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Abstract 

Arctic sea ice, as an essential environmental component that is closely connected 

to the Arctic ecosystem, plays an important role in the global weather and climate 

system. In addition, the Marginal Ice Zone (MIZ) which is the region close to the open 

water, plays a significant role in studying the physical and dynamic processes in Arctic 

area as it reflects the intense interactions between the atmosphere, open water, and sea 

ice. In addition, the MIZ can provide a physical buffer to protect the inner larger pack 

ice from being breakup by the ocean waves, which accordingly prevents the sea ice 

retreat that may occur due to the increasing Arctic open water area. Floe Size 

Distribution (FSD), a keystone indicator of the MIZ which has great impact on 

multiple sea ice processes such as the lateral melt rate and the propagation of waves 

underneath the sea ice, is particularly beneficial for the weather prediction, and the 

management of the Arctic region. 

Until now, remote sensing data is one of the most popular and very often the only 

sources of information regarding sea ice conditions in the Arctic. During the last few 

decades, many efforts have been made for sea ice segmentation from the Synthetic 

Aperture Radar (SAR) images and optical images. However, separating the touching 

floes is still a main obstacle for accurate FSD retrieval. In recent years, the High-

Resolution Optical (HRO) images with less speckle noise compared to the SAR images 

have provided an alternative solution to accurately delineate the floe boundaries and 

extract FSD. Nevertheless, traditional floe separation approaches require manual 

interactions. Meanwhile, the data annotation of sea ice images requires domain 

knowledge and can be labor extensive, resulting in the deep learning based methods 

hard to be applied. 

In this thesis, a multi-stage segmentation and floe separation model is proposed to 

effectively investigate ice pixels and separate the touching ice floes automatically from 

the HRO images. For ice pixels investigation, a novel segmentation framework is 

proposed, where a combination of superpixel K-means clustering is employed for 

identifying the ice, water-ice mixed, and open water regions. Afterwards, the contrast 

enhancement technique is applied on the water-ice mixed regions to improve the 

performance of the subsequent thresholding process. For floe separation, the marker 

controlled watershed transformation based method is proposed, where different 

strategies are employed to generate the markers for preventing the floes from being 
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over-segmented. The robustness of the segmentation framework is validated on the 

image dataset and compared to two state-of-the-art methods. The result shows that the 

proposed framework has yielded the highest performance in terms of the accuracy, 

Matthews correlation coefficient (MCC) and F-1 score. For FSD retrieval, the 

proposed method outperforms the traditional distance transformation based watershed 

segmentation with the closer power law exponents and less mean square error 

compared to the ground truth. In addition, the experiments for optimising the model 

by evaluating the scenarios using different algorithms and parameter settings are 

conducted. As a result, for the proposed model, a combination of bilateral filter for 

pre-processing, Simple Linear Iterative Clustering (SLIC) for superpixel generation, 

and Top-bottom-hat transformation for contrast enhancement is recommended. 
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Chapter 1. Introduction 

1.1 Motivation and objectives 

The Arctic sea ice cover composed of discrete pieces of sea ice, known as floes, 

is a keystone indicator of ocean and climate research. The sea ice cover not only has a 

significant effect on regulating the heat, water, and momentum balance between the 

ocean and atmosphere [1], but also greatly affects human activities such as navigation 

and resource development in the polar regions [2]. In the past few decades, the Arctic 

sea ice extent has seen a rapid declining trend in the context of the anthropogenic 

climate change [3] and Arctic Amplification [4]. As can be seen in Figure 1. 1, the 

minimum sea ice area obtained in September each year has diminished from about 7 

million km2 before 2000 to less than 5 million km2, with a record minimum value of 

3.57 million km2 in 2012. [5]. Such rapid sea ice extent reduction was beyond the 

expectation of the scientific community [6]. Hence, to both understand the trend and 

predictive forecast the sea ice future evolution, a better understanding of the region 

where ocean processes such as waves and wind can significantly affect the dynamics 

of the sea ice, so called the Marginal Ice Zone (MIZ), is required [7]. 

The MIZ, defined as the region with 15 %–80 % sea ice concentration, is a 

dynamic and biologically active band of the sea ice cover close to the open ocean [8] 

and has been widely studied in the disciplines such as oceanography and marine 

biology [9]. It is not only the sea ice cover that makes the MIZ valuable, but rather the 

 

Figure 1. 1: Arctic sea ice minimum 1979-2020 
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biological effects that benefits the species that are already under pressure due to the 

climate change by acting as a living food container. Moreover, the physical and 

dynamic processes that reflect the intense interactions between the atmosphere, open 

water, and sea ice are significantly important. The MIZ can provide a physical buffer 

to protect the inner larger pack ice from being broken by the ocean waves [10], which 

accordingly prevents the sea ice retreat that may occur due to the increasing Arctic 

open water area [11]. In addition, the MIZ variation also has a great impact on the 

human accessibility to the Arctic, as the broken small floes allow easier navigation 

than the dense pack ice. Therefore, accurate modelling of MIZ would be beneficial for 

understanding how the environments inside and around the Arctic may develop. This 

can contribute to Arctic communities to plan for the knowledge-based management of 

the Arctic region, such as the effective measures for protecting the vulnerable species 

[12], and the projection of the potential viability of new routes for the ship navigation 

in the next few decades [13]. 

It is significantly challengeable to model the MIZ due to its complexity and 

variability. The floes in the MIZ can have varying sizes from meters to kilometers and 

vulnerable to ocean processes. Therefore, for the description of the evolution in the 

MIZ, floe size is an important criterion [14]. The smaller floes can cause the increment 

of the perimeter of the sea ice cover, leading to the enhancement of the lateral melt 

rate [15]. The increased melt rate will further expand the area of the open water and 

accordingly allow the solar insolation to transmit more heat to the ocean, which is 

known as the Albedo feedback [16]. As a result, the heated upper layer of the ocean 

causes the ocean to be re-stratified. In addition, with the expansion of MIZ, lateral ice 

melting is expected to be a significant factor of the seasonal ice loss [17].  

Floe Size Distribution (FSD) is a probability function that characterizes the 

number of floes in different sizes categories in a unit area, and the FSD data are 

generally considered to follow a power law [14]. Accordingly, the FSD observations 

are usually reported by the power law exponent. However, current climate models 

seldomly take the floe size or the FSD into account [18], or assume the exponent of 

FSD as a constant value [17] due mainly to the difficulty of accurate FSD retrieval. 

Since floe size can have great impact on multiple sea ice processes such as the lateral 

melt rate, and the propagation of waves underneath the sea ice [19], such assumption 

of the fixed floe size prevents the climate model from accurately reacting to the 
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processes of the sea ice evolution induced by floes, and influence the accuracy of 

thermodynamics in the model as the ocean processes are highly coupled [20]. 

Remote sensing is usually considered as a suitable tool for comprehensively 

understanding and characterising the FSD across the Arctic region, as the satellite 

acquired images can provide good spatial and temporal coverage. A variety of remote 

sensing data acquired by different sensors have been employed for sea ice detection, 

such as the images collected by Synthetic Aperture Rader (SAR) and optical sensors. 

With the advancement of satellite technology, in recent years, the High-Resolution 

Optical (HRO) images containing less speckle noise compared to the SAR images have 

provided an alternative solution to accurately delineate the floe boundaries and extract 

FSD. Whether the image is “high-resolution” depends on if its features of interest are 

much larger than the pixel resolution [21]. The sea ice HRO imagery with a resolution 

at meter level conforms the definition in the context of the feature of ice floes, which 

thus enables the accurate detection of the weak boundaries in order to derive the FSD 

[22]. 

Both SAR data and optical data contain rich earth observation information but 

have their own advantages and disadvantages. SAR images, by recording the reflected 

echo of the emitted microwave radiation to the earth surface, have the advantage of 

high resistance to the meteorological influences. Yet the speckle noise that causes non-

linear data distribution [23] may affect small floe investigation and weak boundary 

detection. On the other hand, the HRO images with less speckle noise can provide 

detailed information such as edges, shapes and texture of the floes, which can be 

beneficial for boundary detection and touching floe separation. However, HRO images 

also complicate the background, leading to the difficulty in cleanly discriminating the 

ice pixels from the melt ponds and submerged ice in the water-ice mixed regions. 

Despite the existence of several HRO sea ice image datasets, records of the FSD 

retrieval from satellite observations are rare and the relevant approaches for floe 

segmentation and touching floe separation remain under-developed. The most 

challenging task is to automatically separate the ice floes that are seemingly connected 

to each other, as the weak boundaries in the conjunction have very similar features to 

the floe itself.   

Currently, to achieve FSD retrieval from the optical images, the popularly used 

approach is to firstly discriminate the ice pixels from background, namely the water, 

for example using the thresholding [24, 25], graph cut [26], watershed segmentation 
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[27-29], etc. The binarized image is then proceeded to the post-processing stage to 

reduce erroneous floe splitting or merging, such as using the rule-based boundary 

revalidation [26]. And finally, manual correction is required [26, 30]. It is mentioned 

in the study [26] that for a single 10×10 km sea ice image, it can take more than three 

days to generate the floe separated ground truth data for FSD retrieval, as each 

touching boundary needs to be manually delineated by the sea ice expert, which is 

labor extensive. As a result, the records of the floe separated data are rare.  

Machine learning approaches have also been widely used for processing the 

satellite observations [21, 31, 32]. For the sea ice HRO images, the emergence of melt 

pond causes the scattering characteristics of ice surface to change. By learning the 

pattern of this change, the melt pond can therefore be retrieved [31]. Similarly, by 

learning the characteristics of the ice surface, different types of the ice surface can be 

discriminated [21]. In addition, deep learning methods have also made a great progress 

in segmenting the remote sensing images, such as the Fully Convolutional Network 

(FCN) [33] and DeepLab [34]. However, for FSD retrieval, deep learning methods 

with insufficient labelled data can hardly to meet the needs. To tackle with this issue, 

semi-supervised methods could be beneficial, as a relatively small amount of labeled 

data is required compared to the deep learning [35].  

In addition to the abovementioned approaches, in recent years, a growing interest 

in pixel grouping can be observed (i.e. object-based segmentation). Object-based 

approaches bottom-up cluster the pixels into groups according to their inherent 

characteristics (i.e. intensity, texture, and spatial correlation), which provides the 

potentiality of better preserving the shape and size of an individual floe [36]. 

Furthermore, the individual pixel schemes are likely to produce “speckled” errors that 

are incorrectly scattered across the image, leading to the error in FSD calculation.  

Despite the existence of several approaches developed for sea ice detection, 

precise water-ice segmentation and automated floe separation method for FSD 

retrieval from the HRO imagery are still challenging. The main issues can be 

summarised as 1) Accurate delineation of the floe boundaries; 2) Identification of the 

floes in the water-ice mixed regions; 3) Separation of the touching floes. For 

identifying the ice pixels, the traditional pixel-based approaches could miss the small 

floes in water-ice mixed regions due to the low contrast, whilst producing holes inside 

the floes due to the working mechanism that solely relying on the pixel intensity. In 

terms of the deep learning based methods, it could be difficult to separate the touching 
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floes to achieve accurate FSD retrieval, due mainly to the lack of the labelled floe 

separated data [22]. In addition, although a growing interest in object-based methods 

can be observed such as the method based on gradient vector flow (GVF) [36], manual 

interactions are still inevitable and the effectiveness on high spatial resolution images 

containing size varying floes has not been validated. Therefore, an effective automated 

sea ice detection and floe separation method is beneficial for the MIZ study using HRO 

imagery. And such a method can generate labelled FSD data for a semi-supervised 

learning approach.  

Since the contrast can be low in the water-ice mixed regions, contrast enhancement 

methods can be applied to enhance the segmentation performance. However, a global 

contrast enhancement may decrease the dark ice pixels inside the floes and cause over-

segmentation. Therefore, local contrast enhancement is employed by only applying the 

contrast enhancement methods to the selected water-ice mixed regions. To effectively 

extract the water-ice mixed regions from the HRO image, superpixel based image 

segmentation techniques can be beneficial. Superpixel algorithms group pixels with 

visual coherence to create perceptually meaningful over-segmented small regions [37]. 

It has the foremost advantage that well adherence to the real object boundaries. 

Moreover, the superpixel segmentation can help to provide an intermediate 

representation between pixels and objects, which is a convenient basis for extracting 

image features and reducing the computational complexity in subsequent tasks [38]. 

For example, superpixels can be complementary to the classification methods such as 

ensemble learning and incremental learning [39] and conditional random fields based 

models [40] thus improve the performance and speed up the computation. By applying 

the superpixels to the sea ice image, the ice floe regions and water-ice mixed regions 

can be identified according to the features of the extracted superpixels, such as the 

pixel intensity and variance. As a result, the contrast enhancement methods and 

segmentation methods can be applied locally to enhance the segmentation quality in 

such regions without affecting the other regions. For floe separation, as the general 

watershed transformation will inevitably cause over-segmentation, it is not preferred 

in the model. Nevertheless, the floe regions formed by the superpixels can be 

employed as the marker to guide the watershed and prevent the floes from being 

wrongly separated.  
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Therefore, in this thesis, the overarching aim is to develop an effective semi-

automated workflow to derive the sea ice floe size distribution from the HRO images. 

To achieve this goal, several objectives can be summarised as follows: 

1) Due to the lack of the labelled data of separated floes , machine learning based 

methods are difficult to be applied for FSD applications. Therefore, one of the 

objectives here is to develop an unsupervised method that can reduce the labour of 

manual correction and be complementary to supervised learning methods. 

2) For the precise determination of the floe size and the FSD, accurate  segmentation  

is required to correctly identify the floes with the correct boundary adherence. 

Therefore, another objective is to enhance the source image to achieve higher 

distinguishability of floes especially in water-ice mixed regions, where superpixel 

techniques is used as the superpixels can provide the intermediate representation 

by aggregating the pixels with similar features for separating among ice, water-ice 

mixed, and open water regions. Additional modules are then needed to tackle 

further the challenges cases of water-ice mixed regions for refined segmentation.   

3) The main obstacle in accurate FSD retrieval is to separate the touching floes that 

have weak boundaries, as those regions usually have similar features to the floe 

itself. Accordingly, another objective here is to develop an algorithm for automated 

separation of touching floes. 

4) The performance of a multi-stage model can be affected significantly by the 

algorithm selection and parameter settings. Therefore, another objective is to find 

out the best performed scenario and experimental conditions, including the  

recommended parameter settings. 

1.2 Thesis Organisation 

The rest of this thesis is organized as follows:  

Chapter 2 presents an overview of the background knowledge of the satellite 

remote sensing images and the related works for sea ice segmentation and FSD 

retrieval, including the superpixel-based segmentation methods. In addition, a brief 

review of the existing superpixel generation methos is provided.  

Chapter 3 firstly introduces the technical background including the algorithms 

selection and their working principles. Then, the description of the proposed multi-

stage model is introduced in detail, including the segmentation framework that 

integrates the superpixel, clustering, contrast enhancement, and thresholding 
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techniques, and floe separation method based on marker controlled watershed 

transformation with the refinement made in marker generation.  

Chapter 4 first introduces the experimental image dataset and the settings 

corresponding to the model optimisation and validation. Various scenarios of the 

algorithm usage and parameter settings are evaluated. The optimsed model is then 

applied for sea ice segmentation and FSD retrieval. The quantitative evaluation and 

analysis are presented.  

Chapter 5 briefly concludes the contributions of the thesis and discusses the future 

works.   

1.3 Contributions 

For tackling with the aforementioned research problems, a multi-stage model is 

proposed in this thesis. The major contributions can be summarised as follows: 

1) A novel semi-automated multi-stage workflow is developed to effectively derive 

the FSD from HRO sea ice images.  

2) For sea ice segmentation, by identifying the water-ice mixed regions and applying 

the contrast enhancement technique in such regions, the segmentation performance 

has been much improved. As a result, the proposed workflow has yielded the 

highest performances in terms of the overall accuracy, Matthews correlation 

coefficient and F-1 score as well as the computational efficiency compared to the 

other two state-of-the-art algorithms 

3) By applying distance transform based watershed in water-ice mixed regions and 

morphological erosion in other regions, the floes can be successfully separated 

whilst suppressing the over-segmentation issue with the guidance of superpixels. 

As a result, the proposed method outperforms the baseline watershed algorithm 

with much improved FSD results in comparison to the ground truth. 
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Chapter 2. Literature Review  

2.1 Introduction 

In this chapter, according to the aforementioned motivation and objectives, the 

background and related works in remote sensing image processing, including sea ice 

segmentation and FSD retrieval are firstly introduced. Afterwards, the superpixel-

based approaches for remote sensing and sea ice detection are described in Section 

2.2.3. Section 2.2.4 surveys the superpixel generation algorithms and discusses their 

advantage and disadvantages. Finally, a summary is given in Section 2.3.  

2.2 Development of Image Processing in Sea Ice Imagery 

2.2.1 Background of SAR and Optical Imagery 

As mentioned, SAR and optical images are the two main data sources in the sea 

ice study. The SAR images are derived by recording the reflected echoes of the emitted 

numerous microwave radiations to the earth surface, and then merging the echoes to 

form a “synthetic aperture”. The SAR images over sea ice were collected since the 

launch of the satellite SEASAT (USA) in 1978. In the following decades, other 

satellites carrying the SAR instruments such as Kosmos-1870 (1987) and Almaz-1 

(1991) have fully confirmed the applicability of the acquired images for disciplines 

including oceanology, cartography, geology, etc. [41]. In 2002, with the development 

of satellite technology, the ENVISAT (Environmental Satellite) with multiple 

polarisation ability for acquiring Advanced SAR (ASAR) data was launched. The 

improvement of the data source resulted in the feasibility of identifying the 

polarimetric scattering signatures of different types of sea ice and open water from 

different angles [41]. From the studies of the sea ice signatures [42, 43], the multi-

polarised SAR data shows the great potential for the operational mapping of sea ice 

types and concentrations. SAR, as an active microwave imaging radar, has the ability 

of strong penetration, which can provide stable image observations at all times with 

rich texture information regardless of severe weather and nonuniform illumination 

conditions [44]. However, due to the multiple signal reflection, the prominent 

signatures in SAR images tend to be sparse and often not correspond to the physical 

structure of the object [45].   
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On the other hand, another important data source for sea ice detection is the optical 

imagery. The optical imagery with resolution at meter level can provide detailed 

information such as edges, shapes and texture of the floes which offers the potentiality 

to precisely investigate ice pixels in water-ice mixed regions for accurate FSD retrieval 

and weak boundary identification [22]. In recent years, there has been growing interest 

in the optical image datasets such as the MODIS optical data [46]  and the Landset 

dataset [47]. For SAR images, it is difficult to explicitly identify the open water due to 

the varying backscatter signatures [48]. The factors such as incidence angle and wind 

speed can cause the backscatter signatures of open water to vary and span a range that 

overlaps with the signatures of the surrounding ice [49]. Optical images, by contrast, 

has better discrimination in ice and water due to the less speckle noise and better-

preserved structural information. In addition, the HRO image datasets are becoming 

more and more accessible, thus providing an alternative solution that enables accurate 

ice floe boundary detection and FSD retrieval.  

2.2.2 Sea Ice Detection and FSD Retrieval 

For processing sea ice images, a variety of approaches have been developed. It is 

worth noting that most of the segmentation methods can be used for both SAR and 

optical images, although they are originally designed for only one of them. This is 

because after removing of the speckle noise SAR images can have similar 

characteristics as that of the optical images. Therefore, the image segmentation 

techniques for both SAR and optical images need to be reviewed. 

 The SAR images have been studied for a long time due to its advantage of 

collecting data regardless of weather conditions. The early attempts, for example in 

the study [50], used the local dynamic thresholding to segment the sea ice image. 

Pixels are divided into different classes through a set of threshold values derived 

according to the overall image intensities and the relative intensities within the images. 

In addition, to achieve the floe separation, the study [50] post-processed the segmented 

image with a morphological operation-based restricted shrinking/growing algorithm 

[51]. The key idea is to iteratively “grow” the binary object that can fill the holes within 

the object, and then “shrink” the object to break thin connections between the touching 

floes. However, such an algorithm contains much redundancy, as the iterations vary 

from floe to floe, resulting in the extended processing time for the large floes. 

Moreover, the morphological operations can deform the floe and affect the boundary 
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adherence of the segmentation result. In the study [52], the functional-based Markov 

Random Field (MRF) model was used to achieve the sea ice segmentation, in which 

the Gamma distribution was used instead of the generally used Gaussian distribution. 

Another MRF based method was applied in the study [53], where the edge penalty was 

incorporated to ensure the stability of model parameters estimation, however, with a 

relatively low efficiency. 

More recently, high-resolution SAR imagery has been acquired with the 

advancement of satellite technology, the corresponding methods, therefore, have been 

further developed. In the study [26], the Kernel Graph Cuts (KGC) algorithm [54] has 

been applied. The KGC algorithm has the advantage of well handling the ununiformly 

illuminated image [55]. In addition, a combination of median, bilateral and Gaussian 

filters was used in [26] to refine the image data distribution to a Gaussian distribution 

for enhancing the performance of the KGC algorithm. Furthermore, to achieve FSD 

retrieval, the segmented results were further processed by the distance transformation 

controlled watershed transformation. Distance transformation is a technique to 

calculate the distance from each pixel within the object to the object edge. By selecting 

the regions with maximum distance to the edges as the local minima, so called the 

“basins”, in the watershed transformation, the weak boundaries can be detected. This 

approach can work well if the ice floes are close to circle. However, the floes usually 

have irregular shapes in practical (i.e. two hump-like), which causes multiple local 

minima within one floe and accordingly leads to the over-segmentation. Therefore, to 

mitigate this issue, rule-based boundary revalidation [26] was then applied to remove 

the erroneous separation. Although the method has yielded satisfying results in the 

delineation of individual floes and avoiding the over-segmentation issue, considerable 

manual interactions including the manual correction for the floe boundary delineation 

and KGC parameter specification are required. Therefore, it can hardly be applied 

readily to the unknown dataset. 

For optical images, some early attempts include, for instance, the study [56] used 

the thresholding method to detect ice floes where the threshold value was determined 

by analysing the histogram of the image, as the histogram of the grayscale of the sea 

ice optical images tend to be bimodal. The connected floes were separated by manually 

eliminating the weak boundaries. In the study [25], to determine the floe number from 

the digital images acquired by the optical camera integrated on an Unmanned Aerial 

Vehicle (UAV), two edge detection algorithms using gradient and morphology were 
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applied. However, since the traditional edge detection methods have limited effect in 

separating the touching floes, the number of detected floes greatly varied when using 

different edge detection methods. More recently, to investigate the weak boundaries 

of the seemingly connected floes, in the study [29], the original grayscale image was 

firstly binarised with the global Otsu thresholding algorithm. Afterwards, local minima 

regions were generated based on the segmented binary image to be complementary to 

the watershed transformation. In addition, to correct numerous over-segmentation 

errors, the junction lines produced by watershed are recovered according to the 

concavity of the boundary touching the lines, depending on whether the concavity is 

larger than the pre-defined threshold. Consequently, by eliminating the over-

segmenting lines, the floe separated results can be refined. Nevertheless, since the 

shapes of floes tend to be irregular, the over-segmentation issue cannot be fully 

addressed by solely relying on the boundary concavity. Furthermore, the correct 

separation line could also be removed in some exceptional circumstances (i.e. touching 

square shape floes). 

With the rapid development of the artificial intelligence. Various Machine 

Learning (ML) techniques have been applied to both SAR and optical images. For 

example, the clustering techniques are widely used in SAR sea ice images, and the 

efforts have been made to improve the object function of the clustering method (i.e. 

Fuzzy C-Means clustering (FCM) [57]) for achieving higher accuracy and efficiency. 

In the study [58], the energy measures of the wavelet decomposition were used to trace 

the texture information, and kernel distance was adopted for measuring the feature 

similarity, which can significantly reduce the influence caused by the speckle noise. 

Similarly, the study [59] incorporated a non-local spatial filtering to suppress the 

speckle noise. Subsequently, the fuzzy between-cluster variation term was adopted in 

the objective function, which enabled the regulation of the distance between the cluster 

centroids.  

To tackle with the computation complexity of the common methods for SAR 

image segmentation, Shang et.al [60] proposed a segmentation method using region 

smoothing and label correction (RSLC). In this method, the input image was firstly 

smoothed to remove the speckle noise whilst retaining the edge information, so that 

the later segmentation process can be accelerated. In the smoothening process, 

different templates were applied for the edge regions and the homogeneous regions, in 

which the edges were detected and enhanced based on the convolution result of the 
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direction template with the maximum response, and the homogeneous regions were 

smoothened by the Gaussian filters that took the values of the direction-difference map 

as the variances of the kernel functions. This process enables the homogeneous regions 

to be smoothed efficiently, moreover, the smoothed image accelerates subsequent 

processes. Then, the two smoothed results are fused with K-means clustering, and the 

majority voting algorithm was consequently applied to correct the wrongly classified 

labels. Object boundaries were well adhered, and the structure was maintained from 

the experiments, but the robustness to the small objects remains unsatisfactory. The 

algorithm spent 5.43s for processing a 1001 × 779 SAR image, which is 170s faster 

than the algorithm for comparison. 

Deep Learning (DL) approaches have also been applied for sea ice detection and 

classification. With multiple layers, DL models have strong capabilities of well 

extracting the features and autonomously learning, which are therefore suitable for 

object detection. In the study [61], an unsupervised neural network based on the 

Learning Vector Quantisation is used to classify the sea ices from the SAR images 

acquired by the airborne platform, yielding a total accuracy of 77.8%. In [62], an 

Artificial Neural Network (ANN) is used for the sea ice classification by taking the 

texture features of the image as input, where the features are extracted by using the 

Gray-Level Co-occurrence Matrix (GLCM). This algorithm was tested in the sea ice 

images with a size of 2200 × 3000 and yielded the classification accuracies of 79.4% 

for the open water, 89.3% for the dark ice, and 94.5% for the medium gray ice. 

Nevertheless, the computation time for a single image was nearly 30min. When 

applying deep learning on the remote sensing images, the lack of labeled data has 

always been a major hurdle. In this context, the U-Net [63] can be beneficial, as it was 

specifically designed for learning with a small number of training samples. In [64], 

five U-Net classifiers are created to tackle with sea ice classification under different 

conditions. These classifiers are then fused to derive an aggregate output by applying 

the stacked generalization [65], achieving an overall accuracy of 96.1%.  

The ML and DL methods have also been applied in the optical remote sensing 

images [66-68]. For the sea ice detection, the watershed transformation and Random 

Forest (RF) [69] were combined for the adaptively detecting sea ice and melting ponds 

in the HRO images from different sources and data owners [21]. To produce the local 

minima for the watershed transformation, the gradient image was firstly created by 

applying the Sobel filter. The watershed segmented results were manually classified 
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to create the training dataset for the RF classifier. As a result, the algorithm has yielded 

an average accuracy of 96%. In another study [31], ANN was implemented for the 

retrieval of melting ponds in the optical images with a pixel resolution of 2 m, 

achieving an average accuracy of 85.5%. For the sea ice detection from close-range 

optical images (i.e. the images taken from the boat), the study [70] employed the 

Segmentation Net (SegNet) [71] and Pyramid Scene Parsing Network (PSPNet) [72] 

to classify ice, water, sky and boat. With the aid of employing the transfer learning 

[73] techniques for generating the training dataset, the PSPNet outperformed the 

SegNet with an average accuracy of 97.8%.  

Despite the existing ML and DL approaches for optical image sea ice detection, 

none of them is designed for the FSD retrieval. Since the lack of the floe separated 

data can be one of the main issues, in this context, an automated approach for 

producing the floe separated data can be used to generate the training samples, i.e. in 

a semi-supervised learning process.  

To achieve this goal, object-based methods can be beneficial, as object-based 

methods aggregate the homogenous pixels into objects and then classify the objects 

individually. In contrast to the pixel-based classification that classifies the pixels 

directly, object-based methods consider the spatial patterns that characterise the shape 

[74], so as to potentially distinguish the weak boundaries between the touching floes. 

In addition, the properties extracted from the objects such as spatial, textural, and 

contextual patterns can be fed as input into ML models for classification. In study [75], 

to segment the optical image with high resolution (pixel size of ~ 20cm), the fast edge-

based segmentation [76], one of the object-based methods was employed. And then a 

total of 13 spectral, textural, and spatial features were extracted and fed into RF model 

for classification, achieving an overall accuracy of 95.5%.  

For accurate sea ice detection and FSD retrieval, Zhang et.al in the study [36], 

applied the gradient vector flow (GVF) snake algorithm to the optical image acquired 

by UAV. The snake algorithm (also known as the deformable contour or active contour 

[77]), is a bottom-up region growing technique that works on the principle of 

controlling the continuous closed curve to iteratively evolve the shape and position 

until the desired image features are achieved. To apply GVF to the sea ice images, the 

method firstly differentiated the ice pixels that are normally illuminated and 

insufficiently illuminated, namely the “light” ice and “dark ice”. The light ice pixels 

are identified through Otsu thresholding. And the dark pixels, by contrast, are derived 
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from the K-means segmented image by subtracting the light ice image. According to 

the binary images of the light and dark ice, the seeds of the GVF algorithm are 

generated via distance transformation. The floe boundaries are then detected by GVF 

in the light and dark images separately based on the seeds. The segmentation result is 

achieved by fusing the two results together. Finally, morphological cleaning is applied 

to enhance the segmented image by filling the holes and eliminating the small ice 

pieces.  

Although the approach proposed in [36] can separate the touching floes 

automatically, there are some limitations. Firstly, there is a trade-off between weak 

boundary detection capability and GVF capture range. For better floe separation effect, 

specific parameter settings are required for each image. In addition, with the increment 

of the floe size, more iterations are needed to effectively identify the boundaries, 

resulting in extended computation time. In the tested images acquired by UAV, no 

extremely large floe is contained. As mentioned, the floe sizes in the MIZ can vary 

from meters to kilometers. As a result, region growing may have difficulty in adhering 

object boundaries efficiently in the satellite acquired images with high spatial 

resolution. In this context, superpixel segmentation can be introduced. 

Since the main purpose of this thesis is to effectively detect ice floes and extract 

FSD from HRO images. The obstacle is to accurately delineate floe boundaries in the 

water-ice mixed regions. Therefore, superpixel algorithms that group a set of pixels 

with visual coherence into meaningful over-segmenting regions can be used for 

replacing the regular pixel grid, which can provide a simplified form that is beneficial 

for computing image features and reducing the complexity [78]. Superpixels with 

similar properties can be merged to effectively categorise the pixels whilst well 

adhering object boundaries. Thus, the superpixel has the potentiality to detect the 

water-ice mixed regions efficiently, because within-class spectral variation can be 

significantly reduced by changing the classification unit from pixels to image objects 

[79]. In the following section, the superpixel-based segmentation methods in remote 

sensing, including sea ice detection are reviewed.   

2.2.3 Superpixel-based Methods in Remote Sensing and Sea Ice Detection 

A variety of computer vision approaches have considered the superpixel as a basic 

building block. This section surveys the applications of the superpixel-based methods 

in remote sensing, including the sea ice detection. The superpixels are generally used 
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to produce a first segmentation. The study [39] applied the grid-graph-based superpixel 

segmentation [80] for automatic iceberg detection from SAR images (pixel size of ~ 

100m). The features were then extracted from the superpixels and fed into the RF 

classifier. With the aid of superpixel, the low-variability image regions, ice regions, 

can be well preserved, whilst removing the high-variability background regions. An 

accuracy of 98% was achieved. 

In the study [40], Zhang et al. introduced a conditional random fields classifier for 

sea ice classification for SAR images in the Arctic during the melting season. The 

superpixels were obtained using the mean shift algorithm [81]. The features of 

backscatters of the generated superpixels were extracted and modelled for classifying 

the ice and water, which enhanced the performance in distinguishing the speckle noise 

and wind roughened open water. 

For optical images, several superpixel based approaches have also been proposed. 

In the study [32]. The Simple Linear Iterative Clustering  (SLIC) [37] algorithm was 

foremostly used to produce small segments, namely the superpixels. Afterwards, the 

superpixels were merged to determine the optimal segmentation scale through the 

minimum spanning tree. Usually, prior knowledge is required to determine the 

segmentation scale to obtain meaningful objects. With the employment of the 

minimum spanning tree, different proposals can be simulated and evaluated. Based on 

the local variance and the changing rate of the local variance in terms of the number 

of segments, the proper segmentation scale was then determined.  

Similarly, the study [82] also adopted the SLIC algorithm, and further refined the 

superpixels results produced by SLIC through purifying the superpixels that contain 

different classes based on colour quantisation. And to improve the computational 

speed, a classification scheme is employed in which only the edge superpixels were 

purified. Therefore, the boundary accuracy can be improved compared to the original 

SLIC superpixels. In the study [22], Chai et al. improved the original SLIC algorithm 

by adding the texture descriptor term to the objective function. The local directional 

ZigZag pattern (LDZP) [83] was selected for extracting the texture descriptor due to 

its superior texture representation capability. The texture distance for every two pixels 

was calculated from the Euclidean distance of the surrounding elements of the targeted 

pixels in the 3 by 3 local window. The texture distance was then added to the SLIC 

objective function. Afterwards, Chai et al. applied two-stage thresholding to refine the 

superpixels. According to the local mean and variance of the superpixels, they 
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classified the superpixels into three categories: ice, water, and ice-water mixed, then 

the ice-water mixed regions are further segmented via support vector machine (SVM) 

[84], where 50% labelled data was used for training and rest for testing. The algorithm 

has achieved an accuracy of 95.51%.  

In the study [85], to evaluate the effectiveness of different superpixel generation 

algorithms in processing the HRO sea ice images, four algorithms of which the 

effectiveness has been validated on other datasets were employed with a multi-stage 

segmentation model consists of 1) preprocessing for contrast enhancement, 2) 

superpixel generation, 3) superpixel grouping using K-means clustering, 4) and post-

processing for ice shape enhancement. The experiments show that the segmentation 

results have yielded superior segmentation accuracy, which validates the feasibility of 

applying the superpixel techniques for the sea ice detection. However, the performance 

can be significantly affected with different superpixel number specifications. In 

addition, the size distribution has not been demonstrated. 

2.2.4 Superpixel Generation Methods 

A wide range of the superpixel generation algorithms have been developed and 

have been increasingly popularly used in the computer vision applications such as 

visual tracking [86], image segmentation [87], and image retrieval [88]. By taking the 

superpixels as the base unit rather than hundreds of thousands of image pixels, the 

computation efficiency can be particularly improved [89]. A brief review of the state-

of-the-art superpixel algorithms is presented in this section. Basically, the existing 

superpixel algorithms can be categorized to the graph cut-based and seeding-based 

approaches according to their working principles. 

For graph cut-based methods, the Normalised Cuts (NC) [90] is a classic algorithm 

and widely considered as the pioneer of the superpixel segmentation. The algorithm 

produces the sueperpixels in a top-down way by firstly charaterising the image by a 

graph. And minimize the costs of cutting over the graph. The cost is calculated 

according to the similarity between two pixels. Yet, NC has the disadvantage of high 

computational complexity which is reported to be 𝑂(𝑁1.5), where 𝑁 is the total pixel 

number in the image. Similar to the NC algorithm, the methods based on graph cut 

usually have high complexity, such as the Entropy Rate Superpixels (ERS) [91] and 
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Efficient graph-based superpixel [80], which respectively have the complexity of 

𝑂(𝑁2 log 𝑁) and 𝑂(𝑁 log 𝑁).  

For the seeding-based methods, the universal concept is to firstly identify a 

number of seeds (also known as the centers). Afterwards, by bottom-up growing the 

seeds until meeting some certain conditions, the superpixels can therefore be 

generated.  Quick Shift (QS) [92] and Mean Shift (MS) [81] are the two representative 

attempts based on the mode shifting. The superpixel generation is achieved by 

iteratively moving/shifting the seeds to the regions where the pixels have maximum 

probability density. However, the superpixel number cannot be explicitly controlled 

when using QS and MS. Manual parameter tuning with prior knowledge is required 

for changing the produced superpixel number. In addition, the computational 

complexity for both QS and MS are reported to be 𝑂(𝑁2), which is relatively high and 

can cause extended running time when processing the large images. For improving the 

superpixel number controllability, the Lazy Random Walk (LRW) was proposed by 

Shen et al. [93]. The seeds are initialised by using the random walk technique to ensure 

the even distribution of the seeds in the whole image. The seeds are then iteratively 

shifted by energy optimization. The generated superpixels are refined by using the 

LRW for enhancing the compactness. Nevertheless, the computational complexity is 

still 𝑂(𝑁2) as reported in [93]. The high computational complexity of these methods 

is a huge drawback when dealing with the HRO data. 

In addition to the mode shifting methods, clustering is also widely used in the 

seeding-based superpixel algorithms. For instance, K-means clustering algorithm can 

be beneficial due to the capability of minimizing the local colour variance in the image. 

However, the computational cost can be high for deriving the distance between seeds 

and the rest pixels in the whole image. In this context, the Simple Linear Iterative 

Clustering (SLIC) [37] was proposed to solve the issue. In the SLIC algorithm, the 

searching window of the K-means clustering is restricted by considering the superpixel 

size. As a result, the computation complexity is relaxed to a level of 𝑂(𝑁). Texture 

Sensitive SLIC (TS-SLIC), an extended method from SLIC, was proposed in [22] 

which is specifically designed for sea ice detection. As mentioned in the previous 

section, TS-SLIC not only calculates the distance of spatial and colour information, 

but also measures the texture distance for better handling the ice surface. Another 

method clustering-based method by employing the Density-Based Spatial Clustering 
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of Applications with Noise (DBSCAN) is proposed in [94]. The algorithm firstly 

groups pixels into small seeds through using the DBSCAN, and secondly merge the 

seeds into superpixels, achieving a computation complexity of 𝑂(𝑁). However, the 

DBSCAN method have some shortcomings, such as the training is required for 

selecting appropriate threshold for distance measurement and appropriate description 

of the relation between colour and spatial information, leading to the algorithm hard 

to be implemented. 

Other two well-known seeding-based methods are respectively the morphological-

based and the watershed transformation based. For the morphological-based method, 

a popular work is the TurboPixel (TP) [95]. The algorithm creates evenly distributed 

seeds and then gradually dilates the seeds by means of geometric flows, achieving 

highly regular superpixel results. However, the regular pixel shape results in the poor 

performance in boundary adherence. The computational complexity of TP is reported 

to be 𝑂(𝑁) in [95]. Nevertheless, it is also pointed out in the study [96] that TP is 

usually much slower than other algorithms with the same computational complexity 

(i.e. SLIC). For watershed transformation, due to the characteristic of over-segmenting 

the image, it is available to produce superpixels. A computational complexity of 

𝑂(𝑁 log 𝑁) is reported [97]. Nevertheless, due to its mechanism, the size and number 

of the segments cannot be controlled. To tackle with the drawbacks of the superpixel 

generation directly using watershed transformation, Water Pixel (WP) [98], a variant 

of the watershed segmentation was proposed. A regular hexagonal grid is firstly 

employed for generating the seeds as the basins, and the watershed transformation is 

performed on the gradient image to achieve better boundary adherence. According to 

the [98], the complexity is 𝑂(𝑁).  

In addition to the graph cut-based and seeding-based methods, the learning-based 

methods have been recently researched for the superpixel generation. Bayesian 

Adaptive Superpixel Segmentation (BASS) [99] is one of the learning-based 

algorithms that employs the Bayesian mixture model, and provide the size adaptive 

superpixel by iteratively merging or splitting the superpixels. As a result, the BASS 

algorithm not only respects topology, but also favors spatial coherence. The 

computational complexity is not given in the original paper, but it is pointed out in the 

study [100] that BASS has a higher computational cost compared to SLIC.   
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2.3 Summary 

This chapter discusses the research background and related work in the following 

three aspects. The first is the developed techniques in sea ice detection and FSD 

retrieval from both SAR and optical sea ice imagery. For the sea ice imagery with a 

high resolution (features of interest much larger than the pixel resolution) that has 

complicated information in the background, traditional top-down methods such as the 

global thresholding may not adhere to the floe boundaries well in the water-ice mixed 

regions, resulting in holes in the floes due to the variation of the pixel intensity. For 

FSD retrieval from the HRO imagery, the existing approaches focus mainly on the 

watershed transformation, and graph cuts. However, manual inspection and correction 

are inevitable, including refining the results by delineating the floe boundaries and 

separating the touching floes. For the deep learning-based methods, the FSD retrieval 

tends to be less focused, due mainly to the lack of sufficient data for training the 

models. As a result, an effective automated sea ice detection and FSD retrieval method 

is needed to benefit the MIZ, as it can generate labelled FSD data and be 

complementary to the semi-supervised learning approach. To achieve accurate FSD 

retrieval, a good boundary adherence is required. Therefore, the object-based 

approaches can be utilised, as they can aggregate the homogenous pixels by 

considering the spatial patterns. Superpixel techniques that can provide intermediate 

representation can therefore be applied for achieving better boundary adherence and 

provide convenience for further discriminating the water- ice mixed regions. 

Accordingly, in the second aspect, several superpixel-based methods for remote 

sensing are discussed, including the review of sea ice detection methods. The 

superpixels are generally categorised according to the extracted features. Therefore the 

water-ice regions can be retrieved and further processed, e.g. using the SVM [22].  

For a superpixel based image segmentation approach, the superpixel generation 

methods can affect the performance. Therefore, in the third aspect, several superpixel 

generation algorithms are reviewed, including the graph cut-based, seeding-based 

approaches, and learning based-approach. The selection of the superpixel algorithms 

is detailed in Chapter 3.  
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Chapter 3 Technical Background and Proposed Methodology 

3.1 Introduction 

Due to the requirement of the accurate FSD retrieval from the HRO sea ice 

imagery, in this chapter, a multi-stage model is proposed for effectively investigating 

the ice pixels and separating the touching floes. In the segmentation stage, a novel 

method is proposed by employing the superpixel techniques for identifying the floe, 

water-ice mixed, and open water regions, followed by applying the thresholding on the 

contrast enhanced water-ice mixed region to achieve better segmentation performance. 

Meanwhile, in the post-processing stage, a novel marker controlled watershed 

transformation-based floe separation method is proposed. To tackle with the over-

segmentation issue with the general watershed transformation, different marker 

generation strategies are employed for the floes within or without the floe regions.  

The rest of the chapter is organized as follows: Section 3.2 firstly introduces the 

technical background of the image processing techniques used in the thesis. In addition, 

calculation of the FSD is also presented. In Section 3.3, the overall workflow of the 

multi-stage segmentation model is introduced, in which the detailed information of the 

proposed methods in terms of the sea ice detection and floe separation is presented. 

Finally, some concluding remarks are suumarised in Section 3.4. 

3.2 Technical Background 

For sea ice detection from the HRO satellite imagery, accurate delineation of the 

floe boundaries has always been the major obstacle, as the detailed information 

provided by the HRO images also complicates the background in the water-ice mixed 

regions.  Until now, in the remote sensing fields, the traditional pixel-based algorithms 

such as watershed, is usually sensitive to the noise. Also, the graph-based methods are 

usually inefficient due to the computational complexity. Therefore, superpixel-based 

methods have the potential to obtain the over-segmentation results efficiently and 

adhere well to the real object boundaries from the HRO sea ice images. 
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3.2.1 Superpixel Algorithms Used in Thesis 

A superpixel segmentation of a sample image is presented in Figure 3. 1 with 

different superpixel sizes. As can be seen, the resulted superpixels can simplify the 

exemplification of the image to homogeneous small regions that are significant and 

easier for analysis and further processing. In addition, the determination of the size 

and compactness parameters can significantly affect the performance of the segments 

for maintaining the boundaries in the original image. Consequently, the smaller 

superpixels are usually required for delineating the boundaries of the informative 

regions. 

There are many algorithms developed for generating the superpixels. The state-

of-the-art superpixel algorithms are briefly reviewed in Section 2.2.4, and each of them 

has its certain advantages and shortcomings that might adapt better to some specific 

situations. Despite the various approaches to generating superpixel, there are some key 

characteristics that most of the research agree with. The foremost characteristic is that 

the superpixel algorithm and method should be time-efficient whilst reducing the 

memory usage; secondly, superpixels should adhere well to object boundaries; thirdly, 

superpixels should improve the quality of the segmentation results. 

As mentioned, the main purpose of using the superpixel technique is to tackle with 

the obstacle of accurately delineating the floe boundaries and generating the masks for 

the ice floe region and water-ice mixed region. Considering the pixel quantity in the 

HRO image can be over 1 × 108 (i.e. Figure A. 4 presented in appendix), algorithms 

with a lower computational complexity (i.e. 𝑂(𝑁) ) can significantly reduce the 

processing time and hardware requirement. In this context, the SLIC and WP are 

preferred, as the complexity of both of them are 𝑂(𝑁), along with good boundaries 

adherence capability to benefit accurate sea ice segmentation. The TS-SLIC [22], an 

 

Figure 3. 1: (left) Sample image. (right) Superpixel segmentation results with 200 (lower right) and 
1000 (upper left) superpixels and the boundaries of each superpixel marked in yellow.   
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extended method from SLIC, has the awareness of the texture features which could be 

beneficial for identifying the floes from the water-ice mixed regions. The BASS 

algorithm, one of the recently proposed superpixel methods, produces superpixels with 

adaptively determined sizes and tends to preserve the object connectivity [99], 

resulting in the potentiality in coping with large or small sea ice floes. In addition, in 

a previous study of mine [85], the four aforementioned algorithms have been evaluated 

with a segmentation model using the K-means clustering to categorise the generated 

superpixels into ice and water to form a binary segmented image. The scenarios 

incorporating the four algorithms have yielded a segmentation accuracy of 98.19% on 

average, which validates the feasibility of using the four algorithms for sea ice 

detection. And the TS-SLIC scenario that slightly outperforms the other three methods 

with an accuracy of 98.30% was recommended. However, when the model was test on 

a single HRO image, the results seem to be highly sensitive to the parameter settings. 

Since the model proposed in this thesis further employs contrast enhancement and 

thresholding techniques during the segmentation, the result could be different to that 

in [85]. Therefore, the four algorithms are selected for evaluating their effect in sea ice 

segmentation in the method proposed in this thesis. A brief introduction to these four 

superpixel algorithms is given as follows. 

Simple Linear Iterative Clustering  (SLIC) [37]: SLIC, one of the most popular 

superpixel algorithms, adapts the k-means clustering algorithm and generates 

superpixels with uniform size. To well adhere to the boundaries of the objects with 

visual coherence, while controlling the compactness and size of the superpixels over 

the whole image, the weighted distance has been introduced that considers spatial 

proximity and colour similarity. In addition, the k-means algorithm is implemented 

locally in terms of each superpixel centroid by limiting the search space, which 

significantly reduces the complexity of computation even the number of superpixels is 

extremely large. 

When implementing the SLIC algorithm, the superpixel number, 𝑁𝑆𝑃 , and the 

compactness coefficient, 𝑚 , are the two parameters that need to be specified. 

Afterwards, according to the pixel number, 𝑁 , of the whole image, the sampling 

interval, 𝑆, can be derived: 𝑆 = √𝑁 𝑁𝑆𝑃⁄ , which is used for restricting the size of the 

search area to form each superpixel instead of computing the distance of each pixel to 

the centroid globally. The sampling interval is firstly used to generate the regular grid 
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where the centroids are initially determined at the low gradient position. Then, by 

denoting each pixel by a five-dimensional vector (𝑥, 𝑦, 𝑙, 𝑎, 𝑏), where the former two 

are the spatial coordinate and the latter three are the colour components from CIELAB 

colour space, the Euclidean distances of spatial and colour components  𝑑𝑐 and 𝑑𝑠 and 

the combined distance, 𝐷 , for measuring proximity of two pixels 𝑖  and 𝑗  can be 

derived: 

𝑑𝑐 = √(𝑙𝑗 − 𝑙𝑖)2 + (𝑎𝑗 − 𝑎𝑖)2 + (𝑏𝑗 − 𝑏𝑖)2 (3.1) 

𝑑𝑠 = √(𝑥𝑗 − 𝑥𝑖)2 + (𝑦𝑗 − 𝑦𝑖)2 (3.2) 

𝐷 = √(𝑑𝑐)2 + ( 
𝑑𝑠

𝑆
𝑚)2 (3.3) 

Texture-Sensitive SLIC  (TS-SLIC) [22]: The TS-SLIC, as a modified SLIC, 

introduced the measurement of texture descriptor to the distance calculation. Hence, 

the distance of the texture feature between two pixels can be derived by introducing 

the texture descriptor, local directional zigzag pattern, LDZP [83]. For the two pixels 

𝑖 and 𝑗, the texture distance 𝑑𝑡 can be determined as in the Equation 3.4, where 𝑁𝑟 is 

the number of neighbouring pixels in a selected local window (i.e. 𝑁𝑟 = 8 for a 3 by 

3 window). Afterwards, the modified distance between two pixels, 𝐷′  can be 

calculated as in the Equation 3.5. 

 As a result, the generated superpixel become more sensitive to the texture 

information.  

𝑑𝑡 = √∑ (𝐿𝐷𝑍𝑃𝑖,𝑛 − 𝐿𝐷𝑍𝑃𝑗,𝑛)2
𝑁𝑟

𝑛=1

(3.4) 

𝐷′ = √(𝑑𝑐)2 + ( 
𝑑𝑠

𝑆
)

2

𝑚2 + 𝑑𝑡 (3.5) 

Water Pixel (WP) [98]: WP is the approach based on the watershed transform. 

As mentioned, the main concept of the watershed segmentation is to create catchment 

basins which are usually the local minima of the distance transformation, then the 

ridges of the basins filled by water are the watersheds. Although the traditional 

watershed segmentation is considered an efficient approach, it is not able to control 

the amount and the compactness of the segments. To improve the controllability thus 

avoid superpixels with irregular shapes and sizes, WP firstly generates a gradient 
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image based on the input image to determine the initial seeds, which are the minimum 

gradient regions in the cells of the regular hexagonal grid that is generated according 

to the predefined grid step. Afterwards, distance transformation is performed based on 

the seed regions and the result is added to the gradient image by multiplying a 

regularisation parameter that enforces the compactness of the latter superpixels 

generation. Consequently, the superpixels are determined by performing the watershed 

transformation on the regularised gradient image. Compared to the traditional 

watershed segmentation, the WP provide controllability over the superpixel amount 

and compactness, whilst maintaining the high efficiency. 

Bayesian Adaptive Superpixel Segmentation (BASS) [99]. The BASS 

algorithm is a refinement of the Dirichlet-Process Gaussian Mixture Model 

(DPGMM), which is a Bayesian Non-Parametric (BNP) mixture model. By 

introducing the Potts term to the Bayesian estimation of the spatial covariances, the 

resulting superpixels respect more spatial coherence than the DPGMM. Moreover, 

BASS can produce size-adaptive superpixels without predefining the superpixel 

number by iteratively evaluating the split and merged superpixel proposals through the 

Hastings ratios, encouraging the superpixels to retain only the connected regions. 

3.2.2 Noise Removal Algorithms Used in Thesis 

Due to various internal and external factors, noise can be hardly avoided and may 

affect the subsequent processing stages in the remote sensing images. For example, in 

the optical imagery, white noise is more or less contained to degrade the performance 

of edge detection and the accuracy and efficiency of segmentation when using the 

methods based on texture features such as region growing [68]. Therefore, numerous 

denoising methods have been developed, which can be categorised to digital filtering-

based methods and statistical-based methods [101]. The digital filtering-based 

methods suppress the noise by firstly transforming the spatial domain image to the 

frequency domain, then performing noise removal on the frequency domain. Despite 

the success of noise suppression, it is computationally expensive to accomplish the 

spatial-to-frequency transformation and the revert transformation. The statistical-

based methods, on the other hand, suppress the noise by employing the statistical terms 

of the input images, such as the pixel mean or median value, and the histogram, which 

can avoid the high computation cost of the domain transformation.  
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In this context, two widely used statistical-based methods, Median filter, and 

Gaussian filter are firstly selected for evaluating the effect of the segmentation. In 

addition, in the study [22], Bilateral filter [102] and Robust Principal Component 

Analysis (Robust PCA) [103] are recommended for noise removal in the sea ice HRO 

image. However, the algorithms are compared using fixed parameter setting, and the 

effect of the noise removal to the segmentation quality is not evaluated. Therefore, 

these two methods are also adopted in this thesis for assessment. In addition, due to 

the limited training samples, the supervised noise removal methods such as the deep 

learning-based algorithms are not selected. A brief introduction to these four methods 

is given as follows. 

Median filter: The median filter works on the principle that replacing the value 

of each pixel with the median value of the neighbouring pixels in a local window. In 

such a manner, the outliers that have unrepresentative values compared to the 

surrounding pixels at the local window can be eliminated. Depending on the window 

size and shape chosen, the performance can vary a lot.  

Gaussian filter: Gaussian filter, aslo known as the Gaussian blur, is also a widely 

used technique in pre-processing that can reduce the noise. It works on the principle 

that convolving the image with a Gaussian function where the effect can be affected 

by the standard deviation of the Gaussian distribution. Similar to the median filter, the 

Gaussian filter may blur the image while reducing the noise. Therefore, the parameter 

selection is important for the filter. 

Bilateral filter [102]: It is a non-linear noise removal approach that smooths the 

image whilst having the capability of preserving the edges. In contrast with the mean 

and median filter, the bilateral filter has introduced the weighted average instead of 

taking the average value directly from the nearby pixels. The weight considers not only 

the geometric closeness of the pixels, but also the photometric similarity(i.e. colour or 

intensity difference).  

Robust PCA [103]: The Robust PCA is originated from the widely used 

dimension reduction technique of Principal Component Analysis (PCA). Although the 

traditional PCA has superior performance in many practical applications, it has the 

shortcoming against outliers or corrupted observations. To enhance the robustness of 

traditional PCA, the Robust PCA transforms the input image into the sum of a low-

rank matrix and a sparse matrix, where the corruption component is contained in the 

sparse matrics. The decomposition of the original image brings benefits since the 
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corruption component can be arbitrary in magnitude, but are considered to be sparsely 

supported. 

3.2.3 Contrast Enhancement Algorithms Used in Thesis 

As the transition area between water and ice, the water-ice mixed regions can be 

observed to have relatively low contrast compared to that between the large floes and 

the open water. Therefore, as aforementioned, contrast enhancement techniques are 

introduced to improve the performance of the subsequent processes. Due to the 

histogram of the water and ice pixels in the transition area is usually compacted in a 

small range, a commonly employed contrast enhancement method, Histogram 

Equalisation (HE) can be utilised, as it is able to flatten and stretch the dynamic range 

of the image histogram. In addition, the Top-Bottom-hat transformation is selected due 

to is capability of maximised enhancing the bright regions and suppressing the dark 

regions, which can be beneficial for increasing the discrimination between floes and 

the background. Meanwhile, the Multiscale Retinex (MSR) [104] is also selected for 

comparison as it considers the characteristics of dynamic range compression and 

image contrast improvement. The three selected methods are briefly introduced as 

follows. 

Histogram Equalisation (HE): As a widely used contrast enhancement approach, 

HE rearranges the histogram of the input image in which some of the pixel intensity 

values falls densely in a certain range to a uniform distributed histogram. HE is a 

nonlinear transformation that works on the principle of rearranging the histogram 

distribution based on the Cumulative Distribution Function (CDF). As denoted in 

Equation 3.6, suppose that 𝑝𝑟(𝑖) is the probability of the occurrence of the gray level 

𝑖, where 𝑛𝑖 is the number of the occurrence of 𝑖, and 𝑃𝑡𝑜𝑡𝑎𝑙 is the total number of pixels 

in the image. 

𝑝𝑟(𝑖) =
𝑛𝑖

𝑃𝑡𝑜𝑡𝑎𝑙
, 0 ≤ 𝑖 < 256 (3.6) 

𝑝𝑟(𝑖) can also be seen as the normalised histogram of the original image. Then, 

the CDF function corresponds to the gray level 𝑖 can be defined in Equation 3.7, which 

is namely the accumulated normalised probability. 

𝐶𝐷𝐹(𝑖) = ∑ 𝑝𝑟(𝑗)

𝑖

𝑗=0

(3.7) 
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Given the accumulated normalised histogram, the gray levels can be rearranged 

and remapped back to the gray level range of the original image as shown in Equation 

3.8. During the practical implementation, to meet the need of the data type, which is 

an unsigned integer in this case, the round operation is applied. 

𝐻𝐸(𝑘) = round(𝐶𝐷𝐹(𝑘) × [𝑚𝑎𝑥(𝑖) − 𝑚𝑖𝑛(𝑖)] + min(𝑖)), 𝑘 ∈ [0, 255] (3.8) 

Top- Bottom-hat transformation: The Top-Hat and Bottom-Hat transformation 

is another contrast enhancement method which is widely used in medical image 

processing (i.e. retinal vessel investigation [105]). The transformation is based on the 

mathematical morphology. Dilation, ⨁  and erosion, ⊖  are the two fundamental 

operations in morphological filtering of images. As denoted in Equations 3.9 and 3.10, 

for each foreground component in a binary image, 𝐼 , dilation and erosion will 

“thicken” or “thin” it by translating the Structure Element (SE) throughout the image 

[106]. SE here is defined by the shape, such as a disk, rectangle, diamond, etc., and the 

size is usually denoted by the radius in the image plane. The erosion operation thins 

the component by 1) setting the pixel on the origin (usually the center) of the SE to 0 

when the SE overlaps the background, 2) retaining the pixel when the SE is entirely 

contained in the foreground component of the image. The dilation operation, in 

contrast, sets the pixel on the origin of the SE to 1 when any of the SE pixels overlaps 

the foreground of the original image. Opening and closing are the another two 

morphological operations based on the dilation and erosion which can be respectively 

denoted as in Equation 3.11 and 3.12. 

𝐼 ⊖ SE = {𝑖|(𝑆𝐸 + 𝑖) ∈ 𝐼}, i ∈ [0, 𝑠𝑖𝑧𝑒(𝐼)] (3.9) 

𝐼 ⨁𝑆𝐸 = {𝑖|(𝑆𝐸 + 𝑖) ∪ 𝐼 ≠ 0}, i ∈ [0, 𝑠𝑖𝑧𝑒(𝐼)] (3.10) 

𝐼𝑜𝑝𝑒𝑛𝑖𝑛𝑔 = (𝐼 ⊖ SE) ⨁ SE (3.11) 

𝐼𝑐𝑙𝑜𝑠𝑖𝑛𝑔 = (𝐼 ⨁ 𝑆𝐸) ⊖ 𝑆𝐸 (3.12) 

Then, the Top-hat and Bottom-hat transforms can be denoted as in Equation 3.13, 

3.14, and 3.15. The Top-hat transform retrieves the bright objects or elements that are 

smaller than the SE, by contrast, the Bottom-hat transform produces the dark ones. By 

adding the bright elements and suppressing the dark areas, the contrast of the image 

can be enhanced. 

𝐼𝑡𝑜𝑝 = 𝐼 − (𝐼𝑜𝑝𝑒𝑛𝑖𝑛𝑔) (3.13) 

𝐼𝑏𝑜𝑡 = (𝐼𝑐𝑙𝑜𝑠𝑖𝑛𝑔) − 𝐼 (3.14) 

𝐼𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 = 𝐼 + 𝐼𝑡𝑜𝑝 − 𝐼𝑏𝑜𝑡 (3.15) 
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Multiscale Retinex (MSR) [104]: The specific expression of the MSR for the 

grayscale image is shown in Equation 3.16. In the equation, 𝐼(𝑥, 𝑦) denotes the input 

image, 𝑁 and 𝜔𝑛 are respectively the number and weight of the scale, and ∗ represents 

the convolution calculation.  

𝑀𝑆𝑅(𝑖) = ∑ 𝜔𝑛[log 𝐼 (𝑥, 𝑦) − log(𝐹𝑛(𝑥, 𝑦) ∗ 𝐼( 𝑥, 𝑦))]

𝑁

𝑛=1

(3.16) 

𝐹(𝑥, 𝑦) = 𝐶𝑜𝑛𝑠𝑡 ∙ 𝑒
−(𝑥2+𝑦2)

𝜎𝑀𝑆𝑅
⁄ (3.17) 

In general, the N is set to 3 and  𝜔𝑛 is set to 1 3⁄  [104]. And the  𝐹𝑛(𝑥, 𝑦) represents 

a Gaussian function which can be defined in Equation 3.17, where the 𝐶𝑜𝑛𝑠𝑡 is a 

normalisation factor used to fulfil the condition that the integral of 𝐹(𝑥, 𝑦) is always 

equal to 1.  And 𝜎𝑀𝑆𝑅 is the standard deviation of the filter to control the amount of 

the spatial details to be retained. As suggested in the [104], 𝜎𝑀𝑆𝑅 = [15,80,250] for 

the three different scales are the general settings. 

3.2.4 Calculation of the Otsu threshold 

The Otsu thresholding [107] is widely used in the image segmentation. The 

algorithm works on the principle that exhaustively assesses the threshold that can 

minimise the intra-class variance, σ𝑤
2 , which can be denoted as in Equation 3.18. The 

σ𝑐1
2  and σ𝑐2

2  are the variances of the two classes separated by the threshold 𝑇𝑂𝑡𝑠𝑢 , 

where 𝑇𝑂𝑡𝑠𝑢 varies from 0 to 255 which is the range of the gray level in the uint8 type 

grayscale image. The weighting parameter, 𝜔𝑐1  and 𝜔𝑐2  are respectively the 

probability of the two classes, which can be denoted in Equation 3.19 and 3.20, where 

𝑃(𝑖) is the percentage possibility that pixels with intensity equal to 𝑖 appear in the 

image. 

σ𝑤
2 (𝑇𝑂𝑡𝑠𝑢) = 𝜔𝑐1(𝑇𝑂𝑡𝑠𝑢)σ

𝑐1

2 (𝑇𝑂𝑡𝑠𝑢) + 𝜔𝑐2(𝑇𝑂𝑡𝑠𝑢)σ
𝑐2

2 (𝑇𝑂𝑡𝑠𝑢), 𝑇𝑂𝑡𝑠𝑢 ∈ [0,255] (3.18) 

𝜔𝑐1 (𝑇𝑂𝑡𝑠𝑢) = ∑ 𝑃(𝑖)

𝑇𝑂𝑡𝑠𝑢−1

𝑖=0

(3.19) 

𝜔𝑐2 (𝑇𝑂𝑡𝑠𝑢) = ∑ 𝑃(𝑖)

255

𝑖=𝑇𝑂𝑡𝑠𝑢

(3.20) 
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3.2.5 FSD Calculation 

As mentioned in Section 1.1.1, the floe size and size distribution play important 

roles in the Arctic ecosystem. According to the Albedo feedback, the decreased floe 

size leads to the accelerated melting rate, and accordingly increase the heat 

transmission from the solar insolation to the upper layer of the ocean, which may cause 

the ocean re-stratification. According to the binary segmentation results that only 

contain water pixels and ice pixels (water = 0, ice = 1), the properties (i.e. area, caliper 

diameter) can be extracted at pixel-level. Afterwards, to practically apply the 

geoscience concepts into images, such properties can be converted to the SI units.  

The observations of the FSD are usually presented in terms of the Floe Number 

Distribution (FND), which is frequency of the floes with different sizes in a unit 

domain area (typically in 𝑘𝑚−2), and Cumulative Floe Number Distribution (CFND, 

hereinafter referred to as 𝑁(𝑑)). The 𝑁(𝑑) is derived by cumulatively summing the 

FND from the floes with the largest size. And in the previous studies, 𝑁(𝑑) is usually 

defined as a power-law distribution as 𝑁(𝑑) ∝ 𝑑−𝛼, where 𝑑 is the floe size which is 

typically measured by the mean caliper diameter, and 𝛼 is the power-law exponent 

[108]. Therefore, if logarithm is taken on 𝑁(𝑑) , then the equation becomes 

log(𝑁(𝑑)) = 𝐶 − 𝛼 ∙ log (𝑑) in which 𝐶 is the constant value. Visually, the straight 

line can be observed on the log-log plot of 𝑁(𝑑) with the slope equal to −𝛼. Hence, 

for the FSD evaluation and climate model enhancement, finding the value of 𝛼 that is 

as close to the true value as possible is the main issue.  

Typically, the Least-Square Fit (LSF) is adopted for the slope estimation by 

employing the LSF on the log-log space. Usually the truncated range of the 𝑁(𝑑) is 

used for the slope fitting by artificially removing the small fraction of extremely small 

floes as those floes may not fit the power law and can affect the LSF fitting results 

[26]. Therefore, in this thesis, LSF is adopted for the 𝛼 estimation. The results and 

comparison are presented in the Chapter 4.  

3.3 Methodology 

3.3.1 Overall Workflow of the Proposed Method 

The proposed multi-stage segmentation model is centered around the superpixels 

derived from the input image. The overall workflow is presented in Figure 3. 2. First, 
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in the pre-processing stage, noise removal algorithm is applied to enhance the image 

for producing better performance in the subsequent stages. Then, for precisely 

identifying the ice pixels from the HRO images, a novel Superpixel-based 

Segmentation with Contrast Enhancement in water-ice Mixed region (SS-CEM) is 

proposed. In SS-CEM, superpixels are firstly generated and categorised as ice (ICE), 

water-ice mixed (MIX), and open water (OW) according to the features extracted from 

the superpixels. The categorised superpixels are then merged respectively to form the 

ICE Region (ICE-Reg), MIX region (MIX-Reg), and OW region (OW-Reg). 

Afterwards, the contrast enhancement technique is applied in MIX-Reg for enhancing 

the performance of the subsequent thresholding process, where the threshold value is 

determined by combining the Otsu threshold and the standard deviation derived from 

 

Figure 3. 2: Workflow of the proposed multi-stage segmentation model 
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the MIX-Reg. Finally, the thresholded image is combined with the ICE-Reg to form 

the segmentation result. For the segmentation framework, the effects of the algorithm 

selection and parameter settings on the segmentation performance are evaluated for 

the model optimisation, which are presented in Chapter 4.  

In the post-processing stage, a novel marker-controlled watershed segmentation 

based on distance transformation and morphological erosion is applied for floe 

separation. Compared to the general watershed segmentation, the proposed method 

applies different strategies to generate markers for the floes within or without ICE-

Reg. In this manner, the mitigation of the over-segmentation issue in the general 

watershed segmentation is achieved. The framework of floe separation in detail is 

presented in Section 3.3.2.  

3.3.2 Detailed Information of SS-CEM 

As introduced in the overall workflow in Section 3.1, the segmentation 

framework, SS-CEM consists of four main steps. The intermediate results are 

presented in Figure 3. 3. In step 1, as shown in the Figure 3. 3 (a), the superpixels are 

firstly generated, where the boundaries of the superpixels are marked in yellow. Next, 

K-means clustering is applied to categorise the superpixels. The results are shown in 

Figure 3. 3 (b) (red: OW, green: ICE, blue: MIX). The K-means algorithm extract 

useful insights from data by iteratively assigning the cluster centroid and grouping the 

surrounding data points with the smallest distance until convergence. From the visual 

inspection, the superpixels in the ice floes usually have high pixel intensities and low 

standard deviation, and those in the water-ice mixed regions contain not that high but 

variant pixel intensities. Therefore, K-means can be employed for the classification by 

taking the mean intensity and standard deviation values extracted from each superpixel 

as inputs.  

The classification results are plotted and shown in Figure 3. 3 (d). It is worthwhile 

noting that due to the Euclidean distance is used for calculating the distance between 

two superpixels in K-means, the input values measured on different scales may lead to 

the unbalanced weight for each feature. Therefore, the two statistical characteristics 

are normalised to the range of [0,1] during the implementation. Assuming the 

superpixel number is 𝑁𝑠𝑝, the determined mean intensity and standard deviation values 
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are respectively 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑛  and 𝑆𝑡𝑑𝑛 , 𝑛 = 1,2, … , 𝑁𝑠𝑝 , the normolised values are 

given by: 

𝑁𝑜𝑟𝑚𝑜𝑙𝑖𝑠𝑒𝑑𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑛 =
𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑛 − min (𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑛)

max(𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑛) − min (𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑛)
(3.21) 

𝑁𝑜𝑟𝑚𝑜𝑙𝑖𝑠𝑒𝑑𝑆𝑡𝑑𝑛 =
𝑆𝑡𝑑𝑛 − min (𝑆𝑡𝑑𝑛)

max(𝑆𝑡𝑑𝑛) − min (𝑆𝑡𝑑𝑛)
(3.22) 

The classified superpixels are then merged to form the OW-Reg, ICE-Reg, and 

the MIX-Reg. Afterwards, in step 3, the contrast enhancement techniques are applied 

for a producing a better segmentation performance in the subsequent processing. The 

visual comparison can be seen from the Figure 3. 3 (e) and Figure 3. 3 (f), where the 

 

Figure 3. 3: Visualisation of the intermediate results in SS-CEM 
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ICE-Reg and OW-Reg are masked for better visual effects. From visual inspection, the 

floe boundaries in the MIX-Reg can be more clearly identified. The quantitative 

comparisons of the effect of contrast enhancement algorithms with different parameter 

settings are detailed in the Chapter 4.  

In step 4, the thresholding technique is applied for investigating the ice pixels in 

the MIX-Reg and identifying the small floes that may contained in the OW-Reg. The 

histograms for the entire input image and the MIX-Reg are presented in Figure 3. 4. 

As can be seen from the Figure 3. 4 (a), a bimodal distribution can be observed, 

however, it is difficult to find an appropriate threshold for the investigation of the ice 

pixels with not that high intensity (i.e. [50,100]). And in Figure 3. 4 (b), the frequencies 

of the pixel intensity are more discriminative in the histogram of MIX-Reg by 

removing a large amount of the pixels with very high and very low intensities. Thus, 

the Otsu thresholding can be applied. Nevertheless, although the Otsu thresholding can 

produce the threshold automatically by minimising the intra-class variance, the 

problem is however, the submerged ice contained in such water-ice transition regions 

 

Figure 3. 4:  Histogram of (a) the whole input image; (b) the enhanced MIX-Reg 
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can affect the performance of the Otsu thresholding. In this context, the local standard 

deviation derived from the MIX-Reg can be introduced. The final threshold is 

determined as in Equation 3.23, where the σ𝑀𝐼𝑋−𝑅𝑒𝑔 is the standard deviation of MIX-

Reg, and C𝑡ℎ𝑟𝑒𝑠ℎ is a constant for adjusting the threshold value. From trial and error, 

the C𝑡ℎ𝑟𝑒𝑠ℎ is suggested to set to 1. A brief comparison is presented in the section of 

model optimisation in Chapter 4. Finally, the thresholded results are combined with 

the ICE-Reg to generate the segmentation result as can be seen in Figure 3. 3 (c). 

𝑇𝑓𝑖𝑛𝑎𝑙 = 𝑇𝑂𝑡𝑠𝑢 + C𝑡ℎ𝑟𝑒𝑠ℎ ∙ σ𝑀𝐼𝑋−𝑅𝑒𝑔 (3.23) 

3.3.3 Erosion and Distance transformation-based Marker Controlled Floe 

Separation (ED-MCFS) 

In the post-processing stage, the watershed algorithm has the potential to separate 

the connected floes with a main obstacle of the over-segmentation. To tackle with the 

issue of over-segmentation, a novel Erosion and Distance Transformation-based 

Marker-Controlled Floe Separation (ED-MCFS) framework is proposed. The 

workflow of the framework is presented in Figure 3. 5.  

 

Figure 3. 5:  Workflow of the floe separation 
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First, according to the binary segmented result and the ICE-Reg identified in the 

segmentation stage, the objects with 8-connectivity are categorised into 𝐹𝑙𝑜𝑒𝐼𝐶𝐸𝑅𝑒𝑔, 

and 𝐹𝑙𝑜𝑒𝑛𝑜𝑛−𝐼𝐶𝐸𝑅𝑒𝑔 . The two categories are defined as in the Equation 3.24 and 

Equation 3.25, where 𝑁𝑜𝑏𝑗 is the total number of the object with 8-connectivity in the 

segmented binary image, and the 𝐹𝑙𝑜𝑒(𝑘) is accordingly the 𝑘𝑡ℎ object. 𝐹𝑙𝑜𝑒𝐼𝐶𝐸𝑅𝑒𝑔 

are namely the objects that have overlapping regions with the ICE-Reg, and 

𝐹𝑙𝑜𝑒𝑛𝑜𝑛−𝐼𝐶𝐸𝑅𝑒𝑔 are the resting objects. 

𝐹𝑙𝑜𝑒𝐼𝐶𝐸𝑅𝑒𝑔 = {𝐹𝑙𝑜𝑒(𝑘)|𝐹𝑙𝑜𝑒(𝑘) ∩ 𝐼𝐶𝐸𝑅𝑒𝑔 ≠ 0}, 𝑘 ∈ [1, 𝑁𝑜𝑏𝑗] (3.24) 

𝐹𝑙𝑜𝑒𝑛𝑜𝑛−𝐼𝐶𝐸𝑅𝑒𝑔 = {𝐹𝑙𝑜𝑒(𝑘)|𝐹𝑙𝑜𝑒(𝑘) ∩ 𝐼𝐶𝐸𝑅𝑒𝑔 = 0}, 𝑘 ∈ [1, 𝑁𝑜𝑏𝑗] (3.25) 

Different strategies are employed for the two categories mainly due to difference 

in size. The intermediate results of the floe separation are presented in Figure 3. 6. 

Firstly, for the 𝐹𝑙𝑜𝑒𝐼𝐶𝐸𝑅𝑒𝑔  as shown in Figure 3. 6 (c), morphological erosion and 

 

Figure 3. 6: Floe separation intermediate results visualisation 
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distance transformation are applied to generate the E-Marker and D-Marker. The 

combined result of the two markers is marked in white in the Figure 3. 6 (d), where 

the 𝐹𝑙𝑜𝑒𝐼𝐶𝐸𝑅𝑒𝑔 is marked in gray. Afterwards, the combined marker is used as the local 

minima for guiding the watershed stransformation. The result is presented in Figure 3. 

6 (g). As highlighted in the yellow bounding box, the floe separation is achieved 

without obvious over-segmentation compared to the segmented result. 

As can be seen in Figure 3. 6 (e), for 𝐹𝑙𝑜𝑒𝑛𝑜𝑛−𝐼𝐶𝐸𝑅𝑒𝑔, the floes that do not have 

overlap with the ICE-Reg, distance transformation is applied, as such floes usually 

have small size and relatively regular shape. The generated marker for 𝐹𝑙𝑜𝑒𝑛𝑜𝑛−𝐼𝐶𝐸𝑅𝑒𝑔 

is presented in Figure 3. 6 (f). Similarly, the watershed segmentation is applied with 

the guidance of the marker, and the result is presented in Figure 3. 6 (h). 

3.4 Summary 

In this chapter, the technical background is firstly introduced, including the 

working principle of the algorithms used in different stages of the proposed model, 

followed by the calculation of the FSD.   

Afterwards, a multi-stage model consists of the pre-processing, segmentation, and 

post-processing stages for ice pixels detection and floe separation is introduced. In the 

segmentation stage, a novel framework, SS-CEM is proposed, where the combination 

of the superpixel technique and K-means clustering is firstly employed for identifying 

the ice floe regions (ICE-Reg), water-ice mixed regions (MIX-Reg), and open water 

regions (OW-Reg). Next, contrast enhancement techniques are employed to enhance 

the discrimination of water and ice pixels in the MIX-Reg. Subsequently, thresholding 

is applied in MIX-Reg and OW-Reg. In such a divide and conquer manner, the 

segmentation performance in the water-ice mixed region can be improved, whilst 

preserving the floe surface. Finally, by combining the thresholded result and the ICE-

Reg, the segmented result is achieved. 

In the post-processing stage, a novel marker controlled watershed-based floe 

separation framework, ED-MCFS is proposed. In the framework, for the floes that that 

have overlap with the ICE-Reg, morphological erosion and distance transformation 

are applied for marker generation. The created markers are then combined for guiding 

the watershed transformation for the floes in ICE-Reg. For the resting floes that tend 

to have relatively smaller sizes, the marker is generated by solely applying the distance 
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transformation. By employing the markers for floes in different regions, it is aimed to 

tackle with the over-segmentation issue which is hard to be avoided in the general 

watershed transformation. The effect of the parameter settings and the evaluation of 

the performance applied to the HRO image dataset are detailed in Chapter 4.  
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Chapter 4. Superpixel-based Multi-stage Segmentation of Sea 

Ice Images 

4.1 Introduction 

Since several algorithms are selected in each stage of the proposed multi-stage, 

the best performed scenarios can be selected by quantitatively evaluating the effect to 

the segmentation quality and FSD exponent estimation. A dataset consists of 8 HRO 

images are used for validation. The experiments in this chapter were all conducted on 

a computer with a 4.1 GHz CPU and 16 GB RAM. 

The rest of the chapter is organized as follows. In Section 4.2, the image dataset 

and ground truth generation are firstly introduced, followed by the experimental design 

and the key parameter settings for the model optimisation. Afterwards, in Section 4.3, 

the comparison of the results produced by different scenarios is detailed. In Section 

4.4, the assessments of the optimised model on the whole image dataset against the 

other methods are provided. Finally, a summary of the recommended algorithm and 

parameter settings, and the optimised model performance is given in Section 4.5. 

4.2 Experimental Design and Key Parameter Settings 

4.2.1 Image Dataset and Ground Truth Generation 

Brief introduction to the images used in this thesis is presented in Table 4. 1, where 

the acquisition date and image size for each image is also presented. The original HRO 

images are accessible on the Global Fiducials Library (GFL) [109], a long-term 

archive of the images from U.S. National Imagery Systems released by the U.S. 

Geological Survey (USGS) in 2009.   

Among the large amount of the HRO data in the GFL, the images with relatively 

high qualities (i.e. no heavy cloud and severe variant illumination) are selected from 

Chukchi Sea, East Siberian Sea, and Arctic Sea Ice Buoys datasets for creating the 

image dataset for testing. The source images are presented in the Appendix A. It is 

worthwhile noting that the images used in the thesis are not exactly the original image 

in the GFL but have been pre-processed. The interested region was firstly cropped out 
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from the rotated original HRO images to remove the background pixels and the 

distorted regions. And the images are then downsized to half resolution (2 meter). The 

generated dataset is then used to evaluate the effectiveness of the proposed multi-stage 

model. Last but not least, the data type of all the images are unsigned 8-bit integer. 

To quantitatively evaluate the segmentation performance, Ground Truth (GT) data 

is necessary. In this thesis, following the GT generation methodology adopted in the 

study [26], The GT data is then generated via firstly producing the automated 

segmentation results through the environment for visualizing images (ENVI) software, 

then the manual correction is performed by domain experts to trace the floe boundaries 

and separate the touching floes. An edge-preserving and merging algorithm are used 

in the ENVI to produce the segmentation result. However, the threshold need to be 

specified manually to obtain satisfactory outcomes [26].  

4.2.2 Evaluation Metrics 

For the quantitative assessment of the segmentation results, several popularly used 

metrics are adopted in the experiments, including the pixel-level Accuracy (ACC), 

Matthews correlation coefficient (MCC), and F1 score [110-112]. These three metrics 

are derived from the confusion matrix that consists of the True Positive (TP), True 

Negative (TN), False Positive (FP), and False Negative (FN). The positive or negative 

labels the pixels that are foreground or background in the segmented binary image, 

and the true or false indicates if the pixel is correctly predicted compared to the GT 

data. ACC, as denoted in Equations 4.1, is the metric that quantifies the how many 

foreground pixels are correctly classified compared to GT. On the other hand, MCC 

Table 4. 1: Brief introduction to the image dataset 

Name Image Size Acquisition date 

Chukchi_2013 2548 × 6368 31 May 2013 

Chukchi_20101 7632 × 8544 30 May 2010 

Chukchi_20102 7080 × 10944 30 May 2010 

Chukchi_2014 13504 × 12672 02 May 2014 

Esiber_2001 3684 × 7056 16 Jun 2001 

MIZ_20141 6720 × 9168 18 Jul 2014 

MIZ_20142 10352 × 9392 30 Jul 2014 

MIZ_20143 10944 × 7728 14 Aug 2014 
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as in Equations 4.2 can comprehensively assess the performance of the image within 

the four quadrants of the confusion matrix. Similarly, F-1 score describes the overall 

performance in both Precision and Recall, as can be seen in Equations 4.3 to 4.5. The 

Precision and Recall are attractive as the criteria of segmentation quality because they 

are sensitive to the over and under segmentation. Over-segmentation decreases the 

Precision and under-segmentation leads to low Recall. 

𝐴𝐶𝐶 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) (4.1) 

𝑀𝐶𝐶 =
𝑇𝑃 ∙ 𝑇𝑁 − 𝐹𝑃 ∙ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) ∙ (𝑇𝑃 + 𝐹𝑁) ∙ (𝑇𝑁 + 𝐹𝑃) ∙ (𝑇𝑁 + 𝐹𝑁)
(4.2) 

𝐹1 = (2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) (4.3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (4.4) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (4.5) 

In addition to the ACC, MCC and F1 score, the peak signal to noise ratio (PSNR) 

is also adopted. The PSNR that considers image type and Mean Square Error (MSE) 

is defined as in Equation 4.6, where the 𝑃𝑒𝑎𝑘𝑉𝑎𝑙 is determined by the maximum value 

of the input image. In the context of the image used in this thesis, the data type is uint8, 

the 𝑃𝑒𝑎𝑘𝑉𝑎𝑙 therefore is 255. On the other hand, the MSE is defined in Equation 4.7.  

MSE is the expectation of the square difference between the pixel values of the 

denoised image, 𝑓′(𝑖, 𝑗) and those of the original image, 𝑓(𝑖, 𝑗), where M and N are 

namely the length and width of the image. In general, the higher the PSNR, the less 

the image is distorted. 

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10(
𝑃𝑒𝑎𝑘𝑉𝑎𝑙2

𝑀𝑆𝐸
) (4.6) 

𝑀𝑆𝐸 =
1

𝑀 × 𝑁
∑ ∑(𝑓′(𝑖, 𝑗) − 𝑓(𝑖, 𝑗))2

𝑁

𝑗=1

𝑀

𝑖=1

(4.7) 

For quantitative assessment of the proposed floe separation method, the floes in 

GT and separated images with 8-connectivity are quantified into nine categories, 

CAT(c) according to the size. The definition of  CAT(c) is as in Equation 4.8, where 

𝑂𝑏𝑗(𝑖) is the floe with 8-connectivity and 𝐴𝑟𝑒𝑎(𝑂𝑏𝑗(𝑖)) denotes how many pixels is 

contained in the 𝑂𝑏𝑗(𝑖). 𝑁𝑂𝑏𝑗 is the total number of the floes with 8-connectivity in 

the binary image. 

CAT(c) = {𝑂𝑏𝑗(𝑖)|𝐴𝑟𝑒𝑎(𝑂𝑏𝑗(𝑖)) ∈ [10𝑐−1, 10𝑐]}, c ∈ [1,9], 𝑖 ∈ [1, 𝑁𝑂𝑏𝑗] (4.8) 
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For the produced separated result and GT image, 𝐶𝐴𝑇𝑆𝐸𝑃(𝑐) and 𝐶𝐴𝑇𝐺𝑇(𝑐) are 

calculated respectively. Afterwards, for evaluating the similarity of the pixel level floe 

size distribution in the two images, the mean square error can be derived as denoted in 

Equation 4.9. 

𝑀𝑆𝐸𝐶𝐴𝑇 =
1

9
∑(𝐶𝐴𝑇𝑆𝐸𝑃(𝑐) − 𝐶𝐴𝑇𝐺𝑇(𝑐))2

9

𝑐=1

(4.9) 

Finally, for evaluating 𝑁(𝑑) , the cumulative floe number distribution that is 

proportional to 𝑑−𝛼  (introduced in Section 3.2.5), the absolute difference between 

𝛼𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 and 𝛼𝐺𝑇, the exponent values estimated from the separated result and GT 

image, is compared as shown in Equation 4.10.  

𝐷𝑖𝑓𝑓 = |
𝛼𝐺𝑇 − 𝛼𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝛼𝐺𝑇
| × 100% (4.10) 

4.2.3 Parameter settings 

Since several algorithms are selected for comparison in each stage of the proposed 

multi-stage model, an optimisation process is necessary for the determination of the 

best performed combination and key parameter settings. Therefore, the experiments 

for model optimisation are designed and detailed in the following subsections. In 

addition, a sample image is required for the experiments. From visual inspection, 

Chukchi_2013 that is less affected by the environmental factors such as the cloud and 

illumination, is therefore selected as the sample image. 

4.2.3.1 Settings for the Superpixel Algorithms  

For the evaluation and comparison of the four selected superpixel generation 

algorithms, SLIC, WP, BASS, TS-SLIC, a simplified model is applied by removing 

the pre-processing stage and the contrast enhancement in MIX-Reg. The effects of the 

noise removal and contrast enhancement algorithms with different parameters are 

evaluated after the superpixel algorithm selection.  

The performance of the SLIC, WP, and TS-SLIC can vary as the superpixel 

number, 𝑁𝑆𝑃 changes. Since the generated superpixels are usually compact in size, the 

superpixels therefore consist of approximately the same number of pixels. Therefore, 

the effect of 𝑁𝑆𝑃 need to be evaluated. However, according to Table 4. 1, the selected 
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images have different size. Therefore, a fixed superpixel number setting will lead to 

the varying superpixel size for different images and may affect the segmentation 

performance. For instance, too large superpixel size could cause the superpixel 

containing ice regions and water-ice mixed regions simultaneously. And if too small 

superpixels are used, the features contained could be unstable and accordingly affect 

the classification performance by K-means.  

Figure 4. 1 presents the pixel level floe size distribution of all the images in the 

dataset, where the floes are categorised as CAT(c), c ∈ [1,9]. As can be seen, floes 

within 10 pixels appear most frequently in the image dataset. However, it would be 

less meaningful to derive and compare the mean intensity and standard deviation from 

 

Figure 4. 1:  Pixel level floe distribution of the image dataset observed from GT 
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the superpixels that only contain roundly 10 pixels, as the features could be 

significantly affected by the disturbance such as melt ponds, cloud, and shadow. In 

addition, in the proposed segmentation model, such small floes can be investigated in 

the thresholding stage. Therefore, the floe sizes with the second and third highest 

frequency are selected to be the superpixel sizes. Considering the size of the sample 

image is 2548 × 6368, the superpixel number, 𝑁𝑆𝑃 is then set to the range of 1 × 104 

to 10 × 104(roundly 150 to 1500 pixels for each superpixel) with an increment of 

1 × 104  for SLIC and TS-SLIC algorithms. For WP, the superpixel number is 

controlled by specifying the grid step, 𝜎𝑊𝑃 , of the initial regular superpixel grid. 

Meanwhile, the superpixel number is capped at 65536 in the implementation provided 

by the author of WP. Thus, the results are produced with WP until its superpixel 

number reaches the highest value. 

For implementing the superpixel algorithms, some other parameters need to be 

specified. In this study, the compactness coefficient 𝑚 = 10 is adopted for both SLIC 

and TS-SLIC, and the regularisation parameter 𝑘𝑤𝑝 is set to 8 for WP as suggested in 

the original papers [22, 37, 98]. The gradient image used for WP is produced by 

performing a basic morphological gradient using the SE with the radius 𝑅 = 3. In 

addition, to ensure consistency of the algorithm performance to the original papers, 

WP and BASS are implemented based on the codes provided by the authors. The WP 

superpixel results were produced in Ubuntu 20.04.2, while the BASS superpixels were 

generated via Python 3.8.5 with Pytorch 1.3.0. The generated results are then imported 

to the MATLAB. 

4.2.3.2 Settings for Pre-processing 

In the experiments for pre-processing, the segmentation model incorporating SLIC 

and removing the contrast enhancement in MIX-Reg is employed. The effect of 

contrast enhancement stage is evaluated in later experiments. To evaluate the selected 

Table 4. 2: Parameter settings for pre-processing 

Method Parameters Values 

Median Filter Window Size, m  1:1:20 

Gaussian Filter Standard deviation, σ𝑔  0.5:0.25:5 

Robust PCA Regularisation parameter, λ [𝜆0: 𝜆0: 10𝜆0] 

Bilateral Filter Degree of Smoothing, DoS 1000:2000:50000 

 Domain parameter for spatial kernel, 

σ𝑑 

[1, 3, 5] 
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algorithms for pre-processing, namely the median filter, Gaussian filter, Robust PCA, 

and bilateral filter, for each algorithm, the effect of using different parameter settings 

is evaluated. The parameter settings for the four algorithms are presented in Table 4. 

2. It is worth noting that for the Robust PCA, a regularisation parameter, λ is required 

to relax the computation. The suggested λ can be derived from Equation 4.11, where 

M and N are respectively the length and width of the input image.  

𝜆0 =
1

√𝑚𝑎𝑥 (𝑀, 𝑁)
(4.11) 

For example, for the sample image Chukchi_2013, 𝑀 = 2548 while 𝑁 = 6368. 

Hence, 𝑚𝑎𝑥(𝑀, 𝑁) = 6368 . The value of the suggested λ , can be calculated 

accordingly to be 𝜆0 ≈ 0.0125 . To evaluate how the parameter can affect the 

performance in the HRO image, the experiments that using 𝜆 from 𝜆0 to 10𝜆0 with an 

increment of 𝜆0 are conducted. 

For the bilateral filter, the two keystone parameters respectively are the Degree of 

Smoothing, DoS, which is the range parameter for colour kernel, and the domain 

parameter for spatial kernel, σ𝑑. As illustrated in the study [102], there is a trade-off 

between these two parameters. Basically, larger range parameters can produce 

smoother results. The weight of colour of each pixel becomes the same as the value of 

range parameter approaches infinity, resulting in the filter becoming equivalent to the 

mean filter. Therefore, the range parameter cannot be too large. Certainly, the value of 

the range parameter cannot be too small as well, because the extremely small DoS can 

significantly increase the weight of the center point, resulting in the suppressed 

denoising effect. Accordingly, when the DoS is set to 0, the output image is exactly 

equivalent to the input image. On the other hand, the domain parameter for spatial 

kernel, σ𝑑 constraints the effect of the smoothing parameter and has the capability of 

controlling the edge preservability. As a result, the blurring of the edge can be 

prevented by setting a small σ𝑑, however, the denoising and smoothening effect can 

be suppressed.  

4.2.3.3 Settings for Contrast Enhancement 

For the experiments on the contrast enhancement algorithms applied in MIX-Reg, 

the best performed pre-processing algorithm and the segmentation model 

incorporating SLIC is adopted to ensure the consistency with the pre-processing 

experiments.  
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The parameters for each method are specified in Table 4. 3. For the MSR method, 

the Percentage of Saturation (PoS) pixels refers to the percentage of the saturation on 

each side of the histogram. The PoS value as shown in the table has a range from [1, 

5, 10]. Generally, the PoS can be different on either the dark or light side, but for the 

convenience of computation, the same values are applied to both sides in this study.  

For the Top-Bottom Hat method, as mentioned in Section 3.2.3, the radius of the 

structure element, 𝑅𝑆𝐸  for the morphological operations can significantly affect the 

result. Therefore, the Top-Bottom Hat transformation is evaluated through three radius 

setting scenarios. 

4.2.3.4 Settings for Floe Separation 

 In the floe separation stage, to apply the erosion for the marker generation, the 

radius of the structure element, 𝑅𝐸𝑅𝑂, is the main parameter that need to be specified. 

As concluded in Table 4. 4, the range of 5 to 30 with an increment of 5 is selected for 

evaluation.  

4.3 Results and Analysis for Model Optimisation 

4.3.1 Evaluation of Superpixel Algorithms and Effect of Superpixel Number 

To comprehensively evaluate the effect of different superpixel number settings on 

the proposed segmentation pipeline, the three superpixel number adjustable algorithms 

were tested with the superpixel number varying from 1 × 104 to 10 × 104 with an 

increment of 1 × 104. The results are presented in Figure 4. 2.  

Table 4. 3: Parameter settings for contrast enhancement 

Method Parameters Values 

MSR Percentage of saturation 

pixel, PoS  

[1, 5, 10] 

Top-Bottom Hat Radius of SE, 𝑅𝑆𝐸 [1, 5, 10] 

 

Table 4. 4: Parameter settings for Floe Separation 

Parameter Values 

𝑅𝐸𝑅𝑂 5:5:30 
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As can be seen in the Figure 4. 2 (a) and (c), the pixel level accuracy and F1 score 

values have a strong resistance within 1% variation against superpixel number 

variation for SLIC and WP. In terms of MCC in Figure 4. 2 (b), a relatively more 

obvious increasing or decreasing trend can be observed as the superpixel number 

varies because the MCC is more sensitive to the false attributes in the confusion 

matrix. In the previous study of mine [85], the superpixels are directly merged to form 

the segmentation result for Chukchi_2013. As a result, the MCC decreased rapidly to 

80% as the superpixel number decreased to 1 × 104. By contrast, the proposed SS-

CEM yields the variations of MCC values within 5%, which indicates the framework 

has strong stability against the superpixel number variation. This is mainly owing to 

 

Figure 4. 2:  ACC (a), MCC (b), and F1 score (c) of the three superpixel algorithms with different 
superpixel number settings 
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the segmentation scheme that investigates ice pixels in the water-ice mixed regions by 

thresholding. Hence, the superpixels with under-segmentation issues can be refined. 

Table 4. 5 summarises the quantitative results of the four superpixel methods 

under the best performed scenarios in the simplified model where pre-processing and 

contrast enhancement are not used. As can be seen, the WP and SLIC outperform the 

other two algorithms in terms of the ACC, MCC and F-1 scores, also the WP can 

further improve the ACC and MCC by 0.02% and 0.04% compared to the SLIC. 

However, the WP method suffers from certain limitations, especially the 

uncontrollable number of superpixels, which may affect the subsequent segmentation 

and FSD analysis. With the increased images size, the superpixel number can vary 

significantly as the grid step varies, in a non-linear way, which is not desired for the 

proposed framework in implementation. The SLIC, on the contrary, has a similar 

performance compared to the WP method, but has a very good controllability to the 

number of the superpixels. Therefore, the SLIC is chosen and recommended in my 

implementation.  

In addition, the running time for each superpixel generation algorithm is also 

reported in Table 4. 5. As can be seen, the SLIC algorithm is of the highest efficiency. 

The BASS and TS-SLIC take much longer running time yet the results are still 

unsatisfactory. It is worth noting that these algorithms are implemented on different 

platforms, leading to the time comparison a bit unfair. Therefore, the running time is 

just provided for reference.  

According to the experimental results, the SLIC method is chosen and 

recommended for the proposed framework due to the high segmentation accuracy and 

good size controllability. For the SLIC method, the best performed result can be 

observed when the superpixel number is set to 2 × 104, where each superpixel consists 

Table 4. 5: Quantitative comparison among four selected superpixel algorithms 

Methods ACC/% MCC/% F-1 score/% 
Running 

time/s 

SLIC 98.68 93.17 99.26 4.11 

TS-SLIC 97.97 89.41 98.87 327.15 

WP 98.70 93.21 99.26 8.71 

BASS 91.73 72.52 94.83 510 
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of approximately 800 pixels. Therefore, for the experiments on the remaining images 

of the dataset, the superpixel size of 800 is adopted. 

4.3.2 Evaluation of Noise Removal Algorithms 

The Effect of the preprocessing stage is then evaluated by using the model 

incorporating the SLIC method for superpixel generation whilst removing the contrast 

enhancement stage. Figure 4. 3 compares the segmentation accuracy when using 

different parameter settings for each method, where the red horizontal line denotes the 

 

Figure 4. 3: Comparison of different parameter settings in the pre-processing stage 
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segmentation results conducted on the unfiltered image. As can be seen from Figure 

4. 3 (a), the median filter can slightly increase the accuracy when the window size is 

lower than 8. However, the accuracy rapidly decreases as the window size become 

larger. Similarly, for the gaussian filter, as shown in Figure 4. 3 (b), the best performed 

scenario can be observed when the Standard deviation, σ𝑔  is set to 3. Then a 

decreasing trend can be observed as the σ𝑔 increases. 

As can be seen from Figure 4. 3 (c), for the RPCA method, a peak accuracy can 

be observed when 𝜆 is set to 5𝜆0. However, the performance tends to be unstable as 

the 𝜆 varies, where the accuracies in several scenarios are lower than that of the model 

using unfiltered image. 

For bilateral filter, as presented in Figure 4. 3 (d), there is an obvious trend that 

the segmentation accuracy increases as the smaller standard deviation σ𝑑 is selected, 

which means the edge preservability provided by the small σ𝑑  value do help the 

performance of the proposed segmentation model. In addition, the bilateral filter has 

yielded stable results with higher accuracy than the unfiltered result when σ𝑑 is set to 

1, and the highest accuracy is achieved when DoS is set to 1.7 × 104. 

To further evaluate the performance of the four methods, the best performed 

scenarios are presented in Table 4. 6, where the running time for each scenario is 

recorded by measuring the whole processing time of the model. As can be seen, the 

Bilateral filtered image can increase the ACC, MCC, and F-1 score by 0.22%, 1.18% 

and 0.1% respectively. Meanwhile, PSNR is derived by taking the original image as 

reference. Therefore, a high PSNR value can be observed with the small MSE between 

the filtered and original image. Although the denoised image produced by median filter 

has the lowest PSNR value and the highest mean square error compared to the 

Table 4. 6: Results of the best performed scenarios in the pre-processing experiments 

Methods ACC/% MCC/% F-1/% PSNR/dB 
Running 

time/s 

Unfiltered 98.68 93.17 99.26 - 7.82 

Median Filter 98.71 93.35 99.28 41.57 8.01 

Gaussian Filter 98.84 94.03 99.35 45.87 7.96 

RPCA 98.76 93.60 99.31 52.94 85.02 

Bilateral Filter 98.90 94.35 99.36 46.71 9.01 
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unfiltered image, the accuracy of the segmentation result is inferior to the other 

methods. On the other hand, bilateral filer produces the image with similar PSNR, but 

a higher accuracy compared to that of the gaussian filter, indicating the edge 

preservability is beneficial in the proposed model. In addition, the running time within 

3 seconds can be observed when using median, gaussian, and bilateral filters. By 

contrast, the RPCA method is less efficient. In this context, the bilateral filter with the 

standard deviation, σ𝑑 set to 1 is recommended in the proposed model. 

4.3.3 Evaluation of Contrast Enhancement Algorithms 

To evaluate the effect of contrast enhancement in MIX-Reg to the segmentation 

accuracy, different scenarios are tested using the model incorporating SLIC. The 

experimental results are provided in Table 4. 7, where the result produced by original 

image without contrast enhancement is provided for comparison. The running time 

measured for the whole processes is recorded. From the table, the MSR yields the 

highest performance when 1% pixels are allowed to be saturated on both side of the 

histogram. And a decreasing trend can be observed as the PoS increases. And for the 

Top-Bot hat, the scenario 𝑅𝑆𝐸 = 1 has a slightly enhanced performance compared to 

the scenario that contrast enhancement is not applied. And the highest performance is 

Table 4. 7: Effect of the contrast enhancement methods 

Methods ACC/% MCC/% F-1/% 
Running 

time/s 

Original 98.68 93.17 99.26 7.82 

Original + HE 98.87 94.17 99.36 8.59 

Original + MSR(PoS=1) 98.87 94.24 99.37 12.89 

Original + MSR(PoS=5) 98.51 92.67 99.16 12.67 

Original + MSR(PoS=10) 96.68 85.55 98.10 12.71 

Original + TopBot (𝑅𝑆𝐸=1) 98.72 93.38 99.28 8.05 

Original + TopBot(𝑅𝑆𝐸=5) 98.88 94.26 99.37 8.03 

Original + TopBot(𝑅𝑆𝐸=10) 98.27 91.64 99.02 8.33 

Bilateral + HE 99.03 95.11 99.43 10.20 

Bilateral + MSR(PoS=1) 99.00 94.97 99.44 13.90 

Bilateral + TopBot(𝑹𝑺𝑬=5) 99.05 95.16 99.47 10.17 
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achieved in 𝑅𝑆𝐸=5 scenario. Among the scenarios that taking the original image as 

input, the Top-Bot hat scenarios are most efficient, and the scenario of 𝑅𝑆𝐸  set to 5 

yielded the highest ACC, MCC, and F-1 performance. 

In addition, the performances of the complete model that combines the bilateral 

filter for pre-processing and the best performed contrast enhancement scenarios are 

evaluated. As can be seen in the last three rows of Table 4. 7, the combination of 

bilateral filter and Top-Bot hat has yielded the highest ACC, MCC, and F-1 of 99.05%, 

95.16%, and 99.47% respectively. Therefore, for the proposed sea ice segmentation 

method, SS-CEM, the Top-Bot hat with 𝑅𝑆𝐸  set to 5 is recommended.   

4.3.4 Effect of the Threshold Value 

Furthermore, to evaluate the effect of the threshold value, the segmentation results 

produced by different threshold values in a complete segmentation model (bilateral + 

SLIC + Top-Bot hat) are compared. The results are presented in Table 4. 8. As can be 

seen from the table, by introducing the standard deviation of the MIX-Reg to the Otsu 

threshold, the performance can be improved. And when the regularisation constant, 

C𝑡ℎ𝑟𝑒𝑠ℎ is set to 1, the best performance can be achieved.  

4.3.5 Effect of the Structure Element Radius in Floe Separation 

Table 4. 9 evaluates the effect of structure element radius, 𝑅𝐸𝑅𝑂  used for 

morphological erosion in the proposed ED-MCFS, where [50,5000] is the truncation 

range of the floe size (Unit: meter) used for LSF fitting. As can be seen, compared to 

the unseparated image, the mean square error of the pixel level size distribution, 

𝑀𝑆𝐸𝐶𝐴𝑇 has been suppressed through applying the floe separation. Meanwhile, with 

Table 4. 8: Effect of the threshold value 

 ACC/% MCC/% F-1/% 

𝑇𝑂𝑡𝑠𝑢 96.78 82.83 98.22 

𝑇𝑂𝑡𝑠𝑢 + 0.5 × σ𝑀𝐼𝑋−𝑅𝑒𝑔 98.15 90.35 98.97 

𝑇𝑂𝑡𝑠𝑢 + 1 × σ𝑀𝐼𝑋−𝑅𝑒𝑔 99.05 95.16 99.47 

𝑇𝑂𝑡𝑠𝑢 + 1.5 × σ𝑀𝐼𝑋−𝑅𝑒𝑔 98.24 91.72 99.00 
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the increment of the radius, the difference between the 𝛼 values estimated from the 

separated image and the GT can be reduced to within 1%. The lowest 𝐷𝑖𝑓𝑓 can be 

observed when 𝑅𝐸𝑅𝑂 is set to 20, which can be used in the following experiments.  

Figure 4. 4 further compares the pixel level floe size distribution of GT and 

different scenarios. As can be seen, the scenarios of the proposed floe separation 

method produce similar distribution with GT compared to the unseparated image.  

Table 4. 9: Effect of the structure element radius in floe separation 

 𝛼 𝑀𝑆𝐸𝐶𝐴𝑇  𝐷𝑖𝑓𝑓/% 

GT [50, 5000] 1.1502 - - 

Not separated 1.3285 51.65 15.50 

Separated (𝑅𝐸𝑅𝑂 = 5) 1.1863 16.21 3.14 

Separated (𝑅𝐸𝑅𝑂 = 10) 1.1539 10.35 0.32 

Separated (𝑅𝐸𝑅𝑂 = 15) 1.1569 10.08 0.58 

Separated (𝑅𝐸𝑅𝑂 = 20) 1.1482 10.18 0.17 

Separated (𝑅𝐸𝑅𝑂 = 25) 1.1437 10.14 0.57 

Separated (𝑅𝐸𝑅𝑂 = 30) 1.1407 10.34 0.83 

 

 

Figure 4. 4: Effects of floe separation and different scenarios to the pixel level size distribution 
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4.4 Results and Analysis 

4.4.1 Assessment of Sea Ice Segmentation Results 

 As aforementioned, segmentation and floe separation results of the whole dataset 

are generated using the best performed scenarios after model optimisation. The 

selected methods and corresponding parameter settings in the optimised model are: 1) 

bilateral filtering with the standard deviation set to 1 and DoS set to 1.7 × 104; 2) 

SLIC for superpixel generation, where each superpixel has about 800 pixels; 3) Top-

Bottom Hat transforms with the structure element radius set to 5; 4) The threshold is 

determined by  adding the Otus threshold with the standard deviation calculated from 

the water ice mixed regions; and 5) Radius of the structure element in the floe 

separation stage is set to 20. 

To evaluate the performance of the proposed method, against two state-of-the-art 

methods that have been briefly introduced in Chapter 2, the Open Source Sea-ice 

Table 4. 10: Quantitative comparison of SS-CEM to the other two algorithms 

Image Method ACC/% MCC/% F-1/% 
Running 

time/s 

Chukchi_2013 

OSSP 98.28 90.04 98.04 41.49 

RSLC 98.44 94.70 98.96 113.45 

Proposed 99.05 95.16 99.47 10.17 

Chukchi_20101 

OSSP 95.24 88.40 96.73 284.32 

RSLC 97.40 93.35 98.24 429.50 

Proposed 97.67 94.00 98.43 41.84 

Chukchi_20102 

OSSP 93.79 80.97 96.15 341.80 

RSLC 96.49 88.19 97.86 577.01 

Proposed 96.98 90.04 98.15 53.54 

Chukchi_2014 

OSSP 96.01 90.97 97.13 628.14 

RSLC 95.95 90.86 97.07 1316.62 

Proposed 98.49 96.34 98.94 136.08 

Esiber_2001 

OSSP 98.26 90.94 99.03 75.81 

RSLC 98.31 91.23 99.06 170.24 

Proposed 98.71 95.91 99.20 14.51 

MIZ_20141 

OSSP 87.50 74.39 90.90 301.42 

RSLC 86.82 73.37 90.36 580.22 

Proposed 93.20 84.37 95.25 40.14 

MIZ_20142 

OSSP 92.71 85.93 93.65 386.62 

RSLC 92.53 85.63 93.48 694.32 

Proposed 96.55 92.97 97.11 67.54 

MIZ_20143 

OSSP 89.81 81.32 88.91 274.29 

RSLC 90.62 82.70 89.89 619.78 

Proposed 95.14 90.67 95.01 66.08 
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Processing (OSSP) [21] and Region Smoothing and Label Correction (RSLC) [60] 

were employed for comparison. OSSP and RSLC are two methods designed for 

tackling with the remote sensing images, where OSSP is designed specifically for 

providing a universal processing protocol for sea ice detection in the HRO images from 

different data sources and data owners, whilst the RSLC is designed for processing the 

SAR images that has the advantage of high object boundary adherence and the 

structure preservability. Table 4. 10 presents the quantitative results of the proposed 

model applied to the whole image dataset against OSSP and RSLC. The running time 

of the whole segmentation model is also provided. As discussed in the previous 

sections, the segmentation model used here consists of the bilateral filtering for pre-

processing, SLIC for superpixel generation, and Top-Bot hat for contrast enhancement 

in the MIX-Reg. 

Quantitatively, as can be seen in Table 4. 10, the proposed method consistently 

produces the highest ACC, MCC and F-1 score on the HRO image dataset in 

comparison to the other two algorithms. Furthermore, for the three seasonal MIZ 

images, MIZ_20141, MIZ_20142, and MIZ_20143, the proposed model outperforms 

the second-best algorithm 9.98%, 7.04% and 7.79% in terms of the MCC. A visual 

comparison of the segmentation result in the region of interest cropped from the 

 

Figure 4. 5: Visual comparison of the segmentation results in 𝑀𝐼𝑍_20142 
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MIZ_20142 is provided in Figure 4. 5. As can be seen, a large amount of the melt 

ponds can be found in the image, resulting in the existence of the small holes in the 

OSSP and RSLC results (Figure 4. 5 (d) and Figure 4. 5 (e)). By contrast, the proposed 

method can produce the result closer to the manual corrected GT data with less holes 

in the floes, as shown in Figure 4. 5 (c). Meanwhile, from the running time provided 

in Table 4. 10, for the proposed method and RSLC that are both implemented on 

MATLAB, the proposed method has yielded much higher efficiency. Nevertheless, 

since the OSSP was implemented on Python, the running time for OSSP is just 

provided for a general comparison. 

4.4.2 Assessment of FSD Retrieval 

Similar to the experiments conducted in Section 4.3.4, to evaluate the proposed 

floe separation method, ED-MCFS is applied on the segmentation results. Table 4. 11 

presents the exponent 𝛼, the percentage difference of the 𝛼 values compared to GT, 

Table 4. 11: Quantitative comparison of floe separation 

Image Method 𝛼 𝐷𝑖𝑓𝑓/% 𝑀𝑆𝐸𝐶𝐴𝑇 
Running 

time/s 

Chukchi_2013 

GT [50,5000] 1.1502 - - - 

Watershed 0.8819 23.33 49.31 3.59 

ED-MCFS 1.1482 0.17 10.18 28.84 

Chukchi_20101 
GT [50,5000] 1.2271 - - - 

Watershed 1.0492 14.50 567.89 33.13 

ED-MCFS 1.3241 7.90 503.93 103.51 

Chukchi_20102 
GT [20,3000] 1.0848 - - - 

Watershed 0.9439 12.99 376.04 41.45 

ED-MCFS 1.1003 1.43 321.24 165.29 

Chukchi_2014 

GT [50,5000] 1.3759 - - - 

Watershed 1.2590 8.50 466.02 63.28 

ED-MCFS 1.4481 5.25 451.84 121.83 

Esiber_2001 

GT [50,4000] 1.0970 - - - 

Watershed 1.1349 3.45 45.68 6.56 

ED-MCFS 1.1007 0.34 29.64 35.61 

MIZ_20141 
GT [50,3000] 1.4121 - - - 

Watershed 1.6443 16.44 579.43 34.49 

ED-MCFS 1.5189 7.56 432.29 83.13 

MIZ_20142 
GT [50,4000] 1.4852 - - - 

Watershed 1.9466 31.10 621.64 30.83 

ED-MCFS 1.3411 9.70 441.83 81.12 

MIZ_20143 
GT [80,3000] 2.0974 - - - 

Watershed 2.2876 9.07 472.00 38.23 

ED-MCFS 2.1048 0.35 386.20 114.29 
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and the mean square error between the pixel level size distribution, where the results 

produced by the general distance transformation based watershed with the radius set 

to 20 is provided for comparison. It is worth noting in the table that the range followed 

by GT indicates the truncated floe size in meters used for the 𝛼 determination. As can 

be seen, the proposed method outperforms the general distance transformation based 

watershed in the 𝛼 estimation and pixel level size distribution similarity. In general, 

the proposed method has yielded a good performance where the 𝛼 values are within 

10% compared to GT.  

To further demonstrate the efficacy of the proposed approach and for more 

comprehensive performance assessment, Figure 4. 6 and Figure 4. 7 show the 𝑁(𝑑) 

plots before and after using the proposed floe separation method, in comparison to the 

GT derived for different images. The 𝑁(𝑑)  plots produced from the baseline 

watershed method are also given for comparison. As aforementioned, LSF is applied 

to determine the exponent coefficient in FSD. As can be seen from these two figures, 

the distribution of the proposed results has been much enhanced compared to those 

without the floe separation scheme. Actually, the results align close to the distribution 

of the GT compared to the baseline watershed indicating a more accurate exponent 𝛼 

which has derived from the proposed approach. For the N(d) in the Esiber_2001 and 

MIZ_20143 images as shown in Figure 4. 7 (a) and Figure 4. 7 (g), the difference 

between the derived 𝛼 values are within 1% from those of the GT, which has fully 

validated the effectiveness of the proposed method. By contrast, the results from the 

baseline watershed appear to be convex and non-linear in the truncation range due to 

the over-segmentation.  

Nevertheless, in Chukchi_20101, MIZ_20141, and MIZ_20142, the estimated 𝛼 

values have a relatively high error of 7.90%, 7.56%, and 9.70%, respectively, due to 

various reasons as explained below. In Chukchi_20101 , this is mainly due to 

numerous large touching floes, which are in general difficult to be separated using the 

erosion. As seen in Figure 4. 6 (c), the floes with a diameter more than 1 × 104 m 

remain after applying the floe separation. Such unseparated large floes have inevitably 

led to a higher exponent value than that of the GT. For MIZ_20141 and MIZ_20142 

with melt ponds contained, the effects of floe separation on the determined exponent 

value are not as good as in other scenarios mainly due to the over-segmentation. The 

over-segmented floes with different the sizes will result in the increased or decreased 



66 
 

𝛼 values. For example, as shown in Figure 4. 7 (c), the floes with a diameter ranges 

from 10 ~ 300m appear more frequently than those in the GT, and the over-

segmentation has resulted in a higher 𝛼. By contrast, as shown in Figure 4. 7 (e), the 

high frequency of the floes with a diameter ranges from 100 ~ 1000m leads to a lower 

exponent value compared to the GT. Therefore, further refinement of the proposed 

method to tackle images containing large touching floes and melt ponds is needed as 

my future work. 
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Figure 4. 6: Comparison of N(d) in the Chukchi images 
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Figure 4. 7: Comparison of N(d) in the Esiber and MIZ images 
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4.5 Summary 

In this chapter, the model proposed in Chapter 3 is optimised by experimentally 

comparing the effect of using different algorithms with various parameter settings. As 

a result, SLIC method can be selected for superpixel generation, as it has yielded 

relatively high accuracy compared to TS-SLIC and BASS with the highest efficiency. 

The WP method although has yielded highest accuracy, is not recommended. 

Currently, the implementation caps the superpixel number, which makes it difficult to 

be applied to the image with large size. For the pre-processing stage, bilateral filter 

with the standard deviation set to 1 is recommended due to the edge preservability. For 

the segmentation stage, bilateral filtered image combined with the SLIC method for 

superpixel generation and Top-Bottom hat transformation for contrast enhancement is 

the best performed scenario, where each superpixel consists of roundly 800 pixels and 

the radius of the structure element can be set to 5. In addition, by introducing the 

standard deviation of the MIX-Reg to the threshold value, a better segmentation result 

can be observed compared to solely using the Otsu method. In the post-processing 

stage, the floe separation is proposed with the key concept of marker-controlled 

watershed segmentation, where the markers for floes within or without the ICE-Reg 

are produced separately. From the experiments, the recommended radius is 20 for the 

structure element.  

Afterwards, the results of the SS-CEM with preprocessing were validated against 

two state-of-the-art methods. In the experiment, the model achieved the highest ACC, 

MCC, and F-1 score in less time. Meanwhile, for the proposed floe separation method, 

ED-MCFS, the FSD observations compared with the general distance transformation 

based watershed segmentation. From the comparison of the estimated 𝛼 values, it has 

been validated that ED-MCFS can produce closer results compared to the manually 

corrected GT data with a minimum difference of 0.17% and maximum difference of 

9.7%.   

In the future work, the refinement of the superpixel generation will be studied in 

depth. Meanwhile, a deep learning model can be applied by taking the results produced 

by the proposed model as training data for achieving the semi-supervised learning. 
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Chapter 5. Conclusions and future works 

5.1 Conclusions 

The thesis mainly emphasised on the sea ice investigation and FSD retrieval from 

the HRO image using a superpixel based multi-stage model. The main contributions 

include the proposal of the novel sea ice detection and floe separation methods. In 

addition, various scenarios of using different algorithms with the corresponding 

parameter settings were evaluated for the model optimisation. The recommendation of 

the algorithm selection and parameter settings are discussed in the previous chapter.  

 In Chapter 3, for effectively investigating the ice pixels from HRO images, a 

novel segmentation framework is proposed. For tackling the segmentation in the 

transition area of water and ice, a combination of superpixel and k-means clustering is 

employed for discriminating the ice floe regions and water-ice mixed regions 

according to the features that superpixels contained. The contrast enhancement 

technique is then applied to the water-ice mixed regions, which helps the later 

thresholding process to better investigate the ice pixels from such regions. For accurate 

FSD retrieval, a novel floe separation framework is proposed as the post-processing 

stage to separate the touching floes. With the employment of the ice floe regions 

identified in the segmentation stage, different strategies are applied to generate the 

makers for controlling the watershed segmentation. As a result, the touching floes can 

be separated whilst avoiding the over-segmentation issue.  

In Chapter 4, a comprehensive evaluation of the model optimisation is firstly 

presented by taking one of the HRO images as the sample. The proposed segmentation 

method has shown a stable performance in terms of the accuracy to the variation of the 

superpixel number. The optimised model is then applied to the whole HRO image 

dataset and has yielded the highest segmentation performance compared to the other 

two state-of-the-art methods. However, in some images that contain numerous melt 

ponds, holes still can be observed in the segmented image which can affect the 

performance of the subsequent floe separation. For floe separation, the proposed 

method outperforms the general distance transformation based watershed with closer 

𝛼 values compared to GT images. Overall, the difference within 10% in 𝛼 estimation 

has been achieved by the proposed method. For the segmentation results with less 

holes such as Chukchi_2013, Esiber_2001 and MIZ_20143, the difference can be kept 
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within 1% compared to GT. Nevertheless, when coping with the segmented images 

that contain large touching floes or holes inside floes, the percentage difference 

increased to 7-10%. 

The code of the proposed workflow is available at https://github.com/SiYC/Sea-

Ice.git, and the implementation of FSD calculation is available at 

https://github.com/SiYC/FSD-calculation. 

5.2 Future works 

Despite the progress which has been shown in the thesis, there are still some 

limitations of the proposed approaches for possible refinement in the future. In the pre-

processing stage, the employed methods are not able to remove the environmental 

factors such as the cloud. Therefore, a deep-learning based approach (i.e. U-Net for 

cloud removal [113]) could be beneficial as the U-Net has a relatively small demand 

for the training data. 

Regarding the suitability of the proposed segmentation and separation methods 

working on SAR images, this will be investigated as future work, along with proper 

pre-processing to remove the speckle noise from the SAR images. Meanwhile, the 

results produced by the proposed model can be complementary to the semi-supervised 

learning methods. In terms of the FSD estimation, although the power law expression 

is adopted in this thesis, its universality has not been widely demonstrated [114]. Also, 

the utilised truncated ranges are determined by visual assessment. Therefore, 

improvement can be made by employing other methods for CFND regression, such as 

Singular Spectrum Analysis (SSA) [115], and even forecasting the trend with auto-

regressive moving average (ARMA) model [116] and prophet model [117]. 

Also, the refinement regarding the superpixel generation is another important 

topic for future work. In this study, although four superpixel algorithms were 

evaluated, none of them is perfectly suitable for the ice floe segmentation, which is 

one of the main reasons to apply the thresholding for refining the superpixel segments. 

Therefore, the feature of the sea ice will be learned more in depth for developing a 

more appropriate superpixel generating method. In addition, the classification stage 

can be further explored by considering other algorithms. Although K-means is 

powerful and widely used, it still has some limitations due to the unsupervised 

classification mechanism. Therefore, some supervised methods, such as Support 

Vector Machine (SVM) and even deep learning, especially reinforcement learning 

https://github.com/SiYC/Sea-Ice.git
https://github.com/SiYC/Sea-Ice.git
https://github.com/SiYC/FSD-calculation
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[118] and zero-shot learning [119] can be employed for categorising the superpixels 

or image segmentation when there are insufficient training samples. In addition, the 

Generative Adversarial Network (GAN) can also be employed for producing 

simulated samples. 
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Appendix 

Appendix A: Experimental image dataset 

The information of the four original HRO images is summarised in Table A. 1. 

Source images used throughout the processing stages in this thesis are presented in 

Figure A. 1 to Figure A. 8. Note that the images used in this thesis are downsized to 

half resolution compared to the original HRO images that has the resolution of 1 meter. 

Therefore, the resolution in both X and Y axis are accordingly 2 meters.  

Table A. 1: Source Image Information 

Attribute 
Acquisition 

Date 
Image Size Comments 

Chukchi_2013 31/May/2013 2548 × 6368 
Large floe in 

corner 

Chukchi_20101 30/May/2010 7632 × 8544 
Contain thin cloud 

and shadow 

Chukchi_20102 30/May/2010 7080 × 10944 
Roughened open 

water 

Chukchi_2014 02/May/2014 13504 × 12672 
Insufficiently 

illuminated 

Esiber_2001 16/June/2001 3684 × 7056 Contain cloud 

MIZ_20141 18/Jul/2014 6720 × 9168 
Contain melt 

ponds 

MIZ_20142 30/Jul/2014 10352 × 9392 
Contain melt 

ponds 

MIZ_20143 14/Aug/2014 10944 × 7728 
Contain melt 

ponds 

 

 

Figure A. 1: Source image of Chukchi_2013 
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Figure A. 2: Source image of 𝐶ℎ𝑢𝑘𝑐ℎ𝑖_20101 

 

Figure A. 3: Source image of 𝐶ℎ𝑢𝑘𝑐ℎ𝑖_20102 

 

Figure A. 4: Source image of Chukdhi_2014 
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Figure A. 5: Source image of Esiber_2001 

 

Figure A. 6: Source image of 𝑚𝑖𝑧_20141  

 

Figure A. 7: Source image of 𝑚𝑖𝑧_20142 
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Figure A. 8: Source image of 𝑚𝑖𝑧_20143 

Appendix B: Publications During the MPhil Study 

There are two publications during my MPhil study as detailed below.  

1) S. Chen, Y.Y., J. Ren, Phil Hwang, S. Marshall, T. Durrani, Superpixel Based Sea Ice 

Segmentation with High-Resolution Optical Images: Analysis and Evaluation, in 

Communications, Signal Processing, and Systems. 2022, Springer 

In this paper [85], as discussed in Section 2.2.3, different superpixel generation 

methods applied on the segmentation of high-resolution sea ice image are analysed 

and evaluated. In the segmentation model, superpixels are generated from the pre-

processed image, followed by the k-means classification to group the superpixels to 

form the binary segmentation result. Afterwards, the segmentation result is post-

processed with morphological opening for the shape refinement and floe separation. 

Although the model has yielded a segmentation accuracy of 98.19% on average, the 

performance highly relies on the proper parameter specification. The specification of 

superpixel number significantly affects the performance. In addition, the effect of the 

floe separation with morphological opening is not ideal. To tackle these limitations, a 

two-stage segmentation and hierarchal floe separation methods are proposed. The 

efficacy and efficiency have been validated in the previous sections. 

2) S. Chen, J.R., Y. Yan, Z. Wang, H. Zhao, Multi-sourced sensing and machine learning for 

effective detection of fire hazard in early stage whilst minimising the false alarms. 

Computers and Electrical Engineering, in press, 2022 
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This paper is based on the extension of my undergraduate final year project, which 

presents a fast and cost-effective indoor fire alarm system that integrating multimodal 

sensors for tackling the early fire detection issue. The collected data is analysed and 

classified by machine learning techniques for suppressing the false alarm rate, where 

SVM is found to outperform the random forest, K-means, and Artificial Neural 

Networks (ANN). The experiments were designed under different scenarios to 

simulate the non-fire, smouldering, flaming, and the false stimuli situations. The 

documented data is also used for the model validation. The proposed system has 

yielded the accuracy, recall, and F1 of 99.8%, 99.6%, and 99.7%, respectively.  
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