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ABSTRACT

The study of local loading problems including the support of horizontal
vessels on twin saddles was, and continues to be, of considerable interest to pressure
vessel designers throughout the world. Whilst design rules are available in codes and
standards, the drive is for improved, reliable analysis methods and design procedures
by which engineers can produce efficient, commercially competitive, yet structurally
reliable components with reasonable ease. The Department of Mechanical
Engineering has an international reputation for studies in the field of pressurised
systems. This present work continues the work of Emeritus Professor Alwyn S Tooth
who commenced an investigation in this area some thirty years ago. The main thrust
of this thesis is in two parts. Initially, local load problems are tackled since these are
important in their own right. This provides a platform for the other main part, a study
on saddle supports.

The present work reviews the background to these classes of problem and
considers the main contributions in the literature to solutions for the local loading and
saddle support problems. Although a major contribution has been made within the
Department of Mechanical Engineering at the University of Strathclyde, other
pertinent international works are referenced in Chapter 2. In addition, this chapter
details the main aims and objectives of the present work.

The problem of the stress analysis of a cylindrical pressure vessel is tackled by
employing Sanders thin shell theory, which is developed in Chapter 3. Governing
differential equations are solved by a matrix method to evaluate the displacements of
the shell. Thereafter, these are used to establish strains and thus stress resultants and
stresses. Externally applied surface loads are described by employing a double Fourier
series approach. The solution is then extended to encompass cases where thermal
loading is present. Comments on the limitations of the use of Fourier series and rates

of convergence are presented.

In Chapter 4, the solution of the governing equations is successfully applied to
some difficult local load problems. In this, the interface loading, which is traditionally
represented by a radially loaded ‘rectangular patch’, is extended to circular and
elliptical regions. In addition, the more complex loading cases of longitudinal and
circumferential moment are also presented. lllustrative examples of the use of the
solution are detailed and compared with experimental results obtained from the
literature. The solution is also used to examine thermal loading on cylindrical shells
with the cases of uniform thermal loading acting over discrete areas of the shell. In
addition, the fault condition of a ‘hot spot’ with a prescribed thermal profile is
outlined and a solution detailed. This form of solution may be used to examine, for
example, the case of loss of insulation on a reactor wall. Some comments are also
made with respect to modelling this class of problem using finite element analysis.
Although the use of this mathematical tool is becoming widespread in engineering
design and analysis, there are some drawbacks of the technique when examining local



load problems. The important issues pertaining to the use of finite element analysis
are examined and some results are thereafter compared with the Fourier series
solution. These are fully discussed in this chapter.

The design of cylindrical vessels supported on twin saddles is often driven by
the magnitude of the stresses located near the uppermost point of the saddle shell
junction. Surcharge pressure loading is generally the main design load for most
component parts of a vessel. For the saddle supports, however, it is usually ignored
and only the liquid fill load is considered since this is the worst situation and tends to
exacerbate these junction stresses. In such cases, the major difficulty is the
determination of the interaction forces between the saddle and the shell. This is
examined in Chapter 5 by considering the interface pressure distribution between the
two components. By discretising the contact area and by considering the compatibility
of displacements for two bodies in contact and examining the equilibrium equations,
an accurate mathematical solution for the interface pressure and subsequent stress
analysis can be derived. A choice of models to describe the interface pressure system
is detailed - line load, patch load and line plus patch load model. A brief description is
given of the implementation of the computer programs.

The solution of the saddle support problem requires a reasonably powerful
computer to solve the equations, and therefore it is preferable to have a simple design
method which can either be undertaken by hand calculation or be easily programmed
into a simple spreadsheet. Chapter 6 develops a design methodology and parameter
study for a typical range of vessel sizes and configurations as defined by the results of
an industrial survey. In this, the scope is clearly identified and the range of parameters
defined and justified. A ‘basic stress’ quantity is defined and thereafter modified by
the use of a number of factors which describe the influence of the vessel weight, and
the leading geometrical factors ~ saddle width, distance to rigid end, saddle
interaction, saddle wrapround, and the effect of length change. Some verification and
design examples are presented together with a design worksheet and a fatigue
example in accordance with British Standard BS 5500. Traditionally, the influence of
the stiffness of the vessel end or saddle support have either been ignored or treated in
a simplified fashion. Although not included in this section, these topics are covered in

Chapters 8 and 9.

The main alternative method to the analytical one described above is the finite
element method. Chapter 7 presents an overview of the main factors affecting the
solution of saddle support problems using finite element analysis. The complications
in modelling the geometry, the selection of element type, the choice and specification
of boundary conditions and mesh refinement are examined in detail. Some sample
results are given and the general influences of the geometric parameters on the
deformations of the vessel are described. In addition, a comparison is made between
the finite element analysis stress results and other methods. Some comments are made
regarding the nature of the stresses obtained from the finite element analysis.



The flexibility of the vessel dished end closure and the effect of this on the
stresses obtained at the saddle shell junction is considered in Chapter 8. The treatment
in the British Standard is outlined and compared to a finite element study for the
various end closure types ~ rigid, flat, semi-ellipsoidal and hemispherical end closures.
Some details are given on the modelling of such components and a parameter study is
undertaken examining the main influencing parameters ~ radius, thickness of end and
thickness of attached shell section. Some results are presented and an ‘end flexibility

factor’ proposed.

The influence of the saddle flexibility is examined in Chapter 9. This causes
major difficulty, not least because of the almost infinite number of possible
configurations of support. Obviously, the introduction of a flexible saddle affects the
distribution of contact pressure. The first step is to adjust the equations developed in
Chapter 5 to accommodate flexibility terms. The interface system for flexible saddles,
the compatibility equations and the resulting values of strain and stress are fully
detailed. The second step is to develop a mathematical model for the saddle flexibility;
a fully parametric finite element model is proposed which works in conjunction with
the analytical procedure. Thereafter, several alternative versions of the parametric
model are described together with their applications and drawbacks. A new finite
element approach using shell, solid and surface elements to introduce surface
tractions is proposed and revised finite element models described. Thereafter, results
are presented which demonstrate the influence of introducing a more flexible saddle
can have great benefit of reducing the stresses in the vessel shell.

Some overall conclusions and final comments are made in Chapter 10,
especially with regards to further work and moves towards implementation,
standardisation and improved availability via the Internet and adoption by industry.
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1 INTRODUCTION

Pressurised systems design is governed and regulated by the use of well proved Codes
and Standards. These documents have been formulated over the past 100 years or so
and have had, as their backbone, two significant contributions. In America, the ASME
Boiler and Pressure Vessel code (now with Divisions 1, 2 and 3) has its origins in the
Massachusetts Rules of 1911 and in the UK, early rules from the Manchester Boiler
Users Association became BS1500, then BS1515 and finally, BS5500, the unfired
fusion welded pressure vessel standard. Industry has been keen to adopt such
standards and to apply them to a wide range of industries including oil and gas, power
generation, petrochemical, nuclear, water and waste management companies, to name
but a few. Whilst these industries enjoy the benefits of approved design standards and
methods, few companies commit significant resources into research and development
to advance and improve design rules for the industry as a whole. Many organisations
have in-house rules and computer programs for design but these largely remain
exclusive. In the UK, advances in design are largely brought about by willing
volunteers, both academic and industrial, who participate in British Standard

committees. The fruit of such committees is an improved working environment for all.

The main pressure retaining components are designed using simple formulae and are
based on solely satisfying equilibrium. These ‘design-by-rule’ procedures often do
not require the user to fully understand the origins of the analysis, rather only to
follow the rule which in turn will satisfy the specific criteria upon which the procedure
is based. This may involve the calculation of a minimum thickness or an allowable
pressure, each of which will determine the basis of producing construction data.
However, there are certain classes of problems in the pressurised systems field, which
do not lend themselves to simple forms of analysis. These include certain cases where
nozzles or openings in the vessel are present, situations of local loading onto the shell,
support arrangements and other discontinuities, which may result in an increased level
of stress in the vessel wall. Such classes of problems can be solved using a ‘design-

by-analysis’ approach whereby using an appropriate form of analysis, stresses can be



successfully evaluated and thereafter ‘categorised’ and assessed against set criterion

which prevent the occurrence of known failure mechanisms.

The method of analysis for such procedures is not well defined. Pre-1970, such
analyses were often carried out using a ‘classical thin shell theory’ approach, which
is dealt with in some detail in Chapter 3 of this text. This involves describing the
deformations of a doubly curved surface in space by differential equations and
thereafter solving in a suitable manner for the specified loading condition. In this, the
radii of curvature are large compared with the shell thickness and therefore, the
behaviour of the structure through the wall is assumed to be constant across the wall
thickness for direct loading and linearly varying across the wall thickness for bending.
Using this assumption, it is possible to eliminate second order terms from the analysis.
Even with this simplification, such solutions are complex and time-consuming and
cannot be readily used for design purposes. Often, design charts or curves have been
generated based on a shell theory approach. However, the range of situations for

which solutions based on shell analysis are available is somewhat limited.

Since 1970, the “finite element method’ has been increasingly applied to pressurised
systems. By discretising the geometry and thereafter assembling the stiffnesses of each
element, the entire solution for a given load case can be evaluated once known
boundary conditions and material behaviour have been specified. The benefit of this
method of analysis is that complex geometries and loading systems can be undertaken.
The drawback of the method is that it still requires the use of a powerful computer,
the purchase of suitable finite element software and the skills of an experienced
analyst. Such experienced persons are still uncommon in the pressure systems
industry and third party consultants are commonly used. These organisations may
have the necessary finite element expertise but may not have the required
understanding of pressurised systems behaviour or the use of design codes. In
addition, there remains the problem of extracting results from the finite element
analysis, which can be meaningfully interpreted in the context of ‘design-by-analysis’

and known failure mechanisms in pressure equipment. To date, no known method of



categorisation has been universally accepted, although much work has been
undertaken in addressing the subject. Further discussion of this appears in Chapters 4

and 7.

The present work focuses on two complex problems: the local loading of cylindrical
pressure vessels, and the support of cylindrical vessels on twin saddles. These
problems are linked in so much as they are frequently classed as ‘design-by-analysis’
problems. The twin saddle case is analysed with liquid fill loading only, since
surcharge pressure tends to stiffen the shell and hence to alleviate the maximum
stress. In addition, the interaction between the load and the vessel shell can be readily
expressed by a series of contact areas and therefore, by using equilibrium and
compatibility, such problems can be addressed. These two problems are addressed
using both of the methods described earlier. The success of any method, which is
applied to these problems, lies in having confidence in the stress output data for use in
‘categorisation’ and subsequent assessment. This data may also be required for use in

a fatigue assessment.

The application of the shell analysis to local loading is addressed in Chapter 4 where a
number of cases are encompassed including radial, longitudinal and circumferential
moment loads and thermal loads applied to square, rectangular, circular and elliptical
contact areas. Each case is compared to experimental, design standard and finite
element results, where available and appropriate. Chapter 5 describes the application
of the shell analysis to the saddle support problem. A full parameter study has been
undertaken. A new design methodology is proposed for the results of each influencing
parameter and a simple multiplying factor process outlined. Each factor is fully
described and the method of application within clearly defined restrictions is presented

in Chapter 6.

A feature of the shell analysis approach is that the influence of the vessel end closure
and saddle flexibility cannot be readily incorporated in the parameter study (as

described). These topics are analysed using finite element analysis in Chapters 8 and 9



respectively. Since there are a limited number of generic head closure shapes, an end
flexibility factor has been established which works with the proposed methodology of
Chapter 6. The saddle flexibility is also addressed and a procedure for the
establishment of an appropriate factor outlined. Some details are presented for a range
of saddle types and information is provided to allow saddle flexibilities to be
constructed. One complete, fully worked example of the use of saddle flexibility is
given in Chapter 9 and comparisons are given with the entirely rigid case.

Chapter 10 concludes the work with some recommendations for exploitation and

further work, especially in the context of the proposed new European Pressure Vessel

Code.
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2 LITERATURE REVIEW

2.1 Introduction
When designing containment pressure vessels, it is necessary to prove the integrity of

the component for the required service conditions. In the first instance, primary
service loads, such as internal pressure, external pressure and temperature conditions
must be considered. After this preliminary stage, the effects of discontinuities such as
nozzles and supports and other shell attachments are examined. These must be

assessed in conjunction with the primary pressure/temperature loadings.

In those circumstances where horizontal vessels are employed they are usually
mounted on twin saddle supports as shown in Figure 2.1. Saddles are also used when
building, testing and transporting other vessels which are installed in the vertical
position. Although a design method for saddle supported vessels is presently available
in the British Standard BS5500[I], based on the original work of Leonard P Zick)2
it has been appreciated for some time that the approach is semi-empirical and only

validated experimentally for a few small diameter vessels.

Figure 2.1 Typical horizontal twin saddle supportedpressure vessels



Despite this, in the absence of a more fundamental approach, the method has been
widely used for many years to design large vessels operating at times in quite rigorous
loading conditions. There has been, however, the requirement to provide an accurate
stress analysis for use in safety and integrity assessments. This has provided an
impetus to develop an analytical approach, which can be applied with confidence to

all such vessels under a variety of loading conditions.

Work done in recent years by Tooth et aP~ has progressed much of the way to
providing such an analytical solution. Advances have been made in understanding the
stress system associated with the support regions of these vessels. The analytical
technique developed represents the specified loadings, i.e. the vessel self-weight,
liquid contents and pressure loadings using double Fourier series. The interaction
forces, radial and tangential interface pressures, between the vessel shell and the
saddle support, are the major governing unknowns of the problem. These forces are
determined using the classical small displacement shell equations for the vessel and by
enforcing compatibility and equilibrium at the shell/saddle interface. It has been found
that the magnitude of the forces depends on the vessel flexibility and the rigidity of
the support. The configuration of the support was found to have a crucial effect on
the stress in the vessel - primarily in the ‘horn’ region of the saddle. For example,

when aflexible saddle is employed, the vessel stresses can be reduced by up to 50%.

Extensive experimental work on steel vessels, carried out over many years, has
indicated that the basic analytical approach, references [3-6], which assumed the
vessel to be ideally circular and the interface pressure uniformly distributed across the
saddle width, was reasonably valid for the liquid-fill case. This has provided a good
platform for the present comprehensive study, which extends and refines the initial
work.

Several important aspects have been identified and solutions are presented in this

thesis. These include the following specific areas of work:

® The Tooth model has been updated, enhanced and refuted.



Afull parameter study isolating the behaviour o feach geometric variable in
the twin saddle arrangement and the provision ofa new design methodology
suitable for incorporation into the major pressure vessel codes has been
provided.

The influence o fthe stiffness o fthe vessel dished end on the overallflexibility
of the vessel with respect to support stresses in the horn region has been
considered and results derived. This is presently treated in the current
Standard by the use ofafactor which assumes that the vessel end imparts
substantial resistance.

The effects of saddle flexibility are examined and recommendationsfor the
design and implementation of flexible saddles as the optimum support
technique given. At present, no governing rules or analyses are available in

the standardsfor the design offlexible saddles.

In addition to these topics, the problem of local patch loading is also addressed. In

this, the work of Bijlaard, Hoffet al, Mershon et al, Kitching et al and Duthie and

Tooth is discussed. In this area, a number of new solutions have been derived and are

presented in this thesis. The following specific areas of work are addressed:

The previous cases ofsquare and rectangular patches have been extended to
cover the practical cases ofcircular and elliptical patches.
Proper consideration has been given to variable loads such as moment loads
rather than the approximations inherent in previous work.
A review of the practical application offinite element analysis is presented
together with cross comparisons between FEA, the newly derived solutions

and experimental results where appropriate.

2.2 Short Literature Review - The Twin Saddle Support Problem

The consideration of the literature relating to the support of horizontal vessels

supported on twin saddle has been presented by a number of researchers in the past.

Each of these authors, under the general guidance of Professor Ahvyn S. Tooth, has



presented different aspects of the problem. It is worth noting these contributions at
this time.

L S Ong (1985) presented a review of the main contributions relating to the twin
saddle support problem. This review contained the work of international researchers

including Zick, Krupka, Lakis & Dore, Stoneking & Sheth and Stanley &

Mableson. A review ofthe work carried out at the University of Strathclyde was also
presented by Ong and Motashar (1988), which included the work of Forbes, Wilson,
Duthie, White, and Buchanan.

Work previously undertaken and associated with this problem has been both
analytical and experimental using various techniques. However, when considering the
‘practical design’ of twin saddle supported pressure vessels, the design rules found
in most international pressure vessels codes and rules are based on the work of L P
Zick (1951) who developed a method for analysing cylindrical shells supported on
twin saddles. The semi-empirical method in based on a ring and beam analysis. In this,
the circumferential effects are addressed by considering the effects of support loading
on a local ring whilst the overall longitudinal effects are analysed by considering the
horizontal vessel as a beam, Figure 2.2a,b. At the mid-span of the vessel, it was
assumed that the whole cylindrical section was available to resist bending, whilst at
the saddle position, only a part of the vessel section above the saddle is effective. This
treatment allowed the longitudinal overall bending stresses and the tangential shearing
to be evaluated correctly, Figure 2.2c-e. In the case of the circumferential bending
stresses at the saddle horn, the analysis was based on assuming the vessel profile was
an arch. From this, the circumferential bending moment could be obtained at the horn,
thus providing the circumferential bending stress at this location. It is interesting to
note that this work was only validated using test results from a few relatively small
diameter (approx. 6ft dia.) vessels. No details are given of the saddle flexibility or
configuration - although from the photograph of the experimental setup used, the

saddles appear to be of a flexible design in the horn region.

10
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c) Effective portion of shell in longitudinal plane d) Effective portion for shear €) Shear stress distribution

Figure 2.2c-e Zick's approach treating shell as an arch showing effective portion
and shear stress distribution in an unstiffened shell

This analysis was incorporated into the British Standard BS1515 in 1965 and
ultimately into BS5500 in 1976 with the full derivation being presented in the panel
document PD649f 1 in 1982. However Tooth, Duthie and WhiteB89 have shown the

Zick analysis to be somewhat inadequate. The main problem with the analysis was the

1



representation of the interface pressure profile. In this, Zick had assumed a profile
where the maximum value was located at the base of the saddle and was a minimum
at the horn. In fact, later experiments by Tooth et al showed that the interface

pressure was maximum at the horn for metallic vessels.

2.2.1 Previous Strathclyde Work

The majority of the authors referred to in this section carried out their research under
the general direction of Professor Tooth. The. early research of Forbes'&&l and
Wilson'8 has been reviewed extensively by Ong and Motashar and is not fully
discussed here. However, it is worth noting that Forbes and latterly Wilson

introduced the idea of using a Double Fourier Series method for the solution of the

differential equations used in the thin shell analysis by W F/iiggell0]. Forbes assumed

that the reaction of the vessel/saddle interface could be adequately represented by the
use of a series of discrete areas or patches of uniform pressure. This allowed the
interface contact problem to be broken into two simpler parts namely the
determination of the contact interface pressure and the subsequent application of

these to a simply supported cylindrical shell as an external load.

G DUTHIE (1976)[#]
Duthie progressed the work of Forbes and Wilson by examining the local loading

problem and revised the analysis of the saddle support problem. As previously, the

analysis was based on the differential shell equations of Wilhelm Flitggeim and the

same Fourier series expansions used by the previous researchers. The loading
components and the middle surface displacements of the cylinder were modelled using
the double Fourier series expansions. By examining equilibrium and compatibility of
the system, together with the constitutive relationships, three simultaneous equations
were derived which were solved using a matrix inversion routine. Ultimately, the
solutions for the mid-surface displacements and stress resultants were obtained. This
procedure is the core element of the work carried out at Strathclyde by White, Ong,

Motashar and by the present author.

12



In choosing a Fourier series model for the shell displacements, Duthie assumed the
vessel to be simply supported at its ends with the end profile of the cylinder remaining
wholly circular at the limits. Therefore, as the saddle support is located nearer the
end, the stresses and radial displacements tend to zero, the end seemingly providing
infinite stiffness. However, Duthie provided a solution for the saddle support problem
and compiled a number of solutions for a variety of local load problems including the

radial, tangential and longitudinal patch load problems.

The main thrust of Duthie's work was to provide the capability for examining vessels
which were either welded to the saddle or were loose by applying equilibrium and
enforcing compatibility at the saddle/vessel interface. Using this approach, the effects
of initial clearance gaps and flexible saddles could be tackled, the latter requiring the
saddle flexibility to be characterised by a simple finite element analysis. It was also
noted that much verification work was carried out by Duthie who compared his
solutions with experimental results for a number of twin saddle supported vessels.
The peak stresses which Duthie obtained on the outside surface of the vessel at the

horn of the vessel proved to be much higher than those obtained from the British

Standard BS5500 for this location.

This study paved the way forward for other researchers to examine the accuracy of
the Duthie solution, the influence of the main geometric parameters and the
significance of saddle flexibility, end flexibility, loose saddles and ultimately the

development of a design methodology.

G C WHITE (1983) [
White continued the work by modifying the Duthie analysis to include the saddle

flexibility by a more direct manner. Finite element models of different saddles were
produced in order to generate a saddle “flexibility matrix’. This approach provided
good correlation between the modified Duthie analysis and experimental work with

the exception of the internal surcharge pressure case.
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White also noted that the position of the maximum circumferential stress varies
depending upon the geometric flexibility of the saddle and the number of discrete
areas chosen to represent the contact surface. As a means of ‘smoothing’ the results
and providing a calculation procedure, White plotted two curves, one for the horn
stress and one for the maximum stress obtained. They were extrapolated until the
intersection was found and this was deemed the ‘improved maximum stress’. White
concluded from his work that:
® The inclusion of a saddle flexibility model provided a better agreement
with experimental and code results
® The use ofaflexible saddle considerably reduces the maximum stress at
the horn
® Good agreement is obtained when the vessel is subject to the liquid fill
case. However, when surcharge pressure is applied or the pneumatic case

is considered, the effects o f out-of-roundness are significant.

J C CARMICHAEL (1982)w
To complete the development of the Duthie analysis, Carmichael carried out a series
of experiments on two similar 910mm diameter by 7320mm long vessels; one 3.33mm
thick, the other 4.67mm. A number of permutations was considered: flexible and
semi-rigid saddles, bolted foundations and supported on rollers, out-of-roundness
measurements and progressive loading and unloading. Using the Duthie analysis,
Carmichael concluded that:
® The maximum values of stress measured occurs on the outside surface
immediately adjacent to the saddle horn,
® Maximum saddle stresses are considerably reduced whenflexible saddles are
used,
® The difference in stressesfor the liquidfill case is negligible if bolted or roller

foundations are used, and
® For the liquidfill case, the analytical prediction comparedfavourably with the

experimental resultsfor the semi-rigid saddle case.
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L S ONG (1985f " ' 212231+

From the main conclusions, drawn from the above work, it was decided that the
effects of out-of-roundness required special consideration. The main thrust of Ong's
work|U) was to develop a non-linear theory, based on the shell equations of J Lyell
Sanders /r*12, which was able to take account of out-of-roundness measurements or
initial imperfections in the cylinder. This was facilitated by the use of the Haigh theory

to represent imperfections in a non-restrained profile.

This new analysis required a complete re-write of the work of Duthie although some
of the main logical elements of the program were retained. Ong wrote his analysis in
FORTRAN compared with the older ALGOL programs of Duthie. This work proved
a major contribution to the work at Strathclyde and yielded the SADDLE program.
The new analysis was based on a new, more consistent shell theory than that
previously used by Duthie, which was by Fligge. Both Arthur Leissall3 and David
Bushnell14l present a practical critique of shell theory and from Leissa's work,
Sanders' theory was implemented since it proved simple, consistent and equally

accurate to that of Flugge.

The Sanders' theory uses the principle of virtual work. Since this is an energy
theorem, it is energy consistent and as such produces no strain when rigid body
motions are present. The theory is a two-dimensional one and avoids unnecessary
approximations when using a three dimensional one. This allowed Ong to include the

effects of initial imperfection into the strain-displacement relationships with ease.

Ong considered vessels which were perfectly circular or had initial imperfections,
situated on flexible or rigid saddles and were welded or unwelded to the vessel shell.
The contact to the vessel was modelled as a series of discrete areas or patches and
also as a series of equivalent line loads each varying around the arc profile of the
saddle. The method for calculating the stresses and displacements was similar to the
Duthie analysis mentioned earlier. The interface reaction model of patch or line load

representation was necessary since, for most cases although not all, the patch model
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proved adequate. However, for the liquid fill case with a loose saddle, the line load
model seemed to offer a better representation of the contact force at the horn. In the
main, the difference in results between the two models was small although, with
hindsight, a compromise between the two, that is, a patch load model with a line at

the horn, proved to be a more reasonable representation.

The flexibility of the saddle was considered by Ong using two approaches. The first
method employed an AfVSKS*HL finite element model, generated by the present
author, and the second, a simpler approach, treated the flexible part of the saddle as a
‘T’ section beam using Engineer's bending theory. In both of these methods, a unit
load was applied and relative deflections at all other locations on the saddle contact
surface were evaluated. The unit load was applied in both the radial and tangential
directions. This procedure allowed the flexibility matrix for the saddle to be

generated.

Ong generally found his theoretical work yielded good agreement with experimentally
available results and with the findings of other researchers. His contribution improved
and corrected the theoretical base, modernised the programming language and
provided a flexible modular analysis tool with extended capabilities for other

researchers to use.

FA MOTASHAR (1988)lif]

Motashar[8l overlapped with some of the work of Ong in the area of saddle
supported pressure vessels. However, Motashar had several major contributions to
make to the work at Strathclyde. The first was to review and examine the choice of
shell theory mentioned earlier. Along with Ong, the Sanders' shell equations were

employed in the further development of the saddle analysis programmes.
The question of uniform contact pressure was also addressed. Whilst Duthie had

discretised the arc and Ong introduced variable interface pressure around the arc, the

influence of varying the pressure across the saddle width had not yet been addressed.
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Motashar thus divided the saddle width into a number of equal sized patches and
ultimately developed a variable pressure grid to model non-uniform interface pressure
across the width. The grid possessed the ability to weight the contact pressure area
refinement to those areas where maximum change of pressure occurred. These areas
also reflected the regions in the vessel where the maximum deformation gradients
occurred. This method, which required separate runs for each grid mesh
configuration, produced a refined grid whereby the pressure patches became
progressively smaller towards the horn and towards the edges to the saddle plate.
Higher stresses were found at the edges of the saddle as opposed to the centreline

horn stresses evaluated by Duthie and Ong.

The present author believes that the design of the saddle itself governs the
representation of the interface pressure loading onto the vessel. If the saddle is
sufficiently stiff across the width, the Motashar representation is correct. However, if
the saddle were well designed, then the uniform pressure model used by Duthie and
Ong would be justified. In fact, the optimum design may well prove to concentrate
the interface pressure map towards the centre of the saddle and dying out towards the
edges of the saddle, thus reducing discontinuity stresses and relieving any unnecessary

stress concentrations at the welds.

Motashar also brought to light the need for convergence testing when using the
Fourier series method to represent the loadings and displacements. An exhaustive
study concluded that a higher number of terms were required when a greater number
of discrete areas was used. He also recognised that convergence should be checked

for a particular vessel under analysis.

The saddle flexibility problem was also addressed using a three dimensional finite
element approach since the Motashar shell analysis could cope with flexibility across
the width. Again, the present author provided much on this aspect and helped
develop, at this stage, the finite element model to generate the required saddle

flexibility matrices. This work was extended to the study of vessels with support

17



diaphragms and also to the study of local loads through rigid rectangular attachments

with variable interface pressure grids.

2.2.2 Survey of More Recent Work on Twin Saddle Supported Vessels

The main focus of the literature survey has been of work carried out at Strathclyde
over a thirty-year period. Some comments have been made regarding the original
work of L P Zick. However, this section concentrates on more recent work that is
relevant to the work presented in this thesis. Stoneking and Sheth[H] were first to
implement a finite element analysis of the saddle support problem. Krivy and Filholll]
also presented some finite element analysis results of the saddle support arrangement.

Widera et a/1819 has recently provided some qualitative results using finite element

analysis and KrupkafZll produced a new design proposal for the limit carrying

capacity of the shell in the region ofthe saddle support.

The most recent publications of Ongl2LZ3 provide a parameter study based on the

Fourier series method developed while at Strathclyde. The method uses a basic stress

equation, of the form originally developed by Krupka, but modified by a series of

factors that characterise the behaviour of the individual parameters affecting the
design. The work also includes the effect of the wear plate and incorporates factors to
allow for seismic loading.

These papers provide useful comparisons for the methods developed by the present

author.

JK Stoneking and KSheth (1977)[3]

This work presents the first documented finite element analysis of the saddle support
problem. The geometry of their test case was that of Wilson and ToothI®L Two
support cases were studied. The rigid welded case assumed all nodes were fully
constrained in all directions. For the loose case, infinitely stiff axial boundary elements
were employed and these specified to take only compressive loads. In this manner, the

interface pressures were determined using an iterative procedure. They also found
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that the interface pressures were not constant across the width for the rigid saddle
case. The resulting maximum stresses for the welded and loose cases were
approximately the same. In addition, they found that the maximum stresses agreed

well with the Zick result, this indicating lack of refinement in the FE model.

JKrivy and A S Filho (1986)]ll]

These researchers present a computer-based method for the analysis of the twin
saddle supported problem (CYLSAD). It is interesting to read their work since they
have replicated the work of Tooth but at a rudimentary level. Their solution follows
the pattern ofanalysis defined by Duthie in that the Navier method with trigonometric
series are used to represent the displacements and a shell analysis, based on equations

of Timoshenkol24 is used to define the vessel behaviour.

Krivy and Filho identified the importance of the overall flexibility of the system,
especially relating to the saddle geometry. They used a simple two dimensional finite
element model to represent the stiffness and used nine contact points to relate this
deformation to the shell. A brief description of the analysis procedure is provided. It

is of a similar form to the Duthie method for ensuring compatibility at the interface.

Krivy and Filho present three main conclusions when comparing their results with the

British Standard BS 5500:
® BS 5500 gives results 10-20% lower than CYLSAD for moderately long

vessels (no L/R values quoted)
® For short vessels, the BS 5500 values are too conservative

0 The BS 5500 procedure should not be usedfor intermediate supports of
cylindrical shells. For cross-sections which are very far from the end-

plates, the error can be higher than 50%.

No details are given regarding convergence of the Fourier series or on the number of

contact areas or lines. It is the present author's opinion that these researchers have not
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examined and investigated the work of Tooth and require to consider more of the

relevant factors pertaining to this type of analysis.

GEO Wideraetal (1987-88) (84

The work of Widerall8M is the most recently available which contains results of a
limited parameter study based on the finite element method. In these papers, the
emphasis was to model the vessel and the saddle as a complete assembly and
therefore try to incorporate some flexibility into the system. Widera used a coarse
finite element model using twenty noded isoparametric shell elements, shown in
Figure 2.3, which were contained within a program written by themselves

(ASSHPV). All pre- and post-processing was carried out using MacDonnell Douglas

software.

Figure 2.3 Finite element mesh used by Widera

In presenting his results, Widera makes use of dimensionless curves for the
determination of the localised stresses. Two stress indices for the longitudinal and
circumferential directions respectively were defined, cv and G by the ratio of

maximum stress intensity in the vessel to the nominal stress in the saddle support

induced by the load Q. This gives:

(2.1)
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where ci and c2represent the saddle contact area. Results were plotted for these stress
indices against distance from the saddle horn in both the longitudinal and
circumferential directions. In an attempt to provide non-dimensional design curves,
his earlier results were re-plotted against the ratio of saddle centreline position to

vessel length A/L.

Fig. 14a longitudinal 9treto Indice«

Fig. 14b Circumferential stress Indies«

Figure 2.4 Non dimensional stress indices plotsfor cv and cO (after jVidera)

21



Although the application of the finite element method to the saddle support problem
should have resulted in an improved stress analysis of the maximum values occurring
at the horn, Widera notes that the results obtained by his work can only be used in a
‘qualitative’ manner. The values of maximum circumferential stress obtained were
found to be some 30% lower. The radial displacement at the saddle centreline and
midspan of the vessel was 28% and 63% lower at each position respectively. A
comparison with the work of Tooth et al, again showed that similar distributions both
longitudinally and circumferentially were obtained with the finite element analysis,

however the magnitude was found to be considerably lower.

Widera did not fully examine the sensitivity of the finite element model in relation to
mesh density and relative stiffness between the shell and the saddle. Widera is quick
to criticise the Fourier series solution because of the implied boundary conditions,
however fails to realise that the work of Tooth has been validated experimentally. The
authors own experience suggests that the finite element model used by Widera is
wholly inadequate for determining accurate stress results in the region of the horn.
The distribution of stress at the horn varies rapidly over a very small angular distance

and this requires a concentrated mesh to focus on the actual maximum stress.

Therefore, a parameter study and presentation of graphical design charts of the form
presented by Widera is of no practical use, especially since the basic stress analysis

fails to identify the maximum stress occurring in the system.

It is worth noting that Ford’8L under the direction of Tooth, attempted to analyse the
twin saddle problem using a finite element approach. This work was very much a
preliminary study to demonstrate the application of FE methods to the complex
interaction problem. Fairly coarse meshes were developed and only qualitative results

similar to Widera's were obtained.
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V Kfupka (1991)

An alternative method of solution to the problem of the saddle supported cylinder

was first proposed by KfupkaXlin 1969. This dealt with the contact loaded shell by

using the semi-bending Vlasov theory whereas Tooth et al used the general bending
theory of shells. It is noted that the semi-bending theory ignores axial bending and
was originally developed to model a rigid die pressing onto a cylinder rather than the
cylindrical vessel supported on two saddles. Both methods, used independently of
each other, reached similar conclusions. Radial and tangential interface forces were
able to be calculated by the use of a computer. However, the advantage of the semi-

bending theory is that the resulting relations can be expressed in a closed analytical

form. A further review of the work of Kfupka and of the accuracy of his method can

be found in the literature review presented by Motashar.

In this most recent in a series of publications, Kfupka has attempted to provide a

‘design proposal’ for saddle supported vessels. The solution provides the stress at
the horn in an infinitely long cylindrical shell which is then modified to take account

ofthe saddle position at the flexibility of the end. The form ofthe solution is

2.2)
where Q is the total saddle reaction. Factorsfcs andfa are obtained from Figures 2.5a
and b and thus allow the maximum stress to be evaluated. The coefficients, k and k in
these figures, reflect the stiffening effect of the end and of the infinitely long cylinder
respectively. These coefficients are obtained from the design curves shown below. In
these, the saddle width, angle and distance from the end are all incorporated into two
graphs. No effect of the wear plate or saddle flexibility is included. It is also worth

noting that the shape and thickness of the end are not incorporated or characterised.
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F1|. 2. Graph for the determination of the circumferential bending stress a, for an
infinitely long shell.

Figure 2.5a Graph of circumferential stress reductionfactor (Kfupka 1991)
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Fig. 3. Graph for the reduction of the circumferential bending stress with respect to
the stiffening effect of the bottom.

Figure 2.5b Graph of circumferential stress reductionfactor (Kfupka 1991)

Krupka also provides a method of examining the plastic squeeze of the saddle into the

vessel shell. This is observed in a number of small and full scales tests which have
been carried out over a number of years. The plastic collapse condition can provide a
limit for the maximum load carrying capacity for the vessel. However, in certain
cases, a limited plastic state for a non-cyclic static load can produce a lower load
carrying capacity than the shakedown effect. The form of this expression gives the

limit plastic carrying capacity for a material yield ofRy as,

(2.3)
where Ry is the allowable yield stress, r and t have their usual meanings and s is the
saddle periphery in contact with the vessel shell - shown in Figure 2.6. The value for

sQis given overleaf in Equation 2.4.
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1 o
Figure 2.6 Saddle vessel contact region (Kfupka 1991)

The solution assumes that there is a loss of contact between the vessel and saddle. In

fact, Kfupka recommends a reduction of 10° of the saddle angle in the calculation to

minimise this effect, since any loss of contact will occur over this distance. This
method may be adequate for the loose saddle condition but does not reflect the fully
welded saddle, which maintains contact between the vessel and the support, see

Figure 2.6. Thus, the new contact length becomes,

s =——2(0-10°
0 360 ( )

(2.4)

In order to complete the design proposal, Kfupka has addressed the problem of

buckling in the region of the saddle support. In this treatment, he has presented an
equation for the longitudinal membrane stress in the saddle region. This equation is
similar in form to that for the circumferential stress shown above but has two new
factors, fax and fax which characterise the effects on the longitudinal stress of

stiffening as defined previously. It is noted however, that the bucking is observed to

occur at the nadir. Kfupka addresses the assessment of this calculated longitudinal

stress by comparing it with the result for the critical stress, for a vessel under a
bending moment. However, he is careful to note that his treatment has oversimplified

the problem but remains confident that his method is somewhat conservative.
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A recent European standardI8Lhas provided allowable critical values of stress in pure

compression and the case of a bending moment. The calculated value obtained by

Krupka could be assessed against this. Further work on the buckling phenomenon

(both circumferential and longitudinal) exhibited in the saddle region has been
published by Kendrick and Tooth®Zand Tooth et a/18l&L It is noted that the present
work is limited to the elastic stress analysis of the saddle support region and the

buckling problem has not been addressed.

L S Ong (1987-93)
Since 1986, Ong has published several papers relating to the saddle support problem.

The majority of these papers are based on his thesis work, which has already been

discussed earlier.

His first two papers1BXldetail the Fourier series analysis using Sanders shell theory
and the development of a computer program for cylindrical shell analysis. This is
similar to that used in this thesis (although the writers program has been developed to
cover additional cases and modified to run quicker and on a variety of machines). The
salient points from the shell theory and Fourier series representation will be developed
later since they were jointly developed at Strathclyde.

Ong's third paper on the subject™ll provides a parameter study which allows the
calculation of the maximum stress at the horn for the unstiffened horizontal cylindrical
shell. The parametric formula consists of various multiplying factors based on the

Krupka equation shown earlier. Factors are introduced to account for the influences

of saddle flexibility, saddle position, support spacing, support angle and width,
together with the basic vessel dimensions. The parametric data is generated from the
SADDLE program detailed previously. The parametric equation for the peak stress at

the horn has the following form,

(2.5)
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where the (k’ factors represent the effects of location from one end, support spacing,
the effect of the wear plate and different support design, and saddle support angle and
Q is the total saddle reaction. These factors are obtained from tables of which contain
the stress reduction for a given vessel configuration. Ong has also plotted the
variation of each factor against a non-dimensional grouped parameter. These are

included for convenience as Figures 2.7.

Fig. 5. The effect erf support location from end.



Re. «. The effect of support spacing (kr).

1 (stress reduction factor)

— -Vt

Rf* 7« The effect of extended phtc.

Figure 2.7 Figures 4-7from Ong's 1991 paper

When a vessel requires to be analysed, the designer can supply the geometric data
into the abscissa coefficients and use these graphs to obtain the appropriate k factors
and insert them into Equation 2.5 to evaluate the maximum stress. The effects of the
wear plate and saddle flexibility are included in the analysis in an identical manner to
that developed at Strathclyde during the time of White. The support is treated like a
tapered cantilever ‘I’ beam and a flexibility matrix generated. This is a simpler
technique to the finite element method which can also characterise the saddle
flexibility. The present author provided several finite element saddle flexibilities for
Ong during his time at Strathclyde for comparison with the tapered ‘I’ beam

approach. The effects of the wear plate are defined as the peak stress with the
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extended flexible plate divided by the stress at the saddle horn without the extended

plate.

Much of this work considering the effects of the wear plate appear in Ong's fourth
publication®ZL and therefore is not explicitly reviewed since the same parametric

information is contained in both.

His most recent paper'Zl extends to the case of seismic loading on the twin saddle
supported vessel. A stress amplification factor is defined to quantify the additional
induced stress at the saddle support during ground motion. Ong has found that for
most geometries, an amplification factor of 3 is appropriate, however, equations for
an earthquake factor, ke, are detailed such that the seismic or inertia coefficients in

each ofthe three directions can be incorporated.

Bisbos, Thomopoulos, Tzaferopoulos, Al-Abed, Banoipoulos and Panagiotopoulos
(1994-97) 4933

The work of Bisbos et a*4953 concerns the computation of local contact loads acting
on a small diameter horizontal pipe loosely resting on a saddle in the presence of
Coulomb friction. The authors employ the Fltigge shell theory and use Fourier series
to generate flexibility coefficients. The non-linear boundary condition is treated by a
two-stage algorithm which is repeatedly executed until convergence is reached. The
first stage considers the tangential loads as given and determines regions of contact or
non-contact. The second stage considers the normal loads as constant and
sticking/slipping regions are computed. An example of the technique is provided for a

progressively filled water pipe.

A S Tooth, WM Banks, CPSeah and BA Tolson(1994)

Tooth et a/*8 progressed the earlier analysis work on saddles for isotropic materials,
to incorporate a layered material system for glass reinforced plastic (GRP) systems.
For liquid filled storage systems made from a GRP material, localised cracking can

occurs in the region of highly localised bending stresses, which can occur in the
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region adjacent to the saddle support. A thin shell approach was developed by
TolsonH, and a complementary test programme undertaken. Three full-sized vessels
were strain gauged to provide measurements to validate the theoretical analysis.
Using the shell analysis for layered systems, a parametric study was undertaken and a
design approach presented, to enable the maximum strain to be determined for the

symmetric laminated horizontal vessel.

S Naijie, Z Jitao and L Wenge (1996)

The authorsEdl investigate the stress state in the saddle zone of twin saddle supported
vessels in much the same manner as Tooth. In addition, some simple verification
experiments have been undertaken on a suitable model. Thereafter, a double Fourier
series expansion method is employed to analyse the problem. Contact pressure

profiles are established in the usual manner and some comparisons made.

2.3 Literature Review - The Local Load Problem

This literature review presents a summary of the work carried out in the development
of the main design methods found in most international pressure vessel standards for
the design and analysis of local attachments. It is restricted to the case of the rigid
attachment fully welded to a cylindrical shell. Other researchers have investigated the

problems of rigid attachments on spheres and also flexible attachments such as

nozzles in both cylindrical shell and spheres (e.g. Leckie and Penny131).

2.3.1 Summary of Current Methods for Local Load Analysis

There are two main design methods which have been generally adopted by industry
for the calculation of stresses and deflections in circular cylindrical shells subject to
local loads transmitted by rigid attachments. These methods are found in the British

Standard BS550011 and the Welding Research Council Bulletin 107131respectively.

When considering the theoretical development of the background to each of these

documents, it is clear that the methods are essentially the same for the treatment of
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radial loads but differ slightly in the representation of moment loads. In addition, the
format and presentation of each of the two methods is quite different but both
methods contain graphs, tables and worksheets and are equally complex when

performing hand calculations, due to the difficulty of accurate interpolation.

The analytical method is based on elastic, small displacement analysis. The loads and
displacements are represented by Fourier series. By also considering the equilibrium
of the shell, the displacements due to an externally applied load component are found
by reducing the three partial differential equilibrium equations for the shell into a
single eighth order differential equation in terms of the radial displacements. The
Fourier series expression for the radial displacements and the external loadings are
then substituted into the eighth order differential equation and this is then solved by a
numerical routine. Ultimately, expansions for each of the three displacements can be

found and the subsequent stress resultants obtained via the compatibility relationships.

It is worth noting that the load representation of the BS method is based on a single
Fourier series expression of a line load followed by direct integration across the patch
whereas the WRC method utilises double Fourier series representation. This is
expanded in detail in the following sections. In both codes, the radial load is assumed
to be uniformly distributed over the patch and the moment loading to be linearly

distributed.

Since both methods are based on end-supported cylindrical shells and use Fourier
series to represent the loading terms, there are certain restrictions to the use of the
method. In general, the analysis assumes the loaded area is remote from the ends,
typically the edge of the loaded region being no closer the half of the radius from the
end of the cylinder. In addition, the assumption of uniformly distributed loading is
maintained by restricting the maximum patch length to be one half of the vessel radius
(ie. CJr < 0.25). Limitations to the circumferential length are based on experimental
work of the Pressure Vessel Research Committee of the ASME and are presented in

WRC Bulletin 107 as extra-modified curves. This data also appears as Figure G.l of
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BS 5500 Annex G giving those regions where the charts may be used. Typical values
of circumferential patch size are limited to the circumferential length being less that
half of the vessel radius for a radial load or axial moment and circumferential length
being less that the vessel radius for a circumferential moment for example,

CMr <0.25 and C+/2r<0.25. The BS method of handling the moment loads, in

which equivalent uniformly loaded patches are employed, makes economic use of the

design charts.

Each ofthe two main design codes is based on this fundamental philosophy although,

in practise, the execution ofthe method is different.

2.3.2 WRC Bulletin 107

In the ASME Boiler and Pressure Vessel Code, no explicit rules are given for the
analysis of local rigid attachments on shell, however, the designer is directed to the
Welding Research Council Bulletin 107 by Wichman et &*31 The history of this
document originates in the early 1950's with work sponsored by the Pressure Vessel
Research Committee of the Welding Research Council who commissioned P P
Bijlaard to undertake an analytical and experimental investigation into the stresses
and deflections of pressure vessel nozzle connections subject to various external

loadings.

Bijlaard reported his work in various publications|23L, however the salient points are
worth noting. In his analysis, the displacement and loading functions, e.g.
Equation(2.6) below, were represented by double Fourier series expressions and the
cylinder was assumed to be simply supported at each end. The cylindrical shell
equations employed by Bijlaard were similar to those of Donnell1®. The main output
of his work was in the form of nomographs for design for each of the various load
cases anticipated; deflections, bending moments and membrane forces in cylinders

arising from the application of externally applied radial loads and bending moments.
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mm
Pr= z Pmn COS cos ntp
n=0,1,2.

(2.6)
Note that the form of this equation for P r assumes that x is measured from the centre
of the vessel at the centreline of the load. The method of load transfer adopted by
Bijlaard for an externally applied radial load was that of a uniform pressure profile
distributed over the vessel surface. For the case of a moment loading, the load profile
was assumed to be triangular in distribution, see Figure 2.8a-c. Each of these loads is
permitted to act on a rectangular area. Circular and elliptical areas were treated by
evaluating the equivalent rectangle and using the same analysis. That is to say, a
circular area, of radius, ra is represented by an equivalent square of half-side length =
0.875roand an elliptical area by a rectangular area of sizes 0.42 times the major and

minor axes ofthe intersection ofthe shell as shown in Figures 2.9a and b.
AP

Figure 2.8a-c Radial and moment loads acting on a cylindrical shell
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Figure 2.9a,b Equivalent rectanglesfor circular and elliptical patches

For the case of the externally applied radial load, the stresses presented in Bijlaard's
reports and nomographs were located at the centre of the loaded area positioned at
the geometric centre of the vessel. Although, in view of the welded construction of
the detail, this location does not seem to be the natural position of the maximum
stress. Bijlaard thus recommended that the values calculated at the centre of the
loaded area, be used for the stresses located at the edge of the patch. This was done
to take account of the rigidity of the attachment. However, the stresses presented for

the externally applied moments were calculated at the edges of the loaded area

anyway.

In his initial report, Bijlaard only covered certain cases of vessel radius to nozzle
thickness, this also for only a few nozzle to cylinder radii. In later reports, he
recognised that a fuller presentation was required and that a wider range of
geometries be covered. In addition, he had initially used a limited number of Fourier
terms in his expansions, for the sake of simplifying the numerical calculations.
Additional data was presented in the late 1950's for stresses in cylindrical shells under
local loading which encompassed a greater range of problems and provided more
accurate stress data. Some experiments were carried out by Bijlaard and Cranch in
1960 in order to verify the approach. These tests were of loads transmitted through
various types of attachments, which were directly welded to cylindrical shells. They
comprised a pipe welded to the cylinder, a pipe welded to the cylinder with a hole
introduced, a pipe with a reinforcing pad welded to the cylinder with a hole, a hollow

rectangular section welded directly to the hole and lastly, a solid circular bar welded
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to the cylindrical shell. Each case was loaded in turn by a radial force and both
moments in both the pressurised and unpressurised condition. Reasonable agreement

of the experimental results and theoretical predictions was found in most cases.

Although Bijlaard had published widely on the subject of local loading over a five-
year period, the industry found many difficulties in interpreting the work and its
limitations became evermore apparent. Wichman et al in 196530, were
commissioned by the Welding Research Council to summarise all of Bijlaard's work
and to extend the work to meet the requirements of industry. This work was
presented, at that time, in a useful ‘cook-book’ form and was published as the WRC
Bulletin 107. The bulletin incorporated a description of the limitations of the original

work and a comprehensive explanation of the changes made therein.

Although in wide use today, the main drawback with the bulletin, as a design tool, is
that it contains a multitude of graphs. It contains graphical data for each stress
resultant for each different load type, radial load, longitudinal moment and
circumferential moment for a range of geometries. Graphs are also included for the
evaluation of die-out effects. Using the information is complex and there is a real
possibility of errors being made since, in many cases, the data may require

interpolation between graphs for differing geometries.

2.3.3 BS 5500 Annex G
The British Standard 5500 has, contained within Annex G, rules for the evaluation of

the stresses and deflections for local loads on cylindrical and spherical shells.

The origin of the method for loads transferred to cylindrical shells by rigid
attachments is traced to a series of reports published by Kempner, Sheng and
PohlelA] (1957) for the Knoll Atomic Power Laboratory and is based on the
theoretical work of Hoffet a/*411 (1954). These reports produced graphs and tables of

displacements, rotations and stress resultants for the case of a radial line load applied

36



at the zenith acting along part of the generator (i.e. in the axial direction) located at

the mid-length of an end supported cylinder - as shown in Figure 2.10.

Figure 2.10 Line load acting on a generator

These line load results utilised a single Fourier series to represent the line load
(Equation 2.7) and were later used to obtain the stresses and deflections for
rectangular areas of loading by direct integration. This procedure was adopted by ICI,
who developed their own version of the data in the form of a ‘Mechanical
Engineering Design Book’, which was later included in BS 1515, 1965, Part 1,
Appendix A. In 1976, with the writing of the master pressure vessel standard
BS5500, which updated BS 1515 and incorporated data from various British

Standards, the procedure was drafted into its present form as Appendix G.

2.7)
The analysis of moment loadings generally assumes that the interface pressure
distribution is triangular in form. However, in BS5500, the procedure adopted was to
utilise the existing data for the radial load case, with its uniform rectangular profile,
and to consider the moment as equivalent to two patches of uniformly distributed
radial loading of length equal to one third of the loaded patch length. The forces on
each patch are equal and opposite and act in directions consistent with the direction

of the action of the moment.
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It is worth noting that, as BS5500 was being written, the information from WRC
Bulletin 107 was available for obtaining the longitudinal and circumferential moments
cases using the triangular distribution. However, the code writers felt that the two
equal and opposite radial patch approach minimised the number of graphs in the
Standard, since only data for the uniform radial loading case need be presented. There
remains, however, the question of the interaction effects between the two equal and
opposite patches which complicates the procedure as presented in the Standard.
Indeed, some designers have been known to carry out a moment loading analysis in
accordance with Annex G and to ignore the effect of the second loaded area. In

general, this approach provides a conservative result.

As a means of simplifying the procedure, worksheets are presented in the Standard in
an attempt to aid the designer through the calculation. Even so, the procedure is
complex and cumbersome and does not readily allow simple design changes to be

easily made.

Some engineering software companies (e g. Finglow, ESDU and Whessoe) have
computerised the code. In their programs, the approach is to have digitised the
graphical information, and thereafter produce routines that undertake the data
interpolation. Where available, actual equations are used. Whilst this is of use in a
Code design context, a preferred route would be to use the computer to carry out a
more rigorous analysis, using the fundamental or basic equations rather than to have
approximate data calculated. This approach would provide data that are more

accurate for both stress analysis and fatigue assessments.

2.3.4 Other Approaches to the Local Loading of Cylindrical Vessels

In view of the fact that the methodology of BS 5500 is complex and cumbersome,
several alternative approaches have been proposed which attempt to ease the effort in

performing repetitive designs. There are three possible routes which may be followed
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in developing these alternative approaches. Thefirst is to provide a simplified method

which may be used instead of the Standard.

To this end, work carried out at UMIST was carried out by Bedri et a/¥2 provides a
series o f ‘stress factors’ for rectangular attachments. These factors were presented for
three different load cases, i.e. radial force, circumferential and longitudinal moments.
It is interesting to note that these charts incorporate the effect of the second loaded
area in the moment cases thus eliminating one complete section of the calculation
process, which is often ignored by designers. A similar approach is presented by
Teixeira et a/M3 for local loadings on branch pipes. In both cases, the basic stress
data is taken directly from BS 5500 Annex G and covers the range of vessel
parameters stated in the Standard. However, no attempt was made to improve or
‘correct’ the values for the basic stress data. Despite the fact that this work has been

available since 1983, it has never been incorporated into the Standard (BS 55()dX).

The second alternative approach is to provide a suitable microcomputer program
based on the basic shell equations. The double Fourier series solution used by Bijlaard
has been programmed by Duthie and Tooth[#L for various patch loading cases. More
recently, Tooth and Nashm have developed the double Fourier series solution using
Sanders' shell equations and have programmed their solution on a personal computer.
This method avoids the inaccuracy of graph reading and interpolation and allows a
rapid analysis to be carried out for a wide range of loading cases which may not be
covered by the Standard. This alternative approach is extended in the present work to

cover those cases where the loading patch is not rectangular.

The third alternative method is to perform a ‘design-by-analysis’ study of the
problem using, say, finite element methods. This approach is discussed later in this
work and is very useful for analysing individual problems but can be time consuming
and onerous if there are a large number of cases which require to be considered.

Problems with mesh refinement and stress categorisation arise with the use of finite
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element analysis and there is often confusion and mis-interpretation when applying
code rules and limitations to the output. This approach should not be used by the
inexperience vessel engineer or indeed, finite element analyst. A depth of knowledge

in both subjects is required.

2.4 Survey of More Recent Work on Local Loads

A review of more recent work, that is to say, work published since the present author
began his investigations in 1985, has been mainly concentrated in analysing the
interface contact pressure distribution under the local attachment. Hueilin and
Santung¥, Motashar and Toothm and Thomopoulos et a*931 have analysed
the case of the rigid attachment (or saddle) with a variable interface pressure
distribution. Nadarajah, Tooth and SpencelSf091 however, have used the finite
element technique to investigate the influence of large displacement analysis for radial
loading and the influence of the rigidity of the attachment, both acting separately and
together.

Thomopoulos et a3 have used the framework of the Fliigge shell equations and

have discretised the loaded areas into a regular number of patches. Fourier series are
used to represent the loading via flexibility coefficients, which are obtained from the
analysis. The boundary representation is non-linear and is formulated using a contact-
Coulomb friction numerical algorithm, which is consecutively repeated until
convergence is reached. The algorithm is carried out in two stages with the first
considering tangential loads as given and those regions which are and are not in
contact are determined. Thereafter, the normal loads are considered as constant and

the sticking/slipping regions are computed.

Although principally concerned with the evaluation of the frictional contact loads for
simple ‘saddles’ or attachments on pipe supports, Thomopoulos identifies that the
method may be more general in application. For example, the more traditional
pressure vessel saddle support may be analysed using the technique. In addition, he
notes that multi supported systems incorporating frictional effects in the longitudinal

direction may also be tackled. However, the technique is computer intensive with a
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typical run for a simple pipe support taking over five hours for a single case,

compared with 4-5 minutes using the present approach.

Hueilin and Suntungl46#1 presented an alternative method of evaluating the contact
pressures for pad-reinforced structures. A mixed finite element method for the
analysis of plate and shell problems has been developed which involves non-linear
contact analysis. After defining the load vector for the problem, the flexibility matrix
for the system is evaluated. Contact normals are identified on the two surfaces which
may come into contact. A Coulomb friction model is used and mating pair of nodes
are identified as being free, sticking (adhesion state) or slipping. Thereafter the
continuity equations are modified and the contact forces and gaps (if any) are
identified. A check is made for convergence and for the total load application and

thereafter the nodal displacements and stresses are evaluated.

Two examples of the use of the mixed finite element formulation are presented. The
first is a saddle support problem with the ‘saddle’ being represented as a stiff bracket
plate with a flexible wrapper. Some 20 contact nodes were used to represent the
contacting surfaces. The distribution of the contact forces on the saddle surface is
shown below, in Figure 2.11. This represents a developed surface plot of the
saddle/vessel contact area. It can be seen that maximum contact pressure peaks arise

just below the saddle horn edge and these have a maximum value at the saddle

centreline.

Figure 2.11 Contact Force Distribution on Saddle Surface (Hueilin and Suntung)
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The second example highlighted is that of an axial moment acting on a large circular
pad. In the British Standard, a triangular distribution is assumed for the load
representation. The mixed FEM analysis of the distribution of contact forces on the
pad shows that, in the main, the bulk of the interface pressure is concentrated at the
weld regions located at the top and bottom of the loaded region. The major portion of
the pad has little or no interface pressure value. The researchers carried out strain
gauge tests in order to verify their method. Reasonable agreement was found for
those regions where gauges could be sited. Comparison was also made with
conventional finite element methods and some 30-40% improvement was found by

the implementation of the mixed formulation.

Motashar and ToothM8 examined the behaviour of the cylindrical vessel which is
radially loaded through a rigid attachment which is of a rectangular plan form. The
resulting radial and tangential interface forces between the vessel and the attachments
are found assuming the attachment is fixed to the vessel at all points over the mating
surface and is subject to a radial displacement. The double Fourier series solution,
which is detailed in the present work, is extended to incorporate a number of equal
size discrete areas as shown in Figure 2.12. The vessel flexibility is evaluated and
compatibility equations enforced. Motashar's solution allows for a flexible attachment
to be incorporated in the construction of the compatibility equations if the flexibility
matrices can be found from, for example, a suitable finite element model. In their
example, the flexibility matrices are set to zero and the attachment is assumed to be
rigid. Equilibrium is then ensured and the radial and tangential interface pressures are

evaluated. This therefore allows the vessel displacements and stress resultants to be

found.

42



Figure 2.12 Rigid Attachment (a) Discrete Areas (b) Applied Force

Motashar concludes that the uniformly distributed interface pressure assumption is
always unconservative and in the cases presented, the variable interface pressure
analysis can be lead to peak stresses which are up to 37% higher. These peak stresses

occur at the attachment edges in the local vicinity to the weld region - as shown in

Figure 2.13.
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UnlPor* load

Figure 2.13 Distribution of Circumferential Stress (Motashar and Tooth 1988)

Nadarajah et al1549%approached the problem of improving the analysis presented in
the codes and standards by examining the existing restrictions imposed by
simplifications which were adopted at the time of writing. The Standard is based on
the use of small displacement analysis for rotations and deflections to evaluate the
code stress and displacement values. In addition, no account is taken of the complex
interface pressure distribution, the codes assuming a simplified uniform distribution in
the case of radially loaded attachments and linear (or equivalent) distributions for the

externally applied moment cases.

Extensive finite element analyses were undertaken for a range of cases using large and
small displacement analysis. The large displacement analysis resulted in higher peak
stresses when the load was applied in towards the centre of the vessel and the

opposite was the case when the loading direction was reversed. The small
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displacement analysis is independent of the loading direction. A series of correction
factors for the small displacement (standard, code) analysis were developed ranging
from 0.92 for the load applied outwards to values of 1.45, 1.62 and 1.60 for the radial

deflection, circumferential stress and longitudinal stress respectively.

The influence of the rigidity of the attachment was examined by generating finite
element models with the pad attached around its edges. Various thicknesses of pad
were examined including pad thicknesses equal to the shell, one and one half times
thicker than the shell and over three times the vessel shell thicknesses. At the location
of the welds, the finite element nodes were fully connected whereas in the location of
the attachment area, the nodes were connected using gap elements. No mention is
made as to whether Coulomb friction was incorporated or not. Uniform pressure was
applied to the top ofthe attachment and small displacement, linear elastic analysis was
employed. Stress factors which relate the maximum stress due to the loaded
attachment to the maximum stress due to the uniformly distributed loading were
plotted for the range of cases examined. It was found that when the pad is the same
thickness as the vessel wall, the stress factor was less than unity over the whole range,
therefore the pad stiffens the vessel and is sufficiently flexible to avoid increasing the

edge stresses.

When both effects are analysed together, the large displacement analysis and the
attachment rigidity did not significantly interact, i.e. they can be considered
uncoupled. Therefore, in order to establish a simple way of combining the two effects,
Nadarajah analysed a number of cases where the welded attachment was analysed
using large displacement finite element analysis. These results were then compared
with those obtained independently by combining the two modification factors
together. This approach always gave a conservative result when comparing with the
FE analysis, therefore simple multiplication of the two factors could be used as a

design aid.
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2.5 Aims of the Proposed Research

The present research deals with two specific problems, which are related. It is worth
noting that the two previous sections ‘Twin Saddle Problem’ and ‘Local Patch
Loading Problem’ can be solved using procedures that are based on the same
fundamental equations. Each problem is tackled by employing Sanders’ general
theory of surfaces applied to a cylindrical shell. The choice of shell theory is based on
the work of A Leissa, who presented a survey of thin shell theories under specific
applications and showed that Sanders' equations were the most consistent and
satisfactory. Thereafter, a double Fourier series approach allows the representation of
the surface loading on the cylindrical shell and the development of a numerical

solution that has been adapted for a variety of computer platforms.

The present work is concerned with examining the basis of current methods used in
industry. In this, the background to the methods in the British pressure vessel
standard BS 5500 and the ASME code are summarised and some attempt is made to
verify their application. Solutions are developed and are then applied to a number of

special cases for each problem.

Local load solutions are developed for rectangular shaped patches, which produce
similar results to current code and standard approaches. New solutions are presented
for patches that are circular and elliptical in form. In addition, stresses are now
evaluated at the true maximum positions, as opposed to the approximate maximum
location given in the literature. This provides reliable stress data for use in design and
fatigue assessments. The solution thereafter is extended to cover steady state thermal
stress problems including patch areas of heating or cooling and non-linear bell shaped

thermal gradients.

The saddle support solution is developed and extended to incorporate flexible saddles
with radial and tangential flexibility. From this, a full parameter study is undertaken

and a new design methodology presented. This new approach incorporates all of the
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main design parameters for a liquid filled vessel on twin saddles. The effects of the
flexibility of the vessel head and saddle support are studied using finite element
methods and suitable flexibility factors are supplied, where possible, for inclusion into

the new design approach.

In addition, an overview is given of the use of finite element analysis in dealing with

the design of complex pressure vessel details such as local loads and saddle supports.
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3 THIN CIRCULAR CYLINDRICAL SHELL THEORY
This chapter presents the analysis of a thin circular cylindrical shell, simply supported

at its end. The displacements and stresses are evaluated for the case where the
cylinder is located horizontally and is subjected to various types of surface loading.
Firstly, the differential equations which govern the behaviour of the cylindrical shell
are derived. Thereafter, a double Fourier series expansion technique is employed to
represent the surface loading, and a numerical solution for the equations describing
the behaviour of the shell is established. The cases of a cylindrical vessel subjected to
radial and tangential uniform patch loading are presented in detail, as they are used

throughout this work.

3.1 Derivation of Thin Circular Cylindrical Shell Equations
The analysis developed within this thesis is based upon the improved thin shell theory

proposed by Sanders'l?2l This has been developed almost entirely as a two-
dimensional theory. This avoids certain complexities that arise when relating two and
three-dimensional theories and makes for simpler implimentation whilst retaining
consistency. Sanders' uses the principal of virtual work as the main tool for the

derivation of his shell theory. This is presented in this section in some detail.

3.1.1 Geometry
The deformation of a thin shell can be completely defined by the displacement of its

middle surface. The cylindrical co-ordinate system is used to define the middle surface
and since the cylindrical shell has a constant radius of curvature along its
circumference, then any point on the middle surface can be defined by two unique
variables, x in the axial or longitudinal and O in the circumferential directions. The
middle surface displacements of the shell are defined as U, Vand Win the x, 0 and the
surface normal directions respectively.  Figure 3.1a shows the middle surface co-
ordinates and positive directions of the shell displacements. Figures 3.1b and 3.1c

show the stress resultants and couples which act on a section of the cylindrical shell

parallel to its co-ordinates.
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Fig 3.1a Cylindrical coordinate system and positive midsurface displacements

Fig 3.1b Couples and midsurface rotations

Figure 3.1a-c Positive direction ofdisplacements, stress resultants and loading

3.1.2 Equilibrium Equations
The equations of static equilibrium of the general shell element, which are quoted in
Reference [12], are generally accepted and agreed upon13L The following equations

are the equivalent equilibrium equations for a circular cylindrical shell:
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The stress resultants and couples appearing in these equations are defined by

integrations of three-dimensional stresses through the thickness of the cylinder as

given below:
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3.1.3 Strain-Displacement Relations
The strain expressions (10 quantities, one corresponding to each stress) are derived

here using the principle of virtual work as follows:
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BMr | dM
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(3.3)
The integral must vanish by virtue of Equations (3.1). Expanding Equation (3.3) and

integrating by parts yields:
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The two double integrals extend over the region of the middle surface of the shell
enclosed by the cylindrical curve C. According to the principle of virtual work these
two integrals must equal each other. The first integral represents the virtual work of
the forces acting on the cylinder whilst the second integral describes the virtual

change in strain energy of the cylindrical shell. This leads to the following definitions

of strain quantities:

cu Kr=,&kﬁ

dx x dX
$0- K - o

dx "o

1du
£02~ b BO R dO R

1 dbe

€9~ 4o R “*7r do

aw \dw v
Yr= o ™ Y€TRdo R 0

(3.5)

3.1.4 Simplification of Results
It is assumed that the work done by the maximum transverse shear stress acting

through a distance equal to the maximum transverse shear strain times the thickness
of the shell, is negligible in comparison with the total change in strain energy during

deformation. From this assumption the two terms in the second integral of Equation
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(3.4) which contain Oxand Oo can be set to zero and the quantities $x and < can be

expressed interms of U, V and W.

vV 1dwW
R Rdd

(3.6)
The rotation about the normal < is calculated by taking the surface curl of a

displacement vector. The expression §Zbecomes:

& 1du’
2 9y R fif))
(3.7
Substituting for ()Zinto equation 3.5, it follows that:
1 dv/. 1dU
Exe-e9x_2 dX+R30
(3.8)

Combining the two expressions for twisting strain AX0and Ak and the expressions of

the shear strain yields the following identity:

Kzo~Koz~ 2R <fxe +£" ~ r £x8
(3.9)
Using expressions (3.8) and (3.9), the second integral of equation (3.4) (the change in

strain energy integral) can be rewritten as:
[I{N z& z +(Nxe + A - m%K» +AA . +MtSKt

+M,)s{K xe +Q,%r.)Rdxde

(3.10)

A new modified definition of the shear resultant, shear couple and twisting strain are

introduced at this point. These are:
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A simplification is introduced here by neglecting the term (1/4R) (Mze - M»*).

This is justified by the introduction of expression (3.11a), where (1/4R)
would be very small compared with 1/2 (Xe+TVe*) or 1/2 (M*"+Md). However, it is
noted that (N”-N7) is not being neglected.  Applying the above definitions and

simplifications to Equation (3.10), it becomes:

J{AnBex +2Ane8ex6 + ABs0+M XBKX+2M »x8Kx + M e8Ke +Q X8y x + (?0by0" RchcdS
(3.12)

3.1.5 Modified Equilibrium Equations
After introducing the new definitions and simplifications, the equilibrium equations

require modification. This is carried out using the principle of virtual work. At this
stage, the strain expressions are now expressible in terms of the displacements U,V &
W. They are introduced into Equation 3.12 in the application of the principle of
virtual work that leads to a new set of equilibrium equations. The expression for the

virtual change in strain energy may now be written as:
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If the shell is to be in equilibrium, by the principle of virtual work, the left hand side

of Equation (3.13) (the virtual change in strain energy) must equal the first integral in

the right hand side (the virtual change in work done by forces on the shell). This

implies the second integral on the right hand side (the area integral) must vanish.

Since the virtual displacements are arbitrary and independent they cannot be set equal

to zero, so all the five expressions (which are corresponding to the five virtual

displacements) must vanish. Thus the following equilibrium conditions must hold:
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These equations are the new modified equilibrium equations. The number of stress

unknowns has been reduced from 10 to 8.

In previous derivations of shell theory, the number of unknown stress resultants and
couples are reduced by making approximations in the expressions for the resultants in
terms of integrals of stress through the thickness of the shell. In the present
derivation, the reduction is made by combining some terms in a similar manner to
those in the application principle of virtual work. This affects those terms associated
with the work done during a small rotation about the normal to the shell. Using this
approach, it is not necessary to eliminate any terms in the expressions for the stress
resultants and couples in terms of integrals of stress through the thickness of the shell.
Substituting for Qxand Qo in Equations (3.14) reduces the number of terms from five
to three. Adding them to the external forces, they become:
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3.1.6 Stress-Strain Relations

The stress-strain relations depend on the mechanical properties of the material of the
shell. In determining stresses analytically it is customary to assume that the material
is elastic, isotropic, homogeneous and that it conforms to Hooke’s Law, which states
the strain is proportional to stress. These assumptions lead to the following stress-

strain relations, with shell thickness, t:

B = < EtXz =12(Mz -vMe)
B = EtXg=12(Mb-\M z)
Etex0 =(1+v)Nxa EtXzo=12(1+v)Mze

(3.16a-f)

3.2 The Governing Equations

In order to obtain the governing equations for the circular cylindrical shell, the
equilibrium equations, the compatibility equations and the constitutive relations can
now be combined to develop the governing equations that determine the overall

behaviour ofthe shell. Firstly, the stress-strain relations are written as follows:
nz =D(ez +vet)
Ne =D(e0+vsz) Me="(K,,+vKz)

Hze =D (I-v)eze Mz~ D2 (lI-v)K,e

(3.17a-f)
Using the compatibility equations to substitute the strains or their equivalents in terms
ofthe displacements, a set of stress resultants is obtained expressed in terms of the

displacements and material properties:
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(3.18a-f)
Using the above set of relations to substitute for the stress resultants into the new
equilibrium equations, a set of three partial differential equations known as the

Differential Equations ofthe Bending Theory of Circular Cylindrical Shells results:

vyt ooIn
(Rdr)2+(I v) 1. -
. 4)

+\Uu(RAX)+~pt(RAXtiV =-Sé.

+H{ i K ) d, +de
AD .k{Rd,ya” (R d » +I*"p-kiRdXd, +kdi-d\v

+{-*(")*-2HRdrfdl-kd4-1)v =-M -

(3.19a-c)

Or they can be written in the form:
a,U+b,V+C,W=d,

a2u+b2V+C2W=d2

diU+biV+CiW-di
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where:

(i-vy, k) _
a\~{Rdy)1+ c,=v(Rdz)+™ R (Rdx)d2
RAINIFT A 4]
s TV VK R iyas WK Rz 2dg-kd\ +dg
y~2 s )
5 c3=-k(Rdzr - 2k(Rdx)2d g - kdig- 1
w2 Y30 ] (Ryr)dg dxe [WR2
Y g J D
1v e PgR 2
- 1+ — RdxY+(\+k)d d2=
b2= 5y Ty (rkjdg D
b3=Q-~(Rdz)2dg+kdl-de 4 = P[;RZ

(3.20)

3.3 Solution of The Governing Equations

The equations, which govern the behaviour of the circular cylindrical shell, have been
derived in the sections above. These equations involve partial derivatives of %and 0,
and thus are described as partial differential equations. The solution of such systems
of equations is generally complex. It is sometimes very difficult to find the required
solution for a set of partial differential equations.  Normally, some mathematical
compromise is made and a numerical soultion evaluated, provided sufficient accuracy
can be established. In the present work, a Fourier Series Expansion Technique is

used to find the solution for the governing equations of the circular cylindrical shell.

Certain assumptions are made here in order to make the Fourier expansion method
applicable and the resulting solution easier to establish. The circular cylindrical shell
is assumed to be horizontally located and simply supported at its ends. The latter
assumption sometimes may not always be true. However, in such cases, correction
factors can be added to make up for this. In addition, a restriction is placed such that
only those cases where symmetry about the vertical plane exists are considered in this
work, since such covers the main types of loading that occur; pressure, fluid and self

weight.
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3.3.1 The Fourier Series Representation of Surface Loading

Differential equations with simple forms, for example sines or cosines can be easily
solved. However, there are many cases of complex functions, which describe the
behaviour of a real physical system, which cannot be simply represented by simple
sine or cosine waves. In such cases, their behaviour can be expressed by a series of
sines and cosines, the summation of which is the equivalent to the actual behaviour at
the component. Thus a series composed of sines and cosines is the termed the
Fourier Expansion of the function. To represent the loading system on a cylindrical
surface, a double Fourier series is required for each component in longitudinal,

tangential and radial directions. The following expressions are used to represent the

surface loading:

(3.21a-c)
A particular solution of the differential equations, corresponding to each term of the
surface loading, can now be found. The sum of these particular solutions thus

represents the total solution of the differential equations. The displacement solution

therefore has the form of the double Fourier series as follows:

(3.22a-c)
Substituting, for a particular mode of the Fourier expansion, for Px Pa Pr, U, Vand

W from Equations (3.21) and (3.23) into Equations (3.20), yields a set of three

algebraic equations:
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A™mn + Bymm+ CWm, =
A2Umn+ B IVmn+C2NMmn=D P&
AJJm+Bym+ C3m=D,P

(3.23a-c)
where:
A,:XA’\(1+k—)n’ Cj =vA
2 N 4)
w :r\2+V 3(1-3V)k An C2=tv W AM-kn~+n

C, =-kAi -2kAin2-kn4-1

(Vv 3L-v)k

2 8 A="p
b= - i'V”+9*AA2+(|+A'>;2
_ (= +/dp - n
2
(3.24)
This may be written in matrix form as:
A A CivYu, f
a2 b2 c2 =A Om
A A C FT \ 1Pran
The solution of which is:
i(AA - BX2Pam- (AA - A A)Perrt(AA - AA)Pmm}
Umn=Dx
DEN
-A,C))Ptm +(.J,C,-A
Vmn=D\ DEN
Win=D faB ,- B> ., -JAB,- AA)P~"
o DEN
where:
DEN =AXx(AA - BX2)- A2(AA - B,CY+A,(AA - BXX
(rI-i fl-van
=-k (A2+n2)4-2n2(A2+n2)2-4 An2(A2+n2-\) +n4+ Al
\ 2z
(3.25)
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This represents the solution for a particular mode of Fourier expansion of the general
loading system Px Pg, and PA but it is simpler to consider each loading component at

a time and superimpose them to obtain the total solution.

3.3.2 Longitudinal Loading Only
In this case, it is assumed that Pg= Pr= 0, thus Po™ = Pnnn= 0 for all values of m & n.

Equations (3.25) become:

(B’C’ mn
UZ’mn = 1 ‘
DEN
aZc3-A L2)P
V = », ( ) Z mn
DEN
(A,B, - A,B2)Pz
\/\b( - Z),
DEN

(8.26a-C)
The total solution for the displacements of a circular cylindrical shell subjected to a

general loading in the axial direction becomes:

R2 (mnx»
Uz™ =7e 11 11ZLL pvnncos(aaP )cos R
kD txa K e KL j
R2™A 7~ o mmion N (mnx”

= in(/n
Vzm nkD]%réZLT sin(/")cos

e (mnx'
r zmn= - £ Z ZLR PrmnCOS(wP)sin
n m=1n=0 I—
'where:

1 +nlY +Pj+n2({?+n2)2- (3 -~ 2 «2+1)|
ZLL = DEN

AN (/12+n2)-~ (3-v)VA2—{1—3v)W2
ZLT - knX DEN

kn2(Z2+n2)- - (VA2- n2)
ZLR =
DEN
DEAN=-N<j(A +1;24-2];i A2+1;2- 4A2;2(A2+ a2- 1)t aa+ — = A4
\Y; k

(3.27)
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Finding the solution for the displacements in the Fourier series form allows the

determination of the stress resultants, which are expressed in terms of the

displacements and their derivatives (Equations 3.18), in the same form:

N = -2i{- AZLL+VnZLT+VZLR)PI cos(<O)sin mnx

1 k

\

| Z{nZLT+ZLR - vXZLLPr_cos(//0)sin mnx

k N0
Nog = R%k MH{XZLT- nZLL}Px sin(nG)c o s f’\

17=Im=0

NO =

y

Mx =/221 | {{A&2+Vn2)ZLR +vnZL 'I'\P)M\cos(«6|)5|n im nxA
77—0 n=I
MO=R2Z i”n 1+vA2)ZLR +nZLT}PXncos(«£)sin M"*
w=0 m=l| ~ L...)
. mnx
M g=720Q-v)Z Z{nAZLR+- AZLT+-—nZLI\pXnsin(«0)cos
T 4 4 A
(3.28a-)

3.3.3 Tangential Loading Only
In this case, it is assumed that Px=Pr=0, thus Pam=Pmm=0 for all values of m and n.

Equations (3.25) now become:
(B,CX-B xC3)P6n

Ue =Dx
DEN
AA - AC3
" :DX( )Pg™
DEN
(A A -A>B3Pgm

=Dx
g DEN
(3.29a-c)

The total solution for the displacements of a circular cylindrical shell subjected to a

general loading in the tangential direction become:

r>2 00 co

=— Z XZTLPg cos(/z#)cos
UB™ Dy 0

n 2 oo N\ N
mnx
W= Z'I'I'Pg sin(/z#)sin
ku
r>2 00 co mnxll

7 7Z ZTRPg cos(//#)sin
Vs 1D dems V%)
(3.30a-c)
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where:

AN

. +W2)--f(3-v)v‘A2~(\-3v)n2--_TV_
Z1Z = 2 .
DEN
r/
Z22+"N % 21("2+HW2)2+(1~Vv)(z2(1+ v+ Aw2)+~/?2
ZTT -m
DEN
(v 74 2% 200 + 1Y (+v)z2+12)
ZTR=-n-
DEN
(3.31a-c)
Equations 3.18 for the stress resultants now become:
_ . 'mux’
N, =- £ £ {-ZZ7Z+vnZTT + VvZTR)PGncos(/?6»)sin
/t n=0 m=l|
/\ H L]
Ne= - ii {nZTT+ZTR- VAZTLA cos(«0)sin "X
It 0 " r :
S.-W -V ) X X{AZTT-nZTL\PQ' sin(w#)cos
2k ) \ A
Mx=R2X | {{Z+vn2)ZTR+vn Z T T cos(wO0)sin
w=0 m=I \' -l
Mg =R2X E{(W2+V2)ZI7?+wWZ 7T} cos(we>)sin[*y™
n=0 m=I
. Aminx'
Mrg=R2(\-v)X X\nXZ7R+"MAZTT + ~nZTL\P>¢nsm(w<9)cos\
n=1lm=l | L J
(3.32a-f)

3.3.4 Radial Loading Only
In this case, Px=Pe = 0. The total solution for the displacements and the stress

resultants is obtained in a similar way as above:
(BxC2-B XXPM
Ur=Dx
DEN
AXC2-A 2CXYPm
b x{ %)
DEN
(AB2- A 2BXYPitm
X
DEN

(3.33a-c)
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where:

"kn2(A2+n2)- X~ 1tVA2- n2jj
ZRL =
DEN
\kK\ ~ Z 4+ (2-y) A2+ 1~2yn +4+v(A2-n2)
y

ZRT - -n-
DEN

I— (Z2*«2)2

ZRR-
DEN

(3.34a-c)
This yields,
(mnx»”

\Y

: . (mnx»
K=— H ZRTPr sin(/70)sin
D rdnel ” \Vj J

R2
U.= HjnZ_G%mZLRPr_r cos(/70)cos

=— £ £ ZRRPr cos(nO)sin mnx

kD <nH y

Nr=- £ (-viZLR+vnZRT+VZRR)Pr cos(/?O)sinI mnx
k mi C

Ne =- £ (nZRT+ ZRR-VAZRL)Pr_cos(wb»)sin( ]
A*H V Ny

AL =7 1 -) £ £ (AZRT- nZRL)Pr sin(770)cosf™
2k " moOre ” VL J

Mz =R2i i {(i2+vn2)ZRR +vnZRT)}Pmcos(nO)sm may
Mg =R 2r£F0n£q§L(/;2+A2)Z [N +1,Z277?r)}p™ cos(//(9)sin ,
mnx”*

M =7201—) £ £1/7AZRR+—AZRT+-nZRI\pr sin(«#)cos
w6 Y Ry 1 ERIpL sin(®)

(3.35a-i)

3.3.5 Boundary Conditions
The representation of surface loading using the double Fourier series expansion as

described implies certain boundary conditions (cf. Duthie,White & Tooth, Ref [9]).
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Since the origin of the co-ordinate system is taken at one end of the cylinder, as
shown in Figure 3.1a, all the Fourier expansions and their derivatives containing the
term sin (rmvc/L), vanish at the end of the cylinder, i.e.

d—U:O, V:%Z-%':O and W:%ZV\-/
Oox2

dx

This implies that the cylinder is supported in the tangential and radial directions, and

=0 at x=0&x =L

the shell is free to rotate about a tangent to the edge. These are exactly the boundary
conditions prescribed for a hinged support, and are applicable if the shell under
consideration is part of an infinitely long tube stiffened by rigid diaphragms at regular
intervals of length L.  The present treatment is specifically concerned with the
behaviour of a cylinder subjected to loading remote from the ends. Although these
boundary conditions do not precisely describe the condition for all end closure
configurations, they are sufficiently close for most problems encountered in practice.

In the present work, the effect of the end closure is considered in Chapter 8.

If the vessel ends conform to the above boundary conditions, then the Fourier series
expansions form the complete solution of the problem, and no complementary
solution needs to be added to the particular solution, since both the governing
differential equations and the boundary conditions of the problem are satisfied.
However, in practice some deviations from these conditions are likely to occur, yet it

is still possible to use the solution with confidence if the loading is applied some

distance from the vessel ends.

3.4  Simply Supported Cylindrical Shell

The solution of the simply supported cylindrical shell has been presented in the
previous section in Equations (3.26-35). The only unknowns in these equations are
the surface loading terms Pxm Peam and P™,  These terms can be found by
multiplying both sides of Equations (3.21) by suitable orthogonal expressions.
Integrating over the surface of the cylinder eliminates all but one of the terms used in

each Fourier expansion. The following orthogonal identities are used in this process:
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Jf0 sin(mx)sin(/w'x)£3!r = 0 if m*m’

—L2 ifm-m‘orm-m'-0

':sin(mx)cos(lw'x)dx =0 for all values of mand m'

’Lsin(mx) cos(m'x)dx =0 if mAtri

L .
ifm-m'

-2
=L ifm=m'-0
(3.36)
For the case of longitudinal loading, multiplying both side of expressions (3.21) by
cos (n'x) cos (rrinx/LybcdO\ and integrating over the surface of the cylinder, making

use of orthogonality properties, the longitudinal loading coefficients are obtained.

=) | |* B ™ =;U=o
ow
_J-r I p*ooéfml;_wi dxdO (Ww=0,«=12,3,....)
= o f F  cos(n0)dxd& w=0/w=123,...)
ji

J ] cos(nQ) cosf ~'jdxda (mn=123,...)

(3.37)
For the case of tangential loading, multiplying both sides of Equations (3.21) by
cos(n'9) sin (MTwe/L)cbedO and integrating over the surface of the cylinder, the

tangential loading coefficients are obtained:

. mnx .
. sin sin{n0)dxd6
e=zIlrr* L J no)

(3.39)

Similarly, the radial loading coefficients are obtained by multiplying both sides of

Equation (3.21) by cos (n'0) sin (tn'iex/IfdxdG and integrating:
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P.sin MM dxdo (n=0m- 123...)

mnx

Pr cos(w#)sin dxdO (mn=123....)

(3.39)
By obtaining the surface loading coefficients, the displacements and stress resultants

for defined surface loading case, could be obtained using Equations (3.26-35).

The case of a liquid filled shell imparts a hydrostatic load as shown in Figure 3.2

Figure 3.2 Simply supported cylindrical shell partiallyfilled with liquid
The horizontal cylindrical shell is considered to be simply supported at both end and
partially filled with a fluid of specific weight, p. The height of the fluid is shown by
the angle, a, measured from the nadir which is taken as the base generator with <pQ)
It is assumed that the fluid exects a radial pressure which is directly proportional to
the depth at the point of consideration and that is remains constant along the shell
length. The surface load on the cylindrical shell can thus be written as:
Pr =pR(cos0-cosa) (ra<0<a)

(3.40)

The Fourier expansion coefficients for this case are obtained by substituting this

expression into Equation 3.39 and integrating over the surface
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(«=0, m=1,35,.)
(n=1 W=1,35,..)

mn

— A e (sin(«0r)cosa -«cos(«dr)sin a} (h=2406.., Ww=135,.)

mn n(n -1)
(3.41)

In a similar manner, the coefficients for the case of a cylinder subject to a uniform

internal surcharge pressure, p, can be obtained as follows:

(»=0, m=135..)

(3.42)

3.5 Extension to Steady State Thermal Analysis

The previous sections have derived the governing equations for the shell under
loading systems that arise principally from mechanical loading. However, the solution
can be advanced to cover those cases where a steady state thermal load is applied to
the shell. Thermal stress analysis is an essential part of the design of heated vessels,
such as heat exchangers, hot oil storage containers and piping systems. These stresses
arise from differential expansion or mechanical constraint of the system during overall
temperature change. This can occur either by a thermal gradient through the vessel
wall or by a variation of temperature over the vessel surface. The former is generally
small in the case of thin walled vessels, however the latter can result in large
magnitudes of stress when the thermal gradient is severe. Such conditions may arise
from a design requirement of the process or alternatively from a fault condition when

the liquid or gas flow is impeded and a local ‘hot spot’ occurs.

In an earlier treatment of the ‘hot spot’ problem by Wilson¥®2 the governing
equations were effectively, apart from the temperature dependent terms, the Fligge
shell equations.  More recently, BushnellI4l has shown that the Fligge equations
have certain inconsistencies when resolving certain thermal stress problems. For this
reason, the Sanders shell equations are employed throughout this thesis, since they

avoid this problem.
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3.5.1 Modified Governing Equations

The main modifications to the general shell equations arise from additional
temperature terms which cause a rise in the overall stress. From Equations (3.17),
the constitutive relations representing axial, circumferential and shear stress at a

general point Z from the middle surface, with temperature term can be written,

Nz:°(£z+V£e)~Eta%Zl"_v)- Mx = "p(Kz+vKe)

N, =£>(e, +fsz) - Eta Me = + vK,)

(3.43)

These expressions are carried through the analysis in a similar manner to Equations
(3.18-3.20); the only major change is the inclusion of the temperature terms in the

direct stress resultant expressions.

NX =D du yov vwil
6x Rdo R, 1-v)
_ 1OV+ OU+W Eta T
Rd0 dx R 0-v)
M x =DkR2 oOw y daw y daw
Ma=DkR -

(3.44)
This leads to the general equilibrium relations expressed in matrix form as shown in

Equation (3.20).

3.5.2 Fourier Expansion Solution

A particular solution of these equations may be obtained by expressing the
displacements and loading in the form of Equations (3.22). The temperature loading

is also included,
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_ ) (mnx
=Z Z A
U t/mmcos(/;™)cos

\
N
V-Z ZVnmsin(nG)sinfmnX
m-1n= v
W=z ZW nmos(/?é»)sin( mnx
mH ) VL)
mnx

T=2Z ZTnmcos(w”")sin

m=l n=0 _

(3.45a-d)

The choice of this expansion for the temperature indicates that the loading is
symmetric with respect to the generator passing though §9=0. They also imply that
the end constraints have zero temperature at x=0 and L, although the approach can
handle cases when the entire vessel is subject to thermal load. A detailed description
of the boundary conditions required by the above equations is given by Duthie and

Tooth'4l

When the series expansions are substituted into the matrix equation above, a similar

matrix Equation (3.24) is obtained, the only difference being the load coefficients,

dy =ad{1+ 2" Yoy
d2=-a(l +v)anT(m)
d,=-a(\ +v)aT{m
(3.46a-c)
This allows the matrix equation to be solved as Equations (3.25). The displacements

are found initially and then the required stress resultants can be obtained.

3.5.3 Fourier Series Representations of Applied Loading

The only unknowns are therefore the loading terms T/nm). These terms are found by
expressing the loading system in double Fourier series form as detailed in Section 3.4.
the form ofthe equation is similar to that for the radial load and therefore by a similar

procedure, the loading term can be written for all values of m and n as,
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2 1L (mnx C O e
Luvt; 5 Tan L dedO (i=0,jw=123....)

(mnx»

4 Ih ¢ rcos(20)sin dxdo mn=123..)
Ln Jo Jo

(3.47)
These expressions can be utilised once an equation or relationship has been chosen to
fully describe the thermal loading term, T. Substitution into the above and applying
an integration allows the stress resultant equations to be solved to give the mid-
surface displacements and stress resultants.  This approach is of particular value in
dealing with thermal loadings distributed over discrete areas and can deal with

uniformly and non-uniformly distributed loading as shown by Panayotti(&81

3.6  Notes on the Fourier Series

The Fourier series expansion technique has many advantages making it attractive to
be used for the solution of differential equations. One of its merits is that any function
can be expressed in sine and cosine terms, which make it easy to be differentiated and

manipulated.

The main drawback lies in the fact that it is an infinite series and in order to establish
the exact value of the represented function, an infinite or large number of terms
requires to be summated.  However, recent advances in computer facilities have
made this problem of less importance, since the large number of Fourier series terms
can be considered in a relatively short computing time. In practice, most engineering
applications allow for an approximate solution to be acceptable. One further point is
that the Fourier series expansion approach is more easily ported to a computing

platform than alternative solutions, which may involve the use of complex numerical

routines.
3.6.1 Fourier Series Limit and Rate of Convergence

As stated previously an approximate value of a function, represented by a single

Fourier series is obtained by summing up a number of terms of the series. The more
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terms considered, the closer the value obtained is to exact solution. For simple
functions, the so called Fourier Integrals can be used as a limit of a series to give the
value of that function at all points.  Fourier integrals are obtained using sine or
cosine integrals, which are tabulated in numerous handbooks. This is normally true
when the function is simple, but in most engineering applications this may not be the
case. It is thus necessary to rely on the rate of convergence of the series. One of the
properties of the Fourier series is that the contribution of high order terms to the
solution is less than that of lower order terms. The rate of convergence of a series is
the rate at which its coefficients approach zero.  The convergence of the series
depends on several factors, such as the continuity of the function, the number of
terms selected in the series, the rate of change of the function (rapidly changing
functions are slower to converge), and the period of the function (short period

functions converge faster than functions with long periods).

The displacement and stress functions of a cylindrical vessel, which have been derived
earlier in this chapter, are complicated functions. They comprise double Fourier
expansions and contain many parameters, which ultimately makes it difficult to judge
the number of terms required in achieving a sufficiently accurate result. Users of such
solutions should always ensure convergence by performing successive runs and
comparing the rates of convergence for the required target quantity (stress,
displacement result etc.) With modem computers, double Fourier series solutions

with between 200 - 1000 terms in each series can be computed in a reasonable time.
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4  ANALYSIS OF LOCAL LOADS ON CYLINDRICAL SHELLS

4.1 Introduction
During the life of the pressure vessel it is often subjected to a wide variety of loading

conditions, all of which must be considered during design. In many instances the
internal pressure is not the dominant form of loading and special attention has to be
given to other load cases which combined together could cause premature failure of

the vessel.

The local loading of supports and lifting brackets, which are welded to the vessel, is
such a case and although the resulting stresses are generally not excessive, checks
must be made to establish their value. When a radial force or a bending moment is
applied to the attachment, the interface forces between the attachment and the vessel
are, as in the twin saddle problem, rather complicated. Their distribution depends
upon the relative rigidities of the vessel and the attachment. For example, if the
attachment is very rigid compared with the vessel, one would expect the interface
forces to be concentrated round the outer edges of the attachment. A further

complication for the welded attachment is that it is only fixed to the vessel round its

outer edges.

As mentioned earlier in Chapter 2.3, neither the British Standard 5500 nor the
Welding Research Council Bulletin 107 attempt to handle these and other intractable
modelling problems, but when the contact area is relatively small, they assume a
simplified form for the interface force distribution between the vessel and attachment.
For example, when a radial load is applied, the assumption is that the interface
loading is uniformly distributed. A further simplification is that the attachments are
rectangular or square with boundaries that coincide with the parallel circle profile,

associated with the coordinate and the axial generator x, as shown in Figure 4.1.
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b=U2

Figure 4.1 Radial loading on a rectangular patch

This enables the applied load to be expressed as a double Fourier series form by
Pr=YjZ Pmycos(//Q)sin
r= cos sin
MR .

Forms of this type, (Equations 3.21 and 3.22), can be used in the shell equations to

derive the vessel displacements and stress resultants.

In the absence of a more precise analytical method, the local loading of nozzles in
cylindrical vessels can be analysed by assuming the nozzle behaves like a cylindrical
attachment. This can be handled, as in the early versions of WRC Bulletin 107 by
assuming that the circular patch is equivalent to a square patch of side lengths equal
to 1.75 rQ This provides a square patch with a notional area marginally smaller
(2.5%) than that of the circular attachment. A similar approach is given in BS 5500
where a slightly smaller area is assumed by using a value of 1.70 rQfor the equivalent
square patch as shown in Figure 4.2. More recently, a supplement to WRC Bulletin
107, WRC Bulletin 297, has been provided, which enables more adequate modelling
of the nozzle and vessel to be achieved. In this, the nozzle wall thickness can be

included in the derivation of the local load stresses.
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Figure 4.2 Equivalent square patchfor circular loaded regions

While WRC Bulletin 297 handles the case of the nozzle subject to local loads, the
requirement still exists to obtain a more rigorous analysis for the circular patch, which
avoids the ‘equivalent square patch’ approach. The solution given in this chapter
address these problems and provide an analysis which can handle both mechanical and
thermal loading. It can be programmed for a micro computer in a manner described
earlier by the present author*&L As in the earlier studies the assumption that the

interface loading is uniform, for the radial load case, is retained.

The solution for the rectangular patch subject to radial, tangential and longitudinal
shear loads has been previously described. However, the case of moment loading, in
both the tangential and longitudinal directions requires to be addressed. Therefore, in
order to encompass the full variation of loading conditions, the solutions for both

moment loads and a thermal load case are derived.

The extension to the circular and elliptical patch is also developed. Again, the patch is
subjected to radial direct load, to both the tangential and longitudinal moment loads

and also to the thermal patch load case.

4.2 Loading Intensity Representation

In pressure vessel and piping system analysis, the vessel engineer is given the applied
loading as forces and moments resulting from a piping system analysis. The shell must

be capable of withstanding these loads in order to maintain the integrity of the vessel.

77



However, in the present analysis described herein, each loaded area is subject not to
forces and moments directly but rather to a uniform or triangularly varying pressure,
this depending on whether a force or moment is being applied.

In order to represent the correct value of loading pressure intensity acting on the

relevant patch size and shape, the following relationships were obtained.

Radial Load P
For a radial force of value P acting on a patch area, the uniform loading intensity p is

given by:

where, for a rectangular patch of dimensions 2c, and 2c2, the area is Area=4c,c2
and, for an elliptical patch with major and minor axes of dimensions 2aQand 2b0, the

area is Area=nado

A circular patch is a special case of the elliptical patch with radius c=a0=b0. Hence,

for a radial load on a circular patch the area is given by, Area=ncl .

External Moment M on a Rectangular Patch

The loading intensity for an external moment M acting on a rectangular patch can be
found by considering an element of the rectangular patch subject to a load intensity py
at a distance y from the x-x axis as shown below (Figure 4.3). The radial load dP
acting on the elemental strip at this distance is given by:

dP = py(2caly)

From the geometry of the figure, py could be expressed in terms of maximum loading

p as:
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Figure 4.3 External moment on a rectangular patch

The moment dM acting on the elemental area about the x-x axis is:

dM =dP xy

=P —(?caly)y

C\

And therefore, for the whole rectangular area,

M = rJ y &y
=~pc ,2(:2
or
3M
g xArea
where,
Area = 40Q2

79



External Moment M on an Elliptical Patch
Considering the elemental strip of area 2xdy subject to a load of intensity py as shown

in Figure (4.4), the load intensity can be expressed as:

py=p Y-

ao

Figure 4.4 External moment on an elliptical patch
By a similar procedure as shown previously for the rectangular case, the total moment

for the whole elliptical area is given by:

M =

The general elliptical equation, (x/bo)2+ (y /a0)2-1 can be rewritten in terms of x as:
\
(y
§f U

The total moment then becomes,
dy

By substituting”™ = a0sin 9 and dy = a0cos 6 and integrating yields,
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4M
a0 xArea

for a circumferential moment and

4M
bQxArea

for a longitudinal moment

where
Area = nat0

Similar explicit expressions may be derived for a circular patch using the above

relations for the elliptical patch by using the radius c=a0 =ba

4.3  Square and Rectangular Patches

The solution for the rectangular patch was derived by the present author as part of his
Master's thesis 154l this being programmed into a suitable microcomputer. The
solution for the square patch is obviously a special case of the more general
rectangular solution and therefore only the more general case is detailed here. It is
worth noting that although the following figures show the load to be located at the

vessel midpoint, the analysis is valid for a general location x=b.

4.3.1 Radial Loading
On considering a uniformly distributed radial loading of value, P, acting on a
rectangular patch located symmetrically about the generator (4= 0, and at a distance b

from one end ofthe vessel, then the radial load can be described as,

p in the region-/?, <9</?, and (¢-c2)<x<(b+c2)

0 otherwise
4.2)
where J3\=ci/a. Using Equations 3.39 and noting the new integration limits (b-c2) to

(b+c2 and 0 to /?i, the loading expressions can be stated as follows:
2 o [ Iprsin mrx dxdO

P S ln bG b
4pB., . mnb . mnc
=P Msin------ Sin------- (n=0, m=123, )
mn L L
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dxda

=ttC r i;cos<''e)si" (”y"

_ 8p . mnb_. mjc, .. .. ey

=—"sin - sin------ Asinifif?,)  (m,n=\2,3............ )
wnn L

(4.2a,b)

When C/=C2then the rectangular patch solution becomes that of the square patch.

4.3.2 Moment Loading
Two cases are envisaged, namely longitudinal and circumferential moment loading.

The loads are assumed to be idealised as radial loading of a triangular pressure

distribution.
For the ‘longitudinal moment’ on a rectangular patch, consider a moment, M,

uniformly distributed along a short length in the circumferential direction acting on

the rectangular patch.

Figure 4.5 Longitudinal moment on a rectangular Patch

The external moment is applied by radial loads proportional to the distance from

x=b=L/2, represented by:
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pX in the region - /?, <></3X and —€2< x'< ¢c2
d

0 otherwise

(4.3)

where x'=x-L/2 ; p\=ci/a and p is the maximum load intensity of the radial loads. The
radial load may be represented as an odd function ofx" with period L=2b. Hence,

(O] 2mine
= cos(,/0)sin i

m=In=0 ™ \Y% L

Expanding the last term of the above equation, substituting x’=x -L/2 gives,

sin(/z—mzll\J =(-1 sini/?r?_m

Incorporating the (-I)mterm into the expansion for Pr allows the following to be

written,
o * (2mm\
r= £ £ /N COS(W<9) Si —
" D Weorsin = ¢

The load coefficient Pr is evaluated as before. The new integration limits and load

terms are incorporated, to give,

b b AL Y e®

Lth.J(r) jo S*% L

|Sin(2mJK-_,\ 2mnc¢2_Co 2.mnc2 («=0/w=1.2.3.
m n nc2 V VL) L V L

i 1
8 P L P os(no)sin(rr-\dx'dd
Ln
2pL (Sin(ZmncP\ 2Mmm, ;o 2mtic sin(w/?,){m,n=1,2,3,

N L VT V L
(4.4«,/»)
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For the ‘circumferential moment’ on a rectangular patch, consider a moment, M,
uniformly distributed along a short length in the longitudinal direction acting on the
rectangular patch. The external moment is applied by radial loads of maximum

intensity p which do not vary with x represented by:

P in the region- /7, <¥</?, and (b-c2)<x<(b +c2)
fit

0 otherwise

where J3\=Ci/a.

Figure 4.6 Circumferential moment on a rectangularpatch
The loading can be expressed by the following Fourier expansion,

Pr= " s'm’(//"')sin(——
m=1n-0 V L vy

This expression is similar to equation 3.39 and by introducing the loading and limits,
we find,

P = @ f'— sin(/Msin' " ""$(J>d(f>
|

Jb-c2 JO L.
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8 Gin™ sin(/2/2.)-/2, coswr?))sin L ™
mnin B x v

(mn 123... )

4.4  Circular and Elliptical Patches

Circular and elliptical patches represent the contact area of a number of local loading
connections. For example, when vessel legs are attached to the cylindrical shell, they
are often located at some angle to the surface normal, thus defining an elliptical
contact area. In addition, the true circular and elliptical patch solution can be used in
place of the approximate equivalent square or rectangle approach suggested by the
codes and standards.

In the present work, the solutions for circular and elliptical patches subject to radial

loads and longitudinal and circumferential moments are outlined.

4.4.1 Radial Loading

Circular Patch
For the case of a uniformly distributed radial load acting over a circular patch,

consider the loaded area to be located at some distance b from one end of the vessel.
Because of symmetry about <=0, the function PTrepresents the pressure acting over

the whole ‘half surface’ ofthe cylinder as shown in Figure 4.7
b=U2

Figure 4.7 Radial load acting on circular patch



Outside the boundary, the loading is zero ie. Pr= 0; inside the boundary, however the

load intensity Pr = P.

The boundary is the variation of x with $acting around the loaded area perimeter as

is defined by:

p in the region-ft <&<(3 and (b-c )<x<(b+c¢)

P =
0 otherwise
@.7)
and
A(0j) =b - y/c2- a2sin2$¢
A<>2)=b+jc 2- azsin2®
(4.8a,0)
where: 0 <<f>< {3

The loaded area is divided into a number of axial strips, the length of which are
obtained from A<f) and A(fc) as shown in Figure 4.7. Therefore, substituting these

limits into Equation (4.7), yields,

= 2 %MM fp Psin dooke>

Jau) JO \ L 7
=-Mrsin™MN [P sin(— yjc2- a2sin2<ed> («=0,/w=1,2,3,....)
mn’l T JO 1

* N
4 e Pcos(w’\)sin(nua_ dxdif)
Ln 'A*) VL

=-"NT7sin II\_A f9 cos(n<f>)sm£’\-ylc2- a 2sin2$d> (mn=1.23,....)

mn2

(4.9a,A)
The above expression only requires a simple one dimensional numerical integration
for each P,,m This may be done using Simpson's Rule or Filon's Method. The example

detailed later is based on the former method which, for the illustrated case, was both
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easier to use and as accurate as Filon's Method. In order to reduce the integration

time, especially with regard to mounting the routine onto microcomputers, the half

angle f) can be assumed small so that sin<f=<f>.

Elliptical Patch
The analysis of the elliptical patch is used for the cases of oblique nozzles and

elliptical patches. The method derived above for the circular patch is extended to

derive the loading terms for a radial load acting on an elliptical patch by redefining

Equations (4.8a,b) and integrating.

b=U2

Figure 4.8 Radial Load acting on an Elliptical Patch

By considering a uniformly distributed radial load of intensity p, acting on an elliptical

patch located symmetrically about the generator <0, and at a distance h from one

end of the vessel, then,

p inthe region- <¢</r, and (h-ho)< x< (b+ b0)

0 otherwise

(4.10)

where pi = a»a
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The boundary is the variation of x with $acting around the loaded area perimeter as
is defined by:
_ bn .
B<)= b—"-Ja] - a2sin2$

ao

B<>2) =b+—Jal - alsin2$ (4.11a,0)
an

where.  0<<f></M\

As in the case of the circular patch, the loaded area is divided into a number of axial
strips, the length of which are obtained from B<f*\) and B(<fa) as shown in Figure 4.8.
Therefore, substituting these limits into Equation (4.11), yields,

JB(h) JE- I L J j
sin P" sin® ylal - als\n23&E> (w=0,/w=1,2,3,......
mn
N\
—— P Peos(«sin {™ o
Ln Db v Lj

- —sin~AMP cos(m/>)sinTnR’-Jal-a25in2<t>o(|) (mn=1,23,.......)
mn L Db apL

(A.ua,b)

4.4.2 Moment Loading

As stated previously for the rectangular patch, there are two loading cases that
require analysis, namely longitudinal and circumferential moment loading.

The moment loading cases have been derived for a rectangular patch earlier and the
moment loading is assumed to be equivalent to a radial loading with a triangular

pressure distribution. This assumption assumes that the attachment has the same

degree of flexibility, as the vessel.
Circumferential Moment - Circular Area

For the case o f‘circumferential moment’ loading M, uniformly distributed along a

short distance in the longitudinal direction, acting over a circular area, the loading
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can be represented by a triangularly distributed radial load of maximum intensity p.

For this case the loading can be expressed using the following expression.

in the region - /?, <9< /?, and (b- c2)<x<{b+c2)

0 otherwise

(4.13)

where fii=c/a.

ZZMTIIrd

Figure 4.9 Circumferential moment load acting on a circular patch
The variation of x with respect to ¢is defined by Equation (4.7). Substituting the
limits defined by these and the loading as defined above into Equation (4.9) (the first
expansion for this from the rectangular patch) and integrating gives,
. 3 N
or = 4 0 £ 2D Gnimysin® M g
ft

8p s'inm—nbiF <f>sin(n<t>)sm(™~Jc2-a 2sin2<$e> (Mm,«=1,23,....)
mn /?, L b L v

(4.14a,b)
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Circumferential Moment - Elliptical Area

For the elliptical patch, subjected to the same circumferential moment loading,
using the same assumptions as for the circular patch, the loading term can be

expressed as:

1
— in the region-//,< {</r, and (b-b0)<x<(b +b0)
A

0 otherwise

(4.15)
where p\=a(/a. The variation of x with respect to <>is defined by Equation (4.9)
Substituting the limits defined by these and the loading as defined above into the first

expansion for this from the rectangular patch and integrating gives,

=J _p, » £7sinW)sih(l
F~ J { LJ

8p i IR M _
sin -a 2s\n2@e(/n,w=1,2,3,....
mn L Db arL )

(4.16a,b)

Figure 4.10 Circumferential moment load acting on an elliptical patch
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Longitudinal Moment - Circular Area
For the case of ‘longitudinal moment’ loading M, uniformly distributed along a

short distance in the longitudinal direction, acting over a circular area, the loading
can be represented by a triangularly distributed radial load of maximum intensity p.

For this case the loading can be expressed using the following expression.

i the region - /? <tf><(5 and - c<x'<c
c (4.17)

0 otherwise

where x'=x=L/2; P\-c/a andp isthe maximum load intensity.

Figure 4.11 Longitudinal moment load acting on a circular patch

By following a similar procedure as before as noting the limits defined earlier, the

following expressions for the Fourier load terms are obtained,

t 2 PG 2mwi)chtde
c . L)

Ln>» *%»

(n=0,/w=1,2,3,....)
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= i6 N s(»i>)sin

— ” A iN(ANAN _ H
MK c 1) 50 cos(/; )(sm(/ LIJCZ az2sin2 3

VA2~ 2sin2¢c 0 s N NJ2- a2sin2 (ww=1,2,3,...... )
(4.18a,6)

Longitudinal Moment - Elliptical Area
For the case of longitudinal moment loading M, uniformly distributed along a short
distance in the longitudinal direction, acting over an elliptical area, the loading can

be represented by a triangularly distributed radial load of maximum intensity p. It is

assumed that the radial loads are proportional to the distance from x=b=L/2. For

this case the loading can be expressed using the following expression.

IOX-in the region - px<<j><px and (b-b0)<x'<(b +b0)
K

0 otherwise

(4.19)

where x'=x-U2; p\=a</a and p is the maximum load intensity.

Figure 4.12 Longitudinal moment load acting on an elliptical patch
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By following a similar procedure as before as noting the limits defined earlier, the

following expressions for the Fourier load terms are obtained,

4 My px'm,"meax)dx,d<f>
Ln o | L )
pL . . .
~(-ir/(sinr2m” -y]al - a2sin24$
mIx ib( o &L
|_2_r_rg{_b0J 26 a%sh qmos%mz(-t-’o *e, —&in’ 9 o (n=0,/w=1,23,....
V «

= = r I) /E)OCOSAanLfAJW

(-Dmr cos(/?’\)(sini—/ a02- a 2sin2”

"W AR
2y 4 3 T famdm | 2 2 M
0 -a sin ~coSs -------- ya& ~a sin 9 P
\ aoL Vv aoL
(/w,«=1,2,3,...... )

(4.20a,A)

4.5 Accuracy of Solution

The inherent problem with any numerical solution is that of accuracy, and in this type
of solution there are two distinct sources of error present. The first is in the
summation of each of the components for the displacements and stress resultants and
the second appears in the numerical integration routine. It is important to note that
the numerical integration routine is evaluated for every term of the Pnmsummation. It
is therefore of critical importance that the number of strips increases in proportion to
the particular harmonic being evaluated. This is handled by means of including an
algorithm to step up the number of strips in accordance with both the loaded patch
size and the maximum harmonic order. The harmonic operates in the region 0<<)<7i,
and the half patch angle is given as /2. Since the loading function is of a cosine form
and represents, in this case, a symmetrically loaded area, the minimum number of

strips for a given harmonic can be obtained from the ratio of half patch angle to half
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wave length. This is then modified in a suitable form for incorporation into the

Simpson's Rule numerical integration routine.
\
N -INT M+l (xq)+1
\ K J

(4.21)
The above equation shows the minimum number of strips, Nmm to be 5 for the first
harmonic with a small patch size. As the patch size or harmonic order rises, the
number of strips increases proportionally (ie. «=2,3,4,.. %i,,=9,13,17,..) thereby

maintaining sufficient accuracy.

A detailed description of the significance of varying the number of terms for the

Fourier Series summations is given by Duthie and Tooth™

4.6  Some lllustrative Examples

Example 1 - Radial Load on a Circular Area

The first example is of a direct radial load applied to a 300mm dia. circular pad
attached at the mid-point of a 2m diameter, 10mm thick, 10m long cylindrical steel
vessel (E=200,000 N/mm2 v= 0.3). A value of 10,000N is applied to the pad and the
displacements and stress resultants calculated.

The results shown in Figures 4.13a,b describe the variation of the component stress
resultants around the profile x=L12. The graphs shown in Figures 4.13c,d show the
variation along the length of a generator located from the centre of the patch. The
results presented also include the ‘equivalent’ square patch values as obtained from a
Fourier series representation of the BS5500 patch (¢c=0.85r0) and the ASME VIII
patch (c=0.875/0).

A finite element solution is also included, modelling the above geometry using 80
ANSYS SHELL61 axisymmetric harmonic conical shell elements. The direct radial
loading is again expressed as a Fourier expansion with 100 summations allowing non-

axisymmetric loads to be represented.
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Direct Stress Resultants Around Profile at X=L/2

-¢-ASME Vili Nx
-«-ASME Vili N>
-»-BS5500 Nx -
-K-BS®OON,), —
-*. Circ Patch Nx

-+ - Circ Patch N9

—* FE Nx

Angle (degrees)

Figure 4.13a Direct stress resultantsfor radial load on circular patch example
aroundprofile atx=L/2

Moment Stress Resultants Around Profile (X=L/2)

ASME VIII Mx
ASME VIII My
BS5500 Mx
BS5500 M(j)
Circ Patch Mx
Clrc Patch

FE Mx

FE M>

%W NmTITP

Angle (degrees)

Figure 4.13b Moment stress resultantsfor radial load on circularpatch example
around profile at x=1V2
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Figure 4.13c Direct stress resultantsfor radial load on circular patch example
along generator at <0

Figure 4.13d Moment stress resultantsfor radial load on circular patch example
along generator at <=0

From these graphs (Figures 4.13a-d), it can be seen that for the direct stress

resultants, Nxand N+ the circular patch solution yields results some 1-4% higher than
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those values obtained from the other sources. For the case of moment stress
resultants, the results from the circular patch were between 1-2% higher with the
exception of M™ where BS5500 proved higher, this, of course, depending on which
direction the results profile was taken.

However, differences in the displacements for the various approaches were found

negligible for the particular example chosen.

Example 2 - Radial and Moment Loads on a Circular Area

The second example, first published experimentally by Shoessow and Kooistra¥s was
chosen as a second comparison for the ‘circular patch’ solution. The experimental
vessel used by Shoessow and Koositra has the following dimensions in Imperial units:
Mean radius R=28 in., length ;=71 in., wall thickness t=1.3 in., outer diameter of
attachment pipe #=11.75 in., length of pipe L0O=90 in. with material property values
E=3x107Ib/in2and Poisson's ratio, v = 0.3.

This vessel was subjected to three separate load cases: a radial load, ¢*=94,900 lIbs, a
circumferential moment, M=410,000 in-lIbs and a longitudinal moment, ML=A10,000
in-Ibs. Results from several different methods of analysis are also tabulated along with

those from experimental tests. These comprise the following methods.

Bijlaard's Method: assumes the pipe cross section to be an equivalent square. In this
case, the pipe outer radius, ¢=5.875in. was used to evaluate the parameters from

Bijlaard's curves. The equivalent square halfpatch length is 0.875¢=5.1406in.

WRC Bulletin 107 Method: Since this is an extended representation of the Bijlaard

method it also uses the pipe outer radius, M=5.875in. and an equivalent square half

patch length is 0.875r0=5.1406in.

BS 5500 Appendix G: In this case, the mean radius of the pipe, rn¥5.4375in. is used

to find an equivalent square with sides of half length equal to 0.85rn¥4.622in.
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Finite Element Method: Runs were performed using the ANSYS finite element
program using a quarter symmetric model using 8-noded shell elements. The load is
applied as a pressure acting over a circular area based on the pipe mean radius,
¢=5.4375in. The results for the moment loading are not presented here but could be
obtained using the ANSYS harmonic element with non-axisymmetric loading

capability.

Fourier Series Solutions: In each of the cases, ‘FORTRAN’ programs using the
solutions described herein, were used with 100 terms in each series with 10
integration steps within each summation. These results are based on the mean radius
of patch, ¢=5.4375in. ‘RECTAN’ shows the results for a square BS patch using the
Fourier solution, whilst ‘CIRCLE’ refers to the present circular/elliptical patch

solution.

Table 4.1 Comparison of alternative methods of analysisfor radial loading (P)for
circularpatch

MJIJMoc MJIMao -Nt/(Mc/Rc) - Nx/(Me/Rc) ¢ (psiy cr. (psi)

Shoessow &
Kooistra - - - - -31000 -24000
(experiments)
Bijlaard 0.079 0.051 2.356 2.688 -32610 -24200
WRC 107 0.093 0.061 2.654 3.432 -38321 -29635
BS 5500 0.094 0.062 2.959 2.815 -39285 -28195
FE Analysis : - . : 36677 -35088
RECTAN 0.090 0.065 2.991 2.948 -38250 -29525
CIRCLE 0.088 0.064 3.353 2.924 -38474 -29329

Table 4.2. Comparison of alternative methods of analysis for circumferential
loading (MJfor circular patch

MIMa MJIMc -Nf/(MctRc) -NxI{McIRC) . (psiy OX (psi)

Shoessow & ~25000 + -16000+

27000 ++ 23500 ++

Kooistra - -
(experiments)

Bijlaard 0.081 0.042 0.832 1.482 -23280 -14220

WRC 107 0.094 0.040 0.866 1.092 -26995 -13021

BS 5500 0.112 0.056 0.929 1.038 -31970 -17266

RECTAN 0.109 0.060 0.765 1.393 -30675 -18933

CIRCLE 0.102 0.067 0.998 1.560 -29294 -21065
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Table 4.3. Comparison of alternative methods of analysisfor longitudinal moment

loading (Mi) for circular patch.’
M,/Moc Mx/Moc -N4/(MC/Rc) -NJItMJIRc) o4 (psi) crx (psi)

Shoessow & -13500+ -16500+
Kooistra - - - - -13000~  -160007

(experiments)
Bijlaard 0.039 0.048 2.592 1.482 -13910  -14620
WRC 107 0.040 0.066 2.592 1.092 -16141 -19282
BS 5500 0.061 0.065 1.787 1.038 -20194 -19569
RECTAN 0.049 0.074 2.753 1.393 -18781 -21578
CIRCLE 0.056 0.068 2.871 1.560 20977 -20147

* Maximum value of outer surface stress.
» +H Denote the stress calculated at the top and inverted positions respectively

from test data.
For the radial load case, it can be seen from Table 4.1 that the codes methods and the

results from the new solution (CIRCLE) are in good agreement but the analytical
solutions are higher than the experimentally measured results. This is probably due to
the unclear exact position of the gauges on an edge, compared with the maximum
location, which is at the centre of the patch, for the analytical methods. The moment
load cases show better agreement, since the analytical methods evaluate the maximum
at the edge ofthe loaded area. Again, the new solution provides results slightly higher
than the experimental values. Thus, the new method can be stated to be conservative

in design.

Example 3 - Radial and Moment Loads on an Elliptical Area

The general solution for the elliptical patch enables the problem of an attached pipe or
nozzle, which has its axis inclined to the main vessel centrelines and generators, to be
analysed. Since no available data exists for direct comparison for the elliptical patch
case, a typical vessel has been analysed and graphs have been provided Figures 4.14-
4.16. These show the variation of the maximum stress values for a range of ratios of
the major and minor axes of the ellipse.

For this case, the vessel parameters are as follows: mean vessel radius R=1000mm;

thickness of wvessel /=10mm; length of wvessel Z,=8000mm; elastic modulus

£=200,000N/mm2; Poisson's ratio v=0.3.
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The patch size ratio ajba(i.e. circumferential/axial half lengths) has been varied from
0.643 to 1.556. When ajb0> 1 the computed values of stress correspond to a 150
mm outer diameter pipe inclined in the circumferential direction. The maximum ratio
of ao/b0 = 1.556 corresponds to an oblique angle of approximately 50° from the
normal. This value is equal to the maximum recommended oblique angle for a nozzle
in BS 5500. When ajbo < 1the values correspond to the same diameter pipe, but this
time inclined in the axial direction. The minimum ratio ofaJbQ= 0.644 again is equal

to a maximum oblique angle of 50°.

The stresses have been derived for the three load systems; radial load, circumferential
moment and longitudinal moment for the range of ajbo values quoted. The same
magnitude of load was applied to each elliptical patch in turn. In each case the load

was applied at the vessel centre b-L/2. The values ofthese were as follows:

Total radial load, P =10,000 N
Circumferential moment, Mc = 1,000,000 Nmm
Axial moment, M1 = 1,000,000 Nmm

The maximum values of stress have been computed for these three load cases using
the following approaches:

(a) The analysis presented in this chapter for the elliptical patch, representing the load

as indicated, by a double Fourier series technique;

(b) Assuming the ellipse is equivalent to a rectangle of side 0.84x the major and
minor axes of the ellipse (this ratio is proposed by BS 5500 for this case). It is
identified as ‘Equiv. Rect.” Using the equivalent rectangle, the radial loading is
assumed to be distributed uniformly over the patch and the moment loading is
assumed to produce a triangular distribution of radial loads. The double Fourier series
is again used,;

(c) Using the same equivalent rectangle and the BS 5500 Charts. In this the radial
loading is assumed to be uniformly distributed and the moment loading to be

equivalent to two equal & opposite radial load patches. This is shown as ‘BS 5500’
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Radial loading (10.000N)

Figure 4.14 Maximum stress variationfor elliptical patch subject to radial load

Circumferential moment (1,000,000Nmm)

Figure 4.15 Maximum stress variation for elliptical patch subject to
circumferential moment



Longitudinal moment (1,000,000Nmm)

Figure 4.16 Maximum stress variationfor elliptical patch subject to
longitudinal moment

Figures (4.14-16) show the variation of the maximum stress in the vessel for the three
load cases with varying aQbO0 ratios for the three different analyses. It is noted that,
from the graphs presented herein, that the equivalent rectangle and the BS 5500
methods produce higher stresses that the more exact ‘elliptical’ solution. They are
therefore conservative and, in general, are acceptable for most design assessments. In
certain cases, however, it may be necessary to obtain a more realistic value of stress

in, for example, a fatigue assessment. The present solution offers such an approach.

4.7 Thermal Loading on Cylindrical Shells

The derived solution in Section 3 of the general shell equations may be used to solve
a variety of steady state thermally loaded problems, provided a suitable Fourier
expansion can be found to describe the temperature profile desired. As a means of
illustration of how the Fourier series approach may be used, two examples are
described in detail. The first is a rather hypothetical case where one half of the vessel
IS maintained at temperature 7), with the other half at temperature 7?. The second

case is the more realistic one ofa *hot-spot’ acting at a certain cylinder location.
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4.7.1 Uniform Temperature Loading over Discrete Areas of A Cylinder
For this case, the left hand of the cylinder is maintained at a temperature of 300°C

while the other halfis at 0°C. At the centre of the cylinder there is assumed to be a
rapid change of temperature from 300°C to 0°C shown in Figure 4.17. While it is
appreciated that a change of temperature of this type is impossible in practice,
because of the heat transfer process, it does provide a severe case for the Fourier

series solution.

Temp=300°C Temp=0°C

Figure 4.17 Partially heated cylinder

Furthermore, it is possible to obtain another solution to this hypothetical case using
the edge bending equations from classical shell theory. In this, the two halves of the
cylinder are allowed to expand freely. The displacements and slopes at x=L/2 are then
matched by the application of self-equilibrating forces - in this case, a radial line load

around the cylinder at x=L/2.

The temperature term, T, representing this profile is given by:
T = to, (0<$<2), (0<x<U2)

= 0, otherwise
(4.22)

To compare the two approaches, a steel cylinder of length 4000mm and 1500mm

diameter with 10mm wall thickness is considered. The temperature in the region 0 < X

< 2000 is at 300°C whilst the remainder of the cylinder is at 0°C.

The following table shows the comparison of the two solutions, the figures in

parenthesis being obtained from the Fourier solution using 500 terms in each series.
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W Mx N*

(mm) (mm) (Nmm/mm) (Nmm/mm) (N/mm)
0 1.350 0000 0000 3456

(1.350) (-0.039) (-0.012) (4.40)

2 1.390 301.3 90.40 3353

(1.390) (294.1) (82.22) (1564)

6 1.470 850.9 255.3 3149

(1.470) (851.1) (255.3) (3524)

10 1.549 1333 400.0 2947

(1.549) (1337) (401.1) (3392)

20 1.741 2273 682.0 2456
(1.741) (2273) (681.8) (2423)

60 2.352 3337 1001 892.2
(2.352) (3337) (1001) (896.1)

100 1 2.674 2362 708.5 67.71
U (2.674) (2362) (708.5) (66.29)

Table 4.4. Classical infinite heated cylinder and Fourier expansion comparison

*In this case, x is measured from the centreline atthe heatjunction

The comparison is excellent for all values with the exception of N+ close to the
hot/cold junction. The reason for this is that at this junction, the temperature as
predicted by the Fourier series solution is part way between 300°C and 0°C. The N+
values reflects this and shows a reduction very close to the junction in readiness to the
compressive value in the cold section. The classical result goes from -3456N/mm to
+3456N/mm in zero length. However because of the nature of the Fourier series
solution, it does take some finite length for the approximation to map the step change.

For real temperature distributions, it is felt that the Fourier analysis would cope quite

adequately.

4.7.2 The‘Hot-Spot’
The case of the localised ‘hot-spot’ provides a more realistic test of the Fourier series

method. The hot spot may take the form of some predetermined shape which will
represent the actual steady-state condition. In this particular problem, the temperature
function will take the form of a ‘bell-shaped’ temperature profile acting over a
rectangular (or square) section at the cylinder profile x-b and at the zenith <=7 of the
vessel as shown in Figure 4.18. This function, first proposed by Wilson®, has a

variation in both the axial and circumferential directions. It is restricted to the
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rectangular patch for this case, that is (n-fi) < $< (n+JJ), (b-c) < x < (b+c) and can

be represented in this region by the following function,

= 0 otherwise
4.23)
Such a distribution may arise, for example, from a flow restriction within a vessel, or

from loss of insulation. It is expressed in Fourier series form and then incorporated

into the solution.

Figure 4.18 Bell shaped temperature distribution over hot-spot

As an illustrative example, the bell-shaped hot spot was applied to the steel cylinder
with dimensions as per Section 4.7.1. The hot spot was applied over a square patch
300x300 mm centred about the vessel profile (x=L/2) and the zenith ($=A) with a
maximum temperature, td=150°C. The radial displacements w, and the stress

resultants and stresses were obtained for this thermal loading.
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Figure 4.19b Axial stresses in heated zone

These results were compared with those obtained from the ANSYS finite element
program. One quarter of the shell was modelled using quadrilateral shell elements
with both membrane and bending capabilities. Three different models were used and

detailed below.

Model Element Elementsin Total Total Maximum Max. Axial
Type  Heated Zone Elements Nodes Displacement ~ Stress N/mm2
1 4-noded 9x9 586 567 1.04502 mm -261.958
8-noded 9x9 586 1801 1.04536 mm -262.816
3 8-noded 24x24 855 969 1.04841 mm -264.092
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These analyses were performed by the present author in the latter part of 1986 using a
DEC Vax 11/750. The cpu times for each of the runs were lhrlOmins, 7hrs50mins
and 6hrs20mins respectively. In todays terms, each solution could be completed in a
matter of minutes. The most interesting comparison results from comparison of the
timings between the FE and the Fourier solution. With the FE model, the whole shell
has to be considered and a complete displacement and stress pattern is obtained. In
the case of the Fourier series solution, if maximum stress regions can be identified,
then it is only necessary to derive stresses and displacements at these points. The
solution time for the Fourier series is only a fraction of the time required for a full FE
solution - 13 seconds per point compared with a total of 6hrs20mins. Obviously as
the power of the computer increases these differentials will reduce, however, the

Fourier series will always be the more efficient if the location of the maximum is

already known.

4.8 Finite Element Modelling

The use of the finite element techinique is fairly widespread in the design of pressure
vessels. It is primarily used to examine local loads acting through rigid attachments
and piping connections. In each of these, three mutually perpendicular forces and
three mutually perpendicuar moments may act simultaneously to transmit the local
load into the shell structure. The finite element method is used to model both the
geometry, which is discretised into elements and thereafter to apply the loading into
the structure. The problem is then solved in terms of stiffness and then the solution is

evaluated to give displacements, strains and, lastly, stresses.

The finite element techinique is of use since it allows the exact geometry to be
modelled. This feature of the process makes use of sophisticated modelling
commands which are now available in most modem systems. These include features
such as arcing, dragging, calculation of exact intersections of lines and planes and

volumes, component sweeping, extrusion and so on. By suitable application of these
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utilities within the system, it is possible to produce a realistic model for most pressure

vessel problems.

After the geometry has been established, the main shapes are discretized to provide
the finite element mesh. Experience is required when deciding on the level of
refinement to use in a particular situation. Often, it is helpful to have an indication of
the expected stress system, so that a sufficient number of elements are concentrated in
the required area of interest. If specific stress concentations are to be examined, the
number of elements may be high (say greater than 10,000), however, a large number
of pressure vessel problems can be reduced to a simpler model using the physical

properties of the system, e g. symmetry, axisymmetry and so on.

With regard to modelling local loading problems, such as the patch-type loading on
cylindrical shells, these may be simulated using several different finite element

techniques, each making use of a specific physical property ofthe system.

4.8.1 Modelling using 2D Axisyinmetric Shells

This class of problem models the vessel as a series of connected line segments and
assumes the geometry is a solid of revolution. This type of analysis is most commonly
used to examine shell/head discontinuity problems under internal pressure. The main
restrictions are that no account can be taken of the geometry of openings or
attachments that are non-axisymmetric. In addition, the thickness of each shell is
constant, therefore, it is difficult to look at localised stresses, arising from say, weld
build up. In addition, the thickness of the shell must be small in relation to its radius

(say RJt> 10), to satisfy the assumptions inherent in shell analysis.

A facility exists in most modem codes to allow the input of non-axisymetric loads
which can be fitted with a Fourier-type series. In this, a sine or cosine series is used to

model the loading and using the harmonic postprocessor, the resulting stresses can be
found at specific locations by sweeping around the shell at chosen discrete angles (say

every 5°). Whilst this type of analysis has certain restrictions, it can be of use in
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initially examining a problem before expending considerable effort in a much more

complex analysis.

4.8.2 Modelling using 3D Shells

The use of 3D isoparametric shell elements allows the analyst to model the problem in
three dimensions. This type of analysis is the most common for pressure vessel
problems. The main restrictions are similar to those of the axisymmetric shell elements
and include the RJt ratio, limited to greater than 10, element shape limitations on
aspect ratio and skew angle, limitations on connected element wall thickness, since
only a centreline approach is used. A linear stress distribution is implied through the
thickness of the shell. Since only the midsurface of the shell need be modelled, results
are output on a surface basis. Results are available for the top, middle or bottom
surface and this must be defined prior to outputting numerical values or contour
plots. However, care must be taken in establishing which surface is top or bottom

especially when stress intensity values are requested.

Even with the above restrictions, the major advantage of this type of analysis is that a
truly three dimensional loading may be applied directly to the model. In addition,
graphical contour plots are available on each of the three surfaces which can be

directly viewed to give a “full-field’ description of the stress distribution.

4.8.3 Modelling using 3D Bricks

The three dimensional brick model is used only when the three dimensional shell
model proves inadequate. These situations arise when changes in wall thickness occur
and through thickness effects are being investigated. Examples of these analyses are,
nozzle/shell intersections with and without pads, areas of weld build-up, thick plate to
thin shell attachments, and so on. Using 3D brick elements demands that the
geometry be described in terms of volumes, therefore the modelling time associated
with this type of analysis is considerably greater. However, this method is the only

available techinque for obtaining non-linear through thicknesses effects since it

discretises the vessel thickness explicitly.
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In addition, a major point of concern is the process whereby stress obtained from a
3D brick model are ‘linearised’ in order to obtain membrane and bending stresses
which can be assessed against the requirements of pressure vessel codes such as
BS5500 and ASME VIII Division 2. Prior to the advent of FEA, it was usually
possible, with simple mechanics or shell discontinuity analysis, to separate primary
and secondary stress, in the light of the fundamental failure mechanisms which the
code addresses, since the equilibrium calculations were done manually. This is not
obvious with finite element results, and in particular with the results of using

continuum elements.

Figure 4.20 Stress linearisation through a 3D vessel wall

The linearisation procedure is based on beam bending stress and attempts to define an
equivalent linear stress distribution on a classification line (CL); thus if z measures
distance along the CL then the equivalent linearised stress is,

alL=az+b

where the coefficients a and b are determined from the calculated finite element
stresses. This can be accomplished from the conditions that the total bending moment
for the actual and linearised bending stresses must be the same, and that the total

direct force from the linearised stress should be zero. The membrane stress is
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calculated as the average stress through the wall and the bending stress is found by
evaluating the linearised stress at the inner and outer surfaces and subtracting the
membrane. The peak stress is obtained from,

op O mOmi (7
However, there is much debate regarding which stresses (or stress intensities) should
be linearised and which classification line (or plane) should be used, and indeed, what
should be done with the resulting linearised stresses. Therefore, these additional

difficulties compound the analysis of local load problems using 3D brick elements.

4.8.4 Modelling Local Load Problems

When modelling local load problems, is is imperative that the geometry be as accurate
as possible. In addition, since the stress distributions die out fairly rapidly, (within
ijrt to 3y[Rt). It is thus essential that a high number of elements be concentrated

around the local load region.

If the load is to be input via a nozzle, the nozzle intersection geometry may be
modelled explicitly and the load applied at some known point away from the
discontinuity. For example, a radial load on the nozzle may be applied at a distance
from the intersection. At this point, the loads have often been obtained from a
separate piping system analysis where the nozzle has bee treated as an anchor.
Therefore, when considering the stresses in the shell, the loads are applied at a known
point at the centre of the nozzle axis. By employing multi-point constraints (i.e.
treating the applied load point as rigid), the nozzle is thus forced to transfer the load

into the shell. In this manner, the correct nozzle flexibility is introduced.

If the load is input via an attachment and pad, the correct method of analysis is to
model both the attachment and pad and use contact elements to introduce the
appropriate interface pressures which transfer the load to the shell. This method is
quite onerous and involves a high degree of competence in using the finite element
system. More often, these problems are simplified by assuming the attachments and

pad are considerably more rigid than the vessel shell. The attachment and pad are
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neglected and the load is directly applied to the shell via pressure loads or via master-
slave multi-point constraints. Even so, the distribution of the interface pressure

remains unknown.

For the purposes of this work, the three dimensional shell elements have been used
throughout since a linear through thickness stress distribution is assumed. Even using
this simplifying assumption, run times for the models can still be high, this being
attributed to the number of elements required in order to achieve the correct mesh

refinement.

49 Comments

The Fourier series approach has been used with the Sanders shell theory to provide a
method which can be used to analyse stresses and displacements occurring in the
regions local to square, rectangular, circular and elliptical patch attachments on
cylindrical vessels. Loading may be either direct radial force or moment or thermal

loading.

The solution has been used to compare the well-tried BS 5500 and ASME VIII
approaches of using an equivalent ‘square’ patch to evaluate the required values. In
general, the circular patch solution yielded results, which were 1-4% higher than the
corresponding equivalent square patch for force resultants and 1-2% higher for
moment resultants. However, differences in the displacements for the various
approaches were found negligible for the particular example chosen. Further

validation of the analysis was provided by the finite element results.

The solution can handle the cases where moments are applied through a circular patch
in both the x and <) directions and ultimately in the 45° plane. The solution is also able
to analyse the case of loading applied to an annular pad for loading transmitted from,
say, a support fabricated from pipe welded directly to the shell. This presents a direct
method for the analysis of intersecting structures such as pressure vessel shells,

nozzles and supports, oil rig nodes and so on. The solution, as shown earlier, by
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means of modification of the boundary conditions for the case of the elliptical patch,
by redefining the 5<P) equations, yields a solution for the problem of oblique

attachments. Here the BS values are always conservative.

The case of the steady-state thermal patch has also been addressed. Although only a
few simple cases are presented herein, the same capability exists for extension to
other problems as for the radial load case, since the form of representation is the
same. The solution by Duthie and Tooth gives many more examples of the different
loading functions, which may be applied. One interesting case is that of the stress
relieving of a nozzle, whereby the heat is input via a thermal pad often annular in
form. The circular patch solution can be combined with the thermal extensions to the

general shell equations and Fourier series solution to solve this problem using

superposition.

This work was published by the author in References [45], [59], [66] and [67],
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5 ANALYSIS OF CYLINDRICAL SHELLS ON SADDLE
SUPPORTS

5.1 Introduction
The analysis of a horizontal cylindrical vessel supported on twin saddle supports could

be assumed to be similar to the local loading problem since the contact area is
normally a rectangular patch. However, since the encompassed arc angle, often
denoted the ‘saddle wrapround angle’ is relatively large (in the range 60°to 180°)
contact between the vessel and the support cannot be assumed to produce a uniform
value of interface pressure. When a vessel is subjected to local loading over a small
region of its surface it is often assumed that the loading is uniformly distributed over
the small region of the bracket or lifting lug. This implies that the loading system
takes up the displaced shape of the vessel surface in the loaded region. This is one of
the main assumptions made in the previous chapter and is also relevant in the context

0fBS5500 Annex G.

However, this is clearly not the case when a vessel is loaded through a rigid
attachment such as a saddle support and over a large wrapround angle, since contact
between the vessel and the attachment may be lost in some regions due to the relative
flexibility of the vessel and possible lack of fit of the saddle. It has been well
established, both by analytical and experimental means, that highly concentrated
reaction forces occur at the horns of saddle supports. This occurs for saddles which
are both welded and loose fitting, however, for the latter is has been noted that
contact may be lost over a small arc immediately below the saddle horn. Therefore, it
is fundamental that the correct distribution of the interface pressures be identified and

accurately determined.

A general summary of the available solutions developed at Strathclyde is shown. The
development of the method and extension of a Fortran program for the analysis of this
problem is presented in detail although much of the presentation can be found in the
work of Ongin|, Motasharlie, Warrenderly and TolsonIHL It is worth summarising

the contributions made by each of these researchers towards a solution. The problem
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was first tackled by Forbes®U during 1964 to 1967, who provided the original
approach. He developed an ALGOL program based on the shell equations of Fliigge.
Thereafter, his work was modified by Duthie and changed slightly by White. Ong
updated the work for Sanders' equations and developed the code for the analysis of an
unstiffened cylindrical shell either simply supported at it ends or supported on twin
saddles. The program had the capability of taking into consideration the ‘out-of-
roundness’ of the shell, this being caused by poor workmanship or as a result of a
local dent. The out-of-roundness was modelled using a Fourier series fit to a number
of radial measurements at discrete points around the circumference on up to five
profiles along the shell. The program could also handle self-weight and hydrostatic
loading conditions in conjunction with some of the local load cases mentioned earlier.
In addition, the case of side loads can also be accommodated. The solution assumed
discrete areas of contact around the saddle in the circumferential direction but
assumed uniform contact across the width. The program was developed using DEC

Fortran 77 for a VAX computer running VMS.

Warrender utilised Ong's program to study the case of the GRP vessel with chopped
strand mat construction. For that case, the material is assumed homogeneous and
isotropic, therefore allowing a single equivalent Young's modulus and Poisson's ratio
to be input. His work included comparisons of experimental and theoretical strain
values for the rigid support. Since the relative flexibilities ofthe GRP and steel saddles
were quite different, a rubber insert was used by Warrender to ‘cushion’ the vessel
and therefore reduce the maximum stress levels at the horn. This simplified analysis
was incorporated into the program to allow the rubber interface solution to be
assessed. The present author developed the coding for Warrender to allow the
inclusion of friction to be introduced to the contact area between the vessel and the
saddle. This restricted the movement of the saddle in the circumferential direction in
proportion to the reaction forces present at the point of contact. As in the program

developed by Ong, Warrender assumed uniform contact across the saddle width.
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Motashar developed a similar solution to Ong's program but for the perfectly circular
cylindrical vessel supported on twin saddles. However, his main interest was in the
distribution of the interface pressure around the circumference and across the width.
The saddle area was sub-divided into various ‘meshes’ or grids and the relative merits
examined. He concluded that there were some high interface peaks found at the edges
of the saddles but a general uniformity across the width for most cases. To a certain
extent, the accuracy of the solution depended on the number of discrete areas and the
number of Fourier series terms used to model the step changes. Motashar devoted a
large proportion of his time to examining solution convergence and the sensitivity to
the numbers of terms in the axial and circumferential directions. Some finite element
work was carried out to examine the effects of the saddle flexibility. This work was an

extension of both White and Ong.

TolsonHL provided a further version of the computer programs to run on the SUN
workstation running UNIX. Her analysis included the case of the saddle support not
welded to the vessel and incorporated the use of friction effects. She also included the
discretisation of the saddle across the width as used by Motashar. Using the finite
element method, the flexibility of the steel saddle with rubber interface was modelled,
this being somewhat more realistic than the simplified analysis carried out by
Warrender. But most significantly, her contribution was to extend the analysis to
cover the case of the orthotropic GRP vessel containing a number of composite

layers. Much of her work was verified by her own experiments carried out on full-size

vessels.

In this section, the general solution is summarised and presented for the saddle
support problem. This consists of two main steps, the first being the determination of
the interface pressures between the saddle and vessel. In the second step, the
interface pressures or reactions are applied as known external forces to the case of a
cylinder which is simply supported at its ends. The resulting stresses and
displacements may therefore be determined at any point on the vessel. Since there is

no closed form solution to the determination of the saddle/vessel interface pressures
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an appropriate solution must be obtained by assuming that the distribution of the

pressure can be simulated by a finite number of unknown discrete forces.

The following assumptions are made.

1 Deformations are small.
The vessel and support are linear elastic.
The contacting surfaces are smooth with matching curvatures and thus have
continuous first derivatives.

4. Each contact node is capable of exerting normal and tangential reaction forces.

5 For the present case, the interface pressure distribution is assumed constant across
the saddle width. However, Motashar and Tolson assumed a discretized variation
across the width.

6. There is no relative slip between contact nodes.

5.2 Interface Pressure Distribution

The interface pressure distribution and its modelling presents a key area of
investigation in the saddle support problem. If it is not modelled correctly, the
resulting stresses will not be realistic. If the distribution is incorrect, the maximum
stresses may occur at locations other than the horn, typically beneath the saddle in
some cases. This implies that, in real cases, a fatigue crack could initiate and
propogate undetected, originating from the weld on the internal underside of the
saddle. If the contact interface pressure distribution is correct but has the wrong
magnitude, then the determination of the fatigue life may be in error by a significantly

large amount since the allowable fatigue life is plotted against stress range on a log-

log scale.

In order to determine the interface pressures between the saddle and the vessel, the
saddle contact area is divided into a number of discrete areas, each of which is subject
to unknown uniformly distributed pressures in both the radial and tangential
directions. For ease of calculation, the early work carried out by Tooth et al assumed
that these pressures were of constant magnitude across the saddle width. This
assumption is such that the saddle has a degree of flexibility in the radial direction

across the width and is comparitively stiff in the axial direction, therefore avoiding
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pressure high spots across the width. The discrete areas used in this type of analysis
therefore consist of a range of uniform pressure patches disposed round the saddle arc
and of axial length equal to the saddle width.

A more complete analysis has been provided by Motashar. In this treatment, the
saddle width was subdivided into a number of discrete areas as shown in Figure 5.1.
Three cases were analysed with 3, 5 and 7 discrete areas across the width. The three
dimensional nature of the saddle was then considered in the generation of the

flexibility matrix of the support.

Figure 5.1 Saddle interface showing discretisation across width (after Motashar)

It was found that when a saddle with substantial radial stiffening was employed the
interface pressure had peak values at the edges of the support. At the other extreme,
when the saddle top plate was not adequately stiffened, peak values of the interface
pressure occurred at the saddle centre profile with zero values at the edges. Neither
ofthese saddles provides optimum support to the vessel. It could well be that many of
the saddle designs suggested in the dimensional standard BS 527613 (and shown in
Figure 5.2) i.e. having a central web with top and bottom plates in the form of a
stiffened ‘I’ beam, fall within this latter category. That is to say, in general they do not
provide support at the edges of the saddle. These saddles can be improved by

stiffening the projecting web at the saddle horn with an end plate.
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Figure 5.2 Typical saddle support and extended wrapper plate (after BS 5276)

Since the uniform pressure assumption provides optimum support for the vessel, it is
considered that the designs recommended in BS 5276, as shown in Figure 5.2, should
ultimately be modified to achieve this end. Therefore, in anticipation of this
improvement to the recommended shape and form of optimum saddle, the assumption

of uniform interface pressure across the width is employed in the present work.

The present author realises the importance of correctly discretizing the saddle
interface pressure profile both in the circumferential and axial directions. However,
for the purposes of the present work, the assumption of uniform pressure across the
width is made. This is justified in two ways. Firstly, the uniform interface pressure
distribution analysis is somewhat simpler and for the purposes on the parameter
study, takes considerably less run-time than the ‘variable pressure across the width’
solution. The sensitivity of the more complex solution is noted by both Motashar and
especially Tolson who comments, ‘Convergency should be checkedfor any vessel to
be considered to establish the correct number ofterms used to obtain an accurate
solution. ” Motashar found that there could be a wide variation in answer depending
on the number of terms and the number of discretized patches used, i.e. if say, 200

terms in each series were used for a particular geometry and configuration, there was
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no guarantee that the same number of terms produced convergence for a different

geometry.

The second justifying assumption made by the present author refers to the practicality
of design and the need for a simple analytical tool which may be used by general
engineers. Present codes and standards do not address the ‘design-by-analysis’
approach used here and such methods are normally unfamiliar to most designers.
However, the present philosophy is to present a method which directs and guides the
designer to an efficient design. With this in mind, the aim is to produce a saddle
design, which results in a uniform pressure across the saddle rather than one
containing a distribution with large ‘peaks’ at the edges. Such an ideal situation can
be achieved by introducing a new design of saddle that introduces an element of radial
flexibility across the width and avoids the hard edge of the rigid saddle. Some
comments are made regarding the design, which incorporates a treatment of the

saddle flexibility across the width in Chapter 9 of this work.

The analysis used here, therefore, assumes a variable pressure distribution around the
saddle arc angle and a uniform pressure profile across the saddle width. This is similar

to that used by Ong. A typical distribution of the interface pressure around the arc

angle is shown typically below in Figure 5.3.
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Figure 5.3 Interface pressure profilefor 50 contact areas on a rigid saddle
The figure above shows that values of radial interface pressure at the saddle centre

profile for the discrete contact areas round the saddle arc. In this, it can be observed



that there are large concentrations of pressure acting towards the horn of the saddle.
These concentrations also change sign which indicates that the vessel is deforming
dramatically in that region. In fact, the pressure profile distribution is one indicator
used to determine the required level of flexibility needed to reduce the maximum

stresses that occur at the hom.

The number of contact areas can be varied. If the number of discrete areas increases,
these can be, in some cases, a more accurate representation of the interface pressure
profile. However, using 50-60 interface pressure contact points has been shown
acceptable for most cases. If significantly more discrete areas are introduced into the
analysis, the number of Fourier terms in the circumferential direction must be

increased to cope with the smaller patch size. Figure 5.4 shows the layout of these

discrete areas.

The following diagram shows the saddle and the distribution of the discrete areas

around the saddle width.

Figure 5.4 Saddle and distribution of the discrete areas around the saddle width
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5.3 Compatibility of Displacements for Two Bodies in Contact

The present solution caters for the case where the saddle is located symmetrically
around the vessel circumference, although the Ong solution can handle the
unsymmetric case. Since in this work the symmetric case is considered, only half of
the saddle angle need be considered and subsequently discretised. The compatibility
of the radial and tangential displacements caused by the interface pressure forces at

the centres of the discrete areas is enforced.

The basic contact problem is shown in Figure 5.5 below:

Figure 5.5 The vessel/saddle interface

The total number of nodes, located at the centre of the contact areas which contact
may take place, is defined as N. The compatibility of displacements at the kthnode in

its normal and tangential directions is given by:

[VH] = A[SN] + [VT][T] + [VR][P] = 0
[WH] = A[CS] + [WT][T] + [WR][P] = 0
(5.1)

where:
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[7] and [P] are the tangential and radial interface pressures,

[VT] and [VR] are the tangential displacements of the nodes due to tangential

and radial interface pressures,

[WT\ and [WR] are the radial displacements of the nodes due to tangential

and radial interface pressures,

[VH] and [WH] are the tangential and radial displacements of the nodes due

to internal loading (self-weight and surcharge pressure),

A is the rigid body movement of the saddle at node k, defined positive in the

upward direction,

[6/V] and [CS] are the position vector sines and cosines to each respective
contact node and are required since a circular boundary, of radius R, is

considered and the vertical rigid body movement of node k is required.

It is noted that [VT\, [VR], [WT\ and [WR] are the flexibility matrices for the problem.
These matrices relate to a rigid saddle but they can be directly added to if a flexible
system requires to be considered. This is done by directly inputting and adding to
these matrices if a specific set of flexibility matrices is generated by external means,
e g. by experimental measurement or by the use of the finite element method. When a

flexible system is considered, the equations therefore change to:

[VHI- ASV+ [VTI[T] + [VTS][T] + [VR][P] + =0
[WH]- A[CS]+[WT][T] +[WTS][T]+[07?][P]1+  1[P]1=0

(5.2)
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where
[VTS\, [VRS], [WTS], and [WRS\ are the introduced flexibility matrices for

the flexible support system.
Examples of a flexible system can include a fabricated flexible saddle or the use of a
rubber interface on a rigid saddle. Any support system for which a small displacement
flexibility matrix can be generated can be incorporated in the above analysis. This is

discussed more fully in Chapter 9, where some examples of a flexible saddle are

presented.

5.4 Equilibrium Equations

Having examined the compatibility of the system, the solution is completed by
considering the overall equilibrium of the system. After the interface pressure solution
is completed, the presence of the unknown rigid body displacement, A, means there
are three unknowns and only two equations as defined by Equations (5.1) or (5.2).
The third equation is introduced by enforcing the overall equilibrium of the system.
By considering the equilibrium, the total weight , which consists of the vessel self-
weight, weight of contents, and the end weight (if considered), must equal the sum of
the vertical components of the interface forces previously determined. The

equilibrium equation can be expressed as:

~[CS]t[P]+[SN]t[T] =S
(5.3)
where S is the total weight divided by (16J3RC) , R being the vessel radius, C is the

half saddle width and /? the half saddle angle.

5.5 Interface Pressure and Stress Analysis Solutions
Since the unknowns are all now obtainable, it is possible to obtain various solutions.

The first, as previously described, is the analysis for rigid supports. In this, all of the

elements of Equation (5.1) are used. The second case is that of the frictionless saddle
which is obtained by simply making [T ]=0. For the frictional saddle, [/’ ]=/v [P]

where // is the coefficient of friction between the saddle interface and the vessel.
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Although no further reference is made to these solutions, they were first coded by the

present author for Warrender in 1985.

These simple models can be back-substituted into Equations (5.1-5.3) and new
expressions for the interface pressure [P] and the rigid body displacement, A, can be
found. Having completed the solution for the interface pressure values, the resulting
stresses must be evaluated. Using the interface pressures, a solution for the
displacements, U, Vand W of the vessel and the resulting stresses and strains can be
found. For the case considered here, the stress resultants and displacements can be

obtained using Equations (3.35a-1).

The loading terms can allow superposition of cases. Typical cases include internal
surcharge pressure, hydrostatic fluid loading, vessel self-weight and external radial
and tangential interface pressure loadings. Since the saddle has been subdivided into a
number of discrete areas, then summation has to take place for all the centres of the
discrete areas and their respective interface pressure values. This means that there is a

summation within the loading coefficient term and an extra loop within the program.

Full details ofthe intermediate steps can be found in References [11], [16] and [58]

and in the main comment steps within the program listings found in the Appendices.

5.6 Choice & Comparison of Loading System-Line, Patch& Line+Patch Models

From the work of Ong, it was found that two models were possible to relate the
distribution of the interface pressure to the discretised area over which it acted. The
first model was the ‘Patch Load Model’. In this, the interface pressure was assumed
to act over the whole patch as previously described. However, in some cases, this did
not give a good comparison with the experimental vessels. It proved useful in the

rigid saddle case but somewhat poorer in the case of the loose saddle.

A better model for the loose saddle was the ‘Line Load Model’. In this, the total

force did not act over the whole area but was summed to provide an equivalent line
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force acting as a uniform line load at the centre of the area, i.e. at the contact node
position. This provided much better agreement for those cases where the patch load

model was found inadequate.

Ong covered these two cases separately. Here, in order to provide a good ‘all-round’
model for use as a design tool, which would provide realistic results for all cases, the
‘Line+Patch Model’ has been developed by the author. This essentially comprises
the patch load model but has the last patch on either horn expressed as a line load
acting at the centre of the outer area as shown in Figure 5.5. This solution tends to
model the rigid edge effect which occurs at the horn of the saddle and as a result

presents the more severe and hence conservative result for designers.

The line+patch model has been used throughout this work for the generation of

parametric data for use in the design method.

Figure 5.5 Line +patch model schematic showing typical interface distribution

5.7 Computer Programs

The original computer programs based on Sanders' theory were developed by Ong.
Since then most of the researchers at Strathclyde have modified or adapted these

programs to suit various machines or to incorporate specific routines or capabilities

which were not originally available.
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Ong's programs have been substantially changed by the present author for some of the
subsequent workers. Most of these changes have required recoding for different
operating systems, MS-DOS and UNIX variants, and for different versions of
Fortran. Some moves have been made towards a rewrite in the C language, for

porting to a Windows version, has taken place although this is not complete as yet.

The computer programs now run on Sun and Silicon Graphics workstations and also
on the PC. The PC version of the program requires carefully manipulation due to the
640K memory limit and since no overlays have been used, only a restricted number of
terms can be incorporated ie. around 300 terms in each direction. This limit is due to
the size ofthe arrays, which require to be open at any given time in the solution. With
a modem PC, solution times with 300*300 for a single point can be evaluated in tens
of seconds with a typical analysis, searching for the maximum value over a grid of

discrete points being solved in less than five minutes.

As an attempt to over come this problem, the program was broken into three separate
parts, to evaluate interface pressure calculation and the stress solution. These more
general programs, CYL1 (PC), SAD (PC), and CYL2 (PC) are available on all of
the computing resources at Strathclyde (PC denotes limited Fourier term versions). In

addition, it is planned to have these programs available for interactive analysis via the

Internet.

The source code listings of the present versions of the above programs are included

as Appendices 1, 2 and 3 respectively.
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6 APARAMETER STUDY AND DESIGN METHODOLOGY FOR
THE TWIN SADDLE PROBLEM

6.1 Introduction

It is generally accepted that the existing design procedure for the design of twin
saddle supported vessels does not provide a rigorous method of determining the
maximum stresses at the most critical regions. This means that the stresses obtained
from the procedure cannot be used with adequate certainty for use in determining the

fatigue life assessment ofthe component.

Although current international design codes have made available a ‘design’ method
for twin saddle supported vessels, based on the work of Zick[g in 1951, the approach
is semi-empirical and was validated experimentally for a limited number of relatively
small diameter (approx. 6ft. dia.) vessels. Despite this, it has been in use for many
years and has been used successfully to design larger diameter vessels even though
Tooth has shown, in certain cases, that the actual maximum stresses at the horn

indicate the Zick method is unconservative, with an error as high as 50%.

The success of the Zick method in design is due to its relative simplicity and that it
can be performed by hand. It is also partly due to the reduced allowable stresses
quoted in the design codes, which seem to counterbalance the apparent error in the
method. For example, in the case of the maximum stress intensity at the horn, which is
a secondary bending stress, the British Standard BS 5500 permits an allowable stress
intensity of 1.25f, where f is the design strength for the material, based on
approximately two thirds of the yield strength of the material. If a more rigorous
assessment is employed, the British Standard permits, through rules in the ‘design-by-

analysis' section, Annex A, secondary bending stress intensities to rise to 3f

However, although the Zick method can be, and has been, effectively used for design,
it remains necessary to provide a more accurate design tool for use in safety and
integrity assessments especially where fatigue failure may be prevalent. In such

assessments, accurate maximum stresses are required in order to predict the
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appropriate fatigue life of the vessel. Accurate stresses may be obtained using the
SADDLE programs described previously, however, that procedure is complex and
requires to be computer based. Moreover, it can take some considerable time to
perform a full design study, especially where multiple runs are envisaged, i.e. when
altering the different parameters and trying to optimise the saddle/vessel
configuration. Therefore, as a design tool, it is preferable to have a suitable hand
calculation method, or at least one that can be easily computerised on a PC either by

direct programming or through the use of a simple spreadsheet.

The aim ofthis chapter is therefore to present the philosophy and scope for a new
design methodology and parameter study with the objective of producing a simplified

analysis based on the output from the SADDLE program.

6.2 Scope of the Study

With the aim of providing a new design methodology, a reasonable starting point is
the generation of accurate stress data from the SADDLE program. The rigid saddle
case is considered since this produces the maximum stresses. This data must then be
examined for variations and trends that will, after defining the main governing
parameters, highlight any geometric relationships and their interdependence.
Thereafter, these parameters must be isolated and their individual influences examined
and quantified. This procedure has the advantage of allowing the effect of any
individual parameter to be understood since it may be varied when performing a
design study. Therefore, it is essential that specific tasks be identified, in determining
the scope ofthe study, which target the desired effects and influences.

The specific tasks identified have been categorised as follows: -

1 To carry out a comprehensive parameter study for the maximum horn stress

and its location using the present SADDLE analysis for the twin saddle

supported vessel.
2. To examine other areas of the vessel in accordance with those areas

identified by the British Standard BS 5500.
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3. To study the influence of the vessel ends upon the maximum stresses that
occur at the support regions. This to be undertaken using finite element
techniques to represent the variation in flexibility of different end types and
differing locations of the support for the end.

4. To present the results from the above in a suitable form to assist the design

methodology.

6.3 Maximum Stress Locations

From a study of the stress system of the twin saddle supported vessel, the maximum
stresses generally occur in the horn region of the saddle support. These stresses often
reach their maximums in the vessel during the hydraulic test and in some instances,
under operating conditions. The maximum stress is known to be the circumferential
stress component located at the outside surface of the horn region of the vessel. The
horn is defined as the uppermost point of the saddle when viewed along the vessel

axis as shown in Figure 6.1

rl A
_________________ . A H
/1A 54# !

saddle horn position

b L b

Figure 6.1 Location ofthe assumed maximum stressposition ~ the saddle horn

From a study of the literature, previous investigators assumed that the maximum
stress occurs exactly at the horn of the saddle, that is to say, if the saddle wrapround
angle 6 were 120°, then the maximum stresses are found to be located in the
circumferential direction on the outside surface of the vessel adjacent to the weld or at

the edge of the saddle if not fully welded.

At the start of this parameter study, the present researcher wrongly followed this

approach and carried out extensive studies based on this assumption. The result of
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this was that when carrying out tests for the location of the maximum stress, in most
instances, the position maximum stress did not necessarily fall at the exact horn

location.

In order to provide the correct maximum values for use in the parameter study,
irrespective of location, results were output every 1/10th of a degree in order to
examine the exact location of the maximum stress. The survey region analysed was
defined by the position of the saddle horn angle and a results zone, upto five degrees
either side of the horn edge was examined. It was found that, depending on the
flexibility of the system and the size and width of the contact areas, the maximum
stress location varied from the horn position by up to one or two degrees. In fact,
most results showed the maximum stress location to lie just under the saddle edge.
This location of maximum stress has not been examined experimentally since it is

difficult to position a suitable strain gauge in this region.

The parameter study carried out, and reported in this chapter, is therefore based on
actual maximum stresses and not on stresses measured at the horn of the saddle. The
two figures shown below present distributions of outside surface circumferential
stress for a typical 'long vessel' case. A 'long vessel' is defined as one which is long
enough to be free from end effects. As a result of the increased length, stresses
become artificially high. Figure 6.2 details the variation in the circumferential direction
and shows that, for a saddle horn position of 60, the maximum measured stress is
located just to the left of the 60° position, as mentioned earlier. Figure 6.3 shows the
variation of circumferential stress along the length of the vessel plotted at the location
of the horn of the saddle. From this study and a detailed investigation of the location
of the maximum, it was observed that the maximum stress was located at the horn £1
to 2°.

Since the circumferential stress is the most significant and therefore most important

for the majority of cases, only this stress will be described in further detail.
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Figure 6.2 Circumferential stress distribution in the circumferential direction

Figure 6.3 Circumferential stress distribution in the longitudinal direction
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6.4 Distribution of Interface Pressure Across the Saddle Width

For the present analysis, it is assumed that the saddle design is such that a uniform
interface pressure is present between the saddle wrapper and the vessel shell. In some
cases of saddle design, a poor distribution of interface pressure results and peak
values arise at the hard edges of the saddle across the width. Where a rigid saddle
support has been used then a complete analysis using the approach suggested by

Motashar is recommended.

6.5 Influence of the Number of Terms & Discrete Areas

According to the theory used for the calculation of the stresses and displacements,
three numeric parameters have a significant importance on the results. These comprise
the double Fourier series term numbers, ‘m’ and ‘n’, which are associated with the
sine and cosine series respectively and also the number of discrete areas, ‘N’, into
which the contact surface between the saddle and the vessel is divided. The effect of
each ofthese parameters must be examined prior to commencing the parameter study.
Firstly, the double Fourier series expansion for the loading system representation is

written as follows:

Pmm =7 X P sin IX7IX cos B> o>dx

m=0n-0 L
(6.1)
From this expression, it is clear that the ‘m’ coefficient influences the loading in the
longitudinal direction and ‘n’ is associated with the loading profile in the

circumferential direction.

Obviously, the number of terms which are chosen for both the ‘m” and ‘n’ values will
have a great influence on the value of the maximum stress results obtained. This can
be clearly seen, for example, if a cylindrical shell subject to a single rectangular
radially loaded patch is chosen, as per the solutions described in Chapter 4. If the
problem is modelled using a double Fourier series approach, it is evident that the

greater the number of terms used, the more accurate the loading representation, and
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therefore the stresses obtained. In single patch-type problems, even when say 100
terms are used, there can be a significant lack of agreement between the ideal loading
distribution and the Fourier representation. This is shown in Figure 6.4. It is also
dependent on the ratio of the patch size to the main dimension to which the Fourier
function is fitted, i.e. wvessel length in the longitudinal direction and vessel

circumference in the circumferential direction.

Nunr of terms in
series n>fi

25

Figure 6.4 Fourier series representation ofrectangular loadedpatch (after Duthie)
Figure 6.4 shows the graph of the Fourier series expression shown as Equation 6.1
when viewed in the circumferential direction. A magnitude of load of 10 units is
desired and each trace represents the function for an input number of terms, 25, 50,
and 100. As the number of terms increases, it can be seen that the graph of the
function becomes nearer the exact 'step-function' solution.

Although previous researchers had used 100 terms in each series, the optimum
number of terms for both ‘m’ and ‘n’ must be determined. This is set against the
criterion of achieving the desired accuracy, whilst maintaining a reasonable computing

solution time for the calculation.
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For the purposes of comparison, three typical ‘real’ vessel geometries are selected for
comparison, these corresponding to cases tested experimentally by Tooth, with
documented stresses obtained from strain gauge readings. A comparison of
experimental and analytical results is found later in Table 6.8. The effects of varying
‘m” and ‘n’ are investigated using the dimensions of Case 1 The convergence of the
Fourier series and the significance of each of the Fourier terms is examined by
choosing a fairly large constant value of ‘n’ and thereafter varying ‘m’ over a suitable
range, say, 50 to 600 terms afterwhich, the process is repeated by keeping ‘m’
constant and thereafter varying ‘n’. The total number of divisions used to represent
the load used in this case is equal to 60 uniform sized patches around the saddle angle.

The following tables highlight the influence of the Fourier terms ‘m”and ‘n’.

Test Case Vessel Dimensions

Case 1. Length (L) = 7315mm, Radius (R ) = 458mm, Distance from end (A) = 1410mm, Saddle angle
[0) =150°, Saddle width (b) = 102mm and Shell thickness (f) = 3.33mm.

Case 2: Length (L) = 7315mm, Radius (R ) = 458mm, Distance from end [A) = 1410mm, Saddle angle
{0) = 150°, Saddle width (b) = 102mm and Shell thickness (f) = 4.67mm.

Case 3. Length (L) = 54858mm, Radius (/?) = 1829mm, Distance from end (A) = 6858mm, Saddle
angle [0) = 162°, Saddle width (b) = 762mm and Shell thickness (f) = 26.6mm.

mterms 0 100 it* 200 300 IfeiEL#
Max. Stress -258.45 -261.9 -258.2 -257.03 -257.42 -257.41

(N/mm?:)

Location 74.3 74.3 74.3 74.3 74.3 74.3

(degrees)

Table 6.1 Influence ofparameter (m*for constant n=200 and 2N=60 (for Case 1)

nterms 50 100 150 200 300 400
Max. Stress -247.5 -258.64 -258.26 -257.41 -258.24 -257.77

(N/mm2)

Location 74.1 74.3 74.3 74.3 74.3 74.3

(degrees)
Table 6.2 Influence ofparameter ‘n’for constant m=600 and 2N=60 (for Case 1)

It can be seen from Tables 6.1 and 6.2 that an increase in ‘n’ above, say 50 to 100

terms, does not lead to a significant variation in the stress values obtained. Similarly, a
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value above, say 200 terms in ‘m’, produces little or no effect in the stress results
obtained. However, although m = n = 200 would provide a very accurate solution for
Case 1, it is noted that this is a relatively short vessel and has a moderately loaded
patch size. That is, L/R is small and b/L is high, therefore the number of terms

required to achieve convergence is low. A similar behaviour was noted for Case 2.

However, it is recognised that for longer vessels where the patch size to vessel length
ratio is much smaller, a much higher number of terms in the longitudinal direction (‘m’
terms) will be required to adequately represent the loading distribution. When
considering Case 3, this effect was quite pronounced. In this case, a significantly
longer vessel length was used, and the governing sine series parameter, ‘m’, was

increased to 600 to provide an adequate load representation.

JAA

m tenue 50 100 200 300
Max. Stress -416.72 -421.29 -413.22 -409.43 -410.91 -410.78
(N/mrn2)
Location 80.5 80.6 80.5 80.6 80.6 80.6
(degrees)

Table 6.3 Influence ofparameter ‘m*for constant n=200 and 2N=60 (for Case 3)

«terms 511 ! 16 6 150 mmM 300 400
Max. Stress - -410.17 -409.85 -410.78 -411.63 -411.58

(N/m m 2)

Location . 80.5 80.5 80.6 80.6 80.6

(degrees)

Table 6.4 Influence ofparameter (0 *for constant m=600 and 2N=60 (for Case 3)
With this in mind, the full parameter study, which is based on artificially long vessels
was carried out using 600 ‘m’ terms in the longitudinal direction and 200 ‘n’ terms for

the circumferential direction. This was justified by extending the full range of the

investigation of the influence of the ‘m’ and ‘n’ parameters over the range
(100<m<800 ; 100<n<500). After carrying out this investigation, it was decided to fix
‘m’ at 600 terms and ‘n’ at 200 terms for the parameter study for an optimum
solution, i.e. providing sufficient accuracy in a reasonable computing time. The time
per scan of 20 points on a Silicon Graphics 4D-35G workstation is approximately 7.5

minutes.
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The significance of the number of contact patches required for a reasonable solution
must also be examined. A logical method of determining the total number of discrete

contact areas, 2N, may be to represent both the maximum stress and the stress at the

horn as a function of , Where /? is the total saddle wrapround angle and 2N is the

total number of discrete areas on the saddle, and then to take the extrapolated
converging value between the two obtained curves. This method is based on the
assumption that the maximum stress should normally be located at the horn of the
saddle. The required value of 2N would result in convergence of the two curves.

Some tests of these methods were made for the three actual vessel geometries

described earlier and the variation of maximum stress and horn stress against for

the 2N range 30 to 110 is plotted below.
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Figures 6.7 Contactpatch convergence graphsfor Case 3

The above graphs show some interesting points that are worth noting. The
extrapolated maximum convergent value for the perfectly rigid saddle is always
greater than the measured experimental value found for the vessel supported on real
saddles. In addition, these cases presented here represent the most stiff saddle
configurations and real saddles would allow a reduction in the limiting value. A

reasonable maximum number of contact areas could be perceived to be around 50-60,
by ensuring 9N = 15 or so. In Case 3, the experimental value is much lower than the

converging curves. The saddle used in for this case was of a semi-rigid nature and had
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a degree of radial flexibility. The following tables show the calculated maximum

stresses and their locations for each of the three cases.

2N 20 40 50 60 80 90 100
Max. Stress - -236.9 -247.28 -257.77 -274.93 -281.31 -286.36
(N/mm 2)
Location - 73.7 74.3 74.3 74.6 74.7 74.8
(degrees)

Table 6.5 Influence ofnumber ofcontact areas (2N)for Case 1

20 40 50 60 80 on 100
Max. Stress -145.96  -152.59 -158.54 -168.53 -172.12  -175.08
(N/mm 2)
Location “ 73.6 74.2 74.3 74.6 74.7 74.8
(degrees)

Table 6.6 Influence ofnumber ofcontact areas (2N)for Case 2

20 40 50 WMM  so

Max. Stress -324 -378.8 -398.59  -410.75  -434.11  -441.73
(N/m m 2)
Location 78.7 79.9 80.3 80.6 80.7 74.7
(degrees)

Table 6.7 Influence ofnumber ofcontact areas (2N)for Case 3

110

110

-178.12

74.8

-453.6

80.8

It appears that for fixed ‘m’ and ‘n’ terms, whilst increasing the number of patches,

the stress value gradually increases too, without any clear limit. Therefore, some

measure must be made against the known experimental values and this used to limit

the number of contact patches.

(The values shown in brackets are includedfor comparison. These were obtained

using the new design method detailed later in this chapter)

Units Experimental SADDLEI’rogram for BS 5500
(N/mm?2) Stresses Rigid Sadd le, (2N-50)
Flexible Rigid Computer Design
Method
Case 1 120 -290.5 -247.35 (-237.27) 1207
Case 2 -70.4 1747 -152.59 (-148.06) -63.

Case 3 -186.2 -310.2+ -398.59 (-393.80) -194.7

Table 6.8 Comparison ofmaximum stresses obtained by the various methods.

* denotes the use ofthe sem i-rigid saddle
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For the first two cases shown, the stress found either by the SADDLE program or by
the design methods appears to lie between the experimental values obtained for the
rigid and flexible cases. For the third vessel, that is, the longest of the three, it would
appear that only 20 patches seem necessary. It is noted that, in this case, the saddle
was not rigid around the entire saddle angle. The saddle was formed from a rigid
saddle (150°) with two 6° flexible extensions on the wear plate forming a total angle
of 162°. It should be stated that for the actual vessels, the saddles are not completely
flexible or rigid and therefore, it appears reasonable that the solution obtained using
50 discrete areas per saddle would be of sufficient accuracy for most applications. In
addition, this leads to a solution in a reasonable time, whereas solutions with higher

numbers for m, n, and 2N can be over twenty minutes per point.

In conclusion, for the parameter study, the numbers of Fourier series terms were fixed

at m=600 and n=200 with the number of discrete areas per saddle at 2N=50.

6.6 Parametric Studies

A full parameter study for the hydraulic case is presented since this loading condition
generally produces the highest value of stress in the horn region of the vessel. There
are a number of geometric parameters that require to be investigated in order to
identify the effect each has on the maximum stress and indeed, on each of the other

parameters. The effect of each variable is required in order to provide a versatile

design procedure.

For general design of twin saddle supported pressure vessels, the use of the Fourier
series technique provides a solution in a shorter time than using, say the finite element
technique. However, the time taken can still be considerable using the Fourier series
approach, especially if many design iterations are required. The decision was therefore
taken to provide results for the maximum stress (i.e. the circumferential stress at the
horn) as provided by the SADDLE program in a closed form - i.e. by a single
equation, if this were at all possible. The requirements of such an equation would be
to incorporate all the results of the parametric survey and allow the engineer to

optimise the design by varying any individual parameter. It is noted that the design

141



method proposed by Krupka used an equation, which can be directly extracted from

his analysis. This equation is shown in Chapter 2 as Equation (2.2). However, since
the present treatment is based on a more complex numerical approach, there is no
‘natural’ single equation or expression, which can characterise or represent the

behaviour and interaction of the various parameters.

It is also noted at this point, that a similar method to the present work has recently
been published by Ong|2]. In this, he attempts to “force’ a single equation by defining

a basic stress in the form of the Krupka equation and thereafter to provide a series of

modification factors which correct the basic stress value and ultimately give similar

answers to the output from the Fourier series program since Krupka made use of a

'semi-bending' shell theory. The present author does not believe this to be a realistic

approach since forcing these results into the form proposed by Krupka may introduce

unnecessary errors by the curve fitting procedures employed. The approach suggested
herein, developed in 1990 and published in 199181 is to obtain a basic stress, which
‘naturally’ results from the plotted variation of maximum stress. This basic stress is
thereafter progressively modified by a number of geometric and physical factors. The
suggested form of the equation is written as:

a«"=<T7i,F» FbFo-FAFD FL-F'-F,
(6.2)

where the coefficients ofthe equation are defined as follows: -
= peak stress at the horn for theoretical vessel (Basic Stress)

Fw = weight of contents factor

Fb = saddle width factor

Fe = saddle wrapround angle factor
Fa = rigid end factor

Fa = saddle interaction factor

Fi = length change factor

Fe = end flexibility factor

Ff =  saddle flexibility factor
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These coefficients are discussed in detail.

It is worth noting that an allowance for the change in material properties is not
explicitly mentioned in the equation shown above. It has been assumed, in the present
analysis, that the vessel is fabricated from steel with a Young's modulus of 200,000
N/mm2and a Poisson's ratio of 0.3. However, some computer runs were carried out
in order to investigate the effects of the material properties and it was found that the
peak stress was independent of the Young's modulus value, E, and therefore this
material constant is not included in parametric representation. It should be noted,
however, that the vessel displacements and strain values are dependant on the
modulus which would therefore need to be included in those cases where strain is the
limiting criterion, as for GRP vessels. The influence of differing Poisson's ratios was
found to be small and is therefore also neglected. This implies that the equation can be

used for materials other than steel.

6.6.1 Basic Stress Values, a*
From some preliminary studies, it was apparent that the ends of the vessel have an

important influence on the results obtained from the SADDLE program. In general,
the vessel ends provide some support of the shell near the major plane of stiffening.
This will in turn, affect the stresses obtained at the horn of the saddle. That is to say,
as the support moves towards the vessel end, the effect of extra support for the

cylindrical shell provided by the dished head will reduce the maximum horn stresses.

This effect was noted by Zick, and was incorporated in his analysis by using a
reduction factor in the calculated stress. It was based on the ratio of the distance from
the end of the vessel to the saddle centreline position to the vessel radius, A/R. Zick
proposed that if the saddles were positioned such that A/R is less than a half of the
cylindrical shell radius, then the stresses at the horn would reduce by a quarter. If the
saddle were positioned up to A/R equal to a full radius, then linear interpolation would
be allowed form the full value at A/R=1 to a quarter of the full value of maximum

stress at A/R=0.5. Although this method appears to incorporate some stiffening factor
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for the end effects, there is no theoretical justification for such an approach noted in
the literature, and provided in the Standard, BS5500.

In addition, the problem is compounded by the fact that the Fourier series method, by
definition, generates zero stresses and displacements at the ends, since the axial
deformation is characterised by a sine series. Therefore, a graph of the sine function
must have a zero value when the required location X, is equal to zero or L. This

phenomenon can be physically represented as an infinitely stiff dished head.

Therefore, a first step in the identification of a basic stress was to eliminate the effect
of the overstiff dished end. It was found that if the saddles were located at an
appropriate distance of 9R from the ends the influence of the ends was negligible. In
fact, the end effects were almost negligible after a distance approaching 6R, but and

additional 3R was introduced to ensure the stress effects had fully decayed, as shown

in Figure 6.8

Figure 6.8 Graph ofstress variation along extended vessel (L=36R)

Similar effects were also found in those cases where the two saddles were brought
close together. Again, Zick incorporated this effect in his analysis by assuming that if
the vessel geometry were such that L/R>8, no interaction would be present. However,
if the vessel geometry were such that L/R<8 then the bending component of the stress
would be multiplied by 8RIL. In addition, industry standard convention is for the

saddles to be positioned at approximately the quarter points of the cylinder, i.e.
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A/L=0.25. In fact, finite element work done by the present author and also by
Widerall319 shows that the optimum position is approximately A/L-0.22, this taking

account of the extra weight introduced by the vessel dished head.

Therefore, the 9ft end-effect length was doubled and found adequate to avoid saddle
interaction. Thus to allow the saddle centreline parameters to be considered in
isolation, a theoretical vessel of length equal to 36ft was formulated. The saddles are
therefore located at a distance of 9ft from the ends. The maximum value of the stress

at the saddle horn in this vessel is referred to as the Basic Stress, a*

In order to define the scope of the parameter study, a survey was carried out and
information was obtained from vessel designers and manufacturers in both the UK and
USA. This identified a typical range of horizontal vessel sizes currently in use and
supported on twin saddles. Using this information as a bound for radius and thickness,
the basic stress for the series of theoretical vessels was obtained by running the
SADDLE program for the water-fill case. A rigid saddle welded to the vessel was
considered to be the most severe case and therefore, would generate the highest
stresses in the horn region and as such would therefore constitute a reasonable basis

for design.

From the results of the survey, values of vessel radius from 500mm to 4000mm and
vessel thickness from 4mm to 30mm were encompassed in the parameter study.
Vessels below this thickness were considered too flimsy for supporting using saddles
and vessels above the specified thickness limit would be pressure dominant. The
saddle angle and width were chosen to be 120 degrees and 0.2ft wide respectively.
These values were chosen since they represented the normal lowest value of the
parameter, however some companies use smaller saddle angles of 60° and 90° for
temporary saddles in shop construction and testing and also for transportation

purposes. The 120-degree value is consistent with the smallest angle quoted in BS

5500. A width ofy/30D (where D is in mm) is also used as a means of determining the
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saddle width but the present definition of 0.2D (and multiples of this dimension)

seems a more straightforward calculation.

In an extensive curve fitting exercise, using the SADDLE program with m=600 and
«=200 for the Fourier terms, and inputting the long vessel dimensions as above, and
by scanning for the maximum stresses, irrespective of their location in the immediate
vicinity of the horn, equations were obtained for the basic stress for this load
condition. These values are tabulated in Table 6.8. It is noted that the magnitudes of
these stresses are, of course, fictitious and are intended to be modified by the various
factors shown in Equation 6.2. In addition, the shell analysis is based on ‘'small
displacement theory', which would in practise limit the movement of the shell wall to a

magnitude in the order of the wall thickness.

The table is divided into three parts.

* The lower left hand comer of the table (denoted ‘NOT REAL VESSELS’ is
that part of the table where the thickness is considered to be too weak for the
vessel only to be supported by saddles. The shell would be too flimsy and no
horizontal vessel could be built with such dimensions.

» The opposite right hand comer of the table is that region where the internal
pressure is dominant, i.e. the thickness would be defined by the internal
pressure loading and not the saddle support condition.

* The main part of the table is the most interesting since it represents the major
range of vessel geometries most commonly built by industry. This portion,

therefore, is the main focus of the study.
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Table 6.9 Basic stress valuesfor the range ofvessels encompassed by the parameter study
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The first equation, generated by geometric regression across the radius/thickness

surface, was geared to the Sl system and is shown as follows:-
cr, = 0.00052 tf2-702r 1639

(6.3)
where R and t are the vessel mean radius and wall thickness of the vessel respectively

in millimetres. This equation gave <bvalues of +1.5% of that predicted by running the
full SADDLE program for a 36R long vessel, within the range of values in the main
portion of the table, that is the unshaded portion. However, if the full table were
considered, the error rises to -6 to £1.5% of the computed result. The additional error
is generated by attempting to curve-fit to the ‘NOT REAL VESSELS’ part of the

table, and therefore the equation was deemed reasonable for the majority of cases.

Basic stress

-20000

-25000

0 -5000-0
30000 =-10000-5000
0-15000-10000

30 28 26 24 22 20 I* 16 4 ,2 F 4000 £-20000-15000

A 4 y - ] _
Thickness (mm) 8 6 ~ B -25000-20000
O -30000-25000

Figure 6.9 Surface plot of Basic Stress variation across geometry range
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It is noted that Figure 6.9 surface plot highlights the variation in the basic stress value
for a 36R long vessel with the 120°, 0.2R saddle positioned at the quarter point and
this over the range 500</?<4000 and 4</<30. By entering the required radius and
thickness into the base basic, the maximum stress is obtained by tracking the surface
contours and establishing the intersection value. The surface plot is intended for
visualisation only. In order to be consistent with the Sl approach, the units of this
basic stress are N/mm2 however this introduces a constant (0.00052) accommodates

the units of stress such that when R and t are entered in mm, the resulting stress is

given in N/mm2

A second approach was therefore considered which would result in non-dimensional
equations, these being generated by splitting the raw maximum stress data into the

two stress resultants, N+ and obtained from the direct and bending components of

the stress.

Nt . 6M
cr, N My
t t2

6. 9
These results represent the components of stress from the SADDLE programs at the
maximum stress locations. The equations resulting from the regression are shown

below and are non-dimensionalised using the specific weight of water, yw to give

rdJ yj2 yjs

where:

0.1 0.2

N R
— 560.65 +307.85 R 858.31

Y J

0.2

+61.68 -27.18

(6. 5a-c)
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Within the range 35 < R/t < 300, these equations give maximum errors of 3% for N+
and 2% for M#. In each case these are over-estimates, thus providing a conservative
basic stress. However, the previous expression is preferred since these equations were

developed using stress data based on 200x200 terms for each Fourier series.

6.6.2 Weight of Contents Factor Fw

All runs performed using the SADDLE program assume the vessel self-weight to be
zero and the vessel loading to be full of water. This is of use especially when
comparing against strain gauge results. However, it may arise that a vessel contains
contents which have a different specific gravity from that of water. This change of
specific gravity, together with a weight correction for the capacity of the actual vessel
of length, L, can be incorporated using the weight of contents coefficient, Fw which

IS given by:

(6. 6)
where p is the specific gravity of the liquid. It has been found that the vessel self-
weight can be included by using an equivalent specific gravity, where the ‘new’

specific gravity is modified in the ratio of the differences in weight with and without

the vessel self-weight.

6.6.3 Geometric Factors

The design of the vessel is known to be dependant on a number of geometric
parameters as defined earlier, namely, the saddle width, saddle angle, end effects,
saddle interaction and the effect of vessel length to radius. Considerable time was
spent in attempting to isolate the effects of each individual parameter and to thereafter
generate closed-form equations which would describe the behaviour of these
interactions. However, in investigating these interactions, the errors which were

resulting when the parameters were combined proved excessive and it was clear that
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the ‘closed-form’ approach would not yield simple expressions which would provide
useable, accurate results. As an alternative, it was found that, by using fourth order
polynomial equations to represent the behaviour of each parameter, accurate results

were forthcoming within acceptable error limits.

Therefore, the effect of each geometric parameter is considered for a range R/t ratios
i.e. 25, 50, 75, 100, 125, 150, 175, 200, 250, 300 (i.e. which is typical of the range of
industrial vessels surveyed earlier). For each ratio, a regression curve fitting exercise
was undertaken using Microsoft Excel V5.0. Linear interpolation for intermediate R/t

ratios between two already calculated R/t results can be easily obtained.

6.6.3.1 Saddle Width Factor, F*

The values for the basic stress were generated based on the practical limits of saddle
width. BS5500 prescribes the minimum saddle width, b, to be -J30D where D is the
vessel diameter in millimetres. As an alternative, it is possible to use a value of b
based on a fraction of the radius, for example, b = 0.2ft, which provides a more
conservative result and maintains consistent use of the variable ft. Hence values of the
basic stress were obtained for the same ft and t ranges previously described using
saddle width values from 0.1ft to 0.5ft in intervals of 0.1ft. If the saddle width

changes alone, the maximum stress equation becomes:

which, when rearranged, gives the equation:

(6. 7 a,b)
where a* is calculated for an R t ratio for which ft*is calculated.
ft* is graphed as a function of the saddle width to give the following curves, shown in

Figure 6.10



Figure 6.10 Graph ofsaddle width factor, Fb

From this figure, which shows that the effect of RJt is almost negligible, it is apparent
that the maximum stress decreases as the saddle width increases. This is a reasonable
result because as the support width increases, the force arising from the reaction
between the saddle and the vessel is distributed over a slightly larger surface area. In
addition to this, it can be observed that the curves lie quite close to one another for
the various R/t ratios plotted. This indicates the limited influence of both the thickness
and the radius when the width parameter, b, is fixed.

As shown in the Table 6.10, the saddle width factor Fbcan be evaluated from a fourth

order polynomial to obtain the best correlation, where:

Fh=a0+a}x +ax2+a3x3+a4x4
(6.8)

with x b R in polynomial expression.
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R/t ao aj 98 s

25 1.733 -5.919 15.111 -21.742 12.875
50 1.757 -6.091 15.298 -21.308 12.208
75 1.789 -6.486 17.077 -24.850 14.833
100 1.805 -6.647 17.598 -25.533 15.167
125 1.828 -6.921 18.769 -27.675 16.625
150 1.838 -6.996 18.854 -27.358 16.125
175 1.855 -7.215 19.884 -29.408 17.625
200 1.873 -7.447 20.935 -31.400 19.000
250 1.890 -7.612 21.377 -31.617 18.750
300 1.917 -7.994 23.283 -35.550 21.667

Table 6.10 Polynomial coefficientsfor Fb- saddle widthfactor

6.6.3.2 Rigid End Factor, Fa

In deriving the factors Fb and Fo (given in section 6.6.3.4), the saddle region was
isolated by considering a vessel 36R long. To allow the method to encompass the full
range of vessel configurations, the effects of the rigid end and of the other saddle
have to be considered. In the Fourier series solution, it is assumed that the end does
not deform in the plane of its profile. The way in which this assumption influences the
peak stress at the horn was investigated by performing a number of SADDLE runs
where the saddle centerline distance from the end, A, was varied but the overall vessel
length remained constant. Plotting values of the rigid end factor, Fa, at the horn
against RJt for a range of A/'R values from the quarter points, A=9R to A=0.2R Yyields
Figure 6.10. This figure allows the appropriate end effect factor, ra, to be selected for

use when the support is located at a particular A value. If the saddle position changes

alone, the maximum stress equation becomes:

which, when rearranged, gives the equation:

(6. 9 a,b)
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where a* is calculated for an R/t ratio for which FAis calculated.
In addition, the following equation is obtained:

Fa=a0+ +aXx2+a3x3+adx4

(6. 10)
where x=A/R in polynomial expression.

Figure 6.11 Graph ofrigid endfactor, F{
The curves above show that as the saddles are moved closer to the ends, the smaller
is the resulting maximum stress value obtained. This is due to a reduction in the

bending moments induced by the ends.

From the curves above, it appears that the influence of A is bigger when the R/t ratio
is increased. For R t=25, the influence of A is negligible within the range
3.5R<A<9R, but for the other ratios the influence of A is important over the whole

interval.
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The variation of FAallows linear interpolation to be made for different R/t ratios. In

Table 6.11, it can be seen that the polynomial coefficients are for the fourth order

expression for FA
wmmwmm a s H f:f r r it LI gl

25 0.14621 0.55498 -0.13428 0.014198 -0.000551
50 0.08909 0.44585 -0.09151 0.009231 -0.000369
75 0.06572 0.38390 -0.71364 0.006990 -0.000270
100 0.05054 0.34826 -0.06336 0.006414 -0.000264
125 0.04093 0.32083 -0.05656 0.005812 -0.000242
150 0.03417 0.29953 -0.05098 0.005278 -0.000221
175 0.02947 0.28258 -0.04626 0.004787 -0.000201
200 0.02737 0.26214 -0.03867 0.003750 -0.000151
250 0.02098 0.24866 -0.03581 0.003600 -0.000150
300 0.01788 0.23465 -0.03126 0.003066 -0.000127

Table 6.11 Polynomial coefficientsfor FA- rigid endfactor
It is worth noting, that the order in which the geometric factors (FA FD,...etc.) are
calculated does not have any influence on the final results obtained, because when the

complete calculation is achieved, the basic stress will have been divided (i.e.

corrected) by all ofthe various constituent parts.

6.6.3.3 Saddle Interaction Factor, FD

The above study showed the variation of stress when the saddle position was moved
nearer to the rigid end. A similar procedure was adopted to investigate the interaction
effects between the saddles which are located a distance D apart. As the two saddles
are positioned closer together, the influence of the second on the first becomes
significant. The FD factor, which represents this behaviour, is plotted in Figure 6.12
against R/t for various values of D R where D=(L-2A). D/R was varied from 18, the
mid-dimension of the 36R vessel, to a lower value of 2. If the saddle interaction

position changes alone, the maximum stress equation becomes:

which, when rearranged, gives the equation:

155



Zl _ ® mix

(6. lla,b)
where gbis calculated for an R/t ratio for which FDis calculated.
In addition, the following equation is obtained:
FD- ao+ a,x +a2x2+ a3x3+ a4x4
(6. 12)

where x=D/R in polynomial expression.

Figure 6.12 Graph of saddle interaction factor, FD

It is noticeable that as the saddles move closer together, the resulting maximum stress
at the horn increases. Obviously, there will come a point where the saddles are so
close that they act as one. This has not been considered in this study. The variation is
explained by the fact that for a certain D value, as the end sections become longer,
they introduce a larger bending moment which, in turn, leads to a larger maximum
stress value in the horn region. This effect is similar, in principle, to the influence of

the A dimension.
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The Fo factor which represents this behaviour is given as a fourth order polynomial

equation with coefficients as shown as the Table 6.12,

itliilo iM iiilii ! * SUMHESE¢tt
25 0.63783 0.016572 -0.002274 0.000266
50 0.66755 0.019146 -0.001266 0.000092
75 0.69860 0.008906 0.001551 -0.000140
100 0.68000 0.007285 0.002474 -0.000214
125 0.67898 0.012773 0.001992 -0.000183
150 0.64491 0.021468 0.000935 -0.000112
175 0.60577 0.030931 -0.000267 -0.000033
200 0.56838 0.038209 -0.001084 0.000020
250 0.50338 0.046902 -0.001904 0.000076
300 0.45423 0.049776 -0.001978 ! 0.000086

Table 6.12 Polynomial coefficientsfor FD- saddle interactionfactor

6.6.3A Saddle Wrapround Angle Factor, Fg

-7.16E-6
-1.33E-6
4.36E-
5.87E-
4.89E -

6
6
6
3.04E-6
1.08E-6
-0.21E-6
-1.64E-6
-2.02E-6

In studying the influence of the saddle angle, values of wrapround angle from 60° to

160° were considered. The 60° value was included to meet a request from industry

associated with the transportation of vessels both in the workshop and to and from

site locations. A similar procedure was carried out as mentioned earlier, with the 4

factor being determined by the following equation. If the saddle interaction position

changes alone, the maximum stress equation becomes:
a mMX = &by

which, when rearranged, gives the equation:

8-

where a* is calculated for an R t ratio for which Fg is calculated.

In addition, the following equation is obtained:

Fg=ao+a,jc+taXx2+ax3+adxd

where x=6 in radians in the polynomial expression.
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Saddle Wrapround Angle 0

Figure 6.13 Graph ofsaddle wrapround anglefactor, FO

The above curves indicate that the influence of the RJt ratio, for a fixed wrapround
angle, is approximately the same for all ofthe cases considered. Some divergence was
observed at higher wrapround angle values. This is mainly due to the larger angle
which must encompassed by each of the 50 contact areas. Therefore, if a greater
number of contact areas were employed in such cases, then convergence of the curves
would result. From the above curves, it can be noticed that the stress decreases with
an increase of the wrapround angle. This effect arises since the angle is bigger, the
forces must be distributed over a larger area (i.e. the support wraps around a larger
area of shell) which in turn, gives lower stresses in the vessel. In addition, the increase
in wrapround angle provides stiffening of the shell in the radial direction at the saddle
centreline profile, which helps to minimise the circumferential bending effects. This
effect can be clearly seen when considering the resulting deformation from a finite
element analysis. The finite element plots shown in Figures 6.14a,b highlight the
difference in the deformation between two vessels with saddle wrapround angles of

90° and 160° respectively.
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Figure 6.14a,b Finite elementplots ofdeformed vessel profile at saddle
centreline location - saddle wrapround angle of 9it" and 160°

The coefficients of a fourth order polynomial which represents the factor FOare given

in Table 6.13,

R ft OImMMWMiim\wmmrnMm a*
25 3.83590 -0.03791 0.000158 0 0
50 3.90584 -0.03876 0.000159 -0.0000004 0
75 4.04122 -0.04313 0.000216 -0.0000007 0
100 4.68385 -0.06828 0.000571 -0.0000290 0
125 4.72200 -0.07110 0.000642 -0.0000035 0
150 4.40982 -0.05769 0.000440 -0.0000022 0
175 2.09028 0.040349 -0.001045 0.0000074 0
200 2.94341 0.005759 -0.000545 0.0000043 0
250 2.37512 0.029811 -0.000912 0.0000067 0
300 1.74637 0.056508 -0.001322 0.0000094 0

Table 6.13 Polynomial coefficientsfor Fe - saddle wrapround anglefactor
(note: x = 6 in radians)
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6.6.3.5 Length Change Factor, FL

All ‘real’ vessels have individual characteristics related to their stiffness which
determine the influence of one parameter upon any other. The use of a theoretical
‘long’ vessel was adopted to allow parameters associated with the saddle geometry to
be examined free from the effects of the end and the adjacent second saddle.

Although the variation of the distance from the end together with the distance
between adjacent saddles has been examined, performing the calculations for the
maximum stress at the horn using the factored basic stress method did not provide
the same result which was obtained from running the SADDLE program. It was
originally surmised that by using, introducing and isolating the factors associated with
the lengths A and D that the effects of length would have been controlled. This was

found not to be the case.

It was found that in order to correct a theoretical vessel of length, say 36R, where
A=9R and D=18R, to, for example, a vessel of length 18R, with A=4R and D=IOR,
the modifications using the polynomial factors FA and FD were inadequate. An
additional factor to allow for the length change, FL, was required. This was obtained
by comparing many cases of shortened ‘theoretical’ vessels with the SADDLE result
for the actual case. It is noted that for this factor, the phrase theoretical refers to a
result for a shortened vessel using the factor method based on a 36R long vessel
which has been modified by the factors FAand FDfor the appropriate length.

The values of the new length change factor, FL, obtained were plotted against L/R for
all R/t values. These curves are based on the following approach. For many shortened
"theoretical" vessels, F1 is defined as follows.

Ifthe vessel length changes from L=36R, the length change factor becomes:

F = —
<v-FAFD

(6. 15)

160



where FA and FDare the calculated factors for the particular vessel.

In order to determine the appropriate length change parameter, for a given vessel
length, L, it a feasible that a variety of saddle locations may be employed and not
solely the quarter point locations. The FL factor was calculated, for various saddle
locations, at appropriate distances of A equal to L/4, L/6, L/8, and L/10 from the
ends. The following fourth order polynomial equation is obtained:

A=a0+ax +a2xx2+aXx3+adx4

(6. 16)

where x=L/R in the polynomial expression.

The final value of FLis then the mean ofthefour cases calculated above. Using this
procedure, the factors FL found for each L/R and R/t are fitted into curves. The mean
value is chosen in order to minimise the error associated with each different
configuration. This means that the solution is equally accurate across the full range of
the available saddle positions. However, some of the extreme saddle positions are
unrealistic and these positions have been removed from the scope of the curve fit.
Vessels whose length is greater than 207? must not have saddles positioned closer
than A=L/6 to the end; that is the range L/6 < A <L/4 is acceptable for vessels with
L>20R. This restriction prevents very long vessels having saddles situated too close
to the ends of the vessel and introducing high bending stresses at the vessel mid-
section. The form of the graph shown in Figure 6.15 shows that, as a smoothing
curve, the effect of R/t is quite small. This is to be expected since the Ft parameter
operates not only as a geometric function but corrects any errors introduced
previously by the compound factors. If a larger error band were permitted, the effect
of the length change factor could be replaced by a single curve. This curve indicates
that the additional effects of both of these parameters, FAand Fp, have been taken

into account by the FLfactor.
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Figure 6.15 Graph oflength changefactor, FL

The values of FL can be represented by a fourth order polynomial equation as shown

on Table 6.14,

Rit
25

50

75

100
125
150
175
200
250
300

a«
-0.053702
-0.084688
-0.032241
0.027463
0.066444
0.089579
0.100234
0.095531
0.084560
0.059512

ai
0.065643
0.065522
0.041286
0.018664
0.003717
-0.003488
-0.005717
-0.001799
0.005450
0.017537

a2
-0.002351
-0.001856
0.000617
0.002856
0.004032
0.004514
0.004505
0.003912
0.002825
0.001403

a3
0.0000517

0.0000283
-0.0000575
-0.0001317
-0.0001659
-0.0001767
-0.0001709
-0.0001455
-0.0000997
-0.0000457

-4E-7
-2E-7
8E-7

16E-7
19E-7
20E-7
19E-7
16E-7
10E-7
4E-7

Table 6.14 Length changefactor Fj (note: x = UR in the polynomial expression)

6.6.4 Verification of the Design Method

Results obtained by this hand calculation method were compared with those

calculated by the SADDLE program for different geometries within a range of RJt

between 25 to 250.
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Among the cases envisaged to test the design, it has been found that the difference
between the results for both methods is less than to 4 %, except for cases where the
thickness is too small in comparison with the length, in which case the maximum
difference is 6%. Geometries for Cases 1-3 are defined earlier in section 6.5, and

some comparison results are detailed in Table 6.8

6.6.5 Design Methodology and Worksheet

By employing a careful selection procedure for the shell and saddle geometries,
together with the placement of saddles, the maximum stress at the horn can be
dramatically reduced. To assist in this design process, a worksheet has been devised,
in a similar form to that used in BS 5500 (see Figure 6.16), outlining the suggested

design methodology.

In the worksheet, the designer may input the basic shell dimensions. Saddle
dimensions are also introduced at this stage, these being obtained from a suitable
dimensional standard for the particular vessel radius used. Ratios of the key variables
are then evaluated. These ratios are used in calculating the appropriate factor
associated with a particular variable and served to check the applicability of the
method for the proposed geometry. The basic stress factors are found in turn for all
the variables described earlier. The basic stress, < as given in Equation (6.3) is
presented here. The alternative form given in Equations (6.5) may also be used,
although preferably not for very long vessels. The basic stress is then combined with

each factor to give the maximum stress in the vessel at the horn of the saddle.

This value is then assessed against the stress limit imposed for this type of loading. It
is the opinion of the author that for the purposes of assessing the total stress in the
shell at the horn of the saddle, this may be categorised as primary plus secondary
bending. When this value is limited to 3 times the design stress (f or Sm) for the

chosen material. However, this approach may be unconservative since the nature of
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the stress may not be wholly secondary (see Chapter 7). If the maximum stress
exceeds the imposed limit, the designer is presented with a number of options. Any
variable can be altered, e g. saddle wrapround angle increased, this resulting in a
different factor being selected for that variable. The new value of maximum stress is

then obtained.

6.6.6 lllustrative Example and Fatigue Analysis

In order to illustrate the procedure and then apply to a fatigue analysis, the example
of a vessel (Case 3) has been chosen. It may be assumed that the vessel has been in
service for 20 years and a fatigue assessment is to be carried out. This will
demonstrate some of the problems that may arise using BS5500 calculated stresses.
The vessel has an inside diameter of 3658mm (12ft.), tangent length of 54864mm
(180ft.), thickness of 26.6mm (1.05in ), with 762mm (30in.) wide, 162° wrapround
saddles located at 6858mm (22.5ft.) from each end. The vessel is made from steel and
is subject to a daily cycle of filling and emptying liquid butane, which has a specific
gravity 0f0.63, and has had 10 hydrotests during routine inspections. On this basis, a

fatigue assessment to BS 5500 requires to be carried out.

Calculation of Maximum Stress in Support Region

The example vessel was originally designed using the present method in BS 5500,
which is based on the Zick approach. The maximum circumferential stress at the horn
(fe) calculated for this condition is found to be -178.1N/mm2 The design stress for
the vessel,/or Sm, is taken as 193N/mm2(corresponding to a specified yield stress of
42,000psi). On this basis, the maximum stress at the horn must not exceed 1.25/
which gives a value of -241.3N/mm2 The vessel therefore satisfies the requirements

of BS 5500.
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Using the improved Fourier series/shell analysis (SADDLE), the maximum stress at
the vessel horn is -398.6N/mm2 When the worksheet method is used for the same

vessel, the following terms are found:

Basic stress = 1470.0 N/mm
Weight contents factor Fw = 0.833
Saddle width factor Fo = 0.705
Saddle wrapround factor 6 = 0.548
Rigid end factor FA = 0.846
Saddle interaction factor FD = 1.000
Length change factor FL = 0.984

Substituting the appropriate values for the factors into Equation (6.3), the maximum
stress at the horn is equal to -393.8N/mm2 The accuracy of the proposed method is

clearly noted in the above value that is within 1.2% of the actual program value.

Since the worksheet method is a ‘design-by-analysis’ approach, the design stress
intensity limit is 3f or 3Sm For the above example, this value is 579N/mmz2 Again,
the calculated stresses fall within the 3f limit and the vessel design is satisfactory, for

the shakedown requirement of the maximum load cycle range, which is the hydrotest.

Fatigue Assessment
In order to assess the fatigue life of the vessel, under the action of repeated filling and

emptying, the method set out in BS 5500 Annex C (previously Enquiry Case
5500/79) is used. The first step in the assessment is to identify the various events
experienced by the critical region, in this case, the support region, which will give rise
to fluctuating stresses. Attention is confined in this example, to the hydrotest and the

butane fillings.



Using the worksheet result, the stress range for the hydrotest (Sr/) is 393.8N/mm2and
for the butane, with specific gravity of 0.63, (S&) is 393.8x0.63 = 248. IN/mm2
Over the twenty-year period, the total number of cycles is as follows:

For the hydrotest, H =10

For the butane fillings, n2 = 365x20 = 7300

According to Annex C, the fillet welds at the horn ofthe saddle may be classified as a

‘G’ type weld. The S-N curves of the form SrnN=A for this assessment are
provided in Figure C.3 and Equation C.5 of the Enquiry Case. The appropriate S-N

equations are:

SIAN =A=250x10" and m=3 forvVclO7cycles

5@BY =/1=2.05xI04 and m-5 forN >107cycles
where Sr is the stress range and N is the number of cycles from the fatigue curve. The
constants for the S-N curve, m and A, are found from Table C. 1 of the Annex.
Taking into the account, the effect of the material and the thickness of the vessel in

the support region, the following equation gives the fatigue life as a function of the

stress range, S .

f 200x10X  22vHé
N=A
\ el

where E is the actual Young's modulus, e is the wall thickness (ife < 22mm then the
value of 22mm should be used, otherwise the actual value should be used) and m is

the index associated with S of the fatigue equation shown above.

In the present case, £=207,000 N/mm2 and e=26.6mm. Using these values in the
above fatigue equations, the number of cycles N are:

For the hydrotest:

-3

2.50x10 :c393.8x—2-'9-€¥\1 I 22 | =3449 cycles

2-07J 1726.6J



For the butane fillings:

/\_3
2.50x10":c248. Ix209 I 22) = 13794 cycles

2.07) (1s.6)

Applying the Miner's cumulative damage rule then leads to:

10 7300
3449 13794

0.532 <1

The condition of the damage rule has therefore been met and the vessel/support

arrangement can be judged safe from a fatigue point of view.

6.7 Comments

An existing rather complex analysis for twin saddle supported vessels has been
parameterised and presented in a simple worksheet form. The maximum stresses
occurring in the region of the horn of the saddle are categorised as secondary
bending and as such uses 3/ (or 3Sn) as the design criterion when all loads are

considered.

It is also considered that, in those design cases where fatigue loading is specified, the
Zick analysis may be inappropriate and the proposed approach should be adopted. It
may also be used, to carry out a residual life assessment on existing plant, which have

been subject to fatigue loading.

It is hoped that, with the incorporation of the factors for saddle and end closure
flexibility, this method may prove the basis for a new hand calculation method suitable

for incorporation into vessel Standards and Codes.
The first form of this work was published in Reference [60], The design method

contained therein is programmed into a MathCAD spreadsheet in Appendix 9 of the

thesis.
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Cylindrical shell supported on twin saddles
Simplified hand calculation for maximum stress

\ \R
th- h
y
1rrri 111
TvSSv MillaUICIVIO '
Mean radius R R/t = AR =
Thickness t L/R = D/R =
Shell length L Note: The following limits apply
Saddle angle 6 01R <b <05R
Saddle width b A <L/4
(forL >20R & L/6 <A <U4)
Saddle distance A 25 <R/t <625
from tan line
Maximum stress equation factors:
Weight factor R TS
Saddle width factor Table 1 F
Saddle wrapround angle factor Table 2 Fe
ligid end factor Table 3
Saddle interaction factor Table 4 Fn
.ength change factor Table 5
. \ -V
Equation for at

¢Tb = 0.00052R* %% - 16¢°
Maximum stress at horn

OM - vb Fw.Fb.Fe.FA.FD .FL

Figure 6.16 Design method workingform
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7 FINITE ELEMENT ANALYSIS OF TWIN SADDLE
SUPPORTED VESSELS

7.1 Introduction
The advent of the finite element technique in stress analysis has allowed many industry

sectors to analyse complex structures that cannot be directly addressed using classical
mechanics approaches. The use of the technique is now widespread, this being due to
the ease of use of modem finite element codes together with the rapidly increasing
computing power-price ratio. Finite element analysis is presently perceived as the
standard “design tool’, capable of addressing the majority of stress analysis problems

where no obvious classical solution is readily available.

In the pressure vessel industry, finite element analysis is normally used in those cases
where ‘design-by-rule’ procedures are violated. A typical case is when a nozzle
diameter to shell diameter exceeds the prescribed limits, and compensation pads are
required, the additional material can only be applied to those cases where the d/D
ratio is less than 0.33. Therefore, it is the industry accepted practice to analyse
nozzles with pads with larger d/D ratios by finite element methods and thereafter
assess the resulting stresses and deflections against some alternative rules, such as
those stated in Annex A of BS 5500. These limitations address the possible failure

modes of the vessel and attempt to ensure the structural integrity of the vessel is

maintained.

The saddle support problem is also one of those problematic areas where a ‘design-
by-analysis’ approach can be adopted to provide accurate values for the stresses in
key areas as required for fatigue assessment. In cases where there is, for example, a
complex loading arrangement such as local loads or nozzles located near saddles or
the case of multi-saddle support systems, a solution using a finite element program is
normally considered. Although the application of finite element analysis to this class
of problem is considered attractive, applying the technology can be fraught with
difficulty. Not only that, ensuring the results are satisfactory and the subsequent

interpretation demands specialised knowledge and experience. Such problems arise
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especially when the stress gradients vary rapidly over such a small zone. It is these and
other difficulties that make the modelling and analysis of the stress systems arising at

the horn ofthe saddle support so complex.

To this end, it is suggested that the design methodology, developed in the earlier
chapters, presents a more ‘useful’ design tool which is preferred over standard finite
element analysis. This chapter, therefore, describes the difficulties associated with
constructing a suitable finite element model of a twin saddle supported pressure vessel
and interrogating the stress system obtained. In addition, a parametric model is
developed which allows the end effects of the pressure vessel head to be examined,

the results of which are described in a subsequent chapter.

In addition, comments are made regarding the suitability of the finite element
technique with respect to twin saddle supported problems. Although other
investigators have addressed the problem using finite element analysis, the results
produced have been qualitative rather than quantitative. However, the present work
attempts to provide guidelines for the modelling and analysis of such problems using
finite element systems and to comment on the suitability of the technique in
accommodating the support condition. All analysis carried out during this work was

carried out using the ANSYS Finite Element Systems from Swanson Analysis

Systems Inc. (now ANSYS Inc.)

7.2 Description of the Model

In constructing a suitable finite element model of a problem, it is imperative that the
analyst has a complete understanding of the expected stress distribution, especially in
the case of the twin saddle supported vessel. From the literature described earlier, the
stress distribution in the area surrounding the saddle horn shows that the maximum
stresses rise and fall very rapidly over a few degrees in the local vicinity of the saddle
horn. In addition, the effects of the saddle flexibility are known to have a considerable
effect on the location and magnitude of the maximum value.

In this study, the aim is to develop a satisfactory FE model which is capable of

assessing the influence that a rigid saddle has on the maximum stresses in the vessel,
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with particular reference to the magnitude and location of such stresses. In addition to
this, the option for introducing various head closure configurations will be
incorporated into the model in Chapter 8 In addition, much effort has been
concentrated into choosing the most appropriate element type and mesh design.
However, since the selected boundary condition can generate a mathematical ‘sharp
comer’, comparisons with experimental results are made in order to limit asymptotic

stress results to a physically realistic value. Figure 7.1 shows the element mesh used.

f f
;Saddle |
Edges

Figure 7.1 View oftwin saddle supported vessel with symmetry constraints and
zoomed view ofthe localfine mesh at the saddle horn
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7.3 Element Types

The choice of element in any finite element model should be such that the element
adequately describes the behaviour of the structure and makes use of any physical
attributes that the structure may possess. In this particular case, the vessel has the
property of being thin with respect to its radius and therefore, thin shell elements can
be selected to model the overall behaviour of the vessel, although, as shown below,
brick elements may be used. Careful consideration of the mathematical approach of
the element formulation must be made when selecting the element for a given analysis.

In appropriate use of element will undoubtedly result in spurious results being

obtained.

In the ANSYS system, at Revisions 4.3A through 5.3 (the versions used throughout
the duration of this work), the general thin shell elements available comprise STIF63
and STIF93 (now renamed SHELL**, where ** represents the originally designated
element number). More recently, a more modem element, STIF43, has been
introduced to the ANSYS suite of elements and provides additional plasticity
capabilities that were not previously available. STIF63 is a four noded elastic
isoparametric quadrilateral shell element with a linear formulation, whilst STIF93 is an

eight noded elastic isoparametric quadrilateral shell element with a quadratic

formulation ~ as shown in Figure 7.2.

SHELL 63 SHH193

4 noded shell 8 noded shell
linear displacement quadrat ic displacement

OLIDS SOLID%

8 noded brick 20 noded brick
linear displacement quadrat ic displacement

Figure 7.2 Standard element types usedfor pressure vessel analysis
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It is worth recalling that the 4 noded shell and the 8 noded brick have a linear
displacement formulation and the 8 noded shell and the 20 noded brick have a
quadratic displacement formulation. The order of the interpolation function affects
the variation of the function across the element. This becomes even more important
when considering stress results since these are essentially the derivative of
displacement results, thus linear displacements' become constant stress and quadratic
displacement becoming a linear stress variation.

It is worth recalling that these elements require a numerical integration routine to
enable calculation of the displacements. The most common integration routine used in
finite element codes is the Gaussian Quadrature rule and therefore the resultant
values for the function are always interior to the element nodal points. These locations
are known as Gauss points. The higher the order of quadrature, the closer the result

at the Gauss point is to the actual value at the node.

The most important difference between the two element types is such that modelling
using the STIF63 element produces an assemblage of flat shells which discretise the
curved surface, whilst meshing using STIF93 curved shell elements produces a better
approximation to the true geometry. However, the penalty for implementing the eight
noded curved shell element is that it generates considerably more degrees of freedom
and hence requires more computing power and disk space. All shell elements used
possess three translations and three rotational degrees of freedom. Fuller descriptions

of the theoretical basis and restrictions of these elements can be found in the ANSYS

User Manuals.

A test case was run to investigate the level of accuracy, performance and run time for
a given mesh density but populated with two different element types. Using the mesh
described in Figure 7.1, with a vessel radius of 500mm, length = 36R, thickness of
10mm and saddles of angle of 120° located at the quarter points. The STIF93 element
was therefore selected because of accuracy, albeit greater run times resulted, and this
element type was used throughout this work. The following table compares various

degrees of mesh refinement using STIF63 and STIF93 elements.
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Model No. Element No. of Maximum Relative

Type Elements Stress Run Time
1 STIF63 3320 -396.5 N/mmz2 1.0
2 STIF93 3320 -465.2 N/mmz2 2.6

Table 7.2 Element performance values (comparative timesfor an SG Iris Computer)

As the maximum stresses are known to be located in the region of the horn of the
saddle, a concentration of elements was introduced into this area - Figure 7.1. Since,
the stress distribution varies both longitudinally and circumferentially in this region, a
regular grid of rectangular STIF93 elements were generated in order to ensure that
the shape functions would behave as accurately as possible. Convergence was
checked by increasing the number of elements in the regular grid from two four noded
shell elements either side of the saddle centreline to a final model comprising four
eight noded shell elements located symmetrically about the horn centreline. The level
of discretisation was necessary since the stress gradients are asymptotic at either end

of the saddle horn.

Figure 7.3 Zoomed plot showing mesh refinement and position ofresults lines
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Figure 7.3 shows the finite element mesh in the region of the saddle contact area. The
top left corner of the saddle is located at the intersection ofthe A-B and C-D lines. It
can be seen that there is a regular mesh of eight elements across the width of the
saddle and that the region directly above and below the saddle horn centre contains a
very regular group of rectangular undistorted elements. In addition, the saddle contact

area itself is meshed with regular shaped elements in order to maintain their

performance.

Previous work by Widera, employed finite element analysis but it is the present
authors consideration that the model was not sufficiently refined to ensure accurate
results. This is principally due to the rapidly changing bending stress field in the
vicinity of the saddle horn edges. The total quarter model size comprised some 3320
elements representing the vessel. In the saddle support region, it was assumed that the
radial, tangential and axial displacements were zero, that is to say, the support was

totally rigid. The choice of boundary condition is discussed later.

The finite element model file, which was created, is listed in Appendix of this thesis.
The finite element input file shows clearly that the model used is fully parametric. The
parametric language contained within the ANSYS system allows a model to be
created in terms o f ‘parameters’ rather than being defined by explicit fixed co-ordinate

locations, as can be seem from the first few lines of the input file,

[PREP7 C*** DEFINE PARAMETERS
|GET,40,testVESSELI,F43 TKS=10 jShell thickness = 10mm
AFAC=9 TKH=10 jHead thickness = 10mm
:L90 R=500 iRadius = 500mm
IPREP7 ANG=60 Saddle half wrapround angle=60
Inopr LFAC=36 !Length factor
ITITLE,TWIN SADDLE VESSEL L=LFAC*R {Total vessel length=36R
C *** Controlled meshing C*** AFAC=9

C *** Fixed saddle angle of 60 degrees A=AFAC*R

C*** Length factor  LFAC BFAC=0.2

C *** Saddle position AFAC B=BFAC*R

C *** Saddle Width BFAC B2=B/2

C *** Thickness - shell TKS L2=L/2

C *** Thickness - head TKH L2A=L2-A

For the purposes of this model, the following syntax is used:
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TKS - Shell thickness variable

TKH - Head thickness variable

R - Shell radius variable

ANG - Saddle halfangle variable

LFAC - Length factor multiplier (L=LFAC*R)
AFAC - Saddle position, A, multiplier (A=AFAC*R)
BFAC - Saddle width, B, multiplier (B=BFAC*R)
REF1, REF2 - Various mesh refinement parameters

& AREF

All geometry definition can be achieved by assigning numbers to the above parameters
and running the model input file. The geometry is automatically created and meshed,
ensuring that the regular grid is maintained and that as the saddle is moved (by
altering the value of AFAC), all element sizes and shapes, are within the ANSYS
allowable limits for shape, taper and skew.

Multiple runs are carried out using the ANSYS macro language. Samples of this are
shown in Appendix 7 and these listings can be modified to allow any or all of the

parameters to be the main variable when undertaking a parameter study.

7.4 Boundary Conditions and Loading

The boundary conditions associated with the saddle support problem make use of the
two planes of symmetry which the vessel possesses. These planes lie along the axis of
the vessel and at the profile located midway along the vessel length. Therefore, only
one quarter of the vessel need be modelled and suitable symmetry boundary
conditions are applied to ensure no out-of-plane displacements or rotations can exist.
In order to investigate the stress distribution in this area, it was decided, on the basis
of needing to derive results suitable for comparison with the Fourier series method,
that a rigid saddle constraint should be adopted. This constraint, in reality, can be
perceived to be a concrete or heavily reinforced saddle configuration with extensive
support in the radial direction. Another justification for such an approach is that, in
real situations, saddle construction can be quite variable, even though there exists a
British Standard which gives guidelines and recommendations on saddle
dimensioning. Therefore, it is quite possible that fabricators will produce, by accident
or ignorance, an overly stiff saddle, which may therefore be considered as rigid.

Therefore, in order to represent the ‘worst-case’ scenario, a rigid boundary is adopted
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which will generated the largest maximum stress values, for comparison with the more

ideal case assumed in the parametric study.

The mesh is also capable of solving various other problems including the
incorporation of a flexible saddle, various configurations of ‘rigid’ saddle and the
inclusion of the interface pressure profile generated by the SADDLE program as an

initial condition.

There are a number of possible boundary conditions, which may be applied at the
vessel saddle juncture. Firstly, the entire contact area may be fully fixed in all six
degrees of freedom. This can be thought of as ‘gluing’ the saddle contact region to a
rigid surface. The second option would be to only fully fix the saddle edges whereby
contact is only enforced at the welds. Other options would allow the rotational
degrees of freedom to be active and therefore introduce a measure of flexibility into
the shell. However, it became clear that fully fixing the entire area produced results,
which were much higher than those of the Fourier series analysis, whereas only fixing
the edges produced distorted stress patterns. Therefore, in order to produce realistic
stress results appropriate to the welded edge with a rigid foundation, it was found that
the most effective boundaiy condition arose when the nodes at the edges of the saddle
and/or at the saddle profile located by horn centreline were chosen to be constrained.
For the present work, only the saddle and horn edges were constrained. The fully

parametric ANSYS input file allows any of the above boundary conditions to be

employed.

C*** Constraints acting on areas arasel, 121,167

csys,ll C *** Get nodes from areas
nrot,all narea, 1

csys,0 d,all,all,0

syrnbc,0,1,L2 nail

symbc,0,3 arall

C *** Displacement constraints - Please select C*** Add in load option
C *** Select areas only apsf/all(,,0,2,R*2,9.81E-6
C *** Left Hand Part wsort,x

arsel, 1,47 afwrit

C *** Right Hand Part C***finish
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C*** Constraints acting on lines C*** Add in Right Hand Edge

csys,ll Isasel,,240,250,10

nrot,all Isasel,,257,290,3

csys,0 Isasel,, 295,299 ,4

symbc,0,l,L2 Isasel,,304,369,5

symbc(0,3 C *** Optional Centreline

C**Displacement constraints-Please select Isasel,,4,56,4

C *** Select edges only Isasel,,25,45,20

C *** Left Hand Edge Isasel,61,152,7

Isrsel,,2,54,4 C *** Get nodes from lines

Isasel,, 13,29,16 nline,l

Isasel,53,63,10 d,all,all,0

Isasel,, 70,147,7 nail

C*** Add in Top Edge Isall

Isasel,, 148,151,3 C*** Add in load option

Isasel,,370,372,2 apsf,all,,0,2,R*2,9.81E-6
C***finish

It is noted from the above listings that all nodes are rotated into the correct
cylindrical co-ordinate system allowing the appropriate boundary conditions to act in
the proper manner. Nodal rotation also implies that the results will be output such

that radial, circumferential and longitudinal values will be available after the analysis is

complete.

The head closure region of the model was designed to have various options, to allow
the flexibility ofthe head to be examined. The results of these studies are presented in
Chapter 8. However, in the present series and in order to make comparisons with the
theoretical analysis of the SADDLE program, the vessel head was defined as fully

rigid, i.e. the cross section of the vessel remains circular at the end of the vessel.

7.5 Automatic Mesh Refinement and Convergence

During the investigations of the effects of the flexibility of the dished head, it was
noticed that warnings associated with element distortion were flagged when the
saddle moved nearer the end. This was caused by the mesh refinement definition
(REF1, REF2 and AREF) which assumed a ‘fixed’ level of mesh refinement in the
saddle region which was based on the dimensions associated with the initial starting
point of the parameter study ie. A=9R, for a 36R long vessel. However,
modifications to the file were introduced which allowed the meshing routines to
improve the element density in the transition regions as and when required as the

saddle region moved towards the end of the vessel, i.e. when A/R<0.5 then the
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element mesh density inside the fixed zone alters in proportion to prevent element

distortion. This check is incorporated at the end ofthe ANSYS input file as shown:

*IF,AFAC,LE,2.0,: L95
AFAC=AFAC-2.0
*GO,:L90

:L95
*IF,AFAC,LE,0.6,:L96
AFAC=AFAC-0.5
*GO,:L90

:L96
*IF,AFAC,LE,0.3,:L97
AFAC=AFAC-0.3
*GO,:L90

:L97

IEOF

7.6 Finite Element Results

The resulting stress gradients are shown in Figure 7.5 for the stress intensity values
plotted along the axial and circumferential directions as described by Figure 7.3.
These figures show that the stress gradient changes dramatically in the region of the
horn apex. The magnitude and location of these twin peaks varies depending on the
location of the saddle on the vessel and the results presented herein reflect only the
magnitude irrespective of location. It is noted that over-constraining the model
generates asymptotic values from a finite element analysis, since in this treatment, the
saddle is represented as a rigid structure. These ‘peaks’ cannot have been detected
experimentally due no doubt, to the difficulty in obtaining strain gauge results
adjacent to the saddle horn weld and to the fact that real saddles, however rigid they
may appear, are slightly flexible in the saddle horn region. The distribution of stress
intensity shown in Figures 7.4a and b, point toward asymptotic values at the location
representing the saddle edge. The magnitude of the stress will tend to infinity as the
mesh is repeatedly refined and as the stress gradient continues to rise. The
experimental value is superimposed onto the finite element output and corresponds to
the average stress across the saddle width, as shown in Figure 7.4a. These results
correspond to the vessel dimensions detailed in section 7.3, page 174, with a reduced

specific gravity of 0.1.
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st N/mm: sl N/mm2
207.3

187.1
166.8
146.6
126.3
106.1
85.8
65.6
453
251
4.8

Stress Intensity Variation in Horn Region Stress Intensity Variation in Horn Region
across Axial Distance A-B (Figure 7.3) around Profile C-D (Figure 7.3)

Figure 7.4a,b Stress intensity gradients in axial and circumferential directions

Figure 7.5 shows a typical colour contour plot of the stress intensity values found at
the saddle horns. The positions of the boundary conditions applied to represent the
rigid saddles are shown as blue triangular constraints. The highly localised nature of
the resulting stresses at the horn is clearly shown. The outer surface is plotted and the
maximum compressive value (MN) is shown as blue. Red contours represent areas of

tensile stress.
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Figure 7.5 Contour plot of outside circumferential stress at saddle horn
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7.7 The Influence of Rigidly Fixing the Saddle Edges -
Comparing FEA with Fourier Series

The contour plot of the stress intensity in the saddle region detailed in Figure 7.5
shows clearly that the maximum stresses are located at the horn. It is noticed however
that high stress maximums appear at both comers of the saddle. These are mainly due
to the method of finite element discretisation and the chosen method of constraining
the shell. The fully fixed constrained condition was selected to replicate the boundary
condition employed within the SADDLE program. In the SADDLE program, the
saddle centre profile is constrained and the saddle width supported by the appropriate
uniform interface pressure. The finite element equivalent of a single constrained
profile at the saddle centreline is too severe and therefore the saddle edges were fixed,
that is, only the nodes at the edges of the saddle were constrained. The practical
implication of this is that at the juncture between the loading lines (i.e. each comer of
the saddle), the applied force is distributed over a point (i.e. a very small ‘area’)

which consequently generates high stresses. These stresses do not arise in real

situations.

The main problem in making direct comparisons between the finite element results
and the Fourier series analysis, is that the SADDLE program assumes a uniformly
distributed interface pressure across the width of the saddle. The results of the finite
element analysis tend to show that this is probably not the case, at least for the case of
the rigid saddle. Therefore, a graph of the average stresses on each patch has been
drawn (see Figures 7 6-7.8), for Cases 1-3 as detailed earlier. For each graph, the

mean stress value was evaluated and compared with the SADDLE program, the

BS5500 and the experimentally derived values.
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Figure 7.6 Stress distribution across saddle horn (Case 1)

Figure 7.7 Stress distribution across saddle horn (Case 2)

Figure 7.8 Stress distribution across saddle horn (Case 3)
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According to these three graphs, it is noticed that the results obtained using BS5500
(green triangles) are very close to the experimental values found for vessel supported
on flexible saddles (brown solid circles). Indeed, they are even slightly lower than
these values for Case 2 (Figure 7.7). Case 3 confirms one of the main points raised by
Tooth et al, indicating that it appears most likely that Zick used flexible saddles
during his experiments. For Cases 1and 2 (Figures 7.6 and 7.7), the results obtained
experimentally for the rigid saddle lie between the finite element analysis and the

SADDLE program. Those results obtained from the flexible saddles are much lower.

As for Case 3 (Figure 7.8), both the finite element analysis and the SADDLE program
calculated values are higher than those found experimentally for a rigid saddle.
However, the differences can be attributed to the flexibility of the particular saddle
used in the experiment. This may mean that if the experiments were conducted with a
fully rigid saddle, the values found would probably have been higher than results
obtained by both the SADDLE program and more in agreement with those predicted

from the finite element analysis.

Since the aim is to investigate the rigid fixing of the saddle edges, a lower bound finite
element analysis line has been drawn onto each of the three graphs. It is noticeable
that the lower bound value from the finite element analysis and the value from the
SADDLE program are found to be very close to one another. However, the
exceptions to this, of course are the two peaks. These are attributed to the method of
modelling and to the over constraint applied by the finite element boundary
condition. With the exclusion of the two peaks, this comparison therefore tends to
show reasonable agreement the results of the SADDLE program and the subsequent
design approach generated in Chapter 6 of this work. In addition, since the SADDLE
program results are closer to the values obtained for the rigid case than to those
measured for the flexible one, this suggests that the new design method may be
applied to a wider range of vessels and support configurations where a suitable

flexibility factor may not be available, i.e. the approach is conservative.
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7.8 Nature of Maximum Stress

Using a design-by-analysis (DBA) approach for the assessment of stresses that are
calculated by using finite element analysis is fraught with difficulty. Since the 1960's,
the predominant tool for DBA was elastic thin shell analysis and as such, the rules
employ many of these concepts, especially in the stress categorisation procedures
which are required to assess the integrity of the vessel. Many researchers have
attempted to develop robust procedures for use with finite element analysis which will
either separate stresses into the recognised membrane and bending shell type stresses

or to generate procedures for limit load evaluation.

Finite element analyses based on shell elements readily provide membrane and
membrane plus bending component stresses. Results from this analysis type can be

easily assessed using code procedures.

In some cases, where through thickness variations may not be linear, solid, brick type
elements must be used. Analyses where solid continuum elements based on elasticity
theory are employed do not supply shell type stresses automatically and therefore this
makes it more difficult to fit into the traditional assessment method. Therefore,
linearisation procedures to extract constant (membrane) and linear (bending) stress
distributions have been suggested but have some limited applicability are not valid for
all pressure vessel components. To date codes and standards authorities have not
settled on one preferred method and work is on going to this end. However, there are

some simple approaches available, which may point towards the nature of the

resulting stresses.

Reduced Modulus Methods
The reduced modulus method was originally developed as a stress categorisation tool

for piping systems but was later extended to cover a wider range of pressure vessel
applications. These methods attempt to classify stresses by comparing the simulated
inelastic response of a material with ideal primary and secondary stress. Many

researchers have contributed towards this work. Most notably, Dhallal®2@L who, while
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assessing clamped pipes, found that stresses tend to redistribute due to the presence
of the geometric non-linearity and thus could be considered as secondary, with
secondary stress limits applied. In this, stress categorisation was not actually
undertaken, rather the effect of local inelasticity was examined by iterative elastic
analyses in which highly loaded regions were systematically weakened by reduction of
the local modulus of elasticity in order to simulate the effect of local inelasticity. This
approach was less time consuming than that of a full non-linear analysis. In addition,
the need for complex non-linear material models was also removed. Dhalla extended

his work to cover more general pressure vessel components.

RocheI/ll, Marriot'72, Seshadri |73,[/4Jand Mackenzie & BoyleI5®L have all contributed
extensively to the development of reduced modulus methods. A full list of references
can be found in a literature review undertaken by Chani8l These include the
development of stress classification procedures, lower bound limit load theorems,
GLOSS analysis (generalised local stress strain analysis) and elastic compensation
methods. The basis of each of the methods is similar to Dhalla's approach although
variations in procedures and implementation have proved complex and time
consuming. Many individual pressure vessel components have been assessed and
presented in the literature. By considering many geometrical variations, many of the
methods noted herein have been shown to have strengths and weaknesses. Even

today, ASME, and other code writing bodies, have not wholly implemented reduced

modulus methods.

Normalised Stress Strain Plot
Using a procedure developed by Dhalla, the nature of the stresses arising at the saddle

horn is examined. In this, the procedure is based on apportioning elastically calculated
stresses at highly loaded regions into primary & secondary components and applying
appropriate stress limits to these stresses. Dhalla's method is summarised as follows:

Perform an elastic analysis and identify the most highly stressed regions of the

structure noting the effective stress and strain, <j\ and £\
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Estimate the inelastic strain, ePcorresponding to the elastic calculated stress. This is
generally taken to be a rough estimate such as 1% membrane strain as defined in the

ASME code.

Calculate the minimum secant modulus & assign to the most highly stresses zones

Fs-Z1

Perform at least three elastic analyses assuming reduced elastic moduli varying
between the original modulus, E, and the minimum estimated modulus, Em, for the
most highly stresses regions. This establishes a trend in relaxation due to the
simulated inelasticity.

Plot the effective stresses and strains for the original and reduced modulus analyses to
define several points, R for each reduced analyses. Lines, defined as mixed response
lines, are drawn between the elastically calculated point A, and the reduced points, R

on the normalised plot, shown as Figure 7.9

Normalised strain
W

Displacement
Normalised stress control

Figure 7.9 Normalised stress-strain plot (after Dhalla)
Dhalla defines the mixed response in terms of the rotation, 0. The rotation with

respect to the 100% displacement controlled line determines the percentage of elastic
stress, which should be classified as primary or secondary. If 0=0°, then the stress
component is taken as 100% displacement controlled, hence 100% secondary stress.

If 0=90°, then the stress is taken as 100% load controlled, hence 100% primary

stress. For a mixed response, the amount of primary stress is calculated as PSF=Q/90.
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Applying this to the saddle problem for Case 3 geometry, results in the following

diagram being constructed (Figure 7.10)

Figure 7.10 Normalised stress-strain plotfor saddle supported cylinder (Case3)

Examining the gradients of each line allows an estimation of the nature of the stresses
to be made.

Membrane stress, ct,

€ =arctan 322 =89.4% primary and hence 10.6% secondary

In this case. 89.4% of the membrane stress value, om, should be compared with the
primary limit./ The remaining 10.6% has the characteristic of a secondary stress.
Neither BS 5500 Annex A nor ASME VIII Division 2 makes mention of secondary
membrane stress category which often exhibits the same characteristics as the
secondary stress category. Since the membrane stress has a predominately primary

characteristic, for the case shown, the following limits should be observed.

0.894crm< /

A f
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Membrane plus bending stress, a,,”b

, 22
(,, =arctan 02 =89.4% primary and hence 10.6% secondary

In this case, 62.76% of the membrane plus bending stress, has the characteristic
of a primary stress and this contribution should be limited to 1.5/ Thereafter, it
would appear that the remaining 37.24% could be considered as secondary and be
limited to 3f However, since the 3/ limitation is intended to include the primary
component, then the entire 100% of the membrane plus bending stress must be
limited to 3/ not solely the fraction, i.e.

0-6crmi < 1.5/
N3/

7.9 Run Times
One of the important factors, which must be considered when choosing a design

method, is the time for calculation. During this study, timings were measured in order
to compare the relative performances of the finite element analysis and of the
SADDLE program using two different reasonably powerful computers. The
SADDLE program was run using 600 and 200 terms in each of the respective Fourier

series (m and n numbers).

In Table 7.2, 'per case' for the saddle PROGRAM is a series of results for a single
vessel with a line of results at 10 subdivided intervals. For the FEA result, this

pertains to the quarter model described previously.

Computer Type SADDLE program Finite Element Analysis
486 PC N/A

SUN Sparc 1+ 45 min / case 60 min / case

APOLLO 12 min / case 35 min / case

Table 7.2. Solution run times

189



According to this table, running the SADDLE program appears somewhat faster than
the equivalent finite element run. And it may be stated that as the results obtained
with the SADDLE program are comparable with those found with the finite element
analysis, the first method appears to be more appealing than the second. Indeed, since
the proposed design method of Chapter 6 yields results which are almost identical to
the SADDLE program, and the new method may be mounted on a simple PC or hand
held calculator, it is believed this is the most beneficial method of providing an

accurate solution.

At the time of writing, powerful computers are still not wide spread in the industry
although they are becoming more commonplace. Indeed, the main problem with
employing finite element analysis in most UK design offices is the lack of experienced
finite element analysts. However, if the proposed design method were used, then
typically, thetime taken to mount on a spreadsheet is less than 1 hour and thereafter
solutions are available in seconds. Hence, if an analysis route is being considered
based on both time of calculation and the degree of accuracy expected, then the

design method presented herein appears to be the best choice over FEA methods.
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8 THE INFLUENCE OF THE FLEXIBILITY OF THE VESSEL END
ON THE TWIN SADDLE PROBLEM

8.1 Introduction

In previous chapters, a design methodology and worksheet have been developed for
twin saddle supported cylindrical vessels in which one of the major assumptions is
that the cylinder has totally rigid ends. In practice, dished ends are usually formed into
a hemispherical, torispherical, ellipsoidal or flat profile, each possessing some
degree of flexibility. This is a longstanding problem, and to date there is no robust
approach present for designers to assess the effect of the end closure on the stresses
at the saddle horn. Results of extensive finite element studies are presented in this
chapter which demonstrate the influence of the dished end flexibility on the maximum
stress in the vessel at the location of the horn of the saddle. This allows the generation
of a "'newflexibility factor’ for incorporation into the simple design method already

proposed. The factor is given in Equation 6.2 as Fe.

The analysis of pressure vessels supported on twin saddles is generally performed
using a method first presented by Zick. This method employed a modified beam and
ring analysis which, in turn, yielded a mathematical model for the vessel and saddle
arrangement. The modifications were such that the predicted values of the method
agreed with the experimental values available at that time. As indicated earlier, recent
work by Tooth et al has indicated that Zick’s treatment for the vessel, full of fluid,
predicts stresses which are in reasonable agreement with experimental values only
when a flexible saddle is used. When a more rigid saddle is employed, the method
underestimates the maximum stresses which occur in the vessel. These stresses,
located at the horn of the saddle on the outside surface of the vessel, may in some

cases have a magnitude of twice the value predicted by Zick’s method.

Advances have been made in understanding the stress systems associated with
support regions of these vessels since Zick’s treatment was first proposed. An

alternative analysis method proposed by Tooth et al, has shown that the twin saddle
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support problem may be adequately modelled using shell analysis and a double
Fourier series approach. In this, the specified loadings of vessel self-weight, liquid
contents and pressure loadings are represented by double Fourier series. The
interaction forces and the radial and tangential interface pressures, between the vessel
shell and the saddle support are the major unknowns of the problem. These forces are
determined using classical small displacement shell equations for the vessel and by
enforcing compatibility and equilibrium at the shell/saddle interface. The displacement

functions are also represented by double Fourier series of the form,

u= cos(”™)cos(#0)

v=Z Z vmsin("®)sin (D

w = sin(”™)cos(n<p)

m=1n=0 n

(8.1)
The choice of this type of expansion for both the load and displacement indicate that

the loading system is symmetric with respect to the generator passing through the
nadir of the vessel at = 0. They also imply that certain boundary conditions must
exist at the ends of the vessel. Since the origin of the co-ordinate system is taken to
be at one end of the cylinder, all the Fourier expansion terms or their derivatives,

containing the term sm(mnx/L), vanish at the ends of the cylinder. This implies that,

» The ends cannot deform in the plane of their profile
* No rigid body displacement of the ends can occur
* The ends cannot carry applied axial loading

» Generators are free to rotate in a plane normal to the profile

If the vessel ends conform to the above boundary conditions then the Fourier
expansions provide a complete solution to the governing differential equations of the

problem, as detailed by Duthie and ToothTd In practice, however, there will be some
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deviation from this theoretical boundary condition since most practical pressure
vessels utilise hemispherical, torispherical or semi-ellipsoidal dished ends. In some
cases, however, a vessel may have an end closure which maintains the circularity and
is very rigid compared with the vessel flexibility. In such cases, for example a high
pressure vessel closed at the ends by a thick bolted blank flange, the vessel shape will
remain completely circular under loading and the boundary conditions noted above
are satisfied. In this situation, plotting a graph of displacements and stresses along the
vessel axis would show that the values tend to zero at the ends of the wvessel.
Realistically, there will be some value of stress and displacement allowed at the end of
the cylinder, due to the actual flexibility of the dished end. To adequately represent

the vessel behaviour these effects must ideally be incorporated into the analysis.

8.2 Treatment in the British Standard - BS 5500

The importance ofthe end flexibility becomes increasingly important when the saddle
support is located near the end of the vessel. Zick recognised that there would be a
‘stiffening effect’ present when the saddle was situated near to the vessel end. In his
analysis, it was assumed that the shell could be represented as an arch loaded with a
shear stress. Thereafter, the distribution of circumferential bending stress resultant can
be found and in all cases, the maximum value was found to be at the horn of the
saddle. The value of this moment can be expressed in the following form, using BS
5500 notation,
M,,=KtWR

(8.2)
where WA is the load carried by one saddle and R is the vessel radius. The value K@ is
given in the table below (Table 8.1) for saddle positions A/R > 1.0. If the saddle is
located near the vessel end, then substantial stiffening is anticipated and these values

are reduced by a factor of 4 in the region A/R <0.5. Intermediate values are found by

linear interpolation.
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A/R Saddle Angle 0 (degrees)

120 135 150 165
<0.50 0.0132 0.0103 0.0079 0.0059
> 1.00 0.0528 0.0413 0.0316 0.0238

Table 8.1 Values ofK6for use in BSS500 equation

For vessels of length greater or equal to SR, the bending moment generated at each
horn is assumed to be supported over an effective vessel length of 4R. The saddle also
supports a direct load which is supported over the portion of shell stiffened by contact

of the saddle, i.e. over a distance of (6i+10/). Therefore, the total maximum

circumferential stress,/«, at the horn is,

g 3K WK
4/(6,+10/) ~KW

[« = forL/R>8

For shorter vessels, the bending moment is assumed to be carried by 1J2.

This results in the following equation,

Vi © forL/R< 8
4/(6, +10/) Lt1

(8.3a,b)
In these equations, the symbols are defined as follows:
L = vessel parallel length

/ = vessel wall thickness

b\= saddle width

8.3 Present Treatment

From work detailed in Chapter 6 and in Reference [60] by the present author, the
maximum stress at the horn can be expressed by the use of a *basic stress’ quantity
which represents the stress for an imaginary vessel of length L—36R chosen such that
the saddle horn stresses evaluated at this location are free from the influence of the
vessel ends. Thereafter, a detailed study was carried out to enable the various
controlling parameters to be isolated and quantified. An equation of the following

form was employed using factors’ to represent the influences of the wvarious
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parameters and to allow the basic stress to be modified and related to the

configuration of the real vessel under analysis.

The maximum stress at the horn can be expressed as,

cnx = crb.Fw.Fb.FO.FA.FD.FL

where,

Fw = factor associated with the vessel weight

Ft, = factor associated with the saddle width

Fqg = factor associated with the saddle angle

Fa = factor associated with the saddle position
Fo = factor associated with the saddle interaction

Fi = factor associated with the vessel length

(8.4)
The stress evaluated by this equation is the maximum circumferential stress on the
outside surface of the vessel. Its position is not always located at precisely the same
geometric location, this depends on the configuration under consideration. In some
cases, the maximum stress location can be situated above or, more often just
underneath the saddle horn position. Indeed, the maximum stress location also moves
axially across the saddle horns between the two saddle edges. This depends on the
position of the saddle in relation to the vessel end points. If the saddle is located at
the vessel quarter points, the maximum stress location is slightly offset from the
saddle centre profile in the direction of the vessel end. As the saddle position is
located nearer the end of the vessel, the maximum stress location moves across the

saddle horn edge towards the inside edge of the saddle plate i.e. closer to the mid-

span position.

However, using the rigorous shell analysis, the predicted maximum stress rapidly
reduces as the saddle position is located the vessel end, since the Fourier series

solution demands zero displacement at the ends of the cylinder.
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8.4 Modelling the Flexibility of the Vessel Dished End

The flexibility of the vessel end has been analysed using finite element techniques.
Four configurations of an end have been studied and their flexibilities characterised.
These comprise, hemi-spherical, semi-ellipsoidal (2:1), flat and rigid heads. The local

finite element mesh for each head is shown below in Figure 8.1.

Figure 8 la-a Finite element meshesfor the various head types

In addition to the vessel end being modelled accurately, due consideration must be
given to the local mesh in the region of the saddle horn. Previous work by
Widerall819, employed finite element analysis but the present author considers that
the model was not sufficiently refined to ensure accurate results. This is principally
due to the rapidly changing bending stress field in the vicinity of the saddle horn
edges. Although Widera modelled the end explicitly, there is no indication that he
investigated the influence of the end closure stiffness. The mesh used in the locality of
the saddle is shown as Figure 7.1. In the saddle support region, it was assumed that
the radial, tangential and axial displacements were zero at the saddle edges, that is,

the support was totally rigid at these locations.

8.5 Parameter Study

Using the local mesh geometries described in Chapter 7, with the vessel length equal

to 36R, a parameter study was carried out for the four head configurations. The range

of thickness variations encompassed the following ranges,
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50<—>300 @ 05<-"+ >20

t tshell

(8.6)
where Uead and t3wru are the end and shell thicknesses respectively. The saddle position
was varied from A=9R which is approximately the quarter point for the theoretical
vessel free from end effects to a distance of A=Q3R which brings the saddle location
to a position very near the vessel end weld. The symbol A is equal to the saddle centre
profile to the end of cylindrical length of the vessel. The present analysis assumes the
default width of saddle is 0.2/?. Each analysis was solved using the ANSYS finite
element program using 3320, 8 noded higher order quadratic shell elements on a
Silicon Graphics Iris workstation taking approximately 15 minutes CPU time for each

run. The details ofthe procedure were outlined in Chapter 7.

8.6 Finite Element Results

From the results of the parameter study, a graph of ‘end flexibility factor’, Fe was
obtained for a range of different saddle positions when the RJt ratio was varied from
50 to 300, for the three head types referred to in Figure 8.1. Typical output values for

the maximum stresses are shown in Tables 8.2 and 8.3. for the cases where R/t=100.

Head Type ~ A=9R  A=7TR  A=5R  A=3R A=IR  A=05R

Rigid -199.4 -182.1 -184.5 -179.6 -164.9 -155.6
Flat -202.6 -188.4 -192.6 -188.3 -167.7 -155.1
Ellipsoidal -203.6 -188.3 -193.8 -191.7 -176.1 -166.4
Hemispherical -205.1 -188.4 -195.3 -193.1 -181.3 -171.1

Table 8.2 Maximum stress valuesfor various saddle positions and head types
(R/t=100) in N/mm?2

tlts A=9R  A=7TR  A5R  A=3R A=IR  A=05R
05 2036  -1884  -1939  -1919 -176.6 -166.4
0.75 2036  -1882  -1939  -1918 -176.4 -166.4
10 2036  -1883  -1938  -1917 -176.1 -166.4
15 2036  -1882  -1938  -1916 -176.1 -166.4
2.0 2036  -1882  -1936  -1914 -176.0 -166.4

Table 8.3 Maximum stress valuesfor various saddle positions and thickness ratios
for a semi-ellipsoidal head (R/t=100) in N/mm?2
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It is noted that the values appear to be independent of the head type used and also of
the head to shell thickness ratio within reasonable limits. In view of this, Figure 8.4

can be plotted - it is applicable for all head types and head to shell thickness ratios.

Figure 8.4 Graph ofendflexibility factor, Fe

The end flexibility factor is derived by producing a multiplication factor for the basic
stress for the saddle position at AIR=9, i.e. the distance at which the saddle horn
stress is free from the influence of the end. This factor can now be incorporated into

Equation 6.2 and the rigorous shell analysis detailed earlier to represent the influence

of the vessel end.

The behaviour at each R/t ratio can be clearly seen and, on comparing the reduction in
stress with that predicted by Zick, it is clear that Zick’s approximation is only valid
for larger R/t ratios. These large R/t ratio vessels are inherently more flexible and the

influence of the end can be effective at distances greater than the A/R=1.0 proposed

by Zick.
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The analysis procedure was carried out for the three head types detailed earlier. In
addition, a rigid head was modelled using constraint equations which simulated a head
representing the Fourier series constraints. This end type had the same effect on the

saddle horn stress as the three configurations.

The ratio of the shell-to-head thicknesses was also varied for all cases covering the
range from 0.5 to 2.0. However, it was clear from the results of the analysis for this
study that the variation in thickness had no significant effect on the magnitude of the
saddle horn stress intensity. This was seen to be the case for all end types.

The reason why the variation in shape and thickness may have had little influence on
the maximum stress may be attributed to the highly localised nature of the stress at
the horn. In other words, since maximum value is significantly larger than the general
stress field in which it is located, the asymptotic nature of this distribution may be

unaffected by the stiffness changes elsewhere.

8.7 Discussion
The flexibility of a variety of pressure vessel end closure types has been examined

using finite element analysis. A flexibility factor has been identified and presented in a
useful form for inclusion to a design method presented previous by the author. This
method has particular relevance to those designs where good stress data is required
for fatigue assessments. Additional comments have been made with regard to the

conventional design procedure of Zick and some guidance is provided on areas where

that method is inadequate.

This work is published by the author as Reference [61],
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9 THE INFLUENCE OF THE SADDLE FLEXIBILITY ON THE
STRESSES AT THE HORN OF THE SADDLE SUPPORT

9.1 Introduction
The twin saddle supported cylindrical vessel is subject to a range of externally applied

forces (internal pressure, liquid loading and self-weight) and reactive interface forces
are generated at the saddle supports. The key to understanding the behaviour of the
support problem lies in deriving these interface forces. Their magnitude and
distribution depends upon the vessel flexibility and the rigidity, or otherwise, of the
support. In earlier analytical and experimental work by Tooth, the configuration of
the support was found to have a crucial effect on the stress in the vessel, primarily in
the horn region of the saddle. From earlier experience, it is known that the vessel

stresses can be reduced by up to 50 per cent when a flexible saddle is employed.

As a supplement to the previous work of Chapter 6, it is the aim of this chapter to
expand on theoretical treatment shown earlier and to show how the flexibility of the
saddle may be incorporated into the Fourier series analysis. The generation and
important factors in successfully determining the flexibilities of a variety of saddle
configurations are examined in detail using the ANSYS finite element program and

some simple indication of the benefit of employing a flexible saddle is outlined.

9.2 The Interface System for Flexible Saddles

In order to determine the interface pressures between the saddle and the vessel, the
saddle contact area is divided into a number of discrete areas, each of which is subject
to unkmnvn uniformly distributed pressures in both the radial and tangential
directions. To reduce the complexity of the computation, the interface forces in the
longitudinal direction have been ignored. It is considered that these forces will be
small compared with the radial and tangential effects. However, in those cases where

thermal effects may be important, the longitudinal interface forces will become more
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dominant. In practice, when such effects are envisaged, one support is normally fixed

and the other is free to slide, in order to allow for thermal expansion effects.

As mentioned earlier, Tooth and co-workers, in the first instance, assumed that these
interface pressures were of constant magnitude across the saddle width. This
assumption implied that the saddle had some flexibility across the width, thus
avoiding the occurrence of high pressures at the edge profile of the saddle. However,
when the saddles are of rigid construction in comparison to the vessel stiffness, for
example in the case of concrete saddles, the above assumption is invalid. In order to
investigate the effects of saddle flexibility, the saddle/vessel contact surface is divided

up as shown in Figure 9. lin a manner previously used by Motashar 6t

Figure 9.1. Flexible Saddle Interface Contact Areas

The discrete areas shown were made of equal size, 2/? Rx2y, as used in the SADDLE
programs (and represented by 2ALPHA.RADIUSX.CC in the ANSYS listings). The
discrete areas in the axial direction are identified as i in the radial direction with a
total number of divisions across the width equal to AW, in the ANSYS listings and
represented byj and NC in the SADDLE program. In the circumferential direction,

they are defined asj with a total number of angular discrete areas NA in the ANSYS
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listings from the bottom to the saddle top and represented by * and NA in the
SADDLE programs. As indicated, this approach was based on the earlier work of
Motashar and Tooth for the analysis of metallic vessels supported on welded saddles
which allowed the inclusion of the effects of the variation of the interface pressure
across the width.

Each discrete area can be loaded with a uniform radial pressure and tangential shear
(or surface traction). For example, on areaji, a radial pressure ofp}i and tangential
traction of t is assumed to act. The radial and tangential displacements of the vessel

at a general point kl due topj, and s given by.

*U = tji(WH)jUu + P ji(Wr)ji,u

VU ~ tji(K)jikl + Pji(Vr)jikl

©. la,b)

where (Wf) and (Vj) a are the radial and tangential displacements of point kI due to
unit tangential shears applied over areaji and (Wr).jkl and (M) W are the radial and
tangential displacements due to unit radial pressures applied over area ji. The
longitudinal displacement » produced by the unit tangential shears and unit radial
pressures applied over areaji is considered to be small and is ignored in the present
analysis.

Assuming that all displacements are relatively small, the total radial and tangential

displacements of point kl on the surface of the vessel due to all the interface loads are

then given by:

NA NW NA NW
Wu = £ ) *l + Z Z P iM Xu
7=1 1= j=1 <
NA NW NA NW
z +Z Z PIiAVr)ijM
A = i-1i=t

(9. 2a,b)

These expressions are valid for NW discrete areas along the saddle width and the NA

areas around each half saddle about 0-0°.
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They can be rewritten in matrix form:
[W] = [WT][T] + [WK\[P}
[V] = [VTI[T] + [VR][P}
(9. 3a,b)

The elements of the flexibility matrices [WR], [VR], [WT\ and \VT\ are given by the
series form of the displacements W and V in terms of the loading functions. The
matrices [7] and [FJ are the interface pressure values in the tangential and radial

directions respectively.

These loading coefficients can be found by multiplying both sides of the loading terms
contained in Fourier series by suitable orthogonal functions such that integration over
the surface of the cylinder eliminates all but one of the terms in each Fourier
expansion. In addition to the reactive interface forces, the vessel is subjected to
various applied loading which maybe a combination of hydraulic pressure, internal
pressure surcharge and the self-weight ofthe vessel. The loading coefficients for these
can also be derived and used to obtain the radial and tangential displacements at the

centre of the discrete areas of the support. These are written in matrix form as

[WHSWA and [VHSW] respectively.

9.3 The Compatibility Equations

The unknown interfacial forces p]t and i which act at the various discrete areas will in
general cause radial and tangential displacements of the saddle. The form of these

displacements is similar to those for the vessel given in previous equations:

[WS] = -[WTS][T]-[WRS][P]
[VS] = -[VTS][r\-[VRS][P]

(9. 4a,b)
where [WTS], [WRS], [ITS] and [VRS\ are the flexibility matrices of the saddle. The

elements of these matrices can be obtained using a suitable mathematical model.
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To enforce compatibility, the vessel displacements at the centres of the discrete area,
due to the interface forces [7] and [P], that is [W] and [V\, and the applied loading
[WHSW] and [VHSW], are equated to the displacements of the corresponding points
on the support, that is [WS] and [VS], given in equations (9.4) to give the following,

[VHSW]-A[SN] + ([VT] + [VTS][T] + ([VR] + [VRS])[P] = 0
[WHSW] - S[CN] + ([WT] + [WTSD[T] + ([WR] + [WRS])[P] = 0

(9. 5a,b)

where A is a rigid body movement in the vertical direction of the saddles with
reference to the vessel end profiles. [G S] is the vector of elements CS= cos 6™ [;TV] is
the vector of elements SNj = sin 0"is the angle to the centre of areaj. When the saddle
is rigid, its displacements are neglected and so the saddle flexibility matrices are equal
to zero. The compatibility equations then become,

[VHSW] - 81[SN] +[VT][T] +[VR][P] =0
[WHSW] - \[CN] +[WT][T] +[WR][P] =0

(9. 6a,b)
Finally, when considering vertical equilibrium, it is possible to write the following

equation in the saddle region

[SN]T[T] = S+[CSf[P]

(9.7)
where S = (total of vessel weight + contents)/(16y9/ty).
9.4 Values of Strain and Stress in the Vessel Shell

Once the unknown interface forces [7] and [P] are obtained, they can then be
combined with the vessel self-weight, fluid contents weight and pressure loading to

obtain the total loading coefficients P~n and Pa™ These may be used to determine
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the displacements unm vnmand wnn Then using Fourier series equations U, Vand W

can be found, allowing the strain quantities and and stress resultants to be evaluated.

9.5 A Mathematical Model to evaluate the Saddle Flexibility

From the previous derivation, it is theoretically feasible to take the flexibility of the
saddles into account by introducing four different matrices (WRS, WTS, VRS, VTS),
which represent the saddle displacements, into the two compatibility equations of a
circular cylindrical vessel normally supported by rigid saddles. In fact, from a
theoretical basis, the method of solving the problem is exactly the same, whether the
saddle is considered flexible or not. Flowever, it is quite difficult to obtain the four

displacement matrices of the saddle and therefore, solving the flexible case becomes

much more involved.

Several other researchers have attempted to solve this problem using finite elements
to model the saddle. Motashar, with the help of the present author, solved this
problem for two different geometries of welded saddle. However, he was applying
point unit loads in radial and tangential directions at the centre of the discrete areas
instead of applying pressure unit loads in radial or tangential directions on the all
discrete areas, the results may not be wholly accurate. More recently, Tolson, also
with the help ofthe present author, solved this problem for a GRP composite material
vessel supported on twin rigid saddles with a piece of rubber located at the interface
between vessel and saddle. The contact between the rubber and the vessel can be
either, loose, frictional or frictionless. Pressure unit loads in the radial direction were
applied on the discrete areas. Tolson neglected the displacements due to tangential
loads and so this cannot be used to solve the welded case which requires both radial

and tangential components of interface reaction.

The present work incorporates the application of radial and tangential pressure loads,
in order to analyse and quantify the flexibility of the saddle and therefore obtain the

required four flexibility matrices. For this work, the ANSYS finite element program

was employed.
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Finite Element Models using Shell Elements only

In order to obtain suitable flexibility matrices, a number of finite element models are
generated. Previous workers have employed a crude solid saddle, however in order to
reflect actual industrial designs, saddles with explicitly defined webs and wrapper

plates are developed and progressively refined.

Simpler models can be created in the following manner. The saddle possesses two
planes of symmetry and therefore it is only necessary to model one quarter of the
geometry. Thereafter, the flexibility matrices can be reflected and populated
accordingly as required. The method of construction is as follows. Firstly, the base
and the three stiffeners stiffeners are constructed. Thereafter, by rotating a line
between the top of each stiffener, the cylindrical portion of the saddle is created. This
is designated as the saddle plate. To complete the saddle geometry construction, the
central web was added and the geometry part of the model is thus complete. If
required, reflecting the quarter model about two symmetry planes can generate a

complete saddle as shown in Figure 9.2

Figure 9.2 ANSYS quarter saddle geometry; model
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It is necessary to specify the number and the mathematical characteristics of the
elements that are used in the finite element analysis for each geometrical part. Higher
order quadratic displacement shell elements (ANSYS STIF 93) with 8 nodes, each
with 6 degrees of freedom, were used throughout the entire geometric model of the
saddle. Thicknesses were initially assumed to be 6mm in each plate. The material
properties of steel were assigned as real constants for all elements, therefore Young’s
Modulus, E=210x103 N/mm2and Poisson’s ratio was taken to be, v=0.3. Automatic
meshing cannot be used for this type of problem. If the standard meshing tool is used,
then the element of the cylindrical portion of the saddle plate do not have the same
dimensions. This in turn makes it very difficult to have a matching number of this
element type on each cylindrical part. In fact, the cylindrical part of the saddle is
considered to be the most important part of the finite element model, since the
pressure loads will be applied on this region and it is the displacements of this part of
the model which are required to generate the required flexibility matrices. In order to
solve this problem, it is necessary to commence the finite element modelling of the
saddle by the predefining the shaping of the cylindrical part. Thereafter the additional
parts, webs, back plate and base would be defined in relation to the already defined
saddle plate. Thus a new, completely parametric model was defined, one in which the
geometry is principally defined by the saddle top plate and thereafter could be

sufficiently parametric in order to be able to represent any real saddle.

9.6 The Parametrical Finite Element Model

The parametrical model presented in this section is the final evolution of many
parametrical models. It has the ability to represent many of different styles of saddle
geometry, each therefore having a differing flexibility. The file “normal’ is created
which forms the base files for all variations. Two methods are used to parametrically
shape the saddle. The first method is to identify each entity by its parametric number.
The second method is to recognise the entity by its position in any predefined co-

ordinate system as specified in the finite element program, ANSYS. Both methods
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have been employed in order to generate the parametric model. Each component of

the saddle is described and the method of construction reviewed.

Cylindrical Plate Parameters

The geometry of the cylindrical plate (or saddle top plate) is defined by the radius of
the saddle: RADIUS, the half saddle angle: THETA, and the half saddle width: C. It is
important that the number of discrete areas also needs to be defined. The number of
divisions across the total saddle width: NW and the number of divisions across the
half saddle angle: NA. These divisions must correlate to inputs specified later in the
SADDLE program. The flexible regions of the saddle are shown in the cutaway view
of Figure 9.3. The width of the cylindrical part which can flex is defined as T. In order

to have a good junction defined between the mesh of the stiffeners and the cylindrical

part, the value of T is chosen as follows:

T=1*C/NW with i=0 to NW-1 (/eN)

Figure 9.3 ANSYS cut halfsaddle model showing bending parts:
across the width and around the saddle angle (cutfor visualisation purposes)

If no extended bending portion is required then / is set equal to 0. Obviously, the

higher the value of NW, the more precise is the value of T. Finally, the extended
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saddle angle of the cylindrical part which can freely bend is described by: THETAZ2. In
order to have a good juncture connection between the mesh of the largest stiffener

and the cylindrical portion, the value of THETAZ is chosen as follows:
THETA2=J*THETA/2/NA with .HO to 2xNA-NWEB-I (jeN)

If no extended bending part is required thenj is set equal to 0. Obviously, the higher

the value of NA is the more precise is the value of THETA2.

Stiffener Parameters
The basic parameters of the stiffener are defined as the height at the centre of the

saddle (at THETA=0). B, the angle with the vertical axis of the largest stiffener:
BETA, and the total number of stiffeners excluding counting the stiffener located at
the centre of the saddle: NWEB. The largest stiffener at the saddle extremity may be
removed when EXTWEB=0, and the central stiffener at the middle of the saddle can

be removed by setting CWEB=0. Removing these stiffeners manually does not affect

the value of NWEB.

Thickness Parameters
Each different part of the saddle, can have its own thickness. THICYL is thickness of

the cylindrical part, THIWEB the thickness of the stiffeners and THICPRIN the
thickness of the central web. Because of the way the saddle is constructed and has

two symmetry planes, then the following relation is obtained:
THICPRIN=THIWEB=THICYI1J2

Calculated Parameters
Various parameters are calculated using the values defined above and these are

thereafter are used throughout the program.
The ‘normal’ program is divided into four different parts: parametric definition,

saddle geometry construction, loading and solution and lastly, results interpretation.
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Parametric Definition

The different parameters used by the program are defined into three sub-parts as
shown before. Users of the program are only required to modify the first geometrical
parameters and the material properties. As this program performs a static analysis
with an isotropic material only, the Young’s Modulus and the Poisson’s ratio are

necessary at this stage.

Saddle Geometry Construction
This corresponds with the pre-processing stage (/PREP7) of the ANSYS program.

Firstly, the element type and the material properties are defined. In order to have a
good representation of the curved cylindrical part, quadratic shell elements with 8
nodes (STIF 93) are used for the mesh. Only one type of material is used and its
material properties are defined with the MP command. Four different thicknesses,
corresponding to the various parts of the model are defined with the R command to
include the real constants of each saddle component.

Construction is briefly described as follows: by creating a line, rotating it around the
central axis of the cylinder with an angle of ALPHA, the program generates a curved
area. By copying this area NDIV times, it shapes the ‘rigid’ cylindrical part of the
saddle. This is performed in the global cylindrical co-ordinate system. The largest
stiffener at the saddle extremity is then created (even if EXTWEB=0.) Thereafter all
the other stiffeners are created in turn (NWEB-1 times). The positions of these
stiffeners are automatically calculated. The layout is such that the space between them
is the equal. However, in order to have continuity between the meshing of the
stiffeners and the meshing of the cylindrical part, each top line of the stiffener area

corresponds to one line which also belongs to one of the areas that are defined within

the cylindrical top plate part.

Thereafter, the program generates the central stiffener. This is produced regardless of
whether it is required or not (CWEB=0) If CWEB-=0, this stiffener is deleted later.
The base is created by generating areas between the bottom lines of the stiffeners.

The central web is produced by creating areas between the vertical lines of two
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stiffeners. If there is an extended bending part across the width, the program creates
this part in a similar manner to the cylindrical part at the beginning. If there is an
extended bending part arising from the saddle angle, the program creates one or two
curved areas depending on the angle, whether this is required or not. It is deleted later

as required.

At this point, one quarter of the model is generated and the number of divisions on
each line of the design is defined to prepare for automatic meshing. Firstly, all the
lines of the cylindrical part of the model are divided in order to have NW elements
across the half saddle width and 2xNA elements across the saddle angle. Thereafter,
all the other lines from the stiffeners and central web are subdivided according to their
reference number. In order to ensure good continuity between the meshing of the
rigid cylindrical part and the meshing of the stiffeners, the number of divisions across
the horizontal lines of these two parts must be the same: ELNUML. Finally all areas
of the model are meshed with their respective thicknesses and the finite element
model is created.

If no stiffener at the saddle extremity or no middle stiffener is desired (EXTWEB or
CWEB equal to 0) the respective areas are deleted. The areas that represent the base
are deleted since the support fixture can be ensured by constraining all of the nodes
on the base of the individual stiffeners and central web.

Finally the program creates the total half saddle by operating a symmetry reflection.

All the nodes of the cylindrical part have their local co-ordinate systems rotated into

the correct cylindrical co-ordinate system.

Solution Phase
This part is executed using the /SOLU part of the ANSYS program. The boundary

conditions for the base of the saddle are applied by locating the nodes at the base of
each stiffener bottoms and of the central web and setting their 6 degrees of freedom
to zero i.e. fully fixed base. The nodes of the middle stiffener must have their degrees
of freedom reduced accordingly because of the symmetry of the saddle in this plane.

The load is sequentially applied using two loops. The two loops are created to run
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NWxNA cases where a uniform pressure is applied on a discrete area. A file is

opened to save the results directly for input to the SADDLE programs.

The uniform pressure is applied on four elements that correspond to one discrete area

using the SFE command. Finally, the ANSYS solution routine is used to repeatedly

solve the analysis.

Results

Postprocessing is undertaken to establish the required flexibility matrices using the
[POSTL1 part of the ANSYS program. In this, the radial displacement of the central
node of each discrete area is selected and written to the file opened previously. The
two loops finally complete, the open file results file is closed, and the program
stopped. By this time, ANSYS has solved the stress displacement solution: NAXNW

times. This can take some considerable time to execute.

Output
The results of the ‘normal’ program are written in a file called disp*.*. The size of

this file depends on the number of discrete areas chosen to run the ANSYS program.
When the number of division across the saddle angle is chosen to be NA and the
number of division across the saddle width is NW, the number of discrete areas will
be NN=NWxNA. Therefore the normal program will solve NN cases and the size of
the resulting program will be 27XNN2 bytes which correspond to NN2displacements
values. This is a good method of verifying that all results are available.

This file contains a column of numbers which are the displacements of the central
node of each discrete area for each case of applied unit load of pressure. Each block
of NWxNA numbers corresponds to one applied load pressure case. Each block
contains the displacements of the discrete areas from the bottom to the top across the

saddle angle (NA values) and from the left to the right across the saddle width.
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In the file disp*.* the displacements are saved load case by load case. Each load case
generates NNx2 displacement values corresponding to the displacement in radial (first
column) and tangential (second column) direction of the central node of each discrete
area (NN areas) of the model in the following order: From the bottom to the top (j=I

to NA) across the saddle angle and so on across the saddle width (i=l to NW).

9.7 Variations of the Parametrical Model

Three other ANSYS programs have been generated to represent structurally different
styles of saddle. They are essentially developments or evolutions of the ‘normal’

program. These differences are now described for each model.

9.7.1 Two Different Thicknesses In The Cylindrical Part
Under normal industrial circumstances, saddles are generally made with the same

metal plate as that used in the cylindrical shell. However, BS 5276 shows saddles with
extended wrapper plates and therefore it is possible that two different thicknesses may
occur in the cylindrical part of the saddle plate as shown in Figure 9.4. These are

often formed by metal plates welded together with the extremity only having one

thickness.

Two depths

Figure 9.4 Schematic ofsaddle top plate and wrapper with two thicknesses
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In this case, the extremity is able to bend more easily. This flexibility is introduced
because it can significantly reduce the stresses in the saddle region. The method of
construction is to build a normal saddle first, and thereafter to make a central
cylindrical part of two thicknesses and finally another cylindrical part of one thickness
around the first one with an offset o f: depth/2. The nodes that correspond to the
discontinuity between the two cylindrical parts have to be coupled with the CPINTF
command, in order that they will have the same displacements acting as if there were
only one node. This model, named twothick’ performs in exactly the same manner as
the normal model, however has an improved flexibility in the extremity of the

cylindrical part.

9.7.2 The Semi-Rigid Model
The ‘semi-rigid saddle’ is the intermediate support style between the rigid (for

example, a support made of concrete) and the fully flexible saddle. It has extra
stiffening at the extreme outer edge and can only flex in certain parts. As with the

normal flexible saddle, this model is flexible principally in the longitudinal direction.

AN

Figure 9.5 Semi rigid saddle model
The *semi-rig’ model is basically the same as the ‘normal’ flexible one but only the

last stiffener has a significantly different shape. This stiffener is made of two parts:
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one part is vertical and the other one is curved and locates normal to the cylindrical

part, as shown in Figure 9.5.

9.7.3 The Round-Horn Model
When a saddle is made with welded metal plate, normally the horns are sometimes cut

or formed with an angle grinder to obtain a rounded comer in order to minimise stress
concentrations. This allows a reduction of the stresses in this critical part of the
cylinder. The method of creation for such this geometry is to make an intersection
between the cylindrical part of the saddle and ‘virtual’ geometric quarter of a cylinder.
This model was not made fully parametric and was created just to demonstrate that it

is possible to construct such a configuration, see Figure 9.6.

Figure 9.6 Geometry of curved constructionfor ‘round-horn’

9.7.4 Some Problems & Restrictions with such Models & Solutions

Geom etry and Meshing
Firstly, in the normal and the twothick parametric models, because of the sequence

of geometry construction, the P angle cannot rise to a value of 90°-0, as can be seen

in Figure 9.7.
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Figure 9.7 Geometry of curved construction

When the central web is meshed, it is impossible to have an element with a zero angle
at the horn even when triangular elements are used. In fact, the case where the last

stiffener is tangent to the cylindrical part (P=90°-0) cannot be represented by finite

elements.
When shell elements are used, if the central web is meshed only with quadrilaterals

RESHAPE, 2) then in order to have good mesh description and topology, P has to be:

P<90°-0-10°. If quadrilaterals are deemed not to be essential then P can have the

value of P<90°-0-5°.

Figure 9.8 Quadrilaterals and triangular meshes sho>ving extreme distortion
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One major restriction with the geometry definition is that the user cannot choose the
specific location of each individual stiffener. Users can only choose how many
stiffeners are to be defined and the program will automatically position them at equal

distance one from each other.

Finally, the last problem is that the user can not choose exactly the widths of the
bending extremities of the saddle. These widths are functions of the number of
divisions across the saddle width and the saddle angle. In fact, the more subdivisions
of geometry which are specified and greater are number of discrete areas on the
cylindrical part, the more the model is parametrical. However, this results in a

significantly longer solution time.

Applied Unit Pressure Loads and Results

In the solution phase of the programs, a uniform unit pressure in the radial direction is
applied sequentially, on all the discrete areas of the cylindrical portion of the saddle.
Initially only the radial displacements of the central node of each discrete area were
saved. This was done initially as the SADDLE solution employed at that stage was of
the form generated by Tolson in 1991. In her thesis, she studied the behaviour of
horizontal multi-layered GRP cylindrical vessels supported on twin saddles. She used

finite element to model the saddle as rigid and a layer of rubber was put between the

cylinder and the concrete.

Tolson tried to show the influence of the rubber layer by taking into account the
displacement of the rubber due to unit load pressure however she only took into
account the radial displacement due to the radial unit load pressure and neglected all
the other influencing displacements stating that the radial was the most significant
form of displacement for her case.

The neglected displacement forms were as follows:

- tangential displacement due to the radial unit load pressure
- radial displacement due to the tangential unit load pressure

- tangential displacement due to the tangential unit load pressure
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In her case, the contact between the saddle and the cylinder was defined as loose
frictional contact, which implies that for the interface pressure the following relation
holds: [T] = - p[P],
As shown previously, the compatibility equations for a circular cylindrical vessel
supported by flexible saddles are:

(1) [VHSW] - A[SN] + ( [VT] + [VTS]) [T] + ([VR] + [VRS]) [P] =0

(2)  [WHSW] - A[CN] + ( [WT] + [WTS]) [T] + ([WR] + [WRS]) [P] -0

(9.8)
In Tolson’s case this becomes.
(3) [VHSW] - A[SN] + ( [VR] + [VRS] -p[VT] -p[VTS]) [P] =0
(4) [WHSW] - A[CN] + ( [WR] + [WRS] -p[WT] -p[WTS]) [P] -0
9. 9)

Therefore, in order to evaluate the interface pressure in her case, it is necessary to
solve only one compatibility equation. Tolson elected the second one (4) and
neglected the radial displacement due to the tangential unit pressure. In her case, it
may have been valid because of the rubber. However for the present case, it is felt
that this would not represent the interaction between the saddle and shell correctly.

In addition, since the saddle is welded to the cylinder and we do not have the relation:
[T] = - |i[P], Thus Tolson's programs are not valid for the present case. Therefore

equations (1) and (2) of (9.8) must be solved to find the interface pressures.

9.7.5 A Possible Solution
In order to establish the correct, complete flexibility matrices, a new finite element

approach must be established. The essence of this is that the tangential load, by
definition a surface traction, must be applied to the top surface of the saddle plate.

This proved to be a major stumbling block for much of this work since with ANSY'S,
tangential pressure loads cannot be applied directly onto shell elements. In fact, when
the loading algorithm within the ANSYS program has to put a uniform pressure on
elements or on surfaces, the logic is such that it applies a fraction of the total load as a
series point forces on each node of the selected elements. One possible means of

solving this problem would be to find the fraction and to apply these loads on each
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node of the selected discrete area. However, the ratio of load application is not easily
obtainable and it would be only valid for that one type of finite element (STIF 93 with
8 nodes for example). Different element implementations may have differing ratios.

Although ANSYS does not allow the application of tangential pressure on shell
elements, it does provide functionality to apply such a load on a brick-type element.
This is achieved by the use of a special ‘surface effect element’ called SURF22. This
element is overlaid onto an area of any 3D-element, and can be thought of as a form
of “skin’. This can be used for various load effect applications. It can be defined to
have no structural stiffness and does not contribute to the behaviour of the saddle in

any way other than to apply the load at the correct position.

This element was tested using a number of simpler beam models. The first employed
only shell element, the second, solid elements with rotations and finally one with both
solid and SURF22 elements. A unit load pressure was applied on the top area of the
last element of the beam. Using an analytical solution, the displacement at the
extremity of the beam is 5n«= -0.0196mm. Using a shell element model, this value
becomes -0.0302mm and by using a model based on solid elements only, the tip
displacement is -0.00191 m. and finally, using the SURF22 model in combination
with shells and solids, the results is -0.00191 mm, thus validating and confirming the
use of the surface effect element. In order to use the SURF22 element in a structural
analysis, all of its material properties must be set zero (Young modulus, Poisson ratio,

thickness). Using this approach, it is thus possible to apply tangential pressure with

this element as it is shown on Figure 9.9

221



Figure 9.9 Saddle with tangential traction load (shown as red arrows)

Therefore, surface effect elements can be applied to the existing series of models to
allow the displacements to be obtained for a radial and tangential unit pressure load.

It is noted however, that the programme constructed by Tolson will not allow the
inclusion of the additional flexibility matrices generated by this method. Motashar
created FORTRAN programs with a variable pressure loading across the width of the
saddle. Therefore, these FORTRAN programmes were modified to solve the case of

saddles welded to the vessel and incorporating the case of flexible saddles.

9.7.6 A Saddle Model using Shell, Solid & Surface Elements

Geometry creation and element selection

The final iteration of saddle construction, entitled ‘solid’, employs shells, solids and
surface elements and is an extension of the ‘normal” ANSYS model described earlier.
The main parameters remain and an extrusion in the local cylindrical co-ordinate
system is performed on the top plate only. This operation, in turn, creates the upper
surface of the saddle which is directly in contact with the vessel exterior and to which

is mapped the surface effect elements. However, since the shell element possesses
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three translational and three rotational degrees of freedom, a solid element with
rotational degrees of freedom must be employed, SOLID73, to create the saddle
plate. A shell element, SHELL63 with 4 nodes, each having 6 degrees of freedom is
used to build the stiffeners and the central web of the saddle. Finally surface effect
element, SURF22 is used with 4 nodes and is mapped to the top surface of the saddle
plate. The displacement formulation of this model in linear, however it is possible to
use a quadratic formulation and still use the surface effect element. The number of
nodes, however is significantly increased and since there will be typically 150 (30x5)
analyses to generate the required matrices, it is considered that a linear model is
adequate. In the solution phase, the unit pressure loads are applied on four SURF22
elements which represent a discrete area. Radial and tangential loads are switched
using keycode 1 (radial ~ Figure 9.10a) and 2 (tangential ~ Figure 9.11a) and a

pressure of IN/m2is applied as shown by the red arrows below.

Figure 9.10a,b Complex saddle with shells, solids and surface effect elements
- unitpressure applied in radial direction (red arrows)

Figure 9.11a,h Complex saddle with shells, solids and surface effect elements
- unitpressure applied in tangential direction (red arrows)
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Solution and matrix generation
The results sequence is similar to that used in the ‘normal’ analysis however both the
radial and the tangential displacements are saved into a file in two columns. To obtain
all the required results the program is run twice. The first pass applies the radial unit
pressure load to obtain the [WRSJ and [WTSJ matrices. The second pass uses the
tangential unit pressure load to generate the [VRSJ and [VTS] matrices. The results
ofthese sequential runs are two files each with two columns populated as follows:

Radial unit pressure load Tangential unit pressure load

ur Uo Ur Uo

Using this file, which is generated automatically using ANSYS parametric design
language (APDL) and undertaking the sequence of runs required, the flexibility matrix

file can now be read into the appropriate SADDLE programme.

9.8 Modified SADDLE Program

Using the ANSYS input files as detailed, saddle displacement matrices for a specified
number of discrete areas due to applied unit pressure loads in the radial or the
tangential direction are obtained. Using the Fourier series programmes of Motashar,
which employ Sanders' thin shell theory with a specified number of discrete areas both
in the circumferential and longitudinal direction, it is now possible to obtain all the

required stresses for a cylindrical pressure vessel supported on a variety of flexible

saddles.

Interface Pressure Solution
Two separate programmes are used, the first to obtain the radial and tangential

interface pressures and the second to produce the stresses in the vessel. The interface
pressure program, entitled INTPRES.f is the 1987 Digital VAX version of
weldsad4.f (Motashar) with some minor modifications to allow it to run on current
hardware. It can solve both the flexible and rigid saddle cases. Firstly, as this program
Previously ran on a VAX system, a few redundant functions have been removed, to
allow this program to compile and run on Unix workstations. In addition, to include

the displacements of the saddle it is necessary to modify the compatibility equations
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and therefore a few FORTRAN instructions have been added at the end of the

program. Other modifications have been included in the input data to make the

program quicker to use.

Two types of data are used by this program to run a flexible case: the vessel
characteristics and the saddle displacement matrix. The vessel characteristics are input
via data file: fort.52. This file contains 16 values separated between each other by a
space, and with a space in the end. Data is entered in the following sequence: radius of
the vessel (RADIUS in the ANSYS programs), the thickness of the vessel (normally
equal to THICYL/2 from the ANSYS programs), the length of the vessel, the breadth
(distance from the vessel end to the saddle centre), the saddle total width (Cx2 from
the ANSYS programs), the saddle total angle (THETAx2 from the ANSYS
programs), the liquid specific weight, the angle of fill, the vessel material specific
weight (=0 ifthe vessel weight is not to be considered), the end weight, the magnitude
of internal pressure, the Modulus of Elasticity and Poisson's ratio of the vessel
material (EX and NU in the ANSYS programs), the number of discrete areas into
which the halfsaddle angle is to be divided (NA in the ANSYS programs), the number
of discrete areas into which the total saddle width is to be divided (AW in the ANSYS

programs),the value 2 to run a rigid case and 1to run the flexible case, and finally, a

space.

The four saddle displacement matrices are introduced into the program by copying the
displacements due to radial unit pressure load (file called: dispAWAM.rad in the
ANSYS program) into file fort.90 and by copying the displacements due to tangential
unit pressure load (file called: dispAWAAN.tan in the ANSYS program) in a file called:
fort.91. When the program is running, the number of Fourier terms required to solve
the analysis is requested. Three types of output data are produced as a result of this
analysis. The different displacement matrices are saved into some files for purposes of
verification. The interface pressure results are saved into two files and can be

examined directly. A third file is created with the vessel characteristic and the interface
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pressure results ready for use by the second FORTRAN program which generates the

stress solution.

Firstly, the vessel displacement matrices are saved in:

then the saddle displacement matrices are saved in:

and finally, the global displacement matrices are saved in:

fort.10 for [WT]
fort. 11 for [VT]

fort. 12 for [WR]

fort. 13 for [VR]

fort.20 for [WTS]
fort.21 for [VTS]
fort.22 for [WRS]
fort.23 for [VRS]
fort.30 for [WT]+[WTS]
fort.31 for [VT]+[VTS]
fort.32for [WR]+[WRS]
fort.33 for [VR]+[VRS]

In the files, intpres.rad and intpres.tan, there are NAXNW values of interface

pressure saved. This data can be used to graph the interface pressure system of the

studied model directly. Finally, all the vessel characteristics and all the interface

pressures are saved in fort.73

Stress Solution

The program STRESS.f is modified version of stress4.f of Motashar with only the

input and output statements being altered to allow easier interpretation of the results.

The results provided by this program include:

axial, tangential and radial displacements ofvessel: U, V and w

m axial, circumferential and shear stress resultants in the vessel: NXx Ne, and N>o

* axial, circumferential and shear moments resultants in the vessel: M,, Mo, and M>o

~ axial, circumferential and shear stresses in the vessel: ctx, cto, and .« on the inside and outside

surface of the shell.

axial, tangential and radial strains in the vessel: s,, eo, and y on the inside and the outside surface

of the shell.
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Data is read from file fort.73 (from the INTPRES.f program) however two lines of
output points on the vessel, at which the solution will be given, must be specified in
the fort.51 file. The input information has the following sequence separated by
spaces: Constant x value, first 0 value, last O value, interval between points in the
circumferential direction, constant 0 value, first x value, last x value, interval between
points in the longitudinal direction, 2 and a space at the end. As previous, the required

number of Fourier terms is input from the keyboard when the program is running.

The output data of the program can be written to the screen and to datafiles fort.81
and fort.82. In addition, for the purposes of creating three dimensional graphics plots
of the variation in solution data, the output is also saved into 14 files without any text
strings, to allow the data to be used directly in for example, Excel.

The output files are denoted:

GRAPHTT.CIR for ctoon the outside surface of the vessel around the circumferential line.
GRAPHXX.CIR for ctx on the outside surface of the vessel around the circumferential line.
GRAPHXT.CIR for ax0 on the outside surface of the vessel around the circumferential line.
GRAPHTTI.CIR for oG on the inside surface of the vessel around the circumferential line.

*  W.CIR for w, the displacement of the vessel around the circumferential line.

The same series of 7 files are also generated for results in the longitudinal direction

withfilename. LON extension.

9*9 Sample Results
The results detailed herein are only shown as an example of the type of information,

which can be generated by employing such a system. As an example, a long vessel,
with a mean diameter of 1000mm, tangent length of 36000mm, thickness of 6mm,
with 200mm wide, 120° wrapround saddles located at 9000mm from each end. The
cylindrical part of the vessel was divided into a number of discrete areas. A non-

uniform pressure across the width was considered and one case was run with 5x30

discrete areas (NW=5 and NA=30).
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Two saddle types were analysed for purposes of comparison. Firstly, a rigid saddle
was assumed to be in contact with the shell and the analysis undertaken. The second

case considered a flexible saddle of the ‘solid” model type described earlier.

. Circumferential stress on the
Maximum at saddle horn ] )
outside surface (N/mmi)

=-3425N/mm 2
-4000
D4000t0-3000
-3000
DSOOO t0-2000
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+
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Figure 9.12 Saddle region stress surface plotfor the rigid case
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Figure 9.13 Saddle region stress surface plotfor theflexible case
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Comparison between the rigid and theflexible cases

There are two main differences that arise when rigid and flexible saddles are run
through the Fourier series analysis. These differences are shown in the Excel surface
plots detailed in Figures 9.12 and 9.13. Firstly, for the rigid case there are two peaks
which appear at each edge of the saddle. The maximum of these is 3425N/mm2. This
is in keeping the finite element results described in Chapter 7. However in the flexible
case, only one peak exists and this is situated across the centre of profile of the saddle
with a value of 2991N/mmz2. This perhaps goes some way to showing why the earlier
work of Tooth et al proved to be in good agreement with experimentally determined
strain gauge results. In addition, this points towards a uniform stress field when the
saddle possesses a degree of flexibility. As for the magnitudes of stress, these large
values arise as a result of the thin shell thickness selected for the example. Normally a
thickness of at least 22mm would be selected for a real application, however the

differences in stress between the rigid and flexible saddles are valid, and illustrate the

point being made.

In the present case, it can be seen that there is a reduction of 13 % in the magnitudes
of the maximum outside circumferential stress between the rigid case and the flexible

case. This is typical of the measure of reduction which can be found when flexible

saddles are employed.

9.10 Conclusions

A number of variations in the parametric finite element model have been created and
detailed in general. These include saddles which are near rigid, semi-rigid, flexible
each with varying degrees of flexibility in the longitudinal and circumferential
directions and the potential for differing numbers of web stiffeners. Some detailed
guidance is provided which shows users of this technique the most appropriate
Method of geometry creation for complex three-dimensional saddles. In addition, the

dement selection is justified on the basis of accuracy and efficiency of solution time
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especially when considering the significant number of runs required to generate a
single set of matrices for one saddle configuration.

The Fortran programs of Tolson and Motashar have been examined and brought up
to date to run on modem computers. Some minor modifications have been required
and some additional lines of code have been inserted to allow the required flexibility
matrices to be employed.

One sample case of a flexible saddle has been successfully run and a new method of

graphical representation has been demonstrated. The various files and procedures for

execution have been explicitly detailed.

It is clear to the present author that the process of finite element analysis and
subsequent SADDLE analysis is extremely complex and time-consuming. The
generation of tables of saddle flexibility or the provision of the required flexibility
factor, Ff, which includes for variations for all the leading saddle parameters would be
a considerable undertaking and is beyond the remit of the current work. However,

with the illustrative example used, it has been shown that there is much benefit to be

had by the use ofa well designed flexible saddle.
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10 CONCLUSIONS AND FURTHER WORK

Analysis and design methods for local loading and saddle-supported cylinders have
been advanced within this thesis. In particular, the Fourier series loading method and
elastic thin shell analysis have been employed to examine the interface pressure

distributions for local load patch problems and saddle-supported cylinders.

In the case of the local load patch problems, standalone programs have been
developed which allow designers to calculate the important stress quantities on each
surface of the cylinder for a given load application. Solutions for a radial load,
moment loads in the circumferential and longitudinal directions and steady state
thermal loads have been derived and implemented for a variety of prescribed patch
forms. Rectangular, circular and elliptical contact regions have been studied and
results are made available over a range of discrete points selected by the user. The
program can also scan for maximum stresses, which occur at the centre of the loaded

area for the radial load and bell-shaped thermal case and at the major axis edges for

moment loadings.

To date, this work has direct relevance and application to current designers. Both the
BS5500 and ASME pressure vessel codes rely on methods which simplify the contact
area and interface loading conditions. Whilst these approaches have been shown in the
present work to produce similar maximum results for some cases, the conventional
methods do not always produce the highest value. In addition, the new European
Standard for Unfired Pressure Vessels, (to be released in draft form in 1999), relies on
limit load approaches for design. This form of design may well be adequate if a
maximum design load is required. Thereafter, designers can ensure that the largest
application of load is below the values generated by the limit load method. However,
these approaches do not assist designers where failure by fatigue is a problem. Using
the present approach will ensure that maximum stresses are obtained which in turn,

Provides reliable data for use in fatigue assessments.

232



Twin saddle supported cylinders have been addressed by developing a robust shell
theory and employing a Fourier series approach for the solution of the equations and
the representation of the loading systems. A line and patch load model has been used
to generate data for a wide range of vessel configurations used in industry. A new
design methodology has been considered whereby a basic stress equation has been
presented which is progressively adjusted by the use of factors. These factors adjust
the basic stress to represent the geometric effect of a number of variables including
contents weight, saddle width, saddle angle and position from the end. Separate finite
element studies of the influences of the flexibility of the vessel end closure and
flexibility of the saddle support have been undertaken, and factors have been identified
and quantified, where possible. This new design method is easily programmed into
spreadsheets and mathematical scratchpads and an example is provided in the

Appendices.

Although finite element analysis is increasingly used in pressure vessel design, there is
still some way to go before the method is wholly adopted. The present work has
discussed some of the main issues pertaining to the application of FEA to local load
and saddle support problems. Whilst these problems can be tacked using FEA, this
requires great skill and expertise in both the use of FEA, to model and analyse the
components, and interpret the results, in the light of pressure vessel code allowables
for specific stress categories. The need for a fine mesh and careful consideration of
boundary conditions is essential. One suspects the total component should be handled
~ vessel plus saddle. Furthermore, an examination of the nature of the stress obtained

at the horn shows that it may have a mixed response rather than being described as

purely secondary.

Because of the governing assumptions of the Fourier series approach, the influence of
the flexibility of the end closure was examined using the finite element method. Four
end closure styles were analysed and the effects of radius to thickness and shell to end

thickness ratios were studied. In conclusion, it was found that the basic shape and the
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thickness ratios had little or no effect on the magnitude of the maximum stresses

obtained at the horn. An end flexibility factor was developed from this work.

Saddle flexibility was examined by generating flexibility matrices by finite element
analysis and importing them into the SADDLE analysis. A modified form of the
SADDLE analysis by Tolson was used to show that there is a considerable reduction
in maximum stress when a flexible saddle is employed. Guidance has been given to
show how a variety of saddle styles may be created, however an improved finite
element model has been developed which incorporates shell, solid and surface traction
elements. This allows the generation of more realistic flexibility data. An example of
the use of this new model is presented and surface plots of stress results for a rigid

and flexible saddle are given.

Further Work
Further development of the head flexibility method is required to produce

intermediate points on the graph.

A full investigation of the influences of the flexibilities of the saddle should be
undertaken as an MSc. Project - this to cover the entire range of saddle geometries as
specified by BS5276. The present author is currently completing work on such a

study for the case of heated twin saddle supported cylinders subject to high axial

expansion.

Having published a number of papers on work arising from this thesis, the author is
convinced that the adoption of these methods will only arise by making access to
these results more widely available. With this in mind, web based analytical tools
should be developed whereby engineers can enter their data and submit an analysis
online. With current technology, results will be available immediately if the new
design method is employed, or within minutes if a complete analysis using the

SADDLE or patch programs is preferred.
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Program - cyllpc.f



00

103

102

34

35

HORIZONTALLY END SIMPLY-SUPPORTED CYLINDER
PROGRAM MODIFIED TO BE 1ST PASS ONLY - D H NASH
IMPLICIT REAL*8 (A-H,0-Z)
CHARACTER*20 NAME*60 ,TITLE*60 ,DATAL (5) , FILNM, FNAME
DIMENSION Z(6),Z0(6),P0(3),P(3),P02(3),P2(3),5(3)
DIMENSION LOAD(3),CL(60),XIMP(3),ES(10),E0(10)
DIMENSION AN(3,60),BN(3,60),RAD(120),DISP(9,120) 23
DIMENSION DELTA(3),PQ(120),KCODE(120),RES(9,120)
COMMON/BLK2/T3 ,T4 ,P |,RADIAN ,T ,R,XLEN ,NCSYM
COMMON/BLK3/P,PO, P2, P02
COMMON/BLK4 /SD IV, WIDTH ,NTYPE ,NK,NSIZE ,XSAD
1JOB =I
LOOP=9
IF(1JOB.EQ.1.0R.IJOB.GE.3) LOOP=3
OPEN(2,FILE='PCINPUT’ ,STATUS» UNKNOWN')
READ(2,103) NAME
FORMAT (A60)
READ (2,*) MTERM,NTERM
READ (2,*) NSYS,NSYM,NCSYM, IMP
READ (2,*) R,E,W ,T,XLEN
IF (IMP.GT.0) READ (2,102) (XIMP(l) ,DATAL (1) ,1=1, IMP)
FORMAT(E12.5,5X,A)
READ (2,*) NLOAD
READ (2,*) (CL(I),I=I,NLOAD*6)
READ (2,*) CPI,CP2,CP3,CP4,STEP
NP=1
IF(CP2.EQ.CP4) NP=2

------------------- SADDLE SUPPORT PROBLEM«rrrrrrrssssessssssseees 8
IF(1JOB.EQ.1.0R.IJOB.EQ.2) THEN o
READ (2,*) XSAD, SBETA, OFFSET,WIDTH, NTYPB
READ (2 ,*) NDIV,NK,NT
NSIZE=NK+NT o
IL=NDIV+NTYPE o
IF (NTYPE.EQ.2) I1=NDIV

DO 34 1=1,NK
KCODE(I)=1

DO 35 1=1,NT
KCODE(NK+1)=1

IF (NK.LT.il) READ(2,*)

IF (NT.GT.O0.AND.NT .L

(KCODE(I),I-NK+1,NSIZE)

IF (NCSYM.EQ.2) THEN
NTS=NT/2
NKS=(NK+1) /2
DO 33 1=1,NTS
KCODE (NKS+1) <KCODE (
NT-NTS
NK-NKS
NSIZE-NK+NT
END IF
NS1=NSIZE+1
NS2-NSIZE+2
IF(1JOB.EQ.1) THEN
SDIV—SBETA/NDIV
Al=(SBETA-SDIV)/2.0

IF (NTYPE .EQ.1) AI-SBETA/2.0

NP=1

CP1-XSAD
CP2=0OFFSBT-Al
IC-MAXO(NK,NT)

NK+1)

(KCODE(1),1 =1 ,NK)
T.11) READ(2 *)

CP4=0FFSET+(KCODE(IC )-1)*SDIV-Al

STEP-SDIV
END 17

END 17
CLOSE (UNIT-2)

AXIAL SYMMETRY NSYM-2, KM=1

NON AXIAL SYMMETRY
KM=1
17 (NSYM.EQ.l) KM-0

GLOBAL CONSTANTS
PINASIN(1.0)*2.0
RADIAN-P1/180.0

NSYIrT,

RW-0



00

PI12=PI*PI

PRESS=CL(3)
Ti=1.0-w CI1-SIN (ALPHA)
/IZEITI(l o) C12-COS (ALPHA)

N 0 PBAR—CL(3)+CL(4)*R*(C I1-ALPHA*CI2) /P!
T3=PI*R/XLEN CopparsRsA )
T4=PI/XLEN END IF
T5=R*R/A IF (NSYS.EQ.I) C2-0.0
T6=T2/12.0 €3-0.5*T1*C1

C4=0.5% (3.0-W ) *C1

LOOPING FOR LOADS C5-0.125%T1*(4.0+C1)

DO 40 1=13 C6=0.125* (4.0* (1.0+W) -3 .0*C1*T1)

LOAD (1) =0 C7-0.125*T1*(4.0+9.0*C1)
DO 41 1=1,NLOAD
K=(1-1)*6+1 IF (JOB.EQ.l) GOTO 111

IF(CL(K).EQ.I.LO.OR.CL(K).GE.4.0) LOAD(l)=I

——-PRINT INPUT DATA

IF(CL(K).EQ.2.0) LOAD(2)=I OPEN (6 ,FILE-OUTPUT' ,STATUS-'NEW')
IF(CL(K).EQ.3.0) LOAD(3)=I WRITE (6,780) NAME
780 FORMAT (//5X,A/)
IF(JOB.EQ.2) THEN IF (NSYS.EQ.2) WRITE (6,360)
lo=1 360  FORMAT(5X'STIFFENING EFFECT OF PRESSUB* .o prcn
IF(NCSYM .EQ.l) IC=2 CONSIDERED') “
N=NSIZE IF (IMP.GT.0) THEN

IF(NTYPE.EQ.2) N=NSIZE+IC
OPEN(16,FILE='PQ.DAT', STATUS='0LD")
READ (16 ,*) (PQ(l) ,1=1 ,N)

WRITE (6,*) 'CROSS SECTIONAL PROFILES'
WRITE (6,102) (XIMP(l) ,DATAL(l) ,1-1 impi

READ (16 ,+) (DELTA(I) ,1=1,3) c

CLOSE (16) WRITE (6,782) MTERM,NTKRM

IF (NT.GT.0) LOAD(3)=1 782 FORMAT (/5X, 'MTERM -' ,14/5X, 'NTERM -' 14,

END IF WRITE (6,330) o
330

C1=T6/(R*R)

€2=0.0 300 FORMAT(/10X, -LENGTH - ' ,B12.5,2X,'UNIT'/

PRESS=0.0

10X,'RADIUS « ',E12.5,2X,'UNIT'/
CL(2)=SWV, CL(3)=PRESS, CL(4)=SW, CL(5)=ALPHA ’ <o e

6 10X, THICKNESS -= E12.5,2X,'UNIT'/

'FLO/ig Ll(l_)l'EQ'O'O) THEN * 10X, 'YOUNGS MODULUS -,B 1 2.5,2X, "UNIT'/
(1)= t 10X,'POISSON RATIO - ',F7 3)

IF(CL(2) .NE.0.0) LOAD (3)=1 c

ALPHA=CL (5) *RADIAN WRITE (6,306)



¥6¢

306 FORMAT (//5X, '«\LOADING™*")
305 FORMAT(/5X,'SP. WT.="' ,E12.5,2X,"'PRESSURE =''B12.5/
£ 5X,'SP. WT. OF FLUID ="', KI2.5,2X, 'LEVEL OF

FILL*3' ,F7.2,'DEOQ")
343 FORMAT (/5X,'TYPE - RADIAL PATCH (1)

@) '/£

(4) "7/
£ 5X,'  HOOP TRIAHOULAR (5)'//

AXIAL SHEAR PATCH

5X, 1 HOOP SHEAR PATCH (3) AXIAL TRIANGULAR

£5X 'TYPE 1,4X, 'MAGNITUDE',9X, 'X',11X, 'PHY' ,8X,'2C',8X,'2BETA )
344  FORMAT(7X,12,2(2X,E12.5),2X,F7.2 ,2X,E12.5 ,2X,F7.2)
IF (CL(1) .EQ.0.0) WRITE (6,305) (CL(l),1=2,5)
IF (CL(1).NE.0.0) WRITE (6,343)
DO 333 1=1,NLOAD
J= (1*1)*6+1
IC=CL(J)
IF(IC.EQ.0) GOTO 333
WRITE(6,344) IC, (CL(K),K=J+1,]+5)
333 CONTINUE
o — IMPERFECTION
KC=0
111 IF (IMP.EQ.0) GOTO 404
DO 400 1=1,IMP
OPEN(1,FILE=DATAL(l),STATUS='0LD")
READ (1,103) TITLE
READ (1 ,*) NDRAD,CONVT ,DRIFT
READ (1, *) (RAD (J) ,J=1 ,NDRAD)
READ(1,*) DATUM
CLOSE(1)
DO 401 J=1,NDRAD
401  RAD (J) = (RAD (J) -DRIFT) «CONVT+DATUM
KC=NDRAD/2
IF(KC.OE.NTERM) KC=NTERM
A2=2.0/NDRAD
A1=PI*A2
DO 402 N=2,KC
SSUM=0.0

403

402
400

404

CSUM-0.0
A3=A1*N
DO 403 J»1 ,NDRAD
PHY-(J-)*A3
SSUM-SSUM+RAD (J) *SIN(PHY)
CSUM-CSUM+RAD(J ) *COS(PHY)
CONTINUE
AN (I,N)“CSUM*A2
BN (I ,N)-SSUM*A2
CONTINUE
IF(NSYM.EQ.I) GOTO 404

IF(XIMP(IMP).GT.XLEN/2.0) XIMP(IMP)-XLEN/2.
CONTINUE

80

ANGULAR POSITIONS OF CONTACT NODES
IF (1JOB.EQ.2) THEN
SBETA=SBETA* RADIAN
SDIV=SBETA/NDIV
Al=(SBETA-SDIV)/2.0

IF (NTYPE .EQ.1) AlSBETA/2.0
A2=0FFSET*RADIAN-AI

DO 80 1=1,NSIZE

RAD (1) “ (KCODE (1) -1) *SDIV+A2
IF(NTYPE.EQ.2) THEN
RAD(NS1)MAl+A2-SBETA/2.0
RAD(NS2)=RAD(NS1)+SBETA
END IF

END IF

IF (STEP.EQ.0.0) ITOL-1

IF (STEP.NS.0.0) THEN
Al=(CP4-CP2)/STEP
IF (NP.BQ.2) A1=(CP3-CP1)/STEP
ITOL-1.1+A1

END IF

DO 990 J—1,LOOP

BO(J)=0.0

DO 990 1=1,ITOL+NTYPS
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990

A33-N2*(1.0+C1)+C7*C9
RES(J,1)—-0.0 DEN=A11*A22*A33+2.0*A12*A23*A13-A11*A23*A23
Z0(3)=0.0 t-A22*A13*A13-A33*A12*A12
Z0(4)=0.0 Z(1)=(A22*A33-A23*A23)/DEN
P02(1)=0.0 Z(2)=(A13*A23-A12*A33)/DEN
P02(2)“0.0 Z(3)=(A12*A23-A13*A22)/DEN
C Z(4)" (AI2*A13-All*A23) /DEN
X=CP1 Z(5)=(A11*A22-A12*A12)/DEN
FHY=CP2«RADIAN Z(6)=(A11*A33-A13*A13)/DEN
stepi=step*radian DO 3003 1=1,3
. P(1)=0.0
TOITE(*,*) I»t PASS - CALCULATIONS IN PROGRESS 3003 P2(1)=0.0
cH** write(*,*) ' CALL PJMN (K,N,NLOAD,CL)
DO 3001 M=1,MTERM IF (IJOB.EQ.2) CALL PQP(K,N,PQ,RAD)
Cx** WRITE (6,2313) M IF(KC.OK.N.AND.N.OT.I)
c***2313 FORMAT (lh+ TERM NUMBER *“ ,14) C CALL FIMP(NSYM,IMP ,XIMP,FBAR,P,P2,AN,BN,K,N)
K=M*NSYM-KM L=1
C8=T3*K -1
C9=C8*C8 100 IF (I11.SQ.ITOL) GOTO 555
A1=1.0+C1*C9*C9 IF (NP.EQ.I) THEN
A4=-W*C8 PHI-(L-)*STEP1+PHY
A5=A1*C9-A4*A4 CALL ENN(X,PHI,K,N,ES,Z,P,P2,LOAD,LOOP)
Z0(1)=C9/AS5 ELSE
Z0(2)— A4/A5 X“ (L -1)*STEP+CP1
Z0(5)=1.0/(C7*C9)
Z0 (6)=A1/A5

CALL SNN(X,PHY,K,N,ES,Z,P,P2,LOAD,LOOP)
CALL ENO(X,K,SS,Z0,P0O,P02,LOAD,LOOP)
DO 3004 1=1,3 STEP1-T4 *K*STEP/N
3004 PO(1)=0.0 END IF

P02(3)=0.0 DO 900 JC*“1,LOOP

CALL PJMN(K,0,NLOAD,CL)

900 DISP(JC,L)“ES(JC)
TP/TJOB EO 2) CALL PQP(K,0,PQ,RAD) [1oL*2-1
IF (NP EQ ?) ~LL ENO(X,K,E0,Z0,PO,P02,LOAD,LOOP) IF (1L0S.ITOL) 1I-ITOL
DO 3001 N=1,NTERH DO 500 I=L+1,I1
\to—yraw Al-COS<N™*(I-L)*STEF1)*2.0
All=l.o+ci*(N2+C9)**2+C2*((N2-1)+0.5*C9) IC=2*-|
A12=C8* (C3*N2-W) DO 30 JO I|,LOOP
A13=N*(1.0+N2*Cl)+C4*N*C9 30
A22=C9+C5*N2

DISP(JC,1)=A1*ES(JC)-DISP (JC,IC)
500  CONTINUE
A23=-C6*N*C8



555

910

L=L*2

GOTO 100

DO 910 J=1,LOOP

DO 910 1=1,ITOL
RES(J,1)—RES(J,)+DISP(J,1)
IF(NTYPE.NE.2.AND.IJOB.NE.I) 00TO 3001
Al=2.0*COS(N*STKP1/2.0)
RES(1,NS1)=RES(1,NS1)+A1*DISP(1,1)-

(DISP(1,1)+DISP(1,2))/A1

RES (1 ,NS2)=RES (1 ,NS2) +A1*DISP (1, ITOL) - (DISP (1,ITOL-1)

6 +DISP (1,ITOL)) /AL

3001  CONTINUE
IF (NP.EQ.l) THEN
DO 930 1=1,LOOP
DO 930 J=1,ITOL

930 RES (1,J) =RES (1 ,J) +EO (1)
END IF

c

c STORE [WVL], [S]
IF(1JOB.EQ.I) THEN
DO 948 1=1,3

948  S(1)=0.0

IF(NTYPE.EQ.2) THEN
RAD (NS1)=(RES (1,NSI)+E0 (1)) *T5
RAD (NS2) = (RES (1 ,NS2) +E0 (1) ) *T5
10=1
IF(NCSYM.EQm1) 10=2
NSIZS=NSIZR+IC
END IF
11=0
IF(NCSYM.EQ.l) 11=1

IF (CL(1) .EQ.0.0) S(1)=2.0*PI*R*T*XLEN*CL(2) +CL (4)

fe*XLEN*R*R* (ALPHA-SIN (2 .0»ALPHA) /2.0)+CL(6)
DO 949 1=1,NLOAD

J=(1-1)*6+1

IC=CL(J)

IF(IC.EQ.0.OR.IC.EQ.2) GOTO 949

949

947

946

C***

Al=CL(I+4)
A2=CL(J+5) *R*RADIAN
IF(AI.LEQ.0.0) Al-1.0
IF(A2.£Q.0.0) A2-1.0
A3=A1*A2*CL (J+ 1)
A4=CL (J+3) «(RADIAN
IF(IC.EQ.I) THEN
S(1) =5 (1) +A3*COS (A4)
S(2)=S(2)+I1*A3*SIN(A4)
END IF
IF(IC.SQ.3) THEN
S(1)=S(1) -A3*SIN (A4)
S(2)=S(2)+1I*A3*COS(A4)
S(3)=S (3) +I1*A3*R
END IF
CONTINUE
DO 947 J=1,NK
RAD (J) "RES (1, KCODE (J) ) *T5
DO 946 J-NK+1,NK+NT
RAD(J)=RES(3,KCODE(J))*T5
OPEN (3 ,FILE-'PCSAD"',STATUS-'UNKNOWN ")
WRITE (3, *) (RAD(J) ,J*1,NSIZE)
WRITE(3,*) (8(1),1=1,3)
GOTO 999
END IF
A3-1.0E6/A
A4=PRESS*0.5/ (1.0-W *W)
WRITE(*,*) 'WRITE TO OUTPUT FILE"
DO 940 J=1,1TOL
IF (NP.SQ.l) THEN
ANO-CP2+(J-1)«STEP
ELSE
X=CPI+(J-1)«STEP
END IF
RES (1,J) =<RES (1, J) *T5
RES (2, 1) "RES (2, 1) *T5
RES (3,J) -RES (3,J) *T5
IF(1J0B.SQ.2) THEN



940
310
311
312

313

PHI=ANG*RADIAN

SNT=SIN(PHI)

CNT=COS(PHI)

RES (1 ,J) =RES (1 ,J) +DELTA(1) *CNT+DELTA(2) *SNT

RES (3,J) =RES (3,J) -DELTA (1) *SNT+DELTA <2) *CNT+R*DELTA (3)
END IF

WRITE (6,310) X,ANG

WRITE (6,311) (RES(K,J) ,K=1,3)

IF(LOOP.EQ.3) GOTO 940

RES (4 ,J) =RES (4 ,1) +A4

RES (5, J) RES(5,1) -A4*W

ES (1) =R* (RES (4 ,J) +W*RES (5 ,1))

ES (2) =R* (RES (5 ,J) +W*RES (4 ,1) )
ES (3) = R*Tl*RES (6,1) /2.0

ES (4)=T6* (RES (7 ,J)+W *RES (B,J))
ES (5) =T6* (RES <8,]) +W*RES (7 ,J) )
ES (6)=T6*T1*RES(9 ,J)

Al=

A2=

ES(1) /T
ES(2) /T
1)=Al-6.0%ES(4)/T2
2)=Al+6.0*ES(4)/T2
3 (5
4 (

A,-\ 1

EO(
EO(
EO (3) =A2-6.0*ES (5) /T2
EO(
EO (
EO (
EO(

)=A2+6.0*ES(5)/T2
5) = (R*RES (4 ,J) +T*0.5*RES (7 ,1) ) *A3
6)= (R*RES (4 ,]) -T*0.5*RES (7 ,]) ) *A3
7)=(R*RES(5,])+T*0.5*RES(8 1)) *A3
EO (8) = (R*RES (5 ,J) -T*0.5*RES (8 ,J) ) *A3
WRITE (6,312) (ES(K),K=1,6)
WRITE (6,313) (EO(K) ,K=1,4)
WRITE (6,314) (EO(K) ,K=5,8)
CONTINUE
FORMAT(//5X,'X = 'E12.5,3X, ANGLE = ',F7.2,'DKG")
FORMAT(5X, W =' ,E12.5,3X,-U = ',K12.5,3X,'Vv  ,K12.5)
FORMAT(4X, NX-1,E12.5,3X,'NPY="E12.5,3X,'NXPY-"E12.5/
6 4X, MX='EI2.5,3X,'MPY=' ,E12.5,3X,'MXPY-'K12.5)

FORMAT(4X, SXI="E12.5,1X,'SX0="E12.5,1X,'SPYI-',K12.5,

314
999

10

SIX,'SPYO-',E12.5)

FORMAT(4X,’KXO-',F8.2,3X,'"EXI-,F8.2,3X,'KPYO-
C 3X,'RPYI“" F8.2)

STOP

END

SUBROUTINE KNO (X,M, EO, ZO, PO, P02 ,LOAD, LOOP)
IMPLICIT REAL*8 (A-H.0-Z)
DIMENSION S0(10),20(6),P0(3),P02(3),LOAD(3)

COMMON/BLK2/73,T4,P I,RADIAN,T ,R,XLEN,NCSYM
C2«M*T4

C3-C2*R
C1«C3*C3
C4-SIN(C2*X)
C5-COS(C2*X)
C45-C4/C5

DO 10 J*1I,3

IF (LOAD (J) .EQ.0) GOTO 10
JU-J+1
IF(J.EQ.2) JU=6
JV*J+2

C8-P0O (J) *C4

C9— P02(J)*C5

EO (1) **E0 (1) +Z0 (J) *C8
EO (2)-E0 (2) +Z0 (JU) *C8/C45
E0(3)-E0(3)+Z0(IV)*C9*C45

IF(LOOP.EQ.3) GOTO 10

EO(4)*I0(4)-C8*C3*ZO(JU)
0(5)-E0 (5) +C8*Z0 (J)

0(6)-BO (6) +C9*C3*Z0 (IV)

0(7)-EO (7) +C8*C1*Z0 ()

EO( )—BO(9)+C9*0.75*C3*Z0(JV)

CONTINUE

RETURN

END

SUBROUTINE ENN(X,PHI,M ,N,ES,Z,P,P2,LOAD,LOOP)
IMPLICIT REAL*8 (A-H.0-Z)

F8 2
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DIMENSION SS(l10) ,Z(6) ,P(3) ,P2(3) ,LOAD(3)
COMMON/BLK2/T3,T4,P|,RADIAN,T,R,xLEN,NCSYM
DO 5 1-1,9

ES(1)=0.0

CNT—COS(N*PHI)

SNT—SIN(N*PHI)

A2=M*T4

A3-A2»R

Al-A3*A3

A4—SIN (A2*X)

A5-COS(A2*X)

A45—-A4/AS

DO 10 J=1,3

IF(LOAD(J).EQ.O) GOTO 10

JU-J+1

IF(J.EQ.2) JU=6

JV-J1+2

A6— (P (J) «KCNT+P2 (J) *SNT) *A4

A7—(P (J) «<SNT-P2 (J) *CNT) *A5

ES(l)—ES(1)+Z(J)*A6

ES (2) - ES( ) +Z (JU) *A6/A45
ES(3)=ES(3)+Z(JV) *A7*A45
IF(LOOP.EQ.3) GOTO 10

ES(4)— ES(4) A 6*A3*Z (JU)

ES (5) =ES (5) +A6* (N*Z (IV) +Z (1) )

ES (6) ES(6)+A7*( 3*Z(JV) -N*Z (JU))
ES (7) —ES (7) +A6*Z (J) *Al

ES(8)= ES(8)+A6*( ()*N*N+N*Z(JV))
ES (9) -ES (9) +A7* (0 .75%A3*Z (JV) +N*A3*Z (J)
6+0.25*N*Z(JU))

CONTINUE

RETURN

END

SUBROUTINE PJMN (M,N,NLOAD,CL)
IMPLICIT RKAL*8 (A-H,0-Z)

DIMENSION P (3),P0(3),P2(3),P02(3),CL(60)
COMMON/BLK2/T3,T4 ,P |, RADIAN,T ,R,XLEN,NCSYM

COMMON/BLK3/P,P0, P2, P02
H-(M +1)/2

IF(M.LT.2*11) 11-0

DO 20 1-1,NLOAD

Jxx(1-1) *6+1

locL()

Al—CL(J+1)
A2-CL(J+2)
A3-CL(J+3)
A4-CL(J+4)
AS—CL(J+5)

IF (IC.EQ.0.AND.11. EQ.0) CALL SWP(P,PO,M,N Al A2 A3 A4)

IF (IC.NE.O) CALL PATCH(IC ,A1,A2 A3 A4 W .M "i o
CONTINUE oo

RETURN
END

SUBROUTINE SMP (P,PO M ,N, SNV, PRESS, SW,ALPHA)
IMPLICIT REAL+8 (A-H.0-Z)

DIMENSION P (3), PO (3)
COMMON/BLK2/73,T4,PI,RADIAN,T,R, XLEN,NCSYM
ALPHA—ALPHA* RAD | AN

Al-SIN (ALPHA)

A2-COS (ALPHA)

A3—SW*R/ (M+P1+P 1)

IF(N.OT.l) GOTO 20

IF(N.EQ.1) GOTO 10

PO(1)-4 .0+PRESS/(M*P1)+4.0+A3+(A-ALPHA*A2)
RETURN :
A5—4 .0*T*SWV/(P1+M)
P(1)-A5+4.0*%A3*(ALPHA-AI*A2)

P(3)—-A5

RETURN

N N i N

RETURN
END

N<M*ALraA> *A2-N*COS N*M *raA) .Al, /(N. (N.N-1,,
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P(1)=P(1)+A2*AM*AN( ,N)
P2(1)-P2(1)+A2*AM*BN(I,N)
CONTINUE

RETURN

END

SUBROUTINE PQP (M,N,PQ,RAD)

IMPLICIT REAL*8 (A-HtO-Z)

DIMENSION PQ(120),RAD(120),P(3),P2(3),P0(3),P02(3)
COMMON/BLK2/73,T4,P I,RADIAN,T ,R,XLEN,NCSYM
COMMON/BLK3/P,P0,P2,P02
COMMON/BLK4/SDIV,WIDTH ,NTYPE ,NK,NSIZE ,XSAD
CC-WIDTH/2.0

BETA=SDIV /2.0

IC=0

IF(NCSYM.EQ.I) IC-1

Al=M*T4

AM=4.0*SIN (A1*XSAD) *SIN (A1*CC) / (M*PI)
IF(N.NB.O) GOTO 4
A2=2.0*BETA*NCSYM/PI

IF(NTYPE.EQ.I) A2-NCSYM/(R*PI)
ANO-0.0

DO 1 I«1,NK

ANO=ANO-PQ()*A2

IF(NTYPE.EQ.2) ANO=ANO-(PQ(NSIZE+1)+
t IC*PQ(NSIZE+2)) *NCSYM/(R*PI)
PO(1)=P0O(1)+ANO*AM

IF (NK.EQ.NSIZE) RETORN

ANO0=0.0

DO 2 I«kNK+1,NSIZE

ANO=ANO-PQ(I)

P02 (3)-P02 (3) -IC*ANO*A2*AM

RETURN

AN=0.0

BN=0.0

Al— 4 .0*NCSYM*SIN (N*BSTA) 7/ (N*PI)
IF(NTYPE.EQ.I) Al— 2.0*NCSYM/(R*PI)
DO 10 1=1,NK

PHI-RAD(I)*N
A4—PQ(I) *Al
ANAAN+A4 *COS (PHI)
BN—BN+A4*SIN(PHI)
IF(NTYPE.EQ.2) THEN
A2— 2.0*NCSYM/ (R*P1)
DO 5 II»1,1+IC
I —lI+NSIZE
PHI-RAD(I)*N
A4—PQ(I)*A2
AN—AN+A4*COS(PHI)
BN-BN+A4*SIN (PHI)
END IF
P (1) —P (1) +AM*AN
P2(1)-P 2 (1)+IC*AM*BN
IF(NK.EQ.NSIZE) RETURN
AN=0.0
BN—0.0
DO 40 I-NK+1,NSIZE
PHI-RAD (1) *N
A4—PQ (1) *Al
AN—AN+A4*COS(PHI)
BN—BN+A4*SIN(PHI)
P (3) —P (3) +AM*BN
P2(3) —P2(3)-IC*AM*AN
RETURN
END
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SUBROUTINE PATCH (KTYPE ,Q,B,AFA,CC,BETAL ,M,N)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION P(3) ,P0(3) ,P2(3) , P02 (3)
COMMON/BLK2/T3,T4,P |,RADIAN,T ,R,XLEN,NCSYM
COMMON/BLK3/P , PO, P2, P02
AFA=AFA*RAD IAN
BETA1=BETA1 *RADIAN
€c=CC/2.0
BETA=BETA1/2.0
IC=0
IF (NCSYM.EQ.l) IC=1
A1=M*T4
A2=A1*B
A3-A1*C
A4=M*P|
00TO (1.2.1,4,1) KTYPE
IF (CC.EQ.0.0) AM=2.0*SIN(A2)/XLEN
IF (CC.GT.0.0) AM=4.0*SIN (A2) *SIN (A3) /A4
00TO 30
IF (CC.EQ.0.0) AM=2.0*COS(A2)/XLEN
IF (CC.GT.0.0) AM=4.0*COS (A2) *SIN (A3) /A4
00TO 30
AM= (COS (A2) * (SIN (A3) / (A1*C) -

COS (A3) ) +SIN (A2)*SIN (A3) ) *2.0/A4

30

50

500

IF (N.EQ.0) 00TO 60

A4=N*AFA

IF (BETA1.EQ.0.0) THEN
A5=Q/(R*PI)

00TO 50

END IF

A1=2.0*Q/(N*PI)

A2=N*BETA

A5=A1*SIN(A2)

IF (KTYPE .EQ.5) A5=A5/2.0+A1* (COS (A2)-SIN(A2)/A2)
AN—A5*COS (A4)

BN=A5*SIN (A4)
00T0(500,600,700,500,500),KTYPE
P(1)=P(1)+AM*AN

600

700

60

501

601

701

C*****QNLY FOR SHAPE SYMMETRIC ABOUT CENTRE, (AXIAL SYMMETRY)

P2(1)=P2(1)+IC*AM*BN

RETURN

P (2)“P (2)+AM*AN
P2(2)-P 2 (2)+IC*AM*BN

RETURN

P(3)“P(3)+AM*BN
P2(3)-P 2 (3)-IC*AM*AN

RETURN

IF (BETAI.XQ.0.0) ANO-Q/(2.0*R*PI)
IF (BKTA1.0T.0.0) ANO-BETA*Q/PI
IF(KTYPE.EQ.5) ANOCANO/2.0
00T0(501,601,701,501,501),KTYPE
FO(1)«PO(1)+AM*ANO

RETURN

PO(2)-PO(2)+AM*ANO

RETURN

P02(3)-P02(3)-IC*ANO*AM

RETURN

END

SUBROUTINE FIMP (NSYM, IMP,XIMP PBAR P P2AN BnT *
IMPLICIT RXAL*8 (A-H.0-2) A AGBN,M N)
DIMENSION XIMP(3) ,P(3) ,P2(3) ,AN(3 60) ,BN(3 60)
COMMON/BLK2/T3,T4,P |,RADIAN,T,R , XAEN NCSYM
A1-2.0*NSYM/XLXN ' "
A2=M*T4

DO 10 1*1,IMP

A3=XIMP(l)

IF(1.LEQ.I) XOA3/2.0

IF(IMP.OT.1) XO(A3-XIMP(I-1))/3 0O

IF (I.LT.IMP) XD-(XIMP(1+1)-A3)/3.0

1?2 (1 -*Q-IMP) XD«(XLEN-A3*NSYM)/ (1 .0+NSYM)

*Hx (A2* (A3-XC))-SIN(A2* (A3-2.0%XC))) /XC

IF (XD.0T.0.0) AI*AM- (SIN (A2* (A3+2.0*XD

S-SIN(A2*(A3+XD))) /XD

AM-AM*AL/(A2*A2)
A2— PBAR*((N*N-1)+ (M*T3)**2/2.0)/R



APPENDIX 2

Program - saddlepc f
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C SOLUTION FOR INTERFACE PRESSURE

CLOSE (2)
IMPLICIT REAL*8 (A-H,0-Z)

o
DIMENSION C(110,3),CF(3,110),8(3,3),PQ(110),BB(3,3) o GLOBAL CONSTANTS
DIMENSION DELTA(3),S(3>,ES(3),WKS1(110,110),WVL(110) PI=ASIN(1.0)*2.0
DIMENSION F(110,110),F1(60),F2(120),F4(60),KCODE(110) PI2=PI*P|
DIMENSION F5(110),F6(110),F7(110),F8(110) T1-1.0-W
CHARACTER*10 NAME* 60 ,0APP,FLEX, FLNAM T2=T*T

c T3=PI*R/XLEN
OPEN (2 ,FILE» 'PCINPUT ' ,STATUS» ' UNKNOWN ') T4—PI/XLEN
READ(2,103) NAME A=E*T/(1.0-W*W)

103 FORMAT (A60) T5»R*R/A
READ(2,*) MTERM,NTERM T6-T2/12.0
READ(2,*) NSYS,NSYM,NCSYM, IMP
READ (2 ,*) R,E,W ,T,XLEN €2=0.0
IF(IMP.NE.O) THEN IF(AILEQ.0.0) THEN
DO 5 1=1,IMP A5=A5*P1/180.0

5 READ(2,*) DUMMY C11=SIN(A5)
END IF C12=COS (A5)
READ(2,*) NLOAD PBAR=A3+A4*R* (C11-A5*C12) /PI
READ (2 ,*) A1,A2,A3,A4 A5,A6 C2=PBAR*R/A
DO 6 I»2 ,NLOAD+1 END IF

6 READ (2 ,*) DUMMY

C1=T6/(R*R)
C2=PBAR*R/A
IF(NSYS.EQ.l) C2-0.0
C3=TI*CI1/2.0

READ (2 ,*) XSAD,SBETA,OFFSET,WIDTH, NTYPE
READ (2,*) NDIV,NK,NT

NS ZE=NK+NT

I1=NDIV+NTYPE C4=(3.0-W) *Cl1/2.0
IF(NTYPE.EQ.2) I1=NDIV C5-T1*(4.0+C1)/8.0
DO 33 1=1,NK

C6=(4.0* (1.0+W)-3.0*C1*T1)/8.0
33 KCODB(1)=1 C7=T1*(4.0+9.0*C1)/8.0

DO 35 1=1,NT
35  KCODE (NK+1)=1

IF (NK.LT.I1) READ(2,*) (KCODE(l) ,1=1 ,NK)

IF (NT.GT.0.AND.NT.LT. 11) READ (2 ,*)
(KCODE(l),I=NK+1,NSIZE)

READ(2,*) |GAP,IFLEX

IF(ICSAP.EQ.l) READ(2,104) OAPP

IF(IFLSX.EQ.1) READ(2,104) FLEX
104  FORMAT (A10)

ITOL=NDIV+NTYPK

SBETA=SBETA*P1/180.0

SDIV=SBETA/ND IV

DIV-SDIV

IF(NTYPE.EQ.2) THEN
ITOL=2*NDIV+1
DIV-SDIV/2.0

END IF
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cx **

Cr**

820

Crx*

WRITE (*,*) SADDLE PASS - CALCULATIONS
write (*,*) 1 1
VECTORS FI ,F2,F4 ,F5 F6,F7 ,F8
W0=0.0
V0=0.0
WL2=0.0
WL=0.0
IEND=NTYPE+NDIV
ISYM=1
IK=0
IF (NTYPE.EQ.2) THEN
IEND*NDIV
ISYM=2
IK=1
END IF

IN PROGRESS'

DO 820 I«1,IEND

A9=8.0/PI2
BETA?=SDIV/2.0

IF (NTYPE.EQ.l) THEN
A9=A9/ (2. 0*R)
BETA=1.0

END IF
A2=T4*WIDTH/2.0
A3=T4*XSAD

A8=2.0

DO 3001 M=1,MTERM
write(6,2313) M

0***2313 FORMAT(lh+,”TERM NUMBER =

100

900

1, 1«)
K=M*2-1

C8=T3*K

C9-C8*C8

A1=1.0+C1*C9*C9

A4=-W*Cs
Z01-C9/(A1*C9-A4*A4)
205=1.0/(C7*C9)
A5=SIN(K*A3)
AB=A9*SIN(K*A2)*A5*A3/K
A7=A6*BETA

WOMO0+A7*Z01

VO-VO+A7*Z05

DO 3001 N“1,NTERM

N2=N*N
All1=1.0+C1*(N2+C9)**2+C2*( (N2-1)+0.5*C9)
A12=C8* (C3*N2-W)
A13=N*(1.0+N2*Cl)+C4*N*C9
A22=C9+C5*N2

A23=-C6*N*C8
A33-N2*(1.0+C1)+C7*C9
DEN=AII*A22*A33+2. 0*A12*A23*A13-AlI*A23*A23
S-A22*A13*A13-A33*A12*A12
ZI=(A22*A33-A23*A23)/DEN
Z3=(A12*A23-A13*A22)/DSN
Z5=(A11*A22-A12*A12)/DEN

IF(NTYPE.EQ.O .OR.NTYPE.SQ.2) AB=2.0*SIN(N*BETA) /N
CON=R*A8

L=1

X—1

IP(II.LEQ.ITOL) GOTO 55S
PHI-(L-)*D IV
CNT=A8*COS(N*PHI)
ES(1)=CNT*A6*Z1
ES(2)=-A6*Z3*A8*SIN(N*PHI)
E3(3)=CNT*A6*Z5

DO 900 J01,3

CF(JC,L)“ES (JC)



70€

30

500

555

910

909
3001

930

1=L*2-1
F(II.GE.ITOL) I1l=1TOL
DO 500 I=L+1,I1
AI=COS(N*(I-L)*D1V)*2.0
IC=2*L-|
DO 30 JC=1,3
CF(JC,1)=A1*ES(JC)-CF(JC,IC)
CONTINUE
L=L*2
GOTO 100
DO 910 1=1,IEND
H=1*1SYM -1K
FI (1)=F1 (1) +CF (1, 11)
F2(1)=F2(1)+CF(2,11)
F4 (1) =F4 (1) +CF(3,11)
IF(NTYPE.NE.2) GOTO 3001
WL=WL+CF(1,1)/CON
WL2=WL2+CF(1,ITO L)/CON
DO 909 1=1,IEND
11=1*ISYM

F7(1)=F7(1)+CF(1,1 )
F8(1)=F8(1)+CF(2,1
F5(1)=F5()+CF (1,1 )/CON
F6 (1) =F6(l) +CF(2,11) /CON

CONTINUE

WOA=WO/ (2 .0*BETA*R)
DO 930 J=1,IEND
FI () = (FI (J) +W0) *T5
F2 (J) =F2 (J) *T5
FA())=(F4(J)+VO0)*T5
IF (NTYPE.NE.2) GOTO 930
(3) = (F5(J)+WOA) *T5
6(J)=F6( ) *T5
(3) = (F7 (1)+W0) *T5
F8(J) =F8 (J) *T5
CONTINUE
WL= (WL+WOA) *T5

WL2=(WL2+WOA)*T5

CH***

3020

200

813

802

WRITS(*,*> 'FEORMINO FLEXIBILITY MATRIX [F]'
GOTO(3020, 030)NCSYM

DO 200 1=1,NK

I0KCODX(I)

DO 200 J“1 ,NK
I-KCODE (J) -IC+1
F(1,3)=F1 (1)

IF(NTYPE.EQ.2) THEN

KI-NSIZE+1

K2-NSIZE+2

KCODS (K1) =

KCODE(K2)=99

K3-NDIV+1

DO 813 1=1,NK
IC-KCODX(l)

| ,K1)=F5 (IC)
)=F5(K3-IC)
) =F7 (1C)
)=F7(K3-1C)
1

K1,K2)=ML2
F(K2,KI)=wL2
NSIZE-NSIZE+2

END IF
IF(NT.EQ.0) GOTO 3005

DO 802 1=1,NK
IC-KCODX(X)

DO 802 K=1,NT
I —NK+K
12=KCODE(II)-IC
IF(12.6T.0) F(I,11)=-F2
IF (12.LE.0) F (I (

CONTINUE

DO 812 I-NK+1,NSIZE
IC-KCODX(I)



:

812

811

300

301

— DEFORMATIONS

DO 812 J=1,NSIZE
F(I1,3)=F4(KCODE(J) -IC+1)
CONTINUE
IF(NTYPE.EQ.2) THEN
DO 811 |—NK+1,NK+NT
IC=KCODE(I)
F(ILK1)=F6(IC)
F(l K2)=-F6 (K3-IC)
F(K1,1)— F8(IC)
F(K2,1)=F8(K3-IC)
END IF
GOTO 3005

NKS=(NK+1) /2

NTS=NT/2

DO 300 1=1,NKS

KI=KCODE(l)

DO 300 J=I,NKS
I=KCODE®)-KI+1
I2=KCODE(NK-J+1)-KI+1
F(1,L))=F1(I11)+F1(12)

CONTINUE
IF(NT.EQ.0) 00TO 3333

DO 301 1=1,NKS

KI=KCODE(I)

DO 301 J=1,NTS
11=KCODE (NK+J) -K1
I2=KCODE(NSIZE-J+1)-K1
IF(I1.LOT.0) Cl—-F2(11+1)
IF(II.LLE.O) C1-F2(1-11)
IF(12.0T.0) C2=-F2(12+1)
IF(12.LE.0) C2=F2(1-12)
F (1,NKS+J)—C1-C2

CONTINUE

DO 302 1=1,NTS
KI=KCODE(NK+I)

DO 302 J=I,NTS

SYMMETRIC ABOUT VERTICAL AXIS

11- KCODK (NK+J)-KI+1
12- KCODE(NSIZK-J+1)-KI+1

302 F(I+NKS,J+NKS) *F4 (11) -P4 (12)
C
3333 IF (NTYPZ.NX.2) SOTO 53
I-NKS+NTS+1
KI-NDIV+1
DO 51 I-1,NKS
IC-KCODK(I)

F (1,11)-F5 (IC) +F5 (K I-I1C)
51 F(11,1)—F7 (IC) +F7 (K I-1C)
F(I1,11)=WL+WL2
IF(NT.KQ.0) 00TO 53

DO 52 1=1,NT

IC-KCODE(l)
F(I+NKS,I11)«F6(KI-IC)-F6(IC)
52 F(II,I+NKS)-F8(K1-1C)-F8(IC)
c RESET KCODK
53 DO 345 I-I.NTS
345 KCODK(NKS+I)—KCODB(NK+I)
NX-NKS
NT-NTS

HSI2E-NK+NT
KCODK(NSIZE+D-0
IF (NTYPK.KQ.2) NSIZK-HSI2K+1
3005 CONTINUK
NKT-NK+NT
DO 303 1-2 HKT
DO 303 J-1,1-1
303 F(1,3)-F(J, 1)
c

(o SSS— ([NRY7 13 S i e —
DO 123 1-1,NSIZK
DO 123 J—1,NSIzZZ

123 HKS1(1,3)-F(1,3)

CHxxx WRITK(*,*) 'INVZRT [F)'
CALL HIV(WKS1,NSIZK)

C-



90€

815

818

890

800

OPEN (3 ,FILE="PCSAD1,STATUS« UNKNOWN 1)
READ (3, *) (WVL(l) ,I=1,NSIZK)
READ(3,*) (S(I) ,1*1,3)
CLOSE (3)

NKT=NK+NT

RSDIV=R*SDIV
DO 815 1=1,3
IF (NTYPE.EQ.0 .OR.NTYPE.KQ.2) S(1)=S(I)/RSDIV
S(H=S(1)/(2.0*NCSYM*W IDTH)
IF(NTYPE.EQ.2) THEN

DO 818 I=NKT+1,NSIZE

DO 818 J=1,NSIEE

WKS1 (1,J) =WKS1 (I ,J) /RSDIV
END IF
GAP VECTOR (GAP]
IF (IGAP.EQ.l) THEN
OPEN (55,FILE=GAPP, STATUS-'OLD")
READ (55,*) K
READ (55,*) (FI(l) ,1=1,K)
CLOSE (55)
DO 890 1=1K
WVL(I) =WVL(1) -F 1 (1)
END IF

All= (SBETA-SDIV) /2.0

IF (NTYPE.EQ.l) AllI=SBETA/2.0
C1=0OFFSET*P1/180.0-All

DO 800 1=1,NK
PHI=(KCODE(I)-1
C(1,1)«COS (PHI)
C(1,2)«SIN (PHI)
C (1,3)«0.0

) *SDIV+C1

IF (NTYPE.EQ.2) THEN
Al=CI+AIl-SBETA/2.0
A2=A1+SBETA
C(NKT+1,1)=COS (Al)
C(NKT+1,2)«SIN (A1)

(NKT+1,3)-0.
(NKT+2,1)-CO
(NKT+2,2) =S|
(NKT+2,3)»0.
END IF
IF (NT.EQ.0) GOTO 814
L-NK+1
DO 747 I—L ,NKT
PHI-(KCODE (1) -1) »SDIV+C1
C(1,1)—SIN (PHI)
C (1,2)-COS(PHI)
747 C(1,3)-R
814  CONTINUE
C [CIT* [F] (-1)
NDIL—3
IF (NT.EQ.0) NDEL-2
IF (NCSYM.BQ.2) NDEL—1
ITER—0
DO 776 1-1.3
DO 775 J-1,3
775 B(l,])-0.0
776 B(l,1)-1.0
896 DO 777 |—1,NDEL
DO 777 J*1,NSIZE

c
c s
c N(2)
c 0

CF(1,1)-0.0
DO 777 Krt,NSIZE
777 CF(1,J)«CF(1,J)+C(K,D*W KS1(K,J)
c
T — [B] MATRIXrrrreeeeeeeeesens

DO 902 |—1 ,NDEL
DO 902 J=1,NDEL
B(1,])-0.0
DO 902 IC-1,NSIZS
902 B (1,3)-B (1,1)+ CF (I,K)*C (K ,J)

e P— COMPUTE THE INVERSE OF IB] MATRIX
C1-B(1,1)*B(2,2)*B(3,3)+B(1,2)*B(2,3)*
1 +B(1,3)*B(2,1)*B(3,2)-B(1,3)*B(3,1)*

B(3
B (2



. *B(2,3) *B(3,2) -B (1,2) *B(2,1)*B(3,3)
2 BBB(fli})z(B(2,2)*B(3,3)-B<2,3)*8(3,2))/Cl
BB(1.2)=(B(1,3)*B(3,2)-B (1,2) *B(3,3)) /CI
BB (1.3) (B (1,2) *B(2,3) -B (1,3) *B(2,2))/C1
BB(2.1)MB(2,3) *B(3,1) -B (2,1) *B(3,3)) /CI
BB (2 2) (B (1.1)*B(3,3)-B(1,3)*B(3,1))/C1
BB(2.3)="(B (1,3) *B(2,1) -B (1,1) *B(2,3)) /CI
BB(3,1)=(B(2.1) *B(3,2) -B(2,2) *B(3,1>) /C|
BB (3.2)~ (B (1.2)*B(3,1)-B(1,1)*B(3,2))/C1
BB(3,3) (B (1,1)*B(2,2) “B(1,2)*B(2,1)) /Cl
C
C— — (D) ) [e—————
see DO 904 I1=1,NDEL
F2 (1) =0.0

DO 904 J=I,NSIZE
904  F2()=F2 (1) +CF(1,]) *WVL(J)
DO 906 I=1,NDEL
906 F2(h)=s(I)-F2(1)
DO 907 1=1,3
907 DELTA(1)=0.0
DO 90S I=1,NDEL
DO 90S J=1,NDEL
90s DELTA(1)=DELTA(1)+BB(X,J)*F2(J)

o0

F2(1)=0.0
DO 666 J=1,KDEL
F2(1)=F2 (1)+ C (1,]) *DELTA(J)
666  CONTINUE
DO 911 1=1,NSIZE
F2(1)=F2(1) +WVL(1)
011  CONTINUE
DO 912 1=1,NSIZE
PQ(1)*0.0
DO 912 J=1,NSIZE
912 PQ(=PQ(N+MKS1 (I,j) *F2(J)
IF (NTYPE.EQ.2) THEN

951

950

124

128

960

780

782

PQ(NKT+1)“PQ(NKT+1) »RSDIV
PQ(NKT+2)“PQ(NKT+2)*RSDIV
END IF

IF (NT.OT.0) GOTO 960
ITER-ITER+1
WRITE(*,*) 'NO. OF ITERACTION = ' ,ITER
NEP—O
DO 950 1=1,NSIZE
IF (PQ(1).GE.0.0) GOTO 950
DO 951 J=1,NSIZE
F(1,1)40.0
F(J,)=0.0
F(l,1)“1m0
C(1,1)=0.0
C(1,2)=0.0
WVL(1)“0.0
NEP-NEP+1
CONTINUE
IF(NSP.EQ.0) GOTO 960
DO 124 1=1,NSIZE
DO 124 J=I,NSIZE
WKS1(I,3)=F(1,])
CALL H IV (WKS1,NSIZE)
IF (NTYPE.NE.2) GOTO 896
DO 128 |“NKT+1,NSIZE
DO 128 J=I,NSIZE
WKSL(I,J)“WKS1(l,J)/RSDIV
GOTO 896
CONTINUE

------------- OUTPUT RESULTSrrrremeesssommereee

OPEN(6,FILE“ 1PCSADRES1, STATUS" 'UNKNOWN")
WRITE(6,780) NAME

FORMAT (5X,A/)

WRITE(6,782) HTERM,NTERM
FORMAT(/5X,"MTERM —1,X4/5X,'"NTERM —’ ,147/)
SBETA-INT(SBETA*180000.0/P1)/1000.0



80¢€

784

785

788
790

731

10
20

40

WRITE (6,784) XSAD ,WIDTH,SBETA, OFFSET
FORMAT(10X,'DISTANCE OF SUPPORT FROM END = ,E12.5/

1 10X, 'SADDLE WIDTH »' ,E12.5, "' UNIT'/
2 10X 'FULL SADDLE ARC ANGLE -' ,F7.2, DEG /
3 10X 'SADDLE OFFSET BY ',F7.2,” DEG'/)

WRITE (6 *)’ -** SUPPORT INTERFACE REACTIONS **'
IF (NTYPE .EQ.0) WRITE (6,*) 'PATCH LOAD MODEL'
IF (NTYPE .EQ.1) WRITE(6,*) ’LINE LOAD

IF (NTYPE.EQ.2) WRITE (6,*) PATCH + LINE AT HORN
WRITE (6,785)
FORMAT(/ ,4X, INO. CODE.NO PQ(I) )

DO 788 I=1,NSIZE
WRITE (6,790) | ,KCODE (1) ,PQU>
FORMAT(3X,13,2X,I13,6X,E15.8)

WRITE56,*) v

WRITE (6.,*) *  RIGID BODY DISPLACEMENT
WRITE (6,791) (DELTA(I),1=1,3) .
O RO VERTIALL, ¢ EB8 3%, DA
2 10X, IROTATIONAL : 1,E12.5,2X, 'UNIT )
STORE [PQ], [DELTA] IN FILE PQ.DAT

OPEN (16 ,FILE* 'PCPQ' ,STATUS='UNKNOWN )

WRITE (16,*) (P Q (1),1=1 ,NSIZE)

WRITE (16,*) (DELTA(l) ,1=1 <3)

CLOSE (16)

STOP

END

INVERSION ROUTIN Eeeerrmeerrrssssmcorneceeesee

SUBROUTINE M IV(A,N)

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION A(110,110),8(110,110),NROW (110)
DO 20 1=1,N

DO 10 J=1,N

B(1,J)=0.0

B(l,1)-1-0

DO 40 1=1,N

NROW (1) = |

DO 130 KK=2,N

50

60

70

80

90
100

110

120
130

K-N-KK+2

XT=0.0

DO 50 J=1,K

DO 50 1=1,J

IF (XT .GE.ABS (A (1,J))) GOTO 50
XT-ABS (A (1,3))

IMAX=J

I MAX |
CONTINUE

IF(XT.EQ.0.0) RETURN
IFUMAX.EQ.K) GOTO 70

DO 60 1=1,N

HOLD=A(l, IMAX)

A (1, IMAX)—A (I ,K)
A(I,LK)=HOLD

HOLD-NROW (JMAX)

NROW (JMAX)=NROW (K)

NROW (K)-HOLD
IF(IMAX.EQ.K) GOTO 100
DO 80 J—1 N

HOLD—A (IMAX,J)
AUMAX, J)=A (K, J)
A(K,J))<HOLD

DO 90 J*1,N

HOLD-BUMAX, J)

B(IMAX,J) =B (K,J)
B(K,J)=HOLD

KM1-K-1

DO 120 1=1,100.

FACTOR=A(l K) /A(K ,K)

DO 110 J=1,N
A(1L))=A(1,1)-TACTOR*A (K ,J)
DO 120 J=1.N
B(1,J)»B<1,J)-FACTOR*B (K,J)
CONTINUE

DO 150 J=1,N

IF (A(I,1).EQ.0.0) RETURN
B(1,J)=B(1,J)/A(1,1)



DO 150 1=2,N
IF(A(1,1).EQ.0.0) RETURN
IM1=I-1
DO 140 K=1,IMI

140 B(1,J)=B(I,J) -A (I,K)*B(K,J)

150 B (1,3)=B (1,3)/A(I,1)

DO 160 K=1,N
I=NROW (K)
DO 160 J=1,N

160 A (l,J)=B(K,J)

RETURN
END
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Program - cyl2pc.f



103

102

34

SOLUTION FOR INTERFACE PRESSURE
HORIZONTALLY END SIMPLY-SUPPORTED CYLINDER
PROGRAM CONVERTED FOR 2ND PASS - D H NASH

IMPLICIT REAL*8 (A-H.0-Z)
CHARACTER*20 NAME*60 ,TITLE*60 ,DATA1 (5) ,FILNM,FNAME
DIMENSION Z(6) ,Z0(6) ,PO(3) ,P(3) ,P02(3) ,P2(3) ,S(3)
DIMENSION LOADO) ,CL(60) ,XIMP(3) ,ES(10) ,E0(10)
DIMENSION AN(3,60),BN(3,60),RAD(120),DISP(9,120)
DIMENSION DELTA(3),PQ(120),KCODE(120),RES(9,120)
COMMON/BLK2/T3,T4 ,P | ,RADIAN, T ,R ,XLEN,NCSYM
COMMON/BLK3/P, PO, P2 , P02
COMMON/BLK4/SDIV .WIDTH,NTYPE ,NK,NSIZE ,XSAD
1J0B=2
LOOP=9
IF(1JOB.EQ.1.0R.IJOB.GE.3) LOOP=3
OPEN (2 ,FILE- "PCINPUT"' ,STATUS™' UNKNOWN ")
READ(2.103) NAME
FORMAT (A60)
READ (2,*) MTERM.NTERM
READ (2,*) NSYS.NSYM,NCSYM,IMP
READ (2,*) R.E.W.T.XLEN
IF (IMP.GT.0) READ (2,102) (XIMP(l) DATAL (1) ,1=1, IMP)
FORMAT (E12.5 ,5X, A)
READ (2,*) NLOAD
READ (2,*) (CL(l),1=1,NLOAD*6)
READ (2,*) CPI,CP2,CP3,CP4,STEP

NP=1

IF(CP2.EQ.CP4) NP=2

------------------- SADDLE SUPPORT PROBLEM-crrrrrsrmmmrreerreree

IF(1IJOB.EQ.1.0R.IJOB.EQ.2) THEN
READ (2 ,*) XSAD, SBETA, OFFSET,WIDTH, NTYPE
READ (2,*) NDIV,NK,NT
NSIZE=NK+NT
I1=NDIV+NTYPE
IF (NTYPE.EQ.2) I1=NDIV
DO 34 1=1,NK
KCODE(l)=1

35

DO 35 1=1,NT

KCODE (NK +D -l

IF (NK.LT.il) READ(2,*) (KCODE(l),1=1 NK)
IF (NT.GT.O .AND.NT.LT.11)

(KCODE(I),I=NK+1,NSIZE)

33

OO0

0]0)

IF (NCSYM.EQ.2) THEN
NTS=NT/2
NKS* (NK+1) /2
DO 33 1=1,NTS
KCODE(NKS+1)-KCODE(NK+1)
NT-NTS
NK-NKS
NSIZE—NK+NT
BND IF
NS1-NSIZE+1
NS2=NSIZE+2
IF(1JOB.BQ.1) THEN
SDIV-SBETA/NDIV
Al= (SBETA-SDIV) /2.0
IF(NTYPE.EQ.I) AI-SBETA/2.0
NP=1
CP1-XSAD
CP2-OFFSET-A1
IC=MAXO(NK,NT)
CP4—OFFSET+(KCODE(IC)-1 )»SDIV-Al
STEP-SDIV
END IF
END IF
CLOSE (UNIT—2)

AXIAL SYMMETRY NSYM-2, KM=1
NON AXIAL SYMMETRY NSYM-1, KM-0
KM=1

IF (NSYM.EQ.) KM-0

GLOBAL CONSTANTS
PINASIN(1.0)*2.0
RADIAN—P1/180.0

READ (2 ,*)



K »
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40

PI2=PI*PI
TI=1.0-W

T2=T*T

A=E*T/ (1-0-W *W)
T3=P1*R/XLEN
T4=P1/XLEN
T5=R*R/A
T6=T2/12.0

looping for loads
DO 40 1=1,3
LOAD(1)=0
DO 41 1=1,NLOAD
K= (1-1)*6+1
IF(CLK) .BQ.1.0.0R.CL (K) -GE-4.0) LOAD(I)=1
IF(CL(K).EQ.2.0) LOAD(2)=1
IF(CL(K)-EQ.3.0) LOAD(3)=1

IF(1JOB.EQ.2) THEN
IC=1
IF(NCSYM.EQ.l) IC=2
n=nsize
IF(NTYPE.EQ.2) N=NSIZE+IC
OPEN (16, FILE="PCPQ1,STATUS" 1UNKNOWN )
READ(16 ,*) (PQ(l) ,1=1,N>
READ(16,*) (DELTA(l) ,1=1,3)
CLOSE (16)
IF (NT.GT.0) LOAD(3)=1
END IF

C1=T6/(R*R)
€2=0.0

CLA27=SWV, CL(3) "PRESS , CL(4)=SW, CL (5)-ALPHA
IF (CL(1).EQ.0.0) THEN

LOAD (1) =1

[F(CL(2).NE.0.0) LOAD(3)=1
ALPHA=CL (5) *RADIAN

PRESS=CL (3)

> C11=SIN (ALPHA)
C12=COS (ALPHA)
PBAR-CL(3)+CL(4) *R* (CI1-ALPHA*CI2) /PI
C2=PBAR*R/A
END IF
IF (NSYS.KQ.l) C2-0.0
€3=0.5*T1*C1
C4=0.5* (3.0-W ) *C1
C5=0.125*T1*(4 .0+C1)
C6=0.125* (4.0* (1.0+W) -3 .0*C1*T1)
C7=0.125*T1*(4.0+9.0*C1)

IF (1JOB.EQ.1) GOTO 111

. Y IT YR BTN T=IVR A 07 Y ————
OPEN (7 ,F ILE -' PCOUT' ,STATUS-' UNKNOWN' )
WRITE (7,780) NAME

780  FORMAT (//5X,A/)
IF (NSYS.EQ.2) WRITE (7,360)

360 FORMAT (5X,'STIFFENING EFFECT OF
CONSIDERED ')

IF (IMP.GT.0) THEN
WRITE (7,*) 'CROSS SECTIONAL PROFILES'

WRITE (7,102) (XXMP(X) ,DATAI(I) ,1—1,IMP)
END IF

PRESSURE  HAS

WRITE (7,782) MTERM,NTERM

782  FORMAT(/5X,'MTERM - ' ,14/5X,'NTBRM
WRITE (7,330)

330 FORMAT(//5X,'CYLINDRICAL SHELL"
WRITE (7,300) XL*N,R,T,E,W

300 FORMAT(/10X,LENGTH - ' ,B12.5,2X,'UNIT'/
6 10X,'RADIUS - ' ,E12.5,2X,'UNIT/
6 10X, THICKNESS - ',B12.5,2X,'UNIT/
c 10X,'YOUNGS MODULUS - ' ,E12.5,2X,'UNIT'/
£ 10X,'POISSON RATIO  ,F7.3>

14)

WRITE (7,306)

BEEN



eTe

306 FORMAT (//5X, 1»LOADING* ")
305 FORMAT (/5X, 'SP. WT.=",6K12.5,2X, 'PRESSURE ="' ,X12.5/

6 5X,"SP. WT. OF FLUID -1,E12.5,2X, <LEVEL OF
FILL=1,F7.2 ,’DEG")
343 FORMAT (/5X, 'TYPE = RADIAL PATCH (1)
(2) +7

i 5X, "'
(4) "1

S 5X, '

AXIAL SHEAR PATCH

HOOP SHEAR PATCH (3) AXIAL TRIANGULAR

HOOP TRIANGULAR (5)'//

S5X, TYPE',4X, MAGNITUDE' ,9X, X', 11X, 'PHY' 8X,'2C', 8X, '2BETA')
344  FORMAT(7X,12,2(2X,E12.5),2X,F7.2 ,2X,E12.5 ,2X,F7.2)
IF (CL(1).EQ.0.0) WRITE (7,305) (CL(1),1-2,5)
IF (CL(1).NE.0.0) WRITE (7,343)
DO 333 I=1,NLQAD
J=(1-1)*6+1
IC=CL(J)
IF(IC.EQ.0) GOTO 333
WRITE(6,344) IC, (CL(K),K=J+1,6J]+5)
333  CONTINUE
o —— IMPERFECTION
KC=0
111 IF (IMP.EQ.0) GOTO 404
DO 400 1=1,IMP
OPEN (1 ,FILE=DATA1 (1) ,STATUS-'OLD ")
READ(1,103) TITLE
READ(1,*) NDRAD,CONVT,DRIFT
READ (1, *) (RAD (J) ,J=1,NDRAD)
READ(1,*) DATUM
CLOSE(1)
DO 401 J=I,NDRAD
401  RAD (J) = (RAD (J) -DRIFT) *CONVT+DATUM
KC=NDRAD/2
IF(KC.GE.NTERM) KC=NTERM
A2=2.0 /NDRAD
AL1=PI*A2
DO 402 N=2,KC
SSUM=0.0

403

402
400

404
C—

80

CSUM-0.0
A3=A1»N
DO 403 J=I,NDRAD
PHY-(J-)*A3
SSUM-SSUM+RAD (J) *SIN(PHY)
CSUM—CSUM+RAD (J) *COS (PHY)
CONTINUE
AN (I,N)=CSUM*A2
BN(I ,N)“ SSUM*A2
CONTINUE
IF(NSYM .EQ.I) GOTO 404

CONTINUE

ANGULAR POSITIONS OF CONTACT NODES
IF (IJOB.EQ.2) THEN
SBETA—SBETA* RADIAN
SDIV—SBXTA/NDIV

Al» (SBETA-SDIV) /2.0
IF(NTYPX.EQ.I) AI-SBSTA/2.0
A2=0FFSET*RADIAN-A1

DO 80 I1»1,NSIZE

RAD (1) - (KCODE (1)-1 )+SDIV+A2
IF(NTYPZ.EQ.2) THEN

RAD (NSI) «*Al+A2-SBETA/2.0
RAD(NS2)»RAD(NSI)+SBSTA
END IF

END IF

IF (STEP.EQ.0.0) ITOL—1

IF (STEP.NX.0.0) THEN
Al—(CP4-CP2)/STEP
IE (NP.XQ.2) AI»(CP3-CP1)/STEP
ITOL—1.1+A1

END IF

DO 990 J»1,L00P

E0(J)-0.0

DO 990 I»1,ITOL+NTYPE
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=72
00TO 100

555 DO 910 J=1,LOOP
DO 910 I-1,ITOL
910 RES(J,1)=RSS(J,1)+DISP(J,1) _nn1
IF(NTYPE.NE.2.AND.IJOB.NE.I) 00TO 3001
Al=2.0*COS(N*STEP1/2.0)
RES (1 ,NS1) =RES (1 ,NS1)+A1*DISP (1,1)"
<DISP (1 «L NS2) +A1*DISP (1, ITOL)- (DISP (1,1TOL-1)
6 +DISP(1,ITOL)) /AL
3001  CONTINUE
IF (NP.EQ.I) THEN
DO 930 1=1,LO0P
DO 930 J=1,ITOL
930 RES (1, J)=RES(I,J)+E0(I)
END IF
c STORE [WVL], [S]
IF(1JOB.EQ.1) THEN
DO 948 1=1,3
948  S(1)=0.0

IF(NTYPE.EQ.2) THEN
RAD (NS1) = (RES (1 ,NS1) +EO (1)) T5
RAD(NS2) = (RES(1 ,NS2) +EO (1)) *T5
IC=1
IF(NCSYM.EQ.1) IC=2
nsize=nsizb+ic

END IF

C*XLKS*B*R*<ALPHA-SI«(2.0*iaPHA)/2-0)+CL<6>
DO 949 1=1,NLOAD

J=(1-1)*6+1

IC=CL(J

IF (IC .EQ.0.OR.IC.EQ.2) OOTO 949

949

947

946

CH**

Al=CL (J+4)
A2=CL(J+5)*R*RADIAN
IF(A1.EQ.0.0) Al-1.0
IF(A2.KQ.0.0) A2-1.0
A3=A1*A2*CL(J+1)
A4-CL(J+3)*BADIAN

IF(IC.SQ.1) THEN
S(1)=3 (1) +A3*COS (A4)

S(2) =3(2) +11*A3*SIN (A4)

END IF
IF (IC.EQ.3) THEN
S(1)=3 (1) -A3*SIN(A4)
S(2)=3(2)+11*A3*COS(A4)
S(3)=3(3)+I1*A3*R

END IF

CONTINUE

DO 947 J=1,NK
RAD (J) -FES (1 ,KCODE (J) ) *T5
DO 946 J-NK+1,NK+NT

RAD (J)=RES(3,KCODE(J)) *T5
OPEN (3 ,FILS="'PCSAD' ,STATUS-' UNKNOWN' )
WRITE (3,*) (RAD(J) ,J“1,NSIZE)
WRITE (3,*) (3(1) ,1=1,3)

GOTO 999
END IF
A3=1.0E6/A

A4=PRESS*0.5/ (1.0-W *W)
WRITE(*,*) 'WRITE TO OUTPUT FILE"'
DO 940 J=1,ITOL

IF (NP.EQ.l) THEN
ANO=CP2+(J-1)*STEP

ELSE
X-CP1+(J-)*STEP
END IF
RES(1,J)=RES(1,J)*T5
RES (2, J) "RES (2,J) *T5
RES (3,J) “RES (3,J) *T5
IF(1JOB.BQ.2) THEN
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310
311
312

313

PHI=ANG*RADIAN

SNT=SIN(PHI)

CNT=COS(PHI)

RES (1,J) =RES (1,J) +DELTAU) *CNT+DELTA(2) *SNT

RES (3,1) =RES (3 ,J) -DELTA(1) *SNT+DELTA(2) *CNT+R*DELTA(3)

END IF

WRITE (7,310) X,ANO

WRITE (7,311) (RES(K,J),K“1,3)

IF(LOOP.EQ.3) GOTO 940

RES (4 ,1) =RES (4 ,J) +Ad

RES (5, J)—RES( ) -AA*W

ES(l) * (RES (4 ,J)+W*RES(5,1))
S (2) =R* (RES (5 ,J) +W*RES (4 ,1) )

S(3)= R*Tl*RES(G N/2.0
ES(4)=T6* (RES (7 ,J) +W*RES (8,J))
S(5)=T6* (RES (8,J)+W*RES(7,1))

ES(G) T6*T1*RES(9,))

A1=ES(1) /T

A2=ES(2)/T

EO(1)-A 1-6.0*ES(4)/T2

EO(2)=A1+6.0%ES(4)/T2

EO(3)=A2-6.0*%ES(5)/T2

EO (4)—A2+6.0*ES (5) /72

EO (5) = (R*RES (4 ,J) +T*0.5*RBS (7 ,J) ) *A3

EO (6)— (R*RES (4 ,) -T*0,5*RES (7 ,1) ) *A3
EO(7)=(R*RES(5,J)+T*0.5*RES(8,])) *A3

EO (8)= (R*RES(5 ,J) -T*0.5*RBS (8,J) ) *A3

WRITE (7,312) (ES(K),K=1,6)

WRITE (7,313) (EO(K),K=1,4)

WRITE (7,314) (EO(K),K-5,8)

CONTINUE

FORMAT(//5X,'X = 'E12.5,3X, 'ANGLE =' ,F7.2, 'DKG')
FORMAT(5X,'W —' [E12.5 ,3X,'U —' ,EI2.5,3X,'V = ' E12.5)
FORMAT(4X,'NX=' ,E12.5,3X ,'NFY=' ,E12.5,3X 'NXPY-' ,112.5/
t 4X,'MX=',E12.5,3X, MPY='E12.53X,'/MXPY-"E12.5)

FORMAT(4X,”SXI=",K12.5,1X,'SX0O» EI2.5,IX,'SPYI1«',112.5

314

999

C

10

£ IX,')SPYO-'E12.5)

FORMAT(4X,'EXO-" ,F8.2,3X,'KXI-'"F8.2,3X,'KPYO-"F8.2,
G 3X,1EPYI=1,F8.2)

STOP

END

SUBROUTINE ENO (X ,M, EO,Z0,PO,P02 ,LOAD ,LOOP)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION EO (10) ,Z0(6) ,P0O(3) ,P02(3) ,LOAD (3)

COMMON/BLK2/T3,T4 ,P I,RADIAN,T ,R,XLSN ,NCSYM
C2«M*T4

C3-C2*R
C1«C3*C3
C4-SIN(C2*X)
C5»COS(C2*X)
C45-C4/C5

DO 10 J-1,3

IF (LOAD (J) .EQ.O) GOTO 10
JUu=J+1

IF () ®EQ.2) JU-6
JV-J+2

C8«P0 (J) *C4
C9— POZ(J)*CS

EO (1)-EO (1) +Z0 (J) *C8
EO(2)-EO (2)+Z0(JU)*C8/C45
EO(3)-E0 (3)+Z0(JV)*C9*C45
IF(LOOP.EQ.3) GOTO 10
BO(4)-E0 (4)-C8*C3*Z0(JU)
EO (5)«EO (5) +C8*Z0 (J)
EO(6)-B O (6)+C9*C3*Z0(JV)
EO(7)—BO(7)+C8*C1*20(J)
EO(9)-E 0 (9)+C9*0.75*C3*Z0(JV)
CONTINUE

RETURN

END

SUBROUTINE BNN(X,PHI,M ,N,ES,Z,P,P2,LOAD,LOOP)
IMPLICIT REAL*8 (A-H,0-Z)
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DIMENSION ES(10) ,Z<6) ,P(3) ,P2(3) ,LOAD(3)
COMMON/BLK2/T3,74,P I,RADIAN,T ,R,XLEN ,NCSYM
DO 5 1=1,9
ES (1) =0.0
CNT=COS(N*PHI)
SNT=SIN(N*PHI>
A2=M*T4
A3=A2*R
A1=A3*A3
A4=SIN(A2*X)
A5=COS (A2*X)
A45-A4/AS
DO 10 J=1,3
IF(LOAD(J).EQ.O) GOTO 10
JUu=J+1
IF(J.EQ.2) JU=6
JV=J+2
A6=(P (J)J»CNT+P2(J)*SNT)»A4
A7= (P (J) »SNT-P2 (J) *CNT) *A5
ES(1)= ES(1)+Z(J)*A6
ES(2)= )+Z(JU)»A6/A45
ES (3) = ES ) +Z (JV) *A7»A45
IF(LOOP.EQ.3) GOTO 10

3(

S(2

(3
ES(4)—E 4)-A6*A3*Z(JU)
ES (5) =ES (5) +A6* (N*Z (IV) +Z (1) )
ES(6)= ES(6)+A7*(A3*Z(JV) N*Z(JU))
ES (7) =ES (7) +A6*Z (J) *Al
ES(8)=ES(8)+A6*( (3) *N*N+N*Z (JV) )
ES (9) =ES (9) +A7* (0 .75*A3*Z (JV) +N*A3*Z (J)
&+0.25*N*Z(J )
CONTINUE
RETURN
END

SUBROUTINE PJMN (M, N,NLOAD ,CL)

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION P (3) ,P0(3) .,P2(3) ,P02(3) ,CL(60)
COMMON/BLK2/T3,T4 ,P |, RADIAN,T,R,XLEN,NCSYM

COMMON/BL1C3/P , PO, P2, P02
H=(M +1)/2
IF(M.LT.2*11) 11-0
DO 20 1=1,NLOAD
J=(1-1)*6+1
IC=CL(J)
A1=CL(J+1)
A2=CL(J+2)
A3=CL(J+3)
A4=CL(J+4)
A5=CL(J+5)

IF (IC.EQ.0 .AND. Il .EQ.0) CALL SWP(P PO M N Al A5 i-s m

RETURN
END

SUBROUTINE SWP(P,PO,M,N,SWV, PRESS, SW,ALPHA)
IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION P(3),P0(3)

COMMON/BLK2/T3,T4, P |,RADIAN, T ,R, XLEN,NCSYM
ALPHA*ALPHA*RADIAN

AI-SIN(ALPHA)

A2=COS (ALPHA)

A3=SW*R/(M*PI*PI)

IF(N.GT.l) GOTO 20

IF(N.EQ.I) GOTO 10

PO (1&= 4 .0*PRESS/ (M*PIl) +4.0*A3* <A1-ALPHA*A2)
ETURN

A5=4.0*T*SHV/ (PI*M)
P()=A5+4.0*A3*(ALPHA-A1*A2)
P(3)=-AS

RETURN

m ) A A M<K*ALPHA) *A2-N*CO8<«*"'raA) .Al) /(N* (N.N-1,

RETURN
END
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SUBROUTINE PATCH (KTYPE,Q,B,AFA, CC ,BETAL ,M,N)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION P(3) ,P0O(3) ,P2(3) ,P02(3)
COMMON/BLK2 /T3 ,T4 ,P I,RADIAN,T ,R,XLEN ,NCSYM
COMMON/BLK3/P ,PO,P2, P02
AFA=AFA*RADIAN
BETA1=BETA1 »RADIAN
€c=CC/2.0
BETA=BETA1/2.0
IC=0
IF (NCSYM.EQ.) IC=1
A1=M*T4
A2=A1*B
A3=A1*C
A4—M*P|
GOTO (1,2,1
IF (CC.EQ.O.
IF (CC.GT.O.
GOTO 30

IF (CC.EQ.0.0) AM=2.0*COS (A2) /XLEN

IF (CC.GT.0.0) AM=4.0*COS (A2) »SIN (A3) /A4
GOTO 30

4.1) KTYPE
0) AM=2.0*SIN(A2)/XLEN
0) AM—4 .0*SIN (A2) »SIN (A3) /A4

=(COS (A2) *(SIN (A3) / (A1*C)

COS (A3) ) +SIN (A2) »SIN (A3)) *2.0/A4

30

50

500

IF (N.EQ.0) GOTO 60

A4=N*AFA

IF (BETA1.EQ.0.0) THEN
A5=Q/(R*PI)

GOTO 50

END IF

A1=2.0*Q/(N*PI)

A2=N*BETA

A5=A1*SIN (A2)

IF (KTYPE.EQ.5) A5=A5/2.0+A1* (COS(A2)-SIN(A2)/A2)
AN=A5»COS(A4)

BN=A5*SIN (A4)
GOTO(500,600,700,500,500),KTYPE
P(1)=P(1)+AM*AN

600

700

60

501

601

701

C*****QNLY FOR SHAPE SYMMETRIC ABOUT CENTRE, (AXIAL SYMMETRY!

P2 (1)=P2 (1) +IC*AM*BN

RETURN

P(2)«P (2)+AM*AN
P2(2)-P 2 (2)+IC*AM*BN

RETURN

P (3)«P (3) +AM*BN
P2(3)«P2(3)-1C*AM*AN

RETURN

IF (BETA1.EQ.0.0) ANO«Q/(2.0*R»Pl)
IF (BETA1.GT.0.0) ANO«BETA*Q/PI
IF (KTYPE.EQ.5) ANO”ANO/2.0
GOT0(501,601,701,501,501),KTYPE
PO(1)«PO(1)+AM*ANO

RETURN

PO(2)-PO(2)+AM*ANO

RETURN

P02(3)«P02(3)-IC*ANO»AM

RETURN

END

UBROUTINE FIMP (NSYM, IMP. XIMP PEAR,P,;2 AN Bl ~ T
MPLICIT REAL*8 *(R-H.0-2) N,BEN,M ,»

DIMENSION XIM P (3),P(3),P2(3),AN(3,60),BN(3 60)
COMMON/BLK2/T3,T4,P 1,RADIAN.T,R XLEN NCsL

AI-2.0*NSYM/XLEN
A2“M*T4

DO 10 1-1,IMP
A3«XIMP(I)

F(I.EQ.l) XC=A3/2.0

IF (IMP.GT.1) XO(A3-XIMP(I-1))/3 0

IF (1.LT.IMP) XD-(XIMP(I+1)-A3)/310

F (1.EQ.IMP) XD" (XLEN-A3*NSYM) 7 (1 .0+NSYM)
AM“ (SIN(A2* (A3—XC)) =S IN (A 2»(A3—2.0»XC)) ) /XC
IF(XD.0T.0.0) AMAAM-(SIN(A2»(A3+2 0*XD))
C-SIN(A2*(A3+XD))) /XD

AM*AM*AL/ (A2*A2)
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A2— PBAR*( (N*N-1)+(M*T3)**2/2.0)/R
P (1) —P (1) +A2 *AM*AN (I ,N)

P2 (1) =P2 (1) +A2 *AM*BN <I , N)

CONTINUE

RETURN

END

SUBROUTINE PQP (M,N, PQ ,RAD)
IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION PQ(120) ,RAD(120) ,P(3) ,P2(3) ,P0(3) ,P02(3)
COMMON/BLK2/T3,T4,P I,RADIAN, T ,R, XLEN,NCSYM
COMMON/BLK3/P, PO, P2, P02
COMMON/BLK4 /SD IV, WIDTH,NTYPE ,NK,NSIZ E , XSAD
CC-WIDTH/2.0

BETAASDIV/2.0

IC=0

IF(NCSYM.EQ.l) 10=1

A1=M*T4

AM=4,0*SIN(AL*XSAD) *SIN (A1*CC) / (M*P1)
IF(N.NE.O) GOTO 4

A2=2.0*BETA*NCSYM/PI

IF (NTYPE.EQ.l) A2=NCSYM/(R*PI)

ANO—0.0

DO 1 1=1,NK

ANO=ANO-PQ(l) *A2

IF(NTYPE.EQ.2) ANO-ANO-(PQ(NSIZE+1)+

£ IC*PQ(NSIZE+2)) *NCSYM/(R*PI)

PO (1) =PO (1) +ANO*AM

IF (NK.EQ.NSIZE) RETURN

AN0=0.0

DO 2 I=NK+1,NSIZE

ANO=ANO-PQ(I)

P02 (3) =P02 (3) -IC*ANO*A2*AM

RETURN

AN=0.0

BN=0.0

Al— 4.0*NCSYM*SIN(N*BETA) / (N*P1I)
IF(NTYPE.EQ.1) Al=-2.0*NCSYM/(R*PI)

10

40

DO 10 1=1,NK
PHI-RAD (I)*N
A4—PQ (1) *Al
AN-AN+A4 *COS(PHI)
BN—BN+A4*SIN(PHI)
IF(NTYPE.EQ.2) THEN
A2— 2 .0*NCSYM/ (R*P1I)
DO 5 11-1,1+IC
I—1l+NSIZE
PHI-RAD (1) *N
A4—PQ (1) *A2
AN—AN+A4*COS(PHI)
BN-BN+A4*SIN(PHI)
END IF
P(1)—P (1) FAM*AN
P2(1)-P 2 (1)+IC*AM*BN
IF(NK.EQ.NSIZE) RETURN
AN—0.0
BN—0.0
DO 40 I-NK+1,NSIZE
PHI-RAD (I)*N
A4—PQ (1) *Al
AN-AN+A4*COS(PHI)
BN—BN+A4*SIN(PHI)
P(3)—P (3 )+AM*BN
P2(3)—P2(3)-IC*XAM*AN
RETURN
END
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C*** Modified file : Rigid Head

CH** Change in postprocessing strip size

C*** _ Head thickness (real,2) included

Cr*x* Change in mesh above saddle portion (nicer looking !?)
MDV1 fc MDV2

C*»*

C**¢ - (a) designator means valid A>0.4R

C***

/prep7

/nopr

CH**

C*** 31/10/94 :::::

/TITLE,TWIN SADDLE VESSEL - Rigid Constrained Head using CERIO

C*** Fixed saddle angle of 60 degrees
C*** Length factor LFAC
C*** Saddle position AFAC
C*** Saddle Width BFAC
c*** Thickness - shell TKS

C*» Thickness - head TKH
C**» DEFINE PARAMETERS
TKS=10

TKH=10

R=1000

ANO0=60

LFAC=36

L=LFAC‘R

AFAC=9

Af=AFAC*R

BFAC=0.2

B=BFAC*R

B2=B/2

L2=L/2

L2A=L2-A

C*** Setup values
/show,3d,,1

/view,1

C*** MATERIAL VALUES and THICKNESSES 1) SHELL 2) HEAD
EX,1,210000

NUXY,1,0.3

R, 1, TKS

R,2 ,TKH

C*** DEFINE KEYPOINTS

k,1,A | kpoint 1 is at saddle centreline (sadcl)
k,2,(A-B2)

* fcpo~ht 2 is at (sadcl) minus half saddle
width

k,3,(A-(1.5*B2)) |

kpoint 3 is at (sadcl) minus 1.5*half
saddle width

k,4,(A-B) ! kpoint 4 is at (sadcl) minus saddle
width

k,5, (A-(3*B2)) I kpoint 5 is at (sadcl) minus 3*half
saddle width

C*** Note if A is less than 0.4*R this file will

not work
C*** if A has to be less than 0.4R then modify positions of k3,4
and S
C*** if 2nd set is used...watch out for line shift half way down
file
C***

at negative Z coord of K,5
C***

C*** To find the right line , do a search on Watch
C***

c*** k,3,(A-(1.2*B2))

c*** k,4 ,(A-(1.5*B2))

c*** k,5,(A-(1.75*B2))

C*** Using co-ord system
local,11,1,,R,,,90

csys,ll

dsys,IlI

kgen,2,1,2,1,,2

ar7.,2,7 ,6

C*** Generate areas Itl4 of saddle:
agen,14,1,1,1,,2

kmerge

C*** Continue with saddle. Transitional
kgen,2,59,,,,2 ,(0.5*B2)
kgen,2,58,59,1,,2

area of saddle -



XA

a,58,8,59,59

a,58,9,8,8

a,59,8,12,12

C++* al5tl7 form trans'n in saddle (= patch 15)
kgen,2,8,9,1,,2

kgen,2,12,,,,2

a,8,9,16,13

a,12,8,13,17

C*** al8+19 = PATCH 16 of saddle
agen,15,18,19,1,,2

kmerge

C*** alt47 form saddle

C»** start on 1st trans'n band

legen,2,3, ,, .4

a,2,3,20,7

a,7,20,10,10

C*** a48+49 = Trans'n of Patch 1+2 of saddle
agen,15,48,49,1,,4

jemerge

C++* a48t77 form 1st trans'l band from saddle
C*** Start 2nd trans'l band
kgen,2,4,,,,8

a,3,4,21,20

a,20,21,32,32

C*** a78+79 start of sequence
agen,7,78,79,1,,8

kmerge

kgen,2,112,,, .,4

a,118,112,32,150

C*** 292 regular In 2nd trans'l band
C*** Start on 3rd TB

kgen,2,5,,,,16

a,4,5,33,21

a,21,33,40,40

C+*+ a93+94 start sequence of 3rd TB
agen,3,93,94,1,,16

kmerge

kgen,2,82,,,,12

, a78t92 form 2nd TB

a,86,82,52,112
a,112,52,32,32
(T:I;*+ a99+100 irregular from others in 3rd TB 293100

C**+ END OF SADDLE + TRANSITION BANDS
111N 1]

kgen,2,120,121,1,,20
kgen,2,32,52,20,,20
a,123,121,74,56
a,121,120,71,74
a,120,150,65,71
a,150,32,76,65
a,32,52,88,76
kgen,2,56,71,15,,10
kgen,2,65,76,11,,10
kgen,2,88,,,,10
C+*+ Transition
a,56,74,94,94
a,74,95,94,94
a,74,71,95,95
a,71,65,98,95
a,65,76,100,98
a,76,88,106,100
C*** alO Itlll form upto 90 deg.
C*** change that
adel, 1091l

Ido 1,224,229
a,71,65,95,95
a,65,76,100,95
a,76,88,106,100
kdel,98

C*** upper 90 deg segment ( above saddle+TB's)
kgen,2,94,95,1,,30 '
kgen,2,100,106,6,,30
a,94,95,107,98
a,95,100,110,107
a,100,106,116,110

form 3rd
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agen,3,112,114,1,,30

kmerge

c*** Refine region above saddle horn grid
MDV1=4

MDV2—2

ldvs,219,,HDV1

Idvs,220,, MDV1

ldvs,221,,MDV1

ldvs,223,HDV1

Ildvs,224,MDV1

ldvs,225,HDV1

ldvs,227,MDV2

C*** Upper 90 deg conplete

C*** altl20 form 180 deg segment
local,12,0,A,0,0

arsym,0, 1,120

kmerge
C***

(saddle + TB + remalner)

Generate areas to head
csys,11

C***

K,5

CH**

C***  Watch

C***

Select negative Z coord of K,5 ! Here for _ve z °f

CH**

kprsel,z,-(A-(3*B2))

i»*p,i

kgen,2,5,5,1,,, (A-(3*B2))

1,5,119
adrag,143,168,192,162,217,227,246
adrag,234,244,254,,,,246
lemerge

kpall

Isall

C*** Areas to centre of vessel
kprsel,z,0

Iskp,lI

from saddle portion.

lgen,2,all,,,,, -L2

kpas,,234

1,128,234
adrag,256,298,333,338,343,348,368
adrag,353,358,363,,,,368

kpall
Isall
kmerge
dsys,0
C***
et,l,43
real,1

CH**

Start meshing

Start at saddle
Idvs,1,,2

elsl,,1,2

amesh,l,14

elsl,,2,2

amesh,18,19

elsl,,1,1

amesh,15,17

elsl,,2,2
amesh,20,47,1

CH** 1st Trans'n band from saddle
RBF1-4

Idvs,49,,RBFI/2
lIdvs,69,,REF1/2
ldvs,169,,RXF1/2
elslz, ,RBFI/2
amesh,48,63,1
elslze,,RSF1,2
amesh,64,76,2
elslz,,RSF1
3mesh,65,77,2

CH** 2nd Trans'n band
RKF2-4

Idvs,170,RZF2
elslz,,RBF2/2
amesh,79,85,2



elsiz,,REF2/2,2 Isas,,303,313,5

amesh, 78,84,2 Idvs,a Il,,((4 *AFAC)+2),2.5
elsi,, REF2 elsi,, 2,2
amesh,87,91,2 amesh,241,249,1
elai,,REF2,2 kpall
amesh, 86,92,2 Isall
CH** 3rd Trans'n band arall
C*** WREF is the transition region at areas 93tl00 width nail
refinement eall
WRZF=4 ncompre
elsi, ,WREF,2 econy)re
amesh,93,95,2 merge
elsi, WREF local,12,0,A,0,0
amesh,94,96,2 adel,121,240,1,all
amesh,98,100,2 arsym,0,1,120
elsi,, WREF,2 merge
amesh,97,99,2 kmerge
CH** Mesh remainder up to head :: Angle refinement ARSF must csys,11
be divisible by 4 Isrs,,368
AREF=20 Isas,,459,469,10
W Idvs,207,,AREF,0.2 Isas,,480,494,7
il Idvs, 186, ,AREF, 5 Isas,,499
ldvs,210,,AREF,5 Isas,,507,509
Idvs,213, AREF,5 Idvs,all,, (40-(2*AFAC)),0.1
Idvs,215,,AREF,5 elsize,, 2,2
Idvs,226,,2 amesh,250,258,1
Idvs,222,,2 kpall
Idvs,217,,(AREF/4) Isall
elsi,,2,2 arall
amesh,101,104 merge
elsiz, ,2 nconpr
amesh,105 ecoapr
elsi,,1 C*y»*
ame§h,106,111,1 [Shadadad Constraints for Compar.lon with Fourier Model
elsi,,2,2 csys,0
amesh,112,120,1 c*** Define Mass Element at Centre of Disc

Isrs,,246 n,10000,,R
Isas,,259,274,3 et, 2,21



Gee

r,3,1 c*** Now get nodes from lines

type,2 nline,l

real,3 d,all,all,0

e, 10000 nall

nrsel,x,0 Isall

c*** Define Rigid Surface Constraints C*** Add in load option
cerig,10000,a I1,0 apsf,all,,,0,2, R*2,9.81E-6
nail wsort,x

C*** Loads 6 BC's from loadline.fl8 AFWRIT

C*** Add in bits to complete run FINI

csys,0 /INPUT,27

nusel,x,0 FINI

csys,11

nrotat,all

symbec,II,3,-L2
symbc,11,2,90
symbc,11,2,-90

csys,0

nail

C*** Displacement constraints - Please select
C*** select edges only
C*** Left Hand Edge
Isrsel,,2,54,4
Isasel,,13,29,16
Isasel,,53,63,10
Isasel,,70,147,7

C*** Add in Top Edge
Isasel,,148,151,3
Isasel,,370,372,2

C*** Add in Right Hand Edge
Isasel,,240,250,10
Isasel,,257,290,3
Isasel,,295,299,4
Isasel,,304,369,5

C*** Optional Centreline
c*** |sasel,,4,56,4

c*** |sasel,,25,45,20
c*** |sasel,,61,152,7
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C*** Modified file : Rigid Head
CH** Change In postprocessing strip size
C*** . Head thickness (real,2) Included

C*** . Change in mesh above saddle portion (nicer looking !?)
MDV1 c MDV2

CH**

C*** . (b) designator means valid A<0.4R

CH**

/PREP7

/nopr

C'k'k*

C*»* 31/10/94 i

/TITLE,TWIN SADDLE VESSEL - Rigid Constrained Head using CERIQ
C*** Fixed saddle angle of 60 degrees

C*** Length factor LFAC
C*** Saddle position AFAC
C*** Saddle Width BFAC

C*** Thickness - shell TKS
C*** Thickness - head TKH
C*** DEFINE PARAMETERS
TKS=10

TKH=10

R=1000

ANO=60

LFAC=36

L=LFAC*R

AFAC=9

A=AFAC*R

BFAC=0.2

B=BFAC*R

B2=B/2

L2=L/2

L2A=L2-A

C*** Setup values
/show,3d,,1

/view I

c*** MATERIAL VALUES and THICKNESSES 1) SHELL 2) HEAD
EX,1,210000

NUXY,1,0.3
R,1,TKS
R,2,TKH
c*** DEFINE KEYPOINTS
-»"1.0 ucnuuine
\I,(v}g{ﬁA.Bz) ! kpoint 2 is at (sadcl) minus half saddle

c***k,3,(A-(1.5*B2))
I. 5*half saddle width
c***k,4,(A-B)

" kP°Int 3 is at (sadcl) minus

. 1 kpoint 4 is at (sadcl) minus saddle
width
C***k,5 ,(A-(3*B2)) | . - *
saddle width kpolnt 5 is at (sadcl) minus 3*half
C*** Note if A is less than 0.4»R this fn e will not work

C *-5if A ha, to be less than 0.4R then nodify positions of k3,4

C*** jf 2nd set is used..
file

c*** at negative Z coord of K,5
C***

-watch out for line shift half yay down

C*** Do a search on Watch

C***

k,3,(A-(1.2*B2))

k,4 ,(A-(1.5*B2))

k,5,(A-(1.75*B2))

c***x Using co-ord system

local,11,1,,R,,,90

csys,ll

dsys,IlI

kgen,2,1,2,1, ,2

a,l,2,7,6

c*** Generate areas Itl4 of saddle:
agen,14,1,1,1,,2

kmerge

C*** Continue with saddle. Transitional area of saddle-
kgen,2,59,,,2,(0.5*B2) “
kgen,2,58,59,1,,2

a,58,8,59,59
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a,58,9,8,8

»,59,8,12,12

C*** al5tl7 form trans'n in saddle (= patch 15)
legen,2,8,9,1,,2

legen,2,12,,,,2

a,8,9,16,13

a,12,8,13,17

C++* al8+19 = PATCH 16 of saddle
agen,15,18,19,1, ,2

kmerge

C*** alt47 form saddle

C*** Start on 1st trans'n band

legen,2,3,,,.,4

a,2,3,20,7

a,7,20,10,10

C*** a48+49 = Trans'n of Patch 1+2 of saddle
agen,15,48,49,1,,4

lemerge

C»** a48t77 form 1st trans'l band from saddle
C*+* start 2nd trans'l band

legen,2 ,4,,,,8

a,3,4,21,20

a,20,21,32,32

C*** a7B+79 start of sequence
agen,7,78,79,1,,8

kmerge

legen,2,112,,, .4

a,118,112,32,150

C**» a92 regular in 2nd trans'l band
C*+* Start on 3rd TB

legen,2.,5,,,,16

a,4,5,33,21

a,21,33,40,40

c*** a93+94 start sequence of 3rd TB
agen,3,93,94,1,,16

lernerge

legen,2,82, ,,,12

a,86,82,52,112

, a78t92 form 2nd TB

a,112,52,32,32
C*** »99+100 irregular from other, in 3rd TB

CH*>* END OF SADDLE + TRANSITION BANDS

C*** up to 90 deg. ( including another .addle
kgen,2,123,150,27,,20

kgen,2,120,121,1,,20
kgen,2,32,52,20,,20
a,123,121,74,56
a,121,120,71,74
a,120,150,65,71
a,150,32,76,65
a,32,52,88,76
kgen,2,56,71,15,,10
kgen,2,65,76,11,,10
kgen,2,88,,,,10
C*** Transition
a,56,74,94,94
a,74,95,94,94
a,74,71,95,95
a,71,65,98,95
a,65,76,100,98
a,76,88,106,100
C*** alO Itlll form upto 90 deg.
C++* change that
adel, 109,111
1del,224,229
a,71,65,95,95
a,65,76,100,95
a,76,88,106,100
kdel,98

c*** upper 90 deg segment ( above saddle+TB's)
kgen,2,94,95,1,,30
kgen,2,100,106,6,,30
a,94,95,107,98
a,95,100,110,107
a,100,106,116,110
agen,3,112,114,1,,30

a93t!00 form 3rd

transition)
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kmerge

C*** Refine region above saddle horn grid
MDV1=4

HDV2=2

Idvs,219,,HDVI

ldvs,220,,MDV1

ldvs,221,,MDV1

ldvs,223,,MDV1

Idvs,224, MDV1

Idvs,225,,HDV1

ldvs,227,,HDV2

C*** Upper 90 deg conplete

C***
local,12,0,A,0,0
arsym,0,1,120
lanerge
C*** Generate areas to head
cays,ll

CH**

c*** Select negative Z coord of K,5 I Here for

K.,5

C***
C***  Watch
C***

CH**

Jeprsel,z ,- (A- (3*B2))

Is)cp,l

kgen,2,5,5,1,,,(A-(3*B2))

1,5,119
adrag,143,168,192,162,217,227,246
adrag,234,244,254,,,,246

lemerge

kpall

Isall

C*** Areas to centre of vessel from saddle portion:

kprsel,z,0
Is)cp,l
Ilgen,2,all,,,,,-L2

altl20 form 180 deg segment (saddle + TB + remainer)

-ve

Z of

kpas,,234

1,128,234
adrag,256,298,333,338,343,348,368
adrag,353,358,363,,,,368

kpall
Isall
kmerge
days,0
C***
et,1,43
real,l
CH** Start at saddle

Idvs,I, ,2

elsi,, 1,2

amesh,l,14

elsi,,2,2

amesh,18,19

elsi,, 1,1

amesh,15,17

elsi,, 2,2

amesh,20,47,1

CH** 1st Trans'n band from saddle
RXF1>4

Idvs,49,,REF1/2

Idvs,69,,RKFI/2

ldvs,169,,RZF1/2

elsiz,, REF1/2

amesh,48,63,1

elsize,,RSF1,2

amesh,64,76,2

elsiz,,RBF1

amesh,65,77,2

CH** 2nd Trans'n band

RXF2-4

ldvs,170,,RSF2

elsiz, REF2/2

amesh,79,85,2

elsiz,, RSF2/2,2

Start meshing
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amesh,78,84,2
elsi,,REF2
amesh,87,91,2
elsi,,REF2,2
amesh,86,92,2

CH** 3rd Trans'n band
C*** WREF is the transition region at
refinement

WREF=4

elsi,, MREF,2
amesh,93,95,2

elsi,, WREF
amesh,94,96,2
amesh,98,100,2
elsi,,WREF,2
amesh,97,99,2

C*** Mesh remainder up to head :: Angle
be divisible by 4
AREF=20

Idvs,207,,AREF,0.2
Idvs,186,,AREF,5
lIdvs,210,,AREF,5
Idvs,213, AREF,5
ldvs,215,, AREF,5
ldvs,226,,2
ldvs,222,,2
Idvs,217,,(AREF/4)
elsi,,2,2
amesh,101,104
elsiz, 2
amesh,105

elsi,,1
amesh,106,111,1
elsi,,2,2
amesh,112,120,1
Isrs,,246
Isas,,259,274,3
Isas,,303,313,5

areas 93tl00 width

refinement ARSF must

Idvs,all,,((4*AFAC)+2),2.5
elsi,, 2,2
amesh,241,249,1
kpall

Isall

arall

nail

eall

noonpre

ecoopre

merge
local,12,0,A,0,0
adel,121,240,1,all
arsym,0, 1,120
merge

kmerge

csys,11
Isrs,,368
Isas,,459,469,10
Isas,,480,494,7
Isas,,499
Isas,,507,509
Idvs,all,,(40-(2*AFAC)),0.1
elsize,,2,2
amesh,250,258,1
kpall

Isall

arall

merge

nooapr

ecoopr

Pkl

c*** Rigid End Constraints for Cosparsion with Fourier Model

csys,0

c*** Define Mass Element at Centre of Disc
n, 10000, ,R

et,2,21

r,3,1



nline,1

real,3 d,all,all,0

e, 10000 nail

nrsel,x,0 Isall

c*** Define Rigid Surface Constraints C*** Add in load option
cerig,10000,all, 0 aps£,all,,,0,2 ,R*2,9.81B-6
nail wsort,x

C*** Loads £ BC's from loadline.fIB AFWRIT

C*** Add in bits to conplete run FINI

csys,0 /INPUT,27

nusel,x,0 FINI

csys,11

nrotat,all

symbc,Il,3,-L2
symbc,11,2,90
symbc,11,2,-90

csys,0

nail

C*** Displacement constraints - Please select
C*** select edges only
C*** Left Hand Edge
Isrsel,,2,54,4
Isasel,,13,29,16
Isasel,,53,63,10

Isasel,, 70,147,7

C*** Add in Top Edge
Isasel,,148,151,3
Isasel,,370,372,2

C*** Add in Right Hand Edge
Isasel,,240,250,10
Isasel,,257,290,3
Isasel,,295,299,4
Isasel,,304,369,5

C*** optional Centreline
c*** |sasel,,4,56,4

c*** |sasel,,25,45,20

c*** |sasel,,61,152,7

C*** Now get nodes from lines
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File - capell.fIS File >capsph.fl8

C*** spherical head
cr*x - C™ ellipsoidal head 2:1 C*«* This file must follow cyl.fis
C*** This file must follow cyl.fI8 FAO-1
FAC=0.5 csys, 11
csys,11 k ,500
k,&x‘) csys,0
csys,0 local,21,1,,R
local,21,1,,R,,,,,2 csys,11
csys,11 k, 501,,,R*FAC
k, 501, , ,R*FAC csys,21
csys,21 |, 154,501
|, 154,501 Idiv,373,0.85
Idiv,373,0.85 ldvs,373,,12
ldvs,373,,12 Idvs,500,,4
Idvs,500, ,4 csys,0
csys,0 arot,373,500,,,, ,500,501,-30
arot,373,500,, ,,500,501,-30 arot,503,504,,,, ,500,501,-30
arot,503,504,, ,,500,501,-30 arot,510,511,,,, ,500,501,-30
arot,510,511,, ,,500,501,-30 arot,514,515,,,, ,500,501,-10
arot,514,515,, ,,500,501,-10 arot,518,519,,,, ,500,501,-20
arot,518,519,, ,,500,501,-20 arot,522,523,,,, ,500,501,-12
arot,522,523,, ,,500,501,-12 arot,526,527,,,, ,500,501,-16
arot,526,527,, ,,500,501,-16 arot,530,531,,,, ,500,501,-16
arot,530,531,, ,,500,501,-16 arot,534,535,,,, ,500,501,-16
arot,534,535,, ,,600,501,-16 kmerge
kmerge elsiz,,2
elsiz, , 2 amesh,259,264
amesh,259,264 elsiz,, 2,2
elsiz,, 2,2 amesh,265,275,2
amesh,265,275,2 elsiz,, 2
elsiz,,2

amesh,266,276,2
amesh,266,276,2



File - capflat.flI8

CcC*** flat head

cays,11
k,500,,,-I

k, 501

|, 154,501

Id lv,373,0.85
ldvs,373,,12
ldvs,500,,4
cays,0

arot,373,500,,, ,,500,501,-30
arot,503,504,,,,,500,501,-30
arot,510,511,,,,,500,501,-30
arot,514,515,,,,,500,501,-10
arot,518,519,,, ,,500,501,-20
arot,522,523,,,,,500,501,-12
arot,526,527,,, ,,500,501,-16
arot,530,531,,, ,,500,501,-16
arot,534,535,,,,,500,501,-16

iemerge

C*** Element thlekness

real,2

elsiz,, 2
amesh,259,264
elsiz,,2,2
amesh,265,275,2
elsiz, ,2
amesh,266,276,2

real

2
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File - pcinput

600 200
12 20

0.18290E+04 0.20700E+06 0.300 2.66300E+01 0.54858E+05

1
0 0.00000E+00 0.00000B+00 0.98100E-05 180.000 0.00000E+00

0 .68580E+04 79.00000E+00 0.68580E+04 81.000E+0 0.100E+00
0.68580E+04 162.000 0.000 0.76200E+03 2

70 70 70
0 0

Bourne shell control file - run

#1/bin/sh
echo "R/t ratio 25 to 300, Position 18R to 2R " > Resultsfile
for j in 'cat Thickness
do
for 1 in 'cat Middle'
do
echo " test " > PCINPUT
echo " 600 200 " » PCINPUT
echo "1 2 2 0 " » PCINPUT
echo " " » PCINPUT
echo " 0.10000E+04 0.20700E+06 0.300 $j $i" » PCINPUT
echo " 1 "» PCINPUT
echo " 0O 0.00000E+00 0.00000E+00 0.98100E-05 180.000 0.00000E+00 " »
echo " 9000.0 59.0000 9000.0 61.0000 0.100E+00 " » PCINPUT
echo " 9000.0 120 0.000 200.00 2 " » PCINPUT
echo " " » PCINPUT
echo " 50 50 50 " » PCINPUT
echo " 0 0 " » PCINPUT

cp PCINPUT INPUTend$j$i

cyll
sad
cyl2
small
cp PCOUT OUTPUTend$j$i
cp PCSORT SORTend$J$i
for k in 'cat PCSMALL'
do
echo " $k " » Resultsfile
done
done
done

Program - small.f

program small to find the minimum value for the horn outside circ. stress
open(20,file="PCSORT’ ,status=mld")
smallest=1000000

10 read(20,*,end=90) value
if (value.lt.smallest) smallest=value

goto 10

90 close(20)
open(21,file= "PCSMMA' ,status*'unknown")

write(21,*) smallest
close(21)
end

335

PCINPUT
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File - normal

JCOM FHFFxdhkdkhkdhhhhhkkhhhhhhhrrhkihrx

/COM, ******THE PARAMETERS* %k

JCOM FHxrdkhkhkhhhkhhrhhhhrhhhrrhhs
s

/UNITS,SI
*AFUN,DEG

/COM, **«GEOMETRICAL PARAMETERS TO BE MODIFIED***

*AFUN,DEG

NW=3 ! Number of divisions across the saddle
width !

NA=10 ! Number of divisions across the half

saddle angle !
! Half saddle width !

B=0.1 ! Height at center of the saddle
(theta=0) !

THETA=60 ! Half saddle angle !

RADIUS=1 ! Radius of the saddle !

BETA=10 I Incline angle of the first web
(external web) !

CWEB=1 ! Do you want to put a web in the middle
(y=1 or n=0) !

EXTWEB=1 ! Do you want to put an external web
(y=1 or n=0) !

NWEB=3 ! Total number of webs without the
middle web !

T=1*C/NW I Width of the cylindrical part which is

not webed !

! T=i*C/NW with 1-0 to Nw-1 f
THETA2=2*THETA/2/NA ! Saddle angle of not webed part !

! THETA2=i*THETA/2/NA with 1=0 to NA-
NWEB-1 !
ELNUM3=NA/3
THICYL-0.012

THIWEB-0 .006
THICPRIN=0.006

/COM, ***CALCULATED PARAMETERS***

THETAL1=THETA-THETA2
CC=2*C/NW

ELNUM1—NW-T*NW/C
ELNUMA4=T*NW/C

ELNUM5—THETA2 /THETA* 2*NA
TOLY-THETA/ 8/NA

TOLZ-CC/8

X-C-T

NDIV*»2 *NA-THETA2 *2*NA/THETA
ALPHA—THETA/NA/ 2
L=RADIUS*SIN (THETA1)
HI1—B-RADIUS™ (SIN (90-THETA1) -1)
LBASE-L-H1 *TAN (BETA)

/COM, **«MATERIAL PROPERTIES TO BE MODIFIED***

EXX-210E9
NU-.3

JCOM FHxxkhhkhkhkhhhhrhhhhrhrhrx
'

/COM,***THE SADDLE BUILDING***

FAAIAEAAIAKAAAAAAIAAAA A A dddd*d
/COM,

/COM, **«ELEMENT TYPE AND MATERIAL PROPSRTIRs DEFINITION™*

/PREP7
/VIEW,1,1,1
ET,1,93
MP,EX,1,EXX
MP,NUXY, 1,NU
R,1,THICYL
R,2 ,THIWXB
R,3,THICPRIN
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R,4 ,THIWEB/2 A,3,6,1001+NWEB*10,1002+NWEB*10

/COM, * “ CYLINDRICAL PART MODELING*** /COM,*** BASE***
CcSYS,1 *D0,1,0 ,NWEB-1,1
K.1 A,1002+1%10,1001+1%10,1011+1*10,1012+1*10
K,2,, .C *ENDDO
K ,3,RADIUS,-90,0
K, 6 ,RADIUS,-90,X /COM, ***CENTRAL WEB***
L.3,6
AROTAT,1,,,,,,1,2, -ALPHA KJ*4*NDIV
ADEN,NDIV,1 ,,,,-ALPHA +DO,1,1,NWEB,1
DIST-(NW EB-1) *LBASE/NWSB
/COM,* **SADDLE ETREMITY STIFFENER*** AS-ASIN (DIST/RADIUS)
NI-NINT (AS/ALPHA)
CSYS,0 K1-4*N1+3
K, 1001, -LEASE ,- (RADIUS+B) ,X LARC,K J,K 1,1 ,RADIUS
K,1002,-LEASE, - (RADIUS+B) ,0 AL A*NDIV+3*(NWEB+1)+2*NWEB+I, 4*NDIV+3*I, 4*NDIV+3*NWEB+3+2*1 4*N
A ,4*NDIV,4*NDIV+1,1001,1002 DIV+3*(1+1) ++ W
KJI-KI
/COM,***OTHER STIFFENERS*** *ENDDO

+DO,1,1 NWEB-1,1

/COM, *** BENDING PART ACROSS THE WIDTH***
DIST=(NWEB-I)*LBASE/NWEB

AS=ASIN (DIST/RADIUS) *|F,C,0T,X,THEN

NI=NINT(AS/ALPHA) csys,1

Kl=4*N1+3 K, 2000,RADIUS,-90,C

*QET,XK,KP,KI ,LOC,X L, 6,2000

*OET,YK,KP,KILLOC,Y AROTAT,4*<NDIV+1)+6*NWEB,,,,, 1,2 ,-ALPHA

K ,1001+10*1 XK, - (RADIUS+B) ,X AOEN,NDIV,NDIV+3*NWEB+2,, , , -ALPHA

K,1002+10*1,XK,-(RADIUS+B) ,0 -ENDIF

ALKI.KI+3,1001+10%1,1002+10*1

#ENDDO /COM,***BENDINO PART ACROSS THE SADDLE ANOLE***

/COM,*** MIDDLE STIFFENER*** *|F ,THETA2,0T,0, THEN
AROTAT,4*NDIV-2,,,,,,1 ,2 ,-THETA2

K,1001+NWEB*10,0,-(RADIUS+B) ,X *|F,C,0T,X,THEN

K,1002+NWEB*10,0,-(RADIUS+B),0 AROTAT, 8*NDIV+6*NWEB+1 1,2 ,-THETA2
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¢ENDIF
¢ENDIF
NUMMRG.KP

/COM,**«<NUMBER OF DIVISIONS ON THE CYLIDRICAL PART LINES***

CSYS,1
LSEL,S,LOC,X,RADIUS
LSEL,R,LOC,Z,0,X
LSEL,U,LOC,Z,0
LSEL,U,LOC,Z,X
LESIZE,ALL,, ,ELNUM1

LSEL,S,LOC,Z,C

LSEL,A,LOC, Z X

LSEL,A,LOC,Z,0

LSEL,R,LOC,X,RADIUS

LSEL,U,LOC,Y,- (90+THETAL) ,- (90+THETA)
LESIZE,ALL, , 1

LSEL,S,LOC,X,RADIUS
LSEL,R,LOC,Z,X,C
LSEL,U,LOC,Z,C
LSEL,U,LOC,Z X
LESIZE,ALL, ,,ELNUM4

LSEL, S,LOC,Z.,C

LSEL,A,LOC,Z,X

LSEL,A,LOC,Z,0

LSEL,R,LOC,X,RADIUS

LSEL,R,LOC,Y,- (90+THETAL) ,- (90+THETA)
LESIZE,ALL, , ,ELNUM5

/COM, **»NUMBER OF DIVISIONS ON STIFFENERS

LINES***

ALLSEL
*DO,I,00NWEB,1

LESIZE,4«NDIV+3*1 + 3,,,ELNUM3
+ENDDO

*IF ,CWEB,EQ,0 ,THEN
K=NWEB-1
¢ELSEIF,CWEB,EQ,1
K-NWEB

*ENDIF

*DO0,I,0,K,1

LESIZE, 4*NDIV+3*I+1, , ,ELNUM3
LESIZE,4*NDIV+3*1+2,,, BLNUM1
*ENDDO

NIPREONDIV

*DO0,l,1,NWEB,1

DIST-(NWEB-I) (LBASE/NWEB

AS-ASIN (DIST/RADIUS)

NI-NINT (AS/ALPHA)

NI-NIPREC-NI
LESIZE,4*NDIV+5*NWEB+3+1,, ,N |
LESIZE,4*NDIV+3*(NWEB+1)+2*1-1 N ||
LESIZE,4*NDIV+3*(NWEB+1)+2*1,, N j|
NIFREONI

ENDDO

ALLSEL

JCOM FHF*xFxkdhdhkhxrrx
'

/COM ***THE MESHING***

/COM, E e X

TYPE,1

REAL,1

*DO,I,1,NDIV,1
AMESH, I
*IF,C,GT,X,THEN
AMESH,NDIV+3*NNEB+1+1
¢ENDIF
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+ENDDO
*IF,C,0T,X,THEN
AMESH, 2*NDIV+3*NWEB+2
AMESH, 2*NDIV+3*NWEB+3
<ELSE

AMESH, NDIV+3*NWEB+2
¢ENDIF

ESHAPE,2

REAL,2

*IF ,EXTWEB,EQ,1,THEN
AMESH,NDIV+1

¢ENDIF

*IF ,NWEB,OT,1, THEN
AMESH,NDIV+2 ,NDIV+NWEB, 1
¢ENDIF

*IF ,CWEB,EQ,1 ,THEN
REAL,4
AMESH,NDIV+NWEB+1
¢ENDIF

REAL,3
AMESH ,NDIV+2*NWEB+2 ,NDIV+3*NWEB+1,1

NUMMRO, ELEM

ADELE ,NDIV+NWEB+2 ,NDIV+2 *NWEB+1,1
+DO,1,1,NWEB,1
LDBLE,4»NDIV+3*NWEB+2+2*|

+ENDDO

¢|F,CWEB,EQ,0,THEN
ADELE,NDIV+NWEB+1

LDELE, 4*NDIV+3*NWEB+1, 4*NDIV+3*NWEB+2,1

¢ENDIF

¢ |F, EXTWEB,EQ,0 ,THEN

ADELE,NDIV+1
LDKLB,4*NDIV+1,4*NDIV+2,1
¢BNDIF

NUMMRO,NODE

ASEL,S,L0C,Z,0,0
ASEL,INVE

CSYS,0

ARSYM, Z,ALL,,,,0,0

NUMMRO, NODE

CSYsS,1
NSEL,S,LOC,X,RADIUS
NROTAT,ALL

ALLSEL

FINISH

JCOM FHHxxFxkdhkdkhhhkhrhhx
'

/COM,***THE SOLUTION***

JCOM FHrxFHdhdkhhhhhhhrrx
'

/SOLU
ANTYPE, STAT

CSYS,0
NSEL,S,LOC,Y, - (RADIUS+B)
D,ALL,ALL

CSYS,0
NSEL,S,LOC,X,0
DSYM, SYMM, X ,0

»CFOPEN,dlapllO,nor
*D0O,1,1,NW,1
*D0,JJ,0,NA-1,1



J=NA-1-JJ

/sOoLu
ANTYPE, STAT

csys.1

SFEDELE ,ALL, ,PRES

NSEL,S,L0C,X, RADIU

NSEL 'R’ LOC,Z,C- (|- )*CC+TOLZ,C-1*CC-TOLZ
NSEL’R,LOC,Y,- (Q0+THETA) +J* 2*ALPHA-TOLY ,
(90+THETA) + (J+ 1) *2*ALPHA+TOLY

ESLN,R,1

SFE,ALL,,PRES,,-1

ALLSEL

«SOLVE
FINISH

/POST1

SET ,LAST

RSYS,1
+DO,11,1,NW,1
*DO,KK,1,2*NA-1,2
K=2*NA-KK

phlie n g a 2o Bl 1)NCe 2 Ce (2411 1)5ee/2
NSEL"R:LOC,Y;- (90+THETA) +K*ALPHA - (G0 THETA] +K+ALPHA
NSORT,UY

*GET,DISP,HAX

*¢VWRITE ,DISP

(E13.6)

NSEL,ALL

#ENDDO

+ENDDO

ALLSEL

FINISH
+ENDDO

<ENDDO
¢CFCLOSE
/EXIT

File - semi_rig

/BATCH
/UNITS,SI

/COM, ***GEOMETRICAL

*AFUN,DEG

NW-3

width !
NA-10
saddle angle
Cc-0.1

B-0.1
(theta=0) !
THETA-60
RADIUS—-1
CWEB-0

(y»l or n«0)
LEXTWEB-0.05
EXTWEB-1
(y»! or n=0)
NWEB-3
middle web |
T»1*C/NW
not webed !

THETA2—-2*THETA/2/NA

NNXB-1 !
ELNUM2=1
ELNUM3—-4
THICYL-0.012

PARAMETERS***

I Number of divisions across the saddle

! Number of divisions across the half

! Half saddle width |
1 Height at center of the saddle

| Half saddle angle t
t Radius of the saddle 1

! Do you want to put a web in the middle

! Do you want to put an external web

| Total number of webs without the
! Width of the cylindrical part which is
I T-i*C/NW with i—0 to Nw-1 |
| Saddle angle of not webed part 1

! THXTA2-1*THETA/2/NA with i-0 to NA-
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THIWEB=0.006
THICPRIN=0.006

THETAL1-THETA-THETA2
CC-2*C/NW

ELNUM1—NW-T*NW/C
ELNUMA4=T*NW/C

ELNUMS-THETA2 /THETA* 2*NA
TOLY=THETA/8/HA

TOLZ-CC/B

X=C-T
NDIV=2*NA-THETA2*2*NA/THETA
ALPHA=THETA/NA/2
L=RADIUS*SIN (THETA1)
LBASE=L+LEXTWEB

R-LEXTWEB/ (1-COS (THETA1) )
X0=- (L-R*COS (THETA1))

YO=- (RAD1US*COS (THETA1) +R*SIN (THETA1) )

S=2*ASIN ((C-X) / (2*RADIUS) )
SYL=THETA2-S

/COM, **«MATERIAL PARAMETERS***
EXX=210E9
NU“ .3

/COM, ***BUILD THE MODEL***

/VIEW, ,1,1,1
/PREP7
/SHOW XI11
ET,1,93
MP,EX, 1, EXX
MP,NUXY , 1 ,NU

,THICYL

,THIWEB
,THICPRIN/2

,THIWEB/2

Po s B b
AWM PR

., C

,RADIUS,-90,0

K, 6,RADIUS,-90,X

L, 3,6

AROTAT,1,,,,,,1,2 ,-ALPHA
ASSN,NDIV,1 ,,,,-ALPHA

CSYS,0

K ,999,X0,Y0,0

K,1000,X0,Y0,X

AROTAT, 4*NDIV -2, ,,,,,999,1000 ,THETA1
K,1001,-(L+LEXTWXB), - (RADIUS+B),X
K,1002 -(L+LEXTWEB), - (RADIUS+B),0

A, 4*NDIV+3,4*NDIV+4,1001,1002

*DO,l,1 ,NWEB-1,1
DIST-(NWEB-1)* LEASE/KWEB
AS-ASIN(DIST/RADIUS)

NI-NIHT (AS/ALPHA)

KI1—-4*HI+3

*OET,XK,KP,K I,LOC,X
*OET,YK,KP,K I,LOC,Y
*I1F,1,BQ,1,THEN

XKMKI

*ENDIF
K,1001+10*1,XK,-(RADIUS+B),X
K,1002+10*1,XK,-(RADIUS+B),0
A,KI,KI+3,1001+10*1,1002+10*1
+ENDDO

K,1001+NWEB*10,0,-(RADIUS+B),X
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K,1002+NWEB*10,0 ,-(RADIUS+B),0
A,3,6,1001+NWEB*10,1002+NWEB*10

*DO,I,00NWEB-1,1
A,1002+1*10,1001+1*10,1011+1*10,1012+1*10
+ENDDO

*IF ,NWEB,EQ,1 ,THEN
KK=3

«ENDIF

L, KK,4*NDIV+3

KJ=4*NDIV

*D0O,1,1 ,NWEB,1

DIST= (NWEB-I) *LBASE/NWEB

AS=ASIN (DIST/RADIUS)

NI=NINT(AS/ALPHA)

KI=4*N1+3

LARC,KJ,KI ,1,RADIUS

*IF,l ,EQ,1,THEN

AL, 4*NDIV+5*NWEB+8,4*NDIV+2,4*NDIV+5*NWEB+7

AL, 4*NDIV+5*NWEB+7,4*NDIV+6,4*NDIV+3*NWEB+B , 4*NDIV+9
¢ELSE

AL, 4*NDIV+5*NWEB+7+1,4*NDIV+3+3*|, 4*NDIV+3*NWEB+6+2*|,4*NDIV+6+3
ol

¢ENDIF

KJ=KI

+ENDDO

*IF,C,GT,X,THEN

CSYS,1

K, 2000,RADIUS,-90,C

L, 6,2000

AROTAT,4*NDIV+6*NWEB+8 ,,,,,,1,2 ,-ALPHA
AGEN ,NDIV,NDIV+3*NWEB+4 , , , ,-ALPHA
<ENDIF

AROTAT ,4*NDIV-2,,,,,,1 ,2 , -C3AMA

AROTAT,8*NDIV+6*NWKB+5,,,,,,1 ,2 ,-OAMA

NUMMRO,KP

LSEL,S,LINE, ,6,4*NDIV,2
LSEL,A,LINE,,1,2,1
LSEL,A,LINE,,8*NDIV+6*NNEB+8
LESIZE ,ALL,, ,ELNUM1

ALLSEL
LSEL,S,LINE,,5,4*NDIV-1,2
LSEL,A,LINE,,3,4,1
LSEL,A,LINE,,8*NDIV+6*NWEB+9
LSEL,A,LINE,, 8*NDIV+6*NWEB+11
LESIZE,ALL,,, ZLNUM2

ALLSEL

ASEL, S,AREA, ,NDIV+3*NWEB+4, 2*NDIV+3*NWEB+3

ASEL,A,AREA,2*NDIV+3*NWEB+5
LSLA, S

LESIZE,ALL,,,1

ALLSEL

+DO0,1,0,NWEB,1
LESIZE,4*NDIV+3*I1+6,,, ELNUM3
LESIZE,4*NDIV+3*I+4,, ELNUM3
LESIZE,4*NDIV+3*I+5,,, ELNUM1
+ENDDO

LESIZE, 4*NDIV+1, , ,ELNUM1
LESIZE,4*NDIV+2,,, ELNUM4
LESIZE ,4»NDIV+3,,, ELNUM4

NIPREONDIV
+DO,1,1,NWEB,1

DIST»(NW EB-I1) «(LBASE/NWEB
ASAASIN(DIST/RADIUS)
NI-NINT(AS/ALPHA)
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NII=NIPREC-NI

*IF,ILEQ,1,THEN

LESIZE, 4*NDIV+5*NWEB+7, , ,N |l
LESIZE ,4*NDIV+5*NWEB+8 , , ,N ||
LESIZE, 4' NDIV+3*NWEB+8, , ,N ||
LESIZE,4*NDIV+3*NWEB+7,, ,H1I
‘ELSE

LESIZE, 4*NDIV+5*NWEB+7+l, , N1l
LESIZE, 4' NDIV+3*NWEB+5+2*I, , ,N Il
LESIZE, 4*NDIV+3*NWEB+6+2*I, , ,N Il
‘ENDIF

NIPREC=NI

* ENDDO

ALLSEL

TYPE,1
MAT, 1

REAL,1

‘DO,1,1,NDIV,1
AMESH, |

AMESH,NDIV+3‘ NWEB+3+I
* ENDDO

AMESH, 2° NDIV+3*NWEB+4
AMESH, 2*NDIV+3*NWEB+5

REAL,2

*IF ,EXTWEB,EQ, 1, THEN
AMESH,NDIV+1

‘ENDIF

REAL,3
AMESH,NDIV+2*NWEB+3

ESHAPE,2

REAL,2

*1F ,EXTWEB,EQ, 1, THEN
AMESH,NDIV+2

»ENDIF
AMESH,NDIV+3,NDIV+NWKB+1,1

*IF ,CWEB,EQ,1 ,THEN
REAL,4

AMSSH, NDIV+NWEB+2
‘ENDIF

REAL,3
AMESH,NDIV+2*NWEB+4 ,NDIV+3*NWEB+4,1

ADELE ,NDIV+NWEB+3 ,NDIV+2*NWEB+2,1
‘DO, 1,1,NWSB, 1
LDELE,4*NDIV+3*NWEB+5+2*|

* ENDDO

*IF ,CVfEB,EQ,0,THEN

ADELE,NDIV+NWEB+2

LDELE, 4*NDIV+3*NWEB+4, 4*NDIV+3*NWHB+5,
‘ENDIF

*IF ,BXTWEB,EQ,0,THEN
ADELS,NDIV+1

ADELE,NDIV+2
LDELE,4'NDIV+1
IUELH,4*NDIV+3,4*NDIV+5,1
‘ENDIF

NUMKRO,NODE
ASXL,S,L0C,Z,0,0
ASEL,INVS

CSTS,0

ARSYM,Z ,ALL,,,,0,0

NUMMRG, NODE



Gre

CSYS,1

NSEL,S,LOC,X ,RADIUS
HROTAT ,ALL

ALLSEL

FINISH
c*** SOLUTION PHASE STARTS HERE

/SOLU
ANTYPE, STAT

CSYS,0

NSEL,S,LOC,Y,- (RADIUS+B)
D,ALLALL

ALLSEL

CSYS,0
NSEL,S,LOC,X,0
DSYM, symm, X ,0
ALLSEL

¢CFOPEN,dIsplx,rig
*D0,1,1,NA,1
*D0,J,0,NC-1,1

/sOoLu
ANTYPE, STAT

CSYS,1

SFEDELE,ALL,, PRES

NSEL,S,LOC,X ,RADIUS

NSEL,R,LOC,Z,C -(I-1)*CC+TOLZ,C-1*CC-TOLZ

NSEL ,R,LOC,Y ,- (90+THETA+ALPHA) +J* 2*ALPHA-TOLY, -

(93+THETA) + (J+ 1) *2*ALPHA+TOLY
ESLN,R,1
SFE ,ALL, ,PRES, ,-1

ALLSEL

SOLVE
FINISH

/POST1

SET,LAST

RSYS,1
*D0,11,1,NA 1
*DO,K,1,2*NC-1,2
NSEL,S,LOC,X,RADIUS

NSEL,R,LOC,Z,C-(2*11-1)*CC/2,C-(2*11-1)*cc/2

INSORT, UX "Y' (90+THKTA+ALPHA) +K*ALPHA, - (90+THETA+ALPHA) +K*ALPHA

*OET,DISP, MAX
*VNRITE,DISP
(E13.6)
NSEL,ALL
*ENDDO

+ENDDO

ALLSEL

FINISH
*ENDDO
*ENDDO

¢CFCLOSE
/EXIT

File - stwothick

/UNITS,SI

/COM,0«GEOMETRICAL PARAMETERS***
*AFUN,DBS
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NW=3

width !

NA=10

saddle angle !

B=0.1
(theta=0) !
THETA=60
RADIUS-1
BETA=10
(external web) !
CWEB=1

(y=1 or n=0) !
EXTWEB=1

(y=1 or n=0) !
NWEB=3

middle web !
T=1*C/NW

not webed =

THETA2=2 *THETA/ 2/HA

NWEB-1 !
ELNUM2=1
ELNUM3=4
THICYL1=0.012
THICYL2=0.006
THIWEB=0.006
THICPRIN=0.006

! Humber of divisions across the saddle
I Number of divisions across the half

! Half saddle width !
! Height at center of the saddle

! Half saddle angle !
! Radius of the saddle !
! Incline angle of the first web
! Do you want to put a web in the middle
! Do you want to put an external web
! Total number of webs without the

! Width of the cylindrical part which is

I T=1*C/NW with 1=0 to NW-1 !
! Saddle angle of not webed part !

I THBTA2=i*THETA/2/NA with 1=0 to NA-

RADIUS2=RADIUS- (THICYL1-THICYL2) /2

THETA1=THETA-THETA2
CC=2*C/NW
ELNUM1=NW-T*NW/C
ELNUM4=T*NW/C

ELNUM5=THETA2/THETA* 2*NA

TOLY=THETA/8/NA
TOLZ=CC/8

X=C-T
NDIV=2*NA-THETA2*2*NA/THBTA
ALPHA=THETA/NA/2
INRADIUS*SIN(THETAL)
HI-B-RADIUS* (SIN(90-THETA1) -1)
LBASE=L-H1*TAN(BETA)
S=2*ASIN((C-X) / (2*RADIUS) )
SYL=0AMA-S

/COM ,**«MATERIAL PARAMETERS***
EXX=210E9
NU-.3

/COM,**«BUILD THE MCX5EL***
/VIEW,1,1,1
/PREP7
ET,1,93
MP,EX,1, EXX
MP,NUXY,1, NU
R,1,THICYL1
R, 2 ,THICYL2
R, 3, THIWEB
R,4 ,THICPRIN
R,5,THIWEB/2

CSYS,1
K,1
K,2,,C

K, 3,RADIUS,-90,0
X,6,RADIUS,-90,X

L,3.,6

AROTAT,1 ,,,,,,1 ,2 ,-ALPHA
ADEN,NDIV,1 ,,,,-ALPHA
CSYS,0

K,1001,-LEASE, - (RADIUS+B),X
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K, 1002, -LEASE, -(RADIUS+B) ,0
A, 4*KDIV ,4*NDIV+1,1001,1002

*DO,ILILNWEB-I,I
DIST=(NWEB-I) *LEASE/NWEB
AS=ASIN (DIST/RADIUS)

NI=NINT (AS/ALPHA)

KI=4*N1+3

*OET,XK,KP,KI ,LOC,X
*OET,YK,KP,KI ,LOC,Y
K,1001+10*1,XK,-(RADIUS+B),X
K,1002+10*1,XK,-(RADIUS+B),0
A,KI,KI+3,1001+10*1,1002+10*1
*ENDDO

K,1001+NWEB*10,0,-(RADIUS+B),X
K,1002+NWEB*10,0,-(RADIUS+B),0
A ,3,6,1001+NWEB*10, 1002+NWEB*10

*D0O,1,0 ,NWEB-1,1
A,1002+1*10,1001+1*10,1011+1*10,1012+1*10
*ENDDO

KJ=4 *NDIV

*D0,1,1, NWEB, 1

DIST=(NW EB-1)*LEASE/NWEB
AS=ASIN (DIST/RADIUS)
NI=NINT (AS/ALPHA)
Kl=4*N1+3

LARC,KJ ,K 1,1, RADIUS
AL,4*NDIV+3* (NWEB+1) +2*NWEB+1,4*NDIV+3*|, 4*NDIV+3*NWEB +3+2*|, 4*N
DIV+3*(1+1)

KJ=KI

*ENDDO

*|F,C,0T,X, THEN
CSYS,1
K,2000,RADIUS2,-90 ,C

K, 1999,RADIUS2,-90 ,X

L, 1999,2000

AROTAT ,4* (NDIV+1) +6*NWEB, ,,,,,1 ,2 , -ALPHA
ASEN,NDIV,NDIV+3*NWKB+2 , , , ,-ALPHA

*ENDIF

K,2001,RADIUS2, - (90+THKTA1),0
K, 2002 ,RADIUS2 ,- (90+THETA1) ,X
L, 2001,2002

AROTAT, 8*NDIV+6*NWEB+4 ,,,,,,1 ,2 , -THETA2
*IF,C,0T,X,THEN

AROTAT, 8*NDIV+6*NWEB+1,,,,,,1 ,2 ,-THETA2
¢ENDIF

ALLSEL
NUMMRQ, KP

CSYS,1

LSEL,S,LOC,X ,RADIUS
LSEL,R,LOC,Z,0 ,X
LSEL,U,LOC,Z,0
LSEL,U,LOC,Z X
LESIZE,ALL,,, ELNUM1

LSEL,S,LOC,Z,C
LSEL,A,LOC,Z X
LSEL,A,LOC,Z,0
LSEL,R,LOC,X,RADIUS

LSEL,U,LOC,Y,—(90+THETA1) ,-(90+THETA)
LBSIZE.ALL,, 1

LSEL,S,LOC,X ,RADIUS
LSEL,R,LOC,Z,X,C
LSEL,U,LOC,Z,C
LSEL,U,LOC,Z,X
LSSIZE,ALL,,, ELNUM4
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LSEL,S,LOC,Z,C
LSEL,A,LOC,Z X
LSEL,A,LOC,Z,0
LSEL,R,LOC,X ,RADIUS

LSEL,R,LOC,Y,- ( 90+THETAL) , - ( 90+THETA)

LESIZE,ALL,,, ELNUM5

ALLSEL

+DO0,1,0,NWEB,1
LESIZE,4*NDIV+3*I1+3,,, ELNUM3
+ENDDO

*IF ,CWEB,EQ,0 ,THEN
ADELE,NDIV+NWEB+1
K=NWEB-1
¢ELSEIF,CWEB,EQ,1
K=NWEB

¢ENDIF

-DO,I,0,K,1
LESIZE,4*NDIV+3*I+1,,, ELNUM3
LESIZE,4*NDIV+3*I1+2,,, ELNUMI
+ENDDO

NIPREONDIV

*D0,I,1,NWEB,1

DIST=(NW EB-1)*LEASE/NWEB
AS=ASIN (DIST/RADIUS)

NI=NINT (AS/ALPHA)
NII=NIPREC-NI
LESIZE,4*NDIV+5*NWEB+3+1,, ,N I

LESIZE,4*NDIV+3*(NWEB+1)+2*1-1,, NI

LESIZE,4*NDIV+3*(NWEB+1)+2*1,, NIl
NIPREC=NI

+ENDDO

ALLSEL

TYPE,1

*DO,1,1,NDIV,1

REAL,1

AMESH, |
*IF,C,GT,X,THEN
REAL,2
AMESH,NDIV+3*NWEB+1+I
¢ENDIF

+ENDDO
*IF,C,QT,X,THEN
REAL,2

AMESH, 2*NDIV+3*NWEB+2
*IF ,THETA,OT,THETAL1,THEN
AMESH, 2*NDIV+3*NWEB+3
¢ENDIF

¢ENDIF

REAL,3

ESHAPE,2

*IF ,EXTWEB,EQ, | ,THEN
AMESH,NDIV+1

¢ENDIF

*IF ,NWEB,OT, 1, THEN
AMESH,NDIV+2,NDIV+NWEB,1
¢ENDIF

¢IF.CWEB,EQ,1,THEN
REAL,S
AMESH,NDIV+NWEB+1
¢ENDIF

REAL,4
AMESH,NDIV+2 *NWEB+2 ,NDIV+3 »>NWEB+1 ,

NUMMR3, BLEM

ADELE ,NDIV+NWEB+2 ,NDIV+2*NWEB+1,1



+DO,1,1,NWEB, 1
LDELE, 4*NDIV+3*NWEB+2+2*|
+ENDDO

¢|F,.CWEB,EQ,0,THEN
ADELE,NDIV+NWEB+1

LDELE ,4*NDIV+3*NWEB+1,4*NDIV+3*NWEB+2,1

¢ENDIF

*XF,EXTWEB,EQ,O0,THEN
ADELE,NDIV+1
LDELE,4*NDIV+1,4*NDIV+2,1
¢ENDIF

NUMMRO, NODE

ASEL,S,LOC,Z,0,0
ASEL,INVE

CSYS,0

ARSYM,Z ,ALL,,,,0,0

NUMMRO, NODE

CSYS.1
NSEL,S,LOC,X,RADIUS
NSEL,A,LOC,X,RADIUS2
NSEL,R,LOC,Y ,- ( 90+THETA1>
CPINTF,ALL,.005

ALLSEL

NSEL,S,LOC,X,RADIUS

NSEL,A,LOC,X ,RADIUS2

NSEL,U,LOC,Y,-90

NSEL,U,LOC,Y,- (90+THETA1) ,- (90+THETA)
NSEL,R,LOC,Z X

CPINTF,ALL,.025

ALLSEL

NSEL,S,LOC,X,RADIUS
NSEL,A,LOC,X,RADIUS2
NSEL,U,LOC,Y,-90

NSBL,U,LOC,Y, - (90+THETA1),-< 90+THETA)

NSEL,R,LOC,Z,-X
CPINTF,ALL,.025
ALLSEL

CSYs,1
NSEL,S,LOC,X,RADIUS
NSEL,A,LOC,X,RADIUS2
NROTAT,ALL

ALLSEL

FINISH

C*** SOLUTION PHASE STARTS HERE

/SOLU
ANTYPE, STAT

CSYS,0
NSEL,S,LOC,Y, - (RADIUS+B)
D,ALL,ALL

CSYS,0
NSEL,S,LOC,X,0
DSYM, SYMM, X ,0

+CFOPEN, 0 ISP ,nor
#D0,1,1,NW,1
#D0,J,0,NA-1,1

/SOLU
ANTYPE, STAT

CSYS,1
SFBDELE,ALL,, PRES
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NSEL S,LOC,X,RADIUS

NSEL R LOC,Z,C -<I -1)* CC+TOLZ,C-1*CC-TOLZ
NSEL'R'LOC,Y ,- <90+THETA) +J* 2*ALPHA-TOLY , -
(90+THETA) + (J + 1) *2*ALPHA+TOLY

ESLN,R,1

SFE,ALL,,PRES,,-1

ALLSEL

«SOLVE
FINISH

/POST1

SET,LAST

RSYS,1
*DO,ILINW,I
*DO,K,1,2*NA-1,2

TmL t'.U~y.-(90+THSTA)«-ALPHA, - (PO-TBiTA)«-ALPHA

nsort,UX
*GET,DISP,MAX
*VWRITE,DISP
(E13.6)
NSEL,ALL
1*ENDDO

1* ENDDO
ALLSEL

FINISH
I*ENDDO
1*ENDDO

¢CFCLOSE
/EXIT

File - semi_rig.sol

/BATCH
/UNITS,SI

/COM,***GEOMETRICAL PARAMETERS***

*AFUN,DEO

NW-3

width !

NA~30

saddle angle |
C-0.1

B-0.l
(theta-0) !
THETAP60
RADIUS-1
CWEB—1

(y=1 or n—0) !
LEXTHEB—0.05

EXTWEB-1

(y=1 or n-0) |
NWEB-3

middle web t
T-1*C/NW

not webed !
THSTA2-2 *THETA/ 2/NA

NWEB-1 |

ELNUM2-1

ELNUMG6-5
XLNUM3—NINT(NAZ2)
THICYL-0.012
THIWEB-0.006
THICPRIN-0.006
RADIUS-RADIUS+THICYL/2

I Number of divisions across the saddle

I Number of divisions across the half

1 Half saddle width !
t Height at center of the saddle

| Half saddle angle !
! Radius of the saddle !
! Do you want to put a web in the middle

I Do you want to put an external web
! Total number of webs without the
! Width of the cylindrical part which is
I T»i*C/NW with i—0 to NW-1 !

1 Saddle angle of not webed part !

1 THETA2—-1*THETA/2/NA with 1-0 to NA-



THETAL=THETA-THETA2
CC=2*C/NW

ELNUM1=NW-T*NW/C
ELNUMA=T*NW/C

ELNUMS5=THETA2 /THETA* 2*NA
TOLX=0.00001
TOLY=THETA/8/NA

TOLZ=CC/8

X=C-T
NDIV=2*NA-THETA2*2*NA/THETA
ALPHA=THETA/NA/ 2
L=RADIUS*SIN (THETA1)
LBASE=L+LEXTWEB
RAD=RADIUS-THICYL
R=LEXTWEB/(1-COS(THETA1))
X0=- (L-R*COS (THETA1))

YO=- (RADIUS*COS (THETA1) +R*SIN (THETA1))
S=2*ASIN((C-X)/(2*RADIUS))
SYL=THETA2-S

/COM, *** MATERIAL PARAMETERS***
EXX—210E9

NU=. 3

/COM,** BUILD THE MODEL***

/VIEW, ,1,1,1
/PREP7
/SHOW XI1
ET,1,63
ET,10,73

ET, 11,22
MP,EX,1 EXX
MP,EX,10,EXX
MP,EX,11,0
MP,NUXY ,1,NU
MP ,NUXY ,10 ,NU

MP,NUXY,11,0
R,1,THICYL
R, 2, THIWEB
R,3,THICPRIN
R,4,THIWEB/2

CSYs,1
K,1

2,,.C
K,3,RADIUS,-90,0
K, 6,RADIUS,-90,X

L, 3,6
AROTAT,1,,,,,,1,2, -ALPHA
AOEN,NDIV,1, ,,,-ALPHA
CSYS,0

K,999,X0,Y0,0

K,1000,X0,Y0,X
AROTAT,4*NDIV-2,,,,,,999,1000,THXTAL
K,1001,-(L+LEXTWEB), - (RADIUS+B),X
K,1002,-(L+LEXTWEB), - (RADIUS+B),0

A, 4*NDIV+3,4*NDIV+4,1001,1002

*DO,I,ILNWEB-I,I

DIST- (NWEB-1) *LEASE/NWSB
AS-ASIN(DIST/RADIUS)
NI-NINT(AS/ALPHA)

KI-4+NI+3

*8ET,XX,KP,K I,LOG,X
¢GET, YK ,KP,KI,LOC,Y

*17,1 ,EQ,1 ,THEN

KK-KI

¢ENDIF
K,1001+10*1,XK,-(RADIUS+B),X
K,1002+10*1,XK,-(RADIUS+B),0
A,KI,KI+3,1001+10*1,1002+10*1
*XNDDO
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K,1001+NWEB*10,0,-(RADIUS+B),X
K,1002+NWEB*10,0,-(RADIUS+B) ,0
A ,3,6,1001+NWEB*10, 1002+NWEB*10

*DO,I,00NWEB-1,1
A,1002+1*10,1001+1*10,1011+1*10,1012+1*10
+ENDDO

*1F ,NWEB,EQ,1 ,THEN
KK=3

*ENDIF
L,KK,4*NDIV+3

KJ=4 *NDIV

*DO, | ,1 ,NWEB,1

DIST= (NWEB-1) *LEASE/NWEB

AS=ASIN(DIST/RADIUS)

NI=NINT (AS/ALPHA)

KI=4*NI+3

LARC,KJ,KI,1,RADIUS

*1F,l ,EQ,1,THEN

AL,4*NDIV+5*NWEB+8,4*NDIV+2,4 *NDIV+5*NWEB+7
AL,4*NDIV+5*NWEB+7,4 *NDIV+6 ,4*NDIV+3*NWEB+8,4*NDIV+9
»ELSE

AL,4*NDIV+5*NWEB+7+I ,4*NDIV+3+3*|,4*NDIV+3*NWEB+6+2*|,4*NDIV+6+3
*1

¢ENDIF

KJ=KI

¢ENDDO

*IF,C,GT,X,THEN

CSYS,1

K, 2000,RADIUS,-90,C

L, 6,2000

AROTAT ,4*NDIV+6*NWEB+8 ,,,,,,1,2, -ALPHA
AGEN,NDIV ,NDIV+3*NWEB+4 , , , ,-ALPHA
¢ENDIF

*IF ,THETA2,GT,0,THEN
AROTAT,4*NDIV-2,,,,,,1 ,2 ,-THETA2
¢IF,C,GT,X,THEN
AROTAT,8*NDIV+6*NWEB+5,,,,,,1 ,2 ,-THETA2
¢ENDIF

¢ENDIF

NUMMRG.KP

CSYS,1

LSKL,S,LOC,X ,RADIUS
ASLL,S .1

VEXT,ALL,, ,-THICYL
ALLSEL

NUMMRG, KP
CSYS,1

ASLV,S
LSLA, S

LSKL, R,LOC,X,RAD+0.0001,RADIUS-0.0001
LBSIZK,ALL,,, ELNUM2

ASLV,S

LSLA, S
LSXL,R,LOC,Z,0,X
LSKL, U,LOC,Z,0
LSKL,U,LOC,Z X
LESIZE,ALL,,, ELNUM1

LSKL,S,LOC,Z,C
LSKL,A,LOC,Z,X
LSXL,A,LOC,Z,0
LSXL,R,LOC,X ,RAD,RADIUS

LSKL,U,LOC,Y,-(90+THKTAI),-(90+THXTA)
LXSIZK,ALL,, 1

ASLV,S
LSLA,S
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LSEL,R,LOC,Z,X.C LESIZE,4*NDIV+3*NWEB+5+2*],, ,N Il
LSEL,U,LOC,Z,C LESIZE,4*NDIV+3*NWEB+6+2*,, ,N 11
LSEL,U,LOC,Z,X #ENDIF
LSEL,U,LOC,Y,- (90+THETAL) ,- (90+THETA) NIFREONI
LESIZE,ALL,,, ELNUM4 #ENDDO

ALLSEL
LSEL,S,LOC,Z,C
LSEL,A,LOC,Z X TYPE,10
LSEL,A,LOC,Z,0 MAT,10
LSEL, R, LOC, X, RAD, RADIUS VMZSH,ALL
LSEL,R,LOC,Y ,-(9 0 .1+THETA1),-(8 9 .9+THETA)
LESIZE,ALL,,, ELNUM5 TYPE,1

MAT, 1
ALLSEL
#DO,1,0, NWEB, 1 REAL,2
LESIZE,4*NDIV+3*1+6, , , ELNUM3 *|F  EXTWEB,EQ, 1, THEN
LESIZE,4*NDIV+3*1+4,,, ELNUM3 AMESH,NDIV+1
LESIZE,4*NDIV+3*|+5,,, ELNUM1 #ENDIF
#ENDDO REAL,3

AMESH, NDIV+2 *NWEB+3
LESIZE,4*NDIV+1, ,, ELNUM1 ESHAPE,2
LESIZE,4»NDIV+2,,, ELNUM6 REAL,2
LESIZE,4*NDIV+3, , ,ELNUM6 *|F ,EXTWEB,EQ, 1, THEN

AMESH,NDIV+2

#ENDIF
NIPREC=NDIV AMESH,NDIV+3,NDIV+NWEB+1,1
*DO, 1,1, NWEB, 1
DIST= (NWEB-I) *LEASE/NWEB *IF,CWEB,EQ, 1, THEN
AS=ASIN (DIST/RADIUS) REAL,4
NI-NINT (AS/ALPHA) AMESH, NDIV+NWEB+2
NII=NIPREC-NI #ENDIF
¢ 1F,1,EQ,1,THEN REAL,3

LESIZE, 4*NDIV+5*NWEB+7, , ,N |l
LESIZE,A*NDIV+5*NWEB+8,, ,N ||
LESIZE,4*NDIV+3*NWEB+8, , ,N |l
LESIZE, 4*NDIV+3*NWEB+7, , ,N || ADELE,NDIV+tNWEB+3,NDIV+2 *NWEB+2,1

¢ELSE +DO,1,1,NWEB,1
LESIZE, 4*NDIV+5*NWEB+7+l,, ,N 1l LDELE,4*NDIV+3*NWEB+5+2*|

AMESH,NDIV+2 *NWEB+4,NDIV+3*NWEB+4,1
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<ENDDO

*IF ,CWEB,EQ,O0, THEN
ADELE ,NDIV+NWEB+2

LDELE ,4«<NDIV+3*NWEB+4,4 *NDIV+3*NWEB+5,1

«ENDIF

*|F ,EXTWEB,EQ,O0 ,THEN
ADELE,NDIV+1

ADELE,NDIV+2
LDELE,4*NDIV+I

LDELE ,4*NDIV+3,4*NDIV+5,1
«ENDIF

NUMMRO, NODE

ASEL,S,L0C,Z,0,0
ASEL,INVE

CSYS,0
ARSYM, Z ,ALL, ,,,0,0
VSEL.ALL

VSYMM,Z ,ALL,,,,0,0

NUMMRO, NODE

CSYS 1

NSEL;S,LOC,X ,RAD-TOLX,RAD+TOLX
TYPE,11

MAT,11

REAL,S

ESURF

ALLSEL

CSYS 1
NSEL,S,LOC,X ,RADIUS
NROTAT,ALL

ALLSEL

WAVES

FINISH

C*** SOLUTION PHASE STARTS HERS
/SOLU

ANTYPE, STAT

CSYS,0

NSEL,S,LOC,Y, - (RADIUS+B)
D,ALL,ALL

ALLSEL

CSYS,0
NSEL,S,LOC,X,0
DSYM, SYMM, X , 0
ALLSEL

«CFOPEN,rlg330,rad

*DO,I,1,NW,1

*D0,JJ,0,NA-1,1

J“NA-1-JJ

/SOLU

ANTYPE, STAT

CSYSs,1

SFEDELE,ALL,1,PRES

ESEL,S,TYPE,,11

NSLZ,ALL

NSEL,R,LOC,Z,C,0

NSEL,R,LOC,Z,C-(l1-1) *CC+TOLZ,C -1«CC-TOLZ
NSEL,R,LOC,Y, - (90+THETA)+J*2*ALPHA-TOLY, -
(90+THETA) + (J + ) *2*ALPHA+TOLY

ESLN,R,1

SFE,ALL,1,PRES,,1

ESEL,S,TYPE,,11

NSLE,ALL

NSEL,R,LOC,Z,0,-C

NSEL,R,LOC,Z,C -(I1-1)«CC+TOLZ,C-1«CC-TOLZ
NSEL,R,LOC,Y, - (90+THETA)+J* 2cALPHA-TOLY, -
(90+THETA) + (J+ ) *2«ALPHA+TOLY

ESLN,R .1

SFE,ALL,1,PRES, 1
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ALLSEL
SOLVE
FINISH

/POST1

SET,LAST

RSYS,1

e/show ,xI1I
1/psf,pres,2
IpInsol,u,Xx

DO, I11,1,NW,1
*DO,KK, 1,2*NA-1,2
K=2*NA-KK
ESEL,S,TYPE, ,11

NSA'ALOC Z C-(2*11-1) *CC/2,C- (2*11-1) *CC/2
S S '.rl10c Y- (90+THETA) +K*ALPHA, - (90+THETA) +K*ALPHA
NSORT,U ,X

¢GET,DISPX,MAX

NSORT,U,Y

¢GET,DISPY,MAX

*VWRITE,DISPX,DISPY

(E13.6 ,E13.6)

nsel,all

! *ENDDO

I *ENDDO

ALLSEL

FINISH

«ENDDO

1*ENDDO

I *CFCLOSE

JEXIT

File - solid.rig

/COM, **»GEOMETRICAL PARAMETERS***
¢AFUN,DEG

NW-5
width !
NAf30

saddle angle !
C-0.1

B-0.1
(theta-0) !
THETAr=60

RADIUS-1

BETAI-10

(external web) !
CWEB-1

middle (y=l or n=0) !
EXTWEB=1

(y-1 or n-0) !
NWEB-2

middle web !
T—=2*C/NW

not webed !

THETA2-2*THETA/2/NA

NWEB-1 !

SLNUM2-2

ELNUM3—-NA/2
THICYL-0.012
THIWEB-0.006
THICPRIN-0.006
RADIUS-RADIUS+THICYL/2

THETA1-THETA-THETA2
CC—2*C/NW
BLNUM1-NW-T*NW/C
ELNUM4-T*NW/C
EUIUM5-THETA2 /THETA* 2*NA
TOI3C-0.00001
TOLY-THETA/8/NA

Number of divisions across the saddle

1 Number of divisions across the half

! Half saddle width 1
I Height at center of the saddle

I Half saddle angle 1
I Radius of the saddle t

I Incline angle of the first web

I Do you want to put a stiffener In the

I Do you want to put an external web

I Total number of webs without the

I Width of the cylindrical part which is
I T—i*C/NW with 1-0 to NW-1 1
1 Saddle angle of not webed part <

' THZTA2-1*THETA/2/NA with 1-0 to NA-



TOLZ-CC/8

CSYS,0
X=C-T ;
NDIV=2*NA-THETA2*2*NA/THETA K,1001,-LEASE,-(RADIUS+B),X
ALPHAZTHETA/NA/2 K,1002,-LEASE,- (RADIUS+B),0
L=RADIUS=SIN (THETAL) A, 4*NDIV,4*NDIV+1,1001,1002
H1=B-RADIUS*(SIN(90-THETA1)-1) D01 1 NWBB.L1
=1 - * 1t 1 L
Iﬁla,:.\%S:ERAI:DI-:&sTTAH’\ié\B(ETA) DIST=(NWEB-I)*LEASE/NWEB
AS-ASIN(DIST/RADIUS)
/COM **(MATERIAL PARAMETERS*** NI-NINT (AS/ALPHA)
EXX=210E9 KI-4*N1+3
o 3 *OET,XK,KP,KI,LOC X
AN % — *0ET,YK,KP,KI ,LOC,Y
/COM,**BUILD THE MODEL K,1001+10*1,XK,-(RADIUS+B) ,X
K ,1002+10*1,XK,-(RADIUS+B),0
%IREE\QI% -1.1,1 A KIKI+3,1001+10%1,1002+10*1
IR +KNDDO
EH?S K,L001+NWEB*10,0,-(RADIUS+B),X
Al e K,L002+NWEB*10,0,-(RADIUS+B),0
ME Ex 3o ERy A ,3,6,1001+NWXB*10, 1002+NWXB*10
’l:A/IPP’I\IlELT)é\%l,lONU *DO,1,0 NWZB-1,1
MP NUXY 10 NU A,1002+1%10,1001+1%10,1011+1*10,1012+1*10
MP,NUXY,11,0 #KNDDO
R,1,THICYL KJ-4%ND IV
Eé’ml\ggim +D0,1,1 ,NWEB,1
=X s DIST=(NWEB-I)»LBASE/NWEB
R.4,THIWEB AS-ASIN(DIST/RADIUS)
NI-NINT (AS/ALPHA)
csys.1 KI-4*N1+3
i; . LARC,K J,K I,1,RADIUS
K S RADIUS 90 0 AL, 4*NDIV+3*(NWEB+1)+2*NWKB+1, 4*NDIV+3*1, 4*NDIV+3*NWKB+3+2*, 4*N
2 I DIV+3*(1+1)
E, 2,6RADIUS,-90,X Ik
AROTAT,1,,,,,,1,2 ,-ALPHA KNDDO

ADEN ,NDIV,1,,,,-ALPHA
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*IF,C,GT,X,THEN

CSYS,1

K, 2000,RADIUS,-90,C

L, 6,2000

AROTAT, 4* (NDIV+1) +6*NWEB, , ,,,,1,2 ,-ALPHA
AGEN,NDIV,NDIV+3*NWEB+2, ,, ,-ALPHA

¢ENDIF

*IF ,THETA2,GT,0,THEN

AROTAT ,4*NDIV-2,,,,,,1,2, -THETA2
*IF,C,GT,X,THEN

AROTAT ,8*NDIV+6*NWEB+1 ,,,,,,1,2, -THETA2
¢ENDIF

¢ENDIF

NUMMRO, KP

CSYS,1
LSEL,S,LOC,X,RADIUS
ASLL,S 1

VEXT,ALL,, ,-THICYL
ALLSEL

NUMMRG.KP

CSYS,1

ASLV.S

LSLA,S

LSEL,R,LOC,X,RAD+0.0001 ,RADIUS-0.0001
LESIZE ,ALL,, ,ELNUM2

ASLV,S

LSLA,S
LSEL,R,LOC,Z,0,X
LSEL,U,LOC,Z,0
LSEL,U,LOC,Z,X
LESIZE ,ALL, , ,ELNUM1

LSEL,S,LOC,Z,C
LSEL,A,LOC,Z X

LSEL,A,LOC,Z,0
LSEL,R,LOC,X ,RAD,RADIUS

LSKL,U,LOC,Y - (90+THETAL) ,- (90+THETA)
LESIZE,ALL,, 1

ASLV,S

LSLA,S
LSEL,R,LOC,Z,X,C
LSEL,U,LOC,Z,C
LSEL,U,LOC,Z X

LSEL,U,LOC,Y,-(90+THETAI),-(90+THETA)
LESIZE,ALL,,, ELNUM4

LSEL,S,LOC,Z,C
LSBL,A,LOC,Z X
LSEL,A,LOC,Z,0

LSEL,R,LOC,X ,RAD,RADIUS

LSBL,R,LOC,Y,-(9 0 .1+THETA1),-(8 9 .9+THETA)

LESIZE,ALL,,, ELNUM5

ALLSEL

*DO,I,0,LNWEB,1
LESIZB,4*NDIV+3*I+3,,, ELNUM3
+ENDDO

¢|F,CWEB,EQ,0 ,THEN
ADELE,NDIV+NWXB+1
K-NWEB-1
¢ELSEIF,CWEB,EQ,1
K-NWEB

¢ENDIF

+DO,I,0,K,1
LESIZE,4*NDIV+3*1 +1,,,ELNUM3
LESIZE,4*NDIV+3*I1+2,,, ELNUM1
+ENDDO

NIPRKC=NDIV

+DO, X,1 ,NWEB,1



DIST«(NWEB-I) *LEASE/NWEB

AS=ASIN (DIST/RADIUS)

NI=NINT (AS/ALPHA)

NII=NIPREC-NI
LESIZE,4»>NDIV+5*NWEB+3+1, , ,N I
LESIZE,4*NDIV+3* (NWEB+I)+2*1-1,, NI
LESIZE,4*NDIV+3*(NWEB+1)+2*1,, NI
NIPREC=NI

*ENDDO

ALLSEL

TYPE,10
HAT, 10
VMESH,ALL

TYPE,1
MAT, 1

IBSHAPE,2

REAL,2
*IF,EXTWEB,EQ,1,THEN
AMESH,NDIV+1

¢ENDIF

*IF ,NWEB,GT,1,THEN
AMESH,NDIV+2 ,NDIV+NWEB, 1
¢ENDIF

*IF ,CWEB,EQ,1 ,THEN
REAL,4
AMESH,NDIV+NWEB+1
*ENDIF

REAL,3
AMESH ,NDIV+2*NWSB+2 ,NDIV+3*NWEB+1,1
NUMMRO, ELEM

ADELE ,NDIV+NVfEB+2 ,NDIV+2*NWEB+1,1
*D0,1,1, NWEB, 1

LDELE,4*NDIV+3*NWEB+2+2*1
*XNDDO
+1F,CWEB,EQ,0 ,THEN

ADE

LDE
+EN

*1F

LS ,NDIV+NWEB+1
DLIEF,4*NDIV+3*NWEB+I ,A4*NDIV+3*NWEB+2 1

,EXTWEB,EQ ,0 ,THEN

ADELE, NDIV+1

LDE
+EN

NUM

ASE
ASE

LE,4*NDIV+1,4»NDIV+2,1
DIF

MR3 ,NODE

L,$,L0C,Zz,0,0
L, INVX

CSYS,0

ARS

YM,Z ALL,,,,0,0

VSEL ,ALL

VSY

MM,z ALL,,,,0,0

NUMMRO, NODE

CSYy
NSE
TYP
MAT
REA

S,1

L,S,LOC,X ,RAD-TOLX,RAD+TOLX
E,11

,11

L,5

XSURF
ALLSEL

CSyYy

NSE
NRO

S,1

L,S,LOC,X ,RAD-TOLX,RAD+TOLX
TAT ,ALL

ALLSXL
WAVES

FIN

I1SH
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C*** SOLUTION PHASE STARTS HERB
/SOLU

ANTYPE ,STAT

CSYS,0

NSEL ,S,LOC,Y ,- (RADIUS+B)

D, ALL, ALL

CSYS,0
NSEL,S,LOC,X,0
DSYM,SYMM,X ,0

*CFOPEN,disp530,rad
*DO, 1,1 ,Nw, 1
*D0,JJ, 0 NA-1,1
J=HA-1-JJ

/S0LU

ANTYPE,STAT

csYs,1

SFEDELE ALL,1,PRES

ESEL,S,TYPE, ,11

NSLZ,ALL

NSEL,R,LOC,Z,C,0
NSEL,R,LOC,Z,C-(1-1)*CC+TOLZ,C-I1*CC-TOLZ
NSEL,R ,LOC,Y ,- (Q0+THETA) +J* 2»ALPHA-TOLY ,
(90+THKTA) + @+ 1) *2*ALPHA+TOLY

ESLN,R,1

SFE, ALL, 1, PRES, ,1

ESEL,S,TYPE,,11

NSLE,ALL

NSEL,R,LOC, Z,0,-C

NSEL,R,LOC,Z,C -(1-1)»CC+TOLZ,C -1*CC-TOLZ
NSEL,R,LOC,Y,- (90+THETA) +J*2*ALPHA-TOLY
(90+THETA) + (J+ 1) *2*ALPHA+TOLY

ESLN,R,1

SFE, ALL, 1, PRES, ,1

ALLSEL

SOLVE
FINISH

/POST1

SET,LAST

RSYS,1

1/show,x 11

1/p»f pres,?2

Iplnaol,u,x

*DO,11,1,NW, 1

*DO,KK,1,2*NA-1 ,2

K-2*NA-KX

ESEL,S,TYPE, ,11

NSLE, ALL
NSEL,R,LOC,Z,C-(2*11-1)*CC/2,C-(2*11-1) *CC/2
NSEL,R ,LOC,Y ,- (90+THETA) +K*ALPHA,- (90+THETA) +K+ALPHA
NSORT,U, X

*0OET ,DISPX ,MAX

NSORT,U ,Y

*OET,DISPY,MAX

¢VWRITB, DISPX,DISPY

(E13.6,E13.6)

NSEL, ALL
+ENDDO
*ENDDO
ALLSEL

FINISH
«ENDDO
¢ENDDO
¢CFCLOSE
JEXIT



APPENDIX9

PEAK STRESS EVALUATION USING FORMULA METHOD -
- used for ASME PVP 91 Paper by D H Nash

A =6858 t =26.6 9 =162
L =54864 R =1829 b =762 D =L- (2 A)
L T R A D
LR =— Rt = - AR = - DR
R t R R DR =22.498
AR =3.75
Rt=68.759
LR =29.997

Note: if DR>18 then Fd is equal to 1.0  ifAR>9 then Fa is equal to 1.0

DR =if(DR>18,18,DR) DR = 18
Basic Stress <rb =0.000625'R27-t171 CTb = 1.47-103N/m m 2
Weight Factor Fw =— Fw =0.833

**+ Now compute the factor Fa based on polynominal coefficients ****
Factor Fa

Fara0'al'a2,a3,ad4j =al0 + a +a2'"N 2+ a + ad4'AR4
0.192 0.492 -0.110 0.0108 -0.00039 25
0.0628 0.372 -0.068 0.0067 -0.000272 83.3
0.0435 0.3147 -0.053 0.0052 0.000206 RT = 125
0.0329 0.2839 -0.045 0.0048 -0.00018 166.7
0.0217 0.2483 -0.035 0.0034 -0.00014 250
Fi =Fa(C1i,00C1U 'C1U 'C1i3’C1L4) Fi RT,
0.983 25
0.801 83.3
Fa =linterp(RT,F,R1) Fa=0.846
0.712 125
0.682 166.7
0.612 250

**+* Now compute the factor Fd based on polynominal coefficients ****
Factor Fd

Fd(aQaj,a2>a3,a4] =aq+aj-DR+a2DR +a3DR +aj-DR4

0.768 0.0311 0.00105 0.00027 0.0000086
0.729 0.0328 -0.00272 0.00018 0.0000045
C2 := 0.706 0.0413 0.00452 0.00028 0.0000059
0.710 0.0336 0.00304 0.00016 0.0000026

0.719 0.0207 0.00072 0.000005 0.0000009

360



Fi :=Fd(C2i0,C2.1,C2i;2,C2i3,C2j4]

Fj =linterp(RT,F.Rt)

“ Peak stress after factorization Fw =0.833 F

Fa

=if(Fe>1,1.Fa)

Fd =if(Fa>l, 1, Fd)

Crf

=CTb'F a'Fd'Fw

Fd=1011

0.996
1.015
0.999
0.99

0.982

Fa=0.846
Fd=I

RT|

25
83.3

125
166.7

250

=0.846 Fd=1.011

af=1037-103 N/mm2

**% Now compute the factor FO based on polynominal coefficients ****

rad=I

degE-" -

180

0 =0-deg

0=2.827

2 3 4
F®&@a0,a |>a2>a3>a4j =a0+a JOHa2-0 +a3-0 +a40

3.0942
3.0957
C4 = 47471
6.1644
6.2541

-0.7109
-0.7541

3.2885
-5.5586
-5.6086

-0.5451 0.2663
-0.4288 0.1918
0.8949 -0.0646
2.1783 -0.3609
2.1141 -0.3090

Fj :=F0(C4 0, C4; i, C4ij2, c4i3, C4j4)

Fg =linterp(RT,F,Rt)

FO =0.548

-0.0344
-0.0207
-0.0099
0.0124
0.0031

Fi
0.547
0.548
0.51
0.497
0.511

RT;
25

83.3
125
166.7
250

**** now compute the factor Fb based on polynominal coefficients ****

B o " —
R
FB,
1.6770
1.7040
1.7303
C5
1.7563
1.7746
1.8110

B =0.417

-4.871
5.094
5.325
5.566
5.738
6.105

11.011

12.149

2 233%a4, =a0" ' B a2
8.7307
9.2423
9.8450
10.526

-6.2936
6.6604
7.1439
7.7273
8.1269
9.1860

o O O o o o
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F FBAC5j 0,C5) j,C5j~,C5i8C5j%  Fj RTj

0.708 25
FA =linterp(RT,F.Rt) Fj, =0.705 0.704 833
0.704 125
0.706  166.7
0.708 250

*** Now compute the factor FL based on polynomial coefficients ****

FLYaqg,ai-a2'a3a4/ ~aqt+alFRma2LR ma3:LR +a’'LR

1.8607 0.1312 0.00681  0.000151 0.0000012

0.4414 0.161 -0.01120 0.00029 -0.0000025

05:= 0295 0.172 -0.01040 0.00024 -0.0000019
0.8206 0.0393 0.00007 -0.000081 0.0000015

1.195 -0.0533 0.00610 0.000234 0.0000028

Fi :=FL(C5.100,C5u>C5.)2,C5.)3C5M) F R1)
0708 25

FA =linterp(RT,F,Rt) Fj* =0.984 0.704 833
0704 125
0.706 1667
0.708 250

*+x% Hence final results for factors and peak stress is given hy: *x***

Fw =0833 F0 =0.548 Fd=1
Fb =0.705 Fa=0.846 FL =0.984
V = bFwFbFeFaFdFL o P ° 394 239 N/mm2
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