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ABSTRACT 

Unsaturated soils are present in a wide range of geotechnical applications such as slopes, 

highways or earth dams, in addition to many other geo-environmental applications such 

as underground disposal of radioactive waste or landfills. Despite a significant number of 

improvements in understanding unsaturated soil behaviour over the last five decades, 

there are still several aspects to be addressed and to be better understood, including in 

the areas of constitutive modelling, development of experimental procedures and 

improvement of numerical techniques. 

This work concentrates on two of these aspects: constitutive modelling of unsaturated 

soils accounting for the coupling between mechanical and water retention response; and 

associated numerical and computational aspects employed to solve engineering problems 

involving unsaturated soil mechanics.  

Wheeler et al. (2003) proposed a coupled elasto-plastic constitutive model for the 

mechanical and water retention behaviour of unsaturated soils and this model constitutes 

the basis of the work developed within this thesis. For isotropic stress states this coupled 

model employs as stress state variables mean Bishop’s stress p* and modified suction s*. 

In the model, plastic volumetric strains occur when the stress state reaches a LC yield 

curve and plastic changes of degree of saturation Sr occur when the stress state reaches 

a SD or SI yield curve. Coupled movements of the yield curves represent the influence of 

plastic changes of degree of saturation on mechanical behaviour and the influence of 

plastic volumetric strains on water retention behaviour. 

According to this constitutive model, during many types of loading or wetting under 

isotropic stress states the soil state will ultimately arrive at the corner between the LC and 

SD yield curves. Analysis of the model suggests that such states should fall on a unique 

planar normal compression surface in v:lnp*:lns* space and also on a second unique 

planar surface in Sr:lnp*:lns* space. The experimental results of Sivakumar (1993) from 

constant suction isotropic loading of compacted speswhite kaolin are presented in these 

spaces, and are shown to lie on planar surfaces, as predicted by the model. Presenting 

experimental normal compression results in this way gives an ideal method for 

determining the values of the key soil parameters k1, k2, λs and κs in the model.  

A simple extension of the Wheeler et al. (2003) model to the stress conditions of the 

triaxial test, by including the role of deviator stress q, has been proposed by Lloret et al. 
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(2008b) and Raveendiraraj (2009). According to this extended model, critical states will 

commonly occur at the intersection of the LC yield surface and the SD yield surface, and 

such critical states should fall on a second pair of unique planar surfaces in the v:lnp*:lns* 

and Sr:lnp*:lns* spaces. The experimental critical state data of Sivakumar (1993) have 

been plotted in these spaces and the results obtained are presented and discussed. 

The new constitutive model has been extended to general 3D stress conditions and 

generalised stress-strain relationships required for numerical integration of the model are 

presented. Furthermore, 3D extended functions to identify the different elasto-plastic 

mechanisms of the model are proposed. A partial validation of this extended model is also 

presented using the experimental results of Sivakumar (1993). 

Two strain-driver algorithms for the integration of the generalised model are presented 

including first and second order error schemes. The complete formulation of these explicit 

algorithms is described and the computed results from both integration schemes is 

compared and discussed.  

Finally, the generalised fully coupled constitutive model has been implemented within the 

finite element program CODE_BRIGHT (Olivella et al., 1996) to solve boundary value 

problems involving unsaturated soil. The performance of the new implemented model is 

analysed and discussed by considering application to a boundary value problem involving 

wetting of a cylindrical soil specimen.  
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1. Introduction and basic definitions 

1.1. Background and objectives of the research proj ect 

Basic definitions 

Soils are typically modelled as multiphase porous media. When the pores, or spaces 

between the solid particles, are fully filled with liquid the soil is referred to as saturated and 

when these voids are partially filled with liquid and partially filled with gas the soil is 

referred to as unsaturated. In general the liquid present in the soil is water while the gas 

phase is typically air. There are, however, many other examples in nature in which the 

fluids between the particles are not only water and air but a mixture of other fluids such as 

oil or gaseous hydrocarbons. An equivalent general framework to that used for 

unsaturated soils may also be applied to describe these deformable multiphase systems, 

after including the appropriate constitutive relationships of the fluids and solids involved.  

The presence of air between the soil particles adds complexity to classical soil mechanics 

problems where the soil is typically considered as fully saturated. In saturated cases, 

when describing the observed behaviour, it is not necessary to explicitly characterise the 

amount of water present in the soil pores as it occupies all the voids and, therefore, it is 

known by knowing the volume of pores. In unsaturated soils, however, it is important to 

characterise the amount of water between the particles because it may influence the 

unsaturated soil behaviour. There are a number of physico-chemical phenomena involved 

in the capacity of soils to retain water in the pore space; such as: surface tension 

phenomena (and associated capillary effects); water adsorption; double layer 

phenomenon; and other processes occurring at soil particle level. This thesis, however, 

will mainly focuses on the effect of capillary phenomenon on unsaturated soil behaviour.  

The water retention behaviour describes the amount of water present in the soil by 

relating the water content (or degree of saturation) and the matric suction (i.e. pore air 

pressure minus pore water pressure). This relationship is intimately linked with the 

mechanical behaviour which relates stresses and strains including shear strength and 

volume change. More precisely, the degree of saturation (in addition to suction) influences 

the mechanical behaviour because it describes the number of inter-particle contacts 

affected by “meniscus water bridges”. These meniscus water bridges, are formed around 

particle contacts when soil is unsaturated and have an stabilising effect on the soil 

skeleton that is lost when an individual void is flooded with water (“bulk water”). On the 

other hand, the volumetric strains (mechanical behaviour) also influence the water 
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retention behaviour essentially through the dimensions of the voids. The size and volume 

of the voids is affected when stresses change and this variation has a direct influence on 

the water retention behaviour. It is fundamental to appropriately describe these couplings 

(or interactions) between mechanical and water retention behaviour for a proper 

characterisation of the unsaturated soil behaviour. This is generally achieved with the 

formulation of a constitutive model which expresses the basic phenomenological 

mechanisms involved in the physical system analysed. The formulation of a constitutive 

model is typically based on experimental observations, which are also employed in the 

validation process by comparing the model results with those measured in the laboratory.  

In general, to carry out the validation of a constitutive model, it is required to previously 

integrate the model. This refers to the development of the mathematical equations 

expressing the unknown increments (typically increments of stresses and increments of 

degree of saturation) in terms of the known ones (typically increments of strains and 

increments of suction). This is achieved by programming an algorithm of the integrated 

constitutive model. A verification process, such as comparing the output with 

corresponding analytical solutions, is required to confirm correct implementation of the 

constitutive model. Then, to analyse practical engineering problems, it is necessary to 

include this algorithm into a numerical tool capable of solving non-linear initial/boundary 

value problems, such as software using the finite element method.  

Occurrence and understanding of unsaturated soils 

The unsaturated condition of the soil is present in many civil engineering constructions as 

it is the common condition of the soil on the surface above the water table, where most of 

the engineering structures interact. Other significant examples in civil engineering where 

unsaturated soil mechanics is relevant involve those construction projects in which 

compacted soil is used as fill material such as embankments, behind retaining walls or 

beneath foundations. Unsaturated soils are also present in a wide range of geotechnical 

applications such as slope stability analysis, landslides, highways, railways or earth dams, 

in addition to many other geo-environmental applications such as underground disposal of 

radioactive waste, ground energy systems, hydro-chemico-mechanical behaviour of 

landfills or analysis of contaminant transport above the water table level. It is, therefore, 

important to understand the behaviour of the soil when not fully saturated and to take it 

into account in the project design, during the construction stage and also during the life of 

the civil structure, in order to better protect constructions from potential risks. In general, 

the soil below the water table level is saturated while the soil above is under the effect of 

capillary pressures. However, the location of the water table level changes with climate or 
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weather, generally rising during wet seasons and lowering during drought periods. This 

variability, which has been more frequently observed lately, also affects soil behaviour. It 

is, then, important to improve our current understanding of these mechanisms influencing 

soil response, in order to determine their relevance on the design/construction/life-time 

stages of a civil engineering structure. 

The importance and interest of unsaturated soil mechanics is also reflected in these last 

five decades of study. Significant improvements have been made over this period and a 

general understanding of unsaturated soil behaviour has been achieved. However, there 

are still several aspects to be addressed and to be better understood, including in the 

areas of constitutive modelling, development of experimental procedures, improvement of 

numerical techniques and engineering applications.  

In particular, this work concentrates on two complementary aspects. On the one hand, 

constitutive modelling of unsaturated soils accounting for the observed coupling between 

mechanical and water retention response; and, on the other hand, on numerical 

techniques and computational issues associated with the solution of engineering problems 

involving unsaturated soil mechanics.  

Objectives of the thesis 

The primary aims of this research were as follows: 

• To extend to 3D stress states the fully coupled constitutive model proposed by 

Wheeler et al. (2003) for isotropic stress conditions, and to extend the validation of 

the model by comparison against existing experimental data.  

• To develop the incremental relationships of the state variables for the numerical 

integration of the generalised constitutive model. 

• To propose an integration algorithm of the 3D coupled constitutive model and 

ensure its accuracy, robustness and efficiency by verifying it against analytical 

solutions.  

• To implement this algorithm into an existing finite element program 

(CODE_BRIGHT, Olivella et al., 1996) for its use in the analysis of boundary value 

problems in geotechnical engineering. 

As a consequence of the research carried out during this project the following objectives 

were also achieved:  
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• Development of the mathematical relationships predicted by the model for isotropic 

normal compression states and their validation against the experimental results 

presented in Sivakumar (1993).  

• Development of the mathematical relationships predicted by the extended model 

for critical states and their validation by comparing them with the experimental data 

provided in Sivakumar (1993).  

• Proposal of a formal methodology to determine from experimental test results the 

values of the soil parameters employed in the Wheeler et al. (2003) constitutive 

model. 

1.2. Layout of the thesis 

This current Chapter 1 is intended to provide a very general background describing the 

basic ideas behind the research, which are essential for the subsequent development of 

the thesis. There is also a brief description of the objectives along with the following layout 

of the document.  

Chapter 2 of the thesis goes deeper into some fundamental aspects involved when 

modelling unsaturated soil behaviour. A review is presented highlighting the key advances 

and main improvements achieved over five decades of study of unsaturated soil 

mechanics. More precisely, this part focuses on mechanical behaviour, water retention 

behaviour and couplings observed between both. Following these descriptions, a detailed 

overview of the fully coupled constitutive model proposed by Wheeler et al. (2003) for 

isotropic stress states is also given, emphasising its most important contributions in 

comparison with prior existing models of unsaturated soils. Some of the complexities 

arising from the use of this constitutive model as the mathematical framework to be 

generalised, integrated and implemented into a finite element program, are initially 

discussed in this part of the document and are further illustrated within the following 

chapters. 

A further exploration of this constitutive model has led to a separate second part of this 

Chapter 2, in which two normal compression relationships predicted by the model are 

developed. The proposed mathematical expressions are then compared and analysed 

with the isotropic normal compression experimental results shown in Sivakumar (1993). 

This analysis is carried out in the semi-log spaces Sr:lns*:lnp* and v:lnp*:lns* where Sr is 

the degree of saturation, v is the specific volume, p* is the mean Bishop’s stress (mean 

net stress plus degree of saturation times suction) and s* is the modified suction (suction 
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times porosity). It is also shown in this second part of Chapter 2, that this form of plotting 

provides an ideal methodology for the determination of the values of the soil parameters 

of the Wheeler et al. (2003) model from experimental test data. It is important to mention 

here that this second part of Chapter 2 is an original contribution of the author, not 

included in the original publication of Wheeler et al. (2003).  

Chapter 3 gives a very basic introduction to some of the most fundamental aspects of 

classical plasticity theory. Several of these aspects are subsequently applied in 

developing the elasto-plastic stress-strain and water retention relationships for isotropic 

stress conditions, employing the constitutive model described in Chapter 2. These 

relationships are then used to formulate a pair of stress-driver incremental subroutines. In 

one of them, the increments of Bishop’s stress and the increments of modified suction are 

the inputs; while in the other, the inputs are increments of mean net stress and increments 

of matric suction. Both of these stress-driver algorithms are employed to analyse the 

computed response for elastic behaviour, elasto-plastic behaviour with only one plastic 

mechanism active and elasto-plastic behaviour with two plastic mechanisms acting 

simultaneously.   

Chapter 4 initially presents a brief introduction of the well-known critical state models for 

saturated soils. This critical state framework is then used to propose a possible extension 

of the Wheeler et al. (2003) model to triaxial stress states. From this extended version of 

the model, a pair of critical state relationships are developed of similar form to the normal 

compression expressions shown in Chapter 2. These relationships are then analysed and 

compared in the same semi-log spaces considered in Chapter 2 with the experimental 

data provided in Sivakumar (1993) at critical states. 

Chapter 5 proposes a 3D version of the fully coupled constitutive model of Wheeler et al. 

(2003). Extending the ideas developed within Chapter 3, this Chapter 5 provides the 

generalised stress-strain relationships required for the numerical integration of the model 

along with the 3D extended functions identifying the different elasto-plastic domains. A 

partial validation of this extended model is finally presented using the experimental results 

shown in Sivakumar (1993).  

Chapter 6 proposes two strain-driver algorithms for the integration of the generalised 

model. The complete formulation of these explicit algorithms is presented discussing 

some of their relevant computational aspects. Also a comparison of the computed 

performance between both integrations schemes is included at the end of the chapter. 



Chapter 1 Introduction  

7 

Chapter 7 starts with a brief introduction of the existing finite element program 

CODE_BRIGHT (Olivella et al., 1996) including a very general description of the 

governing equations involved. This chapter also describes the modifications required 

within this program to include the strain-driver (i.e. increments of strains and increments of 

suction are the known or driving variables) type algorithms presented in Chapter 6. A case 

study using the new model implemented is analysed and discussed at the end of the 

chapter.  

Chapter 8 presents the conclusions from the research carried out and makes 

recommendations for further future research.  
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2. Mechanical and water retention behaviour in unsa turated soils 

This chapter contains two major parts. A general overview of the most important aspects 

of unsaturated soil mechanics is given first; focussing on the advances made in 

understanding and modelling of the mechanical response, the water retention behaviour 

and the observed couplings between both. A detailed description of a constitutive model 

capable of considering these couplings within a single framework (Wheeler et al., 2003) is 

also given in this part. The second part covers the development of a set of normal 

compression relationships formulated on the basis of the mentioned constitutive model. 

The proposed mathematical expressions are then partially validated with the experimental 

data shown in Sivakumar (1993). This analysis is carried out in the semi-log spaces 

Sr:lns*:lnp* and v:lnp*:lns* where Sr is the degree of saturation, v is the specific volume, p* 

is the mean Bishop’s stress (mean net stress plus degree of saturation times suction) and 

s* is the modified suction (suction times porosity). This form of plotting the results provides 

an ideal methodology for determining the values of some of the key parameters in the 

Wheeler et al. (2003) model from experimental data.  

2.1. Introduction 

The unsaturated condition prevails in many engineering problems of practical interest. To 

tackle properly such problems it is crucial to develop a good understanding of the 

influence of the different phases (i.e. liquid, gas and solid) present in the soil on the 

mechanical, retention and hydraulic behaviour of unsaturated soils. Perhaps the main 

complexity associated with the description of unsaturated soil behaviour comes from the 

strong interaction between the mechanical and the retention behaviour. Changes in the 

amount of water in the pore space are mainly controlled by fluid (i.e. water and air) 

pressure changes and also by the mechanical problem via changes of the pore volume 

(i.e. void ratio). Deformations of the soil mass depend not only on stress changes, but also 

on changes of retention variables, such as fluid pressures and degree of saturation.  

Understanding properly the mechanical response, the water retention behaviour and 

interaction between both is, therefore, an essential step for a comprehensive description 

of unsaturated soil behaviour. The following sections are intended to provide a description 

of these concepts, establishing a basis to better understand the subsequent description of 

a fully coupled constitutive model (Wheeler et al., 2003) for unsaturated soils.  
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2.2. Phases in unsaturated soils 

A fundamental and basic aspect when modelling unsaturated soils is the identification of 

the different phases (and interactions between them) acting in a representative volume of 

soil. In general, soil is modelled as a multiphase porous media where liquid, gas and solid 

are the three phases typically considered. As illustrated in Figure 2-1, the liquid phase 

may comprise, in general, free (or pore) water, dissolved air and dissolved salts. The gas 

phase comprises dry (free) air and water vapour, and the solid phase is composed of solid 

particles and adsorbed water. A brief discussion on each phase, describing their different 

components is given below to illustrate some of the complexity associated with 

unsaturated soils. Also the different interactions between phases and some of the major 

consequences on constitutive modelling are highlighted.  

Water 

Adsorbed 

Free 

Vapour 

Air 

Free 

Dissolved 

Solid particles 

Dissolved salts 

Gas phase 

Solid phase 

Liquid phase 

 

Figure 2- 1 Principal components of each phase in unsaturated soils (Yoshimi and Osterberg, 1963). 

2.2.1. Solid phase 

The soil particles comprise most of the solid phase and their characterisation is 

fundamental to understand soil behaviour. However, the characteristics of the soil 

particles may vary considerably. Properties such as their size and geometry, shape, 

mineralogy, chemistry or crystallography, may be essential in describing soil behaviour. 

Examples of this importance include the influence on macroscopic behaviour of the 

particle electric charge, its ability to adsorb cations and the variation of the diffuse double 

layer (Josa, 1988).  

Clay minerals fractions, even occurring in small quantities, may have a significant 

influence on the overall behaviour of soil. Knowledge of their distribution and disposition is 

therefore important, as fabric affects the conditions of the water in the soil. More precisely, 

the mineralogical composition of the soil particles influences the adsorbed water and the 

internal geometry of the pore spaces controls the capillary water (Alonso et al., 1987). A 

possible classification of fabric cited in Alonso et al. (1987) is the following one proposed 
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by McGown and Collins (1975) based on Scanning Electron Microscopy (SEM) of natural 

soils. According to their work, the description of micro-fabric can be based on three types 

of forms: elementary particle arrangements, particle assemblages and pore spaces (see 

Figure 2-2).  

 

Figure 2- 2 Types of microfabric: a) clay matrix predominantly integrated by elementary particle arrangements 

of clay platelets and few grains of silt or sand; b) microfabric of clay predominantly integrated by aggregations 

of elementary particle arrangements; c) sand or silt matrix with clay connectors between individual grains; d) 

elementary particle arrangement in parallel configuration (Alonso et al., 1987). 

The dominant components in expansive soils are the elementary clay arrangements and, 

in contrast, grain arrangements (often with clay particles and connectors) are typically 

observed in collapsible soils (Alonso et al., 1987). The particle assemblages are grouped 

in arrays of elementary particle configurations (aggregations when a grain-like 

configuration is formed, matrices if a three-dimensional structure is observed and 

connectors in the case of the configuration illustrated in Figure 2-2c). An interesting 

feature considered in this classification is that it allows the possibility of including different 

pore populations. Large pores observed between grains or packets (commonly referred to 

as inter-aggregate pores), and small pores comprising pore spaces between clay particles 

inside the packets which are typically referred to as intra-aggregate pores. This bi-modal 

distribution is commonly observed in compacted soil samples compacted dry of optimum 

whereas samples compacted wet of optimum exhibit a uni-modal pore size distribution 

(Juang and Holtz, 1986). This is important because different fabrics (i.e. uni-modal and bi-

modal pore size distributions) produced during compaction wet or dry of optimum can 

significantly influence the mechanical behaviour of soils (Raveendiraraj, 2009). It is also 
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important in order to understand the water retention behaviour, as soil fabric has a 

significant influence on how the water is retained inside the soil. The work presented here, 

however, is intended to identify and describe the main basic aspects of unsaturated soil 

behaviour including mechanical and water retention couplings and does not explicitly 

describe the interrelation between intra- and inter-aggregate pores. Mathematical 

frameworks including this bi-modal distribution in their formulation may be found, for 

instance, in Sánchez (2004).  

As described later, the solid particles also play an important role in understanding the 

shear strength of the soil, as tangential and normal forces are transmitted through soil 

particle contacts as a consequence of external loading. 

2.2.2. Liquid phase 

The liquid phase is mostly comprised by water. According to Romero (1999), interstitial 

water can be classified in different forms depending on the size of the pore spaces where 

the water is retained and also depending on the water interactions with the solid matrix of 

the clay. Water contained in inter-aggregate pores is typically referred to as free or 

capillary water. A characteristic of this fraction of water is that it may flow by hydraulic 

gradients. A second fraction of water is formed of that part retained in the pores within the 

aggregations and is referred to as intercluster adsorbed water (see Figure 2-1).  

Water may contain dissolved salts and their cations are attracted by the double diffuse 

layer around the surface of clay particles. Differences in the pore water chemistry may 

significantly influence the mechanical response of soils. This research, however, focuses 

on the mechanical-retention coupling not including chemical effects. Further information 

on the chemical part and its coupling with the mechanical behaviour is given in Guimarães 

(2002).  

Also present in the liquid phase will be air dissolved within the water. Under equilibrium 

conditions the amount of dissolved air will be governed by Henry’s Law, as discussed 

further in Chapter 7. 

In this work, liquid water will be studied as free water contained in the inter-aggregate 

pore space. In turn, this water may occur as bulk water when an individual void is flooded 

with water, like in saturated soils, or as meniscus water formed around particle contacts 

when an individual void is empty of water. As further discussed later, the occurrence of 

water as bulk water or as meniscus water bridges has a significant influence on the 

mechanical behaviour. 
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2.2.3. Gas phase 

The gas phase is mostly comprised of dry air. More precisely, the air comprises a mixture 

of different gases but, in general, it is only considered as dry or free air. Gaseous air 

occupies the pore spaces not occupied by liquid water. The mechanical equilibrium of the 

liquid-gas interfaces involves a tensile force generated along the boundary (surface 

tension). The existence of surface tension means that the gas and liquid phases can be at 

different pressures if the interface is curved (see Figure 2-3). As discussed within the 

following sections, this interface has some specific properties which influence the 

mechanics of unsaturated soils.  

Also in the gas phase will be water vapour, which will typically be in equilibrium with the 

liquid water through the psychrometric law. A more detailed description on this aspect is 

given in Chapter 7.  

2.3. Mechanical behaviour of unsaturated soils 

The mechanical behaviour of soils relates stresses and strains. This can be represented 

by the formulation of a mechanical constitutive model, aimed at describing the stress-

strain behaviour, including volume change and shear strength. In general, the 

mathematical development of the mechanical constitutive model is based on the main 

physical principles involved and, once formulated, it can be validated with the results of 

experimental tests which may also be used to improve the constitutive relationships 

initially proposed. A fundamental aspect in the development of constitutive models is the 

correct choice of the stress state variables employed to describe the material behaviour 

as discussed in the following.  

2.3.1. Stress state variables 

When the soil pores are partially filled with liquid (typically water) and partially filled with 

gas (typically air) the soil is referred to as unsaturated. An unsaturated soil is thus 

constituted by three phases, which are the solid phase (composed of soil grains and 

aggregates and adsorbed water), the liquid phase (comprising water and dissolved air) 

and the gas phase (composed of dry air and water vapour). The interface between liquid 

and gas was considered by Fredlund and Morgersten (1977) as a fourth phase due to its 

particular properties. This interface is affected by the surface tension which is associated 

with capillary phenomena inside the pores. The characterisation of this phenomenon 

introduces an important stress variable known as matric (capillary) suction and defined as 

the difference between pore air pressure and pore water pressure (i.e. s=ua–uw). Figure 2-

3 illustrates these concepts from an idealised infinitesimally small element of air-water 
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interface in equilibrium with forces exerted by air pressure, water pressure and surface 

tension.  

Ts 

Ts 

Ts 
uw 

Ts 

ua 

r2 

  r1 

α 

β 

 

Figure 2- 3 Equilibrium of an infinitesimal element of gas-liquid interface. 

Consideration of force equilibrium on the interface element leads to the following 

expression (typically referred to as the Young-Laplace equation) relating the matric 

suction to the surface tension Ts and the principal radii of curvature r1 and r2 of the 

interface (considered positive when measured on the air side and negative when 

measured on the water side): 

1 2

1 1
a w su u T

r r

 
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 
 (2. 1) 

Total suction st is intimately related to the concept of water potential which can be defined 

as the amount of work per unit mass of pure water that must be done in order to transport, 

reversibly and isothermally, an infinitesimal quantity of water from one reference condition 

to a specified elevation and gas pressure (Gens, 2010). Thus, gradients of total water 

potential control the mass transfer of liquid water. Water potential and suction are 

equivalent concepts, but having units of energy per unit mass (L2T-2) and of pressure   

(ML-1T-2) respectively. In fact, as pointed out in Gens (2009), suction is obtained when 

expressing the water potential as energy per unit volume rather than as energy per unit 

mass and changing the sign (i.e. st=-ψ where ψ is the water potential expressed as energy 

per unit volume). This dual representation of the state of water in soils is useful in 

developing new measurement techniques or mechanical constitutive laws for unsaturated 
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soils (Alonso et al., 1987). In this direction, it is convenient to define the water potential as 

a combined contribution of several components (Review Panel, 1965):  

z g o mΨ = Ψ + Ψ + Ψ + Ψ  (2. 2) 

The gravitational potential term ψz is associated to the difference in elevations (i.e. ψz=γwz 

where z is the elevation with respect to a reference). The gas pressure potential ψg is 

related to the applied gas pressure (i.e.ψg=ua-uatm where ua and uatm are the pore air 

pressure and the reference atmospheric pressure respectively). The osmotic potential ψo 

arises from differences in solute concentration between pore water and pure water (i.e. 

ψo=∆cRT where ∆c is the difference in concentration between the two solutions, R is the 

universal gas constant, 8.314 J/mol K, and T is the absolute temperature). The last term in 

equation (2.2), the matric potential ψm, includes the capillary absorption (i.e. ψc=-(ua-uw)) 

and surface adsorption phenomena (i.e. ψa).  

As described in Gens (2009), the capillary and the adsorptive components are commonly 

lumped together into a single measurement of matric suction expressed as s=ua–uw, in 

spite of the fact that each component may have different effects on the mechanical 

behaviour. This is because it is difficult to separate them in practice although it is 

conceptually useful. In this sense, the development of increasing negative potentials 

occurring from high to low values of the degree of saturation should be viewed as a 

gradual process with no clear transition between the capillary and the adsorptive water 

regimes (Gens, 2009).  

For non-expansive soils, matric suction changes are significantly more important than 

osmotic suction variations in controlling the mechanical behaviour of unsaturated soils 

(Alonso et al., 1987). This leads to the result that matric suction is considered as the 

component of suction employed as a stress state variable in most mechanical constitutive 

models. In expansive soils, where the pore fluid chemistry has an important influence on 

mechanical behaviour, the contribution of the osmotic suction component may be 

significant. In such soils, however, the influences of matric suction and of pore fluid 

chemistry on mechanical behaviour will need to be considered separately, and it will not 

be possible (when considering mechanical behaviour) to simply relate the behaviour to a 

single total suction variable i.e. the concept of total suction has meaning in the context of 

flow of liquid water but not in the context of mechanical behaviour. This research, 

however, is primarily concerned with the behaviour of non-expansive soils, and thus the 

term suction will here refer to matric (capillary) suction (i.e. s=ua–uw). An interesting and 

more detailed description on these issues is given in Gens (2009).  
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In saturated conditions, when all the pores are fully filled with water, the only stress 

variable required in describing the mechanical behaviour is the effective stress tensor, 

which is defined as the difference between total stress and pore water pressure: 

'ij ij ij wuσ σ δ= −  (2. 3) 

where σ’ij is the effective stress tensor, σij is the total stress tensor, δij is the Kronecker 

delta and uw is the pore water pressure.  

From a physical point of view the effective stress can be considered as the stresses 

transmitted through the grains or soil skeleton by inter-particle contact forces. Changes of 

these contact forces cause deformation of the soil skeleton and increase the friction 

generated at points of contact between the soil particles which gives the shear strength of 

the soil. Hence, it is reasonable to assume that variations of these contact forces cause a 

direct effect on the mechanical properties of the soil. This was formally announced by 

Terzaghi (1936) within the effective stress principle stating: 

“all the measurable effects, such as compression, distortion and a change of shearing 

resistance are exclusively due to changes in effective stress”. 

However, in unsaturated soils, the existence of two fluid phases in the voids between the 

soil particles considerably increases the complexity of describing mechanical behaviour. 

Many early efforts in describing the unsaturated condition attempted to define an effective 

stress for unsaturated soils that satisfied Terzaghi’s definition of effective stress in 

saturated soils. In this direction, several formulations directly inspired by the effective 

stress concept defined by Terzaghi (2.3) for the saturated condition, have been proposed 

for unsaturated soil. Probably the best known was suggested by Bishop (1959): 

( )' 1ij ij ij w ij au uσ σ δ χ δ χ= − − −  (2. 4) 

where σ’ij is the Bishop’s effective stress tensor, χ is a material parameter which mainly 

depends on the degree of saturation and varies from 1 (saturated state) to 0 (dry state), ua 

is the pore air pressure and uw is the pore water pressure. Similarly to the case of 

saturated soils, the effective stress expression proposed by Bishop can be physically 

interpreted as an attempt to represent the stresses transmitted through the soil skeleton. 

The weighting factors χ and (1-χ) respectively applied to the pore water pressure and pore 

air pressure in equation (2.4), can be viewed (when looking at the influence of each pore 

pressure on the stresses transmitted through the soil skeleton) as representing a 
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weighting value of the voids fully occupied by water and those occupied by air (Wheeler et 

al., 2003).  

This approach was capable of reasonably reproducing some features of the behaviour of 

unsaturated soil, such as the shear strength, but could not explain others, such as the 

irrecoverable volumetric compression which sometimes occurs upon wetting (Jennings 

and Burland ,1962). When an unsaturated soil sample is wetted the soil sample may 

experience swelling (under low confining stress) or a reduction in volume (under high 

confining stress). This duality of behaviour upon wetting probably makes it impossible to 

relate volume change with applied stress by using a single unique stress function 

(Burland, 1965). The lack of success in using a single stress variable to describe some of 

the basic features observed in unsaturated soil behaviour, led to new approaches 

employing two independent stress variables.  

Fredlund and Morgenstern (1976) stated that two independent stress variables are 

required when modelling unsaturated soil behaviour. In particular, they proposed that any 

possible pair amongst σij –δijua, σij –δijuw and ua-uw could describe the mechanical 

behaviour of unsaturated soils. The most common pair used are net stress, σij–δijua and 

suction, ua-uw. Further support for this statement was provided by Fredlund and 

Morgenstern (1977) with experimental results observed in null tests, where no volume 

change of the soil was observed when changing pore air pressure, pore water pressure 

and total stress and keeping net stress and suction constant. Tarantino et al. (2000) 

provided also further experimental evidences supporting this statement.  

Many attempts to describe the mechanical behaviour of unsaturated soils were made from 

the 1960s but it was not until Alonso et al. (1987) and Alonso et al. (1990) that a 

consistent and unified framework based on the theory of elasto-plasticity was developed. 

The constitutive model proposed by Alonso et al. (1990), known as the Barcelona Basic 

Model (BBM), is formulated in terms of suction (s=ua–uw) and net stress ( ijσ =σij–uaδij) and 

it establishes the conceptual basis of constitutive modelling of unsaturated soils. Based on 

this framework a number of constitutive models employing the net stress tensor and 

suction were proposed later, aimed at improving or expanding the capabilities of the 

original BBM (e.g. Josa et al., 1992; Wheeler and Sivakumar, 1995; Cui and Delage, 

1996; Sánchez et al., 2005, among others). Reviews on constitutive modelling of 

unsaturated soils can be found in Wheeler and Karube (1996), Gens et al. (2006) or, more 

recently, Sheng et al. (2008).  
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Following publication of the BBM by Alonso et al. (1990), there have also been many 

suggestions for alternative mechanical constitutive models which use some of the 

conceptual ideas but which employ alternative pairs of stress variables to the net stress 

tensor and the matric suction. Examples include Jommi (2000), Wheeler et al. (2003), 

Sheng et al. (2004), Khalili et al. (2004) and Tamagnini and Pastor (2005). The 

advantages and disadvantages of these alternative pairs of stress variables are discussed 

by Gens et al. (2006) and, also, Nuth and Laloui (2008a).  

Houlsby (1997) suggested possible pairs of suitable stress variables for use in 

unsaturated soil mechanics, and corresponding appropriate strain increment variables, by 

considering the work input per unit volume of unsaturated soil. Houlsby showed that the 

increment of work input, dW per unit volume of unsaturated soil (neglecting the work 

dissipated by flow of fluids, the air compressibility term and ignoring the work of the air-

water interface) can be written as:  

( )( ) ( ) * *1ij r w r a ij ij a w r ij ij rdW S u S u d u u ndS d s dSσ δ ε σ ε = − + − − − = −   (2. 5) 

where σij
* is equivalent to the stress variable defined by equation (2.4) with the weighting 

factor χ replaced by the degree of saturation Sr and will be referred to as the Bishop’s 

stress tensor, dεij is the strain increment tensor, n is the porosity and s* will be referred to 

as the modified suction. Equation (2.5) shows that if Bishop’s stress tensor and modified 

suction are employed as stress state variables to describe unsaturated soil behaviour, the 

appropriate pair of work-conjugate strain increment variables are increments of strains 

and decrements of the degree of saturation respectively. As pointed out in the original 

work (Houlsby, 1997) equation (2.5) can be re-arranged to provide other possible choices 

of stress and strain variables. In particular, if the net stress tensor and suction are used as 

stress state variables (as, for instance, in BBM), the appropriate pair of work-conjugate 

strain increment variables would be the strain increment tensor dεij (conjugate with the net 

stress tensor) and a complex strain increment variable (-ndSr+Srdεv), involving both the 

decrement of degree of saturation and the increment of volumetric strain, as conjugate 

with suction. As discussed in Houlsby (1997), this second strain increment variable is 

equal to /wdv v−  where v is the specific volume (1+e) and vw is (1+Sre) defined by 

Wheeler (1991). 

Perhaps one of the main limitations of the BBM family of models, which employ the net 

stress tensor and suction as the stress variables, is that they are not able to account for 

the influence of the degree of saturation (in addition to suction) on the mechanical 
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behaviour. In addition, when employed in the modelling of coupled hydro-mechanical 

boundary value problems they must be used in conjunction with a separate water 

retention constitutive model which typically would take no account of the influence of 

changes of void ratio on the water retention capacity. These two couplings (the influence 

of degree of saturation on mechanical behaviour and the influence of void ratio on water 

retention behaviour) are both crucial features of unsaturated soil behaviour experimentally 

confirmed by several authors (e.g. Romero, 1999; Jommi, 2000; Vaunat et al., 2000; 

Gallipoli et al., 2003b and Tarantino and Tomobolato, 2005). With the aim of including in 

the modelling of unsaturated soils such kinds of mechanical-retention couplings a number 

of advanced constitutive models, generally based on other sets of stress and strain 

variables, have been more recently proposed (e.g. Vaunat et al., 2000; Wheeler et al., 

2003, Sheng et al., 2004). In particular, Wheeler et al. (2003) proposed a new fully 

coupled constitutive model which employs the stress variables σij
* and s* (and the 

corresponding appropriate strain variables) and which introduces the possibility to include, 

within a single constitutive model, not only the description of the main features of 

mechanical behaviour in unsaturated soils, but also most of the basic characteristics of 

the water retention behaviour. This coupled constitutive model of Wheeler et al. (2003) 

constitutes the basis of the work developed within the following chapters. This new 

perspective was one of the first formulations of a new family of more advanced 

constitutive models accounting for the coupling, at constitutive level, between mechanical 

and water retention behaviour (e.g. Sheng et al., 2004; Sun et al., 2007; Manzanal, 2008; 

Francois, 2008; Raveendiraraj, 2009; Buscarnera and Nova, 2009).  

2.3.2. Volume change 

The main features of volume change behaviour experimentally observed in unsaturated 

soils are summarised in the following sections. A brief description relating these features 

with significant aspects of constitutive modelling is also given.  

2.3.2.1. Response under loading-unloading stress paths at constant suction 

Unsaturated soils exhibit irreversible volumetric behaviour when loaded at constant 

suction beyond a certain net stress (the yield stress). From this stress state, plastic 

volumetric straining is observed if loading increases in the same way. It is also observed 

that if an unloading stress path at the same constant suction is then applied, swelling 

occurs and part of the volumetric changes are recovered (see response b-c in Figure 2-4). 

In the light of these experimental observations, it is reasonable to characterise this type of 

unloading behaviour (within an elasto-plastic framework) as reversible or elastic. 
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Furthermore, it is generally observed that the slope of these swelling lines do not 

significantly depend on suction (Alonso et al., 1990).  

Also, if a re-loading stress path at the same value of suction is now applied, the volumetric 

response observed will approximately match with the previous swelling (now compressing 

instead of expanding) as plotted in Figure 2-4 as the response c-d. This type of behaviour 

illustrated in Figure 2-4 under oedometric conditions is also typically observed for isotropic 

stress paths as illustrated in Section 2.5.1. As shown later, it is also commonly observed 

that during a re-loading stress path, yielding takes place at the same stress state from 

where the previous unloading path started. It is interesting to note that these features of 

behaviour are very similar to those observed in saturated soils and (as further described in 

Chapter 3) they suggest elasto-plasticity as an adequate framework for its description 

(Gens and Potts, 1988). 
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Figure 2- 4 Loading-unloading paths on high-porosity Boom clay at constant suction (Romero, 1999). 

During isotropic loading paths at different values of suction, the yield stress increases with 

increasing suction. This particular feature of unsaturated soils is illustrated in Figure 2-5. It 

implies, from an elasto-plastic point of view, that the size of the elastic domain increases 

with increasing suction (Wheeler and Sivakumar, 1995).  
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Figure 2- 5 Behaviour of speswhite kaolin during isotropic loading at different constant suctions (Sivakumar, 

1993)  

The locations and gradients of the normal compression lines in the plane v:ln p  obtained 

from isotropic loading at constant suction are dependent on the suction level (see Figure 

2-5), and can be expressed by:  

( ) ( ) lnv N s s pλ= −  (2. 6) 

where p  is the mean net stress and the intercept N(s) and gradient λ(s) both depend 

upon the value of suction.  

2.3.2.2. Response under isotropic wetting paths at constant mean net stress 

During a wetting path on a sample of unsaturated soil, swelling (see Figure 2-6) or 

collapse compression (see Figure 2-7) may occur. In general, swelling is observed at low 

values of net stress whereas, collapse compression occurs at higher values of net stress.  
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Figure 2- 6 Wetting-drying cycle on compacted bentonite-kaolin performed under isotropic stress state 

(Sharma, 1998). 
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Figure 2- 7 Behaviour of a wetting-drying path on Barcelona clay at constant mean net stress (Barrera, 2002). 

2.3.2.3. Response under isotropic drying paths at constant mean net stress 

A decrease in volume (shrinkage) is observed during a drying path on a sample of 

unsaturated soil (see Figure 2-6 or Figure 2-7). According to Alonso et al. (1987) 

irrecoverable volumetric strains occur when suction is increased to values higher than 

those previously reached, which suggests the existence of a yield point. The reversible 

and irreversible behaviour that can be observed while drying an unsaturated soil sample is 

illustrated in Figure 2-6 (although note that, in this case, yielding on drying occurs at 

suction much lower than the maximum value previously applied – this point is discussed in 

Section 2.5.2).  
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2.3.2.4. Physical explanation and modelling with LC yield curve 

In unsaturated soils, (free) water may occur as bulk water when an individual void is 

flooded with water like in saturated soils, or as meniscus water formed around particle 

contacts when an individual void is empty of water.  

The occurrence of meniscus water bridges between the soil particles (formed where the 

neighbouring voids are air-filled) produces an additional component ∆N of normal force 

through the contact points resulting in a stabilising effect on the soil structure. Essentially 

as these normal contact forces increase, the friction generated at points of contact 

between the soil particles is also increased and this makes inter-particle slippage less 

likely, hence increasing yield stress (see Figure 2-8). This additional stability has a limiting 

value as suction tends to infinity (Wheeler et al., 2003) and it is lost when an individual 

void is flooded with water. More generally, in saturated soils where all the voids are fully 

filled with water, this stabilising effect has completely disappeared and pore water applies 

an isotropic pressure that produces a uniform effect on the soil skeleton (effective stress 

concept). 
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Figure 2- 8 Representation of the additional inter-particle force at contact point for idealised spherical soil 

particles. 

The different forms of behaviour observed in unsaturated soils during wetting (swelling or 

collapse compression) can be explained by the occurrence of water as bulk water or as 

meniscus water. During a wetting process, pore water pressure increases within the bulk 

water causing swelling of the soil. On the other hand, the possible loss of meniscus water 

bridges as a consequence of this wetting process can trigger inter-particle slippage, 

resulting in volumetric compression (Raveendiraraj, 2009). 

Based on the fact that aspects of mechanical behaviour listed above are inter-related, 

Alonso, Gens and Hight (1987) proposed a yield curve called the Loading-Collapse yield 

curve (LC). The LC yield curve represents plastic volumetric compression occurring either 
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during isotropic loading or during wetting as the same process (i.e. yielding on the LC 

yield curve). The mathematical formulation for the LC yield curve was later proposed by 

Alonso, Gens and Josa (1990) (see Section 2.3.4 for more detail).  

2.3.3. Shear strength 

The shear strength of a particular soil is higher when the soil is in an unsaturated 

condition than when it is in a saturated condition. From a physical point of view, and as 

described in Raveendiraraj (2009), this can be explained as follows. During a wetting 

process more and more air-filled voids become water-filled voids, losing stability at particle 

contacts because the number of meniscus water bridges affecting inter-particle contacts 

reduces. In the limit, soil becomes saturated and the stabilising effect is lost. Conversely, 

during a drying process, more and more water-filled voids become air-filled voids, leading 

to additional stability at particle contacts. At a certain stage while suction is being 

increased, most of the voids become air-filled (or, in other words, very few voids are filled 

with bulk water) and additional stability at inter particle contacts mainly depends on 

increasing suction. However, if suction is kept increasing, this additional stability reaches 

a limiting value, as described in Section 2.3.2.4. Hence, beyond a certain value of suction 

no significant increase of shear strength is observed. Indeed, at very high values of 

suction the shear strength may decrease, as meniscus water bridges are lost and some 

particle contacts become completely dry.  

Several attempts to represent the shear strength variation of unsaturated soils have been 

proposed over the last 50 years. The first proposal was perhaps that of Bishop (1959) with 

his proposal for an effective stress equation for unsaturated soils (2.4) leading to the 

following shear strength expression:  

( ) ( )' tan 'n a a wc u u uτ σ χ φ = + − + −   (2. 7) 

where τ is the shear strength of the soil, c’ is the effective cohesion, Φ’ is the effective 

internal frictional angle, (σn-ua) is the net stress normal to the plane of shearing, (ua-uw) is 

matric suction and χ is a parameter dependent on the degree of saturation  and varying 

between 0 and 1. Fredlund and Morgenstern (1977) put forward a new approach 

considering independently the contributions of suction and net normal stress on shear 

strength. 

( ) ( )' tan ' tan b
n a a wc u u uτ σ φ φ= + − + −  (2. 8) 
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where Φb is the internal frictional angle associated with changes in matric suction, which 

was initially considered constant for a particular soil. However, as pointed out by several 

authors (e.g. Escario and Saez, 1986), Φb is not constant with suction, because when 

suction increases to very high values, the shear strength of this soil cannot increase 

infinitely, meaning that the value of Φb decreases with increasing suction after a certain 

value (a non-linear variation of shear strength with suction).  

Some other proposals have been made since this period contributing to our current 

understanding of the shear strength of unsaturated soils. A detailed overview on these 

advances describing some engineering applications is given in Vanapalli (2009).  

2.3.4. The Barcelona Basic Model 

Alonso, Gens and Hight (1987) described and discussed, mainly from a 

phenomenological point of view, some of the most characteristic features observed in 

unsaturated soil behaviour and introduced at a qualitative level an elasto-plastic 

framework for unsaturated soils. This was subsequently further developed in the 

formulation of the commonly known Barcelona Basic Model (BBM) by Alonso, Gens and 

Josa (1990). The fundamental aspects of this mechanical constitutive model are 

described herein and further details can be found in the cited original work or also in the 

research presented by Josa (1988).  

The Barcelona Basic Model (BBM) is probably the most commonly used constitutive 

model in unsaturated soil mechanics. This is because the BBM is able to include, within a 

single framework, many of the main characteristics of the mechanical behaviour of 

unsaturated soil. The mathematical framework of the model is based on elasto-plasticity 

and fundamental concepts of critical state models (see Chapters 3 and 4). Indeed, as 

suction decreases towards zero, the BBM tends to the well known Modified Cam Clay 

elasto-plastic model for saturated soils. It is implicitly assumed within the BBM that the soil 

is fully saturated whenever the suction is zero and only when the suction is zero. This may 

not be true in practice, as soils will typically show a finite air entry value of suction on 

drying and, conversely, may not achieve full saturation on wetting to zero suction.  

A general description of BBM is given in the following, presenting first the predicted 

behaviour under isotropic stress states and subsequently generalising it to triaxial stress 

conditions.  
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Variations of specific volume v with mean net stress p  for different values of suction s 

and along virgin isotropic loading paths (i.e. isotropic normal compression lines, NCL) are 

governed by the following expression:  

( ) ( ) ln
c

p
N s s

p
ν λ= −  (2. 9) 

where N(s) is a reference value of the specific volume when the mean net stress equals a 

given reference value cp  and λ(s) is the slope of the NCL which is assumed to vary with 

suction as expressed in the following equation:  

( )( ) (0) 1 ss r e rβλ λ − = − +   (2. 10) 

where λ(0) is the slope of the NCL for saturated conditions, r is a parameter giving the 

ratio of the value of λ(s) at infinite suction to the saturated value λ(0) and β is a parameter 

giving the rate of change of compression index λ(s) with suction. It is interesting to note 

that (2.10) predicts a decrease of the compression index λ(s) with increasing suction for 

values of r between 0 and 1, whereas if r is greater than 1 (2.10) predicts of λ(s) an 

increase of λ(s) with increasing suction as discussed in Wheeler et al. (2002).  

Elastic variations of specific volume are governed by:  

( )
e

s
atm

dp ds
dv

p s p
κ κ− = +

+
 (2. 11) 

where κ is an elastic swelling index with respect to changes of p , κs is an elastic index of 

the soil with respect to suction variations and patm is atmospheric pressure, introduced in 

order to avoid prediction of infinite elastic volumetric strains when suction approaches 

zero. The component of (2.11) involving κs describes elastic swelling on wetting and 

elastic shrinkage on drying. 

Variations of the pre-consolidation mean net stress with suction are given by (2.12) which 

defines the Loading Collapse (LC) yield curve introduced in Section 2.3.2.4. The region 

identified inside the LC yield curve in the s- p  plane (see Figure 2-9) defines the elastic 

domain under isotropic stress conditions.   

(0)
* ( )

0 0
s

c c

p p

p p

λ κ
λ κ

 −
 −   

=   
   

 (2. 12) 
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where *
0p  is the value of pre-consolidation mean net stress for saturated conditions and 

cp  is a reference pressure. 
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Figure 2- 9 Relationship between pre-consolidation stresses 
0

p and 
*

0
p : (a) compression curves for 

saturated and unsaturated soil; (b) stress path and yield curve in ( p ,s) stress plane (Alonso, Gens and Josa, 

1990). 

Extension of the model to triaxial stress states to include the effect of shearing is made by 

extending the Modified Cam Clay model from the saturated state (s=0) to non-zero values 

of suction. The resulting LC yield surface is assumed to have elliptical constant suction 

cross-sections and a linear increase of the tensile intercept with suction (see Figure 2-10 

and Figure 2-11). This results in the following equation for the LC yield surface:  

2 2
0( )( ) 0q M p ks p p− + − =  (2. 13) 

where q is the deviatoric stress, k is a parameter giving the assumed linear increase in 

tensile intercept with suction, M is the aspect ratio of the elliptical cross-sections and 0p  is 

the isotropic yield stress at a given value of suction ( 0p  varies with suction according to 

the LC yield curve expression of (2.12)).  
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Figure 2- 10 Extended representation of the BBM yield surface (Sánchez, 2004). 

Under these considerations, the critical state lines (CSL) for different values of suction 

(see Figure 2-11) are defined in the :q p  plane by: 

q Mp Mks= +  (2. 14) 

A simple linear increase of critical state strength with suction is therefore assumed, 

equivalent to the assumption of a constant Φb (see Section 2.3.3). 

A Suction Increase (SI) yield surface is also included in the BBM, (see Figure 2-10 and 

Figure 2-11) to represent the occurrence of plastic shrinkage on drying to a higher value 

of suction than previously applied.  
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Figure 2- 11 LC and SI yield surfaces: (a) constant suction cross-sections; (b) q=0 cross-section (Alonso, 

Gens and Josa, 1990). 
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As the name implies, the main purpose (and achievement) of the Barcelona Basic Model 

is the formulation of a basic framework capable of reproducing the general behaviour of 

unsaturated soil. However, some of the assumptions made in order to simplify the model 

formulation led to some model limitations. A discussion on some of these limitations is 

given in Wheeler et al. (2002). 

Many other alternative elasto-plastic constitutive models for unsaturated soils have been 

also proposed after the BBM. Interesting reviews and discussions on some of the most 

significant advances in constitutive modelling of unsaturated soils can be found, amongst 

others, in Gens (1996), Wheeler and Karube (1996), Jommi (2000) or Sheng et al. (2008). 

2.4. Water retention behaviour of unsaturated soils  

In unsaturated soils water is retained in the soil structure by both capillary absorption and 

surface adsorption on the active clay minerals (also influenced by osmotic effects resulting 

from the pore water chemistry) (Romero, 1999). According to Romero and Vaunat (2000) 

interstitial water contained in unsaturated soils can be distinguished in two components: 

the fraction occupying the inter-aggregate (significantly affected by loading processes) 

and the fraction of quasi-immobile water contained in the intra-aggregate level (with lower 

influence of the mechanical actions). The description of the water retention behaviour is 

the central aim of this section. 

A fundamental constitutive law for a proper description of unsaturated soil behaviour is the 

water retention relationships which generally relate the amount of water retained in the 

soil pores to the suction s. The amount of water retained within the soil is typically 

expressed by either the water content w or the degree of saturation Sr. How w or Sr varies 

with suction s mainly depends on the geometry and distribution of the voids and on the 

physico-chemical interactions between pore water and soil. This correspondence between 

s and Sr is generally non-unique. It is experimentally observed that, for a given soil, at one 

particular value of suction, the values of degree of saturation will be different on a drying 

path and on a wetting path. This feature of the water retention behaviour is termed 

hydraulic hysteresis and it is illustrated in Figure 2-12. In this figure, the main drying curve 

gives the variation of degree of saturation with suction followed by a soil sample dried 

from an initially saturated state. Conversely, if a soil sample is wetted from a completely 

dry state, the observed variation of degree of saturation with suction traces the main 

wetting curve. Any reverse on the variation of suction from a main wetting or drying curve 

traces a different curve named a scanning curve (see Figure 2-12). 
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Figure 2- 12 Idealised representation of hydraulic hysteresis in the water retention behaviour (Tarantino, 

2007). 

A consequence of considering hydraulic hysteresis in the retention behaviour is that for a 

given value of suction many different values of the degree of saturation may occur: a 

maximum value Sr1 on the main drying curve, a minimum value Sr2 on the main wetting 

curve and intermediate values, such as Sr3, on scanning curves. These ideas are 

illustrated in Figure 2-12. In the light of this, if two different degrees of saturation are found 

for the same value of suction and the same net stress state, the stabilising effect of the 

meniscus water at inter-particle level would be different which may influence the 

mechanical response. 

If changes of void ratio occur, there will be a shift in the positions of the main drying curve 

and main wetting curve. Lower values of the void ratio will shift the position of the main 

curves to higher suctions (to the right in Figure 2-12) as a higher value of suction will be 

required to empty or fill the smaller voids with water. This influence of the void ratio on the 

positions of the main drying and wetting curves has been observed by many authors (see 

for instance, Gallipoli et al., 2003a) and is further discussed in the following section when 

describing the influence of the mechanical behaviour on the water retention behaviour.  

A more detailed description and deeper overview on the water retention behaviour can be 

found in Romero (1999) and also in Nuth and Laloui (2008b).  
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2.5. Coupling of mechanical and water retention beh aviour at constitutive 
level 

This section is aimed at describing the coupling at constitutive level between water 

retention behaviour and mechanical behaviour in unsaturated soils. These influences are 

observed in both directions. Mechanical behaviour influences water retention behaviour 

(essentially through variations of the void ratio) and water retention behaviour influences 

mechanical behaviour (mainly through variations of the degree of saturation). It is 

important to incorporate these couplings into a constitutive model in order to accurately 

describe and better understand the unsaturated soil behaviour.  

2.5.1. Influence of mechanical behaviour on water r etention behaviour 

As already introduced, variations of the void ratio e change the capacity of the soil to 

retain water. In fact, as highlighted in Wheeler et al. (2003), changes in size of voids and 

of passageways between voids modifies the suction necessary to flood or empty the 

voids. These variations of e are essentially controlled by the stress-strain relationships 

and therefore the mechanical behaviour influences the Sr-s relationships. A shift of the 

main drying and wetting curves in the Sr:lns plane is observed if the void ratio changes. 

For example, the main drying and wetting retention curves are shifted to higher suction 

values when the void ratio decreases as the required suction to flood or empty the voids 

tends to increase with decreasing void ratio. These influences have been observed by 

several authors (e.g. Romero, 1999; Romero and Vaunat, 2000; Jommi, 2000; Gallipoli et 

al., 2003a and Tarantino and Tomobolato, 2005). Figure 2-13 shows some of the results 

in the water retention plane presented in the work of Romero (1999) on statically 

compacted samples of kaolinitic-illitic soil. The work of Romero (1999) was aimed at 

investigating the influence of void ratio on main wetting and drying curves. Samples were 

compacted at a water content dry of optimum to two different dry unit weights (i.e γd=13.7 

kN/m3 and γd=16.7 kN/m3) resulting in two different void ratios (i.e. e=0.93 and e=0.59 

respectively). It is clearly observed in Figure 2-13 that the main wetting and drying curves 

corresponding to lower void ratios are shifted to higher values of suction compared to the 

corresponding curves for higher void ratios.  
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Figure 2- 13 Influence of void ratio on main wetting and drying curves for a kaolinitic-illitic soil (Romero, 1999). 

It should also be noted that the water retention behaviour may also be presented in terms 

of the evolution of the water content w (rather than degree of saturation Sr) with suction s. 

This is illustrated in Figure 2-14, where the same experimental results from Romero 

(1999) shown in Figure 2-13 are now plotted in the w:lns plane. As argued in 

Raveendiraraj (2009), this alternative form of presenting the results of the water retention 

behaviour may be more useful for analyses in the high suction ranges because they may 

become independent of the void ratio (Romero and Vaunat, 2000) while plotting the water 

retention in terms of Sr may be more useful in low suction range because all curves 

approach Sr=1.0. Inspection of Figure 2-14 confirms that the main wetting curves for the 

two different void ratios analysed (i.e. e=0.93 and e=0.59) tend to merge into one for high 

suctions, and the same is observed for the main drying curves. Therefore, the previously 

described influence of the void ratio on the water retention behaviour, can be considered 

insignificant at high suctions, if the retention behaviour is expressed in terms of w instead 

of Sr. According to Romero and Vaunat (2000), plotting the results in the w:lns plane 

allows the identification of two separate zones: the intra-aggregate porosity region (where 

the water retention response is not dependent on the void ratio and retention curve 

parameters are mainly dependent on the specific surface of the soil particles) and the 

inter-aggregate porosity region (where the water retention response is dependent on void 

ratio and strongly influenced by mechanical actions). These regions are illustrated in 

Figure 2-14. 
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Figure 2- 14 Water retention curves for kaolinitic-illitic soil replotted in terms of water content (Romero, 1999). 

2.5.2. Influence of water retention behaviour on me chanical behaviour 

There is also an influence in the other direction. This is the water retention influencing the 

mechanical behaviour. The degree of saturation influences (in addition to suction) the 

mechanical response because it describes the number of inter-particle contacts affected 

by meniscus water bridges (Wheeler et al., 2003). As described in Section 2.2, these 

meniscus water bridges have a stabilising effect on the soil skeleton, that is lost when an 

individual void is flooded with water. These concepts were introduced by Wheeler et al. 

(2003) and incorporated in the fully coupled constitutive model described in Section 2.6.  

An illustrative example of this influence is shown in Figure 2-15 where the results of 

Sharma (1998) on bentonite-kaolin samples are presented. Two different isotropic loading 

tests are shown. Figure 2-15a shows the results of a sample subjected to isotropic loading 

at constant suction with an intermediate unloading-reloading path at the same constant 

suction (b-c-d). To analyse the influence of the degree of saturation on subsequent 

isotropic loading, an equivalent test for the same soil and at the same value of suction, 

was carried out now including a wetting-drying cycle (c-d-e) after the unloading path (b-c). 

A subsequent loading was then applied (e-f) obtaining the results shown in Figure 2-15b.  
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Figure 2- 15 Behaviour of bentonite-kaolin during isotropic loading at constant suction (Sharma, 1998): (a) no 

wetting-drying cycle applied; (b) wetting-drying cycle applied after unloading path b-c (Wheeler et al., 2003).  

It is observed in Figure 2-15b that in the second isotropic loading (e-f), the initial yielding 

occurs at a mean net stress lower than the last value previously reached (point b). The 

reason for this observed behaviour is that a considerable irreversible increase of the 

degree of saturation as a consequence of the hydraulic hysteresis took place during the 

wetting-drying cycle c-d-e. This increase of Sr led to a reduction of the number of inter-

particle contacts affected by meniscus water bridges, hence reducing the stability of the 

soil skeleton (Wheeler et al., 2003). It should also be mentioned here that Wheeler et al. 

(2003) described how the influence of Sr can also explain the occurrence of yielding on 

drying at suctions less than the maximum value previously applied (see Figure 2.6).  

In order to give an introduction to following section (in which the model proposed by 

Wheeler et al. (2003) is described in detail), only the most significant features of coupling 

relevant to understand this model have been included and discussed within this section. 

Further descriptions on these issues may be found in Wheeler et al. (2003) or also in 

Raveendiraraj (2009).  

2.6. Fully coupled constitutive model for isotropic  stress states 

Wheeler et al. (2003) proposed a coupled elasto-plastic constitutive model for the 

mechanical behaviour and water retention behaviour of unsaturated soils. A detailed 

description of this elasto-plastic framework is given in this section including: the state 

variables used; the yield surfaces, plastic mechanisms and couplings considered; the 

water retention model; the elastic relationships; the associated flow rules and the 

hardening laws.  
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2.6.1. Stress variables  

It has been shown within the previous sections that a basic aspect in constitutive 

modelling is the choice of the stress variables. Based on the analysis presented by 

Houlsby (1997), which indicated that there are several appropriate sets of work-conjugate 

stress and strain variables (see Section 2.3) for unsaturated soils, Wheeler and co-

workers proposed a fully coupled constitutive model for isotropic stress states expressed 

in terms of mean Bishop’s stress p* and modified suction s* defined as follows:  

( )* 1r w r a rp p S u S u p S s= − − − = +  (2. 15) 

( )*
a ws n u u ns= − =  (2. 16) 

This pair of stress state variables (i.e. p* and s*) are work-conjugate with the volumetric 

strain increments dεv and degree of saturation decrement -dSr respectively. 

The mean Bishop’s stress p* can be viewed as the total stress minus a weighted average 

of pore water pressure and pore air pressure. In the absence of meniscus water bridges it 

might provide an average measure of stresses transmitted through the soil skeleton (like 

effective stress in saturated soils) and it is sometimes termed the “average soil skeleton 

stress” (Jommi, 2000). It does not include, however, the influence on the mechanical 

behaviour of the stabilising effect of the inter-particle meniscus water bridges. This 

influence of meniscus water bridges on mechanical behaviour is represented in the 

Wheeler et al. (2003) model through the role of plastic changes of degree of saturation 

(see below), which in turn are linked (through the water retention behaviour) to the second 

stress variable of modified suction s*.  

2.6.2. Yield surfaces, plastic mechanisms and coupl ings 

The model of Wheeler et al. (2003) describes the mechanical and retention behaviour by 

two different plastic mechanisms that can be activated during loading, wetting or drying 

processes. One plastic mechanism is associated with slippage at inter-particle or inter-

packet contacts, resulting in the occurrence of plastic volumetric strains. The other plastic 

mechanism is associated with flooding or emptying of voids with water, resulting in plastic 

changes of degree of saturation. These two plastic mechanisms, along with the couplings 

between them and the choice of stress state variables, are key features of the description 

of the interactions between the mechanical and the water retention behaviour.  
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The plastic mechanisms of the model are described by three different yield curves (Figure 

2-16): a Loading Collapse yield curve LC (2.17); a Suction Increase yield curve SI (2.18) 

and a Suction Decrease yield curve SD (2.19).  

* *
0 0LCF p p= − =  (2. 17) 

* * 0SI IF s s= − =  (2. 18) 

* * 0SD DF s s= − =  (2. 19) 

where p0* is the hardening parameter defining the location of the LC yield curve and sI
* 

and sD
* are the hardening parameters defining the locations of the SI and SD yield curves 

respectively (see Figure 2-16).  
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Figure 2- 16 Yield curves for isotropic stress states (Wheeler et al., 2003). 

Yielding on the LC curve alone is associated with inter-particle or inter-aggregate slippage 

and causes plastic volumetric strain but no plastic change of degree of saturation. This 

yielding produces coupled upward movements of SI and SD curves which are controlled 

by a coupling parameter k2:  

** *
0

2* * *
0

D I

D I

dpds ds
k

s s p
= =  (2. 20) 
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The coupled movements of SD and SI curves caused by yielding on the LC curve are 

illustrated in Figure 2-17. This is a key feature of how the model accounts for the influence 

of changes of void ratio (i.e. mechanical behaviour) on the water retention behaviour. 

More precisely, the occurrence of plastic volumetric strain while yielding on the LC curve 

reduces the dimensions of the voids and of the connecting passageways between voids, 

which increases the value of suction required for flooding or emptying of voids with water. 

This is represented in the model by upward movements of the SD and SI yield curves, 

which represent a shift in the main wetting and drying retention curves to higher suctions 

(see below).  
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Figure 2- 17 Coupled movements of SD and SI yield curves caused by yielding on the LC yield curve (after 

Wheeler et al. 2003). 

Coupling in the other direction (water retention influencing mechanical behaviour) is 

controlled by a second coupling parameter k1 and it is considered in the model as follows. 

Yielding on the SI curve alone is associated with emptying of voids with water and causes 

plastic decreases of Sr but no plastic volumetric strains. This irreversible decrease of Sr 

produces a coupled upward movement of the SD curve and a coupled outward movement 

of the LC curve. The coupled upward movement of the SD curve maintains a constant 

spacing between SI and SD curves when s* is plotted on a logarithmic scale:  

* *

* *
D I

D I

ds ds

s s
=  (2. 21) 

The coupled outward movement of the LC curve is controlled by k1:  
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* *
0

1* *
0

I

I

dp ds
k

p s
=  (2. 22) 

These coupled movements are illustrated in Figure 2-18a. Finally, yielding on the SD 

curve alone is associated with flooding of voids with water and causes plastic increments 

of Sr but no plastic volumetric strains (equivalently to yielding on the SI curve alone). This 

yielding produces a coupled downward movement of the SI curve (proportional to the 

amount of yielding occurred on SD, (2.21)) and a coupled inward movement of the LC 

curve (2.22) controlled by k1 (see Figure 2-18b). The occurrence of inelastic changes of 

degree of saturation affects the number of meniscus water bridges at inter-particle 

contacts and, therefore, modifies the stability of the soil skeleton.  
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Figure 2- 18 (a) Coupled movements of SD and LC yield curves caused by yielding on SI curve; (b) coupled 

movements of SI and LC yield curves caused by yielding on SD curve (after Wheeler et al., 2003). 

2.6.3. Elastic and plastic relationships and flow r ules 

Any isotropic stress path lying within the elastic domain defined by the three yield curves 

shown in Figure 2-16 will experience elastic variations of the volumetric strain and degree 

of saturation given by:  

*

*
e
v

dp
d

vp

κε =  (2. 23) 

*

*
e s
r

ds
dS

s

κ= −  (2. 24) 
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where κ and κs are two elastic constants. An interesting consequence of these two 

equations is that elastic volumetric strains occur solely as a consequence of change of the 

mean Bishop’s stress and, equivalently, elastic variations of the degree of saturation occur 

solely as a consequence of the changes of modified suction.  

When the stress path reaches one of the three yield curves and overcomes it, yielding on 

this yield curve takes place and plastic changes of either volumetric strain or degree of 

saturation associated with yielding on the particular curve are computed. Plastic 

volumetric strains caused by yielding on the LC curve alone are given by: 

( ) *
0

*
0

p
v

dp
d

vp

λ κ
ε

−
=  (2. 25) 

where λ is the slope of the normal compression line for saturated conditions. The flow rule 

for the LC curve corresponds to:  

0
p
r
p
v

dS

dε
=  (2. 26) 

Plastic changes of the degree of saturation caused by yielding on the SI or SD curve 

alone are given by: 

( ) ( )* *

* *
s s I s s Dp

r
I D

ds ds
dS

s s

λ κ λ κ− − − −
= =  (2. 27) 

where λs is the gradient of the main wetting/drying curve in the Sr:ln s* plane (see Figure 2-

19). The flow rule for the SI and SD curves corresponds to:  

0
p
v
p
r

d

dS

ε =  (2. 28) 
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Figure 2- 19 Water retention model showing the shift to the right produced by plastic volumetric strains (after 

Wheeler et al., 2003). 

Figure 2-19 illustrates the elasto-plastic representation of water retention behaviour within 

the model. The parameter κs gives the slope of elastic scanning curves in the Sr:lns* 

plane, while λs is the corresponding gradient of the main wetting/drying curves. The values 

of the hardening parameters sD
* and sI

*, defining the locations of the SD and SI yield 

curves in the s*:p* plane (see Figure 2-16), change when moving along the main wetting 

curve or main drying curve (when yielding on the SD or SI yield curves). In particular, it 

can be observed in this plot that, in the absence of plastic volumetric strains as a 

consequence of yielding on LC curve, the values of the hardening parameters sD
* and sI

* 

decrease while wetting on the main wetting curve and increase when drying on the main 

drying curve but have limiting minimum and maximum values when the degree of 

saturation reaches 1 or 0.  

Figure 2-19 also illustrates how the model accounts for the influence of plastic volumetric 

strains on the water retention behaviour. This is represented by shifting the main 

wetting/drying curves to higher values of modified suction when yielding on the LC yield 

curve takes place (see Figure 2-17). This shift is controlled by the coupling parameter k2 

as it defines the amount of coupled upward movement of SD and SI curves when yielding 

on the LC curve alone occurs (see Section 2.6.2).  

It is important to note here a small inconsistency in the Wheeler et al. (2003) model 

identified in Raveendiraraj (2009) and associated with any occurrence of plastic 
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volumetric strains while the soil is fully saturated (i.e. Sr=1) or fully dry (i.e. Sr=0). This 

inconsistency is a consequence of a predicted irreversibility of subsequent elastic 

changes of Sr if plastic volumetric strains occur when the soil is either fully saturated or 

fully dry. The problem occurs because the model includes elastic changes of Sr when the 

soil is unsaturated, but assumes that the elastic changes of Sr are zero whenever Sr is 1 

or 0 (see Figure 2-19). One way to overcome this problem is by simply assuming κs=0 (so 

that elastic changes of Sr are always zero), but this leads, however, to a rather unrealistic 

modelling of the water retention behaviour. In order to better resolve this problem further 

research is required. A detailed discussion on these issues is given in Raveendiraraj 

(2009). It is also important to highlight here that in the work presented in the remainder of 

this thesis, the soil state remains unsaturated (i.e. 0<Sr<1) and, therefore, this 

inconsistency has no direct effect on the analyses and results developed. 

2.6.4. Hardening laws 

In general, the overall movement of the LC yield curve is the result of a combination of two 

components: a direct one (due to any yielding on the LC curve itself) given by Equation 

(2.25) and a coupled one (due to any plastic change of degree of saturation) given by 

(2.22) and (2.27). The sum of these two components of movement governs the variation 

of the location of the LC yield curve and results in the following hardening rule: 










−
−

−
=

ss

p
r

p
v dSkvd

pdp
κλκλ

ε 1*
0

*
0  (2. 29) 

Similarly, the overall movements of the SD and SI yield curves are the result of two 

components: a direct one (due to any yielding on SD or SI) given by equation (2.27) and a 

coupled one (due to any plastic volumetric strain) given by (2.20) and (2.25). The sum of 

these two components of movement governs the variation of the location of the SD or SI 

yield curves and results in the second hardening rule: 

* *
2               /

pp
vr

s s

vddS
ds s k SI SDβ β

 ε= − + β = λ − κ λ − κ 
 (2. 30) 

It is interesting to note that when yielding on the LC curve alone takes place, the 

movement of the LC curve is governed by (2.29) but with dSr
p equal to 0. Similarly, the 

hardening rule associated with yielding on the SD or SI curve alone is given by (2.30) with 

dεv
p equal to 0. 
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Equations (2.29) and (2.30) show the possibility of having two plastic mechanisms acting 

simultaneously, which occurs either when simultaneous yielding on LC and on SD takes 

place (i.e. the stress path has reached the bottom corner of Figure 2-16) or when 

simultaneously yielding on LC and SI (i.e. the stress path has reached the top corner of 

Figure 2-16). In both cases plastic volumetric strains and plastic changes of degree of 

saturation are developed. In such cases, Equations (2.29) and (2.30) can be combined 

(Wheeler et al. 2003) to show that the plastic increments of volumetric strain and degree 

of saturation are related to the movements of the yield curves by: 

( )
( )

( )
( )

* ** *
0 0

1 1* * * *
1 2 0 1 2 01 1

p I D
v

I D

dp dpds ds
d k k

v k k p s v k k p s

λ κ λ κ
ε

− −   
= − = −   − −   

 (2. 31) 

( )
( )

( )
( )

* ** *
0 0

2 2* * * *
1 2 0 1 2 01 1

s s s sp I D
r

I D

dp dpds ds
dS k k

k k s p k k s p

λ κ λ κ− − − −   
= − = −   − −   

 (2. 32) 

2.7. Variation of v and S r during simultaneous yielding on LC and SD 

Simulations performed with the model of Wheeler et al. (2003), or even simply 

consideration of how the model behaves, soon leads to a conclusion that there are a wide 

variety of isotropic stress paths for which the stress point will ultimately arrive at the corner 

between LC and SD yield curves and subsequently lead to simultaneous yielding on LC 

and SD. For example, many “loading” paths will arrive first at the LC yield curve, but 

yielding on LC will then produce coupled upward movement of the SD yield curve, until 

the SD curve too is brought up to the stress point and then simultaneous yielding on SD 

commences. Similarly, many “wetting” stress paths will arrive first at the SD yield curve, 

but yielding on SD will then produce coupled inward movement of the LC yield curve, until 

the LC curve too is brought to the stress point and then simultaneous yielding on LC 

commences (this is the onset of collapse compression on wetting). Basically, any 

“loading” or “wetting” stress path which shows both substantial (i.e. plastic) volumetric 

straining and substantial (i.e. plastic) increase of degree of saturation involves 

simultaneous yielding on LC and SD. This can even involve loading paths involving 

modest increases of suction or wetting paths involving modest decreases of mean net 

stress.  

In Section 2.7.2 it is shown that the model of Wheeler et al. (2003) implies that when 

simultaneous yielding on LC and SD is occurring there will be a unique relationship linking 

specific volume v to mean Bishop’s stress p* and modified suction s*, and a second unique 

relationship linking degree of saturation Sr to p* and s*. These two relationships were first 
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derived by Wheeler (2009) and they define two planar surfaces, one in v:lnp*:lns* space 

and one in Sr:lnp*:lns* space. The equations are developed with the limitation that the soil 

remains under unsaturated conditions (i.e. 0<Sr<1). This condition is to avoid the small 

inconsistency of the model discussed in Section 2.6.3 (irreversibility of elastic changes of 

Sr if plastic volumetric strains occur when the soil is fully saturated or fully dry). In Section 

2.7.3, the model prediction of unique planar surfaces in v:lnp*:lns* space and in Sr:lnp*:lns* 

space during simultaneous yielding on LC and SD is validated by comparing with the 

results of Sivakumar (1993) on compacted speswhite kaolin. Finally, in Section 2.7.4, a 

new methodology is proposed to determine the values of the soil parameters in the model 

of Wheeler et al. (2003) from experimental data, and this is demonstrated with the 

experimental data of Sivakumar (1993). 

2.7.1. Range of isotropic stress paths for which si multaneous yielding on LC and 
SD will occur 

There are a surprisingly wide range of isotropic stress paths for which simultaneous 

yielding on SD and LC curves is predicted by the Wheeler et al. (2003) model. Consider a 

general starting point in stress space, defined in the lns*:lnp* plane, and then a variety of 

different stress paths from this starting point, with each stress path following a straight line 

in the lns*:lnp* plane. In most cases, the stress path will first arrive at one of the three yield 

curves (LC, SD or SI). However, if the stress path is continued indefinitely, in many cases 

the path will subsequently arrive at a corner between two yield curves (LC and SD or LC 

and SI) and this may then be followed by simultaneous yielding on the two curves. Figure 

2-20 shows the ultimate situation that will be achieved if a given stress path direction in 

the lns*:lnp* plane is maintained indefinitely. Radial stress path directions in the lns*:lnp* 

plane can be divided into 6 different regions, one corresponding to elastic behaviour 

maintained indefinitely, three corresponding to yielding on a single curve (LC, SD or SI) 

maintained indefinitely, and two corresponding to yielding on two curves (LC and SD or 

LC and SI) ultimately achieved and then subsequently maintained indefinitely. 

It is interesting to note that there is only a single unique stress path direction (decrease of 

lnp* at constant lns*) that can maintain elastic behaviour indefinitely. Similarly, there is only 

a single unique stress path direction (increase of both lnp* and lns*, with a stress path 

gradient of k2 in the lns*:lnp* plane) that can maintain yielding on the LC yield curve alone 

indefinitely. It is also interesting to note that, whereas there is a fairly narrow range of 

stress path directions that will ultimately lead to simultaneous yielding on LC and SI 

maintained indefinitely, there is a very wide range of stress path directions that will 

ultimately lead to simultaneous yielding on LC and SD maintained indefinitely.  
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Figure 2- 20 Ultimate activation of yield curves if a constant gradient stress path in the lns*:lnp* plane is 

maintained indefinitely. 

2.7.2. Predicted variation of v and S r during simultaneous yielding on LC and SD 

From (2.31) and (2.32), expressing plastic changes of dεv
p and dSr

p, and assuming 

simultaneously yielding on LC and SD (i.e. p0
*=p* and sD

*=s*), the following expressions 

giving the plastic increments of specific volume dvp and degree of saturation dSr
p can be 

developed:  

( )
( )

* *

1* *
1 21

p dp ds
dv k

k k p s

λ κ− −  
= − −  

 (2. 33) 

( )
( )

* *

2* *
1 21

s sp
r

ds dp
dS k

k k s p

λ κ− −  
= − −  

 (2. 34) 

To find expressions for the total increments of v and Sr it is necessary to combine elastic 

components from (2.23) and (2.24) with the plastic components from (2.33) and (2.34) to 

give:  

( )
( )

* * *

1* * *
1 21

e p dp dp ds
dv dv dv k

p k k p s

λ κ
κ

−  
= + = − − − −  

 (2. 35) 

( )
( )

* * *

2* * *
1 21

s se p s
r r r

ds ds dp
dS dS dS k

s k k s p

λ κκ −  
= + = − − − −  

 (2. 36) 
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Integrating Equation (2.35), it is possible to develop the following equation giving the 

evolution of the specific volume v in terms of p* and s* when simultaneous yielding on LC 

and SD is occurring: 

* * * * *
1ln lnv N p k sλ= − +  (2. 37) 

where: 

( ) ( )
* 1 2

1 2 1 21 1

k k

k k k k

λ κλ κλ κ −−= + =
− −

 (2. 38) 

*
1 1

1 21
k k

k k

λ κ−=
−

 (2. 39) 

and N* is a soil constant. λ* and k1
* are two soil constants giving the gradients of a unique 

normal compression planar surface defined by (2.37) in v:lnp*:lns* space. Note that both 

constants, giving the gradients of this planar surface, are expressed as a combination of 

the original soil parameters λ, κ, k1 and k2 defined in the model, and therefore do not 

increase the number of independent constants in the model. A representation of this 

planar surface is given in Figure 2-21. 

 

Figure 2- 21 Unique planar surface in v:lnp*:lns* space when simultaneously yielding on LC and SD. 



Chapter 2 Mechanical and water retention behaviour in unsaturated soils  

46 

Similarly, Equation (2.36) can be integrated to give an equation expressing the evolution 

of the degree of saturation in terms of p* and s* when simultaneous yielding on LC and SD 

is active, is occurring: 

* * * * *
2ln lnr sS s k pχ λ= − +  (2. 40) 

where  

* 1 2

1 2 1 21 1
s s s s

s s

k k

k k k k

λ κ λ κλ κ− −= + =
− −

 (2. 41) 

( )
( )

*
2 2

1 21
s sk k

k k

λ κ−
=

−
 (2. 42) 

and χ* is a soil constant. λs
* and k2

* are two soil constants giving the gradients of a second 

unique planar surface (2.40), this time in Sr:lnp*:lns* space. λs
* and k2

* are expressed as a 

combination of the original soil constants λs, κs, k1 and k2 defined in the model. A 

representation of this planar surface is given in Figures 2-22. 

 

Figure 2- 22 Unique planar surface in Sr:lnp*:lns* space when simultaneously yielding on LC and SD. 

In order to better emphasize some of the implications of the proposed pair of unique 

planar surfaces, and to illustrate how different stress paths traverse the surfaces, two 

different sets of basic stress paths are now considered.  
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Figure 2-23 shows 4 loading paths involving increase of p* at four different values of 

modified suction (sA
*, sB

*, sC
* and sD

*). The initial locations of the LC, SD and SI yield 

curves are the same in all four cases. Figure 2-23a shows the stress paths (in the lns*:lnp* 

plane) and Figures 2-23b and 2-23c show the predicted variations of v and Sr respectively 

(both plotted against lnp*). In each case, yield point Y1 represents yielding on the LC yield 

curve, and yield point Y2 represents yielding on the SD curve. The initial stress state for 

sample A is on the SD curve, and in this case yielding on LC and SD commences 

simultaneously. In the other 3 cases the initial stress state is inside the SD yield curve and 

yielding on the SD curve commences at a later point than yielding on the LC curve (once 

the yielding on the LC curve has caused sufficient coupled upward movement of the SD 

curve to bring the SD curve up to the stress point). When yielding is occurring on the LC 

curve alone, the predicted variations of v and Sr (shown in Figures 2-23b and 2-23c 

respectively) have gradients of λ and zero respectively. However, once yielding is 

occurring on both LC and SD simultaneously, the variations of v and Sr (shown in Figures 

2-23b and 2-23c respectively) have gradients of λ* and k2
* respectively. These lines of 

gradient λ* and k2
* in Figures 2-23b and 2-23c respectively represent cross sections taken 

at constant s* of the two unique planar surfaces shown in Figures 2-21 and 2-22.  

Figure 2-24 shows 4 wetting paths involving decrease of s* at four different values of 

mean Bishop’s stress (pA
*, pB

*, pC
* and pD

*). The initial locations of the LC, SD and SI yield 

curves are the same in all four cases. Figure 2-24a shows the stress paths (in the lns*:lnp* 

plane) and Figures 2-24b and 2-24c show the predicted variations of Sr and v respectively 

(both plotted against lns*). In each case, yield point Y1 represents yielding on the SD yield 

curve, and yield point Y2 represents yielding on the LC curve. The initial stress state for 

sample A is on the LC curve, and in this case yielding on LC and SD commences 

simultaneously. In the other three cases the initial stress state is inside the LC yield curve 

and yielding on the LC curve commences at a later point than yielding on the SD curve 

(once the yielding on the SD curve has caused sufficient coupled inward movement of the 

LC curve to bring the LC curve to the stress point). When yielding is occurring on the SD 

curve alone, the predicted variations of Sr and v (shown in Figures 2-24b and 2-24c 

respectively) have gradients of λs and zero respectively. However, once yielding is 

occurring on both LC and SD simultaneously, the variations of Sr and v (shown in Figures 

2-24b and 2-24c respectively) have gradients of λs
* and k1

* respectively. These lines of 

gradients λs
* and k1

* in Figures 2-24b and 2-24c respectively represent cross sections 

taken at constant p* of the two unique planar surfaces shown in Figures 2-21 and 2-22. 
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Figure 2- 23 Model response for isotropic loading paths at constant s*. 
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Figure 2- 24 Model response for isotropic wetting paths at constant p*. 
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2.7.3. Experimental validation 

It has been shown that (2.37) defines a unique planar surface in the semi-log space 

v:lnp*:lns* (see Figure 2-21). Similarly, (2.40) defines a second unique planar surface in 

the space Sr:lnp*:lns* (see Figure 2-22). This section, presents the experimental data of 

Sivakumar (1993) from constant suction isotropic loading of compacted speswhite kaolin 

in these spaces (i.e. v:lnp*:lns* and Sr:lnp*:lns*) and it is shown that these results lie on 

planar surfaces as predicted by the model.  

Seventeen different isotropic compression test stages at constant non-zero values of 

suction were carried out by Sivakumar (1993) on samples of compacted speswhite kaolin. 

The results of these tests stages have been used in this work to explore the validity of the 

proposed relationships ((2.37) and (2.40)). A significant increase of Sr and decrease of v 

was observed when comparing the initial and the final states of each of these isotropic 

compression test stages (Sivakumar, 1993). Hence, according to the Wheeler et al. 

(2003) model, it is reasonable to assume that the soil state had arrived at the corner 

between the LC and SD yield curves at the end of each isotropic constant suction 

compression stage.  

As part of the analysis, these final states have been plotted in the v:lnp*:lns* and 

Sr:lnp*:lns* spaces (see Figures 2-25 and 2-26). The least-square multi-regression method 

implemented in MATLAB has been used to best fit these experimental final states to 

planar surfaces, giving the following result:  

* *2.768 0.257 ln 0.172lnv p s= − +  (2. 43) 

* *0.755 0.206ln 0.159lnrS s p= − +  (2. 44) 

From where, by comparison with (2.37) and (2.40), the values of the parameters N*, χ*, λ*, 

λs
*, k1

* and k2
* are as summarised in Table 2.1.  

Table 2. 1 Model parameter values for defining planar surfaces for compacted speswhite kaolin (Sivakumar, 

1993). 

N*=2.768 λ
*=0.257 k1

*=0.172  

χ
*=0.755 λs

*=0.206 k2
*=0.159 

 

As mentioned these pair of relationships form two different planar surfaces in the 

v:lnp*:lns* and Sr:lnp*:lns* spaces, as illustrated in Figures 2-25 and 2-26, where the 

experimental results (represented as symbols) have also been plotted.  
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Figure 2- 25 Planar surface for v fitted to experimental results of Sivakumar (1993) at final states of isotropic 

compression. 

 

Figure 2- 26 Planar surface for Sr fitted to experimental results of Sivakumar (1993) at final states of isotropic 

compression. 

It is difficult, from inspection of Figures 2-25 and 2-26, to form a visual impression of how 

well the two planar surfaces fit the experimental data. To aid this, the fitted relationships 

describing the planar surfaces and the corresponding experimental data have been re-

plotted in Figures 2-27 and 2-28. Each of these figures is in two parts, essentially 
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representing a pair of orthogonal two-dimensional views of the planar surface. For 

example, Figure 2-27a shows v-0.172lns* plotted against lnp* (where 0.172 is the fitted 

value of k1
*) and Figure 2-27b shows v+0.257lnp* plotted against lns* (where 0.257 is the 

fitted value of λ*). In these two parts of Figure 2-27, the fitted planar surface for v has been 

reduced in each case to a single straight line, and it is now easy to gauge how well the 

planar surface fits the experimental data points. Inspection of Figures 2-27 and 2-28 

indicates that the two planar surfaces (for v and Sr) provide excellent fits to the 

experimental results of Sivakumar (1993) at final states of isotropic compression.  

The fact that the planar surfaces for v and Sr described by Equations (2.43) and (2.44) 

provide an excellent match to the experimental results of Sivakumar (1993) is a significant 

component of experimental validation of the Wheeler et al. (2003) model. The predicted 

existence and predicted form of the two unique planar surfaces arises from the 

combination of several key components of the model, most notably the existence and 

assumed mathematical forms of the two coupling relationships in the model (Equations (2-

20), (2.21) and (2-22)). The results presented in Figures 2-25 – 2-28 therefore provide 

important experimental validation of, amongst other things, the specific mathematical 

forms selected for the coupling relationships (something that was not clear at the time of 

the original formulation of the model by Wheeler et al., 2003).  
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Figure 2- 27 Orthogonal two-dimensional views of planar surface for v compared with experimental results. 
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Figure 2- 28 Orthogonal two-dimensional views of planar surface for Sr compared with experimental results. 

2.7.4. Determination of model parameter values 

As detailed in this section, plotting experimental results at the end of isotropic normal 

compression stages in v:lnp*:lns* and Sr:lnp*:lns* spaces presents an ideal methodology 

for the determination of the soil parameters defined in the Wheeler et al. (2003) model. 

To illustrate the proposed method the same seventeen experimental isotropic loading 

stages at constant non-zero values of suction presented in Sivakumar (1993) (and just 

introduced in the previous section) are employed i.e. the methodology is described by 

applying it in the estimation of the model parameter values for the soil tested by 

Sivakumar (1993). Also the initial state of the soil, including the initial values of the 

relevant hardening parameters, is estimated from the tests.  

As previously described and illustrated (see Section 2.7.2.1), the final state of each of the 

experimental isotropic compression stages falls on two separate planar surfaces when 

plotted in the spaces v:lnp*:lns* (Figure 2-25) and Sr:lnp*:lns* (Figure 2-26). As also 

presented, the gradients of these two planar surfaces in two orthogonal directions provide 

optimised values of the four derived soil constants λ*, k1
*, λs

* and k2
*, as summarised in 

Table 2.1.  

Combining the expressions of these derived soil parameters (i.e. λ*, k1
*, λs

* and k2
*) given 

by (2.38), (2.39), (2.41) and (2.42), and assuming that values of the soil parameters λ and 

κ are known from tests under saturated conditions (for the same soil), it is possible to 

express the remaining unknown soil parameters of the model (i.e. λs, κs, k1 and k2) in 
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terms of the previously estimated ones (i.e. λ*, k1
*, λs

* k2
*, λ and κ). First, Equations (2.38) 

and (2.39) can be combined to given expressions for k1 and k2:  

*
1

1 *

k
k

λ κ
=

−
 (2. 45) 

*

2 *
1

k
k

λ λ−=  (2. 46) 

Once the values of k1 and k2 have been calculated, the values of λs and κs can be 

determined by combining Equations (2.41) and (2.42):  

* *
1 2s s k kλ λ= −  (2. 47) 

*
* 2

2
s s

k

k
κ λ= −  (2. 48) 

Note that, in this particular case, λ and κ (from the saturated conditions) are assumed to 

be known. However, other combinations are also possible depending on the pair of soil 

parameters previously estimated, in addition to the gradients of the planar surfaces 

previously determined (i.e. λ*, k1
*, λs

* and k2
*). For example, if the values of κs and λs were 

already known (rather than the values of κ and λ) this would provide an alternative solution 

strategy. For this alternative approach, it would be important to appreciate that the values 

of κs and λs should be measured from water retention tests employing wetting and drying 

paths involving no plastic strains (i.e. with the stress path remaining inside the LC yield 

curve).  

To proceed with the application of the preferred methodology it is now necessary to 

estimate the values of κ and λ for compacted speswhite kaolin tested by Sivakumar 

(1993). Six additional tests, carried out by Sivakumar (1993) under saturated conditions 

(see Figure 2-29) have been used to determine the values of κ and λ, which are presented 

below.  
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Figure 2- 29 Experimental results of isotropic loading stress paths for saturated conditions (after Sivakumar, 

1993). 

Figure 2-29 shows plots of six saturated isotropic compression tests used in the 

estimation of κ and λ. An idealisation of the approach employed to estimate these soil 

parameters is also included in this picture. All the compression curves from the saturated 

tests seem to include a pre-yield (elastic) section and a post-yield (elasto-plastic) section, 

with a smooth transition between. Straight lines have been fitted to each of the two 

sections of each curve (see Figure 2-30) with the transition section excluded from the 

fitting.  
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Figure 2- 30 Approximated linear relationships for saturated conditions: (a) Elastic behaviour; (b) Elasto-plastic 

behaviour. 
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Figure 2-30 presents the estimated swelling lines (Figure 2-30a) and normal compression 

lines (Figure 2-30b) for each of these six saturated tests of Sivakumar (1993). The 

average of the slopes from the six swelling lines estimated (see Figure 2-30a) and also 

the average of the slope from the six normal compression lines showed in Figure 2-30b 

are the final estimated values for κ and λ included in Table 2.2.  

Combining now these values with those estimated from the planar surfaces (i.e. λ*, k1
*, λs

* 

and k2
*) and using the relationships (2.45) to (2.48) the values of the rest of the soil 

parameters included in Table 2.2 can be estimated.  

Table 2. 2 Estimated soil parameters from the experimental tests of Sivakumar (1993). 

λ=0.124 λs=0.0971 κs=0.0004 

κ=0.006 k1=0.685 k2=0.773 

 

Also the initial state, including the values of the initial hardening parameters p0
* and sD

*, 

have been estimated from the seventeen unsaturated tests. The same initial state is 

considered for all the tests. This common initial state corresponds to an initial value of 

suction equal to the highest value of suction employed in the tests (i.e. s=300 kPa) and a 

mean net stress of 50 kPa (which was the value of mean net stress reached after initial 

equalisation; see Sivakumar, 1993). From this state, a wetting path at a constant mean 

net stress of 50 kPa can be initially modelled to reach the lower values of suctions at 

which the rest of the isotropic loadings were performed (see Figure 2-31).  
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Figure 2- 31 Stress paths during equalisation and ramped isotropic consolidation stage for the tests analysed 

(after Wheeler and Sivakumar, 1995). 
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The initial values of void ratio and degree of saturation that have then been used in the 

analyses were therefore selected as an average of the initial values of e and Sr measured 

in the tests carried out at a suction of 300 kPa (see Sivakumar, 1993). The initial values of 

e0 and Sr0 obtained in this way are listed in Table 2.3 (which also includes the initial value 

of porosity n0), together with the resulting initial values of mean Bishop’s p* stress and 

modified suction s* (calculated from the values of e0 and Sr0 and the corresponding values 

of p  and s). 

Table 2. 3 Initial state. 

p =50 kPa s=300 kPa p*=229.1 kPa p0
*=271.1 kPa 

e0=1.210; n0=0.547 Sr0=0.597 s*=164.3 kPa sD
*=164.3 kPa 

 

The initial values of the hardening parameters p0
* and sD

*, defining the initial locations of 

the LC and SD yield curves respectively, were determined by considering the behaviour 

observed during the equalisation stages. According to the model of Wheeler et al. (2003), 

at s=300 kPa the SD yield curve was already reached, because a significant increase of 

the degree of saturation was observed during the equalisation stages of the tests carried 

out at this value of suction (Sivakumar, 1993). Hence, the hardening parameter sD
* 

defining the initial position of the SD yield curve coincides with the current value of 

modified suction (i.e. sD
*=s*=164.3 kPa; see Table 2.3). An estimation to determine the 

initial value of the remaining hardening parameter p0
* was made by employing the 

information given in (2.43) and (2.44) which had not been used yet (i.e. N*=2.768 and 

χ
*=0.755) in combination with the initial state previously described (see Table 2.3). Figure 

2-32 illustrates the following description on how this information was used. 
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Figure 2- 32 Estimation of the initial value of the hardening parameter p0
*. 
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Point A in Figure 2-32 is at the intersection between LC and SD yield curves and, 

therefore, lies on the planar surface given by (2.43): 

*
02.768 0.257 ln 0.172ln164.3Av p= − +  (2. 49) 

On the other hand, the increment of specific volume from O to A (Figure 2-32) is elastic 

and can be calculated (employing the value of the soil parameter κ from Table 2.2), so 

that a second independent expression for the value of vA can be calculated by starting 

from the specific volume at the initial state O (v0=2.210 from Table 2.3):  

* *
0 0ln 2.210 0.006ln

229.1 229.1A O

p p
v v κ= − = −  (2. 50) 

Combining (2.49) with (2.50), the calculated initial value of the hardening parameter is 

p0
*=267.5 kPa. 

Alternatively, point A in Figure 2-32 lies on the second planar surface given by (2.44):   

*
00.755 0.206ln164.3 0.159lnrAS p= − +  (2. 51) 

Similarly, the increment of the degree of saturation from O to A (Figure 2-32) should be 

elastic and, therefore, zero (because no variations of modified suction take place from A 

to O). 

0.597rA rOS S= =  (2. 52) 

Combining (2.51) and (2.52) the obtained value of the hardening parameter is p0
*=274.7 

kPa. 

The average of both estimations of the hardening parameter p0
* gives the value included 

in Table 2.3  

These initial values of the hardening parameters combined with the initial values of other 

state variables presented in Table 2.3 and the initial values of the model parameters 

summarised in Table 2.2 will be used in Chapter 5 to simulate the full experimental tests 

of Sivakumar (1993) and hence to partially validate the 3D generalised version of the 

constitutive model proposed by Wheeler et al. (2003) under isotropic stress paths and 

triaxial compression stress paths.  
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In summary this second part of this chapter has shown that the final states of the isotropic 

stages of the experiments carried out by Sivakumar (1993), when plotted in the spaces 

v:lnp*:lns* and Sr:lnp*:lns*, fall on two different planar surfaces (Figs. 2-25 and 2-26) as 

predicted by the model (i.e. (2.43) and (2.44)). This interesting result is further extended to 

critical states in Chapter 4.  
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3. Elasto-plastic stress-strain and water retention  relationships for 
isotropic stress conditions 

This chapter gives a very basic introduction to some of the most fundamental aspects of 

classical plasticity. Several of these aspects are subsequently applied in developing the 

elasto-plastic stress-strain and water retention relationships for isotropic stress conditions, 

employing the constitutive model described in Chapter 2. These relationships are then 

used to formulate a pair of stress-incremental subroutines. In one of them, the increments 

of Bishop’s stress and the increments of modified suction are the inputs; while in the 

other, the inputs are increments of mean net stress and increments of matric suction. Both 

of these stress-driver algorithms are employed to analyse the computed response for 

elastic behaviour, elasto-plastic behaviour with only one plastic mechanism active and 

elasto-plastic behaviour with two plastic mechanisms acting simultaneously.   

3.1. Introduction 

Soils exhibit a range of characteristics, such as yield phenomena and/or shear-induced 

dilatancy, which suggest plasticity theory as a very adequate framework to be used for 

describing their behaviour (Gens and Potts, 1988). According to the Wheeler et al. (2003) 

model described in Chapter 2, two types of irreversible behaviour can be identified in 

unsaturated soils. One plastic mechanism is associated with slippage at inter-particle or 

inter-packet contacts, resulting in the occurrence of plastic volumetric strains. The other 

plastic mechanism is associated with flooding or emptying of voids with water, resulting in 

plastic changes of degree of saturation. Irreversible behaviour associated with these two 

phenomena can be mathematically approached within classical plasticity theory by 

defining a yield function f which characterise the limit between elastic (f < 0); and plastic 

behaviour (f = 0) and constrains (in stress space) the admissible states (f ≤ 0). This 

function is formally introduced in the following section.  

3.2. Classical plasticity fundamentals 

This section is not intended to give an overview on the application of elasto-plasticity in 

geomaterials, but to provide the basic concepts of this theory to be employed in 

subsequent chapters of this document to numerically integrate the constitutive model 

presented in Chapter 2. Interesting discussions on the developments and use of elasto-

plastic models in geomechanics can be found elsewhere (e.g. Gens and Potts,1988; and 

Potts and Zdravković, 1999) and detailed descriptions of classical plasticity theory are 

given, amongst others, in Prager (1949); Hill (1950) and Simo and Hughes (1998).  
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3.2.1. Elastic response and basic definitions 

A basic principle in classical plasticity theory is the additive decomposition of the strain 

tensor increments dε into elastic dεe and plastic components dεp (3.1). In general, the 

vectorial notation of tensors is adopted within this work, indicating them in bold.  

� � �
Total Elastic/recoverable Plastic/irrecoverable

d d d= +e pε ε ε  (3. 1) 

The elastic part describes the recoverable fraction of the total strain after unloading and, 

therefore, has associated an energy notion of reversibility or, in other words, can be linked 

to an elastic energy quantity that is recoverable after unloading. On the other hand, the 

plastic component of the total strains describes that irrecoverable part of the strains that 

remains even after the load is removed. Equivalently to the elastic component, this plastic 

part has associated an energy notion of irreversibility that can be linked to an inelastic 

energy quantity. 

In accordance to this, the process of loading/unloading can be described in terms of 

energy or, more precisely, in terms of work input per unit volume of material dW as: 

TdW d= σ ε  (3. 2) 

where the subscript T in the vectorial form of the stress tensor σ indicates transposed.  

Accounting for (3.1) and (3.2) the following expression relating the recoverable 

(irrecoverable) component of the total strains with an elastic energy quantity is obtained. 

T T e pdW d d dW dW= + = +e pσ ε σ ε  (3. 3) 

In general, for elastic materials, stresses are assumed to be related to strain increments 

by:  

ed d= eσ D ε  (3. 4) 

where De is the elasticity tensor (see Appendix A.1). One particular case of elasticity is to 

consider linear and isotropic behaviour (Hooke’s law). Under these circumstances the 

elasticity tensor can be expressed in terms of two constants. Lamé coefficients ( λ  and µ  

in (3.5)) are typically used to evaluate the elasticity tensor.  

( ) 2d Tr d dλ µ= +σ ε I ε  (3. 5) 
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where Tr(.) is the trace of a tensor (see Appendix A.1), σ and dε are the stress and strain 

tensors and I is the identity matrix. Equation (3.5) can be written in terms of the Young’s 

modulus E and the Poisson’s ratio ν as follows (Appendix A.1): 

( )( ) ( ) ( )( ) ( ) 2
1 1 2 1 1 1 2

E E E
d Tr d d Tr d Gd

ν ν
ν ν ν ν ν

= + = +
+ − + + −

σ ε I ε ε I ε  (3. 6) 

where G  is the elastic shear modulus. Further details can be found in Oliver and Agelet 

(2000).  

3.2.2. Plastic response 

The essential feature characterising plastic flow is the notion of irreversibility (Simo and 

Hughes, 1998). This property can be mathematically described within classical plasticity 

theory as formally presented in the following.  

3.2.2.1. Elastic domain and yield criterion 

The definition of a yield function f(σ, ξ), in terms of stresses σ and internal variables ξ 

(3.7), identifies the elastic domain in stress space and constrains the admissible stress 

states (Figure 3-1).  

( ), 0f =σ ξ  (3. 7) 

 

Plastic behaviour, f(σ, ξ) = 0 
(On the yield surface) 

σ 

Impossible states, f(σ, ξ) > 0 
(Outside the yield surface) 

Elastic behaviour, f(σ, ξ) ≤ 0 
(Inside the yield surface) 

 

Figure 3- 1 Illustration of a yield surface in stress space defining the elastic and plastic domains and the 

admissible states.   

As illustrated in Figure 3-1, elastic behaviour is restricted to those stress states falling 

inside the yield surface (i.e. f < 0) whereas plastic behaviour is restricted to those stress 

states lying on the yield surface (i.e. f = 0). Values of σ and ξ resulting in f > 0 are not 

admissible states.  
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3.2.2.2.  Flow rule, hardening law and consistency condition 

In classical plasticity theory, the way of mathematically characterising the evolution of the 

plastic strains and the internal variables is by defining a flow rule and a hardening law 

((3.8) and (3.9) respectively).  

( ),g
d dχ

∂
=

∂
p σ ξ
ε

σ
 (3. 8) 

where dχ is a non-negative scalar referred to as a plastic multiplier and g is a function 

called the plastic potential. The particular case of considering the plastic potential equal to 

the yield function (i.e. g=f) is known as associated plasticity.  

Changes of the hardening internal variables ξ defining the evolution of the yield surface 

with stress variations are given by the hardening law (3.9).  

( ),d dχ= −ξ ξ σ ξ  (3. 9) 

The particular case of considering that the hardening is linked to plastic strains is known 

as strain hardening (3.10) and it is the one adopted in the subsequent development. 

( )ξ ξ= pε  (3. 10) 

The plastic multiplier dχ is also known as a consistency parameter (Simo and Hughes, 

1988) and is assumed to satisfy the following Kuhn-Tucker complementary conditions:  

( )

( )

0,    , 0

and

, 0

d f

d f

χ

χ

≥ ≤

=

σ ξ

σ ξ

 (3. 11) 

In addition to (3.11) the parameter dχ obeys the consistency condition:  

( ), 0d dfχ =σ ξ  (3. 12) 

In classical plasticity, (3.11) and (3.12) are named loading/unloading and consistency 

conditions mathematically describing the intuitive notions of plastic loading and elastic 

unloading (Simo and Hughes, 1988). 
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3.2.2.3. Interpretation of the Kuhn-Tucker complementary conditions 

If the stress state is inside the elastic domain defined by the yield surface (see Figure 3-1) 

f(σ, ξ)<0 and, by considering (3.11):  

( ) ( ), 0 and , 0 0d f f dχ χ= < ⇒ =σ ξ σ ξ  (3. 13) 

Hence, according to (3.8) no plastic strains occur (dεp=0) and the increment of the internal 

variables dξ is also 0 (i.e. no movement of the yield surface). Then, from (3.1) it follows 

that dε=dεe and the stress variations are given by (3.4).  

If now the stress state is considered to be on the yield surface f(σ, ξ)=0, the Kuhn-Tucker 

complementary conditions are automatically satisfied. This stress state leads to two 

possible situations: dχ=0 and dχ>0. When df(σ, ξ)<0: 

( ) ( ), 0 and , 0 0d df df dχ χ= < ⇒ =σ ξ σ ξ  (3. 14) 

Equivalently to the previous case described, (3.8) leads to no plastic strains (dεp=0) and 

dξ=0, and Equation (3.4) gives the stress variations. This type of response is referred to 

as unloading from a plastic state (Simo and Hughes, 1988).  

The second possible case, arises when df(σ, ξ)=0. The consistency condition (3.12) is 

automatically satisfied. If dχ>0, dεp≠0 and dξ≠0 and the response is called plastic loading 

resulting in softening (when the yield surface reduces in size, dξ<0) or hardening (when 

the yield surface expands in size, dξ>0).  

3.2.2.4. Elasto-plastic tangent modulus 

It has been shown in previous sections that, under elastic response, the increments of 

stresses can be found by knowing the elastic increments of strains. This section is aimed 

at characterising stress variations under plastic loading conditions.  

Applying the consistency condition (3.12) (with dχ>0 because plastic loading is assumed 

within the remainder of this current section) yields to:  

( ), 0
TT

f f
df d d

 ∂ ∂ = + =  ∂ ∂   
σ ξ σ ξ

σ ξ
 (3. 15) 

As pointed out in Simo and Huges (1988) the algorithmic elasto-plastic problem is typically 

regarded as a strain-driver problem and it is, therefore, useful to adopt the strain tensor as 



Chapter 3 Elasto-plastic stress-strain and water retention relationships for isotropic stress conditions 

66 

the primary (driving) variable. In this sense, (3.15) can be expressed in terms of strains by 

using (3.4) in combination with (3.1):  

( ) 0
TT

ef f
d d d

 ∂ ∂  − + =  ∂ ∂   

pD ε ε ξ
σ ξ

 (3. 16) 

Using now the flow rule in combination with the hardening law (strain hardening) in (3.16):  

0
TT T

e ef f g f g
d d d

 ∂ ∂ ∂ ∂ ∂   − + =    ∂ ∂ ∂ ∂ ∂     
pD ε D

σ σ σ ε σ
χ χ  (3. 17) 

From where it is possible to obtain an expression for the plastic multiplier in terms of the 

increments of strains:  

T T
e e

T TT
ee

f f
d d

d
f gf g f g H

∂ ∂   
   ∂ ∂   = =

∂ ∂   ∂ ∂ ∂ ∂  +−     ∂ ∂ ∂ ∂ ∂ ∂   
p

D ε D ε
σ σ

DD
σ σσ σ ε σ

χ  (3. 18) 

where H is commonly referred to as the plastic modulus (e.g. Prat, 2003) and it gives the 

following information: 

= 0  Perfect plasticityH  (3. 19) 

> 0  HardeningH  (3. 20) 

< 0  SofteningH  (3. 21) 

Equation (3.18) can be re-written as: 

T
e

T

T
e

f
d

d d
hf g

H

∂ 
 ∂ = =

∂ ∂  + ∂ ∂ 

D ε
aσ

ε

D
σ σ

χ  (3. 22) 

where the notation of h and aT is introduced here in order to be consistent with the 

development presented in the remainder of this thesis.  

It is now possible to obtain an expression for the elasto-plastic tangent modulus. 

Combining (3.4) with (3.1) and using the flow rule:  
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e g
d d d

∂ = − ∂ 
σ D ε

σ
χ  (3. 23) 

Substituting (3.22) into (3.23):  

 ∂= − = ∂ 

T
e epg

d d d
h

a
σ D I ε D ε

σ
 (3. 24) 

where Dep is the elasto-plastic tangent modulus and I is the identity matrix. 

Employing this classic elasto-plastic framework it is possible to build an equivalent 

development for the elasto-plastic constitutive model presented in Chapter 2. Obtaining, 

for this particular case, the relationships between mean Bishop’s stress with volumetric 

strains (dp*-dεv) and modified suction with degree of saturation (ds*-dSr), both required for 

the numerical integration of the model. This is explained in the next section.  

3.3. Mathematical framework 

This section is aimed at presenting a numerical approach to integrate the constitutive 

model proposed by Wheeler et al (2003) using elasto-plasticity as a framework to develop 

the stress-strain and water retention relationships for isotropic stress conditions (i.e. dp*-

dεv and ds*-dSr). This model is characterised by the presence of multiple elasto-plastic 

mechanisms that can be active or not depending on the loading conditions. A procedure 

similar to the one presented in Sánchez et al. (2005) has been adopted here to take into 

account that different plastic mechanisms can induce plastic deformations and/or plastic 

changes of the degree of saturation.  

3.3.1. Yield curves, flow rules and hardening laws 

The yield curves under isotropic stress conditions were defined in Chapter 2 and are 

repeated here to facilitate the description of the mathematical development:  

* *
0 0LCF p p= − =  

* * 0SI IF s s= − =  

* * 0SD DF s s= − =  
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The intersection of the interior stress states defined by these three yield curves (i.e. FLC ≤ 

0 ∩ FSI ≤ 0 ∩ FSD ≤ 0) in the s*:p* plane define the elastic domain of the model (see Figure 

3-2).  

Mean Bishop's stress, p*

M
o

d
if

ie
d

 s
u

ct
io

n
, s

* 

s I
*

p0
*

sD
*

Suction Increase yield curve, SI

Suction Decrease yield curve, SD

Loading Collapse
yield curve, LC

-dSr
p

dSr
p

dεv
p

Elastic domain
FLC≤ 0  
FSD≤ 0
FSI≤ 0

 

Figure 3- 2 Yield curves for isotropic stress states (Wheeler et al., 2003). 

Two flow rules were proposed in the original model according to the two different plastic 

mechanisms (see (2.26) and (2.28) in Section 2.6). If yielding on the LC yield curve alone 

is taking place, the plastic volumetric deformations are given by:  

*
p LC
v LC

G
d d

p

∂ε = χ
∂

 (3. 25) 

where GLC is the plastic potential associated with the LC curve and dχLC is the 

corresponding plastic multiplier. 

Equivalently, if yielding on the SD yield curve alone takes place, the irrecoverable 

increments of the degree of saturation are given by:  

*
p SD
r SD

G
dS d

s

∂− = χ
∂

 (3. 26) 

where GSD is the plastic potential associated with the SD curve and dχSD is the 

corresponding plastic multiplier. 

If yielding on the SI yield curve alone takes place, the inelastic changes of Sr are 

computed by:  
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*
p SI
r SI

G
dS d

s

∂− = χ
∂

 (3. 27) 

where GSI is the plastic potential associated with the SI curve and dχSI is the 

corresponding plastic multiplier. 

Two more elasto-plastic cases are also possible when yielding on two yield curves 

simultaneously (i.e. LC+SD or LC+SI respectively). The flow rules in those cases can be 

written as follows:  

*
                          with /p LC LC

v LC

G
d d SD SI

p
+β ∂ε = χ β =

∂
 (3. 28) 

*
                         with /p LC

r

G
dS d SD SI

s
β+β

β

∂
− = χ β =

∂
 (3. 29) 

where dχLC
LC+β and dχβ

LC+β are, respectively, the plastic multipliers associated with plastic 

changes of volumetric strains and plastic changes of the degree of saturation when 

simultaneous yielding is active. 

Associated plasticity is adopted and, therefore, the plastic potential is equal to the 

corresponding yield surface (i.e. GLC=FLC and Gβ=Fβ).  

Finally, the hardening laws were presented in Chapter 2 by ((2.29) and (2.30)) and are 

also repeated here for completeness: 










−
−

−
=

ss

p
r

p
v dSkvd

pdp
κλκλ

ε 1*
0

*
0  

* *
2                with /

pp
vr

s s

vddS
ds s k SD SIβ β

 ε= − + β = λ − κ λ − κ 
 

3.3.2. Additive decomposition of the volumetric str ain and degree of saturation 
increments 

The elastic relationships for volumetric strain increments with variations of mean Bishop’s 

stress and degree of saturation with changes of modified suction were already introduced 

in Chapter 2 ((2.23) and (2.24)) respectively) but are repeated in this section because 

both are used within the mathematical framework presented hereafter.  
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( )
*

1 *
*

e e
v

dp
d D dp

vp

κε
−

= =  

( )
*

1 *
*

e es
r

ds
dS ds

s

κ γ
−

− = =  

where De and γe are two scalar quantities. Note that these scalars have an equivalent 

meaning to that shown by the components of the elasticity tensor introduced in Section 

3.2.1. Under isotropic stress conditions, however, the elasticity tensor becomes a scalar.   

The additive decomposition of strain tensor described in (3.1) is assumed to be valid in 

this approach to describe total volumetric strains and total degree of saturation variations. 

In the particular case of isotropic stress conditions, this assumption is written as:  

e p
v v vd d dε ε ε= +  (3. 30) 

e p
r r rdS dS dS− = − −  (3. 31) 

3.3.3. Consistency conditions and plastic multiplie rs 

In order to describe the evolution of degree of saturation and volumetric strain when 

yielding takes place it is possible to follow an equivalent approach to that shown in 3.2.2.4 

for the general elasto-plastic case presented. Using this constitutive model, however, it 

will be necessary to accommodate the mentioned development for each of the possible 

plastic mechanisms defined (see Section 2.6).  

3.3.3.1. Yielding on the LC yield curve alone 

It is possible to find an expression of the plastic multiplier dχLC (to give plastic variations of 

volumetric strains when yielding on the LC curve (3.25) alone) if applying the consistency 

condition and assuming that yielding on the LC yield curve alone takes place:  

* *
0* *

0

0LC LC
LC

F F
dF dp dp

p p

∂ ∂= + =
∂ ∂

 (3. 32) 

Using (2.23) and (3.30) into (3.32) and employing the hardening law (2.29) with dSr
p=0: 

( ) *
0* *

0

0e p pLC LC
v v v

F F v
D d d p d

p p
ε ε ε

λ κ
∂ ∂  − + = ∂ ∂ − 

 (3. 33) 

Using now the flow rule (3.25): 
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*
0* * * *

0

0eLC LC LC LC
v LC LC

F F F Fv
D d d p d

p p p p
ε χ χ

λ κ
   ∂ ∂ ∂ ∂− + =   ∂ ∂ ∂ − ∂   

 (3. 34) 

From where it follows:  

*

*
0* * * *

0

eLC
v

LC
LC v

eLC LC LC LC LC

F
D d

ap
d d

F F F Fv hD p
p p p p

ε
χ ε

λ κ

∂
∂= =∂ ∂ ∂ ∂−

∂ ∂ ∂ − ∂

 (3. 35) 

where aLC and hLC are two scalar quantities with the subscript indicating which plastic 

mechanism is active (i.e. yielding on the LC yield curve alone).  

It is now possible to obtain an expression of the elasto-plastic tangent modulus associated 

with yielding on the LC yield curve alone. Combining (2.23) with (3.30) and using the flow 

rule:  

*
*

e LC
v LC

F
dp D d d

p
ε χ ∂= − ∂ 

 (3. 36) 

Finally, after inserting (3.35) into (3.36):  

*
*

1e epLC LC
v LC v

LC

F a
dp D d D d

p h
ε ε

 ∂= − = ∂ 
 (3. 37) 

where DLC
ep is the corresponding elasto-plastic tangent modulus for yielding on the LC 

curve under isotropic stress conditions. Note that in this particular case (isotropic stress 

states) the elasto-plastic tangent modulus becomes a scalar quantity.    

3.3.3.2. Yielding on the SD or SI yield curve alone 

Applying the consistency condition on the SD (or SI) alone, it is possible to obtain an 

expression for the plastic multiplier dχβ (giving plastic variations of degree of saturation 

when yielding on the SD or SI curve alone). 

* *
* *

0                  with β=SD/SI
F F

dF ds ds
s s

β β
β β

β

∂ ∂
= + =

∂ ∂
 (3. 38) 

Using (2.24) and (3.31) into (3.38) and employing the hardening law (2.30) with dεv
p=0: 
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( ) *
* *

1
0e p p

r r r
s s

F F
dS dS s dS

s s
β β

β
β

γ
λ κ

∂ ∂  
− + + − = ∂ ∂ − 

 (3. 39) 

Using now the flow rule for yielding on the SD or SI curve ((3.26) or (3.27) respectively): 

*
* * * *

1
0e

r
s s

F F F F
dS d s d

s s s s
β β β β

β β β
β

γ χ χ
λ κ

∂ ∂ ∂ ∂  
− − + =  ∂ ∂ ∂ − ∂   

 (3. 40) 

From where it follows:  

*

*
* * * *

1

e
r

r
e

s s

F
dS dsd dS

F F F F h
s

s s s s

β

β
β

β β β β β
β

β

γ
χ

γ
λ κ

∂
∂= =∂ ∂ ∂ ∂

− +
∂ ∂ ∂ − ∂

 (3. 41) 

where dβ and hβ are two scalar quantities with the subscript indicating which plastic 

mechanism is active (i.e. yielding on the SD or SI curve).  

It is now possible to obtain an expression of the elasto-plastic tangent modulus associated 

with yielding on the SD or SI yield curve alone. Combining (2.24) with (3.31) and using the 

appropriate flow rule:  

*
*

e
r

F
ds dS d

s
β

βγ χ
∂ 

= − − ∂ 
 (3. 42) 

Finally, after inserting (3.41) into (3.42):  

( ) ( )*
*

1e ep
r r

F d
ds dS dS

s h
β β

β
β

γ γ
 ∂

= + − = −  ∂ 
 (3. 43) 

where γβ
ep is the corresponding elasto-plastic tangent modulus for yielding on the SD or SI 

curve alone under isotropic stress conditions. 

3.3.3.3. Simultaneous yielding on LC and SD or SI 

A more interesting case is when the stress path reaches the bottom (or top) corner 

illustrated in Figure 3-2 at the intersection between the LC and SD (or the LC and SI) yield 

curves and simultaneous yielding is activated. In such cases, the final expression of each 

plastic multiplier giving inelastic changes of volumetric strains dεv
p and of degree of 

saturation dSr
p is found by applying the consistency condition simultaneously at the two 
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yield curves reached. In other words, a system of two equations (in which the unknowns 

are both plastic multipliers) needs to be solved to give the expression for dχLC
LC+β and 

dχβ
LC+β. Applying the consistency condition on the LC curve and on the β=SD (or SI) curve 

simultaneously: 

* *
0* *

0

* *
* *

0

0

LC LC
LC

F F
dF dp dp

p p

F F
dF ds ds

s s
β β

β β
β

∂ ∂ = + = ∂ ∂
 ∂ ∂ = + =
 ∂ ∂

 (3. 44) 

Following an equivalent development to that shown, separately, for yielding on the LC 

yield curve alone or for yielding on the SD (or SI) curve yield curve alone: 

( )

( )

* 1
0* *

0

*
2* *

0

0

p p
e pLC LC v r

v v
s s

pp
e p vr

r r
s s

F F vd k dS
D d d p

p p

F F vddS
dS dS s k

s s
β β

β
β

εε ε
λ κ λ κ

εγ
λ κ λ κ

  ∂ ∂− + − =  ∂ ∂ − − 


∂ ∂   − + + − + =  ∂ ∂ − − 

 (3. 45) 

Using now the flow rules (3.28) and (3.29) for simultaneous yielding on the LC and SD (or 

SI) yield curves:  

* 1
0* * * * *

0

* 2
* * * * *

0

1
0

e LC LC LCLC LC LC LC
v LC LC

s s

e LC LC LC LC
r LC

s s

FF F F F kv
D d d p d d

p p p p s

F F F F Fk v
dS d s d d

s s s s p

ββ β β
β

β β β ββ β β
β β β

β

ε χ χ χ
λ κ λ κ

γ χ χ χ
λ κ λ κ

+ + +

+ + +

 ∂  ∂ ∂ ∂ ∂− + + =   ∂ ∂ ∂ − ∂ − ∂   


∂ ∂ ∂ ∂   ∂ − − + + =    ∂ ∂ ∂ − ∂ − ∂   
 (3. 46) 

After some algebra (see Appendix A.2) one may obtain the following expression for each 

plastic multiplier when yielding on the LC and SD (or LC and SI) yield curves is active 

simultaneously:  

LC v LC rLC
LC

LC

LC v LC rLC

LC

a d b dS
d

h

c d d dS
d

h

+ ++

+

+ ++

+

+
=


 + =



β ββ

β

β ββ
β

β

ε
χ

ε
χ

 (3. 47) 

where aLC+β, bLC+β, cLC+β, dLC+β, and hLC+β are scalar quantities with the subscript indicating 

the plastic mechanism active (see Appendix A.2 for further details).  
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Following a similar approach to that shown in Sections 3.3.3.1 and 3.3.3.2, it is possible to 

obtain the following expressions for dp* and ds* when simultaneous yielding is active: 

*
*

e LC LC
v LC

F
dp D d d

p
βε χ + ∂= − ∂ 

 (3. 48) 

( )

*
* *

*
*

1 LC LCe eLC LC
v r

LC LC

LCep e LC
LC v r

LC

a bF F
dp D d D dS

p h p h

bF
dp D d D dS

p h

+ +

+ +

+
+

+

 ∂ ∂= − −  ∂ ∂ 

∂= + −
∂

β β

β β

β
β

β

ε

ε
 (3. 49) 

And also, 

*
*

e LC
r

F
ds dS d

s
ββ

βγ χ + ∂ 
= − − ∂ 

 (3. 50) 

( )

( )

*
* *

*
*

1 LC LCe e
r v

LC LC

LCep e
LC r v

LC

F d F c
ds dS d

s h s h

F c
ds dS d

s h

+ +

+ +

+
+

+

 ∂ ∂
= + − −  ∂ ∂ 

∂
= − −

∂

β β β β

β β

β β
β

β

γ γ ε

γ γ ε
 (3. 51) 

It is interesting to see here how the model describes the coupling between mechanical 

and water retention behaviour when simultaneous yielding is active. More precisely, it can 

be seen that the expressions accounting for the increments of mean Bishop’s stress 

(3.49) and for the increments of modified suction (3.51) depend on both the volumetric 

strain changes and the variation of the degree of saturation.  

3.3.4. Summary of mean Bishop’s stress-volumetric s train and modified suction-
degree of saturation relationships 

In the previous section, the equations expressing the increments of mean Bishop’s stress 

and modified suction in terms of volumetric strains and degree of saturation have been 

developed for each possible set of plastic mechanisms defined in the model of Wheeler et 

al. (2003). This way of expressing the variations of the stress state variables allows their 

automatic update by the formulation of an algorithm usually referred to as a strain-driver 

(because the assumed known or driving variables are volumetric strains and changes of 

degree of saturation).  
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It is shown later in Chapter 6, that the increments of degree of saturation can be 

expressed, for each type of mechanism, in terms of strain and suction increments which 

are the standard driving variables used in a Finite Element (FE) formulation. It is also 

possible, however, to express these relationships in a stress-driver manner. Indeed, it is 

equivalent to find the equations of the volumetric strain increments and of the degree of 

saturation increments in terms of increments of the stress variables (i.e. dp* and ds*). 

Furthermore, it is also possible to express these stress increments (i.e. dp* and ds*) in 

terms of mean net stress and suction changes. This alternative way of integrating the 

model is useful for validating the model before implementing it into a FE program as, 

typically, mean net stress and suction are the variables controlled in experiments. A more 

detailed description of both types of stress-driver algorithms is given in Section 3.5. Table 

3.1 summarises both of these formulations (i.e. strain-driver and stress-driver) for the 

Wheeler et al. (2003) model.  

3.4. Elasto-plastic domains associated with the Whe eler et al. (2003) model 

A detailed overview of the fully coupled constitutive model proposed by Wheeler et al. 

(2003) was presented in Chapter 2. A particular feature of this constitutive model is that, in 

addition, to the three yield curves defined (i.e. Loading Collapse yield curve LC, Suction 

Decrease yield curve SD and Suction Increase yield curve SI) it is possible to identify 

different domains in stress space where different plastic mechanisms can be activated. As 

a consequence, the appropriate stress-strain relationships have to be used for each 

plastic mechanism (see Table 3.1). Essentially, the existence of these different domains is 

a consequence of the couplings defined within the model between the mechanical and the 

water retention behaviour and, therefore, the shape of these domains depend on the 

coupling parameters k1 and k2 as detailed below.  

Based on the couplings presented in Section 2.6 and considering also the three yield 

curves defined (see Figure 3-2), one may identify six different domains in the lns*:lnp* 

plane. Indeed, if plotting the three yield curves defined in the model jointly with the trace of 

each corner (i.e. intersection between the LC and SD yield curves or intersection between 

the LC and SI yield curves, see Figure 3-2) when a single plastic mechanism is active (i.e. 

yielding on the LC yield curve alone as in Figure 3-3 or yielding on the SD yield curve 

alone as in Figure 3-4) five different regions can be defined (in addition to the elastic 

domain) identifying six different plastic mechanisms (including the elastic behaviour). 

Figure 3-3 shows the trajectories, in the lns*:lnp* plane, traced by the bottom and top 

corners (i.e. intersection between the LC and SD yield curves and intersection between 
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the LC and SI yield curves, respectively) when yielding on the LC yield curve alone takes 

place. It can be seen that both traces are parallel straight lines having slope k2 when 

plotted in this plane. 

Figure 3-4 shows the trajectories, in the lns*:lnp* plane, traced by the bottom and top 

corners when yielding on the SD yield curve alone takes place. It can also be seen here 

that both traces are parallel straight lines having slope 1/k1 when plotted in this plane. 

Table 3. 1 Incremental relationships of the integrated constitutive model. 
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Figure 3- 3 Illustration of the coupled movements associated with yielding on the LC yield curve alone (after 

Wheeler et al., 2003). 
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Figure 3- 4 Illustration of the coupled movements associated with yielding on the SD yield curve alone (after 

Wheeler et al., 2003). 
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The mathematical expression of the straight lines plotted in Figures 3-3 and 3-4 are given 

by the following expressions: 

* *

1 1* *
0

: ln ln
I

p s
r k

p s

   
=   
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It is useful to express all previous equations in the s*:p* plane (rather than the lns*:lnp* 

plane) as this is the common plane used in the algorithm formulation:  
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 (3. 59) 

Using these mathematical expressions, the important aspect of determining how the 

algorithm distinguishes and establishes if a plastic mechanism has been activated can be 

addressed. Without going into details of the algorithm adopted to integrate the model 

(discussion delayed to Chapter 6) a possible methodology to differentiate which plastic 

mechanism, if any, is active, is to define five different regions in the isotropic stress p*:s* 

plane (see Figure 3-5) by plotting the four lines f1, f2, f3, and f4 in combination with the 

three yield curves .  
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Figure 3- 5 Idealised representation of the different elasto-plastic domains. 

As illustrated in Figure 3-5, for a given initial position of the yield curves (p0
*, sI

* and sD
*) 

the lines presented above define the boundaries between the different elasto-plastic 

domains (in addition to the elastic domain) defining five different types of behaviour (i.e. 

yielding on the SI yield curve alone; yielding on the LC yield curve alone; yielding on the 

SD yield curve alone; and simultaneous yielding on SI and LC or on LC and SD). In this 

way, any stress state falling, for instance, in Region 3 (see Figure 3-5) activates the 

plastic mechanism associated with yielding on the LC yield curve alone, and equivalent 

concepts apply in regions 1, 2, 4 and 5 for yielding on the SI yield curve alone, 

simultaneous yielding on SI+LC, simultaneous yielding on LC+SD and yielding on the SD 

yield curve alone respectively.   
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3.5. Stress-driver algorithm formulation for isotro pic stress conditions 

In this work, the constitutive model of Wheeler et al. (2003) was initially integrated using a 

stress-driver algorithm. This algorithm was then used as a way to partially verify that the 

mathematical formulation presented above correctly reproduces the model response for a 

prescribed stress path. This is a useful check, considering the complexity of the 

mathematical expressions previously presented. For instance, complexity arises because 

there is a strong link between the two stress state variables in the model, with both the 

mean Bishop’s stress p* and the modified suction s* depending on a state variable 

influenced by the other. That is p* includes the degree of saturation (see Equation (2.15)), 

changes of which are governed by the water retention behaviour; and s* includes the 

porosity (see Equation (2.16)) which is affected by the mechanical response. This strong 

interrelation adds significant complexity to the classical plasticity problem (see also Lloret 

et al. (2008a)).  

In general, a stress-driver algorithm is used when stress changes are known and these 

are used to compute strain changes. For this particular case, volumetric strains 

increments ∆εv and degree of saturation increments ∆Sr are computed by knowing 

increments of modified suction ∆s* and increments of mean Bishop’s stress ∆p* as in the 

first stress-driver algorithm presented (see Section 3.5.1); or increments of suction ∆s and 

increments of mean net stress p∆  as in the second stress-driver algorithm presented 

(see Section 3.5.2). In general, from an initial stress state inside the elastic domain and by 

knowing the increments of stresses (inputs), a stress-driver algorithm calculates an elastic 

trial stress state to decide which plastic mechanism (if any) is active and then to update 

the state variables correspondingly (see Table 3.1). When the stress path is found to fall 

outside the elastic domain, yielding will take place and it will be necessary to find the 

intersection of the stress path with the corresponding yield curve. The algorithms used in 

this thesis employ the classical bisection method to find the intersection point. This 

method requires the specification of a tolerance which will be referred to as TOL1 in the 

remainder of this work. When yielding takes place, it is also necessary to specify a second 

tolerance referred to as TOL2. This is to ensure that the final stress state lies on the 

pertinent yield curve during yielding. Due to the tendency to drift, it is commonly needed to 

project back the stress state to the corresponding yield curve using a drift correction 

method (Potts and Gens, 1985). A more detailed description of these issues is given when 

presenting the complete algorithmic formulation of the 3D extended version of the 

Wheeler et al. (2003) model in Chapter 6.   
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Two types of stress-driver algorithms are presented in this section. The first one requires 

the increments of modified suction ∆s* and mean Bishop’s stress ∆p* as inputs. By 

knowing these increments the algorithm computes increments of volumetric strain ∆εv and 

increments of degree of saturation ∆Sr (see Table 3.1). The second scheme uses the 

increments of suction ∆s and the increments of mean net stress p∆  as inputs, from where 

increments of volumetric strain ∆εv and increments of degree of saturation ∆Sr are 

calculated. Further details of both stress-driver subroutines are given as follows. 

3.5.1. Stress-driver algorithm based on mean Bishop ’s stress and modified suction 

This algorithm is used to analyse the computed response for two different prescribed 

stress paths. The first one is an isotropic loading at constant modified suction, and the 

second one is an isotropic wetting at constant mean Bishop’s stress. Both of these stress 

paths require the increments of ∆s* and ∆p* (inputs) to calculate ∆Sr and ∆εv (outputs). 

Table 3.1 presents the equations to compute changes of ∆Sr and ∆εv in terms of ∆s* and 

∆p* for each of the possible cases defined in the model (i.e. elastic; yielding on the LC 

yield curve alone; yielding on the SD or SI yield curve alone; simultaneous yielding on the 

SD or SI and LC yield curves). The algorithm used is summarised as follows.  

i. Initial stress state 

The initial state should be inside the elastic domain (see Figure 3.2) and it is defined by 

giving the initial mean Bishop’s stress p*, the initial modified suction s*, the initial void ratio 

e, the initial degree of saturation Sr and the initial values of the hardening parameters.  

ii. Elastic trial 

Assume that the given ∆p* and ∆s* are purely elastic and compute the elastic trial 

increments of the volumetric strain and degree of saturation by integrating (2.23) and 

(2.24).  

Update pk+1
* and sk+1

* with the given increments and evaluate the new stress point. If the 

trial stress state is inside or on each of the yield curves defined (i.e. FLC(p*
k+1,p0

*)≤0 and  

FSD(s*
k+1,sD

*)≤0 and  FSI(s
*
k+1,sI

*)≤0) update variables with the elastic trial and exit.  

iii. Identification of the elasto-plastic mechanism active and update 

Otherwise, determine the elasto-plastic mechanism active (Section 3.4), find the 

corresponding intersection/s and update variables accordingly (see Table 3.1). A number 

of schemes are available in the literature to find the intersection of the stress path with the 

yield curve. A detailed description of the approach used in this work is given in Chapter 6 
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when describing the algorithm used to implement this model in the FE program 

CODE_BRIGHT (Olivella et al., 1996).   

iv. Yield surface drift correction 

Each time the final state lies outside the updated yield curves, the current state should be 

projected back to the pertinent yield curve/s using a drift correction method. Section 6.5 

describes in detail the scheme used in this research to correct this drift based on the work 

presented by Potts and Gens (1985).  

3.5.1.1. Model response under isotropic loading paths at constant modified suction 

An isotropic loading stress path at a constant modified suction of 250 kPa is considered in 

this section to explore the performance of the mathematical approach described in 

Section 3.3. This stress path involves elastic behaviour, then yielding on the LC yield 

curve alone and finally simultaneous yielding on the LC and SD yield curves. Under this 

type of stress path, it is possible to study the error in the computed results by comparing 

them with the predicted model response for the following model parameters: κ (associated 

with volumetric elastic response), λ (associated with the volumetric behaviour when 

yielding on the LC curve) and k2 (coupling parameter associated with the influence of the 

mechanical behaviour on the water retention behaviour, see Section 2.6). Also, as the 

stress path reaches the bottom corner defined at the intersection between the LC and SD 

yield curves, simultaneous yielding occurs and the parameters λ* and k2
* (introduced in 

Section 2.7) can be also studied.  

Table 3.2 contains the values of the model parameters (κ, λ, κs, λs, k1 and k2) used in the 

analysis; the initial state (in terms of the initial values of e, Sr, p
*, s* and the hardening 

parameters p0
* and sD

*); the input increments for the prescribed stress path (i.e. ∆s*=0 and 

∆p*=0.1 kPa) and the tolerances adopted for intersection and drift correction subroutines 

(i.e. TOL1 and TOL2 respectively). The values of the gradients of the isotropic normal 

compression surfaces λ*, λs
*, k1

* and k2
* calculated from the original soil parameters λ, κ, λs, 

κs, k1 and k2 (see Section 2.7) have been also included.  

Table 3. 2 Model parameters and initial state used in the computations. 

κ=0.006 λ=0.118 λs=0.0971 κs=0.009 k1=0.7 k2=0.8 

p0
*=200kPa sD

*=150kPa e=1.2 Sr=0.6 p*=100kPa s*=250kPa 

∆s*=0 ∆p*=0.1kPa TOL1<10-07 TOL2<10-07   

λ
*=0.260 λ

*
s=0.209 k*

1=0.178 k*
2=0.160   
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Figure 3-6a shows the stress path (in the lns*:lnp* plane) and Figures 3-6b and 3-6c show 

the computed variations of v and Sr respectively (both plotted against lnp*). Table 3.3 

includes the values of the model parameters back-calculated from the gradients in Figure 

3-6. These values have been estimated using the least-square method implemented in 

GRAPHER software (www.goldensoftware) from the computed response and the 

coefficient of determination R2 has been also included in Table 3.3. Inspection of Figure 3-

6 in combination with the information summarised in Table 3.3 indicates that the 

computed results for this particular stress path are indistinguishable from the predicted 

model response. A first elastic compression controlled by κ is observed from A to B. At B 

the LC curve is reached and yielding on this yield curve alone occurs. As a consequence, 

the evolution of the specific volume with p* is controlled by the parameter λ (Figure 3-6b). 

This type of behaviour lasts until the bottom corner LC-SD is reached at C from where 

simultaneous yielding on the LC and SD curves begins. From C to the end of the test D, 

the specific volume changes with p* are controlled by λ*. Also the degree of saturation 

changes with p* are illustrated in the bottom plot of this figure (Figure 3-6c) showing that 

the only variations observed in Sr occur when simultaneous yielding on the LC and SD 

curves is active and those changes are controlled by k2
*. In accordance to this, three 

cases are checked to coincide with the predicted response, comprising: elastic behaviour 

(A-B), yielding on the LC curve alone (B-C) and simultaneous yielding on the LC and SD 

curves (C-D). 

 

Table 3. 3 Comparison between the theoretical and estimated soil parameters values (mechanical behaviour). 

Soil 

parameter 
Theoretical value Back-calculated value 

Coefficient of 

determination R 2 

κ 0.006 0.006002 1.000000 

λ 0.118 0.118021 1.000000 

λ* 0.260 0.260577 1.000000 

k2
* 0.160 0.160019 1.000000 
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Figure 3- 6 Model response under an isotropic loading stress path at constant modified suction. 
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3.5.1.2. Model response under isotropic wetting paths at constant mean Bishop’s stress 

An isotropic wetting path at a constant mean Bishop’s stress of 100kPa is studied in this 

section to analyse the formulation proposed in Section 3.3. This stress path involves 

elastic behaviour, yielding on the SD yield curve alone and simultaneous yielding on the 

LC and SD curves. In this way, it is possible to carry out a first analysis on the following 

model parameters employed in the model: κs (associated with the elastic water retention 

response), λs (associated with the water retention behaviour when yielding on the SD/SI 

yield curve alone) and k1 (coupling parameter associated with of the water retention 

behaviour on the mechanical behaviour, see Section 2.6). Also, as the stress path 

reaches the bottom corner defined at the intersection between the LC and SD yield 

curves, simultaneous yielding occurs and the parameters λs
* and k1

* (also calculated from 

the original set of parameters defined in the model) introduced in Section 2.7 can be also 

analysed. The same values for the initial state and model parameters summarised in 

Table 3.2 are used in this analysis.  
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Figure 3- 7 Model response under an isotropic wetting stress path at constant mean Bishop’s stress. 

Figure 3-7a shows the stress path (in the lns*:lnp* plane) and Figures 3-7b and 3-7c show 

the computed variations of Sr and v respectively (both plotted against lns*). A first elastic 

increase of Sr controlled by the soil parameter κs is observed from A to B. At B the SD 

yield curve is reached and yielding on this curve alone takes place. Consequently, the 

evolution of the degree of saturation with s* is controlled by the parameter λs (see Figure 

3-7b). This type of behaviour lasts until the bottom corner LC-SD is reached at C from 

where simultaneous yielding on LC and SD begins. From C to the end of the test D, 

changes of the degree of saturation with s* are controlled by λs
*. Changes of specific 

volume (see Figure 3-7c) show no variation of v until simultaneous yielding on SD and LC 

is occurring (from C), with subsequent changes governed by k1
*.  
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Table 3. 4 Comparison between theoretical and estimated soil parameters values (water retention behaviour). 

Soil 

parameter 
Theoretical value Back-calculated value 

Coefficient of 

determination R 2 

κs 0.0009 0.0008998 1.000000 

λs 0.0971 0.096947 1.000000 

λs
* 0.209 0.208721 1.000000 

k1
* 0.178 0.177944 1.000000 

 

Table 3.4 shows that the accuracy achieved in the computations for this second type of 

isotropic stress path, involving first elastic water retention behaviour, then yielding on only 

SD yield curve and finally simultaneous yielding on LC and SD, is very satisfactory, which 

suggests also that the model has been correctly implemented in the algorithm. 

3.5.2. Stress-driver algorithm based on mean net st ress and suction 

This second type of stress-driver algorithm employs as inputs the increments of mean net 

stress and matric suction. These variations are commonly controlled in isotropic stress 

tests and it is, therefore, interesting to present an algorithm using them as driving or 

known variables. In particular, in this work, this second type of stress-driver approach is 

used to compare the computed results with the predicted normal compression 

relationships presented in Chapter 2.  

i. Initial stress state 

Given the initial values of mean net stress, matric suction, void ratio and degree of 

saturation, compute the initial mean Bishop’s stress and modified suction. Define the initial 

elastic domain (see Figure 3-2) with the initial values of the hardening parameters 

ii. Elastic trial 

Assuming that the given ∆ p  and ∆s are purely elastic, compute an elastic trial increment 

of ∆p* and ∆s*. In order to do that is necessary to find expressions for these increments in 

terms of the input increments ∆ p  and ∆s by assuming elastic behaviour (see Appendix 

A.3).  

( )* ,trialp f p s∆ = ∆ ∆  (3. 60) 

( )* ,trials f p s∆ = ∆ ∆  (3. 61) 
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Update pk+1
* and sk+1

* with the computed increments and evaluate the new stress point. If 

the trial stress state is inside or on each of the yield surfaces defined (i.e. FLC(p*
k+1,p0

*)≤0 

and  FSD(s*
k+1,sD

*)≤0 and  FSI(s
*
k+1,sI

*)≤0) update variables with the elastic trial and exit.  

iii. Identification of the elasto-plastic mechanism active and update 

Determine the elasto-plastic mechanism active (Section 3.4), find the corresponding 

intersection/s and update variables accordingly. As further detailed in Appendix A.3 it is 

possible to find different expressions for ∆p* and ∆s* in terms of the input increments ∆ p  

and ∆s for each possible mechanism defined in the model.  

iv. Yield surface drift correction 

If the final state lies outside the updated yield surfaces, project the current state back to 

the pertinent yield surface/s using a drift correction method (see Section 6.5).  

3.5.2.1. Computed and predicted normal compression relationships during simultaneous 
yielding on LC and SD 

A final analysis is included in this section to explore if the numerical scheme reproduces 

the predicted model response when simultaneous yielding on the LC and SD curves is 

active. In other words, this analysis is aimed at checking if the final states of the computed 

isotropic normal compression stress paths fall on an isotropic planar normal compression 

surface (of gradients λ* and k2
*) in v:lnp*:lns* space and also on a second isotropic planar 

surface (of gradients λs
* and k1

*) in Sr:lnp*:lns* space (see Chapter 2). A possible way to 

check this is by using the mathematical scheme presented previously to reproduce the 

isotropic normal compression tests at constant suction on samples of speswhite kaolin 

(Sivakumar, 1993) presented in Section 2.7.3. Then, by plotting the final states of these 

isotropic normal compression tests in the v:lnp*:lns* and Sr:lnp*:lns* spaces (Figures 3-8 

and 3-9) it is possible to see whether the values of λ*, k2
*, λs

* and k1
* estimated from these 

computed final states are as those summarised in Table 3.5.  

Table 3.5 shows the model parameters and initial state used in the computations. These 

values are taken from the analysis presented in Section 2.7.4 on the tests of Sivakumar 

(1993) when describing the methodology to determine the soil parameters defined in the 

model but any other set of values would be also possible. Table 3.5 also includes the 

values of the parameters defining the gradients of the planar surfaces introduced in 

Chapter 2 and that can be used to study the performance of the mathematical scheme 

employed. 
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Table 3. 5 Model parameters and initial state used in the computations. 

κ=0.006 λ=0.124 λs=0.0971 κs=0.0004 k1=0.685 k2=0.773 

p*=229 kPa s*=164 kPa p0
*=271 kPa sD

*=164 kPa e=1.210 Sr=0.597 

λ
*=0.257 λ

*
s=0.206 k*

1=0.172 k*
2=0.159   

 

5 5.2 5.4 5.6 5.8 6 6.2
ln p*

1.15

1.2

1.25

1.3

1.35

1.4

1.45

v 
- 

k 1
* l

n
s*

Modelled data points

v - k1
* ln s * = N* - λ* ln p *

λ* 

Y = -0.257 * X + 2.771
Coef of determination, R-squared = 0.99999

(a)  

3.6 4 4.4 4.8 5.2
ln s*

3.4

3.45

3.5

3.55

3.6

3.65

v 
+ 

λ*
 ln

p
*

Modelled data points

v + λ*ln p* = N* + k 1* ln s*

k1
*

Y = 0.172 * X + 2.772
Coef of determination, R-squared = 1

(b)  

Figure 3- 8 Orthogonal two-dimensional views of planar surface for v with computed results.  
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Figure 3- 9 Orthogonal two-dimensional views of planar surface for Sr with computed results. 

Figures 3-8 and 3-9 represent a pair of orthogonal two-dimensional views of each 

isotropic normal compression planar surface (one for v and one for Sr) estimated from the 

modelled final states of the normal compression tests of Sivakumar (1993). For example, 

(Figure 3-8a) shows (v-k1
*lns*) plotted against lnp* and (Figure 3-8b) shows (v+λ*lnp*) 

plotted against lns*. In both of these plots presented in Figure 3-8, the planar surface for v 
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has been reduced in each case to a single straight line (of gradients λ* and k1
* 

respectively), and it is easy to check that all final states of the test modelled lie on this 

planar surface (as the estimated gradients from the computed results are practically the 

same as those calculated from the original set of model parameters, see Table 3.6). 

Similarly, Figure 3-9 illustrates the computed results of the water retention response also 

showing that, as predicted by the model, all the final states of the normal compression 

tests modelled lie on a straight line of slope λs
* when plotting such states in the (Sr-

k2
*lnp*):lns* plane (Figure 3-9a) and on a second straight line of slope k2

* when plotting the 

same results in the (Sr+λs
*lns*):lnp* plane (Figure 3-9b).  

The fact that in both figures (Figure 3-8 and Figure 3-9) all final states of the tests 

modelled fall on both planar surfaces presented in Section 2.7.2 is a significant 

component of verification of the mathematical expressions implemented in the algorithm.  

Table 3.6 summarises the relevant information of the accuracy achieved in the 

computations analysed in this final section. The estimated values in Table 3.6 have been 

calculated using the least-square method implemented in the GRAPHER software applied 

to the seventeen final states computed. These values can be compared with the actual 

(theoretical) parameter values and estimate the error made in the computations. It is 

observed that the theoretical values of the parameters and those values back-calculated 

from the final states of the computed isotropic normal compression tests are, as expected, 

practically the same, with a coefficient of determination R2 very close to one in all cases. 

This reinforces again the conclusion that the Wheeler et al. (2003) model is being 

correctly integrated. 

Table 3. 6 Comparison between theoretical and estimated gradients of the normal compression planar 

surfaces. 

Soil 

parameter 
Theoretical value Back-calculated value 

Coefficient of 

determination R 2 

λ*
 0.257 0.257 0.99999 

k1
*

 0.172 0.172 1.00000 

λs
* 0.206 0.206 1.00000 

k2
* 0.159 0.159 0.99999 

N* 2.768 2.771 - 

χ* 0.755 0.756 - 

 



 

 

 

 

 

 

 

 

 

Chapter 4  

 

CRITICAL STATE RELATIONSHIPS FOR 

UNSATURATED COMPACTED SOILS 

 

 

 

 

 

 

 

 



Chapter 4 Critical state relationships for unsaturated compacted soils 

91 

4. Critical state relationships for unsaturated com pacted soils 

The constitutive model for isotropic stress states of Wheeler et al. (2003) was presented in 

Chapter 2 and a possible mathematical approach to numerically integrating it has been 

proposed in Chapter 3. Based on this constitutive model, two normal compression 

relationships assuming simultaneous yielding on LC and SD were developed in Chapter 2 

showing a very satisfactory agreement with the experimental results of Sivakumar (1993). 

It was also showed that both relationships form unique planar surfaces: one in v:lnp*:lns* 

space and a second in Sr:lnp*:lns* space. When presenting the final states of the isotropic 

normal compression stages of Sivakumar (1993) in these spaces it was found that such 

states fall on two planar surfaces, as predicted by the model.  

This chapter presents an extension of the model of Wheeler et al. (2003) to the stress 

states applicable to triaxial tests, by including the role of deviator stress q.  Following the 

ideas developed in Wheeler (2009), this chapter then develops for ultimate (critical) states 

equivalent relationships to those previously proposed for isotropic normal compression 

cases. Assuming again simultaneous yielding on LC and SD surfaces, and that the soil 

remains under unsaturated conditions (i.e. 0<Sr<1), a pair of critical state relationships 

expressing the ultimate values of specific volume and of degree of saturation in terms of 

mean Bishop’s stress and modified suction variations, are developed in this current 

chapter. The representation of these critical state relationships in the v:lnp*:lns* and 

Sr:lnp*:lns* spaces show a second pair of unique planar surfaces. Equivalent to the work 

presented in Section 2.7, when developing the isotropic normal compression 

relationships, the experimental critical state data of Sivakumar (1993) have been plotted in 

these spaces and the results obtained are presented and discussed.  

4.1. Critical state models for saturated soils 

The first critical state models were the series of Cam Clay formulations for saturated soils 

developed at the University of Cambridge by Roscoe and his co-workers. Two main 

versions of this family of models were proposed. In the original Cam Clay formulation of 

Roscoe et al. (1958) the yield curve was given by a logarithmic curve, whereas in the 

modified version of Roscoe and Burland (1968) the yield curve was an ellipse (see Figure 

4-1). This modification was included in order to avoid non-zero shear strains for q=0 as a 

consequence of the use of an associated flow rule (see Roscoe and Burland, 1968). The 

basic aspects of the Modified Cam Clay (MCC) version are briefly introduced in this 

section, as the proposed extension of the Wheeler et al. (2003) model to triaxial stress 

conditions (presented in Section 4.2) uses MCC as the saturated base model. A more 
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complete description of the Cam Clay family of models can be found in the original works 

of Roscoe et al. (1958) and Roscoe and Burland (1968) or, more recently, in Muir Wood 

(1990).  

4.1.1. Modified Cam Clay model 

The yield surface of the MCC model, illustrated in the q:p’ plane in Figure 4.1, is given by 

the following mathematical expression:  

( )2 2 '
0' 'q M p p p= −  (4. 1) 

where q is the deviatoric stress (q=σ1-σ3), M is the aspect ratio of the elliptical yield curve, 

p’ is the mean effective stress (p’=(σ’1+σ’2+σ’3)/3) and p0
’ is the hardening parameter 

defining the size of the yield surface. σ'1, σ’2,and σ’3 are principal effective stresses. 

p′

q

M

0

2
p′ 0p′

CSL 

 

Figure 4- 1 Representation of the yield surface of the Modified Cam Clay model in the q:p’ plane. 

The hardening law depends on the plastic volumetric strain and is given by:  

( )
0

0

'

'
p
v

dp v
d

p
=

−
ε

λ κ
 (4. 2) 

where dεv
p is the increment of plastic volumetric strain, v is the specific volume, and λ and 

κ are the gradient of the isotropic normal compression line and the gradient of swelling 

lines respectively in the v:lnp’ plane. An associated flow rule is employed: 

2 2

2
p
q

p
v

d

d M
=

−
ε η
ε η

 (4. 3) 

where dεq
p is the increment of plastic deviatoric strain and η=q/p’.  
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Elastic volumetric strains are given by:  

'

'
e
v

dp
d

v p

κε =  (4. 4) 

The model predicts the occurrence of a unique normal compression line (NCL), for 

isotropic loading to virgin states, defined by:  

ln 'v N pλ= −  (4. 5) 

where N is a soil parameter.  

The model also predicts the occurrence of critical states (shear strains increasing 

indefinitely with no further change of q, p’ or v), with all critical states falling on a unique 

critical state line (CSL) defined in q:p’:v space by: 

'q Mp=  (4. 6) 

ln 'v pλ= Γ −  (4. 7) 

Г is a soil parameter and, according to MCC, the vertical spacing between the NCL and 

the CSL in the v:lnp’ plane is given by:  

( ) ln 2N λ κΓ = − −  (4. 8) 

An illustration of the critical state relationship (4.5) along with the normal compression line 

(4.2) and swelling lines (4.3) is represented in Figure 4-2.  
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Figure 4- 2 Normal compression line, swelling lines and critical state line in the v:lnp’ plane according to MCC. 
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4.2. Extension of the Wheeler et al. (2003) model t o triaxial stress conditions 

Lloret et al. (2008b) and Raveendiraraj (2009) proposed a simple extension of the 

Wheeler et al. (2003) model to the stress conditions of the triaxial test, by incorporating 

the role of the deviator stress q (and including the shear strength behaviour). This 

extended version of the model is presented here.  

Two important assumptions are made in the formulation of the extended model. The first 

is to assume MCC as the underlying model for saturated conditions and the second is to 

assume a unique Critical State Line (CSL) in the q:p* plane (where p* is the mean Bishop’s 

stress) as expressed by: 

*q Mp=  (4. 9) 

where M is the gradient of the CSL in the q:p* plane. 

The second assumption is based on experimental observations. Figure 4-3 plots the 

critical states of the experimental data of Sivakumar (1993) in the q:p* plane. It can be 

seen that, for this set of results covering three different values of suction (i.e. 100 kPa, 

200 kPa and 300 kPa), the approximation of a unique CSL in the q:p* plane gives a 

reasonably good estimation, giving a slope of the CSL M=0.716. Similar results were 

obtained by other authors (e.g. Gallipoli et al., 2008; Raveendiraraj, 2009). In the work of 

Gallipoli et al. (2008) and Raveendiraraj (2009), in addition to the experimental data 

plotted in Figure 4-3, they also considered the experimental results on compacted 

speswhite kaolin presented in Wheeler and Sivakumar (2000) and, moreover, they also 

included tests at saturated conditions. Raveendiraraj (2009) argued that a deeper 

inspection of the results plotted in this plane suggested that the critical state relationship 

between q and p* may not be entirely unique. A small trend with variation of suction was 

observed when analysing the critical states in the q:p* plane, with the saturated critical 

state data points lying at the top of the range and the data points at the highest suction 

lying at the bottom of the range. In the work presented here, however, the simplest 

possible extension of the Wheeler et al. (2003) model to include the role of deviator stress 

has been adopted and a unique critical state line in the q:p* plane has been adopted.  



Chapter 4 Critical state relationships for unsaturated compacted soils 

95 

0 200 400 600
Mean Bishop's stress, p* ; kPa

0

100

200

300

400

D
ev

ia
to

ri
c 

st
re

ss
, q

 ;
 k

P
a

s = 300kPa
s = 200kPa
s = 100 kPa

M

q=Mp*

 

Figure 4- 3 Representation of the critical states of the experimental results of Sivakumar (1993) in the q:p* 

plane.  

Lloret et al. (2008b) and Raveendiraraj (2009) extended the model of Wheeler et al. 

(2003) to triaxial stress states, to include the role of deviator stress q, by extending the 

LC, SD and SI yield curves from the isotropic p*:s* plane to form yield surfaces in q:p*:s* 

space (see Figure 4-4). Based on the assumptions of a unique critical state line in the q:p* 

plane (defined by Equation (4.9)), and the assumption of MCC as the saturated base 

model, constant s* cross-sections of the LC yield surface were assumed to be elliptical in 

shape, with aspect ratio M and the left hand boundary falling on the s* axis (see Figure 4-

4). The equation of the LC yield surface is therefore:  

( )2 2 * * *
0 0q M p p p− − =  (4. 10) 

The SI and SD yield surfaces were assumed to be vertical planes in q:p*:s* space (see 

Figure 4-4), given by:  

* *
Is s=  (4. 11) 

* *
Ds s=  (4. 12) 
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Figure 4- 4 Extension of the Wheeler et al. (2003) model to triaxial stress states. 

The hardening laws assumed in the model are unchanged from the equations presented 

for the model under isotropic stress states (see Chapter 2). Associated flow rules are 

assumed on all three yield surfaces. Remembering that plastic volumetric strain increment 

dεv
p, plastic deviatoric strain increment dεq

p and plastic decrement of degree of saturation 

–dSr
p are work-conjugate to p*, q and s* respectively, this results in the following flow 

rules: 

( )
*

22 *

2
        and        0

ε η
ε η

= =
−

p
q p

rp
v

d
dS

d M
 (4. 13) 

on the LC yield surface (where η*=q/p*), and 

0p p
q vd d= =ε ε  (4. 14) 

on the SI and SD surfaces.  

Elastic deviatoric strains are given by:  

3 '
p
q

dq
d

G
=ε  (4. 15) 

where G’ is the elastic shear modulus (see Appendix A.1).  
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4.3. Occurrence of critical states 

 

Figure 4- 5 Representation of critical states in the q:p*:s* space. 

According to the extended model, critical states will correspond to points such as A, B and 

C in Figure 4-5, each of which lies at the top of the LC yield surface (i.e. at the apex of an 

elliptical constant s* cross-section of the LC surface). At any such point, the associated 

flow rule of Equation (4.13) will imply that plastic shear strains can occur without any 

occurrence of plastic volumetric strains. The absence of plastic volumetric strains will 

imply no hardening of the LC yield surface and also no coupled movements of the SD or 

SI yield surfaces. Points such as A, B and C in Figure 4-5 therefore correspond to states 

where plastic shear straining can continue indefinitely without further change of q, p*, s*, v 

or Sr (i.e. without change of state), thus fulfilling the definition of critical state.  

As all points such as A, B and C in Figure 4-5 fall on a line defined by Equation (4.9), 

critical states predicted by the model lie on a unique line in the q:p* plane, defined by 

Equation (4.9) (as intended).  

In general, however, critical state values of v for a given value of s* will not lie on a unique 

line in the v:lnp* plane (i.e. in general, there is no unique critical state surface in v:p*:s* 

space), because the value of v will also depend upon the current positions of the SD and 

SI yield surfaces. For example, consider the two different situations illustrated in Figure 4-

6. Points A1 and A2 in Figure 4-6a and Figure 4-6b respectively, represent two critical 

states at identical values of q, p* and s*, and with the LC yield surface in identical positions 

in the two cases. The only difference in the two cases is a difference in the positions of the 

SD and SI surfaces. As a consequence, the predicted values of v will be different at points 

A1 and A2. This is because the differences in positions of the SD and SI yield surfaces 
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imply different amounts of coupled movement of the LC yield surface, which means that 

there must have been different amounts of yielding on the LC surface in the two cases (to 

produce the overall result that the LC surface is the same size in the two cases).  

 

 

Figure 4- 6 Representation of critical states in in the q:p*:s* space: (a) lying on the LC yield surface alone; (b) 

lying on both LC and SD yield surfaces.  

Although, critical states will not all lie on a unique surface in v:p*:s* space, it is shown in 

the next section that a unique surface does exist if consideration is restricted to critical 

states that lie on both LC and SD yield surfaces (i.e. points such as A in Figure 4-5 and A2 

in Figure 4-6b). As discussed in Chapter 2 (for isotropic states), it is surprisingly common 

for stress paths to arrive at the intersection between LC and SD surfaces, because of the 

coupling between the two surfaces. This is even more true for critical states. It will be very 

common (although not universal) that plastic volumetric straining (caused by yielding on 

the LC surface) during shearing or during prior isotropic loading will produce sufficient 
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coupled movement of the SD yield surface to bring the SD surface to the stress point prior 

to arrival at a critical state.  

The special case of critical states which lie on both the LC yield surface and the SD yield 

surface is therefore considered in the next section.  

4.4. Critical state relationships for simultaneous yielding on LC and SD 
surfaces 

In Chapter 2 a pair of relationships expressing the variation of specific volume v and 

degree of saturation Sr in terms of mean Bishop’s stress p* and modified suction s*, were 

presented for isotropic stress conditions and assuming simultaneous yielding on LC and 

SD yield curves. The equations were developed assuming also that the soil remained 

under unsaturated conditions (i.e. 0<Sr<1). Each of these relationships, (2.37) and (2.40), 

when represented in the v:lnp*:lns* and Sr:lnp*:lns* spaces respectively, forms a unique 

planar surface having slopes λ* and k1
* (2.37) and k2

* and λs
* (2.40). When the 

experimental results of Sivakumar (1993) from constant suction isotropic loading of 

compacted speswhite kaolin were presented in these spaces, they were found to lie on 

planar surfaces, as predicted by the model (see Section 2.7.2).  

This section presents an equivalent analysis for critical states, resulting in the prediction of 

a second pair of unique planar surfaces in the v:lnp*:lns* and Sr:lnp*:lns* spaces. In Section 

4.5 the results of Sivakumar (1993) are plotted in these spaces and compared with the 

model predictions  

Figure 4-7 shows the stress path adopted in the development of the critical state 

relationships for v and Sr. Note that isotropic stress state A is at the intersection between 

the LC and SD yield surfaces and, therefore, lies on both planar surfaces defined for the 

isotropic normal compression relationships (2.37) and (2.40). An isotropic unloading 

stress path at constant modified suction (i.e. s*=sD
*) is considered from A to B. As a result, 

an elastic swelling controlled by κ is observed (see Figure 4-8) but no change of degree of 

saturation is computed because s* remains constant and no yielding on SD/SI takes place 

(Figure 4-9). Shearing at constant modified suction and constant mean Bishop’s stress is 

considered afterwards to reach a critical state at C (see Figure 4-7). As the path from B to 

C is elastic, and there is no change of either p* or s*, the values of v and Sr at C are 

identical to the corresponding values at B (see Figures 4-7 and 4-8). Note that stress state 

C is on both LC and SD yield surfaces.  
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Figure 4- 7 Stress path ABC considered in the development of the critical state relationships. 
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Figure 4- 8 Representation of stress path ABC in the v:lnp* plane. 

Figure 4-8 illustrates the stress path ABC at constant modified suction (see Figure 4-7) in 

the v:lnp* plane. From this figure it can be seen that the specific volume vc at the critical 

state C is related to the specific volume vA at A by:  

*
0
*

lnC A
C

p
v v

p
κ= +  (4. 16) 

However, the elliptical shape of the constant s* cross-sections of the LC yield surface 

implies p0
*=2pC

* (see Figure 4-7), and the value of vA can be related to p0
* by the isotropic 
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normal compression planar surface of Equation (2.37) to give the following expression for 

the specific volume at critical states:  

( )* * * * * *
1ln 2 ln lnv N p k sλ κ λ= − − − +  (4. 17) 

This can also be written as: 

* * * * *
1ln lnv p k sλ= Γ − +  (4. 18) 

where: 

( )* * * ln 2N λ κΓ = − −  (4. 19) 

Equation (4.18) defines a unique planar surface in v:lnp*:lns* space for critical states 

corresponding to simultaneous yielding on LC and SD surfaces. Comparison with 

Equation (2.37) shows that the predicted critical state surface for v is parallel to the 

isotropic normal compression surface for v. Equation (4.19) shows that the vertical 

spacing between the two planar surfaces is predicted to be (λ*-κ)ln2 (see Figure 4-8).  
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Figure 4- 9 Representation of stress path ABC in the Sr:lnp* plane. 

Figure 4-9 illustrates the stress path ABC at constant modified suction (see Figure 4-7) in 

the Sr:lnp* plane. From this figure it is clear that:  
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rC rAS S=  (4. 20) 

Noting that SrA can be related to p0
* by the isotropic normal compression planar surface 

expression of Equation (2.40), and then noting again that p0
*=2pC

*, this results in the 

following expression for degree of saturation at critical states:  

* * * * * *
2 2ln 2 ln lnr sS k s k pχ λ= + − +  (4. 21) 

This can be re-written as:  

* * * * *
2ln lnr sS s k pλ= Ψ − +  (4. 22) 

where:  

* * *
2 ln 2kχΨ = +  (4. 23) 

Equation (4.21) defines a unique planar surface in Sr:lnp*:lns* space for critical states 

corresponding to simultaneous yielding on LC and SD surfaces. Comparison with 

Equation (2.40) shows that the predicted critical state surface for Sr is parallel to the 

isotropic normal compression surface for Sr. Equation (4.23) shows that the vertical 

spacing between the two planar surfaces is predicted to be k2
*ln2 (see Figure 4-9).  

4.5. Experimental validation 

The experimental tests of Sivakumar (1993) on compacted speswhite kaolin involved 

shearing to failure after the isotropic loading stages analysed in Chapter 2. The final 

critical states from these tests are employed in this section to investigate the validity of the 

pair of proposed critical states relationships. Shearing was applied in only sixteen of the 

seventeen tests used in Chapter 2. It is important to note that all the final states of the 

preceding isotropic normal compression stages had arrived at the corner between LC and 

SD yield surfaces (see Section 2.7.2.1) and, therefore, simultaneous yielding on the two 

surfaces would be expected to occur throughout the subsequent shearing stage. It is also 

important to emphasise that in none of these tests did the sample reach a fully saturated 

condition.  

Equivalently to the analysis of the isotropic normal compression relationships, the least-

square multi-regression method implemented in MATLAB has been used to best fit the 

final critical states of the experiments to a pair of planar surfaces in the v:lnp*:lns* and 

Sr:lnp*:lns* spaces. The fitted planar surfaces and the experimental data points for v and Sr 
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are shown in Figures 4-10 and 4-11 respectively. The fitted planar surfaces are 

summarised in the following pair of equations:  

* *2.709 0.258ln 0.166lnv p p= − +  (4. 24) 

* *0.714 0.229ln 0.203lnrS s p= − +  (4. 25) 

From where, by comparison with (4.18) and (4.22), the values of the parameters Γ*, Ψ*, λ*, 

λs
*, k1

* and k2
* are:  

Table 4. 1 Best fit parameters from the critical states of the experimental results of Sivakumar (1993). 

Γ
*=2.709 λ

*=0.258 k1
*=0.166 

Ψ
*=0.714 λs

* =0.229  k2
*=0.203 

 

 

Figure 4- 10 Planar surface for v fitted to experimental results of Sivakumar (1993) at critical states. 
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Figure 4- 11 Planar surface for Sr fitted to experimental results of Sivakumar (1993) at critical states. 

To better illustrate the quality of fit of the two planar relationships of Equations (4.24) and 

(4.25) to the experimental data, Figures 4-12 and 4-13 show pairs of orthogonal two-

dimensional views of the results, presented in suitable form so that, in each view, the fitted 

planar surface is reduced to a single straight line. Inspection of Figure 4-12 shows that the 

experimental critical state results for v are reasonably well matched by a planar surface in 

v:lnp*:lns* space. Similarly, inspection of Figure 4-13 shows that the experimental critical 

state results for Sr are well matched by a planar surface in Sr:lnp*:lns* space.  
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Figure 4- 12 Orthogonal two-dimensional views of planar surface for v compared with experimental results. 
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Figure 4- 13 Orthogonal two-dimensional views of planar surface for Sr compared with experimental results. 

The next steps are to see whether the planar surfaces for v and Sr fitted to the 

experimental critical state data are parallel to the corresponding planar surfaces fitted to 

the experimental isotropic normal compression data (as predicted by the model) and 

whether the vertical spacings between the experimental normal compression and critical 

state surfaces are well predicted by the model. Figures 4-14 and 4-15 show the two fitted 

surfaces for v and the two fitted surfaces for Sr respectively.  

Table 4.2 shows the two sets of experimentally determined values of λ*, k1
*, λs

*, and k2
*; 

one set from the planar surfaces fitted to the isotropic normal compression data and the 

second set from the planar surfaces fitted to the critical state data. Inspection of Table 4.2 

shows that the two different sets of values of λ* and k1
* (giving the gradients of the planar 

surfaces for v) are remarkably consistent. The values of λs
* and k2

* (giving the gradients of 

the planar surfaces for Sr) show bigger differences between the two sets, but still a 

reasonably level of consistency.   

Table 4. 2 Gradients of the planar surfaces fitted to the experimental isotropic normal compression data and 

critical state data of Sivakumar (1993).  

 λ
* k1

* λs
* k2

* 

Normal Compression 0.257 0.172 0.206 0.159 

Critical states 0.258 0.166 0.229 0.203 
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Figure 4- 14 Two planar surfaces for v fitted to experimental results of Sivakumar (1993) at final states of 

isotropic compression and at critical states. 

 

Figure 4- 15 Two planar surfaces for Sr fitted to experimental results of Sivakumar (1993) at final states of 

isotropic compression and at critical states. 

Figure 4-16 shows a pair of orthogonal two-dimensional representations of the isotropic 

normal compression data and critical state data for v, presented in suitable form. The 

continuous lines in Figure 4-16a and 4-16b represent the best fit planar surface to the 

experimental isotropic normal compression data. The dashed lines in Figure 4-16a and 4-

16b represent the form of the critical state surface predicted by the model (4.18), if values 
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of N*, λ*, and k1
* determined from the isotropic normal compression planar surface are 

employed. Inspection of Figure 4-16 shows that the two planar surfaces for v are parallel, 

as predicted by the model, but that the vertical spacing between the critical state and 

isotropic normal compression surfaces for v is significantly overpredicted by the model (by 

a factor of approximately 2). This is a common observation when the predictions of MCC 

are compared with experimental data for saturated soils. It can therefore be viewed as a 

weakness of MCC that has been transferred through to the extended version of the 

Wheeler et al. (2003) model, by the assumption of MCC as the saturated base model.  
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Figure 4- 16 Orthogonal two-dimensional views of planar surfaces for v compared with experimental results. 

Figure 4-17 shows a pair of orthogonal two-dimensional representations of the isotropic 

normal compression data and critical state data for Sr, presented in suitable form. The 

continuous lines in Figure 4-17a and 4-17b represent the best fit planar surface to the 

experimental isotropic normal compression data. The dashed lines in Figure 4-17a and 4-

17b represent the form of the critical state surface predicted by the model (4.22), if values 

of χ*, λ*, and k1
* determined from the isotropic normal compression planar surface are 

employed. Inspection of Figure 4-17 shows that the two planar surfaces for Sr are parallel, 

as predicted by the model. It is also observed in Figure 4-17 that the vertical spacing 

between the critical state and isotropic normal compression surfaces for Sr predicted by 

the model provides an excellent match to the experimental results of Sivakumar (1993).  
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Figure 4- 17 Orthogonal two-dimensional views of planar surfaces for Sr compared with experimental results. 

 



 

 

 

 

 

 

 

 

 

Chapter 5  

 

3D FULLY COUPLED MECHANICAL-WATER 

RETENTION MODEL FOR UNSATURATED SOILS 

 

 

 

 

 

 



Chapter 5 3D fully coupled mechanical-water retention model for unsaturated soils  

110 

5. 3D fully coupled mechanical-water retention mode l for unsaturated soils 

5.1. Introduction 

An extension of the Wheeler et al. (2003) model to the particular stress conditions of the 

triaxial test has been presented and discussed within Chapter 4. In order to implement the 

model in a finite element program, a generalisation to the general case of 3D stress 

conditions is proposed in this Chapter 5. The extended version of the model is afterwards 

used to simulate the experimental results of Sivakumar (1993) involving isotropic and 

triaxial stress paths at three different constant values of suction (i.e. 100 kPa, 200 kPa 

and 300 kPa). This modelling provide verification of the correct implementation of the 3D 

version of the model (by checking that the predicted final states after isotropic loading and 

then after shearing to critical states lie on the unique planar surfaces derived in Sections 

2.7.2 and 4.4 respectively). Comparison of the full model simulations with the 

experimental results of Sivakumar (1993) then provides partial validation of the extended 

version of the model (although limited to the stress conditions of the triaxial test).  

Even though all the results presented in previous chapters are very promising, the full 

formulation of the model for 3D conditions and its subsequent validation, are crucial steps 

that have to be done before implementing the constitutive model in a finite element code 

and using it to solve problems of practical interest. This current chapter focuses on this 

aspect.  

5.2. Extension of the Wheeler et al. (2003) model t o 3D conditions 

The generalised version of the model is formulated in terms of the three invariants (p*, J, 

θ) (where: p* is the first invariant of the Bishop’s stress tensor: p*=1/3(σ1
*+σ2

*+σ3
*); J is the 

second invariant of the deviatoric Bishop’s stress tensor: sij
*=σij

*–δijp
* and θ is the Lode 

angle) and the modified suction (s*) (see also Appendix A.1 for more details). An 

illustration of the yield surfaces is shown in Figure 5-1.  
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Figure 5- 1 Yield surfaces of the 3D generalised model. 

5.2.1. Yield surfaces 

Equivalent to the original model described in Chapter 2, the plastic mechanisms of this 

generalised version are described by three different yield surfaces (Figure 5-1): the 

Loading Collapse yield surface (LC); the Suction Increase yield surface (SI); and the 

Suction Decrease yield surface (SD). In order to describe the different inelastic behaviour 

observed in unsaturated soils, Wheeler and co-workers proposed the following plastic 

mechanisms and couplings: 1) yielding on the LC surface causes plastic volumetric strain, 

which produces coupled upwards movements of SI and SD surfaces; 2) yielding on the SI 

surface causes plastic decrease of Sr, which produces coupled upward movement of the 

SD surface and outward movement of the LC surface; and 3) yielding on the SD surface 

causes plastic increments of Sr, which produces coupled downward movement of the SI 

surface and inward movement of the LC surface. Further details can be found in Chapter 

2.  

As discussed in Chapter 4, experimental evidences suggest that a reasonable first 

approximation is to assume a unique critical state line (CSL) in the p*:q plane (see Section 

4.2). With this assumption, the elastic domain of the extended constitutive model is 

defined by the three yield surfaces (previously introduced) illustrated in Figure 5-1. As in 
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Chapter 4, the Modified Cam Clay (MCC) model has been adopted as the boundary 

condition for the saturated case, therefore: 

( )
( ) ( )

2

2 * * *
0

6

3 0LC

g
F J M p p p

g πθ=−

 θ = − − =
 θ
  

 (5. 1) 

* * 0SI IF s s= − =  (5. 2) 

* * 0SD DF s s= − =  (5. 3) 

where p0
* is the hardening parameter defining the position of the LC yield surface, sI

* and 

sD
* are the hardening parameters defining the locations of SI and SD yield surfaces 

respectively, J is the second invariant of the Bishop’s deviatoric stress tensor (see 

Appendix A.1) and g(θ) is a function of the Lode angle (equivalent to M in p*:q plane). 

Different expressions for g(θ) are given for different failure criteria in Appendix A.1. Note 

also, that θ=-(π/6) corresponds to the triaxial stress conditions and (5.1) recovers the form 

of the LC yield surface for the particular case of triaxial stress conditions presented in 

Chapter 4 (see Equation (4.10)).  

To express the equations in a more compact way, the following notation of generalised 

stress and strain increment vectors is adopted: 

( )* * * * *= σ σ σ τ τ τɶ
T

xx yy zz xy yz xz sσ  (5. 4) 

( )= ε ε ε γ γ γ −ɶ
T

xx yy zz xy yz xz rd d d d d d d dSε  (5. 5) 

5.2.2. Flow rules 

During yielding one or more plastic mechanisms are activated and the irreversible 

changes of the generalised strain increments are calculated through the flow rule. 

Associated flow rules are assumed within this framework to evaluate the direction of the 

plastic strain increments. Therefore, it is possible to express these plastic strain 

increments according to the following general expression: 

*

, ;
             where           

, ,  with  or 
p j l
j l

l LCF
d d

j LC LC SD SI

β
χ

β β β
=∂=

= + =∂
ε

σ
ɶ

ɶ
 (5. 6) 



Chapter 5 3D fully coupled mechanical-water retention model for unsaturated soils  

113 

where j

ldχ  is the plastic multiplier with j related to the plastic mechanism active and l 

associated with plastic changes of degree of saturation or volumetric strains. In particular, 

this means that dSr
p=0 when yielding on the LC yield surface alone (5.7); whereas dSr

p is 

the only non-zero term of pdεɶ  when yielding on the SD or SI yield surface alone (5.8). All 

terms of pdεɶ  can be non-zero when two plastic mechanisms are active simultaneously 

(5.9).  

( )0=ɶ
Tp p p p p p p

LC xx yy zz xy yz xzd d d d d d dε ε ε γ γ γε  (5. 7) 

( )0 0 0 0 0 0= −ɶ
Tp p

rd dSβε  (5. 8) 

( )+ = −ɶ
Tp p p p p p p p

LC xx yy zz xy yz xz rd d d d d d d dSβ ε ε ε γ γ γε  (5. 9) 

Combining with (5.6), the flow rule can be written as (5.10) when yielding on the LC yield 

surface alone; (5.12) when yielding on the SD or SI yield surface alone and (5.14) when 

yielding simultaneous on both LC and SD or SI yield surfaces.  

  
∂= =
∂

ɶ
ɶ

p LC LCLC
LC LC LC LC

f
d d dχ χ*ε m

σ
 (5. 10) 

where 

* * *
0

 ∂ ∂ ∂ ∂ ∂ ∂=   ∂σ ∂σ ∂σ ∂τ ∂τ ∂τ 

T LC LC LC LC LC LC
LC

xx yy zz xy yz xz

F F F F F F
m  (5. 11) 

  
∂

= =
∂

ɶ
ɶ

p f
d d dββ β

β β β βχ χ*ε m
σ

 (5. 12) 

where 

*
0 0 0 0 0 0 β

β

∂ 
=  ∂ 

T F

s
m  (5. 13) 

    + + + +
+

∂∂= + = +
∂ ∂

ɶ
ɶ ɶ

p LC LC LC LCLC
LC LC LC LC

ff
d d d d dββ β β β

β β β βχ χ χ χ* *ε m m
σ σ

 (5. 14) 
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5.2.3. Hardening laws and couplings between plastic  mechanisms 

The hardening laws are expressed as relations between plastic increments of volumetric 

strain dεv
p, plastic increments of degree of saturation dSr

p and the increments of the 

hardening variables dp0
*, dsD

* and dsI
*. The hardening laws in the generalised version of 

the model are identical to the ones proposed by Wheeler el al. (2003), as presented in 

Chapter 2 (i.e. (2.29) and (2.30)). Their expressions are repeated here in order to facilitate 

the description of this development.  










−
−

−
=

ss

p
r

p
v dSkvd

pdp
κλκλ

ε 1*
0

*
0  

* *
2               or 

pp
vr

s s

vddS
ds s k SI SDβ β

 ε= − + β = λ − κ λ − κ 
 

where k1 and k2 are the coupling parameters, λs and κs are soil parameters characterising 

the water retention behaviour, κ is the slope of an elastic swelling line for saturated 

conditions and λ is the slope of the normal compression line for saturated conditions. More 

details can be found in Section 2.6. 

5.3. Generalised incremental stress-strain relation ships 

A procedure similar to the one presented in Sánchez et al. (2005) has been adopted here 

to take into account that different plastic mechanisms can act simultaneously and induce 

generalised plastic deformations. A first step is the assumption of an additive 

decomposition of the generalised strains into elastic and plastic components; so the 

increment of total generalised strains can be expressed as: 

   = +ɶ ɶ ɶe p
jd d dε ε ε  (5. 15) 

The plastic mechanisms that are active are not known in advance and a possible 

approach to develop the governing equations is to assume which plastic mechanism(s) is 

(are) initially active. A full description of the procedure followed to express the generalised 

stress-strain relationships for each plastic process is shown in detail in Appendix A.2 and 

only the main equations are presented in this chapter.  

When the stress path remains inside the elastic domain, the increment of generalised 

stress can be expressed in terms of the elastic operator and the generalised strain 

increment according to: 
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* *=ɶ ɶed dσ D ε  (5. 16) 

where De
* is the generalised elastic matrix (see Appendix A.2).  

When a plastic mechanism is active, it is also possible to obtain a general expression to 

compute the increments of generalised stresses: 

* *
epd d=σ D εɶ ɶ  (5. 17) 

The form of Dep
* will depend on which plastic mechanism(s) is (are) active (i.e. the LC 

plastic mechanism alone, the SD or SI mechanism alone, or both LC and SD or SI plastic 

mechanisms active simultaneously). The particular forms for Dep
* for each of these 

different cases are derived in the following sections.  

5.3.1. Yielding on the LC surface alone 

When yielding on the LC surface alone is taking place: 

( )* * *= = −ɶ ɶ ɶ ɶe p
e e LCd d d dσ D ε D ε ε  (5. 18) 

where the subscript LC indicates the plastic mechanism that is active.  

Using now the flow rule (5.10) for this case considered: 

( )* *= − χɶ ɶ LC
e LC LCd d dσ D ε m  (5. 19) 

The plastic multiplier associated with yielding on the LC surface alone dχLC
LC can be 

determined by imposing the consistency condition on the LC yield surface: 

* *
0* *

0

0
T

LC LC
LC

F F
dF d dp

p

∂ ∂ = + = ∂ ∂ 
σ

σ
 (5. 20) 

After some algebra and using (5.19) combined with the hardening law (2.29) with dSr
p set 

to zero (see Section 2.6.4 in Chapter 2), the following expression for this plastic multiplier 

can be obtained: 

χ =
T

LC LC
LC

LC

d
d

h

a ε
 (5. 21) 

where  
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*

T
T LC
LC e

F∂ =  ∂ 
a D

σ
 (5. 22) 

*
0* * * *

0

T
TLC LC LC LC

LC e

F F F Fv
h p

p λ κ
∂ ∂ ∂ ∂ = − ∂ ∂ ∂ − ∂ 

D m
σ σ σ

 (5. 23) 

where the subscript LC indicates that the LC mechanism is active and mT=(1,1,1,0,0,0) is 

an auxiliary vector. Substituting (5.21) into (5.19) and after some algebra (see Appendix 

A.2) the following expression for the generalised elasto-plastic matrix can be obtained: 

* LCLC
ep

LCD

 
=  
 

A 0
D

0
 (5. 24) 

where 

( ) 6 66 6

T
LC LC

LC e xx
LC

F

h

 ∂= − ∂ 
*

a
A D Id

σ
 (5. 25) 

( ) ( ) *

1 1
1/= =LC e sx

D sγ κ  (5. 26) 

5.3.2. Yielding on SD or SI yield surface alone 

When yielding on only β=SD or SI is taking place: 

( )* * *
β= = −ɶ ɶ ɶ ɶe p

e ed d d dσ D ε D ε ε  (5. 27) 

where the subscript β indicates that the only plastic mechanism active is yielding on the 

SD or SI surface.  

Employing now the flow rule (5.12) for yielding on only SD or SI: 

( )* * β
β β= − χɶ ɶed d dσ D ε m  (5. 28) 

The plastic multiplier associated with yielding on the SD or SI surface alone dχββ can be 

determined by imposing the consistency condition on the β=SD or SI: 

* *
* *

0
F F

dF ds ds
s s

β β
β β

β

∂ ∂
= + =

∂ ∂
 (5. 29) 
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After some algebra and using (5.28) in combination with the hardening law (2.30) with dεv
p 

set to zero (see Section 2.6.4), the following expression for this plastic multiplier can be 

obtained: 

ββ
β

β

χ = rd dS
d

h
 (5. 30) 

* e

F
d

s
β

β γ
∂

=
∂

 (5. 31) 

*
* * * *

1
e

s s

F F F F
h s

s s s s
β β β β

β β
β

γ
λ κ

∂ ∂ ∂ ∂
= − +

∂ ∂ ∂ − ∂
 (5. 32) 

where the subscript β indicates that the SD or SI mechanism is active. Substituting (5.30) 

into (5.28) and after some algebra (see Appendix A.2) the following expression for the 

generalised elasto-plastic matrix can be obtained: 

*
ep D

ββ

β

 
=  
 

A 0
D

0
 (5. 33) 

where 

( )
6 6 exβ =A D  (5. 34) 

( ) *1 1
1ex

F d
D

s h
β β

β
β

γ
 ∂

= +  ∂ 
 (5. 35) 

5.3.3. Simultaneous yielding on SI and LC or SD and  LC 

The most general case is when two plastic mechanisms are active simultaneously and 

this is the case detailed in this section. When simultaneous yielding is taking place: 

( )* * *
+β= = −ɶ ɶ ɶ ɶe p

e e LCd d d dσ D ε D ε ε  (5. 36) 

where the subscript β indicates that yielding on the SD or SI surface is active while the 

subscript LC indicates that yielding on the LC surface is also active.  

Considering now the flow rule (5.14):  
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( )* * +β +β
β β= − χ − χɶ ɶ LC LC

e LC LCd d d dσ D ε m m  (5. 37) 

The plastic multiplier dχβ
LC+β associated with yielding on β and the one dχLC

LC+β associated 

with yielding on LC when simultaneous yielding on two surfaces is occurring can be 

determined by imposing the consistency condition on the LC and on the β yield surfaces 

at the same time: 

* *
0* *

0

0
T

LC LC
LC

F F
dF d dp

p

∂ ∂ = + = ∂ ∂ 
σ

σ
 (5. 38) 

* *
* *

0
F F

dF ds ds
s s

β β
β β

β

∂ ∂
= + =

∂ ∂
 (5. 39) 

After some algebra (see Appendix A.2) and using (5.37) combined with the hardening 

laws (2.29) and (2.30) the following expression for each plastic multiplier can be obtained: 

T
LC LC rLC

LC
LC

d b dS
d

h
+β +β+β

+β

+
χ =

a ε
 (5. 40) 

T
LC LC rLC

LC

d d dS
d

h
+β +β+β

β
+β

+
χ =

c ε
 (5. 41) 

where the subscript LC+β indicates that the LC and β mechanisms are both active; aLC+β
T, 

and cLC+β
T are vectors associated with strain changes; and bLC+β and dLC+β are scalars 

related to degree of saturation changes. Their complete expression is given in Appendix 

A.2. Substituting (5.40) and (5.41) into (5.37) and after some algebra (see Appendix A.2) 

the following expression for the generalised elasto-plastic matrix can be obtained: 

* LC LCLC
Tep

LC LCD
+β +β+β

+β +β

 
=  
 

A B
D

C
 (5. 42) 

where 

( ) 6 6 *6 6

T
LCLC

LC e xx
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F

h
β

β
β

+
+

+

 ∂= −  ∂ 
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A D Id

σ
 (5. 43) 

( ) *6 1

LCLC
LC ex

LC

bF

h
β

β
β

+
+

+

 ∂=   ∂ 
B D

σ
 (5. 44) 
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T
T LC

LC ex
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β
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+
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( ) *1 1
1 LC

LC ex
LC

F d
D

s h
β β

β
β

γ +
+

+

 ∂
= +  ∂ 

 (5. 46) 

It is interesting to highlight here that Cj
T and B j (with the subscript j indicating the plastic 

mechanism active) become zero when only one plastic mechanism is activated (i.e. 

yielding on the SD or SI yield surface alone; or yielding on the LC yield surface alone) 

and, in such cases, only the components of A j and Dj of the elasto-plastic matrix Dep, j
* 

account for the increments of the generalised stress vector (more details in Appendix A.2).  

5.4. Identification of the generalised elasto-plast ic domains 

In Chapter 3 a possible methodology to identify which plastic mechanism(s) is (are) active 

was formally proposed for isotropic stress conditions. The mathematical expressions of 

four straight lines in the lns*:lnp* plane were presented identifying five different elasto-

plastic domains that, in addition to the elastic case, characterised the different possible 

behaviours defined within the model for isotropic stress conditions (see Section 3.4). A 

simple extension of these expressions is presented in this section for generalised 3D 

conditions. The resulting extended expressions define four different surfaces in J:p*:s* 

space which describe the boundaries between five different elasto-plastic domains (in 

addition to the elastic domain) defining five different types of behaviour (i.e. yielding on the 

LC surface alone; yielding on the SD or SI surface alone; or simultaneous yielding on the 

LC and SD or SI). The development of these four expressions is detailed as follows.  

Each of the mathematical expressions used to define the boundaries between the 

different elasto-plastic mechanisms is essentially developed by combining the expression 

of the extended LC yield surface in the J:p*:s* space (5.1) with the expression of the 

appropriate straight line used in Section 3.4 to define the limits of each elasto-plastic 

mechanism under isotropic stress conditions (i.e. (3.56), (3.57), (3.58) and (3.59)). The LC 

yield surface (5.1) can be also expressed as as: 
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− − =
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 (5. 47) 

and (3.56), (3.57), (3.58) and (3.59) can be re-written as: 
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Substituting appropriately each of these expressions into (5.47): 
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Similarly to the isotropic stress case described in Chapter 3, it is now possible to combine 

these equations with the yield surfaces defined (i.e. (5.1), (5.2) and (5.3)) and identify five 



Chapter 5 3D fully coupled mechanical-water retention model for unsaturated soils  

121 

domains in the J:p*:s* space describing the boundaries between each elasto-plastic 

mechanism of the model. Note that if J=0 the previous equations (5.52), (5.53), (5.54) and 

(5.55) recover the expression of the equations presented for isotropic stress conditions 

(5.48), (5.49), (5.50) and (5.51), which is a necessary condition that should be verified.  

In particular, f1 forms a conical surface extending out from the junction between LC and SI 

yield surfaces and delimits the boundary between stress paths involving yielding on the SI 

yield surface alone and those involving simultaneous yielding on both SI and LC yield 

surfaces. Similarly, f2 forms a separate conical surface also extending out from the 

junction between LC and SI yield surfaces and delimits the boundary between stress 

paths involving yielding on the LC yield surface alone and those involving simultaneous 

yielding on both SI and LC yield surfaces.  

An equivalent situation occurs on the bottom corner with f3 and f4 which has been 

illustrated in Figure 5-2. In this case, f3 forms a conical surface extending out from the 

junction between the LC and SD yield surfaces and delimits the boundary between stress 

paths involving yielding on the LC yield surface alone and those involving simultaneously 

yielding on both SD and LC. f4 also forms a conical surface delimiting the boundary 

between the stress paths involving yielding on the SD yield surface alone and those 

involving simultaneously yielding on both SD and LC. For example, if a stress path goes 

from the elastic domain defined by the three yield surfaces LC, SD and SI (see Figure 5-1) 

to the inner domain defined by f4 (see also Figure 5-2) the plastic mechanism associated 

with yielding on the SD yield surface alone will be activated. If, otherwise, a different 

stress path moves from the elastic domain to the domain outside of f3 (and also outside of 

f4), the plastic mechanism activated will correspond to yielding on the SD and LC yield 

surfaces simultaneously (see Figure 5-2). An equivalent situation occurs for the junction 

between LC and SI yield surfaces (top corner).  
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Figure 5- 2 Illustration of the elastic domain and the f3 and f4 surfaces. 

5.5. Model application and partial validation  

This partial validation of the constitutive model involves a set of experimental tests 

comprising conventional isotropic and triaxial compression stress paths at three different 

values of suction (Figure 5-3). Tests carried out by Sivakumar (1993) have been adopted 

in this section to explore the capabilities of the model introduced in this chapter to 

describe the behaviour of unsaturated soils. The tests selected for this (partial) validation 

of the model were carried out on statically compacted samples of speswhite kaolin using a 

suction controlled triaxial cell. Each of the tests involved first isotropic compression to a 

virgin state. Shearing in triaxial compression was applied afterwards to critical state under 

three types of conditions: Type A (Tests 2A, 3A, 4A, 5A, 10A and 15A) in which deviator 

stress was applied at constant suction and constant volume, Type B (6B, 7B, 11B, 12B 

and 16B) which involved application of deviator stress at constant suction and at constant 

mean net stress; and Type C (8C, 9C, 17C and 18C), which involved application of 

deviator stress at constant suction and constant radial net stress (Sivakumar, 1993). Test 

1A is only analysed for isotropic stress conditions because no shearing stage was 

conducted. Problems occurred during shearing in Test 13C (i.e. buckling failure) and it is 

therefore not considered in the shearing analysis (Sivakumar, 1993). Test 9C is only 

analysed during shearing as no experimental data was available for the isotropic stress 

conditions. Finally, neither Test 8C nor Test 14A is considered in this study because the 



Chapter 5 3D fully coupled mechanical-water retention model for unsaturated soils  

123 

complete set of the experimental data was not available when performing this analysis. In 

summary, 15 tests are employed to analyse isotropic stress conditions (i.e. 1A, 2A, 3A, 

4A, 5A, 6B, 7B, 10A, 11B, 12B, 13C, 15A, 16B, 17C and 18C) while 14 tests are used to 

study the response during shearing (2A, 3A, 4A, 5A, 6B, 7B, 9C, 10A, 11B, 12B, 15A, 

16B, 17C and 18C). Finally, it is also important to mention that only unsaturated soil 

samples (i.e. 0<Sr<1) are analysed and, hence, the saturated tests have been not 

included in this validation (see Section 2.6.3). 
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Figure 5- 3 Stress paths during equalization and ramped consolidation stage (Wheeler and Sivakumar, 1995) 

The same set of constitutive parameters estimated in Chapter 2 when describing a 

methodology for their determination (see Section 2.7.4), is adopted herein. Table 5.1 

presents all of them.  

Table 5. 1 Constitutive model parameters 

λ=0.124 λs=0.0971 κs=0.0004 M=0.716 

κ=0.006 k1=0.685 k2=0.773 υ1=0.3 

1Poisson’s ratio 

The initial state presented in Table 5.2 corresponds to the state of soil after the 

compaction and then equalization under an isotropic stress state with a suction of 300 kPa 

and a mean net stress of 50 kPa (point A1 in Figure 5-3). The initial values of e and Sr 

employed are those corresponding to the average of tests at s=300 kPa (i.e. 15A, 16B, 

17C and 18C; Sivakumar, 1993). From this initial state a wetting path at constant mean 

net stress of 50 kPa has been modelled to reach the value of suction of 200 kPa for tests 
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1A, 2A, 3A, 4A, 5A, 6B, 7B and 9C and of 100 kPa for tests 10A, 11B, 12B and 13C (see 

Figure 5-3). Also the initial values of the hardening parameters (p0
* and sD

*) used in this 

validation are included in Table 5-2. A detailed description on how these parameter values 

have been estimated is given in Chapter 2 when describing the methodology to determine 

the model parameters (see Section 2.7.4 for further details).  

Drying paths have not been analysed in this work and therefore the initial value of the 

hardening parameter sI
* defining the position of the SI yield surface has not been 

determined. 

Table 5. 2 Initial state at the start of the modelling. 

p =50 kPa s=300 kPa p*=229kPa p0
*=271 kPa 

e0=1.210 Sr0=0.597 s*=164 kPa sD
*=164 kPa 

 

Once the pertinent value of suction was reached at the end of the equalization stage (300, 

200 or 100 kPa), an isotropic loading at constant suction was applied to the relevant value 

of mean net stress p  for each test. This was followed by shearing under one of the three 

different types of conditions previously defined (i.e. Type A, B and C). All samples were 

sheared until critical state was reached. 

5.5.1. Behaviour under isotropic stress paths 

Figures 5-4, 5-5 and 5-6 illustrate the performance of the model in simulating the constant 

suction isotropic loading stages. Experimental results and model simulations for the tests 

at a suction of 300 kPa are shown in Figure 5-4, with corresponding results at suctions of 

200 kPa and 100 kPa shown in Figures 5-5 and 5-6 respectively. In each of the three 

figures, the experimental results are indicated by symbols joined by fine lines, whereas 

the model simulation is indicated by a heavier continuous line.  

The model simulations shown in Figures 5-5 and 5-6 involve only the constant suction 

isotropic loading stages (in order to correspond to the experimental results). The starting 

points of the model simulations in Figures 5-5 and 5-6 therefore correspond to points A2 

and A3 in Figure 5-3, and the model simulations of the prior wetting from point A1 have 

been omitted.  

Each of Figures 5-4, 5-5 and 5-6 is in five parts. Parts (a) and (b) show the variation of 

void ratio e and degree of saturation Sr plotted against mean net stress p  (the 

conventional stress variable). Part (c) shows the stress path in terms of the new stress 
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variables of modified suction s* and mean Bishop’s stress p*. It is important to note that, 

whereas suction s remains constant during the isotropic loading stages, modified suction 

s* decreases, because of the reduction of porosity during isotropic loading. Parts (d) and 

(e) of Figures 5-4, 5-5 and 5-6 show the variation of void ratio e and degree of saturation 

Sr plotted against mean Bishop’s stress p*.  

The various tests shown in Figures 5-4, 5-5 and 5-6 were taken to different final values of 

mean net stress p  during isotropic loading. For example, in Figure 5-4, Tests 16B and 

17C involved isotropic loading to = 100 kPap , Test 18C involved isotropic loading to 

= 150 kPap  and Test 15A involved isotropic loading to = 250 kPap . The single model 

simulation shown in each of the three figures is for isotropic loading to the highest 

appropriate value of p  (e.g. = 250 kPap  in Figure 5-4). Obviously, the model simulations 

for the tests loaded isotropically to lower values of p  simply correspond to truncated 

versions of the model simulation shown in the figure.  

The model simulation stress paths shown in Figures 5-4 (c), 5-5(c) and 5-6(c) show an 

initial stress point (A1, A2 or A3) that is on the SD yield surface (because of wetting during 

the previous equalization stage) but inside the LC yield surface. The predicted initial 

positions of SD and LC yield curves are shown in the figures by dashed lines labelled SD0 

and LC0 respectively. The initial part of the predicted stress path during isotropic loading 

involves yielding on the SD yield surface, because of the reduction of s* caused by a 

reduction of porosity (which is, in turn, the result of elastic volumetric strain caused by the 

increase of p*). However, the decrease of s* during this early part of the loading stage is 

very small (hardly noticeable in the model simulations in Figures 5-4(c), 5-5(c) and 5-6(c)) 

and as a consequence the predicted elastic and plastic increases of Sr are extremely 

small (hardly noticeable in the model simulations in Figures 5-4(b) and (e), 5-5(b) and (e) 

and 5-6(b) and (e). 

At a point during the isotropic loading, the stress path in the model simulation reaches the 

LC yield surface. This is indicated by points Y1, Y2 and Y3 in Figures 5-4, 5-5 and 5-6. 

From this point onwards simultaneous yielding on both SD and LC surfaces is predicted. 

Yielding on the LC surface results in predictions of large plastic decreases of specific 

volume v from the yield point onwards (see Figures 5-4(a) and (d), 5-5(a) and (d) and 5-

6(a) and (d)). This yielding on the LC surface and the resulting plastic volumetric strain 

also produces both a significant reduction of s*, (see Figures 5-4(c), 5-5(c) and 5-6(c)), as 

the porosity reduces, and coupled upward movement of the SD yield surface. Together 

these result in predictions of significant yielding on the SD surface, and hence large 
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plastic increases of Sr after the yield point (see Figures 5-4(b) and (e), 5-5(b) and (e) and 

5-6(b) and (e)). The predicted final positions of the SD and LC yield curves are shown in 

Figures 5-4(c), 5-5(c) and 5-6(c) by dashed lines labelled SDf and LCf respectively.  

Inspection of all the model simulations shown in Figures 5-4 to 5-6 confirms that during 

the latter part of the isotropic loading stages, once yielding is occurring on both LC and 

SD yield surfaces (i.e. after point Y1, Y2 or Y3), the values of v and Sr lie on the unique 

normal compression planar surfaces in v:lnp*:lns* and Sr:lnp*:lns* spaces predicted by the 

model in Equations (2.37) and (2.40) (see also Section 6.6.1). This provides verification 

that the numerical implementation of the model has been performed correctly for isotropic 

stress states.  

Inspection of Figures 5-4, 5-5 and 5-6 shows that the model simulations provide an 

excellent match to the experimental results. Not only is the variation of the void ratio e well 

predicted in all cases, but the variation of degree of saturation Sr is also predicted with a 

high degree of accuracy (correctly representing the significant increase of Sr during these 

constant suction isotropic loading stages). As a consequence, the model accurately 

captures the stress path in the s*:p* plane (see Figures 5-4(c), 5-5(c) and 5-6(c)). 

Obviously, the model simulations of the variations of both e and Sr with p  or p* show a 

sharp discontinuity of gradient at the yield point where the LC yield surface is reached 

(point Y1, Y2 or Y3), whereas this feature is more rounded in the experimental results. 

However, this mild weakness is a natural consequence of the use of classical elasto-

plasticity for the modelling framework, and this type of minor mis-match would also be 

observed in corresponding classical elasto-plastic models for saturated soils (such as 

Modified Cam Clay).  

The excellent match between model predictions and experimental results for the isotropic 

loading stages is partly a consequence of the fact that the experimental results from 

isotropic loading of these unsaturated samples were used in the selection of values for the 

model parameters λs, κs, k1 and k2 (see Section 2.7.4). However, the excellent match 

would not be possible unless it was also true that the model equations (particularly the 

hardening laws of Equations (2.29) and (2.30)) provided a good representation of the soil 

behaviour during isotropic loading at different values of constant suction. The 

comparisons presented in Figures 5-4, 5-5 and 5-6 therefore provide a good validation of 

this aspect of the model. 
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Figure 5- 4 Comparison between model simulations and experimental results (Sivakumar,1993) for isotropic 

loading at s=300 kPa. 
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Figure 5- 5 Comparison between model simulations and experimental results (Sivakumar,1993) for isotropic 

loading at s=200 kPa. 
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Figure 5- 6 Comparison between model simulations and experimental results (Sivakumar,1993) for isotropic 

loading at s=100 kPa. 
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5.5.2. Behaviour under shearing stress paths 

Figures 5-7 to 5-12 show the performance of the model in simulating the various constant 

suction shearing stages. Figure 5-7 and 5-8 show the tests conducted at a suction of 300 

kPa, Figures 5-9 and 5-10 show the tests at s=200 kPa and Figures 5-11 and 5-12 show 

the tests at s=100 kPa. Again, experimental results are indicated by symbols joined by 

fine lines, whereas model simulations are indicated by heavier continuous lines (for 

shearing stages there is a separate model simulation for each test).  

All model simulations show the stress point at the corner between LC and SD curves at 

the start of the shearing (following the preceding equalization (wetting) and constant 

suction isotropic loading stages) and then simultaneous yielding on LC and SD surfaces 

occurring throughout the shearing process. As a consequence, all the final critical states 

in the simulations are on both LC and SD yield surfaces (on the vertex between the two 

surfaces). Inspection of the final critical state values of q, p*, s*, v and Sr in the simulations 

(see Figures 5-7 to 5-12) confirms that all points lie on the unique critical state line in the 

q:p* plane assumed in the model in Equation (4.9) and on the two unique critical state 

planar surfaces in v:lnp*:lns* and Sr: lnp*:lns* spaces predicted by the model in Equations 

(4.17) and (4.21) (see also Section 6.6.1). This provides verification that the numerical 

implementation of the model has been performed correctly.  

Figure 5-7(a) shows the test results and model simulations in the q:p* plane for the four 

tests conducted at a suction of 300 kPa (Tests 15A, 16B, 17C and 18C). Inspection of 

Figure 5-7(a) shows that the stress path for the test involving shearing at constant mean 

net stress p  (Test 16B) is not a vertical line in the q:p* plane, because the variation of Sr 

during shearing means that p* does not remain constant (this is true for both experimental 

results and model predictions). Similarly, the stress paths for the two tests conducted at 

constant radial net stress (Tests 17C and 18C) do not rise at a gradient of 3 in the q:p* 

plane, because the variation of Sr means that the radial Bishop’s stress does not remain 

constant during shearing (again this is true for both experimental results and model 

predictions). As the variations of degree of saturation in Tests 17C and 18C were well-

predicted (see later), the stress paths in the q:p* plane for these two tests were accurately 

predicted (see Figure 5-7(a)). The model prediction of the variation of Sr during Test 16B 

was rather less accurate (see later) and hence the predicted stress path in the q:p* plane 

was less accurate (see Figure 5-7(a)), although the mis-match was still relatively minor. 

With the stress paths in the q:p* plane for Tests 17C, 18C and 16B predicted with 

acceptable accuracy and the location of the critical state line in the q:p* plane selected to 

match the experimental results (see Section 4.2), the model predictions of critical state 
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values of deviatoric stress q are a good match to the experimental results for these three 

tests. In contrast, for the single constant suction constant v shear test shown in Figure 5-7 

(Test 15A) the model predictions of the stress path in the q:p* plane and the critical state 

value of q are not good matches to the experimental results. The reasons for this are 

discussed in the next paragraph.  

Figure 5-7(b) shows the model predictions and experimental results for the variation of 

void ratio e with mean Bishop’s stress p* during the shear stages of the four tests 

conducted at a suction of 300 kPa. All four model simulations involve simultaneous 

yielding on LC and SD yield surfaces throughout the shearing stages. The simulations of 

Tests 16B, 17C and 18C involve large amounts of yielding on the LC surface, producing 

large plastic volumetric strains and hence predictions of large reductions of void ratio e. In 

contrast, the simulation of the single constant v shear test (Test 15A) involves only a small 

amount of yielding on the LC surface, sufficient to cause enough positive plastic 

volumetric strain to cancel out the negative elastic volumetric strain predicted from the 

decrease of mean Bishop’s stress p*. Although, the predictions of large reductions of void 

ratio in Tests 16B, 17C and 18C and a significant decrease of p* during Test 15A are 

qualitatively correct, the magnitudes of the reductions of v or decrease of p* are 

significantly over-predicted in all cases. This is a consequence of the fact that the position 

of the critical state surface in v:p*:s* space is poorly predicted, with the model predicting 

too large spacing between the critical state planar surface and the normal compression 

planar surface in v:lnp*:lns* space (see Section 4.5). This weakness of the model is 

analogous to the situation of the Modified Cam Clay model for saturated soils, which is 

commonly reported to over-predict the spacing between normal compression line and 

critical state line in the v:lnp’ plane. One consequence of the fact that the model poorly 

predicts the locations of critical states in the v:p* plane in Figure 5-7(b) is that the 

reduction of p* during the shearing stage of Test 15A (the constant v shear test) is over-

predicted, and hence the stress path for Test 15A is poorly predicted in the q:p* plane (see 

Figure 5-7(a)) and the critical state value of q is significantly under-predicted in this test.  

Figure 5-7(c) shows the model predictions and experimental results for the variation of 

deviatoric stress q with axial strain εa during the shearing stages of the four tests 

conducted at a suction of 300 kPa. Although the critical state values of q are accurately 

predicted in Tests 16B, 17C and 18C, Figure 5-7(c) shows that the development of shear 

strain (and hence axial strain) is over-predicted in these tests, with critical states only 

being reached in the model simulations at excessively large values of axial strain. For 

Test 15A (the constant v shear test), not only is the critical state value of deviatoric stress 
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under-predicted (as discussed in the previous paragraph), but also the development of 

shear strain (and hence axial strain) is under-predicted, with the critical state being 

reached in the model simulation at an axial strain that is much lower than that observed in 

the experimental results. This pattern of behaviour is very similar to commonly reported 

observations on the use of the Modified Cam Clay model for saturated soils, which 

generally over-predicts the shear strain required to reach a critical state during drained 

shearing of normally consolidated samples and under-predicts the shear strain required to 

reach a critical state during undrained (constant v) shearing of normally consolidated 

samples. This can be attributed to the use of an associated flow rule in combination with 

an elliptical yield curve shape in Modified Cam Clay. A similar choice of an associated 

flow rule on the LC yield surface and elliptical cross-sections of the LC surface in the q:p* 

plane has been made in the extension of the Wheeler et al. (2003) model to triaxial stress 

conditions (see Section 4.2), and hence it is not surprising that similar faults are observed 

when comparing model simulations with experimental results.  

Figure 5-7(d) shows the model predictions and experimental results for the variation of 

void ratio e with axial strain εa during the shearing stages of the four tests conducted at a 

suction of 300 kPa. The model predictions for Tests 17C and 18C appear to be a good 

match to the experimental results, but this is a rather fortuitous result, as it is the 

consequence of two poor predictions cancelling out: the model over-predicting the final 

reductions of v in reaching critical states but also over-predicting the development of 

shear strain (and hence axial strain) prior to achieving critical states. For Test 16B the 

mis-match is clearer, because the over-prediction in the final reduction of v in reaching 

critical state is more severe and over-prediction of the shear strains prior to achieving a 

critical state is less severe.  

Figure 5-8 shows the model predictions and experimental results for the variation of 

degree of saturation Sr (plotted against deviatoric stress q) during the shearing stages of 

the four tests conducted at a suction of 300 kPa. In all four cases both elastic and plastic 

increases of Sr are predicted throughout shearing. The former are a consequence of the 

predicted reduction of modified suction s* (as a result of the reduction of porosity) and the 

latter are a consequence of yielding on the SD surface. Inspection of Figure 5-8 shows 

that for Tests 17C and 18C the model predictions provide reasonably accurate predictions 

of the increase of Sr during shearing. A small disparity is that the experimental results for 

Tests 17C and 18C show only relatively small increases of Sr in the early part of shearing 

(until the deviatoric stress exceeds about 100 kPa), whereas the model simulations show 

large increases of Sr from the start of shearing. This minor disparity between model 
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simulations and experimental results is more marked for Test 16B, with the result that the 

final increase of Sr (when a critical state is reached) is over-predicted in this case. Finally, 

Figure 5-8 shows that the model correctly predicts only a very small increase of Sr during 

the constant suction, constant v shearing of Test 15A.  

Figures 5-9 and 5-10 show the corresponding results for tests conducted at a suction of 

200 kPa and Figures 5-11 and 5-12 show the results for tests at s=100 kPa. Comparison 

of model predictions and experimental results in these figures leads to the same 

conclusions as the previous discussion around Figures 5-7 and 5-8. In particular, the 

model predictions generally provide a reasonable match to experimental results. For tests 

involving shearing at constant mean net stress p  or constant radial net stress, the 

variations of Sr during shearing are predicted reasonably well, and as a consequence the 

stress paths in the q:p* plane and the critical state values of q are well predicted. However, 

in these tests, the reductions of void ratio e during shearing are over-predicted, as a 

consequence of the over-prediction of the spacing between the normal compression 

planar surface and critical state planar surface in v:lnp*:lns* space. For tests involving 

shearing at constant v, the reductions of p* during shearing are over-predicted (as a 

consequence of the over-prediction of the spacing between normal compression planar 

surface and critical state planar surface in v:lnp*:lns* space) and hence the critical state 

values of q are under-predicted. Development of shear strain (and hence axial strain) is 

over-predicted during constant p  or constant radial net stress shearing and under-

predicted during constant v shearing. This can be attributed to the choice of an associated 

flow rule in combination with elliptical cross-sections of the LC yield surface.   



Chapter 5 3D fully coupled mechanical-water retention model for unsaturated soils  

134 

100

200

300

400

500

D
ev

ia
to

ric
 s

tr
es

s,
 q

 ; 
kP

a

0 200 400
Mean Bishop's stress, p* ; kPa

0.8

0.9

1

1.1

1.2

V
oi

d 
ra

tio
, e

5 15 25 35
Axial strain, εa (%)

Tests at s=300kPa
15A model

15A experiment

16B model

16B experiment

17C model

17C experiment

18C model

18C experiment

CSL(a) (c)

(b) (d)

 

Figure 5- 7 Comparisons between model simulations and experimental results (Sivakumar,1993) for shearing 

at s=300 kPa. 
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Figure 5- 8 Comparisons between model simulations and experimental results (Sivakumar,1993) for shearing 

at s=300 kPa: variation of degree of saturation. 
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Figure 5- 9 Comparisons between model simulations and experimental results (Sivakumar,1993) for shearing 

at s=200 kPa. 
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Figure 5- 10 Comparisons between model simulations and experimental results (Sivakumar,1993) for shearing 

at s=200 kPa: variation of degree of saturation. 
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Figure 5- 11 Comparisons between model simulations and experimental results (Sivakumar,1993) for shearing 

at s=100 kPa. 
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Figure 5- 12 Comparisons between model simulations and experimental results (Sivakumar,1993) for shearing 

at s=100 kPa: variation of degree of saturation. 

5.5.3. Final discussion 

Overall, the model predictions provide a reasonable match to the mechanical and water 

retention behaviour observed in the experimental tests of Sivakumar (1993). The 

significant mis-matches between model predictions and experimental results arise 

because the spacing between normal compression planar surface and critical state planar 

surface in v:lnp*:lns* space is over-predicted and because the development of shear strain 

during plastic straining is not accurately predicted. These weaknesses are also apparent 

in the Modified Cam Clay model for saturated soils which has been used as the saturated 

base model in the extension of the Wheeler et al. (2003) model to triaxial stress states. 

The weaknesses seem to arise because of the choice of elliptical cross-sections of the LC 

yield surface and the use of an associated flow rule on this surface.  

From the comparison of model simulations with the experimental results of Sivakumar 

(1993) it appears that the extended model of Wheeler et al (2003) is able to represent the 

mechanical and water retention behaviour of unsaturated soils with the same level of 

success as can be achieved by Modified Cam Clay in representing the mechanical 

behaviour of saturated soils. If this is true, it represents a major success on the part of the 

Wheeler et al. (2003) model.  

It should, however, be appreciated that the comparison of model predictions with the 

experimental results of Sivakumar (1993), presented here, represents only a partial 
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validation of the extended model of Wheeler et al. (2003). In particular, the results of 

Sivakumar (1993) do not show directly the effects of hydraulic hysteresis on water 

retention and mechanical behaviour, because Sivakumar’s tests did not generally involve 

reversals of suction (the tests shown here involved wetting during the initial equalization 

stage and then constant suction during the remainder of each test). This absence of the 

effects of hydraulic hysteresis on the soil behaviour reported in the tests of Sivakumar 

(1993) means that the mechanical behaviour in these tests could be adequately 

represented by a more conventional unsaturated elasto-plastic mechanical constitutive 

model expressed in terms of net stresses and suction (see, for example, Wheeler and 

Sivakumar, 1995). The additional achievement of the extended Wheeler et al. (2003) 

model in simulating these tests is that it is also able to accurately predict the variation of 

degree of saturation Sr.  

Full validation of the extended model of Wheeler et al. (2003) will require comparison with 

experimental results involving strong reversals of suction, where the impact of hydraulic 

hysteresis on water retention and mechanical behaviour is crucial. Inability to model 

properly this type of situation was identified by Wheeler et al. (2003) as a weakness of 

existing mechanical constitutive models expressed in terms of net stresses and suction, 

and was the motivation behind their development of a new model. However, it is 

reassuring to see, in the partial validation of the extended Wheeler et al. (2003) model 

against the experimental results of Sivakumar (1993) presented here, that in developing a 

model capable of dealing with the complexities of the effects of hydraulic hysteresis on 

mechanical behaviour it has not been necessary to sacrifice any accuracy in the modelling 

of unsaturated soil behaviour when hydraulic hysteresis is not involved. 
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6. Strain-driver algorithms for the integration of the generalised stress-
strain relationships ( Local Equations ) 

An extended version of the Wheeler et al. (2003) model, for 3D stress conditions, was 

presented in Chapter 5 along with a comparative analysis between model simulations and 

the experimental results of Sivakumar (1993). Some fundamental tools (i.e. expressions 

for flow rules, hardening laws, extended yield functions, plastic multipliers and elastic and 

elasto-plastic generalised matrices) to numerically integrate this model were also 

presented in this Chapter 5 and a methodology to identify which elasto-plastic 

mechanisms are active was proposed. All these ideas are combined within this current 

Chapter 6 to present a complete strain-driver algorithmic formulation that enables the 

update of the stress variables (i.e. Bishop’s stress tensor, modified suction, net stress 

tensor and matric suction); updating also degree of saturation and void ratio. This is 

achieved by expressing the equations of the problem in terms of strain and suction 

increments, which are the driving or known inputs of the algorithmic scheme described. 

Two different numerical approaches are presented (i.e. first order error forward Euler and 

second order error modified Euler) and several aspects of their computational response 

are discussed at the end of the chapter. The following Chapter 7 includes this algorithmic 

formulation into the finite element program CODE_BRIGHT to provide a tool for the 

solution of boundary value problems.   

6.1. Introduction 

In general, in each iteration of an elasto-plastic finite element analysis involving 

unsaturated soils (under isothermal conditions and neglecting any chemical or biological 

coupled effects), the increments of displacements and the increments of pore fluid 

pressures (i.e. air and water pressures) can be found from the global or balance equations 

(i.e. momentum balance for the medium, mass balance of air and mass balance of water, 

see Chapter 7 for further details). Once the nodal displacement increments (∆u) are 

known, the strain increments (∆ε) at a discrete number of integration points within each 

element can be determined (i.e. employing the compatibility equation, see Chapter 7). 

Also the increments of pore water pressure (∆uw) and pore air pressure (∆ua) can be used 

to determine the increments of matric suction (i.e. ∆s=∆ua-∆uw). In general, both of these 

increments (strains and matric suction) are afterwards used at the integration or Gauss 

points to update the stress variables (i.e. typically computing the increments of net 

stresses, au∆ = −σ σ I  where σ is the total stress tensor and I the identity matrix) and the 

internal variables. In order to do this it is necessary to formulate an algorithm that 

numerically integrates the elasto-plastic model (Sheng et al., 2003a). A wide range of 
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solution strategies is available in the literature to solve or integrate standard stress-strain 

equations. However, the constitutive model employed in this research presents some 

particular features that make the integration of this model particularly challenging, with 

several differences from classical approaches. The main aim of this current Chapter 6 is 

to give a detailed description of a formulation to integrate the 3D version of this advanced 

constitutive model, highlighting the main differences with respect to the integration of more 

standard models. 

6.2. Formulation of the generalised stress-strain p roblem 

The elasto-plastic integration presented in the following, employs the generalised strain 

vector increments ( ∆ɶε ) to update the generalised stress increments ( *∆ ɶσ ), where *
ɶσ  and 

ɶdε  were introduced in Chapter 5 (Equations (5.4) and (5.5)):  

( )* * * * * T

xx yy zz xy yz xz s= σ σ σ τ τ τσɶ  

( )T

xx yy zz xy yz xz rd d d d d d d dS= ε ε ε γ γ γ −εɶ  

This requires building up first the generalised strain increment from the information at the 

nodes (i.e. displacements and pore fluid pressures). The first six components of the 

generalised strain vector are found from the compatibility equation in the same way as 

explained for the standard strain increment vector (∆ε) in Section 6.1. The last component 

of the generalised strain vector is the degree of saturation decrement and this requires a 

bit more work, as this incremental quantity is not known in advance. It is possible, 

however, using the extended version of the constitutive model of Wheeler et al. (2003) 

(see Chapter 5), to express the decrement of degree of saturation in terms of strain and 

suction increments as presented later in Section 6.3.  

If the generalised stress increments ( *dσɶ ) associated with dεɶ  activate an elasto-plastic 

mechanism causing plastic yielding, it is necessary to solve the following system of 

ordinary differential equations: 

* *                 with    j , ,   and  /j
epd d LC LC SD SI= = β + β β =σ D εɶ ɶ  (6. 1) 

=T Td dh χ B  (6. 2) 

where, 
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* 6 6 6 1

1 6 1 1 7x7

        with    j , ,   and  /
j j

j x x
ep j j

x x

LC LC SD SI
D

 
= = β + β β = 
 

A B
D

C
 (6. 3) 

( )* *
0                  with    /Td dp ds SD SIβ β= =h  (6. 4) 

( )              with    j , ,   and  /T j j
LCd d d LC LC SD SIβχ χ β β β= = + =χ  (6. 5) 

* *
0 2

1 2

* *3 4
1 0

1 1

T T
LC LC

T T
s s

s s s s

v v
p k s

B B

B B k p s

ε β ε

β β β

λ κ λ κ

λ κ λ κ

 
   − −
 = = 
  
 − − 

m m m m
B

m m m m
 (6. 6) 

where the superscript T indicates transposed, β indicates that yielding on the SD yield 

surface or yielding on the SI yield surface is active, Dep
* j is the elasto-plastic matrix which 

takes different forms depending on the plastic mechanism activated j (see Chapter 5 and 

Appendix A.2), mLC and mβ are the same vectors introduced in Chapter 5 when presenting 

the formulation of the 3D extended model (Equations (5.11) and (5.13), respectively): 

* * * * * *
1 2 3 4 5 6

0T LC LC LC LC LC LC
LC

F F F F F F ∂ ∂ ∂ ∂ ∂ ∂=  ∂σ ∂σ ∂σ ∂σ ∂σ ∂σ 
m

ɶ ɶ ɶ ɶ ɶ ɶ
 

*
7

0 0 0 0 0 0T Fβ
β

∂ 
=  ∂σ 

m
ɶ

 

and the remaining auxiliary vectors are mT
ε=(1,1,1,0,0,0,0) and mT

s=(0,0,0,0,0,0,1). It 

should be note that (6.2) also accounts for the couplings defined in the model (see 

Section 2.6.2) when only one plastic mechanism is active (i.e. LC only with dχβ
LC=0, as 

dSr
p=0; and SD/SI only with dχLC

β=0, as dεv
p=0).  

The system of equations formed by (6.1) and (6.2), expresses changes of the generalised 

stresses (i.e. containing increments of Bishop’s stress tensor and modified suction) as a 

function of the generalised strain variations (i.e. containing strain increments and degree 

of saturation changes). This way of expressing the (generalised) stress is very convenient 

as it can be easily adapted to the conventional finite element formulations, where the 

displacements/pore pressures changes are found first to calculate strain and suction 

variations, which in turn are used to update the stresses (Sheng et al., 2003a).  
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The evolution of the yield surfaces defined in this problem (6.4) is also expressed in terms 

of the generalised strain variations (see the expressions developed for each plastic 

multiplier in Chapter 5 and Appendix A.2). Therefore, the system of equations formed by 

(6.1) and (6.2) enables the generalised stresses and the hardening parameters to be 

updated by knowing changes of the generalised strains and the initial state. This is 

achieved with the formulation of the generalised stress-strain algorithm discussed and 

presented in the following sections.  

Note that the elastic case is equivalent to (6.1) employing the elastic matrix instead of the 

elasto-plastic matrix (6.3) and with hardening parameters remaining constant.  

6.3. Variations of degree of saturation in terms of  strain and suction 
changes 

It is important to stress again that the expression for the generalised strain changes, dεɶ , 

(5.5) includes the variation of the degree of saturation. The degree of saturation is a 

fundamental variable in the model presented and it is interesting to demonstrate that it is 

possible to express dSr in terms of the known or driving variables (i.e. ∆ε and ∆s). This 

section is aimed at developing an expression of the degree of saturation changes in terms 

of strain and matric suction variations for the fully coupled model of Wheeler et al. (2003). 

In order to do this it is necessary to first express the increments of the stress state 

variables employed in the constitutive model (i.e. Bishop’s stress tensor and modified 

suction) in the following terms:  

( )*
r rd d S ds sdS= + +σ σ m  (6. 7) 

*

1 1
Te s

ds ds d
e e

= −
+ +

m ε  (6. 8) 

where mT=(1,1,1,0,0,0). 

On the other hand, expansion of (6.1) leads to two more equations:  

( )*
6 6 6 1
j j
x x rd d dS= + −σ A ε B  (6. 9) 

( )*
1 6 1 1
j j
x x rds d D dS= + −C ε  (6. 10) 

where the superscript j indicates the plastic mechanism that is active (yielding on the LC 

yield surface alone; yielding on the SD or SI yield surface alone; or simultaneous yielding 
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on the LC and SD or SI yield surfaces) including the elastic case. The expressions for A, 

B, C and D take the forms shown in Appendix A.2.  

Expressions (6.7), (6.8), (6.9) and (6.10) define a system of equations with six unknowns: 

increment of Bishop’s stress dσ* (which, in turn, has six components), increment of net 

stress dσ  (which, in turn, has six components), strain increment dε (which, in turn, has six 

components), increment of matric suction ds (scalar), increment of modified suction ds* 

(scalar) and increment of degree of saturation dSr (scalar). If a pair of these six unknowns 

is assumed to be known, it should be then possible to express these equations as 

functions of these pair of known variables. For instance, if it is assumed that dε and ds are 

known, the remaining four unknowns can be expressed (by employing these four 

equations) in terms of dε and ds. In fact, when strains and matric suction changes are 

known (these are typically the driving variables of strain-driver algorithms used in finite 

element formulations), one may find, after some algebra, the following expression for the 

decrement of the degree of saturation: 

( ) 1

1 1
j T j

r

e s
dS D ds d

e e

−  −  − = + −  + +  
m C ε  (6. 11) 

where the superscript j indicates elastic; yielding on the LC yield surface alone; yielding on 

only the SD or SI yield surface alone; or simultaneous yielding on the LC and SD or SI 

yield surfaces; and C and D take the forms shown in Appendix A.2. 

6.4. Explicit strain-driver algorithms 

A large variety of methods are available in the literature to solve or integrate stress-strain 

equations numerically. Typically, integration algorithms are classified into two different 

groups: explicit and implicit. In the former, the updated stress is obtained by integrating 

the strain increments with the elasto-plastic matrix evaluated at the start of each 

integration step; whereas implicit algorithms calculate the stress increment employing the 

elasto-plastic matrix evaluated at the end of the integration step. With implicit algorithms it 

is necessary to solve first an iterative scheme because the values at the end of the step 

are not initially known (Solowsky, 2008).  

As pointed out by several authors, the integration process of an elasto-plastic model is 

crucial when using finite element analysis (see, for instance, Tamaginini et al., 2002 or 

Solowsky and Gallipoli, 2010a,b). It is, therefore, important to build an efficient algorithm 

minimising the associated computational costs and optimising the accuracy of the 

solution. In this direction, the following sections present the general formulation to 
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integrate, in an explicit way, the extended version of the Wheeler et al. (2003) model. Two 

different explicit algorithms are described: first order Euler method (also known as forward 

Euler algorithm) and second order modified Euler. A comparison between the computed 

results obtained from both schemes is given at the end of this chapter. An interesting 

future line research would be to extend this comparison to other numerical schemes such 

as the family of explicit algorithms with automatic error control developed by Sloan and 

co-workers (Sloan, 1987; Abbo, 1997; Sloan et al., 2001; Sheng et al., 2003a,b and 

subsequent papers); or equivalent implicit algorithm formulations to those presented in 

Simo and Hughes (1998) or Crisfield (1991) (see also Chapter 8).  

6.4.1. Forward Euler formulation 

Given the initial state (i.e. void ratio e, degree of saturation Sr, net stress tensor σ  and 

matric suction s) the algorithm calculates the initial values of the Bishop’s stress tensor σ* 

and modified suction s* to build the initial generalised stress vector *σɶ . Then, given the 

increments of strains ∆ε and suction ∆s (calculated from the increments of displacements 

and increments of pore pressures, respectively), an initial elastic trial increment of the 

degree of saturation is calculated employing (6.11). Combining this information it is 

possible to construct the generalised strain increment ∆εɶ  which will be used (combined 

with the generalised elastic matrix De
*) to calculate an elastic generalised stress trial. 

Given also the initial values of the hardening parameters defining the initial elastic domain, 

the explicit algorithm presented below updates the stress state variables and the 

hardening parameters according to the following steps. The formulation adopted here 

follows a similar scheme to the one presented in Abbo (1997).  

i. Computation of the initial stress state 

Given the initial net stress tensor 0=kdσ , the initial matric suction sk=0, the initial void ratio 

ek=0 and the initial degree of saturation Sr k=0, compute first the initial Bishop’s stress tensor 

σ*
k=0 and the initial modified suction s*

k=0 at k=0. Build afterwards the initial generalised 

stress tensor as: 

( )* * * * * * * *
0 1 2 3 4 5 6 0k k

s= =
= σ σ σ σ σ σσɶ  (6. 12) 

Given the initial values of the hardening parameters at k=0 hk=0=(p0
*,sβ

*)k=0 (where 

β=SD/SI) and the initial generalised stress tensor (6.12), compute the initial elastic domain 

defined by the three yield surfaces evaluated at k=0 (5.1), (5.2) and (5.3) according to:  
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( )*
0 0, 0LC k kF = = ≤σ hɶ  (6. 13) 

( )*
0 0, 0SD k kF = = ≤σ hɶ  (6. 14) 

( )*
0 0, 0SI k kF = = ≤σ hɶ  (6. 15) 

If the resulting stress point lies outside the elastic domain (i.e. FLC( *
0k=σɶ ,hk=0)>0 or  

FSD( *
0k=σɶ ,hk=0)>0 or FSI(

*
0k=σɶ ,hk=0)>0) the stress state is impossible, exit.  

ii. Computation of an elastic trial of the degree of saturation 

Assume that the given increments of strains ∆ε and suction ∆s are purely elastic and 

compute an elastic trial increment of the degree of saturation ∆Sr
trial using (6.11) with 

elastic behaviour. 

iii. Construction of the generalised strain vector 

Once the elastic trial of the degree of saturation has been computed ∆Sr
trial(∆ε, ∆s), build 

the generalised strain vector: 

( )1 2 3 4 5 6
trial
rS∆ = ∆ε ∆ε ∆ε ∆ε ∆ε ∆ε −∆εɶ  (6. 16) 

iv. Elastic trial of the generalised stresses 

Assuming that ∆εɶ  is purely elastic, compute a trial generalised stress increment * trial∆σɶ  

and update the generalised stresses according to: 

* trial∆ = ∆*
eσ D εɶ ɶ  (6. 17) 

* * *
0

trial trial
k== + ∆σ σ σɶ ɶ ɶ  (6. 18) 

Determine if the trial generalised stress state is outside of the elastic domain defined in 

(i.). If the trial (generalised) stress state is inside or on all of the yield surfaces defined (i.e. 

FLC( * trialσɶ ,hk=0)≤0 and  FSD( * trialσɶ ,hk=0)≤0 and  FSI(
* trialσɶ ,hk=0)≤0) update (generalised) 

stresses and internal variables with the elastic trial and exit.  

v. Identification of the elasto-plastic mechanism active 

Given * trialσɶ  and hk=0 evaluate the functions proposed in Section 5.4 at k=0 to identify 

which is the elasto-plastic mechanism that should be activated:  
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( )*
1 1 0,trial trial

kF F == σ hɶ  (6. 19) 

( )*
2 2 0,trial trial

kF F == σ hɶ  (6. 20) 

( )*
3 3 0,trial trial

kF F == σ hɶ  (6. 21) 

( )*
4 4 0,trial trial

kF F == σ hɶ  (6. 22) 

Combining these functions with the three yield surfaces also evaluated at k=0 (i.e. (6.13), 

(6.14) and (6.15)), define the five domains to identify the five different elasto-plastic 

mechanisms according to (see also Section 5.4): 

( ){ } ( ){ }* *
1 0 0Domain 1: , 0 , 0trial trial

k SI kF F= =≤ ∩ >σ h σ hɶ ɶ  (6. 23) 

( ){ } ( ){ } ( ){ }* * *
1 0 0 2 0Domain 2: , 0 , 0 , 0trial trial trial

k SI k kF F F= = => ∩ > ∩ <σ h σ h σ hɶ ɶ ɶ  (6. 24) 

( ){ } ( ){ } ( ){ }* * *
2 0 0 3 0Domain 3: , 0 , 0 , 0trial trial trial

k LC k kF F F= = =≥ ∩ > ∩ ≤σ h σ h σ hɶ ɶ ɶ  (6. 25) 

( ){ } ( ){ }* *
3 0 4 0Domain 4: , 0 , 0trial trial

k kF F= => ∩ >σ h σ hɶ ɶ  (6. 26) 

( ){ } ( ){ }* *
4 0 0Domain 5: , 0 , 0trial trial

k SD kF F= =≤ ∩ >σ h σ hɶ ɶ  (6. 27) 

where ∩  indicates intersection between surfaces.   

If the trial is found to fall in any of these five domains defined (i.e. (6.23)-(6.27)), yielding 

will take place according to the elasto-plastic mechanism activated (i.e. Domain 1: yielding 

on the SI yield surface alone, Domain 2: simultaneous yielding on the SI and LC yield 

surfaces, Domain 3: yielding on the LC yield surface alone, Domain 4: simultaneous 

yielding on the LC and SD yield surfaces, Domain 5: yielding on the SD yield surface 

alone). 

vi. Intersection(s) 

Two separate sets of alternatives arise when the stress trial is found to fall outside the 

elastic domain. If the trial is found to activate just one plastic mechanism (i.e. Domain 1, 

Domain 3 or Domain 5) only one intersection point is required to update the stresses (see 

Figure 6-1). However, when two plastic mechanisms are activated simultaneously (i.e. 
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Domain 2 and Domain 4) two intersection points are generally required, as described 

below.  

Figure 6-1 is intended to illustrate yield surface intersection when only one plastic 

mechanism is activated. This figure shows an ideal trial path that, from the elastic domain, 

falls in Domain 5, causing yielding on the SD yield surface alone. Therefore, it is 

necessary to find the fraction (α1) of ∆εɶ  that changes the generalised stresses from *
0k=σɶ  

to *
intersection1σɶ  on the yield surface (i.e. SD). This classical problem of non-linear elasticity 

can be solved by using a wide range of numerical methods (see Sheng, 2003a) and it is 

formulated as follows:  

( ) ( )* *
0 1 0 intersection1 0, ,k k kF F= = =+ α ∆ =*

eσ D ε h σ hɶ ɶ ɶ  (6. 28) 

where α1 is the root searched.  

The algorithm presented in this section employs the classical bisection method to find the 

intersection between the stress path and the pertinent surface. This method, although 

being robust, has, in general, an expensive computational cost. However, this alternative 

has been considered appropriate for the purposes discussed here, where the primary aim 

is to develop and propose an algorithmic formulation capable of integrating this advanced 

constitutive model. A future step would be to analyse the influence on the solution (and on 

relevant computational aspects) of employing other intersection schemes (such as the 

‘Pegasus algorithm’ suggested in Sloan et al., 2001). In order to approximate the solution 

α1 to the desired accuracy, the bisection method requires the specification of a tolerance 

(indicated as TOL1 in this work).  

It may be important to mention that the sketch shown in Figure 6-1 is an idealised plot to 

illustrate the intersection of an idealised stress path with the SD yield surface. In 

particular, due to the non-linearity of the problem, the intersection point plotted would not 

be, in general, on the same trial path (see Sloan et al., 2001), as * trial∆σɶ  and *
1

trialα ∆σɶ  are 

nonlinear. 

Equivalent results would be found for yielding on the LC yield surface alone and for 

yielding on the SI yield surface alone and, therefore, are not repeated here.  
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*
0k=σɶ

* * *
0

trial trial
k== + ∆σ σ σɶ ɶ ɶ

* * *
intersection1 0 1

trial
k α== + ∆σ σ σɶ ɶ ɶ

s*

p*

F
SD
=0

F
LC
=0

 

Figure 6- 1 Idealisation of yield surface intersection for yielding on the SD yield surface alone.  

Following a similar approach to the one presented above for one plastic mechanism 

active, Figure 6-2 illustrates the two intersections points solved when two plastic 

mechanisms are activated simultaneously. In particular, this figure shows an ideal trial 

stress path that, from the elastic domain, falls in Domain 4 causing simultaneous yielding 

on the LC and SD yield surfaces. For this particular case, it is necessary to solve the 

previously presented intersection problem twice. The first one is equivalent to that 

described in Figure 6-1. Then, changing the stress state from the initial point *

0k=σɶ  to 

*

intersection1σɶ  on the SD yield surface, it is necessary to find a second intersection between the 

stress path and the surface F4 (see Figure 6-2). The difference is, however, that the part 

of the remaining fraction of ∆εɶ  not yet integrated will cause yielding on the SD yield 

surface alone. In this way, a new problem is defined according to:  

( ) ( )* *
intersection1 2 2 intersection2, , 0jF F+ α ∆ = =*

epσ D ε h σ hɶ ɶ ɶ  (6. 29) 

with  

2 1 1(1 )∆ = − α ∆ε εɶ ɶ  (6. 30) 

where α1 is the solution from the first intersection problem (6.28), α2 is the current 

unknown root and the superscript j indicates the plastic mechanism active (i.e. in this 

particular case: yielding on the SD yield surface alone).  

An implicit assumption in (6.29) is that the hardening parameters (h) do not change. This 

is not true as yielding on the SD surface is taking place from *

intersection1σɶ  to *

intersection2σɶ . 

However, as F4 gives the trace of the corner while yielding on the SD yield curve alone 



Chapter 6 Strain-driver algorithms for the integration of the generalised stress-strain relationships  

150 

takes place (see Section 3.3.5), the stress state *

intersection2σɶ  (see Figure 6-2) will be on the 

corner between LC and SD yield surfaces by definition of F4 (see Chapter 3 for more 

details). Or, in other words, yielding on the SD yield surface alone from *

intersection1σɶ  to 

*

intersection2σɶ  will bring both yield surfaces (i.e. LC and SD) to the second intersection point 

(bottom corner) where the values of the hardening parameters are known. It is important 

to emphasise here that F4 remains in the same position while yielding on the SD yield 

surface alone is taking place. All these observations, which are equivalent to those found 

for simultaneous yielding on the LC and SI surfaces, are further illustrated below when 

describing how the algorithm updates the generalised stresses.   

* * *
intersection 2 intersection 1 2 2

trialα= + ∆σ σ σɶ ɶ ɶ

*
0k=σɶ

* * *
1 0 1
trial trial

k== + ∆σ σ σɶ ɶ ɶ

* * *
intersection 1 0 1 1

trial
k α== + ∆σ σ σɶ ɶ ɶ

s*

p*

F
SD
=0

F
LC
=0

F
3
=0

F
4
=0

* * *
2 intersection 1 2
trial trial= + ∆σ σ σɶ ɶ ɶ

 

Figure 6- 2 Idealisation of yield surface intersection for the simultaneous yielding on the LC and SD yield 

surfaces. 

Other cases than that illustrated in Figure 6-2 are also possible. Indeed, Figure 6-3 shows 

three separate possibilities arising when simultaneous yielding on the LC and SD yield 

surfaces is activated. The first and the third cases are equivalent, with two intersections 

points required. The second case presented in Figure 6-3 considers an ideal path 

intersecting exactly the corner between the LC and SD yield curves. This case, although 

being very rare, would involve the solution of only one intersection problem. 
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F
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σɶ

* trial
σɶ

* trial
σɶ

1
2
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Figure 6- 3 Diagram illustrating three possible ways to activate simultaneous yielding on the LC and SD 

surfaces. 

All prior discussions are illustrated under isotropic stress conditions because it is clearer 

and easier to represent the results in the isotropic stress plane. Equivalent comments, 

however, are also valid for the 3D generalised case.   

vii. Generalised stress integration and update of the hardening parameters 

Following the description given above, the update of generalised stresses and yield 

surfaces also shows two different situations: when only one elasto-plastic mechanism is 

active or when yielding simultaneously on two yield surfaces. The discussion below is 

subdivided into these two cases.  

Note that, as described below, the strategy used to solve the problem when only one 

mechanism is activated by the elastic trial (for example yielding on the SD yield surface 

alone see Figure 6-1) is very similar to that used when solving the standard classical 

problem (see, for instance, Márquez, 1984 and Lloret and Ledesma, 1993). Once the 

intersection point has been identified (see Figure 6-1), the generalised stresses are 

elastically updated from the initial state to the intersection of the pertinent yield surface: 

( )* * * *
intersection1 0 1 0 1 1

trial
k k= == + α ∆ = + α ∆*

eσ σ σ σ D εɶ ɶ ɶ ɶ ɶ  (6. 31) 

where the scalar quantity α1 identifies the portion of 1∆εɶ  that should be integrated as 

elastic. The remaining part (i.e. (1-α1) 1∆εɶ ) accounts for the elasto-plastic update of the 

generalised stress (for example, as represented in Figure 6-1, yielding on the SD yield 

surface alone). It is then necessary to rebuild the increment of generalised strains by 

computing first the increment of degree of saturation for the plastic mechanism active (i.e. 
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yielding on the SD yield surface alone for the case plotted in Figure 6-1). This involves 

employing (6.11) with the plastic mechanism activated and considering only the non 

integrated part of 1∆εɶ  (this is to calculate ∆Sr using (1-α1)∆ε and (1-α1)∆s). As a result, the 

generalised strain vector becomes: 

( )( )2 1 1 1(1 ) , (1 ) , (1 )j
rS s∆ = − α ∆ ∆ − α ∆ − α ∆ε ε εɶ  (6. 32) 

where the superscript j indicates the plastic mechanism active.  

The following step is to calculate the increment of generalised stress (by computing first 

the elasto-plastic matrix associated with the plastic mechanism active) and update the 

generalised stress tensor: 

( )* * * * *
1 intersection intersection 2

j j
k ep+ = + ∆ = + ∆σ σ σ σ D εɶ ɶ ɶ ɶ ɶ  (6. 33) 

where, again, the superscript j indicates the plastic mechanism active.  

Finally it is necessary to update the position of the yield surfaces according to: 

1 0k k+ == + ∆h h h  (6. 34) 

where ∆h has been calculated using (6.2) and accounting only for the plastic mechanism 

activated.  

This scheme is equivalent to that required for yielding on the LC yield surface alone or 

yielding on the SI yield surface alone. However, a different procedure is necessary when 

two elasto-plastic mechanisms are active simultaneously. When two elasto-plastic 

mechanisms are active simultaneously, the first step needed is to integrate the elastic part 

in the same manner as presented for the previous example (6.31). This is to change the 

stress state from the prior elastic stress state to the first intersection point (for example, 

the intersection point between the stress path and the SD yield surface shown in Figure 6-

2) 

The non integrated part of ∆ε and ∆s will now be used to calculate the second generalised 

stress trial (see Figure 6-2):  

( )* * *
2 1 1 21trial j j

ep ep∆ = − α ∆ = ∆σ D ε D εɶ ɶ ɶ  (6. 35) 
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where 2∆εɶ  has been calculated according to (6.32) with the pertinent plastic mechanism. 

Now the second scalar quantity α2 identifying the portion of 2∆εɶ  that should be elasto-

plastically integrated can be found using (6.29). This value is used to move the 

generalised stress state from the first intersection point to the second one (see Figure 6-2) 

according to:  

* * *
intersection2 intersection1 2 2= + α ∆ɶ ɶ ɶ trial
σ σ σ  (6. 36) 

Looking at Figure 6-2, one should note that in this second update of the generalised 

stress vector, the plastic mechanism considered to change the stress state from the first 

intersection (i.e. intersection of the stress path with the SD yield surface, indicated as 

intersection1 in Figure 6-2) to the second intersection (i.e. intersection of the stress path 

with the surface F4, indicated as intersection2 in Figure 6-2) has been yielding on the SD 

yield surface alone. Also the hardening parameters should be updated using (6.34) but 

now considering only the part integrated as elasto-plastic (i.e. 1 1 2(1 )− α ∆ = ∆ε εɶ ɶ ) with the 

appropriate plastic mechanism (i.e. yielding on the SD surface for the case illustrated in 

Figure 6-2). 

Finally, the remaining part of 2∆εɶ  should be integrated considering, for this particular case 

(see Figure 6-2), simultaneous yielding on the LC and SD yield surfaces. To do this it is 

first necessary to compute the pertinent increment of degree of saturation, along with the 

generalised strain vector, according to: 

( )( )3 2 2 2(1 ) , (1 ) , (1 )j
rS s∆ = − α ∆ ∆ − α ∆ − α ∆ε ε εɶ  (6. 37) 

where the superscript j indicates the plastic mechanism activated.  

Note that for the case illustrated in Figure 6-2, the increment of degree of saturation ∆Sr
j 

appearing in (6.37) is calculated employing (6.11) with simultaneous yielding on the LC 

and SD yield surfaces, and considering only the not yet integrated part of 2∆εɶ  (i.e. 

calculated using (1-α2)∆ε and (1-α2)∆s). 

The next step is to calculate the increment of generalised stress by computing first the 

corresponding elasto-plastic matrix (which, for the case illustrated in Figure 6-2, 

corresponds to yielding on LC+SD, see Section 5.3).This information is then used to 

update the generalised stress tensor as: 
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( )* * * * *
1 intersection2 intersection2 3

j j
k ep+ = + ∆ = + ∆σ σ σ σ D εɶ ɶ ɶ ɶ ɶ  (6. 38) 

Finally, also the hardening parameters should be updated using (6.34) with the current 

plastic mechanism considering only the part of yielding caused by the last remaining 

integrated part (i.e. 3∆εɶ ).  

viii. Yield surface drift correction 

Each time the final generalised stress lies outside the updated yield surface/s currently 

yielding, the current state should be projected back to the pertinent yield surface/s using a 

drift correction method. Section 6.5 describes a possible scheme to correct this drift based 

on the work presented by Potts and Gens (1985).  

6.4.2. Modified Euler formulation 

The modified Euler formulation essentially uses the same scheme presented above and 

will not be fully repeated here. Only the significant differences are discussed. The main 

significant difference between both numerical schemes lies in how each algorithm updates 

the state variables. For the modified Euler method, the elastic/elasto-plastic matrix needs 

to be evaluated also at the end of the interval, once all the state variables have been 

updated with the first order Euler method. Then, employing this new calculated 

elastic/elasto-plastic matrix, a second increment of the state variables is obtained and is 

used, in combination with the first order increments previously found, to update each state 

variable. A more detailed mathematical description on how each variable is updated is 

given as follows.   

The first order algorithm is employed to update all variables in the same manner as 

described in Section 6.4.1. This is, at k+1:  

( )* FE * * * *
1  1k k k e k+ = + ∆ = + ∆σ σ σ σ D εɶ ɶ ɶ ɶ ɶ  (6. 39) 

( )FE
1 1 T

k k k k+ = + ∆ = + ∆h h h h χ B  (6. 40) 

FE
1 1k ke e e+ = + ∆  (6. 41) 

FE
 1  1r k r k rS S S+ = + ∆  (6. 42) 

with FE indicating the current numerical scheme employed (i.e. Forward Euler method).  

Now the elasto-plastic matrix can be evaluated at k+1: 
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* 6 6 6 1
1

1 6 1 1 1

 with    j , ,   and  = /
j j

j x x
ep k j j

x x k

LC LC SD SI
D

+
+

 
= = β + β β 
 

A B
D

C
 (6. 43) 

Also the matrix containing the information from the hardening laws: 

1 2
1

3 4 1

k

k

B B

B B+
+

 
=  
 

B  (6. 44) 

Each of these matrices can now be employed to update the generalised stresses and the 

hardening parameters as: 

( ) ( ) ( )( )* ME * * * * * * 
1   1

1 1
1 2 1 2

2 2
j j

k k k ep k ep k+ += + ∆ + ∆ = + ∆ + ∆σ σ σ σ σ D ε D εɶ ɶ ɶ ɶ ɶ ɶ ɶ  (6. 45) 

( ) ( ) ( )( )ME
1 1

1 1
1 2

2 2
T T

k k k k k+ +
= + ∆ + ∆ = + ∆ + ∆h h h h h χ B χ B  (6. 46) 

Note that vectors 1∆εɶ  and 2∆εɶ  are essentially the same except for the last component 

containing the information of the degree of saturation changes (6.11). In fact: 

( ) 1
1

1 1

−  −  −∆ = ∆ + − ∆   + +   

j T j
r

k

e s
S D s

e e
m C ε  (6. 47) 

( ) 1

1

2
1 1

j T j
r

k

e s
S D s

e e

−

+

  −  −∆ = ∆ + − ∆   + +   
m C ε  (6. 48) 

Then, the void ratio and degree of saturation are updated as: 

( )ME
1

1
1 2

2k ke e e e+ = + ∆ + ∆  (6. 49) 

( )ME
 1    

1
1 2

2r k r k r rS S S S+ = + ∆ + ∆  (6. 50) 

with ME indicating the current numerical scheme employed in updating the state variables 

(i.e. Modified Euler method). 

Note, finally, that for the elastic case, the update of the state variables employing the 

modified Euler method is practically the same as that just shown for the elasto-plastic 

cases and it is not repeated here.  
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6.5. Drift correction 

In general, when integrating the stress-strain relationships of standard elasto-plastic 

models, the stresses may diverge from the imposed yield condition (i.e. F=0). Several 

approaches are possible to address this problem, typically known as yield surface drift 

correction. The alternative adopted here is based on the work presented by Potts and 

Gens (1985) who after analysing different methods to project back the stress state to the 

yield surface, recommended an optimal drift correction approach assuming no changes of 

the total strains.  

6.5.1. Problem under consideration 

Figure 6-4 illustrates the problem under consideration. From a given initial state A lying on 

the yield surface, an increment of load is considered causing elasto-plastic yielding from A 

to B. As yielding takes place, the position of the yield surface changes from FA to FB 

(Figure 6-4). Due to the tendency to drift, the predicted (generalised) stress state at B 

does not necessarily lie on this new yield surface (Potts and Gens, 1985). The stress state 

should then be corrected to effectively be on the yield surface (C in Figure 6-4).  

J

p*

B

A

( )* , 0B BF =σ hɶ

( )* , 0A AF =σ hɶ

C

( )* , 0C CF =σ hɶ

 

Figure 6- 4 Illustration of the yield surface drift correction (after Potts and Gens, 1985). 

As described within previous chapters, the constitutive model employed in this research 

uses two separate elasto-plastic mechanisms. One is related to yielding on the LC yield 

surface and accounts for elasto-plastic changes of strains, and the other one, is 

associated with yielding on the SD/SI and accounts for irreversible changes of the degree 

of saturation. There is also the possibility to have both types of plastic behaviour occurring 

simultaneously. The following description of application of the optimal drift correction 

method proposed in Potts and Gens (1985) is subdivided into these possible cases.  
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6.5.2. Yielding on only one yield surface 

This section is intended to describe the application of the drift correction method of Potts 

and Gens (1985) to the elasto-plastic model presented in Chapter 5, when yielding on 

only one yield surface is taking place.  

A key issue of the proposed method is to consider that during the projection back of the 

(generalised) stresses to the yield surface, an associated change in the elastic 

(generalised) strains takes place. This leads to:  

( ) ( )1 * *e
C B

−
∆ = −*

eε D σ σɶ ɶ ɶ  (6. 51) 

where *

Bσɶ  and *

Cσɶ  are, respectively, the generalised stress to be corrected and the 

corrected generalised stress (see Figure 6-4). The assumption of no changes in the total 

generalised strains during the correction process implies that the elastic (generalised) 

strain change must be balanced by an equal and opposite change in the plastic 

(generalised) strains (Potts and Gens, 1985). Assuming that the elasto-plastic mechanism 

active is yielding on the LC yield surface alone:  

0total e p
LC LC LC∆ = ⇒ ∆ = −∆ε ε εɶ ɶ ɶ  (6. 52) 

where the subscript LC indicates the plastic mechanism considered. This is important 

because the last component of the generalised strain increment vector is the decrement of 

degree of saturation which is zero for this particular case. Indeed, as yielding on the LC 

yield surface alone is assumed, no plastic variations of Sr are possible in applying (6.52) 

there will be no changes of Sr from B to C (see Figure 6.4). This leads to no changes of 

the modified suction during the projection back, as discussed later.  

The (generalised) plastic strain increments are proportional to the gradient of the plastic 

potential. In particular, for the case analysed here (associated plasticity), the plastic strain 

increments are proportional to the gradient of the LC yield surface (see flow rule definition 

in Section 5.2.). 

p LC
LC LCα∆ =ε mɶ  (6. 53) 

where αLC is the unknown scalar quantity and mLC is the same generalised vector 

introduced in (5.12) when defining the flow rules (see also Section 6.2). Combining (6.51) 

with (6.52) and (6.53) the following equation expressing the corrected generalised stress 

is obtained:  
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* * *LC
C B e LCα= −σ σ D mɶ ɶ  (6. 54) 

It is important to emphasise that in (6.54) only the terms of the generalised stress tensor 

related to Bishop’s stresses are corrected, with no changes of the modified suction term. 

As a result, the increments of degree of saturation are not modified during this drift 

correction scheme when yielding on the LC yield surface alone.  

As a consequence of the occurrence of plastic generalised strains, the position of the yield 

surfaces changes. This can be written as:  

   with    j , ,  where  = /= + ∆ = + ∆ = +T
C B B j LC LC SD SIh h h h α B β β β  (6. 55) 

Considering now that yielding on the LC yield surface takes place (i.e. j=LC): 

( )0T LC
LC α∆ =α  (6. 56) 

Imposing that the corrected (generalised) stress state is on the LC yield surface:  

( )* , 0LC C CF =σ hɶ  (6. 57) 

Finally, expanding Taylor’s series and neglecting second order terms, the following 

expression for the scalar quantity αLC can be found:  

( )* ,LC B BLC

LC

F

h
α =

σ hɶ
 (6. 58) 

where the scalar quantity hLC was already introduced in Chapter 5 when finding an 

expression for the plastic multiplier for yielding on the LC yield surface alone and it takes 

the form shown in Appendix A.2. 

The formulation of this method requires the specification of a tolerance (indicated as 

TOL2). This value is used to control the accuracy of the given solution after the drift 

correction. In other words, TOL2 indicates the proximity of the stress state to the yield 

surface.   

Drift correction during yielding on the SD or SI yield surface alone has an equivalent 

formulation to the one just presented (except from the fact that yielding is taking place on 

Fβ instead of FLC where β=SD or SI) and the procedure will not be repeated here. 

However, simultaneous yielding on the LC and SD yield surfaces leads to some 
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substantial differences in the drift correction procedure and it has been considered 

appropriate to include this latter case in a separate section.  

6.5.3. Simultaneous yielding on the LC and SD or SI  yield surfaces 

The same assumption given by (6.51) is applied here, combined with: 

0total e p∆ = ⇒ ∆ = −∆ε ε εɶ ɶ ɶ  (6. 59) 

Note that now the expression for the generalised strain increments (6.59) includes both 

plastic strain increments and plastic decrements of the degree of saturation. This is 

because the case analysed involves simultaneous yielding on two yield surfaces.  

The (generalised) plastic strain increments are proportional to the gradient of the pertinent 

yield surface according to:  

p LC
LC LC LC

βα +∆ =ε mɶ  (6. 60) 

p LC β
β β βα +∆ =ε mɶ  (6. 61) 

where αLC
LC+β and αβ

LC+β are the two unknown scalar quantities. Combining (6.51) and 

(6.59) with (6.60) and (6.61) the following equation expressing the corrected generalised 

stress is obtained:  

( )* * LC LC
C B LC LC

β β
β βα α+ += − +*

eσ σ D m mɶ ɶ  (6. 62) 

Note that in here, all terms of the generalised stress tensor are corrected. This involves, 

those terms related to the Bishop’s stress tensor and those associated with modified 

suction (because of the occurrence of irreversible changes of both strains and degree of 

saturation).  

As in the previous case described, there will be also a variation of the position of the yield 

surfaces during drift correction, given by the same equation (6.55) with: 

( )T LC LC
LC LC

β β
β βα α+ +

+∆ =α  (6. 63) 

Imposing that the corrected (generalised) stress state is on the LC yield surface and also 

on the SD/SI yield surface:  

( )* , 0LC C CF =σ hɶ  (6. 64) 
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( )* , 0C CFβ =σ hɶ  (6. 65) 

Expanding Taylor’s series in both yield surfaces and neglecting second order terms, the 

following system of equations is obtained: 

( ) ( )* * * *
0*

0

, , T LC
LC C C LC B B LC

F
F F p

p
δ δ∂≈ + +

∂
σ h σ h m σɶ ɶ ɶ  (6. 66) 

( ) ( )* * * *
*

, , T
C C B B

F
F F s

s
β

β β β β
β

δ δ
∂

≈ + +
∂

σ h σ h m σɶ ɶ ɶ  (6. 67) 

From where, after some algebra, it is possible to find an expression for each scalar 

quantity:  

( ) ( )* *
1 2, ,LC B B B BLC

LC
LC

a F a F

h

ββ

β

α +

+

+
=

σ h σ hɶ ɶ
 (6. 68) 

( ) ( )* *
3 4, ,LC B B B BLC

LC

a F a F

h

ββ
β

β

α +

+

+
=

σ h σ hɶ ɶ
 (6. 69) 

where the scalar quantity hLC+β was already introduced in Chapter 5 when finding an 

expression for the plastic multiplier for simultaneous yielding on the LC and SD yield 

surfaces and it takes the form shown in Appendix A.2. Also the complete expressions for 

the scalar quantities a1, a2, a3 and a4 are detailed in Appendix A.2.  

6.6. Analysis and verification 

Because of the complexity on the mathematical expressions associated with the 3D 

extended version of the Wheeler et al. (2003) constitutive model, it has been considered 

appropriate to check if the predicted model response was obtained when using the strain-

driver algorithmic formulation presented in Section 6.4. In order to do this, two 

complementary analyses are presented in this final part of the chapter. Both of them were 

intended to study the response of the algorithmic formulation. The first analysis is a very 

basic check on the computed response at critical states. This is to confirm whether the 

computed solution shows the results predicted by the model for critical states involving 

simultaneous yielding on LC and SD surfaces, with the final states falling on the two 

planar surfaces in v:lnp*:lns* and Sr: lnp*:lns* spaces presented in Section 4.4. The second 

part of this analysis focuses on the comparison between the two explicit strain-driver 

algorithms presented (i.e. forward Euler and modified Euler). The plots shown within this 
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second part satisfactorily illustrate that, when using the algorithms presented in this 

chapter, the forward Euler method gives a first order error approximation and the modified 

Euler gives a second order approximation for the computed values of e and Sr.  

6.6.1. Computed and predicted critical state relati onships during simultaneous 
yielding on the LC and SD yield surfaces 

The predicted normal compression relationships developed in Chapter 2, were used in the 

second part of Chapter 3 to see whether the model computations under isotropic stress 

conditions reproduced the predicted behaviour of the constitutive model when yielding 

simultaneously on the LC and SD yield surfaces. Following that analysis, a possible way 

to partially verify that the equations presented in Chapter 6 have been correctly 

implemented within the algorithm is to extend the analysis from isotropic stress conditions 

to critical states. This extension of the analysis to critical states is presented in this section 

and it is essentially aimed at checking if the computed critical states fall on a planar critical 

state surface (of gradients λ* and k2
*) in v:lnp*:lns* space and on a second planar surface 

(of gradients λs
* and k1

*) in Sr:lnp*:lns* space (see Chapter 4). Using the strain-driver 

algorithms presented in Section 6.4, the tests sheared at constant volume on samples of 

speswhite kaolin (Sivakumar, 1993) described in Section 2.7.3 are simulated in this 

current Section 6.6.1. Then, by plotting the critical states of these modelled tests in the 

v:lnp*:lns* and Sr:lnp*:lns* spaces it is easy to see whether the values of λ*, k2
*, λs

* and k1
* 

estimated from these computed critical states are as those expected. 

Note that from the sixteen tests used in Chapter 4 to validate the critical state 

relationships proposed, only those involving shearing under constant volume (i.e. noted as 

Type A) are used here. This is because tests sheared at constant volume can be easily 

modelled employing the strain-driver algorithm presented in the previous sections (as they 

can be simulated directly using increments of strains ∆ε and increments of matric suction 

∆s as known inputs). Figure 6-5 shows the stress paths of the tests simulated. The six 

tests employed are: 2A, 3A, 4A and 5A (all at a constant suction of 200 kPa), 10A (at a 

constant suction of 100 kPa) and 15A (at a suction of 300 kPa). The same initial state and 

model parameters as used for the computations under isotropic stress conditions are also 

adopted here (see also Table 6.1). Shearing starts at the final stages of the normal 

compression tests as illustrated in Figure 6-5.  
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Figure 6- 5 Stress paths analysed in the computations.  

Table 6. 1 Parameters, initial state and strain and suction increments used in the computations.  

κ=0.006 λ=0.124 λs=0.0971 κs=0.0004 k1=0.685 k2=0.773 M=0.72 υ
1=0.3 

p*=229kPa s*=164kPa p0
*=271kPa sD

*=164kPa e=1.210 Sr=0.597   

∆ε1=10-05 
∆ε2= -5·10-06

 ∆ε3= -5·10-06 
∆ε4=∆ε5=∆ε6=0 ∆s=0.0 TOL1<10-07 ;TOL2<10-07 

λ
*=0.257 k*

1=0.172 λ
*
s=0.206 k*

2=0.159     

1Poisson’s ratio 

Figures 6-6 and 6-7 represent a pair of orthogonal two-dimensional views of the two 

planar surfaces at critical states presented in Chapter 4. For example, (Figure 6-6a) 

shows (v-k1
*lns*) plotted against lnp* and (Figure 6-6b) shows (v+λ*lnp*) plotted against 

lns*. In both of these plots presented in Figure 6-6, the planar surface for v has been 

reduced to a single straight line (of gradients λ* and k1
* respectively), and it is easy to 

check that, as expected, the computed critical states lie on this planar surface. Similarly, 

Figure 6-7 illustrates the computed critical states results of the water retention response. It 

is also observed that, as predicted by the model, all critical states computed lie on a 

straight line of slope λs
* when plotting such states in the (Sr-k2

*lnp*):lns* plane (Figure 6-7a) 

and on a second straight line of slope k2
* when plotting the same results in the 

(Sr+λs
*lns*):lnp* plane (Figure 6-7b). Similarly to the comments made on Figure 6-6, the 
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straight lines observed in Figure 6-7, represent a pair of orthogonal two-dimensional views 

of the planar surface at critical states for Sr (see Chapter 4 for further details).  

The fact that in both figures (Figure 6-6 and Figure 6-7) all critical states of the tests 

modelled (represented as symbols in the plotts) fall on both planar surfaces presented in 

Section 4.4 is a significant component of verification of the mathematical expressions 

implemented in the algorithm. 
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Figure 6- 6 Orthogonal two-dimensional views of planar surface for v at critical states with computed results. 

3.6 4 4.4 4.8 5.2
ln s*

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

S
r-k

2* ln
 p

*

Computed ultimate states
Linear best fit

λs
∗

Fit 1: Linear
Equation Y = -0.206 * X + 0.866
Number of data points used = 6
Coef of determination, R-squared = 0.999999

(a)  

4.6 4.8 5 5.2 5.4 5.6
ln p*

1.6

1.64

1.68

1.72

1.76

S
r-λ

s* 
ln

 s
*

Computed ultimate states
Linear best fit

k2
*

Fit 1: Linear
Equation Y = 0.159 * X + 0.867
Number of data points used = 6
Coef of determination, R-squared = 0.999996

(b)  

Figure 6- 7 Orthogonal two-dimensional views planar surface for Sr at critical states with computed results. 

The following table is intended to summarise some relevant information of the computed 

solution. The estimated values of the gradients for the two critical state surfaces shown 

(see Table 6.2) have been calculated using the least-squares method implemented in the 
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software GRAPHER (www.goldensoftware) for the critical states of the six tests analysed. 

These values can be then compared with the theoretical ones (calculated from the input 

parameter values, see Section 2.7.2) to have an estimation of the error made in the 

computations. Also the coefficient of determination R2 is included in this table.  

Table 6. 2 Comparison between theoretical an estimated gradients of the critical state planar surfaces.  

Soil 

parameter 
Theoretical value Back-calculated value 

Coefficient of 

determination R 2 

λ*
 0.257 0.257 1.00000 

k1
*

 0.172 0.172 1.00000 

λs
* 0.206 0.206 0.99999 

k2
* 0.159 0.159 0.99996 

 

All the information illustrated and discussed above, consistently suggests that the 

mathematical equations of the constitutive model presented in this Chapter 6 have been 

correctly implemented within the strain-driver algorithm. The next step is to study and 

compare the computed response when using the forward Euler and the modified Euler 

algorithms presented. This discussion is given in the following sections.   

6.6.2. Comparison between forward Euler and modifie d Euler methods 

This section shows that, when using the forward Euler scheme with the constitutive model 

introduced in Chapter 5, the error achieved in the computations for e and Sr corresponds 

to a first order approximation; whereas the approximated solution when employing the 

modified Euler scheme, gives a second order error. This is illustrated when plotting the 

error of the approximated solution (on a logarithmic scale) against the number of steps 

(again on a logarithmic scale). When presenting the results in this way (i.e. a log-log plot 

of relative error vs. number of steps) a straight line of gradient -1 is observed for the first 

order algorithm and a second straight line of gradient -2 is observed for the second order 

algorithm.  

Figure 6-8 illustrates the stress paths considered in the analysis. ABCDEF in Figure 6-8 is 

an isotropic loading stress path at constant suction. From F shearing at constant volume 

(and constant suction) is applied until G (Figure 6-8b). In the analysis presented below, 

the relative errors presented are those for void ratio e and degree of saturation Sr at B, D, 

F and G (see Figures 6-8). 
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Figure 6- 8 Constant suction isotropic loading followed by shearing at constant suction and constant volume. 

The following table summarises the model parameter values and the initial state used in 

the computations. TOL1 is the tolerance used in the algorithm for the intersection/s of the 

stress path with the appropriate surface(s) and TOL2 is the tolerance used in the drift 

correction scheme (see Sections 6.4 and 6.5).  

Table 6. 3 Model parameters and initial state used in the computations. 

κ=0.02 λ=0.15 λs=0.12 κs=0.02 k1=0.7 k2=0.8 M=0.77 ν
1=0.3 

p =10kPa s=200kPa p0
*=200kPa sD

*=70kPa e=1.2 Sr=0.65   

TOL1<10-10; TOL2<10-10       

λ
*=0.315 k1

*=0.206 λs
*=0.247 k2

*=0.181     

1 Poisson’s ratio  

Using the strain-driver formulations presented in Section 6.4 (i.e. forward Euler and 

modified Euler) with a particular step size for ∆s and ∆ε it is possible to study the relative 

error for void ratio e and degree of saturation Sr made in the computations when changing 

the initial state from A to B, D, F and G (see Figure 6-8). In the analysis presented here, 

this particular strain step size (suction remains constant) is used for a specified number of 

times (i.e. number of steps) to reproduce the correct length of the stress path analysed 

(i.e. AB, CD, EF and FG all starting at A, see Figure 6-8). This procedure can be 

employed using a higher number of steps while decreasing, appropriately, the size of the 

strain step (in order to keep the same length of the stress path analysed).  
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The corresponding computed values of void ratio e and degree of saturation Sr at B, D, F 

and G can then be compared with an appropriate reference value (see Equation (6.70)) to 

quantify the error made in e and Sr. As further detailed below, this information can be 

combined with different number of steps to study the error variations with the number of 

steps used.  

There are several ways to calculate the error made in the computations. Here, however, 

only the relative error is used, defined as: 

computed value-analytical or reference value
Relative error=

analytical or reference value
 (6. 70) 

In many cases it is difficult to find analytical values of the variables being considered. A 

standard alternative procedure is to consider, as a sufficiently accurate reference value, 

the computed result obtained when employing a very small step size (i.e. very high 

number of steps). This methodology has been used here and is extended below 

organising the discussion according to the model response, covering (under isotropic 

stress states): elastic (AB in Figure 6-8a), yielding on the LC yield surface alone (CD in 

Figure 6-8a), and simultaneous yielding on the LC and SD yield surfaces (EF in Figure 6-

8a). Also simultaneous yielding on the LC and SD yield surfaces during shearing at 

constant suction and constant volume has been analysed (FG in Figure 6-8b). 

6.6.2.1. Elastic case  

As mentioned above, the result from a very smooth computed approximation of the void 

ratio and degree of saturation at B (see Figure 6-8a) has been used as the reference 

value in (6.70). This reference value has been calculated using a very small strain step of 

10-09. A possible way to ensure that the step size is sufficiently small is to consider the 

following. As from A to B only elastic behaviour takes place, these initial and final states 

should satisfy (see Section 2.6 for more details): 

*

*
ln 0κ
 

− + = 
 

B
B A

A

p
e e

p
 (6. 71) 

*

*
ln 0κ
 

− + = 
 

B
r B r A s

A

s
S S

s
 (6. 72) 

where the values of the variables at A correspond to the initial state and the values at B 

are those calculated from the second order error strain-driver algorithm using the very 
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small step size. With a strain step size of 10-09, the resulting values in equations (6.71) 

and (6.72) were at least an order of magnitude less than the smallest value obtained using 

the other step sizes used in the analysis and this justified the use of 10-09 for computing 

reference values of e and Sr at point B.  

6.6.2.2. Yielding on the LC yield surface alone 

As in the previous case, it was not possible to easily calculate exact analytical values of 

void ratio and degree of saturation at D (see Figure 6-8). The same methodology is used 

here to give reference values of void ratio and degree of saturation at D by using the 

second order error strain-driver algorithm with very small strain increments. From C to D 

(see Figure 6-8) only yielding on the LC surface takes place, and therefore these states 

should satisfy (see Section 2.6 for more details): 

*

*
ln 0λ
 

− + = 
 

D
D C

C

p
e e

p
 (6. 73) 

*

*
ln 0κ
 

− + = 
 

D
r D rC s

C

s
S S

s
 (6. 74) 

where the values of the variables at C are taken from the previous section (i.e. elastic 

case) and the values at D are those calculated from the appropriate strain-driver algorithm 

using the very small step size. With a strain increment size of 10-09, the resulting values in 

equations (6.73) and (6.74) was at least an order of magnitude less than the smallest 

value obtained using the other step sizes used in the analyses, and this justified the use of 

a strain increment size of 10-09 for computing reference values of e and Sr at point D. 

6.6.2.3. Simultaneous yielding on the LC and SD yield surfaces 

Equivalently to the previous two cases presented, it was not possible to calculate exact 

analytical values of void ratio and degree of saturation at F (see Figure 6-8). The same 

approach was also used in this section to give a sufficiently precise approximation of the 

state variables at F in order to use as reference values. From E to F simultaneous yielding 

on the SD and LC yield surfaces takes place, and therefore these states should satisfy 

(see Section 2.7 for further details): 

* *
* *

1* *
ln ln 0λ
   

− + − =   
   

F F
F E

E E

p s
e e k

p s
 (6. 75) 
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* *
* *

2* *
ln ln 0λ
   

− − + =   
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F F
rF rE s

E E

s p
S S k

s p
 (6. 76) 

where the values of the variables at E and F are those calculated with the second order 

error strain-driver algorithm using the very small step size. For this particular case, when 

using a strain step size of 10-09 equations (6.75) and (6.76) give, in both cases, values that 

were at least an order of magnitude smaller than the equivalent values obtained when 

using the other step sizes employed in the analyses.  

Note that simultaneous yielding on the LC and SD yield surfaces is also active during 

shearing at constant suction and constant volume (FG in Figure 6-8b) the same 

methodology described in this section can be used to estimate the relative error of the 

degree of saturation (void ratio changes are zero from F to G and, therefore, the relative 

error obtained for e at G would be the same as the relative error of e approximated at F). 

6.6.2.4. Discussion of the error for each plastic mechanism including the elastic case 

Figures 6-9 and 6-10 show the relative error associated with both numerical schemes 

when considering the computed values of void ratio and degree of saturation at B, D, F 

and G. As the length of the strain path is previously specified (by fixing the final state 

analysed B, D, F and G) and sizes of strain steps are fixed for all cases (see Tables 6.4 

and 6.5), it is possible to make a direct comparison between the different model 

responses. The following paragraphs describe how the data points plotted in these figures 

are obtained while highlighting the main results observed in both Figures 6-9 and 6-10.  

For example, for the elastic isotropic loading analysed (AB in Figure 6-8) the length of the 

strain path is specified by fixing the final state B. When using the strain-driver algorithms 

presented in Section 6.4, ten steps are necessary to change the initial state from A to B if 

employing a fixed strain increment size of 10-04 (i.e. ∆ε1=∆ε2=∆ε3=10-04). When using a 

smaller strain increment size of 10-05, 100 steps are needed to reach B, and 1000 steps 

with a strain increment size of 10-06. Thus, using the strain-driver algorithms for each of 

these three strain increment sizes (with their corresponding number of steps 10, 100 and 

1000) gave three values of the void ratio and degree of saturation at B. Then, combining 

these three values of void ratio (and degree of saturation) with (6.70) and the appropriate 

reference value (see Section 6.2.2.1), three different values of the relative error for e and 

three different values of the relative error for Sr (involving elastic behaviour under isotropic 

stress states) were obtained. These three different values of relative error for e and for Sr, 

along with their corresponding number of steps, gave the three data points plotted in 
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Figure 6-9 when using the forward Euler scheme. Another three data points of the relative 

error for e were obtained (see Figure 6-9) when using the modified Euler scheme. An 

equivalent procedure was used for Sr (see Figure 6-10).  

As expected, the relative error for e and Sr is lower when using the modified Euler scheme 

than when using the forward Euler algorithm (see Figures 6-9 and 6-10). It is also 

illustrated in these figures that the decrease of the relative error for e and Sr when 

increasing the number of steps is also faster when using the second order error scheme 

(showing a gradient of -2) than when employing the first order scheme (showing a 

gradient of -1). This general behaviour is observed for all cases (see Figures 6-9 and 6-

10). For this particular (elastic) case, it is important to ensure that the model response is 

elastic during all strain path analysed. This implies ensuring that along the stress path AB 

no yield surface is reached.  

An equivalent analysis has been used for the rest of the cases. For instance, when 

yielding on the LC yield surface alone is active 10, 100 and 1000 steps were considered 

from C to D (see Figure 6-8); employing, respectively, an isotropic strain step size (i.e. 

∆ε1=∆ε2=∆ε3) of 10-04, 10-05 and 10-06 (see Tables 6.4 and 6.5). Ensuring, previously, that 

these step sizes (with their corresponding number of steps 10, 100 and 1000 respectively) 

were not sufficient to reach the corner at E (i.e. only yielding on the LC yield surface was 

active during the isotropic loading stress path CD shown in Figure 6-8a). Similarly for 

simultaneous yielding on the SD and LC yield surfaces under isotropic stress conditions 

(EF, see Figure 6-8a) and simultaneous yielding on the SD and LC yield surfaces under 

shearing at constant suction and constant volume (FG in Figure 6-8b). For the latter case 

of simultaneous yielding under shearing, however, different strain input increments were 

used. In order to get zero volumetric strain variations, the strain increments used were 

∆ε2=∆ε3=(-∆ε1/2) where ∆ε1 took different values (i.e. 10-04, 10-05 and 10-06) corresponding 

to each number of steps employed (i.e. 10, 100 and 1000, respectively). More details of 

the information illustrated in Figures 6-9 and 6-10 is summarised in Tables 6.4 and 6.5.  

Overall, the variations of the relative errors with number of steps for the two strain-driver 

algorithms used, followed the expected patterns when plotting the results in the log-log 

plot of relative error vs. number of steps. For all cases presented, Figures 6-9 and 6-10 

show a gradient of approximately -1 when using the first order error forward Euler method 

and -2 when employing the second order error modified Euler scheme. Also as expected, 

the results plotted in these figures showed an increase of the relative errors for a given 

step size when also increasing the complexity of the equations being integrated; giving 

lower values of the error for elastic behaviour than for elasto-plastic behaviour. This was 
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also due to the fact that points D, F and G already included all the other preceding relative 

errors as all the computations started at point A; and it was, therefore, highly likely to 

observe largest relative errors after B. Moreover, the increase of complexity observed 

when solving the Bishop’s stress-strain and modified suction-degree of saturation 

relationships for simultaneous yielding on the LC and SD yield surfaces (see also Section 

5.3), is also reflected when comparing the relative errors obtained with those involving 

only one plastic mechanism active. In general, then, these figures showed that the relative 

error for e and Sr, for a given step size, are smallest for the elastic case, then for the case 

of yielding on one yield surface alone and largest for the case involving yielding on two 

yield surfaces (confirming expected behaviour that relative errors increase as the 

complexity of the problem increases).  All this information suggests that both strain-driver 

algorithms have been correctly implemented. 
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Figure 6- 9 Comparison of the relative error in void ratio associated with different model responses. 
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Figure 6- 10 Comparison of the relative error in degree of saturation associated with different model 

responses. 

 

Table 6. 4 Forward Euler results for isotropic loading and shearing at constant suction and constant volume. 

 Elastic LC only 
LC and SD under 

isotropic stress 

LC and SD 

under 

shearing  

Strain 

increment 

(∆ε1) 

Num. 

of 

steps 

Relative 

error e 

Relative 

error S r 

Relative 

error e 

Relative 

error S r 

Relative 

error e 

Relative 

error S r 

Relative error 

Sr 

10-04 10 8·10-07 2·10-08 2·10-06 5·10-08 1·10-05 2·10-04 2.5·10-04 

10-05
 100 8·10-08 2·10-09 2·10-07 5·10-09 1·10-06 2·10-05 2.5·10-05 

10-06 1000 8·10-09 2·10-10 2·10-08 5·10-10 1·10-07 2·10-06 2.5·10-06 
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Table 6. 5 Modified Euler results for isotropic loading and shearing at constant suction and constant volume. 

 Elastic LC only 
LC and SD under 

isotropic stress 

LC and SD 

under 

shearing  

Strain 

increment 

(∆ε1) 

Num. 

of 

steps 

Relative 

error e 

Relative 

error S r 

Relative 

error e 

Relative 

error S r 

Relative 

error e 

Relative 

error S r 

Relative error 

Sr 

10-04 10 8·10-11 3·10-12 1·10-08 3·10-10 3·10-08 3·10-07 1·10-07 

10-05
 100 8·10-13 3·10-14 2·10-10 4·10-12 2·10-10 6·10-09 3·10-09 

10-06 1000 8·10-15 1.5·10-15 2·10-12 5.5·10-14 3·10-12 1·10-10 8·10-11 
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7. Numerical implementation of the coupled constitu tive model into 
CODE_BRIGHT 

Two strain-driver algorithms to integrate the generalised stress-strain relationships of the 

3D extended constitutive model of Wheeler et al. (2003) were proposed in Chapter 6. 

Several computational aspects were discussed at the end of the chapter, concluding that 

the results obtained using the algorithmic formulation were satisfactory. This current 

Chapter 7 is aimed at including this strain-driver formulation into the existing finite element 

program CODE_BRIGHT (Olivella et al., 1996). A brief introduction of this computer code 

is given first, including a general description of the main governing equations considered 

in the mathematical formulation adopted to develop the code (Olivella et al., 1994). In 

order to implement the strain-driver algorithm, some aspects of the finite element program 

have been extended to adapt the new strain-driver scheme. This extension is also 

detailed when describing the governing equations. The final part of the chapter analyses 

the performance of this implementation first on a test case that could be compared with 

equivalent results obtained directly from the strain-driver algorithm and then on a simple 

boundary value problem.  

7.1. Introduction to the finite element program COD E_BRIGHT 

CODE_BRIGHT is an existing finite element program designed to analyse Thermo-Hydro-

Mechanical (THM) coupled problems in porous media (Olivella, 1995). The theoretical 

formulation adopted considers a macroscopic approach based on continuum theory for 

porous media. In particular, it assumes that the porous medium comprises three phases: 

solid, liquid and gas. The liquid phase is composed of water and dissolved air, while the 

gas phase comprises dry air (assumed as a single species) and water vapour. The 

formulation incorporates basic thermal phenomena (accounting for heat conduction, heat 

advection and latent heat associated with phase changes), flow (liquid flow and gas flow, 

including movements of water vapour and dissolved air, and phase changes due to water 

evaporation/condensation and air dissolution/exsolution) and mechanical effects 

(describing the dependence of material deformations on stresses, suction/fluid pressures 

and temperatures) in a coupled way (Sánchez, 2005). The mathematics of this 

macroscopic approach is expressed in terms of a set of balance equations, a set of 

constitutive equations and a set of equilibrium restrictions. Table 7.1 summarises these 

equations. Note that each of them is associated with one variable, as proposed in the 

original work of Olivella et al. (1994). This association is not unique as each equation is 

related to several variables. Hence, the variable shown in Table 7.1 should be understood 
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as the one employed in subsequent derivations. The superior dot indicates temporal 

variations.  

Table 7. 1 Constitutive equations and equilibrium restrictions (Olivella et al.,1994 and 1996). 

Equation name   

Balance equations Variable name Variable 

Solid mass balance Porosity n 

Water mass balance Liquid pressure ul 

Air mass balance Gas pressure ug 

Energy balance Temperature T 

Momentum balance Displacements ɺu  

Constitutive equations   

Fick’s law (vapour and air) Vapour and air non-advective flux  

Darcy’s law (liquid and gas) Liquid and gas advective fluxes q l, qg 

Retention curve Liquid phase degree of saturation Sl
*, Sg 

Fourier’s law Conductive heat flux ic 

Mechanical constitutive model Stress tensor σ 

Liquid density Liquid density ρl 

Gas law Gas density ρg 

Equilibrium restrictions   

Henry’s law Air dissolved mass fraction wl
a 

Psychrometric law Vapour mass fraction wg
w 

Constraints   

( )1

2

T

= ∇ + ∇ε u uɺ ɺ ɺ  Strains (compatibility equation) ɺε  

wl
w + wl

a = 1 
Mass fraction of water in the liquid 

phase 
wl

w 

wg
w + wg

a = 1 
Mass fraction of air in the gas 

phase 
wg

a 

Sl
*+ Sg=1 

Volumetric fraction of pore volume 

occupied by gas 
Sg 

i l
w + i l

a =0 
Non-advective mass flux of water 

in the liquid phase 
i l

w 

ig
w + ig

a =0 
Non-advective mass flux of air in 

the gas phase 
ig

a 

*Both notations of liquid phase degree of saturation (i.e. Sr and Sl) are used within the document.  
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Related to the last paragraph above, an important issue is the choice of state 

(independent) variables from which all other variables are derived using the constitutive or 

equilibrium constraints. In particular, the state or independent variables considered within 

this mathematical framework are: solid velocity uɺ , liquid pressure ul, gas pressure ug and 

temperature T (see Olivella et al., 1994 for further details). 

As described in Chapter 2, unsaturated soils can be modelled as a three phase porous 

system composed of gas phase (typically air), liquid phase (typically water) and solid 

phase (soil grains). Consequently, this macroscopic approach is an adequate framework 

to study boundary value problems involving the unsaturated soil condition. In particular, it 

is possible to use CODE_BRIGHT as a framework to include the fully coupled 

mechanical-water retention constitutive model described in previous chapters of this work. 

Essentially this required two major inputs in the computer formulation. Firstly, it was 

necessary to adapt the update of the stresses accordingly with the extended version of 

the Wheeler et al. (2003) constitutive model (see Chapter 6). Secondly, the water 

retention behaviour adopted to update the degree of saturation had to be the one 

proposed within the constitutive model (see Figure 7.1). A major challenge of this 

implementation is related to the fully coupled Hydro-Mechanical (HM) character of the 

constitutive stresses adopted by this model (see Equations (2.15) and (2.16) in Section 

2.6). The following sections are intended to describe the implementation of this advanced 

constitutive model into CODE_BRIGHT assuming isothermal conditions.  

7.2. Balance equations 

The compositional approach has been adopted to establish the mass balance equations 

and it consists of balancing the species (mineral, water and air) instead of balancing 

phases (solid, liquid and gas). The subscript is used, in the remainder of this chapter, to 

identify the phase (s for solid, l for liquid and g for gas) and the superscript indicates the 

species: w for water and a for air. No symbol is attributed to the mineral species, because 

it has been assumed that it coincides with the solid phase. The main balance equations 

are presented below and a more detailed description can be found elsewhere (i.e. Olivella 

et al., 1994). 

7.2.1. Water mass balance equation 

( ) ( )n n .w w w w w
l l g g l gS S f

t

∂ θ + θ + ∇ + =
∂

j j
 

(7. 1)
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where, n is the porosity, θw
l and θw

g are the masses of water per unit volume of liquid and 

gas phase respectively, jwl and jwg denote the total mass fluxes of water in the liquid and 

gas phases with respect to a fixed reference system, f w is the external mass supply of 

water per unit volume of medium and Sα is the volumetric fraction of pore volume 

occupied by the alpha phase (α=l,g). Note that the degree of saturation of the liquid phase 

is also termed Sr in this work.  

7.2.2. Air mass balance equation 

( ) ( )n n .a a a a a
l l g g l gS S f

t

∂ θ + θ + ∇ + =
∂

j j
 

(7. 2)
 

where n is the porosity, θa
l and θa

g are the masses of air per unit volume of liquid and gas 

phase respectively, jal and jag denote the total mass fluxes of air in the liquid and gas 

phases with respect to a fixed reference system and f a is the external mass supply of air 

per unit volume of medium. Note that dry air is considered as a single species in spite of 

the fact that it is a mixture of gasses. The gaseous phase is assumed as a mixture of air 

and water vapour. Air is also dissolved in the liquid phase. 

7.2.3. Solid mass balance equation 

( )( ) ( )( )1 n 1 n 0s st

∂ ρ − + ∇ ⋅ ρ − =
∂

uɺ
 

(7. 3)

 

where n is the porosity and uɺ  is the solid velocity vector. The variation of porosities in 

terms of changes in solid density and volumetric deformation of the soil skeleton is 

obtained from (7.3) (Olivella et al., 1994).  

7.2.4. Momentum balance equation (equilibrium) 

Assuming equilibrium of the medium, the momentum balance equation becomes:  

. 0∇ + =bσσσσ
 

(7. 4) 

where σ is the total stress tensor and b the vector of body forces. 

In (7.4) inertial terms have been neglected. This assumption is commonly accepted 

because both velocities and accelerations are small (yielding terms are negligible in 

comparison with the stress terms, Gens and Olivella, 2001). The assumption of small 

strain rate is also made.  
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As introduced in Chapter 3, a basic principle in classical plasticity theory is the additive 

decomposition of the strain tensor increments εɺ  into elastic component eεɺ  and plastic 

component pεɺ : 

e p= +ε ε εɺ ɺ ɺ  (7. 5) 

In turn, the total strains are related to the solid velocities uɺ  through the compatibility 

equation:  

( )1

2
T∇ + ∇= u uε ɺ ɺɺ  (7. 6) 

7.3. Constitutive equations 

The constitutive equations establish the link between the unknowns and the dependent 

variables. There are several categories of dependent variables depending on the 

complexity with which they are related to the unknowns. The governing equations are 

finally written in terms of the unknowns when the constitutive equations are substituted in 

the balance equations. Here, some of the basic constitutive laws are presented, divided 

into hydraulic and mechanical types. This distinction between the two basic components 

of the problem is only in order to facilitate its description, as both, mechanical and 

hydraulic constitutive relationships are in general coupled. For instance, the HM 

constitutive model employed within this research couples mechanical (stress-strain) 

relationships with water retention (fluid pressures-degree of saturation) relationships.  

7.3.1. Hydraulic problem 

Advective fluxes are computed using generalized Darcy’s law, expressed as (Gens and 

Olivella, 2001): 

( );                   = ,u l gα α α αρ α= − ∇ −q K g
 

(7. 7) 

where uα is the phase pressure, Kα is the permeability tensor of the α phase and g is the 

gravity vector. The permeability tensor is not constant but, in turn, it depends on other 

variables:  

;                   = ,rk
l gα

α
α

α
µ

=K k
 

(7. 8) 
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where µα is the dynamic viscosity of the α phase, krα is the α phase relative permeability 

and k  is the intrinsic permeability tensor that depends on pore structure. Several laws are 

available in the program to describe this dependence (see CODE_BRIGHT User’s Manual 

2011 for further details). Also for the dependence of the relative permeabilities of liquid 

and gaseous phases on the degree of saturation, different laws are available to be 

employed when using CODE_BRIGHT (CODE_BRIGHT User’s Manual 2011).   

The retention behaviour relates degree of saturation with matric suction. CODE_BRIGHT 

allows for the possibility of choosing different water retention constitutive laws (see 

CODE_BRIGHT User’s Manual 2011). An illustration of the water retention relationships 

implemented herein is given in Figure 7-1 and it corresponds to the model proposed by 

Wheeler et al. (2003). Note that the model employs two hardening parameters to define 

the locations of the SD and SI yield surfaces (i.e. sD
* and sI

*, respectively) and another two 

soil parameters to define the gradients of the modified suction-degree of saturation 

relationships. One defines the gradient of the main drying/wetting curves λs and the other 

one κs defines the gradient of the scanning curves (see Chapter 2 for more details).  

Modified suction, s* (log scale)

D
eg

re
e 

of
 s

at
ur

at
io

n,
 S

r 

1

0

λs

κs

λs

Main drying
curve

Main wetting
curve

Scanning
curves

sD
* sI

*

 

Figure 7- 1 Water retention model in Wheeler et al. (2003). 

Non-advective fluxes of species inside the fluid phases are computed with Fick’s law, 

which expresses these fluxes in terms of gradients of mass fraction of species through a 

hydrodynamic dispersion tensor that includes both molecular diffusion and mechanical 

dispersion (Olivella et al., 1994; Gens and Olivella, 2001): 

w ;                  , ;     ,i i i i w a l gα α α α= − ∇ = =i D
 

(7. 9) 
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where Di
α is the dispersion tensor of the medium and w the mass fraction of i species in α 

phase (Olivella et al., 1994;  CODE_BRIGHT User’s Manual 2011).  

7.3.2. Mechanical problem 

In order to implement the Wheeler et al. (2003) constitutive model into CODE_BRIGHT it 

is useful to express some of the equations of this constitutive model in such a way that 

make them compatible with the existing formulation of CODE_BRIGHT. In particular, it is 

convenient to express the total stress tensor variations in terms of strain and fluid 

pressure changes using the relationships proposed within the constitutive model. The 

mathematical development to find these expressions is detailed in Appendix A.4 and the 

main equations are summarised below.  

Using the definition of Bishop’s stresses given in Chapter 2, temporal variations of total 

stresses can be expressed as:  

( ) ( )*= + − − − −ɺɺ ɺ ɺ ɺ ɺg r g l r g lu S u u S u uσ σ m m m
 

(7. 10) 

where m is the auxiliary vector (1,1,1,0,0,0), σ is the total stress tensor, σ* is the Bishop’s 

stress tensor, ul and ug are the liquid and gas pressures, respectively, and the upper dot 

indicates temporal variations. 

Employing also the expression of the generalised constitutive stiffness matrix introduced 

in Chapter 5, the Bishop’s stress changes can be expressed as:  

( )*
6 6 1 6
j j
x x rS= + −σ A Bε ɺɺ ɺ

 
(7. 11)

 

where j indicates the elasto-plastic mechanism active, and A and B take different forms 

depending on the elasto-plastic mechanism as shown in Appendix A.2.  

On the other hand, temporal variations of degree of saturation can be expressed in terms 

of temporal variations of pore fluid pressures and strains as (see also Section 6.3):  

( ) ( ) ( )1

1 1
g lj T j

r g l

u ue
S D u u

e e

−   − −
  − = − + −

 + +   

m C εɺ ɺ ɺ ɺ  (7. 12)
 

where T indicates transposed, j indicates the elasto-plastic mechanism active, and D and 

C take different forms depending on the elasto-plastic mechanism as shown in Appendix 
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A.2. Note that (7.12) is already expressed in terms of the main unknowns (i.e. ε, ul and ug 

variations).   

Combining (7.10), (7.11) and (7.12) it is possible, after some algebra (see Appendix A.4), 

to find the following expression for the total stress temporal variations in terms of the 

temporal variations of strains and fluid pressures: 

1 1 2g lu u= + +σ Λ ε γ γɺ ɺ ɺ ɺ
 

(7. 13) 

where the 6x6 matrix Λ1 and the 6x1 vectors γ1 and γ2 take the forms shown in Appendix 

A.4.  

In order to update the degree of saturation (7.12) and the total stresses (7.13) it is 

necessary to know the previous values of stress variables (i.e. total stresses, degree of 

saturation and water and air pressures); previous values of history variables (i.e. void ratio 

and hardening variables related to plastic mechanisms); and the increment of the 

generalised strains, given by the strain rates (determined from solid velocities) and matric 

suction rates (determined from the fluid pressure rates i.e. g ls u u= −ɺ ɺ ɺ ). Then, by means of 

the strain-driver algorithm introduced in Chapter 6, Bishop’s stresses and degree of 

saturation are updated. As explained in Chapter 6, this algorithm identifies the active 

elastic or elasto-plastic mechanism (i.e. elastic, yielding on the SD or SI yield surface 

alone, yielding on the LC yield surface alone; or simultaneous yielding on the LC and SD 

or SI yield surfaces) and updates the state variables accordingly. Finally, using the 

Bishop’s stress changes in combination with the degree of saturation and fluid pressures 

variations, the total stress changes are calculated.  

7.4. Equilibrium restrictions 

It is assumed that phase changes are rapid in relation to the characteristic times typically 

employed when solving a boundary value problem. Consequently, phase changes can be 

considered in local equilibrium, which leads to a set of equilibrium restrictions that must be 

satisfied at all times (Olivella, 1995 and Gens and Olivella, 2001).  

7.4.1. Psychometric law 

The vapour concentration in the gaseous phase is governed by the psychometric law, 

which can be expressed as (Gens and Olivella, 2001):  
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( ) ( )
0
exp

273.15
w w w
g g

l

M

R T
θ θ

ρ
 Ψ=   + 

 
(7. 14) 

where θg
w is the vapour concentration in the gas phase, (θg

w)0 is the vapour concentration 

in the gas phase in equilibrium with a liquid across a flat interface (at the sample 

temperature), Ψ is the total water potential of water (excluding gravity terms), in this case 

it is related to suction (Ψ=ul-ug); Mw is the molecular mass of the water (0.018 kg/mol); R is 

the gas constant (8.314 J/mol/ºK) and T is the temperature in °C. The gas law relates 

vapour density and vapour pressure (Olivella, 1995):  

( ) ( )
0 ( )

273.15
w v Tw

g

M u

R T
θ =

+  
(7. 15) 

For pure water the vapour pressure has been approximated as (Olivella, 1995):  

( )

5239.7
136075exp

273.15v Tu
T

− =  +   
(7. 16) 

7.4.2. Henry’s law 

Henry’s law is adopted to define the amount of air dissolved in water. This law expresses 

a linear relationship between the concentration of air in solution and the partial pressure of 

air (ua) in the gaseous phase: 

θ ρ ρ= =a a a a
l l l l

w

u M
w

H M  
(7. 17) 

where Ma is the molecular mass of the air (0.02895 kg/mol), and H is Henry’s constant 

(1000 MPa). 

7.5. Phase physical properties 

The properties of the fluid phases appear in the balance equations and in the constitutive 

laws. In general, they depend on the composition of the phase and on the state variables 

(temperatures and pressures). Some of them are introduced below. 

The density of the liquid phase can be expressed as (Olivella, 1995; Gens and Olivella, 

2001): 

( )( )04 41002.6exp 4.5 10 0.1 3.4 10l lu Tρ − −= ⋅ − − ⋅
 

(7. 18) 
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where T is expressed in ºC, ul in MPa and in ρl kg/m3. This expression must have a cut-off 

for large negative liquid pressures; if not, unrealisticly low liquid density is obtained.  

The air density is obtained from the law of ideal gases: 

( )273.15
a a a
g

M u

R T
θ =

+  
(7. 19) 

The density of the gas phase is obtained adding the partial densities of the two species: 

w a
g g gρ θ θ= +

 
(7. 20) 

Finally, the viscosities of the liquid and gas phases are, respectively (Olivella, 1995):  

12 1808.5
2.1 10 exp

273.15l T
µ −  = ⋅  +   

(7. 21) 

( )

( )

1
2

12 273.15
1.48 10 exp

119
1

273.15

g

T

T

µ −

 
 +
 = ⋅
 + + 

 
(7. 22) 

where T is expressed in ºC and µα in MPa.s. 

7.6. Computer code and numerical implementation 

The system of PDE’s (Partial Differential Equations) is solved numerically and 

simultaneously in terms of the state variables of the problem: solid velocity uɺ ; liquid 

pressure ul; and gas pressure ug. Note that temperature effects are not considered in this 

research. From these variables, the dependent ones are calculated using the constitutive 

equations or equilibrium restrictions (see Table 7.1).   

The complete formulation related to the discretization of the problem and the numerical 

approach employed can be found in Olivella et al. (1996) and only some of the main 

features have been summarised here. The numerical approach uses the Galerkin finite 

element method for the spatial discretization and finite differences for the temporal 

discretization. An implicit scheme is adopted for time integration and the Newton-Raphson 

method is used as an iterative scheme to solve the nonlinear system. The program has an 

automatic discretization of time, increasing or decreasing the time increment according to 
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convergence conditions or output requirements (more details can be found in 

CODE_BRIGHT User’s Manual, 2011).   

Another important aspect of the numerical approach is that different elements types can 

be adopted, including segments, triangles, quadrilaterals, tetrahedrons and triangular 

prisms. Linear interpolation functions and quadratic interpolation functions for some 

elements are also available. Analytical integration or numerical integration is employed 

depending on element type (see Olivella, 1995 and Olivella et al., 1996 for further details).  

7.7. Computational aspects of the implementation 

As described above, several modifications of the finite element program CODE_BRIGHT 

were necessary for the implementation of the Wheeler et al. (2003) constitutive model. 

Also some changes were required to the strain-driver algorithm (see Chapter 6) to adapt 

the subroutine for the finite element framework. Despite these minor changes, the final 

algorithm implemented within CODE_BRIGHT is essentially the one described in Chapter 

6. The main modification to the algorithm was the inclusion of a substepping strategy for 

the subdivision of strain and suction increments. The implemented subroutine allows the 

subdivision of the strain and suction increments into a specified number of steps (referred 

to as Nsubs) in order to provide smoother computations to the non-linear solution. The 

number of steps Nsubs should be defined along with the parameters used in the model.  

Some re-arrangements were also necessary to be introduced in CODE_BRIGHT, 

essentially associated with updating of the degree of saturation. CODE_BRIGHT, as 

originally formulated, uses two separate constitutive models to update the stresses and 

degree of saturation (a mechanical model and a water retention model respectively). In 

here, however, both types of variable (stresses and degree of saturation) are updated 

using a single constitutive model (i.e. the 3D constitutive model presented in Chapter 5).   

Because of these minor modifications to the strain-driver subroutine and to the main finite 

element program, it was considered appropriate to extend the analysis of computational 

aspects presented in Chapter 6, studying the performance of the new implemented 

constitutive model. This analysis is essentially aimed at checking that the algorithm has 

been correctly implemented within the finite element program. This section, then, 

continues and complements prior discussions on computational aspects by including other 

important variables such as CPU time (amount of time that the computer’s Central 

Processing Unit (CPU) uses to solve the proposed problem), which is mainly associated 

(in these analyses) with the number of substeps (Nsubs) adopted. All CPU times 
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presented in this section are for an Intel Xeon E5405 Quad Core 2.00GHz processor with 

12MB of cache and 16GB of RAM.  

The computed results from a given stress path involving isotropic loading and shearing of 

a cylindrical sample, are analysed following an equivalent approach to the one presented 

in Section 6.6.2 when investigating the relative error made in the computations. A 2D 

axisymmetric regular finite element mesh comprised of 10x10 four-node quadrilateral 

elements was used. Matric suction was imposed constant and equal to 0.11MPa in the 

whole sample. The same value of pore liquid pressure (ul=-0.01 MPa) was applied at all 

nodes and the pore air pressure was assumed constant (ua=0.1 MPa) during all the test 

simulated. Null water flux was imposed on the bottom and lateral sides of the sample. No 

vertical displacements were allowed on the bottom of the sample. The test was analysed 

as axisymmetric (with a vertical axis of symmetry) and the information presented below is 

aimed at studying the computed response at a Gauss point level. All the results presented 

in the remainder of this chapter use GiD (http://gid.cimne.upc.es) in the pre- and post- 

processing analysis.   

Two stages are considered during this simulation. An initial isotropic loading at constant 

matric suction (0.11 MPa) is applied first; changing the mean total stress from 0.11 MPa to 

0.21 MPa (A to B in Figure 7-2). Shearing at a constant axial strain rate is applied, 

afterwards, by applying vertical displacements to the top of the sample at constant rate. 

This shearing stage BC was performed at constant suction and constant radial net stress 

to a final deviator stress of 155 kPa. The complete loading stress path is illustrated in 

Figure 7-2. Different numbers of substeps have been considered to compute the values of 

the void ratio and degree of saturation at B and C. These computed values of the void 

ratio and degree of saturation at B and C are afterwards compared with a solution 

computed using a very high number of substeps (Nsubs=10.000), to estimate the relative 

error made in the computations. The solution obtained with Nsubs=10.000 is used in 

Equation (6.70) as a reference value, and solutions obtained using smaller numbers of 

substeps (i.e. 1, 10, 100 and 1.000) are compared with this in an equivalent manner to 

that described in Chapter 6 (further details in Section 6.6.2).  

Table 7.2 summarises the soil parameter values of the coupled water retention-

mechanical model used in the computations along with the initial state. The values used 

for TOL1 (tolerance used in the algorithm for the intersection/s of the stress path with the 

appropriate surface) and TOL2 (tolerance used in the drift correction method), see 

Sections 6.4 and 6.5, are also included in this table. Without going into further details, the 

convergence criteria imposed in the Newton-Raphson (N-R) method when solving the 
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global non-linear system of PDE’s introduced in Section 7.6 is in all cases lower than 5·10-

06 (more details on these convergence criteria used in CODE BRIGHT can be found in 

CODE_BRIGHT User’s Manual, 2011). 
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Figure 7- 2 Stress path used in the computations. 

Table 7. 2 Soil parameters and initial state used in the computations. 

κ=0.02 λ=0.15 λs=0.12 κs=0.02 k1=0.7 k2=0.8 

ν
1=0.3 M=0.77     

p0
*=0.2 MPa sD

*=0.07 MPa e=1.2 Sr=0.65 s=0.2 MPa p =0.01 MPa 

TOL1=10-07 TOL2=10-07   

1 Poisson’s ratio. 

Four different values of substeps (NSubs) were used to compute the values of the void 

ratio and degree of saturation at B and C (see Figure 7-2). To estimate the errors at B and 

C, as previously described, these values are compared with a reference value computed 

using NSubs=10.000 and (6.70). The total accumulated CPU time, the total number of 

time increments and the total number of Newton-Raphson (N-R) iterations used in the 

computations, were also analysed for B and C. A summary of the results obtained is given 

in Tables 7.3 and 7.4, and it is illustrated in Figure 7-3. The ratio between the number of 

N-R iterations and the number of time intervals is included in these two tables to give 

information on the convergence within the N-R scheme.  

An increase of the CPU time when NSubs increases is clearly observed in all cases 

plotted. It is also observed that the estimated relative error is lower than 5·10-04 in all 

cases (see Tables 7.3 and 7.4). As expected, the highest error is obtained when 

employing the lowest number of substeps (i.e. NSubs=1). In this case, the implemented 
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subroutine uses directly the increments of strains calculated from the N-R scheme and the 

results obtained, in terms of error, are still quite satisfactory. When using a higher number 

of NSubs (Nsubs=10, 100 and 1.000) the error observed decreases and it is, in all cases, 

smaller than 1·10-04, which has been considered sufficient for the purposes of this work. It 

is surprising that the errors in e at B and in e and Sr at C show an increase between 

Nsubs=10 and Nsubs=100 (see Figure 7.3a), but the overall trends in all cases are for 

errors to decrease as Nsubs increases.  
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Figure 7- 3 Analysis of computational aspects: (a) Error against number of substeps; (b) Total accumulated 

CPU time against number of substeps. 
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Table 7. 3 Results at end of isotropic loading (B in Figure 7-2) for different numbers of substeps (NSubs). 

 Relative error 

Nsubs 

Total number 

of time 

intervals 

Total number of 

N-R iterations 
Ratio 

CPU time 

(seconds) 

Void ratio 

at B 

Degree of 

saturation 

at B 

1 1019 1084 1.06 2.03·10+01 2.99·10-04 3.47·10-04 

10 1019 1031 1.01 5.20·10+01 1.86·10-05 3.30·10-05 

100 1019 1029 1.01 3.71·10+02 3.86·10-05 1.43·10-05 

1000 1019 1030 1.01 3.56·10+03 5.00·10-06 5.15·10-06 

 

Table 7. 4 Results at end of shearing (C in Figure 7-2) for different number of substeps (NSubs). 

 Relative error 

Nsubs 

Total number 

of time 

intervals 

Total number of 

N-R iterations 
Ratio 

CPU time 

(seconds) 

Void ratio 

at C 

Degree of 

saturation 

at C 

1 1436 1505 1.05 2.95·10+01 5.73·10-05 1.35·10-04 

10 1436 1448 1.01 7.51·10+01 1.29·10-05 3.49·10-05 

100 1436 1448 1.01 5.31·10+02 5.41·10-05 4.69·10-05 

1000 1436 1447 1.01 5.09·10+03 9.60·10-06 3.73·10-06 

 

7.8. Partial verification of FE implementation 

This section is intended to provide (partial) verification that the generalized 3D version of 

the Wheeler et al. (2003) model has been correctly implemented within the FE code. This 

is achieved by performing a finite element simulation of a problem where the results can 

be compared with corresponding results produced directly with the strain-driver algorithm. 

The output from the driver algorithm has itself been previously verified by checking that 

isotropic loading states and critical states involving simultaneous yielding on LC and SD 

surfaces are correctly predicted to fall on the appropriate planar surfaces in v:lnp*:lns* and 

Sr:lnp*:lns* spaces (see Sections 5.5 and 6.6). Of course, using the output from the strain-

driver algorithm as the reference against which the FE simulations are to be compared 

placed considerable restriction on the type of problem that could be analysed. In 

particular, the boundary value problem studied with the FE code had to be one where 

there was no spatial variation of suction or of other variables, so that it was essentially the 

same as a single element simulation (rather than a true boundary problem). This fact that 
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the problem analysed involved no spatial variation of any variable means that this 

exercise can only be considered as partial verification of the correct FE implementation of 

the constitutive model.  

The problem that was analysed was the simulation of the suction-controlled triaxial test 

18C of Sivakumar (1993), where the corresponding strain-driver algorithm simulations 

were presented in Section 5.5. The same 2D axisymmetric finite element mesh of 10x10 

four-node quadrilateral elements described in Section 7.7 was used for the FE simulation. 

The imposed stress path involved isotropic loading from a mean net stress of 50 kPa to 

150 kPa at constant suction of 300 kPa, followed by shearing at the same constant 

suction and at constant radial net stress until failure. Throughout the simulation constant 

(and uniform) values of suction were imposed at all nodes, with the result that there was 

no spatial variation of any variables across the mesh. The parameters of the implemented 

HM constitutive model and initial state used are those defined in Chapter 5 to validate the 

3D extended version of the Wheeler et al. (2003) model when using the Sivakumar (1993) 

experimental data. These values are summarised in Table 7.5 (see also Chapter 5). 

Table 7. 5 Model parameters and initial state used in the computations. 

λ=0.124 λs=0.097 κs=0.0004 M=0.716 

κ=0.006 k1=0.685 k2=0.773 υ1=0.3 

p =0.05 MPa s=0.3 MPa p*=0.229 MPa p0
*=0.271 MPa 

e0=1.210 Sr0=0.597 s*=0.164 MPa sD
*=0.164 MPa 

TOL1=1·10-04 TOL2=1·10-04   

1Poisson’s ratio 

Figures 7-4 and 7-5 show the results of the strain driver and FE simulations of Test 18C. 

Figure 7-4 includes both the constant suction isotropic loading stage (AB) and the 

constant suction, constant radial net stress shearing stage (BC), whereas Figure 7-5 

shows only the shearing stage. Yielding on the SD yield surface is occurring throughout 

the full simulations, whereas yielding on the LC surface commences at point Y (see Figure 

7-4) within the isotropic loading stage (see Section 5.5 for further details).  

Inspection of Figures 7-4 and 7-5 shows that the FE simulations are indistinguishable from 

the strain-driver simulations in all respects, including the predicted stress path in the q:p* 

plane, the predicted variations of void ratio e and degree of saturation Sr and the 

development of shear strain (and hence axial strain). Given that the results of the strain 

driver algorithm have already been verified, this comparison provides verification (at least 
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for the limited condition of a boundary value problem involving no spatial variation of 

variables) of correct implementation in the finite element code.  
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Figure 7- 4 Comparison of strain driver simulation and FE simulation for Test 18C of Sivakumar (1993).  
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Figure 7- 5 Comparison of strain driver simulation and FE simulation for shearing stage of Test 18C of 

Sivakumar (1993). 
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7.9. Modelling of a boundary value problem: wetting  of a cylindrical soil 
sample 

This section presents the FE simulation of a simple boundary value problem, incorporating 

spatial variation of suction and other variables and therefore full solution of the coupled 

hydro-mechanical governing equations. The objective is simply to demonstrate the FE 

code, incorporating the extended 3D version of the Wheeler et al. (2003) constitutive 

model, working on a full boundary value problem. As this is a full boundary value problem 

involving highly complex non-linear constitutive relations there is no analytical solution 

against which the FE results can be compared. Neither is there an alternative numerical 

solution against which the results can be compared. This exercise does not, therefore, 

constitute a formal verification of the correct implementation of the new constitutive model 

with the FE code. All that can be checked is that the FE code runs satisfactorily and that 

the results are qualitatively sensible. This will provide increased confidence, but not formal 

verification, that the constitutive model has been correctly implemented in the FE code.  

7.9.1. Problem description 

A very simple boundary value problem has been analysed. The problem consists of 

wetting of a cylindrical sample from top and bottom, with the wetting carried out with 

constant isotropic stress conditions applied on the boundaries. For this problem, pore air 

pressure is assumed perfectly mobile and, therefore, mass balance of air (7.2) is not 

considered (air pressure ua is assumed constant and equal to 0.1 MPa in all the 

simulation).  

The adopted geometry of the problem is shown in Figure 7-13. The soil specimen has a 

total height of L=0.076m and a radius of R=0.019m. Because of symmetry conditions of 

the sample an axisymmetric (vertical axis) analysis has been performed based on the top 

half of the sample, as illustrated in Figure 7-13. Therefore, the dimensions of the 2D 

axisymmetric mesh analysed are L/2=0.038m and R=0.019. The adopted finite element 

mesh consists of 38x19 four-node quadrilateral elements as illustrated in Figure 7-14. 
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Figure 7- 6 Graphical representation of the axisymmetric problem analysed.  

 

Figure 7- 7 Finite element mesh. 

At time t=0, a constant initial liquid pressure ul of -1.8MPa and a constant porosity equal to 

0.468 are imposed in the entire specimen. Pore air pressure remains constant in all the 

simulation (ua=0.1 MPa), which implies an initial value of matric suction equal to 1.9 MPa 

(s=ua-ul). An initial isotropic stress state with a mean total stress p=0.7 MPa is imposed in 

the entire sample. This leads to an initial value of mean net stress equal to 0.6 MPa 

throughout the sample. This condition is maintained until t=600s.  

Mechanical boundary conditions are shown in Figure 7-8a. Null vertical displacements uy 

are imposed at the bottom of the FE mesh (the mid-plane of the soil sample) and null 

horizontal displacements ux are assumed on the vertical axis of radial symmetry (with no 

shear stresses on either of these boundaries). Stress-controlled boundaries are applied 

on the top boundary and on the outer vertical boundary, with normal total stresses of 0.7 

MPa on both boundaries and no shear stresses. This means, with ua=0.1 MPa, that the 
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“global” stress state for the sample is isotropic, with a mean net stress of 0.6 MPa, but it 

will be shown later that, as the wetting process develops, a complex non-uniform, non-

isotropic field of total (and net) stresses develops within the sample.  

From time t=600s to t=4.976.700s a uniform rate of increase of pore liquid pressure from -

1.8MPa to 0.04MPa is imposed at the top boundary. The simulation therefore consists of 

a gradual wetting from both top and bottom of the soil sample (given the assumed plane 

of symmetry at the mid-height) from a matric suction of 1.9MPa to 0.06MPa, with a 

constant “global” mean net stress of 0.6MPa. Temperature is assumed constant in all 

calculations. The assumption of stress-controlled mechanical boundary conditions on the 

top boundary and on the outer vertical boundary means that both boundaries are 

considered as flexible. In particular, the vertical displacement of the top boundary does 

not remain uniform as the simulation progresses. This would not be a realistic 

representation of the conditions on a real triaxial test specimen in the laboratory, where 

uniform vertical displacements would normally be imposed at both top and bottom 

boundaries. However, this rather unrealistic aspect of the boundary value problem is 

unimportant, because this is a purely fictitious exercise, intended solely to provide 

evidence of successful working of the FE code following implementation of the new 

constitutive model.  

 

Figure 7- 8 Assumed boundary conditions.  

7.9.2. Model parameter values 

Basic physical properties used in the analysis are listed in Table 7.8.  

(a) (b) 
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Table 7. 6 Physical properties.  

Parameter Symbol Value Units 

Water density ρw0 1000 kg m-3 

Water viscosity µw0 1e-06 kPa s 

Intrinsic permeability at reference porosity1 (k11)0=(k22)0=(k33)0 3.0e-19 m2 

Solid density ρs0 2.773 kg m-3 

1Further details on the adopted value of intrinsic permeability for Boom clay can be found in Romero (1999).  

As mentioned in Section 7.3.1, CODE_BRIGHT allows for different laws to describe the 

dependence of permeability on pore structure and degree of saturation. In this FE 

simulation, the adopted variation of intrinsic permeability k with porosity n is given by 

(7.23) (Kozeny’s model).  
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where n0 is a reference porosity (i.e. 0.468 for this case), k0 is the intrinsic permeability 

tensor at the reference porosity n0 (see Table 7.6).  

The relative permeability of the liquid phase krl varies with degree of saturation Sr 

according to (7.24) (generalised power law) (see also Equations (7.7) and (7.8)). 
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where λɶ  and Aɶ are two model parameters (taking values, for this case, of 3 and 1 

respectively), Srl is the residual saturation (fixed to 0.01 for this case) and Srs is the 

maximum saturation (fixed to 1 in this case).  

Values used for the parameters within the extended 3D mechanical-water retention 

constitutive model of Wheeler et al. (2003) are given in Table 7.9, including the initial 

state. To ensure that the parameter values were realistic they were selected as an attempt 

to represent approximately the compacted Boom clay tested by Romero (1999). However, 

it was not possible to perform a rigorous calibration exercise, using the procedure set out 

in Section 2.7.4, because the experimental data available from Romero (1999) did not 

provide all the appropriate information. The set of values listed in Table 7.9 should 

therefore be viewed simply as a fictitious but realistic set of model parameter values.  
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Table 7. 7 Initial state and constitutive model parameters used in the modelling. 

p =0.6 MPa s=1.8 MPa Sr=0.47 e=0.879 

p0
*=p*=1.4 MPa sD

*=s*=0.8 MPa   

λ=0.1 λs=0.096 κs=0.023 κ=0.015 

k1=0.66 k2=0.73 M=0.77 υ1=0.3 

1Poisson’s ratio. 

Note also that there are different expressions of g(θ) (see Equation (5.1)) for different 

failure criteria. The function for g(θ) assumed here, however, corresponds to von Misses 

failure criteria (i.e. g(θ)=1 see Appendix A.1 for further details).  

7.9.3. Modelling and discussion 

This section presents the results obtained from the FE simulations of the boundary value 

problem defined in Section 7.9.1 and using the implemented constitutive model with the 

model parameter values shown in Section 7.9.2. A discussion of these results is also 

included, presented in four parts. The first part shows the outputs of the solution from 

CODE_BRIGHT illustrated by contours plots at the final time (all these plots have been 

developed using GiD as a graphical interface, http://gid.cimne.upc.es). The second part of 

the results shows the temporal variation of several variables at three different points within 

the soil sample. The remaining two parts present the variation of several variables across 

two fixed cross sections (vertical and horizontal) at different times. 

7.9.3.1. Results at final time 

Figure 7-9 illustrates the contour plots of pore liquid pressure at final time. As expected, 

the final value of pore liquid pressure on the top of the sample corresponds to the final 

value of ul (0.04 MPa) imposed with the hydraulic boundary condition (see Section 7.9.1). 

As a consequence of considering pore air pressure constant at all nodes throughout the 

test at a value of 0.1 MPa, the value of matric suction reached at the top of the sample is 

0.06 MPa. At the bottom of the finite element mesh (the mid-plane of the sample), 

however, the value of matric suction is significantly higher which can be explained by the 

fact that wetting progresses relatively slowly down through the sample, due the low 

permeability values used for Boom clay (intrinsic permeability of 3·10-19m2, see Table 7.6). 

The variation of pore liquid pressure across the finite element mesh is qualitatively the 

expected one, showing a smooth transition from the imposed value on the top of the 

specimen to the value reached at the bottom of the mesh.  



Chapter 7 Numerical implementation of the coupled constitutive model into CODE_BRIGHT 

197 

 

Figure 7- 9 Computed results at final time for liquid pressure. 

Figure 7-10 presents equivalent results for degree of saturation (Figure 7-10a) and the 

hardening parameter sD
* associated with the SD yield surface (Figure 7-10b). Yielding on 

the SD yield surface gives irreversible increases of degree of saturation and the variation 

of this hardening parameter sD
* complements, therefore, information on degree of 

saturation. As expected, the observed value of the degree of saturation is significantly 

higher at the top of the soil sample (i.e. 0.94) than its corresponding value at the bottom 

(i.e. 0.49). This general behaviour is in accordance with prior comments made on the pore 

liquid pressure and the large variation of Sr over the sample height is essentially a 

consequence of the low permeability of Boom clay. It is interesting to note that this final 

value of the degree of saturation at the bottom of the FE mesh is slightly higher than the 

initial value (i.e. 0.47, see Table 7.7), meaning that water has already reached the bottom 

of the FE mesh at this final time (i.e. t=82.945min). It is also interesting to remember that 

irreversible increases of Sr took place from the start of the wetting, because the initial 

state was at the corner between the LC and SD yield surfaces (see Table 7.7) and 

simultaneous yielding on both yield surfaces occurred from the beginning of the wetting. 

This aspect is further discussed in the following section when showing the temporal 

results.  

Close inspection of Figure 7-10 shows that the contours of Sr and sD
* are not exactly 

horizontal, and therefore slight variation of each of these two parameters with radius is 

ul (MPa) 
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predicted. Although this may initially appear surprising, it is a perfectly correct feature of 

the predictions. It is shown below that other variables show greater variation with radius, 

and the explanation for this behaviour is presented in Section 7.9.3.4.  

Figure 7-11 presents equivalent results for void ratio (Figure 7-11a) and hardening 

parameter p0
* associated with the LC yield surface (Figure 7-11b). Yielding on the LC 

surface results in irreversible decreases of void ratio and variation of this hardening 

parameter p0
* complements, therefore, information on void ratio. Also as expected, the 

observed value of the void ratio is significantly lower at the top of the soil sample (i.e. 

0.652) than its corresponding value at the bottom (i.e. 0.876). This shows that the 

simulation is predicting collapse compression on wetting, and this is obviously greatest at 

the top of the sample, where wetting has progressed furthest. The final value of void ratio 

at the bottom of the FE mesh is slightly lower than the initial value of void ratio (i.e. 0.879, 

see Table 7.7) meaning again that water has already reached the bottom of the mesh at 

this final time (i.e. t=82.945min) and collapse compression behaviour has commenced at 

the bottom of the mesh by the end of the test.  

Figure 7-11b shows that the hardening parameter p0
* has reduced in value due to the 

wetting process, particularly towards the top of the sample where the wetting has 

progressed further. This reduction of p0
*, even though yielding on the LC surface is 

occurring (producing collapse compression), is entirely as expected. Mean Bishop’s stress 

p* is reducing during wetting, but with the stress point remaining at the corner of SD and 

LC yield surfaces, and simultaneous yielding on both surfaces occurring throughout. The 

net inward movement of the LC surface during this process (indicated by the reduction of 

p0
*), which keeps the stress point on the LC surface, is made up of a large inward coupled 

movement of the LC surface due to the plastic increase of Sr associated with yielding on 

the SD surface and a smaller direct outward movement of the LC surface due to yielding 

on the LC surface itself. It is only the latter component that is associated with the 

occurrence of plastic volumetric strain.  

Inspection of Figure 7-11 shows that contours of void ratio and of hardening parameter p0
* 

are clearly not horizontal, indicating significant variation with radius of these two variables. 

This is not an error in the FE predictions, and neither is it specifically associated with the 

use of the Wheeler et al. (2003) constitutive model (qualitatively similar variations of void 

ratio with radius were predicted with an equivalent FE simulation employing the Barcelona 

Basic Model as the mechanical constitutive model). A full explanation for the predicted 

variations with radius is given in Section 7.9.3.4.  
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 (a) 

 (b) 

Figure 7- 10 Computed results at final time; (a) degree of saturation Sr; (b) hardening parameter sD
*. 

sD
* (MPa) 
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 (a) 

 (b) 

Figure 7- 11 Computed results at final time; (a) void ratio e; (b) hardening parameter p0
*. 

Figure 7-12 presents the results for horizontal displacements (Figure 7-12a) and vertical 

displacements (Figure 7-12b). As expected, horizontal displacements are effectively zero 

(i.e. 3.2·10-17 m) along the axisymmetric vertical axis, and vertical displacements are 
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effectively zero (5.8·10-06 m) on the bottom boundary of the FE mesh, as imposed with the 

mechanical boundary conditions (see Figure 7-8). Horizontal displacements throughout 

the FE mesh are towards the axisymmetric vertical axis (i.e. negatives values of horizontal 

displacements) and vertical displacements are downwards (negative values of vertical 

displacement). This is simply a consequence of the occurrence of wetting-induced 

collapse compression producing compression in both horizontal and vertical directions. 

Horizontal displacements are largest in the upper part of the sample, where wetting has 

progressed further and the collapse compression is greatest. Vertical displacements are 

also greatest at the top of the mesh, but this simply reflects the accumulated vertical 

compression between the bottom of the mesh (which is assumed not to displace 

vertically) and the point in question.  

Both horizontal and vertical displacements show significant variation with radius (contours 

of ux and uy are not horizontal in Figure 7-12). This is discussed further below. Figure 7-13 

shows the final deformed shape of the sample (compared against the original shape). This 

highlights the marked reduction of sample diameter in the upper part of the sample, where 

large wetting induced collapse compression has occurred, leading to compressive 

straining in both vertical and horizontal directions. Figure 7-13 also shows the marked 

non-uniformity of vertical displacement across the top boundary of the sample, as a 

consequence of imposing a flexible stress-controlled boundary condition on this boundary.  

 (a) 
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 (b) 

Figure 7- 12 Computed results at final time; (a) horizontal displacements ux; (b) vertical displacements uy. 

 

Figure 7- 13 Original and deformed sample. 

7.9.3.2. Temporal evolution at fixed positions 

This section examines temporal evolutions of pore liquid pressure, void ratio, degree of 

saturation, vertical displacement and horizontal displacement, at three selected points 

shown as A, B and C in Figure 7-14.  
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Figure 7- 14 Positions of A, B and C in the finite element mesh. 

Figure 7-15 shows how the pore liquid pressure ul varies with time at points A, B and C. 

As expected, at A (the highest position analysed, almost at the top of the soil sample) the 

variation of pore liquid pressure changes from the initial value ul=-1.8 MPa to almost the 

final value imposed on the top boundary (ul=0.04 MPa) (see Section 7.9.1). As illustrated 

in Figure 7-15, pore liquid pressure initially shows no change at points B and C, before 

finally starting to rise, first at B and then at C. This is entirely to be expected, with pore 

liquid pressure rising later the greater the distance from the boundary where wetting is 

applied.  
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Figure 7- 15 Temporal evolution of pore liquid pressure ul at points A, B and C.  

Figure 7-16a gives information on void ratio and Figure 7-16b on degree of saturation 

changes against time at points A, B and C. As expected, degree of saturation starts to rise 

A 

B 

C 
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earlier and shows a greater final rise the closer the point is to the top boundary. Similarly, 

void ratio starts to fall earlier and shows a greater final fall the closer the point is to the top 

boundary. This simply reflects the gradual progression of wetting, and associated collapse 

compression, downwards through the sample from the top boundary where the wetting is 

imposed.  

Figure 7-17 plots computed horizontal (Figure 7-17a) and vertical (Figure 7-17b) 

displacements against time for points A, B and C. Again it is possible to observe the effect 

of the wetting gradually progressing down through the sample.  
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Figure 7- 16 Temporal evolution analysis at points A, B and C: (a) void ratio e; (b) degree of saturation Sr.  
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Figure 7- 17 Temporal evolution analysis at points A, B and C: (a) vertical displacements uy; (b) horizontal 

displacements ux. 
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7.9.3.3. Results from a vertical cross section at different times 

This section shows the evolution, at different times, of several key variables of the model 

along the vertical cross section YY illustrated in Figure 7-18.  

 

Figure 7- 18 Vertical cross section YY. 

Figure 7-19 examines how the pore liquid pressure varies along YY at four different times 

(t1, t2, t3 and t4 where t1=0min is the starting time of the test, t4=82.945min corresponds to 

the final time, t2=35.438min and t3=62.778min are two intermediate time values). At t1, the 

value of pore liquid pressure is constant for the full vertical cross section YY and is equal 

to the imposed initial value (ul=-1.8MPa). At t2, the influence of the wetting from the top 

boundary has reached approximately half way down through the mesh, with pore liquid 

pressure still unchanged (ul=-1.8MPa) in the lower part of the finite element mesh. By the 

final time t4 the influence of the wetting has reached all parts of the specimen, although 

the rise of pore water pressure is still relatively small at the base of the FE mesh.  
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Figure 7- 19 Computed results of pore liquid pressure for vertical cross section YY at different times.  
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Figures 7-20, 7-21 and 7-22 show, for the vertical cross section YY, the variations of void 

ratio e, hardening parameter p0
*, degree of saturation Sr, hardening parameter sD

*, vertical 

displacement uy and horizontal displacement ux, at times t1, t2, t3 and t4. All the variations 

shown in Figures 7-20 to 7-22 are consistent with wetting and associated collapse 

compression gradually progressing downwards through the soil from the top boundary.  

0 0.01 0.02 0.03 0.04
Vertical distance from base of mesh; m

0.65

0.7

0.75

0.8

0.85

0.9

V
o

id
 r

at
io

, e

t1 = 0.0 min
t2=35.438 min
t3=62.778 min
t4=82.945 min

t1=t initial

t4=t final

(a)

t2

t3

 

0 0.01 0.02 0.03 0.04
Vertical distance from base of mesh; m

0.6

0.8

1

1.2

1.4

1.6

H
ar

d
en

in
g

 p
ar

am
et

er
, p

0* ; 
M

P
a

t2

t3

(b)

t1=t initial

t4=t final

 

Figure 7- 20 Computed results for vertical cross section YY at different times: (a) void ratio e; (b) hardening 

parameter p0
*. 
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Figure 7- 21 Computed results for vertical cross section YY at different times: (a) degree of saturation Sr; (b) 

hardening parameter sD
*.  
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Figure 7- 22 Computed results for vertical cross section YY at different times: (a) vertical displacements uy; (b) 

horizontal displacements ux.  

7.9.3.4. Results from an horizontal cross section at different times 

This section shows the evolution of several key variables of the model along the horizontal 

cross section XX illustrated in Figure 7-23. The analysis is made for the four same times 

presented in the previous section (i.e. t1, t2, t3 and t4).  

 

Figure 7- 23 Horizontal cross section XX.  

Figure 7-24 presents how the pore liquid pressure varies across the horizontal cross 

section XX at the four mentioned times (t1, t2, t3 and t4). As expected, the initial value of 

pore liquid pressure (i.e. ul=-1.8MPa) is observed along the horizontal cross section for 

t=0min. As time progresses the value of ul gradually increases (as expected), and at any 

particular time there is no noticeable variation of ul with radius.   

X X 
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Figure 7- 24 Computed results of pore liquid pressure for horizontal cross section XX at different times. 

Figure 7-25 and 7-26 show how the void ratio e, hardening parameter p0
*, degree of 

saturation Sr, hardening parameter sD
* vary with radius across the cross-section XX at the 

four different times t1, t2, t3 and t4. The figures clearly show the expected increase of Sr 

and decrease of e with time, as wetting progresses at the level of cross-section XX. 

However, what is also clear from Figure 7-25, is that, at any given time after the start of 

wetting, void ratio e and hardening parameter p0
* show significant variation with radius. 

Close inspection of Figure 7-26 shows that degree of saturation Sr and hardening 

parameter sD
* also vary slightly with radius (the latter is almost imperceptible).  
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Figure 7- 25 Computed results for horizontal cross section XX at different times: (a) void ratio e; (b) hardening 

parameter p0
*. 
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Figure 7- 26 Computed results for horizontal cross section XX at different times: (a) degree of saturation Sr; 

(b) hardening parameter sD
*. 

The variations with radius of void ratio e, degree of saturation Sr and other variables 

shown in Figures 7-25 and 7-26 and also apparent in various contours plots such as 

Figure 7-11 and 7-10, are a consequence of the fact that, as wetting progresses, a 

spatially varying total stress field (and, hence, net stress field) develops within the sample. 

Inspection of Figure 7-13 (the deformed shape of the sample) shows that, with wetting 

progressing faster at the top of the soil sample than at the mid-plane (represented by the 

bottom of the FE mesh), at any given time there will be greater radial compression at the 

top than at the mid-plane. This strain pattern produces changes in the total stress field 

within the statically indeterminate problem. For example, shear stresses will develop on 

horizontal planes, as the soil closer to the top boundary attempts to deform horizontally 

(due to wetting induced collapse compression) and is restrained by the soil below. As this 

process develops mean total stress p (and mean net stress p ) becomes non-uniform 

throughout the sample and deviator stress q becomes non-zero and non-uniform.  

Given the development of shear stresses on horizontal planes described above (and 

development of complementary shear stresses on vertical planes), rotation of principal 

stress directions also occurs within the interior of the sample, with axial (vertical) and 

radial (horizontal) stresses no longer principal stresses. The out-of-plane (circumferential) 

stress remains a principal stress. At any point within the interior of the sample all three 

principal stresses can be different in magnitude, and mean net stress p , scalar value of 

deviatoric stress q and Lode angle θ all vary both spatially and temporally.  
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Figure 7-27 shows the variation of mean net stress p  and scalar value of deviatoric 

stress q (defined in Appendix A.1 by Equation (A1.23)) with radius across the horizontal 

cross section XX at the four different times t1, t2, t3 and t4. This shows that initially (at t=t1) 

mean net stress p  is uniform across the cross-section at p =0.6 MPa and deviatoric 

stress q is zero across the cross-section (this applies through the entire sample at t=t1=0). 

However, as time progresses, p  becomes non-uniform, with higher values close to axis 

of symmetry and lower values towards the outer boundary. At the same time, significant 

values of deviatoric stress q develop. At times t3 and t4, values of q are highest on the axis 

of symmetry and at the outer boundary, with a near isotropic stress state (q≅0) at an 

intermediate radius of approximately 0.013 m. At time t4, the plot of q against radius 

appears to have a discontinuity of gradient at the point where q is zero. However, this is 

simply a consequence of the use of the generalised scalar value of q (which is always 

positive for anisotropic stress states) and the fact that the stress path passes through the 

origin in the deviatoric plane at this point (with a 180° change in Lode angle).  

The fact that the mean net stress p  and deviatoric stress q both vary with radius once 

wetting commences, explains the observed variation with radius of variables such as void 

ratio e and degree of saturation Sr. As points at different radii are following different 

imposed net stress paths it is inevitable that the mechanical and water retention 

responses of the soil at these different points will differ. In particular, mean net stress p  is 

highest close to the axis of radial symmetry (see Figure 7-27a) and relatively high values 

of deviatoric stress q also occur close to the axis of symmetry (see Figure 7-27b), and 

these facts explain why collapse compression is greatest close to the axis of symmetry 

(see lower values of void ratio close to the axis of symmetry in Figure 7-25a and Figure 7-

11a). A FE simulation of the same boundary value problem but using BBM as the 

mechanical constitutive model produced the same qualitative variation of void ratio with 

radius. It is important therefore to appreciate that the prediction of soil response varying 

with radius is not a consequence of the choice of constitutive model.  
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Figure 7- 27 Computed results for horizontal cross section XX at different times: (a) mean net stress p ; (b) 

deviatoric stress q. 

Figure 7-28 shows the predicted variations of vertical displacement uy and horizontal 

displacement ux with radius across the horizontal cross section XX at the four different 

times t1, t2, t3 and t4. 
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Figure 7- 28 Computed results for horizontal cross section XX at different times: (a) vertical displacements uy; 

(b) horizontal displacements ux. 

7.9.3.5. Final discussion 

Sections 7.9.3.1 to 7.9.3.4 showed that the results of the FE simulation of this boundary 

value problem were qualitatively sensible. This included the prediction of variables such 

as void ratio e and degree of saturation Sr varying with radius once the wetting 
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commenced (this was shown to be consistent with the development of a non-uniform net 

stress field and it also occurred when a more conventional mechanical constitutive model 

was used within the FE code). The fact that the results of FE simulations for a boundary 

value problem involving both spatial and temporal variation of variables are qualitatively 

sensible suggests that the FE code is working correctly following the implementation of 

the following implementation of the generalised 3D version of the Wheeler et al. (2003) 

constitutive model.  

Figure 7-29 shows the variation of void ratio from the FE results at individual points A, B 

and C (see Figure 7-14) plotted against the corresponding values of p* and s* at these 

points, by representing the two orthogonal 2-dimensional views of e:lnp*:lns* introduced in 

Sections 2.7.2 and 4.4. Figure 7-30 shows the corresponding variation of degree of 

saturation from the FE results at points A, B and C. Also shown in these figures, by 

dashed lines, are the two dimensional views of the unique planar surfaces in e:lnp*:lns* 

and Sr:lnp*:lns* spaces predicted by the constitutive model for both isotropic stress states 

and for critical states (assuming simultaneous yielding on both LC and SD yield surfaces, 

as was occurring throughout the FE simulation).  

If the stress states at points A, B and C had remained isotropic throughout the FE 

simulation of wetting (as s* and p* both decreased), the FE results shown in Figures 7-29 

and 7-30 should have exactly followed the dashed lines corresponding to the constitutive 

model predictions for isotropic stress states. However, the FE simulation shows deviatoric 

stress q gradually developing as the wetting progresses. As a consequence, the expected 

behaviour is that the FE simulation results shown in Figures 7-29 and 7-30 should 

gradually drift away from the dashed lines corresponding to isotropic stress states and 

move slightly towards the dashed lines corresponding to critical states. Careful inspection 

of the FE results shown in Figures 7-29 and 7-30 shows that this is precisely what 

happens. The FE results only move very slightly towards the dashed lines corresponding 

to critical states, because deviator stresses remain much lower than those corresponding 

to critical states.  

Overall, therefore, the evidence presented in Section 7.9 reinforces the conclusion that 

the implementation of the new constitutive model within the FE code is working correctly 

during the solution of a boundary value problem involving both spatial and temporal 

variations of variables.  
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Figure 7- 29 Orthogonal 2-dimensional views of FE predictions in the e:lnp*:lns* space for A, B and C.  
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Figure 7- 30 Orthogonal 2-dimensional views of FE predictions in the Sr:lnp*:lns* space for A, B and C. 
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8. Conclusions and recommendations 

The following sections are intended to summarise the main conclusions of the research 

described within this thesis including some suggestions and recommendations for the 

future work.   

8.1. Constitutive modelling 

8.1.1. Isotropic normal compression relationships 

Two unique normal compression relationships predicted by the model for simultaneous 

yielding on the LC and SD yield surfaces were presented in Chapter 2: one of them linking 

specific volume v to mean Bishop’s stress p* and modified suction s*, and the other one 

linking degree of saturation Sr to p* and s*. They define two planar surfaces, one in 

v:lnp*:lns* space and one in Sr:lnp*:lns* space. A limitation on these relationships predicted 

was that the soil remains under unsaturated conditions (i.e. 0<Sr<1). 

The model prediction of unique planar surfaces in v:lnp*:lns* space and in Sr:lnp*:lns* 

space during simultaneous yielding on LC and SD was validated against the experimental 

results of Sivakumar (1993) on compacted speswhite kaolin. The fact that the proposed 

planar surfaces for v and Sr provided an excellent match to the experimental results of 

Sivakumar (1993) was a significant component of experimental validation of the Wheeler 

et al. (2003) model. The predicted existence and predicted form of the two unique planar 

surfaces arose from the combination of several key components of the model, most 

notably the existence and assumed mathematical forms of the two coupling relationships 

in the model (Equations (2-20) and (2-22)) something that was not entirely clear at the 

time of the original formulation of the model by Wheeler et al. (2003).  

Furthermore, it was shown that presenting experimental normal compression results in 

these spaces (i.e. v:lnp*:lns* and Sr:lnp*:lns*) gave an ideal method for determining the soil 

parameters employed within the coupled model. Based on this result, a new methodology 

was proposed to calibrate the constitutive model against experimental data, which was 

demonstrated with the experimental data of Sivakumar (1993). 

8.1.2. Critical state relationships 

The previous analysis under isotropic normal compression conditions was extended to 

critical states. Assuming again simultaneous yielding on the LC and SD surfaces, and that 

the soil remained under unsaturated conditions (i.e. 0<Sr<1), a pair of critical state 

relationships expressing the ultimate values of specific volume and of degree of 
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saturation, in terms of mean Bishop’s stress and modified suction variations, were 

developed from the model equations. The representation of these critical state 

relationships in v:lnp*:lns* and Sr:lnp*:lns* spaces showed a second pair of unique planar 

surfaces. Equivalent to the work presented when developing the isotropic normal 

compression relationships, the experimental critical state data of Sivakumar (1993) were 

plotted in these spaces. The results showed a very satisfactory fit to the experimental 

data. 

In particular the results showed that the two planar surfaces for v were parallel, as 

predicted by the model, but that the vertical spacing between the critical state and 

isotropic normal compression surfaces for v was significantly overpredicted by the model 

(by a factor of approximately 2). As mentioned in Chapter 4, this is a common observation 

when the predictions of Modified Cam Clay (MCC) are compared with experimental data 

for saturated soils. It can therefore be viewed as a weakness of MCC that has been 

transferred through to the extended version of the Wheeler et al. (2003) model, by the 

assumption of MCC as the saturated base model. 

The experimental results of Sivakumar (1993) presented also showed that the two planar 

surfaces for Sr were parallel, as predicted by the model. It was observed in this case that 

the vertical spacing between the critical state and isotropic normal compression surfaces 

for Sr predicted by the model provided a good match to the experimental results. 

The relationships proposed and experimentally validated using the Sivakumar (1993) 

data, provided an easy and understandable framework to represent aspects of the 

observed coupling between mechanical and water retention behaviour in unsaturated 

soils. Both pairs of planar surfaces (i.e. isotropic normal compression planar surfaces for v 

and Sr, and critical state planar surfaces for v and Sr) using the Wheeler et al. (2003) 

constitutive model (and the extension of the model to triaxial stress states) were 

presented in a rather simple mathematical form and, as illustrated with the results of 

Sivakumar (1993), were capable of capturing well the variations of void ratio and degree 

of saturation when irreversible changes of both variables took place due to simultaneous 

yielding on SD and LC yield surfaces. The way in which these mathematical expressions 

were presented showed a useful parallelism with the Cam Clay family of models, in 

describing void ratio changes under isotropic stress conditions and at critical states, but 

also, in this case, extended to include degree of saturation changes under isotropic stress 

conditions and at critical states. Although not all the predictions presented showed an 

excellent match with the experimental data of Sivakumar (in particular the over-prediction 

of the spacing between the normal compression and critical state surfaces for v), this new 
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approach is thought to be a significant contribution to understanding and modelling of the 

coupling between mechanical and water retention behaviour in unsaturated soils.  

8.1.3. 3D extended version of the constitutive mode l 

Before implementing the coupled mechanical- water retention constitutive model into a 

finite element program it was necessary to extend the formulation to 3D stress conditions 

(the original formulation proposed by Wheeler and co-workers was presented only for 

isotropic stress conditions). The 3D extended version of the fully coupled model was 

proposed in Chapter 5 and validated against experimental data of seventeen triaxial tests 

performed by Sivakumar (1993).  

The generalised 3D model was formulated in terms of the three invariants (p*, J, θ) 

(where: p* is the first invariant of the Bishop’s stress tensor: p*=1/3(σ1
*+σ2

*+σ3
*); J is the 

second invariant of the deviatoric Bishop’s stress tensor: sij
*=σij

*–δijp
* and θ is the Lode 

angle) and the modified suction (s*).  

The generalised version of the constitutive model was afterwards partially validated 

against experimental results of Sivakumar (1993) involving isotropic and triaxial stress 

paths at three different constant values of suction (100 kPa, 200 kPa and 300 kPa). 

Overall, the model predictions provided a reasonable match to the mechanical and water 

retention behaviour observed in the experimental tests of Sivakumar (1993). The 

significant mis-matches between model predictions and experimental results arose 

because the spacing between normal compression planar surface and critical state planar 

surface in the v:lnp*:lns* space is over-predicted and because the development of shear 

strain during plastic straining is not accurately predicted. These weaknesses are also 

apparent in the Modified Cam Clay model for saturated soils which has been used as the 

saturated base model in the extension of the Wheeler et al. (2003) model to triaxial stress 

states. The weaknesses seem to arise because of the choice of elliptical cross-sections of 

the LC yield surface and the use of an associated flow rule on this surface.  

From the comparison of model simulations with the experimental results of Sivakumar 

(1993) it appears that the extended model of Wheeler et al (2003) is able to represent the 

mechanical and water retention behaviour of unsaturated soils with the same level of 

success as can be achieved by Modified Cam Clay in representing the mechanical 

behaviour of saturated soils. If this is true, it represents a major success on the part of the 

Wheeler et al. (2003) model.  
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It should, however, be appreciated that the comparison of model predictions with the 

experimental results of Sivakumar (1993), presented in this research, represents only a 

partial validation of the extended model of Wheeler et al. (2003). In particular, the results 

of Sivakumar (1993) do not show directly the effects of hydraulic hysteresis on water 

retention and mechanical behaviour, because Sivakumar’s tests did not generally involve 

reversals of suction (the tests shown here involved wetting during the initial equalization 

stage and then constant suction during the remainder of each test). This absence of the 

effects of hydraulic hysteresis on the soil behaviour reported in the tests of Sivakumar 

(1993) means that the mechanical behaviour in these tests can be adequately 

represented by a more conventional unsaturated elasto-plastic mechanical constitutive 

model expressed in terms of net stresses and suction (see, for example, Wheeler and 

Sivakumar, 1995). The additional achievement of the extended Wheeler et al. (2003) 

model in simulating these tests is that it is also able to accurately predict the variation of 

degree of saturation Sr.  

Full validation of the extended model of Wheeler et al. (2003) will require comparison with 

experimental results involving strong reversals of suction, where the impact of hydraulic 

hysteresis on water retention and mechanical behaviour is crucial. Inability to model 

properly this type of situation was identified by Wheeler et al. (2003) as a weakness of 

existing mechanical constitutive models expressed in terms of net stresses and suction, 

and was the motivation behind their development of a new model. However, it is 

reassuring to see, in the partial validation of the extended Wheeler et al. (2003) model 

against the experimental results of Sivakumar (1993) presented here, that in developing a 

model capable of dealing with the complexities of the effects of hydraulic hysteresis on 

mechanical behaviour it has not been necessary to sacrifice any accuracy in the modelling 

of unsaturated soil behaviour when hydraulic hysteresis is not involved. 

8.2. Numerical modelling 

8.2.1. Numerical integration 

The fundamental elasto-plastic components of the constitutive model (i.e. flow rules, 

hardening laws, plastic multipliers and elastic and elasto-plastic relationships) were 

presented in Chapter 3 for isotropic stress conditions along with a methodology to identify 

the elasto-plastic mechanism active. These ideas were then extended in Chapter 5 to the 

3D version of the constitutive model, and were, afterwards, combined in Chapter 6 to 

present a complete strain-driver algorithmic formulation that enabled the update of the 

stress state variables (i.e. Bishop’s stress tensor, modified suction, net stress tensor and 
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matric suction); updating also degree of saturation and void ratio. This was achieved by 

expressing the equations of the problem in terms of strain and matric suction increments, 

which are the driven or known inputs of the algorithmic scheme described.  

8.2.2. Explicit strain-driver algorithms 

Two different numerical approaches to integrate the new constitutive model (i.e. first order 

error forward Euler and second order error modified Euler) were presented in Chapter 6. 

Several aspects of their computational performance were discussed, highlighting the 

consistency of the computed results. 

The complexity associated with the mathematical equations involved in the integration of 

the constitutive model of Wheeler et al. (2003) justified the extensive analysis of 

verification and checking presented in Chapter 6. This checking process was an important 

step before including this strain-driver algorithm into the finite element program 

CODE_BRIGHT. All the information presented in the analysis complemented prior 

discussions on the formulation proposed to numerically integrate the constitutive model. It 

was shown that, for the set of stress paths analysed (involving both one plastic 

mechanism and two plastic mechanisms acting simultaneously), the computed results 

obtained were consistent. This suggests that the constitutive model has been correctly 

integrated. The algorithm was then implemented in the finite element program 

CODE_BRIGHT to solve boundary value problems.  

8.3. Implementation into CODE_BRIGHT 

In Chapter 7, the strain-driver formulation presented and analysed within Chapter 6 was 

implemented into CODE_BRIGHT. Some aspects of the existing finite element program 

had to be extended in order to implement the new strain-driver scheme. Furthermore, 

some modifications of the strain-driver algorithm were also necessary to control the strain 

and matric suction increment sizes. A study of the computational performance of the 

implemented constitutive model was also conducted in Chapter 7, and the chapter then 

finished with the analysis of a simple boundary value problem.  

8.3.1. Computational performance of the implemented  constitutive model 

The main modification in the proposed explicit algorithm was the inclusion of a subdividing 

strategy for strain and suction increments (i.e. substepping). The new implemented 

subroutine allowed the subdivision of the strain and suction increments into a specified 

number of substeps (referred to as Nsubs) in order to provide smoother computations to 

the non-linear solution. As mentioned above, re-arrangements were also necessary within 
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CODE_BRIGHT, which essentially were associated with updating of the degree of 

saturation, as the implemented constitutive model updates both types of state variable 

(stresses and degree of saturation) with no need of a separate model for the water 

retention behaviour.  

Because of these modifications to the strain-driver subroutine and to the main finite 

element program, an analysis of computational aspects was presented, studying the 

performance of the new implemented model. The first part of the analysis consisted of 

studying the influence of the number of substeps on the CPU time. Also, the relative error 

of the computed void ratio and degree of saturation were related to the number of 

substeps adopted. A simple stress path involving isotropic loading and subsequent 

shearing at constant matric suction of a cylindrical sample was used in the analysis. As 

expected, an increase of the CPU time required for the computations was generally 

observed when increasing the number of substeps. This analysis essentially confirmed 

that the computed results from the newly implemented constitutive model were consistent, 

suggesting that the algorithm has been correctly implemented within the finite element 

program.  

The previous investigation was complemented with a second analysis, intended to provide 

(partial) verification that the generalized 3D version of the Wheeler et al. (2003) model has 

been correctly implemented within the FE code. This was achieved by performing a finite 

element simulation of a problem where the results could be compared with corresponding 

results produced directly with the strain-driver algorithm. The output from the driver 

algorithm was itself previously verified by checking that isotropic loading states and critical 

states involving simultaneous yielding on LC and SD surfaces were correctly predicted to 

fall on the appropriate planar surfaces in v:lnp*:lns* and Sr:lnp*:lns* spaces (see Sections 

5.5 and 6.6). Of course, using the output from the strain-driver algorithm as the reference 

against which the FE simulations were compared placed considerable restriction on the 

type of problem that could be analysed. In particular, the boundary value problem studied 

with the FE code had to be one where there was no spatial variation of suction or of other 

variables, so that it was essentially the same as a single element simulation (rather than a 

true boundary problem). This fact that the problem analysed involved no spatial variation 

of any variable means that this exercise can only be considered as partial verification of 

the correct FE implementation of the constitutive model.  

The analysis showed that FE simulations were indistinguishable from strain-driver 

simulations in all respects, including the predicted stress path in the q:p* plane, the 

predicted variations of void ratio e and degree of saturation Sr and the development of 
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shear strain (and hence axial strain). Given that the results of the strain-driver algorithm 

had already been verified, this comparison provided verification (at least for the limited 

condition of a boundary value problem involving no spatial variation of variables) of correct 

implementation in the finite element code.  

8.3.2. Boundary value problem 

A FE simulation of a simple boundary value problem, incorporating spatial variation of 

suction and other variables and therefore full solution of the coupled hydro-mechanical 

governing equations was presented in Chapter 7. The objective was simply to 

demonstrate the FE code, incorporating the extended 3D version of the Wheeler et al. 

(2003) constitutive model, working on a full boundary value problem. As the full boundary 

value problem analysed involved highly complex non-linear constitutive relations there 

was no analytical solution against which the FE results could be compared. Neither was 

there an alternative numerical solution against which the results could be compared. This 

exercise did not, therefore, constitute a formal verification of the correct implementation of 

the new constitutive model with the FE code. All that could be checked was that the FE 

code ran satisfactorily and that the results were qualitatively sensible. This provided 

increased confidence, but not formal verification, that the constitutive model has been 

correctly implemented in the FE code.  

The results of the FE simulation of this boundary value problem were qualitatively sensible 

(Sections 7.9.3.1 to 7.9.3.4). This included the prediction of variables such as void ratio e 

and degree of saturation Sr varying with radius once the wetting commenced (this was 

shown to be consistent with the development of a non-uniform net stress field and it also 

occurred when a more conventional mechanical constitutive model was used within the 

FE code). The fact that the results of FE simulations for a boundary value problem 

involving both spatial and temporal variation of variables were qualitatively sensible 

suggested that the FE code is working correctly following the implementation of the 

following implementation of the generalised 3D version of the Wheeler et al. (2003) 

constitutive model.  

A final analysis supporting that the FE implementation of the new constitutive model is 

working correctly was provided at the end of Chapter 7 by representing the two orthogonal 

2-dimensional views of e:lnp*:lns* and Sr:lnp*:lns* spaces (see Figures 7-29 and 7-30). The 

two dimensional views of the unique planar surfaces in e:lnp*:lns* and Sr:lnp*:lns* spaces 

predicted by the constitutive model for both isotropic stress states and for critical states 

were also shown in these figures by dashed lines (assuming simultaneous yielding on 
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both LC and SD yield surfaces, as was occurring throughout the FE simulation). If the 

stress states of the simulations plotted had remained isotropic throughout the FE 

simulation of wetting, the FE results should have exactly followed the dashed lines 

corresponding to the constitutive model predictions for isotropic stress states. However, 

the FE simulation showed deviatoric stress q gradually developing as the wetting 

progressed. As a consequence, the expected behaviour is that the FE simulation results 

should gradually drift away from the dashed lines corresponding to isotropic stress states 

and move slightly towards the dashed lines corresponding to critical states. Careful 

inspection of the FE results showed that this was precisely the case. The FE results only 

moved very slightly towards the dashed lines corresponding to critical states, because 

deviator stresses remained much lower than those corresponding to critical states.  

Overall, therefore, the evidence presented in Section 7.9 reinforces the conclusion that 

the implementation of the new constitutive model within the FE code is working correctly 

during the solution of a boundary value problem involving both spatial and temporal 

variations of variables.  

8.4. Recommendations for future work 

The extension, integration and further validation of the 3D version of the constitutive 

model presented in this thesis has helped to identify issues of the formulation that could 

be improved. In particular, the strain-driver formulation that was developed provides a 

mathematical framework to implement the constitutive model into a finite element 

program. There are obviously other types of algorithm that could be adopted; for example 

explicit formulations with automatic error control, such as those originally proposed by 

Sloan (1987); or implicit integration schemes. Also several improvements related to 

different computational aspects of the algorithms proposed are yet to be addressed. Now 

that the constitutive model has been successfully implemented in a finite element 

program, further analyses of different boundary problems would also be desirable. A more 

detailed discussion on possible new lines of future investigation is given below. 

8.4.1. Constitutive modelling 

The fully coupled constitutive model proposed by Wheeler et al. (2003) has now been 

extended to 3D stress conditions and has been partially validated against the 

experimental data provided in Sivakumar (1993). An interesting following step would be to 

investigate the possibility of including in the model other types of coupling, such as 

temperature and chemical effects. Also interesting would be to examine the response 

considering other possible formulations including, for instance, visco-plasticity. 
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The inconsistency identified in the Wheeler et al. (2003) constitutive model associated 

with occurrence of plastic volumetric strains while the soil is fully saturated or fully dry (see 

Section 2.6.3), should be further investigated in order to find a more satisfactory 

alternative than simply assuming κs=0. Related to this, it may be desirable to explore and 

analyse other possibilities in describing the water retention behaviour.  

An important future research is the full experimental validation of the extended model of 

Wheeler et al. (2003) by further investigating the effects of hydraulic hysteresis on water 

retention and mechanical behaviour. As described above, full validation of the new 

extended model will require comparison with experiments involving strong reversals of 

suction, where the impact of hydraulic hysteresis on water retention and mechanical 

behaviour is crucial. 

It would be an interesting future line of research to investigate further the validity of the 

isotropic normal compression and critical states relationships developed for the void ratio 

(and for the degree of saturation) by comparing them against more experimental results 

on unsaturated soils such as those recently presented in the work of Raveendiraraj 

(2009).  

8.4.2. Algorithmic formulation 

It would be very interesting to integrate this constitutive model using an automatic 

substepping algorithm similar to those proposed in Sloan et al. (1987) and subsequent 

papers. This integration scheme would optimise the efficiency of the computation as it 

would control, automatically, the size of the strain (and matric suction) increments 

depending on the non-linearity of the problem (see, for instance, Sheng et al., 2003) whilst 

maintaining second order accuracy.     

Another important improvement that may be addressed is associated with the proposed 

intersection method between the stress path and the different surfaces. This intersection 

takes place when changing from elastic to elasto-plastic behaviour and it may be of 

interest to extend the analysis presented here using other intersection schemes such as 

those proposed in Abbo (1997).  

Also another important aspect that still needs to be addressed is the inclusion in the 

algorithmic formulation (and subsequent full implementation) of the cases where Sr=1 or 

Sr=0.  
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8.4.3. Finite element implementation 

Finally, another important area of further research would be to extend the analysis of 

boundary value problems using this and others constitutive models. Indeed, it would be an 

interesting future line of investigation to compare the solution obtained by solving a well-

defined boundary value problem when using the new implemented model presented in 

this research and when using other more conventional mechanical and water retention 

constitutive models such as the Barcelona Basic Model and the van Genuchten equation 

respectively.   
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Appendix A1: Stress conventions and stress-strain r elationships 

A1.1 Stress conventions 

The total stresses are forces per unit area and can be defined as:  

0

lim

i

j
ij

i
A

F

A
→

 
=  

 
σ  (A1. 1) 

where Fj is the force in the direction j and Ai is the area normal to the direction i.  

The total stresses can be represented in the three dimensions by a symmetric 3x3 tensor:  

xx xy xz

ij yy yz

zzsym

 
 =  
 
 

σ τ τ
σ σ τ

σ
 (A1. 2) 

and, in a more compact form, as a vector (which is the general formulation adopted in this 

research):  

( )T
xx yy zz xy xz yz=σ σ σ σ τ τ τ  (A1. 3) 

As mentioned in the text, soil mechanics sign convention is adopted in this work with 

positive compression.  

The stress tensor can be also expressed in terms of three independent invariants. A 

possible way to express these invariants is given below:  

( )1 xx yy zzI tr= = + +σ σ σ σ  (A1. 4) 

where tr(.) is the trace of the tensor (i.e. sum of the diagonal terms).  

( )2

2

1 1

2 2ij jiI tr= = σσ σ  (A1. 5) 

( )3

3

1 1

3 3ij kl liI tr= = σσ σ σ  (A1. 6) 
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In soil mechanics, however, it is common to express these invariants in terms of the mean 

total stress p, the deviatoric stress q and the Lode angle θ. The mean total stress p is 

simply defined as:  

( )1 1

3 3 xx yy zz

I
p = = + +σ σ σ  (A1. 7) 

On the other hand, the total stress tensor can be decomposed into the deviatoric stress 

tenor and the hydrostatic stress tensor as: 

0 0

0
xx xy xz

ij ij ij yy yz

zz

p p

s p p p

sym p sym p

−   
   = + = − +   
   −   

σ τ τ
σ δ σ τ

σ
 (A1. 8) 

The second invariant of the deviatoric stress tensor sij can be written as: 

( ) ( ) ( ) ( ) ( )2 22 2 2 2 21 1

2 6 xx yy yy zz zz xx xy yz zxJ tr  = = − + − + − + + +
  

s σ σ σ σ σ σ τ τ τ  (A1. 9) 

From where the following expression of the scalar deviatoric stress q is obtained:  

3q J=  (A1. 10) 

Note that depending on the definition of second invariant of the deviatoric stress tensor, 

the scalar may be also written as:  

23q J=  (A1. 11) 

where, 

( ) ( ) ( ) ( )
1

22 22 2 2 2
2

1

6 xx yy xx zz yy zz xy xz yzJ
  = − + − + − + + +    

σ σ σ σ σ σ τ τ τ  (A1. 12) 

If σ1, σ2, and σ3 are the principal stresses of the stress tensor σij (with σ1>σ2>σ3) the 

expression of the third quantity referred to as Lode angle is written as:  

1 1 2 3

1 3

21
tan

3
−   − += −  −   

σ σ σθ
σ σ

 (A1. 13) 
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Function g(θ) has different expressions for different failure criteria (see Alonso, 1993 for 

further details).  

( ) constant                             Von Misesg c= =θ  (A1. 14) 

( )                                        Tresca
cos

c
g =θ

θ
 (A1. 15) 

( ) sin
              Mohr-Coulomb

1
cos sin sin

3

g =
+

φθ
θ θ φ

 (A1. 16) 

where Φ is the friction angle.  

Note that for triaxial stress conditions (σ2=σ3) and then θ=-30°. Then, for this particular 

stress condition: 

( ) ( )30
3

M
g g= − ° =θ  (A1. 17) 

where M is the gradient of the critical state line.  

Instead of total stresses, the constitutive model used within this research employs the 

Bishop’s stress tensor σ*
ij as state variable. From the expression of the Bishop’s stresses 

σ*
ij defined in Chapter 2: 

( )*
ij ij ij a ij r a w ij ij ru S u u S s= − + − = +σ σ δ δ σ δ  (A1. 18) 

where δij is the Kronecker delta, ua is the pore air pressure, uw is the pore water pressure, 

Sr is the degree of saturation, s is matric suction and ijσ  is the net stress tensor. 

Equation (A1.18) can also be expressed in terms of the following tensor: 

*

* *

*

xx xy xz

ij yy yz

zzsym

 
 =  
 
 

σ τ τ
σ σ τ

σ
 (A1. 19) 

Equivalent expressions of the invariants for the Bishop’s tensor can be also developed. 

The mean Bishop’s stress takes the following form: 
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( )* * *1

3 xx xx xxp = + +σ σ σ  (A1. 20) 

The deviatoric Bishop’s stress tensor is defined as:  

* * *

* * * * * *

* * *

0 0

0
xx xy xz

ij ij ij yy yz

zz

p p

s p p p

sym p sym p

   −
   = + = − +   
   −   

σ τ τ
σ δ σ τ

σ
 (A1. 21) 

The second invariant J of the Bishop’s deviatoric stress tensor s*
ij can be written as: 

( ) ( ) ( ) ( ) ( )2 2 2 2* * * * * * * 2 2 21 1

2 6 xx yy yy zz zz xx xy yz zxJ tr  = = − + − + − + + +
  

s σ σ σ σ σ σ τ τ τ  (A1. 22) 

From where the following expression of the scalar deviatoric stress q is obtained:  

3q J=  (A1. 23) 

A1.2 Stress-strain relationships 

The total stresses can be related to the strains with the elasticity tensor:  

ed=σ D ε  (A1. 24) 

where 

11 12 13

22 23

33

44

55

66

0 0 0

0 0 0

0 0 0

0 0

0

e

E E E

E E

E

sym E

E

E

 
 
 
 

=  
 
 
  
 

D  (A1. 25) 

where 

E11=E22=E33=K+4/3G (A1. 26) 

E44=E55=E66=G (A1. 27) 

E12=E23=E13=K–2/3G (A1. 28) 

where G is the elastic shear modulus: 
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( )
1 2

3
2 1

G K
−=

+
υ
υ

 (A1. 29) 

where υ is the Poisson’s ratio and K is the the elastic bulk modulus which are related with 

the Young’s modulus E by: 

( )3 1 2E K= − ν  (A1. 30) 
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Appendix A2: Strain-driver formulation 

The stress-strain relationships for isotropic stress conditions described within Chapter 3 

are a particular case of the stress-strain relationships for the generalised 3D model 

described in Chapter 5. Because of that, only the stress-strain relationships corresponding 

to the most general case of the 3D stress conditions is included below.  

A2.1 Generalised stress-strain relationships 

The expression of the Bishop’s stress tensor σ*
ij was presented in Appendix A.1 and is 

repeated here in order to facilitate the development below. Also the expression of 

modified suction s* and the compact form of the generalised stress *σɶ  and generalised 

strain dεɶ  (introduced in Chapters 2 and 5 respectively) are repeated here.  

( )*
ij ij ij a ij r a w ij ij ru S u u S s= − + − = +σ σ δ δ σ δ  (A2. 1) 

where δij is the Kronecker delta, ua is the pore air pressure, uw is the pore water pressure, 

Sr is the degree of saturation, s is matric suction and ijσ  is the net stress tensor.  

( )*
a ws n u u ns= − =  (A2. 2) 

where n is the porosity. 

( )* * * * *= σ σ σ τ τ τɶ
T

xx yy zz xy yz xz sσ  (A2. 3) 

( )= ε ε ε γ γ γ −ɶ
T

xx yy zz xy yz xz rd d d d d d d dSε  (A2. 4) 

A2.1.1 Elastic behaviour 

For elastic behaviour the generalised stress increment can be related to the generalised 

strain increment by: 

* *=ɶ ɶed dσ D ε  (A2. 5) 

where De
* is the generalised elastic matrix and takes the following form: 
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11 12 13

22 23

33
6 6*

44
1 1

55

66

77

0 0 0 0

0 0 0 0

0 0 0 0
 

0 0 0
 

0 0

0

e x
e

e x

E E E

E E

E

E

sym E

E

E

γ

 
 
 
 

  = =   
  

 
 
 
 

D 0
D

0
 (A2. 6) 

where 

E11=E22=E33=K’+4/3G’=(v/κ)p*+4/3G’ (A2. 7) 

E44=E55=E66=G’=3K’(1-2ν)/(2(1+ν)) (A2. 8) 

E12=E23=E13=K’–2/3G’ (A2. 9) 

E77=γe=(1/κs)s
* (A2. 10) 

where K’ is the elastic bulk modulus, G’ is the elastic shear modulus and ν the Poisson’s 

ratio.  

A2.1.2 Elasto-plastic behaviour 

When a plastic mechanism is active, it is also possible to obtain a general expression to 

compute the increments of generalised stresses: 

* *
epd d=σ D εɶ ɶ  (A2. 11) 

As summarised below, the form of Dep
* depends on which plastic mechanism(s) is (are) 

active (i.e. the LC plastic mechanism alone, the SD or SI mechanism alone, or both LC 

and SD or SI plastic mechanisms active simultaneously). 

A2.1.2.1 Yielding on the LC yield surface alone 

When yielding on the LC surface alone is taking place: 

( )* * *= = −ɶ ɶ ɶ ɶe p
e e LCd d d dσ D ε D ε ε  (A2. 12) 

where the subscript LC indicates the plastic mechanism that is active.  

Using now the flow rule (5.10) for this case considered: 
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( )* *= − χɶ ɶ LC
e LC LCd d dσ D ε m  (A2. 13) 

The plastic multiplier associated with yielding on the LC surface alone dχLC
LC can be 

determined by imposing the consistency condition on the LC yield surface: 

* *
0* *

0

0
T

LC LC
LC

F F
dF d dp

p

∂ ∂ = + = ∂ ∂ 
σ

σ
 (A2. 14) 

Combining with (A2.13) and the hardening law (2.29) with dSr
p set to zero (see Section 

2.6.4 in Chapter 2): 

*
* *

0* * *
0

0

T LC LCT
LC

LCLC LC LC
e LC

F
dF F F

d d p v
p

∂ χ ∂ ∂ ∂    ∂− χ + =    ∂ ∂ ∂ λ − κ     
 

m
σD ε

σ σ
 (A2. 15) 

where mT=(1,1,1,0,0,0). 

Isolating the dχLC
LC the following expression for this plastic multiplier can be obtained: 

χ =
T

LC LC
LC

LC

d
d

h

a ε
 (A2. 16) 

where  

*

T
T LC
LC e

F∂ =  ∂ 
a D

σ
 (A2. 17) 

*
0* * * *

0

T
TLC LC LC LC

LC e

F F F Fv
h p

p λ κ
∂ ∂ ∂ ∂ = − ∂ ∂ ∂ − ∂ 

D m
σ σ σ

 (A2. 18) 

where the subscript LC indicates that the LC mechanism is active.  

Substituting this expression of the plastic multiplier into (A2.13): 

* * *
T

LCLC
e LC ep

LC

d
d d d

h

 
= − = 

 

a ε
σ D ε m D εɶ ɶ ɶ  (A2. 19) 

where, 
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* LCLC
ep

LCD

 
=  
 

A 0
D

0
 (A2. 20) 

with 

( ) 6 66 6

T
LC LC

LC e xx
LC

F

h

 ∂= − ∂ 
*

a
A D Id

σ
 (A2. 21) 

( ) ( ) *

1 1
1/= =LC e sx

D sγ κ  (A2. 22) 

A2.1.2.2 Yielding on the SD or SI yield surface alone 

When yielding on only β=SD or SI is taking place: 

( )* * *
β= = −ɶ ɶ ɶ ɶe p

e ed d d dσ D ε D ε ε  (A2. 23) 

where the subscript β indicates the plastic mechanism active. 

Employing now the flow rule (5.12) for yielding on only SD or SI: 

( )* * β
β β= − χɶ ɶed d dσ D ε m  (A2. 24) 

The plastic multiplier associated with yielding on the SD or SI surface alone dχββ can be 

determined by imposing the consistency condition on the β=SD or SI: 

* *
* *

0
F F

dF ds ds
s s

β β
β β

β

∂ ∂
= + =

∂ ∂
 (A2. 25) 

Combining with (A2.24) and the hardening law (2.29) with dεv
p set to zero (see Section 

2.6.4): 

*
*

* * *
0e r

s s

F
dF F F sdS d s

s s s

ββ
β

β β ββ
β β

β

∂ 
χ ∂ ∂ ∂  ∂γ − χ + − =  ∂ ∂ ∂ λ − κ   

  

 (A2. 26) 

Isolating the dχββ the following expression for this plastic multiplier can be obtained: 

ββ
β

β

χ = rd dS
d

h
 (A2. 27) 
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* e

F
d

s
β

β γ
∂

=
∂

 (A2. 28) 

*
* * * *

1
e

s s

F F F F
h s

s s s s
β β β β

β β
β

γ
λ κ

∂ ∂ ∂ ∂
= − +

∂ ∂ ∂ − ∂
 (A2. 29) 

where the subscript β indicates that the SD or SI mechanism is active.  

Substituting this expression of the plastic multiplier into (A2.24): 

* * *r
e ep

d dS
d d d

h
β β

β
β

 
= − =  

 
σ D ε m D εɶ ɶ ɶ  (A2. 30) 

where, 

*
ep D

ββ

β

 
=  
 

A 0
D

0
 (A2. 31) 

with 

( )
6 6 exβ =A D  (A2. 32) 

( ) *1 1
1ex

F d
D

s h
β β

β
β

γ
 ∂

= +  ∂ 
 (A2. 33) 

A2.1.2.3 Simultaneous yielding on the LC and SD or SI yield surfaces 

When simultaneous yielding is taking place: 

( )* * *
+β= = −ɶ ɶ ɶ ɶe p

e e LCd d d dσ D ε D ε ε  (A2. 34) 

where the subscript β indicates that yielding on the SD or SI surface is active while the 

subscript LC indicates that yielding on the LC surface is also active.  

Considering now the flow rule (5.14):  

( )* * +β +β
β β= − χ − χɶ ɶ LC LC

e LC LCd d d dσ D ε m m  (A2. 35) 

The plastic multiplier dχβ
LC+β associated with yielding on β and the one dχLC

LC+β associated 

with yielding on LC when simultaneous yielding on two surfaces is occurring can be 
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determined by imposing the consistency condition on the LC and on the β yield surfaces 

at the same time: 

* *
0* *

0

0
T

LC LC
LC

F F
dF d dp

p

∂ ∂ = + = ∂ ∂ 
σ

σ
 (A2. 36) 

* *
* *

0
F F

dF ds ds
s s

β β
β β

β

∂ ∂
= + =

∂ ∂
 (A2. 37) 

Combining with (A2.34) and using the hardening laws (2.29) and (2.30), and following the 

equivalent procedure showed for yielding on the LC yield surface alone and yielding on 

the SD or SI yield surface alone, the expression for each plastic multiplier can be 

obtained: 

T
LC LC rLC

LC
LC

d b dS
d

h
+β +β+β

+β

+
χ =

a ε
 (A2. 38) 

T
LC LC rLC

LC

d d dS
d

h
+β +β+β

β
+β

+
χ =

c ε
 (A2. 39) 

where the subscript LC+β indicates that the LC and β mechanisms are both active and, 

*
* * * * *

1
T

T LC
LC e e

s s

F F F FF
s

s s s s
β β β β

β β
β

γ
λ κ+

 ∂ ∂ ∂ ∂∂ = −    ∂ ∂ ∂ ∂ − ∂   
a D

σ
 (A2. 40) 

*
0

1 * * *
0

LC
LC e

s s

F FF p
b k

s p s
β β

β γ
λ κ+

∂ ∂∂= −
∂ ∂ − ∂

 (A2. 41) 

*

2 * * *

T
T TLC LC
LC e

F sF F
k v

s
β β

β
β λ κ+

∂∂ ∂ =  ∂ ∂ − ∂ 
c D m

σ σ
 (A2. 42) 

*
0* * * * *

0

T
TLC LC LC LC

LC e e

F F F F Fv
d p

s p
β

β γ
λ κ+

 ∂ ∂ ∂ ∂ ∂ = − +   ∂ ∂ ∂ ∂ − ∂  
D m

σ σ σ
 (A2. 43) 

where 
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*
*
0* * * * * * * *

0

*
*

1 2 0* * * *
0

T
TLC LC LC LC

LC e e
s s

TLC LC

s s

F F F s FF F F Fv
h p

p s s s s

F s FF Fv
k k p

s p s

β β β β β
β

β

β β β

β

γ
λ κ λ κ

λ κ λ κ

+

   ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ = − + − +    ∂ ∂ ∂ − ∂ ∂ ∂ ∂ − ∂       

∂ ∂∂ ∂−
∂ − − ∂ ∂ ∂

D m
σ σ σ

m
σ

 (A2. 44) 

where mT is an auxiliary vector mT=(1,1,1,0,0,0).  

Substituting both expressions of the plastic multipliers into (A2.35): 

* * *
T T
LC LC r LC LC r LC

e LC ep
LC LC

d d dS d b dS
d d d

h h
+β +β +β +β +β

β
+β +β

 + +
= − − =  

 

c ε a ε
σ D ε m m D εɶ ɶ ɶ  (A2. 45) 

where, 

* LC LCLC
Tep

LC LCD
+β +β+β

+β +β

 
=  
 

A B
D

C
 (A2. 46) 

with 

( ) 6 6 *6 6

T
LCLC

LC e xx
LC

F

h
β

β
β

+
+

+

 ∂= −  ∂ 

a
A D Id

σ
 (A2. 47) 

( ) *6 1

LCLC
LC ex

LC

bF

h
β

β
β

+
+

+

 ∂=   ∂ 
B D

σ
 (A2. 48) 

( ) *1 6

T
T LC

LC ex
LC

F

s h
β β

β
β

γ +
+

+

 ∂
= −   ∂ 

c
C  (A2. 49) 

( ) *1 1
1 LC

LC ex
LC

F d
D

s h
β β

β
β

γ +
+

+

 ∂
= +  ∂ 

 (A2. 50) 

A2.1.3 Drift correction method 

From a given initial state A lying on the yield surface, an increment of load is considered 

causing elasto-plastic yielding from A to B. As yielding takes place, the position of the 

yield surface changes from FA to FB. Due to the tendency to drift, the predicted 

(generalised) stress state in B does not necessarily lie on this new yield surface (Potts 

and Gens, 1985). The stress state should then be corrected to effectively be on the yield 
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surface using a drift correction method. The main mathematical expressions and details 

and of how this method is applied within the implemented constitutive model are 

described in Chapter 6 (see Section 6.5.1). Only the mathematical development for the 

most general case of simultaneous yielding on LC and SD or SI yield surfaces is 

presented below.  

A key issue of the proposed method is to consider that during the projection back of the 

(generalised) stresses to the yield surface, an associated change in the elastic 

(generalised) strains takes place. This leads to:  

( ) ( )1 * *e
C B

−
∆ = −*

eε D σ σɶ ɶ ɶ  (A2. 51) 

where *
Bσɶ  and *

Cσɶ  are, respectively, the generalised stress to be corrected and the 

corrected generalised stress. The assumption of no changes in the total generalised 

strains during the correction process implies that the elastic (generalised) strain change 

must be balanced by an equal and opposite change in the plastic (generalised) strains 

(Potts and Gens, 1985). 

0total e p∆ = ⇒ ∆ = −∆ε ε εɶ ɶ ɶ  (A2. 52) 

Note that now the expression of the generalised strains (A2.52) includes changes in both, 

plastic strain and plastic variations of the degree of saturation. This is because the case 

analysed involves yielding simultaneous on two yield surfaces.  

The (generalised) plastic strain increments are proportional to the gradient of the pertinent 

yield surface according to:  

p LC
LC LC LC

βα +∆ =ε mɶ  (A2. 53) 

p LC β
β β βα +∆ =ε mɶ  (A2. 54) 

where αLC
LC+β and αβ

LC+β are the two scalar quantities unknown. Combining previous 

expressions the following equation expressing the corrected generalised stress is 

obtained:  

( )* * LC LC
C B LC LC

β β
β βα α+ += − +*

eσ σ D m mɶ ɶ  (A2. 55) 
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Note that in here, all terms of the generalised stress tensor are corrected. This involves, 

those terms related to the Bishop’s stress tensor and those associated with modified 

suction (because irreversible changes occur on both, strains and degree of saturation).  

There will be also a variation on the position of the yield surfaces given by  

   with    j , ,  where  = /= + ∆ = + ∆ = +T
C B B j LC LC SD SIh h h h α B β β β  (A2. 56) 

with j=LC+β and 

( )T LC LC
LC LC

β β
β βα α+ +

+∆ =α  (A2. 57) 

Imposing that the corrected (generalised) stress state is on the LC yield surface and also 

on the SD/SI yield surface:  

( )* , 0LC C CF =σ hɶ  (A2. 58) 

( )* , 0C CFβ =σ hɶ  (A2. 59) 

Expanding Taylor’s series in both yield surfaces and neglecting second order terms, the 

following system of equations is obtained: 

( ) ( )* * * *
0*

0

, , T LC
LC C C LC B B LC

F
F F p

p
δ δ∂≈ + +

∂
σ h σ h m σɶ ɶ ɶ  (A2. 60) 

( ) ( )* * * *
*

, , T
C C B B

F
F F s

s
β

β β β β
β

δ δ
∂

≈ + +
∂

σ h σ h m σɶ ɶ ɶ  (A2. 61) 

Re-arranging:  

( ) ( )* *
1 2, ,LC B B B BLC

LC
LC

a F a F

h
ββ

β

α +

+

+
=

σ h σ hɶ ɶ
 (A2. 62) 

( ) ( )* *
3 4, ,LC B B B BLC

LC

a F a F

h
ββ

β
β

α +

+

+
=

σ h σ hɶ ɶ
 (A2. 63) 

where 
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*
*
0* * * * * * * *

0

*
*

1 2 0* * * *
0

T
TLC LC LC LC

LC e e
s s

TLC LC

s s

F F F s FF F F Fv
h p

p s s s s

F s FF Fv
k k p

s p s

β β β β β
β

β

β β β

β

γ
λ κ λ κ

λ κ λ κ

+

   ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ = − + − +    ∂ ∂ ∂ − ∂ ∂ ∂ ∂ − ∂       

∂ ∂∂ ∂−
∂ − − ∂ ∂ ∂

D m
σ σ σ

m
σ

 (A2. 64) 

(Note that hLC+β takes the same form as the expression for the plastic multiplier when 

LC+β is active, see (A2.44)).  

*

1 * * * *e
s s

F F F s F
a

s s s s

∂ ∂ ∂ ∂
= −

∂ ∂ ∂ − ∂
β β β β β

β

γ
λ κ

 (A2. 65) 

*
0

2 1* *
0

LC

s s

FF p
a k

p s

∂∂=
∂ − ∂

β

λ κ
 (A2. 66) 

*

3 2* *
T LC

F s F
a vk

s

∂ ∂=
∂ − ∂

m
σ

β β

β λ κ
 (A2. 67) 

*
4 0* * * *

0

T
TLC LC LC LC

e

F F F Fv
a p

p

∂ ∂ ∂ ∂ = − ∂ ∂ ∂ − ∂ 
D m

σ σ σλ κ
 (A2. 68) 
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Appendix A3: Stress-driver formulation 

A3.1 Stress-strain relationships 

The stress-strain relationships for isotropic stress conditions described within Chapter 3 

are a particular case of the stress-strain relationships for the generalised 3D model 

described in Chapter 5. Because of that, only the stress-strain relationships corresponding 

to the most general case of the 3D stress conditions is included below.  

In general, it is possible to consider the following equations. Firstly from the definitions of 

Bishop’s stress tensor and modified suction, one may write the total variations of these 

variables as:   

( )*
r rd d S ds sdS= + +σ σ m  (A3. 1) 

*

1 1
Te s

ds ds d
e e

= −
+ +

m ε  (A3. 2) 

where mT=(1,1,1,0,0,0). 

On the other hand,  

( )*
6 6 6 1
j j
x x rd d dS= + −σ A ε B ) (A3. 3) 

( )*
1 6 1 1
j j
x x rds d D dS= + −C ε  (A3. 4) 

where the superscript j indicates the current type of material behaviour (i.e. elastic, 

yielding on the LC yield surface alone, yielding on the SD/SI yield surface alone or 

simultaneous yielding on the LC and SD/SI yield surfaces) and the different expressions 

of A, B, C and D take the form showed in Appendix A.2.  

Expressions (A3.1), (A3.2), (A3.3) and (A3.4) define a system of equations with six 

unknowns: increment of Bishop’s stress dσ* (which, in turn, has six components), 

increment of net stress dσ  (which, in turn, has six components), strain increment dε 

(which, in turn, has six components), increment of matric suction ds (scalar), increment of 

modified suction ds* (scalar) and increment of degree of saturation dSr (scalar). If a pair of 

these six unknowns is assumed to be known, it should be then possible to express these 

equations as functions of these pair of known variables. For instance, if it is assumed that 

dσ  and ds are known (i.e. stress-driver type algorithms), the remaining four unknowns 
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can be expressed (by employing these four equations (A3.1), (A3.2), (A3.3) and (A3.4)) in 

terms of dσ  and ds. This is exaclty the aim of the mathematical development given 

below. In particular, to find an expression of dσ* and ds* in terms of the driven variables in 

terms of dσ  and ds.   

Isolating dSr from (A3.4): 

( ) ( ) ( )1 1*
1 1 1 1 1 6
j j j

r x x xdS D ds D d
− −

− = − C ε  (A3. 5) 

Isolating dε from (A3.3): 

( ) ( )( )1 *
6 6 6 1
j j
x x rd d dS

−
= − −ε A σ B  (A3. 6) 

Combining both equations it is possible to express dε and dSr in terms of ds* and dσ*:  

( ) ( ) ( ) ( ) ( )( )( )1 1 1* *
1 1 1 1 1 6 6 6 6 1
j j j j j

r x x x x x rdS D ds D d dS
− − −

− = − − −C A σ B  (A3. 7) 

( ) ( ) ( )( )( )1 1 1* *
6 6 6 1 1 1 1 1 1 6
j j j j j
x x x x xd d D ds D d

− − −
= − −ε A σ B C ε  (A3. 8) 

Re-arranging:  

( ) ( ) ( )( ) ( ) ( ) ( )( )11 1 1 1 1* *
1 1 1 6 6 6 6 1 1 1 1 1 1 6 6 61 j j j j j j j j

r x x x x x x x xdS D D ds D d
−− − − − −

− = − −C A B C A σ  

 (A3. 9) 

( ) ( )( )( ) ( ) ( ) ( )( )1
1 1 1 1 1* *

6 6 6 6 6 1 1 1 1 6 6 6 6 6 6 1 1 1
j j j j j j j j

x x x x x x x x xd D d D ds
−− − − − −

= − −ε I A B C A σ A B  

 (A3. 10) 

In order to facilitate the development let’s consider the following notation: 

( ) ( )( )( ) ( )
1

1 1 1

6 6 6 6 6 6 6 1 1 1 1 6 6 6
j j j j j

x x x x x x xD
−− − −

= −E I A B C A  (A3. 11) 

( ) ( )( )( ) ( ) ( )
1

1 1 1 1

6 1 6 6 6 6 6 1 1 1 1 6 6 6 6 1 1 1
j j j j j j j

x x x x x x x x xD D
−− − − −

= − −F I A B C A B  (A3. 12) 

( ) ( )( ) ( )
11 1 1

1 1 1 1 1 6 6 6 6 1 1 11 j j j j j
x x x x x xG D D

−− − −
= − C A B  (A3. 13) 
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( ) ( )( ) ( ) ( )
11 1 1 1

1 6 1 1 1 6 6 6 6 1 1 1 1 6 6 61j j j j j j j j
x x x x x x x xD D

−− − − −
= −H C A B C A  (A3. 14) 

Equations (A3.9) and (A3.10) can be expressed in a more compact way as:  

( ) * *
1 1 1 6
j j

r x xdS G ds d− = + H σ  (A3. 15) 

* *
6 6 6 1
j j
x xd d ds= +ε E σ F  (A3. 16) 

Inserting now (A3.15) into (A3.1) and (A3.16) into (A3.2) respectively: 

( )( )* * *
1 1 1 6
j j

r x xd d S ds s G ds d= + − +σ σ m H σ  (A3. 17) 

( )* * *
6 6 6 11 1

T j j
x x

e s
ds ds d ds

e e
= − +

+ +
m E σ F  (A3. 18) 

Re-arrenging in (A3.17):  

( ) ( )1* *
6 6 1 6 1 1

j j
x x r xd s d S ds sG ds

−
= + + −σ I m H σ m m  (A3. 19) 

Re-arrenging (A3.18):  

1
* *

6 1 6 61
1 1 1

T j T j
x x

s e s
ds ds d

e e e

−
   = + −   + + +   

m F m E σ  (A3. 20) 

Using now the following notation in the previous equations:  

( ) 1

6 6 6 6 1 6
j j
x x xs

−
= +A I m H  (A3. 21) 

1

1 1 6 11
1

j T j
x x

s
B

e

−
 = + + 

m F  (A3. 22) 

* *
6 6 6 6 6 6 1 1
j j j j
x x r x xd d S ds sG ds= + −σ A σ A m A m  (A3. 23) 

* *
1 1 1 1 6 61 1
j j T j
x x x

e s
ds B ds B d

e e
= −

+ +
m E σ  (A3. 24) 

Inserting (A3.23) into (A3.24):  
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( )* *
1 1 1 1 6 6 6 6 6 6 6 6 1 11 1
j j T j j j j j
x x x x x r x x

e s
ds B ds B d S ds sG ds

e e
= − + −

+ +
m E A σ A m A m  (A3. 25) 

Inserting (A3.24) into (A3.23):  

* *
6 6 6 6 6 6 1 1 1 1 1 1 6 61 1
j j j j j j T j
x x r x x x x x

e s
d d S ds sG B ds B d

e e
 = + − − + + 

σ A σ A m A m m E σ  (A3. 26) 

Re-arranging both previous equations it is possible to obtained the general final 

expression of dσ* and ds* in terms of the driven variables in terms of dσ  and ds. 

*
1 1 6 1
j j
x xds Q ds d= + W σ  (A3. 27) 

where, 

1

1 1 1 1 6 6 6 6 1 1 1 1 1 1 6 6 6 61
1 1 1

j j T j j j j j T j j
x x x x x x x x x r

s e s
Q B sG B B S

e e e

−
   = − −   + + +   

m E A m m E A m  (A3. 28) 

1

1 6 1 1 6 6 6 6 1 1 1 1 6 6 6 61
1 1

j j T j j j j T j j
x x x x x x x x

s s
B sG B

e e

−
   = − −   + +   

W m E A m m E A  (A3. 29) 

*
6 6 6 1
j j
x xd d ds= +σ Y σ Z  (A3. 30) 

where, 

1

6 6 6 6 6 6 1 1 1 1 6 6 6 61
j j j j T j j
x x x x x x x

s
sG B

e

−
 = − + 

Y I A m m E A  (A3. 31) 

1

6 1 6 6 6 6 1 1 1 1 6 6 6 6 6 6 1 1 1 11 1
j j j j T j j j j j
x x x x x x x r x x x

s e
sG B S sG B

e e

−
   = − −   + +   

Z I A m m E A m A m  (A3. 32) 
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Appendix A4: Total stress in terms of strain and fl uid pressure variations 

In order to implement the Wheeler et al. (2003) constitutive model into CODE_BRIGHT it 

is useful to express some of the equations of this constitutive model in such a way that 

make them compatible with the current formulation of CODE_BRIGHT. In particular, it is 

convenient to express the total stress tensor variations in terms of strain and fluid 

pressure changes using the relationships proposed within the constitutive model. The 

mathematical development to find these expressions is detailed in the following.  

Using the definition of Bishop’s stresses given in Chapter 2, temporal variations of total 

stresses can be expressed as:  

( ) ( )*
g r g l r g lu S u u S u u= + − − − −σ σ m m mɺɺ ɺ ɺ ɺ ɺ

 
(A4. 1) 

where m is the auxiliary vector (1,1,1,0,0,0), σ is the total stress tensor, σ* is the Bishop’s 

stress tensor, ul and ug are the liquid and gas pressures, respectively, and the upper dot 

indicates temporal variations. 

Employing also the expression of the generalised constitutive stiffness matrix introduced 

in Chapter 5, the Bishop’s stress changes can be expressed as:  

( )*
6 6 1 6
j j
x x rS= + −σ A Bε ɺɺ ɺ  (A4. 2)

 

where j indicates the elasto-plastic mechanism active, and A and B take the form shown 

in Appendix A.2.  

On the other hand, temporal variations of degree of saturation can be expressed with an 

equivalent expression to the one developed in Chapter 6:  

( ) ( ) ( )1

1 1
g lj T j

r g l

u ue
S D u u

e e

−   − −
  − = − + −

 + +   

m C εɺ ɺ ɺ ɺ  (A4. 3)
 

where T indicates transposed, j indicates the elasto-plastic mechanism active, and D and 

C take the form shown in Appendix A.2. 

Inserting (A4.2) into the general expression of the total stress tensor variations (A4.1):  

( ) ( ) ( )6 6 1 6
j j
x x r g r g l r g lS u S u u S u u= + − + − − − −σ A B m m mε ɺ ɺɺ ɺ ɺ ɺɺ

 
(A4. 4) 
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Re-arranging:  

( )( )( ) ( )6 6 1 6
j j
x x g l r g r g lu u S u S u u= + + − − + − −σ A B m m mε ɺɺ ɺ ɺ ɺɺ

 
(A4. 5) 

Substituting now the variations of degree of saturation given by (A4.3) into (A4.5): 

( )( ) ( ) ( ) ( )

( )

1

6 6 1 6 1 1
g lj j j T j

x x g l g l

g r g l

u ue
u u D u u

e e

u S u u

−
   − −
   = + + − − + − +

  + +    

+ − −

σ A B m m C ε

m m

εɺ ɺ ɺ ɺ

ɺ ɺ ɺ

ɺ

 

 
(A4. 6) 

Re-arranging terms, the following expression of the total stress temporal variations in 

terms of the temporal variations of strains and fluid pressures: 

1 1 2g lu u= + +σ Λ ε γ γɺ ɺ ɺ ɺ
 

(A4. 7) 

where the 6x6 matrix Λ1 and the 6x1 vectors γ1 and γ2 take the form:  

( )( )( ) ( )1

1 6 6 1 6 1
g lj j j T j

x x g l

u u
u u D

e

−  − −
 = + + − −
 +
 

Λ A B m m C  (A4. 8) 

( )( )( ) 1

1 1 6 1

−
= + − + −

+
j j
x g l r

e
u u D S

e
γ B m m m  (A4. 9) 

( )( )( ) 1

2 1 6 1

−
= − + − +

+
j j
x g l r

e
u u D S

e
γ B m m  (A4. 10) 

 

 


