pre-whitening capability of BLUE. In the model, for a 25 x 25 mm stainless 

steel structure (wavelength λ=1.158 mm at 5 MHz) with an element size of 50 x 50 μm, 

there were 8000 Brass elements randomly distributed within the volume acting as 

scatters (volume fraction 5%, 26.8 scatters/λ2). A linear phased array whose parameters 

are listed in Table 5.1 was also simulated in the model, placed on the top of the steel 

structure. A 1.5-cycles Blackman-Harris windowed 5 MHz sinusoid pulse was used as 

the excitation signal. The model geometry and array position are shown in Fig. 5.3(a). 

FMC data were collected in PZFlex and then exported to Matlab for processing.  

Table 5.1: Array parameters for simulation 

Parameter Value 

Element number 32 

Element pitch 0.7 mm 

Central frequency 5 MHz 

Bandwidth (-6dB) 3.5 ~ 6.5 MHz 

 

Experiments were conducted on Sample 5 and Sample 6 whose details are given in 

Table 2.2. Recall that Sample 5 is an Inconel 625 stepped wedge with three through 

thickness 5-mm-diameter SDHs and Sample 6 is an austenitic steel weld plate with 

seven implanted flaws. The inspection geometry and flaws locations for the two 

samples are schematically drawn in Fig. 5.3(b)-(c). For the Inconel 625 sample, only 

the two SDHs at the depths of 60 mm and 105mm are considered in the Thesis. For the 

purpose of simplicity, the nearer SDH and the deeper SDH are named as SDH1 and 

SDH2, respectively. The Inconel sample is highly scattering and attenuative. Hence, its 

B-scan image suffers from strong speckle and the SDH2 is almost completely obscured 

by speckle. For the austenitic steel weld plate, the 45o tilted slot implanted at the weld 

boundary simulating the lack of fusion was inspected in experiments. The tilted slot is 
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6mm long in depth and its upper tip is at a depth of 14 mm. The austenitic steel weld 

plate is less scattering than the Inconel 625 sample but the sidelobe of backwall echo in 

the vicinity of the slot raises the difficulty of detecting the slot. These two samples have 

different scattering levels and flaw types, enabling the assessment of the robustness of 

the BLUE method. Again, all the data processing was conducted offline in Matlab.  

   

(a) (b) (c) 

Fig. 5.3: Array and sample geometry labelled in millimetres for: (a) simulation, (b) experiment on the 

Inconel 625 sample, (c) experiment on the austenitic steel weld plate. Simulation has no flaw; the 

Inconel 625 sample has two SDHs at the depths of 60 and 105 mm, respectively; the austenitic steel 

weld plate has a 45o tilted slot with its upper tip at the depth of 14 mm. 

For each case of the simulation and experiments analysis described in the next section, 

each A-scan of the collected FMC data underwent bandpass filtering by a bank of three 

bandpass filters and then Hilbert transform. All the filters in the filter bank were fourth-

order infinite impulse response Butterworth filters. Then three TFM images were 

constructed which subsequently underwent envelope extraction, logarithmic 

transformation, combination, and normalisation prior to display. Three combination 

methods will be used and compared in next section: frequency multiplication (FM), 

mean (MEAN), and the proposed BLUE. The conventional FM and MEAN approaches 

yield the geometric mean and arithmetic mean of sub-band images. Their equivalent 

approaches in the scope of A-scan processing are formulated as Eq. 2.14 and Eq. 2.16, 

respectively. It should be noted that the MEAN approach is identical to the averaging 

approach mentioned in the two previous sections. Additionally, the FMC data filtered 

using a bandpass filter with a bandwidth equal to the total bandwidth of the three filters 

were used to construct a TFM image. This TFM image is served as the benchmark for 

comparison. 
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In the next section, for the simulation analysis, the SI values obtained by the three 

combination methods at various filter overlaps will be compared to demonstrate that 

BLUE approach yields the highest SI enhancement for the coloured speckle patterns. 

For experimental analysis, the improvements of image contrast obtained by the three 

methods will be compared. In addition, since the image contrast improvement achieved 

by the proposed BLUE method is a function of the filter overlap and the length of the 

pixel segment for the covariance matrix calculation, parametric studies of the effects of 

these two parameters on BLUE performance will be carried out to provide the optimal 

choices of these two parameters in various cases. Note that from this point onwards, 

this length of the pixel segment for the covariance matrix calculation will simply be 

referred to as the “segment length” and is expressed as the ultrasound wavelength 

corresponding to the central frequency of the aforementioned filter bank.  

5.4 Results and discussion 

5.4.1 Simulation result  

In the simulation, the total bandwidth of the three filters was chosen as 3~7 MHz which 

is slightly wider than the pass band of the simulated array. The segment length for the 

BLUE approach was empirically selected as a length of 3λ (at 5 MHz). It should be 

noted that the SI values are measured on the resultant TFM images from BLUE 

combination before normalisation since the nonlinear normalisation operation would 

alter the SI values. All pixel values on each TFM image were used for SI calculation. 

Since BLUE operates under the condition of Co being positive definite, it is not 

applicable for 100% overlap which results in a singular matrix of Co. For this reason, 

the SI values were measured at the filter overlap varying from 0% to 90% in increment 

of 10%.  

Fig. 5.4 plots the SI values varying with the filter overlap for FM, MEAN, and BLUE 

methods. The SI of the image obtained by applying a 3~7 MHz bandpass filtering has 

a benchmark value of 9.7 which is drawn on the far left of the axis. It is seen in the plot 

that the FM and MEAN approaches improve the SI to around √3  times of the 



Methodologies for Enhancing Ultrasonic NDE of Coarse-grained Materials – Bo Xiao 

 

143 

 

benchmark value at zero overlaps. This is because the speckle patterns on sub-band 

images are uncorrelated due to the complete separation of frequency bands and have 

identical variances as a result of insignificant frequency-dependent phenomena due to 

small simulated depth range. In other words, speckle on the sub-band images is white 

noise at zero overlaps. The SI values obtained by the two approaches approximately 

linearly decrease with overlap and are expected to be equal to the benchmark value at 

100% overlap. The BLUE method also improves the SI by around √3 at zero overlaps. 

As the BLUE approach can pre-whiten speckle patterns, it consistently yields higher SI 

value than the other two approaches at other overlapping conditions.  

 

Fig. 5.4: Comparison of simulated SI obtained by three methods at various filter overlaps 

To further validate the noise pre-whitening effect of the BLUE approach, the three axial 

beamplots on the three original sub-band images and the counterparts on the three pre-

whitened sub-band images using 50% filter overlap are compared in Fig. 5.5. Note that 

the pre-whitened sub-band images are obtained by pixel-wise multiplying original sub-

band images with the whitening matrix, as formulated in Eq. 5.14. As a 50% filter 

overlap was applied, the three filters have a central frequency of 4 MHz, 5 MHz, and 6 

MHz, respectively. Each axial beamplot is labelled as its corresponding central 

frequency in Fig. 5.5. The axial beamplots were obtained from the middle column line 

of the sub-band images of the simulated material. It is observed that the three axial 

beamplots obtained from the three original sub-band images have similar magnitude 
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profiles indicating a high correlation between sub-band speckle patterns. This is in 

contrast to the three beamplots obtained from the pre-whitened case which show 

dissimilar profiles indicating uncorrelated sub-band speckle patterns.   

 

(a) 

 

(b) 

Fig. 5.5: Axial beamplots on: (a) original sub-band images and (b) pre-whitened sub-band images. 

To quantitatively validate the pre-whitening effect of BLUE, all pixel values of the sub-

band images are used to calculate the covariance matrix for both the original case and 

the pre-whitened case. Six unique entries of the covariance matrix for both cases are 

listed in Table 5.2 in which, for instance, σ13 is the covariance between the 4 MHz image 
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and the 6 MHz image. Variances of each sub-band images are very close for both cases. 

The covariance σ12 is around half of the variances as a result of 50% overlap for the 

original case whilst its value is reduced to -0.5 for the pre-whitened case. The reduced 

values of σ12, σ13 and σ23 in the pre-whitened case prove that BLUE can pre-whiten 

coloured speckle patterns. 

Table 5.2: Comparison of the covariance matrix of the speckle on the original and pre-whitened sub-

band images 

Sub-band 

images 

Entries of covariance matrix 

σ11 σ12 σ13 σ22 σ23 σ33 

Original 33.1 16.2 3.03 32.7 11.5 30.2 

Pre-whitened 7.6 -0.5 -0.3 7.7 0.22 6.9 

5.4.2 Experimental evaluation - Inconel 625 

In general, the frequency range for SSP is selected to be close to the pass band of the 

inspection transducer or array because of high ultrasound energy contained within this 

band. However, since the Inconel 625 sample is very thick and ultrasonically scattering, 

the sound energy contained in the upper part of the pass band is strongly attenuated at 

deep propagation ranges. The upper part of the pass band is, therefore, inappropriate 

for SSP.  

To determine the appropriate frequency range for SSP, the frequency-dependent 

attenuation coefficient of this sample is obtained. The attenuation coefficient (with a 

unit of dB/cm) as a function of frequency can be obtained based on the difference 

between the spectral magnitudes of the first and the second backwall reflections. As the 

backwall reflections of the Inconel 625 sample are obscured by strong grain noise in 

the A-scan signals, the attenuation coefficient is measured from the experimentally 

acquired data of Sample 2 (Inconel 617 sample) which has a similar composition to but 

much smaller size than the Inconel 625 sample.  
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The measured attenuation coefficient is multiplied by two times the thickness of the 

Inconel 625 sample to obtain the frequency-dependent attenuation of backwall signals 

of the Inconel 625 sample studied here which is drawn as Fig. 5.6. It is observed in the 

figure that the frequency band above 3 MHz exhibits severe amplitude loss and so is 

inappropriate for SSP. Therefore, the frequency range of 1~3 MHz was chosen as the 

total bandwidth of the three bandpass filters.  

 

Fig. 5.6: Frequency-dependent attenuation of the backwall reflection of the Inconel sample. 

A filter overlap of 50% was initially chosen for processing. In this case, the first filter 

and the third filter are just separated. The three filters have a central frequency of 1.5 

MHz, 2 MHz, and 3 MHz, respectively and each filter has a -6dB bandwidth of 1 MHz. 

Fig. 5.7(a) shows the original TFM image without filtering applied in which the 

locations of SDH1 and SDH2 are highlighted. Fig. 5.7(b)-(d) show the three sub-band 

TFM images to be compounded. All the three sub-band images suffer from strong 

granular speckle. It is seen that the image acquired at 2.5 MHz has the highest spatial 

resolution due to the use of narrowest pulse. Meanwhile, the ultrasound wave suffers 

from the strongest attenuation, and the SDH2 is completely obscured by speckle. It 

should be emphasised that the image normalisation step is applied after the combination 

of sub-band images. Therefore, the three sub-band images to be combined as well as 

the original TFM image are displayed with a dynamic range of 70~130 dB. 
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             (a) (b) 

         

                (c) (d) 

Fig. 5.7: TFM images of the Inconel625 sample filtered by: (a) no filtering; (b) 1.5 MHz (1~2 MHz); 

(c) 2 MHz (1.5~2 MHz); (d) 2.5 MHz (2~3 MHz). (the format: central frequency (-6dB bandwidth)).  

Fig. 5.8 (a) shows the benchmark TFM image constructed using the filtered FMC data 

by a bandpass filter with a -6 dB bandwidth of 1~3 MHz. Fig. 5.8(b)-(d) display the 

normalised resultant images of combining the three sub-band images, i.e., Fig. 5.7(b)-

(d), using FM, MEAN, and BLUE, respectively. All the four images are displayed with 



Methodologies for Enhancing Ultrasonic NDE of Coarse-grained Materials – Bo Xiao 

 

148 

 

a dynamic range of -30~0 dB. A segment length of 4λ (at 2MHz) for BLUE was 

empirically chosen. The Matlab code for generating Fig. 5.8(d) is given in Appendix E. 

  

     (a)      (b) 

   

       (c) (d) 

Fig. 5.8: Comparison of SSP results of the Inconel 625 sample using different combination 

approaches: (a) no combination, a bandpass filter (-6dB bandwidth of 1~3MHz) applied to FMC data; 

(b) FM; (c) MEAN; (d) BLUE. The blue and red boxes on (a) highlight the flaw and speckle regions for 

CNR calculation, respectively. 
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A qualitative observation gives that the FM and MEAN approaches obtain very limited 

enhancement in terms of image contrast and flaw visibility. Moreover, the speckle 

granularity on the FM and MEAN images is observed larger than that on the benchmark 

TFM image shown in Fig. 5.8(a). This is attributed to the use of narrowband sub-band 

images in the FM and MEAN approach. By contrast, the BLUE approach significantly 

improves image contrast and flaw visibility while spatial resolution is maintained, 

although the mainlobe of SDH1 is slightly distorted. Particularly, the SDH2 is much 

easier to discern, and its mainlobe has a slightly larger intensity in the BLUE result than 

the counterparts in the FM and MEAN results. 

To quantify the image contrast and flaw detectability improved by SSP, the Contrast-

to-Noise Ratio (CNR) is defined as  

 CNR =
µ𝑓−µ𝑠

𝜎𝑠
 Eq. 5.17 

where µ𝑓 is the mean of pixel values in a flaw region, µ𝑠 and 𝜎𝑠 are the same as defined 

in Eq. 5.1 for SI calculation. As shown in Fig. 5.8(a), for each SDH, the selected speckle 

region and flaw region for CNR calculation are highlighted by a red rectangle and a 

blue rectangle, respectively. The speckle regions are selected near to the corresponding 

SDHs and both have a size of 7λ x 7λ. The flaw regions are selected at the centre of 

corresponding SDHs and have a size of 0.7λ x 0.7λ and 0.3λ x 1.5λ for SDH1 and 

SDH2, respectively. It should be noted that the SI values were measured on the resultant 

images before normalisation as with the SI measurement in simulation whilst the CNRs 

so as the speckle level (µ𝑠) were measured on the normalised images indicating the true 

improvement of flaw detectability and image contrast.  

Values of CNR and speckle level obtained by the three combination methods are listed 

in Table 5.3. Again, the values of CNR and speckle level of the image created by 1~3 

MHz filtering serve as benchmark values. Each value within the parentheses in the CNR 

column is the CNR gain (CNRG), defined as the quotient of the CNRc on the 

compounded image and the benchmark one CNRb. 

 CNRG =
CNRc

CNRb
 Eq. 5.18 
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It is seen in Table 5.3 that the BLUE approach yields higher CNRG than both FM and 

MEAN approaches for both SDHs. As explained in Section 5.2, the noise pre-whitening 

effect of BLUE enables it to obtain superior performance in improving image contrast 

than other two approaches. It would be interesting to note that the CNRG values of 

SDH2 are slightly smaller than the counterparts of SDH1 for any combination 

approaches. This is attributed to the fact that the speckle region near SDH2 has a larger 

degree of variance difference between sub-bands than SDH1 as a result of more 

prominent frequency-dependent phenomena at the deeper range. In addition, the 

speckle level yielded by BLUE is slightly lower than the benchmark one for both SDHs 

whereas the FM and MEAN approaches slightly increase speckle level. This is because 

BLUE weights the sub-band most heavily with the smallest variance which typically 

tends to be the sub-band with lowest speckle level [115]. 

Table 5.3: Comparisons of CNRG and speckle level obtained by different combination approaches for 

the two SDHs of the Inconel 625 sample.  

Flaws Approaches CNR(CNRG) Speckle level (dB) 

SDH1 

1~3 MHz 5.44 -31.48 

FM 8.09(1.47) -28.81 

MEAN 8.24(1.50) -28.74 

BLUE 10.26(1.86) -33.63 

SDH2 

1~3 MHz 3.21 -28.82 

FM 4.49(1.40) -29.15 

MEAN 4.58(1.43) -28.97 

BLUE 5.67(1.77) -31.93 

 

Except image contrast, it is also useful to compare resultant axial resolution of the three 

combination methods. Axial resolution determines the ability of an imaging system to 

distinguish clustered targets in the axial direction. Fig. 5.9 shows the comparison of the 

axial beamplots on the four images of Fig. 5.8 in the range that corresponds to SDH1.  

To quantify the axial resolution, the beamwidths are measured on the beamplots. The 

beamwidth is defined as the length of the axial range within which the beam magnitude 



Methodologies for Enhancing Ultrasonic NDE of Coarse-grained Materials – Bo Xiao 

 

151 

 

is greater than a certain dB from its maximum value. The beamwidths are measured for 

the case of -6 dB, -10 dB, -20 dB, and -30 dB on all the four beamplots and are listed 

in Table 5.4. For the FM approach and the MEAN approach, the beamwidths are 

consistently slightly larger than the benchmark ones which indicate deteriorated axial 

resolution. This is a consequence of the inevitable use of narrow individual sub-bands 

for SSP, as previously discussed in Section 2.4.1.2. On the contrary, the BLUE 

approach consistently reduces the beamwidths which means that BLUE improves the 

axial resolution. This is because the reduced axial resolution due to the use of narrow 

individual sub-bands for SSP is compensated by the speckle contrast reduction 

achieved by BLUE. The net effect is that BLUE yields better axial resolution than the 

benchmark one. 

 

Fig. 5.9: Comparison of axial beam profiles centred at the SDH1 for the Inconel 625 sample. 

Table 5.4: Comparisons of beamwidths for the SDH1 of the Inconel 625 sample. Note that beamwidth 

is measured in millimetres. 

Approaches -6dB -10dB -20dB -30dB 

1~3 MHz 3.2 5.2 8.4 22.8 

FM 4.0 5.6 11.6 26.4 

MEAN 4.0 5.6 11.6 26.8 

BLUE 2.8 3.6 6.0 17.2 
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5.4.2.1 Parametric study 

The CNRG obtained by BLUE is a function of the filter overlap and the segment length 

for the covariance matrix calculation. To give an indication of optimal values and value 

ranges of these two parameters, parametric studies of the effects of the two parameters 

on CNRG for both SDHs were carried out. The CNRGs were measured with the filter 

overlap varying from 0 to 90% in increment of 2.5% while the total bandwidth of the 

three bandpass filters was fixed at 1~3 MHz and with segment length varying from 1λ 

to 9λ in increment of 0.2λ. Fig. 5.10 presents the results of the parametric studies for 

both SDHs. It is easily discernible that the optimal values and value ranges of the two 

parameters are different for the two SDHs. The CNRG value of SDH1 as showed in 

Fig. 5.10(a), is particularly high at the filter overlap range of 0%~50% and segment 

length range of 2λ~4λ. The maximum CNRG occurs at 0% overlap and 3λ. For the 

SDH2, as shown in Fig. 5.10(b), significant CNRG is yielded at the filter overlap range 

of 0%~70% and segment length range of 4λ~6λ whilst the maximum CNRG occurs at 

50% overlap and 6λ. The difference in optimal ranges of the filter overlap and segment 

length between the two SDHs are explained sequentially as follows.   

  

(a) (b) 

Fig. 5.10: CNRG as a function of the filter overlap and segment length for the covariance matrix 

calculation for the: (a) SDH1and (b) SDH2 of the Inconel 625 sample. 

The optimal value and value range of the filter overlap which yields the highest CNRG 

is a result of mutual suppression of two competing factors: the speckle correlation and 

the speckle variance dissimilarity. The reduced overlap decreases the speckle 
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correlation meanwhile increases the speckle variances dissimilarity. The increased 

overlap reduces the variances dissimilarity meanwhile increases the speckle correlation. 

The optimal filter overlap is determined by the relative strength of the two competing 

factors. The strength of speckle correlation is proportional to filter overlap. The strength 

of variances dissimilarity is determined by the variability of frequency-dependent 

phenomena at difference sub-bands which is a function of the spectral distance between 

sub-bands and the distance of ROI to inspection probe.  

Because the speckle region near to SDH1 is near to the inspection array and the spectral 

distance between sub-bands is small, the variability of frequency-dependent 

phenomena and so variances dissimilarity is insignificant. Therefore, though the 

strength of speckle correlation is zero and so is smaller than the strength of variance 

dissimilarity at zero overlaps, it rapidly surpasses the strength of variance dissimilarity 

as the filter overlap increases. Therefore, The CNRG of SDH1 has a general trend of 

decrease as the filter overlap increases which is in agreement with the monotonic 

decrease of SI with overlap increase obtained in simulation.  

In contrast, the CNRG of SDH2 firstly increases and then decreases as the filter overlap 

increases. The peak CNRGs for all the cases of segment length fall in overlap range of 

40%~60% for all instances of segment length. This is because the frequency-dependent 

phenomena are prominent at the speckle region near to SDH2 due to its far distance to 

the inspection array, as previously mentioned. As a result, the strength of variance 

dissimilarity is larger than the strength of speckle correlation in the overlap range of 

0%~40%. Therefore, the CNRG increases as the filter overlap increases from 0% to 

40%. As the strength of variance dissimilarity decreases with and the strength of 

speckle correlation increases with the rise of the filter overlap, the strengths of the two 

competing factors become approximately equal in the overlap range of 40%~60% and 

then the strength of speckle correlation dominates when the overlap is larger than 60%. 

Consequently, the value of CNRG reaches the peak at the filter overlap range of 

40%~60% and decreases as the filter overlap increases from 60% to 100%. 

The CNRG value firstly increases and then decreases as segment length increases for 

both SDHs. For SDH1, the available information would be insufficient to obtain an 

accurate representation of local variances and covariances if the segment length is 
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selected to be less than 1.5λ. When the segment length is larger than 4.5λ, the pixel 

segment for covariance matrix calculation at flaw region is dominated by speckle. As a 

result, the flaw signals are suppressed by BLUE along with speckle. The variation of 

CNRG of SDH2 with the segment length can be explained in the same fashion. 

Additionally, the optimal value of the segment length increase from 4λ for SDH1 to 6λ 

for SDH2 since the beam spread effect is more prominent at the deeper SDH2.  

5.4.3 Experimental evaluation - austenitic steel weld plate 

As previously mentioned, the sample is less scattering and much thinner than the 

Inconel sample, enabling the use of higher frequencies for SSP analysis. The total 

bandwidth of three bandpass filters was therefore selected as 3~7 MHz. The filter 

overlap and segment length are initially selected as 0% and 3λ (at 5 MHz), respectively. 

Fig. 5.11(a) shows the original TFM images without filtering and Fig. 5.11(b)-(d) show 

the three sub-band TFM images to be compounded. All the four images are displayed 

with a dynamic range of 70~120 dB. It should be noted that the ultrasound arrived at 

the two slot tips undergoes diffraction and some of the energy is captured by the array 

whereas the ultrasound arriving at the slot surface undergoes specular reflection with a 

large angle thus cannot be captured by the array. In addition, energy diffracted by the 

lower tip is overwhelmed by backwall echoes. For these reasons, only the upper tip of 

the tilted slot can be observed on images and is seen to locate at the depth of 14 mm. 

Unlike the Inconel sample, there are two contributors to image noise interference: 

speckle at the right side of the slot and sidelobes of backwall echo at the left side of the 

slot. The sidelobes of backwall echo near to the slot are prominent since the slot is very 

near to the sample backwall.  

Fig. 5.12(a) shows the benchmark TFM image created using the filtered FMC data by 

a bandpass filter with a -6 dB bandwidth of 3~7 MHz. Fig. 5.12(b)-(d) compare the 

results using different combination approaches. All the four images are displayed with 

a dynamic range of -35~0 dB. In line with the previous Inconel sample, an observation 

gives that the FM and MEAN approaches yield very limited enhancement in terms of 

image contrast and flaw visibility. By contrast, the BLUE approach significantly 

improves image contrast and flaw visibility.  
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(a) (b) 

  

(c) (d) 

Fig. 5.11: TFM images of the austenitic steel weld plate filtered by: (a) no filtering; (b) 3.67 MHz 

(3~4.33 MHz); (c) 5 MHz (4.33~5.67 MHz); (d) 6.33 MHz (5.67~7 MHz). (the format: central 

frequency (-6dB bandwidth)).  

Values of CNR and speckle level are calculated using a flaw region of λ x λ size labelled 

by a blue rectangle and a speckle region of 8λ x 5λ size labelled by a red rectangle 

shown in Fig. 5.12(a). Again, the CNR obtained by 3~7 MHz filtering serves as 

benchmark CNR for CNRG calculation. These values are listed in Table 5.5. Both FM 

and MEAN approaches yield much lower CNRG than the BLUE approach. In addition, 

the speckle level obtained by BLUE combination is over -10 dB lower than the 

benchmark value. Again, this is attributed to the fact that BLUE weights the sub-band 

most heavily with the smallest variance which is the sub-band with a central frequency 

of 6.33 MHz in this case. 
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(a) (b) 

  

(c) (d) 

Fig. 5.12: Comparison of SSP results of the austenitic steel weld plate using different combination 

approaches: (a) no combination, a bandpass filter ( -6dB bandwidth of 4~7MHz) applied to FMC data; 

(b) FM; (c) MEAN; (d) BLUE. The blue and red boxes on (a) highlight the flaw and speckle regions for 

CNR calculation, respectively; the bold red box encloses the region at where the sidelobe is measured. 

It is interesting to mention that the sidelobes level of backwall echoes is also reduced 

in the BLUE result. Insonifying the backwall with different frequencies give similar 

mainlobe patterns and different sidelobe patterns. In fact, the sidelobe at low frequency 

is a stretched version of the sidelobe at high frequency. Therefore, similar to speckle, 

sidelobes on sub-bands images are partially correlated. Consequently, the BLUE 

method is also able to suppress sidelobes. Averaged sidelobe level of an area 

highlighted by a bold red rectangle shown in Fig. 5.12(a) are measured as -23.20 dB, -

20.18 dB, -20.17 dB, and –29.95 dB for 3~7 MHz filtering, FM, MEAN, and BLUE, 

respectively. 



Methodologies for Enhancing Ultrasonic NDE of Coarse-grained Materials – Bo Xiao 

 

157 

 

Table 5.5: Comparisons of CNR improvement and speckle level obtained by different combination 

approaches for the slot of the austenitic steel weld plate. 

Approaches CNR(CNRG) Speckle level (dB) 

3~7 MHz 6.01 -37.41 

FM 7.75(1.29) -31.36 

MEAN 7.94(1.32) -31.40 

BLUE 11.09(1.85) -49.82 

5.4.3.1 Parametric study 

Again, a parametric study was carried out by measuring CNRG in the cases of the 

segment length varying from 0.5λ to 5λ in increment of 0.15λ and the filter overlap 

varying from 0 to 90% in increment of 2.5% while the total bandwidth of three bandpass 

filters was fixed at 3~7 MHz. Fig. 5.13 shows the CNRG as a function of the filter 

overlap and segment length. It is seen that CNRG is significant at the filter overlap 

range of 0%~40% and the segment length range of 2λ~4λ. The optimal ranges for the 

two parameters are similar to those of the SDH1 of the above Inconel sample. CNRG 

is observed to decrease monotonically with filter overlap. This would imply that the 

strength of variance dissimilarity is consistently overwhelmed by the strength of 

speckle correlation as the filter overlap increases.  

 

Fig. 5.13: CNRG as a function of the filter overlap and segment length for covariance matrix 

calculation for the slot of the austenitic steel weld plate. 
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5.4.4 Discussion 

It is worth noting that by simply reducing the display dynamic range the flaw 

indications on the bandpass filtered images, i.e., Fig. 5.8(a) and Fig. 5.12(a), can also 

be greatly improved. The justification of conducting processing using BLUE is two-

fold. Firstly, the adjustment of the display range is a subjective process. It is typically 

in the case that the display range is initially set as a relatively large value to keep all the 

important information and then gradually reduced to remove speckle; the reduction 

process stops until all the speckle is removed or before the indications of weaker flaws 

are removed. The reduction process is completely subject since one has to know the 

locations of the flaws to determine when the reduction process should stop. However, 

no flaw information is typically available in an industrial context. Compounding sub-

band images using BLUE can reduce the speckle level thus shorten or even eliminate 

the reduction process, improving the objectiveness in defect detection. Secondly, 

BLUE compounding can greatly reduce the variation of speckle intensity, therefore, it 

can remove spurious flaw indications and so prevent unnecessary repairs. 

The optimal value range of the filter overlap obtained by the above parametric studies 

may be not applicable to other materials. Therefore, the extra analysis is provided below 

to give a generalisable indication of this optimal value range for a variety of materials.  

As previously mentioned, this optimal value range is determined by the relative strength 

of variance dissimilarity to speckle correlation which can be quantified as the ratio of 

the two competing factors (RDC) 

 RDC =
𝜎𝐶𝑜(𝑖,𝑖)

𝜇𝐶𝑜(𝑖,𝑗)
, 𝑖 = 1,2, … , 𝐾;  𝑖 ≠  𝑗 Eq. 5.19 

where 𝜎𝐶𝑜(𝑖,𝑖) is the standard deviation of the variances of speckle on sub-band images 

as a representation of variance dissimilarity and 𝜇𝐶𝑜(𝑖,𝑗)  is the mean value of the 

covariances of speckle on sub-band images as a representation of speckle correlation. 

If the RDC value is significant, the increase of the filter overlap will raise the CNRG 

value meanwhile, of course, reduce the value of RDC. As the overlap increases, CNRG 

will reach its highest value when RDC is reduced to a critical value. CNRG will 

decrease as the overlap increases if RDC is lower than the critical value.  
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Hence, a question arises: what is the critical value of RDC? The results of the above 

four parametric studies can be analysed to derive the critical value of RDC. RDC 

varying with the filter overlap for all four cases are plotted in Fig. 5.14. For the 

simulation, SDH1 of the Inconel 625 sample, and the slot of the austenitic steel weld 

plate, CNRG consistently decreases as the filter overlap increases. This implies that 

their RDC values are consistently lower than the critical value as the filter overlap 

varies. For the SDH2 of the Inconel 625 sample, CNRG increases when the filter 

overlap increases from 0% to 40% and reaches its highest value at the overlap range of 

40%~60%. This implies that RDC value is approximately equal to the critical value 

which occurs in the filter overlap ranges of 40%~60%. Therefore, it can be inferred 

from Fig. 5.14 that the critical value of RDC is around 3.  

To conclude, if the RDC value is greater than 3, both CNRG and the axial resolution 

are enhanced as the filter overlap increases until the RDC value is reduced to be equal 

to 3. For the case of RDC lower than 3, CNRG is improved at the price of the axial 

resolution as the filter overlap decreases whilst the axial resolution is improved at the 

price of CNRG as the filter overlap increases. 

 

Fig. 5.14: Ratio of variance dissimilarity to speckle correlation as a function of the filter overlap for all 

four cases. 
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5.5 Conclusion and future work 

In this chapter, the use of the BLUE algorithm as a combination method of SSP has 

been presented. BLUE linearly combines the sub-band images with weights which are 

adaptively tuned based on local statistics. It has the effect of pre-whitening, i.e., 

decorrelating and equalising the variances, the speckle patterns acquired at different 

frequencies. This enables the effective reduction of speckle contrast thus improvement 

of image contrast and flaw detectability. The pre-whitening effect of BLUE has been 

validated with FE simulation. Experimental results of the application of BLUE to data 

acquired from an Inconel sample with two SDHs and an austenitic steel weld plate with 

a tilted slot have been presented. An average of ~80% image contrast enhancement is 

observed for combining three sub-band images of the two samples. It has been 

demonstrated in experimental results that BLUE offers superior enhancement in terms 

of image contrast and flaw detectability to conventional combination approaches of 

SSP. Parametric studies of the effects of the filter overlap and length of pixel segment 

for covariance matrix calculation on image contrast improvement have been carried out 

to give an indication of optimal value ranges of these two parameters. Experimental 

result on the austenitic steel weld plate shows that the BLUE algorithm is also capable 

of lowering sidelobe levels. It is worth noting that though only the TFM imaging 

algorithm is used in this chapter, the proposed BLUE method is also applicable to other 

array imaging algorithms.  

One drawback of the current BLUE approach is that it results in distortion to the 

mainlobe of legitimate flaws. This problem arises because when combining the pixels 

of the flaw mainlobe on sub-band images, the pixel segments for the covariance matrix 

calculation are occasionally dominated by speckle even though the segment is short, 

allowing the flaw mainlobe to be suppressed by BLUE along with speckle. Another 

approach to obtaining the covariance matrix in the scope of A-scan processing is worth 

investigation, in order to minimise the speckle disturbance to the covariance matrix of 

flaw signals. In this approach, the signal segment obtained from the A-scan of each 

transmitter-receiver of a phased array is bandpass filtered by a filter bank whose outputs 

are used to calculate the covariance matrix; then the covariance matrices of all 

transmitter-receiver pairs are averaged to obtain a single covariance matrix for the use 
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by BLUE. Alternatively, it is also worth applying signal or image processing algorithms 

to sub-band images to suppress the speckle level prior to combination these images. 

This would reduce the speckle disturbance to the covariance matrix of flaw signals. 

Also in the future work, it would be prudent to consider parametric studies based upon 

varying sample dimensions, grain structure, and flaw characteristics to provide optimal 

choices of the filter overlap and segment length for covariance matrix for a broad range 

of inspection conditions. 

Another aspect of future work is to further exploit the optimal number of filters. 

Theoretically, enhancement of image contrast increases with filter number at the price 

of axial resolution and computation cost. The trade-off between image contrast and 

axial resolution is worth further investigation to give the optimal filter number. 

Certainly, the determination of optimal filter number is subject to computation capacity. 
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CHAPTER 6. Distribution dissimilarity 

imaging for speckle reduction 

6.1 Introduction 

In this chapter, a new algorithm termed Distribution Dissimilarity Imaging (DDI) 

operating with phased array systems is proposed for the purpose of speckle reduction.  

It has been described in Section 2.4.2 that the PDF of time-domain envelope signals 

can give an indication of the presence of a flaw. Typically, the envelope of the 

backscattered echoes from an ensemble of randomly distributed grain scatterers is 

characterised by a Rayleigh PDF. The envelope PDF changes from the Rayleigh 

distribution into a post-Rayleigh distribution, often known as Rician distribution, when 

a flaw is present.  

Conventionally, the envelope PDF is generated from an envelope-detected A-scan trace 

acquired by a monolithic probe [107]. Such a way of generating envelope PDF typically 

leads to significant loss of axial resolution, since a large number of envelope instances 

are required to obtain a fair PDF representation.  

If an N-element phased array and the FMC data acquisition approach are employed, N2 

envelope instances are available for each spatial point of the imaging area. In this case, 

a fair PDF representation can be obtained without the drawback of compromised axial 

resolution as long as the value of N is not too small. However, this PDF may no longer 

follow a Rayleigh distribution when only scatterers exist and also may no longer follow 

a Rician distribution if a flaw is present. This arises since the pulse amplitudes arriving 

at a spatial point are different for different array elements due to the element-dependent 

effects (e.g., beam divergence, element directivity and attenuation) [28], resulting in 
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nonlinear changes to the PDF of the envelope. If these element-dependent properties 

are known, their impact on the envelope PDF can be eliminated by deconvolution [109]. 

However, it is often the case in an industrial context that the details of these element-

dependent properties are not available. 

In this proposed DDI algorithm, the element-dependent properties are eliminated by 

normalisation and the PDFs of a few frequency components (FCs) instead of time-

domain envelope signals are generated from FMC data and used for analysis. The DDI 

algorithm measures the dissimilarity between the PDFs of the magnitudes of FCs and 

corresponding reference Rayleigh PDFs whose parameters are obtained by the 

maximum likelihood estimation (MLE) technique. This dissimilarity reveals the 

possibility of a legitimate flaw indication. 

This chapter is arranged as follows. The process and the theoretical basis of the DDI 

algorithm will be given in the next section. Then the simulation and experimental 

arrangements are described. Subsequently, the simulation and experimental results are 

shown to complement the theory of DDI and to showcase the superior performance of 

DDI on speckle reduction, respectively. 

6.2 Theory 

The DDI algorithm consists of three processing phases: the generation of the PDFs of 

a few FCs and the corresponding reference Rayleigh PDFs; the assessment of the 

dissimilarity between the two PDFs for each FC; the multiplication of the averaged 

dissimilarity coefficient with the beamformer output to obtain final processed image. 

The three phases are described sequentially as follows.  

6.2.1 PDF generation 

To generate the PDFs of FCs and corresponding reference Rayleigh PDFs, for each 

focal point of the imaging area, the following four steps are sequentially performed:  

1) For each A-scan in an FMC dataset acquired by an N-element array, the data 

sample corresponding to the focal point is positioned and a segment of data 
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samples centred at the positioned data sample is extracted. The length of the 

data segments is pre-defined. Fig. 6.1 shows the schematic diagram of 

extracting N2 data segments from FMC data where the extracted data segments 

are shaded by yellow colour.  

2) Each data segment is divided by its Euclidean norm to eliminate the 

aforementioned element-dependent effects. Each normalised data segment then 

undergoes Discrete Fourier Transform to produce an array of discrete FCs. K 

FCs with high ultrasound energy are selected for the use in the next step. 

3) For each of the K FCs, there are N2 instances which are sorted into L bins equally 

spaced between the minimum and maximum values of the instances, and the 

discrete PDF of the FC, Ps, is generated by 

 𝑃𝑠(𝑖) =
𝑐𝑜𝑢𝑛𝑡(𝑖)

𝑁2
, 𝑖 = 1,2, … 𝐿 Eq. 6.1 

where the 𝑐𝑜𝑢𝑛𝑡(𝑖) is the number of instances falling in the ith bin and the sum 

of the elements of count is N2. 

4) For each of the K FCs, a reference discrete Rayleigh PDF Pr is also generated. 

Firstly, the scale parameter 𝜎 of the Rayleigh PDF is estimated by MLE from 

the N2
 instances of the FC 

 𝜎 = √
∑ ∑ 𝐴𝑡𝑥,𝑟𝑥

2𝑁
𝑟𝑥=1

𝑁
𝑡𝑥=1

2𝑁2
 Eq. 6.2 

where 𝐴𝑡𝑥,𝑟𝑥 is the magnitude of the FC of a certain transmitter-receiver pair 

that is obtained in the second step. Then the equivalent count for Pr is calculated 

at the centres C of the aforementioned equally spaced L bins using the estimated 

𝜎 

 𝑐𝑜𝑢𝑛𝑡(𝑖) =
𝐶(𝑖)

𝜎2
𝑒−𝐶(𝑖)2/2𝜎2

, 𝑖 = 1,2, … 𝐿 Eq. 6.3 

Finally, Pr is computed as 

 𝑃𝑟(𝑖) =
𝑐𝑜𝑢𝑛𝑡(𝑖)

∑ 𝑐𝑜𝑢𝑛𝑡(𝑖)𝐿
𝑖=1

, 𝑖 = 1,2, … 𝐿 Eq. 6.4 
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Fig. 6.1: Schematic diagram of data segments extraction from FMC data 

Prior to introducing the second processing phase of the DDI approach, some 

mathematical analysis is given as follows in order to prove that the PDF of the 

magnitude of an FC can give an indication of the presence of a flaw from a theoretical 

perspective.  

With the element-dependent effects being removed, the complex backscattered signal 

by a single scatterer i as a function of frequency can be formulated as 

 𝐻𝑖(𝜔) = 𝐺𝑖(𝜔)𝑒−𝑗𝜔𝑡𝑖 Eq. 6.5 

where 𝐺𝑖(𝜔) accounts for the reflectivity of the scatterer i; 𝑡𝑖  is the TOF from the 

transmitter to the scatterer i then back to the receiver. By applying the single scattering 

assumption as described in Section 4.2, the backscattered signal detected by an array 

element is the superposition of backscattered signals from each individual grain 

scatterer in the resolution cell. Therefore, the detected complex frequency component 

Ac for a frequency 𝜔0 is formulated as 

𝐴𝑐 = ∑ 𝐻𝑖(𝜔0)

𝑀

𝑖=1

= ∑ 𝐺𝑖 cos(𝜑𝑖)

𝑀

𝑖=1

+ 𝑗 ∗ ∑ 𝐺𝑖 sin(𝜑𝑖)

𝑀

𝑖=1

=  𝐴𝑟𝑒𝑎𝑙 + 𝑗 ∗ 𝐴𝑖𝑚𝑎𝑔 Eq. 6.6 

where 𝜑𝑖  are the phase of scatterer i; M is the number of grain scatterers in the 

resolution cell; 𝐴𝑟𝑒𝑎𝑙  and 𝐴𝑖𝑚𝑎𝑔  are the real and imaginary parts of the complex 

amplitude, respectively. The magnitude of Ac is calculated as  
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 𝐴 = √𝐴𝑟𝑒𝑎𝑙
2 + 𝐴𝑖𝑚𝑎𝑔

2
 Eq. 6.7 

If the scatterers are randomly distributed in the resolution cell, the phasor Ac is 

considered as a random walk in the complex plane. For the Rayleigh scattering regime 

where the grain diameter size is much smaller than wavelength [125], it can be assumed 

that a large number of scatterers are randomly distributed in the resolution cell, 

therefore, the Central Limit Theorem can be applied to the phasor Ac [107]. That is, the 

𝐴𝑟𝑒𝑎𝑙 and 𝐴𝑖𝑚𝑎𝑔 can be considered as Gaussian random variables with zero mean and 

equal standard deviation σ. Therefore, the magnitude of the frequency component, A, 

follows a Rayleigh distribution.  

When a flaw exists and is surrounded by M scatterers in the resolution cell, a constant 

strong phasor with magnitude Ar is added in the complex plane. This has the effect of 

altering the Rayleigh PDF of the frequency component into a Rician PDF which is 

defined as 

 𝑃(𝐴) =
𝐴

𝜎2
𝑒−(𝐴2+𝐴𝑟

2)/2𝜎2
𝐼0 (

𝐴𝐴𝑟

𝜎2
) Eq. 6.8 

where 𝐼0 (
𝐴𝐴𝑟

𝜎2 ) is the modified Bessel function of the first kind with zero order. 

Therefore, the changes of PDF of the magnitude of a frequency component can give an 

indication of the presence of a flaw. 

6.2.2 Dissimilarity assessment 

Many methods of measuring the statistical distance between two statistical objects can 

be used to compute the dissimilarity coefficient between the PDFs of FCs and the 

reference Rayleigh PDFs, i.e., Ps and Pr. These methods include Euclidean distance, 

Chebychev distance, etc. [126]. The correlation and Spearman methods are exploited 

in the DDI algorithm since the dissimilarity coefficient produced by them increases 

smoothly with the increase of the degree of the deviation between the two PDFs. The 

two methods of utilising the correlation and Spearman methods are termed DDI-C and 

DDI-S, respectively. DDI-C is formulated as 
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 DDI– C = 1 −
(𝑃𝑠 − 𝑃�̅�)(𝑃𝑟 − 𝑃�̅�)′

√(𝑃𝑠 − 𝑃�̅�)(𝑃𝑠 − 𝑃�̅�)′ √(𝑃𝑟 − 𝑃�̅�)(𝑃𝑟 − 𝑃�̅�)′
 Eq. 6.9 

where the 𝑃�̅� and 𝑃�̅� are the mean values of Ps and Pr, respectively.  

DDI-S is formulated as 

 DDI– S = 1 −
(𝑅𝑠 − 𝑅𝑠

̅̅ ̅)(𝑅𝑟 − 𝑅𝑟
̅̅ ̅)′

√(𝑅𝑠 − 𝑅𝑠
̅̅ ̅)(𝑅𝑠 − 𝑅𝑠

̅̅ ̅)′ √(𝑅𝑟 − 𝑅𝑟
̅̅ ̅)(𝑅𝑟 − 𝑅𝑟

̅̅ ̅)′
 Eq. 6.10 

where the 1 x L 𝑹𝒔 and the 1 x L 𝑹𝒓 are the vectors of the rank orders of the 𝑷𝒔 and 

𝑷𝒓, respectively. 𝑅𝑠
̅̅ ̅ and 𝑅𝑟

̅̅ ̅ are the mean values of the rank orders and are both equal 

to (1+L)/2. 

Both methods produce the dissimilarity coefficient within the range 0~1. The 

dissimilarity coefficient of the two PDFs is measured at each of the K selected FCs. 

Finally, the dissimilarity coefficients obtained from the K FCs are averaged to produce 

a final dissimilarity coefficient C at each focal point.  

6.2.3 Coefficients multiplication 

The coefficient matrix 𝐶(𝑥, 𝑧) obtained from the previous phase is then used to weight 

the beamformer output a(𝑥, 𝑧) to obtain the processed image 

 y(𝑥, 𝑧) = a(𝑥, 𝑧) ∙ 𝐶(𝑥, 𝑧) Eq. 6.11 

The focal points at the speckle region where the frequency components follow a 

Rayleigh distribution have much smaller coefficients than the flaw region, thus the 

intensity of the speckle region in the processed image is greatly reduced and the flaw 

region is conserved.  

6.3 Methods 

A model of describing grain scattering in a resolution cell was created using the 

analytical backscattering model described in Section 4.2, in order to evaluate the PDF 

characteristics of backscattered signals by this cell. The material was modelled with the 
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characteristic constant 𝑘 = 5 × 10−18 and attenuation coefficient 𝛼 = 5 × 10−30. The 

sound propagation velocity in the material, c, was set as 5000 m/s. A 5 MHz 32-element 

array with a -6dB bandwidth of 3 MHz and 0.63 mm element pitch was simulated (λ=1 

mm), with its intermediate point at the origin of a coordinate system. The array and the 

resolution cell, as well as the Cartesian coordinate system, are depicted in Fig. 6.2. The 

centre of the resolution cell is located at (0, RF) where RF =1.5D, in which D is the 

lateral length of the array (=20.16 mm). The resolution cell width W is the width of the 

mainlobe and can be calculated as W≈2λRF /D (=3 mm) [81]. Its length H is the pulse 

length and can be calculated as H≈2c/bw (=3.3 mm), where bw is the array bandwidth 

(3 MHz) [81]. There were 200 scatterers randomly distributed within the resolution cell, 

so the density of scatterers is calculated as 20/λ2
.  Additionally, another identical model 

except the introduction of a flaw (reflectivity 𝜌𝑓 = 1) at the centre of the resolution cell 

was also created. For both models, a set of FMC data was simulated and used for later 

analysis. 

 

Fig. 6.2: Schematic diagram of an array and a resolution cell with randomly distributed scatters. 

An FMC dataset of Sample 3 which has been used for ANN analysis, as described in 

Chapter 4, also are used for DDI analysis here. Recall that Sample 3 is an arc-shaped 

flaw-free austenitic steel block with a nominal thickness of 51 mm. The inspection 

geometry for the sample is schematically drawn in Fig. 4.7(a). The two FMC datasets 

of Sample 5 and Sample 6 which have been used for BLUE analysis, as described in 

Chapter 5, are again used in this chapter for DDI analysis. Recall that Sample 5 is an 
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Inconel 625 stepped wedge with three through thickness 5-mm-diameter SDHs and the 

FMC dataset was acquired from the region covering the two deeper SDHs; Sample 6 

is a two-portion-welded forged austenitic steel weld plate with seven implanted and the 

FMC dataset was required from the 45o tilted slot implanted at the weld boundary 

simulating the lack of fusion. The inspection geometries for the two samples are 

schematically drawn in Fig. 5.3(b)-(c). 

For all the simulation and experimental analysis, the length of data segments is set to 

be equal to the ratio of the sampling frequency to 1 MHz. Hence, the discrete FCs are 

separated by 1 MHz. Discrete (L=30) PDFs are obtained at three FCs (K=3) at each 

focal point for dissimilarity assessment. The three FCs for the analysis of the simulation 

and the Sample 6 are selected as 4, 5, 6 MHz. However, the three FCs are chosen as 

the 1, 2, 3 MHz for the Sample 3 and Sample 5 since the sound energy contained in 

the upper part of the pass band is strongly attenuated in these two samples, as described 

in Chapter 5. It should be noted that eight realisations of scatterers distribution were 

generated in the simulation and the eight generated PDFs are averaged to obtain a 

converged PDF representation for each FC. 

6.4 Results and discussion 

6.4.1 Simulation result 

Fig. 6.3(a) plots the observed PDF of the 5 MHz frequency component and the 

calculated reference Rayleigh PDF, which are generated from the simulated model with 

scatterers only. The two distributions are observed to have very similar profiles. In this 

situation, low-valued dissimilarity coefficients are produced, namely: DDI-C=0.05, 

DDI-S=0.04. Fig. 6.3(b) plots the observed PDF of the 5 MHz frequency component 

and the calculated reference Rayleigh PDF, which are generated from the model with 

scatterers and one flaw located at the resolution cell centre. The observed PDF is seen 

to change significantly from the reference Rayleigh PDF. This distribution is often 

called as post-Rayleigh distribution or Rician distribution. This situation produces high-

valued dissimilarity coefficients, namely: DDI-C=0.9, DDI-S=0.96. 
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(a) 

 
 

(b) 

Fig. 6.3: Comparisons of the simulated PDF of the 5 MHz frequency components and the reference 

Rayleigh PDF: (a) with scatterers only; (b) with scatters and a flaw. 

6.4.2 Experimental evaluation - austenitic steel block  

The FMC data acquired from the austenitic steel block were processed in order to 

compare the performance of the two DDI approaches with the standard TFM algorithm. 

Fig. 6.4 shows the original TFM image and the two processed images by DDI-C and 

DDI-S with a dynamic range of -45~0 dB. The backwall indication is observed at the 

depth of 51 mm. The DDI-C approach is found to outperform the DDI-S method in 

terms of speckle suppression. However, the sidelobe of backwall reflection is evident 
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on the DDI-C processed image. The speckle level in each case is compared by 

considering the pixel magnitudes of each image in a region enclosed by the black 

rectangle, as plotted in Fig. 6.4(a). The speckle level of the TFM image, the DDI-C and 

DDI-S processed images are -19.48 dB, -44.81 dB and -41.14 dB, respectively.  

  
(a) (b) 

 
(c) 

Fig. 6.4: TFM images of the austenitic steel block: (a) original; (b) processed by DDI-C; (c) processed 

by DDI-S. The black box encloses the region at where the speckle level is measured. 

6.4.3 Experimental evaluation - Inconel 625  

The process described in the preceding section was repeated for the Inconel 625 sample. 

Fig. 6.5 shows the original TFM image and the two processed images of the Inconel 

625 sample with a dynamic range of -30~0 dB. Considerable speckle reduction is 
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observed on both processed images. The two SDHs located at 60 mm and 105 mm 

remain on both processed images, although the intensity of the deeper SDH is reduced 

in comparison with the original TFM image. As before, the speckle levels are measured 

at the area confined by the white rectangle plotted in Fig. 6.5(a). The speckle levels are 

-28.66 dB, -36.38, and -36.56 dB for the original TFM image, the DDI-C and DDI-S 

processed images, respectively. Appendix F provides the Matlab code for generating 

the coefficients of both DDI-C and DDI-S. 

  
(a) (b) 

 
(c) 

Fig. 6.5: TFM images of the Inconel 625 sample: (a) original; (b) processed by DDI-C; (c) processed 

by DDI-S. The white box encloses the region at where the speckle level is measured.    
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6.4.4 Experimental evaluation - austenitic steel weld plate 

The process described in the two preceding sections was repeated for the austenitic steel 

weld plate. Fig. 6.6 shows the original TFM image and the two processed images of the 

austenitic steel weld plate with a dynamic range of -35~0 dB. Speckle is greatly 

suppressed on both processed images and the DDI-S approach is observed to offer 

slightly better speckle reduction. As before, the speckle levels are measured in the 

region bounded by the black rectangle, as plotted in Fig. 6.6(a). The speckle levels are 

-22.14 dB, -38.09, and -39.82 dB for the original TFM image, the DDI-C and DDI-S 

processed images, respectively. 

  
(a) (b) 

 
(c) 

Fig. 6.6: TFM images of the austenitic steel weld plate: (a) original; (b) processed by DDI-C; (c) 

processed by DDI-S. The black box encloses the region at where the speckle level is measured.  



Methodologies for Enhancing Ultrasonic NDE of Coarse-grained Materials – Bo Xiao 

 

174 

 

6.4.5 Discussion 

It is acknowledged that the flaw indications on the original images, i.e., Fig. 6.4(a), Fig. 

6.5(a) and Fig. 6.6(a), can also be greatly improved by simply reducing the display 

dynamic range. However, as previously explained in Section 5.4.4, since the DDI 

methods can significantly reduce the speckle level, the objectiveness in defect detection 

is greatly improved.  

It is worth noting that the DDI approach assumes Rayleigh scattering regime which 

dictates grain diameter size is much smaller than the wavelength. If grain diameter size 

is comparable to or even larger than the wavelength, the scattering may extend beyond 

Rayleigh regime and enter the stochastic and geometric regimes [125]. In these cases, 

the number of the scatterers in the resolution cell may be not enough for the Central 

Limit Theorem to be applied, so that the DDI approach may be ineffective for speckle 

reduction. Therefore, a low frequency should be used in the inspection of materials with 

large grain size to enable the DDI approach to reduce speckle level. 

6.5 Conclusion and future work 

A novel algorithm for speckle suppression of ultrasound images, named as Distribution 

Dissimilarity Image (DDI), is introduced in this chapter. The algorithm operates based 

on the fact that the magnitudes of frequency components for regions with a flaw and 

regions with grain scatterers only are different in a statistical sense. The method has 

been exemplified by considering simulated array data from a resolution cell and 

experimentally acquired data from three different samples. It is observed in the 

experimental analysis that the speckle level is reduced by an average of 15 dB. The 

proposed DDI algorithm is found to provide excellent speckle suppression irrespective 

of the sample microstructure, proving the robustness of the DDI algorithm and 

highlighting its potential for application to various materials. 

Future work consists of two aspects. The dissimilarity coefficients obtained from 

different FCs are simply averaged in this chapter. Other sophisticated techniques for 

combining the dissimilarity coefficients such as the BLUE method introduced in 

Chapter 5 are worth further investigation, in order to obtain even better speckle 
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reduction. The other aspect of future work is related to the length of data segments. In 

this chapter, the length is selected to lead to FCs having a resolution of 1 MHz. With 

the use of longer data segment, the better frequency resolution is obtained, and thus 

dissimilarity assessment can be performed in more FCs. However, in this case, the 

spatial correlation of neighbouring focal points rises which results in spatial resolution 

loss and target edge blurring. Therefore, additional work is needed to find the optimal 

trade-off between the amount of extractable spectral information and spatial resolution.  
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CHAPTER 7. Conclusion and future work 

The extensive use of coarse-grained materials in many industrial applications demands 

highly accurate and reliable NDE measurements. The Thesis investigates two 

challenging problems faced in ultrasonic NDE of coarse-grained materials, i.e., phase 

aberration and backscattering noise. The two problems arise due to the heterogeneous 

microstructures and elastically anisotropic properties often exhibited by such materials. 

In Chapter 1, a general overview of NDE techniques is given with emphasis on 

ultrasound inspection. The problems faced by ultrasound inspection of coarse-grained 

materials are described. 

In Chapter 2, some background knowledge relevant to the research topics of the Thesis 

is firstly introduced for the purpose of providing some key information and 

terminology. Existing methods for phase aberration correction and the reduction of 

grain noise and speckle are reviewed. This is followed by the definition of the potential 

improvement areas and general descriptions of Chapter 3~6. The experimental 

arrangement of data acquisition and the specifications of test pieces used in the Thesis 

are described in the end. 

In Chapter 3, a high-fidelity modelling approach is explored in order to investigate 

potential methodologies for the correction of the phase aberration problem. The 

modelling approach replicates practical ultrasound inspection in a versatile simulation 

environment. Microstructural characterisation techniques such as EBSD and SRAS are 

used to acquire the crystallographic orientation data of a material which are then input 

into a platform to construct a model of the material. Wave propagation in the material 

is simulated and TOFs between the array elements and the targets are determined in the 

model. The time delay sequences in the isotropic focal law are modified according to 

the determined TOFs to generate anisotropic focal laws which can overcome the phase 
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aberration problem. In Chapter 3, validation of the emerging SRAS technique is 

presented. The combination of SRAS and the computationally efficient FE simulation 

platform PZFlex is investigated, in order to remarkably improve the practical 

applicability and operational efficiency of the high-fidelity modelling approach. Two 

methodologies for processing orientation data are presented in order to establish 

computationally efficient finite element models of coarse-grained materials. The FE 

models are then employed to establish anisotropic focal law based on time reversal 

techniques. Future work consists of three aspects. Firstly, the spatial variation of 

stiffness moduli of the material sample will be exploited in order to construct an FE 

model of the material with higher fidelity. Second, different misorientation angles will 

be attempted to study its effect on the model fidelity. Finally, the anisotropic focal laws 

generated using high-fidelity modelling will be applied in practical inspections in order 

to assess the accuracy of the anisotropic focal laws thus to access the fidelity of the FE 

models. 

In Chapter 4, an analytical model of backscattering is implemented which enables the 

simulation of backscattering data captured by a phased array. Some initial results are 

presented in order to illustrate that conventional combination algorithms of SSP are 

either ineffective in reducing grain noise or sensitive to the variation of material 

characteristics. The use of ANN techniques as the combination algorithms of SSP has 

been investigated for the purpose of improving the performance and robustness of SSP. 

The MLP model and RBF model of ANN are compared in various cases through 

simulation and experimental analysis in terms of SNR enhancement and computational 

efficiency when used in conjunction with SSP. It has been observed that when the 

echoes of a known flaw are used as the training set, MLP is better if sufficient training 

data of grain noise are accessible whilst RBF is superior if the training data of grain 

noise is expensive or rare. MLP model outperforms RBF model when the network is 

trained with backwall echoes and employed to detect unknown flaws. RBF model 

performs better when the training samples are corrupted. When the training cost is of 

significant importance to signal processing, for instance, real-time signal processing is 

required, RBF is undoubtedly the better choice. Future work consists of two aspects. 

Firstly, the factor of spatial correlation as a function of frequency between neighbouring 

grain scatterers will be added into the current analytical model of backscattering, in 
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order to improve the accuracy of the model. Second, the MLP and RBF models will be 

compared in the inspection of a wide range of flaw types. 

In Chapter 5, the use of the BLUE algorithm as a combination method of the SSP 

technique is investigated.  BLUE combines sub-band images with weights which are 

adaptively tuned based on local statistics. It has the effect of pre-whitening the speckle 

patterns in sub-band images, i.e., decorrelating and equalising the speckle. This enables 

effective reduction of speckle contrast whilst maintaining spatial resolution. The pre-

whitening effect of BLUE is validated with FE simulation. The methodology is 

exemplified using experimental data from two samples; namely an Inconel 625 sample 

and an austenitic steel weld plate. The images generated using BLUE showcase 

superior enhancement in terms of image contrast and flaw detectability as compared to 

conventional combination approaches. Parametric studies of the effects of the filter 

overlap and length of pixel segment for covariance matrix calculation on image contrast 

improvement have been carried out to give an indication of optimal value ranges of 

these two parameters. Experimental result on the austenitic steel weld plate shows that 

the BLUE can also reduce the intensity of sidelobe. Future work consists of three 

aspects. Firstly, the current approach to obtaining covariance matrix from sub-band 

images results in distortion to the mainlobe of legitimate flaws, other approaches to 

obtaining covariance without the drawback of distorting the mainlobe of flaws are 

therefore worth further investigation. Secondly, the optimal number of filters will be 

exploited. Finally, parametric studies will be carried out in the inspection of a wide 

range of materials and flaw characteristics, in order to provide optimal values of the 

two variables of the BLUE method for a broad range of inspection conditions.  

In Chapter 6, a novel algorithm, named as Distribution Dissimilarity Image (DDI), is 

introduced in order to suppress speckle in ultrasound images. The algorithm is based 

on the fact that the magnitude of frequency components at a region with a flaw and a 

region with grain scatterers only are different in a statistical sense. Experimental 

analysis of three coarse-grained samples has been presented. It is found that the 

proposed DDI algorithm can significantly suppress speckle level for all the three 

samples which highlights its potential for application to other coarse-grained materials. 

Future work consists of two aspects. Firstly, the combination of DDI and other 
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sophisticated combination algorithms such as BLUE will be investigated in order to 

future suppress speckle level and improve image contrast. Secondly, the trade-off 

between the amount of extractable spectral information and spatial resolution will be 

exploited. 

Additionally, since the BLUE and DDI algorithms both operate in a pixel-wise manner, 

the implementation of advanced parallel computing techniques is considered as another 

aspect of future work in order to enable the processing of each pixel to be executed in 

parallel. This will significantly reduce the computational time required by the two 

algorithms. 
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Appendix 

A. Definition of Bunge-passive Euler Angles 

The figure below shows the three rotations of the Bunge-passive Euler angles. (x, y, z) 

is the reference coordinate system and (x0, y0, z0) is the crystal coordinate system. 

  

(a)  (b) 

 

(c) 

 

Fig. A.1: Definition of the Bunge-passive Euler angles: (a) Rotate around z axis by φ1; (b) Rotate 

around new x axis by φ; (c) Rotate around new z axis by φ2 
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B. Matlab Code for the analytical model of the 

backscattering 

clear all; clc; close all; 

 %% parameters 

atten=5e-30; % atteunation coefficient 

ModelZRange=0.12; % model range in z direction 

ModelXRange=0.01; % model range in x direction 

  

fs=25e6;% sampling frequency 

C=5000; % wave speed m/s 

fc=5e6; % central frequency 

fil_low=3.5e6; % lower pass band of tranducer 

fil_high=6.5e6; % upper pass band of tranducer 

  

AscanLength=round(2*ModelZRange/C*fs); 

if mod(AscanLength,2) 

    AscanLength=AscanLength+1; 

end 

  

ElementCount=64; % element number 

ElementPitch=0.63e-3; % element pitch 

ElementWidth=0.53e-3; % element width 

ElementLocation=[-ElementCount/2+0.5:1:ElementCount... 

    /2-0.5]*ElementPitch; 

  

wavelength=C/fc; % wavelength 

binSize=fs/AscanLength; % frequency bin 

  

%% transducer spectrum 

passband=fil_high-fil_low; 

win_halflength=round(passband/binSize); 

stopbandBinNo=round(fil_low/binSize-win_halflength/2); 

if stopbandBinNo <=0 

    stopbandBinNo=1; 

end 

tran_spec=[zeros(stopbandBinNo,1);gausswin(2*win_halflength);... 

    zeros(AscanLength/2+1-2*win_halflength-stopbandBinNo,1)]; 

  

%% scatterers' reflectivity and flaw locations 

ScatterNo=6000; % number of grain scatterers 

ScatterRefle_nomial=5e-18; % reflectivity of scatters 

ScatterRefle=normrnd(1,0,[ScatterNo,1])*ScatterRefle_nomial;  

% randomise scatters' reflectivity a bit 

  

FlawRefle=[20,20]; % reflectivity of flaws, between 10-20 is appropriate 

FlawLocations=0.045:0.005:0.09; % locations of simulated flaws 

  

%% Data generation 

AscanHub=zeros(length(FlawLocations),30,AscanLength); 

for iter=1:length(FlawLocations) 

    FlawCoord(1,:)=[0,0.10];  % location of the simulated backwall 

    FlawCoord(2,:)=[0,FlawLocations(iter)];  

    % location of the simulated flaw in this iteration 

    for iter1=1:size(AscanHub,2) 

        ScatterXcoord=rand(ScatterNo,1)*ModelXRange-ModelXRange/2; 

        ScatterZcoord=rand(ScatterNo,1)*ModelZRange*0.9... 

            +ModelZRange*0.1; 

        Spectra=zeros(AscanLength/2+1,1); 

         

        i=32; j=32; %here only simulate signals of the 32th array element 

        %% scatterers 

        for k=1:length(ScatterRefle); % number of scatters 
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            d1=sqrt((ScatterXcoord(k)-ElementLocation(i))^2+... 

                ScatterZcoord(k)^2);  %transmitting to scatter 

            d2=sqrt((ScatterXcoord(k)-ElementLocation(j))^2+... 

                ScatterZcoord(k)^2);  %receiving distance 

            dist=d1+d2; 

            % element directivity 

            tx_direc=sinc(pi*ElementWidth*... 

                sin(acos(ScatterZcoord(k)/d1))/wavelength); 

            rx_direc=sinc(pi*ElementWidth*... 

                sin(acos(ScatterZcoord(k)/d2))/wavelength); 

            %beam divergence factor 

            Green=1/(sqrt(d1*d2));   

            para=tx_direc*rx_direc*Green; 

             

            Spectrum=zeros(AscanLength/2+1,1); 

            for binNo=1:AscanLength/2+1 

                omiga=2*pi*(binNo-1)*binSize; %angular frequency 

                Spectrum(binNo)=ScatterRefle(k)/dist*omiga^2*... 

                 exp(-atten*dist*(omiga)^4).*exp(-1i*omiga*dist/C); 

            end 

             

            Spectrum=para*Spectrum; 

            Spectra=Spectra+Spectrum; 

        end 

         

        %% flaw 

        for kk=1:size(FlawCoord,1) 

            d1=sqrt((FlawCoord(kk,1)-ElementLocation(i))^2+... 

                FlawCoord(kk,2)^2);  %transmitting to scatter 

            d2=sqrt((FlawCoord(kk,1)-ElementLocation(j))^2+... 

                FlawCoord(kk,2)^2);  %receiving distance 

            dist=d1+d2; 

            % element directivity 

            tx_direc=sinc(pi*ElementWidth*... 

                sin(acos(FlawCoord(kk,1)/d1))/(wavelength)); 

            rx_direc=sinc(pi*ElementWidth*... 

                sin(acos(FlawCoord(kk,1)/d2))/(wavelength)); 

            %beam divergence factor 

            Green=1/(sqrt(d1*d2));   

            para=tx_direc*rx_direc*Green; 

             

            Spectrum=zeros(AscanLength/2+1,1); 

            for binNo=1:AscanLength/2+1 

                omiga=2*pi*(binNo-1)*binSize; %angular frequency 

                Spectrum(binNo)=FlawRefle(kk)*... 

                 exp(-atten*dist*(omiga)^4).*exp(-1i*omiga*dist/C); 

            end 

             

            SpectrumFlaw=para*Spectrum; 

            Spectra=Spectra+SpectrumFlaw; 

        end 

        %% tranducer effect and signals 

        Spectra_win=Spectra.*tran_spec; 

        Spectra_win1=[Spectra_win(1);2*Spectra_win(2:AscanLength/2);... 

            Spectra_win(AscanLength/2+1);... 

            zeros(AscanLength-(AscanLength/2+1),1)]; 

        Ascan=real(ifft(Spectra_win1)); 

        AscanHub(iter,iter1,:)=Ascan; 

    end 

end 

% The 'AscanHub' is the simulated data. 'parfor' function can be used in 

% the outmost loop to enable parallel simulations 

  

save('30Ascans_flaws.mat','AscanHub'); 
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C. Matlab code for generating sub-band signals 

clear all; close all 

 

load('30Ascans_flaws.mat'); 

tstart=401;%1st 400 points are not analysed 

tend=size(AscanHub,3); 

  

% filter bank desgin 

fstart=2e6; % lower band of the filter bank 

fend=8e6; % upper band of the filter bank 

overlap=0.25; % overlap of filters 

filterNo=10; % number of filters 

bw=(fend-fstart)/(1+(filterNo-1)*(1-overlap)); 

incre=bw*(1-overlap); 

  

% initialise memory 

AscanHub1=zeros(size(AscanHub,1),size(AscanHub,2),tend-tstart+1); 

subsethub=zeros(size(AscanHub,1),size(AscanHub,2),tend-tstart+1,filterNo); 

fs=25e6;% Sampling frequency 

C=5000; % velocity in m/s 

  

for i=1:size(AscanHub,1) 

    for j=1:size(AscanHub,2) 

        Ascan=squeeze(AscanHub(i,j,:)); 

         

        Ascan=Ascan(tstart:tend); 

        Ascan=Ascan/max(abs(Ascan)); % normalise each A-scan 

        AscanHub1(i,j,:)=Ascan; 

        AscanLength=length(Ascan); 

        spectrum=fft(Ascan); 

        binSize=fs/AscanLength; 

             

        for iter=1:filterNo 

            fc1=fstart+(iter-1)*incre; 

            fc2=fc1+bw; 

            passband=fc2-fc1; 

            win_halflength=round(passband/binSize); 

            stopbandBinNo=round(fc1/binSize-win_halflength/2); 

            filter_halfspectrum=[zeros(stopbandBinNo,1);... 

                gausswin(2*win_halflength);... 

                zeros(AscanLength/2+1-2*... 

                win_halflength-stopbandBinNo,1)]; 

            filter_spectrum=[filter_halfspectrum;... 

                flipud(filter_halfspectrum(2:end-1))]; 

            temp=ifft(filter_spectrum.*spectrum); 

            subset(:,iter)=temp/max(abs(temp));  

            % equalize each sub-band - optional 

        end 

         

        subsethub(i,j,:,:)=subset; 

    end 

end 

 

AscanHub1=squeeze(AscanHub1); 

subsethub=squeeze(subsethub); 

distance=1e3*[tstart:1:tend]/fs*C/2; 

  

save('30Ascans_flaws_subsethub.mat','subsethub','distance') 

save('30Ascans_flaws_normalized.mat','AscanHub1') 
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D. Matlab code for ANN analysis 

 
clear all; clc; close all 

load('30Ascans_flaws_subsethub.mat') 

load('30Ascans_flaws_normalized.mat'); 

AscanHub=AscanHub1; clear AscanHub1; 

  

%% Notes 

% An open source Matlab code was used to build and evaluate RBF model.  

% The source code can be downloaded from  

% https://chrisjmccormick.wordpress.com/2013/08/16/rbf-network-matlab-code/ 

% Version 1.0 is used in the Thesis. 

% Add the paths of the two folders in the downloaded file like below. 

addpath('kMeans'); addpath('RBFN');  

  

% An open source Matlab code was used to enable the 'Tic' and 'Toc' commands 

% to work with 'parfor' command. Namely, timing can be performed in parallel 

% in the different parallel threads. 

% The source code can be downloaded from  

% http://www.mathworks.com/matlabcentral/fileexchange/27472-partictoc 

% Add the path of the folder in the downloaded file like below. 

addpath('parTicToc'); 

  

%% 

  

fs=25e6; % sampling frequency 

C=5e6; % central frequency 

wl=fs/C; %number of sampling points corresponding to one wavelength 

waveNo=1:15; 

TrainLength=waveNo*wl; 

  

% locations of backwall and the flaws 

FlawLoc=[50:50:500]; % the locations of flaws 

BackwallLoc=600; % centre of the backwall signal 

BackFlawLength=15; % number of sampling points for the signals of the  

  

Ascan4Train=1:1; 

  

RBF_time=zeros(length(TrainLength),length(Ascan4Train)... 

    ,size(AscanHub,1)); 

SNRG_RBF=zeros(length(TrainLength),length(Ascan4Train)... 

    ,size(AscanHub,1),size(AscanHub,2)); 

MLP_time=zeros(length(TrainLength),length(Ascan4Train)... 

    ,size(AscanHub,1)); 

SNRG_MLP=zeros(length(TrainLength),length(Ascan4Train)... 

,size(AscanHub,1),size(AscanHub,2)); 

 

%% RBF 

  

p1=Par(length(TrainLength)); 

  

parfor Index=1:length(TrainLength) 

    RBF_time_temp=zeros(length(Ascan4Train),size(AscanHub,1)); 

    MLP_time_temp=zeros(length(Ascan4Train),size(AscanHub,1)); 

    SNRG_RBF_temp=zeros(length(Ascan4Train),size(AscanHub,1)... 

        ,size(AscanHub,2)); 

    SNRG_MLP_temp=zeros(length(Ascan4Train),size(AscanHub,1)... 

        ,size(AscanHub,2)); 

     

    %% RBF 

    for Ascan4TrainID=1:length(Ascan4Train) 

        for FlawID=1:size(AscanHub,1) 
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            td=squeeze(subsethub(FlawID,Ascan4Train(Ascan4TrainID)... 

                ,BackwallLoc-BackFlawLength:BackwallLoc+BackFlawLength,:)); 

            tn=squeeze(subsethub(FlawID,Ascan4Train(Ascan4TrainID),... 

                300-TrainLength(Index):300+TrainLength(Index),:)); 

            % centre of noise training samples is at 70 mm 

             

            %normalisation before training 

            for i=1:size(td,1) 

                td(i,:)=td(i,:)/max(abs(td(i,:))); 

            end 

            for i=1:size(tn,1) 

                tn(i,:)=tn(i,:)/max(abs(tn(i,:))); 

            end 

             

            X=[td;tn]; 

            y=[ones(size(td,1),1); 2*ones(size(tn,1),1)]; 

            % Desired training values 

            %% training 

            Par.tic; 

            [Centers, betas, Theta] = trainRBFN(X, y, 10, false); 

            p1(Index)=Par.toc; 

            RBF_time_temp(Ascan4TrainID,FlawID)=... 

                p1(Index).ItStop-p1(Index).ItStart; 

            %% meansure SNRG 

            for AscanID=1:size(AscanHub,2) 

                Ascan=squeeze(AscanHub(FlawID,AscanID,:)); 

                Ori_SNR=mean(Ascan(FlawLoc(FlawID)-BackFlawLength:... 

                    FlawLoc(FlawID)+BackFlawLength).^2)... 

                    /mean(Ascan([1:FlawLoc(FlawID)-BackFlawLength,... 

                FlawLoc(FlawID)+BackFlawLength:BackwallLoc-BackFlawLength... 

                    ,BackwallLoc+BackFlawLength:end]).^2); 

                 

                te=squeeze(subsethub(FlawID,AscanID,:,:)); 

                 

                for i=1:size(te,1) 

                    te(i,:)=te(i,:)/max(abs(te(i,:))); 

                end 

                 

                scores=zeros(2,size(te,1)); 

                coeff=zeros(size(te,1),1); 

                for i = 1 : size(te,1) 

                    scores(:,i)=evaluateRBFN(Centers,betas,Theta,te(i,:)); 

                    coeff(i)=scores(1,i)./sum(scores(:,i)); 

                end 

                Ascan_p=coeff.*Ascan; 

  

                RBF_SNR=mean(Ascan_p(FlawLoc(FlawID)-BackFlawLength:... 

                    FlawLoc(FlawID)+BackFlawLength).^2)... 

                    /mean(Ascan_p([1:FlawLoc(FlawID)-BackFlawLength,... 

                FlawLoc(FlawID)+BackFlawLength:BackwallLoc-BackFlawLength... 

                    ,BackwallLoc+BackFlawLength:end]).^2); 

                SNRG_RBF_temp(Ascan4TrainID,FlawID,AscanID)=RBF_SNR/Ori_SNR; 

            end 

        end 

    end 

     

    %% MLP 

    for Ascan4TrainID=1:length(Ascan4Train) 

        for FlawID=1:size(AscanHub,1) 

             

            td=squeeze(subsethub(FlawID,Ascan4Train(Ascan4TrainID),... 

                BackwallLoc-BackFlawLength:BackwallLoc+BackFlawLength,:)); 

            tn=squeeze(subsethub(FlawID,Ascan4Train(Ascan4TrainID),... 

                300-TrainLength(Index):300+TrainLength(Index),:)); 
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            %normalisation before training 

            for i=1:size(td,1) 

                td(i,:)=td(i,:)/max(abs(td(i,:))); 

            end 

            for i=1:size(tn,1) 

                tn(i,:)=tn(i,:)/max(abs(tn(i,:))); 

            end 

             

            tr=[td;tn]'; 

            Dtr = [ones(1,size(td,1)), zeros(1,size(tn,1))]; 

            % Desired training values 

            %% training 

            eta= 1.5; % Learning rate 

            alpha = 0.7; % Momentum 

            tol= 0.002; % Error tolerance 

            epochs = 1000;      % number of iterations 

            Q = size(tr,2); % Total segment number for training 

            n = size(tr,1); q = 10; p = 1; % Architecture 

            Wih= 2 * rand(n+1,q) -1;% Input-hidden weight matrix 

            Whj= 2 * rand(q+1,p) -1; % Hidden-output weight matrix 

            DeltaWih= zeros(n+1,q); % Weight change matrices 

            DeltaWhj= zeros(q+1,p); 

            DeltaWihOld= zeros(n+1,q); 

            DeltaWhjOld= zeros(q+1,p); 

            Si= [ones(1,Q); tr]; % Input signals 

            deltaH= zeros(1,q+1);% Error-slope product at hidden 

            errormean =1; 

            Par.tic; 

            for  itr =1:epochs 

                if errormean<=tol 

                    break 

                else 

                    error=zeros(Q,1); 

                    for k = 1:Q 

                        Zh= Si(:,k)' * Wih;% Hidden activations 

                        Sh= [1 1./(1 + exp(-Zh))];% Hidden signals 

                        Yj= Sh* Whj;% Output activations 

                        Sy= 1./(1 + exp(-Yj));% Output signals 

                        Ek= Dtr(k) -Sy;% Error vector 

                        deltaO= Ek* Sy.* (1 -Sy); 

                        % derivative of siglog function 

                        DeltaWhj = deltaO* Sh';% Delta W:hidden-output 

                        deltaH(2:end)=deltaO*Whj(2:end)'.*... 

                            Sh(2:end).*(1-Sh(2:end)); 

                        for kk = 1:n+1 % Delta W:input-hidden 

                            DeltaWih(kk,:) = deltaH(2:end) * Si(kk,k); 

                        end % Update weights 

                        Wih= Wih+ eta* DeltaWih+ alpha * DeltaWihOld; 

                        Whj= Whj+ eta* DeltaWhj+ alpha * DeltaWhjOld; 

                        DeltaWihOld= DeltaWih; DeltaWhjOld= DeltaWhj;  

                        % Store changes 

                        error(k)= Ek^2; % Compute error 

                    end 

                    errormean=mean(error); 

                end 

            end 

            p1(Index)=Par.toc; 

            

            MLP_time_temp(Ascan4TrainID,FlawID)=p1(Index).ItStop... 

                -p1(Index).ItStart; 

             

            for AscanID=1:size(AscanHub,2) 

                Ascan=squeeze(AscanHub(FlawID,AscanID,:)); 

                Ori_SNR=mean(Ascan(FlawLoc(FlawID)-BackFlawLength:... 
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                    FlawLoc(FlawID)+BackFlawLength).^2)... 

                    /mean(Ascan([1:FlawLoc(FlawID)-BackFlawLength,... 

                FlawLoc(FlawID)+BackFlawLength:BackwallLoc-BackFlawLength... 

                    ,BackwallLoc+BackFlawLength:end]).^2); 

  

                te=squeeze(subsethub(FlawID,AscanID,:,:)); 

                 

                for i=1:size(te,1) 

                    te(i,:)=te(i,:)/max(abs(te(i,:))); 

                end 

                 

                te=te';              

                 

                Ti= [ones(1, size(te,2)); te]; % Input signals 

                To=zeros(size(te,2),1); 

                for k=1:size(te,2); 

                    Zh= Ti(:,k)' * Wih;% Hidden activations 

                    Sh= [1 1./(1 + exp(-Zh))];% Hidden signals 

                    Yj= Sh* Whj;% Output activations 

                    Sy= 1./(1 + exp(-Yj));% Output signals 

                    To(k)=Sy; 

                end 

                Ascan_p1=To.*Ascan; 

                 

                MLP_SNR=mean(Ascan_p1(FlawLoc(FlawID)-BackFlawLength:... 

                    FlawLoc(FlawID)+BackFlawLength).^2)... 

                    /mean(Ascan_p1([1:FlawLoc(FlawID)-BackFlawLength,... 

                FlawLoc(FlawID)+BackFlawLength:BackwallLoc-BackFlawLength... 

                    ,BackwallLoc+BackFlawLength:end]).^2); 

                SNRG_MLP_temp(Ascan4TrainID,FlawID,AscanID)=MLP_SNR/Ori_SNR; 

            end 

        end 

    end 

     

    RBF_time(Index,:,:)=RBF_time_temp; 

    SNRG_RBF(Index,:,:,:)=SNRG_RBF_temp; 

    MLP_time(Index,:,:)=MLP_time_temp; 

    SNRG_MLP(Index,:,:,:)=SNRG_MLP_temp; 

end 

 

save('30AscansFlawVarAnalysis.mat','MLP_time','SNRG_MLP','RBF_time','SNRG_RBF'); 

 

E. Matlab code for BLUE algorithm 

clear all; close all 

 

filename ='Inconel625_FMC.mat'; 

data = load(filename); %’data’ contains FMC data, sampling frequency, 

FMC acquisition start time, Array element locations 

tstep = 1/data.FMCSamplingRate; 

centre_time = data.FMCTimeStart; 

velocity = 5859; 

caxis_range = 30; 

tx_idx = 1e3*data.ProbeElementLocations(2,:); 

 

  

res=0.2; %resolution 0.2 mm 

imageWidth = 80; %mm 

xPoints=round(imageWidth/res); 

imageDepthStart=10; %mm 

imageDepthEnd=120; 

yPoints=round((imageDepthEnd-imageDepthStart)/res); 
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x = linspace(-imageWidth/2,imageWidth/2,xPoints); 

y = linspace(imageDepthStart,imageDepthEnd,yPoints); 

  

overlap = 0.5; 

AF=3; % number of frequency bands 

bw=2e6/(AF-2*overlap); % total bandwidth/(number of band-2*overlap) 

fs1=1e6; fs2=fs1+bw; 

figure; 

TFM=zeros(AF+2,yPoints,xPoints);  

% 1st for filtered TFM; 2nd for original TFM; 3rd-5st for subband images 

for i=1:AF+2; 

    FMC=data.FMC; 

    if i==1; 

        h = design.bandpass('N,F3dB1,F3dB2',4,1e6,3e6,data.FMCSamplingRate); 

        fil = design(h, 'butter'); 

        for  j=1:size(FMC,2);                            

           subset=flipud(filter(fil,flipud(filter(fil,squeeze(FMC(:,j)))))); 

            FMC(:,j) = hilbert(subset); 

        end         

    elseif i==2; 

        for  j=1:size(FMC,2); 

            FMC(:,j) = hilbert(FMC(:,j)); 

        end 

    else 

        h=fdesign.bandpass('N,F3dB1,F3dB2',4,fs1,fs2,data.FMCSamplingRate); 

        fil=design(h, 'butter'); 

        for  j=1:size(FMC,2); 

           subset=flipud(filter(fil,flipud(filter(fil,squeeze(FMC(:,j)))))); 

            FMC(:,j) = hilbert(subset); 

        end 

        fs1=fs1+bw*(1-overlap); 

        fs2=fs2+bw*(1-overlap); 

    end 

     

    [dTFM,~]=Partial_TFM(FMC,x,y,xPoints,yPoints,tstep,centre_time,tx_idx,… 

    velocity); 

    TFM(i,:,:) = 20*log10(abs(squeeze(sum(dTFM))));    

end 

  

%% BLUE 

temp=squeeze(TFM(3:end,:,:)); 

k =size(temp,1); % AF 

wavelength=round(velocity/2e6/res*1e3); % velocity/total bw/pixel size 

N = round((4*wavelength)/2); %4 wavelengths of segment length for BLUE 

c=zeros(size(temp,2),size(temp,3)); 

  

s=ones(1,k)'; 

for i=1+N:size(temp,2)-N; 

    for j=1+N:size(temp,3)-N; 

        input=squeeze(temp(:,i,j)); 

        C1=cov(squeeze(temp(:,i-N:i+N,j))'); 

        C2=cov(squeeze(temp(:,i,j-N:j+N-2))'); 

        C=C1.*C2; 

        c(i,j)=(s'*C^-1*input)/sum(sum(C^-1)); 

    end 

end 

  

x=x(N+1:end-N); 

y=y(N+1:end-N); 

DC=c(1+N:end-N,1+N:end-N); 

DC_final=DC-max(DC(:)); 

 

% ‘DC_final’ is the processed result by BLUE 
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Partial_TFM.m 

 

function [ dTFM, Sampling ] = Partial_TFM(FMC,x,y,xPoints,yPoints,tstep,…  

centre_time, source_x_positions, velocity) 

n_transducers = length(source_x_positions); 

dTFM = zeros(n_transducers,yPoints,xPoints); 

i=1; 

[X, Y] = meshgrid(x,y); 

figure; 

for tx=1:n_transducers 

    for rx=1:n_transducers; 

        distanceTX = sqrt((X-source_x_positions(tx)).^2 + Y.^2); 

        distanceRX = sqrt((X-source_x_positions(rx)).^2 + Y.^2); 

        delay = (distanceTX + distanceRX)*1e-3 / velocity - centre_time; 

        trace_idx = min(max(round(delay./tstep),1),length(FMC)); 

        dTFM(tx,:,:)=squeeze(dTFM(tx,:,:))+ reshape((FMC(trace_idx,i)),… 

        yPoints,xPoints); 

       Sampling(tx,rx,:,:) = trace_idx; 

 

        i=i+1; 

    end 

    imagesc(x,y,abs(squeeze(dTFM(tx,:,:)))); colorbar; axis image 

    drawnow; 

    disp('Generating TFM image.'); 

    end 

end 

 

F. Matlab code for DDI algorithm 

clear all; close all 

filename =’Inconel625_FMC.mat'; 

data = load(filename); %’data’ contains FMC data, sampling frequency, 

%FMC acquisition start time, Array element locations 

tstep = 1/data.FMCSamplingRate; centre_time = data.FMCTimeStart; 

FMCSamplingRate= data.FMCSamplingRate; 

velocity = 5859; 

tx_idx = 1e3*data.ProbeElementLocations(2,:); 

FMC=data.FMC; 

  

res=0.2; %resolution 0.2 mm 

imageWidth = 80; %mm 

xPoints=round(imageWidth/res); 

imageDepthStart=10; %mm 

imageDepthEnd=120; 

yPoints=round((imageDepthEnd-imageDepthStart)/res); 

x = linspace(-imageWidth/2,imageWidth/2,xPoints); 

y = linspace(imageDepthStart,imageDepthEnd,yPoints); 

  

AF=3; % number of frequency bands 

NoElement=sqrt(size(FMC,2)); 

  

[dTFM,Sampling]=Partial_TFM(FMC,x,y,xPoints,yPoints,tstep,centre_time,… 

tx_idx, velocity); % ‘Partial_TFM’ function is provided in the last page 

  

SegLength=round(FMCSamplingRate/1e6/2); 

Sampling=reshape(Sampling, NoElement^2,yPoints,xPoints); 

Sampling(Sampling<SegLength)=SegLength; 

Dissimi=zeros(AF,2,yPoints,xPoints); 

  

parfor i=1:yPoints; 

    Dissimi_temp=zeros(AF,2,xPoints); 
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    seg=zeros(SegLength*2,NoElement^2); 

    for j=1:xPoints; 

        for ii=1:NoElement^2 

            temp=FMC(Sampling(ii,i,j)-SegLength+1:Sampling(ii,i,j)… 

            +SegLength,ii); 

            temp=temp/norm(temp); 

            seg(:,ii)=temp; 

        end 

         

        a=abs(fft(seg.*repmat(hamming(size(seg,1)),[1 NoElement^2]))); 

        a=a(2:1+AF,:); % only first AF frequency components are used 

         

        for ii=1:size(a,1) 

             

            a_bin=linspace(min(a(ii,:)),max(a(ii,:)),30); 

            a_binsize=a_bin(2)-a_bin(1); 

            b=hist(a(ii,:),a_bin); 

             

            mle_Rayl = sqrt(sum(a(ii,:).^2)/(2*numel(a(ii,:))));  

            % maximum likelihood estimation for a Rayleigh parameter 

            ref = raylpdf(a_bin+a_binsize/2,mle_Rayl); 

            Dissimi_temp(ii,:,j)=[pdist([b;ref],'correlation'); ... 

                pdist([b;ref],'spearman')]; 

        end 

    end 

    Dissimi(:,:,i,:)=Dissimi_temp;  

end 

Coe_xcorr=squeeze(mean(Dissimi(:,1,:,:),1));  

% coefficients for correlation method 

Coe_spearman=squeeze(mean(Dissimi(:,2,:,:),1));  

% coefficients for spearman method 
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