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Abstract

Accounting for about half the global photosynthetic activity and at least half of

the oxygen production, phytoplankton are an incredibly diverse group of unicellular

organisms with an important role in aquatic environments maintaining food webs

and mediating global biogeochemical cycles. Fast-paced loss of biodiversity poses

a threat to ecosystem functioning and its ability to provide services. Understanding

the mechanisms driving biodiversity and ecosystem functioning (BEF) relationships

is crucial for predicting ecosystem responses to environmental change. BEF theory

predicts a positive linear relationship between diversity and productivity, with in-

creasing diversity leading to higher ecosystem function via two main mechanisms:

complementarity and selection effects. The extent to which these mechanisms drive

phytoplankton productivity in natural ecosystems, however, is still under-explored.

Using a combination of mechanistic and statistical modelling approaches, this the-

sis investigates the role of phytoplankton diversity, particularly taxonomic and size-

structured diversity, in shaping ecosystem productivity. Going beyond species rich-

ness, we investigate the effects of phytoplankton diversity, as well as, which mecha-

nisms are responsible for driving the relationship between biodiversity and ecosys-

tem function. We used a long-term dataset from the San Francisco Bay, to evalu-

ate how phytoplankton diversity, size structure, and environmental control influence

several productivity proxies (e.g. biomass accumulation, resource use efficiency, Chl

a). These findings challenge the widely accepted positive effect of richness on ecosys-

tem function. In the San Francisco Bay system, diversity and productivity often ex-

hibited a negative relationship, with species richness having a weak effect on ecosys-
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tem function. Instead, trait diversity, particularly related to size, emerged as a strong

driver of productivity. Environmental control acted on productivity by modulating

community composition and size structure. To further investigate the underlying

mechanisms, nutrient–phytoplankton (NP) and a nutrient-phytoplankton-zooplankton

(NPZ) model including multiple size classes were developed to separate the diversity

effect from nutrient enrichment on productivity. Results from these models suggest

that nutrient input was consistently the main driver of productivity, particularly at

low diversity levels. Species richness plays a secondary role through its interaction

with environmental conditions, i.e. nutrient levels. Notably, trophic interactions

shift dominant biodiversity effects, which emphasizes the role of predator–prey dy-

namics in shaping productivity patterns. Finally, we developed a structural equa-

tion model (SEM) using both in situ and simulation results to quantify causal direct

and indirect effects of the environment and diversity on productivity. Unlike tradi-

tional bivariate statistical approaches, SEM allows for the simultaneous estimation

of multiple causal pathways. Here too, richness had a weak effect on phytoplank-

ton productivity. Instead, environment and community size structure were the main

drivers, jointly affecting levels of productivity, with richness playing a secondary role

mainly through its indirect effects on size diversity and evenness. Overall, we demon-

strate that phytoplankton diversity effects on productivity are strongly mediated by

the environmental context and functional traits, rather than species richness alone.

By integrating observational and modelling approaches, this work furthers our un-

derstanding of BEF dynamics in marine ecosystems and provides new insights into

the ecological mechanisms that drive phytoplankton productivity under changing

environmental conditions.
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Chapter 1

Introduction

1.1 What is Biodiversity?

Biodiversity is one of the most extraordinary features of our planet. It is also a

multifaceted concept that, at its simplest, refers to the number of species in an area.

At its more complex, biodiversity is a term used to describe the variety and variation

of all life on Earth, encompassing genetic, species and ecosystem diversity. More for-

mally, biodiversity includes the richness of genetically different types within a popu-

lation, number of species in a given area as well as of ecosystem types, both managed

and non-managed and their components (UN, 1992). The first usage of the term

is independently attributed to three authors: Laura Tangley, in a report to the US

Congress on how to conserve biological diversity in developing countries (Tangley,

1985), Walter G. Rosen, in a national forum on biodiversity in 1986, and to, Robert

L. Peters in a comment to a global warming publication he previously co-authored

(Peterson et al., 1986; Sarkar, 2021). Still, the term was first used in a book title by

Thomas E. Lovejoy in 1988, and only formalized in 1992’s Earth Summit in Rio de

Janeiro, where the Convention on Biological Diversity (CBD) was proposed, signed

and put into force in 1993. DeLong Jr (1996) review of definitions of the term ‘bio-

diversity’ highlights the challenge in unifying seemingly different aspects of biodi-

versity itself (Díaz and Malhi, 2022). Most notably, DeLong Jr (1996) exemplifies the
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many ways one can define a term, here biodiversity, and in the process create bias

towards one’s own interests. Either based on derivation of the word, by classifica-

tion (i.e. attribute or measure), by listing characteristics (e.g. composition, structure,

function), by comparison (realized meaning and limitations by contrasting with sim-

ilar terms), by operation (e.g. how it works, what it does) and political interest. Thus,

leading to a trade-off between broader meaning of the term ‘biodiversity’ and its lack

of precision.

A formal unified definition of biodiversity has the power to convey the value and

complexity of this concept, ultimately facilitating understanding, communication

and management of natural resources. This, however, may come at the cost of com-

partmentalising biodiversity itself. The main goals of the CBD are related to con-

servation and sustainable use of biodiversity and its components, as well as fair and

equitable sharing of benefits from genetic resources exemplifying the far-reaching

potential of biodiversity and its value. However, the value of biodiversity lies beyond

CBD’s role in mediating interests, management, politics and environmentalism. Bio-

diversity is a result of 3.5 billion years of Earth’s evolutionary processes, being one

of the most remarkable features of the planet. According to Kellert (2009), it pro-

vides benefits to humanity that encompass direct economic use, scientific, aesthetic

and symbolic, humanistic, mental and physical well-being, moralistic and natural-

istic. Among these benefits, ecosystem functions (physicochemical and biological

processes that maintain an ecosystem) and services (linked to human well-being that

can have direct economic value) have a profound relationship with both humans and

biodiversity. For a unified understanding of what biodiversity is, we need to be able

to quantify, compare, and ultimately interpret its various dimensions.

Several metrics of biodiversity exist to capture the distribution, abundance, and

functional roles of species within their respective ecosystems. The simplest measure

is species richness, representing the number of species present in a given area. While

it is a cornerstone metric of diversity, richness may not capture all ecological com-

plexity of ecosystems (Hillebrand et al., 2018). Other metrics try to address this by
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including relative measures of species contributions to the community. Shannon’s

entropy is one of such metrics, where both species richness and their contribution

in terms of abundance or biomass are used, with higher values suggesting higher di-

versity (Shannon, 1948). Evenness, a key component of this diversity, describes how

equally individuals are distributed among species in a community. A high evenness

value indicates that species are similarly contributing to the community, whereas low

evenness reflects dominance by one or a few species. However, biodiversity extends

beyond species count and evenness. To fully understand ecosystem functioning, it is

essential to consider the functional traits of species. Functional traits are character-

istics of species that influence ecosystem properties, or how species respond to their

environment (Carmona et al., 2016). Species can be grouped according to these traits

to understand general ecological mechanisms or simplify complex ecological inter-

actions. Functional traits can be categorized into response and effect traits. Response

traits determine how species respond to environmental changes and disturbances,

while effect traits influence how species affect ecosystem properties (De Bello et al.,

2010). This distinction is critical when considering biodiversity-ecosystem function

(BEF) relationships, as the loss of particular functional traits may have greater con-

sequences for ecosystem processes than species loss alone.

1.1.1 Consequences of biodiversity loss

Fast-paced loss of biodiversity poses a threat to ecosystem function and conse-

quently, its ability to provide services. In the last 10,000 years, the increased rate of

loss of species observed, largely due to habitat destruction, has led to a consensus

that Earth is facing its sixth mass extinction (Chapin et al., 2000; Hooper et al., 2012;

Tilman, 2000). Approximately 0.25% of remaining species are being lost annually.

Such estimates are very conservative extrapolations, as the true number of species is

unknown and thus, whether or not ecosystem functions and services would be par-

ticularly threatened by this is cause for concern. Ecosystem function is defined as all

ecological processes that control energy, nutrient and organic matter fluxes in the en-
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vironment, such as primary production (Cardinale et al., 2012). But, what does bio-

diversity loss mean to energy flows and biogeochemical cycles that are maintained

by ecosystem functions and driven by diversity?

Real-world ecosystems are influenced by multiple interacting factors, such as en-

vironmental conditions, species interactions, and disturbances, which makes it chal-

lenging to isolate the effects of species richness and trait diversity. The loss of spe-

cific functional traits may have a more significant impact on productivity than the

loss of species alone. The question of whether species richness or trait diversity is

more important for ecosystem functioning remains somewhat unresolved outside

controlled experimental settings, but it is not forgotten, and many studies have at-

tempted to link trait diversity to ecosystem functioning in naturally assembled com-

munities (Cadotte, 2017; Chen et al., 2019; De Bello et al., 2010; Hillebrand et al.,

2022a; Lavorel et al., 2013; Le Bagousse-Pinguet et al., 2019; Maureaud et al., 2020;

Spaak and De Laender, 2021; Sterk et al., 2013).

1.2 Biodiversity and Ecosystem Function

1.2.1 History of Biodiversity and Ecosystem Function research

Going beyond species richness, biodiversity and ecosystem function (BEF) re-

search has a multifaceted view of diversity, focusing on understanding the mecha-

nisms through which ecosystem function can be affected, and ultimately, how it will

respond to a rapidly changing climate. Community ecology focuses mainly on ex-

plaining what drives and maintains species diversity and coexistence, whereas ecosys-

tem ecology focuses on functional processes maintaining ecosystem functioning, but

overlooks the role of ecological interactions among species in it (Loreau, 2010). To

understand how ecosystems work, we must account for the feedback between com-

munity and ecosystem processes, as ecosystem flows affect community structure and

composition, and in return, communities affect the flux of energy and nutrients.
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BEF research emerged from the need to close this gap and better understand the

relationship between diversity and ecosystem function, becoming a central issue in

ecology in the last couple of decades (Cardinale et al., 2009; Tilman et al., 2014; van

der Plas, 2019). Interest in the field gained renewed attention in the 90s, after the

Earth’s Summit in Rio de Janeiro, Brazil. BEF research then came to exist as a re-

sponse to concerns regarding the increasing species loss and an old paradigm in

ecology, the classic productivity-diversity view, where diversity is a consequence of

environmental variation and ecosystem function, not a modulator (Hillebrand and

Matthiessen, 2009; Loreau et al., 2001; van der Plas, 2019). This means that the BEF

view sees diversity not just as an outcome of environmental conditions, but also as

an active influence on how ecosystem processes function. By the mid-90s, several

scientific articles on the topic were available, and BEF research had already manip-

ulated species richness in experiments in the lab and field, observing links between

ecosystem functions, such as biomass production and nutrient cycling, and biologi-

cal diversity (Cardinale et al., 2006).

Instead of solely focusing on dominant species, the BEF approach recognizes that

the combined influence of various species, with their unique traits and interactions,

can collectively affect ecosystem functions. In 1994, Tilman and Downing (1994) put

forth their seminal paper presenting evidence supporting this idea of a combined

influence on ecosystem functioning. This paper was based on >200 grassland plots

that differed in diversity and composition due to different rates of nitrogen addition

and other disturbances. The authors saw that primary productivity of plots contain-

ing more species was more stable and resistant to drought. Naeem et al. (1994) also

showed that a more diverse food web had greater primary productivity. Those ex-

periments were designed under a scenario of random loss and gain of species, which

allowed them to reach conclusions regarding the effects of species numbers, and to

some extent identity, on community-level productivity. However, species loss and/or

gains are rarely random in nature and the causality of BEF relations is complex and

difficult to determine, with many hypothesised drivers (e.g. abiotic factors, species
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composition and diversity).

Historically, the BEF field is very experimental. Hundreds of experiments over the

last decades have shown evidence linking species diversity with ecosystem function-

ing across several different taxa and habitat types (Hooper et al., 2005; Loreau et al.,

2001; Tilman, 2001; Tilman et al., 2014). There is a general consensus that increas-

ing diversity has a linear positive effect on ecosystem function, based on evidence

derived from two main experiments run in the 90s that focused on grasslands. One

was the Biodiversity and Ecological Processes in Terrestrial Herbaceous Ecosystems

(BIODEPTH) (Hector et al., 1999) that ran across eight countries in Europe and the

Cedar Creek Ecosystem Science Reserve experiment in Minnesota, USA (Tilman et

al., 1997a). BIODEPTH was a large-scale study conducted across different geograph-

ical, climatic and soil conditions with varying levels of species richness (Hector et

al., 1999). Hector et al. (1999) provided robust evidence of the positive effect of in-

creased diversity on ecosystem functioning, through means of niche differentiation

and facilitation that lead to increased efficiency of nutrient utilisation. Cedar Creek’s

strengths, on the other hand, lies on its long-term approach.

Both experiments reached similar conclusions regarding productivity, nutrient

cycling and stability. A reported log-linear increase of productivity with increasing

diversity across different sites that became stronger with time, as well as less variabil-

ity of function across years. The results of these experiments added to the discussion

around methodological concerns, interpretation of results, and the broader implica-

tions for ecological theory and conservation policy in the real-world. Criticisms were

particularly focused on random species addition and/or removal and other processes

that alter community assembly, that may lead to unrealistic communities. Particu-

larly, a ‘sampling effect’, where the observed increase of productivity of the commu-

nity is simply due to the increased probability of a highly-productive species to be

present with increasing species richness and not an effect of diversity per se (Hus-

ton, 1997). These experiments were designed to isolate the effects of species richness

from other factors such as climate, nutrient availability and presence of certain func-

6



Research Context

tional types. Yet, these factors can also alter ecosystem function (Jochum et al., 2020).

As such, the relevance of these conclusions are questioned when thinking about real-

world ecosystems (Huston, 1997; Wardle, 2016). Despite not fully capturing the com-

plexity of natural environments, researchers argue that these experiments still pro-

vide valuable insights into the mechanisms driving the relationship between biodi-

versity and productivity whilst still acknowledging the importance of environmen-

tal control (Duffy et al., 2017; Loreau, 2010; Loreau and Hector, 2001; Tilman et al.,

1997a).

1.2.2 Selection and Complementarity effects

As Loreau (2010) shrewdly remarked, empirical and theoretical research are usu-

ally disconnected in Ecology, and BEF experiments outpaced theory, with no theo-

retical framework to work upon. But soon theory caught up with empirical research,

and two main classes of mechanisms were proposed to clarify the effects of biodi-

versity on productivity. This new approach termed the additive partitioning of bio-

diversity effects and, analogous to the Price equation in evolutionary genetics, sep-

arates the effects of diversity into two: i) complementarity and ii) selection effects,

which then allowed researchers to assess the contribution of these mechanisms in

previously run experiments (Loreau and Hector, 2001). Price’s equation describes

how changes of community properties occur in a population under selective pres-

sure from one generation to another (Price, 1970). Loreau and Hector (2001) adapted

this framework to separate and quantify diversity effects on productivity via selec-

tion and complementarity. This approach made clear that diversity affects ecosystem

function by means of species’ individual traits and interactions related to the func-

tion being observed. In other words, if the addition of new species does not increase

trait diversity, the effects of increasing species richness might not be important. In

addition, the partitioning helped demonstrate that the ‘sampling effect’ is just an ex-

treme case of the selection effect, which is in turn an analogue of the evolutionary

process of selection, and not a mere statistical artifact. Finally, many subsequent
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studies have built upon these ideas and have demonstrated that the results observed

in experimental conditions are indeed relevant for real-world environments (Duffy

et al., 2017).

After much debate, a general consensus was reached, at least for terrestrial ecol-

ogy, from both theory and experiments that form the foundation of the BEF field of

research (Cardinale et al., 2012). First, biodiversity loss can reduce resource use effi-

ciency and biomass production in communities. This appears to be consistent and

although the mechanisms involved are not fully resolved, the loss of species has an

effect on ecosystem functioning across taxa, trophic levels and habitats (Cardinale

et al., 2006; Chapin et al., 1997; Tilman et al., 2014). Secondly, biodiversity increases

stability of functions with time - here diversity allows for more resilient communi-

ties, with a larger range of traits and consequently, resource capture strategies and

biomass production under disturbances (Loreau et al., 2001; Naeem et al., 1994).

This interacts with the fact that effects of biodiversity on ecosystem function are non-

linear, saturate with time and changes accelerate with increasing diversity loss; with a

more resilient, therefore, stable community being more capable of buffering any neg-

ative compound effects of species loss. Diverse communities produce more because

they have key species with larger influence on productivity (i.e. selection effects)

and the differences in traits among these organisms increase resource use efficiency

(i.e. complementarity effects). In this thesis, the role of species richness per se in

driving productivity is questioned. However, it has been made clear that both the

identity and the diversity of organisms jointly control the functioning of ecosystems

(up to 50% of the net biodiversity effect) (Cardinale et al., 2011). Loss of diversity

across trophic levels may have an even stronger effect on function than within levels.

Food web interactions are key mediators in ecosystem functioning and loss of higher

consumers can cascade through the web (Duffy et al., 2017). Finally, loss of func-

tional traits in a community can have a much larger impact on ecosystem function,

with magnitude of function change being highly dependent on which traits are lost

(Hooper et al., 2005). These effects are variable, ranging from reduction of efficiency
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of the ecosystem to increased productivity and stability, highlighting the complex

feedback between community and ecosystem.

Complementarity effects generally have a positive effect on ecosystem function,

that arises from and helps maintain diversity and can be predicted by species’ traits.

Conversely, selection helps to reduce diversity, at least in static environments. Selec-

tion effects are more variable too (positive and negative) and more dependent on fo-

cal systems, organisms, spatial and temporal scales and spatial heterogeneity. For ex-

ample, harvesting, as opposed to random losses, may drive key species to extinction.

As such, the performance of species and the order of species loss can be highly vari-

able and have strong effects on ecosystem function. The ‘sampling effect’ can then be

broken down into two independent parts. A probabilistic sampling, which increases

the likelihood of including diverse traits, and a deterministic selection part, where

the most productive species is favoured by competition and dominates to the point

of excluding its competitors (Loreau and Hector, 2001). These effects then should

not be disregarded as an artefact. Instead, they represent biologically significant

processes that parallel how natural selection operates in evolution. The selection of

competitive species may be particularly important on fluctuating environments for

long-term composition and productivity.

By this partition and interpretation, complete dominance of a single species (i.e

monoculture) is not required for positive selection effects to be observed. This more

flexible interpretation reconciles both complementarity and selection effects and it

shows that the presence of a few key species can disproportionately affect ecosystem

functioning, without complete exclusion of species. Thus, both (i) and (ii) effects are

not mutually exclusive and can work synchronously, with diversity being responsible

for creating a range of traits that these effects can act upon (Cadotte, 2017; Loreau,

1996, 2010; Loreau et al., 2001).
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1.2.3 Phytoplankton diversity and its role on ecosystem function

Phytoplankton are an incredibly diverse group of unicellular organisms, taxo-

nomically and phylogenetically, with around 4,300 species described and likely many

more still to be discovered (Falkowski et al., 2003; Righetti et al., 2020). Account-

ing for about half of global photosynthetic activity and at least half of global oxygen

production, phytoplankton have an important role in aquatic environments, despite

contributing to only 1% of the global photosynthetic biomass (Falkowski, 2012; Field

et al., 1998). They are a key link between the surface ocean and higher trophic levels,

helping sequester carbon dioxide as well as feeding a huge portion of the food webs,

due to their fast turnover rates (days as opposed to decades like trees) and distribu-

tion over a large surface area (the oceans). As such, they are paramount in main-

taining aquatic food webs and in modulating global biogeochemical cycles and cli-

mate, surpassing the contribution of all terrestrial plants combined (Behrenfeld et al.,

2001; Falkowski, 2012). Temperature, light, nutrient and CO2 all affect phytoplankton

physiology and stoichiometry and therefore, ability to grow and maintain ecosystem

function and services (Moreno et al., 2018). With that, phytoplankton have an impor-

tant role on Earth’s biological pump as well, while also contributing to the microbial

loop via remineralisation (Azam and Malfatti, 2007).

Although oceans cover over 70% of the Earth’s surface, the links between phy-

toplankton diversity, environmental parameters, and productivity pose a challenge

on BEF studies (Duffy et al., 2017; Otero et al., 2020; Ptacnik et al., 2008; van der

Plas, 2019). For instance, pelagic ecosystems do not abide to the same geographi-

cal constraints as terrestrial systems, being an unstructured fluid environment. This

open and highly-mixed environment imposes interesting limitations on the structur-

ing of planktonic communities, which have led to ‘Paradox of the Plankton’ problem

(Hutchinson, 1961). Hutchinson’s paradox relates to the controversial observations

of high diversity of plankton in nature, in contrast to the expectations of the compet-

itive exclusion principle.
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First described by Volterra (1928) but since then explored, the principle states that

n species cannot coexist under a regime with fewer than n resources and/or niches,

at least in static environments (Armstrong and McGehee, 1980; Hardin, 1960). As

such, under the homogenized nutrient conditions found in the oceans, diversity of

phytoplankton should be low, as one species would out-compete all others and be-

come dominant. This clash between theoretical expectation and in situ observations

gave rise to numerous attempts to understand what mechanisms allow for the co-

existence of species. Finding ‘solutions’ to the paradox became particularly impor-

tant for studies that model phytoplankton diversity, where competitive exclusion is a

common behaviour (Armstrong and McGehee, 1980; Record et al., 2014).

Several mechanisms have been put forward to explain this paradox, relating to

trophic, temporal and spatial differences that can be classified as either stabilizing,

i.e. processes that increase negative within-species interactions relative to across-

species interactions; or equalizing, i.e. processes that reduce fitness differences (Ches-

son, 2000; Wilson, 2011). Sampling techniques used also underestimate microbial

diversity in the oceans (Cermeño et al., 2013). The relative lack of barriers leads to

greater resource transport and homogenization rates, greater organisms’ dispersal

capabilities, fast turnover rates, and higher response rates to large-scale environmen-

tal variation and stronger competition among species. So, high diversity of phyto-

plankton communities coupled with sampling biases hinders accurate BEF assess-

ments (Chao et al., 2014).

Most literature focuses on terrestrial plants and the Global North. As such, stud-

ies of BEF in natural aquatic communities are still scarce, making general conclu-

sions difficult (Hooper et al., 2005; van der Plas, 2019). In both freshwater and ma-

rine environments, phytoplankton diversity has been linked to increased ecosys-

tem productivity and stability (Cardinale et al., 2011; Gamfeldt et al., 2015; White

et al., 2020). Unlike terrestrial systems, in which both selection and complementar-

ity equally drive diversity effects, mechanisms described driving this relationship in

aquatic environments often involve mostly niche complementarity, where different
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species utilise resources in slightly different ways (Cardinale et al., 2011; Loreau et

al., 2001). Aquatic environments in general are less structured, with quick popula-

tion turnover rates and strong vertical gradients of abiotic factors (e.g. temperature,

light, salinity, nutrient), vast spatial coverage and fluid nature (e.g. currents, mixing

processes) and large temporal variability of disturbances. Furthermore, marine com-

munities are more sensitive to changes in nutrient input and to its environment, with

greater connectivity between populations as opposed to terrestrial systems with their

2D-structure and more distinct boundaries (Carr et al., 2003).

Marine ecosystems are also more functionally, phylogenetically and taxonomi-

cally diverse than land habitats, with pelagic primary producers spanning several

kingdoms and widespread across all oceans (Carr et al., 2003). This leads to in-

creased redundancy of traits and consequently, to an increased buffering capacity

against species loss (i.e. higher resilience, Gamfeldt et al. (2015)). Functional traits

are usually overlooked when addressing this question and it may be an important as-

pect of diversity to help us elucidate the trade-offs involved in the BEF relationship

in the oceans (Cadotte, 2017; Edwards et al., 2013). Adaptive capacity of a phyto-

plankton community is increased under frequent and intense disturbances at the

cost of higher productivity in the long-term where conditions may be more stable.

That way, environmental conditions will select functional types (i.e. increased size

diversity) that more likely will endure rapidly changing conditions in the short-run,

but will grow slowly when compared to less diverse communities in periods of in-

frequent disturbance (Smith et al., 2016). The effect of diversity on productivity un-

der environmental disturbance across larger temporal and spatial scales, increased

range and level of diversity (e.g. functional, genetic, phylogenetic) and also its effect

on ecosystem multi-functionality remains to be more deeply explored. Levels of op-

timal diversity for maximizing productivity will be determined by the frequency and

intensity of environmental disturbance. Temporal and spatial scales by themselves

do not govern diversity effects, but rather environmental variability co-varying with

space and time. Which can lead to erroneous conclusions based on spurious corre-
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lations (Cardinale et al., 2011; Cardinale et al., 2006; Gamfeldt et al., 2015).

1.2.4 Functional diversity as a way forward

Trait-based approaches provide valuable tools for linking diversity to ecosystem

function, especially through mechanisms such as niche complementarity and func-

tional redundancy (i.e., multiple species with similar traits) (De Bello et al., 2010;

Hillebrand et al., 2022a; Vallina et al., 2017). Functional diversity can be broken down

into three main components:functional richness, functional evenness, and functional

divergence, which can be assessed at various scales (Mason et al., 2005). However,

defining and quantifying functional groups and diversity within a community can

be challenging due to arbitrary decisions about groupings and the dependence on

the specific ecosystem function under consideration (Hooper et al., 2005; Mlambo,

2014). Most BEF studies focus on effect traits, with response traits providing insights

into potential changes in species distributions. To fully understand how ecosystems

will respond to rapid climate change, it is essential to integrate both concepts.

Despite its potential, using functional traits are not always straightforward and

requires careful consideration of context and measurement. How loss of diversity

will affect ecosystem function and services might be scale-dependent (both spatial

and temporal), but might also depend on what facet of biodiversity research is fo-

cused on. A key challenge is disentangling the relative roles of functional diversity

and environmental drivers in shaping these relationships, as this is essential for mak-

ing robust predictions about ecosystem health and function.

Cell size is considered to be a ‘master’-trait, being crucial for several ecophys-

iological processes such as metabolism and sinking rates (Brown et al., 2004; Hille-

brand et al., 2022a). Size of cells can also potentially mediate trade-offs between traits

that affect competitive abilities for resource acquisition, growth rates and even grazer

resistance, and ultimately, organism’s fitness (i.e. its reproductive success) (Belgrano

et al., 2002; Brose et al., 2006; Enquist et al., 1998). The role of phytoplankton on the

ecosystems is directly related to their community composition, due to many species-
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specific strategies for nutrient acquisition, carbon sequestration, defence and even

edibility to potential predators (Capone and Carpenter, 1982; Smayda, 1997; Smetacek,

1999; Sterner and Hessen, 1994). Further, they are highly abundant, with fast turnover

rates with sizes ranging from 1µ up to several millimetres, making phytoplankton a

great tool to study fundamental ecological questions.

Understanding how functional diversity, particularly size-structured diversity, in-

fluences phytoplankton productivity is critical for predicting ecosystem responses to

environmental change. Moving forward, a more mechanistic understanding of how

trait-based trade-offs influence biodiversity–ecosystem function relationships will be

key to improving models of marine primary production and biogeochemical cycles.

1.2.5 Modelling vs empirical approaches

One of the major criticisms towards experimental studies in the BEF field con-

cerns the validity of their observations when extrapolating results to non-controlled

natural settings (Balvanera et al., 2006). When dealing with phytoplankton, very

few studies have directly manipulated species richness and its effect on productivity.

While both terrestrial and marine ecosystems exhibit important BEF relationships,

the marine environment imposes unique challenges.

Most empirical approaches focused on terrestrial habitats, where modelling ap-

proaches cannot fully capture their complexities (Cardinale et al., 2012; Isbell et al.,

2018; Jochum et al., 2020; Tilman et al., 2014). Models allow us to simplify systems

and test theories that can then be extracted into mechanisms that eventually can

be used on large-scale predictions. Similar to experimental studies, models often

predict that higher diversity is associated with higher productivity, albeit from differ-

ent approaches when compared to experiments (Cardinale et al., 2004; Tilman et al.,

1997b). Models often introduce diversity by means of manipulating the temperature-

, nutrient and/or light-axis; and how species’ functional diversity within those axis

affects productivity (Chen et al., 2019; Goebel et al., 2014; Vallina et al., 2017; Vallina

et al., 2014). Due to tractability of results, modelling studies tend to be less com-
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plex than empirical ones. This is a powerful advantage, where we can bypass several

shortcomings usually found in empirical studies (e.g. duration of experiments, high

diversity in the oceans). On the other hand, models often require strict assumptions

about species interactions and environmental responses that may not fully reflect

real-world complexities.

Numerical models can give us the opportunity to isolate and quantify specific

levels of diversity effects on ecosystem productivity with a high level of mechanis-

tic understanding, while also being able to control environmental heterogeneity and

disturbance to a certain level (Chen et al., 2019; Vallina et al., 2014; Vallina et al.,

2023). Caution is warranted when scaling up conclusions, as some studies report

contrasting findings hinting at how variable this relationship can be depending on

scale, environmental context and species interactions (Barry et al., 2021; Tao et al.,

2024). Still, some consensus was reached based on both model and empirical re-

sults, such as higher species richness leading to overall higher functionality, namely

a strong positive effect on biomass, nutrient cycling and resource use efficiency in

freshwater and marine systems (Otero et al., 2020; Ptacnik et al., 2008; Tilman, 2001),

as well as increased ecosystem stability, resistance and decreased variability in pro-

ductivity over time in the face of environmental changes (Isbell et al., 2011; Isbell

et al., 2018; Vallina et al., 2017). Both approaches can be seen as complementary to

each other and their integration can improve our understanding of how phytoplank-

ton diversity affects ecosystems.

1.3 Thesis Aims

This study is focused on developing a causal understanding of BEF relationships

in natural and simulated phytoplankton communities. I want to understand how

their role in the oceans will be affected, by means of determining what drives phy-

toplankton productivity across different spatial and temporal scales, diversity levels

and environmental changes. Specifically, by using available data of naturally assem-
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bled phytoplankton communities and statistical and mechanistic models, I want to:

1. investigate the mechanisms (i.e. complementarity vs selection effects) driving

the relationship between biodiversity and ecosystem function, going beyond

species richness and exploring how phytoplankton diversity affects ecosystem

functions such as biomass accumulation, Chl a and resource use efficiency

2. understand ecosystem function responses to diversity and environmental changes

by analysing long-term in situ data from the San Francisco Bay estuary region,

focusing on the role of environmental drivers (e.g. light, nutrient) and diversity

(i.e. size structure) shape phytoplankton community-level functioning

3. fill key gaps in our understanding of BEF in marine ecosystems, providing in-

sight particularly into which aspect of diversity (e.g. richness, size diversity,

evenness, trait) influences ecosystem function in light of environmental con-

trol

1.4 Thesis Structure

The thesis is divided into in five chapters, each addressing different aspects of

the relationship between biodiversity and ecosystem functioning (BEF) in marine

ecosystems, with a particular focus on phytoplankton communities. Each chapter

follows a ‘journal article’ style, with an introduction specific to its objectives, method-

ology, results, main discussion and conclusions. Chapter 1 refers to the introduction

to the field and its main findings to date, what kind of methods were used and its

main drawbacks, the representation of aquatic ecosystems and the role of empirical

vs modelling approaches. Chapter 2 is a description of the data used for the entire

thesis, its main features, advantages and disadvantages, as well as a description of

the main methods used to transform and analyse the dataset. In Chapter 3 I focus on

the relationship between diversity and productivity in a naturally assembled commu-

nity and its drivers, based on bivariate and multivariate analyses, in order to under-
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stand the specific roles of diversity and the environment in driving community-level

productivity. Chapter 4 summarises the results of nutrient-phytoplankton (NP) and

nutrient-phytoplankton-zooplankton (NPZ) models, investigating the effect of diver-

sity on productivity under varying nutrient and diversity levels, driving mechanisms

and effects across trophic levels. Chapter 5 comprises the results of a structural equa-

tion model (SEM) that was parametrised on both in situ and simulation data to assess

both direct and indirect effects of the environment, diversity and different scales on

productivity. Finally, I end the thesis with the main conclusions and outlook of the

field.
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Data description

2.1 Rationale

The aim of this chapter is to describe all relevant information from the data set

used in this thesis, its sources and how to access it, as well as all data processing

performed, and potential limitations. I present results of data distribution across

time and spatial scales, focusing on general trends. In addition, the San Francisco Bay

(SFB) region long-term monitoring has resulted in a high quality data set with a large

spatial and time coverage, detailed information regarding phytoplankton taxonomy,

as well as nutrient and abiotic parameters. This makes the SFB system a great setting

to investigate the effects of environmental control on ecosystem productivity.

2.2 Data collection and source

The Water Quality of San Francisco Bay project is a long-term monitoring study of

the San Francisco Bay delta-system run by the U.S. Geological Survey (USGS), with

the primary goal of water quality management. All detailed information can be found

in Schraga and Cloern (2017) and on the project’s website (https://sfbay.wr.usgs.gov/

water-quality-database/).

Water-quality measurements of near-surface sampling stations along a 150 km
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transect were taken from 1969 to present day across the four subregions: the South,

Central, North and Suisin bays (Figure 2.1) (Cloern et al., 2017). The database con-

sists environmental parameters, such as chlorophyll a, suspended particulate mat-

ter (SPM), dissolved oxygen, and dissolved inorganic nutrients (nitrite, nitrate + ni-

trite, ammonium, phosphate and silicate) measured from discrete water samples

and shipboard sensor-derived parameters: depth, calculated chlorophyll a, dissolved

oxygen, oxygen saturation, calculated SPM, extinction coefficient, salinity, tempera-

ture, and sigma-t. Furthermore, phytoplankton composition and abundance (cells

mL−1) were obtained via analyses of samples collected between 1992-2021 using light

microscopy. Cell volume and biovolume of each phytoplankton taxa were subse-

quently calculated. All measurements are regularly calibrated. Details on meth-

ods and data validation are available online (Cloern et al., 2017; Schraga and Clo-

ern, 2017) and data sets can be downloaded via the website for phytoplankton, here

(https://www.sciencebase.gov/catalog/item/5908f489e4

b0 fc4e448ffff1) and for water quality measurements, here (https://www.sciencebase

.gov/catalog/item/5966abe6e4b0d1f9f05cf551) (Schraga and Cloern, 2017). The spe-

cific data used in this thesis, can also be found in Appendix A.

2.3 San Francisco Bay

The San Francisco Bay (SFB) is located in northern California (USA) and the area

has been an object of investigation by the US Geological Survey (USGS) for over five

decades (1969-present). The bay area comprises two geographically and hydrologi-

cally distinct estuaries within a salinity gradient: the North and South Bays (Conomos

et al., 1985). The North Bay includes the Suisun and San Pablo Bays and receives pri-

marily freshwater input, being the estuary of the Sacramento and San Joaquin rivers.

South Bay is a shallow marine lagoon subject to tidal processes situated in the ur-

ban area. These estuaries are connected by the Central Bay, under the influence of

the Pacific Ocean’s coast tidal processes and wind-driven coastal upwelling (Cloern,
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Figure 2.1: Map of study area. San Francisco Bay stations sampled by the USGS used
in this study located on the Pacific coast. North (Stations 657, 6, 13), Central (18, 22)
and South bays (27, 32, 34, 36) were used in the analyses.

2018; Cloern et al., 2017; Cloern et al., 2020; Raimonet and Cloern, 2016). Through

its connection between land and ocean, estuarine ecosystems such as the SFB area,

are under the effect of river discharge, urban and agricultural run-off, nutrient and

environmental variability (Cloern et al., 2017; Raimonet and Cloern, 2016).

2.3.1 Environmental and phytoplankton data

Samples (n = 677) were defined based on unique sampling location, date and

depth. Prior to that, I cross-checked phytoplankton taxonomic data with the Algae-

Base and World Register of Marine Species (WoRMS) databases, aiming to retrieve
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all missing information regarding Phylum, Class, Order, Family, Genus and Species

as well as update any non-accepted taxonomic details. Any samples with missing

phytoplankton information were removed from the dataset.

Mean temperature, salinity, dissolved inorganic nutrient (DIN), phosphate, sili-

cate and chlorophyll a (Chl a) values were calculated for each sample. Due to missing

light availability information, I used imputation to predict values of interest by using

Chl a, latitute and longitude coupled with available extinction coefficient (Extcoe f f )

and surface photosynthetic active radiation (PAR) values to estimate PAR for each

sample, assuming a mixed layer depth (MLD) of 2 m [Equation 2.1]. Size of each

species was estimated as the log-transformed equivalent spherical diameter (ESD,

µm) using cell volume [Eq. 2.2]. Cell volume (V, µm3 cell−1) was transformed into cell

carbon content (pg C cell−1 ), following Menden-Deuer and Lessard (2000) [Eq. 2.3],

with different scaling constants for diatoms and other phytoplankton types. Biomass

was then estimated as the amount of carbon per sample (µg mL−1) based on species’

relative abundances. Resource use efficiency (RUE) was calculated as the natural

logarithm of the ratio of phytoplankton carbon biomass to nutrient concentration

(DIN). Environmental variables used can be found in Table 2.1.

PAR = PARs

E xtcoe f f ×MLD
(1−eE xtcoe f f ×MLD ) (2.1)

ESD = (6
V

π
)1/3 (2.2)

Ccel l = aV b (2.3)

2.3.2 Size and Taxonomic Diversity

Community weighted mean size (CWMsi ze ) was estimated in each sample using

natural log-transformed ESD (lnESD) values and the proportion of phytoplankton

biomass (p i ) of n number of taxa, following De Bello et al. (2021) [Eq. 2.4]. Size
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diversity (σ2) was then determined as the biomass-weighted variance of individual

phytoplankton sizes around the CWMsi ze [Eq. 2.5].

CW Msi ze =
n∑

i=1
lnESDi ×p i (2.4)

σ2 =
n∑

i=1
pi × (lnESDi −CW Msi ze )2 (2.5)

Species richness (R) and the Shannon’s entropy [Eq.2.6] were used as estimates

of taxonomic diversity. Richness is the easiest measure to obtain, consisting of the

number of species present in the community. However, in practice, species’ rich-

ness may be subject to sampling bias with richness increasing with sampling effort.

Here, 1D , as the effective number of species, accounts not only for presence, but also

for commonness and rarity of species in a community, where R is the total number

of species and pi is the proportion of individuals’ abundance or biomass that con-

tributes to the entire sample (Jost, 2006). 1D can be estimated as the exponential of

Shannon’s entropy. Finally, evenness was estimated as Hill’s evenness [Eq. 2.7]. Val-

ues range between 0 and 1, for low and high evenness respectively. Furthermore, a

total of 43 samples with R = 1 were removed from analyses. Diversity metrics used

can be found in Table 2.1.

H =−
R∑

i=1
pi × lnpi (2.6)

Evenness =
1D

R
(2.7)
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Figure 2.2: Number of samples per season and region over time. Samples are more
frequent during spring (n = 195), followed by summer (n = 173), winter (n = 161) and
fall (n = 134). South bay is more represented (n = 285), then Central (n = 211) and
North bays (n = 167).

2.4 Results

2.4.1 Environmental and diversity data

Samples were more frequent at the South Bay (n = 285), followed by the Central (n

= 211) and North Bays (n = 167). Regarding seasonal representation, most sampling

in the dataset relates to spring (n = 195), summer (n = 173), winter (n = 161) and fall

(n = 134) (Fig. 2.2).

Biomass, chlorophyll a (Chl a) and resource use efficiency (RUE) distributions

are right-skewed, indicating that while most stations exhibit low to moderate values,

there are occasional high concentration events usually in springtime (Figs. 2.3-2.4).

Further, biomass and DIN are decreasing over time, whereas RUE seems to be in-
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Chl a

Figure 2.3: Histograms with data distribution of productivity proxies (biomass, Chl
a, RUE) and environmental variables. Biomass (ln µg mL−1), Chl a (ln mgL−1), DIN
(µM), phosphate (µM) and RUE are log-transformed. All other variables are in raw
units: silicate (µM), PAR (µmol m−2s−1) and temperature (◦C).

creasing. PAR distribution suggests a low light availability most of the time (Fig. 2.3),

with variability also associated with seasonality (Fig. 2.4).

Nutrient measurements do not reflect actual fluxes, and therefore the phytoplank-

ton community uptake. Phosphate showed a bimodal distribution likely also associ-

ated with seasonality effects and spatial scale (i.e. North vs South bay regions) (Figs.

2.3,2.4). DIN, on the other hand, is subject to a stronger seasonal and inter-annual

variability, with a sharp decrease between 2015 and 2016, but varying less spatially

(Figs. 2.3, 2.4, 2.7). Silicate levels were considerably high in the dataset, as such, I

did not include it in further analyses. However, this nutrient showed an increase with

time, but no clear seasonal and/or spatial patterns, likely due to urban run-off lead-

ing to eutrophic conditions and low phytoplankton uptake (Figs. 2.4, 2.7, 2.3).
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Chl aChl a

Figure 2.4: Seasonal variation of productivity proxies and environment-related
variables. Seasonal trends were smoothed using a generalized additive model (GAM)
with cyclic splines, illustrating the variability for each variable. Note that y-axis are
different. Biomass (ln µg mL−1), Chl a (ln mgL−1), DIN (µM), phosphate (µM) and
RUE are log-transformed. All other variables are in raw units: silicate (µM), PAR
(µmol m−2s−1) and temperature (◦C).

Temperature and salinity reflect the observed gradients in the San Francisco Bay.

Salinity is strongly influenced by the spatial distribution of the stations (i.e. high

freshwater input in the North Bay vs saline intrusions in the South region) (Fig. 2.7)

as well as by levels of precipitation and river discharge throughout the year (Fig. 2.4);

(Cloern et al., 1985; Cloern et al., 2017). Temperature is also under a strong seasonal

influence (Fig. 2.4) with warmer temperatures during the dry season (summer and

fall), with inter-annual but not strong spatial variations (Fig. 2.7).

Diversity-related metrics were also transformed, aiming for a normal distribution

approximation. Evenness was slightly left-skewed, suggesting that most values were
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Table 2.1: Diversity metrics and environmental variables used and their units.
Variable Unit

Temperature ◦C
Salinity -

PAR µmol m−2s−1

CWMsi ze lnµm3

Size Diversity (σ2) (lnµm3)2

exp Shannon (1D) -
Richness -

Genus Richness -
Hill’s evenness -

Phosphate µM
Silicate µM

DIN µM
Biomass ln µg mL−1

Chlorophyll a ln mgL−1

intermediate to high, and therefore more even communities were present (Fig. 2.5).

Diversity indices were all spatially, seasonally and inter-annually affected at varying

degrees. Apart from evenness and size diversity, all other proxies display a long-term

decrease (Fig. 2.8, 2.6). Higher richness was observed at the northernmost stations,

decreasing towards the south (Fig. 2.8).

Some gaps can be seen across species and genus richness distributions (Fig. 2.5).

I believe this is likely due to predation, as a small bloom of Protoperidinium sp. was

observed in the data and the gap seen in the size distribution is reasonably within

their prey range. Low taxonomic resolution of samples may also have lead to their re-

moval from analyses, and thus, gaps in the size spectra. The seemingly weak seasonal

signal observed for exponential Shannon (1D) may reflect the species composition

and dominance, and therefore, evenness component of the community. Evenness

is strongly affected by the spatial component, with generally higher evenness south-

wards, and the seasonal component, with a decrease during spring. Size diversity

also decreases around springtime, suggesting that seasonal environmental changes

may create conditions that favour a few dominant species or size classes, leading to

lower overall size diversity and evenness. Thus, size structure seems to be an impor-
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CWMsize
1D

σ2

Figure 2.5: Histograms with data distribution of diversity indices. Diversity prox-
ies relate to size (CWMsi ze : community weighted mean size, σ2: size diversity) and
taxonomic identity (1D: exp Shannon, species and genus richness) of organisms. All
variables are in their raw units.

tant factor in shaping community evenness, instead of richness, alongside temporal

and spatial drivers. Community weighted mean size also peaks during spring and

late fall, with variability across stations (Fig. 2.8, 2.6) that could also reflect this shift

in size composition of the community.

2.4.2 Phytoplankton community structure and composition

In total, 583 species across 247 genera and 127 families were observed in the San

Francisco Bay (SFB) system between 2014 and 2020. Only ten species were found in

more than 50% of all samples, with Eucapsis microscopica being the most common

species (Table 2.3). Individual cell volumes ranged between 0.18 µm3cell−1 and 1.05

x 108µm3cell−1. Cell sizes ranged between 0.7 and 534 µm, with E. microscopica and
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Figure 2.6: Seasonal variation of diversity metrics. Seasonal trends of size-related
(CWMsi ze : community weighted mean size, σ2: size diversity) and taxonomic (1D:
exp Shannon, species and genus richness) diversity proxies were smoothed using a
generalized additive model (GAM) with cyclic splines. Note that y-axis are different.
All y-axis are log-transformed.

Coscinodiscus sp. being the smallest and largest cells, respectively.

Across all samples (n = 677), four phytoplankton groups contributed to 95% of

all biomass, with diatoms being the most important one (60%), followed by cryp-

tophytes (19%) and dinoflagellates (14%). Other groups such as green algae (2%),

cyanobacteria (1%), euglenophytes (1%), silicoflagellates (1%), chrysophytes (<1%),

raphidophytes (<1%), haptophytes (<1%) xanthophytes (<1%) and charophytes (<1%)

contributed to the remaining biomass (Table 2.2; Figs. 2.11, 2.10). Among diatoms,

despite their richness (Fig. 2.9), only three species contributed with more than five

percent to the group’s total biomass across all samples. They are Entomoneis sp.,

Ditylum brightwelli and Coscinodiscus sp. For cryptophytes only one species had
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Chl a

Figure 2.7: Productivity proxies and environment-related variables across stations
over time. Plot shows mean and standard deviation values of productivity proxies
and environmental variables across stations over time in the San Francisco Bay. Sta-
tions are sorted from the northernmost (657, 6, 13) to southernmost regions (27, 32,
34, 36) with stations 18 and 22 representing the transitional zone of Central Bay. Note
that y-axis labels differ. Biomass (ln µg mL−1), Chl a (ln mgL−1), DIN (µM), phos-
phate (µM) and RUE are log-transformed. All other variables are in raw units: silicate
(µM), PAR (µmol m−2s−1) and temperature (◦C).

a large contribution (Teleaulax sp.). As for dinoflagellates, only two species con-

tributed with more than five percent of biomass (Akashiwo sanguinea and Tripos lin-

eatus). Regarding abundance, cyanobacteria alone contributed with 98%, with each

remaining group contributing to less than 1% to total abundance, and with Eucapsis

microscopica being the largest contributor.

Unlike community weighted mean size (CWMsi ze ), the equivalent spherical di-

ameter (ESD) was not weighted according to the biomass contribution of each species,

and therefore is the average size of all species present in a sample. Overall, ESD dis-
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CWMsize
1D

σ2

Figure 2.8: Community weighted mean size (CWMsi ze ) and diversity indices across
stations over time. Plot shows the mean and standard deviation values of size and
taxonomic diversity-related variables across years in the San Francisco Bay. Stations
are sorted from the northernmost (657, 6, 13) to southernmost regions (27, 32, 34, 36)
with stations 18 and 22 representing the transitional zone of Central Bay. Note that
y-axis labels differ and they are all in raw units. 1D: exponential Shannon, σ2: size
diversity.

tribution is right-skewed, due to the presence of larger-sized cells. Small-sized or-

ganisms were also very abundant (i.e. Cyanobacteria, Table 2.3, Figs. 2.12, 2.11). On

average, silico-flagellates had one of the largest mean cell sizes observed in the San

Francisco Bay area, even though they were not present in most of the North Bay re-

gion, with cell sizes generally decreasing towards the south (Fig. 2.12, 2.13). Largest

variability can be seen for dinoflagellates, with sizes increasing towards the Central

Bay followed by a decrease at the South Bay region. This general pattern of increas-

ing mean cell size towards the Central Bay followed by a decrease southwards can be

observed for green algae as well, and to a lesser extent to diatoms. Diatoms’ commu-
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Figure 2.9: Richness of each phytoplankton group. Number of species for each phy-
toplankton taxa across all samples in the San Francisco Bay.

nities had large cells, but in general they were less variable. Euglenophytes also had a

community of mainly large cells, generally decreasing southwards, followed by an in-

crease in the South region. I also observe that most cells are relatively uniform in size

within Cyanobacteria, albeit the data seems to be left-skewed indicating the pres-

ence of many small cells when compared to the rest of the community intermediate

to larger sizes (i.e. Planktothrix sp, Table 2.3, Fig. 2.13). Cryptophytes also display a

consistent mean size, but they exhibit some variability of size ranges, being mostly

dominated by larger cells being reflected in their biomass contribution (Figs. 2.12,

2.13; Tables 2.3, 2.2). For chrysophytes and raphidophytes a lot of variability in sizes

can be seen, which may contribute to size diversity across samples, even though their

abundance and biomass contributions were very low.

2.5 Limitations

Although the dataset covers multiple stations throughout the San Francisco Bay

(SFB), certain regions may be insufficiently represented, especially areas with com-

plex bathymetry or those further away from the main sampling points. Sampling fre-

32



Chapter 2

32 34 36

18 22 27

657 6 13

2014 2016 2018 2020 2014 2016 2018 2020 2014 2016 2018 2020

0

30

60

90

0

25

50

75

0

30

60

90

0

40

80

120

0

30

60

90

0

20

40

60

0

50

100

150

0

50

100

150

0

20

40

60

Year

R
ic
hn

es
s

Type
Chrysophyte

Cryptophyte

Cyanobacteria

Diatom

Dinoflagellates

Euglenophyte

Green algae

Silicoflagellate

Figure 2.10: Richness across years in each station. Area plot with the number of
species within each main phytoplankton group across years in each station. Stations
are sorted from the northernmost (657, 6, 13) to southernmost regions (27, 32, 34, 36)
with stations 18 and 22 representing the transitional zone of Central Bay. Note that
y-axis labels differ.

quency has varied over time. In some periods, data was missing or collected less fre-

quently (e.g., monthly or bi-monthly; Fig. 2.2), which may limit our ability to resolve

short-term events. Data prior to 1992 were removed from the analyses due to miss-

ing phytoplankton information and to the program’s sampling strategy focusing on

bloom conditions (<2014) and standard monitoring (>2014). Consequently, analyses

were performed on the data spanning across 2014-2020 only, reducing temporal and

spatial coverage. However, stations still span across several years and across all three

bays. While Chl a can be used as a proxy for phytoplankton biomass, the dataset does

not provide primary productivity (PP) rates or information on functional traits. For
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Figure 2.11: Relative abundance and biomass contribution across all samples. Phy-
toplankton groups contribution (%) to abundance and biomass across all samples
between 2014 and 2020.

Table 2.2: Main phytoplankton groups in the San Francisco Bay system. Relative
biomass (%) and abundance (%) contributions of observed groups across all samples.

Type Biomass Abundance

% %
Diatom 60 1
Cryptophyte 19 1
Dinoflagellate 14 <1
Green algae 2 <1
Cyanobacteria 1 98
Euglenophyte 1 <0.01
Silicoflagellate 1 <0.01
Raphidophyte <0.1 <0.01
Chrysophyte <0.1 <0.01
Haptophyte <0.01 <0.01
Xanthophyte <0.01 <0.01
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Figure 2.12: Size distribution of phytoplankton taxa. Boxplots (A, lower panel) and
histogram (B) of average equivalent spherical diameter (ESD) in µm of phytoplank-
ton groups observed in the San Francisco Bay and in each station. Stations are sorted
from the northernmost (657, 6, 13) to southernmost regions (27, 32, 34, 36) with sta-
tions 18 and 22 representing the transitional zone of Central Bay. Note that y-axis are
not logged and labels differ. All y-axis are in raw units.

PP estimates, a simple relationship between phytoplankton growth rate and biomass

was assumed. Details can be found in Chapter 4. Size is a ‘master’-trait in ecology

and, as such, the functional description of the communities are all size-related (e.g.

community weighted mean size, size diversity). Finally, the dataset does not con-

tain information regarding zooplankton community, and as such, I could not analyse

predator-prey dynamics. Known mixotrophs and heterotrophic taxa were present in

the dataset. I removed these records as productivity proxies (biomass, Chl a and re-
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Figure 2.13: Histograms of average ESD distribution of phytoplankton taxa. Dis-
tribution of mean cell equivalent spherical diameter (ESD) in µm across samples of
each phytoplankton group found in the San Francisco Bay.

source use efficiency) were all based on autotrophs contribution and therefore, the

presence of heterotrophs and/or mixotrophs would bias these estimates. In Chapter

4, I simulated zooplankton communities based on a 10:1 size relationship to phyto-

plankton. Although this is a crude simplification, this allowed us to quantify diversity

effects of more than one trophic level and observe effects on the prey biomass ac-

cumulation. Another important limitation of this dataset comes from the fact that

the SFB is an eutrophic system, which could make it difficult to separate diversity ef-

fects from the environment and even to generalize results to more nutrient-limited

systems.

Despite its limitations, this dataset is a valuable resource for understanding the

dynamics of the San Francisco Bay estuarine region and to gain a general mechanistic
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understanding of the biodiversity-ecosystem function relationship in natural aquatic

communities. With its dynamic environmental settings, the dataset is very useful as

a tool to help understand the effects of phytoplankton diversity and environmen-

tal drivers on productivity. As such, I use this dataset throughout the thesis to: i)

perform statistical analyses focusing on understanding the biodiversity-ecosystem

function relationship under non-controlled conditions and its potential drivers; ii) to

inform a nutrient-phytoplankton (NP) and a nutrient-phytoplankton-zooplankton

(NPZ) model based on sizes observed in the community; and iii) as input in a struc-

tural equation model (SEM) focusing on causal drivers of productivity comparing

both natural and simulated data. The findings can be found in the following chap-

ters.

37



Chapter 2

Table 2.3: Most common taxa across all samples in the San Francisco Bay system.
Number of occurrences and relative presence (%), minimum and maximum sizes ob-
served per species (ESD; µm), relative biomass (%) and abundance (%) contribution
to all samples, ordered from highest number of occurrences to lowest.

Type Species No. of occurrences Presence ESDmi n ESDmax Biomass Abundance

Cyanobacteria Eucapsis microscopica 677 92 0.7 4.2 1 98
Diatom Thalassiosira spp. 676 92 6.6 334.6 15 <1
Cryptophyte Plagioselmis prolonga 635 87 4.6 42.2 4 1
Diatom Nitzschia spp. 609 83 5.3 190.1 1 <0.1
Cryptophyte Teleaulax sp. 556 76 8.7 76.7 8 <1
Diatom Paralia sulcata 518 71 7.8 95.2 2 <0.1
Dinoflagellate Heterocaspa rotundata 447 61 5.8 46.4 1 <0.1
Diatom Skeletonema sp. 396 54 4.2 87.1 1 <0.01
Diatom Cyclotella sp. 374 51 7.8 176.8 1 <0.1
Diatom Actinoptychus senarius sp. 371 51 9.6 206.1 1 <0.1
Diatom Navicula spp. 260 36 7.6 178.5 <1 <0.01
Cryptophyte Cryptomonas spp. 243 33 10.1 98.2 <1 <0.1
Cryptophyte Plagioselmis nannoplanctica 221 30 9.9 58.1 3 1
Green algae Pyramimonas spp. 218 30 6.1 58.8 <1 <0.01
Diatom Thalassionema sp. 180 25 8.8 87.9 <1 <0.1
Diatom Aulacoseira sp. 178 24 9.3 146.9 1 <0.01
Diatom Thalassiosira eccentrica 161 22 12.1 320.9 3 <0.01
Diatom Cocconeis sp. 158 22 15.2 85.1 <0.1 <0.01
Green algae Pseudoscourfieldia marina 156 21 4.5 27.8 <1 <0.1
Diatom Thalassiosira angulata 140 19 11.4 91.1 <1 <0.1
Dinoflagellates Heterocapsa sp. 132 18 7.3 82.6 <1 <0.01
Dinoflagellates Heterocaspa triquetra 131 18 17.6 102.1 1 <0.01
Diatom Achnanthidium minutissimum 128 18 5.3 34.3 <0.1 <0.01
Diatom Odontella aurita 116 16 25.1 181.6 <1 <0.01
Diatom Chaetoceros spp. 106 15 6.0 70.3 <1 <0.1
Cryptophyte Hemiselmis sp. 105 14 4.9 31.9 <1 <0.1
Diatom Eunotogramma dubium 102 14 8.8 50.5 <1 <0.1
Diatom Cocconeis placentula 99 14 13.8 68.9 <1 <0.01
Green algae Pyramimonas longicauda 96 13 8.2 62.6 <1 <0.01
Diatom Coscinodiscus sp. 93 13 17.3 534.2 6 <0.01
Raphidophyte Heterosigma akashiwo 88 12 12.6 77.3 <0.1 <0.01
Diatom Fragilaria brevistriata 86 12 9.7 47.6 <1 <0.01
Diatom Pseudo-nitzschia sp. 86 12 4.1 89.9 <0.1 <0.01
Diatom Thalassionema nitzschioides 85 12 7.4 91.1 <0.1 <0.01
Diatom Ditylum brightwellii sp. 84 11 46.5 328.6 6 <0.01
Diatom Entomoneis sp. 83 11 19.4 290.4 5 <0.01
Diatom Navicula sp. 83 11 15.3 214.0 <0.1 <0.01
Diatom Pleurosigma sp. 83 11 13.1 467.0 <1 <0.01
Diatom Amphora sp. 81 11 4.7 83.7 <0.1 <0.01
Diatom Diploneis sp. 80 11 14.4 141.2 <1 <0.01
Diatom Gyrosigma sp. 80 11 15.0 221.3 <1 <0.01
Dinoflagellates Karlodinium veneficum 79 11 9.6 61.9 <0.1 <0.01
Dinoflagellates Gymnodinium sp. 78 11 7.6 176.4 <1 <0.01
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Biodiversity-ecosystem function in

natural aquatic ecosystems

3.1 Diversity as a driver of productivity: a long-standing

discussion

The effect of ecosystem function on diversity, or productivity and diversity rela-

tionship (PDR), has long been debated. The debate came to be primarily as a way

to understand species diversity distribution and coexistence in a scenario of increas-

ing rates of species’ loss. Although there might be a scale-dependence between di-

versity and productivity (Chase and Leibold, 2002; Dodson et al., 2000), a ‘hump-

shaped’ pattern is argued to be the most commonly found pattern in both terrestrial

and aquatic ecosystems (Irigoien et al., 2004; Mittelbach et al., 2001; Vallina et al.,

2014). This ‘hump-shaped’ pattern is observed when diversity (usually species rich-

ness) peaks at intermediate levels of productivity. In this scenario, diversity is the

dependent variable and, as such, subject to environmental fluctuations and com-

munity dynamics. However, positive linear relationships between diversity and pro-

ductivity are equally plausible and have been reported (Bai et al., 2007; Mittelbach et

al., 2001), as well as no relationships (Adler et al., 2011). This classic PDR view repre-

39



Chapter 3

sents an old paradigm, where diversity is a consequence of environmental variation

and ecosystem function (Hillebrand and Matthiessen, 2009; van der Plas, 2019).

The 1992 Earth Summit in Rio de Janeiro (UN, 1992) renewed interest regarding

how changes in biodiversity and species loss interact to affect ecosystem function.

Soon after, the first related scientific papers started to appear (Hector et al., 1999;

Naeem et al., 1994; Tilman and Downing, 1994). This represented a completely new

way of approaching the matter, and now diversity is seen by many as a potential driv-

ing factor of function, not merely a consequence of it, leading to the emergence of the

biodiversity-ecosystem function (BEF) field around 25 years ago (Loreau et al., 2001;

Tilman and Downing, 1994).

In general terms, two main approaches were chosen to disentangle the relation-

ship between species diversity and ecosystem function. Initially, experiments with

manipulated diversity dominated. Usual responses observed were biomass produc-

tion, decomposition rates, carbon sequestration, trophic interactions and pollina-

tion (van der Plas, 2019 and references therein). Most biodiversity experiments have

been designed to determine the consequences of random gains or losses of species,

which has allowed these experiments to tease apart the effects of species addition

or removal, and maybe composition (Hector et al., 1999). However, species loss is

rarely random in nature. Determining the shape of this relationship helps identify

the mechanisms behind, and ultimately lead to causal drivers of ecosystem function.

Coupling experiments with theoretical frameworks, this topic of research has be-

come a central issue in modern ecology and environmental sciences ever since (Loreau,

2010). Even though several experiments have been conducted, for several taxa, habi-

tat and ecosystem functions, the majority were focused on grasslands and terres-

trial manipulated ecosystems, with a lot of variation in the response being observed

(Hooper et al., 2005; van der Plas, 2019). In 1994, Tilman and Downing (1994) sem-

inal article presented evidence that supported the biodiversity and ecosystem func-

tioning hypothesis. This paper was based on >200 grassland plots that differed in

diversity and composition due to different rates of nitrogen addition. Naeem et al.
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(1994) also showed that an experimentally assembled diverse food-web had greater

primary productivity rates. The role of species composition was already acknowl-

edged (Hooper and Vitousek, 1997), yet the effect of diversity per se was not. Notably,

these experiments were usually designed to test the effects of diversity on ecosystem

function independent of species identity and any other factor that may drive biodi-

versity changes.

In order to remove the effect of identity and environmental factors, experiments

(e.g. BIODEPTH and Jena in Europe; Hector et al., 1999, Cedar Creek in the US;

Tilman, 2001) were made with replicated communities at each diversity level. These

communities were assembled by drawing species at random from a common local

species pool and growing them under identical conditions in a given site. This can

be understood as the classic BEF approach. Two main mechanisms driving the BEF

relationship were described then by Loreau et al. (2001): i) complementarity effect

and ii) selection effect. In both cases, biodiversity allows for a range of trait varia-

tion where these mechanisms can act upon; where in (i) productivity is collectively

enhanced by a diverse set of traits in the community and (ii), particular traits are

selected and become dominant increasing overall productivity (Loreau and Hector,

2001). This raised the question of whether richness itself is the causal predictor or

not, since phenotypic trait variation seems to drive productivity by means of com-

plementarity and/or selection effects.

In the BEF approach, diversity is seen as one of the modulators of ecosystem

processes. Therefore, diversity is not just an outcome of environmental conditions,

but actively influences how ecosystem processes function, recognizing that the com-

bined influence of various species (with their unique traits and interactions) can col-

lectively affect ecosystem functions. The two approaches, PDR and BEF, are not con-

tradictory. They can be reconciled by taking into account that large spatial patterns

usually observed in the PDR studies reveal correlations between diversity and pro-

ductivity, driven by the environment (Loreau, 2010). Meanwhile, the small-scale ex-

periments typically used in the BEF focus on the effects of species traits and rich-
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ness on ecosystem functions after controlling for the environmental factors. By 2006,

over 100 experiments had shown that species diversity had a repeatable and consis-

tent effect on productivity (Cardinale et al., 2006; Hooper et al., 2005; Loreau, 2010;

Tilman, 2001), at least for terrestrial ecosystems. Several questions remained regard-

ing trait identity, number of species, type of diversity (e.g. taxonomic, functional,

phylogenetic), time and spatial scale, to name a few. Nevertheless, across the years

some general consensus was reached regarding the effect of diversity on productiv-

ity. For example, biodiversity has a consistently positive effect on productivity, many

species are needed to maintain stability and ecosystem functioning in changing en-

vironments (Loreau, 2010), functional redundancy and complementarity are impor-

tant to increase stability and productivity (Vallina et al., 2017), and rare species can

indeed have strong impacts on ecosystem function (Hooper et al., 2005). Finally,

these effects tend to get stronger with time (Cardinale et al., 2012; Hillebrand and

Matthiessen, 2009; van der Plas, 2019).

Despite the considerable number of experiments and publications, there is still a

lot of debate regarding the generality of these findings as these studies may lack biotic

and abiotic complexity. Furthermore, the effects on productivity tend to accelerate

with increasing diversity loss, with the magnitude of function change being heavily

dependent on which functional traits are being considered, and if they relate to the

function being observed (Cardinale et al., 2012; Hooper et al., 2012; Ye et al., 2019).

Several issues are also important to keep in mind, regarding the validity of these ob-

servations from experiments when applied to natural data and consequently, BEF’s

relevance. These include experimental conditions (e.g. short runtime of experi-

ments, number of ecosystem functions used, lack of immigration, non-random loss

of biodiversity), bias towards terrestrial and temperate ecosystems, effect size of re-

source supply, competition and predators’ diversity in natural settings and method-

ological/analytical choices. Even so, the field of BEF is slowly evolving and addressing

these problems aiming at identifying causal drivers of ecosystem function, namely

productivity, and conclusions drawn from these studies can be relied upon (Duffy et
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al., 2017). The most recent synthesis acknowledges that both diversity and the envi-

ronmental factors can not only drive and reduce variability, and increase stability of

ecosystem functions, but also covary with productivity (van der Plas, 2019). In spite

of these advances, a lot of unanswered questions remain to be addressed and the

aquatic environment is under-represented.

3.2 Phytoplankton diversity and productivity in the oceans

As loss of species increased globally (Chapin et al., 1997), so did the efforts to try

to understand the relationship between species richness and productivity. The idea

that ecosystem productivity affects species richness can be dated as far back as the

60s (Leigh Jr, 1965), but the shape of the relationship, and consequently, the mech-

anisms behind it, have been widely debated (Waide et al., 1999). The majority of

studies found an unimodal pattern, with maximum richness at intermediate levels of

productivity, in both terrestrial and aquatic ecosystems (Irigoien et al., 2004; Vallina

et al., 2014). Other patterns have been reported as well as a scale-dependency (Chase

and Leibold, 2002; Mitchell-Olds and Shaw, 1987). Unlike terrestrial ecosystems,

pelagic oceans are vast and dynamic environments, with fast turnover rates and nu-

trient cycling with complex ecological interactions, making these habitats more re-

silient to climate disturbances in the short-term. Under these homogenized con-

ditions found in the oceans, phytoplankton diversity should be low, as few species

would have competitive advantage and become dominant. This, however, is not ob-

served in natural communities where high diversity is usually the norm. Hutchin-

son’s paradox, also known as, ‘the Paradox of the Plankton’ relates to the violation of

the competitive exclusion principle that allows for species coexistence and thus, the

observed high richness (Armstrong and McGehee, 1980; Hutchinson, 1961).

Most promising ideas to explain the classic productivity-diversity relationship

(PDR) patterns are rooted in the pursuit of understanding what mechanisms allow for

species coexistence (Armstrong and McGehee, 1980). According to the competitive
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exclusion principle, two species cannot coexist indefinitely if they are competing for

fewer than two resources (Hardin, 1960; Volterra, 1928). Thus, species coexistence is

only possible due to violations of the principle (Palmer, 1994). For instance, for ‘com-

plete’ competitive exclusion to take place, i.e. a single species becomes dominant,

enough time has to have passed, and, insufficient time for exclusion to occur could

allow species to coexist. The degree of niche overlap can affect competition, coexis-

tence and ultimately, productivity. Moderate niche overlap can allow for increased

productivity and coexistence, unless other factors come into play (e.g. disturbances,

predation). Mass-ratio hypothesis relates to species contribution to ecosystem func-

tion not being equal, and to how that drives productivity via the traits of the most

dominant species (Grime, 1998). This could lead to a positive linear relationship be-

tween diversity and productivity, even if long-term coexistence is not possible. How-

ever, negative and even neutral relationships between diversity and productivity can

be observed if the dominant trait is not causally linked to the function as well as ac-

cording to spatial scale in question (Chase and Leibold, 2002; Chen et al., 2019; Waide

et al., 1999).

Niche differentiation then becomes relevant. Species’ different requirements re-

duce competition and increase resource use efficiency by the community. Levels of

disturbance (e.g. predation pressure, temperature, nutrient availability, light) can

also allow for higher richness and possibly enhanced productivity via complemen-

tarity. Intermediate disturbance and keystone-predation hypotheses relate to these

kind of disturbances. The intermediate disturbance hypothesis argues that moderate

levels of disturbance delay competitive exclusion (maintaining high diversity) while

preventing species’ extinction in non-equilibrium conditions via niche complemen-

tarity. At high disturbance levels, few species can persist, again reducing productiv-

ity. At low disturbance levels, competitive exclusion by dominant species reduces

diversity and potentially limits productivity. This results in a unimodal diversity-

productivity relationship, where species richness peaks at intermediate disturbance

levels (Irigoien et al., 2004). Meanwhile, the keystone-predation hypothesis argues
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that competitive exclusion can be slowed down by predators selectively consuming

dominant species, reducing their competitive advantage and maintaining a diverse

community in the process. In this case, moderate predation pressure supports both

high diversity and higher productivity. Both cases rely on moderate levels of distur-

bance to explain the coexistence patterns observed in the oceans and how these

shapes the PDR curve, with nutrient competition and selective grazing being the

mechanisms behind the unimodal curve (Vallina et al., 2014). Thus, there are numer-

ous ways in which the competitive exclusion principle can, in theory, be avoided.

Competing theories regarding the classic PDR focus on species richness and are

fundamentally linked with how species interact within ecosystems and therefore,

with their productivity. Biodiversity-Ecosystem function (BEF) theory extends on

these ideas by exploring how diversity then modulates multiple ecosystem functions,

including productivity, nutrient cycling, carbon sequestration, and resilience to en-

vironmental changes. BEF also argues that in addition to niche complementarity,

selection effects are also responsible for driving ecosystem productivity (Loreau and

Hector, 2001). Going beyond species richness itself, BEF theory incorporates species’

traits and their functional diversity, as community properties with direct effect on

ecosystem processes. Given the high diversity of phytoplankton in the oceans, tak-

ing into account functional diversity is a great approach to the subject.

Unlike the ‘universal’ unimodal PDR curve, BEF theory predicts a general positive

linear relationship between diversity and productivity in the oceans, with increas-

ing biodiversity (not just species richness) leading to enhanced overall ecosystem

function via complementarity and selection effects. In diverse communities, species’

niches complement each other by utilising resources more efficiently than in mono-

cultures (i.e. species grown alone). On the other hand, increasing diversity also in-

creases the likelihood that highly productive or functionally important species will be

dominant in the community, leading to enhanced ecosystem function via selection

effects. These two mechanisms can act together at different temporal scales, which

would explain the monotonic positive curve reported in BEF studies. However, stud-
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ies have reported negative and even neutral relationships (Adler et al., 2011; Chen

et al., 2019; Smith et al., 2016), relating to different scales of diversity under consid-

eration. Coupled with the fact that most BEF studies have been conducted under

controlled (experimental or modelled) short-term settings, this hints at a more vari-

able relationship in the oceans, with no universal pattern.

The objective of this chapter is to address a few of these open questions in a natu-

rally occurring phytoplankton community, specifically in the San Francisco Bay (SFB)

system. As a pivotal study site, SFB gives us an opportunity to delve into the dynamics

between biodiversity and ecosystem function within a nutrient rich estuarine envi-

ronment.

3.2.1 Research questions

The emergence of a ‘hump-shaped’ pattern between diversity and productivity

can relate to environmental heterogeneity (under low and high productivity levels,

lack of resource and habitat diversity), disturbance, resource supply and competi-

tion, predation and species sorting. Two main mechanisms have been argued to con-

sistently explain the unimodal pattern between diversity and productivity observed

in the oceans: selective grazing and competition for nutrients at high and low pro-

ductivity levels, respectively (Irigoien et al., 2004; Vallina et al., 2014). However, to

explore the question of the role of phytoplankton diversity on productivity in a nat-

ural environment, I focused on: i) the direction of the biodiversity-ecosystem func-

tion relationship; ii) the variability of resources and its effect on productivity and;

iii) comparing several diversity indices and productivity proxies. The main question

was: what shape does the relationship between diversity and productivity (biomass)

have in the San Francisco Bay system? (e.g. unimodal, monotonically increasing or

decreasing?). The following hypotheses were tested:

• H0: Productivity should increase linearly with richness as predicted by BEF the-

ory.
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• H1: Community size structure, rather than species richness, is a better predic-

tor of productivity in the San Francisco Bay area.

• H2: Environmental control changes how diversity affects productivity.

3.3 Methodology

3.3.1 Data Analyses

Prior to analyses, all data were transformed using the BoxCox method, aiming for

the best approximation of a normal distribution of each variable. Correlation tests

were run between variables of interest using Spearman’s (ρ) method, followed by

simple linear regression to examine the bivariate relationship between productivity

(here biomass, chlorophyll a and resource use efficiency [RUE] as proxies), diversity

indices and environmental variables. Models with the best fit were selected based

on adjusted R2, Akaike Information Criterion (AIC) and normality of residuals. All

analyses were performed in the R software (v4.2.1, R Core Team, 2021).

The hypothesis that the relationship between diversity as a predictor of produc-

tivity is unimodal was tested using the two-line test (TLT) after Simonsohn (2018).

The test assumes no functional form of the relationship between x and y , and uses

interrupted regression to test whether the effect of x on y changes sign for low ver-

sus high x values. This method provides a better way to assess if the relationship

is indeed unimodal (‘hump’-shaped) as opposed to simply interpreting quadratic re-

gressions, even with additional tests (Mitchell-Olds and Shaw, 1987; Mittelbach et al.,

2001).

Multiple linear regression analyses were also employed to further investigate the

factors likely driving productivity in this area. Variables were characterized as envi-

ronmental (E; salinity, temperature, DIN, phosphate, PAR), diversity (D; R, 1D , even-

ness, σ2), trait (Tr; CWMsi ze ) and temporal (T; Year, cosine (xc) and sine of x (xs) to

capture cyclical nature of seasonality), for each productivity proxy (biomass, Chl a,
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RUE). As such, the model has several predictors and can be specified by the general

form:

Productivity =β0 +Environment+Diversity+Trait+Temporal+ε (3.1)

Where β0 is the intercept and ε is the error term. Second-degree polynomials

were included when necessary in order to account for non-linearity in the data. For

more details on model specification, please see Table 3.2. Selection of best predictor

variables in the model was guided not only by ecological considerations, aiming to

determine the effect of environmental and diversity factors on productivity, but also

using metrics commonly found in the literature, followed by a step-selection proce-

dure. Variables that were either highly correlated or displayed no significant correla-

tion with the response were removed from the models. In addition, the variance was

partitioned among predictors using redundancy analyses. The analyses models the

relationship between a response matrix (i.e. biomass) and one or more explanatory

matrices (e.g. environment, diversity, temporal, trait) in order to determine impor-

tance of each explanatory variable and/or group of variables to the overall response,

in order to ultimately identify drivers.

3.4 Results

3.4.1 Productivity ∼ Diversity

In the San Francisco Bay system, the majority of diversity effects observed were

negative and likely monotonic for all productivity proxies used, with only one uni-

modal relationship observed (Fig. 3.1). Even when looking at the classic diversity-

productivity relationship, where diversity is hypothesised to be driven by produc-

tivity, monotonically decreasing curves were more common than unimodal and in-

creasing ones. This suggests no significant sign changes were observed between low

and high values of x. When the TLT test (Supplementary fig. A.1) is used to check for
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Figure 3.1: Frequency of relationship shapes observed between biodiversity and
ecosystem function with different methods of analyses: (a) two-line-test (TLT) and
(b) classic quadratic regression. This graph exemplifies the variability of observed
relationships according to metrics used and method of assessment used. Most com-
monly found relationships were monotonically negative and/or positive, with only a
few unimodal.

the evidence of a ‘hump’, only one true unimodal curve is observed. Whereas, when

using a significant quadratic term to determine the existence of a ‘hump’-shaped re-

lationship, unimodal curves were the most commonly found pattern, with some vari-

ation when changing productivity proxies. Thus, I would like to raise the question of

subjectivity of method selection for determining the shape of this relationship and

the universal aspect of this unimodal pattern.

3.4.1.1 Biomass

Nutrients were negatively correlated with biomass, with the exception of DIN (Si;

ρ = -0.5; DIN; ρ = 0.12; P; ρ = -0.20; all p-values <0.001). Salinity was positively

correlated with biomass (ρ = 0.25) and weakly correlated to temperature (ρ = 0.08).

Community weighted mean size (CWMsi ze ) had a strong positive relationship with

biomass (ρ = 0.66) (Fig. 3.2). CWMsi ze was a relatively good predictor of biomass

with R2
ad j of 0.38.

Biomass decreased linearly with all diversity metrics, with the exception of rich-
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Figure 3.2: Scatterplots of biomass and diversity metrics. Plots display the bidirec-
tional relationship between diversity metrics and biomass as a productivity proxy.
Spearman’s correlation (ρ) and p-values can be seen at the top left of each plot. All
axis are natural log-transformed. 1D : exponential Shannon; σ2: size diversity.

ness and genus richness (Fig. 3.2, Table 3.1). Size diversity (σ2) was highly negatively

correlated with biomass (ρ = -0.72). For taxonomic diversity, negatively correlated

(ρ = -0.48). Richness and genus richness were positively correlated with biomass (ρ=

0.18 and 0.17, resp.). Among the diversity indices, the best predictor was size diversity

(R2
ad j = 0.48), followed by evenness (R2

ad j = 0.25, Table 3.1). All other indices explained

less than 10% of the variance found.

When looking at the multiple regression models, size related variables were again

the best predictors, followed by evenness, with an overall R2
ad j = 0.84. Biomass trends

were non-linear across years, decreasing up until 2018 where afterwards, it appears

to be increasing, with seasonal peaks around springtime (Fig. 3.3, A-B). Addition-

ally, non-linear trends of biomass were also observed for DIN (Fig. 3.3, H), scaling

positively with CWMsi ze and PAR and negatively with size diversity, evenness, salin-
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Table 3.1: Summary of selected simple linear models between productivity and di-
versity. Model coefficients (x and x2, Spearman’s ρ, adjusted R2 (R2

ad j )) and shape
of relationship, ordered by largest variance explained to lowest. Chl a: chlorophyll a,
RUE: resource use efficiency, 1D: exponential Shannon, σ2: size diversity, TLT: two-
line test. The TLT test checks whether there is a significant change in sign between
small and large x values, if so, the relationship can be viewed as unimodal.

Response Predictor Spearman’s ρ R2
adj Coefficients TLT

Biomass x(se) x2(se)
σ2 -0.72 0.48 -26.51 (1.07) 5.11 (1.07) decreasing

Hill’s Evenness -0.47 0.25 -1.87 (0.12) - decreasing
1D -0.24 0.12 -10.87 (1.40) 7.94 (1.40) decreasing

Richness 0.18 0.03 6.20 (1.47) -4.13 (1.47) unimodal
Genus Richness 0.16 0.02 0.60 (0.15) - increasing

Chl a
1D -0.23 0.08 -0.38 (0.05) - decreasing

Genus Richness -0.22 0.06 -3.26 (0.60) -2.53 (0.60) decreasing
Richness -0.20 0.06 -3.28 (0.60) -2.46 (0.61) decreasing

σ2 -0.21 0.05 -3.20 (0.61) 2.16 (0.61) decreasing
Hill’s Evenness -0.04 0.06 -2.33 (0.61) 3.42 (0.61) decreasing

RUE
σ2 -0.61 0.37 -24.90 (1.25) 4.90 (1.25) decreasing

Hill’s Evenness -0.44 0.23 -1.88 (0.13) - decreasing
1D -0.33 0.17 -15.61 (1.44) 7.43 (1.44) decreasing

Richness 0.04 0.01 0.84 (1.58) -4.05 (1.58) decreasing

ity and temperature (Fig. 3.3, C-G). CWMsi ze alone explained 11% of the partitioned

variance (Tr; Fig. 3.8, A), followed by diversity (D; 10%, Fig. 3.8, A), where size diver-

sity explained the largest amount of variance within diversity metrics used (31%).

3.4.1.2 Chlorophyll a

When chlorophyll a (Chl a) was used as a proxy for productivity, nutrients had

a more variable relationship (DIN: ρ = -0.22; P: ρ = 0.22), whereas Si was negatively

correlated (ρ = -0.21). Salinity and temperature were positively correlated with Chl a

(ρ = 0.13 and 0.23, respec.). All size related variables were positively correlated with

Chl a, albeit not very strongly (CWMsi ze = 0.14) (Fig. 3.4). All independent variables

did not explain >1% of the variance. All p-values associated with these models were

<0.001.
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Table 3.2: Summary of selected multiple regression models. Model coefficients
(standard errors), p-values and adjusted R2 (R2

ad j ) for each productivity proxy. Chl

a: chlorophyll a, RUE: resource use efficiency, xc: cosine of x, xs: sine of x. Variable2

represents second-degree polynomials.

Biomass Chl a RUE
β0 -7.26 (0.02) <0.001 0.49 (0.13) <0.001 -8.34 (0.16 ) <0.001

R2
ad j 0.84 0.49 0.66

Estimate (se) p-value Estimate (se) p-value Estimate (se) p-value
Temporal

xs -0.1 (0.04) 0.01 0.3 (0.01) <0.001
xc - - - - -0.2 (0.07) 0.01

Year -8.9 (0.94) <0.001 0.03 (0.03) 0.02 0.07 (0.02) <0.001
Year2 8.4 (0.78) <0.001 - - - -

Diversity
Size diversity -13.1 (0.88) <0.001 -1.3 (0.68) 0.01 -1.9 (0.18) <0.001
Size diversity2 3.9 (0.66) <0.001 1.01 (0.49) 0.01 - -
Hill’s evenness -2.3 (0.85) <0.01 0.004 (0.66) 0.99 -5.9 (1.30) <0.001
Hill’s evenness2 0.6 (0.64) 0.34 1.7 (0.48) 0.12 2.4 (0.96) 0.01

Richness - - 0.32 (0.74) 0.66 -5.3 (0.51) <0.001
Richness2 - - -1.5 (0.51) <0.001 -0.95 (1.05) 0.36

Trait
CWMsi ze 14.8 (0.78) <0.001 2.9 (0.58) <0.001 14.5 (1.20) <0.001
CWMsi ze

2 2.2 (0.72) 0.002 1.08 (0.53) 0.04 1.6 (1.10) 0.13
Environment
Temperature -3.3 (0.89) <0.001 1.7 (0.77) 0.03 3.3 (1.36) 0.01
Temperature2 0.1 (0.68) 0.84 - - -1.2 (1.04) 0.25

Salinity -0.8 (0.71) 0.08 1.6 (0.69) 0.02 0.43 (1.38) 0.75
Salinity2 -1.14 (0.72) 0.11 -0.06 (0.57) 0.90 -2.3 (1.38) 0.03

DIN -1.9 (0.89) 0.02 -5.1 (0.62) <0.001 - -
DIN2 1.6 (0.70) 0.02 3.6 (0.51) <0.001 - -

Phosphate - - 0.32 (0.04) <0.001 -8.9 (1.34) <0.001
Phosphate2 - - - - 2.4 (0.97) 0.01

PAR 10.7 (0.96) <0.001 0.15 (0.03) <0.001 8.7 (1.44) <0.001
PAR2 1.9 (0.67) 0.008 - - 2.7 (1.0) 0.01

Taxonomic diversity indices were negatively correlated with Chl a: 1D (ρ = -0.22),

evenness (ρ = -0.04, not significant) and size diversity (ρ = -0.21). Finally, richness (ρ

= -0.2) and genus richness (ρ = -0.22) both showed a negative correlation with Chl a

(Fig. 3.4). For diversity, all predictors also explained <1% of the variance in the data.

In general, multiple predictors did not explain a lot of the variance observed when

using Chl a as a productivity proxy (R2
ad j = 0.50), with environmental (14%) and other

(12%) variables related to temporal variation explaining more of the variance ob-
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Figure 3.3: Partial-effect plots from multiple regression model with biomass as re-
sponse for the San Francisco Bay system. Changes in biomass according to seasonal
and annual trends are shown, as well as size diversity (σ2), evenness, CWMsi ze , tem-
perature, salinity, dissolved inorganic nutrient (DIN) and PAR.

served (Fig. 3.8, B). With the exception of phosphate (Fig. 3.5, J), predictor variables

were non-linearly related to the response. Chl a displayed an unimodal relationship

with richness (concave down), size diversity (concave up), CWMsi ze (concave up),

evenness (concave up) and temperature (concave down). Whereas, PAR and DIN that

had seemingly saturating relationships with Chl a (Fig. 3.5). Within the environmen-

tal variables, PAR and phosphate contributed the most to the variance partition (Fig.

3.8, B). Thus, reflecting the strong seasonality observed in the Chl a measurements.
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Figure 3.4: Scatterplots of Chl a and diversity metrics. Plots display the bidirectional
relationship between diversity metrics and Chl a as a productivity proxy. Spearman’s
correlation (ρ) and p-values can be seen at the top left of each plot. All axis are natural
log-transformed. 1D : exponential Shannon; σ2: size diversity.

3.4.1.3 Resource use efficiency (RUE)

Nutrients were negatively correlated with RUE (P: ρ = -0.31; Si: ρ = -0.43). Due

to how RUE is calculated here (see Material and Methods), DIN was removed from

all models and analyses in this part. Salinity was positively correlated (ρ = 0.18) with

RUE as well as temperature (ρ = 0.10). Further, size was positively correlated with

RUE (ρ = 0.57, CWMsi ze ) (Fig. 3.6).

For diversity metrics, both size diversity (ρ = -0.61), evenness (ρ = -0.44) and 1D (ρ

= -0.33) had negative relationships with RUE. Both richness and genus richness dis-

played non-significant correlations with productivity (Fig. 3.6). As single predictors,

diversity metrics did not explain >1% of the variance.

Looking at multiple regression, around 64% of the variance observed in the re-
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Figure 3.5: Partial-effect plots from multiple regression model with Chl a as a re-
sponse. Shown here are the Chl a variability across seasons and years, richness, size
diversity (σ2), evenness, CWMsi ze , temperature, dissolved inorganic nutrient (DIN),
PAR and phosphate.

sponse could be explained by the selected predictors. Similarly to Chl a, environmen-

tal and other variables were the most important predictors, highlighting the seasonal

aspect that affects this productivity proxy, followed by diversity and trait (Fig. 3.8, C).

Richness, CWMsi ze , PAR and phosphate scaled positively with RUE, unlike size diver-

sity and temperature. Further, salinity displayed a non-linear trend with productivity

(Fig. 3.7). Among diversity metrics, richness was more important (18%) than size

diversity (14%). For the environment, PAR regime explains more of the variance ob-

served (21%). When size diversity is not included, inter-annual variability appears to

be the single most important factor in driving RUE.
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Figure 3.6: Scatterplots of RUE and diversity metrics. Plots display the bidirectional
relationship between diversity metrics and resource use efficiency (RUE) as a pro-
ductivity proxy. Spearman’s correlation (ρ) and p-values can be seen at the top left
of each plot. All axis are natural log-transformed. 1D : exponential Shannon; σ2: size
diversity.

3.5 Discussion

Results reveal that community size structure, rather than species richness, drives

productivity in the SFB region. Here, species richness had a weak or even non-existent

effect on ecosystem function and it was not a strong predictor when accounting for

environmental and temporal covariates. This fundamentally contradicts the expected

pattern of positive effect of richness on productivity (Cardinale et al., 2002; Loreau,

2010; Tilman et al., 2014). Still, several studies have reported findings in marine nat-

ural and experimental communities that aligns with the results shown here (Bruno

et al., 2006; Emery et al., 2021; Lehtinen et al., 2017; Maureaud et al., 2020).
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Figure 3.7: Partial-effect plots of multiple regression model with RUE as response.
Most important predictors of RUE variability in the San Francisco Bay system, such as
annual trends, richness, size diversity (σ2), evenness, CWMsi ze , temperature, salinity,
PAR and phosphate.

3.5.1 Environmental control on productivity

The SFB area is characterised by high nutrient concentrations (Conomos et al.,

1985), leading to an increased mean cell size, lowered size diversity (σ2) and evenness

with increased biomass (Fig. 3.2) (Chen et al., 2012; Cloern, 2018). The phytoplank-

ton community in SFB area is composed of large cells, mainly diatoms, that increase

in dominance with increasing biomass (Cloern, 2018). This pattern is usually found

in estuarine ecosystems, where elevated nutrient input coupled with mid- to high-

latitude temperatures, actively selects larger cells by providing protection strategies
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Figure 3.8: Variance partitioning between environment, diversity, trait and tempo-
ral dynamics and productivity in the San Francisco Bay system. Productivity prox-
ies were biomass, chlorophyll a and resource use efficiency (RUE). E: environment,
D: diversity, Tr: trait and T: temporal.

(i.e. larger cells are not easily predated) and by setting a high upper limit on growth

(Chen and Liu, 2010; Cloern et al., 2017; Finkel et al., 2010). In coastal systems, en-

vironmental and nutrient variability can be subject to the effects of river discharge,

urban and agricultural run-off (Cloern et al., 2017; Raimonet and Cloern, 2016). Thus,

the availability of inorganic nutrients is a limiting factor on the distribution of phyto-

plankton biomass, with variability observed in systems with high nutrient loading.

Environmental variables (e.g. photosynthetic active radiation [PAR], nutrients)

exhibited different relationships with each productivity proxy, usually displaying com-

plex interactions. For instance, the non-linear effect of DIN on productivity (biomass

and Chl a) suggests an optimal range for nutrient input levels. At intermediate nu-

trient levels, other limiting factors (such as light or perhaps competition) may be re-
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ducing productivity. Here, nutrients were never truly limiting and despite its strong

effect on certain productivity proxies (e.g. Chl a and resource use efficiency [RUE]),

nutrient supply alone did not explain the variability observed. Rather, the role of PAR

in explaining variation suggests that light availability strongly influences productivity

and may modulate nutrient and diversity effects (Cloern, 1999; Cloern et al., 1985).

Increase in biomass production and even blooms outside springtime have been

observed in relatively low nutrient concentrations in the SFB area (Cloern et al., 2017).

However, these observations were associated with a change in the trophic cascade

within the SFB, with decreased predator presence and enhanced phytoplankton growth,

leading to an increased biomass even at low nutrient concentrations, caused by changes

in ocean-estuary inter-decadal dynamics (Cloern et al., 2017). Here, the interaction

between light availability and high nutrient systems are strong drivers but will not

necessarily lead to increased productivity, and may act by modulating community

size structure and composition instead (Heinrichs et al., 2024).

Despite the dominance of larger cells in the region, biomass still decreased with

increasing temperature. Temperature plays a role in constraining the dominance of

large cells and therefore biomass accumulation by setting a threshold where grazing

rates are faster than growth rates of large phytoplankton. So, at temperatures above

a certain limit, the community size structure may be dominated by smaller cells and

consequently, biomass is lowered (Cloern, 2018; Finkel et al., 2010; Heinrichs et al.,

2024; Hillebrand et al., 2022b). Chl a and RUE, on the other hand, increased with in-

creasing temperatures as a result of increased cell growth rates. This pattern has been

reported (Berges et al., 2002; Otero et al., 2020; Stramski et al., 2002) and as a result,

even if total biomass decreases with temperature, Chl a content might remain stable

and even increase as the size structure of the community shifts towards smaller cells.

The same is true for RUE, where smaller, faster-growing species might dominate un-

der warmer conditions, increasing efficiency but reducing biomass overall (Cloern,

2018).
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3.5.2 Diversity drives productivity in unexpected ways

Both mean size (CWMsi ze ) and size diversity (σ2) were the most important pre-

dictors of productivity. CWMsi ze positively affected all productivity proxies, as large

cells have larger ability to accumulate biomass and Chl a, and are able to capture

resources more efficiently, leading to an increased RUE (Hillebrand et al., 2022a;

Marañón et al., 2013). Cell size is a ‘master’ trait in ecology and it controls several

physiological and ecological processes, such as metabolic rates (Brown et al., 2004),

growth and grazing (Brose et al., 2006; Marañón et al., 2013), photosynthetic rates

(Marañón et al., 2007) and even diversity (Cermeño and Figueiras, 2008), to name

a few. Generally, CWMsi ze is consistently decreasing each year in the SFB. As such,

this could lead to even smaller productivity rates and further hinder the capability of

coastal areas to act as a carbon sink (Finkel et al., 2010).

Increased σ2 suggests the community was dominated by small- to intermediate-

sized cells with relatively even contributions to total productivity. In this study, high-

est σ2 was associated with the lowest biomass. This was due to the presence of

cyanobacteria Eucapsis microscopica contributing to a relatively large portion of the

biomass in the samples, leading to an increase in σ2 but overall reduced biomass.

Conversely, where σ2 was lowest, a dominance of diatom was observed leading to

maximum biomass levels and largest CWMsi ze . Chen et al. (2019) also reported neg-

ligible and even negative effects of size diversity on productivity, based on a 3D ocean

circulation model of the North Pacific. In dynamic environments, high diversity is

needed to achieve strong selection effects that enhance productivity (Chen et al.,

2019). Species responses to the environment are more synchronized at high resource

levels, which may reduce the importance of richness in determining productivity as

the benefits of facilitation through complementarity are reduced (Chen et al., 2019).

Instead, less productive species can dilute the overall productivity of the community,

so the addition of new species may decrease productivity (thereby increasing σ2),

particularly if species’ traits are not correlated to the function in question (i.e. size)

60



Chapter 3

(Hagan et al., 2023; Hodapp et al., 2019).

Results also show that evenness was a strong negative predictor of ecosystem

function, which could suggest that selection, instead of complementarity, is the mech-

anism driving productivity in marine communities (Cermeño et al., 2016). In spite of

this, few studies have included evenness as predictor of function and results have

been variable (Hordijk et al., 2023). Nevertheless, studies that do include evenness,

report a strong negative effect on productivity in aquatic communities, supporting

these findings (Filstrup et al., 2019; Hodapp et al., 2015; Lehtinen et al., 2017). Unlike

terrestrial systems and experimental conditions, productivity in non-static systems

appears to be sustained by selected traits (i.e. larger-sized cells), where resources

are taken up by the best competitors. With that, evenness reflects the dominance

of species that are thriving under the current environmental conditions, and unlike

richness, might be more connected to ecosystem function (Lehtinen et al., 2017).

When all species respond similarly to abundant resources (niches overlapping), the

inclusion of less efficient species does not contribute additional benefits and can

even reduce the average productivity, as these species occupy niche space and re-

sources without significantly enhancing output (Chen et al., 2019; Vallina et al., 2017).

Indeed, species’ traits appear to have a larger impact on marine productivity than

richness alone (Bruno et al., 2006).

As such, these results are not consistent with biodiversity-ecosystem function

(BEF) experiments and many reported studies, even after accounting for environ-

mental covariates (Cardinale et al., 2012; Otero et al., 2020; Ptacnik et al., 2008; Tilman

et al., 2014; Vallina et al., 2017). Although in BEF experiments and modelling ap-

proaches, a positive relationship is usually reported, there is a compelling argument

to be made that we should not expect positive relationships in field data (Hagan et

al., 2021; Stachová and Lepš, 2010). BEF studies often manipulate the initial diversity,

or the species that were sown in the habitat/patch during the community assembly

process and this will consistently increase ecosystem function irrespective of the ob-

served diversity (‘realised diversity’) at a future time point (Stachová and Lepš, 2010).
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Initial diversity then boosts function via complementarity and selection effects, irre-

spective of how many species are currently present, or even declines in richness.

When complementarity dominates, many species co-occur partitioning resources

and increasing function relative to monoculture expectations (i.e. species growing

alone). This maintains diversity over time, with species coexisting and contribut-

ing to the overall community-level productivity (Loreau and Hector, 2001). However,

when selection effects dominate, highly competitive and/or functioning species may

dominate, leading to increased ecosystem function, but, as they outcompete others,

this leads to reduced diversity over time (Chesson, 2000; Tilman, 2000). So, whether

diversity will positively affect ecosystem function may not be dependent on the cur-

rent observed diversity, but rather the initial diversity. As in both cases, high initial

diversity is likely associated with high trait variation and as such, increased ecosys-

tem function (Hagan et al., 2021; Loreau et al., 2001). The Stachová and Lepš (2010)

model shows that the degree of competition and carrying capacity of a species inter-

act to shape the relationship between diversity and productivity. With low competi-

tion coefficients leading to a positive selection effect in small species pool size, and

therefore, increased productivity. Whereas at large species pool, such as in naturally

assembled communities, species with high carrying capacity are selected. Leading to

a negative relationship between diversity and productivity (Stachová and Lepš, 2010).

In experiments, the difference between initial and realised diversity might not mat-

ter to overall functioning of the ecosystem, as positive effects observed in controlled

conditions might not transfer to complex field environments. Yet, this difference is

crucial in non-controlled settings, as the positive effects of initial diversity on func-

tioning may not be observed if only realized diversity is available, which is often the

case with field data, leading to variable relationships (Hagan et al., 2021; Kenkel et al.,

2001; Stachová and Lepš, 2010).
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3.5.3 We need to talk about proxies

The choice of productivity and diversity proxies has profound implications to the

overall variability regarding the relationship between diversity and productivity, and

it is inconsistent across studies (Mittelbach et al., 2001; Vallina et al., 2014).

In this study, biomass is simply a measure of standing biomass based on cell vol-

ume and despite being used as a proxy for productivity in several studies, it is im-

portant to highlight that is does not reflect production rates. Similarly, resource use

efficiency (RUE) reflects biomass per unit of limiting nutrient (Hodapp et al., 2019).

Each proxy provides distinct insights, with biomass capturing dominance of larger

species, Chl a likely highlighting abundance patterns and photosynthetic potential,

and RUE reflecting efficiency in nutrient uptake. However, caution should be exer-

cised as no proxy truly captures current levels of productivity and they may reflect

different aspects of the community. When taking RUE, for instance, there are several

different approaches to calculate this proxy, it is mainly focused on a single nutri-

ent ignoring co-limitation of multiple resources and often quantified using what was

‘left-behind’ in the water column instead of what is actually bioavailable (Hodapp

et al., 2019). The same is true for biomass, as it function as a snapshot of the sys-

tem and not the actual biomass turnover. This could lead to variable conclusions,

as standing biomass as a productivity proxy might remain low due to high turnover

(e.g. grazing or export) even if actually primary productivity rates are high. Chl a

despite being a valuable measurement, might be decoupled from biomass and not

reflect actual productivity rates, as Chl a:C ratios vary according to species-specific

physiology, light and nutrient regimes (Litchman and Klausmeier, 2008). Not a single

proxy is perfect, but keeping their biases in mind and using them in complementary

ways might give us a more complete picture of how ecosystem function changes with

changes in diversity.

The concept of diversity has multiple facets and choosing a proxy that accurately

depicts which aspect of it matters for community functioning is crucial. For instance,
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richness is an easy measurement to obtain, which has contributed to its widespread

use in literature. However, this metric has several ecological and statistical limita-

tions as it is prone to sampling bias. First, richness is scale- and density-dependent,

making comparison across different sites and/or time periods challenging. In ad-

dition, richness only reflects a limited aspect of the community being observed (i.e.

changing number of species does not offer information on dominant species) (Chase

and Knight, 2013; Jost, 2007). Furthermore, community composition is an important

indicator of how a community can respond to disturbances, and changes in richness

may not reflect species’ turnover (i.e. immigration and extinction rates may remain

stable) (Hillebrand et al., 2018). Finally, rate of function change may not be linked to

decline in species number. Lack of species loss may not indicate loss of ecosystem

function, and this has implications for the debate of whether protecting biodiversity

has any impact on ecosystem function and services.

3.5.4 Implications and limitations

These findings highlight how variable this relationship can be in naturally assem-

bled communities, and how crucial it is to determine causal drivers of productivity

in our current climate emergency (Hillebrand and Matthiessen, 2009). The findings

of this study add to the growing body of literature that argue that functional diversity

and species’ traits and dominance shifts are a better way to approach the effects of

diversity on ecosystem function (Chen and Liu, 2010; Chen et al., 2019; Hagan et al.,

2023; Hillebrand et al., 2022a; Hillebrand et al., 2018; Spaak and De Laender, 2021).

Further, in this study, I only had access to realised diversity (i.e. current observed

number of species). Initial diversity, or the number of species present at the time of

community assembly, has been shown to boost productivity irrespective of realised

diversity (Stachová and Lepš, 2010). This has been argued to be one of the reasons

BEF relationships in field data varies from experimental expectations (Hagan et al.,

2021).

The relationship between biodiversity and ecosystem function varies according
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to environmental settings, species interactions across temporal and spatial scales

(Hagan et al., 2021), and, most importantly, species identities and their functional

differences (Hillebrand and Matthiessen, 2009). In species-rich planktonic commu-

nities, the physical environment, resources, and species composition shift frequently.

These constant changes create temporary conditions that favour certain species that

can quickly exploit the available resources. The observed effects of community size

structure and evenness illustrate this, with implications for how we discuss biodiver-

sity loss impacts’ on ecosystem function and services.

In natural ecosystems, where light, nutrient and ecological interactions all affect

community structure and functioning, accounting for all confounding factors is a

herculean task (Mayersohn et al., 2022). Much like proxy selection, choice of sta-

tistical framework for the analysis of hypotheses also impacts conclusions. Moving

beyond bivariate analyses and examining whole-system dynamics can refine our un-

derstanding of what drives productivity under a rapidly changing climate and help us

establish causal links (Chang et al., 2022; Grace et al., 2014; Grace et al., 2022). Nat-

urally, this is easier said than done. Functional trait-based approaches coupled with

multivariate analyses hold a lot of potential, as species’ traits might be more directly

linked to function and we can take into account environmental, temporal and spatial

covariates.

3.6 Conclusions

The findings challenge the widely accepted positive biodiversity and ecosystem

function (BEF) relationship. In the San Francisco Bay system, diversity and produc-

tivity often exhibited a negative relationship, with species richness having a weak or

negligible effect on ecosystem function. Instead, trait diversity, particularly related

to size, emerged as a stronger predictor of productivity. Large cells, such as diatoms,

dominated under high biomass conditions, illustrating the importance of commu-

nity size structure in driving productivity.
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Environmental filtering affected productivity by modulating community compo-

sition and consequently, size structure. Specifically, light limitation coupled with in-

creasing temperatures constrained biomass accumulation, even in a nutrient-rich

system, by steadily shifting dominance towards smaller cells across the years. As

such, nutrient supply alone does not explain productivity variability, but it does af-

fect diversity in indirect ways, and with that, productivity. Further, this shift indicates

potential long-term reduction in coastal productivity and carbon sequestration abil-

ities.

Results also reveal that evenness negatively affects productivity, suggesting that

few high functioning species dominate the community. These findings challenge

previous observations in naturally assembled communities, by demonstrating that

weak and even negative relationships between richness and productivity are possible

due to environmental variability, species turnover and differences in trait dominance

(Irigoien et al., 2004; Otero et al., 2020; Ptacnik et al., 2008). Positive relationships in

field data may not be as common as experiments predict. As such, our expectations

might be limiting our view on the effect of diversity, especially trait diversity, on pro-

ductivity. And consequently, how ecosystems will change in face of rapid species

loss. Additionally, the choice of productivity proxy can also influence conclusions,

where proxies can be more directly or indirectly related to the ecosystem function in

question, and this may influence the variability of the effect of diversity (Groner and

Novoplansky, 2003).

Ultimately, these results highlight that functional traits, rather than species rich-

ness alone, are critical in driving productivity. Dominance of certain traits reflects

transient dynamics of the community, where some species are better competitors

and influence function more strongly. Yet, high diversity is still necessary to allow for

complementarity and selection effects to take place, but it may not be directly linked

with high productivity.
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3.7 Future steps

The observed patterns give us some insight on how variable the biodiversity-

ecosystem function can be. However, these observations do not provide answers as

to what the causal drivers of these effects are. Rather, they are strong indicators only,

as this chapter is only based on correlational analyses. Using these findings, I want

to develop a mechanistic model to investigate the relationship between diversity and

productivity. By controlling diversity changes in terms of the size structure and dif-

ferent nutrient input levels, I want to investigate whether nutrient regime or diver-

sity drives productivity, and by which mechanism (selection or complementarity).

For that, I parametrised a nutrient-phytoplankton and a nutrient-phytoplankton-

zooplankton model, with species richness reflecting the addition of new cell sizes

under 20 different nutrient input levels. The results of this model can be found in the

following chapter.
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Beyond observations: modelling the

role of diversity and trophic

interactions on ecosystem functioning

4.1 Introduction

Understanding biodiversity and ecosystem function (BEF) relationships is key to

determining how diversity loss influences ecosystem productivity and, consequently,

how ecosystems might respond to rapid climate change (Hooper et al., 2012). In ma-

rine systems, communities are shaped by dynamic environmental conditions and

trophic interactions, and the effects of diversity on productivity can vary significantly

from theoretical expectations (Hagan et al., 2021; Smith et al., 2016; Stachová and

Lepš, 2010). While mechanisms driving BEF relationships, complementarity and se-

lection effects, are well-established (Cardinale et al., 2006; Loreau, 2010; Loreau and

Hector, 2001), their quantification and relevance in naturally assembled communi-

ties remains an ongoing challenge.

Generally, diverse communities are found to be more productive, particularly in

variable environments (Smith et al., 2016). Experimental evidence suggests that in-
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creasing the number of species allows for more efficient resource partitioning, lead-

ing to overall higher community-level performance via complementarity (Loreau et

al., 2001). However, this expectation is variable in natural communities, where con-

founding factors, including environmental variability and trophic interactions, can

obscure these relationships (Cermeño et al., 2016; J. A. Strong et al., 2015). Ptacnik et

al. (2008) reports a positive effect of richness on ecosystem function in natural phy-

toplankton communities, but other studies have found negative and even no effects

of diversity on community productivity under similar conditions (Emery et al., 2021;

Lehtinen et al., 2017; Maureaud et al., 2020).

In addition to bottom-up drivers, top-down effects such as predation can also

regulate productivity and diversity patterns (Thébault and Loreau, 2003). Predators

can exert a strong influence on ecosystem processes and this influence can act largely

indirectly by causing changes in dominance (Duffy, 2002; Paine, 2000). In marine

systems in particular, this influence is expected to be stronger, partly due to reduced

number of consumers as well as slower rates of production in terrestrial ecosystems

(Paine, 2000; Terborgh et al., 2001). Duffy et al. (2007) argues that multi-trophic inter-

actions can lead to more observed variation in BEF relationships (i.e. non-monotonic

ones) that hinge on predators’ dietary preferences, prey edibility, competitive ability

among other reasons. Understanding the effect of trophic interactions in affecting

community-level productivity in lieu of species decline is a current important chal-

lenge (Thébault and Loreau, 2003). Both bottom-up drivers, like nutrient availability,

and top-down controls, such as predation, can strongly influence productivity and

diversity patterns. Disentangling the effects of the environment from those of di-

versity is difficult, and integration of trophic interactions into BEF studies remains

limited, despite the potential for predator-prey dynamics to alter diversity and pro-

ductivity outcomes (Hillebrand and Matthiessen, 2009; Maureaud et al., 2020).

Observational and experimental studies have provided valuable insights into the

BEF discussion, yet they are limited by confounding factors such as environmental

variability and species interactions (Hillebrand and Matthiessen, 2009). For example,
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experiments have shown that adding consumers often weakens the positive effect of

diversity on biomass at lower levels of prey richness (Mulder et al., 1999). Preda-

tors can also amplify or reduce diversity effects on productivity by selectively grazing

(Shurin et al., 2002). In marine systems, the extent to which zooplankton diversity af-

fects phytoplankton productivity remains under-explored. Here, where productivity

is influenced by dynamic physical and biological processes, even controlled experi-

ments can be difficult to scale, and long-term data often lacks the resolution needed

to separate causation from correlation. To address these challenges, ecosystem mod-

els, such as nutrient-phytoplankton-zooplankton (NPZ) frameworks, provide power-

ful tools to isolate BEF effects, systematically varying biodiversity while controlling

for environmental variability.

In Chapter 3, richness itself was a weak predictor of ecosystem function, challeng-

ing the current consensus (Loreau and Hector, 2001) and hinting at a more complex

picture due to trophic interactions. In this chapter, I use nutrient-phytoplankton

(NP) and nutrient-phytoplankton-zooplankton (NPZ) models to test whether these

patterns hold under controlled conditions. I explore mechanistic explanations for

how trait diversity (i.e. size), environmental conditions, and trophic interactions

shape productivity. These models provide a simplified yet robust framework for dis-

entangling the complex interactions between bottom-up and top-down controls of

phytoplankton productivity. An NP model can help us explore and demonstrate how

phytoplankton diversity influences productivity under different nutrient conditions

(bottom-up effects), whereas a NPZ model allows for top-down control, helping to

assess whether consumer diversity modifies phytoplankton productivity. By keeping

environmental conditions constant (i.e. temperature), these models will help us iso-

late the effects of diversity, nutrient input and trophic interactions on productivity.

Given the central role of phytoplankton in carbon cycling and oxygen production,

understanding how biodiversity influences productivity is key for predicting the im-

pacts of its loss on global biogeochemical cycles in a rapidly changing climate. I want

to determine: i) which mechanisms (complementarity or selection) are driving pro-
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ductivity in phytoplankton communities; ii) whether this relationship is driven by

changes in diversity or nutrient input levels; and iii) how does the presence/absence

of predators alter these observations. Specifically, I want to test the following hypoth-

esis:

• H0: Changes in productivity are more strongly influenced by increases in species

richness than by variations in nutrient levels.

• H1: The relationship between diversity and productivity depends on environ-

mental conditions, such as nutrient input, with larger biodiversity effects under

nutrient-limited conditions.

• H2: The absence of predators allows for increases in productivity due to in-

creased richness, by reducing top-down pressures and enabling complemen-

tarity effects.

• H3: Selection effects, not complementarity, are dominant in phytoplankton

communities, as trophic interactions lead to changes in species’ dominance.

4.2 Methods

4.2.1 Model description and implementation

4.2.1.1 Nutrient-Phytoplankton model

To examine the question of the role of diversity in driving productivity in the

oceans, I analysed models with two conditions: (i) absence and (ii) presence of zoo-

plankton. For condition (i), I used a nutrient-phytoplankton (NP) model. This is a

modified version of a nutrient-phytoplankton-zooplankton (NPZ) model following

(Cloern, 2018; Taniguchi et al., 2014) with R (2 ≤ R ≤ 20) number of species (i.e., size

classes) of phytoplankton (P ), with the following equations for P [Eq. 4.1] and N [Eq.

4.2]:
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Table 4.1: NP model parameters. Parameters and their symbols, unit and range of
values for each parameter in the model. Nitrogen, phytoplankton and zooplankton
parameter values are for initial conditions.

Parameter Symbol Unit Value

Maximum specific phytoplankton growth rate µmax d−1 -
Size-dependent half-saturation constant K s µM N -
Activation energy for phytoplankton growth Ep - 0.32
Minimum phytoplankton concentration pm µM N 0.1
Phytoplankton mortality mp d−1 0.5
Degree of competition φ - 0.5
Nitrogen N µM 1 - 40
Phytoplankton P µM N -

dPi

dt
= Pi

µi N

N +Ks,i
−mp P

1−φ
P 1+φ

i (4.1)

dN

dt
=−

R∑
i=1

Pi
µi N

N +Ks,i
+mp P

1−φ
P 1+φ

i (4.2)

with i representing the i th size class of phytoplankton, ranging from 2 to R. For

the community with species richness R, the size classes were randomly drawn from

a uniform distribution, based on the natural log-transformed minimal and maximal

equivalent spherical diameter (ESD) observed in the San Francisco Bay (SFB), respec-

tively (phytoplankton ESDmi n : 3.7 µm, ESDmax : 178.4 µm). Competitive exclusion is

an intrinsic model behaviour. To allow for coexistence of species in the model with-

out zooplankton and with multiple phytoplankton compartments, and therefore di-

versity, a modified mortality term that is density-dependent with a new parameter,

φ, after (Record et al., 2014) was introduced. Where mp is a constant mortality and

φ determines the degree of competition structuring the community by differences in

abundance contribution, set at 0.5 (Table 4.1). A higher φ relates to a less even com-

munity, whereas a lower φ leads to a more even community. Further model specifi-

cations that are common to both (i) and (ii) models are described bellow.
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4.2.1.2 Nutrient-Phytoplankton-Zooplankton model

To assess the effect of phytoplankton diversity in driving productivity in the pres-

ence of zooplankton, I used a simplified version of the same NPZ model described

above (Cloern, 2018; Taniguchi et al., 2014) also with R (2 ≤ R ≤ 20) number of species

(i.e., size classes) of both P and zooplankton (Z ). I assume a constant (Z ) to P size

ratio (10:1 in length) (Ward et al., 2012), meaning each zooplankton size class is only

able to feed on a single phytoplankton size class. The model thus includes the fol-

lowing 2R +1 ordinary differential equations referring to P [Eq. 4.3], Z [Eq. 4.4] and

nutrient N [Eq. 4.5]:

dPi

dt
= Pi

µi N

N +Ks,i
− (Pi −pm)c gm,i Zi

(Pi )c + (Kz,i )c
(4.3)

dZi

dt
= Zi

egm,i (Pi −pm)c

(Pi )c + (Kz,i )c
−mp Z

1−φ
Z 1+φ

i (4.4)

dN

dt
=−

R∑
i=1

Pi
µi N

N +Ks,i
+

R∑
i=1

Zi
(1−e)gm,i (Pi −pm)c

(Pi )c + (Kz,i )c
+mp Z

1−φ
Z 1+φ

i (4.5)

with i representing the i th size class of either phytoplankton or zooplankton,

ranging from 1 to R.

Both phytoplankton maximum specific growth rate (µi , [Eq. 4.6]) and half-saturation

constant (Ks) depend on size [Eq. 4.7]. Maximum specific growth rate is then deter-

mined by µi , Ks and size. Zooplankton mortality was parametrized after Record et al.

(2014), with a modified mortality term that is density-dependent with a new parame-

ter, φ. As mentioned earlier, this parameter addresses the intrinsic model behaviour

of competitive exclusion, where φ represents a varying degree of competition (here,

set at 0.5). This parameter allows for coexistence and realistic biodiversity commu-

nity patterns, beyond a simple quadratic function form for zooplankton mortality.

µmaxi = 1.36×ESD0.2
i (4.6)
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Ks = 0.33×ESD0.48
i (4.7)

Rate of phytoplankton population change [Eq. 4.3] is dependent on both phyto-

plankton growth and zooplankton grazing. Grazing rate [Eq. 4.8] was described as a

function of phytoplankton biomass, with constant Kz [Eq. 4.9]. c controls whether

the zooplankton grazing functional response is Holling type II (c = 1) or type III

(c = 2). For this model, I use Holling type III.

gm = 33.96×ESD−0.66 (4.8)

Kz = 17.92×ESD−0.64 (4.9)

Zooplankton population changes over time [Eq. 4.4] are a balance between food

consumption and mortality, mz . Food intake is calculated as the gm,i scaled by growth

efficiency e fixed at 0.32. mz is set at 0.06. For [Eq. 4.5], the changes depend on P

production and recycling via Z metabolism and mortality. The allometric equations

used are derived from a set of experiments from Taniguchi et al. (2014). All parameter

units and values used in the NPZ can be found in Table 4.2.

Both models ran for five years, and I used the R package deSolve (Soetaert et al.,

2010) to solve model equations. Initial conditions for all sizes were Pi = 0.1 and Zi

= 0.01. Different N regimes (n = 20) were used (Nmi n= 1; Nmax = 40) to determine

changes in P biomass under increasing levels of nutrient input. Richness increased

with each model run, from P2Z2 to P20Z20. For each richness level (2 to 20), I ran-

domly drew sizes from an uniform distribution with ten repetitions for each model.

In total, I had 190 simulated communities and their final total values were averaged.

Model replicates were included as random effects in the linear mixed-effects models

used to determine main drivers of productivity.

In addition, to be able to quantify biodiversity effects, I calculated (see section

below) the deviation of expected yield of biomass of a species in a given mixture

treatment when compared to its idealized biomass yield in monoculture (i.e. species

grown alone). In order to do that, I ran the NP and NPZ models based on single in-
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Table 4.2: Nutrient-Phytoplankton-Zooplankton (NPZ) model parameters. Param-
eters and their symbols, unit and range of values for each parameter in the model. Ni-
trogen, phytoplankton and zooplankton parameter values are for initial conditions.

Parameter Symbol Unit Value

Maximum specific phytoplankton growth rate µmax d−1 -
Maximum zooplankton grazing rate gmax d−1 -
Gross growth efficiency of zooplankton e - 0.32
Size-dependent half-saturation constant K s µM N -
Activation energy for phytoplankton growth Ep - 0.32
Size-dependent half-saturation grazing constant K z µM N -
Activation energy for zooplankton growt h Ez - 0.65
Minimum phytoplankton concentration pm µM N 0.1
Zooplankton mortality mz d−1 0.06
Degree of competition φ - 0.5
Nitrogen N µM 1-40
Phytoplankton P µM N 0.1
Zooplankton Z µM N 0.01

dividual size classes of phytoplankton used here, to simulate monocultures (species

grown alone). After, total primary productivity (PP) could then be calculated as the

sum of the product of phytoplankton monoculture biomass and growth rate (µmax)

for each nutrient regime, richness level, model time step and replicate. Additionally,

CWMsi ze , σ2 and evenness were also estimated after simulation run.

4.2.2 Complementarity, selection and biodiversity effects

Complementarity (CE), selection (SE) and total biodiversity effects (TBE) for phy-

toplankton and zooplankton communities was computed following (Ghedini et al.,

2022; Loreau et al., 2001). Deviation of the expected yield of biomass of a species i in

a mixture (here, P2:20Z2:20) at any given time can be calculated as [Eq. 4.10]:

∆RYi = Yi

Mi
− Yii ni

totYi ni
(4.10)

where Yi and Mi is the observed biomass of species i in the mixture and mono-

culture, respectively, at any point in time, dayx . Yii ni is the initial biomass (day0) of
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species i in the mixture and finally, totYi ni is the total biomass yield of the mixture.

With that, I can quantify CE as S×∆RY ×M̄ , where S is the number of species present

in the mixture (n = 20), ∆RY is the average change in biomass yield for all species in

the mixture, and M̄ , as the average monoculture biomass across all species present

also in the mixture. Furthermore, SE can then be calculated as the covariance (Cov)

between the biomass yield of a given species in monoculture and its relative yield in

mixture times S; S ×Cov(∆RY , M). The sum of CE and SE effects results in TBE.

4.2.3 Data Analyses

To examine the relationship between diversity, environment and productivity in

the simulated communities, I used linear mixed-effects models (LMMs) [Eq. 4.11]

with richness and nutrient regimes as predictors, as well as how they interact to drive

productivity. I performed three-way analyses of variance (ANOVA) on LMMs outputs

to determine the contribution of each predictor to the overall response, to account

for the interaction term. Models were specified by the general form:

P =β0 +β1 ·Nutrienti +β2 ·Richnessi +β3 · (Nutrienti ∗Richnessi )+γRepi
+ε (4.11)

Where P is productivity, γRepi
is the random effect of model replicates (Rep) and

ε is the error term (γRepi
∼ N (µ,σ2)). Productivity proxies in the simulations were

biomass and primary productivity (PP). For each model, I inspected the intraclass

correlation coefficient (ICC) of random effects, in order to determine the amount of

variance explained in the response due to this term [Eq. 4.12].

ICC =
σ2
γRep

σ2
γRep

+σ2
Residual

(4.12)

All statistical analyses were conducted in R (v4.2.1), using the lme4 package for

model fitting and the car package for ANOVA. Significance thresholds were set at
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p<0.05.

4.3 Results

4.3.1 NP model

In the absence of zooplankton, total phytoplankton biomass and primary pro-

ductivity (PP) increased with increasing richness. Both biomass and PP increased

primarily with community weighted mean size (CWMsi ze ), followed by richness, and

decreased with increasing evenness and size diversity after simulation run (Figs. 4.1,

4.2, 4.3, 4.4). I use both biomass and PP as proxies for productivity because they

relate to different aspects of community-level function, and therefore may have dif-

ferent drivers. Although richness differences had a small effect at very low nutrient

levels, highest values of biomass and PP were observed at maximum richness values

when nutrient availability was greater (Figs. 4.1, 4.3). Productivity levels in the ab-

sence of predators was mainly driven by changes in richness and to a lesser extent,

by increased nutrient (Fig. 4.4), suggesting both richness and nutrient effects were

not independent (Table 4.3).

Total biodiversity effects (TBE) on phytoplankton productivity were positive and

largely driven by complementarity effects (CE) (Figs. 4.5, 4.10, left panels). CE was

mainly driven by changes in richness levels, with species-rich communities increas-

ing positive complementarity. Richness effects were not independent from nutrient

input levels, with increasing nutrient leading to an increase in response estimates at

certain richness levels (Figs. 4.5, 4.10, left panels). Selection effects (SE) were mainly

driven by nutrient (Figs. 4.5, 4.10), with increasing nutrient associated with a de-

crease in SE. High nutrient - high richness levels displayed the smallest selection val-

ues. In this case, nutrient and richness effects were independent of each other (Table

4.3).

In all cases, variability introduced by simulation repetitions was negligible and
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Figure 4.1: Phytoplankton biomass across richness and nutrient levels in a NP
model. Average phytoplankton biomass and associated standard error across rich-
ness (R = 20) and nutrient (N1: Nmi n = 1, N20: Nmax = 40) levels.

always smaller than model residual variance (Table 4.4).

4.3.2 NPZ model

In the presence of zooplankton, the main driver of total phytoplankton produc-

tivity (biomass and primary productivity; PP) was nutrients, with increasing nutri-

ents leading to increased productivity (Fig. 4.4, right panels). The degree to which

nutrient and richness changes jointly affect productivity was different depending on

productivity proxy. Phytoplankton PP increased mainly with richness, followed by

increasing CWMsi ze and evenness having a smaller effect. For biomass, richness was

the most important predictor, followed by CWMsi ze and decreased with evenness

(Fig. 4.7). However, the coupled nutrient and richness effect was much stronger, but

only at high nutrient levels (Fig. 4.8). In particular, for biomass, in nutrient-rich en-

79



Chapter 4

2.5

5.0

7.5

10.0

12.5

2.8 3.0 3.2 3.4

B
io

m
as

s

10 20 30 40
Nutrient Regime

A

2.5

5.0

7.5

10.0

12.5

0.50 0.75 1.00 1.25 1.50

10 20 30 40
Nutrient Regime

B

2.5

5.0

7.5

10.0

12.5

0.980 0.985 0.990 0.995 1.000

10 20 30 40
Nutrient Regime

C

0

25

50

75

2.8 3.0 3.2 3.4
CWM Size

P
rim

ar
y 

P
ro

d
uc

tiv
ity

10 20 30 40
Nutrient Regime

D

0

25

50

75

0.50 0.75 1.00 1.25 1.50
Size Diversity

10 20 30 40
Nutrient Regime

E

0

25

50

75

0.980 0.985 0.990 0.995 1.000
Evenness

10 20 30 40
Nutrient Regime

F

Figure 4.2: Phytoplankton biomass and primary productivity changes over differ-
ent diversity metrics in a NP model after simulation run. Changes in productivity
levels related to changes in CWMsi ze (A, D), size diversity (B, E) and evenness (C, F)
across several nutrient regimes.

Table 4.3: Summary of three-way analyses of variance (ANOVA) of a linear mixed-
effects model assessing the biodiversity effects on phytoplankton mixtures in a NP
model. Nutrient regime and richness as independent factors directly affecting total
phytoplankton biomass and their interaction. Df: degrees of freedom; SS: sum of
squares; MS: mean squares; F-value: F statistic; η2

p : partial eta-squared as a measure
of effect size. Numbers in bold represent statistical significance, p-value <0.05 for
F-value and 95% confidence interval does not include zero for η2

p .
Total Biomass, µM N Complementarity, N ×∆RY × M̄ Selection, N ×Cov(∆RY , M)

Effect Df SS MS F-value η2
p SS MS F-value η2

p SS MS F-value η2
p

Nutrient Regime 19 12212 642.8 27460.28 0.99 7639 402.04 389.9 0.68 0.79 0.04 172.1 0.49
Richness 18 15403 855.7 36559.49 0.99 14894 827.5 802.7 0.81 0.33 0.02 76.6 0.29

Nutrient:Richness 342 1439 4.2 179.76 0.95 1418 4.1 4.0 0.29 0.07 0.0002 0.87 0.08

Total Primary Production, µM N d−1 Complementarity, N ×∆RY × M̄ Selection, N ×Cov(∆RY , M)

Effect Df SS MS F-value η2
p SS MS F-value η2

p SS MS F-value η2
p

Nutrient Regime 19 241416 12706 3269.6 0.95 24278 1277.76 171.1 0.49 31.72 1.66 106.2 0.37
Richness 18 2123348 117964 30354.9 0.99 46411 2578.38 1345.3 0.65 19.6 1.08 69.2 0.27

Nutrient:Richness 342 62020 181 46.6 0.82 4613 13.49 1.8 0.15 3.1 0.009 0.5 0.05
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Figure 4.3: Phytoplankton primary productivity across richness and nutrient levels
in a NP model. Average phytoplankton primary productivity and associated standard
error across richness (R = 20) and nutrient (N1: Nmi n = 1, N20: Nmax = 40) levels.

vironments, richness had little to no effect on the response (Fig. 4.6). Size diversity

(σ2) was highly correlated with CWMsi ze , and therefore, removed from analyses. Still,

I ran separate linear models with both size diversity and CWMsi ze as predictors, but

models with CWMsi ze as predictor explained more variance in the data.

Total biodiversity effects (TBE) on phytoplankton productivity in the presence of

zooplankton were more variable and weaker, ranging from negative to positive val-

ues. For both productivity proxies, selection effects (SE) was the main driver of TBE.

CE were mostly positive and solely driven by nutrient for both productivity proxies,

with richness playing a negligible effect at high nutrient levels. Selection effects (SE)

were negative and driven by nutrient. When biomass was the proxy, nutrient alone

drove the diversity effects (Table 4.5). For PP, nutrient was the most important driver

in these phytoplankton communities. Yet, nutrient interaction with richness at high
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Figure 4.4: Total biomass and primary production changes across a richness and a
nutrient gradient. Phytoplankton total biomass (top figures) and primary produc-
tion (bottom figures) for NP and NPZ models, respectively.

nutrient levels was also important, leading to a decrease of the response at high rich-

ness levels (Table 4.5).

For zooplankton communities, biomass was mainly driven by nutrient, with rich-

ness contributing at high nutrient levels only (Fig. 4.11, upper left panel). At inter-

mediate to low nutrient levels, richness had no effect by itself. Rather, with increas-

ing nutrient, biomass saturated at higher richness levels (Fig. 4.9). When looking at

community-level metrics, zooplankton biomass was driven primarily by CWMsi ze ,

followed by richness, which had a negative effect on overall productivity, size diver-

sity and finally, evenness. TBE in zooplankton communities was driven by comple-

mentarity, which was in turn mainly driven by nutrient input. CE increased with in-

creasing nutrient, particularly at high nutrient levels where richness came into play
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Table 4.4: Variance explained by random effects relative to total variance in mixed-
effects models. Intraclass correlation coefficient (ICC) values suggest minimal vari-
ance explained by model repetitions as random effects in the models. Bio: Biomass,
PP: primary productivity, CEBi o , SEBi o : complementarity and selection effects based
on biomass, resp. CEPP , SEPP : complementarity and selection effects based on pri-
mary productivity, resp.

Model Response ICC

NP Bio 0.02
NPZ Biophy 0.01
NPZ Biozoo 0.01
NP PP 0.02

NPZ PP 0.01
NP CEBi o 0.02

NPZ CEBi ophy 0.01
NPZ CEBi ozoo 0.01
NP SEBi o 0.05

NPZ SEBi ophy 0.01
NPZ SEBi ozoo 0.01
NP CEPP 0.03

NPZ CEPP 0.01
NP SEPP 0.05

NPZ SEPP 0.01

to influence diversity effects together. SE decreased with increasing nutrient alone,

with no effect mediated by richness (Table 4.6).

Model variance explained by replicates was also negligible for NPZ models, sug-

gesting model results are consistent (Table 4.4).

4.4 Discussion

In this study, biodiversity effects on productivity were largely driven by comple-

mentarity in the absence of zooplankton. Selection exerted a larger influence when

zooplankton was present, partially supporting H2 and H3. Strongest effects were

observed at higher nutrient levels, with zooplankton presence reducing the role of

richness in driving productivity, particularly when using biomass as proxy. These

findings highlight the importance of nutrient conditions in mediating biodiversity
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Figure 4.5: Biodiversity effects on total phytoplankton biomass in a NP and NPZ
model. Total biodiversity effects (TBE), complementarity effects (CE) and selection
effects (SE) in a NP (left panel) and NPZ (right panel) model, respectively.

effects on ecosystem function, with richness playing a secondary role that is more

significant only under favourable nutrient conditions, supporting H1 and rejecting

H0.

This study highlights the dominant role of nutrient availability in driving pro-

ductivity and biodiversity effects, with richness influencing productivity primarily

at intermediate to high nutrient levels and in the absence of zooplankton. While
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Figure 4.6: Phytoplankton biomass across richness and nutrient levels in a NPZ
model. Average phytoplankton biomass and associated standard error across rich-
ness (R = 20) and nutrient (N1: Nmi n = 1, N20: Nmax = 40) levels.

Table 4.5: Summary of three-way analyses of variance (ANOVA) on a linear mixed-
effects model assessing the biodiversity effects on phytoplankton mixtures in a
NPZ-model. Nutrient regime and richness as independent factors directly affecting
total phytoplankton biomass and their interaction. Df: degrees of freedom; SS: sum
of squares; MS: mean squares; F-value: F statistic; η2

p : partial eta-squared as a mea-
sure of effect size. Numbers in bold represent statistical significance, p-value <0.05
for F-value and 95% confidence interval does not include zero for η2

p .
Total Biomass, µM N Complementarity, N ×∆RY × M̄ Selection, N ×Cov(∆RY , M)

Effect Df SS MS F-value η2
p SS MS F-value η2

p SS MS F-value η2
p

Nutrient Regime 19 171847 9045 2194.8*** 0.92 6268091 329900 111.3*** 0.38 8066608 424558 131.8*** 0.42
Richness 18 29729 1652 400.7*** 0.68 203073 11282 3.8*** 0.02 61789 3433 1.06 <0.01

Nutrient:Richness 342 5996 18 4.25*** 0.30 658613 1926 0.64 0.06 649863 1900 0.58 0.06

Total Primary Production, µM N d−1 Complementarity, N ×∆RY × M̄ Selection, N ×Cov(∆RY , M)

Effect Df SS MS F-value η2
p SS MS F-value η2

p SS MS F-value η2
p

Nutrient Regime 19 43919369 2311546 1434.7 0.89 24982521 1314870 100.7 0.36 32932500 1733289 114.7 0.39
Richness 18 10948548 608253 377.5 0.67 615514 34195 2.6 0.01 340240 18902 1.2 0.01

Nutrient:Richness 342 13129540 38390 23.8 0.70 2769016 8097 0.6 0.06 3139092 9179 0.6 0.06
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Figure 4.7: Phytoplankton biomass and primary productivity changes over differ-
ent diversity metrics in a NPZ model after simulation run. Changes in productivity
levels related to changes in CWMsi ze (A, D), size diversity (B, E) and evenness (C, F)
across several nutrient regimes.

Table 4.6: Summary of three-way analyses of variance (ANOVA) on a linear mixed-
effects model assessing the biodiversity effects on zooplankton mixtures in a NPZ-
model. Nutrient regime and richness as independent factors directly affecting total
phytoplankton biomass and their interaction. Df: degrees of freedom; SS: sum of
squares; MS: mean squares; F-value: F statistic; η2

p : partial eta-squared as a measure
of effect size. Numbers in bold represent statistical significance, p-value <0.05 for
F-value and 95% confidence interval does not include zero for η2

p .
Total Biomass, µM N Complementarity, N ×∆RY × M̄ Selection, N ×Cov(∆RY , M)

Effect Df SS MS F-value η2
p SS MS F-value η2

p SS MS F-value η2
p

Nutrient Regime 19 82125 4322.4 14591.3 0.99 95169 5008.9 220.9 0.55 22816.0 1200.8 350.1 0.66
Richness 18 2915 162.0 546.7 0.74 5089 282.7 12.5 0.06 147.3 8.2 2.4 0.01

Nutrient:Richness 342 5697 16.7 56.2 0.85 11073 32.4 1.4 0.13 638 1.9 0.5 0.05
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Figure 4.8: Phytoplankton primary productivity across richness and nutrient levels
in a NPZ model. Average phytoplankton primary productivity and associated stan-
dard error across richness (R = 20) and nutrient (N1: Nmi n = 1, N20: Nmax = 40) levels.

richness can enhance productivity through resource partitioning, its effects are of-

ten overshadowed by environmental factors and community structure, particularly

in natural systems. Size-based metrics were stronger predictors of productivity than

richness alone. The presence of zooplankton introduced top-down controls, alter-

ing dominance patterns and leading to higher overall productivity but a unimodal

relationship between zooplankton richness and biomass. Total biodiversity effects

were generally positive but varied, with negative selection effects observed in high-

nutrient, low-richness communities likely due to weaker competitors dominating.

The results suggest that trophic interactions mediate biodiversity-ecosystem func-

tion relationships by joint environmental and diversity effects, emphasising the need

to consider predator-prey dynamics in understanding productivity patterns in ma-

rine ecosystems.
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Figure 4.9: Zooplankton biomass across richness and nutrient levels in a NPZ
model. Average zooplankton biomass and associated standard error across richness
(R = 20) and nutrient (N1: Nmi n = 1, N20: Nmax = 40) levels.

4.4.1 Environment drives productivity (most of the time)

Nutrient levels were consistently the most important driver of productivity, and

consequently, biodiversity effects in the models. Richness is often regarded as the

main driver of productivity as per biodiversity and ecosystem (BEF) theory (Loreau

and Hector, 2001; Tilman et al., 2014). Yet, the role of resource availability in sup-

porting productivity has been observed in both natural and experimental conditions

(Lehtinen et al., 2017). It is notoriously difficult to account for the environment in

non-experimental conditions (Fridley, 2002). Here, particularly at low nutrient levels,

environmental limitations outweighed richness effects. Richness effects per se were

the main driver of productivity only in the absence of zooplankton. This suggests that

the reported variable effect of richness could be a consequence of a narrow focus on
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Figure 4.10: Biodiversity effects on total phytoplankton primary production in a
NP and NPZ model. Total biodiversity effects (TBE), complementarity effects (CE)
and selection effects (SE) in a NP (left panel) and NPZ (right panel) model, respec-
tively.

richness itself, rather than taking the environment into account when analysing BEF

relationships (Hillebrand and Matthiessen, 2009). Particularly resource availability

(Fridley, 2002) and other diversity metrics (i.e. evenness, Hillebrand et al., 2008).

The interaction between diversity and environmental factors shaped productivity

patterns in complex ways, with richness’ role in driving productivity being strongest

when nutrient levels were intermediate or high. In the absence of zooplankton, rich-

ness had greater effect on productivity. While increasing richness is expected to cre-

ate opportunities for efficient resource use based on species-specific requirements,

nutrient input seems to cap this potential (Cardinale et al., 2009; Hillebrand and
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Figure 4.11: Zooplankton biomass and diversity effects in a NPZ model. Total zoo-
plankton biomass, total biodiversity effects (TBE), complementarity effects (CE) and
selection effects (SE) on zooplankton biomass.

Matthiessen, 2009). While richness differences had minimal impact at low nutrient

levels, productivity levels reached their highest values at maximum richness when

nutrient availability was greater. Fridley (2002) reported a similar effect, with re-

source availability consistently driving productivity in experimental plant mixtures,

and richness’ effects increasing with increased resource (i.e. soil fertility). When

conditions are favourable, diverse communities are expected to be able to partition

resources better leading to an increase of overall productivity via complementarity

(Tilman, 2001). Resource partitioning then allows diverse communities to exploit a

broader range of ecological niches, increasing community-level productivity. How-

ever, these diversity effects may be masked in natural habitats, due to confounding

factors such as the environment, species identity and even predation, which in turn,

would explain variability reported in BEF relationships (Loreau and Hector, 2001;
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Worm et al., 2002).

When going beyond richness, metrics that related to community size structure

were among the best predictors of overall function, similar to what was observed in

Chapter 3. For phytoplankton, CWMsi ze was the best predictor of biomass and PP

in NP models, and richness was the best one in NPZ models, when nutrient input

was not accounted for. This highlights the importance of a trait-based approach,

particularly reflecting size structure, with dominance of large-sized cells leading to

higher biomass accumulation and likely reducing richness effects (Acevedo-Trejos et

al., 2018; Cadotte, 2017; Emery et al., 2021). Richness effects in NPZ models were

stronger, possibly due to increased complexity in the presence of predators. The

unimodal pattern of zooplankton biomass and richness could be a reflection of less

available prey at high nutrient levels. This means that at high nutrient levels prey

biomass may decouple from predators’ biomass, leading to prey limitation and con-

straining zooplankton productivity. Contrarily for zooplankton, richness had a nega-

tive effect on productivity and evenness a positive effect, but CWMsi ze remained the

best predictor.

4.4.2 Predator’s presence changes productivity patterns

Top-down control by zooplankton introduces an additional layer of complexity

to phytoplankton community dynamics, altering dominance patterns and thereby

modulating productivity. Generally in the models, community productivity was higher

in the presence of zooplankton, increasing linearly with nutrient, but zooplankton

biomass was an unimodal function of richness. This aligns well with findings re-

ported by Thébault and Loreau (2003): a model where all species coexist and have

a species-specific predator, prey biomass increases linearly with diversity. Whereas

predator’s biomass may exhibit an unimodal relationship with diversity. However, in

the models, increasing predator diversity did not lead to a decrease of phytoplankton

biomass, as previously suggested (Duffy, 2003). Here, predator mortality was modi-

fied in order to allow prey coexistence, which could have been responsible for stabi-

91



Chapter 4

lizing phytoplankton biomass variations, as seen by relatively high evenness values.

This study revealed that total biodiversity effects (TBE) were predominantly pos-

itive, aligning with theoretical predictions (Hooper et al., 2005; Loreau and Hector,

2001; Tilman, 2001). However, variability in TBE emerged, particularly in the pres-

ence of zooplankton, where low-richness, high-nutrient communities exhibited neg-

ative TBE due to strong negative selection effects (SE). Cermeño et al. (2016) argues

that positive selection effects drives marine productivity due to the dynamic envi-

ronmental structure in the oceans, constantly changing the resource landscape and

consequently, community structure by favoring species best adapted to current con-

ditions. In NPZ models, SE played a stronger role in shaping community net biodi-

versity effect, and consequently, productivity. However, negative SE suggest the com-

munity was dominated by weak competitors, i.e. diverse communities have lower

biomass than in monocultures of their component species. I argue that selection

here is driven by top-down controls, rather than direct selection of strong phyto-

plankton competitors, as evenness was consistently high at high nutrient levels and

the models do not have extinction.

Extinctions are never random in nature, as the environment actively selects opti-

mal traits for current conditions (Hillebrand et al., 2008). At low nutrient scenarios,

the phytoplankton community is dominated by specialists and likely experiences en-

hanced predation, resulting in a small community-level productivity. With increas-

ing richness, new species are added and phytoplankton is able to accumulate more

biomass (i.e. larger species) and to decouple from predation pressure. But nutri-

ent still caps overall productivity (Cardinale et al., 2011; Fox, 2004). This can lead

to changes in dominance in the community that reflect this transient selection, as

opposed to richness alone (Hillebrand et al., 2008). In models where all species coex-

isted, weak competitors were never removed from the community, leading to overall

small contributions to community-level productivity, driven primarily by nutrient.

This was particularly enhanced in the presence of zooplankton, as weak competitors

were safe from predation at high nutrient-low richness levels. These results illus-
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trate how trophic interactions complicate BEF relationships by intertwining environ-

mental and diversity effects in driving productivity (Duffy et al., 2017; Thébault and

Loreau, 2003). Further, top-down control in aquatic environments are stronger than

in terrestrial ecosystems, due to edibility of phytoplankton (Leibold, 1989; Tessier

and Woodruff, 2002) and rates of predation (Shurin et al., 2002; D. R. Strong, 1992)

and biomass accumulation (Cebrian, 1999). These findings contribute to the under-

standing of variability observed in natural systems, where predator-prey dynamics

are often unaccounted for in BEF studies, and may give us a better direction when

investigating what drives productivity.

4.5 Conclusions

In the current study, nutrient input was consistently the main driver of productiv-

ity levels in phytoplankton and zooplankton communities in both models. Nutrient

availability has been recognized to be a significant driver of community productiv-

ity, both directly by stimulating biomass accumulation and indirectly, by modifying

competitive interactions, species dominance, and richness effects (Cardinale et al.,

2011; Hodapp et al., 2015; Lehtinen et al., 2017; Tilman et al., 1997a; van der Plas,

2019).

Biodiversity effects were context-dependent, with species richness playing a sec-

ondary role. Richness effects were mostly important in the absence of predators

and at intermediate to high nutrient levels, which suggests that indeed diverse com-

munities lead to higher productivity through niche partitioning and resource use

efficiency (Hooper et al., 2005; Loreau, 2010). These findings support the broader

biodiversity-ecosystem function (BEF) framework, particularly in planktonic systems,

where trait-based differences among species determine their ability to exploit avail-

able resources effectively (Cadotte, 2017; Litchman et al., 2010). Further, the interac-

tion between richness and nutrient levels suggests that important community prop-

erties, i.e. size structure, are being filtered by the environment via indirect effects.
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Community size structure emerged as the key driver of phytoplankton produc-

tivity, indicating that functional diversity rather than species richness per se is key to

understanding productivity in marine systems. Cell size is a ‘master-trait’: size-based

interactions play a fundamental role in shaping community dynamics, as larger species

often dominate under high-nutrient conditions, while smaller species can thrive in

resource-limited environments (Acevedo-Trejos et al., 2015; Acevedo-Trejos et al.,

2018; Cloern, 2018). These findings highlight the need to move beyond species counts

and consider trait-based approaches when assessing BEF relationships in planktonic

ecosystems (Cadotte et al., 2009; Emery et al., 2021; Gamfeldt and Hillebrand, 2008;

Le Bagousse-Pinguet et al., 2019).

The presence of zooplankton altered biodiversity and productivity relationships.

Specifically, zooplankton reduced the role of richness and shifted the dominant mech-

anism from complementarity to selection. In the absence of zooplankton, productiv-

ity was primarily driven by complementarity effects, with richness increasing biomass

and primary productivity, particularly at high nutrient levels (Isbell et al., 2018). Con-

trarily, when predators were present, selection effects were strong and negative, and

richness played a minor role. This shift suggests that top-down control can override

biodiversity effects on productivity, as zooplankton preferentially consume certain

size classes, reducing competitive interactions among phytoplankton species and al-

tering community composition (Shurin et al., 2002).

These results contribute to a growing body of evidence that the strength and di-

rection of BEF relationships in aquatic ecosystems are modulated by environmental

conditions and trophic interactions (Gamfeldt et al., 2015; Lehtinen et al., 2017), not

by a single diversity metric.

4.6 Limitations and future steps

Although I examine the role of nutrient levels, other key environmental drivers

(e.g., temperature changes, light limitation, or physical forcing) are not explicitly var-
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ied in the models. These factors have been reported to influence productivity lev-

els, particularly in dynamic high nutrient systems (Chen, 2022; Cloern, 1999; Hille-

brand and Matthiessen, 2009). Additionally, this study used a controlled modelling

framework, which does not fully capture the full complexity of real-world plankton

communities, such as seasonal succession (Sommer et al., 2012), species dispersal

(Leibold et al., 2004), or disturbance regimes (Hillebrand et al., 2020).

While I analysed BEF relationships in more than one trophic level, parametrisa-

tion of predation was rather simple, with a strict predator-prey relationship based

on allometric scaling. This was done to keep model complexity low, as I wanted

to see the effects of two main axis alone: nutrient and richness. In natural sys-

tems, zooplankton have flexible feeding preferences, including omnivory and selec-

tive grazing, which in turn could alter productivity levels (Kiørboe, 2011; Steinberg

and Landry, 2017). Mortality was introduced in a way where no extinction was al-

lowed, to keep competitive exclusion from taking place (Record et al., 2014), creating

highly idealised conditions.

The interaction between nutrient and richness levels highlights the role of envi-

ronmental control on community diversity and ultimately, in the variability observed

in BEF relationships (Hillebrand and Matthiessen, 2009). Biodiversity effects are of-

ten linked to mechanisms such as complementarity and selection, still, the strength

and direction of these effects are highly context-dependent, varying with nutrient

availability and the presence of higher trophic levels.

In the final chapter of this thesis, I employ a structural equation model (SEM)

framework to evaluate the direct and indirect effects of the environment and com-

munity diversity in jointly driving productivity levels. SEM provides a robust frame-

work for quantifying direct and indirect pathways linking environmental drivers (e.g.,

nutrient levels, temperature, light limitation) to community diversity and ultimately

phytoplankton productivity. Unlike simpler statistical approaches, SEM allows for

simultaneous estimation of multiple causal relationships, incorporating both obser-

vational data and theoretical expectations to refine our understanding of ecosystem

95



Chapter 4

functioning.
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Phytoplankton diversity and

ecosystem function: a structural

equation modelling approach

5.1 A brief history of Structural Equation Models

The effects of the environment and diversity on ecosystem productivity are dif-

ficult to disentangle. Multivariate approaches, such as structural equation models

(SEM), can help us understand direct and indirect effects of community properties

on ecosystem function as they offer a good scientific framework to investigate causal-

ity in biological systems.

SEMs are a multivariate quantitative modelling approach and their usage has

gained increased support in ecological investigations of causal relationships (Grace

et al., 2010; Hodapp et al., 2015). One of SEMs strengths lies on their ability to model

and estimate direct and indirect effects between variables, going beyond correlations

(Bollen, 1989; Eisenhauer et al., 2015). Determining true causality is challenging,

particularly in complex biological systems. SEMs provide a strong tool for inferring

causality in observational ecological data, unlike other multivariate methods (e.g.
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MANOVA, CCA, multiple regression) that are focused on net effects (Grace, 2006).

Modern SEMs combine two statistical methods that can be traced back to the analy-

ses of path relations in evolutionary genetics (Wright, 1920) and factor analyses (Gal-

ton, 1889), and are attributed to the works of Karl Jöreskog in the 70s, work that in-

corporated maximum likelihood methods and covariance structure of the data for

model estimation (Jöreskog, 1969, 1970).

SEMs are represented via path diagrams, where nodes represent variables and

arrows represent the relationship between them. For instance, a single arrow repre-

sents a causal relationship between the independent and dependent variables, also

known in SEM language as exogenous and endogenous variables, respectively. A key

aspect of SEMs is the ability to estimate unmeasured influences and/or causes, also

known as latent variables. Latent variables can be defined as those that indicate a

cause/effect, share common indicators, but are not available in your data. The con-

cept of happiness is an example of a latent construct, i.e. there is no direct way to

measure happiness, but we can indirectly estimate its value from a number of cor-

related measures. First report of latent variable estimation using factor analyses are

attributed to Pearson and Lee (1903). Another key aspect is the use of SEMs to esti-

mate indirect effects between two variables via a mediator. This allows us to partition

effects between variables (i.e. environmental effects), helping disentangle complex

interactions and mechanisms that influence the outcome of interest (Gunzler et al.,

2013).

The causal backbone of modern SEM comes from the works of Pearl (2003). Pearl

(2003) provided the causal framework that ensures the hypotheses tested in the model

have causal mechanisms and not just correlations. A causal relationship of a struc-

tural equation can be supported if it can be assumed that a sufficient manipulation of

x would result in a subsequent change in the values of y , independent of influences

of any other factors. Through the use of latent variables, graphical models and coun-

terfactual thinking, modern SEMs couple both approaches of robust model estima-

tion and causal interpretation. Despite its many advantages, SEMs are mostly used
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in social, medical and psychological sciences. Still, the use of SEMs for understand-

ing natural systems is growing steadily, with reports of nearly 260 ecological studies

using this approach (Eisenhauer et al., 2015; Fan et al., 2016; Grace et al., 2010).

5.2 Structural Equation Models in aquatic ecology

In aquatic ecology, the SEM framework has been applied in a myriad of research

topics. A few examples range from understanding phytoplankton diversity patterns

and community structure (Pan et al., 2022; Stomp et al., 2011), to trait variation (Bre-

ton et al., 2017; Heinrichs et al., 2024), food-web dynamics (Rogers et al., 2024) and

even conservation efforts (Santibáñez-Andrade et al., 2015). Particularly, employing

SEMs to understand the role of biodiversity on ecosystem function is quite useful as

researchers are able to determine the effect of the environment both as driver of func-

tion, as well as mediator (Nhu Y et al., 2019). For instance, Lewandowska et al. (2016)

built on the framework of Cardinale et al. (2009) and used a coupled meta-analyses

and SEM approach, observing that productivity was largely driven by resource avail-

ability, and that the effect of richness varied with habitat type. Studies have also fo-

cused on different dimensions of diversity, e.g. evenness and phylogenetic diver-

sity, showing that richness itself is not a sufficient metric to understand how diversity

drives productivity (Flynn et al., 2011; Lehtinen et al., 2017; Lewandowska et al., 2016;

Virta et al., 2019).

Determining causality, finding generalizations and understanding the complex

network of ecological systems is key to forecasting ecosystem health in a changing

world. As Grace et al. (2014) explored in his rebuttal to Pierce (2014), multivariate

approaches are the only framework capable of yielding results based on quantitative

analyses of causal relationships, not merely associative ones based on two variables

alone. Going beyond the simplistic nature of bivariate analyses, we can look into

the underlying mechanisms leading to relationships observed, take the whole system

into consideration and shine light on new avenues of hypotheses, leading to scientific
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progress (Grace et al., 2014). This forward look into plankton ecology fits well with

the biodiversity and ecosystem function field that built on the classic productivity-

diversity relationship view (PDR), ultimately leading to a mechanistic understanding

of what drives ecosystem function in aquatic ecosystems.

This chapter employs a SEM framework to investigate how diversity and the en-

vironment influence biomass production in phytoplankton and zooplankton com-

munities. By incorporating size structure—derived from mean size, evenness, and

size diversity, the model used here aims to clarify the contributions of species rich-

ness, size-based traits, dominance and nutrient dynamics to ecosystem productivity.

This approach provides new insights into the functional roles of biodiversity and how

shifts in community composition may impact ecosystem productivity. I will test the

following hypotheses:

• H1: Evenness directly affects productivity reflecting phytoplankton dominance

patterns.

• H2: Community size structure affects productivity not richness.

• H3: Environmental filtering drives productivity, rather than diversity.

5.3 Methods

5.3.1 Phytoplankton, environmental and ecosystem function data

I used two sets of data in this study: i) the San Francisco Bay (SFB) dataset and ii)

Nutrient-Phytoplankton-Zooplankton (NPZ) simulation results from Chapter 4. The

SFB dataset, spanning from 2014 to 2020, offers high-resolution, long-term observa-

tions of naturally assembled phytoplankton communities. It includes species com-

position, biovolume, and cell size measurements, alongside key abiotic parameters

such as temperature, salinity, and nutrients. Diversity parameters that relate to com-

munity size structure, trait and dominance patterns (e.g. size diversity, mean size,

100



Chapter 5

evenness) were calculated based on available information on the dataset. For details

on data collection and source, transformation and diversity metrics calculations, re-

fer to Chapter 2. For (ii), only two axis of variation were included in the model: nu-

trient input and richness levels. Using simulation results as input for a structural

equation model, I was able to test causal hypotheses about phytoplankton dynam-

ics under controlled conditions, complementing the observational SFB dataset by

isolating specific drivers of productivity. The NPZ model simulated diverse commu-

nities by varying size classes of phytoplankton and zooplankton, representing key

functional traits influencing ecosystem dynamics. For more details on NPZ model

specification, refer to Chapter 4. Since the relationships embedded in the simulation

framework are known, I can then test whether SEM correctly recovers the hypothe-

sised causal links. This allows us to evaluate the model ability to infer the underlying

processes from observational data.

5.3.2 Structural Equation Model: setup and analyses

Models with different productivity proxies (e.g. biomass, primary productivity

(PP), resource use efficiency (RUE)) were evaluated separately. Assumptions lie on

the multivariate nature of productivity being jointly driven by diversity and environ-

mental factors. I was particularly interested in what aspects of diversity (e.g. species

richness, evenness, size diversity), environmental factors (e.g. nutrient, abiotic fac-

tors, seasonality) and trait (i.e. mean size) drive ecosystem function. I used the pack-

age lavaan v0.6-17 (RStudio v4.2.1) to assess the causal relationships driving phyto-

plankton biomass accumulation, RUE and PP. Prior to model fitting, I used the rela-

tionships between diversity and ecosystem function observed in Chapters 3 and 4 to

inform causal assumptions.

A SEM is composed of two parts, a measurement model that relates to the latent

constructs; and the structural model, that via path analyses evaluates all hypotheti-

cal relationships among variables. Observed variables are represented by rectangles,

with arrows between them relating to the direction of effect between them (Fig. 5.1).
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In SEM, we evaluate a set of structural equations to model multivariate relationships

(Grace, 2006). In Fig. 5.1, we have the following set of equations:

y1 =α1 +γ11x1 +ζ1 (5.1)

y2 =α2 +β21 y1 +γ21x1 +ζ2 (5.2)

y2 =α3 +β32 y2 +γ31x1 +ζ3 (5.3)

Where y1−3 are endogenous (dependent) and x1 are exogenous (independent)

variables, β represents the effect of endogenous variables on other endogenous vari-

ables, γ represents the effect of exogenous variables on endogenous ones. α and ζ

are the slope and error terms (Eqs. 5.1, 5.2, 5.3). Error terms are assumed to be in-

dependent and normally distributed. However, where necessary, I specified residual

error covariances to account for shared unmeasured influences between variables.

5.3.3 Model specification, evaluation and selection

The SEM construction process is heavily dependent on a priori knowledge of

the relationships under investigation, as such, both results from previous chapters

and theoretical expectations between variables were used to inform the hypotheses

and evaluate the models (Grace et al., 2014). Each model consisted of a productivity

proxy as the main response variable, with several direct and indirect causal predic-

tors, where each predictor also had its own series of direct and indirect predictors.

This is known as the structural model. Indirect effects were estimated as the product

of two direct pathways (Fig. 5.1).

For each productivity proxy used (e.g. biomass, Chl a and RUE), I ran and anal-

ysed models that hypothesized causal pathways between exogenous (predictors) and

endogenous (response) variables (Table 5.1). Models of good-fit where those in which

the predicted covariance structure of the selected model did not significantly differ

from the observed covariance structure of the data. I used a base model for each
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Table 5.1: Rationale behind hypothesised causal relationships in models. Here, I
summarise the theoretical reasoning behind the assumed paths between productiv-
ity (Biomass, RUE, Chl a), size structure (CWMsi ze , σ2), diversity (richness, evenness)
and the environment (temporal scale, DIN, phosphate, silicate, PAR, salinity, temper-
ature).

Causal Pathway Rationale References

Diversity → Produc-
tivity

As per Biodiversity-Ecosystem Function (BEF),
richness is expected to lead to a positive effect on
productivity. Evenness has been reported to have
a negative effect on productivity, reflecting domi-
nance patterns in community structure.

Hodapp
et al. (2015),
Lewandowska
et al. (2016),
Loreau
(2010),
Maureaud
et al. (2020),
and Tilman
et al. (2014)

Size Structure→Pro-
ductivity

CWMsi ze and σ2 represent the effect of trait diver-
sity in driving productivity. Size diversity has been
reported to have a negative effect on productivity,
but the relationship is non-linear and might reflect
environmental control.

Acevedo-
Trejos et
al. (2018),
Chen et
al. (2019),
and Hille-
brand and
Matthiessen
(2009)

Environment → Pro-
ductivity

Nutrient, light, temperature, temporal changes
and salinity have been reported to control growth,
distribution, trait selection, yet their effect has not
been partitioned.

Maureaud
et al. (2020)
and van der
Plas (2019)

Environment → Size
Structure and Diver-
sity

Environmental control is filtering the community
by favouring cells based on size and leading to
changes in dominance and composition.

Finkel et al.
(2010) and
Litchman
et al. (2007)
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Figure 5.1: Graphical representation of a structural equation model. This model
contains one exogenous (yellow box, x1) and three endogenous (pink boxes, y1−3)
variables. Boxes are observed variables. Straight-line arrows between variables indi-
cate causal relationships. Dashed arrow indicates indirect effect of x1 on y3 via the
mediator, y2. γ represents effects of x on y variables and β represents effects of en-
dogenous variables on other endogenous variables (y ’s on y ’s). ζ are error terms for
endogenous variables. Modified after Grace (2006).

proxy with the same hypothesized pathways between variables and updated assump-

tions according to model fit (Fig. 5.2).

As suggested by Grace (2020), I followed a ‘weight of evidence’ approach when

evaluating and selecting the models. This framework suggests a series of steps to

be considered when selecting the final model in a reliable manner. Global model fit

was assessed based on χ2, with significance thresholds set at p-value >0.05. Non-

significant pathways were removed one by one, and then links between variables

were added to improve fit by means of χ2 and decreased root mean square error

of approximation (RMSEA; <0.05). Akaike Information Criteria (AIC) and RMSEA

were also used in model comparison, as suggested by Grace (2020). All correlations

between variables were tested beforehand and highly correlated variables were re-
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Figure 5.2: Initial structural equation model. In this model, hypothesised relation-
ships between endogenous (pink boxes) and exogenous (yellow boxes) variables are
represented by one-way arrows. RUE: resource use efficiency; Chl a: chlorophyll a;
DIN: dissolved inorganic nitrogen; DOY: day of year; CWMsi ze : community weighted
mean size; σ2: size diversity.

moved from analyses.

5.4 Results

5.4.1 In situ: path analyses

For biomass as a proxy, best-fitting model (χ2 = 4.7, p-value = 0.86; Table 5.2; Figs.

5.3, 5.7) consisted of four endogenous (response) variables: biomass, richness, size

diversity (σ2) and evenness; and ten exogenous (predictors) variables. I found that

biomass (R2 = 0.75) decreased with increasing σ2 (β = -0.31) and years (γ = -0.22).
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Figure 5.3: Final revised structural equation model for biomass as productivity
proxy. Blue and red arrows represent positive and negative effects, respectively.
Dashed grey arrows represent non-significant pathways. Effect sizes as standardised
parameter estimates are shown for each arrow path. R2 for each endogenous vari-
able (biomass, evenness, richness, σ2) are given. Only direct pathways are shown.
PAR: photosynthetic active radiation; DIN: dissolved inorganic nitrogen; CWMsi ze :
community weighted mean size; σ2: size diversity.

Contrarily, biomass increases were directly associated with increasing community

weighted mean size (CWMsi ze ; γ = 0.49), evenness (β = 0.19) and photosynthetic ac-

tive radiation (PAR; γ = 0.31). Biomass and richness display a complex relationship,

with a significant negative covariance observed. Richness had a weak indirect nega-

tive effect on biomass via its impact on σ2 (β = -0.07) and evenness (β = -0.07). Nu-

trients also had an indirect effect on biomass via evenness, richness and σ2 (Table

5.3). Other environmental variables, such as year, salinity and PAR, also had indirect

effects on biomass accumulation via community size structure (Table 5.3).

Biomass (β = 0.36) alongside dissolved inorganic nitrogen (DIN) (γ = 0.48) had

a positive direct effect on richness (R2 = 0.51), whereas PAR (γ = -0.24), salinity (γ
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Table 5.2: Summary of selected structural equation models. χ2, associated p-value
and main fit measures of each model. n: number of observations; d f : degrees of
freedom; RMSEA: root mean square error of approximation; CFI: comparative fit in-
dex.

Model n χ2 d f p-value RMSEA CFI

Biomass (in situ data) 713 4.7 9 0.86 <0.05 >0.9
RUE 713 5.13 6 0.53 <0.05 >0.9
Chl a 713 7.75 8 0.46 0.01 >0.9

Biomass (simulated data) 380 2.2 3 0.53 <0.05 >0.9

= -0.27) and phosphate (γ = -0.36) changes led to a decrease in richness (Figs. 5.3,

5.7). Indirectly, richness was affected by the environment as well as community size

structure via biomass, with an overall positive net effect. σ2 (R2 = 0.47) increases were

observed across years (γ = 0.21), with increasing richness (β = 0.25) and phosphate (γ

= 0.25), but decreased with PAR (γ = -0.21) and biomass (β = -0.30) levels (Table 5.3,

Fig. 5.3). Phosphate (γ = -0.09) and DIN (γ = 0.12) mediated σ2 via richness (Table

5.3). Size diversity was also indirectly affected by CWMsi ze , evenness, nutrients and

PAR across the years via biomass and richness changes (Table 5.3). Finally, evenness

(R2 = 0.23) was observed to decrease with increasing biomass (β = -0.74), richness (β

= -0.39) and phosphate (γ = -0.15) levels, but evenness increased with PAR (γ = 0.21)

and DIN (γ = 0.33) (Fig. 5.3). Evenness was indirectly mediated by several variables,

including size diversity, CWMsi ze , biomass, nutrients, salinity, PAR and year (Table

5.3).

Resource use efficiency (RUE, R2 = 0.85) based on carbon biomass increased with

increasing DIN (γ = 0.87), CWMsi ze (γ = 0.28) and PAR (γ = 0.16), whereas, RUE de-

creased with increasing σ2 (β = -0.20), richness (β = -0.20) and phosphate (γ = -0.13)

(Figs. 5.4, 5.7). The final model also consisted of four endogenous variables – RUE,

richness, σ2 and evenness, and ten exogenous variables (χ2 = 5.13, p-value = 0.53;

Table 5.2). CWMsi ze (γ = 0.02), phosphate (γ = 0.07), salinity (γ = 0.06), PAR (γ =

0.05, 0.07) and year (γ = 0.02, -0.05) indirectly affected RUE via richness and σ2, re-

spectively (Table 5.4). Environmental variables were the most important in directly
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Table 5.3: Indirect effects from structural equation model with biomass as a pro-
ductivity proxy. Indirect paths indicate mediation from x → mediator → y . Effect
size is the standardised path coefficient between endogenous variables, estimated
as the product of standardised direct path coefficients (γ or β). σ2: size diversity;
CWMsi ze : community weighted mean size; PAR: photosynthetic active radiation;
DIN: dissolved inorganic nitrogen. All indirect effects reported are significant.

Productivity Proxy Indirect path Effect size

Biomass Richness → σ2 → Biomass -0.08
Phosphate → σ2 → Biomass -0.08

PAR → σ2 → Biomass 0.07
Year → σ2 → Biomass -0.06

DIN → Evenness → Biomass 0.05
PAR → Evenness → Biomass 0.04

Phosphate → Evenness → Biomass -0.02

Total Indirect Effect (
∑

) -0.08

CWMsi ze → Biomass → σ2 -0.15
DIN → Richness → σ2 0.12
PAR → Biomass → σ2 -0.09

Evenness → Biomass → σ2 0.07
Year → Biomass → σ2 0.07

Phosphate → Richness → σ2 0.07

Total Indirect Effect (
∑

) 0.09

CWMsi ze → Biomass → Evenness -0.37
DIN → Richness → Evenness -0.18

Phosphate → Richness → Evenness -0.14
Biomass → Richness → Evenness -0.14
Salinity → Richness → Evenness 0.10

PAR → Richness → Evenness 0.09
σ2 → Biomass → Evenness -0.06

Year → Biomass → Evenness -0.04

Total Indirect Effect (
∑

) -0.74

CWMsi ze → Biomass → Richness 0.18
PAR → Biomass → Richness 0.10

Evenness → Biomass → Richness 0.06

Total Indirect Effect (
∑

) 0.34

108



Chapter 5

affecting richness levels (R2 = 0.52), with richness decreasing with phosphate (γ = -

0.33), salinity (γ = -0.28), PAR (γ = -0.24) and across the years (γ = -0.11) (Fig. 5.4).

Size diversity (R2 = 0.34) increased with time (γ = 0.27), richness (β = 0.28) and phos-

phate (γ = 0.27), but decrease with increasing CWMsi ze (γ = -0.13) and PAR (γ = -0.35)

levels (Fig. 5.4). Indirectly, size diversity was negatively affected by year (γ = -0.03),

PAR (γ = -0.06), phosphate (γ = -0.09) and salinity (γ = -0.07), all via richness (Table

5.4). On the other hand, evenness (R2 = 0.26) decreased with increasing richness (β

= -0.4) and phosphate (γ = -0.26). However, increasing DIN (γ = 1.28), PAR (γ = 0.21)

and salinity (γ = 0.11) all led to increases in evenness levels across years (γ = 0.12)

(Fig. 5.4). RUE and evenness positively co-varied. Evenness was indirectly affected

by CWMsi ze (γ = -0.35), σ2 (β = 0.25), DIN (γ = -1.1), phosphate (γ = 0.43) and PAR (γ

= -0.20, 0.09) through richness and RUE (Table 5.4).

For Chl a (R2 = 0.37) as a productivity proxy, best-fit model (χ2 = 7.74, p-value =

0.46; Table 5.2) consisted of four endogenous and eight exogenous variables. Salinity

and silicate were highly correlated, but removing either from the model resulted in

model instability. As such, after inspection of both sets of regression residuals, I kept

the one that led to better model fit, i.e. salinity. Increases in Chl a were related to

increased phosphate (γ = 0.65), CWMsi ze (γ = 0.24) and PAR (γ = 0.26) levels, whereas

productivity decreased seasonally (γ = -0.15), with DIN (γ = -0.32) and the residual

salinity concentration after accounting for silicate (γ = -0.58) (Figs. 5.5, 5.7). Richness

(R2 = 0.28) decreased with evenness (β = -0.13), salinity (γ = -0.64) and Chl a (β = -

0.6), but increased with DIN (γ = 0.39) and CWMsi ze (γ = 0.18) (Fig. 5.5). Richness was

indirectly affected via 11 pathways through Chl a and evenness, with a weak negative

indirect net effect (β = -0.06, Table 5.5). In addition, σ2 (R2 = 0.38) also increased with

phosphate (γ = 0.30) across the years (γ = 0.23), but decreased with Chl a (γ = -0.11)

and PAR (γ = -0.32) levels (Fig. 5.5). Size diversity was mediated through Chl a and

richness by several variables, such as nutrients, day of year, CWMsi ze , salinity and

evenness, with a total indirect net effect of -0.03 (Table 5.5). Lastly, evenness (R2 =

0.25) levels increased with increasing salinity (γ = 0.23) and DIN (γ = 0.10) across the
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Figure 5.4: Final revised structural equation model for resource use efficiency
(RUE) as productivity proxy. Blue and red arrows represent positive and negative
effects, respectively. Dashed grey arrows represent non-significant pathways. Effect
sizes as standardised parameter estimates are shown for each arrow path. R2 for each
endogenous variable (RUE, evenness, richness, σ2) are given. Only direct pathways
are shown. CWMsi ze : community weighted mean size; σ2: size diversity; PAR: pho-
tosynthetic active radiation; DIN: dissolved inorganic nitrogen.

years (γ = 0.18), but decreased with CWMsi ze (γ = -0.39) (Fig. 5.5). The model did not

reveal any indirect effect on evenness.

5.4.2 Simulated data: path analyses

Using the results from the simulations in Chapter 4, the best-fitting model (χ2 =

2.2, p = 0.53) included four endogenous variables. Phytoplankton biomass increased

with higher species richness (β = 0.36), nutrient availability (γ = 0.06), zooplankton

biomass (β = 0.13), and size diversity (β = 0.03) but decreased with greater phyto-

plankton evenness (β = -0.2) (Fig. 5.6). Phytoplankton biomass was indirectly af-

fected by richness (β = -0.03), zooplankton CWMsi ze (β = 0.01) and σ2 (β = 0.02), nu-
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Table 5.4: Indirect effects from structural equation model with RUE as a productiv-
ity proxy. Indirect paths indicate mediation from x → mediator → y . Effect size is the
standardised path coefficient between endogenous variables, estimated as the prod-
uct of standardised direct path coefficients (γ orβ). σ2: size diversity; CWMsi ze : com-
munity weighted mean size; PAR: photosynthetic active radiation; DIN: dissolved in-
organic nitrogen. All indirect effects reported are significant.

Productivity Proxy Indirect path Effect size

RUE Phosphate → Richness → RUE 0.07
PAR → σ2 → RUE 0.07

Salinity → Richness → RUE 0.06
PAR → Richness → RUE 0.05

Year → σ2 → RUE -0.05
CWMsi ze → σ2 → RUE 0.02

Year → Richness → RUE 0.02

Total Indirect Effect (
∑

) 0.24

DIN → RUE → Evenness -1.10
Phosphate → Richness → Evenness 0.13

CWMsi ze → RUE → Evenness -0.36
σ2 → RUE → Evenness 0.25

PAR → RUE → Evenness -0.20
Phosphate → RUE → Evenness 0.16

PAR → Richness → Evenness 0.09

Total Indirect Effect (
∑

) -1.03

Phosphate → Richness → σ2 -0.09
Salinity → Richness → σ2 -0.08

PAR → Richness → σ2 -0.07
Year → Richness → σ2 -0.07

Total Indirect Effect (
∑

) -0.31

trient availability (β = 0.01) and phytoplankton evenness (β = 0.04) via zooplankton

biomass (Table). In contrast, zooplankton biomass increased with phytoplankton

evenness (β = 0.30), nutrient availability (γ = 0.09), zooplankton size diversity (β =

0.14), and CWMsi ze (β = 0.07) but declined with increasing phytoplankton richness

(β = -0.26) (Fig. 5.6). The model explained 97% of the variance in phytoplankton

biomass and 96% in zooplankton biomass.

Phytoplankton σ2 increased with zooplankton σ2 (β = 0.33) and CWMsi ze (β =

0.66) but decreased with higher phytoplankton evenness (β = -0.4) and richness (β
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Table 5.5: Indirect effects from structural equation model with Chl a as a produc-
tivity proxy. Indirect paths indicate mediation from x → mediator → y . Effect size
is the standardised path coefficient between endogenous variables, estimated as the
product of standardised direct path coefficients (γ or β). Chl a: chlorophyll a; σ2:
size diversity; CWMsi ze : community weighted mean size; PAR: photosynthetic active
radiation; DIN: dissolved inorganic nitrogen; DOY: day of year. All indirect effects
reported are significant.

Productivity Proxy Indirect path Effect size

Chl a Salinity → Richness → σ2 -0.12
CWMsi ze → Evenness → σ2 -0.08

DIN → Richness → σ2 0.07
Phosphate → Chl a → σ2 -0.07

Salinity → Chl a → σ2 0.06
Salinity → Evenness → σ2 0.04

PAR → Chl a → σ2 -0.03
CWMsi ze → Chl a → σ2 -0.03

DIN → Chl a → σ2 0.03
CWMsi ze → Richness → σ2 0.03

Year → Evenness → σ2 0.03
DIN → Evenness → σ2 0.02

Evenness → Richness → σ2 -0.02
DOY → Chl a → σ2 0.02

Total Indirect Effect (
∑

) -0.03

Phosphate → Chl a → Richness -0.38
Salinity → Chl a → Richness 0.34

DIN → Chl a → Richness 0.19
PAR → Chl a → Richness -0.15

CWMsi ze → Chl a → Richness -0.15
DOY → Chl a → Richness 0.09

CWMsi ze → Evenness → Richness 0.05
Year → Evenness → Richness -0.02

Salinity → Evenness → Richness 0.02
DIN → Evenness → Richness -0.01
PAR → Evenness → Richness 0.01

Total Indirect Effect (
∑

) -0.06
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0.38

Figure 5.5: Final revised structural equation model for Chl a as productivity proxy.
Blue and red arrows represent positive and negative effects, respectively. Dashed grey
arrows represent non-significant pathways. Effect sizes as standardised parameter
estimates are shown for each arrow path. R2 for each endogenous variable (Chl a,
richness, evenness, σ2 are given. Only direct pathways are shown. PAR: photosyn-
thetic active radiation; DIN: dissolved inorganic nitrogen; DOY: day of year; CWMsi ze :
community weighted mean size; σ2: size diversity.

= -0.05) (Fig. 5.6). Lastly, phytoplankton CWMsi ze increased with phytoplankton

and zooplankton size diversity (β = 0.35 and 0.15, resp.), phytoplankton biomass (β

= 0.04), and zooplankton CWMsi ze (β = 0.45) but decreased with richness (β = -0.03),

phytoplankton evenness (β = -0.23), and zooplankton biomass (β = -0.03). Indirectly,

phytoplankton CWMsi ze was affect via 13 pathways mediated by phytoplankton and

zooplankton biomass, as well as phytoplankton σ2 (Table 5.6).
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0.97 0.96

0.98

Figure 5.6: Final revised structural equation model for biomass as productivity
proxy using simulated data. Blue and red arrows represent positive and negative
effects, respectively. Effect sizes as standardised parameter estimates are shown for
each arrow path. R2 for each endogenous variable (Biomassphy , p Evenness, rich-
ness, pσ

2) are given. Only direct pathways are shown. z,p CWMsi ze : zooplankton
and phytoplankton community weighted mean size; z,pσ

2: zooplankton and phy-
toplankton size diversity; z,p Evenness: zooplankton and phytoplankton evenness;
Biomasszoo,phy : zooplankton and phytoplankton biomass.

5.5 Discussion

The findings suggest that phytoplankton productivity in the San Francisco Bay

system is primarily driven by environmental control on community size structure,

particularly light availability and nutrient concentrations, with biodiversity playing a

secondary role. Species richness had minimal influence on productivity, while size

structure and evenness emerged as stronger predictors. These results again empha-

sise the need to integrate environmental drivers into Biodiversity-Ecosystem Func-

tion (BEF) frameworks, as relationships in natural ecosystems are often mediated by

abiotic conditions rather than diversity alone.
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Table 5.6: Indirect effects from structural equation model using simulated data
with biomass as a productivity proxy. Indirect paths indicate mediation from x
→ mediator → y . Effect size is the standardised path coefficient between endoge-
nous variables, estimated as the product of standardised direct path coefficients (γ or
β). p,zσ

2: phyto- and zooplankton size diversity; p,zCWMsi ze : phyto- and zooplank-
ton community weighted mean size; PAR: photosynthetic active radiation; DIN: dis-
solved inorganic nitrogen; Biophy,zoo : phyto- and zooplankton biomass. All indirect
effects reported are significant.

Productivity Proxy Indirect path Effect size

Biophy p Evenness → Biozoo → Biophy 0.04
Richness → Biozoo → Biophy -0.03

zσ
2→ Biozoo → Biophy 0.02

Nutrient → Biozoo → Biophy 0.02

zCWMsi ze → Biozoo → Biophy 0.01

Total Indirect Effect (
∑

) 0.06

p CWMsi ze zCWMsi ze → pσ
2 → p CWMsi ze 0.23

p Evenness → pσ
2 → p CWMsi ze -0.14

zσ
2 → pσ

2 → p CWMsi ze 0.12
Richness → pσ

2 → p CWMsi ze -0.02
Richness → Biophy → p CWMsi ze 0.02

p Evenness → Biozoo → p CWMsi ze -0.01

p Evenness → Biophy → p CWMsi ze -0.01
Richness → Biozoo → p CWMsi ze 0.01

zσ
2 → Biozoo → p CWMsi ze -0.004

Nutrient → Biozoo → p CWMsi ze -0.003

zCWMsi ze → Biozoo → p CWMsi ze -0.002
Nutrient → Biophy → p CWMsi ze 0.002

zσ
2 → Biophy → p CWMsi ze 0.001

Total Indirect Effect (
∑

) 0.19

5.5.1 The importance of environmental control

Environmental factors not only directly drive total productivity, but also act as

filters that shape species composition via indirect effects on functional traits. Nutri-

ents, PAR, and salinity played a key role in explaining variance in RUE, biomass and

Chl a. Particularly, PAR was an important driver of productivity, reflecting the light

limitation regime in the San Francisco Bay (SFB) system (Cloern, 2018).

In BEF studies, the role of the environment is usually minimised and/or not ac-
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Figure 5.7: Standardised parameter estimates for all selected models. Coefficient
estimates for (A) in situ biomass, (B) resource use efficiency (RUE), (C) Chl a and
(D) simulated biomass. Significant (black circles) and non-significant (grey circles)
estimates are shown. DIN: dissolved inorganic nitrogen; PAR: photosynthetic active
radiation; CWMsi ze : community weighted mean size; RUE: resource use efficiency;
σ2: size diversity; DOY: day of year. P and Z subscripts represent phytoplankton and
zooplankton variables.

counted for, as BEF focuses on biodiversity’s role (Brose and Hillebrand, 2016; Loreau

and Hector, 2001). Still, in dynamic environments, i.e. the pelagic ocean, the envi-

ronment is constantly exerting some level of disturbance that leads to variation in ex-

pected BEF relationships, most commonly via changes in community structure and

composition (Brose and Hillebrand, 2016). In the model, for example, nutrients had

no direct effect on biomass accumulation, but rather an indirect effect via commu-

nity size diversity (σ2) and evenness. For Chl a, phosphate and DIN had a positive

and negative effect respectively. In hypereutrophic conditions (>100 µg L−1) such as

in the SFB, highest Chl a levels were observed at highest phosphate concentration,

whereas Chl a declined with increasing nitrogen levels, with the response of Chl a to

nitrogen changing according to phosphate levels (Filstrup and Downing, 2017). This

environmental forcing likely varies throughout the year, as suggested by the season-

ality effect on Chl a levels. Further, since nutrient levels in this region do not neces-

sarily reflect supply rates, the observed spatial differences in nutrient distributions

can also indicate environmental filtering of community composition across the bay.
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These seasonal dynamics suggest that nutrient availability interacts with other

environmental factors, such as light, to shape phytoplankton community structure

across spatial and temporal scales, and ultimately also shapes productivity. Diatoms

are uniquely apt to thrive in nutrient-rich conditions, with metabolic pathways al-

lowing for rapid assimilation of various nitrogen forms and large storage capacity due

to cell size, and indeed they are the major biomass contributors to the SFB system

(Armbrust, 2009; Cloern, 2018). On the other hand, excess phosphate could favour

cyanobacteria dominance, due to their ability to store and quickly respond to N:P im-

balances (Aubriot and Bonilla, 2018). However, light availability limits productivity

levels in the SFB system, and despite cyanobacteria being the most abundant group

in the bay, their contribution to RUE is essentially lost due to how RUE is calculated in

the current study (see Chapter 2). Different species can exhibit distinct nutrient ac-

quisition strategies and trade-offs, allowing certain taxa to dominate under specific

nutrient conditions or during particular seasons (Litchman and Klausmeier, 2008;

Meunier et al., 2018). The dataset contained dinoflagellates that are known to have

an affinity for phosphorous (Meunier et al., 2018), and though their overall contri-

bution to productivity and diversity proxies was removed, their nutrient uptake rates

was not. This could explain the negative effect phosphate had on productivity, relat-

ing to the drawdown caused by these organisms that was not reflected in the commu-

nity productivity proxy (Meunier et al., 2018), once again hinting at the importance

of community composition.

Likewise, the environment controls diversity patterns, directly and indirectly, by

filtering the community composition. Results show that increasing phosphate con-

centrations led to reduced community evenness, likely due to the competitive ad-

vantage of specific taxa, such as cyanobacteria, which can efficiently store and utilise

phosphorus. Whereas, increasing DIN levels increased evenness and richness in all

models, suggesting increasing DIN supports a broader range of species, including di-

atoms. All these diversity proxies represent different aspects of the community. Even-

ness relates to taxonomic diversity and how equal the biomass contribution of each
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species is, whereas σ2 relates to size heterogeneity of the phytoplankton community

weighted by their relative biomass contribution.

Increasing nutrient allows more species to coexist, disproportionally favouring

large cell sizes that can dominate biomass and reduce σ2 and evenness in the pro-

cess (Acevedo-Trejos et al., 2018; Finkel et al., 2010). Lower evenness hint at dom-

inance of species with certain traits, suggesting that selection effects are more im-

portant in driving ecosystem function (Hillebrand et al., 2008; Loreau and Hector,

2001). Contrarily, higher evenness could indicate that there is an increased com-

plementarity resource use among species, which could lead to higher productivity

(Cardinale et al., 2006; Tilman et al., 1997a). This mechanism is suggested to be re-

sponsible for community ‘overyielding’, where a polyculture outperforms the most

productive monoculture due to niche partitioning and facilitation (Marquard et al.,

2009). Additionally, PAR reduced richness and σ2. Light limitation selects for smaller

cells that have strategies for better light absorption (i.e. ‘package effect’, Finkel et al.,

2010; Finkel, 2001), leading to a reduced range in organisms’ sizes, and when light is

abundant, it may help larger species to grow and accumulate biomass, increasing the

mean cell size and potentially decreasingσ2. In high PAR conditions, large-sized cells

grow rapidly and reduce the contribution of smaller- and intermediate-sized cells to

the overall productivity, thus, reducing size diversity. Nutrient supply can further

amplify this effect by promoting the growth of large species, particularly in eutrophic

coastal systems where mild temperatures create optimal conditions for their domi-

nance (Acevedo-Trejos et al., 2015; Acevedo-Trejos et al., 2018; Cloern, 2018). This

pattern is also reflected in the negative indirect effects of CWMsi ze and PAR, where

increasing mean cell size leads to a reduced σ2.

In this study, salinity decreased richness and increased evenness. Richness lev-

els have been observed to be at their lowest at intermediate salinity levels. This phe-

nomenon is a reflection of species’ ability to cope with varying salinity gradients, with

lower richness being explained by the presence of few true brackish water species

(Olli et al., 2019; Olli et al., 2023). Salinity increases southwards in the SFB, whereas
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richness decreases in the same direction, reflecting this relationship and the com-

munity present. Salinity changes helped increase evenness in RUE and Chl a mod-

els, likely by altering richness patterns, competitive dynamics and grazing pressure,

leading to more even communities (Larson and Belovsky, 2013).

As such, the environment (e.g. PAR, nutrients, salinity) acts by either directly en-

hancing or decreasing productivity, but also indirectly, via changes in diversity struc-

ture of the community, leading to changes in productivity levels. Overall, the role of

the environment cannot be overlooked as its effects are intertwined in the commu-

nity dynamics, with no single parameter acting in an isolated manner.

5.5.2 Size structure is a strong driver of productivity, not richness

The relationship between diversity and productivity was highly dependent on en-

vironmental conditions. Contrary to classical BEF theory, species richness was not a

strong predictor of productivity when environmental and temporal covariates were

accounted for. Instead, productivity was primarily driven by community size struc-

ture. The same was observed for Chl a, with CWMsi ze being the most important vari-

able. Richness had a negative effect on RUE, with σ2 and CWMsi ze also affecting the

response, suggesting that increased diversity did not necessarily enhance resource

partitioning. This result contrasts with many BEF experiments that report positive

effects of richness on productivity (Otero et al., 2020; Ptacnik et al., 2008), highlight-

ing the complexity of diversity effects in natural systems. While the simulations here

suggested a stronger positive effect of richness on productivity, observational data in-

dicated that environmental factors played a dominant role, potentially masking any

positive richness effects (Hodapp et al., 2015; Olli et al., 2023). Evidence suggests that

richness and productivity are not mechanistically linked, and the patterns reported

relate to a complex set of interactions between the environment, diversity and pro-

ductivity, especially within a single trophic level (Adler et al., 2011; Grace et al., 2007).

Richness is an insufficient metric to describe the mechanisms underlying ecosystem

function levels, but it is also widely used and easy to acquire. This has led to a narrow
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focus on the effect of richness on productivity, which has dictated the direction of the

BEF research field for decades. It is now being challenged (Hillebrand et al., 2018).

Evenness emerged as a key driver of productivity, though its effects differed be-

tween observational and simulated datasets. In the SFB, higher evenness was asso-

ciated with greater biomass, likely due to more stable community composition and

reduced dominance by a single taxa. However, in simulations, evenness had a nega-

tive effect on productivity, suggesting that selection effects (where a few highly pro-

ductive species dominate) may drive productivity under controlled conditions, par-

ticularly in high nutrient-low richness scenarios. Trait-based shifts were evident in

the community-weighted mean (CWM) of cell size, which varied spatially and with

time and greater σ2 having a consistent negative effect on productivity. Higher σ2

was linked to lower biomass. This suggests that functional differences in size did not

necessarily enhance resource partitioning in this system. In contrast, periods of low

productivity showed greater σ2, with smaller taxa likely contributing to increase σ2.

This aligns with previous studies (Chen et al., 2019; Smith et al., 2016) showing that

greater trait variability can reduce competitive efficiency if it leads to increased niche

overlap or weaker dominance by highly productive species. The interplay between

selection and complementarity effects may then depend on environmental stabil-

ity, resource availability, and the degree of functional redundancy in the community

(Loreau and Hector, 2001).

A key finding of this study is that size structure, rather than species richness, was

the strongest predictor of productivity, highlighting the role of trait-based mecha-

nisms in shaping ecosystem function. During periods of high productivity, i.e. spring,

the community was dominated by large diatoms, leading to increased CWMsi ze but

lower σ2 (see Chapter 2). Diatoms dominated the community, leading to a com-

munity with large-sized cells, low size diversity, but relatively high evenness, due to

similar biomass contribution of species present. Size diversity, accordingly, was low

(because cells had similar sizes, as reflected by the dominance of diatoms species),

but evenness was relatively high, leading to increased productivity. This contradicts
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the expected relationship between evenness and productivity for natural aquatic en-

vironments (Hodapp et al., 2015; Lehtinen et al., 2017; Lewandowska et al., 2016;

Maureaud et al., 2020), but aligns with the observation that high evenness supports

stable biomass accumulation via increased complementary resource use (Hillebrand

et al., 2008; Hordijk et al., 2023; Kirwan et al., 2007).

Furthermore, grazing pressure is stronger in aquatic communities which could

lead to changes in dominance, and thus, productivity via a positive evenness effect.

Aquatic and terrestrial environments differ in fundamental ways (e.g. grazing and

biomass production rates, prey edibility), resulting in stronger top-down control in

phytoplankton communities (Cebrian, 1999; Shurin et al., 2002). Disturbance lev-

els, trait variance, and resource availability can influence whether evenness helps or

hinders biomass accumulation (Norberg et al., 2001). The positive effect observed

could also relate to the levels of disturbance on community processes over a long

time scale, with higher evenness leading to higher productivity via better adaptive

capacity of organisms in non-static environments (Norberg et al., 2001; Smith et al.,

2016). In addition, changes in evenness levels can change community dynamics by

altering intra- and interspecific competition, causing positive species interactions

and reducing the dominance of single species, which can alter ecosystem function

both negatively and positively (Hillebrand et al., 2008; Norberg et al., 2001; Polley et

al., 2003; Schwartz et al., 2000).

5.6 Conclusions

Phytoplankton productivity in the San Francisco Bay system was not driven by

species richness. Rather, productivity was a result of the interactions between the

environment and community size structure, with richness playing a secondary role,

mainly via its indirect effects on size diversity and evenness. Diversity of traits, par-

ticularly related to size, are a better predictor of ecosystem function. While larger cell

sizes promoted productivity, higher size diversity and richness reduced ecosystem
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function, likely due to the inclusion of inefficient species and/or small cells with low

biomass contributions (Chen et al., 2019; Norberg et al., 2001; Smith et al., 2016). En-

vironmental filtering strongly shaped community structure, which in turn affected

productivity. Neither nutrient supply nor richness alone accounted for all the vari-

ation in productivity, with nearly all indirect effects being mediated by either pro-

ductivity proxies or diversity. This suggests that indeed biomass and richness are not

linked mechanistically, but rather the relationships between these two variables are

a consequence of the complex set of interactions linking them.

The role of evenness in mediating productivity is variable and context-dependent,

with contrasting findings highlighting the limited understanding of this relationship

(Hillebrand et al., 2008). These findings suggest that higher evenness enhances biomass

when resource complementarity among species dominates, contrasting with pre-

vious expectations of a negative relationship driven by selection effects. When re-

sources are efficiently partitioned, high evenness can boost productivity. In other

contexts, evenness may simply reflect the dominance of species best adapted to pre-

vailing environmental conditions (Lehtinen et al., 2017). Unlike richness, evenness

appears more directly linked to ecosystem function, making it a key trait in under-

standing BEF relationships.

Finally, structural equation models (SEM) proved to be a valuable framework for

disentangling causal relationships in these complex, non-linear ecological systems,

while also increasing the amount of variance explained in the data. While multiple

linear regression can be a better alternative than simple bivariate analyses, it does

not test causal links between parameters (Grace et al., 2010). By explicitly modelling

direct and indirect effects, SEM have been shown to be well-suited to evaluate hy-

pothesis in complex systems, leading to a more mechanistic understanding of the

links between biodiversity, community structure, and ecosystem function (Grace et

al., 2010).
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5.7 Limitations and outlook

A key limitation in this study was the strong correlation between resource use

efficiency (RUE) and dissolved inorganic nutrient (DIN) (>0.7) due to how RUE was

calculated (RUE = Biomass/DIN). Ideally, highly correlated variables should be re-

moved from analyses, but removal of DIN from the analyses led to model instability.

As such, this strong correlation means that interpreting the observed effects of DIN

on RUE requires caution. Additionally, DIN had a strong positive effect on RUE, while

phosphate had a negative effect. Given that RUE is directly derived from DIN, this re-

sult was expected. But it reinforces the need for caution in interpreting direct causal

links. Future studies should explore alternative metrics of resource use efficiency that

minimize intrinsic correlations with key environmental drivers (Hodapp et al., 2019).

Furthermore, evenness in this study was not controlled at the beginning of model

simulations nor field data, and because of that, this metric can be interpreted as an

emergent property of the community. One that is not independent of productivity

nor richness. Very few studies have attempted to manipulate evenness (Wilsey and

Potvin, 2000), specially in aquatic environments. The results regarding evenness as

a driver of productivity, albeit not strictly causal, provide us with a more in-depth

understanding of its role in affecting ocean productivity, at least indirectly.

Proxy selection remains an issue to be addressed. Each proxy represents a differ-

ent aspect of ecosystem function, and their interpretation depends on the ecological

contexts in which they are used. Biomass primarily captures dominance effects, as

it tends to be driven by a few highly productive species that contribute dispropor-

tionately to overall community biomass. However, biomass alone does not account

for the efficiency of resource use or the functional diversity within the community

(i.e. RUE) (Hodapp et al., 2019). Chl a reflects phytoplankton abundance and com-

munity composition, but it is an imperfect measure of productivity because pigment

concentration varies across taxa and is influenced by environmental factors (Litch-

man and Klausmeier, 2008). Individually, each of these proxies may be misleading
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if their limitations are not appreciated. For example, a system dominated by large,

slow-growing species might have high biomass but low RUE, while another, with a

mix of fast-growing taxa, could have high RUE but lower standing biomass. Simi-

larly, Chl a might indicate high phytoplankton abundance, but without considering

biomass or RUE, it is difficult to assess whether this represents high productivity or

a shift in community composition favouring smaller, less productive taxa. I recom-

mend a complementary approach to productivity estimation that integrates multiple

proxies whenever possible. The selection of proxies should be guided by factors such

as data availability, correlation with ecosystem function, and ecological relevance to

the system under study.

Moving forward, understanding how environmental change influences trait-based

community shifts will be crucial for predicting ecosystem responses to anthropogenic

pressures.
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Final remarks and outlook

This thesis focused on building a causal understanding of biodiversity and ecosys-

tem function (BEF) relationships, with the specific focus on the role of size structure

and environmental control in driving productivity. Using a combination of long-term

observational data from San Francisco Bay (SFB) and size-based numerical simu-

lations, we assessed how different levels of diversity influence ecosystem function-

ing under varying environmental conditions. Across both datasets, we found that

productivity was primarily driven by community size structure, with environmental

control strongly mediating this effect. These findings provide important insights into

the complexity of BEF relationships in marine ecosystems, challenging traditional

assumptions and emphasizing the importance of trait-based approaches.

One of the major strengths of this study is the use of long-term, high-resolution

monitoring data, which allowed us to investigate BEF relationships in a natural aquatic

system. Additionally, the integration of numerical simulations enabled us to test

mechanistic hypotheses that would be difficult to isolate from observational data

alone. The use of Structural Equation Modelling (SEM) was instrumental in disentan-

gling complex ecological relationships, allowing us to go beyond bivariate analyses

and better understand indirect pathways influencing productivity. We are aware that

observational data inherently includes confounding environmental factors, making

it difficult to establish definitive causal relationships, or even separate the effects of
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diversity and environment. While SEM helps address this issue, it does not com-

pletely eliminate the limitations of bivariate analyses. In going beyond the simple na-

ture of bivariate analyses, we were able to develop a stronger understanding of direct

and indirect causal drivers of productivity by integrating theoretical with empirical

knowledge. Furthermore, the approach used here primarily focused on size-based

metrics, which, while invaluable, may not be directly linked to certain productivity

proxies. Future research should consider integrating additional trait measures that

relate to ecological functions, such as reproduction, nutrient uptake efficiencies, and

predator avoidance, in order to gain a more comprehensive understanding of diver-

sity effects on productivity and multifunctionality.

The results challenge the widely accepted positive BEF relationship. We showed

that higher species richness does not necessarily lead to increased productivity (e.g.,

biomass, resource use efficiency, Chl a), even when accounting for environmental

covariates. Instead, richness had a weak effect that was often mediated by environ-

mental control, while size diversity (σ2) emerged as a stronger predictor of ecosystem

function. In both field and simulated data, size-based metrics such as community-

weighted mean size (CWMsi ze ) and (σ2) were key drivers of phytoplankton produc-

tivity. Large-sized species, particularly diatoms, dominated and contributed signifi-

cantly to biomass accumulation under high nutrient conditions, while increased (σ2)

often led to reduced productivity due to the presence of weak competitors.

Environmental factors exerted both direct and indirect controls on community

productivity, with their strength and direction highly context-dependent. High nu-

trient availability did not always translate into higher biomass, due to light limitation

and trophic interactions shaping community structure. This highlights that, despite

the important role of nutrient control, nutrient supply alone does not drive produc-

tivity. Rather, it mediates diversity by filtering the community via their size structure.

Additionally, the presence of zooplankton influenced BEF relationships, shifting the

balance between selection and complementarity effects, thereby demonstrating the

context dependency of biodiversity effects.
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The findings of this thesis reinforce the need to refine biodiversity metrics used in

BEF studies. Moving forward, studies should prioritize functional traits over species

richness alone, particularly in aquatic ecosystems where size structure plays a dom-

inant role. Future research could explore the combined effects of functional and

phylogenetic diversity, which have been shown to outperform richness as predic-

tors of biomass in some systems (Thompson et al., 2015). Thompson et al. (2015)

reported that functional and phylogenetic diversity outperformed richness as a pre-

dictor of phytoplankton and zooplankton biomass in a natural pond. While this

avenue of research has been mostly explored in terrestrial ecosystems (Cadotte et

al., 2009; Flynn et al., 2011; Srivastava et al., 2012), its application in marine and

freshwater environments remains limited. Expanding these analyses to different ma-

rine ecosystems, such as open-ocean phytoplankton communities or even nutrient-

limited ones, could help determine the generality of these patterns across environ-

mental gradients. Further, integrating BEF relationships into climate change models

could improve our ability to predict shifts in ecosystem productivity and resilience

under future scenarios. Palaeoecological records can provide a valuable long-term

perspective on biodiversity and ecosystem function. By coupling classic ecological

time-series with palaeoecological datasets, we can attempt to determine changes

in biodiversity levels across a long timespan (from decades to millennia). This ap-

proach allows us to relate changes driven by the environment and its consequences

on ecosystem function (Jonkers et al., 2019), and also determine whether the mecha-

nisms driving BEF relationships today were consistent over historical timescales. Or

if they varied in response to past ecological disturbances.

We observed relationships between size structure and productivity. They sug-

gest that shifts in species composition and relative contributions, driven by climate

change or anthropogenic impacts, could lead to fundamental changes in ecosystem

function. Current biodiversity conservation frameworks often emphasise species

richness as a key metric. However, recognizing that diversity is a multifaceted con-

cept and not the sole driver of ecosystem function is crucial for understanding changes
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Final remarks

in ecosystem functioning in response to global changes. Finally, relying on appropri-

ate statistical frameworks and understanding the limitations of productivity proxies

is important. A mechanistic understanding of the factors driving productivity, com-

bining empirical data with theoretical models, will be key to forecasting ecosystem

health and ensuring the sustainable management of marine resources in the face of

accelerating environmental change.
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Appendix A

Supplementary files

A.1 Data files

Environmental, phytoplankton and associated data used in this thesis can be

found here. Disclaimer for the printed version of this thesis: the available data and

scripts used here can also be requested directly to the author via email: dflivia@gmail.com;

livia.oliveira@hifmb.de.

A.2 Chapter 2

All .R scripts used to retrieve samples, data summary and figures in this chapter

are available for download:

• Data Processing and working dataset generation .R script

• Map plot .R script

• Data description plots .R script
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Figure A.1: Two line test example plot. The graph shows the bivariate relationship
between biomass and richness in the San Francisco Bay system. The test estimates an
interrupted regression for the predictor hypothesised to have an unimodal relation-
ship with the response. The test suggests the observed relationship is not unimodal.

A.3 Chapter 3

All .R scripts used for 3 analyses and figures.

• Data analyses and figures

• Two line test function script after Simonsohn, 2018

• Correlation plots

A.4 Chapter 4

All .R scripts used for 4 analyses and figures.

• NP, NPZ models, analyses and figures
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A.5 Chapter 5

All .R scripts used for 5 analyses and figures.

• SEM models, analyses and figures
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