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ABSTRACT

The study of local loading problems including the support of horizontal 
vessels on twin saddles was, and continues to be, of considerable interest to pressure 
vessel designers throughout the world. Whilst design rules are available in codes and 
standards, the drive is for improved, reliable analysis methods and design procedures 
by which engineers can produce efficient, commercially competitive, yet structurally 
reliable components with reasonable ease. The Department of Mechanical 
Engineering has an international reputation for studies in the field of pressurised 
systems. This present work continues the work of Emeritus Professor Alwyn S Tooth 
who commenced an investigation in this area some thirty years ago. The main thrust 
of this thesis is in two parts. Initially, local load problems are tackled since these are 
important in their own right. This provides a platform for the other main part, a study 
on saddle supports.

The present work reviews the background to these classes of problem and 
considers the main contributions in the literature to solutions for the local loading and 
saddle support problems. Although a major contribution has been made within the 
Department of Mechanical Engineering at the University of Strathclyde, other 
pertinent international works are referenced in Chapter 2. In addition, this chapter 
details the main aims and objectives of the present work.

The problem of the stress analysis of a cylindrical pressure vessel is tackled by 
employing Sanders thin shell theory, which is developed in Chapter 3. Governing 
differential equations are solved by a matrix method to evaluate the displacements of 
the shell. Thereafter, these are used to establish strains and thus stress resultants and 
stresses. Externally applied surface loads are described by employing a double Fourier 
series approach. The solution is then extended to encompass cases where thermal 
loading is present. Comments on the limitations of the use of Fourier series and rates 
of convergence are presented.

In Chapter 4, the solution of the governing equations is successfully applied to 
some difficult local load problems. In this, the interface loading, which is traditionally 
represented by a radially loaded ‘rectangular patch’, is extended to circular and 
elliptical regions. In addition, the more complex loading cases of longitudinal and 
circumferential moment are also presented. Illustrative examples of the use of the 
solution are detailed and compared with experimental results obtained from the 
literature. The solution is also used to examine thermal loading on cylindrical shells 
with the cases of uniform thermal loading acting over discrete areas of the shell. In 
addition, the fault condition of a ‘hot spot’ with a prescribed thermal profile is 
outlined and a solution detailed. This form of solution may be used to examine, for 
example, the case of loss of insulation on a reactor wall. Some comments are also 
made with respect to modelling this class of problem using finite element analysis. 
Although the use of this mathematical tool is becoming widespread in engineering 
design and analysis, there are some drawbacks of the technique when examining local
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load problems. The important issues pertaining to the use of finite element analysis 
are examined and some results are thereafter compared with the Fourier series 
solution. These are fully discussed in this chapter.

The design of cylindrical vessels supported on twin saddles is often driven by 
the magnitude of the stresses located near the uppermost point of the saddle shell 
junction. Surcharge pressure loading is generally the main design load for most 
component parts of a vessel. For the saddle supports, however, it is usually ignored 
and only the liquid fill load is considered since this is the worst situation and tends to 
exacerbate these junction stresses. In such cases, the major difficulty is the 
determination of the interaction forces between the saddle and the shell. This is 
examined in Chapter 5 by considering the interface pressure distribution between the 
two components. By discretising the contact area and by considering the compatibility 
of displacements for two bodies in contact and examining the equilibrium equations, 
an accurate mathematical solution for the interface pressure and subsequent stress 
analysis can be derived. A choice of models to describe the interface pressure system 
is detailed -  line load, patch load and line plus patch load model. A brief description is 
given of the implementation of the computer programs.

The solution of the saddle support problem requires a reasonably powerful 
computer to solve the equations, and therefore it is preferable to have a simple design 
method which can either be undertaken by hand calculation or be easily programmed 
into a simple spreadsheet. Chapter 6 develops a design methodology and parameter 
study for a typical range of vessel sizes and configurations as defined by the results of 
an industrial survey. In this, the scope is clearly identified and the range of parameters 
defined and justified. A ‘basic stress’ quantity is defined and thereafter modified by 
the use of a number of factors which describe the influence of the vessel weight, and 
the leading geometrical factors ~ saddle width, distance to rigid end, saddle 
interaction, saddle wrapround, and the effect of length change. Some verification and 
design examples are presented together with a design worksheet and a fatigue 
example in accordance with British Standard BS 5500. Traditionally, the influence of 
the stiffness of the vessel end or saddle support have either been ignored or treated in 
a simplified fashion. Although not included in this section, these topics are covered in 
Chapters 8 and 9.

The main alternative method to the analytical one described above is the finite 
element method. Chapter 7 presents an overview of the main factors affecting the 
solution of saddle support problems using finite element analysis. The complications 
in modelling the geometry, the selection of element type, the choice and specification 
of boundary conditions and mesh refinement are examined in detail. Some sample 
results are given and the general influences of the geometric parameters on the 
deformations of the vessel are described. In addition, a comparison is made between 
the finite element analysis stress results and other methods. Some comments are made 
regarding the nature of the stresses obtained from the finite element analysis.
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The flexibility of the vessel dished end closure and the effect of this on the 
stresses obtained at the saddle shell junction is considered in Chapter 8. The treatment 
in the British Standard is outlined and compared to a finite element study for the 
various end closure types ~ rigid, flat, semi-ellipsoidal and hemispherical end closures. 
Some details are given on the modelling of such components and a parameter study is 
undertaken examining the main influencing parameters ~ radius, thickness of end and 
thickness of attached shell section. Some results are presented and an ‘end flexibility 
factor’ proposed.

The influence of the saddle flexibility is examined in Chapter 9. This causes 
major difficulty, not least because of the almost infinite number of possible 
configurations of support. Obviously, the introduction of a flexible saddle affects the 
distribution of contact pressure. The first step is to adjust the equations developed in 
Chapter 5 to accommodate flexibility terms. The interface system for flexible saddles, 
the compatibility equations and the resulting values of strain and stress are fully 
detailed. The second step is to develop a mathematical model for the saddle flexibility; 
a fully parametric finite element model is proposed which works in conjunction with 
the analytical procedure. Thereafter, several alternative versions of the parametric 
model are described together with their applications and drawbacks. A new finite 
element approach using shell, solid and surface elements to introduce surface 
tractions is proposed and revised finite element models described. Thereafter, results 
are presented which demonstrate the influence of introducing a more flexible saddle 
can have great benefit of reducing the stresses in the vessel shell.

Some overall conclusions and final comments are made in Chapter 10, 
especially with regards to further work and moves towards implementation, 
standardisation and improved availability via the Internet and adoption by industry.
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NOMENCLATURE

A, A(<j))ii2 Distance from vessel end to saddle; Distances defining patch 
strip size from end of vessel

B, B(<|>)u  

b

Breadth; Distances defining patch strip size from end of vessel

Distance from vessel end to the discrete area centre; Saddle 
width

C, c Half saddle, attachment or patch width, Half discrete area width

D Extensional rigidity = Et/(l-v2)

dx , d$ Differentiation with respect to x and </>; d !  dx -,dld<f>

E Young's modulus of elasticity

H Height of fluid inside vessel

K Non dimensional factor = t2/(12R2)

K x, K o  and K xg Longitudinal, circumferential and rotational changes of 
curvature for the cylindrical vessel

L Length of cylindrical vessel

M, m and Mmax Numbers of terms in Fourier series in longitudinal direction

M x, M o  and M xo Longitudinal, circumferential and shear bending stress 
resultants of the cylindrical vessel

N, n and Nmax Numbers of terms in Fourier series in circumferential direction

NA Number of discrete areas into which half saddle angle is divided

NC Number of discrete areas into which total saddle width is 
divided

NN Total number of contact area divisions

Nx, N o  and Nxg Longitudinal, circumferential and shear membrane stress 
resultants of the cylindrical vessel

P External pressure or applied loading

P
P x, P o  and Pxo

Internal surcharge pressure

Longitudinal, circumferential and radial surface loading on the 
cylindrical vessel

Qx, and Q0 Longitudinal and circumferential shear stress resultants on the 
cylindrical vessel

R Mean radius of the circular cylindrical vessel

t Thickness of shell

T External tangential surface traction; Temperature

U, V and W Longitudinal, tangential and radial displacements of the 
cylindrical vessel
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Longitudinal cylindrical co-ordinate 

Angle of fill

Half the included angle of the discrete area or patch

Circumferential cylindrical co-ordinate

Angle from the vessel nadir to the patch load centre

Fluid specific weight

Vessel material specific weight

Poisson's ratio

m7tR/L

Upward rigid body displacement of saddle or attachment with 
respect to vessel ends
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1 INTRODUCTION

Pressurised systems design is governed and regulated by the use of well proved Codes 

and Standards. These documents have been formulated over the past 100 years or so 

and have had, as their backbone, two significant contributions. In America, the ASME 

Boiler and Pressure Vessel code (now with Divisions 1, 2 and 3) has its origins in the 

Massachusetts Rules of 1911 and in the UK, early rules from the Manchester Boiler 

Users Association became BS1500, then BS1515 and finally, BS5500, the unfired 

fusion welded pressure vessel standard. Industry has been keen to adopt such 

standards and to apply them to a wide range of industries including oil and gas, power 

generation, petrochemical, nuclear, water and waste management companies, to name 

but a few. Whilst these industries enjoy the benefits of approved design standards and 

methods, few companies commit significant resources into research and development 

to advance and improve design rules for the industry as a whole. Many organisations 

have in-house rules and computer programs for design but these largely remain 

exclusive. In the UK, advances in design are largely brought about by willing 

volunteers, both academic and industrial, who participate in British Standard 

committees. The fruit of such committees is an improved working environment for all.

The main pressure retaining components are designed using simple formulae and are 

based on solely satisfying equilibrium. These ‘design-by-rule’ procedures often do 

not require the user to fully understand the origins of the analysis, rather only to 

follow the rule which in turn will satisfy the specific criteria upon which the procedure 

is based. This may involve the calculation of a minimum thickness or an allowable 

pressure, each of which will determine the basis of producing construction data. 

However, there are certain classes of problems in the pressurised systems field, which 

do not lend themselves to simple forms of analysis. These include certain cases where 

nozzles or openings in the vessel are present, situations of local loading onto the shell, 

support arrangements and other discontinuities, which may result in an increased level 

of stress in the vessel wall. Such classes of problems can be solved using a ‘design- 

by-analysis’ approach whereby using an appropriate form of analysis, stresses can be
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successfully evaluated and thereafter ‘categorised’ and assessed against set criterion 

which prevent the occurrence of known failure mechanisms.

The method of analysis for such procedures is not well defined. Pre-1970, such 

analyses were often carried out using a ‘classical thin shell theory’ approach, which 

is dealt with in some detail in Chapter 3 of this text. This involves describing the 

deformations of a doubly curved surface in space by differential equations and 

thereafter solving in a suitable manner for the specified loading condition. In this, the 

radii of curvature are large compared with the shell thickness and therefore, the 

behaviour of the structure through the wall is assumed to be constant across the wall 

thickness for direct loading and linearly varying across the wall thickness for bending. 

Using this assumption, it is possible to eliminate second order terms from the analysis. 

Even with this simplification, such solutions are complex and time-consuming and 

cannot be readily used for design purposes. Often, design charts or curves have been 

generated based on a shell theory approach. However, the range of situations for 

which solutions based on shell analysis are available is somewhat limited.

Since 1970, the ‘finite element method’ has been increasingly applied to pressurised 

systems. By discretising the geometry and thereafter assembling the stiffnesses of each 

element, the entire solution for a given load case can be evaluated once known 

boundary conditions and material behaviour have been specified. The benefit of this 

method of analysis is that complex geometries and loading systems can be undertaken. 

The drawback of the method is that it still requires the use of a powerful computer, 

the purchase of suitable finite element software and the skills of an experienced 

analyst. Such experienced persons are still uncommon in the pressure systems 

industry and third party consultants are commonly used. These organisations may 

have the necessary finite element expertise but may not have the required 

understanding of pressurised systems behaviour or the use of design codes. In 

addition, there remains the problem of extracting results from the finite element 

analysis, which can be meaningfully interpreted in the context of ‘design-by-analysis’ 

and known failure mechanisms in pressure equipment. To date, no known method of
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categorisation has been universally accepted, although much work has been 

undertaken in addressing the subject. Further discussion of this appears in Chapters 4 

and 7.

The present work focuses on two complex problems: the local loading of cylindrical 

pressure vessels, and the support of cylindrical vessels on twin saddles. These 

problems are linked in so much as they are frequently classed as ‘design-by-analysis’ 

problems. The twin saddle case is analysed with liquid fill loading only, since 

surcharge pressure tends to stiffen the shell and hence to alleviate the maximum 

stress. In addition, the interaction between the load and the vessel shell can be readily 

expressed by a series of contact areas and therefore, by using equilibrium and 

compatibility, such problems can be addressed. These two problems are addressed 

using both of the methods described earlier. The success of any method, which is 

applied to these problems, lies in having confidence in the stress output data for use in 

‘categorisation’ and subsequent assessment. This data may also be required for use in 

a fatigue assessment.

The application of the shell analysis to local loading is addressed in Chapter 4 where a 

number of cases are encompassed including radial, longitudinal and circumferential 

moment loads and thermal loads applied to square, rectangular, circular and elliptical 

contact areas. Each case is compared to experimental, design standard and finite 

element results, where available and appropriate. Chapter 5 describes the application 

of the shell analysis to the saddle support problem. A full parameter study has been 

undertaken. A new design methodology is proposed for the results of each influencing 

parameter and a simple multiplying factor process outlined. Each factor is fully 

described and the method of application within clearly defined restrictions is presented 

in Chapter 6.

A feature of the shell analysis approach is that the influence of the vessel end closure 

and saddle flexibility cannot be readily incorporated in the parameter study (as 

described). These topics are analysed using finite element analysis in Chapters 8 and 9
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respectively. Since there are a limited number of generic head closure shapes, an end 

flexibility factor has been established which works with the proposed methodology of 

Chapter 6. The saddle flexibility is also addressed and a procedure for the 

establishment of an appropriate factor outlined. Some details are presented for a range 

of saddle types and information is provided to allow saddle flexibilities to be 

constructed. One complete, fully worked example of the use of saddle flexibility is 

given in Chapter 9 and comparisons are given with the entirely rigid case.

Chapter 10 concludes the work with some recommendations for exploitation and 

further work, especially in the context of the proposed new European Pressure Vessel 

Code.
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2 LITERATURE REVIEW

2.1 Introduction
When designing containment pressure vessels, it is necessary to prove the integrity of 

the component for the required service conditions. In the first instance, primary 

service loads, such as internal pressure, external pressure and temperature conditions 

must be considered. After this preliminary stage, the effects of discontinuities such as 

nozzles and supports and other shell attachments are examined. These must be 

assessed in conjunction with the primary pressure/temperature loadings.

In those circumstances where horizontal vessels are employed they are usually 

mounted on twin saddle supports as shown in Figure 2.1. Saddles are also used when 

building, testing and transporting other vessels which are installed in the vertical 

position. Although a design method for saddle supported vessels is presently available 

in the British Standard BS5500[l], based on the original work of Leonard P Zick)2\  

it has been appreciated for some time that the approach is semi-empirical and only 

validated experimentally for a few small diameter vessels.

Figure 2.1 Typical horizontal twin saddle supported pressure vessels

7



Despite this, in the absence of a more fundamental approach, the method has been 

widely used for many years to design large vessels operating at times in quite rigorous 

loading conditions. There has been, however, the requirement to provide an accurate 

stress analysis for use in safety and integrity assessments. This has provided an 

impetus to develop an analytical approach, which can be applied with confidence to 

all such vessels under a variety of loading conditions.

Work done in recent years by Tooth et aP~6] has progressed much of the way to 

providing such an analytical solution. Advances have been made in understanding the 

stress system associated with the support regions of these vessels. The analytical 

technique developed represents the specified loadings, i.e. the vessel self-weight, 

liquid contents and pressure loadings using double Fourier series. The interaction 

forces, radial and tangential interface pressures, between the vessel shell and the 

saddle support, are the major governing unknowns of the problem. These forces are 

determined using the classical small displacement shell equations for the vessel and by 

enforcing compatibility and equilibrium at the shell/saddle interface. It has been found 

that the magnitude of the forces depends on the vessel flexibility and the rigidity of 

the support. The configuration of the support was found to have a crucial effect on 

the stress in the vessel - primarily in the ‘horn’ region of the saddle. For example, 

when a flexible saddle is employed, the vessel stresses can be reduced by up to 50%.

Extensive experimental work on steel vessels, carried out over many years, has 

indicated that the basic analytical approach, references [3-6], which assumed the 

vessel to be ideally circular and the interface pressure uniformly distributed across the 

saddle width, was reasonably valid for the liquid-fill case. This has provided a good 

platform for the present comprehensive study, which extends and refines the initial 

work.

Several important aspects have been identified and solutions are presented in this 

thesis. These include the following specific areas of work:

• The Tooth model has been updated, enhanced and refuted.
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• A fu ll parameter study isolating the behaviour o f each geometric variable in 

the twin saddle arrangement and the provision o f a new design methodology 

suitable fo r incorporation into the major pressure vessel codes has been 

provided.

•  The influence o f the stiffness o f the vessel dished end on the overall flexibility 

o f the vessel with respect to support stresses in the horn region has been 

considered and results derived. This is presently treated in the current 

Standard by the use o f a factor which assumes that the vessel end imparts 

substantial resistance.

• The effects o f saddle flexibility are examined and recommendations fo r the 

design and implementation o f flexible saddles as the optimum support 

technique given. At present, no governing rules or analyses are available in 

the standards fo r the design offlexible saddles.

In addition to these topics, the problem of local patch loading is also addressed. In 

this, the work of Bijlaard, Hoff et al, Mershon et al, Kitching et al and Duthie and 

Tooth is discussed. In this area, a number of new solutions have been derived and are 

presented in this thesis. The following specific areas of work are addressed:

• The previous cases o f square and rectangular patches have been extended to 

cover the practical cases o f circular and elliptical patches.

• Proper consideration has been given to variable loads such as moment loads 

rather than the approximations inherent in previous work.

• A review o f the practical application o f finite element analysis is presented 

together with cross comparisons between FEA, the newly derived solutions 

and experimental results where appropriate.

2.2 Short Literature Review - The Twin Saddle Support Problem

The consideration of the literature relating to the support of horizontal vessels 

supported on twin saddle has been presented by a number of researchers in the past. 

Each of these authors, under the general guidance of Professor Ahvyn S. Tooth, has
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presented different aspects of the problem. It is worth noting these contributions at 

this time.

L S Ong (1985) presented a review of the main contributions relating to the twin 

saddle support problem. This review contained the work of international researchers 

including Zick, Krupka, Lakis & Dore, Stoneking & Sheth and Stanley &

Mableson. A review of the work carried out at the University of Strathclyde was also 

presented by Ong and Motashar (1988), which included the work of Forbes, Wilson, 

Duthie, White, and Buchanan.

Work previously undertaken and associated with this problem has been both 

analytical and experimental using various techniques. However, when considering the 

‘practical design’ of twin saddle supported pressure vessels, the design rules found 

in most international pressure vessels codes and rules are based on the work of L P  

Zick (1951) who developed a method for analysing cylindrical shells supported on 

twin saddles. The semi-empirical method in based on a ring and beam analysis. In this, 

the circumferential effects are addressed by considering the effects of support loading 

on a local ring whilst the overall longitudinal effects are analysed by considering the 

horizontal vessel as a beam, Figure 2.2a,b. At the mid-span of the vessel, it was 

assumed that the whole cylindrical section was available to resist bending, whilst at 

the saddle position, only a part of the vessel section above the saddle is effective. This 

treatment allowed the longitudinal overall bending stresses and the tangential shearing 

to be evaluated correctly, Figure 2.2c-e. In the case of the circumferential bending 

stresses at the saddle horn, the analysis was based on assuming the vessel profile was 

an arch. From this, the circumferential bending moment could be obtained at the horn, 

thus providing the circumferential bending stress at this location. It is interesting to 

note that this work was only validated using test results from a few relatively small 

diameter (approx. 6ft dia.) vessels. No details are given of the saddle flexibility or 

configuration - although from the photograph of the experimental setup used, the 

saddles appear to be of a flexible design in the horn region.
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1+2(R 2-H2)

L2 -4A /L
1+4H

3L

c) Effective portion of shell in longitudinal plane d) Effective portion for shear e) Shear stress distribution

Figure 2.2c-e Zick's approach treating shell as an arch showing effective portion 
and shear stress distribution in an unstiffened shell

This analysis was incorporated into the British Standard BS1515 in 1965 and 

ultimately into BS5500 in 1976 with the full derivation being presented in the panel 

document PD649’f 1] in 1982. However Tooth, Duthie and White18'91 have shown the 

Zick analysis to be somewhat inadequate. The main problem with the analysis was the
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representation of the interface pressure profile. In this, Zick had assumed a profile 

where the maximum value was located at the base of the saddle and was a minimum 

at the horn. In fact, later experiments by Tooth et al showed that the interface 

pressure was maximum at the horn for metallic vessels.

2.2.1 Previous Strathclyde Work

The majority of the authors referred to in this section carried out their research under 

the general direction of Professor Tooth. The. early research of Forbes'85’861 and 

Wilson'88' has been reviewed extensively by Ong and Motashar and is not fully 

discussed here. However, it is worth noting that Forbes and latterly Wilson 

introduced the idea of using a Double Fourier Series method for the solution of the 

differential equations used in the thin shell analysis by W F/iiggell0]. Forbes assumed

that the reaction of the vessel/saddle interface could be adequately represented by the 

use of a series of discrete areas or patches of uniform pressure. This allowed the 

interface contact problem to be broken into two simpler parts namely the 

determination of the contact interface pressure and the subsequent application of 

these to a simply supported cylindrical shell as an external load.

G DUTHIE (1976)[34]

Duthie progressed the work of Forbes and Wilson by examining the local loading 

problem and revised the analysis of the saddle support problem. As previously, the 

analysis was based on the differential shell equations of Wilhelm Flitggeim and the

same Fourier series expansions used by the previous researchers. The loading 

components and the middle surface displacements of the cylinder were modelled using 

the double Fourier series expansions. By examining equilibrium and compatibility of 

the system, together with the constitutive relationships, three simultaneous equations 

were derived which were solved using a matrix inversion routine. Ultimately, the 

solutions for the mid-surface displacements and stress resultants were obtained. This 

procedure is the core element of the work carried out at Strathclyde by White, Ong, 

Motashar and by the present author.
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In choosing a Fourier series model for the shell displacements, Duthie assumed the 

vessel to be simply supported at its ends with the end profile of the cylinder remaining 

wholly circular at the limits. Therefore, as the saddle support is located nearer the 

end, the stresses and radial displacements tend to zero, the end seemingly providing 

infinite stiffness. However, Duthie provided a solution for the saddle support problem 

and compiled a number of solutions for a variety of local load problems including the 

radial, tangential and longitudinal patch load problems.

The main thrust of Duthie's work was to provide the capability for examining vessels 

which were either welded to the saddle or were loose by applying equilibrium and 

enforcing compatibility at the saddle/vessel interface. Using this approach, the effects 

of initial clearance gaps and flexible saddles could be tackled, the latter requiring the 

saddle flexibility to be characterised by a simple finite element analysis. It was also 

noted that much verification work was carried out by Duthie who compared his 

solutions with experimental results for a number of twin saddle supported vessels. 

The peak stresses which Duthie obtained on the outside surface of the vessel at the 

horn of the vessel proved to be much higher than those obtained from the British 

Standard BS5500 for this location.

This study paved the way forward for other researchers to examine the accuracy of 

the Duthie solution, the influence of the main geometric parameters and the 

significance of saddle flexibility, end flexibility, loose saddles and ultimately the 

development of a design methodology.

G C WHITE (1983)[3A]
White continued the work by modifying the Duthie analysis to include the saddle 

flexibility by a more direct manner. Finite element models of different saddles were 

produced in order to generate a saddle ‘flexibility matrix’. This approach provided 

good correlation between the modified Duthie analysis and experimental work with 

the exception of the internal surcharge pressure case.
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White also noted that the position of the maximum circumferential stress varies 

depending upon the geometric flexibility of the saddle and the number of discrete 

areas chosen to represent the contact surface. As a means of ‘smoothing’ the results 

and providing a calculation procedure, White plotted two curves, one for the horn 

stress and one for the maximum stress obtained. They were extrapolated until the 

intersection was found and this was deemed the ‘improved maximum stress’. White 

concluded from his work that:

• The inclusion o f a saddle flexibility model provided a better agreement 

with experimental and code results

• The use o f a flexible saddle considerably reduces the maximum stress at 

the horn

• Good agreement is obtained when the vessel is subject to the liquid fill 

case. However, when surcharge pressure is applied or the pneumatic case 

is considered, the effects o f out-of-roundness are significant.

J  C CARMICHAEL (1982)w

To complete the development of the Duthie analysis, Carmichael carried out a series 

of experiments on two similar 910mm diameter by 7320mm long vessels; one 3.33mm 

thick, the other 4.67mm. A number of permutations was considered: flexible and 

semi-rigid saddles, bolted foundations and supported on rollers, out-of-roundness 

measurements and progressive loading and unloading. Using the Duthie analysis, 

Carmichael concluded that:

• The maximum values o f stress measured occurs on the outside surface 

immediately adjacent to the saddle horn,

• Maximum saddle stresses are considerably reduced when flexible saddles are 

used,

• The difference in stresses fo r the liquidfill case is negligible i f  bolted or roller 

foundations are used, and

• For the liquid fill  case, the analytical prediction compared favourably with the 

experimental results for the semi-rigid saddle case.
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L S  ONG (1985f " ' 21'12'231*'29'

From the main conclusions, drawn from the above work, it was decided that the 

effects of out-of-roundness required special consideration. The main thrust of Ong's 

work|U) was to develop a non-linear theory, based on the shell equations of J  Lyell 

Sanders /r*121, which was able to take account of out-of-roundness measurements or 

initial imperfections in the cylinder. This was facilitated by the use of the Haigh theory 

to represent imperfections in a non-restrained profile.

This new analysis required a complete re-write of the work of Duthie although some 

of the main logical elements of the program were retained. Ong wrote his analysis in 

FORTRAN compared with the older ALGOL programs of Duthie. This work proved 

a major contribution to the work at Strathclyde and yielded the SADDLE program. 

The new analysis was based on a new, more consistent shell theory than that 

previously used by Duthie, which was by Flügge. Both Arthur Leissa113' and David 

Bushnell1141 present a practical critique of shell theory and from Leissa's work, 

Sanders' theory was implemented since it proved simple, consistent and equally 

accurate to that of Flügge.

The Sanders' theory uses the principle of virtual work. Since this is an energy 

theorem, it is energy consistent and as such produces no strain when rigid body 

motions are present. The theory is a two-dimensional one and avoids unnecessary 

approximations when using a three dimensional one. This allowed Ong to include the 

effects of initial imperfection into the strain-displacement relationships with ease.

Ong considered vessels which were perfectly circular or had initial imperfections, 

situated on flexible or rigid saddles and were welded or unwelded to the vessel shell. 

The contact to the vessel was modelled as a series of discrete areas or patches and 

also as a series of equivalent line loads each varying around the arc profile of the 

saddle. The method for calculating the stresses and displacements was similar to the 

Duthie analysis mentioned earlier. The interface reaction model of patch or line load 

representation was necessary since, for most cases although not all, the patch model
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proved adequate. However, for the liquid fill case with a loose saddle, the line load 

model seemed to offer a better representation of the contact force at the horn. In the 

main, the difference in results between the two models was small although, with 

hindsight, a compromise between the two, that is, a patch load model with a line at 

the horn, proved to be a more reasonable representation.

The flexibility of the saddle was considered by Ong using two approaches. The first 

method employed an AfVSKS*151 finite element model, generated by the present 

author, and the second, a simpler approach, treated the flexible part of the saddle as a 

‘T’ section beam using Engineer's bending theory. In both of these methods, a unit 

load was applied and relative deflections at all other locations on the saddle contact 

surface were evaluated. The unit load was applied in both the radial and tangential 

directions. This procedure allowed the flexibility matrix for the saddle to be 

generated.

Ong generally found his theoretical work yielded good agreement with experimentally 

available results and with the findings of other researchers. His contribution improved 

and corrected the theoretical base, modernised the programming language and 

provided a flexible modular analysis tool with extended capabilities for other 

researchers to use.

FA MOTASHAR (1988)ll6]

Motashar[161 overlapped with some of the work of Ong in the area of saddle 

supported pressure vessels. However, Motashar had several major contributions to 

make to the work at Strathclyde. The first was to review and examine the choice of 

shell theory mentioned earlier. Along with Ong, the Sanders' shell equations were 

employed in the further development of the saddle analysis programmes.

The question of uniform contact pressure was also addressed. Whilst Duthie had 

discretised the arc and Ong introduced variable interface pressure around the arc, the 

influence of varying the pressure across the saddle width had not yet been addressed.
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Motashar thus divided the saddle width into a number of equal sized patches and 

ultimately developed a variable pressure grid to model non-uniform interface pressure 

across the width. The grid possessed the ability to weight the contact pressure area 

refinement to those areas where maximum change of pressure occurred. These areas 

also reflected the regions in the vessel where the maximum deformation gradients 

occurred. This method, which required separate runs for each grid mesh 

configuration, produced a refined grid whereby the pressure patches became 

progressively smaller towards the horn and towards the edges to the saddle plate. 

Higher stresses were found at the edges of the saddle as opposed to the centreline 

horn stresses evaluated by Duthie and Ong.

The present author believes that the design of the saddle itself governs the 

representation of the interface pressure loading onto the vessel. If the saddle is 

sufficiently stiff across the width, the Motashar representation is correct. However, if 

the saddle were well designed, then the uniform pressure model used by Duthie and 

Ong would be justified. In fact, the optimum design may well prove to concentrate 

the interface pressure map towards the centre of the saddle and dying out towards the 

edges of the saddle, thus reducing discontinuity stresses and relieving any unnecessary 

stress concentrations at the welds.

Motashar also brought to light the need for convergence testing when using the 

Fourier series method to represent the loadings and displacements. An exhaustive 

study concluded that a higher number of terms were required when a greater number 

of discrete areas was used. He also recognised that convergence should be checked 

for a particular vessel under analysis.

The saddle flexibility problem was also addressed using a three dimensional finite 

element approach since the Motashar shell analysis could cope with flexibility across 

the width. Again, the present author provided much on this aspect and helped 

develop, at this stage, the finite element model to generate the required saddle 

flexibility matrices. This work was extended to the study of vessels with support
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diaphragms and also to the study of local loads through rigid rectangular attachments 

with variable interface pressure grids.

2.2.2 Survey of More Recent Work on Twin Saddle Supported Vessels

The main focus of the literature survey has been of work carried out at Strathclyde 

over a thirty-year period. Some comments have been made regarding the original 

work of L P Zick. However, this section concentrates on more recent work that is 

relevant to the work presented in this thesis. Stoneking and Sheth[H1] were first to 

implement a finite element analysis of the saddle support problem. Krivy and Filholll] 

also presented some finite element analysis results of the saddle support arrangement. 

Widera et a /18-19' has recently provided some qualitative results using finite element 

analysis and Krupkaf201 produced a new design proposal for the limit carrying

capacity of the shell in the region of the saddle support.

The most recent publications of Ong121'231 provide a parameter study based on the 

Fourier series method developed while at Strathclyde. The method uses a basic stress 

equation, of the form originally developed by Krupka, but modified by a series of

factors that characterise the behaviour of the individual parameters affecting the 

design. The work also includes the effect of the wear plate and incorporates factors to 

allow for seismic loading.

These papers provide useful comparisons for the methods developed by the present 

author.

J K  Stoneking and KSheth (1977)[SJ]

This work presents the first documented finite element analysis of the saddle support 

problem. The geometry of their test case was that of Wilson and Tooth1881. Two 

support cases were studied. The rigid welded case assumed all nodes were fully 

constrained in all directions. For the loose case, infinitely stiff axial boundary elements 

were employed and these specified to take only compressive loads. In this manner, the 

interface pressures were determined using an iterative procedure. They also found
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that the interface pressures were not constant across the width for the rigid saddle 

case. The resulting maximum stresses for the welded and loose cases were 

approximately the same. In addition, they found that the maximum stresses agreed 

well with the Zick result, this indicating lack of refinement in the FE model.

JKrivy and A S Filho (1986)[ll]

These researchers present a computer-based method for the analysis of the twin 

saddle supported problem (CYLSAD). It is interesting to read their work since they 

have replicated the work of Tooth but at a rudimentary level. Their solution follows 

the pattern of analysis defined by Duthie in that the Navier method with trigonometric 

series are used to represent the displacements and a shell analysis, based on equations 

of Timoshenkol24\  is used to define the vessel behaviour.

Krivy and Filho identified the importance of the overall flexibility of the system, 

especially relating to the saddle geometry. They used a simple two dimensional finite 

element model to represent the stiffness and used nine contact points to relate this 

deformation to the shell. A brief description of the analysis procedure is provided. It 

is of a similar form to the Duthie method for ensuring compatibility at the interface.

Krivy and Filho present three main conclusions when comparing their results with the 

British Standard BS 5500:

• BS 5500 gives results 10-20% lower than CYLSAD fo r moderately long 

vessels (no L/R values quoted)

• For short vessels, the BS 5500 values are too conservative

0 The BS 5500 procedure should not be used fo r intermediate supports o f 

cylindrical shells. For cross-sections which are very fa r from the end- 

plates, the error can be higher than 50%.

No details are given regarding convergence of the Fourier series or on the number of 

contact areas or lines. It is the present author's opinion that these researchers have not
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examined and investigated the work of Tooth and require to consider more of the 

relevant factors pertaining to this type of analysis.

G E O  Widera et al (1987-88) (18'191

The work of Widera118'191 is the most recently available which contains results of a 

limited parameter study based on the finite element method. In these papers, the 

emphasis was to model the vessel and the saddle as a complete assembly and 

therefore try to incorporate some flexibility into the system. Widera used a coarse 

finite element model using twenty noded isoparametric shell elements, shown in 

Figure 2.3, which were contained within a program written by themselves 

(ASSHPV). All pre- and post-processing was carried out using MacDonnell Douglas 

software.

Figure 2.3 Finite element mesh used by Widera

In presenting his results, Widera makes use of dimensionless curves for the 

determination of the localised stresses. Two stress indices for the longitudinal and 

circumferential directions respectively were defined, cv and Co, by the ratio of 

maximum stress intensity in the vessel to the nominal stress in the saddle support 

induced by the load Q. This gives:

(2. 1 )

20



where ci and c2 represent the saddle contact area. Results were plotted for these stress 

indices against distance from the saddle horn in both the longitudinal and 

circumferential directions. In an attempt to provide non-dimensional design curves, 

his earlier results were re-plotted against the ratio of saddle centreline position to 

vessel length A/L.

F ig .  14a lo n g i t u d in a l  9t r e to  In d ice «

Fig. 14b Circumferential stress Indies«

Figure 2.4 Non dimensional stress indices plots for cv and c0 (after ¡Videra)
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Although the application of the finite element method to the saddle support problem 

should have resulted in an improved stress analysis of the maximum values occurring 

at the horn, Widera notes that the results obtained by his work can only be used in a 

‘qualitative’ manner. The values of maximum circumferential stress obtained were 

found to be some 30% lower. The radial displacement at the saddle centreline and 

midspan of the vessel was 28% and 63% lower at each position respectively. A 

comparison with the work of Tooth et al, again showed that similar distributions both 

longitudinally and circumferentially were obtained with the finite element analysis, 

however the magnitude was found to be considerably lower.

Widera did not fully examine the sensitivity of the finite element model in relation to 

mesh density and relative stiffness between the shell and the saddle. Widera is quick 

to criticise the Fourier series solution because of the implied boundary conditions, 

however fails to realise that the work of Tooth has been validated experimentally. The 

authors own experience suggests that the finite element model used by Widera is 

wholly inadequate for determining accurate stress results in the region of the horn. 

The distribution of stress at the horn varies rapidly over a very small angular distance 

and this requires a concentrated mesh to focus on the actual maximum stress.

Therefore, a parameter study and presentation of graphical design charts of the form 

presented by Widera is of no practical use, especially since the basic stress analysis 

fails to identify the maximum stress occurring in the system.

It is worth noting that Ford’641 under the direction of Tooth, attempted to analyse the 

twin saddle problem using a finite element approach. This work was very much a 

preliminary study to demonstrate the application of FE methods to the complex 

interaction problem. Fairly coarse meshes were developed and only qualitative results 

similar to Widera's were obtained.
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V Kfupka (1991)

An alternative method of solution to the problem of the saddle supported cylinder 

was first proposed by Kfupka1201 in 1969. This dealt with the contact loaded shell by

using the semi-bending Vlasov theory whereas Tooth et al used the general bending 

theory of shells. It is noted that the semi-bending theory ignores axial bending and 

was originally developed to model a rigid die pressing onto a cylinder rather than the 

cylindrical vessel supported on two saddles. Both methods, used independently of 

each other, reached similar conclusions. Radial and tangential interface forces were 

able to be calculated by the use of a computer. However, the advantage of the semi­

bending theory is that the resulting relations can be expressed in a closed analytical 

form. A further review of the work of Kfupka and of the accuracy of his method can

be found in the literature review presented by Motashar.

In this most recent in a series of publications, Kfupka has attempted to provide a

‘design proposal’ for saddle supported vessels. The solution provides the stress at 

the horn in an infinitely long cylindrical shell which is then modified to take account 

of the saddle position at the flexibility of the end. The form of the solution is

(2.2)

where Q is the total saddle reaction. Factors f os and f as are obtained from Figures 2.5a 

and b and thus allow the maximum stress to be evaluated. The coefficients, k and k in 

these figures, reflect the stiffening effect of the end and of the infinitely long cylinder 

respectively. These coefficients are obtained from the design curves shown below. In 

these, the saddle width, angle and distance from the end are all incorporated into two 

graphs. No effect of the wear plate or saddle flexibility is included. It is also worth 

noting that the shape and thickness of the end are not incorporated or characterised.
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F 1 |. 2 . Graph for the determination of the circumferential bending stress a „  for an
infinitely long shell.

Figure 2.5a Graph o f circumferential stress reduction factor (Kfupka 1991)
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Fig. 3. Graph for the reduction of the circumferential bending stress with respect to
the stiffening effect of the bottom.

Figure 2.5 b Graph o f circumferential stress reduction factor (Kfupka 1991)

Krupka also provides a method of examining the plastic squeeze of the saddle into the

vessel shell. This is observed in a number of small and full scales tests which have 

been carried out over a number of years. The plastic collapse condition can provide a 

limit for the maximum load carrying capacity for the vessel. However, in certain 

cases, a limited plastic state for a non-cyclic static load can produce a lower load 

carrying capacity than the shakedown effect. The form of this expression gives the 

limit plastic carrying capacity for a material yield of Ry as,

where Ry is the allowable yield stress, r and t have their usual meanings and s is the 

saddle periphery in contact with the vessel shell - shown in Figure 2.6. The value for 

s0 is given overleaf in Equation 2.4.

(2.3)

25



1 °

Figure 2.6 Saddle vessel contact region (Kfupka 1991)

The solution assumes that there is a loss of contact between the vessel and saddle. In 

fact, Kfupka recommends a reduction of 10° of the saddle angle in the calculation to

minimise this effect, since any loss of contact will occur over this distance. This 

method may be adequate for the loose saddle condition but does not reflect the fully 

welded saddle, which maintains contact between the vessel and the support, see 

Figure 2.6. Thus, the new contact length becomes,

s = ———2(0 — 10°)
0 360

(2.4)

In order to complete the design proposal, Kfupka has addressed the problem of

buckling in the region of the saddle support. In this treatment, he has presented an 

equation for the longitudinal membrane stress in the saddle region. This equation is 

similar in form to that for the circumferential stress shown above but has two new 

factors, fax and f ox, which characterise the effects on the longitudinal stress of 

stiffening as defined previously. It is noted however, that the bucking is observed to 

occur at the nadir. Kfupka addresses the assessment of this calculated longitudinal

stress by comparing it with the result for the critical stress, for a vessel under a 

bending moment. However, he is careful to note that his treatment has oversimplified 

the problem but remains confident that his method is somewhat conservative.
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A recent European standard1261 has provided allowable critical values of stress in pure 

compression and the case of a bending moment. The calculated value obtained by 

Krupka could be assessed against this. Further work on the buckling phenomenon

(both circumferential and longitudinal) exhibited in the saddle region has been 

published by Kendrick and Tooth1271 and Tooth et a/181,821. It is noted that the present 

work is limited to the elastic stress analysis of the saddle support region and the 

buckling problem has not been addressed.

L S Ong (1987-93)

Since 1986, Ong has published several papers relating to the saddle support problem. 

The majority of these papers are based on his thesis work, which has already been 

discussed earlier.

His first two papers128'291 detail the Fourier series analysis using Sanders shell theory 

and the development of a computer program for cylindrical shell analysis. This is 

similar to that used in this thesis (although the writers program has been developed to 

cover additional cases and modified to run quicker and on a variety of machines). The 

salient points from the shell theory and Fourier series representation will be developed 

later since they were jointly developed at Strathclyde.

Ong's third paper on the subject1211 provides a parameter study which allows the 

calculation of the maximum stress at the horn for the unstiffened horizontal cylindrical 

shell. The parametric formula consists of various multiplying factors based on the 

Krupka equation shown earlier. Factors are introduced to account for the influences

of saddle flexibility, saddle position, support spacing, support angle and width, 

together with the basic vessel dimensions. The parametric data is generated from the 

SADDLE program detailed previously. The parametric equation for the peak stress at 

the horn has the following form,

(2.5)
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where the (k ’ factors represent the effects of location from one end, support spacing, 

the effect of the wear plate and different support design, and saddle support angle and 

Q is the total saddle reaction. These factors are obtained from tables of which contain 

the stress reduction for a given vessel configuration. Ong has also plotted the 

variation of each factor against a non-dimensional grouped parameter. These are 

included for convenience as Figures 2.7.

Fig. 5. The effect erf support location from end.



Re. «. The effect of support spacing ( k r).

1: (stress reduction factor)

— - V t
Rf* 7« The effect o f extended p h tc .

Figure 2.7 Figures 4-7from Ong's 1991 paper

When a vessel requires to be analysed, the designer can supply the geometric data 

into the abscissa coefficients and use these graphs to obtain the appropriate k factors 

and insert them into Equation 2.5 to evaluate the maximum stress. The effects of the 

wear plate and saddle flexibility are included in the analysis in an identical manner to 

that developed at Strathclyde during the time of White. The support is treated like a 

tapered cantilever ‘I’ beam and a flexibility matrix generated. This is a simpler 

technique to the finite element method which can also characterise the saddle 

flexibility. The present author provided several finite element saddle flexibilities for 

Ong during his time at Strathclyde for comparison with the tapered ‘I’ beam 

approach. The effects of the wear plate are defined as the peak stress with the
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extended flexible plate divided by the stress at the saddle horn without the extended 

plate.

Much of this work considering the effects of the wear plate appear in Ong's fourth 

publication1221 and therefore is not explicitly reviewed since the same parametric 

information is contained in both.

His most recent paper'231 extends to the case of seismic loading on the twin saddle 

supported vessel. A stress amplification factor is defined to quantify the additional 

induced stress at the saddle support during ground motion. Ong has found that for 

most geometries, an amplification factor of 3 is appropriate, however, equations for 

an earthquake factor, ke, are detailed such that the seismic or inertia coefficients in 

each of the three directions can be incorporated.

Bisbos, Thomopoulos, Tzaferopoulos, Al-Abed, Banoipoulos and Panagiotopoulos 

(1994-97) [49'53)

The work of Bisbos et a/*49 53' concerns the computation of local contact loads acting 

on a small diameter horizontal pipe loosely resting on a saddle in the presence of 

Coulomb friction. The authors employ the Fltigge shell theory and use Fourier series 

to generate flexibility coefficients. The non-linear boundary condition is treated by a 

two-stage algorithm which is repeatedly executed until convergence is reached. The 

first stage considers the tangential loads as given and determines regions of contact or 

non-contact. The second stage considers the normal loads as constant and 

sticking/slipping regions are computed. An example of the technique is provided for a 

progressively filled water pipe.

A S Tooth, W M  Banks, CPSeah and BA Tolson(1994)

Tooth et a/*89' progressed the earlier analysis work on saddles for isotropic materials, 

to incorporate a layered material system for glass reinforced plastic (GRP) systems. 

For liquid filled storage systems made from a GRP material, localised cracking can 

occurs in the region of highly localised bending stresses, which can occur in the
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region adjacent to the saddle support. A thin shell approach was developed by 

Tolson1581, and a complementary test programme undertaken. Three full-sized vessels 

were strain gauged to provide measurements to validate the theoretical analysis. 

Using the shell analysis for layered systems, a parametric study was undertaken and a 

design approach presented, to enable the maximum strain to be determined for the 

symmetric laminated horizontal vessel.

S Naijie, Z  Jitao and L Wenge (1996)

The authors1551 investigate the stress state in the saddle zone of twin saddle supported 

vessels in much the same manner as Tooth. In addition, some simple verification 

experiments have been undertaken on a suitable model. Thereafter, a double Fourier 

series expansion method is employed to analyse the problem. Contact pressure 

profiles are established in the usual manner and some comparisons made.

2.3 Literature Review - The Local Load Problem

This literature review presents a summary of the work carried out in the development 

of the main design methods found in most international pressure vessel standards for 

the design and analysis of local attachments. It is restricted to the case of the rigid 

attachment fully welded to a cylindrical shell. Other researchers have investigated the 

problems of rigid attachments on spheres and also flexible attachments such as 

nozzles in both cylindrical shell and spheres (e.g. Leckie and Penny1301).

2.3.1 Summary of Current Methods for Local Load Analysis

There are two main design methods which have been generally adopted by industry 

for the calculation of stresses and deflections in circular cylindrical shells subject to 

local loads transmitted by rigid attachments. These methods are found in the British 

Standard BS5500111 and the Welding Research Council Bulletin 10713’1 respectively.

When considering the theoretical development of the background to each of these 

documents, it is clear that the methods are essentially the same for the treatment of
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radial loads but differ slightly in the representation of moment loads. In addition, the 

format and presentation of each of the two methods is quite different but both 

methods contain graphs, tables and worksheets and are equally complex when 

performing hand calculations, due to the difficulty of accurate interpolation.

The analytical method is based on elastic, small displacement analysis. The loads and 

displacements are represented by Fourier series. By also considering the equilibrium 

of the shell, the displacements due to an externally applied load component are found 

by reducing the three partial differential equilibrium equations for the shell into a 

single eighth order differential equation in terms of the radial displacements. The 

Fourier series expression for the radial displacements and the external loadings are 

then substituted into the eighth order differential equation and this is then solved by a 

numerical routine. Ultimately, expansions for each of the three displacements can be 

found and the subsequent stress resultants obtained via the compatibility relationships.

It is worth noting that the load representation of the BS method is based on a single 

Fourier series expression of a line load followed by direct integration across the patch 

whereas the WRC method utilises double Fourier series representation. This is 

expanded in detail in the following sections. In both codes, the radial load is assumed 

to be uniformly distributed over the patch and the moment loading to be linearly 

distributed.

Since both methods are based on end-supported cylindrical shells and use Fourier 

series to represent the loading terms, there are certain restrictions to the use of the 

method. In general, the analysis assumes the loaded area is remote from the ends, 

typically the edge of the loaded region being no closer the half of the radius from the 

end of the cylinder. In addition, the assumption of uniformly distributed loading is 

maintained by restricting the maximum patch length to be one half of the vessel radius 

(ie. CJr < 0.25). Limitations to the circumferential length are based on experimental 

work of the Pressure Vessel Research Committee of the ASME and are presented in 

WRC Bulletin 107 as extra-modified curves. This data also appears as Figure G.l of
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BS 5500 Annex G giving those regions where the charts may be used. Typical values 

of circumferential patch size are limited to the circumferential length being less that 

half of the vessel radius for a radial load or axial moment and circumferential length 

being less that the vessel radius for a circumferential moment for example, 

C^/r  <0.25 and C+/2r<0.25. The BS method of handling the moment loads, in

which equivalent uniformly loaded patches are employed, makes economic use of the 

design charts.

Each of the two main design codes is based on this fundamental philosophy although, 

in practise, the execution of the method is different.

2.3.2 WRC Bulletin 107

In the ASME Boiler and Pressure Vessel Code, no explicit rules are given for the 

analysis of local rigid attachments on shell, however, the designer is directed to the 

Welding Research Council Bulletin 107 by Wichman et a/*3'1. The history of this 

document originates in the early 1950's with work sponsored by the Pressure Vessel 

Research Committee of the Welding Research Council who commissioned P P  

Bijlaard to undertake an analytical and experimental investigation into the stresses 

and deflections of pressure vessel nozzle connections subject to various external 

loadings.

Bijlaard reported his work in various publications|32'381, however the salient points are 

worth noting. In his analysis, the displacement and loading functions, e.g. 

Equation(2.6) below, were represented by double Fourier series expressions and the 

cylinder was assumed to be simply supported at each end. The cylindrical shell 

equations employed by Bijlaard were similar to those of Donnell139'. The main output 

of his work was in the form of nomographs for design for each of the various load 

cases anticipated; deflections, bending moments and membrane forces in cylinders 

arising from the application of externally applied radial loads and bending moments.
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Pr =  z  Pmn COS
n=0,1,2..

m m cos ntp

(2.6)

Note that the form of this equation for P r assumes that x  is measured from the centre 

of the vessel at the centreline of the load. The method of load transfer adopted by 

Bijlaard for an externally applied radial load was that of a uniform pressure profile 

distributed over the vessel surface. For the case of a moment loading, the load profile 

was assumed to be triangular in distribution, see Figure 2.8a-c. Each of these loads is 

permitted to act on a rectangular area. Circular and elliptical areas were treated by 

evaluating the equivalent rectangle and using the same analysis. That is to say, a 

circular area, of radius, ra, is represented by an equivalent square of half-side length =

0.875ro and an elliptical area by a rectangular area of sizes 0.42 times the major and 

minor axes of the intersection of the shell as shown in Figures 2.9a and b.
b=U2

Figure 2.8a-c Radial and moment loads acting on a cylindrical shell
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1.7

Figure 2.9a, b Equivalent rectangles for circular and elliptical patches 

For the case of the externally applied radial load, the stresses presented in Bijlaard's 

reports and nomographs were located at the centre of the loaded area positioned at 

the geometric centre of the vessel. Although, in view of the welded construction of 

the detail, this location does not seem to be the natural position of the maximum 

stress. Bijlaard thus recommended that the values calculated at the centre of the 

loaded area, be used for the stresses located at the edge of the patch. This was done 

to take account of the rigidity of the attachment. However, the stresses presented for 

the externally applied moments were calculated at the edges of the loaded area 

anyway.

In his initial report, Bijlaard only covered certain cases of vessel radius to nozzle 

thickness, this also for only a few nozzle to cylinder radii. In later reports, he 

recognised that a fuller presentation was required and that a wider range of 

geometries be covered. In addition, he had initially used a limited number of Fourier 

terms in his expansions, for the sake of simplifying the numerical calculations. 

Additional data was presented in the late 1950's for stresses in cylindrical shells under 

local loading which encompassed a greater range of problems and provided more 

accurate stress data. Some experiments were carried out by Bijlaard and Cranch in 

1960 in order to verify the approach. These tests were of loads transmitted through 

various types of attachments, which were directly welded to cylindrical shells. They 

comprised a pipe welded to the cylinder, a pipe welded to the cylinder with a hole 

introduced, a pipe with a reinforcing pad welded to the cylinder with a hole, a hollow 

rectangular section welded directly to the hole and lastly, a solid circular bar welded
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to the cylindrical shell. Each case was loaded in turn by a radial force and both 

moments in both the pressurised and unpressurised condition. Reasonable agreement 

of the experimental results and theoretical predictions was found in most cases.

Although Bijlaard had published widely on the subject of local loading over a five- 

year period, the industry found many difficulties in interpreting the work and its 

limitations became evermore apparent. Wichman et a! in 1965|31), were 

commissioned by the Welding Research Council to summarise all of Bijlaard's work 

and to extend the work to meet the requirements of industry. This work was 

presented, at that time, in a useful ‘cook-book’ form and was published as the WRC 

Bulletin 107. The bulletin incorporated a description of the limitations of the original 

work and a comprehensive explanation of the changes made therein.

Although in wide use today, the main drawback with the bulletin, as a design tool, is 

that it contains a multitude of graphs. It contains graphical data for each stress 

resultant for each different load type, radial load, longitudinal moment and 

circumferential moment for a range of geometries. Graphs are also included for the 

evaluation of die-out effects. Using the information is complex and there is a real 

possibility of errors being made since, in many cases, the data may require 

interpolation between graphs for differing geometries.

2.3.3 BS 5500 Annex G

The British Standard 5500 has, contained within Annex G, rules for the evaluation of 

the stresses and deflections for local loads on cylindrical and spherical shells.

The origin of the method for loads transferred to cylindrical shells by rigid 

attachments is traced to a series of reports published by Kempner, Sheng and 

PohlelA0] (1957) for the Knoll Atomic Power Laboratory and is based on the 

theoretical work of Hoff et a/*411 (1954). These reports produced graphs and tables of 

displacements, rotations and stress resultants for the case of a radial line load applied
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at the zenith acting along part of the generator (i.e. in the axial direction) located at 

the mid-length of an end supported cylinder - as shown in Figure 2.10.

t ;

Figure 2.10 Line load acting on a generator

These line load results utilised a single Fourier series to represent the line load 

(Equation 2.7) and were later used to obtain the stresses and deflections for 

rectangular areas of loading by direct integration. This procedure was adopted by ICI, 

who developed their own version of the data in the form of a ‘Mechanical 

Engineering Design Book’, which was later included in BS 1515, 1965, Part 1, 

Appendix A. In 1976, with the writing of the master pressure vessel standard 

BS5500, which updated BS 1515 and incorporated data from various British 

Standards, the procedure was drafted into its present form as Appendix G.

The analysis of moment loadings generally assumes that the interface pressure 

distribution is triangular in form. However, in BS5500, the procedure adopted was to

and to consider the moment as equivalent to two patches of uniformly distributed 

radial loading of length equal to one third of the loaded patch length. The forces on 

each patch are equal and opposite and act in directions consistent with the direction 

of the action of the moment.

(2.7)

utilise the existing data for the radial load case, with its uniform rectangular profile,
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It is worth noting that, as BS5500 was being written, the information from WRC 

Bulletin 107 was available for obtaining the longitudinal and circumferential moments 

cases using the triangular distribution. However, the code writers felt that the two 

equal and opposite radial patch approach minimised the number of graphs in the 

Standard, since only data for the uniform radial loading case need be presented. There 

remains, however, the question of the interaction effects between the two equal and 

opposite patches which complicates the procedure as presented in the Standard. 

Indeed, some designers have been known to carry out a moment loading analysis in 

accordance with Annex G and to ignore the effect of the second loaded area. In 

general, this approach provides a conservative result.

As a means of simplifying the procedure, worksheets are presented in the Standard in 

an attempt to aid the designer through the calculation. Even so, the procedure is 

complex and cumbersome and does not readily allow simple design changes to be 

easily made.

Some engineering software companies (e g. Finglow, ESDU and Whessoe) have 

computerised the code. In their programs, the approach is to have digitised the 

graphical information, and thereafter produce routines that undertake the data 

interpolation. Where available, actual equations are used. Whilst this is of use in a 

Code design context, a preferred route would be to use the computer to carry out a 

more rigorous analysis, using the fundamental or basic equations rather than to have 

approximate data calculated. This approach would provide data that are more 

accurate for both stress analysis and fatigue assessments.

2.3.4 Other Approaches to the Local Loading of Cylindrical Vessels

In view of the fact that the methodology of BS 5500 is complex and cumbersome, 

several alternative approaches have been proposed which attempt to ease the effort in 

performing repetitive designs. There are three possible routes which may be followed
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in developing these alternative approaches. The first is to provide a simplified method 

which may be used instead of the Standard.

To this end, work carried out at UMIST was carried out by Bedri et a/1421 provides a 

series o f ‘stress factors’ for rectangular attachments. These factors were presented for 

three different load cases, i.e. radial force, circumferential and longitudinal moments. 

It is interesting to note that these charts incorporate the effect of the second loaded 

area in the moment cases thus eliminating one complete section of the calculation 

process, which is often ignored by designers. A similar approach is presented by 

Teixeira et a/1431 for local loadings on branch pipes. In both cases, the basic stress 

data is taken directly from BS 5500 Annex G and covers the range of vessel 

parameters stated in the Standard. However, no attempt was made to improve or 

‘correct’ the values for the basic stress data. Despite the fact that this work has been 

available since 1983, it has never been incorporated into the Standard (BS 55()dx]).

The second alternative approach is to provide a suitable microcomputer program 

based on the basic shell equations. The double Fourier series solution used by Bijlaard 

has been programmed by Duthie and Tooth[441 for various patch loading cases. More 

recently, Tooth and Nashm  have developed the double Fourier series solution using 

Sanders' shell equations and have programmed their solution on a personal computer. 

This method avoids the inaccuracy of graph reading and interpolation and allows a 

rapid analysis to be carried out for a wide range of loading cases which may not be 

covered by the Standard. This alternative approach is extended in the present work to 

cover those cases where the loading patch is not rectangular.

The third alternative method is to perform a ‘design-by-analysis’ study of the 

problem using, say, finite element methods. This approach is discussed later in this 

work and is very useful for analysing individual problems but can be time consuming 

and onerous if there are a large number of cases which require to be considered. 

Problems with mesh refinement and stress categorisation arise with the use of finite
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element analysis and there is often confusion and mis-interpretation when applying 

code rules and limitations to the output. This approach should not be used by the 

inexperience vessel engineer or indeed, finite element analyst. A depth of knowledge 

in both subjects is required.

2.4 Survey of More Recent Work on Local Loads

A review of more recent work, that is to say, work published since the present author 

began his investigations in 1985, has been mainly concentrated in analysing the 

interface contact pressure distribution under the local attachment. Hueilin and 

Santung146"4̂ , Motashar and Toothm  and Thomopoulos et a/*49 501 have analysed 

the case of the rigid attachment (or saddle) with a variable interface pressure 

distribution. Nadarajah, Tooth and SpencelS4’90’911, however, have used the finite 

element technique to investigate the influence of large displacement analysis for radial 

loading and the influence of the rigidity of the attachment, both acting separately and 

together.

Thomopoulos et a/*49'501 have used the framework of the Fliigge shell equations and

have discretised the loaded areas into a regular number of patches. Fourier series are 

used to represent the loading via flexibility coefficients, which are obtained from the 

analysis. The boundary representation is non-linear and is formulated using a contact- 

Coulomb friction numerical algorithm, which is consecutively repeated until 

convergence is reached. The algorithm is carried out in two stages with the first 

considering tangential loads as given and those regions which are and are not in 

contact are determined. Thereafter, the normal loads are considered as constant and 

the sticking/slipping regions are computed.

Although principally concerned with the evaluation of the frictional contact loads for 

simple ‘saddles’ or attachments on pipe supports, Thomopoulos identifies that the 

method may be more general in application. For example, the more traditional 

pressure vessel saddle support may be analysed using the technique. In addition, he 

notes that multi supported systems incorporating frictional effects in the longitudinal 

direction may also be tackled. However, the technique is computer intensive with a
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typical run for a simple pipe support taking over five hours for a single case, 

compared with 4-5 minutes using the present approach.

Hueilin and Suntung146471 presented an alternative method of evaluating the contact 

pressures for pad-reinforced structures. A mixed finite element method for the 

analysis of plate and shell problems has been developed which involves non-linear 

contact analysis. After defining the load vector for the problem, the flexibility matrix 

for the system is evaluated. Contact normals are identified on the two surfaces which 

may come into contact. A Coulomb friction model is used and mating pair of nodes 

are identified as being free, sticking (adhesion state) or slipping. Thereafter the 

continuity equations are modified and the contact forces and gaps (if any) are 

identified. A check is made for convergence and for the total load application and 

thereafter the nodal displacements and stresses are evaluated.

Two examples of the use of the mixed finite element formulation are presented. The 

first is a saddle support problem with the ‘saddle’ being represented as a stiff bracket 

plate with a flexible wrapper. Some 20 contact nodes were used to represent the 

contacting surfaces. The distribution of the contact forces on the saddle surface is 

shown below, in Figure 2.11. This represents a developed surface plot of the 

saddle/vessel contact area. It can be seen that maximum contact pressure peaks arise 

just below the saddle horn edge and these have a maximum value at the saddle 

centreline.

Figure 2.11 Contact Force Distribution on Saddle Surface (Hueilin and Suntung)
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The second example highlighted is that of an axial moment acting on a large circular 

pad. In the British Standard, a triangular distribution is assumed for the load 

representation. The mixed FEM analysis of the distribution of contact forces on the 

pad shows that, in the main, the bulk of the interface pressure is concentrated at the 

weld regions located at the top and bottom of the loaded region. The major portion of 

the pad has little or no interface pressure value. The researchers carried out strain 

gauge tests in order to verify their method. Reasonable agreement was found for 

those regions where gauges could be sited. Comparison was also made with 

conventional finite element methods and some 30-40% improvement was found by 

the implementation of the mixed formulation.

Motashar and Tooth1481 examined the behaviour of the cylindrical vessel which is 

radially loaded through a rigid attachment which is of a rectangular plan form. The 

resulting radial and tangential interface forces between the vessel and the attachments 

are found assuming the attachment is fixed to the vessel at all points over the mating 

surface and is subject to a radial displacement. The double Fourier series solution, 

which is detailed in the present work, is extended to incorporate a number of equal 

size discrete areas as shown in Figure 2.12. The vessel flexibility is evaluated and 

compatibility equations enforced. Motashar's solution allows for a flexible attachment 

to be incorporated in the construction of the compatibility equations if the flexibility 

matrices can be found from, for example, a suitable finite element model. In their 

example, the flexibility matrices are set to zero and the attachment is assumed to be 

rigid. Equilibrium is then ensured and the radial and tangential interface pressures are 

evaluated. This therefore allows the vessel displacements and stress resultants to be 

found.
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Figure 2.12 Rigid Attachment (a) Discrete Areas (b) Applied Force 

Motashar concludes that the uniformly distributed interface pressure assumption is 

always unconservative and in the cases presented, the variable interface pressure 

analysis can be lead to peak stresses which are up to 37% higher. These peak stresses 

occur at the attachment edges in the local vicinity to the weld region - as shown in 

Figure 2.13.
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UnlPor* load

Figure 2.13 Distribution o f Circumferential Stress (Motashar and Tooth 1988) 

Nadarajah et al154,90,91'approached the problem of improving the analysis presented in 

the codes and standards by examining the existing restrictions imposed by 

simplifications which were adopted at the time of writing. The Standard is based on 

the use of small displacement analysis for rotations and deflections to evaluate the 

code stress and displacement values. In addition, no account is taken of the complex 

interface pressure distribution, the codes assuming a simplified uniform distribution in 

the case of radially loaded attachments and linear (or equivalent) distributions for the 

externally applied moment cases.

Extensive finite element analyses were undertaken for a range of cases using large and 

small displacement analysis. The large displacement analysis resulted in higher peak 

stresses when the load was applied in towards the centre of the vessel and the 

opposite was the case when the loading direction was reversed. The small
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displacement analysis is independent of the loading direction. A series of correction 

factors for the small displacement (standard, code) analysis were developed ranging 

from 0.92 for the load applied outwards to values of 1.45, 1.62 and 1.60 for the radial 

deflection, circumferential stress and longitudinal stress respectively.

The influence of the rigidity of the attachment was examined by generating finite 

element models with the pad attached around its edges. Various thicknesses of pad 

were examined including pad thicknesses equal to the shell, one and one half times 

thicker than the shell and over three times the vessel shell thicknesses. At the location 

of the welds, the finite element nodes were fully connected whereas in the location of 

the attachment area, the nodes were connected using gap elements. No mention is 

made as to whether Coulomb friction was incorporated or not. Uniform pressure was 

applied to the top of the attachment and small displacement, linear elastic analysis was 

employed. Stress factors which relate the maximum stress due to the loaded 

attachment to the maximum stress due to the uniformly distributed loading were 

plotted for the range of cases examined. It was found that when the pad is the same 

thickness as the vessel wall, the stress factor was less than unity over the whole range, 

therefore the pad stiffens the vessel and is sufficiently flexible to avoid increasing the 

edge stresses.

When both effects are analysed together, the large displacement analysis and the 

attachment rigidity did not significantly interact, i.e. they can be considered 

uncoupled. Therefore, in order to establish a simple way of combining the two effects, 

Nadarajah analysed a number of cases where the welded attachment was analysed 

using large displacement finite element analysis. These results were then compared 

with those obtained independently by combining the two modification factors 

together. This approach always gave a conservative result when comparing with the 

FE analysis, therefore simple multiplication of the two factors could be used as a 

design aid.
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2.5 Aims of the Proposed Research

The present research deals with two specific problems, which are related. It is worth 

noting that the two previous sections ‘Twin Saddle Problem’ and ‘Local Patch 

Loading Problem’ can be solved using procedures that are based on the same 

fundamental equations. Each problem is tackled by employing Sanders’ general 

theory of surfaces applied to a cylindrical shell. The choice of shell theory is based on 

the work of A Leissa, who presented a survey of thin shell theories under specific 

applications and showed that Sanders' equations were the most consistent and 

satisfactory. Thereafter, a double Fourier series approach allows the representation of 

the surface loading on the cylindrical shell and the development of a numerical 

solution that has been adapted for a variety of computer platforms.

The present work is concerned with examining the basis of current methods used in 

industry. In this, the background to the methods in the British pressure vessel 

standard BS 5500 and the ASME code are summarised and some attempt is made to 

verify their application. Solutions are developed and are then applied to a number of 

special cases for each problem.

Local load solutions are developed for rectangular shaped patches, which produce 

similar results to current code and standard approaches. New solutions are presented 

for patches that are circular and elliptical in form. In addition, stresses are now 

evaluated at the true maximum positions, as opposed to the approximate maximum 

location given in the literature. This provides reliable stress data for use in design and 

fatigue assessments. The solution thereafter is extended to cover steady state thermal 

stress problems including patch areas of heating or cooling and non-linear bell shaped 

thermal gradients.

The saddle support solution is developed and extended to incorporate flexible saddles 

with radial and tangential flexibility. From this, a full parameter study is undertaken 

and a new design methodology presented. This new approach incorporates all of the
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main design parameters for a liquid filled vessel on twin saddles. The effects of the 

flexibility of the vessel head and saddle support are studied using finite element 

methods and suitable flexibility factors are supplied, where possible, for inclusion into 

the new design approach.

In addition, an overview is given of the use of finite element analysis in dealing with 

the design of complex pressure vessel details such as local loads and saddle supports.
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3 THIN CIRCULAR CYLINDRICAL SHELL THEORY
This chapter presents the analysis of a thin circular cylindrical shell, simply supported

at its end. The displacements and stresses are evaluated for the case where the 

cylinder is located horizontally and is subjected to various types of surface loading. 

Firstly, the differential equations which govern the behaviour of the cylindrical shell 

are derived. Thereafter, a double Fourier series expansion technique is employed to 

represent the surface loading, and a numerical solution for the equations describing 

the behaviour of the shell is established. The cases of a cylindrical vessel subjected to 

radial and tangential uniform patch loading are presented in detail, as they are used 

throughout this work.

3.1 Derivation of Thin Circular Cylindrical Shell Equations
The analysis developed within this thesis is based upon the improved thin shell theory

proposed by Sanders'1121. This has been developed almost entirely as a two- 

dimensional theory. This avoids certain complexities that arise when relating two and 

three-dimensional theories and makes for simpler implimentation whilst retaining 

consistency. Sanders' uses the principal of virtual work as the main tool for the 

derivation of his shell theory. This is presented in this section in some detail.

3.1.1 Geometry
The deformation of a thin shell can be completely defined by the displacement of its 

middle surface. The cylindrical co-ordinate system is used to define the middle surface 

and since the cylindrical shell has a constant radius of curvature along its 

circumference, then any point on the middle surface can be defined by two unique 

variables, x in the axial or longitudinal and 0 in the circumferential directions. The 

middle surface displacements of the shell are defined as U, V and W in the x, 0 and the 

surface normal directions respectively. Figure 3.1a shows the middle surface co­

ordinates and positive directions of the shell displacements. Figures 3.1b and 3.1c 

show the stress resultants and couples which act on a section of the cylindrical shell 

parallel to its co-ordinates.
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Fig 3 .1a Cylindrical coordinate system and positive midsurface displacements

Fig 3 .1b Couples and midsurface rotations

Figure 3.1a-c Positive direction o f displacements, stress resultants and loading 

3.1.2 Equilibrium Equations
The equations of static equilibrium of the general shell element, which are quoted in 

Reference [12], are generally accepted and agreed upon1131. The following equations 

are the equivalent equilibrium equations for a circular cylindrical shell:

50



d N x , 1 d K

d% R  dQ

^ 9  , 1 dN g 

d x  R  SQ

+  PX =  0  

+ ̂ Q q+Pq = 0K

M . + 1 M
d% R  <30

- - N e + P r = 0
R

dMy l ôMto
l + 1 - - Q t = o

d% R  dQ

dM ye 1 dMa+-
ax æ æ

- a = o
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The stress resultants and couples appearing in these equations are defined by 

integrations of three-dimensional stresses through the thickness of the cylinder as 

given below:
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3.1.3 Strain-Displacement Relations
The strain expressions (10 quantities, one corresponding to each stress) are derived 

here using the principle of virtual work as follows:
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The integral must vanish by virtue of Equations (3.1). Expanding Equation (3.3) and 

integrating by parts yields:
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The two double integrals extend over the region of the middle surface of the shell 

enclosed by the cylindrical curve C. According to the principle of virtual work these 

two integrals must equal each other. The first integral represents the virtual work of 

the forces acting on the cylinder whilst the second integral describes the virtual 

change in strain energy of the cylindrical shell. This leads to the following definitions

of strain quantities:
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3.1.4 Simplification of Results
It is assumed that the work done by the maximum transverse shear stress acting 

through a distance equal to the maximum transverse shear strain times the thickness 

of the shell, is negligible in comparison with the total change in strain energy during 

deformation. From this assumption the two terms in the second integral of Equation
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(3.4) which contain Ox and Oo can be set to zero and the quantities <|)x and <J>0 can be 

expressed in terms of U, V and W:
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(3.6)

The rotation about the normal <J)Z is calculated by taking the surface curl of a

displacement vector. The expression <|)Z becomes:
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Substituting for (j)Z into equation 3.5, it follows that:
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Combining the two expressions for twisting strain ATX0 and AT0x and the expressions of 

the shear strain yields the following identity:
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(3.9)

Using expressions (3.8) and (3.9), the second integral of equation (3.4) (the change in 

strain energy integral) can be rewritten as:
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A new modified definition of the shear resultant, shear couple and twisting strain are 

introduced at this point. These are:
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A simplification is introduced here by neglecting the term (1/4R) (Mze - M»*).

This is justified by the introduction of expression (3.11a), where (1/4R) 

would be very small compared with 1/2 (Â e+TVe*) or 1/2 (M^+Mq*). However, it is 

noted that (N^-N^) is not being neglected. Applying the above definitions and 

simplifications to Equation (3.10), it becomes:
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(3.12)

3.1.5 Modified Equilibrium Equations
After introducing the new definitions and simplifications, the equilibrium equations 

require modification. This is carried out using the principle of virtual work. At this 

stage, the strain expressions are now expressible in terms of the displacements U ,V &  

W. They are introduced into Equation 3.12 in the application of the principle of 

virtual work that leads to a new set of equilibrium equations. The expression for the 

virtual change in strain energy may now be written as:
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\ \ { N  8
f dU '
\ dX j

+  N  xe8
f dV 1 dU^

dx  R dG
+ N gS

f  i e v +
R d O  R

+M X8
\ dX j

+  M  reS
r d<f>g 1 d<!>x 1 d v  1 d u )  / l  d(f>g^

6 x  R dG 2R dx  2R 2 dO J { R  dO

+ Q 8 dW ] ( dW V \
+<t>z + Q J  ^ - B + + 4 R d x d 0  =7 v 0 ( 7  K  J

l A  N  SU + NxSSV +M zfy z + M J s t ,  + ^ t Sv )+Q xSW
Z K  J

RdO

+ N xg8U  + N g8 V + M xg
r \ \
8<f) x — -S U  +M gS<f>g +RQgSW 

2 R
dx]

- i k

f  

\

(
R-

dN„ dN
Z0

1 dMX<>
dx dG 2R dG

f
8U  + R-

J
8Nx0 dNg 1 dM

H h Z0
V dx dG 2 dx + Qe 8V

+ - N 0 + R - ^  + R?®e
dx dG

\8W + R-
dM „ dMxO
dx dG

+
r dM 
R- z6 + dMg_ _ RQg

dx dG
8(f>g }dxdQ

(3.13)

If the shell is to be in equilibrium, by the principle of virtual work, the left hand side 

of Equation (3.13) (the virtual change in strain energy) must equal the first integral in 

the right hand side (the virtual change in work done by forces on the shell). This 

implies the second integral on the right hand side (the area integral) must vanish. 

Since the virtual displacements are arbitrary and independent they cannot be set equal 

to zero, so all the five expressions (which are corresponding to the five virtual 

displacements) must vanish. Thus the following equilibrium conditions must hold:
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dx r  30
i m xQ 

2R2 30
= 0

W #  , 1 dNe 
3x r  ae

1 M  
2R~dz-  +  - £ ? e  = 0  R Ue

^ x M
+ ^ 0 -  — = 0

3MX 1 ¿5Mxe 
~ f y + ~ R ~ W  
dM%Q 1 3Me 

3x 30

- 0 x = O

- 0 e = O

(3.14)

These equations are the new modified equilibrium equations. The number of stress 

unknowns has been reduced from 10 to 8.

In previous derivations of shell theory, the number of unknown stress resultants and 

couples are reduced by making approximations in the expressions for the resultants in 

terms of integrals of stress through the thickness of the shell. In the present 

derivation, the reduction is made by combining some terms in a similar manner to 

those in the application principle of virtual work. This affects those terms associated 

with the work done during a small rotation about the normal to the shell. Using this 

approach, it is not necessary to eliminate any terms in the expressions for the stress 

resultants and couples in terms of integrals of stress through the thickness of the shell.

Substituting for Qx and Qo in Equations (3.14) reduces the number of terms from five

to three. Adding them to the external forces, they become:

dN l N  e
^ T +^

1 A^xe 
2R2 30

+ F. =  0

3x + R 30 2R 3x R2 30

d ^ + 2 ^ ^  + J _ d ^ _ \ _
3x2 R 3x30 R2 302 R 0 r

= 0

(3.15)
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3.1.6 Stress-Strain Relations

The stress-strain relations depend on the mechanical properties of the material of the 

shell. In determining stresses analytically it is customary to assume that the material 

is elastic, isotropic, homogeneous and that it conforms to Hooke’s Law, which states 

the strain is proportional to stress. These assumptions lead to the following stress- 

strain relations, with shell thickness, t:

S3 II 1 £ Et3Kz =12 (Mz -vM e)

S3 II £ 1 Et3kg =12 (Mb - \M z )

Etex0 =(1+v)N xa Et3K zo = 12(1 + v)M ze

(3.16a-f)

3.2 The Governing Equations

In order to obtain the governing equations for the circular cylindrical shell, the

equilibrium equations, the compatibility equations and the constitutive relations can 

now be combined to develop the governing equations that determine the overall 

behaviour of the shell. Firstly, the stress-strain relations are written as follows:

N Z = D(ez +vet )

Ne =D (e0 +vsz ) M e = ^ ( K „ + v K z )

Hze = D (l-v )e ze M z^ D‘2 ( l - v ) K ,e

(3.17a-f)

Using the compatibility equations to substitute the strains or their equivalents in terms 

of the displacements, a set of stress resultants is obtained expressed in terms of the 

displacements and material properties:
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Nx =D

Ng =D

dU y_dV_ vW 
d x + RdG + R J

1 ôV dU W '--------\-U----- 1----
RdG dX R j

( \ - v ) dV_ \_eu_ 
dX + RdO

M x -D kR d2W y d2W i y dV î

dX1 R2 dG2 1 r 2 d e l

M e -  DkR1 1 d2W 1 dV d2W
+ — — - V -

R2 dO2 
r

r 2 de dx2

M x0 =DkR2( \ - v )
1 d2W 3 dV+ ■ 1 dU

v R dxdO 4R dx 4R2 dG

(3.18a-f)

Using the above set of relations to substitute for the stress resultants into the new 

equilibrium equations, a set of three partial differential equations known as the 

Differential Equations of the Bending Theory of Circular Cylindrical Shells results:

(Rdr )2 +
( l - v ) f  lr\

1 +  -
. 4 )

+ \u ( R d x ) + ^ p t( R d X t i  V  = - S ê .

+{ i ^ K ) ‘d , + de

- ^ D . k { R d , y a ^ ( R d ^  + l ^ p - k i R d X d ,  + k d i - d \ v

+ { - * ( ^ ) ‘ - 2 H R d r f d l - k d 4 - l ) v  = - M -

(3.19a-c)

Or they can be written in the form:

a,U+b,V+C,W =d,

a2U+b2V+C2W=d2

diU +biV +C iW -di
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where:

a\ ~{Rdy)1 +
( i - v Y ,  k') 

2 A 4 J
a2 ~

\ + v 3(1 -v )k
y~2 s )

(R d )d 8

*,=

2
f l  + v 3 Q -v )* ]
v 8 J

(Rdr )dg

b2 =
1 - V

. 2 )
1 + 9k_

4 ;

b3 = Q - ^ ( R d z )2dg + k d l- d e

c,=v(Rdz ) + ̂ R (Rdx)d2

C 2 =
(v -3 )k (Rdz )2dg -k d \ + dg

c3= -  k(Rdz r  -  2k(Rdx )2d 2g -  kd'g - 1

, -P XR2 dx= - ^ ~

CRdxY + ( \+ k )d 2g d2 =

D

PaR 2_ 1 8

4  =

D 
- PrR2 

D

(3.20)

3.3 Solution of The Governing Equations

The equations, which govern the behaviour of the circular cylindrical shell, have been 

derived in the sections above. These equations involve partial derivatives of % and 0, 

and thus are described as partial differential equations. The solution of such systems 

of equations is generally complex. It is sometimes very difficult to find the required 

solution for a set of partial differential equations. Normally, some mathematical 

compromise is made and a numerical soultion evaluated, provided sufficient accuracy 

can be established. In the present work, a Fourier Series Expansion Technique is 

used to find the solution for the governing equations of the circular cylindrical shell.

Certain assumptions are made here in order to make the Fourier expansion method 

applicable and the resulting solution easier to establish. The circular cylindrical shell 

is assumed to be horizontally located and simply supported at its ends. The latter 

assumption sometimes may not always be true. However, in such cases, correction 

factors can be added to make up for this. In addition, a restriction is placed such that 

only those cases where symmetry about the vertical plane exists are considered in this 

work, since such covers the main types of loading that occur; pressure, fluid and self 

weight.
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3.3.1 The Fourier Series Representation of Surface Loading

Differential equations with simple forms, for example sines or cosines can be easily 

solved. However, there are many cases of complex functions, which describe the 

behaviour of a real physical system, which cannot be simply represented by simple 

sine or cosine waves. In such cases, their behaviour can be expressed by a series of 

sines and cosines, the summation of which is the equivalent to the actual behaviour at 

the component. Thus a series composed of sines and cosines is the termed the 

Fourier Expansion of the function. To represent the loading system on a cylindrical 

surface, a double Fourier series is required for each component in longitudinal, 

tangential and radial directions. The following expressions are used to represent the 

surface loading:

A particular solution of the differential equations, corresponding to each term of the 

surface loading, can now be found. The sum of these particular solutions thus 

represents the total solution of the differential equations. The displacement solution 

therefore has the form of the double Fourier series as follows:

Substituting, for a particular mode of the Fourier expansion, for Px, Pa Pr, U, V and 

W from Equations (3.21) and (3.23) into Equations (3.20), yields a set of three 

algebraic equations:

(3.21a-c)

(3.22a-c)
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A^mn + B ymn + C,Wm„ = 
A2Umn+B1Vmn+C2Wmn=DxP6t 

AJJ mn + B y mn + C3fVmn = D,P

(3.23a-c)

where:

A , = X A ^ (, k )  , 1 + — n 
2  ̂ 4 )

r\ + v 3(1 -  v)k
, 2  8 )

Cj = vA

■4, = An C2 = tv W  A2n -kn ^+ n

C, = -kAi -2kA in2 - k n 4 -1

b 2= -

( \  + v 3(1 - v ) k  
2 8 

i - v r i + 9*^

An A  = " D

A2 +(l + A'>;2

_ (3— +/ctp - n 
2

This may be written in matrix form as:
(3.24)

A  A  Ci Y u ,
a 2 b 2 c 2
A  A  c FT.

=A
fp 'Zmn

Ômn
P

\ 1 rmn J

The solution of which is:

i(A A  -  B2C2 )Pzmn -  (A A -  A  A )Pemn+(A A -  A A )Prmn}
Umn=Dx

DEN

Vmn=D\

Wmn =D.

-A ,C ,)P tm + (.J,C ,-A
DEN

f a B , -  A,B,) /> „ ,, -J A B , -  A A ) P ^

DEN

where:

DEN = Ax (A A -  B2C2) -  A2 (A A -  B,CX) + A, (A A -  B2CX)

= -k ( l - i (A2 + n2)4-2 n 2(A2 +n2)2 - 4 A2n 2(A2 + n2- \ )  + n4 +f l - v 2^

\  z
A4 

(3.25)
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This represents the solution for a particular mode of Fourier expansion of the general 

loading system Px, Pg, and Pr\ but it is simpler to consider each loading component at 

a time and superimpose them to obtain the total solution.

3.3.2 Longitudinal Loading Only

In this case, it is assumed that Pg= Pr= 0, thus Po™ = Pnnn= 0 for all values of m & n. 

Equations (3.25) become:

(B,C,
U , =

Z  m n 1
Z  mn

V = P>,

Wx -  Z),

DEN
(a2c 3 - A 3C2)PZ  mn

DEN
(A,B, -  A,B2)Pz

DEN

(3.26a-c)
The total solution for the displacements of a circular cylindrical shell subjected to a 

general loading in the axial direction becomes:

R 2 ( m nx^
U z ™ = 7 e 1l 1 1 Z L L  p v n n c o s ( aaP ) c o s

k D t x a  *................  K L j
R2 ^ ^ „ rrri n . , ^  ( mnx^

Vzm n = J E Z Z ZLT sin(/^)coskD m=1 n=i
oo co

r z m n = - £ Z Z L R  P rmn C O S ( w P ) s i n  
^  m= 1 n=0

(  mnx' 
l  L

'where:

ZLL =
1 +n1Y + P j+ n 2({?  + n 2)2 - ( 3 - ^ 2  «2 + l) |

DEN

ZLT -  knX
. i ^ ( / l 2+ n 2) - ^  (3-v)vA2 — (1 — 3v)w2

DEN

kn2(Z2 +n2) -  - (vA2 -  n2)
ZLR =

Z)£Â  = -^ < j(A  + /;2)4 -2 /;i

DEN

A 2 +  / ; 2 - 4 A 2/ ; 2(A 2 +  a; 2 - 1 )  +  a; 4 +  — --- A 4 
V k

(3.27)
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Finding the solution for the displacements in the Fourier series form allows the 

determination of the stress resultants, which are expressed in terms of the 

displacements and their derivatives (Equations 3.18), in the same form:

N = - z i { - AZLL + vnZLT + vZLR)Pr cos(«0)sin
1  k  n=Om=l Zm" V

mnx
L )

N0 = — i  Z {nZLT + ZLR -  vXZLL\Pr cos(//0)sin
k n=0m=0 Zm"

mnx

N - RO’ »')7V X6 ~

L

H { X Z L T -  nZLL}Px sin(nG)c o s f ^
2 k 17=1 m =0 ™  ̂ L y

im n x \M x =/?2 1  I  {(A2 + vn2 )ZLR + vnZL T\PXmA cos(«6l)sin
77=0 ;n=l

M0 = R 2 Z i ^ n 1 +vA2)ZLR + nZLT}PXm cos(«£)sin

V £ J

w=0 m=l

mnx
~ L ~ )

M  g = 7?2(1 - v ) Z  Z { nAZLR + -  AZLT+—nZLl\pXm sin(«0)cos
77=1771=1 4 4777=1 ^

mnx
A
(3.28a-f)

3.3.3 Tangential Loading Only
In this case, it is assumed that Px=Pr=0, thus Pxmn=Pmm=0 for all values of m and n. 

Equations (3.25) now become:

Ue = D x

Ve = D x 

Wg = Dx

(B,CX - B xC3)P6m 
DEN

(A A  -  AxC3)Pĝ  
DEN

( A A - A xB3)Pgm 
DEN

(3.29a-c)

The total solution for the displacements of a circular cylindrical shell subjected to a 

general loading in the tangential direction become:

UB

Vg

Vs

r> 2  oo co

= — Z XZTLPg 
kD n=°m=0
n  2 oo oo

= —  I I  ZTTPg
kPy 71=1 771=1
r> 2  oo co

= — Z Z ZTRPg
kD 71=0 771=1

cos(/z#)cos 

sin(/z#)sin 

cos(//#)sin

Z,

 ̂mnx^

 ̂mnx''

x

A

(3.30a-c)
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where:

• +w2)--f(3 -v )v 'A 2 ~ (\-3 v )n 2 - - ——
Z7Z = ¿wZ

r /

-v ^  
k j

ZTT -■

DEN

Z2 + ̂ % 21(^2 +W2)2 +(1~ v)(z2(l + v + A:vw2)+~/?2

DEN
( 3 - V  -4  /- \ -2 2 1 -^-----Z + (2 — v )Z a? h------- n + -\ - v ((2 + v)Z2 +//2)l

ZTR = -n-
DEN

Equations 3.18 for the stress resultants now become:

N ,  = -  £  £  {- ZZ7Z + vnZTT + vZTR)PGm cos(/?6»)sin
/ t  n=0 m=l

'm ux'
j

Ne = - i i  {nZTT + ZTR -  vA Z T L ^  cos(«0)sin
/t n=0m=0 "

^minx'
r r ,

S . - W - V )
2k n=0m=0

X X {AZTT-nZTL\P0" sin(w#)cos
\  ^ J

M x = R 2 X I  {(Z2 + vn2)ZTR + v n Z T T cos(w0)sin
w=0 m=l \  t - J

M g = R 2 X  £{(w2 + v'Z2)Z77? + wZ7T}^ cos(w6>)sin[^y^
n= 0 m=l

M rg = R 2( \ - v)X  X\nXZ7R+^AZTT + ~nZTL\PXm sin(w<9)cos
n=1 m=l I

(3.31a-c)

 ̂minx'
\  L J

(3.32a-f)

3.3.4 Radial Loading Only

In this case, Px=Pe = 0. The total solution for the displacements and the stress 

resultants is obtained in a similar way as above:

Ur =Dx

K = D X

Wr =Dx

(BxC2- B 2Cx)Pr̂
DEN

{AxC2- A 2Cx)Prmn
DEN

(AxB2- A 2Bx)Prtm
DEN

(3.33a-c)
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where:

ZRL =

\k\

' k n 2 ( A2 + n 2 ) -  X- ~  î VA2 -  n 2 jj

DEN

~ Z 4 + (2 -y)A 2n2 + 1~ y ^  l - v
ZRT -  -n-

n
2 y

+ — -(A2- n 2)

DEN

i — (Z2* « 2)2
ZRR-

DEN

This yields,

R2
U .=  —  Z Z  ZLRPr cos(/70)cos kDn-0m=0 r-

(  mnx^

K =  —  H  ZRTPr sin(/70)sin 
kD n=l m=1 ”

V  L>
( mnx^
V J

Wr = —  £  £  ZRRPr cos(nO) sin 
kD «=1 m=l ""

mnx
y

N r = - £ (-viZLR + vnZRT+ vZRR)Pr cos(/70)sin
k m=1 ""

i  mnx''
C T ~

Ne = - £ (n Z R T  +  Z R R -vA Z R L )P r cos(w6»)sin( ]
A: *=i "" V ^  y

ÂL = ^ 1- - ) £  £  (AZRT -  nZRL)Pr sin(770)cosf^
2k m=0 n=0 ”  \  L J

Mz =R2i i  {(i2 +vn2)ZRR + vnZRT)}Prm cos(nO)sm
n= 0 m=l

may
£  y

Mg = R 2 £  £{(/;2 +A2)Z /^  + /;Z7?r)}p^ cos(//(9)sin
n=0 m= 1 y

M  = 7?2(1 — v) £  £Î/7AZRR + —AZRT + -n Z R l\p r sin(«#)cos 
*6 V n=0m=l[ 4 4 J -

(3.34a-c)

mnx ̂
L J

(3.35a-i)

3.3.5 Boundary Conditions
The representation of surface loading using the double Fourier series expansion as 

described implies certain boundary conditions (cf. Duthie,White & Tooth, Ref [9]).
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Since the origin of the co-ordinate system is taken at one end of the cylinder, as

shown in Figure 3.1a, all the Fourier expansions and their derivatives containing the

term sin (rmvc/L), vanish at the end of the cylinder, i .e.

dU d2V d2W—  = 0, V = ^-T = 0 and W = ^ -  = 0 at x = 0 & x  = L
dx Ôx2 Ôx2

This implies that the cylinder is supported in the tangential and radial directions, and 

the shell is free to rotate about a tangent to the edge. These are exactly the boundary 

conditions prescribed for a hinged support, and are applicable if the shell under 

consideration is part of an infinitely long tube stiffened by rigid diaphragms at regular 

intervals of length L. The present treatment is specifically concerned with the 

behaviour of a cylinder subjected to loading remote from the ends. Although these 

boundary conditions do not precisely describe the condition for all end closure 

configurations, they are sufficiently close for most problems encountered in practice. 

In the present work, the effect of the end closure is considered in Chapter 8.

If the vessel ends conform to the above boundary conditions, then the Fourier series 

expansions form the complete solution of the problem, and no complementary 

solution needs to be added to the particular solution, since both the governing 

differential equations and the boundary conditions of the problem are satisfied. 

However, in practice some deviations from these conditions are likely to occur, yet it 

is still possible to use the solution with confidence if the loading is applied some 

distance from the vessel ends.

3.4 Simply Supported Cylindrical Shell

The solution of the simply supported cylindrical shell has been presented in the 

previous section in Equations (3.26-35). The only unknowns in these equations are 

the surface loading terms Pxmn, Peam and P™,. These terms can be found by 

multiplying both sides of Equations (3.21) by suitable orthogonal expressions. 

Integrating over the surface of the cylinder eliminates all but one of the terms used in 

each Fourier expansion. The following orthogonal identities are used in this process:
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f sin(mx)sin(/w'x)£3!r = 0
J o

_ L
~  2 

•L
sin(mx)cos(/w' x)dx = 0

o

*L
sin( mx) cos(m ' x)dx = 0

o

L
~  2 
= L

if m*m'

if m - m ' o r m -  m' - 0 

for all values of m and m' 

if  m^tri

if m -m ' 

if  m = m' - 0

(3.36)

For the case of longitudinal loading, multiplying both side of expressions (3.21) by 

cos (n'x) cos (rrinx/LybcdO\ and integrating over the surface of the cylinder, making 

use of orthogonality properties, the longitudinal loading coefficients are obtained.
!*—

s
i__0h oIIRII£

_ J - r  r  p  oosfm ;w]io * \  L )
dxdO (/w = 0,« = l,2,3,....)

= — f  F  cos(n0)dxd&
jiL ° °

(w = 0,/w = l,2,3,....)

J  j  cos(nû) cosf ^ 'jdxdû (m,n = 1,2,3,....)

(3.37)

For the case of tangential loading, multiplying both sides of Equations (3.21) by 

cos(n'9) sin (m'Tvc/L)cbcdO and integrating over the surface of the cylinder, the 

tangential loading coefficients are obtained:

' - = z i r r * sin mnx
L J

sin {n0)dxd6

(3.38)

Similarly, the radial loading coefficients are obtained by multiplying both sides of 

Equation (3.21) by cos (n'0) sin (tn'iex/lfdxdG and integrating:
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(n = 0,m -  1,2,3....)P. sin mnx dxdO

Pr cos(w#)sin mnx dxdO (m,n = 1,2,3...... )

(3.39)

By obtaining the surface loading coefficients, the displacements and stress resultants 

for defined surface loading case, could be obtained using Equations (3.26-35).

The case of a liquid filled shell imparts a hydrostatic load as shown in Figure 3.2

L

Figure 3.2 Simply supported cylindrical shell partially filled with liquid 

The horizontal cylindrical shell is considered to be simply supported at both end and 

partially filled with a fluid of specific weight, p. The height of the fluid is shown by 

the angle, a , measured from the nadir which is taken as the base generator with <J>=0. 

It is assumed that the fluid exects a radial pressure which is directly proportional to 

the depth at the point of consideration and that is remains constant along the shell 

length. The surface load on the cylindrical shell can thus be written as:

Pr =pR(cos0-cosa) (-a < 0 < a )

(3.40)

The Fourier expansion coefficients for this case are obtained by substituting this 

expression into Equation 3.39 and integrating over the surface
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(« = 0, m = 1,3,5,...)

mn
(n = 1, /w = 1,3,5,...)

---- - A •----- (sin(«ûr)cosa -«cos(«ûr)sin a}
mn n(n -1)

(/i = 2,4,6.., /w = 1,3,5,...)

(3.41)

In a similar manner, the coefficients for the case of a cylinder subject to a uniform 

internal surcharge pressure, p, can be obtained as follows:

(» = 0, m = 1,3,5...)

(3.42)

3.5 Extension to Steady State Thermal Analysis

The previous sections have derived the governing equations for the shell under 

loading systems that arise principally from mechanical loading. However, the solution 

can be advanced to cover those cases where a steady state thermal load is applied to 

the shell. Thermal stress analysis is an essential part of the design of heated vessels, 

such as heat exchangers, hot oil storage containers and piping systems. These stresses 

arise from differential expansion or mechanical constraint of the system during overall 

temperature change. This can occur either by a thermal gradient through the vessel 

wall or by a variation of temperature over the vessel surface. The former is generally 

small in the case of thin walled vessels, however the latter can result in large 

magnitudes of stress when the thermal gradient is severe. Such conditions may arise 

from a design requirement of the process or alternatively from a fault condition when 

the liquid or gas flow is impeded and a local ‘hot spot’ occurs.

In an earlier treatment of the ‘hot spot’ problem by Wilson1621, the governing 

equations were effectively, apart from the temperature dependent terms, the Flügge 

shell equations. More recently, Bushnell1141 has shown that the Flügge equations 

have certain inconsistencies when resolving certain thermal stress problems. For this 

reason, the Sanders shell equations are employed throughout this thesis, since they 

avoid this problem.
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3.5.1 Modified Governing Equations

The main modifications to the general shell equations arise from additional 

temperature terms which cause a rise in the overall stress. From Equations (3.17), 

the constitutive relations representing axial, circumferential and shear stress at a 

general point Z from the middle surface, with temperature term can be written,

N z =  ° ( £ z + V£e ) ~  E t a  77^ — - M x = ^ r ( K z +  v K e )(1-v) 12

N, = £>(e„ + fsz ) -  Eta M e = +  vK, )

(3.43)

These expressions are carried through the analysis in a similar manner to Equations 

(3.18-3.20); the only major change is the inclusion of the temperature terms in the

direct stress resultant expressions.

NX =D dU y ÔV vW Ì 
ôx R d 0  R ,

Ne = D

M x =DkR2

1 ÔV ÔU W _-------+ -----+ -------Eta
R d 0  dx R

(1 - v )
T

0  - v )
ÔW y d2W y d2W

M a = DkR -

(3.44)

This leads to the general equilibrium relations expressed in matrix form as shown in 

Equation (3.20).

3.5.2 Fourier Expansion Solution

A particular solution of these equations may be obtained by expressing the 

displacements and loading in the form of Equations (3.22). The temperature loading 

is also included,

70



U = Z Z t / mncos(/;^)cos
m= 0 n—0

( mnx'

V -  Z ZVmn sin(nû)sin

\  j 
f  mnx^

m- 1 n= V

W = z  ZW mncos(/?é»)sin
m=l n=0

(  mnx'
V

T = Z ZTmn cos(w^)sin
m=l n=0

L )
\mnx

~ )
(3.45a-d)

The choice of this expansion for the temperature indicates that the loading is 

symmetric with respect to the generator passing though <j) =0. They also imply that 

the end constraints have zero temperature at x=0 and L, although the approach can 

handle cases when the entire vessel is subject to thermal load. A detailed description 

of the boundary conditions required by the above equations is given by Duthie and 

Tooth'441.

When the series expansions are substituted into the matrix equation above, a similar 

matrix Equation (3.24) is obtained, the only difference being the load coefficients,

2/, , , A amn
y(n.m)d} = a 2( 1 + v)

d2 =-a ( l  + v)anT(nm) 

d , = - a ( \  + v)aT{nm)

(3.46a-c)

This allows the matrix equation to be solved as Equations (3.25). The displacements 

are found initially and then the required stress resultants can be obtained.

3.5.3 Fourier Series Representations of Applied Loading

The only unknowns are therefore the loading terms T^m). These terms are found by 

expressing the loading system in double Fourier series form as detailed in Section 3.4. 

the form of the equation is similar to that for the radial load and therefore by a similar 

procedure, the loading term can be written for all values of m and n as,
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dxdO (/i = 0,jw = 1,2,3.... )
2 rL

Ltt 
4 rL 

Ln

( mnx''I" r  TanJ° Jo L J

f  f  rcos(/?0)sin
Jo Jo

(  mnx^dxdO {m,n = 1,2,3..... )

(3.47)

These expressions can be utilised once an equation or relationship has been chosen to 

fully describe the thermal loading term, T. Substitution into the above and applying 

an integration allows the stress resultant equations to be solved to give the mid­

surface displacements and stress resultants. This approach is of particular value in 

dealing with thermal loadings distributed over discrete areas and can deal with 

uniformly and non-uniformly distributed loading as shown by Panayotti(83,841

3.6 Notes on the Fourier Series

The Fourier series expansion technique has many advantages making it attractive to 

be used for the solution of differential equations. One of its merits is that any function 

can be expressed in sine and cosine terms, which make it easy to be differentiated and 

manipulated.

The main drawback lies in the fact that it is an infinite series and in order to establish 

the exact value of the represented function, an infinite or large number of terms 

requires to be summated. However, recent advances in computer facilities have 

made this problem of less importance, since the large number of Fourier series terms 

can be considered in a relatively short computing time. In practice, most engineering 

applications allow for an approximate solution to be acceptable. One further point is 

that the Fourier series expansion approach is more easily ported to a computing 

platform than alternative solutions, which may involve the use of complex numerical 

routines.

3.6.1 Fourier Series Limit and Rate of Convergence

As stated previously an approximate value of a function, represented by a single 

Fourier series is obtained by summing up a number of terms of the series. The more
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terms considered, the closer the value obtained is to exact solution. For simple 

functions, the so called Fourier Integrals can be used as a limit of a series to give the 

value of that function at all points. Fourier integrals are obtained using sine or 

cosine integrals, which are tabulated in numerous handbooks. This is normally true 

when the function is simple, but in most engineering applications this may not be the 

case. It is thus necessary to rely on the rate of convergence of the series. One of the 

properties of the Fourier series is that the contribution of high order terms to the 

solution is less than that of lower order terms. The rate of convergence of a series is 

the rate at which its coefficients approach zero. The convergence of the series 

depends on several factors, such as the continuity of the function, the number of 

terms selected in the series, the rate of change of the function (rapidly changing 

functions are slower to converge), and the period of the function (short period 

functions converge faster than functions with long periods).

The displacement and stress functions of a cylindrical vessel, which have been derived 

earlier in this chapter, are complicated functions. They comprise double Fourier 

expansions and contain many parameters, which ultimately makes it difficult to judge 

the number of terms required in achieving a sufficiently accurate result. Users of such 

solutions should always ensure convergence by performing successive runs and 

comparing the rates of convergence for the required target quantity (stress, 

displacement result etc.) With modem computers, double Fourier series solutions 

with between 200 - 1000 terms in each series can be computed in a reasonable time.
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4 ANALYSIS OF LOCAL LOADS ON CYLINDRICAL SHELLS

4.1 Introduction
During the life of the pressure vessel it is often subjected to a wide variety of loading 

conditions, all of which must be considered during design. In many instances the 

internal pressure is not the dominant form of loading and special attention has to be 

given to other load cases which combined together could cause premature failure of 

the vessel.

The local loading of supports and lifting brackets, which are welded to the vessel, is 

such a case and although the resulting stresses are generally not excessive, checks 

must be made to establish their value. When a radial force or a bending moment is 

applied to the attachment, the interface forces between the attachment and the vessel 

are, as in the twin saddle problem, rather complicated. Their distribution depends 

upon the relative rigidities of the vessel and the attachment. For example, if the 

attachment is very rigid compared with the vessel, one would expect the interface 

forces to be concentrated round the outer edges of the attachment. A further 

complication for the welded attachment is that it is only fixed to the vessel round its 

outer edges.

As mentioned earlier in Chapter 2.3, neither the British Standard 5500 nor the 

Welding Research Council Bulletin 107 attempt to handle these and other intractable 

modelling problems, but when the contact area is relatively small, they assume a 

simplified form for the interface force distribution between the vessel and attachment. 

For example, when a radial load is applied, the assumption is that the interface 

loading is uniformly distributed. A further simplification is that the attachments are 

rectangular or square with boundaries that coincide with the parallel circle profile, 

associated with the coordinate and the axial generator x, as shown in Figure 4.1.
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b=U2

Figure 4.1 Radial loading on a rectangular patch

This enables the applied load to be expressed as a double Fourier series form by

Pr = Yj Z  Prm„ cos(//0)sin
m=1n=0

r m n x '

K L  J

Forms of this type, (Equations 3.21 and 3.22), can be used in the shell equations to 

derive the vessel displacements and stress resultants.

In the absence of a more precise analytical method, the local loading of nozzles in 

cylindrical vessels can be analysed by assuming the nozzle behaves like a cylindrical 

attachment. This can be handled, as in the early versions of WRC Bulletin 107 by 

assuming that the circular patch is equivalent to a square patch of side lengths equal 

to 1.75 rQ. This provides a square patch with a notional area marginally smaller 

(2.5%) than that of the circular attachment. A similar approach is given in BS 5500 

where a slightly smaller area is assumed by using a value of 1.70 rQ for the equivalent 

square patch as shown in Figure 4.2. More recently, a supplement to WRC Bulletin 

107, WRC Bulletin 297, has been provided, which enables more adequate modelling 

of the nozzle and vessel to be achieved. In this, the nozzle wall thickness can be 

included in the derivation of the local load stresses.
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Figure 4.2 Equivalent square patch for circular loaded regions 

While WRC Bulletin 297 handles the case of the nozzle subject to local loads, the 

requirement still exists to obtain a more rigorous analysis for the circular patch, which 

avoids the ‘equivalent square patch’ approach. The solution given in this chapter 

address these problems and provide an analysis which can handle both mechanical and 

thermal loading. It can be programmed for a micro computer in a manner described 

earlier by the present author*451. As in the earlier studies the assumption that the 

interface loading is uniform, for the radial load case, is retained.

The solution for the rectangular patch subject to radial, tangential and longitudinal 

shear loads has been previously described. However, the case of moment loading, in 

both the tangential and longitudinal directions requires to be addressed. Therefore, in 

order to encompass the full variation of loading conditions, the solutions for both 

moment loads and a thermal load case are derived.

The extension to the circular and elliptical patch is also developed. Again, the patch is 

subjected to radial direct load, to both the tangential and longitudinal moment loads 

and also to the thermal patch load case.

4.2 Loading Intensity Representation

In pressure vessel and piping system analysis, the vessel engineer is given the applied 

loading as forces and moments resulting from a piping system analysis. The shell must 

be capable of withstanding these loads in order to maintain the integrity of the vessel.
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However, in the present analysis described herein, each loaded area is subject not to 

forces and moments directly but rather to a uniform or triangularly varying pressure, 

this depending on whether a force or moment is being applied.

In order to represent the correct value of loading pressure intensity acting on the 

relevant patch size and shape, the following relationships were obtained.

Radial Load P

For a radial force of value P acting on a patch area, the uniform loading intensity p  is 

given by:

P
P = ------area

where, for a rectangular patch of dimensions 2c, and 2c2, the area is Area=4c,c2 

and, for an elliptical patch with major and minor axes of dimensions 2aQ and 2b0, the 

area is Area = n aobo

A circular patch is a special case of the elliptical patch with radius c=a0=b0. Hence, 

for a radial load on a circular patch the area is given by, Area = n c l .

External Moment M  on a Rectangular Patch

The loading intensity for an external moment M acting on a rectangular patch can be 

found by considering an element of the rectangular patch subject to a load intensity py 

at a distance y  from the x-x axis as shown below (Figure 4.3). The radial load dP 

acting on the elemental strip at this distance is given by:

dP = p y(2c2dy)

From the geometry of the figure, py could be expressed in terms of maximum loading 

p  as:
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Figure 4.3 External moment on a rectangular patch

The moment dM  acting on the elemental area about the x-x axis is:

dM = dP x y

= P —(?c2dy)y
C \

And therefore, for the whole rectangular area,

M  = y 2dyr J

4 2 = ~ pc,c2

or

where,

3M
Cj xArea

Area = 4 C/C2
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External Moment M  on an Elliptical Patch

Considering the elemental strip of area 2xdy subject to a load of intensity py as shown 

in Figure (4.4), the load intensity can be expressed as:

Py=P y_
a o

Figure 4.4 External moment on an elliptical patch

By a similar procedure as shown previously for the rectangular case, the total moment 

for the whole elliptical area is given by:

M  =

The general elliptical equation, (x / bo)2 + (y / ao)2 -1  can be rewritten in terms of x as:

( \
f

y
U J

The total moment then becomes,

dy

By substituting^ = a0 sin 9 and dy = a0 cos 6 and integrating yields,
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4M
a0 xArea

for a circumferential moment and

where

4M
bQ xArea

for a longitudinal moment

Area = na0b0

Similar explicit expressions may be derived for a circular patch using the above 

relations for the elliptical patch by using the radius c=a0 =ba.

4.3 Square and Rectangular Patches

The solution for the rectangular patch was derived by the present author as part of his 

Master's thesis 156,451 this being programmed into a suitable microcomputer. The 

solution for the square patch is obviously a special case of the more general 

rectangular solution and therefore only the more general case is detailed here. It is 

worth noting that although the following figures show the load to be located at the 

vessel midpoint, the analysis is valid for a general location x=b.

4.3.1 Radial Loading

On considering a uniformly distributed radial loading of value, P, acting on a 

rectangular patch located symmetrically about the generator (/> = 0, and at a distance b 

from one end of the vessel, then the radial load can be described as,

P =
p  in the region -/?, < <j) < /?, and ( ¿ - c 2) < x < (b+c2) 

0 otherwise

(4.1)

where J3\=ci/a. Using Equations 3.39 and noting the new integration limits (b-c2) to 

(b+c2) and 0 to /?i, the loading expressions can be stated as follows:

P. =
2 rb+̂  rP\[Px D .Pr sinJb~Ct JoLn Jb-cz Jo

mjrx dxdO

4pB. . mnb . mnc
= ■" sin------sin-------

mn L L
(n=0, m =1,2,3, )
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= t t C  r  í;c o s< ' ' e ) s i " ( ” ”i
dxdû

8 p . mnb . mjvc, . , _ . . , . _= — ^ s i n ----- sin------ ^-sini/;/?,) (m,n=\,2,3,............ )
wnn L L

(4.2a,b)

When C/=C2 then the rectangular patch solution becomes that of the square patch.

4.3.2 Moment Loading

Two cases are envisaged, namely longitudinal and circumferential moment loading. 

The loads are assumed to be idealised as radial loading of a triangular pressure 

distribution.

For the ‘longitudinal moment’ on a rectangular patch, consider a moment, M, 

uniformly distributed along a short length in the circumferential direction acting on 

the rectangular patch.

Figure 4.5 Longitudinal moment on a rectangular Patch

The external moment is applied by radial loads proportional to the distance from 

x=b=L/2, represented by:

82



px'

Cl
in the region -  /?, <</> < /3X and — c2 < x'< c2

0 otherwise

(4.3)

where x'=x-L/2 ; p\=ci/a and p  is the maximum load intensity of the radial loads. The 
radial load may be represented as an odd function of x' with period L=2b. Hence,

00 00 f  '2mjrx>
= cos(,/0)sin

m = l n=0 ™ V L

Expanding the last term of the above equation, substituting x’=x -L/2 gives,

(2m m '\ . ( 2mmsin| — 7— j = ( - l )  sin •
V L V L

Incorporating the (-l)m term into the expansion for Pr allows the following to be 
written,

00 * (  2m m \
P r =  £ £ / ^ C 0 S ( W<9) S in  —

m-\n=0 \  L 7

The load coefficient Pr is evaluated as before. The new integration limits and load 
terms are incorporated, to give,

p  = ± f T  ^ 4 — V « ®r~ T.ttJo J o r  \  L )L n Jo Jo c, V L

• r  f  s*n(L tk2 Jo Jo V L

m n nc2
i  . ( 2mjK-,\ 2mnc2 (2 mnc2
sin ------------------- ¿-cos ■

V V L )  L V L

| c j P> p^ c o s ( n O ) s \ n ( ^ ^ - \ d x 'd d8 p  çfii px! 
Ln 

2 pL
m2n3nc2(-1 r

(  . ( 2 mncP\ 2mm, ( 2mtic.
sin

v L

(«=0,/w=l,2,3,.

-cos -
V L

sin(w/?, ){m,n= 1,2,3, 

(4.4«,/»)
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For the ‘circumferential moment’ on a rectangular patch, consider a moment, M, 

uniformly distributed along a short length in the longitudinal direction acting on the 

rectangular patch. The external moment is applied by radial loads of maximum 

intensity p which do not vary with x represented by:

P<t>

fit
in the region -  /?, < <f> < /?, and (b - c 2) < x < ( b  + c2)

0 otherwise

where J3\=Ci/a.

b = U 2

Figure 4.6 Circumferential moment on a rectangular patch
The loading can be expressed by the following Fourier expansion,

_ “ ” n . ,  .. . (
Pr = sm(//^)sin ——

m = l n - 0  V L  y

This expression is similar to equation 3.39 and by introducing the loading and limits, 
we find,

P = f* Cl f^'—  sin(//^)sin
r  r m a '

J b -c 2 JO l  L . )
(Jxd(f>
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8 p mnb
mnln 2ß x

sin------(sin(/?/?,)-/?, cos(w/?,))sin (  mnc,
V L

(m,n 1,2,3...... )

(4.6)

4.4 Circular and Elliptical Patches

Circular and elliptical patches represent the contact area of a number of local loading 

connections. For example, when vessel legs are attached to the cylindrical shell, they 

are often located at some angle to the surface normal, thus defining an elliptical 

contact area. In addition, the true circular and elliptical patch solution can be used in 

place of the approximate equivalent square or rectangle approach suggested by the 

codes and standards.

In the present work, the solutions for circular and elliptical patches subject to radial 

loads and longitudinal and circumferential moments are outlined.

4.4.1 Radial Loading 
Circular Patch
For the case of a uniformly distributed radial load acting over a circular patch, 

consider the loaded area to be located at some distance b from one end of the vessel. 

Because of symmetry about <fr= 0, the function PT represents the pressure acting over 

the whole ‘half surface’ of the cylinder as shown in Figure 4.7
b=U2

Figure 4.7 Radial load acting on circular patch



Outside the boundary, the loading is zero ie. Pr = 0; inside the boundary, however the 

load intensity Pr = P.

The boundary is the variation of x with <f> acting around the loaded area perimeter as 

is defined by:

P =
p  in the region - f t  <<f> < (3 and ( b - c  ) < x < (b + c) 

0 otherwise

(4.7)

and

A(0j) = b -  y/c2 -  a2 sin2 <f> 

A(<i>2) = b + j c 2 -  a2 sin2^

(4.8a, b )

where: 0 <<f>< ¡3

The loaded area is divided into a number of axial strips, the length of which are 

obtained from A(<f>\) and A(fc) as shown in Figure 4.7. Therefore, substituting these 

limits into Equation (4.7), yields,

P. =
2 rMM rPf f  Psin

JA U )  JO
cbcd<t>

\  L 7

= - ^ r s i n ^ ^ [ /? sin(— yjc2 - a 2 sin2 <f>d<f> («=0,/w=l,2,3,.... )
m r r 1 T JO 1mn

4 rA (*2) (P  

Ln 'A(*)
\P Pcos(w^)sin (  nua^dxdif)

\  l. j

= - ^ 7 s i n ^ ^ f 9 cos(n<f>)sm(^-ylc2 - a 2 sin2<f> d<f> (m,n= 1,2,3,.... )
mn2 L L

(4.9a,A)

The above expression only requires a simple one dimensional numerical integration 

for each P„.m. This may be done using Simpson's Rule or Filon's Method. The example 

detailed later is based on the former method which, for the illustrated case, was both
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easier to use and as accurate as Filon's Method. In order to reduce the integration 

time, especially with regard to mounting the routine onto microcomputers, the half 

angle f )  can be assumed small so that sin<f>=<f>.

Elliptical Patch

The analysis of the elliptical patch is used for the cases of oblique nozzles and 

elliptical patches. The method derived above for the circular patch is extended to 

derive the loading terms for a radial load acting on an elliptical patch by redefining 

Equations (4.8a,b) and integrating.
b=U 2

Figure 4.8 Radial Load acting on an Elliptical Patch

By considering a uniformly distributed radial load of intensity p , acting on an elliptical 

patch located symmetrically about the generator <ff= 0, and at a distance h  from one 

end of the vessel, then,

P  =

p  in the region -  < <j> < /r,

0

and ( h - h 0) <  x <  ( b +  b0) 

otherwise

where pi = a »a

(4.10)
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The boundary is the variation of x with <f> acting around the loaded area perimeter as 

is defined by:

bnB(</>])=  b — -J a ]  -  a2 sin2 <f>
a o

B(</>2) = b + — Jal -  a1 sin2 <f> 
an

(4.11a, b )

where. 0<<f><^\

As in the case of the circular patch, the loaded area is divided into a number of axial 

strips, the length of which are obtained from B(<f>\) and B(<fa) as shown in Figure 4.8. 

Therefore, substituting these limits into Equation (4.11), yields,

dx<J(f>r
' m m '

J B ( h )  JO l L  J

sin P"' sin^  y]al -  a 1 s\n2<J>d<f> (w=0,/w=l,2,3,...... )
mn

( mnx^

mn

v L j

mnb,

0

dxd<f>= —  f P  Pcos(«^)sin
Ln Jo

-  — s i n ^ ^ P  cos(m/>)sin(^^-Jal -  a 2 sin2 <t>d(j) (m,n= 1,2,3,.......)
L Jo anL

(A.U a ,b )

4.4.2 Moment Loading

As stated previously for the rectangular patch, there are two loading cases that 

require analysis, namely longitudinal and circumferential moment loading.

The moment loading cases have been derived for a rectangular patch earlier and the 

moment loading is assumed to be equivalent to a radial loading with a triangular 

pressure distribution. This assumption assumes that the attachment has the same 

degree of flexibility, as the vessel.

Circumferential Moment - Circular Area

For the case o f ‘circumferential moment’ loading M, uniformly distributed along a 

short distance in the longitudinal direction, acting over a circular area, the loading
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can be represented by a triangularly distributed radial load of maximum intensity p. 

For this case the loading can be expressed using the following expression.

in the region -  /?, < <j) < /?, and (b -  c2) < x < {b + c2)

0 otherwise

where fii =c/a.

(4.13)

ZZMTlJrJ

Figure 4.9 Circumferential moment load acting on a circular patch

The variation of x with respect to (f> is defined by Equation (4.7). Substituting the 

limits defined by these and the loading as defined above into Equation (4.9) (the first 

expansion for this from the rectangular patch) and integrating gives,

4 fB (t i ) rP p<j) .
pr = . £ —  sin(//^)sin  ̂mTDĈ

f t

8p  . mnb fP

dxd(j>

mn /?,
sin —— f  <f>sin(n<t>)sm(^~Jc2 - a 2 sin2 <f>d</> (m,«= 1,2,3,.... )

L Jo L v

(4.14a, b)
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Circumferential Moment - Elliptical Area

For the elliptical patch, subjected to the same circumferential moment loading, 

using the same assumptions as for the circular patch, the loading term can be 

expressed as:

P. = \

1
—  in the region- / / ,<  (f> < /r, and (b -b 0)< x < (b  + b0) 
A

0 otherwise

(4.15)

where p\ =a(/a. The variation of x with respect to <f> is defined by Equation (4.9) 

Substituting the limits defined by these and the loading as defined above into the first 

expansion for this from the rectangular patch and integrating gives,

• ( i= J _ p ,  »  £ ^ sinW )sin
r~ Jo {  L J  r

8 p  . mzib ms i n ^ ^  P  - a 2 s\n2 (f>d<f> (/n,w=l,2,3,.... )
L Jo anLmn

(4.16 a ,b )

■ T------------------------i-zaL--------1-----

Figure 4.10 Circumferential moment load acting on an elliptical patch

90



Longitudinal Moment - Circular Area

For the case of ‘longitudinal moment’ loading M, uniformly distributed along a 

short distance in the longitudinal direction, acting over a circular area, the loading 

can be represented by a triangularly distributed radial load of maximum intensity p. 

For this case the loading can be expressed using the following expression.

p x
-—  in the region -  /? <tf>< (5 and -  c < x'< c 
c

0 otherwise

(4.17)

where x'=x=L/2; P\-c/a  and p  is the maximum load intensity.

Figure 4.11 Longitudinal moment load acting on a circular patch

By following a similar procedure as before as noting the limits defined earlier, the 

following expressions for the Fourier load terms are obtained,

4 2) rp px' . ( - —sin 2mwi)chtde
Ln> » *» c '. L )

(n=0,/w=l,2,3,.... )
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=  ¡ó  ^ “ s(»í>)s¡n

= 1)” r  cos(/;^)(sin(^^-■Jc2 -  a2 sin2
m k  c Jo v L J

V^2 ~ ¿*2 sin2 <j> c o s ^ Ĵc2 -  a2 sin2 (/w,w= 1,2,3,...... )

(4.18a,6)

Longitudinal Moment - Elliptical Area

For the case of longitudinal moment loading M, uniformly distributed along a short 

distance in the longitudinal direction, acting over an elliptical area, the loading can 

be represented by a triangularly distributed radial load of maximum intensity p. It is 

assumed that the radial loads are proportional to the distance from x=b=L/2. For 

this case the loading can be expressed using the following expression.

px-in the region -  p x <<¡><px and (b -b 0)<x'<(b + b0)
K

0 otherwise

(4.19)

where x'=x-U2; p\=a</a and p  is the maximum load intensity.

Figure 4.12 Longitudinal moment load acting on an elliptical patch
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By following a similar procedure as before as noting the limits defined earlier, the 

following expressions for the Fourier load terms are obtained,

dx'd<f>4 jy'1 px' cm f 2m ax')
Ln bo

Mil
l L )

pL
m1x ib(. o

( - i r / ( s i n r2m ^
V  « 0anL

-y]al -  a2 sin2 <f>

i  2 m7rb0 r ~2-----2 v '2 , f  2 mxb0 f—2----- 2 • 2------ -Ja0 -  a sin <pcos ------ -*/«<, -  «sin <j)
v «0L V anLv «0

= ± r  r  ^ c o s ^ s i n f ^ W
Jo b0 {  L J

= (-D mr  cos(/?^)(sini — ^/a02 - a 2 sin2 ^m 7T n /.

d<f> (n=0,/w=l,2,3,.... )

m n b,

 ̂2rmd)n I 5 , f  2 mnbn
\  aoL

'o / 2 TT 2 mxb0 I 2 2 . 2 ,-■y/a0 - a  sin ^cos -------- y a 0 ~ a  sin 9
v aoL

Y\
d</>

(/w,«=l,2,3,...... )

(4.20a,A)

4.5 Accuracy of Solution

The inherent problem with any numerical solution is that of accuracy, and in this type 

of solution there are two distinct sources of error present. The first is in the 

summation of each of the components for the displacements and stress resultants and 

the second appears in the numerical integration routine. It is important to note that 

the numerical integration routine is evaluated for every term of the Pn,m summation. It 

is therefore of critical importance that the number of strips increases in proportion to 

the particular harmonic being evaluated. This is handled by means of including an 

algorithm to step up the number of strips in accordance with both the loaded patch 

size and the maximum harmonic order. The harmonic operates in the region 0<<|)<7i, 

and the half patch angle is given as /?. Since the loading function is of a cosine form 

and represents, in this case, a symmetrically loaded area, the minimum number of 

strips for a given harmonic can be obtained from the ratio of half patch angle to half
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wave length. This is then modified in a suitable form for incorporation into the 

Simpson's Rule numerical integration routine.

N -INTmin

\
M +1

\  K  J
(x4) + l

(4.21)

The above equation shows the minimum number of strips, Nmm, to be 5 for the first 

harmonic with a small patch size. As the patch size or harmonic order rises, the 

number of strips increases proportionally (ie. «=2,3,4,.. ^¡„=9,13,17,..) thereby 

maintaining sufficient accuracy.

A detailed description of the significance of varying the number of terms for the 

Fourier Series summations is given by Duthie and Tooth191.

4.6 Some Illustrative Examples 

Example 1 - Radial Load on a Circular Area

The first example is of a direct radial load applied to a 300mm dia. circular pad 

attached at the mid-point of a 2m diameter, 10mm thick, 10m long cylindrical steel 

vessel (E=200,000 N/mm2, v= 0.3). A value of 10,000N is applied to the pad and the 

displacements and stress resultants calculated.

The results shown in Figures 4.13a,b describe the variation of the component stress 

resultants around the profile x=LI2. The graphs shown in Figures 4.13c,d show the 

variation along the length of a generator located from the centre of the patch. The 

results presented also include the ‘equivalent’ square patch values as obtained from a 

Fourier series representation of the BS5500 patch (c=0.85r0) and the ASME VIII 

patch (c=0.875/o).

A finite element solution is also included, modelling the above geometry using 80 

ANSYS SHELL61 axisymmetric harmonic conical shell elements. The direct radial 

loading is again expressed as a Fourier expansion with 100 summations allowing non- 

axisymmetric loads to be represented.
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Direct Stress Resultants Around Profile at X=L/2
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Figure 4.13a Direct stress resultants for radial load on circular patch example
around profile atx=L/2

Moment Stress Resultants Around Profile (X=L/2)
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Figure 4.13b Moment stress resultants for radial load on circular patch example
around profile at x=IV2
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Figure 4.13c Direct stress resultants for radial load on circular patch example
along generator at </>=0

Figure 4.13d Moment stress resultants for radial load on circular patch example
along generator at <f>=0

From these graphs (Figures 4.13a-d), it can be seen that for the direct stress 

resultants, Nx and N+ the circular patch solution yields results some 1 -4% higher than
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those values obtained from the other sources. For the case of moment stress 

resultants, the results from the circular patch were between 1-2% higher with the 

exception of M^ where BS5500 proved higher, this, of course, depending on which 

direction the results profile was taken.

However, differences in the displacements for the various approaches were found 

negligible for the particular example chosen.

Example 2 - Radial and Moment Loads on a Circular Area 

The second example, first published experimentally by Shoessow and Kooistra1651 was 

chosen as a second comparison for the ‘circular patch’ solution. The experimental 

vessel used by Shoessow and Koositra has the following dimensions in Imperial units: 

Mean radius R=28 in., length ¿=71 in., wall thickness t= 1.3 in., outer diameter of 

attachment pipe ^=11.75 in., length of pipe L0=90 in. with material property values 

E=3xl07 lb/in2 and Poisson's ratio, v = 0.3.

This vessel was subjected to three separate load cases: a radial load, ¿*=94,900 lbs, a 

circumferential moment, Mc=410,000 in-lbs and a longitudinal moment, ML=A 10,000 

in-lbs. Results from several different methods of analysis are also tabulated along with 

those from experimental tests. These comprise the following methods.

Bijlaard's Method: assumes the pipe cross section to be an equivalent square. In this 

case, the pipe outer radius, c=5.875in. was used to evaluate the parameters from 

Bijlaard's curves. The equivalent square half patch length is 0.875c=5.1406in.

WRC Bulletin 107 Method: Since this is an extended representation of the Bijlaard 

method it also uses the pipe outer radius, /■0=5.875in. and an equivalent square half 

patch length is 0.875r0=5.1406in.

BS 5500 Appendix G: In this case, the mean radius of the pipe, rm=5.4375in. is used 

to find an equivalent square with sides of half length equal to 0.85rm=4.622in.
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Finite Element Method: Runs were performed using the ANSYS finite element 

program using a quarter symmetric model using 8-noded shell elements. The load is 

applied as a pressure acting over a circular area based on the pipe mean radius, 

c=5.4375in. The results for the moment loading are not presented here but could be 

obtained using the ANSYS harmonic element with non-axisymmetric loading 

capability.

Fourier Series Solutions: In each of the cases, ‘FORTRAN’ programs using the 

solutions described herein, were used with 100 terms in each series with 10 

integration steps within each summation. These results are based on the mean radius 

of patch, c=5.4375in. ‘RECTAN’ shows the results for a square BS patch using the 

Fourier solution, whilst ‘CIRCLE’ refers to the present circular/elliptical patch 

solution.

Table 4.1 Comparison o f alternative methods o f analysis for radial loading (P) for  
circular patch

M J M cc M J M cc - N t  /  (Mc /  Rc) - N x / ( M e / R c ) c r ,  ( p s i ) c r ,  ( p s i )

Shoessow &  
Kooistra 

(experiments)
- - - - - 3 1 0 0 0 - 2 4 0 0 0

Bijlaard 0.079 0 . 0 5 1 2 . 3 5 6 2 . 6 8 8 - 3 2 6 1 0 - 2 4 2 0 0

W RC 107 0 . 0 9 3 0 . 0 6 1 2 . 6 5 4 3 . 4 3 2 - 3 8 3 2 1 - 2 9 6 3 5

BS 5500 0 . 0 9 4 0 . 0 6 2 2 . 9 5 9 2 . 8 1 5 - 3 9 2 8 5 - 2 8 1 9 5

FE Analysis - - - - - 3 6 6 7 7 - 3 5 0 8 8

RECTAN 0 . 0 9 0 0 . 0 6 5 2 . 9 9 1 2 . 9 4 8 - 3 8 2 5 0 - 2 9 5 2 5

CIRCLE 0 . 0 8 8 0 . 0 6 4 3 . 3 5 3 2 . 9 2 4 - 3 8 4 7 4 - 2 9 3 2 9

Table 4.2. Comparison o f alternative methods o f analysis for circumferential 
loading (MJ for circular patch

M J M cc M J M c - N f  /  (Mc t Rc) - N x l { M c IR c ) c t ,  ( p s i ) o x ( p s i )

Shoessow &  
Kooistra 

(experiments)
- - -

- 2 5 0 0 0 +

- 2 7 0 0 0 ++

- 1 6 0 0 0 +

- 2 3 5 0 0 ++

Bijlaard 0 . 0 8 1 0 . 0 4 2 0 . 8 3 2 1 . 4 8 2 - 2 3 2 8 0 - 1 4 2 2 0

W RC 107 0 . 0 9 4 0 . 0 4 0 0 . 8 6 6 1 . 0 9 2 - 2 6 9 9 5 - 1 3 0 2 1

BS 5500 0 . 1 1 2 0 . 0 5 6 0 . 9 2 9 1 . 0 3 8 - 3 1 9 7 0 - 1 7 2 6 6

RECTAN 0 . 1 0 9 0 . 0 6 0 0 . 7 6 5 1 . 3 9 3 - 3 0 6 7 5 - 1 8 9 3 3

CIRCLE 0 . 1 0 2 0 . 0 6 7 0 . 9 9 8 1 . 5 6 0 - 2 9 2 9 4 - 2 1 0 6 5
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Table 4.3. Comparison of alternative methods of analysis for longitudinal moment 
loading (Mi) for circular patch. ' _______________________________________

M , / M cc M x / M cc - N 4 / ( M C/ R c ) - N J t M J R c ) o 4 (psi) crx (psi)
Shoessow & 

Kooistra 
(experiments)

- - - -
-1 3 5 0 0 + 

-1 3 0 0 0 ^
-1 6 5 0 0 + 

-1 6 0 0 0 ^

Bijlaard 0 .039 0 .048 2 .592 1.482 -1 3 9 1 0 -1 4 6 2 0
WRC 107 0 .040 0 .066 2 .592 1.092 -16141 -19282
BS 5500 0.061 0 .065 1.787 1.038 -20194 -19569

RECTAN 0 .049 0 .074 2.753 1.393 -18781 -21578
CIRCLE 0 .056 0 .068 2.871 1.560 -2 0 9 7 7 -2 0 1 4 7

• Maximum value of outer surface stress.
• +,++ Denote the stress calculated at the top and inverted positions respectively 

from test data.
For the radial load case, it can be seen from Table 4.1 that the codes methods and the 

results from the new solution (CIRCLE) are in good agreement but the analytical 

solutions are higher than the experimentally measured results. This is probably due to 

the unclear exact position of the gauges on an edge, compared with the maximum 

location, which is at the centre of the patch, for the analytical methods. The moment 

load cases show better agreement, since the analytical methods evaluate the maximum 

at the edge of the loaded area. Again, the new solution provides results slightly higher 

than the experimental values. Thus, the new method can be stated to be conservative 

in design.

Example 3 - Radial and Moment Loads on an Elliptical Area 

The general solution for the elliptical patch enables the problem of an attached pipe or 

nozzle, which has its axis inclined to the main vessel centrelines and generators, to be 

analysed. Since no available data exists for direct comparison for the elliptical patch 

case, a typical vessel has been analysed and graphs have been provided Figures 4.14- 

4.16. These show the variation of the maximum stress values for a range of ratios of 

the major and minor axes of the ellipse.

For this case, the vessel parameters are as follows: mean vessel radius R= 1000mm; 

thickness of vessel /=10mm; length of vessel Z,=8000mm; elastic modulus 

£=200,000N/mm2; Poisson's ratio v=0.3.
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The patch size ratio a jb a (i.e. circumferential/axial half lengths) has been varied from

0.643 to 1.556. When a jb 0 > 1 the computed values of stress correspond to a 150 

mm outer diameter pipe inclined in the circumferential direction. The maximum ratio 

of ao/b0 = 1.556 corresponds to an oblique angle of approximately 50° from the 

normal. This value is equal to the maximum recommended oblique angle for a nozzle 

in BS 5500. When ajbo < 1 the values correspond to the same diameter pipe, but this 

time inclined in the axial direction. The minimum ratio of aJbQ = 0.644 again is equal 

to a maximum oblique angle of 50°.

The stresses have been derived for the three load systems; radial load, circumferential

moment and longitudinal moment for the range of ajbo values quoted. The same

magnitude of load was applied to each elliptical patch in turn. In each case the load

was applied at the vessel centre b-L/2. The values of these were as follows:

Total radial load, P  = 10,000 N
Circumferential moment, Mc = 1,000,000 Nmm 
Axial moment, Ml = 1,000,000 Nmm

The maximum values of stress have been computed for these three load cases using 

the following approaches:

(a) The analysis presented in this chapter for the elliptical patch, representing the load 

as indicated, by a double Fourier series technique;

(b) Assuming the ellipse is equivalent to a rectangle of side 0.84x the major and 

minor axes of the ellipse (this ratio is proposed by BS 5500 for this case). It is 

identified as ‘Equiv. Rect.’ Using the equivalent rectangle, the radial loading is 

assumed to be distributed uniformly over the patch and the moment loading is 

assumed to produce a triangular distribution of radial loads. The double Fourier series 

is again used;

(c) Using the same equivalent rectangle and the BS 5500 Charts. In this the radial 

loading is assumed to be uniformly distributed and the moment loading to be 

equivalent to two equal & opposite radial load patches. This is shown as ‘BS 5500’
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Radial loading (10.000N)

Figure 4.14 Maximum stress variation for elliptical patch subject to radial load

Circumferential moment (1,000,000Nmm)

Figure 4.15 Maximum stress variation for elliptical patch subject to
circumferential moment
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Longitudinal moment (1,000,000Nmm)

Figure 4.16 Maximum stress variation for elliptical patch subject to
longitudinal moment

Figures (4.14-16) show the variation of the maximum stress in the vessel for the three 

load cases with varying a0/b0 ratios for the three different analyses. It is noted that, 

from the graphs presented herein, that the equivalent rectangle and the BS 5500 

methods produce higher stresses that the more exact ‘elliptical’ solution. They are 

therefore conservative and, in general, are acceptable for most design assessments. In 

certain cases, however, it may be necessary to obtain a more realistic value of stress 

in, for example, a fatigue assessment. The present solution offers such an approach.

4.7 Thermal Loading on Cylindrical Shells

The derived solution in Section 3 of the general shell equations may be used to solve 

a variety of steady state thermally loaded problems, provided a suitable Fourier 

expansion can be found to describe the temperature profile desired. As a means of 

illustration of how the Fourier series approach may be used, two examples are 

described in detail. The first is a rather hypothetical case where one half of the vessel 

is maintained at temperature 7), with the other half at temperature 7?. The second 

case is the more realistic one of a ‘hot-spot’ acting at a certain cylinder location.
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4.7.1 Uniform Temperature Loading over Discrete Areas of A Cylinder
For this case, the left hand of the cylinder is maintained at a temperature of 300°C

while the other half is at 0°C. At the centre of the cylinder there is assumed to be a 

rapid change of temperature from 300°C to 0°C shown in Figure 4.17. While it is 

appreciated that a change of temperature of this type is impossible in practice, 

because of the heat transfer process, it does provide a severe case for the Fourier 

series solution.

<-------------------------------- i

Temp=300°C Temp=0°C

......................... .... ........■■■■....... .

Figure 4.17 Partially heated cylinder

Furthermore, it is possible to obtain another solution to this hypothetical case using 

the edge bending equations from classical shell theory. In this, the two halves of the 

cylinder are allowed to expand freely. The displacements and slopes at x=L/2 are then 

matched by the application of self-equilibrating forces - in this case, a radial line load 

around the cylinder at x=L/2.

The temperature term, T, representing this profile is given by:

T = to, (0 < <j> < 2tc), (0 < x < U 2 )

= 0, otherwise
(4 .22 )

To compare the two approaches, a steel cylinder of length 4000mm and 1500mm 

diameter with 10mm wall thickness is considered. The temperature in the region 0 < x 

< 2000 is at 300°C whilst the remainder of the cylinder is at 0°C.

The following table shows the comparison of the two solutions, the figures in 

parenthesis being obtained from the Fourier solution using 500 terms in each series.
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( m m )

w
( m m )

Mx
( N m m / m m ) ( N m m / m m )

N*
( N / m m )

0 1 . 3 5 0

( 1 . 3 5 0 )

0.000
( - 0 . 0 3 9 )

0.000
( - 0 . 0 1 2 )

3 4 5 6

( 4 . 4 0 )

2 1 . 3 9 0

( 1 . 3 9 0 )

3 0 1 . 3

( 2 9 4 . 1 )

9 0 . 4 0

( 8 2 . 2 2 )

3 3 5 3

( 1 5 6 4 )

6 1 . 4 7 0

( 1 . 4 7 0 )

8 5 0 . 9

( 8 5 1 . 1 )

2 5 5 . 3

( 2 5 5 . 3 )

3 1 4 9

( 3 5 2 4 )

10 1 . 5 4 9

( 1 . 5 4 9 )

1 3 3 3

( 1 3 3 7 )

4 0 0 . 0

( 4 0 1 . 1 )

2 9 4 7

( 3 3 9 2 )

20 1 . 7 4 1

( 1 . 7 4 1 )

2 2 7 3

( 2 2 7 3 )

6 8 2 . 0

( 6 8 1 . 8 )

2 4 5 6

( 2 4 2 3 )

60 2 . 3 5 2

( 2 . 3 5 2 )

3 3 3 7

( 3 3 3 7 )

1 0 0 1

( 1 0 0 1 )

8 9 2 . 2

( 8 9 6 . 1 )

100 1 2 . 6 7 4  

Ü ( 2 . 6 7 4 )

2 3 6 2

( 2 3 6 2 )

7 0 8 . 5

( 7 0 8 . 5 )

6 7 . 7 1

( 6 6 . 2 9 )

Table 4.4. Classical infinite heated cylinder and Fourier expansion comparison

*  I n  t h i s  c a s e ,  x  is  m e a s u r e d  f r o m  t h e  c e n t r e l i n e  a t  t h e  h e a t  j u n c t i o n

The comparison is excellent for all values with the exception of N+ close to the 

hot/cold junction. The reason for this is that at this junction, the temperature as 

predicted by the Fourier series solution is part way between 300°C and 0°C. The N+ 

values reflects this and shows a reduction very close to the junction in readiness to the 

compressive value in the cold section. The classical result goes from -3456N/mm to 

+3456N/mm in zero length. However because of the nature of the Fourier series 

solution, it does take some finite length for the approximation to map the step change. 

For real temperature distributions, it is felt that the Fourier analysis would cope quite 

adequately.

4.7.2 T he‘Hot-Spot’
The case of the localised ‘hot-spot’ provides a more realistic test of the Fourier series 

method. The hot spot may take the form of some predetermined shape which will 

represent the actual steady-state condition. In this particular problem, the temperature 

function will take the form of a ‘bell-shaped’ temperature profile acting over a 

rectangular (or square) section at the cylinder profile x-b and at the zenith <|>=7t of the 

vessel as shown in Figure 4.18. This function, first proposed by Wilson1621, has a 

variation in both the axial and circumferential directions. It is restricted to the
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rectangular patch for this case, that is (n-fi) < <(> < (n+JJ), (b-c) < x < (b+c) and can 

be represented in this region by the following function,

Such a distribution may arise, for example, from a flow restriction within a vessel, or 

from loss of insulation. It is expressed in Fourier series form and then incorporated 

into the solution.

Figure 4.18 Bell shaped temperature distribution over hot-spot

As an illustrative example, the bell-shaped hot spot was applied to the steel cylinder 

with dimensions as per Section 4.7.1. The hot spot was applied over a square patch 

300x300 mm centred about the vessel profile (x=L/2) and the zenith (<}>=7i) with a 

maximum temperature, td= 150°C. The radial displacements w, and the stress 

resultants and stresses were obtained for this thermal loading.

= 0 otherwise

(4.23)
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Figure 4.19b Axial stresses in heated zone

These results were compared with those obtained from the ANSYS finite element 

program. One quarter of the shell was modelled using quadrilateral shell elements 

with both membrane and bending capabilities. Three different models were used and

detailed below.

M odel Element
Type

Elements in 
Heated Zone

Total
Elements

Total
Nodes

Maximum
Displacement

Max. Axial 
Stress N/mm2

1 4-noded 9x9 586 567 1.04502 m m -261 .9 58
2 8-noded 9x9 586 1801 1.04536 m m -2 6 2 .8 1 6
3 8-noded 24x24 855 969 1.04841 m m -264 .0 92
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These analyses were performed by the present author in the latter part of 1986 using a 

DEC Vax 11/750. The cpu times for each of the runs were lhrlOmins, 7hrs50mins 

and 6hrs20mins respectively. In todays terms, each solution could be completed in a 

matter of minutes. The most interesting comparison results from comparison of the 

timings between the FE and the Fourier solution. With the FE model, the whole shell 

has to be considered and a complete displacement and stress pattern is obtained. In 

the case of the Fourier series solution, if maximum stress regions can be identified, 

then it is only necessary to derive stresses and displacements at these points. The 

solution time for the Fourier series is only a fraction of the time required for a full FE 

solution - 13 seconds per point compared with a total of 6hrs20mins. Obviously as 

the power of the computer increases these differentials will reduce, however, the 

Fourier series will always be the more efficient if the location of the maximum is 

already known.

4.8 Finite Element Modelling

The use of the finite element techinique is fairly widespread in the design of pressure 

vessels. It is primarily used to examine local loads acting through rigid attachments 

and piping connections. In each of these, three mutually perpendicular forces and 

three mutually perpendicuar moments may act simultaneously to transmit the local 

load into the shell structure. The finite element method is used to model both the 

geometry, which is discretised into elements and thereafter to apply the loading into 

the structure. The problem is then solved in terms of stiffness and then the solution is 

evaluated to give displacements, strains and, lastly, stresses.

The finite element techinique is of use since it allows the exact geometry to be 

modelled. This feature of the process makes use of sophisticated modelling 

commands which are now available in most modem systems. These include features 

such as arcing, dragging, calculation of exact intersections of lines and planes and 

volumes, component sweeping, extrusion and so on. By suitable application of these
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utilities within the system, it is possible to produce a realistic model for most pressure 

vessel problems.

After the geometry has been established, the main shapes are discretized to provide 

the finite element mesh. Experience is required when deciding on the level of 

refinement to use in a particular situation. Often, it is helpful to have an indication of 

the expected stress system, so that a sufficient number of elements are concentrated in 

the required area of interest. If specific stress concentations are to be examined, the 

number of elements may be high (say greater than 10,000), however, a large number 

of pressure vessel problems can be reduced to a simpler model using the physical 

properties of the system, e g. symmetry, axisymmetry and so on.

With regard to modelling local loading problems, such as the patch-type loading on 

cylindrical shells, these may be simulated using several different finite element 

techniques, each making use of a specific physical property of the system.

4.8.1 Modelling using 2D Axisy inmetric Shells

This class of problem models the vessel as a series of connected line segments and 

assumes the geometry is a solid of revolution. This type of analysis is most commonly 

used to examine shell/head discontinuity problems under internal pressure. The main 

restrictions are that no account can be taken of the geometry of openings or 

attachments that are non-axisymmetric. In addition, the thickness of each shell is 

constant, therefore, it is difficult to look at localised stresses, arising from say, weld 

build up. In addition, the thickness of the shell must be small in relation to its radius 

(say RJt > 10), to satisfy the assumptions inherent in shell analysis.

A facility exists in most modem codes to allow the input of non-axisymetric loads 

which can be fitted with a Fourier-type series. In this, a sine or cosine series is used to 

model the loading and using the harmonic postprocessor, the resulting stresses can be 

found at specific locations by sweeping around the shell at chosen discrete angles (say 

every 5°). Whilst this type of analysis has certain restrictions, it can be of use in
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initially examining a problem before expending considerable effort in a much more 

complex analysis.

4.8.2 Modelling using 3D Shells

The use of 3D isoparametric shell elements allows the analyst to model the problem in 

three dimensions. This type of analysis is the most common for pressure vessel 

problems. The main restrictions are similar to those of the axisymmetric shell elements 

and include the RJt ratio, limited to greater than 10, element shape limitations on 

aspect ratio and skew angle, limitations on connected element wall thickness, since 

only a centreline approach is used. A linear stress distribution is implied through the 

thickness of the shell. Since only the midsurface of the shell need be modelled, results 

are output on a surface basis. Results are available for the top, middle or bottom 

surface and this must be defined prior to outputting numerical values or contour 

plots. However, care must be taken in establishing which surface is top or bottom 

especially when stress intensity values are requested.

Even with the above restrictions, the major advantage of this type of analysis is that a 

truly three dimensional loading may be applied directly to the model. In addition, 

graphical contour plots are available on each of the three surfaces which can be 

directly viewed to give a ‘full-field’ description of the stress distribution.

4.8.3 Modelling using 3D Bricks

The three dimensional brick model is used only when the three dimensional shell 

model proves inadequate. These situations arise when changes in wall thickness occur 

and through thickness effects are being investigated. Examples of these analyses are, 

nozzle/shell intersections with and without pads, areas of weld build-up, thick plate to 

thin shell attachments, and so on. Using 3D brick elements demands that the 

geometry be described in terms of volumes, therefore the modelling time associated 

with this type of analysis is considerably greater. However, this method is the only 

available techinque for obtaining non-linear through thicknesses effects since it 

discretises the vessel thickness explicitly.
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In addition, a major point of concern is the process whereby stress obtained from a 

3D brick model are ‘linearised’ in order to obtain membrane and bending stresses 

which can be assessed against the requirements of pressure vessel codes such as 

BS5500 and ASME VIII Division 2. Prior to the advent of FEA, it was usually 

possible, with simple mechanics or shell discontinuity analysis, to separate primary 

and secondary stress, in the light of the fundamental failure mechanisms which the 

code addresses, since the equilibrium calculations were done manually. This is not 

obvious with finite element results, and in particular with the results of using 

continuum elements.

Figure 4.20 Stress linearisation through a 3D vessel wall

The linearisation procedure is based on beam bending stress and attempts to define an 

equivalent linear stress distribution on a classification line (CL); thus if z measures 

distance along the CL then the equivalent linearised stress is,

a L = az + b

where the coefficients a and b are determined from the calculated finite element 

stresses. This can be accomplished from the conditions that the total bending moment 

for the actual and linearised bending stresses must be the same, and that the total 

direct force from the linearised stress should be zero. The membrane stress is
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calculated as the average stress through the wall and the bending stress is found by 

evaluating the linearised stress at the inner and outer surfaces and subtracting the 

membrane. The peak stress is obtained from,

O p  O  ■ O m i  (7b

However, there is much debate regarding which stresses (or stress intensities) should 

be linearised and which classification line (or plane) should be used, and indeed, what 

should be done with the resulting linearised stresses. Therefore, these additional 

difficulties compound the analysis of local load problems using 3D brick elements.

4.8.4 Modelling Local Load Problems

When modelling local load problems, is is imperative that the geometry be as accurate 

as possible. In addition, since the stress distributions die out fairly rapidly, (within 

i j r t  to 3 y[Rt). It is thus essential that a high number of elements be concentrated 

around the local load region.

If the load is to be input via a nozzle, the nozzle intersection geometry may be 

modelled explicitly and the load applied at some known point away from the 

discontinuity. For example, a radial load on the nozzle may be applied at a distance 

from the intersection. At this point, the loads have often been obtained from a 

separate piping system analysis where the nozzle has bee treated as an anchor. 

Therefore, when considering the stresses in the shell, the loads are applied at a known 

point at the centre of the nozzle axis. By employing multi-point constraints (i.e. 

treating the applied load point as rigid), the nozzle is thus forced to transfer the load 

into the shell. In this manner, the correct nozzle flexibility is introduced.

If the load is input via an attachment and pad, the correct method of analysis is to 

model both the attachment and pad and use contact elements to introduce the 

appropriate interface pressures which transfer the load to the shell. This method is 

quite onerous and involves a high degree of competence in using the finite element 

system. More often, these problems are simplified by assuming the attachments and 

pad are considerably more rigid than the vessel shell. The attachment and pad are
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neglected and the load is directly applied to the shell via pressure loads or via master- 

slave multi-point constraints. Even so, the distribution of the interface pressure 

remains unknown.

For the purposes of this work, the three dimensional shell elements have been used 

throughout since a linear through thickness stress distribution is assumed. Even using 

this simplifying assumption, run times for the models can still be high, this being 

attributed to the number of elements required in order to achieve the correct mesh 

refinement.

4.9 Comments

The Fourier series approach has been used with the Sanders shell theory to provide a 

method which can be used to analyse stresses and displacements occurring in the 

regions local to square, rectangular, circular and elliptical patch attachments on 

cylindrical vessels. Loading may be either direct radial force or moment or thermal 

loading.

The solution has been used to compare the well-tried BS 5500 and ASME VIII 

approaches of using an equivalent ‘square’ patch to evaluate the required values. In 

general, the circular patch solution yielded results, which were 1-4% higher than the 

corresponding equivalent square patch for force resultants and 1-2% higher for 

moment resultants. However, differences in the displacements for the various 

approaches were found negligible for the particular example chosen. Further 

validation of the analysis was provided by the finite element results.

The solution can handle the cases where moments are applied through a circular patch 

in both the x and <|) directions and ultimately in the 45° plane. The solution is also able 

to analyse the case of loading applied to an annular pad for loading transmitted from, 

say, a support fabricated from pipe welded directly to the shell. This presents a direct 

method for the analysis of intersecting structures such as pressure vessel shells, 

nozzles and supports, oil rig nodes and so on. The solution, as shown earlier, by
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means of modification of the boundary conditions for the case of the elliptical patch, 

by redefining the 5(<J>) equations, yields a solution for the problem of oblique 

attachments. Here the BS values are always conservative.

The case of the steady-state thermal patch has also been addressed. Although only a 

few simple cases are presented herein, the same capability exists for extension to 

other problems as for the radial load case, since the form of representation is the 

same. The solution by Duthie and Tooth gives many more examples of the different 

loading functions, which may be applied. One interesting case is that of the stress 

relieving of a nozzle, whereby the heat is input via a thermal pad often annular in 

form. The circular patch solution can be combined with the thermal extensions to the 

general shell equations and Fourier series solution to solve this problem using 

superposition.

This work was published by the author in References [45], [59], [66] and [67],

113



5 ANALYSIS OF CYLINDRICAL SHELLS ON SADDLE SUPPORTS 114

5.1 INTRODUCTION 114
5.2 INTERFACE PRESSURE DISTRIBUTION 117
5.3 Compatibility of Displacements for Two Bodies in Contact 122
5.4 Equilibrium Equations 124
5.5 Interface Pressure and Stress Analysis Solutions 124
5.6 C h o ic e  &  C o m p a r is o n  o f  L o a d in g  S y s t e m

-Line, Patch& Line+Patch Models 125
5.7 Computer Programs 126



5 ANALYSIS OF CYLINDRICAL SHELLS ON SADDLE 
SUPPORTS

5.1 Introduction
The analysis of a horizontal cylindrical vessel supported on twin saddle supports could 

be assumed to be similar to the local loading problem since the contact area is 

normally a rectangular patch. However, since the encompassed arc angle, often 

denoted the ‘saddle wrapround angle’ is relatively large (in the range 60°to 180°) 

contact between the vessel and the support cannot be assumed to produce a uniform 

value of interface pressure. When a vessel is subjected to local loading over a small 

region of its surface it is often assumed that the loading is uniformly distributed over 

the small region of the bracket or lifting lug. This implies that the loading system 

takes up the displaced shape of the vessel surface in the loaded region. This is one of 

the main assumptions made in the previous chapter and is also relevant in the context 

of BS5500 Annex G.

However, this is clearly not the case when a vessel is loaded through a rigid 

attachment such as a saddle support and over a large wrapround angle, since contact 

between the vessel and the attachment may be lost in some regions due to the relative 

flexibility of the vessel and possible lack of fit of the saddle. It has been well 

established, both by analytical and experimental means, that highly concentrated 

reaction forces occur at the horns of saddle supports. This occurs for saddles which 

are both welded and loose fitting, however, for the latter is has been noted that 

contact may be lost over a small arc immediately below the saddle horn. Therefore, it 

is fundamental that the correct distribution of the interface pressures be identified and 

accurately determined.

A general summary of the available solutions developed at Strathclyde is shown. The 

development of the method and extension of a Fortran program for the analysis of this 

problem is presented in detail although much of the presentation can be found in the 

work of Ongin|, Motashar1161, Warrender157' and Tolson1581. It is worth summarising 

the contributions made by each of these researchers towards a solution. The problem
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was first tackled by Forbes1841 during 1964 to 1967, who provided the original 

approach. He developed an ALGOL program based on the shell equations of Fliigge. 

Thereafter, his work was modified by Duthie and changed slightly by White. Ong 

updated the work for Sanders' equations and developed the code for the analysis of an 

unstiffened cylindrical shell either simply supported at it ends or supported on twin 

saddles. The program had the capability of taking into consideration the ‘out-of- 

roundness’ of the shell, this being caused by poor workmanship or as a result of a 

local dent. The out-of-roundness was modelled using a Fourier series fit to a number 

of radial measurements at discrete points around the circumference on up to five 

profiles along the shell. The program could also handle self-weight and hydrostatic 

loading conditions in conjunction with some of the local load cases mentioned earlier. 

In addition, the case of side loads can also be accommodated. The solution assumed 

discrete areas of contact around the saddle in the circumferential direction but 

assumed uniform contact across the width. The program was developed using DEC 

Fortran 77 for a VAX computer running VMS.

Warrender utilised Ong's program to study the case of the GRP vessel with chopped 

strand mat construction. For that case, the material is assumed homogeneous and 

isotropic, therefore allowing a single equivalent Young's modulus and Poisson's ratio 

to be input. His work included comparisons of experimental and theoretical strain 

values for the rigid support. Since the relative flexibilities of the GRP and steel saddles 

were quite different, a rubber insert was used by Warrender to ‘cushion’ the vessel 

and therefore reduce the maximum stress levels at the horn. This simplified analysis 

was incorporated into the program to allow the rubber interface solution to be 

assessed. The present author developed the coding for Warrender to allow the 

inclusion of friction to be introduced to the contact area between the vessel and the 

saddle. This restricted the movement of the saddle in the circumferential direction in 

proportion to the reaction forces present at the point of contact. As in the program 

developed by Ong, Warrender assumed uniform contact across the saddle width.
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Motashar developed a similar solution to Ong's program but for the perfectly circular 

cylindrical vessel supported on twin saddles. However, his main interest was in the 

distribution of the interface pressure around the circumference and across the width. 

The saddle area was sub-divided into various ‘meshes’ or grids and the relative merits 

examined. He concluded that there were some high interface peaks found at the edges 

of the saddles but a general uniformity across the width for most cases. To a certain 

extent, the accuracy of the solution depended on the number of discrete areas and the 

number of Fourier series terms used to model the step changes. Motashar devoted a 

large proportion of his time to examining solution convergence and the sensitivity to 

the numbers of terms in the axial and circumferential directions. Some finite element 

work was carried out to examine the effects of the saddle flexibility. This work was an 

extension of both White and Ong.

Tolson1581 provided a further version of the computer programs to run on the SUN 

workstation running UNIX. Her analysis included the case of the saddle support not 

welded to the vessel and incorporated the use of friction effects. She also included the 

discretisation of the saddle across the width as used by Motashar. Using the finite 

element method, the flexibility of the steel saddle with rubber interface was modelled, 

this being somewhat more realistic than the simplified analysis carried out by 

Warrender. But most significantly, her contribution was to extend the analysis to 

cover the case of the orthotropic GRP vessel containing a number of composite 

layers. Much of her work was verified by her own experiments carried out on full-size 

vessels.

In this section, the general solution is summarised and presented for the saddle 

support problem. This consists of two main steps, the first being the determination of 

the interface pressures between the saddle and vessel. In the second step, the 

interface pressures or reactions are applied as known external forces to the case of a 

cylinder which is simply supported at its ends. The resulting stresses and 

displacements may therefore be determined at any point on the vessel. Since there is 

no closed form solution to the determination of the saddle/vessel interface pressures
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an appropriate solution must be obtained by assuming that the distribution of the 

pressure can be simulated by a finite number of unknown discrete forces.

The following assumptions are made.

1. Deformations are small.
2. The vessel and support are linear elastic.
3. The contacting surfaces are smooth with matching curvatures and thus have 

continuous first derivatives.
4. Each contact node is capable of exerting normal and tangential reaction forces.
5 For the present case, the interface pressure distribution is assumed constant across 

the saddle width. However, Motashar and Tolson assumed a discretized variation 
across the width.

6. There is no relative slip between contact nodes.

5.2 Interface Pressure Distribution

The interface pressure distribution and its modelling presents a key area of 

investigation in the saddle support problem. If it is not modelled correctly, the 

resulting stresses will not be realistic. If the distribution is incorrect, the maximum 

stresses may occur at locations other than the horn, typically beneath the saddle in 

some cases. This implies that, in real cases, a fatigue crack could initiate and 

propogate undetected, originating from the weld on the internal underside of the 

saddle. If the contact interface pressure distribution is correct but has the wrong 

magnitude, then the determination of the fatigue life may be in error by a significantly 

large amount since the allowable fatigue life is plotted against stress range on a log- 

log scale.

In order to determine the interface pressures between the saddle and the vessel, the 

saddle contact area is divided into a number of discrete areas, each of which is subject 

to unknown uniformly distributed pressures in both the radial and tangential 

directions. For ease of calculation, the early work carried out by Tooth et al assumed 

that these pressures were of constant magnitude across the saddle width. This 

assumption is such that the saddle has a degree of flexibility in the radial direction 

across the width and is comparitively stiff in the axial direction, therefore avoiding
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pressure high spots across the width. The discrete areas used in this type of analysis 

therefore consist of a range of uniform pressure patches disposed round the saddle arc 

and of axial length equal to the saddle width.

A more complete analysis has been provided by Motashar. In this treatment, the 

saddle width was subdivided into a number of discrete areas as shown in Figure 5.1. 

Three cases were analysed with 3, 5 and 7 discrete areas across the width. The three 

dimensional nature of the saddle was then considered in the generation of the 

flexibility matrix of the support.

Figure 5.1 Saddle interface showing discretisation across width (after Motashar)

It was found that when a saddle with substantial radial stiffening was employed the 

interface pressure had peak values at the edges of the support. At the other extreme, 

when the saddle top plate was not adequately stiffened, peak values of the interface 

pressure occurred at the saddle centre profile with zero values at the edges. Neither 

of these saddles provides optimum support to the vessel. It could well be that many of 

the saddle designs suggested in the dimensional standard BS 5276163’ (and shown in 

Figure 5.2) i.e. having a central web with top and bottom plates in the form of a 

stiffened ‘I’ beam, fall within this latter category. That is to say, in general they do not 

provide support at the edges of the saddle. These saddles can be improved by 

stiffening the projecting web at the saddle horn with an end plate.
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Figure 5.2 Typical saddle support and extended wrapper plate (after BS 5276)

Since the uniform pressure assumption provides optimum support for the vessel, it is 

considered that the designs recommended in BS 5276, as shown in Figure 5.2, should 

ultimately be modified to achieve this end. Therefore, in anticipation of this 

improvement to the recommended shape and form of optimum saddle, the assumption 

of uniform interface pressure across the width is employed in the present work.

The present author realises the importance of correctly discretizing the saddle 

interface pressure profile both in the circumferential and axial directions. However, 

for the purposes of the present work, the assumption of uniform pressure across the 

width is made. This is justified in two ways. Firstly, the uniform interface pressure 

distribution analysis is somewhat simpler and for the purposes on the parameter 

study, takes considerably less run-time than the ‘variable pressure across the width’ 

solution. The sensitivity of the more complex solution is noted by both Motashar and 

especially Tolson who comments, ‘Convergency should be checked for any vessel to 

be considered to establish the correct number o f terms used to obtain an accurate 

solution. ’ Motashar found that there could be a wide variation in answer depending 

on the number of terms and the number of discretized patches used, i.e. if say, 200 

terms in each series were used for a particular geometry and configuration, there was
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no guarantee that the same number of terms produced convergence for a different 

geometry.

The second justifying assumption made by the present author refers to the practicality 

of design and the need for a simple analytical tool which may be used by general 

engineers. Present codes and standards do not address the ‘design-by-analysis’ 

approach used here and such methods are normally unfamiliar to most designers. 

However, the present philosophy is to present a method which directs and guides the 

designer to an efficient design. With this in mind, the aim is to produce a saddle 

design, which results in a uniform pressure across the saddle rather than one 

containing a distribution with large ‘peaks’ at the edges. Such an ideal situation can 

be achieved by introducing a new design of saddle that introduces an element of radial 

flexibility across the width and avoids the hard edge of the rigid saddle. Some 

comments are made regarding the design, which incorporates a treatment of the 

saddle flexibility across the width in Chapter 9 of this work.

The analysis used here, therefore, assumes a variable pressure distribution around the 

saddle arc angle and a uniform pressure profile across the saddle width. This is similar 

to that used by Ong. A typical distribution of the interface pressure around the arc 

angle is shown typically below in Figure 5.3.
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Figure 5.3 Interface pressure profile for 50 contact areas on a rigid saddle

The figure above shows that values of radial interface pressure at the saddle centre

profile for the discrete contact areas round the saddle arc. In this, it can be observed
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that there are large concentrations of pressure acting towards the horn of the saddle. 

These concentrations also change sign which indicates that the vessel is deforming 

dramatically in that region. In fact, the pressure profile distribution is one indicator 

used to determine the required level of flexibility needed to reduce the maximum 

stresses that occur at the hom.

The number of contact areas can be varied. If the number of discrete areas increases, 

these can be, in some cases, a more accurate representation of the interface pressure 

profile. However, using 50-60 interface pressure contact points has been shown 

acceptable for most cases. If significantly more discrete areas are introduced into the 

analysis, the number of Fourier terms in the circumferential direction must be 

increased to cope with the smaller patch size. Figure 5.4 shows the layout of these 

discrete areas.

The following diagram shows the saddle and the distribution of the discrete areas 

around the saddle width.

Figure 5.4 Saddle and distribution o f the discrete areas around the saddle width
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5.3 Compatibility of Displacements for Two Bodies in Contact

The present solution caters for the case where the saddle is located symmetrically 

around the vessel circumference, although the Ong solution can handle the 

unsymmetric case. Since in this work the symmetric case is considered, only half of 

the saddle angle need be considered and subsequently discretised. The compatibility 

of the radial and tangential displacements caused by the interface pressure forces at 

the centres of the discrete areas is enforced.

The basic contact problem is shown in Figure 5.5 below:

Figure 5.5 The vessel/saddle interface

The total number of nodes, located at the centre of the contact areas which contact 

may take place, is defined as N. The compatibility of displacements at the kth node in 

its normal and tangential directions is given by:

[VH] = A[SN] + [VT][T] + [VR][P] = 0 
[WH] = A[CS] + [WT][T] + [WR][P] = 0

(5.1)

where:
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[7] and [P] are the tangential and radial interface pressures,

[VT] and [VR] are the tangential displacements of the nodes due to tangential 

and radial interface pressures,

[WT\ and [WR] are the radial displacements of the nodes due to tangential 

and radial interface pressures,

[VH] and [WH] are the tangential and radial displacements of the nodes due 

to internal loading (self-weight and surcharge pressure),

A is the rigid body movement of the saddle at node k, defined positive in the 

upward direction,

[57V] and [CS] are the position vector sines and cosines to each respective 

contact node and are required since a circular boundary, of radius R, is 

considered and the vertical rigid body movement of node k is required.

It is noted that [VT\ , [VR], [WT\ and [WR] are the flexibility matrices for the problem. 

These matrices relate to a rigid saddle but they can be directly added to if a flexible 

system requires to be considered. This is done by directly inputting and adding to 

these matrices if a specific set of flexibility matrices is generated by external means, 

e g. by experimental measurement or by the use of the finite element method. When a 

flexible system is considered, the equations therefore change to:

[VH]- A[57V] + [VT][T] + [VTS][T] + [VR][P] + = 0
[WH]-  A[CS] + [WT][T] + [WTS][T]+ [07?][P] + ][P] = 0

(5.2)
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where

[VTS\, [VRS], [WTS], and [WRS\ are the introduced flexibility matrices for 

the flexible support system.

Examples of a flexible system can include a fabricated flexible saddle or the use of a 

rubber interface on a rigid saddle. Any support system for which a small displacement 

flexibility matrix can be generated can be incorporated in the above analysis. This is 

discussed more fully in Chapter 9, where some examples of a flexible saddle are 

presented.

5.4 Equilibrium Equations

Having examined the compatibility of the system, the solution is completed by 

considering the overall equilibrium of the system. After the interface pressure solution 

is completed, the presence of the unknown rigid body displacement, A, means there 

are three unknowns and only two equations as defined by Equations (5.1) or (5.2). 

The third equation is introduced by enforcing the overall equilibrium of the system. 

By considering the equilibrium, the total weight , which consists of the vessel self­

weight, weight of contents, and the end weight (if considered), must equal the sum of 

the vertical components of the interface forces previously determined. The 

equilibrium equation can be expressed as:

~[CS]t[P]+[SN]t[T] = S

(5 .3 )

where S is the total weight divided by (16J3RC) , R being the vessel radius, C is the 

half saddle width and /? the half saddle angle.

5.5 Interface Pressure and Stress Analysis Solutions
Since the unknowns are all now obtainable, it is possible to obtain various solutions. 

The first, as previously described, is the analysis for rigid supports. In this, all of the 

elements of Equation (5.1) are used. The second case is that of the frictionless saddle 

which is obtained by simply making [T ]=0. For the frictional saddle, [ / ’ ]=/v [P] 

where // is the coefficient of friction between the saddle interface and the vessel.
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Although no further reference is made to these solutions, they were first coded by the 

present author for Warrender in 1985.

These simple models can be back-substituted into Equations (5.1-5.3) and new 

expressions for the interface pressure [P] and the rigid body displacement, A, can be 

found. Having completed the solution for the interface pressure values, the resulting 

stresses must be evaluated. Using the interface pressures, a solution for the 

displacements, U, V and W of the vessel and the resulting stresses and strains can be 

found. For the case considered here, the stress resultants and displacements can be 

obtained using Equations (3.35a-i).

The loading terms can allow superposition of cases. Typical cases include internal 

surcharge pressure, hydrostatic fluid loading, vessel self-weight and external radial 

and tangential interface pressure loadings. Since the saddle has been subdivided into a 

number of discrete areas, then summation has to take place for all the centres of the 

discrete areas and their respective interface pressure values. This means that there is a 

summation within the loading coefficient term and an extra loop within the program.

Full details of the intermediate steps can be found in References [11], [16] and [58] 

and in the main comment steps within the program listings found in the Appendices.

5.6 Choice & Comparison of Loading System-Line, Patch& Line+Patch Models

From the work of Ong, it was found that two models were possible to relate the 

distribution of the interface pressure to the discretised area over which it acted. The 

first model was the ‘Patch Load Model’. In this, the interface pressure was assumed 

to act over the whole patch as previously described. However, in some cases, this did 

not give a good comparison with the experimental vessels. It proved useful in the 

rigid saddle case but somewhat poorer in the case of the loose saddle.

A better model for the loose saddle was the ‘Line Load Model’. In this, the total 

force did not act over the whole area but was summed to provide an equivalent line
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force acting as a uniform line load at the centre of the area, i .e. at the contact node 

position. This provided much better agreement for those cases where the patch load 

model was found inadequate.

Ong covered these two cases separately. Here, in order to provide a good ‘all-round’ 

model for use as a design tool, which would provide realistic results for all cases, the 

‘Line+Patch Model’ has been developed by the author. This essentially comprises 

the patch load model but has the last patch on either horn expressed as a line load 

acting at the centre of the outer area as shown in Figure 5.5. This solution tends to 

model the rigid edge effect which occurs at the horn of the saddle and as a result 

presents the more severe and hence conservative result for designers.

The line+patch model has been used throughout this work for the generation of 

parametric data for use in the design method.

Figure 5.5 Line + patch model schematic showing typical interface distribution 

5.7 Computer Programs

The original computer programs based on Sanders' theory were developed by Ong. 

Since then most of the researchers at Strathclyde have modified or adapted these 

programs to suit various machines or to incorporate specific routines or capabilities 

which were not originally available.
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Ong's programs have been substantially changed by the present author for some of the 

subsequent workers. Most of these changes have required recoding for different 

operating systems, MS-DOS and UNIX variants, and for different versions of 

Fortran. Some moves have been made towards a rewrite in the C language, for 

porting to a Windows version, has taken place although this is not complete as yet.

The computer programs now run on Sun and Silicon Graphics workstations and also 

on the PC. The PC version of the program requires carefully manipulation due to the 

640K memory limit and since no overlays have been used, only a restricted number of 

terms can be incorporated ie. around 300 terms in each direction. This limit is due to 

the size of the arrays, which require to be open at any given time in the solution. With 

a modem PC, solution times with 300*300 for a single point can be evaluated in tens 

of seconds with a typical analysis, searching for the maximum value over a grid of 

discrete points being solved in less than five minutes.

As an attempt to over come this problem, the program was broken into three separate 

parts, to evaluate interface pressure calculation and the stress solution. These more 

general programs, CYL1 (PC), SAD (PC), and CYL2 (PC) are available on all of 

the computing resources at Strathclyde (PC denotes limited Fourier term versions). In 

addition, it is planned to have these programs available for interactive analysis via the 

Internet.

The source code listings of the present versions of the above programs are included 

as Appendices 1, 2 and 3 respectively.
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6 A PARAMETER STUDY AND DESIGN METHODOLOGY FOR 
THE TWIN SADDLE PROBLEM

6.1 Introduction

It is generally accepted that the existing design procedure for the design of twin 

saddle supported vessels does not provide a rigorous method of determining the 

maximum stresses at the most critical regions. This means that the stresses obtained 

from the procedure cannot be used with adequate certainty for use in determining the 

fatigue life assessment of the component.

Although current international design codes have made available a ‘design’ method 

for twin saddle supported vessels, based on the work of Zick[2] in 1951, the approach 

is semi-empirical and was validated experimentally for a limited number of relatively 

small diameter (approx. 6ft. dia.) vessels. Despite this, it has been in use for many 

years and has been used successfully to design larger diameter vessels even though 

Tooth has shown, in certain cases, that the actual maximum stresses at the horn 

indicate the Zick method is unconservative, with an error as high as 50%.

The success of the Zick method in design is due to its relative simplicity and that it 

can be performed by hand. It is also partly due to the reduced allowable stresses 

quoted in the design codes, which seem to counterbalance the apparent error in the 

method. For example, in the case of the maximum stress intensity at the horn, which is 

a secondary bending stress, the British Standard BS 5500 permits an allowable stress 

intensity of 1.25f, where ‘f  is the design strength for the material, based on 

approximately two thirds of the yield strength of the material. If a more rigorous 

assessment is employed, the British Standard permits, through rules in the ‘design-by­

analysis' section, Annex A, secondary bending stress intensities to rise to 3f

However, although the Zick method can be, and has been, effectively used for design, 

it remains necessary to provide a more accurate design tool for use in safety and 

integrity assessments especially where fatigue failure may be prevalent. In such 

assessments, accurate maximum stresses are required in order to predict the
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appropriate fatigue life of the vessel. Accurate stresses may be obtained using the 

SADDLE programs described previously, however, that procedure is complex and 

requires to be computer based. Moreover, it can take some considerable time to 

perform a full design study, especially where multiple runs are envisaged, i.e. when 

altering the different parameters and trying to optimise the saddle/vessel 

configuration. Therefore, as a design tool, it is preferable to have a suitable hand 

calculation method, or at least one that can be easily computerised on a PC either by 

direct programming or through the use of a simple spreadsheet.

The aim of this chapter is therefore to present the philosophy and scope for a new 

design methodology and parameter study with the objective of producing a simplified 

analysis based on the output from the SADDLE program.

6.2 Scope of the Study

With the aim of providing a new design methodology, a reasonable starting point is 

the generation of accurate stress data from the SADDLE program. The rigid saddle 

case is considered since this produces the maximum stresses. This data must then be 

examined for variations and trends that will, after defining the main governing 

parameters, highlight any geometric relationships and their interdependence. 

Thereafter, these parameters must be isolated and their individual influences examined 

and quantified. This procedure has the advantage of allowing the effect of any 

individual parameter to be understood since it may be varied when performing a 

design study. Therefore, it is essential that specific tasks be identified, in determining 

the scope of the study, which target the desired effects and influences.

The specific tasks identified have been categorised as follows: -

1. To carry out a comprehensive parameter study for the maximum horn stress 

and its location using the present SADDLE analysis for the twin saddle 

supported vessel.

2. To examine other areas of the vessel in accordance with those areas 

identified by the British Standard BS 5500.
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3. To study the influence of the vessel ends upon the maximum stresses that 

occur at the support regions. This to be undertaken using finite element 

techniques to represent the variation in flexibility of different end types and 

differing locations of the support for the end.

4. To present the results from the above in a suitable form to assist the design 

methodology.

6.3 Maximum Stress Locations

From a study of the stress system of the twin saddle supported vessel, the maximum 

stresses generally occur in the horn region of the saddle support. These stresses often 

reach their maximums in the vessel during the hydraulic test and in some instances, 

under operating conditions. The maximum stress is known to be the circumferential 

stress component located at the outside surface of the horn region of the vessel. The 

horn is defined as the uppermost point of the saddle when viewed along the vessel 

axis as shown in Figure 6.1
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Figure 6.1 Location o f the assumed maximum stress position ~ the saddle horn 

From a study of the literature, previous investigators assumed that the maximum 

stress occurs exactly at the horn of the saddle, that is to say, if the saddle wrapround 

angle 6 were 120°, then the maximum stresses are found to be located in the 

circumferential direction on the outside surface of the vessel adjacent to the weld or at 

the edge of the saddle if not fully welded.

At the start of this parameter study, the present researcher wrongly followed this 

approach and carried out extensive studies based on this assumption. The result of
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this was that when carrying out tests for the location of the maximum stress, in most 

instances, the position maximum stress did not necessarily fall at the exact horn 

location.

In order to provide the correct maximum values for use in the parameter study, 

irrespective of location, results were output every 1/1 Oth of a degree in order to 

examine the exact location of the maximum stress. The survey region analysed was 

defined by the position of the saddle horn angle and a results zone, upto five degrees 

either side of the horn edge was examined. It was found that, depending on the 

flexibility of the system and the size and width of the contact areas, the maximum 

stress location varied from the horn position by up to one or two degrees. In fact, 

most results showed the maximum stress location to lie just under the saddle edge. 

This location of maximum stress has not been examined experimentally since it is 

difficult to position a suitable strain gauge in this region.

The parameter study carried out, and reported in this chapter, is therefore based on 

actual maximum stresses and not on stresses measured at the horn of the saddle. The 

two figures shown below present distributions of outside surface circumferential 

stress for a typical 'long vessel' case. A 'long vessel' is defined as one which is long 

enough to be free from end effects. As a result of the increased length, stresses 

become artificially high. Figure 6.2 details the variation in the circumferential direction 

and shows that, for a saddle horn position of 60, the maximum measured stress is 

located just to the left of the 60° position, as mentioned earlier. Figure 6.3 shows the 

variation of circumferential stress along the length of the vessel plotted at the location 

of the horn of the saddle. From this study and a detailed investigation of the location 

of the maximum, it was observed that the maximum stress was located at the horn ±1 

to 2°.

Since the circumferential stress is the most significant and therefore most important 

for the majority of cases, only this stress will be described in further detail.
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Figure 6.2 Circumferential stress distribution in the circumferential direction

Figure 6.3 Circumferential stress distribution in the longitudinal direction
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6.4 Distribution of Interface Pressure Across the Saddle Width

For the present analysis, it is assumed that the saddle design is such that a uniform 

interface pressure is present between the saddle wrapper and the vessel shell. In some 

cases of saddle design, a poor distribution of interface pressure results and peak 

values arise at the hard edges of the saddle across the width. Where a rigid saddle 

support has been used then a complete analysis using the approach suggested by 

Motashar is recommended.

6.5 Influence of the Number of Terms & Discrete Areas

According to the theory used for the calculation of the stresses and displacements, 

three numeric parameters have a significant importance on the results. These comprise 

the double Fourier series term numbers, ‘m’ and ‘n’, which are associated with the 

sine and cosine series respectively and also the number of discrete areas, ‘N’, into 

which the contact surface between the saddle and the vessel is divided. The effect of 

each of these parameters must be examined prior to commencing the parameter study. 

Firstly, the double Fourier series expansion for the loading system representation is 

written as follows:

Pmn = ^  X  P  sin 17X71X cos n<f> d<j> dx
m=0 n -  0 L

(6. 1 )

From this expression, it is clear that the ‘m’ coefficient influences the loading in the 

longitudinal direction and ‘n’ is associated with the loading profile in the 

circumferential direction.

Obviously, the number of terms which are chosen for both the ‘m’ and ‘n’ values will 

have a great influence on the value of the maximum stress results obtained. This can 

be clearly seen, for example, if a cylindrical shell subject to a single rectangular 

radially loaded patch is chosen, as per the solutions described in Chapter 4. If the 

problem is modelled using a double Fourier series approach, it is evident that the 

greater the number of terms used, the more accurate the loading representation, and
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therefore the stresses obtained. In single patch-type problems, even when say 100 

terms are used, there can be a significant lack of agreement between the ideal loading 

distribution and the Fourier representation. This is shown in Figure 6.4. It is also 

dependent on the ratio of the patch size to the main dimension to which the Fourier 

function is fitted, i.e. vessel length in the longitudinal direction and vessel 

circumference in the circumferential direction.

Numb*r of terms in 
series n > fli

25 ...........

Exact H  
J L

Figure 6.4 Fourier series representation o f rectangular loaded patch (after Duthie)

Figure 6.4 shows the graph of the Fourier series expression shown as Equation 6.1 

when viewed in the circumferential direction. A magnitude of load of 10 units is 

desired and each trace represents the function for an input number of terms, 25, 50, 

and 100. As the number of terms increases, it can be seen that the graph of the 

function becomes nearer the exact 'step-function' solution.

Although previous researchers had used 100 terms in each series, the optimum 

number of terms for both ‘m’ and ‘n’ must be determined. This is set against the 

criterion of achieving the desired accuracy, whilst maintaining a reasonable computing 

solution time for the calculation.

135



For the purposes of comparison, three typical ‘real’ vessel geometries are selected for 

comparison, these corresponding to cases tested experimentally by Tooth, with 

documented stresses obtained from strain gauge readings. A comparison of 

experimental and analytical results is found later in Table 6.8. The effects of varying 

‘m’ and ‘n’ are investigated using the dimensions of Case 1. The convergence of the 

Fourier series and the significance of each of the Fourier terms is examined by 

choosing a fairly large constant value of ‘n’ and thereafter varying ‘m’ over a suitable 

range, say, 50 to 600 terms afterwhich, the process is repeated by keeping ‘m’ 

constant and thereafter varying ‘n’. The total number of divisions used to represent 

the load used in this case is equal to 60 uniform sized patches around the saddle angle. 

The following tables highlight the influence of the Fourier terms ‘m’ and ‘n’.

Test Case Vessel Dimensions

Case 1: Length (L) = 7315mm, Radius (R ) = 458mm, Distance from end (A) = 1410mm, Saddle angle
[0) = 150°, Saddle width (b) = 102mm and Shell thickness (f) = 3.33mm.

Case 2: Length (L) = 7315mm, Radius (R ) = 458mm, Distance from end [A) = 1410mm, Saddle angle 
{0) = 150°, Saddle width (b) = 102mm and Shell thickness (f) = 4.67mm.

Case 3: Length (L) = 54858mm, Radius (/?) = 1829mm, Distance from end (A) = 6858mm, Saddle 
angle [0) = 162°, Saddle width (b) = 762mm and Shell thickness (f) = 26.6mm.

m terms SO 100 i t * 200 300 IfeiÉL#
Max. Stress

(N /m m : )
-258 .4 5 -261 .9 -258 .2 -257.03 -257 .4 2 -257 .4 1

Location
(degrees)

74.3 74.3 74.3 74.3 74.3 74.3

Table 6.1 Influence o f parameter (m ’for constant n=200 and 2N=60 (for Case 1)

n terms 50 100 150 200 300 400
Max. Stress

(N /m m 2)
-247 .5 -258 .6 4 -258 .2 6 -257.41 -258 .2 4 -2 5 7 .7 7

Location
(degrees)

74.1 74.3 74.3 74.3 74.3 74.3

Table 6.2 Influence o f parameter ‘n ’for constant m=600 and 2N=60 (for Case I)

It can be seen from Tables 6.1 and 6.2 that an increase in ‘n’ above, say 50 to 100 

terms, does not lead to a significant variation in the stress values obtained. Similarly, a
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value above, say 200 terms in ‘m’, produces little or no effect in the stress results 

obtained. However, although m = n = 200 would provide a very accurate solution for 

Case 1, it is noted that this is a relatively short vessel and has a moderately loaded 

patch size. That is, L/R is small and b/L is high, therefore the number of terms 

required to achieve convergence is low. A similar behaviour was noted for Case 2.

However, it is recognised that for longer vessels where the patch size to vessel length 

ratio is much smaller, a much higher number of terms in the longitudinal direction (‘m’ 

terms) will be required to adequately represent the loading distribution. When 

considering Case 3, this effect was quite pronounced. In this case, a significantly 

longer vessel length was used, and the governing sine series parameter, ‘m’, was 

increased to 600 to provide an adequate load representation.

m tenue 50 100 200 300 J A A

Max. Stress
( N / m r n 2)

- 4 1 6 . 7 2 - 4 2 1 . 2 9 - 4 1 3 . 2 2 - 4 0 9 . 4 3 - 4 1 0 . 9 1 - 4 1 0 . 7 8

Location
( d e g r e e s )

8 0 . 5 8 0 . 6 8 0 . 5 8 0 . 6 8 0 . 6 8 0 . 6

Table 6.3 Influence o f parameter ‘m ’for constant n=200 and 2N=60 (for Case 3)

« term s c n  1 
511 ” l ô ô 150 mmM 300 400

Max. Stress
( N / m m 2)

- - 4 1 0 . 1 7 - 4 0 9 . 8 5 - 4 1 0 . 7 8 - 4 1 1 . 6 3 - 4 1 1 . 5 8

Location
( d e g r e e s )

- 8 0 . 5 8 0 . 5 8 0 . 6 8 0 . 6 8 0 . 6

Table 6.4 Influence o f parameter (n ’for constant m=600 and 2N=60 (for Case 3)

With this in mind, the full parameter study, which is based on artificially long vessels 

was carried out using 600 ‘m’ terms in the longitudinal direction and 200 ‘n’ terms for 

the circumferential direction. This was justified by extending the full range of the 

investigation of the influence of the ‘m’ and ‘n’ parameters over the range 

(100<m<800 ; 100<n<500). After carrying out this investigation, it was decided to fix 

‘m’ at 600 terms and ‘n’ at 200 terms for the parameter study for an optimum 

solution, i.e. providing sufficient accuracy in a reasonable computing time. The time 

per scan of 20 points on a Silicon Graphics 4D-35G workstation is approximately 7.5 

minutes.
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The significance of the number of contact patches required for a reasonable solution 

must also be examined. A logical method of determining the total number of discrete 

contact areas, 2N, may be to represent both the maximum stress and the stress at the

horn as a function of , where /? is the total saddle wrapround angle and 2N is the

total number of discrete areas on the saddle, and then to take the extrapolated 

converging value between the two obtained curves. This method is based on the 

assumption that the maximum stress should normally be located at the horn of the 

saddle. The required value of 2N would result in convergence of the two curves. 

Some tests of these methods were made for the three actual vessel geometries

described earlier and the variation of maximum stress and horn stress against for 

the 2N range 30 to 110 is plotted below.
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p
Figures 6.7 Contact patch convergence graphs fo r  Case 3

The above graphs show some interesting points that are worth noting. The 

extrapolated maximum convergent value for the perfectly rigid saddle is always 

greater than the measured experimental value found for the vessel supported on real 

saddles. In addition, these cases presented here represent the most stiff saddle 

configurations and real saddles would allow a reduction in the limiting value. A 

reasonable maximum number of contact areas could be perceived to be around 50-60,

by ensuring = 1.5 or so. In Case 3, the experimental value is much lower than the
2 N

converging curves. The saddle used in for this case was of a semi-rigid nature and had
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a degree of radial flexibility. The following tables show the calculated maximum 

stresses and their locations for each of the three cases.

2N 20 40 50 60 80 90 100 110
Max. Stress

( N / m m 2)

- - 2 3 6 . 9 - 2 4 7 . 2 8 - 2 5 7 . 7 7 - 2 7 4 . 9 3 - 2 8 1 . 3 1 - 2 8 6 . 3 6

Location
( d e g r e e s )

- 7 3 . 7 7 4 . 3 7 4 . 3 7 4 . 6 7 4 . 7 7 4 . 8

Table 6.5 Influence o f number o f contact areas (2N) for Case 1

20 40 50 60 80 on 100 110
Max. Stress

( N / m m 2)

- 1 4 5 . 9 6 - 1 5 2 . 5 9 - 1 5 8 . 5 4 - 1 6 8 . 5 3 - 1 7 2 . 1 2 - 1 7 5 . 0 8 - 1 7 8 . 1 2

Location
( d e g r e e s )

“ 7 3 . 6 7 4 . 2 7 4 . 3 7 4 . 6 7 4 . 7 7 4 . 8 7 4 . 8

Table 6.6 Influence o f number o f contact areas (2N) for Case 2

20 40 50 wmm 80
Max. Stress

( N / m m 2)

- 3 2 4 - 3 7 8 . 8 - 3 9 8 . 5 9 - 4 1 0 . 7 5 - 4 3 4 . 1 1 - 4 4 1 . 7 3 - - 4 5 3 . 6

Location
( d e g r e e s )

7 8 . 7 7 9 . 9 8 0 . 3 8 0 . 6 8 0 . 7 7 4 . 7 8 0 . 8

Table 6.7  Influence o f number o f contact areas (2N) for Case 3

It appears that for fixed ‘m’ and ‘n’ terms, whilst increasing the number of patches, 

the stress value gradually increases too, without any clear limit. Therefore, some 

measure must be made against the known experimental values and this used to limit 

the number of contact patches.

(The values shown in brackets are included fo r comparison. These were obtained 
using the new design method detailed later in this chapter)

Units
(N /m m 2)

Experimental
Stresses

SÀ D D L E I 
Rigid Sadd

’rogram for  
le, (2N -50)

BS 5500

F l e x i b l e R i g i d C o m p u t e r Design
Method

C a s e  1 - 1 2 0 - 2 9 0 . 5 - 2 4 7 . 3 5 (-237.27) - 1 2 0 . 7

C a s e  2 - 7 0 . 4 - 1 7 4 . 7 - 1 5 2 . 5 9 (-148.06) - 6 3 . 1

C a s e  3 - 1 8 6 . 2 - 3 1 0 . 2 * - 3 9 8 . 5 9 (-393.80) - 1 9 4 . 7

Table 6.8 Comparison o f maximum stresses obtained by the various methods.

*  d e n o t e s  t h e  u s e  o f  t h e  s e m i - r i g i d  s a d d l e
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For the first two cases shown, the stress found either by the SADDLE program or by 

the design methods appears to lie between the experimental values obtained for the 

rigid and flexible cases. For the third vessel, that is, the longest of the three, it would 

appear that only 20 patches seem necessary. It is noted that, in this case, the saddle 

was not rigid around the entire saddle angle. The saddle was formed from a rigid 

saddle (150°) with two 6° flexible extensions on the wear plate forming a total angle 

of 162°. It should be stated that for the actual vessels, the saddles are not completely 

flexible or rigid and therefore, it appears reasonable that the solution obtained using 

50 discrete areas per saddle would be of sufficient accuracy for most applications. In 

addition, this leads to a solution in a reasonable time, whereas solutions with higher 

numbers for m, n, and 2N can be over twenty minutes per point.

In conclusion, for the parameter study, the numbers of Fourier series terms were fixed 

at m=600 and n=200 with the number of discrete areas per saddle at 2N=50.

6.6 Parametric Studies

A full parameter study for the hydraulic case is presented since this loading condition 

generally produces the highest value of stress in the horn region of the vessel. There 

are a number of geometric parameters that require to be investigated in order to 

identify the effect each has on the maximum stress and indeed, on each of the other 

parameters. The effect of each variable is required in order to provide a versatile 

design procedure.

For general design of twin saddle supported pressure vessels, the use of the Fourier 

series technique provides a solution in a shorter time than using, say the finite element 

technique. However, the time taken can still be considerable using the Fourier series 

approach, especially if many design iterations are required. The decision was therefore 

taken to provide results for the maximum stress (i.e. the circumferential stress at the 

horn) as provided by the SADDLE program in a closed form - i.e. by a single 

equation, if this were at all possible. The requirements of such an equation would be 

to incorporate all the results of the parametric survey and allow the engineer to 

optimise the design by varying any individual parameter. It is noted that the design
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method proposed by Krupka used an equation, which can be directly extracted from

his analysis. This equation is shown in Chapter 2 as Equation (2.2). However, since 

the present treatment is based on a more complex numerical approach, there is no 

‘natural’ single equation or expression, which can characterise or represent the 

behaviour and interaction of the various parameters.

It is also noted at this point, that a similar method to the present work has recently 

been published by Ong|21]. In this, he attempts to ‘force’ a single equation by defining 

a basic stress in the form of the Krupka equation and thereafter to provide a series of

modification factors which correct the basic stress value and ultimately give similar 

answers to the output from the Fourier series program since Krupka made use of a

'semi-bending' shell theory. The present author does not believe this to be a realistic 

approach since forcing these results into the form proposed by Krupka may introduce

unnecessary errors by the curve fitting procedures employed. The approach suggested 

herein, developed in 1990 and published in 19911601 is to obtain a basic stress, which 

‘naturally’ results from the plotted variation of maximum stress. This basic stress is 

thereafter progressively modified by a number of geometric and physical factors. The 

suggested form of the equation is written as:

a « ^ = < 7 i,F » Fb Fo-FA FD FL-F '-F ,
(6.2)

where the coefficients of the equation are defined as follows: -
o b = peak stress at the horn for theoretical vessel (Basic Stress)

F w = weight of contents factor

F b = saddle width factor

F e = saddle wrapround angle factor

F a = rigid end factor

F d = saddle interaction factor

F l = length change factor

F e = end flexibility factor

Ff = saddle flexibility factor
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These coefficients are discussed in detail.

It is worth noting that an allowance for the change in material properties is not 

explicitly mentioned in the equation shown above. It has been assumed, in the present 

analysis, that the vessel is fabricated from steel with a Young's modulus of 200,000 

N/mm2 and a Poisson's ratio of 0.3. However, some computer runs were carried out 

in order to investigate the effects of the material properties and it was found that the 

peak stress was independent of the Young's modulus value, E, and therefore this 

material constant is not included in parametric representation. It should be noted, 

however, that the vessel displacements and strain values are dependant on the 

modulus which would therefore need to be included in those cases where strain is the 

limiting criterion, as for GRP vessels. The influence of differing Poisson's ratios was 

found to be small and is therefore also neglected. This implies that the equation can be 

used for materials other than steel.

6.6.1 Basic Stress Values, a*
From some preliminary studies, it was apparent that the ends of the vessel have an 

important influence on the results obtained from the SADDLE program. In general, 

the vessel ends provide some support of the shell near the major plane of stiffening. 

This will in turn, affect the stresses obtained at the horn of the saddle. That is to say, 

as the support moves towards the vessel end, the effect of extra support for the 

cylindrical shell provided by the dished head will reduce the maximum horn stresses.

This effect was noted by Zick, and was incorporated in his analysis by using a 

reduction factor in the calculated stress. It was based on the ratio of the distance from 

the end of the vessel to the saddle centreline position to the vessel radius, A/R. Zick 

proposed that if the saddles were positioned such that A/R is less than a half of the 

cylindrical shell radius, then the stresses at the horn would reduce by a quarter. If the 

saddle were positioned up to A/R equal to a full radius, then linear interpolation would 

be allowed form the full value at A/R= 1 to a quarter of the full value of maximum 

stress at A/R=0.5. Although this method appears to incorporate some stiffening factor
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for the end effects, there is no theoretical justification for such an approach noted in 

the literature, and provided in the Standard, BS5500.

In addition, the problem is compounded by the fact that the Fourier series method, by 

definition, generates zero stresses and displacements at the ends, since the axial 

deformation is characterised by a sine series. Therefore, a graph of the sine function 

must have a zero value when the required location x, is equal to zero or L. This 

phenomenon can be physically represented as an infinitely stiff dished head.

Therefore, a first step in the identification of a basic stress was to eliminate the effect 

of the overstiff dished end. It was found that if the saddles were located at an 

appropriate distance of 9R from the ends the influence of the ends was negligible. In 

fact, the end effects were almost negligible after a distance approaching 6R, but and 

additional 3R was introduced to ensure the stress effects had fully decayed, as shown 

in Figure 6.8

Figure 6.8 Graph o f stress variation along extended vessel (L=36R)

Similar effects were also found in those cases where the two saddles were brought 

close together. Again, Zick incorporated this effect in his analysis by assuming that if 

the vessel geometry were such that L/R>8, no interaction would be present. However, 

if the vessel geometry were such that L/R<8 then the bending component of the stress 

would be multiplied by 8RJL. In addition, industry standard convention is for the 

saddles to be positioned at approximately the quarter points of the cylinder, i.e.
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A/L=0.25. In fact, finite element work done by the present author and also by 

Widera118,191 shows that the optimum position is approximately A/L-0.22, this taking 

account of the extra weight introduced by the vessel dished head.

Therefore, the 9ft end-effect length was doubled and found adequate to avoid saddle 

interaction. Thus to allow the saddle centreline parameters to be considered in 

isolation, a theoretical vessel of length equal to 36ft was formulated. The saddles are 

therefore located at a distance of 9ft from the ends. The maximum value of the stress 

at the saddle horn in this vessel is referred to as the Basic Stress, cr*.

In order to define the scope of the parameter study, a survey was carried out and 

information was obtained from vessel designers and manufacturers in both the UK and 

USA. This identified a typical range of horizontal vessel sizes currently in use and 

supported on twin saddles. Using this information as a bound for radius and thickness, 

the basic stress for the series of theoretical vessels was obtained by running the 

SADDLE program for the water-fill case. A rigid saddle welded to the vessel was 

considered to be the most severe case and therefore, would generate the highest 

stresses in the horn region and as such would therefore constitute a reasonable basis 

for design.

From the results of the survey, values of vessel radius from 500mm to 4000mm and 

vessel thickness from 4mm to 30mm were encompassed in the parameter study. 

Vessels below this thickness were considered too flimsy for supporting using saddles 

and vessels above the specified thickness limit would be pressure dominant. The 

saddle angle and width were chosen to be 120 degrees and 0.2ft wide respectively. 

These values were chosen since they represented the normal lowest value of the 

parameter, however some companies use smaller saddle angles of 60° and 90° for 

temporary saddles in shop construction and testing and also for transportation 

purposes. The 120-degree value is consistent with the smallest angle quoted in BS 

5500. A width ofy/30D (where D is in mm) is also used as a means of determining the
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saddle width but the present definition of 0.2D (and multiples of this dimension) 

seems a more straightforward calculation.

In an extensive curve fitting exercise, using the SADDLE program with m=600 and 

«=200 for the Fourier terms, and inputting the long vessel dimensions as above, and 

by scanning for the maximum stresses, irrespective of their location in the immediate 

vicinity of the horn, equations were obtained for the basic stress for this load 

condition. These values are tabulated in Table 6.8. It is noted that the magnitudes of 

these stresses are, of course, fictitious and are intended to be modified by the various 

factors shown in Equation 6.2. In addition, the shell analysis is based on 'small 

displacement theory', which would in practise limit the movement of the shell wall to a 

magnitude in the order of the wall thickness.

The table is divided into three parts.

• The lower left hand comer of the table (denoted ‘NOT REAL VESSELS’ is 

that part of the table where the thickness is considered to be too weak for the 

vessel only to be supported by saddles. The shell would be too flimsy and no 

horizontal vessel could be built with such dimensions.

• The opposite right hand comer of the table is that region where the internal 

pressure is dominant, i.e. the thickness would be defined by the internal 

pressure loading and not the saddle support condition.

• The main part of the table is the most interesting since it represents the major 

range of vessel geometries most commonly built by industry. This portion, 

therefore, is the main focus of the study.
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Table 6.9 Basic stress values for the range o f  vessels encompassed by the parameter study
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The first equation, generated by geometric regression across the radius/thickness 

surface, was geared to the SI system and is shown as follows:-

cr„ = 0.00052 tf2-702r 1669

(6. 3)
where R and t are the vessel mean radius and wall thickness of the vessel respectively 

in millimetres. This equation gave <Jb values of ±1.5% of that predicted by running the 

full SADDLE program for a 36R long vessel, within the range of values in the main 

portion of the table, that is the unshaded portion. However, if the full table were 

considered, the error rises to -6 to ±1.5% of the computed result. The additional error 

is generated by attempting to curve-fit to the ‘NOT REAL VESSELS’ part of the 

table, and therefore the equation was deemed reasonable for the majority of cases.

Basic stress

-20000

- 2 5 0 0 0

- 3 0 0 0 0

30 28 26 24 22 20 I *  16 ,4  ,2  y - F  4 0 0 0  
Thickness (mm) 8 6 ^

□ -5000-0
■-10000-5000 
□-15000-10000 
□-20000-15000 
B -25000-20000
□ -30000-25000

Figure 6.9 Surface plot o f Basic Stress variation across geometry range

148



It is noted that Figure 6.9 surface plot highlights the variation in the basic stress value 

for a 3 6R long vessel with the 120°, 0.2R saddle positioned at the quarter point and 

this over the range 500</?<4000 and 4</<30. By entering the required radius and 

thickness into the base basic, the maximum stress is obtained by tracking the surface 

contours and establishing the intersection value. The surface plot is intended for 

visualisation only. In order to be consistent with the SI approach, the units of this 

basic stress are N/mm2, however this introduces a constant (0.00052) accommodates 

the units of stress such that when R and t are entered in mm, the resulting stress is 

given in N/mm2.

A second approach was therefore considered which would result in non-dimensional 

equations, these being generated by splitting the raw maximum stress data into the 

two stress resultants, N+ and obtained from the direct and bending components of 

the stress.

crb

Nt 6 M,—*-±---- 1
t t2

(6. 4)

These results represent the components of stress from the SADDLE programs at the 

maximum stress locations. The equations resulting from the regression are shown 

below and are non-dimensionalised using the specific weight of water, yw, to give

r J  y j 2 y j 3

where:

N t _
Y J

560.65
R 0.1

+ 307.85
R

0.2

858.31

+ 61.68
0.2

-27.18

(6. 5 a-c)
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Within the range 35 < R/t < 300, these equations give maximum errors of 3% for N+ 

and 2% for M#. In each case these are over-estimates, thus providing a conservative 

basic stress. However, the previous expression is preferred since these equations were 

developed using stress data based on 200x200 terms for each Fourier series.

6.6.2 Weight of Contents Factor Fw

All runs performed using the SADDLE program assume the vessel self-weight to be 

zero and the vessel loading to be full of water. This is of use especially when 

comparing against strain gauge results. However, it may arise that a vessel contains 

contents which have a different specific gravity from that of water. This change of 

specific gravity, together with a weight correction for the capacity of the actual vessel 

of length, L, can be incorporated using the weight of contents coefficient, Fw, which 

is given by:

(6. 6)

where p  is the specific gravity of the liquid. It has been found that the vessel self­

weight can be included by using an equivalent specific gravity, where the ‘new’ 

specific gravity is modified in the ratio of the differences in weight with and without 

the vessel self-weight.

6.6.3 Geometric Factors

The design of the vessel is known to be dependant on a number of geometric 

parameters as defined earlier, namely, the saddle width, saddle angle, end effects, 

saddle interaction and the effect of vessel length to radius. Considerable time was 

spent in attempting to isolate the effects of each individual parameter and to thereafter 

generate closed-form equations which would describe the behaviour of these 

interactions. However, in investigating these interactions, the errors which were 

resulting when the parameters were combined proved excessive and it was clear that
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the ‘closed-form’ approach would not yield simple expressions which would provide 

useable, accurate results. As an alternative, it was found that, by using fourth order 

polynomial equations to represent the behaviour of each parameter, accurate results 

were forthcoming within acceptable error limits.

Therefore, the effect of each geometric parameter is considered for a range R/t ratios 

i.e. 25, 50, 75, 100, 125, 150, 175, 200, 250, 300 (i.e. which is typical of the range of 

industrial vessels surveyed earlier). For each ratio, a regression curve fitting exercise 

was undertaken using Microsoft Excel V5.0. Linear interpolation for intermediate R/t 

ratios between two already calculated R/t results can be easily obtained.

6.6.3.1 Saddle Width Factor, F*

The values for the basic stress were generated based on the practical limits of saddle 

width. BS5500 prescribes the minimum saddle width, b, to be -J30D where D is the 

vessel diameter in millimetres. As an alternative, it is possible to use a value of b 

based on a fraction of the radius, for example, b = 0.2ft, which provides a more 

conservative result and maintains consistent use of the variable ft. Hence values of the 

basic stress were obtained for the same ft and t ranges previously described using 

saddle width values from 0.1ft to 0.5ft in intervals of 0.1ft. If the saddle width 

changes alone, the maximum stress equation becomes:

which, when rearranged, gives the equation:

(6. 7 a,b)

where cr* is calculated for an R t ratio for which ft* is calculated.

ft* is graphed as a function of the saddle width to give the following curves, shown in

Figure 6.10



Figure 6.10 Graph of saddle width factor, Fb

From this figure, which shows that the effect of RJt is almost negligible, it is apparent 

that the maximum stress decreases as the saddle width increases. This is a reasonable 

result because as the support width increases, the force arising from the reaction 

between the saddle and the vessel is distributed over a slightly larger surface area. In 

addition to this, it can be observed that the curves lie quite close to one another for 

the various R/t ratios plotted. This indicates the limited influence of both the thickness 

and the radius when the width parameter, b, is fixed.

As shown in the Table 6.10, the saddle width factor Fb can be evaluated from a fourth 

order polynomial to obtain the best correlation, where:

Fh = a 0 + a}x + a2x2 + a3x3 + a4x4

(6.8)

with x b R in polynomial expression.
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R /t a o a j ................... 9 a .............:...... m iiriij im l : If tp g f i i l

25 1 . 7 3 3 - 5 . 9 1 9 1 5 . 1 1 1 - 2 1 . 7 4 2 1 2 . 8 7 5

5 0 1 . 7 5 7 - 6 . 0 9 1 1 5 . 2 9 8 - 2 1 . 3 0 8 1 2 . 2 0 8

7 5 1 . 7 8 9 - 6 . 4 8 6 1 7 . 0 7 7 - 2 4 . 8 5 0 1 4 . 8 3 3

1 0 0 1 . 8 0 5 - 6 . 6 4 7 1 7 . 5 9 8 - 2 5 . 5 3 3 1 5 . 1 6 7

1 2 5 1 . 8 2 8 - 6 . 9 2 1 1 8 . 7 6 9 - 2 7 . 6 7 5 1 6 . 6 2 5

1 5 0 1 . 8 3 8 - 6 . 9 9 6 1 8 . 8 5 4 - 2 7 . 3 5 8 1 6 . 1 2 5

1 7 5 1 . 8 5 5 - 7 . 2 1 5 1 9 . 8 8 4 - 2 9 . 4 0 8 1 7 . 6 2 5

2 0 0 1 . 8 7 3 - 7 . 4 4 7 2 0 . 9 3 5 - 3 1 . 4 0 0 1 9 . 0 0 0

2 5 0 1 . 8 9 0 - 7 . 6 1 2 2 1 . 3 7 7 - 3 1 . 6 1 7 1 8 . 7 5 0

3 0 0 1 . 9 1 7 - 7 . 9 9 4 2 3 . 2 8 3 - 3 5 . 5 5 0 2 1 . 6 6 7

Table 6.10 Polynomial coefficients for Fb - saddle width factor

6.6.3.2 Rigid End Factor, Fa

In deriving the factors Fb and Fo (given in section 6.6.3.4), the saddle region was 

isolated by considering a vessel 36R long. To allow the method to encompass the full 

range of vessel configurations, the effects of the rigid end and of the other saddle 

have to be considered. In the Fourier series solution, it is assumed that the end does 

not deform in the plane of its profile. The way in which this assumption influences the 

peak stress at the horn was investigated by performing a number of SADDLE runs 

where the saddle centerline distance from the end, A, was varied but the overall vessel 

length remained constant. Plotting values of the rigid end factor, Fa, at the horn 

against RJt for a range of A/'R values from the quarter points, A =9R to A=0.2R yields 

Figure 6.10. This figure allows the appropriate end effect factor, F a , to be selected for 

use when the support is located at a particular A value. If the saddle position changes 

alone, the maximum stress equation becomes:

which, when rearranged, gives the equation:

(6. 9 a,b)
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where a* is calculated for an R/t ratio for which FA is calculated. 

In addition, the following equation is obtained:

Fa = a0 + + a2x2 + a3x3 + a4x4

where x=A/R in polynomial expression.
(6 . 10)

Figure 6.11 Graph o f rigid end factor, F {

The curves above show that as the saddles are moved closer to the ends, the smaller 

is the resulting maximum stress value obtained. This is due to a reduction in the 

bending moments induced by the ends.

From the curves above, it appears that the influence of A is bigger when the R/t ratio 

is increased. For R t=25, the influence of A is negligible within the range 

3.5R<A<9R, but for the other ratios the influence of A is important over the whole 

interval.

154



The variation of FA allows linear interpolation to be made for different R/t ratios. In 

Table 6.11, it can be seen that the polynomial coefficients are for the fourth order

expression for FA,

w m m w m m a s H
f: f r r i t ï ï : : : ; : :t; II !l :

2 5 0 . 1 4 6 2 1 0 . 5 5 4 9 8 - 0 . 1 3 4 2 8 0 . 0 1 4 1 9 8 - 0 . 0 0 0 5 5 1

5 0 0 . 0 8 9 0 9 0 . 4 4 5 8 5 - 0 . 0 9 1 5 1 0 . 0 0 9 2 3 1 - 0 . 0 0 0 3 6 9

7 5 0 . 0 6 5 7 2 0 . 3 8 3 9 0 - 0 . 7 1 3 6 4 0 . 0 0 6 9 9 0 - 0 . 0 0 0 2 7 0

1 0 0 0 . 0 5 0 5 4 0 . 3 4 8 2 6 - 0 . 0 6 3 3 6 0 . 0 0 6 4 1 4 - 0 . 0 0 0 2 6 4

1 2 5 0 . 0 4 0 9 3 0 . 3 2 0 8 3 - 0 . 0 5 6 5 6 0 . 0 0 5 8 1 2 - 0 . 0 0 0 2 4 2

1 5 0 0 . 0 3 4 1 7 0 . 2 9 9 5 3 - 0 . 0 5 0 9 8 0 . 0 0 5 2 7 8 - 0 . 0 0 0 2 2 1

1 7 5 0 . 0 2 9 4 7 0 . 2 8 2 5 8 - 0 . 0 4 6 2 6 0 . 0 0 4 7 8 7 - 0 . 0 0 0 2 0 1

2 0 0 0 . 0 2 7 3 7 0 . 2 6 2 1 4 - 0 . 0 3 8 6 7 0 . 0 0 3 7 5 0 - 0 . 0 0 0 1 5 1

2 5 0 0 . 0 2 0 9 8 0 . 2 4 8 6 6 - 0 . 0 3 5 8 1 0 . 0 0 3 6 0 0 - 0 . 0 0 0 1 5 0

3 0 0 0 . 0 1 7 8 8 0 . 2 3 4 6 5 - 0 . 0 3 1 2 6 0 . 0 0 3 0 6 6  - 0 . 0 0 0 1 2 7

Table 6.11 Polynomial coefficients for FA - rigid end factor

It is worth noting, that the order in which the geometric factors (FA, FD ,...etc.) are 

calculated does not have any influence on the final results obtained, because when the 

complete calculation is achieved, the basic stress will have been divided (i.e. 

corrected) by all of the various constituent parts.

6.6.3.3 Saddle Interaction Factor, FD

The above study showed the variation of stress when the saddle position was moved 

nearer to the rigid end. A similar procedure was adopted to investigate the interaction 

effects between the saddles which are located a distance D apart. As the two saddles 

are positioned closer together, the influence of the second on the first becomes 

significant. The FD factor, which represents this behaviour, is plotted in Figure 6.12 

against R/t for various values of D R where D=(L-2A). D/R was varied from 18, the 

mid-dimension of the 36R vessel, to a lower value of 2. If the saddle interaction 

position changes alone, the maximum stress equation becomes:

which, when rearranged, gives the equation:
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where <jb is calculated for an R/t ratio for which FD is calculated. 

In addition, the following equation is obtained:

FD -  a 0 +  a ,x  +  a 2x 2 +  a 3x 3 +  a 4x 4

Z7 _  ®  mix

where x=D/R in polynomial expression.

(6. lla,b)

(6. 12)

Figure 6.12 Graph of saddle interaction factor, FD

It is noticeable that as the saddles move closer together, the resulting maximum stress 

at the horn increases. Obviously, there will come a point where the saddles are so 

close that they act as one. This has not been considered in this study. The variation is 

explained by the fact that for a certain D value, as the end sections become longer, 

they introduce a larger bending moment which, in turn, leads to a larger maximum 

stress value in the horn region. This effect is similar, in principle, to the influence of 

the A dimension.
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The Fo factor which represents this behaviour is given as a fourth order polynomial 

equation with coefficients as shown as the Table 6.12,

i l l i i l O i M i i i l i i ! • S ü M H Ê S Ë t t
2 5 0 . 6 3 7 8 3 0 . 0 1 6 5 7 2 - 0 . 0 0 2 2 7 4 0 . 0 0 0 2 6 6 - 7 . 1 6 E - 6

5 0 0 . 6 6 7 5 5 0 . 0 1 9 1 4 6 - 0 . 0 0 1 2 6 6 0 . 0 0 0 0 9 2 - 1 . 3 3 E - 6

7 5 0 . 6 9 8 6 0 0 . 0 0 8 9 0 6 0 . 0 0 1 5 5 1 - 0 . 0 0 0 1 4 0 4 . 3 6 E - 6

1 0 0 0 . 6 8 0 0 0 0 . 0 0 7 2 8 5 0 . 0 0 2 4 7 4 - 0 . 0 0 0 2 1 4 5 . 8 7 E - 6

1 2 5 0 . 6 7 8 9 8 0 . 0 1 2 7 7 3 0 . 0 0 1 9 9 2 - 0 . 0 0 0 1 8 3 4 . 8 9 E - 6

1 5 0 0 . 6 4 4 9 1 0 . 0 2 1 4 6 8 0 . 0 0 0 9 3 5 - 0 . 0 0 0 1 1 2 3 . 0 4 E - 6

1 7 5 0 . 6 0 5 7 7 0 . 0 3 0 9 3 1 - 0 . 0 0 0 2 6 7 - 0 . 0 0 0 0 3 3 1 . 0 8 E - 6

2 0 0 0 . 5 6 8 3 8 0 . 0 3 8 2 0 9 - 0 . 0 0 1 0 8 4 0 . 0 0 0 0 2 0 - 0 . 2 1 E - 6

2 5 0 0 . 5 0 3 3 8 0 . 0 4 6 9 0 2 - 0 . 0 0 1 9 0 4 0 . 0 0 0 0 7 6 - 1 . 6 4 E - 6

3 0 0 0 . 4 5 4 2 3 0 . 0 4 9 7 7 6 - 0 . 0 0 1 9 7 8  ! 0 . 0 0 0 0 8 6 - 2 . 0 2 E - 6

Table 6.12 Polynomial coefficients for FD - saddle interaction factor

6.6.3A Saddle W rapround Angle Factor, Fg

In studying the influence of the saddle angle, values of wrapround angle from 60° to 

160° were considered. The 60° value was included to meet a request from industry 

associated with the transportation of vessels both in the workshop and to and from 

site locations. A similar procedure was carried out as mentioned earlier, with the F g  

factor being determined by the following equation. If the saddle interaction position 

changes alone, the maximum stress equation becomes:

a  mix = &b ■ Fg

which, when rearranged, gives the equation:

r? _Tg ~

where cr* is calculated for an R t ratio for which Fg is calculated. 

In addition, the following equation is obtained:

Fg = ao + a, jc + a2x2 + a3x3 + a4x4

where x= 6  in radians in the polynomial expression.

(6. 13a,b)

(6. 14)
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Saddle Wrapround Angle 0

Figure 6.13 Graph o f saddle wrapround angle factor, F0

The above curves indicate that the influence of the RJt ratio, for a fixed wrapround 

angle, is approximately the same for all of the cases considered. Some divergence was 

observed at higher wrapround angle values. This is mainly due to the larger angle 

which must encompassed by each of the 50 contact areas. Therefore, if a greater 

number of contact areas were employed in such cases, then convergence of the curves 

would result. From the above curves, it can be noticed that the stress decreases with 

an increase of the wrapround angle. This effect arises since the angle is bigger, the 

forces must be distributed over a larger area (i.e. the support wraps around a larger 

area of shell) which in turn, gives lower stresses in the vessel. In addition, the increase 

in wrapround angle provides stiffening of the shell in the radial direction at the saddle 

centreline profile, which helps to minimise the circumferential bending effects. This 

effect can be clearly seen when considering the resulting deformation from a finite 

element analysis. The finite element plots shown in Figures 6.14a,b highlight the 

difference in the deformation between two vessels with saddle wrapround angles of 

90° and 160° respectively.
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Figure 6.14a,b Finite element plots o f deformed vessel profile at saddle
centreline location - saddle wrapround angle o f 9it' and 160°

The coefficients of a fourth order polynomial which represents the factor F0 are given 

in Table 6.13,

R f t  I û m M M W M ïïm \ w m m r n M m a *

2 5 3 . 8 3 5 9 0 - 0 . 0 3 7 9 1 0 . 0 0 0 1 5 8 0 0

5 0 3 . 9 0 5 8 4 - 0 . 0 3 8 7 6 0 . 0 0 0 1 5 9 - 0 . 0 0 0 0 0 0 4 0

7 5 4 . 0 4 1 2 2 - 0 . 0 4 3 1 3 0 . 0 0 0 2 1 6 - 0 . 0 0 0 0 0 0 7 0

1 0 0 4 . 6 8 3 8 5 - 0 . 0 6 8 2 8 0 . 0 0 0 5 7 1 - 0 . 0 0 0 0 2 9 0 0

1 2 5 4 . 7 2 2 0 0 - 0 . 0 7 1 1 0 0 . 0 0 0 6 4 2 - 0 . 0 0 0 0 0 3 5 0

1 5 0 4 . 4 0 9 8 2 - 0 . 0 5 7 6 9 0 . 0 0 0 4 4 0 - 0 . 0 0 0 0 0 2 2 0

1 7 5 2 . 0 9 0 2 8 0 . 0 4 0 3 4 9 - 0 . 0 0 1 0 4 5 0 . 0 0 0 0 0 7 4 0

2 0 0 2 . 9 4 3 4 1 0 . 0 0 5 7 5 9 - 0 . 0 0 0 5 4 5 0 . 0 0 0 0 0 4 3 0

2 5 0 2 . 3 7 5 1 2 0 . 0 2 9 8 1 1 - 0 . 0 0 0 9 1 2 0 . 0 0 0 0 0 6 7 0

3 0 0 1 . 7 4 6 3 7 0 . 0 5 6 5 0 8 - 0 . 0 0 1 3 2 2 0 . 0 0 0 0 0 9 4 0

Table 6.13 Polynomial coefficients for Fe - saddle wrapround angle factor 
(note: x  = 6 in radians)
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6.6.3.5 Length Change Factor, FL

All ‘real’ vessels have individual characteristics related to their stiffness which 

determine the influence of one parameter upon any other. The use of a theoretical 

‘long’ vessel was adopted to allow parameters associated with the saddle geometry to 

be examined free from the effects of the end and the adjacent second saddle.

Although the variation of the distance from the end together with the distance 

between adjacent saddles has been examined, performing the calculations for the 

maximum stress at the horn using the factored basic stress method did not provide 

the same result which was obtained from running the SADDLE program. It was 

originally surmised that by using, introducing and isolating the factors associated with 

the lengths A and D that the effects of length would have been controlled. This was 

found not to be the case.

It was found that in order to correct a theoretical vessel of length, say 36R, where 

A=9R and D=18R, to, for example, a vessel of length I8R, with A=4R and D=IOR, 

the modifications using the polynomial factors FA and FD were inadequate. An 

additional factor to allow for the length change, FL, was required. This was obtained 

by comparing many cases of shortened ‘theoretical’ vessels with the SADDLE result 

for the actual case. It is noted that for this factor, the phrase theoretical refers to a 

result for a shortened vessel using the factor method based on a 36R long vessel 

which has been modified by the factors FA and FD for the appropriate length.

The values of the new length change factor, FL, obtained were plotted against L/R for 

all R/t values. These curves are based on the following approach. For many shortened 

"theoretical" vessels, Fl is defined as follows.

If the vessel length changes from L=36R, the length change factor becomes:

F  = —
<*b-FA.FD

(6. 15)
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where FA and FD are the calculated factors for the particular vessel.

In order to determine the appropriate length change parameter, for a given vessel 

length, L, it a feasible that a variety of saddle locations may be employed and not 

solely the quarter point locations. The FL factor was calculated, for various saddle 

locations, at appropriate distances of A equal to L/4, L/6, L/8, and L/10 from the 

ends. The following fourth order polynomial equation is obtained:

FL = a0 + axx + a2x2 + a2x3 + a4x4

(6 . 16)

where x=L/R in the polynomial expression.

The final value of FL is then the mean o f the four cases calculated above. Using this 

procedure, the factors FL found for each L/R and R/t are fitted into curves. The mean 

value is chosen in order to minimise the error associated with each different 

configuration. This means that the solution is equally accurate across the full range of 

the available saddle positions. However, some of the extreme saddle positions are 

unrealistic and these positions have been removed from the scope of the curve fit. 

Vessels whose length is greater than 207? must not have saddles positioned closer 

than A=L/6 to the end; that is the range L/6 < A < L/4 is acceptable for vessels with 

L>20R. This restriction prevents very long vessels having saddles situated too close 

to the ends of the vessel and introducing high bending stresses at the vessel mid­

section. The form of the graph shown in Figure 6.15 shows that, as a smoothing 

curve, the effect of R/t is quite small. This is to be expected since the Ft parameter 

operates not only as a geometric function but corrects any errors introduced 

previously by the compound factors. If a larger error band were permitted, the effect 

of the length change factor could be replaced by a single curve. This curve indicates 

that the additional effects of both of these parameters, FA and Fp, have been taken 

into account by the FL factor.

161



1.2 -T

1 -

0.8 -

£  0.6 -

0.4 -

0.2 -

0
0

" “ i

Vessel Length U R

Figure 6.15 Graph of length change factor, FL

The values of FL can be represented by a fourth order polynomial equation as shown 
on Table 6.14,

R/t a« ai a2 a3
25 -0.053702 0.065643 -0.002351 0.0000517 -4E-7
50 -0.084688 0.065522 -0.001856 0.0000283 -2E-7
75 -0.032241 0.041286 0.000617 -0.0000575 8E-7
100 0.027463 0.018664 0.002856 -0.0001317 16E-7
125 0.066444 0.003717 0.004032 -0.0001659 19E-7
150 0.089579 -0.003488 0.004514 -0.0001767 20E-7
175 0.100234 -0.005717 0.004505 -0.0001709 19E-7
200 0.095531 -0.001799 0.003912 -0.0001455 16E-7
250 0.084560 0.005450 0.002825 -0.0000997 10E-7
300 0.059512 0.017537 0.001403 -0.0000457 4E-7

Table 6.14 Length change factor Fj (note: x  = UR in the polynomial expression)

6.6.4 Verification of the Design Method

Results obtained by this hand calculation method were compared with those 

calculated by the SADDLE program for different geometries within a range of RJt 

between 25 to 250.
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Among the cases envisaged to test the design, it has been found that the difference 

between the results for both methods is less than to 4 %, except for cases where the 

thickness is too small in comparison with the length, in which case the maximum 

difference is 6%. Geometries for Cases 1-3 are defined earlier in section 6.5, and 

some comparison results are detailed in Table 6.8

6.6.5 Design Methodology and Worksheet

By employing a careful selection procedure for the shell and saddle geometries, 

together with the placement of saddles, the maximum stress at the horn can be 

dramatically reduced. To assist in this design process, a worksheet has been devised, 

in a similar form to that used in BS 5500 (see Figure 6.16), outlining the suggested 

design methodology.

In the worksheet, the designer may input the basic shell dimensions. Saddle 

dimensions are also introduced at this stage, these being obtained from a suitable 

dimensional standard for the particular vessel radius used. Ratios of the key variables 

are then evaluated. These ratios are used in calculating the appropriate factor 

associated with a particular variable and served to check the applicability of the 

method for the proposed geometry. The basic stress factors are found in turn for all 

the variables described earlier. The basic stress, <rb, as given in Equation (6.3) is 

presented here. The alternative form given in Equations (6.5) may also be used, 

although preferably not for very long vessels. The basic stress is then combined with 

each factor to give the maximum stress in the vessel at the horn of the saddle.

This value is then assessed against the stress limit imposed for this type of loading. It 

is the opinion of the author that for the purposes of assessing the total stress in the 

shell at the horn of the saddle, this may be categorised as primary plus secondary 

bending. When this value is limited to 3 times the design stress (f  or Sm) for the 

chosen material. However, this approach may be unconservative since the nature of
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the stress may not be wholly secondary (see Chapter 7). If the maximum stress 

exceeds the imposed limit, the designer is presented with a number of options. Any 

variable can be altered, e g. saddle wrapround angle increased, this resulting in a 

different factor being selected for that variable. The new value of maximum stress is 

then obtained.

6.6.6 Illustrative Example and Fatigue Analysis

In order to illustrate the procedure and then apply to a fatigue analysis, the example 

of a vessel (Case 3) has been chosen. It may be assumed that the vessel has been in 

service for 20 years and a fatigue assessment is to be carried out. This will 

demonstrate some of the problems that may arise using BS5500 calculated stresses. 

The vessel has an inside diameter of 3658mm (12ft.), tangent length of 54864mm 

(180ft.), thickness of 26.6mm (1.05in ), with 762mm (30in.) wide, 162° wrapround 

saddles located at 6858mm (22.5ft.) from each end. The vessel is made from steel and 

is subject to a daily cycle of filling and emptying liquid butane, which has a specific 

gravity of 0.63, and has had 10 hydrotests during routine inspections. On this basis, a 

fatigue assessment to BS 5500 requires to be carried out.

Calculation of Maximum Stress in Support Region

The example vessel was originally designed using the present method in BS 5500, 

which is based on the Zick approach. The maximum circumferential stress at the horn 

(f6) calculated for this condition is found to be -178.1N/mm2. The design stress for 

the vessel,/or Sm , is taken as 193N/mm2 (corresponding to a specified yield stress of 

42,000psi). On this basis, the maximum stress at the horn must not exceed 1.25/ 

which gives a value of -241.3N/mm2 The vessel therefore satisfies the requirements 

of BS 5500.
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Using the improved Fourier series/shell analysis (SADDLE), the maximum stress at 

the vessel horn is -398.6N/mm2. When the worksheet method is used for the same 

vessel, the following terms are found:

Basic stress = 1470.0 N/mm

Weight contents factor Fw = 0.833

Saddle width factor Fb = 0.705

Saddle wrapround factor 6 = 0.548

Rigid end factor FA = 0.846

Saddle interaction factor FD = 1.000

Length change factor FL = 0.984

Substituting the appropriate values for the factors into Equation (6.3), the maximum 

stress at the horn is equal to -393.8N/mm2. The accuracy of the proposed method is 

clearly noted in the above value that is within 1.2% of the actual program value.

Since the worksheet method is a ‘design-by-analysis’ approach, the design stress 

intensity limit is 3 f  or 3Sm. For the above example, this value is 579N/mm2. Again, 

the calculated stresses fall within the 3 f  limit and the vessel design is satisfactory, for 

the shakedown requirement of the maximum load cycle range, which is the hydrotest.

Fatigue Assessment

In order to assess the fatigue life of the vessel, under the action of repeated filling and 

emptying, the method set out in BS 5500 Annex C (previously Enquiry Case 

5500/79) is used. The first step in the assessment is to identify the various events 

experienced by the critical region, in this case, the support region, which will give rise 

to fluctuating stresses. Attention is confined in this example, to the hydrotest and the 

butane fillings.



Using the worksheet result, the stress range for the hydrotest (Sr/) is 393.8N/mm2 and 

for the butane, with specific gravity of 0.63, (S&) is 393.8x0.63 = 248. lN/mm2.

Over the twenty-year period, the total number of cycles is as follows:

For the hydrotest, Hi =10

For the butane fillings, n2 = 365x20 = 7300

According to Annex C, the fillet welds at the horn of the saddle may be classified as a 

‘G’ type weld. The S-N curves of the form SrmN = A  for this assessment are 

provided in Figure C.3 and Equation C.5 of the Enquiry Case. The appropriate S-N 

equations are:

Sr3N = A = 2.50x10" and m = 3 forvVclO7 cycles

5'(.5Y = /l = 2.05xl014 and m -  5 for N  > 107 cycles

where Sr is the stress range and N  is the number of cycles from the fatigue curve. The 

constants for the S-N curve, m and A, are found from Table C. 1 of the Annex.

Taking into the account, the effect of the material and the thickness of the vessel in 

the support region, the following equation gives the fatigue life as a function of the 

stress range, S .:

N = A
f

\
2.09x10 JX 22V/4 

e J
where E is the actual Young's modulus, e is the wall thickness (if e < 22mm then the 

value of 22mm should be used, otherwise the actual value should be used) and m is

the index associated with S of the fatigue equation shown above.

In the present case, £=207,000 N/mm2 and e=26.6mm. Using these values in the 

above fatigue equations, the number of cycles N  are:

For the hydrotest:

f  „ 2.09̂ 1 -3

i 22 l393.8 x -----
l  2-07 J 1^26.6 J

2.50x10 = 3449 cycles



For the butane fillings:

2.50x10" f  „ , 2.09^ -3

I 22)248. lx ------
l  2.07 ) ( l 6 . 6  )

= 13794 cycles

Applying the Miner's cumulative damage rule then leads to:

10 7300
3449 13794

0.532 <1

The condition of the damage rule has therefore been met and the vessel/support 

arrangement can be judged safe from a fatigue point of view.

6.7 Comments

An existing rather complex analysis for twin saddle supported vessels has been 

parameterised and presented in a simple worksheet form. The maximum stresses 

occurring in the region of the horn of the saddle are categorised as secondary 

bending and as such uses 3 /  (or 3Sm) as the design criterion when all loads are 

considered.

It is also considered that, in those design cases where fatigue loading is specified, the 

Zick analysis may be inappropriate and the proposed approach should be adopted. It 

may also be used, to carry out a residual life assessment on existing plant, which have 

been subject to fatigue loading.

It is hoped that, with the incorporation of the factors for saddle and end closure 

flexibility, this method may prove the basis for a new hand calculation method suitable 

for incorporation into vessel Standards and Codes.

The first form of this work was published in Reference [60], The design method 

contained therein is programmed into a MathCAD spreadsheet in Appendix 9 of the 

thesis.
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Cylindrical shell supported on twin saddles 
Simplified hand calculation for maximum stress

\ \ R
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T vSSvl M4II aUlClvlO '
Mean radius R R/t = A/R =

Thickness t L/R = D/R =

Shell length L Note: The following limits apply

Saddle angle 6 0.1 R <b < 0.5 R

Saddle width b A <L/4
( for L >20R & L/6 <A <U 4 )

Saddle distance 
from tan line

A 25 <R/t < 625

Maximum stress equation factors:

Weight factor F w  = 36/f>
Saddle width factor Table 1 F t

Saddle wrapround angle factor Table 2 F e
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Saddle interaction factor Table 4 F n
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Figure 6.16 Design method working form
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7 FINITE ELEMENT ANALYSIS OF TWIN SADDLE 
SUPPORTED VESSELS

7.1 Introduction
The advent of the finite element technique in stress analysis has allowed many industry 

sectors to analyse complex structures that cannot be directly addressed using classical 

mechanics approaches. The use of the technique is now widespread, this being due to 

the ease of use of modem finite element codes together with the rapidly increasing 

computing power-price ratio. Finite element analysis is presently perceived as the 

standard ‘design tool’, capable of addressing the majority of stress analysis problems 

where no obvious classical solution is readily available.

In the pressure vessel industry, finite element analysis is normally used in those cases 

where ‘design-by-rule’ procedures are violated. A typical case is when a nozzle 

diameter to shell diameter exceeds the prescribed limits, and compensation pads are 

required, the additional material can only be applied to those cases where the d/D 

ratio is less than 0.33. Therefore, it is the industry accepted practice to analyse 

nozzles with pads with larger d/D ratios by finite element methods and thereafter 

assess the resulting stresses and deflections against some alternative rules, such as 

those stated in Annex A of BS 5500. These limitations address the possible failure 

modes of the vessel and attempt to ensure the structural integrity of the vessel is 

maintained.

The saddle support problem is also one of those problematic areas where a ‘design- 

by-analysis’ approach can be adopted to provide accurate values for the stresses in 

key areas as required for fatigue assessment. In cases where there is, for example, a 

complex loading arrangement such as local loads or nozzles located near saddles or 

the case of multi-saddle support systems, a solution using a finite element program is 

normally considered. Although the application of finite element analysis to this class 

of problem is considered attractive, applying the technology can be fraught with 

difficulty. Not only that, ensuring the results are satisfactory and the subsequent 

interpretation demands specialised knowledge and experience. Such problems arise
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especially when the stress gradients vary rapidly over such a small zone. It is these and 

other difficulties that make the modelling and analysis of the stress systems arising at 

the horn of the saddle support so complex.

To this end, it is suggested that the design methodology, developed in the earlier 

chapters, presents a more ‘useful’ design tool which is preferred over standard finite 

element analysis. This chapter, therefore, describes the difficulties associated with 

constructing a suitable finite element model of a twin saddle supported pressure vessel 

and interrogating the stress system obtained. In addition, a parametric model is 

developed which allows the end effects of the pressure vessel head to be examined, 

the results of which are described in a subsequent chapter.

In addition, comments are made regarding the suitability of the finite element 

technique with respect to twin saddle supported problems. Although other 

investigators have addressed the problem using finite element analysis, the results 

produced have been qualitative rather than quantitative. However, the present work 

attempts to provide guidelines for the modelling and analysis of such problems using 

finite element systems and to comment on the suitability of the technique in 

accommodating the support condition. All analysis carried out during this work was 

carried out using the ANSYS Finite Element Systems from Swanson Analysis 

Systems Inc. (now ANSYS Inc.)

7.2 Description of the Model

In constructing a suitable finite element model of a problem, it is imperative that the 

analyst has a complete understanding of the expected stress distribution, especially in 

the case of the twin saddle supported vessel. From the literature described earlier, the 

stress distribution in the area surrounding the saddle horn shows that the maximum 

stresses rise and fall very rapidly over a few degrees in the local vicinity of the saddle 

horn. In addition, the effects of the saddle flexibility are known to have a considerable 

effect on the location and magnitude of the maximum value.

In this study, the aim is to develop a satisfactory FE model which is capable of 

assessing the influence that a rigid saddle has on the maximum stresses in the vessel,
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with particular reference to the magnitude and location of such stresses. In addition to 

this, the option for introducing various head closure configurations will be 

incorporated into the model in Chapter 8. In addition, much effort has been 

concentrated into choosing the most appropriate element type and mesh design. 

However, since the selected boundary condition can generate a mathematical ‘sharp 

comer’, comparisons with experimental results are made in order to limit asymptotic 

stress results to a physically realistic value. Figure 7.1 shows the element mesh used.

f f
; Saddle j

Edges
Figure 7.1 View o f twin saddle supported vessel with symmetry constraints and

zoomed view o f the local fine mesh at the saddle horn
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7.3 Element Types

The choice of element in any finite element model should be such that the element

adequately describes the behaviour of the structure and makes use of any physical 

attributes that the structure may possess. In this particular case, the vessel has the 

property of being thin with respect to its radius and therefore, thin shell elements can 

be selected to model the overall behaviour of the vessel, although, as shown below, 

brick elements may be used. Careful consideration of the mathematical approach of 

the element formulation must be made when selecting the element for a given analysis. 

In appropriate use of element will undoubtedly result in spurious results being 

obtained.

In the ANSYS system, at Revisions 4.3A through 5.3 (the versions used throughout 

the duration of this work), the general thin shell elements available comprise STIF63 

and STIF93 (now renamed SHELL**, where ** represents the originally designated 

element number). More recently, a more modem element, STIF43, has been 

introduced to the ANSYS suite of elements and provides additional plasticity 

capabilities that were not previously available. STIF63 is a four noded elastic 

isoparametric quadrilateral shell element with a linear formulation, whilst STIF93 is an 

eight noded elastic isoparametric quadrilateral shell element with a quadratic 

formulation ~ as shown in Figure 7.2.

SHELL63 SHELL93

4 noded shell 8 noded shell
linear displacement quadrat ic displacement

SOLID45 SOLID95

8 noded brick 20  noded brick
linear displacement quadrat ic displacement

Figure 7.2 Standard element types used for pressure vessel analysis
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It is worth recalling that the 4 noded shell and the 8 noded brick have a linear 
displacement formulation and the 8 noded shell and the 20 noded brick have a 
quadratic displacement formulation. The order of the interpolation function affects 
the variation of the function across the element. This becomes even more important 
when considering stress results since these are essentially the derivative of 
displacement results, thus linear displacements' become constant stress and quadratic 
displacement becoming a linear stress variation.

It is worth recalling that these elements require a numerical integration routine to 

enable calculation of the displacements. The most common integration routine used in 

finite element codes is the Gaussian Quadrature rule and therefore the resultant 

values for the function are always interior to the element nodal points. These locations 

are known as Gauss points. The higher the order of quadrature, the closer the result 

at the Gauss point is to the actual value at the node.

The most important difference between the two element types is such that modelling 

using the STIF63 element produces an assemblage of flat shells which discretise the 

curved surface, whilst meshing using STIF93 curved shell elements produces a better 

approximation to the true geometry. However, the penalty for implementing the eight 

noded curved shell element is that it generates considerably more degrees of freedom 

and hence requires more computing power and disk space. All shell elements used 

possess three translations and three rotational degrees of freedom. Fuller descriptions 

of the theoretical basis and restrictions of these elements can be found in the ANSYS 

User Manuals.

A test case was run to investigate the level of accuracy, performance and run time for 

a given mesh density but populated with two different element types. Using the mesh 

described in Figure 7.1, with a vessel radius of 500mm, length = 36R, thickness of 

10mm and saddles of angle of 120° located at the quarter points. The STIF93 element 

was therefore selected because of accuracy, albeit greater run times resulted, and this 

element type was used throughout this work. The following table compares various 

degrees of mesh refinement using STIF63 and STIF93 elements.
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Model No. Element
Type

No. of 
Elements

Maximum 
Stress ,

Relative 
Run Time

1 STIF63 3320 -396.5 N/mm2 1.0

2 STIF93 3320 -465.2 N/mm2 2.6

Table 7.2 Element performance values (comparative times for an SG Iris Computer)

As the maximum stresses are known to be located in the region of the horn of the 

saddle, a concentration of elements was introduced into this area - Figure 7.1. Since, 

the stress distribution varies both longitudinally and circumferentially in this region, a 

regular grid of rectangular STIF93 elements were generated in order to ensure that 

the shape functions would behave as accurately as possible. Convergence was 

checked by increasing the number of elements in the regular grid from two four noded 

shell elements either side of the saddle centreline to a final model comprising four 

eight noded shell elements located symmetrically about the horn centreline. The level 

of discretisation was necessary since the stress gradients are asymptotic at either end 

of the saddle horn.

Figure 7.3 Zoomed plot showing mesh refinement and position o f results lines
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Figure 7.3 shows the finite element mesh in the region of the saddle contact area. The 

top left corner of the saddle is located at the intersection of the A-B and C-D lines. It 

can be seen that there is a regular mesh of eight elements across the width of the 

saddle and that the region directly above and below the saddle horn centre contains a 

very regular group of rectangular undistorted elements. In addition, the saddle contact 

area itself is meshed with regular shaped elements in order to maintain their 

performance.

Previous work by Widera, employed finite element analysis but it is the present 

authors consideration that the model was not sufficiently refined to ensure accurate 

results. This is principally due to the rapidly changing bending stress field in the 

vicinity of the saddle horn edges. The total quarter model size comprised some 3320 

elements representing the vessel. In the saddle support region, it was assumed that the 

radial, tangential and axial displacements were zero, that is to say, the support was 

totally rigid. The choice of boundary condition is discussed later.

The finite element model file, which was created, is listed in Appendix of this thesis. 

The finite element input file shows clearly that the model used is fully parametric. The 

parametric language contained within the ANSYS system allows a model to be 

created in terms o f ‘parameters’ rather than being defined by explicit fixed co-ordinate 

locations, as can be seem from the first few lines of the input file,

/PREP7
/G ET,40,testV ES SELl,F43
AFAC=9
:L90
/PREP7
/nop r
/T IT L E ,T W IN  SADDLE VESSEL 
C * * *  Controlled meshing 
C * * *  Fixed saddle angle o f 60  degrees  
C * * *  Length factor LFAC 
C * * *  Saddle position AFAC 
C * * *  Saddle W idth BFAC 
C * * *  Thickness - shell TKS 
C * * *  Thickness - head TKH

C * * *  DEFINE PARAMETERS
T K S = 10  ¡Shell thickness =  10m m
TK H = 1 0  ¡Head thickness =  10m m
R = 5 0 0  ¡Radius =  500m m
A N G =60 ¡Saddle h a lf wrapround a n g le = 60
LFAC= 3 6  ! Length factor
L=LFA C *R  ¡Total vessel len g th =36R
C * * *  AFAC=9
A =A FA C *R
BFAC=0.2
B=BFAC*R
B 2=B /2
L 2= L /2
L2A=L2-A

For the purposes of this model, the following syntax is used:
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TKS - Shell thickness variable
TKH - Head thickness variable
R - Shell radius variable
ANG - Saddle half angle variable
LFAC - Length factor multiplier (L=LFAC*R)
AFAC - Saddle position, A, multiplier (A=AFAC*R)
BFAC - Saddle width, B, multiplier (B=BFAC*R)
REF1, REF2 
& AREF

- Various mesh refinement parameters

All geometry definition can be achieved by assigning numbers to the above parameters 

and running the model input file. The geometry is automatically created and meshed, 

ensuring that the regular grid is maintained and that as the saddle is moved (by 

altering the value of AFAC), all element sizes and shapes, are within the ANSYS 

allowable limits for shape, taper and skew.

Multiple runs are carried out using the ANSYS macro language. Samples of this are 

shown in Appendix 7 and these listings can be modified to allow any or all of the 

parameters to be the main variable when undertaking a parameter study.

7.4 Boundary Conditions and Loading

The boundary conditions associated with the saddle support problem make use of the 

two planes of symmetry which the vessel possesses. These planes lie along the axis of 

the vessel and at the profile located midway along the vessel length. Therefore, only 

one quarter of the vessel need be modelled and suitable symmetry boundary 

conditions are applied to ensure no out-of-plane displacements or rotations can exist. 

In order to investigate the stress distribution in this area, it was decided, on the basis 

of needing to derive results suitable for comparison with the Fourier series method, 

that a rigid saddle constraint should be adopted. This constraint, in reality, can be 

perceived to be a concrete or heavily reinforced saddle configuration with extensive 

support in the radial direction. Another justification for such an approach is that, in 

real situations, saddle construction can be quite variable, even though there exists a 

British Standard which gives guidelines and recommendations on saddle 

dimensioning. Therefore, it is quite possible that fabricators will produce, by accident 

or ignorance, an overly stiff saddle, which may therefore be considered as rigid. 

Therefore, in order to represent the ‘worst-case’ scenario, a rigid boundary is adopted
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which will generated the largest maximum stress values, for comparison with the more 

ideal case assumed in the parametric study.

The mesh is also capable of solving various other problems including the 

incorporation of a flexible saddle, various configurations of ‘rigid’ saddle and the 

inclusion of the interface pressure profile generated by the SADDLE program as an 

initial condition.

There are a number of possible boundary conditions, which may be applied at the 

vessel saddle juncture. Firstly, the entire contact area may be fully fixed in all six 

degrees of freedom. This can be thought of as ‘gluing’ the saddle contact region to a 

rigid surface. The second option would be to only fully fix the saddle edges whereby 

contact is only enforced at the welds. Other options would allow the rotational 

degrees of freedom to be active and therefore introduce a measure of flexibility into 

the shell. However, it became clear that fully fixing the entire area produced results, 

which were much higher than those of the Fourier series analysis, whereas only fixing 

the edges produced distorted stress patterns. Therefore, in order to produce realistic 

stress results appropriate to the welded edge with a rigid foundation, it was found that 

the most effective boundaiy condition arose when the nodes at the edges of the saddle 

and/or at the saddle profile located by horn centreline were chosen to be constrained. 

For the present work, only the saddle and horn edges were constrained. The fully 

parametric ANSYS input file allows any of the above boundary conditions to be 

employed.

C*** Constraints acting on areas
c s y s ,l l
nrot,all
csys,0
syrnbc,0,l,L2
sym bc,0,3
C * * *  Displacem ent constraints - Please select 
C * * *  Select areas only 
C * * *  Left Hand Part 
a rs e l„ l,4 7
C * * *  Right Hand Part

a ra s e l„121 ,167
C * * *  Get nodes from areas
narea, 1
d, all, all, 0
nail
arall
C * * *  Add in load option
apsf/all(„ 0 ,2 ,R *2 ,9 .8 1 E -6
wsort,x
afw rit
C *** fin is h
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C*** Constraints acting on lines
c s y s ,l l
nrot,all
csys,0
sym b c,0 ,l,L 2
symbc(0,3
C ***D isp lacem en t constraints-Please select
C * * *  Select edges only
C * * *  Left Hand Edge
lsrse l„2 ,54 ,4
Isasel,, 13 ,2 9 ,1 6
lsasel„53 ,63 ,10
Isasel,, 7 0 ,1 4 7 ,7
C * * *  Add in Top Edge
Isasel,, 148 ,151 ,3
Isasel,,3 7 0 ,3 7 2 ,2

C * * *  Add in Right Hand Edge
Isasel,,2 4 0 ,2 5 0 ,1 0
lsasel„257 ,290,3
Isasel,, 2 9 5 ,2 9 9 ,4
lsasel„304 ,369,5
C * * *  Optional Centreline
Isasel,, 4 ,5 6 ,4
lsasel„25 ,45 ,20
lsasel„61 ,152,7
C * * *  Get nodes from lines
n lin e ,l
d ,a ll,a ll,0
nail
Isall
C * * *  Add in load option
a p s f,a ll,„0 ,2 ,R *2 ,9 .8 1 E -6
C ***fin is h

It is noted from the above listings that all nodes are rotated into the correct 

cylindrical co-ordinate system allowing the appropriate boundary conditions to act in 

the proper manner. Nodal rotation also implies that the results will be output such 

that radial, circumferential and longitudinal values will be available after the analysis is 

complete.

The head closure region of the model was designed to have various options, to allow 

the flexibility of the head to be examined. The results of these studies are presented in 

Chapter 8. However, in the present series and in order to make comparisons with the 

theoretical analysis of the SADDLE program, the vessel head was defined as fully 

rigid, i.e. the cross section of the vessel remains circular at the end of the vessel.

7.5 Automatic Mesh Refinement and Convergence

During the investigations of the effects of the flexibility of the dished head, it was 

noticed that warnings associated with element distortion were flagged when the 

saddle moved nearer the end. This was caused by the mesh refinement definition 

(REF1, REF2 and AREF) which assumed a ‘fixed’ level of mesh refinement in the 

saddle region which was based on the dimensions associated with the initial starting 

point of the parameter study i.e. A=9R, for a 36R long vessel. However, 

modifications to the file were introduced which allowed the meshing routines to 

improve the element density in the transition regions as and when required as the 

saddle region moved towards the end of the vessel, i.e. when A/R<0.5 then the
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element mesh density inside the fixed zone alters in proportion to prevent element

distortion. This check is incorporated at the end of the ANSYS input file as shown:
* IF , AFAC, LE,2.0,: L95
AFAC=AFAC-2.0
*G O ,:L90
:L95
*IF ,AFA C,LE,0.6, :L96
AFAC=AFAC-0.5
*G O ,:L90
:L96
*IF ,A FA C ,LE ,0.3 ,:L97
AFAC=AFAC-0.3
*G O ,:L90
:L97
/EO F

7.6 Finite Element Results

The resulting stress gradients are shown in Figure 7.5 for the stress intensity values 

plotted along the axial and circumferential directions as described by Figure 7.3. 

These figures show that the stress gradient changes dramatically in the region of the 

horn apex. The magnitude and location of these twin peaks varies depending on the 

location of the saddle on the vessel and the results presented herein reflect only the 

magnitude irrespective of location. It is noted that over-constraining the model 

generates asymptotic values from a finite element analysis, since in this treatment, the 

saddle is represented as a rigid structure. These ‘peaks’ cannot have been detected 

experimentally due no doubt, to the difficulty in obtaining strain gauge results 

adjacent to the saddle horn weld and to the fact that real saddles, however rigid they 

may appear, are slightly flexible in the saddle horn region. The distribution of stress 

intensity shown in Figures 7.4a and b, point toward asymptotic values at the location 

representing the saddle edge. The magnitude of the stress will tend to infinity as the 

mesh is repeatedly refined and as the stress gradient continues to rise. The 

experimental value is superimposed onto the finite element output and corresponds to 

the average stress across the saddle width, as shown in Figure 7.4a. These results 

correspond to the vessel dimensions detailed in section 7.3, page 174, with a reduced 

specific gravity of 0.1.
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S I N/mm: SI
207.3

187.1

166.8

146.6

126.3

106.1

85.8

65.6

45.3

25.1

4.8

N/mm2

Stress Intensity Variation in Horn Region Stress Intensity Variation in Horn Region
across Axial Distance A-B (Figure 7.3) around Profile C-D (Figure 7.3)

Figure 7.4a,b Stress intensity gradients in axial and circumferential directions

Figure 7.5 shows a typical colour contour plot of the stress intensity values found at 

the saddle horns. The positions of the boundary conditions applied to represent the 

rigid saddles are shown as blue triangular constraints. The highly localised nature of 

the resulting stresses at the horn is clearly shown. The outer surface is plotted and the 

maximum compressive value (MN) is shown as blue. Red contours represent areas of

tensile stress.

ANSYS 5.0 A 
MAY 2 1996 
18:15:13 
PLOT NO. 1 
NODAL SOLUTIC 
STEP=1 
SUB =1 
TIME=1 
SY (AVG) 
BOTTOM 
RSYS=0 
DMX =1.416 
SMN =-263.137 
SM NB=-453.17 
SM X =34.88 
SM XB=129.827 
U
■ -263.137 
m  -230.024 
■B -196.911 
5 -1 6 3 .7 9 8  
■  -130.685 
□  -97.572 
□ -64.459 
□ -31.346 
■ i 1.767 

34.88

Figure 7.5 Contour plot o f outside circumferential stress at saddle horn
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7.7 The Influence of Rigidly Fixing the Saddle Edges - 
Comparing FEA with Fourier Series

The contour plot of the stress intensity in the saddle region detailed in Figure 7.5 

shows clearly that the maximum stresses are located at the horn. It is noticed however 

that high stress maximums appear at both comers of the saddle. These are mainly due 

to the method of finite element discretisation and the chosen method of constraining 

the shell. The fully fixed constrained condition was selected to replicate the boundary 

condition employed within the SADDLE program. In the SADDLE program, the 

saddle centre profile is constrained and the saddle width supported by the appropriate 

uniform interface pressure. The finite element equivalent of a single constrained 

profile at the saddle centreline is too severe and therefore the saddle edges were fixed, 

that is, only the nodes at the edges of the saddle were constrained. The practical 

implication of this is that at the juncture between the loading lines (i.e. each comer of 

the saddle), the applied force is distributed over a point (i.e. a very small ‘area’) 

which consequently generates high stresses. These stresses do not arise in real 

situations.

The main problem in making direct comparisons between the finite element results 

and the Fourier series analysis, is that the SADDLE program assumes a uniformly 

distributed interface pressure across the width of the saddle. The results of the finite 

element analysis tend to show that this is probably not the case, at least for the case of 

the rigid saddle. Therefore, a graph of the average stresses on each patch has been 

drawn (see Figures 7 6-7.8), for Cases 1-3 as detailed earlier. For each graph, the 

mean stress value was evaluated and compared with the SADDLE program, the 

BS5500 and the experimentally derived values.

182



Figure 7.6 Stress distribution across saddle horn (Case 1)

Figure 7.7 Stress distribution across saddle horn (Case 2)

Figure 7.8 Stress distribution across saddle horn (Case 3)
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According to these three graphs, it is noticed that the results obtained using BS5500 

(green triangles) are very close to the experimental values found for vessel supported 

on flexible saddles (brown solid circles). Indeed, they are even slightly lower than 

these values for Case 2 (Figure 7.7). Case 3 confirms one of the main points raised by 

Tooth et al, indicating that it appears most likely that Zick used flexible saddles 

during his experiments. For Cases 1 and 2 (Figures 7.6 and 7.7), the results obtained 

experimentally for the rigid saddle lie between the finite element analysis and the 

SADDLE program. Those results obtained from the flexible saddles are much lower.

As for Case 3 (Figure 7.8), both the finite element analysis and the SADDLE program 

calculated values are higher than those found experimentally for a rigid saddle. 

However, the differences can be attributed to the flexibility of the particular saddle 

used in the experiment. This may mean that if the experiments were conducted with a 

fully rigid saddle, the values found would probably have been higher than results 

obtained by both the SADDLE program and more in agreement with those predicted 

from the finite element analysis.

Since the aim is to investigate the rigid fixing of the saddle edges, a lower bound finite 

element analysis line has been drawn onto each of the three graphs. It is noticeable 

that the lower bound value from the finite element analysis and the value from the 

SADDLE program are found to be very close to one another. However, the 

exceptions to this, of course are the two peaks. These are attributed to the method of 

modelling and to the over constraint applied by the finite element boundary 

condition. With the exclusion of the two peaks, this comparison therefore tends to 

show reasonable agreement the results of the SADDLE program and the subsequent 

design approach generated in Chapter 6 of this work. In addition, since the SADDLE 

program results are closer to the values obtained for the rigid case than to those 

measured for the flexible one, this suggests that the new design method may be 

applied to a wider range of vessels and support configurations where a suitable 

flexibility factor may not be available, i.e. the approach is conservative.
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7.8 Nature of Maximum Stress

Using a design-by-analysis (DBA) approach for the assessment of stresses that are 

calculated by using finite element analysis is fraught with difficulty. Since the 1960's, 

the predominant tool for DBA was elastic thin shell analysis and as such, the rules 

employ many of these concepts, especially in the stress categorisation procedures 

which are required to assess the integrity of the vessel. Many researchers have 

attempted to develop robust procedures for use with finite element analysis which will 

either separate stresses into the recognised membrane and bending shell type stresses 

or to generate procedures for limit load evaluation.

Finite element analyses based on shell elements readily provide membrane and 

membrane plus bending component stresses. Results from this analysis type can be 

easily assessed using code procedures.

In some cases, where through thickness variations may not be linear, solid, brick type 

elements must be used. Analyses where solid continuum elements based on elasticity 

theory are employed do not supply shell type stresses automatically and therefore this 

makes it more difficult to fit into the traditional assessment method. Therefore, 

linearisation procedures to extract constant (membrane) and linear (bending) stress 

distributions have been suggested but have some limited applicability are not valid for 

all pressure vessel components. To date codes and standards authorities have not 

settled on one preferred method and work is on going to this end. However, there are 

some simple approaches available, which may point towards the nature of the 

resulting stresses.

Reduced Modulus Methods
The reduced modulus method was originally developed as a stress categorisation tool 

for piping systems but was later extended to cover a wider range of pressure vessel 

applications. These methods attempt to classify stresses by comparing the simulated 

inelastic response of a material with ideal primary and secondary stress. Many 

researchers have contributed towards this work. Most notably, Dhalla169,701 who, while
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assessing clamped pipes, found that stresses tend to redistribute due to the presence 

of the geometric non-linearity and thus could be considered as secondary, with 

secondary stress limits applied. In this, stress categorisation was not actually 

undertaken, rather the effect of local inelasticity was examined by iterative elastic 

analyses in which highly loaded regions were systematically weakened by reduction of 

the local modulus of elasticity in order to simulate the effect of local inelasticity. This 

approach was less time consuming than that of a full non-linear analysis. In addition, 

the need for complex non-linear material models was also removed. Dhalla extended 

his work to cover more general pressure vessel components.

Roche1711, Marriot'721, Seshadri |73,,|74]and Mackenzie & Boyle175'791 have all contributed 

extensively to the development of reduced modulus methods. A full list of references 

can be found in a literature review undertaken by Chan1801. These include the 

development of stress classification procedures, lower bound limit load theorems, 

GLOSS analysis (generalised local stress strain analysis) and elastic compensation 

methods. The basis of each of the methods is similar to Dhalla's approach although 

variations in procedures and implementation have proved complex and time 

consuming. Many individual pressure vessel components have been assessed and 

presented in the literature. By considering many geometrical variations, many of the 

methods noted herein have been shown to have strengths and weaknesses. Even 

today, ASME, and other code writing bodies, have not wholly implemented reduced 

modulus methods.

Normalised Stress Strain Plot

Using a procedure developed by Dhalla, the nature of the stresses arising at the saddle 

horn is examined. In this, the procedure is based on apportioning elastically calculated 

stresses at highly loaded regions into primary & secondary components and applying 

appropriate stress limits to these stresses. Dhalla's method is summarised as follows: 

Perform an elastic analysis and identify the most highly stressed regions of the 

structure noting the effective stress and strain, <j\ and £\
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Estimate the inelastic strain, eP corresponding to the elastic calculated stress. This is 

generally taken to be a rough estimate such as 1% membrane strain as defined in the 

ASME code.

Calculate the minimum secant modulus & assign to the most highly stresses zones

Fs - Z l

Perform at least three elastic analyses assuming reduced elastic moduli varying 

between the original modulus, E, and the minimum estimated modulus, Em, for the 

most highly stresses regions. This establishes a trend in relaxation due to the 

simulated inelasticity.

Plot the effective stresses and strains for the original and reduced modulus analyses to 

define several points, R for each reduced analyses. Lines, defined as mixed response 

lines, are drawn between the elastically calculated point A, and the reduced points, R 

on the normalised plot, shown as Figure 7.9

Normalised stress

Normalised strain 
W

Displacement
control

Figure 7.9 Normalised stress-strain plot (after Dhalla)
Dhalla defines the mixed response in terms of the rotation, 0. The rotation with 

respect to the 100% displacement controlled line determines the percentage of elastic 

stress, which should be classified as primary or secondary. If 0=0°, then the stress 

component is taken as 100% displacement controlled, hence 100% secondary stress. 

If 0=90°, then the stress is taken as 100% load controlled, hence 100% primary 

stress. For a mixed response, the amount of primary stress is calculated as PSF=Q/90.
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Applying this to the saddle problem for Case 3 geometry, results in the following 

diagram being constructed (Figure 7.10)

Figure 7.10 Normalised stress-strain plot for saddle supported cylinder (Case3)

Examining the gradients of each line allows an estimation of the nature of the stresses 
to be made.

Membrane stress, ct„

<t =arctan 22
0.2

=89.4% primary and hence 10.6% secondary

In this case. 89.4% of the membrane stress value, o m, should be compared with the 

primary limit. /  The remaining 10.6% has the characteristic of a secondary stress. 

Neither BS 5500 Annex A nor ASME VIII Division 2 makes mention of secondary 

membrane stress category which often exhibits the same characteristics as the 

secondary stress category. Since the membrane stress has a predominately primary 

characteristic, for the case shown, the following limits should be observed.

0.894crm < /

^  f
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Membrane plus bending stress, a„^b

(j„ = arctan 22
0.2

=89.4% primary and hence 10.6% secondary

In this case, 62.76% of the membrane plus bending stress, has the characteristic 

of a primary stress and this contribution should be limited to 1.5/ Thereafter, it 

would appear that the remaining 37.24% could be considered as secondary and be 

limited to 3f  However, since the 3 /  limitation is intended to include the primary 

component, then the entire 100% of the membrane plus bending stress must be 

limited to 3 /  not solely the fraction, i.e.

0-6crm+i < 1.5/

^ 3 /

7.9 Run Times
One of the important factors, which must be considered when choosing a design 

method, is the time for calculation. During this study, timings were measured in order 

to compare the relative performances of the finite element analysis and of the 

SADDLE program using two different reasonably powerful computers. The 

SADDLE program was run using 600 and 200 terms in each of the respective Fourier 

series (m and n numbers).

In Table 7.2, 'per case' for the saddle PROGRAM is a series of results for a single 

vessel with a line of results at 10 subdivided intervals. For the FEA result, this 

pertains to the quarter model described previously.

C om puter Type S A D D L E  program F in ite E lem ent A nalysis

486 PC N/A

SUN Sparc 1 + 45 min /  case 60 min / case

APOLLO 12 min / case 35 min /  case

Table 7.2. Solution run times
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According to this table, running the SADDLE program appears somewhat faster than 

the equivalent finite element run. And it may be stated that as the results obtained 

with the SADDLE program are comparable with those found with the finite element 

analysis, the first method appears to be more appealing than the second. Indeed, since 

the proposed design method of Chapter 6 yields results which are almost identical to 

the SADDLE program, and the new method may be mounted on a simple PC or hand 

held calculator, it is believed this is the most beneficial method of providing an 

accurate solution.

At the time of writing, powerful computers are still not wide spread in the industry 

although they are becoming more commonplace. Indeed, the main problem with 

employing finite element analysis in most UK design offices is the lack of experienced 

finite element analysts. However, if the proposed design method were used, then 

typically, thetime taken to mount on a spreadsheet is less than 1 hour and thereafter 

solutions are available in seconds. Hence, if an analysis route is being considered 

based on both time of calculation and the degree of accuracy expected, then the 

design method presented herein appears to be the best choice over FEA methods.
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8 THE INFLUENCE OF THE FLEXIBILITY OF THE VESSEL END 
ON THE TWIN SADDLE PROBLEM

8.1 Introduction

In previous chapters, a design methodology and worksheet have been developed for 

twin saddle supported cylindrical vessels in which one of the major assumptions is 

that the cylinder has totally rigid ends. In practice, dished ends are usually formed into 

a hemispherical, torispherical, ellipsoidal or fla t profile, each possessing some 

degree of flexibility. This is a longstanding problem, and to date there is no robust 

approach present for designers to assess the effect of the end closure on the stresses 

at the saddle horn. Results of extensive finite element studies are presented in this 

chapter which demonstrate the influence of the dished end flexibility on the maximum 

stress in the vessel at the location of the horn of the saddle. This allows the generation 

of a 'new flexibility factor ’ for incorporation into the simple design method already 

proposed. The factor is given in Equation 6.2 as Fe.

The analysis of pressure vessels supported on twin saddles is generally performed 

using a method first presented by Zick. This method employed a modified beam and 

ring analysis which, in turn, yielded a mathematical model for the vessel and saddle 

arrangement. The modifications were such that the predicted values of the method 

agreed with the experimental values available at that time. As indicated earlier, recent 

work by Tooth et al has indicated that Zick’s treatment for the vessel, full of fluid, 

predicts stresses which are in reasonable agreement with experimental values only 

when a flexible saddle is used. When a more rigid saddle is employed, the method 

underestimates the maximum stresses which occur in the vessel. These stresses, 

located at the horn of the saddle on the outside surface of the vessel, may in some 

cases have a magnitude of twice the value predicted by Zick’s method.

Advances have been made in understanding the stress systems associated with 

support regions of these vessels since Zick’s treatment was first proposed. An 

alternative analysis method proposed by Tooth et al, has shown that the twin saddle
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support problem may be adequately modelled using shell analysis and a double 

Fourier series approach. In this, the specified loadings of vessel self-weight, liquid 

contents and pressure loadings are represented by double Fourier series. The 

interaction forces and the radial and tangential interface pressures, between the vessel 

shell and the saddle support are the major unknowns of the problem. These forces are 

determined using classical small displacement shell equations for the vessel and by 

enforcing compatibility and equilibrium at the shell/saddle interface. The displacement 

functions are also represented by double Fourier series of the form,

u = c o s ( ^ ) c o s  (#10)

v = Z Z vm,n s i n ( ^ ) s i n  (n<t>) 

w = s in ( ^ ) c o s  (n<j>)
m= 1 n=0 ^

(8 . 1 )
The choice of this type of expansion for both the load and displacement indicate that 

the loading system is symmetric with respect to the generator passing through the 

nadir of the vessel at <f> = 0. They also imply that certain boundary conditions must 

exist at the ends of the vessel. Since the origin of the co-ordinate system is taken to 

be at one end of the cylinder, all the Fourier expansion terms or their derivatives, 

containing the term sm(mnx/L), vanish at the ends of the cylinder. This implies that,

• The ends cannot deform in the plane of their profile

• No rigid body displacement of the ends can occur

• The ends cannot carry applied axial loading

• Generators are free to rotate in a plane normal to the profile

If the vessel ends conform to the above boundary conditions then the Fourier 

expansions provide a complete solution to the governing differential equations of the 

problem, as detailed by Duthie and Tooth131. In practice, however, there will be some
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deviation from this theoretical boundary condition since most practical pressure 

vessels utilise hemispherical, torispherical or semi-ellipsoidal dished ends. In some 

cases, however, a vessel may have an end closure which maintains the circularity and 

is very rigid compared with the vessel flexibility. In such cases, for example a high 

pressure vessel closed at the ends by a thick bolted blank flange, the vessel shape will 

remain completely circular under loading and the boundary conditions noted above 

are satisfied. In this situation, plotting a graph of displacements and stresses along the 

vessel axis would show that the values tend to zero at the ends of the vessel. 

Realistically, there will be some value of stress and displacement allowed at the end of 

the cylinder, due to the actual flexibility of the dished end. To adequately represent 

the vessel behaviour these effects must ideally be incorporated into the analysis.

8.2 Treatment in the British Standard - BS 5500

The importance of the end flexibility becomes increasingly important when the saddle 

support is located near the end of the vessel. Zick recognised that there would be a 

‘stiffening effect’ present when the saddle was situated near to the vessel end. In his 

analysis, it was assumed that the shell could be represented as an arch loaded with a 

shear stress. Thereafter, the distribution of circumferential bending stress resultant can 

be found and in all cases, the maximum value was found to be at the horn of the 

saddle. The value of this moment can be expressed in the following form, using BS 

5500 notation,

M „ = K t WiR

(8. 2)

where W\ is the load carried by one saddle and R is the vessel radius. The value K6t is 

given in the table below (Table 8.1) for saddle positions A/R > 1.0. If the saddle is 

located near the vessel end, then substantial stiffening is anticipated and these values 

are reduced by a factor of 4 in the region A/R <0.5. Intermediate values are found by 

linear interpolation.
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A/R Saddle Angle 0 (degrees)
120 135 150 165

<0.50 0.0132 0.0103 0.0079 0.0059
> 1.00 0.0528 0.0413 0.0316 0.0238

Table 8.1 Values o f K6 for use in BSS500 equation

For vessels of length greater or equal to SR, the bending moment generated at each 

horn is assumed to be supported over an effective vessel length of 4R. The saddle also 

supports a direct load which is supported over the portion of shell stiffened by contact 

of the saddle, i.e. over a distance of (6i+10/). Therefore, the total maximum 

circumferential stress,/«, at the horn is,

/« = g
4 /(6 ,+ 10 /)

3 K Wx 
~2KW

for L/R > 8

For shorter vessels, the bending moment is assumed to be carried by IJ2. 

This results in the following equation,

Wx
4/(6, +10/)

12
Lt1

for L/R < 8

In these equations, the symbols are defined as follows:

L = vessel parallel length 

/ = vessel wall thickness

(8.3a,b)

b\= saddle width

8.3 Present Treatment

From work detailed in Chapter 6 and in Reference [60] by the present author, the 

maximum stress at the horn can be expressed by the use of a ‘basic stress’ quantity 

which represents the stress for an imaginary vessel of length L—36R chosen such that 

the saddle horn stresses evaluated at this location are free from the influence of the 

vessel ends. Thereafter, a detailed study was carried out to enable the various 

controlling parameters to be isolated and quantified. An equation of the following 

form was employed using factors’ to represent the influences of the various
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parameters and to allow the basic stress to be modified and related to the 

configuration of the real vessel under analysis.

The maximum stress at the horn can be expressed as,

c* max = crb.F w.Fb.F0 .FA.FD.FL

where,

Fw = factor associated with the vessel weight 

Ft, = factor associated with the saddle width

Fq = factor associated with the saddle angle 

Fa = factor associated with the saddle position 

Fo = factor associated with the saddle interaction 

F i = factor associated with the vessel length

(8.4)

The stress evaluated by this equation is the maximum circumferential stress on the 

outside surface of the vessel. Its position is not always located at precisely the same 

geometric location, this depends on the configuration under consideration. In some 

cases, the maximum stress location can be situated above or, more often just 

underneath the saddle horn position. Indeed, the maximum stress location also moves 

axially across the saddle horns between the two saddle edges. This depends on the 

position of the saddle in relation to the vessel end points. If the saddle is located at 

the vessel quarter points, the maximum stress location is slightly offset from the 

saddle centre profile in the direction of the vessel end. As the saddle position is 

located nearer the end of the vessel, the maximum stress location moves across the 

saddle horn edge towards the inside edge of the saddle plate i.e. closer to the mid­

span position.

However, using the rigorous shell analysis, the predicted maximum stress rapidly 

reduces as the saddle position is located the vessel end, since the Fourier series 

solution demands zero displacement at the ends of the cylinder.
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8.4 Modelling the Flexibility of the Vessel Dished End

The flexibility of the vessel end has been analysed using finite element techniques. 

Four configurations of an end have been studied and their flexibilities characterised. 

These comprise, hemi-spherical, semi-ellipsoidal (2:1), flat and rigid heads. The local 

finite element mesh for each head is shown below in Figure 8.1.

Figure 8. la-a Finite element meshes for the various head types 

In addition to the vessel end being modelled accurately, due consideration must be 

given to the local mesh in the region of the saddle horn. Previous work by 

Widera118’191, employed finite element analysis but the present author considers that 

the model was not sufficiently refined to ensure accurate results. This is principally 

due to the rapidly changing bending stress field in the vicinity of the saddle horn 

edges. Although Widera modelled the end explicitly, there is no indication that he 

investigated the influence of the end closure stiffness. The mesh used in the locality of 

the saddle is shown as Figure 7.1. In the saddle support region, it was assumed that 

the radial, tangential and axial displacements were zero at the saddle edges, that is, 

the support was totally rigid at these locations.

8.5 Parameter Study

Using the local mesh geometries described in Chapter 7, with the vessel length equal 

to 36R, a parameter study was carried out for the four head configurations. The range 

of thickness variations encompassed the following ranges,
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> 2.0
R  t

50 < — >300 ; 0.5 < -^ ±
t  ts h e l l

(8.6)

where Uead and tSheu are the end and shell thicknesses respectively. The saddle position 

was varied from A=9R which is approximately the quarter point for the theoretical 

vessel free from end effects to a distance of A=Q3R which brings the saddle location 

to a position very near the vessel end weld. The symbol A is equal to the saddle centre 

profile to the end of cylindrical length of the vessel. The present analysis assumes the 

default width of saddle is 0.2/?. Each analysis was solved using the ANSYS finite 

element program using 3320, 8 noded higher order quadratic shell elements on a 

Silicon Graphics Iris workstation taking approximately 15 minutes CPU time for each 

run. The details of the procedure were outlined in Chapter 7.

8.6 Finite Element Results

From the results of the parameter study, a graph of ‘end flexibility factor’, Fe was 

obtained for a range of different saddle positions when the RJt ratio was varied from 

50 to 300, for the three head types referred to in Figure 8.1. Typical output values for 

the maximum stresses are shown in Tables 8.2 and 8.3. for the cases where R/t=100.

Head Type A=9R A=7R A=5R A=3R A=1R A=0.5R
Rigid -199.4 -182.1 -184.5 -179.6 -164.9 -155.6
Flat -202.6 -188.4 -192.6 -188.3 -167.7 -155.1

Ellipsoidal -203.6 -188.3 -193.8 -191.7 -176.1 -166.4
Hemispherical -205.1 -188.4 -195.3 -193.1 -181.3 -171.1
Table 8.2 Maximum stress values for various saddle positions and head types

(R/t=100) in N/mm2

t»/ts A=9R A=7R A=5R A=3R A=1R A=0.5R
0.5 -203.6 -188.4 -193.9 -191.9 -176.6 -166.4
0.75 -203.6 -188.2 -193.9 -191.8 -176.4 -166.4
1.0 -203.6 -188.3 -193.8 -191.7 -176.1 -166.4
1.5 -203.6 -188.2 -193.8 -191.6 -176.1 -166.4
2.0 -203.6 -188.2 -193.6 -191.4 -176.0 -166.4

Table 8.3 Maximum stress values for various saddle positions and thickness ratios
for a semi-ellipsoidal head (R/t=100) in N/mm2
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It is noted that the values appear to be independent of the head type used and also of 

the head to shell thickness ratio within reasonable limits. In view of this, Figure 8.4 

can be plotted - it is applicable for all head types and head to shell thickness ratios.

Figure 8.4 Graph o f end flexibility factor, Fe

The end flexibility factor is derived by producing a multiplication factor for the basic 

stress for the saddle position at AIR=9, i.e. the distance at which the saddle horn 

stress is free from the influence of the end. This factor can now be incorporated into 

Equation 6.2 and the rigorous shell analysis detailed earlier to represent the influence 

of the vessel end.

The behaviour at each R/t ratio can be clearly seen and, on comparing the reduction in 

stress with that predicted by Zick, it is clear that Zick’s approximation is only valid 

for larger R/t ratios. These large R/t ratio vessels are inherently more flexible and the 

influence of the end can be effective at distances greater than the A/R= 1.0 proposed 

by Zick.
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The analysis procedure was carried out for the three head types detailed earlier. In 

addition, a rigid head was modelled using constraint equations which simulated a head 

representing the Fourier series constraints. This end type had the same effect on the 

saddle horn stress as the three configurations.

The ratio of the shell-to-head thicknesses was also varied for all cases covering the 

range from 0.5 to 2.0. However, it was clear from the results of the analysis for this 

study that the variation in thickness had no significant effect on the magnitude of the 

saddle horn stress intensity. This was seen to be the case for all end types.

The reason why the variation in shape and thickness may have had little influence on 

the maximum stress may be attributed to the highly localised nature of the stress at 

the horn. In other words, since maximum value is significantly larger than the general 

stress field in which it is located, the asymptotic nature of this distribution may be 

unaffected by the stiffness changes elsewhere.

8.7 Discussion
The flexibility of a variety of pressure vessel end closure types has been examined 

using finite element analysis. A flexibility factor has been identified and presented in a 

useful form for inclusion to a design method presented previous by the author. This 

method has particular relevance to those designs where good stress data is required 

for fatigue assessments. Additional comments have been made with regard to the 

conventional design procedure of Zick and some guidance is provided on areas where 

that method is inadequate.

This work is published by the author as Reference [61],
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9 THE INFLUENCE OF THE SADDLE FLEXIBILITY ON THE 
STRESSES AT THE HORN OF THE SADDLE SUPPORT

9.1 Introduction
The twin saddle supported cylindrical vessel is subject to a range of externally applied 

forces (internal pressure, liquid loading and self-weight) and reactive interface forces 

are generated at the saddle supports. The key to understanding the behaviour of the 

support problem lies in deriving these interface forces. Their magnitude and 

distribution depends upon the vessel flexibility and the rigidity, or otherwise, of the 

support. In earlier analytical and experimental work by Tooth, the configuration of 

the support was found to have a crucial effect on the stress in the vessel, primarily in 

the horn region of the saddle. From earlier experience, it is known that the vessel 

stresses can be reduced by up to 50 per cent when a flexible saddle is employed.

As a supplement to the previous work of Chapter 6, it is the aim of this chapter to 

expand on theoretical treatment shown earlier and to show how the flexibility of the 

saddle may be incorporated into the Fourier series analysis. The generation and 

important factors in successfully determining the flexibilities of a variety of saddle 

configurations are examined in detail using the ANSYS finite element program and 

some simple indication of the benefit of employing a flexible saddle is outlined.

9.2 The Interface System for Flexible Saddles

In order to determine the interface pressures between the saddle and the vessel, the 

saddle contact area is divided into a number of discrete areas, each of which is subject 

to unkmnvn uniformly distributed pressures in both the radial and tangential 

directions. To reduce the complexity of the computation, the interface forces in the 

longitudinal direction have been ignored. It is considered that these forces will be 

small compared with the radial and tangential effects. However, in those cases where 

thermal effects may be important, the longitudinal interface forces will become more
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dominant. In practice, when such effects are envisaged, one support is normally fixed 

and the other is free to slide, in order to allow for thermal expansion effects.

As mentioned earlier, Tooth and co-workers, in the first instance, assumed that these 

interface pressures were of constant magnitude across the saddle width. This 

assumption implied that the saddle had some flexibility across the width, thus 

avoiding the occurrence of high pressures at the edge profile of the saddle. However, 

when the saddles are of rigid construction in comparison to the vessel stiffness, for 

example in the case of concrete saddles, the above assumption is invalid. In order to 

investigate the effects of saddle flexibility, the saddle/vessel contact surface is divided 

up as shown in Figure 9. lin a manner previously used by Motashar1161:

Figure 9.1. Flexible Saddle Interface Contact Areas

The discrete areas shown were made of equal size, 2/? Rx2y, as used in the SADDLE 

programs (and represented by 2ALPHA.RADIUSx.CC in the ANSYS listings). The 

discrete areas in the axial direction are identified as i in the radial direction with a 

total number of divisions across the width equal to AW, in the ANSYS listings and 

represented by j  and NC in the SADDLE program. In the circumferential direction, 

they are defined as j  with a total number of angular discrete areas NA in the ANSYS
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listings from the bottom to the saddle top and represented by * and NA in the 

SADDLE programs. As indicated, this approach was based on the earlier work of 

Motashar and Tooth for the analysis of metallic vessels supported on welded saddles 

which allowed the inclusion of the effects of the variation of the interface pressure 

across the width.

Each discrete area can be loaded with a uniform radial pressure and tangential shear 

(or surface traction). For example, on area ji, a radial pressure of p}i and tangential 

traction of t is assumed to act. The radial and tangential displacements of the vessel 

at a general point kl due to pj, and is given by.

* U  =  t j i ( W t )jUU +  P j i ( W r ) j i ,U

VU ~  t j i ( K ) j i , k l  +  P j i ( V r ) j i , k l

(9. la,b)

where (Wf) and (Vj) a are the radial and tangential displacements of point kl due to 

unit tangential shears applied over area j i  and (Wr).jkl and (Vr) kl are the radial and 

tangential displacements due to unit radial pressures applied over area ji. The 

longitudinal displacement » produced by the unit tangential shears and unit radial 

pressures applied over area j i  is considered to be small and is ignored in the present 

analysis.

Assuming that all displacements are relatively small, the total radial and tangential 

displacements of point kl on the surface of the vessel due to all the interface loads are 

then given by:
NA NW NA NW

W u  =  £  ),;,* / + Z  Z  P i M X u
7=1 1=1 j= 1 <=l

NA NW NA NW

Z  + Z  Z  P i A Vr ) i jM
7=1 i=l j - 1 i=1

(9. 2a,b)

These expressions are valid for NW discrete areas along the saddle width and the NA 

areas around each half saddle about 0 - 0 ° .
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They can be rewritten in matrix form:

[W] = [WT][T] + [WK\[P}
[V] = [VT][T] + [VR][P}

(9. 3a,b)

The elements of the flexibility matrices [WR], [VR], [WT\ and \VT\ are given by the 

series form of the displacements W and V in terms of the loading functions. The 

matrices [7] and [FJ are the interface pressure values in the tangential and radial 

directions respectively.

These loading coefficients can be found by multiplying both sides of the loading terms 

contained in Fourier series by suitable orthogonal functions such that integration over 

the surface of the cylinder eliminates all but one of the terms in each Fourier 

expansion. In addition to the reactive interface forces, the vessel is subjected to 

various applied loading which maybe a combination of hydraulic pressure, internal 

pressure surcharge and the self-weight of the vessel. The loading coefficients for these 

can also be derived and used to obtain the radial and tangential displacements at the 

centre of the discrete areas of the support. These are written in matrix form as 

[WHSW\ and [VHSW] respectively.

9.3 The Compatibility Equations

The unknown interfacial forces p]t and t}i which act at the various discrete areas will in 

general cause radial and tangential displacements of the saddle. The form of these 

displacements is similar to those for the vessel given in previous equations:

[WS] = -[WTS][T]-[WRS][P]
[VS] = -[VTS][r\-[VRS][P]

(9. 4a,b)

where [WTS], [WRS], [ITS] and [VRS\ are the flexibility matrices of the saddle. The 

elements of these matrices can be obtained using a suitable mathematical model.
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To enforce compatibility, the vessel displacements at the centres of the discrete area, 

due to the interface forces [7] and [P], that is [W] and [V\, and the applied loading 

[WHSW] and [VHSW], are equated to the displacements of the corresponding points 

on the support, that is [WS] and [VS], given in equations (9.4) to give the following,

[VHSW]-A[SN] + ([VT] + [VTS])[T] + ([VR] + [VRS])[P] = 0 
[ WHSW] -  S[CN] + ([ WT] + [ WTS])[ T] + ([WR] + [ WRS])[P] = 0

(9. 5a,b)

where A is a rigid body movement in the vertical direction of the saddles with 

reference to the vessel end profiles. [G S ]  is the vector of elements CS= cos 6̂  [¿T V ] is 

the vector of elements SNj = sin 0̂  is the angle to the centre of area j. When the saddle 

is rigid, its displacements are neglected and so the saddle flexibility matrices are equal 

to zero. The compatibility equations then become,

[VHSW] -  £l[SN] + [VT][T] + [VR][P] = 0 
[WHSW] -  \[CN] + [WT][T] + [WR][P] = 0

(9. 6a,b)

Finally, when considering vertical equilibrium, it is possible to write the following 

equation in the saddle region

[SN]T[T] = S+[CSf[P]

where S = (total of vessel weight + contents)/(16y9/ty).

(9.7)

9.4 Values of Strain and Stress in the Vessel Shell

Once the unknown interface forces [7] and [P] are obtained, they can then be 

combined with the vessel self-weight, fluid contents weight and pressure loading to 

obtain the total loading coefficients P^n and Pa™. These may be used to determine
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the displacements umn, vmn and wmn. Then using Fourier series equations U, V and W 

can be found, allowing the strain quantities and and stress resultants to be evaluated.

9.5 A Mathematical Model to evaluate the Saddle Flexibility

From the previous derivation, it is theoretically feasible to take the flexibility of the 

saddles into account by introducing four different matrices (WRS, WTS, VRS, VTS), 

which represent the saddle displacements, into the two compatibility equations of a 

circular cylindrical vessel normally supported by rigid saddles. In fact, from a 

theoretical basis, the method of solving the problem is exactly the same, whether the 

saddle is considered flexible or not. Flowever, it is quite difficult to obtain the four 

displacement matrices of the saddle and therefore, solving the flexible case becomes 

much more involved.

Several other researchers have attempted to solve this problem using finite elements 

to model the saddle. Motashar, with the help of the present author, solved this 

problem for two different geometries of welded saddle. However, he was applying 

point unit loads in radial and tangential directions at the centre of the discrete areas 

instead of applying pressure unit loads in radial or tangential directions on the all 

discrete areas, the results may not be wholly accurate. More recently, Tolson, also 

with the help of the present author, solved this problem for a GRP composite material 

vessel supported on twin rigid saddles with a piece of rubber located at the interface 

between vessel and saddle. The contact between the rubber and the vessel can be 

either, loose, frictional or frictionless. Pressure unit loads in the radial direction were 

applied on the discrete areas. Tolson neglected the displacements due to tangential 

loads and so this cannot be used to solve the welded case which requires both radial 

and tangential components of interface reaction.

The present work incorporates the application of radial and tangential pressure loads, 

in order to analyse and quantify the flexibility of the saddle and therefore obtain the 

required four flexibility matrices. For this work, the ANSYS finite element program 

was employed.
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Finite Element Models using Shell Elements only

In order to obtain suitable flexibility matrices, a number of finite element models are 

generated. Previous workers have employed a crude solid saddle, however in order to 

reflect actual industrial designs, saddles with explicitly defined webs and wrapper 

plates are developed and progressively refined.

Simpler models can be created in the following manner. The saddle possesses two 

planes of symmetry and therefore it is only necessary to model one quarter of the 

geometry. Thereafter, the flexibility matrices can be reflected and populated 

accordingly as required. The method of construction is as follows. Firstly, the base 

and the three stiffeners stiffeners are constructed. Thereafter, by rotating a line 

between the top of each stiffener, the cylindrical portion of the saddle is created. This 

is designated as the saddle plate. To complete the saddle geometry construction, the 

central web was added and the geometry part of the model is thus complete. If 

required, reflecting the quarter model about two symmetry planes can generate a 

complete saddle as shown in Figure 9.2

Figure 9.2 AN SYS quarter saddle geometry; model
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It is necessary to specify the number and the mathematical characteristics of the 

elements that are used in the finite element analysis for each geometrical part. Higher 

order quadratic displacement shell elements (ANSYS STIF 93) with 8 nodes, each 

with 6 degrees of freedom, were used throughout the entire geometric model of the 

saddle. Thicknesses were initially assumed to be 6mm in each plate. The material 

properties of steel were assigned as real constants for all elements, therefore Young’s 

Modulus, E=210xl03 N/mm2 and Poisson’s ratio was taken to be, v=0.3. Automatic 

meshing cannot be used for this type of problem. If the standard meshing tool is used, 

then the element of the cylindrical portion of the saddle plate do not have the same 

dimensions. This in turn makes it very difficult to have a matching number of this 

element type on each cylindrical part. In fact, the cylindrical part of the saddle is 

considered to be the most important part of the finite element model, since the 

pressure loads will be applied on this region and it is the displacements of this part of 

the model which are required to generate the required flexibility matrices. In order to 

solve this problem, it is necessary to commence the finite element modelling of the 

saddle by the predefining the shaping of the cylindrical part. Thereafter the additional 

parts, webs, back plate and base would be defined in relation to the already defined 

saddle plate. Thus a new, completely parametric model was defined, one in which the 

geometry is principally defined by the saddle top plate and thereafter could be 

sufficiently parametric in order to be able to represent any real saddle.

9.6 The Parametrical Finite Element Model

The parametrical model presented in this section is the final evolution of many 

parametrical models. It has the ability to represent many of different styles of saddle 

geometry, each therefore having a differing flexibility. The file ‘normal’ is created 

which forms the base files for all variations. Two methods are used to parametrically 

shape the saddle. The first method is to identify each entity by its parametric number. 

The second method is to recognise the entity by its position in any predefined co­

ordinate system as specified in the finite element program, ANSYS. Both methods
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have been employed in order to generate the parametric model. Each component of 

the saddle is described and the method of construction reviewed.

Cylindrical Plate Parameters

The geometry of the cylindrical plate (or saddle top plate) is defined by the radius of 

the saddle: RADIUS, the half saddle angle: THETA, and the half saddle width: C. It is 

important that the number of discrete areas also needs to be defined. The number of 

divisions across the total saddle width: NW and the number of divisions across the 

half saddle angle: NA. These divisions must correlate to inputs specified later in the 

SADDLE program. The flexible regions of the saddle are shown in the cutaway view 

of Figure 9.3. The width of the cylindrical part which can flex is defined as T. In order 

to have a good junction defined between the mesh of the stiffeners and the cylindrical 

part, the value of T is chosen as follows:

T=i*C/NW with i=0 to NW-1 (/eN)

Figure 9.3 AN SYS cut half saddle model showing bending parts: 
across the width and around the saddle angle (cut for visualisation purposes)

If no extended bending portion is required then / is set equal to 0. Obviously, the 

higher the value of N W , the more precise is the value of T. Finally, the extended
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saddle angle of the cylindrical part which can freely bend is described by: THETA2. In 

order to have a good juncture connection between the mesh of the largest stiffener 

and the cylindrical portion, the value of THETA2 is chosen as follows:

THETA2 =J*THETA/2/NA with .HO to 2xNA-NWEB-l ( je N)

If no extended bending part is required then j  is set equal to 0. Obviously, the higher 

the value of NA is the more precise is the value of THETA2.

Stiffener Parameters

The basic parameters of the stiffener are defined as the height at the centre of the 

saddle (at THETA=0). B, the angle with the vertical axis of the largest stiffener: 

BETA, and the total number of stiffeners excluding counting the stiffener located at 

the centre of the saddle: NWEB. The largest stiffener at the saddle extremity may be 

removed when EXTWEB=0, and the central stiffener at the middle of the saddle can 

be removed by setting CWEB=0. Removing these stiffeners manually does not affect 

the value of NWEB.

Thickness Parameters

Each different part of the saddle, can have its own thickness. THICYL is thickness of 

the cylindrical part, THIWEB the thickness of the stiffeners and THICPRIN the 

thickness of the central web. Because of the way the saddle is constructed and has 

two symmetry planes, then the following relation is obtained:

THICPRIN= THIWEB= THICYIJ2

Calculated Parameters

Various parameters are calculated using the values defined above and these are 

thereafter are used throughout the program.

The ‘normal’ program is divided into four different parts: parametric definition, 

saddle geometry construction, loading and solution and lastly, results interpretation.
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Parametric Definition

The different parameters used by the program are defined into three sub-parts as 

shown before. Users of the program are only required to modify the first geometrical 

parameters and the material properties. As this program performs a static analysis 

with an isotropic material only, the Young’s Modulus and the Poisson’s ratio are 

necessary at this stage.

Saddle Geometry Construction

This corresponds with the pre-processing stage (/PREP7) of the ANSYS program. 

Firstly, the element type and the material properties are defined. In order to have a 

good representation of the curved cylindrical part, quadratic shell elements with 8 

nodes (STIF 93) are used for the mesh. Only one type of material is used and its 

material properties are defined with the MP command. Four different thicknesses, 

corresponding to the various parts of the model are defined with the R command to 

include the real constants of each saddle component.

Construction is briefly described as follows: by creating a line, rotating it around the 

central axis of the cylinder with an angle of ALPHA, the program generates a curved 

area. By copying this area NDIV times, it shapes the ‘rigid’ cylindrical part of the 

saddle. This is performed in the global cylindrical co-ordinate system. The largest 

stiffener at the saddle extremity is then created (even if EXTWEB=0.) Thereafter all 

the other stiffeners are created in turn (NWEB-1 times). The positions of these 

stiffeners are automatically calculated. The layout is such that the space between them 

is the equal. However, in order to have continuity between the meshing of the 

stiffeners and the meshing of the cylindrical part, each top line of the stiffener area 

corresponds to one line which also belongs to one of the areas that are defined within 

the cylindrical top plate part.

Thereafter, the program generates the central stiffener. This is produced regardless of 

whether it is required or not (CWEB=0) If CWEB=0, this stiffener is deleted later. 

The base is created by generating areas between the bottom lines of the stiffeners. 

The central web is produced by creating areas between the vertical lines of two
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stiffeners. If there is an extended bending part across the width, the program creates 

this part in a similar manner to the cylindrical part at the beginning. If there is an 

extended bending part arising from the saddle angle, the program creates one or two 

curved areas depending on the angle, whether this is required or not. It is deleted later 

as required.

At this point, one quarter of the model is generated and the number of divisions on 

each line of the design is defined to prepare for automatic meshing. Firstly, all the 

lines of the cylindrical part of the model are divided in order to have NW elements 

across the half saddle width and 2xNA elements across the saddle angle. Thereafter, 

all the other lines from the stiffeners and central web are subdivided according to their 

reference number. In order to ensure good continuity between the meshing of the 

rigid cylindrical part and the meshing of the stiffeners, the number of divisions across 

the horizontal lines of these two parts must be the same: ELNUM1. Finally all areas 

of the model are meshed with their respective thicknesses and the finite element 

model is created.

If no stiffener at the saddle extremity or no middle stiffener is desired (EXTWEB or 

CWEB equal to 0) the respective areas are deleted. The areas that represent the base 

are deleted since the support fixture can be ensured by constraining all of the nodes 

on the base of the individual stiffeners and central web.

Finally the program creates the total half saddle by operating a symmetry reflection. 

All the nodes of the cylindrical part have their local co-ordinate systems rotated into 

the correct cylindrical co-ordinate system.

Solution Phase

This part is executed using the /SOLU part of the ANSYS program. The boundary 

conditions for the base of the saddle are applied by locating the nodes at the base of 

each stiffener bottoms and of the central web and setting their 6 degrees of freedom 

to zero i.e. fully fixed base. The nodes of the middle stiffener must have their degrees 

of freedom reduced accordingly because of the symmetry of the saddle in this plane. 

The load is sequentially applied using two loops. The two loops are created to run
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NWxNA cases where a uniform pressure is applied on a discrete area. A file is 

opened to save the results directly for input to the SADDLE programs.

The uniform pressure is applied on four elements that correspond to one discrete area 

using the SFE command. Finally, the ANSYS solution routine is used to repeatedly 

solve the analysis.

Results

Postprocessing is undertaken to establish the required flexibility matrices using the 

/POST1 part of the ANSYS program. In this, the radial displacement of the central 

node of each discrete area is selected and written to the file opened previously. The 

two loops finally complete, the open file results file is closed, and the program 

stopped. By this time, ANSYS has solved the stress displacement solution: NAxNW  

times. This can take some considerable time to execute.

Output

The results of the ‘normal’ program are written in a file called disp*.*. The size of 

this file depends on the number of discrete areas chosen to run the ANSYS program. 

When the number of division across the saddle angle is chosen to be NA and the 

number of division across the saddle width is NW, the number of discrete areas will 

be NN=NWxNA. Therefore the normal program will solve NN cases and the size of 

the resulting program will be 27XNN2 bytes which correspond to NN2 displacements 

values. This is a good method of verifying that all results are available.

This file contains a column of numbers which are the displacements of the central 

node of each discrete area for each case of applied unit load of pressure. Each block 

of NWxNA numbers corresponds to one applied load pressure case. Each block 

contains the displacements of the discrete areas from the bottom to the top across the 

saddle angle (NA values) and from the left to the right across the saddle width.
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In the file disp*.* the displacements are saved load case by load case. Each load case 

generates NNx2 displacement values corresponding to the displacement in radial (first 

column) and tangential (second column) direction of the central node of each discrete 

area (NN areas) of the model in the following order: From the bottom to the top (j=l 

to NA) across the saddle angle and so on across the saddle width (i=l to NW).

9.7 Variations of the Parametrical Model

Three other ANSYS programs have been generated to represent structurally different 

styles of saddle. They are essentially developments or evolutions of the ‘normal’ 

program. These differences are now described for each model.

9.7.1 Two Different Thicknesses In The Cylindrical Part
Under normal industrial circumstances, saddles are generally made with the same

metal plate as that used in the cylindrical shell. However, BS 5276 shows saddles with 

extended wrapper plates and therefore it is possible that two different thicknesses may 

occur in the cylindrical part of the saddle plate as shown in Figure 9.4. These are 

often formed by metal plates welded together with the extremity only having one 

thickness.

1
Two depths

Figure 9.4 Schematic o f saddle top plate and wrapper with two thicknesses
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In this case, the extremity is able to bend more easily. This flexibility is introduced 

because it can significantly reduce the stresses in the saddle region. The method of 

construction is to build a normal saddle first, and thereafter to make a central 

cylindrical part of two thicknesses and finally another cylindrical part of one thickness 

around the first one with an offset o f : depth/2. The nodes that correspond to the 

discontinuity between the two cylindrical parts have to be coupled with the CPINTF 

command, in order that they will have the same displacements acting as if there were 

only one node. This model, named twothick’ performs in exactly the same manner as 

the normal model, however has an improved flexibility in the extremity of the 

cylindrical part.

9.7.2 The Semi-Rigid Model
The ‘semi-rigid saddle’ is the intermediate support style between the rigid (for 

example, a support made of concrete) and the fully flexible saddle. It has extra 

stiffening at the extreme outer edge and can only flex in certain parts. As with the 

normal flexible saddle, this model is flexible principally in the longitudinal direction.

AN

Figure 9.5 Semi rigid saddle model

The ‘semi-rig’ model is basically the same as the ‘normal’ flexible one but only the 

last stiffener has a significantly different shape. This stiffener is made of two parts:
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one part is vertical and the other one is curved and locates normal to the cylindrical 

part, as shown in Figure 9.5.

9.7.3 The Round-Horn Model
When a saddle is made with welded metal plate, normally the horns are sometimes cut 

or formed with an angle grinder to obtain a rounded comer in order to minimise stress 

concentrations. This allows a reduction of the stresses in this critical part of the 

cylinder. The method of creation for such this geometry is to make an intersection 

between the cylindrical part of the saddle and ‘virtual’ geometric quarter of a cylinder. 

This model was not made fully parametric and was created just to demonstrate that it 

is possible to construct such a configuration, see Figure 9.6.

Figure 9.6 Geometry o f curved construction for 'round-horn'

9.7.4 Some Problems & Restrictions with such Models & Solutions

G e o m e try  and Meshing

Firstly, in the normal and the twothick parametric models, because of the sequence 

of geometry construction, the P angle cannot rise to a value of 9O°-0, as can be seen 

in Figure 9.7.
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Figure 9.7 Geometry o f curved construction

When the central web is meshed, it is impossible to have an element with a zero angle 

at the horn even when triangular elements are used. In fact, the case where the last 

stiffener is tangent to the cylindrical part (P=9O°-0) cannot be represented by finite 

elements.

When shell elements are used, if the central web is meshed only with quadrilaterals 

RESHAPE, 2) then in order to have good mesh description and topology, P has to be: 

P<9O°-0-lO°. If quadrilaterals are deemed not to be essential then P can have the 

value of P<9O°-0-5°.

Figure 9.8 Quadrilaterals and triangular meshes sho>ving extreme distortion
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One major restriction with the geometry definition is that the user cannot choose the 

specific location of each individual stiffener. Users can only choose how many 

stiffeners are to be defined and the program will automatically position them at equal 

distance one from each other.

Finally, the last problem is that the user can not choose exactly the widths of the 

bending extremities of the saddle. These widths are functions of the number of 

divisions across the saddle width and the saddle angle. In fact, the more subdivisions 

of geometry which are specified and greater are number of discrete areas on the 

cylindrical part, the more the model is parametrical. However, this results in a 

significantly longer solution time.

Applied Unit Pressure Loads and Results

In the solution phase of the programs, a uniform unit pressure in the radial direction is 

applied sequentially, on all the discrete areas of the cylindrical portion of the saddle. 

Initially only the radial displacements of the central node of each discrete area were 

saved. This was done initially as the SADDLE solution employed at that stage was of 

the form generated by Tolson in 1991. In her thesis, she studied the behaviour of 

horizontal multi-layered GRP cylindrical vessels supported on twin saddles. She used 

finite element to model the saddle as rigid and a layer of rubber was put between the 

cylinder and the concrete.

Tolson tried to show the influence of the rubber layer by taking into account the 

displacement of the rubber due to unit load pressure however she only took into 

account the radial displacement due to the radial unit load pressure and neglected all 

the other influencing displacements stating that the radial was the most significant 

form of displacement for her case.

The neglected displacement forms were as follows:

- tangential displacement due to the radial unit load pressure

- radial displacement due to the tangential unit load pressure

- tangential displacement due to the tangential unit load pressure
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In her case, the contact between the saddle and the cylinder was defined as loose 

frictional contact, which implies that for the interface pressure the following relation 

holds: [T] = - p[P],

As shown previously, the compatibility equations for a circular cylindrical vessel 

supported by flexible saddles are:

(1) [VHSW] - A[SN] + ( [VT] + [VTS]) [T] + ([VR] + [VRS]) [P] =0

(2) [WHSW] - A[CN] + ( [WT] + [WTS]) [T] + ([WR] + [WRS]) [P] -0

(9.8)

In Tolson’s case this becomes.

(3) [VHSW] - A[SN] + ( [VR] + [VRS] -p[VT] -p[VTS]) [P] =0

(4) [WHSW] - A[CN] + ( [WR] + [WRS] -p[WT] -p[WTS]) [P] -0

(9. 9)

Therefore, in order to evaluate the interface pressure in her case, it is necessary to 

solve only one compatibility equation. Tolson elected the second one (4) and 

neglected the radial displacement due to the tangential unit pressure. In her case, it 

may have been valid because of the rubber. However for the present case, it is felt 

that this would not represent the interaction between the saddle and shell correctly.

In addition, since the saddle is welded to the cylinder and we do not have the relation: 

[T] = - |i[P], Thus Tolson's programs are not valid for the present case. Therefore 

equations (1) and (2) of (9.8) must be solved to find the interface pressures.

9.7.5 A Possible Solution
In order to establish the correct, complete flexibility matrices, a new finite element 

approach must be established. The essence of this is that the tangential load, by 

definition a surface traction, must be applied to the top surface of the saddle plate.

This proved to be a major stumbling block for much of this work since with ANSYS, 

tangential pressure loads cannot be applied directly onto shell elements. In fact, when 

the loading algorithm within the ANSYS program has to put a uniform pressure on 

elements or on surfaces, the logic is such that it applies a fraction of the total load as a 

series point forces on each node of the selected elements. One possible means of 

solving this problem would be to find the fraction and to apply these loads on each
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node of the selected discrete area. However, the ratio of load application is not easily 

obtainable and it would be only valid for that one type of finite element (STIF 93 with 

8 nodes for example). Different element implementations may have differing ratios. 

Although ANSYS does not allow the application of tangential pressure on shell 

elements, it does provide functionality to apply such a load on a brick-type element. 

This is achieved by the use of a special ‘surface effect element’ called SURF22. This 

element is overlaid onto an area of any 3D-element, and can be thought of as a form 

of ‘skin’. This can be used for various load effect applications. It can be defined to 

have no structural stiffness and does not contribute to the behaviour of the saddle in 

any way other than to apply the load at the correct position.

This element was tested using a number of simpler beam models. The first employed 

only shell element, the second, solid elements with rotations and finally one with both 

solid and SURF22 elements. A unit load pressure was applied on the top area of the 

last element of the beam. Using an analytical solution, the displacement at the 

extremity of the beam is 5n,«= -0.0196mm. Using a shell element model, this value 

becomes -0.0302mm and by using a model based on solid elements only, the tip 

displacement is -0.00191 m. and finally, using the SURF22 model in combination 

with shells and solids, the results is -0.00191 mm, thus validating and confirming the 

use of the surface effect element. In order to use the SURF22 element in a structural 

analysis, all of its material properties must be set zero (Young modulus, Poisson ratio, 

thickness). Using this approach, it is thus possible to apply tangential pressure with 

this element as it is shown on Figure 9.9
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Figure 9.9 Saddle with tangential traction load (shown as red arrows)

Therefore, surface effect elements can be applied to the existing series of models to 

allow the displacements to be obtained for a radial and tangential unit pressure load.

It is noted however, that the programme constructed by Tolson will not allow the 

inclusion of the additional flexibility matrices generated by this method. Motashar 

created FORTRAN programs with a variable pressure loading across the width of the 

saddle. Therefore, these FORTRAN programmes were modified to solve the case of 

saddles welded to the vessel and incorporating the case of flexible saddles.

9.7.6 A Saddle Model using Shell, Solid & Surface Elements 

Geometry creation and element selection

The final iteration of saddle construction, entitled ‘solid’, employs shells, solids and 

surface elements and is an extension of the ‘normal’ ANSYS model described earlier. 

The main parameters remain and an extrusion in the local cylindrical co-ordinate 

system is performed on the top plate only. This operation, in turn, creates the upper 

surface of the saddle which is directly in contact with the vessel exterior and to which 

is mapped the surface effect elements. However, since the shell element possesses
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three translational and three rotational degrees of freedom, a solid element with 

rotational degrees of freedom must be employed, SOLID73, to create the saddle 

plate. A shell element, SHELL63 with 4 nodes, each having 6 degrees of freedom is 

used to build the stiffeners and the central web of the saddle. Finally surface effect 

element, SURF22 is used with 4 nodes and is mapped to the top surface of the saddle 

plate. The displacement formulation of this model in linear, however it is possible to 

use a quadratic formulation and still use the surface effect element. The number of 

nodes, however is significantly increased and since there will be typically 150 (30x5) 

analyses to generate the required matrices, it is considered that a linear model is 

adequate. In the solution phase, the unit pressure loads are applied on four SURF22 

elements which represent a discrete area. Radial and tangential loads are switched 

using keycode 1 (radial ~ Figure 9.10a) and 2 (tangential ~ Figure 9.11a) and a 

pressure of lN/m2 is applied as shown by the red arrows below.

Figure 9.10a,b Complex saddle with shells, solids and surface effect elements
- unit pressure applied in radial direction (red arrows)

Figure 9.1 la,h Complex saddle with shells, solids and surface effect elements
- unit pressure applied in tangential direction (red arrows)
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Solution and matrix generation

The results sequence is similar to that used in the ‘normal’ analysis however both the 

radial and the tangential displacements are saved into a file in two columns. To obtain 

all the required results the program is run twice. The first pass applies the radial unit 

pressure load to obtain the [WRSJ and [WTSJ matrices. The second pass uses the 

tangential unit pressure load to generate the [VRSJ and [VTS] matrices. The results 

of these sequential runs are two files each with two columns populated as follows: 

Radial unit pressure load Tangential unit pressure load

Ur Uo Ur Uo

Using this file, which is generated automatically using ANSYS parametric design 

language (APDL) and undertaking the sequence of runs required, the flexibility matrix 

file can now be read into the appropriate SADDLE programme.

9.8 Modified SADDLE Program

Using the ANSYS input files as detailed, saddle displacement matrices for a specified 

number of discrete areas due to applied unit pressure loads in the radial or the 

tangential direction are obtained. Using the Fourier series programmes of Motashar, 

which employ Sanders' thin shell theory with a specified number of discrete areas both 

in the circumferential and longitudinal direction, it is now possible to obtain all the 

required stresses for a cylindrical pressure vessel supported on a variety of flexible 

saddles.

Interface Pressure Solution

Two separate programmes are used, the first to obtain the radial and tangential 

interface pressures and the second to produce the stresses in the vessel. The interface 

pressure program, entitled INTPRES.f is the 1987 Digital VAX version of 

weldsad4.f (Motashar) with some minor modifications to allow it to run on current 

hardware. It can solve both the flexible and rigid saddle cases. Firstly, as this program 

Previously ran on a VAX system, a few redundant functions have been removed, to 

allow this program to compile and run on Unix workstations. In addition, to include 

the displacements of the saddle it is necessary to modify the compatibility equations
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and therefore a few FORTRAN instructions have been added at the end of the 

program. Other modifications have been included in the input data to make the 

program quicker to use.

Two types of data are used by this program to run a flexible case: the vessel 

characteristics and the saddle displacement matrix. The vessel characteristics are input 

via data file: fort.52. This file contains 16 values separated between each other by a 

space, and with a space in the end. Data is entered in the following sequence: radius of 

the vessel (RADIUS in the ANSYS programs), the thickness of the vessel (normally 

equal to THICYL/2 from the ANSYS programs), the length of the vessel, the breadth 

(distance from the vessel end to the saddle centre), the saddle total width (Cx2 from 

the ANSYS programs), the saddle total angle (THETAx2 from the ANSYS 

programs), the liquid specific weight, the angle of fill, the vessel material specific 

weight (=0 if the vessel weight is not to be considered), the end weight, the magnitude 

of internal pressure, the Modulus of Elasticity and Poisson's ratio of the vessel 

material (EX and NU in the ANSYS programs), the number of discrete areas into 

which the half saddle angle is to be divided (NA in the ANSYS programs), the number 

of discrete areas into which the total saddle width is to be divided (AW in the ANSYS 

programs),the value 2 to run a rigid case and 1 to run the flexible case, and finally, a 

space.

The four saddle displacement matrices are introduced into the program by copying the 

displacements due to radial unit pressure load (file called: dispAWA^l.rad in the 

ANSYS program) into file fort.90 and by copying the displacements due to tangential 

unit pressure load (file called: dispAWA^.tan in the ANSYS program) in a file called: 

fort.91. When the program is running, the number of Fourier terms required to solve 

the analysis is requested. Three types of output data are produced as a result of this 

analysis. The different displacement matrices are saved into some files for purposes of 

verification. The interface pressure results are saved into two files and can be 

examined directly. A third file is created with the vessel characteristic and the interface
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pressure results ready for use by the second FORTRAN program which generates the 

stress solution.

Firstly, the vessel displacement matrices are saved in: fort.10 for [WT]

fort. 11 for [VT] 

fort. 12 for [WR] 

fort. 13 for [VR]

then the saddle displacement matrices are saved in: fort.20 for [WTS]

fort.21 for [VTS] 

fort.22 for [WRS] 

fort.23 for [VRS]

and finally, the global displacement matrices are saved in: fort.30 for [WT]+[WTS]

fort.31 for [VT]+[VTS] 

fort.32for [WR]+[WRS] 

fort.33 for [VR]+[VRS]

In the files, intpres.rad and intpres.tan, there are NAxNW values of interface 

pressure saved. This data can be used to graph the interface pressure system of the 

studied model directly. Finally, all the vessel characteristics and all the interface 

pressures are saved in fort.73

S tre s s  S o lu t io n

The program STRESS.f is modified version of stress4.f of Motashar with only the 

input and output statements being altered to allow easier interpretation of the results. 

The results provided by this program include:

- axial, tangential and radial displacements o f v e s s e l: u, v and w  

■ axial, circumferential and shear stress resultants in the vessel: Nx, Ne, and Nxo 

* axial, circumferential and shear m om ents resultants in the vessel: M„ Mo, and Mxo 

~ axial, circumferential and shear stresses in the vessel: c t x,  c t o ,  and c t xo  on the inside and outside 

surface of the shell.

'  axial, tangential and radial strains in the vessel: s „  eo , and  y  on the inside and the outside surface 

of the shell.
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Data is read from file fort.73 (from the INTPRES.f program) however two lines of 

output points on the vessel, at which the solution will be given, must be specified in 

the fort.51 file. The input information has the following sequence separated by 

spaces: Constant x value, first 0 value, last 0 value, interval between points in the 

circumferential direction, constant 0 value, first x value, last x value, interval between 

points in the longitudinal direction, 2 and a space at the end. As previous, the required 

number of Fourier terms is input from the keyboard when the program is running.

The output data of the program can be written to the screen and to datafiles fort.81 

and fort.82. In addition, for the purposes of creating three dimensional graphics plots 

of the variation in solution data, the output is also saved into 14 files without any text 

strings, to allow the data to be used directly in for example, Excel.

The output files are denoted:

- GRAPHTT.CIR for cto on the outside surface of the vessel around the circumferential line.

- GRAPHXX.CIR for ctx on the outside surface of the vessel around the circumferential line.

- GRAPHXT.CIR for ax0 on the outside surface of the vessel around the circumferential line.

- GRAPHTTI.CIR for oG on the inside surface of the vessel around the circumferential line.

* W.CIR for w, the displacement of the vessel around the circumferential line.

The same series of 7 files are also generated for results in the longitudinal direction 

with filename. LON extension.

9*9 Sample Results
The results detailed herein are only shown as an example of the type of information, 

which can be generated by employing such a system. As an example, a long vessel, 

with a mean diameter of 1000mm, tangent length of 36000mm, thickness of 6mm, 

with 200mm wide, 120° wrapround saddles located at 9000mm from each end. The 

cylindrical part of the vessel was divided into a number of discrete areas. A non- 

uniform pressure across the width was considered and one case was run with 5x30 

discrete areas (NW=5 and NA=30).
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Two saddle types were analysed for purposes of comparison. Firstly, a rigid saddle 

was assumed to be in contact with the shell and the analysis undertaken. The second 

case considered a flexible saddle of the ‘solid’ model type described earlier.
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Comparison between the rigid and the flexible cases

There are two main differences that arise when rigid and flexible saddles are run 

through the Fourier series analysis. These differences are shown in the Excel surface 

plots detailed in Figures 9.12 and 9.13. Firstly, for the rigid case there are two peaks 

which appear at each edge of the saddle. The maximum of these is 3425N/mm2. This 

is in keeping the finite element results described in Chapter 7. However in the flexible 

case, only one peak exists and this is situated across the centre of profile of the saddle 

with a value of 2991N/mm2. This perhaps goes some way to showing why the earlier 

work of Tooth et al proved to be in good agreement with experimentally determined 

strain gauge results. In addition, this points towards a uniform stress field when the 

saddle possesses a degree of flexibility. As for the magnitudes of stress, these large 

values arise as a result of the thin shell thickness selected for the example. Normally a 

thickness of at least 22mm would be selected for a real application, however the 

differences in stress between the rigid and flexible saddles are valid, and illustrate the 

point being made.

In the present case, it can be seen that there is a reduction of 13 % in the magnitudes 

of the maximum outside circumferential stress between the rigid case and the flexible 

case. This is typical of the measure of reduction which can be found when flexible 

saddles are employed.

9.10 Conclusions

A number of variations in the parametric finite element model have been created and 

detailed in general. These include saddles which are near rigid, semi-rigid, flexible 

each with varying degrees of flexibility in the longitudinal and circumferential 

directions and the potential for differing numbers of web stiffeners. Some detailed 

guidance is provided which shows users of this technique the most appropriate 

Method of geometry creation for complex three-dimensional saddles. In addition, the 

dement selection is justified on the basis of accuracy and efficiency of solution time
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especially when considering the significant number of runs required to generate a 

single set of matrices for one saddle configuration.

The Fortran programs of Tolson and Motashar have been examined and brought up 

to date to run on modem computers. Some minor modifications have been required 

and some additional lines of code have been inserted to allow the required flexibility 

matrices to be employed.

One sample case of a flexible saddle has been successfully run and a new method of 

graphical representation has been demonstrated. The various files and procedures for 

execution have been explicitly detailed.

It is clear to the present author that the process of finite element analysis and 

subsequent SADDLE analysis is extremely complex and time-consuming. The 

generation of tables of saddle flexibility or the provision of the required flexibility 

factor, Ff, which includes for variations for all the leading saddle parameters would be 

a considerable undertaking and is beyond the remit of the current work. However, 

with the illustrative example used, it has been shown that there is much benefit to be 

had by the use of a well designed flexible saddle.
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10 CONCLUSIONS AND FURTHER WORK

Analysis and design methods for local loading and saddle-supported cylinders have 

been advanced within this thesis. In particular, the Fourier series loading method and 

elastic thin shell analysis have been employed to examine the interface pressure 

distributions for local load patch problems and saddle-supported cylinders.

In the case of the local load patch problems, standalone programs have been 

developed which allow designers to calculate the important stress quantities on each 

surface of the cylinder for a given load application. Solutions for a radial load, 

moment loads in the circumferential and longitudinal directions and steady state 

thermal loads have been derived and implemented for a variety of prescribed patch 

forms. Rectangular, circular and elliptical contact regions have been studied and 

results are made available over a range of discrete points selected by the user. The 

program can also scan for maximum stresses, which occur at the centre of the loaded 

area for the radial load and bell-shaped thermal case and at the major axis edges for 

moment loadings.

To date, this work has direct relevance and application to current designers. Both the 

BS5500 and ASME pressure vessel codes rely on methods which simplify the contact 

area and interface loading conditions. Whilst these approaches have been shown in the 

present work to produce similar maximum results for some cases, the conventional 

methods do not always produce the highest value. In addition, the new European 

Standard for Unfired Pressure Vessels, (to be released in draft form in 1999), relies on 

limit load approaches for design. This form of design may well be adequate if a 

maximum design load is required. Thereafter, designers can ensure that the largest 

application of load is below the values generated by the limit load method. However, 

these approaches do not assist designers where failure by fatigue is a problem. Using 

the present approach will ensure that maximum stresses are obtained which in turn, 

Provides reliable data for use in fatigue assessments.
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Twin saddle supported cylinders have been addressed by developing a robust shell 

theory and employing a Fourier series approach for the solution of the equations and 

the representation of the loading systems. A line and patch load model has been used 

to generate data for a wide range of vessel configurations used in industry. A new 

design methodology has been considered whereby a basic stress equation has been 

presented which is progressively adjusted by the use of factors. These factors adjust 

the basic stress to represent the geometric effect of a number of variables including 

contents weight, saddle width, saddle angle and position from the end. Separate finite 

element studies of the influences of the flexibility of the vessel end closure and 

flexibility of the saddle support have been undertaken, and factors have been identified 

and quantified, where possible. This new design method is easily programmed into 

spreadsheets and mathematical scratchpads and an example is provided in the 

Appendices.

Although finite element analysis is increasingly used in pressure vessel design, there is 

still some way to go before the method is wholly adopted. The present work has 

discussed some of the main issues pertaining to the application of FEA to local load 

and saddle support problems. Whilst these problems can be tacked using FEA, this 

requires great skill and expertise in both the use of FEA, to model and analyse the 

components, and interpret the results, in the light of pressure vessel code allowables 

for specific stress categories. The need for a fine mesh and careful consideration of 

boundary conditions is essential. One suspects the total component should be handled 

~ vessel plus saddle. Furthermore, an examination of the nature of the stress obtained 

at the horn shows that it may have a mixed response rather than being described as 

purely secondary.

Because of the governing assumptions of the Fourier series approach, the influence of 

the flexibility of the end closure was examined using the finite element method. Four 

end closure styles were analysed and the effects of radius to thickness and shell to end 

thickness ratios were studied. In conclusion, it was found that the basic shape and the
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thickness ratios had little or no effect on the magnitude of the maximum stresses 

obtained at the horn. An end flexibility factor was developed from this work.

Saddle flexibility was examined by generating flexibility matrices by finite element 

analysis and importing them into the SADDLE analysis. A modified form of the 

SADDLE analysis by Tolson was used to show that there is a considerable reduction 

in maximum stress when a flexible saddle is employed. Guidance has been given to 

show how a variety of saddle styles may be created, however an improved finite 

element model has been developed which incorporates shell, solid and surface traction 

elements. This allows the generation of more realistic flexibility data. An example of 

the use of this new model is presented and surface plots of stress results for a rigid 

and flexible saddle are given.

Further Work

Further development of the head flexibility method is required to produce 

intermediate points on the graph.

A full investigation of the influences of the flexibilities of the saddle should be 

undertaken as an MSc. Project - this to cover the entire range of saddle geometries as 

specified by BS5276. The present author is currently completing work on such a 

study for the case of heated twin saddle supported cylinders subject to high axial 

expansion.

Having published a number of papers on work arising from this thesis, the author is 

convinced that the adoption of these methods will only arise by making access to 

these results more widely available. With this in mind, web based analytical tools 

should be developed whereby engineers can enter their data and submit an analysis 

online. With current technology, results will be available immediately if the new 

design method is employed, or within minutes if a complete analysis using the 

SADDLE or patch programs is preferred.
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APPENDIX 1

Program - cyllpc.f



o 
o

r

Si
VC
S i

HORIZONTALLY END SIM PLY-SUPPORTED C YLIN D ER  
PROGRAM M ODIFIED TO BE 1ST PASS ONLY -  D H NASH 
IM P L IC IT  REAL*8  ( A -H ,0 -Z )
CHARACTER*20 NAME*60 , T ITL E * 6 0  , DATA1 (5 ) , F ILN M , FNAME 
DIM ENSION Z ( 6 ) , Z 0 ( 6 ) , P 0 ( 3 ) , P ( 3 ) , P 0 2 ( 3 ) , P 2 ( 3 ) , S ( 3 )  
DIM ENSION LOAD( 3 ) ,C L ( 6 0 ) ,X IM P ( 3 ) ,E S ( 1 0 ) ,E 0 ( 1 0 )  
DIM ENSION A N ( 3 , 6 0 ) ,B N (3 ,6 0 ) ,R A D (1 2 0 ) ,D IS P (9 ,1 2 0 )  
DIM ENSION D E L T A ( 3 ) ,P Q (1 2 0 ),K C O D E (1 2 0 ),R E S (9 ,1 2 0 ) 
COMMON/BLK2/T3 , T4 , P I , RADIAN , T  , R , XLEN , NCSYM 
COMMON/BLK3/P, PO , P 2 , P02
COMMON /BLK4 / S D IV , W IDTH , NT Y PE , N K , NS IZ E  , XSAD 
IJ O B = l 
LOOP=9
I F ( I J O B . E Q . 1 . O R .IJ O B . G E .3 ) LOOP=3 
OPEN ( 2 , F IL E = ' P C IN P U T’ , S T A T U S »’ UNKNOWN' )
R EAD(2 ,1 0 3 ) NAME 

103 FORMAT (A60)
READ (2 ,* )  MTERM, NTERM
READ (2 ,* )  NSYS,NSYM ,NCSYM , IMP
READ (2 ,* )  R , E ,W , T , XLEN
I F  ( IM P .G T .O ) READ (2 ,1 0 2 ) (X IM P (I )  ,DATA1 ( I )  , 1=1, IMP) 

102 F O R M A T(E 1 2 .5 ,5 X ,A )
READ (2 ,* )  NLOAD
READ (2 ,* )  ( C L ( I ) , I = l ,N L O A D * 6 )
READ (2 ,* )  C P I , C P 2 , C P 3 , CP4, STEP 

NP=1
IF (C P 2 . E Q . CP4) NP=2

C ---------------------------- SADDLE SUPPORT PROBLEM--------------------------
I F ( I J O B . E Q .1 . O R .IJ O B . E Q .2 ) THEN 
READ (2 ,* )  XSAD, SBETA, O FFSET, W IDTH, NTYPB 
READ (2 , *) N D IV , N K , NT 
NSIZE=NK+NT 
I1= N D IV+ N TYPE 
I F  (N T Y P E .E Q .2 ) I1 = N D IV  

DO 34 1 = 1 ,NK 
KCODE( I )=134

o 
o 

o 
o 

o

35
DO 35 1 = 1 ,NT 
K C O D E (N K + I)= I

I F  ( N K . L T . i l )  READ( 2 ,* )  (KCODE( I ) , 1 = 1 , NK) 
I F  (N T .G T .  0 . AND .N T  .L T  . I I )  READ (2 *)

(K C O D E ( I ) , I -N K + 1 , N S IZ E )
I F  (N C S YM .E Q .2 ) THEN 

NTS=NT/2 
NKS=(NK+1) /2 
DO 33 1 = 1 ,NTS

33 KCODE (N K S + I) «KCODE (N K + I)
N T -N T S  
NK-NKS 
N S IZ E -N K + N T 
END I F  

NS1=NSIZE+1 
N S 2 -N S IZ E + 2  

I F ( I J O B . E Q .1 )  THEN 
SDIV —S B ETA/N D IV 
A l = ( S B E T A -S D IV )/ 2 .0  
IF  (NTYPE . EQ . 1 ) A l -S B E T A / 2 .0  
NP=1
CP1-XSAD 
C P 2 = O F FS B T-A l 
IC -M A X O (N K ,N T )
CP4=OFFSET+(KCODE( I C ) - 1 ) * S D IV -A 1 
S T E P -S D IV  

END 17 
END 17

CLOSE (U N IT -2 )

A X IA L  SYMMETRY N S YM -2 , KM=1 
NON A X IA L  SYMMETRY N S Y l ^ l , RW-0 
KM=1
17 (N S Y M .E Q .l)  KM-0

GLOBAL CONSTANTS 
P I^ A S IN (1 .0 ) * 2 .0  
R A D IA N -P I/ 1 8 0 .0



o 
o

7

P I2 = P I* P I 
T l = l  . 0 - W  
T2 = T* T
A=E*T/ ( 1 . 0 -W * W )
T3=PI*R /XLEN
T4 = P I/ X LE N
T5=R*R/A
T 6 = T 2 / 1 2 .0

LOOPING FOR LOADS 
DO 40 1 = 1 ,3

40 LOAD ( I )  =0
DO 41 1 = 1 ,NLOAD 

K = (1 -1 )* 6 + 1
I F ( C L ( K ) .E Q . l .O . O R . C L ( K ) . G E .4 . 0 )  L O A D ( l ) = l  
IF ( C L ( K ) .E Q . 2 . 0 )  L O A D (2 )= l

41 I F ( C L ( K ) .E Q . 3 . 0 )  L O A D (3 )= l

I F ( I J O B . E Q . 2) THEN 
IC =1
IF (N C S Y M .E Q .l)  IC =2 
N=N SIZE

IF (N T Y P E . E Q .2 ) N = N S IZ E + IC  
O PEN (1 6 ,F IL E = ’ PQ. D A T ' , STA TU S = ' O LD ' )  
READ (16 , *) (P Q ( I )  ,1=1 ,N )
READ (16 , +) (D E L T A (I )  ,1 = 1 ,3 )
CLOSE (16)
I F  (N T .G T .O )  LOAD(3 )= 1  
END IF

C1=T6/(R*R )
C 2 = 0 .0 
PRESS=0.0

C C L ( 2 ) =SWV, C L (3 )= PRESS, C L (4 )= S W , C L (5 )= ALPHA
I F  (C L ( 1 ) . E Q .0 .0 )  THEN 

LOAD (1 ) =1
IF ( C L ( 2 )  .N E .0 .0 )  LOAD (3 ) =1 

ALPHA=CL (5 ) * RADIAN

Nv©U»

PRESS=CL(3 )
C l 1 -S IN  (ALPHA)
C l 2 -COS (ALPHA)
PBAR—C L ( 3 ) + C L ( 4 ) *R*( C l 1 -A LP H A * C l2 ) /P I 
C2—PBAR*R/A 
END I F
IF  (N S Y S .E Q . l )  C2—0 .0  
C3—0 . 5*T1*C1 
C4=0.5* ( 3 . 0 - W )  *C1 
C 5 -0 . 1 2 5 * T1 * ( 4 . 0+C1)
C6=0.125* (4 .0 *  ( 1 . 0 + W ) - 3 . 0*C1*T1)
C 7 -0 . 125 * T1 * (4 .0 + 9 .0*C1)

I F  ( I J O B . E Q . l )  GOTO 111
C----------------------------------- P R IN T IN P U T DATA------------------------------------

OPEN ( 6 , F IL E - 'O U T P U T ' , S TA TU S - ' NEW' )
W RITE (6 ,7 8 0 ) NAME 

780 FORMAT (/ / 5 X , A / )
IF  (N S Y S .E Q .2 ) W RITE (6 ,3 6 0 )

360 FORMAT (5 X , 'S T IF F E N IN G  EFFECT OF PRESSUB* 
CONSIDERED' )  “ HAS BEEN

I F  ( IM P .G T .O )  THEN
W RITE ( 6 ,* )  'CROSS SECTIO N AL P R O F ILE S ' 
W RITE (6 ,1 0 2 ) (X IM P (I )  ,D A T A 1 (I)  ,1 -1  im p i

C

782

330

300

C

W RITE (6 ,7 8 2 ) MTERM, NTKRM
FORMAT (/ 5 X , 'MTERM - '  , I4 / 5 X , 'NTERM - '  14,
W RITE (6 ,3 3 0 ) '  '

FORMAT( / IO X , -LEN GTH  - ' ,B 1 2 .5 ,2 X , 'U N I T '/
1 0 X ,'R A D IU S  « ' ,E 1 2 .5 ,2 X , 'U N I T '/

6 1 0 X ,'T H IC K N E S S  - • ,E 1 2 .5 , 2 X , 'U N I T '/
* 1 0 X ,'Y O U N G S  MODULUS - , B 1 2 . 5 , 2 X , ' U N IT ’ /
t  1 0 X ,'P O IS S O N  R A TIO  - ' ,F 7  3 )

W RITE (6 ,3 0 6 )



294

306 FORMAT (/ / 5 X , '«L O A D IN G * ')
305 F O R M A T(/ 5 X ,' SP. WT . = ' , E 1 2 . 5 , 2X , ' PRESSURE = ',B 1 2 .5 /

£ 5X , ' SP . WT. OF F LU ID  = ' , K l 2 . 5 , 2 X , ' LE V E L  OF 
F I L L *3 ' , F 7 .2  , 'D E O ')
343 FORMAT (/ 5 X , 'T Y P E  -  R AD IA L PATCH (1 ) A X IA L  SHEAR PATCH
(2) ' /

£ 5 X , 1 HOOP SHEAR PATCH (3 ) A X IA L  TRIANGULAR
(4 )  ’ /

£ 5 X , ' HOOP TRIAHOULAR ( 5 ) ’ //

£5X ’ TY P E  1 , 4X , ' MAGNITUDE ' , 9X, 'X '  , 11X, ' PHY ' , 8X , ' 2C ' , 8X , ' 2BETA )
344 FORM AT(7X,1 2 ,2 (2 X , E 1 2 . 5 ) , 2 X , F 7 . 2 , 2 X , E 1 2 . 5 , 2 X , F 7 .2 )

I F  (C L  (1 ) . EQ .0 .0 )  W RITE (6 ,3 0 5 ) ( C L ( I )  , 1 = 2 ,5 )
I F  (C L ( 1 ) .N E .0 .0 )  W RITE (6 ,3 4 3 )
DO 333 1 = 1 ,NLOAD

J = (1*1)*6+1 
IC = C L (J )
I F ( I C . E Q .O )  GOTO 333 
W R IT E ( 6 ,344) I C , (C L (K ) ,K = J + 1 , J+ 5 ) 

333 CONTINUE
C ------------------------------- IM PERFECTION---------------------------------------

KC=0
111 I F  ( IM P .E Q .O ) GOTO 404

DO 400 1 = 1 ,IMP
OPEN ( 1 , F ILE = D A TA 1 ( I ) , STA TU S = ' O LD ' )
READ (1 ,1 0 3 ) T IT L E
READ (1 , *) NDRAD , CONVT ,D R IF T
READ (1 , *) (RAD ( J )  ,J= 1  ,NDRAD)
R E A D (1 ,* ) DATUM
C LO S E(1 )
DO 401 J = 1 , NDRAD

401 RAD ( J )  = (RAD ( J )  -D R IF T )  «CONVT+DATUM 
KC=NDRAD/2
IF (K C .O E .N TE R M ) KC=NTERM 
A2=2.0/NDRAD 
A1=PI*A2 
DO 402 N=2,KC 

SSUM=0.0

CSUM -0.0  
A3=A1*N
DO 403 J » 1 , NDRAD 

P H Y - ( J - l ) * A 3
SSUM-SSUM+RAD ( J )  * S IN (P H Y )
CSUM-CSUM+RAD( J ) *COS(PHY)

403 CONTINUE
A N ( I , N ) “ CSUM*A2 

402 BN ( I , N ) -SSUM* A2
400 CONTINUE

IF (N S Y M .E Q . l )  GOTO 404 
IF (X IM P ( IM P ).G T .X L E N / 2 .0 ) X IM P (IM P )-X L E N / 2 .

404 CONTINUE
------------------------------------------------------------------
C ANGULAR P O S IT IO N S  OF CONTACT NODES

I F  ( I  JO B . E Q . 2) THEN 
SBETA=SBETA* RAD IAN  
S D IV=SB ETA/N D IV 
A l= (S B E T A -S D IV )/ 2 .0  
I F  (NTYPE . EQ . 1) A l«S B E T A / 2 .0 
A 2 = O FFS E T* R A D IA N -A l 
DO 80 1 = 1 ,N S IZ E

80 RAD ( I )  “  (KCODE ( I )  -1 )  *SDIV+A2
IF (N T Y P E . E Q .2 )  THEN 

R A D (N S 1 )^ A l+ A 2 -S B E T A / 2 .0 
R A D (N S2)=R AD (N S1)+SB ETA  

END I F  
END I F

-----------------------------------------------------------------
I F  (S T E P .E Q .0 .0 )  IT O L -1  

I F  (S T E P .N S .0 .0 )  THEN 
A l= (C P 4 -C P 2 )/ S T E P  
I F  (N P .B Q .2 ) A 1 = (C P 3 -C P 1 )/ S TE P  
I T O L - 1 . 1+A1 

END I F
DO 990 J —1 , LOOP 

BO( J ) = 0 .0
DO 990 1 = 1 ,ITO L+ N TYP S



K»
VO'Jì

990 R £ S ( J , I ) —0 .0
Z O (3 )= 0 .0  
Z O (4 )= 0 .0  
P 0 2 (1 )= 0 .0  
P 0 2 ( 2 ) “ 0 .0

C
X=CP1
FHY=CP2 «RADIAN 
s t e p i = s t e p * r a d i a n

T O I T E ( * ,* )  ' l » t  PASS -  CALCULATIONS IN  PROGRESS

c*** w r i t e ( * , * )  ' '
DO 3001 M=1,MTERM 

C*** W RITE (6 ,2 3 1 3 ) M
c* * * 2313 FORMAT ( lh +  TERM NUMBER “  ,1 4 )

K=M*NSYM-KM

3004

C8=T3*K
C9=C8*C8
A1=1.0+C1*C9*C9
A 4 = -W * C 8
A5=A1*C9-A4*A4
Z0 (1 )= C 9 /A 5
Z 0 (2 )— A4/A5
Z O (5 )= 1 .0 / (C 7 * C 9 )
ZO (6 )=A1/A 5 
DO 3004 1=1,3  
P 0 ( I ) = 0 .0  
P 0 2 (3 )= 0 .0
CALL P JM N (K ,0 ,N L O A D ,C L )

TP/TJO B  EO 2) CALL P Q P (K ,0 , PQ,RAD)
I F  (NP EQ ? )  ^ L L  E N 0 (X ,K ,E 0 ,Z 0 ,P O ,P 0 2 ,L O A D ,LOOP)

DO 3001 N = 1 , NTERH
\t o —yr 4 W

A l l= l .o + c i* (N 2 + C 9 )* * 2+C2* ( (N 2 - 1 ) +0 . 5*C9)
A12=C8* (C 3 * N 2 -W )
A13=N *( 1 . 0+N2*Cl)+C4*N*C9
A22=C9+C5*N2
A23=-C6*N*C8

A 3 3 -N 2 * ( 1 . 0+C1)+C7*C9
DEN=A11*A22*A33+2.0*A12*A23*A13-A11*A23*A23 

t-A22*A13*A13-A33*A12*A12 
Z (1 )= (A 2 2 * A 3 3 -A 2 3 * A 2 3 )/DEN 
Z (2 )= (A 1 3 * A 2 3 -A 1 2 * A 3 3 )/DEN 
Z ( 3 ) = (A 1 2 * A 2 3 -A 1 3 * A 2 2 )/DEN 
Z (4 ) “  ( A l 2*A l 3 -A l l* A 2 3) /DEN 
Z ( 5 ) = (A 1 1 * A 2 2 -A 1 2 * A 1 2 )/DEN 
Z (6 )= (A 1 1 * A 3 3 -A 1 3 * A 1 3 )/DEN 

DO 3003 1 = 1 ,3  
P(I)=0.0

3003 P 2 ( I ) = 0 .0
CALL P JMN (K , N , NLOAD, C L)
I F  ( I J O B .E Q .2 )  C ALL PQP (K , N , P Q , RAD) 
IF ( K C .O K .N .A N D .N .O T . l )

C CALL F IM P(N SYM , IM P , X IM P , F B A R ,P , P 2 ,A N ,B N ,K ,N ) 
L=1 
I I — 1

100 I F  ( I l . S Q . I T O L )  GOTO 555 
I F  ( N P .E Q . l )  THEN 
P H I- (L - l )* S T E P 1 + P H Y
CALL E N N (X ,P H I ,K , N , E S ,Z ,P ,P 2 ,L O A D ,LOOP)
ELSE
X“ ( L - l ) * STEP+CP1
CALL S N N (X ,P H Y ,K , N , E S ,Z ,P ,P 2 ,L O A D ,LOOP)
CALL E N O (X ,K ,S S , Z O , P O , P 0 2 , LOAD, LOOP)
S TE P 1 -T4  *K*STEP/N 
END I F
DO 900 JC “ 1 , LOOP 

900 D IS P ( J C , L ) “ E S ( JC )
I1 » L * 2 -1
I F  ( I l . O S . I T O L )  I l - I T O L
DO 500 I= L + 1 ,I1
A l -C O S < N * ( I -L )* S T E F 1 )* 2 .0
IC = 2 * L -I
DO 30 J O l , LOOP

30 D I S P ( J C , I )= A 1 * E S ( J C ) - D I S P ( J C , I C )
500 CONTINUE



MVOOv

L=L*2 
GOTO 100

555 DO 910 J = 1 , LOOP 
DO 910 1 = 1 ,IT O L

910 R E S ( J , I ) —R E S ( J , I ) + D I S P ( J , I )
IF (N T Y P E .N E .2 .A N D .I J O B .N E . l )  OOTO 3001 

A l= 2 . 0 * C O S (N * S TK P l/ 2 .0 )
R E S ( 1 ,N S 1 )= R E S (1 ,N S 1 )+ A 1 * D IS P (1 , 1 ) -  

( D IS P (1 ,1 )+ D IS P (1 ,2 ) )/ A 1
RES (1 ,NS2)=RES (1 ,N S2) +A1*DISP (1 , IT O L )  -  (D IS P  (1 , IT O L -1 )  

6 + D IS P  (1 , IT O L )  ) /A1 
3001 CONTINUE
------------------------------------------------------------------

I F  ( N P .E Q . l )  THEN 
DO 930 1 = 1 ,LOOP 
DO 930 J = 1 , IT O L  

930 RES ( I , J )  =RES ( I  , J )  +E0 ( I )
END IF  

C
C STORE [W V L ], [S ]

I F ( I J O B . E Q . l )  THEN 
DO 948 1 = 1 ,3  

948 S ( I ) = 0 . 0
IF (N T Y P E . E Q .2 ) THEN 

RAD (NS1 ) = (RES (1 ,  N S I ) +E0 ( 1 ) ) *T5 
RAD (NS2) = (RES (1 ,N S 2 ) +E0 (1 ) ) *T5 
10=1

IF (N C S Y M . E Q ■1) 10=2 
N S IZ S = N S IZ R + IC  

END IF  
11=0
IF (N C S Y M .E Q .l)  11=1
I F  (C L (1 ) . EQ .0 .0 )  S (1 )  = 2 .0*PI*R*T*XLEN *CL(2 )  +CL (4 ) 

fc*XLEN*R*R* (A L P H A -S IN  ( 2 .0 »A LP H A ) / 2 .0 )+ C L (6 )
DO 949 1 = 1 ,NLOAD 

J = (1 -1 )* 6 + 1  
IC = C L (J )
I F ( I C . E Q . 0 . O R . IC .E Q .2 ) GOTO 949

A l= C L (J + 4 )
A 2 = C L (J+ 5 ) *R*RADIAN 

I F ( A l .E Q . O .O )  A l - 1 . 0  
I F ( A 2 . £ Q .0 .0 )  A 2 -1 .0  
A3=A1*A2*CL ( J + l )
A4 =CL ( J+ 3 ) «R A D IA N  

I F ( I C . E Q . l )  THEN 
S (1 ) =S (1 ) +A3*COS (A4)
S ( 2 ) = S ( 2 ) + I1 * A 3 * S IN (A4)

END IF
I F ( I C . S Q .3 ) THEN 

S (1 )= S (1 )  -A 3 * S IN  (A4)
S ( 2 ) = S ( 2 ) + Il* A 3 * C O S (A4)
S (3 ) =S (3 ) + I1*A 3*R  

END IF
949 CONTINUE

DO 947 J= 1 ,N K
947 RAD ( J )  "R E S  (1 ,  KCODE ( J )  ) *T5

DO 946 J -N K + 1 , NK+NT
946 R A D (J )= R E S (3 ,K C O D E (J ) )* T 5

OPEN (3  , F I L E -  ' PCSAD ' , S TA TU S - ' UNKNOWN ' ) 
W RITE (3 ,  *) (R A D (J )  , J * 1 ,N S IZ E )
W R ITE ( 3 ,* )  ( 8 ( I ) , 1 = 1 ,3 )
GOTO 999 

END I F  
A 3 -1 .0 E 6 / A
A4=PRESS*0.5 /  ( 1 . 0 -W * W )

W R IT E (* ,* )  'W R ITE  TO OUTPUT F I L E ' 
DO 940 J = l , I T O L  

I F  ( N P .S Q . l )  THEN 
A N O -C P 2 + (J - l ) « S T E P  

ELSE
X = C P l+ ( J - l ) « S T E P  

END I F
RES (1 , J )  =<RES (1 ,  J )  *T5 
RES (2 ,  J )  "R E S  (2 ,  J )  *T5 
RES (3 ,  J )  -R E S  (3 ,  J )  *T5 
I F ( I J O B .S Q .2 )  THEN

C * * *



PHI=ANG*RADIAN
S N T = S IN (P H I)
C N T= C O S (P H I)
RES (1 , J )  =RES (1 , J )  + D E LTA (1 ) *C N T+D ELTA(2) *SNT 
RES (3  , J )  =RES (3  , J )  -D E L T A  (1 ) * SNT+DELTA < 2 ) * CNT+R*DELTA ( 3 ) 

END I F
W R ITE (6 ,3 1 0 ) X , ANG
W R ITE (6 ,3 1 1 ) ( R E S ( K ,  J )  ,K = 1 ,3 )
IF (L O O P .E Q .3) GOTO 940
RES (4 , J )  =RES (4 , J )  +A4
RES (5 ,  J )= R E S (5 ,  J )  -A 4 * W
ES (1 ) =R* (RES (4 , J )  +W *R ES (5 , J ) )
ES (2 ) =R* (RES (5 , J )  +W *RES (4 , J )  )
ES (3 ) =R*T1*RES (6  , J )  / 2 .0 
ES (4 )= T6 *  (RES (7 , J )+ W * R E S  (B , J )  )
ES (5 ) = T 6 * (RES <8 , J )  +W *RES (7 , J )  )
ES ( 6 ) = T6 *T1*R ES(9 , J )
A 1 = E S (1 ) /T 
A 2 = E S (2 ) /T
E O ( 1 ) = A l - 6 . 0 * ES ( 4 ) /T2 
E O ( 2 ) = A l+ 6 . 0 * ES ( 4 ) /T2 
EO (3 ) = A 2 -6 . 0*ES (5 ) /T2 
E O ( 4 ) =A2 + 6 . 0 * ES ( 5 ) /T2 
EO (5 ) = (R*RES (4 , J )  + T * 0 . 5*RES (7 , J )  ) *A3 
EO ( 6 ) = (R*RES (4 , J )  - T * 0 . 5*RES (7 , J )  ) *A3 
E 0 (7 )= (R * R E S (5 ,J )+ T * 0 . 5*RES( 8 , J ) ) *A3 
EO ( 8 ) = (R*RES (5 , J )  - T * 0 . 5*RES (8 , J )  ) *A3 

C
W RITE (6 ,3 1 2 ) (E S (K ) ,K = 1 , 6 )
W RITE (6 ,3 1 3 ) (E 0 (K ) ,K = 1 ,4 )
W RITE (6 ,3 1 4 ) (E O (K ) ,K = 5 , 8 )

940 CONTINUE 
C
310 FORMAT( / /5X , 'X  = ' ,E 1 2 .5 ,3 X , ANGLE = ' ,F 7 .2 , 'D K G ’ )
311 FORMAT( 5 X , 'W = ' ,E 1 2 .5 ,3 X , -U  = ' , K 1 2 .5 ,3 X , 'V  ,K 1 2 .5 )
312 FORMAT( 4 X , N X - 1 ,E 1 2 .5 ,3 X , 'N P Y = ',E 1 2 .5 ,3 X , 'N X P Y - ' ,E 1 2 .5 /

6 4 X , M X = ', E l 2 . 5 , 3 X , ' MPY=' ,E 1 2 .5 ,3 X , 'M X P Y - ',K 1 2 .5 )
313 FORMAT( 4X, S X I = ' ,E 1 2 .5 , 1 X , 'S X O = ', E 1 2 . 5 ,1 X , 'S P Y I - ' ,K 1 2 . 5 ,

S I X , ' S P Y O - ' , E 1 2 .5 )
314 F O R M A T(4 X ,’ K X O - ' , F 8 . 2 , 3 X , 'E X I - , F 8 . 2 , 3 X , 'K P Y O - '  F8 2

C 3 X , ' R P Y I“ ' ,F 8 .2 )
999 STOP 

END
C

SUBROUTINE KNO (X ,M , EO , ZO , PO , P02 , LOAD, LOOP)
IM P L IC IT  R EAL* 8 ( A -H .O -Z )
DIM ENSION S O ( 1 0 ) , 2 0 ( 6 ) ,P 0 (3 ) ,P 0 2 (3 ) ,L O A D (3 )
COMMON/BLK2/T3, T 4 , P I , R A D IA N , T , R , X LE N , NCSYM
C2«M*T4
C3-C2*R
C1«C3*C3
C 4 -S IN (C 2 * X )
C 5 -C O S (C 2 * X )
C45-C4/C5 
DO 10 J * l , 3
I F  (LOAD ( J )  . E Q . 0 ) GOTO 10 
J U -J + 1
I F ( J . E Q .2 ) JU =6
JV * J+ 2
C 8 -P0  ( J )  *C4
C9— P 0 2 (J )* C 5
EO (1 ) **E0 (1 ) +Z0 ( J )  *C8
EO ( 2 ) -E 0  (2 ) +Z0 (J U )  *C8/C45
E O ( 3 ) -E 0 ( 3 ) + Z 0 ( JV)*C 9*C 45
IF (L O O P .E Q .3 ) GOTO 10
E O ( 4 ) * I 0 ( 4 ) -C 8 * C 3 * Z 0 ( JU )
EO (5 ) -E 0  (5 ) +C8*Z0 ( J )
EO ( 6 ) -B O  ( 6 ) +C9*C3*Z0 ( JV )
EO (7 ) -E O  (7 ) +C8*C1*Z0 ( J )
E O ( 9 ) —BO( 9 ) +C9*0. 75*C3*Z0( J V )

10 CONTINUE 
RETURN 
END 

C
SUBROUTINE E N N (X ,P H I,M ,N ,E S , Z ,P ,P 2 , LOAD, LOOP) 
IM P L IC IT  R EAL* 8 ( A -H .O -Z )
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DIM ENSION SS ( IO )  , Z ( 6 ) ,P (3 )  , P2 (3 ) ,LO A D (3 ) 
C O M M O N / B L K 2 /T 3  , T 4 , P I , R A D IA N , T  , R , X L E N , NCSYM 
DO 5 1 -1 ,9  

5 E S ( I ) = 0 . 0
CNT—C O S (N * P H I)
SNT—S IN (N * P H I)
A2=M*T4 
A 3 -A 2 »R  
A l -A 3 *  A3 
A4—S IN  (A2*X)
A 5 -C O S (A 2 * X )
A4 5—A 4 /AS 
DO 10 J = 1 ,3
IF (L O A D ( J ) . E Q .O )  GOTO 10 
J U -J + 1
I F ( J . E Q . 2 )  JU =6 
J V -J + 2
A 6— ( P ( J )  «CNT+P2 ( J )  *SNT) *A4 
A7— (P  ( J )  «S N T -P 2  ( J )  *CNT) *A5 
E S (1 )= E S (1 )+ Z (J )* A 6  
ES (2 ) -E S  (2 ) +Z ( JU ) *A 6 /A45 
E S (3 )= E S (3 )+ Z (J V )  *A7*A45 
I F (LO O P . E Q .3 ) GOTO 10 
E S ( 4 ) —E S ( 4 ) - A 6 *A3 * Z ( JU )
ES (5 ) =ES (5 ) +A6 * (N*Z ( J V )  +Z ( J )  )
ES ( 6 ) —ES ( 6 ) +A7* (A 3 * Z (JV ) -N * Z  ( JU ) )
ES (7 ) —ES (7 ) +A6 *Z ( J )  *A1
E S ( 8 ) = E S ( 8 ) +A6 * ( Z ( J)* N * N + N * Z ( J V ) )
ES (9 ) -E S  (9 ) +A7* ( 0 . 75*A3*Z ( J V )  +N*A3*Z ( J )

6 + 0 .25*N*Z( J U ) )
IO  CONTINUE 

RETURN 
END 

C
SUBROUTINE PJMN (M, N , NLOAD, CL)
IM P L IC IT  RKAL*8  ( A -H ,0 -Z )
DIM ENSION P ( 3 ) ,P 0 ( 3 ) ,P 2 ( 3 ) ,P 0 2 ( 3 ) ,C L ( 6 0 )  
COMMON/BLK2/T3 , T4 , P I , R AD IA N , T  , R , X LE N , NCSYM

COMMON/BLK3/P, P O , P 2 , PO2
I I - ( M + l ) / 2
I F ( M .L T .2 * 1 1 ) I I —0
DO 20 1 - 1 , NLOAD
J* * (I -1 )  *6+1
I O C L ( J )
A l —C L ( J + l )
A2—C L ( J+ 2 )
A3—C L ( J+ 3 )
A4—C L ( J+ 4 )
AS—C L ( J+ 5 )
I F  ( I C .  E Q .O . AND. I I .  E Q .O ) C ALL SWP ( P , PO ,M ,N  , A l  A2 A3 A4) 
I F  ( IC .N E .O )  C ALL PATCH ( I C ,A l , A2 , A3 A4 W  . M ^ i  ' ' ’
CONTINUE ' ' ' '
RETURN
END

SUBROUTINE SMP ( P , PO ,M ,N  , S N V , PRESS, SW, ALPHA)
IM P L IC IT  R EAL+8 ( A -H .O -Z )
DIM ENSION P ( 3 ) ,  PO (3 )
CO M M O N /B LK 2/T3,T4 ,P I, R A D IA N ,T ,R ,X L E N ,N C S Y M  
ALPHA—ALPHA* RAD I  AN 
A l - S I N  (ALPHA)
A2—COS (ALPHA)
A3—SW*R/ (M +PI + P I )
I F ( N . O T . l )  GOTO 20 
I F (N . E Q .1) GOTO 10
PO ( 1 ) - 4 . 0 + P R E S S /(M * P I)+ 4 .0 + A 3 + (A l-A LP H A * A 2 )
RETURN '
A5—4 . 0*T*SW V/(PI+M )
P ( 1 ) -A 5 + 4 . 0 * A 3 * (A LP H A -A I* A 2 )
P (3 ) —-A 5  
RETURN

^ ^ i ^ N<M‘ ALraA> *A 2 - N *COS <N*M *raA) . A l ,  / (N .  ( N . N - 1 , ,

RETURN
END
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P (1 )= P (1 )+ A 2 * A M * A N (I ,N )
P 2 (1 )-P 2 (1 )+ A 2 * A M * B N (I ,N )

10 CONTINUE 
RETURN 
END 

C
SUBROUTINE PQP (M, N , PQ , RAD)
IM P L IC IT  REAL* 8 ( A -H tO -Z )
DIM ENSION PQ(1 2 0 ) ,R A D ( 1 2 0 ) ,P ( 3 ) ,P 2 ( 3 ) ,P 0 ( 3 ) ,P 0 2 ( 3 )  
COMMON/BLK2/T3, T 4 , P I , R A D IA N , T , R , X LE N , NCSYM 
COM M ON/BLK3/P,P0,P2,P02
C0MM0N/BLK4/SDIV, WIDTH , NTYPE ,N K , N S IZ E  , XSAD
C C -W ID TH /2 .0
BETA=SD I V / 2 .0
IC =0
IF (N C S Y M . E Q . l )  IC -1  
A1=M*T4
AM=4. 0* S IN  (A1*XSAD) * S IN  (A1*CC) / (M *PI)
IF (N .N B .O )  GOTO 4
A 2 = 2 .0 * BETA*NCSYM/PI
IF ( N T Y P E .E Q . l )  A 2 -N C S YM /(R * PI)
A N O -O .0 
DO 1 I « 1 ,N K

1 A N 0 = A N 0 -P Q (I)* A 2
IF (N T Y P E .E Q .2) A N O = A N O -(P Q (N S IZ E + 1 )+ 

t  IC * P Q (N S IZ E + 2 )) *NCSYM /(R*PI)
P O ( 1 ) = P 0 ( 1 ) +ANO*AM 
I F  (N K .E Q . N S IZ E ) RETORN 
AN 0=0.0
DO 2 I«N K + 1 ,N S IZ E

2 A N O = A N O -P Q (I)
P02 (3 ) -P 0 2  (3 ) -IC*AN0*A2*AM  
RETURN 

4 AN =0.0
BN =0.0
A l — 4 . 0*NCSYM*SIN (N*BSTA) / (N * P I)
IF ( N T Y P E .E Q . l )  A l — 2 . 0*NCSYM /(R*PI)
DO 10 1 = 1 ,NK

P H I-R A D (I)* N  
A4—PQ ( I ) *A1 
AN^AN+A4 * COS ( P H I)
BN—B N + A 4 * S IN (P H I)

IF (N T Y P E .E Q .2) THEN 
A2— 2 .0 * NCSYM/ (R * P I) 
DO 5 I I » 1 , 1 + I C  

I —I I+ N S IZ E  
P H I-R A D (I )* N  
A4—P Q (I )* A 2  

AN—AN+A4* C O S ( P H I) 
BN-BN+A4* S I N ( P H I)

END IF
P (1 ) —P (1 ) +AM*AN 
P 2 ( 1 ) - P 2 ( 1 ) +IC*AM*BN 
IF (N K .E Q .N S IZ E )  RETURN 
AN—0 .0  
BN—0 .0
DO 40 I -N K + 1 ,N S IZ E  
P H I-R A D  ( I )  *N 
A4—PQ ( I )  *A1 
AN—AN+A4*COS( P H I)
BN—B N + A 4 * S IN (P H I)
P (3 ) —P (3 ) +AM*BN
P 2 (3 ) —P 2 ( 3 ) -IC*AM *AN
RETURN
END
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f

SUBROUTINE PATCH (KTYPE , Q , B , A F A ,CC , BETA1 ,M ,N ) 
IM P L IC IT  R EAL*8  (A -H ,0 -Z )
DIMENSION P (3 )  ,P 0 (3 ) ,P 2 (3 ) , P02 (3 )
COMMON/BLK2/T3 , T 4 , P I , R AD IA N , T  , R , X L E N , NCSYM
COMMON/BLK3/P , PO , P 2 , P02
AFA=AFA*RAD IAN
BETA1 =BETA1 * RADIAN
C=CC/2.0
BETA=BETA1/ 2 .0
IC=0
IF  (N C S Y M .E Q .l) IC=1
A1=M*T4
A2=A1*B
A3—A1*C
A4=M*PI
OOTO ( 1 , 2 , I , 4 ,1 )  KTYPE

1 IF  (C C . E Q .0 .0 )  A M = 2 .0 * S IN (A 2 )/X LEN
IF  (C C . GT .0 .0 )  AM=4. 0*SIN (A2) * S IN  (A 3 ) /A4 
OOTO 30

2 IF  (C C . EQ .0 .0 )  AM =2.0*CO S(A2)/XLEN
IF  (CC. GT .0 .0 )  AM=4. 0*COS (A2) * S IN  (A 3 ) /A4 
OOTO 30

4 AM= (COS (A 2 ) * (S IN  (A3) / (A1*C) -
COS (A3) ) + S IN  (A 2 )* S IN  (A3) ) * 2 .0/A4 
30 IF  (N .E Q .O ) OOTO 60

A4=N*AFA
IF  (B E T A 1 .E Q .0 .0 ) THEN 
A 5 = Q /(R * P I)
OOTO 50 
END IF
A 1 = 2 .0 * Q / (N * P I)
A2=N*BETA
A 5 =A1*SIN (A2)
IF  (KTYPE . EQ . 5) A5=A5/2. 0+A1* (COS (A 2 ) -S IN (A 2 )/ A 2 )  

50 AN—A5*COS (A4)
BN=A5* S IN  (A4 )
OOTO(5 0 0 ,6 0 0 ,7 0 0 ,5 0 0 ,5 0 0 ),KTYPE 

500 P (1 )=P (1 )+ A M * A N

P 2 (1 )= P 2 (1 )+ IC * A M * B N
RETURN

600 P ( 2 ) “ P ( 2 ) +AM*AN
P 2 ( 2 ) - P 2 ( 2 ) +IC*AM*BN 
RETURN

700 P ( 3 ) “ P ( 3 ) +AM*BN
P 2 ( 3 ) - P 2 ( 3 ) -IC*AM *AN 
RETURN

60 I F  (B E T A I .X Q .0 .0 )  A N O -Q / ( 2 . 0*R *PI)
I F  (BKTA1 .O T .O .O )  AN O -BETA*Q/PI 
IF (K T Y P E .E Q .5) AN 0«AN 0/2.0  
O O TO (5 0 1 ,6 0 1 ,7 0 1 ,5 0 1 ,5 0 1 ),KTYPE 

501 F 0 (1 )«P 0 (1 )+ A M * A N 0
RETURN

601 P 0 (2 )-P 0 (2 )+ A M * A N 0  
RETURN

701 P 0 2 (3 )-P 0 2 (3 )-IC * A N 0 * A M  
RETURN
END

C------------------------- IM PERFECTIONS----------------------------
C*****ONLY FOR SHAPE SYMMETRIC ABOUT CENTRE, (A X IA L  SYMMETRY) 

SUBROUTINE FIMP (NSYM, IM P , XIMP PBAR P P 2 ^ N  Bn T ^  
IM P L IC IT  RXAL*8  ( A -H ,0 -Z )  ^ ,A « ,B N ,M ,N )
DIM ENSION X IM P (3 ) ,P (3 )  ,P 2 (3 )  ,A N (3  60) ,B N (3  60) 
COMMON/BLK2/T3, T 4 , P I , R A D IA N ,T ,R ,X ^ E N  NCSYM 
A1-2 .0*N SYM /XLXN  '  "
A2=M*T4 
DO 10 1 * 1 ,IMP 
A 3 = X IM P (I)
I F ( I . E Q . l )  X O A 3 / 2 .0  
IF ( IM P .O T . 1) X O ( A 3 - X I M P ( I - l ) ) / 3  0 
I F  ( I .  L T .  IMP) X D - ( X IM P ( I+ l ) -A 3 ) / 3 .0  
I ? ( I -* Q -IM P ) X D «(X LE N -A 3 * N S YM )/ ( 1 . 0+NSYM)
***" (A2* (A 3 -X C ) ) -S IN (A 2 *  ( A 3 -2 . 0*XC) ) ) /XC
I F  (X D . O T . 0 .0 )  A l^ A M - (S IN  (A2* (A 3 + 2 . 0*XD 

S -S IN (A 2 * (A 3 + X D )) ) /XD 
AM -AM *A1/(A2*A2)
A2— PBAR*( (N * N -1 )+ (M * T3 )* * 2 / 2 .0 )/R
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C SOLUTION FOR INTERFACE PRESSURE
IM P L IC IT  REAL* 8 ( A -H ,0 -Z )
DIMENSION C (1 1 0 ,3 ) ,C F ( 3 ,1 1 0 ) ,B ( 3 ,3 ) ,P Q ( 1 1 0 ) ,B B ( 3 ,3 )  
DIMENSION D E L T A ( 3 ) ,S (3 > ,E S (3 ) ,W K S 1 (1 1 0 ,1 1 0 ) ,W VL(110) 
DIMENSION F (1 1 0 ,1 1 0 ) ,F 1 (6 0 ),F 2 (1 2 0 ) ,F 4 (6 0 ) ,K C O D E (1 1 0 )  
DIMENSION F 5 (1 1 0 ) ,F 6 (1 1 0 ) ,F 7 (1 1 0 ) ,F 8 (1 1 0 )
CHARACTER* 10 NAME* 60 , OAPP, F L E X , FLNAM 

C
OPEN (2 , F I L E »  ' PCINPUT ' , S TA TU S » ' UNKNOWN ' )
READ(2 ,1 0 3 ) NAME

103 FORMAT (A60)
READ(2 ,* )  MTERM, NTERM 
READ(2 ,* )  N S Y S ,NSYM, NCSYM, IMP 
READ (2 , *) R ,E ,W ,T ,X L E N  
IF ( IM P . N E .0 ) THEN 
DO 5 1 = 1 ,IMP

5 READ(2 ,* )  DUMMY 
END IF
READ(2 ,* )  NLOAD
READ (2 , *) A 1 ,A 2 ,A 3 ,A 4 ,A 5 ,A 6
DO 6 I » 2 , NLOAD+1

6 READ (2 , *) DUMMY
READ (2 , *) X S AD ,S B ETA , O FFSET, W ID TH , NTYPE 
READ (2 ,* )  N D IV , N K , NT 
NS I  ZE=NK+NT 
I1=N D IV+N TYPE 
IF (N T Y P E .E Q .2) I1 = N D IV  
DO 33 1 = 1 ,NK 

33 KCODB( I )= 1
DO 35 1=1, NT 

35 KCODE (N K + I) =1
IF  (NK . L T  . I I )  READ (2 , *) (KCODE ( I )  , 1=1 ,NK)
I F  (N T . G T .0 .  A N D .N T .L T . I I )  READ (2 , *)

(K C O D E ( I ) , I= N K + 1 , N S IZ E )
READ(2 ,* )  I  G A P ,IF L E X  
IF ( IC S A P .E Q .l )  READ(2 ,1 0 4 ) OAPP 
IF ( I F L S X . E Q .1 ) READ(2 ,1 0 4 ) FLEX

104 FORMAT (A10)

o 
o

CLOSE (2 )

GLOBAL CONSTANTS 
P I= A S IN ( 1 .0 )* 2 .0  
P I2 = P I* P I 
T 1 - 1 . 0 - W  
T2 = T* T
T3=PI*R /XLEN
T4—P I/X LEN
A = E * T / (1 .0 -W * W )
T5 »R * R /A  
T6 —T 2 / 1 2 .0

C 2=0.0
I F ( A l .E Q . O .O )  THEN 

A 5 = A 5 * P I/1 8 0 .0  
C 1 1 = S IN (A 5 )
C12=COS (A5)
PBAR=A3+A4*R* (C11-A5*C12) /P I 
C2=PBAR*R/A 

END I F  
C1=T6/(R*R )
C2=PBAR*R/A 
IF ( N S Y S .E Q . l )  C 2 -0 .0  
C 3 = T l* C l/ 2 .0  
C 4 = ( 3 .0 -W )  * C l/ 2 .0  
C5—T 1 * ( 4 . 0 + C 1 )/ 8 .0
C6= (4 .0 *  ( 1 . 0 + W ) - 3 . 0*C1 * T 1 )/ 8 .0
C 7 = T1 * ( 4 .0 + 9 .0 * C 1 )/ 8 .0

ITO L= N D IV+ N TYPK  
SB ETA=SB ETA*PI/180.0  
S D I V=SBETA/ND I V  
D IV -S D IV
IF (N T Y P E . E Q .2 ) THEN 

ITO L= 2 * N D IV+ 1  
D IV -S D IV / 2 .0  

END I F
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c
c *  * * 
c * * *
c

c

820
C

c

C * * *

WRITE (* ,* )  SADDLE PASS -  CALCULATIONS IN  PROGRESS'

w r i t e  (*  , *)  1 1
VECTORS F I  ,F 2 ,F4 ,F5 ,F 6 ,F7  ,F 8 

W0=0.0 
V0 = 0 .0 
WL2=0.0 
W L=0.0
IEND=NTYPE+NDIV
ISYM=1
IK=0
IF  (N T Y P E .E Q .2 ) THEN 

IEND*NDIV 
ISYM=2 
IK=1 

END IF

DO 820 I « 1 , I E N D  
F 5 ( I ) = 0 .0  
F 6 ( I )  = 0 .0  
F7 ( I )  = 0 .0  
F 8 ( I )= 0 .0  
F I ( I ) = 0 .0  
F2 ( I )  = 0 .0  
F 4 ( I ) = 0 .0

A9=8. 0/P I2  
BETA?=SDIV/2.0 

IF  (N T Y P E .E Q .l )  THEN 
A9=A9/ (2 . 0*R)
B ETA=1.0  

END IF
A2=T4 *WIDTH/2 .0  
A3=T4*XSAD 
A8=2.0

DO 3001 M=1, MTERM 
w r i t e (6 ,2 3 1 3 ) M

1 , 1« )0***2313 F O R M A T (lh + ,’ TERM NUMBER =
K=M*2-1 
C8=T3*K 
C9-C8*C8 
A1=1.0+C1*C9*C9 
A 4 = -W * C 8
Z 0 1 -C 9 / (A 1 * C 9 -A 4 * A 4 )
Z0 5 = 1 .0 /(C 7 *C 9 )
A 5 = S IN (K * A 3 )
A6=A9*SIN (K*A2)*A5*A3/K  
A7=A6*BETA 
W 0^»0+A7*Z01 
V0-V0+A7*Z05 
DO 3001 N“ 1 , NTERM 
N2=N*N
A l l = l . 0+C1*(N 2+C9)**2+C2*( (N 2 -1 )+ 0 .5*C9)
A12=C8* (C 3 * N 2 -W )
A13=N *( 1 . 0+N2*Cl)+C4*N*C9
A22=C9+C5*N2
A23=-C6*N*C8
A 3 3 -N 2 * ( 1 . 0+C1)+C7*C9
D EN = A ll* A 2 2* A 3 3 + 2 . 0*A12*A23*A13-All*A23*A23 

S-A22*A13*A13-A33*A12*A12 
Z l= (A 2 2 * A 3 3 -A 2 3 * A 23 )/D EN  
Z3=(A12*A23-A13*A22)/DSN  
Z5=(A11*A22-A12*A12)/DEN
IF (N T Y P E . E Q . 0 . OR. N TY P E . S Q .2 ) AB=2. 0 * S IN (N * B E TA ) /N
CON=R*A8
L=1
XI—1

100 I P ( I I . E Q . I T O L )  GOTO 55S 
P H I - ( L - l ) * D I V  
CNT=A8 *CO S(N *P H I)
E S ( 1 ) =CNT*A6*Z1 
E S (2 )= -A 6 * Z 3 * A 8 * S IN (N * P H I)
E3 (3 )= C N T* A6 * Z5  
DO 900 J 0 1 , 3  

900 C F ( J C , L ) “ ES ( JC )
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r
I1 = L * 2 -1
I F ( I l . G E . I T O L )  I l = I T O L  
DO 500 I= L + 1 ,I1  
A l= C O S ( N * ( I -L ) * D IV ) * 2 .0  
IC = 2 * L -I  
DO 30 JC = 1 ,3

30 C F ( J C , I ) = A 1 * E S ( J C ) -C F ( J C , I C )  
500 CONTINUE 

L = L *2 
GOTO 100

555 DO 910 1 = 1 ,IEND 
I I= I* IS Y M -IK  

F l  ( 1 ) =F1 ( I  ) +CF (1 , I I )  
F 2 ( I ) = F 2 ( I ) + C F ( 2 , I I )

910 F4 ( I )  =F4 ( I )  + C F (3 ,1 1 )
IF (N T Y P E . N E .2 )  GOTO 3001 
WL=WL+CF( 1 , 1 ) /CON 
WL2=WL2+CF( 1 , I T O L ) /CON 
DO 909 1 = 1 ,IEND 

11=1 *ISYM
F 7 ( I ) = F 7 ( I ) + C F (1 ,1 1 )
F 8 ( I ) = F8 ( I ) + C F (2 ,1 1 ) 
F 5 ( I ) = F 5 ( I ) + C F  ( 1 ,1 1 ) /CON 

909 F 6 ( I )  = F 6 ( I )  +CF (2 ,1 1 ) /CON 
3001 CONTINUE 
C

W0A=W0/ ( 2 . 0*BETA*R)
DO 930 J = 1 , IEND 
F l  ( J )  = ( F l  ( J )  +W0) *T5 
F2 ( J )  =F2 ( J )  *T5 
F 4 ( J )= (F 4 ( J ) + V 0 )* T 5  

I F  (N T Y P E .N E .2) GOTO 930 
F 5 ( J )  = (F 5 (J)+ W 0 A ) *T5 
F 6 ( J )  = F6 ( J )  *T5 
F7 ( J )  = (F7 (J )+ W 0 ) *T5 
F 8 ( J )  =F8 ( J )  *T5 

930 CONTINUE
WL= (WL+WOA) *T5

WL2=(WL2+W0A)*T5
C----------------------------------------------------------------------------------------

C**** W R ITS (* ,* >  'FORMINO F L E X IB IL IT Y  M ATRIX [F ]  ' 
G O TO (3 0 2 0 ,3 0 3 0 ),NCSYM 

3020 DO 200 1 = 1 ,NK 
IO K C O D X ( I )

DO 200 J “ I , NK 
I l -K C O D E  ( J )  - IC + 1  

200 F ( I ,  J )= F 1  ( I I )
IF (N T Y P E .E Q .2) THEN 
K l-N S IZ E + 1  
K 2 -N S IZ E + 2  
KCODS ( K l )  =0 
K C O D E(K 2 )=99 
K 3 -N D IV + 1  
DO 813 1 = 1 ,NK 

IC -K C O D X (I)
F ( I  ,K 1 )= F 5  ( IC )
F ( I ,K 2 ) = F 5 ( K 3 - IC )
F  ( K l , I )  =F7 ( IC )

813 F (K 2 , I ) = F 7 ( K 3 - IC )
F (K 1 ,K 1 )= W L  
F (K 2 ,K 2 )= W L  
F (K 1 ,K 2 )= M L2  
F (K 2 , K l ) =WL2 
N S IZ E -N S IZ E + 2  

END I F
I F ( N T . E Q .0) GOTO 3005 
DO 802 1 = 1 ,NK 

IC -K C O D X (X )
DO 802 K = 1 ,N T  

I l —NK+K
I2 = K C O D E ( I I ) - I C  
I F ( I 2 . G T . 0 )  F ( I , I l ) = - F 2 (12+1)
I F  (1 2 . L E . 0 ) F ( I , I I )  =F2 (1 -1 2 )

802 CONTINUE
DO 812 I-N K + 1 ,N S IZ E  

IC -K C O D X (I)



812

DO 812 J = I , N S IZ E  
F ( I ,  J )= F 4 (K C O D E (J )  - IC + 1 ) 

CONTINUE
IF (N T Y P E . E Q .2 )  THEN 

DO 811 I —NK+1, NK+NT

811

IC=KC0DE( I ) 
F ( I ,K 1 ) = F 6 ( IC )
F ( I  ,K 2 )= -F 6  (K 3 -IC )  
F  (K 1 , 1) — F8  ( IC )  
F ( K 2 ,I ) = F 8 ( K 3 - IC )  

END IF  
GOTO 3005

C
C ---------
3030

— DEFORMATIONS SYMMETRIC ABOUT V E R T IC A L  A X IS  
NKS=(NK+1) /2 
NTS=NT/2 
DO 300 1 = 1 ,NKS 
K l= K C O D E (I)
DO 300 J = I , NKS 

I l= K C O D E (J ) -K l+ 1
(+>oin

300

I2 = K C O D E (N K -J+ 1 )-K l+ 1  
F ( I , J ) = F 1 ( I 1 ) + F 1 ( I 2 )  

CONTINUE
IF (N T .E Q .O )  OOTO 3333 
DO 301 1 = 1 ,NKS 
K l=K C O DE( I )
DO 301 J= 1 ,N T S  

I1=KC0DE (N K + J) -K1 
I2 = K C O D E (N S IZ E -J+ 1 )-K 1  
I F ( I l . O T . O )  C1—- F 2 (11+1) 
I F ( I l . L E . O )  C1—F 2 (1 -1 1 ) 
I F (1 2 .O T .0 ) C 2 = -F 2 (12+1) 
I F (1 2 .L E .0 ) C 2=F2(1 -1 2 ) 
F ( I , N K S + J)—C 1-C 2

301 CONTINUE 
DO 302 1 = 1 ,NTS 

K l= K C O D E (N K + I) 
DO 302 J = I , NTS

1 1 - KCODK (N K + J) -K l+ 1
1 2 - K C O D E (N S IZ K -J+ 1 )-K l+ 1

302 F ( I+ N K S , J+NKS) *»F4 (1 1 ) -P 4  (1 2 )
C
3333 I F  (N T Y P Z .N X .2 ) SOTO 53 

Il-N K S + N T S + 1  
K l-N D IV + 1  
DO 51 I -1 ,N K S  

IC -K C O D K (I)
F ( I , I I ) - F 5  ( IC )  +F5 ( K l - I C )

51 F  ( I I , I )  —F7 ( IC )  +F7 ( K l - I C )  
F (I1 ,I1 )= W L + W L 2  
IF (N T .K Q .O )  OOTO 53

DO 52 1 = 1 ,NT 
IC -K C O D E (I )
F ( I + N K S , I 1 ) « F 6 ( K l - I C ) - F 6 ( IC )

52 F ( I I , I + N K S ) - F 8 ( K 1 - I C ) - F 8 ( I C )
C RESET KCODK
53 DO 345 I - l . N T S
345 K C O D K (N K S + I)—KCODB(NK+I)

N X-NKS 
N T -N T S  
H S I2 E -N K + N T 
K C O D K (N S IZ E + D -0  
I F  (N T Y P K .K Q .2 ) N S IZ K -H S I2 K + 1  

3005 CONTINUK 
N KT-NK+N T 
DO 303 1 - 2 ,HKT 
DO 303 J - l ,1 -1  

303 F ( I , J )  —F ( J ,  I )
C
C--------------------IN VER T [ F ] --------------------------

DO 123 I —1 , N SIZK  
DO 123 J —1 , N S IZ Z  

123 H K S 1 ( I , J ) - F ( I , J )
C+*** W R ITK (* ,* )  ' IN VZR T [ F ) '

CALL H IV (W K S 1 ,N S IZ K )
C-
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815

818

C

890

C

800
C

OPEN (3 , F I  LE= ' PC SAD 1 , S T A T U S «' UNKNOWN 1 )
READ (3 , *) (W V L (I )  , I= 1 ,N S IZ K )
READ (3 , *) (S  ( I )  , I “ 1 ,3 )
CLOSE (3 )

NKT=NK+NT 
RSDI V=R* S D IV  

DO 815 1=1,3
I F  (N TY P E . E Q . 0 . O R .N TY P E . KQ.2 ) S ( I ) = S ( I ) / R S D I V  
S (I)= S (I)/ (2 .0 * N C S Y M * W ID T H )
IF (N T Y P E . E Q .2 )  THEN 

DO 818 I= N K T+ 1 ,N S IZ E  
DO 818 J = 1 , N S IE E  

WKS1 ( I , J )  =WKS1 ( I  , J )  /RSDIV 
END IF

GAP VECTOR (GAP]
IF  ( IG A P .E Q . l )  THEN
OPEN (5 5 ,F ILE = G A P P , S T A T U S -'O L D ' )
READ (5 5 ,* ) K
READ (5 5 ,* ) ( F I ( I )  ,1 = 1 ,K)
CLOSE (55)
DO 890 1 = 1 ,K
W V L (I)  = W V L (I)  - F I  ( I )
END IF

A l l =  (S B E T A -S D IV ) / 2 .0 
I F  (N TYPE . E Q . l )  A ll= S B E T A / 2 .0 
C1=O FFSET*PI/180. 0 - A l l  
DO 800 1 = 1 ,NK 

P H I= (K C O D E( I ) - 1 ) *SDIV+C1 
C (1 ,1 ) «C O S (P H I)
C ( 1 ,2 ) « S I N  (P H I)
C ( I , 3 ) « 0 . 0

I F  (N T Y P E .E Q .2) THEN 
A l= C l+ A l l -S B E T A / 2 .0 
A2=A1+SBETA 
C (N K T+ 1 ,1 )  =COS ( A l )
C (N K T+ 1 , 2 ) « S I N ( A l )

C (N K T + 1 ,3 ) - 0 .0  
C (N K T + 2 , 1 ) -C O S (A 2 )
C (N K T+ 2 ,2 ) —S IN  (A2)
C (N K T + 2 , 3 ) » 0 .0  

END I F
I F  (N T .E Q .O )  GOTO 814 
L-N K +1
DO 747 I —L , NKT
P H I-(K C O D E  ( I )  -1 )  »SDIV+C 1
C ( 1 ,1 )  — -S IN  (P H I)
C ( I , 2 ) -C O S (P H I )

747 C ( 1 ,3 )  —R
814 CONTINUE 
C [C ]T *  [F ]  ( - 1 )

N D IL —3
I F  (N T .E Q .O )  N D E L-2  
I F  (N C SYM .B Q .2 ) NDEL—1 
IT E R —0
DO 776 1 -1 ,3

DO 775 J - 1 , 3
775 B ( I , J )  —0 .0
776 B ( I , I ) —1 .0
896 DO 777 I —1 , NDEL

DO 777 J * 1 ,N S IZ E  
CF ( I , J )  —0 .0  

DO 777 K r t ,N S IZ E
777 C F ( I , J ) « C F ( I , J ) + C ( K , I ) * W K S 1 ( K , J )
C
C-----------------------[B ] MATRIX--------------------

DO 902 I —1 ,NDEL 
DO 902 J = 1 , NDEL 

B ( I , J )  —0 .0  
DO 902 IC—1 ,N S IZ S

902 B ( I , J ) - B ( I , J ) + C F ( I , K ) * C ( K , J )
c
c -----------------COMPUTE THE INVERSE OF IB ] MATRIX

C 1 -B (1 ,1 )* B (2 ,2 )* B (3 ,3 )+ B (1 ,2 )* B (2 ,3 )* B (3  
1  + B (1 ,3 ) * B ( 2 ,1 ) * B ( 3 ,2 ) -B ( 1 ,3 ) * B ( 3 ,1 ) * B ( 2



2

WOvi

c
c—
s e e

904

906

907

90S
C
C - -

666

911

912

-B(1,1) 
B B (1 ,1 ) = 
B B (1 ,2 ) = 
BB (1 ,3 )  = 
B B (2 ,1 ) = 
BB (2 ,2 )  = 
BB(2 ,3 )=  
B B (3 ,1 ) = 
BB (3 ,2 )*  
BB (3 ,3 )  *

*B ( 2 ,3 ) *B (3 ,2 )  -B  (1 ,2 )  *B ( 2 , 1 ) *B (3 ,3 )  
( B ( 2 ,2 )* B (3 ,3 ) -B < 2 ,3 )* B (3 ,2 ) )/ C 1  

, (B (1 ,3 )  *B (3 ,  2 ) -B  (1 ,2 )  *B (3 ,3 )  ) /C I 
> (B  (1 ,2 )  *B (2 ,3 )  -B  (1 ,3 )  * B (2 ,2 ) )/ C 1  
■ (B (2 ,3 )  * B (3 ,1 )  -B  (2 ,1 )  * B (3 ,3 )  ) /C I
. ( B ( 1 ,1 ) * B ( 3 ,3 ) -B ( 1 ,3 ) * B ( 3 ,1 ) ) / C 1
* (B (1 ,3 )  *B ( 2 ,1 )  -B  (1 ,1 )  *B ( 2 ,3 )  ) /C I
• (B  (2 ,1 )  *B (3 ,2 )  -B ( 2 ,2 )  * B (3 ,1 > ) /C I 
» ( B ( 1 ,2 ) * B ( 3 ,1 ) -B ( 1 ,1 ) * B ( 3 ,2 ) ) / C 1
= (B (1 ,1  ) *B (2 ,2 )  “B ( 1 , 2 ) * B ( 2 , 1 ) )  /C I

-----[D E L T A ]------------------------
DO 904 I= 1 ,N D E L
F2 ( I )  = 0 .0
DO 904 J = l ,N S IZ E
F2 ( I )= F 2  ( I )  + C F ( I , J )  *WVL( J )
DO 906 I= 1 ,N D E L  
F 2 ( I ) = S ( I ) - F 2 ( I )
DO 907 1 = 1 ,3  
D E LTA ( I )= 0 .0  
DO 90S I= 1 ,N D E L  
DO 90S J = 1 , NDEL
D E LTA ( I ) = D E L T A ( I )+ B B (X ,J )* F 2 (J )

—  [P Q ]----------------- -------------
DO 666  1 = 1 ,N S IZ E  

F 2 ( I ) = 0 .0  
DO 666  J = 1 , KDEL 

F 2 ( I )= F 2  ( I ) + C ( I , J )  * D E L T A (J ) 
CONTINUE
DO 911 1 = 1 ,N S IZ E  
F 2 ( I ) = F 2 ( I ) +W VL( I )
CONTINUE
DO 912 1 = 1 ,N S IZ E  

P Q ( I )* 0 .0  
DO 912 J = 1 ,N S IZ E  

P Q (I)= P Q (I)+ M K S 1  ( I , j )  *F2 ( J )  
I F (N TY P E . E Q .2 ) THEN

PQ(N KT+1) “ PQ(NKT+1) »R S D IV  
P Q (N K T+ 2 )“ P Q (N K T+ 2 )* R S D IV  

END I F

I F  (N T .O T .O )  GOTO 960 
IT E R -IT E R + 1
W R IT E (* ,* )  'N O . OF ITE R A C TIO N  = ’ , IT E R  

NEP—0
DO 950 I= 1 ,N S IZ E

I F  ( P Q ( I ) .G E . 0 . 0 )  GOTO 950 
DO 951 J = 1 , N S IZ E  

F ( I , J ) “ 0 .0  
951 F ( J , I ) = 0 . 0

F ( I , I ) “ 1  ■ 0 
C ( I ,1 ) = 0 . 0  
C ( 1 ,2 )  = 0 .0  
W V L ( I ) “ 0 .0 
NEP-NEP+1 

950 CONTINUE
IF (N S P .E Q .O )  GOTO 960 

DO 124 1 = 1 ,N S IZ E  
DO 124 J = l ,N S IZ E  

124 W K S 1 ( I , J ) = F ( I , J )
CALL H I V (WKS1, N S IZ E )
I F (N T Y P E .N E .2) GOTO 896 

DO 128 I “ N K T+1, N S IZ E  
DO 128 J = l ,N S IZ E

128 WKS1( I , J ) “ WKS1( I , J ) /RSDIV
GOTO 896 

960 CONTINUE 
C
C--------------------- OUTPUT RESULTS------------------------

OPEN( 6 , F IL E “ 1PCSADRES1 , STATUS“ ' UNKNOWN' )  
W R ITE (6 ,7 8 0 ) NAME 

780 FORMAT (5 X ,A / )
W R IT E (6 ,7 8 2 ) HTERM,NTERM 

782 F O R M A T(/5 X ,’ MTERM — 1 ,X 4 / 5 X ,’NTERM — ’ ,1 4 / ) 
S B E T A -IN T (S B E T A * 1 8 0 0 0 0 .0 / P I)/ 1 0 0 0 .0
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W RITE ( 6 ,784) XSAD ,W ID TH , SBETA, OFFSET 
784 F O R M A T(1 0 X ,'D IS TA N C E OF SUPPORT FROM END = ,E 1 2 .5 /

1  10X, 'SADDLE WIDTH » '  ,E 1 2 .5 , ' U N IT '/
2 10X 'F U L L  SADDLE ARC ANGLE - '  , F 7 .2 ,  DEG /
3 10X 'SADDLE OFFSET BY ' , F 7 . 2 , ’ D E G '/ )

WRITE (6 * ) ’ -** SUPPORT INTERFACE REACTIONS ** '
IF  (NTYPE . E Q . 0) W RITE ( 6 ,* ) 'PATCH LOAD MODEL'
IF  (NTYPE . EQ . 1 ) W R IT E (6 ,* ) ’ L IN E  LOAD
IF  (N TYPE. EQ . 2) W RITE ( 6 ,* ) PATCH + L IN E  A T HORN 
WRITE (6 ,7 8 5 )

785 FORMAT( / , 4 X , 1 N O . CODE.NO P Q ( I )  )
DO 788 I= 1 ,N S IZ E

788 W RITE (6 ,7 9 0 ) I  ,KCODE ( I )  , PQ U>
790 FORMAT( 3 X ,1 3 , 2 X ,I3 ,6 X ,E 1 5 .8 )

W RITE ( 6 ,* ) ' ’
WRITE ( 6 ,* ) ’ R IG ID  BODY DISPLACEMENT
W RITE (6 ,7 9 1 ) ( D E L T A ( I ) , I = 1 ,3 )  .

791  FORMAT (1 0 X , 'V E R T IC A L  : ,E 1 2 .5 ,2 X ,  U N IT  /791 ^ F O R M A T ^  , h o r iz o h t a l  . . , E1 2 . 5 , 2 X , ' U N I T ' /
2 1  OX , 1 R OTATIONAL : 1 , E 1 2 . 5 , 2X , ' U N IT  )

C STORE [P Q ] , [D E LTA ] IN  F IL E  PQ .D AT
OPEN (16 , F IL E *  ' PCPQ ' , STATUS= ' UNKNOWN )
WRITE (1 6 ,* )  ( P Q ( I ) , I =1 ,N S IZ E )
WRITE (1 6 ,* )  (D ELTA  ( I )  ,1=1 < 3)
CLOSE (16)
STOP
END

c ___________ IN VER SIO N  R O U TIN E-------------------------------
SUBROUTINE M IV (A ,N )
IM P L IC IT  R EAL*8  ( A -H ,0 -Z )
DIM ENSION A (1 1 0 ,1 1 0 ) ,B (1 1 0 ,1 1 0 ),N R O W (1 1 0 )
DO 20 1 = 1 ,N 

DO 10 J= 1 ,N
10 B ( I , J ) = 0 . 0
20 B ( I , I  ) —1 - 0

DO 40 1 = 1 ,N
40 NROW ( I ) = I

DO 130 KK=2,N

K -N -K K +2 
X T = 0 .0  

DO 50 J = 1 ,K  
DO 50 1 = 1 ,J

I F  (X T  . GE . ABS ( A ( I , J )  ) ) GOTO 50 
X T -A B S  (A  ( I , J )  )
JM AX=J
I  MAX“  I

50 CONTINUE
I F ( X T . E Q . 0 .0 )  RETURN 
IF (J M A X .E Q .K )  GOTO 70 
DO 60 1 = 1 ,N 

H O L D = A (I, JMAX)
A  ( I , JMAX) —A  ( I  , K)

60 A (I ,K )= H O L D
HOLD-NROW ( JMAX)
NROW(JMAX)=NROW(K)
N R OW (K)-HOLD

70 IF ( IM A X .E Q .K )  GOTO 100
DO 80 J —1 ,N  
HOLD—A  ( IM AX, J )
A  UM AX, J ) = A ( K ,  J )

80 A (K ,J ) « H O L D
DO 90 J* 1 ,N  

H O LD -B U M A X , J )
B ( IM AX, J )  =B (K , J )

90 B (K ,J )= H O L D
100 KM 1-K -1

DO 120 1=1,100.
FA C TO R = A (I ,K ) / A (K ,K )
DO 110 J= 1 ,N

110 A ( I , J ) = A ( I , J ) - r A C T O R * A ( K , J )
DO 120 J = 1 ,N

1 2 0  B ( I , J ) » B < I , J ) -F A C T O R * B ( K , J )
130 CONTINUE

DO 150 J= 1 ,N
I F  ( A ( l , l ) . E Q . 0 . 0 )  RETURN 
B ( 1 , J ) = B ( 1 , J ) / A ( 1 , 1 )



DO 150 1 = 2 ,N 
I F ( A ( I , I ) . E Q . 0 . 0 )  RETURN 
IM 1 = I-1
DO 140 K =1, IM I

140 B ( 1, J )  =B ( I , J )  - A ( I , K) *B (K , J )
150 B ( I , J ) = B ( I , J ) / A ( I , I )

DO 160 K =1,N  
I=NROW (K)
DO 160 J = 1 ,N  

160 A ( I ,  J )= B (K ,  J )
RETURN
END



APPENDIX 3

Program - cyl2pc.f



C SOLUTION FOR INTERFACE PRESSURE
C HORIZONTALLY END SIM PLY-SUPPORTED C YLIN D ER
C PROGRAM CONVERTED FOR 2ND PASS -  D H NASH
C

IM P L IC IT  REAL* 8 (A -H .O -Z )
CHARACTER*20 NAME*60 ,T IT L E * 6 0  ,DATA1 (5 ) ,FILNM ,FNAM E 
DIMENSION Z ( 6 ) ,Z 0 (6 )  ,P 0 (3 )  ,P (3 )  ,P 0 2 (3 ) ,P 2 (3 )  ,S (3 )  
DIMENSION L O A D O ) ,C L (6 0 ) ,X IM P (3 ) ,E S (1 0 )  ,E 0 (1 0 ) 
DIMENSION A N ( 3 , 6 0 ) ,B N (3 ,6 0 ) ,R A D (1 2 0 ) ,D IS P (9 ,1 2 0 )  
DIMENSION D E L T A ( 3 ) ,P Q (1 2 0 ),K C O D E (1 2 0 ),R E S (9 ,1 2 0 ) 
COMMON/BLK2/T3 , T4 , P I , R AD IA N , T  , R , X L E N , NCSYM 
COMMON/BLK3/P, PO , P2 , P02
COMMON/BLK4 /S D IV  .W ID TH , NTYPE , N K , N S IZ E  , XSAD
IJOB=2
LOOP=9
I F ( I J O B . E Q . 1 . O R .IJ O B . G E .3 ) LOOP=3 
OPEN (2 , F I L E -  ' PCINPUT ' , STATUS*' UNKNOWN ’ )
READ(2 .1 0 3 ) NAME 

103 FORMAT (A60)
READ (2 ,* )  MTERM.NTERM
READ (2 ,* )  NSYS.NSYM ,NCSYM ,IM P
READ (2 ,* )  R .E .W .T .X L E N
IF  ( IM P .G T .O ) READ (2 ,1 0 2 ) (X IM P ( I )  ,DATA1 ( I )  , 1=1, IMP) 

102 FORMAT (E 1 2 . 5 , 5X, A)
READ (2 ,* )  NLOAD
READ (2 ,* )  ( C L ( I ) ,1 = 1 ,NLOAD*6 )
READ (2 ,* )  C P I,C P 2 ,C P 3 ,C P 4 ,S T E P  

NP=1
IF (C P 2 . E Q . CP4) NP=2

C--------------------------- SADDLE SUPPORT PROBLEM--------------------------
I F ( I J O B . E Q . 1 . O R .IJ O B . E Q .2 ) THEN 
READ (2 , *) XSAD, SBETA, OFFSET, W ID TH , NTYPE 
READ (2 , *) N D IV ,N K , NT 
NSIZE=NK+NT 
I1=N D IV+N TYPE 
IF  (N T Y P E .E Q .2) I1 = N D IV  

DO 34 1 = 1 ,NK 
K C O D E (I)=134

O 
O

35
DO 35 1 = 1 ,NT 
KCODE ( N K + D - I

I F  ( N K . L T . i l )  READ(2 ,* )  (KCODE( I ) , 1 = 1 , NK) 
I F  (N T . G T . 0 .A N D .N T . L T .1 1 )

(K C O D E (I ) ,I= N K + 1 ,N S IZ E )
I F  (N C S YM .EQ .2) THEN 

NTS=NT/2 
NKS“ (NK+1) /2 
DO 33 1 = 1 ,NTS

33 K C O D E(N K S+I) -K C O D E (N K + I)
N T -N T S  
NK-NKS 
N S IZ E —NK+NT 
BND I F  

N S 1 -N S IZ E+ 1  
NS2=NSIZE+2 

I F ( I J O B . BQ.1 ) THEN 
S D IV -S B E TA / N D IV  
A l=  (S B E T A -S D IV ) / 2 .0  
IF ( N T Y P E .E Q . l )  A l-S B E T A / 2 .0  
NP=1
CP1—XSAD 
CP2—O FFS E T-A 1  
IC=M AX0(NK, NT)
CP4—O F F S E T + (K C O D E (IC )- 1 ) » S D I V -A l  
S T E P -S D IV  

END IF  
END I F

CLOSE (U N IT —2)
C------------------------------------------------------------------------
C A X IA L  SYMMETRY N SYM -2 , KM=1 
C NON A X IA L  SYMMETRY N S YM -1 , KM-0 

KM=1
I F  (N S Y M .E Q .l)  KM-0

GLOBAL CONSTANTS 
P I^ A S IN ( 1 .0 )* 2 .0  
RADIAN—P I/ 1 8 0 .0

READ (2 , * )



o 
n

r

(*>i—i
K»

P I2 = P I* P I 
T l = l . 0 - W  
T2=T*T
A=E*T/ (1 - 0 - W * W )
T3=PI*R/XLEN
T4=PI/XLEN
T5=R*R/A
T6=T2 /1 2 .0

40

41
C -

C

l o o p i n g  f o r  l o a d s  
DO 40 1=1,3  
LOAD( I )=0  
DO 41 1 = 1 ,NLOAD 
K= (1-1)*6+1
IF (CL (K) . BQ .1.0. O R . CL (K) .GE.4.0) LOAD(l)=l 
IF(CL(K).EQ.2.0) LOAD(2)=1 
IF(CL(K)-EQ.3.0) LOAD(3)=1

I F ( I J O B . E Q .2 ) THEN 
IC=1
IF (N C S Y M .E Q .l)  IC=2
n =n s i z e

IF (N T Y P E . E Q .2 ) N = N S IZ E + IC  
OPEN (1 6 , F I  L E = ' PCPQ 1 , STA TU S " 1 UNKNOWN ) 
READ(16 , *) ( P Q ( I )  , I = 1 , N >
R EA D (1 6 ,* ) (D E L T A (I )  ,1 = 1 ,3 )
CLOSE (16)
IF  (N T .G T .O )  LOAD(3 )= 1  
END IF

C1=T6/(R*R)
C2=0.0

CL^2^=SWV, CL (3 ) "PRESS , CL(4)=SW, CL(5)-ALPHA 
IF  (CL(1).E Q .0 .0 )  THEN 
LOAD (1 ) =1
I F ( C L ( 2 ) .N E .0 .0 )  LOAD(3 )= 1  

ALPHA=CL ( 5 ) * RAD IA N

PRESS=CL (3 )
> C 11=SIN  (ALPHA)

C12=COS (ALPHA)
P B A R -C L (3 )+ C L (4 ) *R* ( C l  1 -A LP H A * C l2) / P I
C2=PBAR*R/A
END I F
I F  (N S Y S .K Q . l)  C 2 -0 .0  
C 3=0. 5*T1*C1 
C 4=0.5* ( 3 . 0 - W )  *C1 
C 5=0. 12 5 * T1 * ( 4 . 0+C1)
C 6=0.125* (4 .0 *  ( 1 . 0 + W ) - 3 . 0*C1*T1)
C 7 = 0 . 125 * T1 * (4 .0 + 9 .0*C1)

C
I F  ( I J O B . E Q .1) GOTO 111

c ------------------------------------P R IN T IN P U T DATA------------------------------------
OPEN (7 , F I L E - ' PCOUT ' , S T A T U S -' UNKNOWN' )
W RITE (7 ,7 8 0 ) NAME 

780 FORMAT (/ / 5 X ,A / )
I F  (N S Y S .E Q .2 ) W RITE (7 ,3 6 0 )

360 FORMAT (5 X , 'S T IF F E N IN G  EFFECT OF PRESSURE HAS
CONSIDERED ' )

I F  ( IM P .G T .O )  THEN
W RITE ( 7 ,* )  'CROSS SECTIO N AL P R O FILE S '
W RITE (7 ,1 0 2 ) (XXM P(X) , D A T A l ( I )  ,1 —1 , IMP)

END I F  
C

W RITE (7 ,7 8 2 ) MTERM, NTERM 
782 FORM AT(/5X,'M TERM  - ' ,I4 / 5 X ,'N T B R M  ,1 4 )

W RITE (7 ,3 3 0 )
330 F O R M A T(/ / 5 X ,'C Y L IN D R IC A L  S H E L L ')

W RITE (7 ,3 0 0 ) X L * N ,R ,T ,E ,W  
300 F O R M A T(/1 0 X ,'LE N G TH  - ' ,B 1 2 .5 , 2 X , 'U N I T '/

6 1 0 X ,'R A D IU S  - ' ,E 1 2 .5 , 2 X , 'U N I T '/
6  1 0 X ,'T H IC K N E S S  - ' ,B 1 2 .5 , 2 X , 'U N I T '/
C 1 0 X ,'YO U N G S  MODULUS - ' ,E 1 2 .5 , 2 X , 'U N I T '/
£ 1 0 X ,'P O IS S O N  R A TIO  ,F 7 .3 >

BEEN

C
W RITE (7 ,3 0 6 )
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306 FORMAT (/ / 5 X , 1 »LOADING* ' )
305 FORMAT (/ 5 X , ' S P . WT . = ’ , K 12. 5 , 2X , ' PRESSURE = ' , X1 2 .5 /

6 5 X , ’ SP. WT. OF F L U ID  - 1 ,E 1 2 . 5 , 2X, • LEVE L OF
F I L L = 1 , F 7 . 2 , ’ DEG ' )
343 FORMAT (/ 5 X , 'T Y P E  = R ADIAL PATCH (1 ) A X IA L  SHEAR PATCH
( 2 ) ' /

i  5X, ' HOOP SHEAR PATCH (3 ) A X IA L  TRIANGULAR
(4 ) ’ /

S 5X, ' HOOP TRIANGULAR ( 5 ) '/ /

S5X, TY P E ' ,4 X , MAGNITUDE' ,9 X , X ' ,1 1 X , 'P H Y ' , 8X , ’ 2C ' , 8X , ' 2B ETA ' )
344 FORM AT(7X, 1 2 ,2 (2 X , E 1 2 . 5 ) , 2 X , F 7 . 2 , 2 X , E 1 2 . 5 , 2 X , F 7 .2 )

IF  ( C L ( 1 ) .E Q .0 .0 )  W RITE (7 ,3 0 5 ) ( C L ( I ) , 1 -2 ,5 )
IF  (C L ( 1 ) .N E .0 .0 )  W RITE (7 ,3 4 3 )
DO 333 I= 1 ,N LQ A D

J = ( I - 1 ) *6+1 
IC = C L (J )
I F ( I C .E Q .O )  GOTO 333 
W R ITE( 6 ,3 4 4 ) I C , (C L (K ) ,K = J + 1 , J+ 5 ) 

333 CONTINUE
C ------------------------------IM PERFECTION---------------------------------------

KC=0
111 IF  (IM P .E Q .O ) GOTO 404

DO 400 1 = 1 ,IMP
OPEN (1 ,F ILE= D A TA 1  ( I )  , S TA TU S - ' OLD ’ ) 
READ(1 ,1 0 3 ) T IT L E  
R E A D (1 ,* ) NDRAD,CONVT, D R IF T 
READ (1 , *) (RAD ( J )  , J = 1 , NDRAD)
READ(1 ,* )  DATUM 
CLOSE(1 )
DO 401 J= l,N D R A D

401 RAD ( J )  = (RAD ( J )  -D R IF T )  *CONVT+DATUM
KC=NDRAD/2
IF (K C . G E . NTERM) KC=NTERM 
A2=2.0 /NDRAD 
A1=PI*A2 
DO 402 N=2,K C  

SSUM=0.0

403

402
400

404
C—
c

80

C SU M -0.0 
A3=A1»N
DO 403 J= l,N D R A D  

P H Y - ( J - l ) * A 3
SSUM-SSUM+RAD ( J )  * S IN (P H Y ) 
CSUM—CSUM+RAD ( J )  *COS (PHY) 

CONTINUE 
A N ( I , N)=CSUM*A2 
B N ( I , N ) “ SSUM*A2 
CONTINUE

IF (N S Y M .E Q . l )  GOTO 404

CONTINUE

ANGULAR P O S IT IO N S  OF CONTACT N ODES 
I F  ( I J O B .E Q .2 )  THEN 
SBETA—SBETA* RADIAN 
SD I V —SBXTA/NDIV 
A l »  (S B E T A -S D IV ) / 2 .0 
IF ( N T Y P X .E Q . l )  A l-S B S T A / 2 .0  
A2=0FFSET*RADIAN-A1 
DO 80 I » 1 ,N S IZ E  
RAD ( I )  -  (KCODE ( I ) - 1 ) +SDIV+A2 
IF (N T Y P Z . E Q .2) THEN 

RAD (N S I)  «*A l+A2-SB ETA /2.0  
R A D (N S 2 )»R A D (N S I)+ S B S TA  

END I F  
END I F

I F  (S T E P .E Q .0 .0 )  IT O L —1 
I F  (S T E P .N X .0 .0 )  THEN 

A l — (C P 4 -C P 2 )/STEP 
I F  (N P .X Q .2 ) A l » (C P 3 -C P 1 )/STEP 
IT O L —1 . 1+A1 

END I F
DO 990 J »1 ,L O O P  

E 0 ( J ) —0 .0
DO 990 I » 1 , ITO L+ N TYP E
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L=L*2 
OOTO 100

555 DO 910 J = 1 , LOOP
DO 910 I —1 , IT O L

910 R E S ( J ,1 ) = R S S ( J ,1 ) + D IS P ( J , I )  _nn1
IF (N T Y P E .N E .2 .A N D .I J O B .N E .l )  OOTO 3001 

A l= 2 . 0*COS(N*STEP1/2.0 )
RES (1 ,NS1) =RES (1 ,N S1 )+ A 1 * D IS P  ( 1 , 1 ) “

<DISP ( 1 « L  NS2) +A1*DI S P ( 1 ,  I T O L) -  (D IS P  (1 ,  IT O L -1 )

6 + D IS P ( 1 , I T O L ) ) /A1 
3001 CONTINUE
---------------------------------------------------

I F  (N P .E Q . l )  THEN 
DO 930 1 = 1 ,LOOP 
DO 930 J = 1 , IT O L  

930 RES ( I ,  J ) = R E S ( I ,  J ) + E 0 ( I )
END IF

C STORE [W V L ], [S ]
I F ( I J O B . E Q .1 )  THEN 
DO 948 1 = 1 ,3  

948 S ( I )= 0 .0
IF (N T Y P E . E Q .2 ) THEN 

RAD (N S l)  =  (RES (1 ,NS1) +E0 (1 ) ) T5 
RAD(NS2) = (R ES (1  ,NS2) +E0 ( 1 ) )  *T5 

IC =1
IF (N C S YM . E Q .1 ) IC=2 
n s i z e = n s i z b + i c  

END IF

C * X L K S * B * R * < A L P H A -S I«(2 .0 * ia P H A )/ 2 -0 )+ C L <6> 
DO 949 1 = 1 ,NLOAD 

J = ( I -1 )* 6 + 1
IC = C L (J )  „ „ „
I F ( I C . E Q . 0 . O R .IC .E Q .2 ) OOTO 949

A1=CL ( J+ 4 )
A 2 = C L(J+ 5 )* R * R A D IA N  

IF ( A 1 .E Q .0 .0 )  A l - 1 . 0  
I F ( A 2 . K Q .0 .0 )  A 2 -1 .0  
A 3 =A1*A2*C L(J+1)
A 4 -C L ( J+ 3 )* B A D IA N  

I F ( I C . S Q . 1) THEN 
S (1 ) =3 (1 ) +A3*COS (A4)
S (2 ) = 3 (2 ) + I1 * A 3 * S IN  (A4)

END I F
I F  ( I C . E Q . 3) THEN 

S (1 )  =3 (1 ) -A 3 * S IN (A 4 )
S (2 ) = 3 (2 )+ Il* A 3 * C O S (A 4 )
S ( 3 ) = 3 ( 3 ) +I1*A3*R 

END I F
949  CONTINUE

DO 947 J= 1 ,N K
947  RAD ( J )  -F E S  (1 ,KCODE ( J )  ) *T5

DO 946 J -N K + 1 , NK+NT
946 RAD ( J )= R E S ( 3 , KCODE( J ) ) *T5

OPEN (3  ,F IL S = ' PCSAD' , S T A T U S -' UNKNOWN' ) 
W R ITE (3 , *) (R A D (J ) , J “ 1 ,N S IZ E )
W RITE (3 ,* )  (3 (1 )  ,1 = 1 ,3 )
GOTO 999 

END I F  
A 3 = l . 0E6/A
A4=PRESS*0.5 /  ( 1 . 0 -W * W )

W R ITE (* ,* )  'W R ITE  TO OUTPUT F IL E ' 
DO 940 J = 1 , IT O L  

I F  ( N P .E Q . l )  THEN 
ANO=CP2+( J - l ) * S T E P  

ELSE
X -C P 1 + ( J - l ) * S T E P  

END I F
R E S (1 ,J )= R E S (1 ,J )* T 5  
RES (2 ,  J )  "R E S  (2 ,  J )  *T5 
RES (3 ,  J )  “ RES (3 ,  J )  *T5 
I F ( I J O B .B Q . 2) THEN

C***



316

PHI=ANG*RADIAN
S N T= S IN (P H I)
CN T=C OS(PHI)
RES (1 , J )  =RES (1 , J )  + D E L T A U ) * C N T+ D ELTA (2 ) *SNT 
RES (3 , J )  =RES (3  , J )  -D E L T A ( 1 ) * S N T+ D ELTA (2 ) *CNT+R*DELTA(3) 

END IF
W RITE (7 ,3 1 0 ) X ,AN O
W RITE (7 ,3 1 1 ) ( R E S ( K ,J ) ,K “ 1 ,3 )
IF (L O O P .E Q .3) GOTO 940 
RES (4 , J )  =RES (4 , J )  +A4 
RES (5 , J )  —RES (5 , J )  -A 4 * W  
E S (1 )-R *  (RES (4 , J )+ W * R E S (5 , J )  )
ES (2 ) =R* (RES (5 , J )  +W *RES (4 , J )  )
E S ( 3 ) =R*T1*RES( 6 , J ) / 2 .0  
E S (4 )= T6 *  (RES (7 , J )  +W *RES (8 , J )  )
E S (5 )= T6 *  (RES ( 8 , J )+ W * R E S (7 , J )  )
E S (6 )= T 6 * T 1 * R E S (9 ,J )
A 1 = E S (1 ) /T 
A2=ES( 2 ) /T
E O ( 1 ) —A l - 6 . 0 * E S ( 4 ) /T2 
E 0 (2 )= A 1 + 6 .0 * E S (4 )/ T 2  
E O ( 3 ) = A 2 -6 . 0 * E S ( 5 ) /T2 
EO ( 4 ) —A 2 + 6 . 0*ES (5 ) /T2 
EO (5 ) = (R*RES (4 , J )  + T* 0 . 5*RBS (7 , J )  ) *A3 
EO ( 6 ) — (R*RES (4 , J )  -T* 0 ,5 * R E S  (7 , J )  ) *A3 
E O ( 7 ) = (R*RES( 5 , J ) + T * 0 . 5*RES( 8 , J ) ) *A3 
EO ( 8 ) = (R*RES(5 , J )  -T* 0 .5 * R B S  (8 , J )  ) *A3 

C
WRITE (7 ,3 1 2 ) (E S (K ) ,K = 1 ,6 )
WRITE (7 ,3 1 3 ) (E O (K ) ,K = 1 ,4 )
W RITE (7 ,3 1 4 ) ( E O ( K ) , K—5 , 8 )

940 CONTINUE

310 F 0 R M A T(/ / 5 X ,'X  = ' ,E 1 2 .5 ,3 X , 'AN G LE = ' ,F 7 .2 ,  'D K G ')
311 FORM AT(5X, ' W — ' ,E 1 2 . 5 , 3 X , ' U — ' , E l 2 . 5 , 3 X , 'V  = ' , E 1 2 .5 )
312 F O R M A T(4 X ,'N X = ' ,E 1 2 .5 ,3 X , ’ N F Y= ' ,E 1 2 . 5 ,3 X , ’ N X P Y -' ,1 1 2 .5 /

t  4 X , ' MX=' , E 1 2 . 5 , 3 X , M P Y = ',E 1 2 .5 ,3 X , 'M X P Y - ',E 1 2 .5 )
313 FO R M A T(4 X ,’ S X I= ’ ,K 1 2 . 5 ,1 X , 'S X O » ' , E l 2 . 5 , I X , ' S P Y I « ' ,1 1 2 .5

£ I X , ' S P Y O - ' , E 1 2 .5 )
314 FORM AT(4X, ’ E X O - ’ , F 8 . 2 , 3 X , 'K X I - ' , F 8 . 2 , 3 X , 'K P Y O - ' , F 8 . 2 ,  

G 3 X , 1E P Y I= 1 ,F 8 .2 )
999 STOP 

END 
C

SUBROUTINE ENO (X  ,M, EO , ZO , PO , P02 , LOAD , LOOP)
IM P L IC IT  REAL* 8 ( A -H ,0 -Z )
DIM ENSION EO (1 0 ) ,Z 0 (6 )  ,P 0 (3 )  ,P 0 2 (3 ) , LOAD (3 )
COMMON/BLK2/T3, T4 , P I , R A D IA N , T  , R , XLSN , NCSYM
C2«M*T4
C 3-C2*R
C1«C3*C3
C 4 -S IN (C 2 * X )
C 5 »C O S (C 2 * X )
C45-C4/C5 
DO 10 J - 1 , 3
I F  (LOAD ( J )  .E Q .O ) GOTO 10 
JU = J+ 1
I F ( J ■E Q .2 ) JU - 6
J V -J + 2
C8«P0 ( J )  *C4
C9— P 0 2 (J )* C 5
EO (1 ) -E O  (1 ) +Z0 ( J )  *C8
E O ( 2 ) - E O ( 2 ) + Z 0 ( JU)*C8/C45
E O ( 3 ) - E O ( 3 ) + Z 0 ( JV)*C 9*C45
IF (L O O P .E Q .3) GOTO 10
B O ( 4 ) - E O ( 4 ) -C 8 * C 3 * Z0 ( JU )
EO (5 ) « E 0  (5 ) +C8*Z0 ( J )
E O ( 6 ) -B O ( 6 ) +C9*C3*Z0( J V )
E O ( 7 ) —B O ( 7 ) +C8*C1*Z0( J )
E O ( 9 ) - E O ( 9 ) +C9*0. 75*C3*Z0( J V )

10 CONTINUE 
RETURN 
END 

C
SUBROUTINE B N N (X ,P H I,M ,N ,E S , Z , P ,P 2 , LOAD, LOOP) 
IM P L IC IT  REAL*8  ( A -H ,0 -Z )



317

DIMENSION ES (1 0 ) ,Z < 6 ) ,P (3 )  ,P 2 (3 )  ,L O A D (3 ) 
COMMON/BLK2/T3 , T 4 , P I , R AD IA N , T , R , XLEN , NCSYM 
DO 5 1=1,9 

5 ES ( I )  = 0 .0
CNT=COS(N*PHI)
SNT=SIN(N*PHI>
A2=M*T4
A3=A2*R
A1=A3*A3
A4= S IN (A 2 * X )
A5=COS (A2*X)
A45-A4/AS 
DO 10 J = 1 ,3
IF (L O A D (J ) .E Q .O )  GOTO 10 
JU=J+1
I F ( J . E Q .2 ) JU =6 
JV= J+ 2
A 6= ( P ( J ) » C N T + P 2 (J )* S N T ) »A4 
A7= (P ( J )  »S N T -P 2  ( J )  *CNT) *A5 
E S (1 )= E S (1 )+ Z (J )* A 6 
E S ( 2 ) = E S ( 2 ) + Z ( JU )»A 6 /A 4 5  
ES (3 ) =ES (3 ) +Z ( J V )  *A7»A 4 5 
IF (L O O P .E Q .3) GOTO 10 
E S (4 )= E S (4 )-A 6 * A 3 * Z (JU )
ES (5 ) =ES (5 ) +A6 * (N*Z ( J V )  +Z ( J )  )
E S ( 6 ) = E S ( 6 ) + A 7 * (A 3 * Z ( J V ) -N * Z ( J U ) )
ES (7 ) =ES (7 ) +A6 *Z ( J )  *A1
ES ( 8 ) =ES ( 8 ) +A6 * ( Z ( J )  *N*N+N* Z ( J V )  )
ES (9 ) =ES (9 ) +A7* ( 0 . 75*A3*Z ( J V )  +N*A3*Z ( J )

&+0. 25*N*Z( J U ) )
10 CONTINUE 

RETURN 
END 

C
SUBROUTINE PJMN (M, N , NLOAD , CL)
IM P L IC IT  REAL*8  ( A -H ,0 -Z )
DIMENSION P (3 ) ,P 0 (3 ) ,P 2 (3 ) ,P 0 2 (3 ) ,C L (6 0 )  
COMMON/BLK2/T3 , T4 , P I , R A D IA N ,T ,R ,X L E N ,N C S Y M

COMMON/BL1C3/P , P O , P 2 , P02
I l= ( M + l ) / 2
I F ( M .L T .2 * 1 1 ) 1 1 -0
DO 20 1 = 1 ,NLOAD
J = ( I -1 ) * 6 + 1
IC = C L (J )
A 1 = C L (J+ 1 )
A 2 = C L( J+ 2 )
A 3 = C L( J+ 3 )
A 4 = C L (J+ 4 )
A 5 = C L (J+ 5 )
I F  ( I C .  E Q .O  .AND. I I  .E Q . 0) CALL SWP(P PO M N A 1 A 5> i-s  m

RETURN
END

SUBROUTINE SWP ( P , PO ,M ,N , SWV, PRESS, SW, ALPHA)
IM P L IC IT  REAL*8  ( A -H ,0 -Z )
DIM ENSION P ( 3 ) , P O (3 )
COMMON/BLK2/T3, T 4 , P I , R AD IA N , T , R , X LE N , NCSYM 
ALPHA*ALPHA*RADIAN ' *
A l-S IN (A L P H A )
A2=COS (ALPHA)
A3=SW *R/(M *PI*PI)
I F ( N . G T . l )  GOTO 20 
I F ( N . E Q . l )  GOTO 10
PO (1 ) = 4 . 0*PRESS/ (M *PI) + 4 .0*A3* <A1-ALPHA*A2)
RETURN
A 5 = 4 . 0*T*SHV/ (P I*M )
P ( l )= A 5 + 4 . 0 * A3 * (ALPH A-A 1 *A2)
P (3 )= -A S
RETURN

m ) ^ ^ M<K*ALPHA) *A 2 - N*C0 8 < « * " 'r a A )  . A l )  / (N* (N .N -1 ,  ,

RETURN
END
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T

SUBROUTINE PATCH (K TY P E , Q ,B , A F A , CC ,BETA1 ,M ,N )
IM P L IC IT  R£AL*8 ( A -H ,0 -Z )
DIMENSION P (3 )  ,P 0 (3 ) ,P 2 (3 )  ,P 0 2 (3 )
COMMON/BLK2 /T3 ,T4  , P I , R AD IA N , T  , R , XLEN , NCSYM
COMMON/BLK3/P , PO, P 2 , P02
AFA=AFA*RADIAN
BETA1=BETA1 »RADIAN
C=CC/2.0
BETA=BETA1/2.0
IC =0
I F  (N C S Y M .E Q .l) IC=1
A1=M*T4
A2=A1*B
A3=A1*C
A4—M*PI
GOTO ( 1 , 2 ,1 , 4 ,1 )  KTYPE

1 I F  (C C .E Q .O .O ) A M = 2 .0 * S IN (A 2 )/ X LE N
IF  (C C .G T .O .O )  AM—4 . 0*SIN  (A2) » S IN  (A 3 ) /A4 
GOTO 30

2 IF  (C C .E Q .O .O ) AM =2.0* COS (A2) /XLEN
IF  (C C .G T .0 .0 )  AM=4. 0*COS (A2) » S IN  (A 3 ) /A4 
GOTO 30

4 AM= (COS (A 2 ) * (S IN  (A3) / (A1*C)
COS (A3) ) + S IN  (A2) » S IN  (A3) ) * 2 .0/A4 
30 IF  (N .E Q .O ) GOTO 60

A4=N*AFA
I F  (B E T A 1 .E Q .0 .0 ) THEN 
A5 = Q /(R *P I)
GOTO 50 
END IF
A 1 = 2 .0 * Q / (N * P I)
A2=N*BETA 
A5=A1*SIN (A2)
IF  (K TYP E. EQ . 5) A5=A5/2. 0+A1* (C O S (A 2 ) -S IN (A 2 )/ A 2 )

50 AN=A5»COS(A4)
BN=A5*SIN (A 4 )
GOTO(5 0 0 ,6 0 0 ,7 0 0 ,5 0 0 ,5 0 0 ),KTYPE 

500 P (1 )=P (1 )+ AM * AN

P2 (1 )= P 2  (1 ) +IC*AM*BN 
RETURN

600 P ( 2 ) « P ( 2 ) +AM*AN
P 2 ( 2 ) - P 2 ( 2 ) +IC*AM*BN 
RETURN

700 P (3 ) « P  (3 ) +AM*BN
P 2 ( 3 ) « P 2 ( 3 ) -1C*AM*AN 
RETURN

60 I F  (B E T A 1 .E Q .0 .0 ) A N 0 «Q / ( 2 . 0 * R »P I) 
I F  (B E T A 1 .G T .0 .0 )  ANO«BETA*Q/PI 
I F  (K TY P E . EQ . 5) AN0^AN0/2.0 
G O TO (5 0 1 ,6 0 1 ,7 0 1 ,5 0 1 ,5 0 1 ),KTYPE 

501 P O (1 )«P O (1 )+ A M * A N O  
RETURN

601 P 0 (2 )-P 0 (2 )+ A M * A N 0  
RETURN

701 P 0 2 (3 )«P 0 2 (3 )-IC * A N 0 »A M  
RETURN
END

C------------------------- IM PERFECTIONS----------------------------
C*****ONLY FOR SHAPE SYMMETRIC ABOUT CENTRE, (A X IA L  SYMMETRY! 

SUBROUTINE FIM P (NSYM, IM P , X IM P , PEAR, P , ¿2 AN Bn  T ^ T  
IM P L IC IT  REAL*8  ( A -H ,0 -Z )  A N ,B N ,M ,» )
DIM ENSION X I M P ( 3 ) ,P ( 3 ) ,P 2 ( 3 ) ,A N ( 3 ,6 0 ) ,B N ( 3  60)
COMMON/BLK2/T3,T4, P I , R A D IA N ,T ,R ,X L E N ,N C s L
A1-2 .0*N SYM /XLEN  '
A2“ M*T4
DO 10 1 - 1 , IMP
A 3 «X IM P (I )
I F ( I . E Q . l )  XC=A3/2.0
I F  (IM P . G T . 1 ) X O ( A 3 - X I M P ( I - l )  ) / 3  0
I F  ( I . L T . IMP) X D - ( X IM P ( I+ l ) -A 3 ) / 3 ! o
I F  ( I . EQ . IMP) X D " (XLEN-A3*NSYM ) / ( 1 . 0+NSYM)
AM“ (S IN (A 2 * (A 3 —X C )) —S I N ( A 2 » (A 3 —2 . 0 » X C )) ) /XC 
IF ( X D .O T .O .O )  A M ^ A M -(S IN (A 2 »(A 3 + 2  0 * X D ))

C -S IN (A 2 * (A 3 + X D )) ) /XD 
AM*AM*A1/ (A2*A2)
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A2— PBAR*( (N * N -1 )+ (M * T3 )* * 2 / 2 .0 )/R 
P (1 ) —P (1 ) +A2 *AM* AN ( I  ,N )
P2 (1 ) =P2 (1 ) +A2 *AM*BN < I , N)

10 CONTINUE 
RETURN 
END 

C
SUBROUTINE PQP (M ,N , PQ ,RAD)
IM P L IC IT  REAL*8  (A -H ,0 -Z )
DIMENSION PQ (120) ,R AD (120) ,P (3 )  , P2 (3 ) ,P 0 (3 )  ,P 0 2 (3 ) 
COMMON/BLK2/T3 , T 4 , P I , R AD IA N , T  , R , X LE N , NCSYM 
COMMON/BLK3/P, P O , P 2 , P02
COMMON/BLK4 / S D IV , W ID TH , NTYPE , N K , NS I Z E , XSAD
C C -W ID TH /2.0
B ETA ^S D IV/2 .0
IC=0
IF (N C S Y M .E Q .l)  10=1 
A1=M*T4
AM =4,0*SIN(A1*XSAD) *SIN  (A1*CC) / (M *PI)
IF (N .N E .O )  GOTO 4
A 2 = 2 . 0*BETA*NCSYM/PI
IF  (N TYPE. E Q . l )  A2=NCSYM /(R*PI)
ANO—0 .0  
DO 1 1 = 1 ,NK

1 A N O = A N O -P Q (I) *A2
IF (N T Y P E .E Q .2) A N O -A N O -(P Q (N S IZ E + 1 )+

£ IC * P Q (N S IZ E + 2 )) *NCSYM /(R*PI)
PO (1 ) =P0 (1 ) +ANO*AM 
I F  (N K .E Q .N S IZ E ) RETURN 
AN0=0.0
DO 2 I= N K + 1 , N S IZ E

2 AN O = A N O -P Q (I)
P02 (3 ) =P02 (3 ) -IC*AN0*A2*AM  
RETURN 

4 AN=0.0
BN=0.0
A l — 4 . 0*NCSYM *SIN(N*BETA) / (N * P I)
IF (N T Y P E .E Q .1 ) A l = - 2 . 0*NCSYM /(R*PI)

DO 10 1 = 1 ,NK 
P H I-R A D (I )* N  
A4—PQ ( I )  *A1 
AN-AN+A4 * CO S( P H I)

10 BN—B N + A 4 * S IN (P H I)
IF (N T Y P E .E Q .2) THEN 

A2— 2 . 0*NCSYM/ (R * P I) 
DO 5 1 1 -1 ,1 + IC  

I —I I+ N S IZ E  
P H I-R A D  ( I )  *N 
A4—PQ ( I )  *A2 

AN—AN+A4 * C O S (P H I)
5 B N -B N + A 4 * S IN (P H I)

END I F
P (1 ) —P (1 ) -f AM*AN 
P 2 ( 1 ) - P 2 ( 1 ) +IC*AM*BN 
IF (N K .E Q .N S IZ E )  RETURN 
AN—0 .0  
BN—0 .0
DO 40 I-N K + 1 ,N S IZ E  
P H I-R A D (I )* N  
A4—PQ ( I ) *A1 
A N -A N + A 4 * C O S (P H I)
BN—B N + A 4 * S IN (P H I)
P ( 3 ) —P ( 3 ) +AM*BN 
P 2 ( 3 ) —P 2 ( 3 ) -IC*AM *AN 
RETURN 
END

40
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( n i c e r  lo o k in g  !? )

C*** M o d if ie d  f i l e  : R ig i d  Head 
C*** -  Change i n  p o s t p r o c e s s in g  s t r i p  s i z e  
C*** _ Head t h ic k n e s s  ( r e a l , 2) in c lu d e d  
C*** -  Change i n  mesh ab ove  s a d d le  p o r t i o n  
MDV1 fc MDV2 
C*»*
C **« -  ( a ) d e s ig n a t o r  means v a l i d  A > 0 . 4R 
C***
/p rep 7  
/ n o p r 
C***
C*** 31/10/94 : : : : :
/ T IT L E ,T W IN  SADDLE VESSEL -  R ig i d  C o n s t r a in e d  H ead u s in g  CERIO
C*** F ix e d  s a d d le  a n g le  o f  60 d e g re e s
C*** L e n g th  f a c t o r  LFAC
C*** S a d d le  p o s i t i o n  AFAC
C*** S a d d le  W id th  BFAC
c*** T h ic k n e s s  -  s h e l l  TKS
C * »»  T h ic k n e s s  -  h e a d  TKH
C * * » DEFIN E PARAMETERS
TKS=10
TKH=10
R=1000
AN0=60
LFAC=36
L=LFAC ‘ R
AFAC=9
Af=AFAC*R
BFAC=0.2
B=BFAC*R
B2=B/2
L2=L/2
L 2 A = L2 -A
C * * *  S e tu p  v a lu e s  
/ s h o w ,3 d ,,1  
/ v ie w ,1
C*** MATERIAL VALUES and  THICKNESSES 1) SHELL 2) HEAD
E X ,1,210000

N UXY,1 ,0 .3  
R , 1 , TKS 
R ,2  ,TKH
C*** D E F IN E  K EYPO IN TS
k , 1 , A  
k ,2 , ( A -B 2 )  
w id t h
k , 3 , ( A - ( 1 . 5 * B 2 )) 
s a d d le  w id t h

! k p o in t  1  i s  a t  s a d d le  c e n t r e l i n e  ( s a d c l )
* fcpo^ht 2 i s  a t  ( s a d c l )  m in u s  h a l f  s a d d le

! k p o in t  3 i s  a t  ( s a d c l )  m in u s  1 .5 * h a l f

k , 4 , ( A - B )  ! k p o in t  4 i s  a t  ( s a d c l )  m in u s  s a d d le
w id t h
k , 5 , (A -(3 * B 2 ) ) ! k p o in t  5 i s  a t  ( s a d c l )  m in u s  3 * h a lf
s a d d le  w id t h
C*** N o te  i f  A  i s  l e s s  th a n  0 .4 * R  t h i s  f i l e  w i l l  n o t  w o rk
C*** i f  A  h a s  t o  b e  l e s s  th a n  0 .4 R  th e n  m o d ify  p o s i t i o n s  o f  k 3 ,4
an d  S
C*** i f  2nd s e t  i s  u s e d . . .w a tc h  o u t  f o r  l i n e  s h i f t  h a l f  w ay down 
f i l e
c*** a t  n e g a t iv e  Z c o o r d  o f  K ,5  

C***
C*** T o  f i n d  t h e  r i g h t  l i n e  , do  a s e a rc h  on  W atch 
C***
c*** k , 3 , ( A - ( 1 . 2 * B 2 )) 
c*** k , 4 , ( A - ( 1 . 5 * B 2 )) 
c*** k , 5 , ( A - ( 1 . 75*B 2))
C*** U s in g  c o - o r d  s y s te m  : 
l o c a l , 1 1 , 1 , , R , , ,9 0  
c s y s , l l  
d s y s , l l
k g e n , 2 , 1 , 2 , 1 , , 2 
a r7., 2 , 7 , 6
C*** G e n e ra te  a re a s  l t l 4  o f  s a d d le :
a g e n ,1 4 , 1 , 1 , 1 , , 2
km erge
C*** C o n t in u e  w i t h  s a d d le .  T r a n s i t i o n a l  a re a  o f  s a d d le  - 
k g e n ,2 ,5 9 , , , , 2 , (0 .5 * B 2 ) 
k g e n ,2 ,5 8 ,5 9 ,1 , ,2



322

a , 5 8 ,8 ,5 9 ,5 9  
a , 5 8 ,9 ,8 ,8  
a , 5 9 ,8 ,1 2 ,1 2
C+ + * a l5 t l7  fo rm  t r a n s ' n i n  s a d d le  (=  p a t c h  15) 
k g e n , 2 , 8 , 9 , 1 , , 2  
k g e n ,2 , 1 2 , , , ,2 
a , 8 ,9 ,1 6 ,1 3  
a , 1 2 ,8 ,1 3 ,1 7
C*** a l8+19 = PATCH 16 o f  s a d d le
a g e n ,1 5 ,1 8 ,1 9 ,1 , ,2
km erge
C*** a lt 4 7  fo rm  s a d d le
C »* *  s t a r t  on 1 s t  t r a n s 'n  b a n d  :
legen,2 ,3 ,  , , ,4
a , 2 , 3 , 2 0 ,7
a , 7 , 2 0 , 1 0 , 1 0
C*** a48+49 = T r a n s ' n o f  P a tc h  1+2 o f  s a d d le
a g e n ,1 5 ,4 8 ,4 9 ,1 , ,4
¡emerge
C++* a48t77 fo rm  1 s t  t r a n s '1  b a n d  f ro m  s a d d le
C*** S t a r t  2nd t r a n s '1  b an d  
k g e n , 2 , 4 , , , , 8  
a , 3 , 4 , 2 1 , 2 0  
a , 2 0 ,2 1 ,3 2 ,3 2
C*** a78+79 s t a r t  o f  seq uen ce
a g e n ,7 ,7 8 ,7 9 ,1 , ,8
km erge
k g e n , 2 , 1 1 2 , , , ,4 
a , 1 1 8 ,1 1 2 ,3 2 ,1 5 0
C*** a92 r e g u la r  I n  2nd t r a n s '1  b a n d  , a7 8 t9 2  fo rm  2nd TB
C*** S t a r t  on 3 rd  TB 
k g e n , 2 , 5 , , , , 1 6  
a , 4 ,5 ,3 3 ,2 1  
a , 2 1 ,3 3 ,4 0 ,4 0
C+*+ a93+94 s t a r t  seq uen ce  o f  3 rd  TB
a g e n ,3 ,9 3 ,9 4 ,1 , ,1 6  
km erge
k g e n ,2 ,8 2  , , , , 12

a , 8 6 ,8 2 ,5 2 ,1 1 2  
a , 1 1 2 ,5 2 ,3 2 ,3 2
C+*+ a99+100 i r r e g u l a r  fro m  o t h e r s  i n  3 r d  TB
TB a 9 3 t l0 0  fo rm  3 rd

C**+ END OF SADDLE + TR A N S ITIO N  BANDS

“ ““ “
k g e n ,2 , 1 2 0 , 1 2 1 , 1 , , 2 0  
k g e n ,2 ,3 2 ,5 2 ,2 0 , ,2 0  
a , 1 2 3 ,1 2 1 ,7 4 ,5 6  
a , 1 2 1 ,1 2 0 ,7 1 ,7 4  
a , 1 2 0 ,1 5 0 ,6 5 ,7 1  
a , 1 5 0 ,3 2 ,7 6 ,6 5  
a , 3 2 ,5 2 ,8 8 ,7 6  
k g e n ,2 ,5 6 ,7 1 ,1 5 , ,1 0  
k g e n ,2 ,6 5 ,7 6 ,1 1 , ,1 0  
k g e n ,2 , 8 8 , , , , 1 0  
C+*+ T r a n s i t i o n  
a , 5 6 ,7 4 ,9 4 ,9 4  
a , 7 4 ,9 5 ,9 4 ,9 4  
a , 7 4 ,7 1 ,9 5 ,9 5  
a , 7 1 ,6 5 ,9 8 ,9 5  
a , 6 5 ,7 6 ,1 0 0 ,9 8  
a , 7 6 ,8 8 ,1 0 6 ,1 0 0
C*** a l O l t l l l  fo rm  u p t o  90 d e g .
C*** c ha ng e  t h a t  
a d e l , 1 0 9 , l l l  
I d o l , 224 ,2 2 9  
a , 7 1 ,6 5 ,9 5 ,9 5  
a , 6 5 ,7 6 ,1 0 0 ,9 5  
a , 7 6 ,8 8 ,1 0 6 ,1 0 0  
k d e l ,98
C*** u p p e r  90 d eg  segm ent ( ab ove  s a d d le + T B 's )  
k g e n ,2 ,9 4 ,9 5 ,1 , ,3 0  '
k g e n ,2 ,1 0 0 ,1 0 6 ,6 , ,3 0  
a , 9 4 ,9 5 ,1 0 7 ,9 8  
a , 9 5 ,1 0 0 ,1 1 0 ,1 0 7  
a , 1 0 0 ,1 0 6 ,1 1 6 ,1 1 0
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a g e n ,3 ,1 1 2 ,1 1 4 ,1 , ,3 0  
km erge
C * * *  R e f in e  r e g io n  a b ove  s a d d le  h o rn  g r i d
MDV1=4
M D V 2 —2
l d v s ,2 1 9 , ,HDV1 
l d v s , 2 2 0 , , MDV1 
l d v s , 2 2 1 ,,MDV1 
l d v s , 2 2 3 ,,HDV1 
l d v s , 2 2 4 ,,MDV1 
l d v s , 2 2 5 ,,HDV1 
l d v s , 2 2 7 , ,MDV2 
C*** U p p e r 90 deg c o n p le te
C*** a l t l2 0  fo rm  180 deg segm ent ( s a d d le  + TB + re m a ln e r )
l o c a l , 1 2 , 0 ,A , 0 , 0  
a r s y m ,0 , l , 1 2 0  
km erge
C*** G e n e ra te  a re a s  t o  head  
c s y s , 1 1

C*** S e le c t  n e g a t iv e  Z c o o rd  o f  K ,5  ! H e re  f o r  _ve  Z  ° f

K ,5
C***
C*** W atch
C***
C***
k p r s e l , z , - (A - (3 * B 2 ) ) 
i » * p , i
k g e n , 2 , 5 , 5 , 1 , , ,  ( A -  (3 * B 2 ))
1 ,5 ,1 1 9
a d r a g ,1 4 3 ,1 6 8 ,1 9 2 ,1 6 2 ,2 1 7 ,2 2 7 ,2 4 6
a d r a g ,2 3 4 ,2 4 4 ,2 5 4 ,, , ,2 4 6
lemerge
k p a l l
l s a l l
C*** A re a s  t o  c e n t r e  o f  v e s s e l  f ro m  s a d d le  p o r t i o n .
k p r s e l , z ,0
l s k p , l

-L 2l g e n , 2 , a l l , , , , ,  
k p a s ,,2 3 4  
1 ,1 2 8 ,2 3 4  
a d r a g ,2 5 6 ,2 9 8 ,3 3 3 ,3 3 8 ,3 4 3 ,3 4 8 ,3 6 8  
a d r a g ,3 5 3 ,3 5 8 ,3 6 3 , , , ,3 6 8  
k p a l l  
l s a l l  
km erge 
d s y s , 0
C*** S t a r t  m esh in g
e t , l ,43  
r e a l , 1
C*** S t a r t  a t  s a d d le
l d v s , 1 , , 2
e l s l , , 1 , 2
a m e s h ,l ,14
e l s l , , 2 , 2
a m e s h ,1 8 ,19
e l s l , , 1 , 1
am esh ,1 5 ,1 7
e l s l , , 2 , 2
a m e s h ,2 0 ,4 7 ,l
C*** 1 s t  T r a n s 'n  b a n d  fro m  s a d d le
RBF1-4
l d v s , 4 9 , ,R B F l/ 2
l d v s , 6 9 , , REF1/2
l d v s , 1 6 9 , ,RXF1/2
e l s l z , ,R B F l/ 2
a m e s h ,4 8 ,6 3 ,l
e l s l z e , , R S F 1 ,2
a m e s h ,6 4 ,7 6 ,2
e l s l z , ,R S F 1
3mes h ,6 5 ,7 7 ,2
C*** 2nd T r a n s 'n  b a n d
R KF2-4
l d v s , 1 7 0 , ,RZF2 
e ls lz , ,R B F 2 / 2  
am esh,7 9 ,8 5 ,2



e l s i z , , R EF2/2,2
am esh, 7 8 ,8 4 ,2
e l s i , , REF2
am esh ,8 7 ,9 1 ,2
e l a i , , R EF2 ,2
am esh, 8 6 ,9 2 ,2
C*** 3 rd  T r a n s 'n  b and
C*** WREF i s  t h e  t r a n s i t i o n  r e g io n  a t  a re a s  9 3 t l0 0  w id t h
re f in e m e n t
WRZF=4
e l s i , ,W REF,2
a m e sh ,9 3 ,9 5 ,2
e l s i , ,WREF
a m e s h ,9 4 ,9 6 ,2
a m e s h ,9 8 ,1 0 0 ,2
e l s i , , W REF,2
a m e s h ,9 7 ,9 9 ,2
C*** Mesh re m a in d e r  up t o  h e a d  : : A n g le  re f in e m e n t  ARSF m ust
b e  d i v i s i b l e  b y  4
AREF=20

W  l d v s ,2 0 7 , ,A R E F ,0 .2
¡¡I  l d v s ,  186, , AREF, 5

l d v s , 2 1 0 , ,A R E F ,5 
l d v s ,2 1 3 , ,A R E F ,5 
l d v s , 2 1 5 , ,A R E F ,5 
l d v s , 2 2 6 ,,2  
l d v s , 2 2 2 , , 2  
l d v s , 2 1 7 , , (AREF/4) 
e l s i , , 2 , 2  
a m e s h ,101,104 
e l s i z , , 2  
a m e sh ,105 
e l s i , , 1
a m e s h ,1 0 6 ,1 1 1 ,1  
e l s i , , 2 , 2  
a m e s h ,1 1 2 , 1 2 0 , 1  
l s r s , ,246 
I s a s , ,2 5 9 ,2 7 4 ,3

I s a s , ,3 0 3 ,3 1 3 ,5
l d v s , a l l , , ( ( 4  *AFAC )+ 2 ) ,2 .5
e l s i , , 2 , 2
am e sh ,2 4 1 ,2 4 9 ,1
k p a l l
l s a l l
a r a l l
n a i l
e a l l
ncom pre
e cony) r e
m erge
l o c a l , 1 2 , 0 , A , 0 , 0
a d e l , 1 2 1 ,2 4 0 ,1 ,a l l
a r s y m ,0 , l , 1 2 0
m erge
km erge
c s y s , 1 1
l s r s , ,368
I s a s , ,4 5 9 ,4 6 9 ,1 0
I s a s , ,4 8 0 ,4 9 4 ,7
I s a s , ,499
I s a s , ,5 0 7 ,5 0 9
l d v s , a l l , , (4 0 -(2 * A F A C )) , 0 . 1
e l s i z e , , 2 , 2
am e sh ,2 5 0 ,2 5 8 ,1
k p a l l
l s a l l
a r a l l
m erge
n c o n p r
e c o a p r
C*»*

c *** C o n s t r a in t s  f o r  C o m p a r .lo n  w i t h  F o u r i e r  M odel
c s y s , 0
c *  * *  D e f in e  M ass E le m e n t a t  C e n tre  o f  D is c  
n , 1 0 0 0 0 , , R 
e t , 2 , 2 1
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r , 3 , l  
t y p e , 2 
r e a l ,3  
e , 10000 
n r s e l , x , 0
c*** D e f in e  R ig id  S u r fa c e  C o n s t r a in t s
c e r i g , 1 0 0 0 0 , a l l ,0
n a i l
C*** Loads 6 B C 's  f ro m  l o a d l i n e . f l 8
C*** A dd i n  b i t s  t o  c o m p le te  ru n
c s y s ,0
n u s e l , x ,0
c s y s , 1 1
n r o t a t , a l l
s y m b c , l l , 3 , - L 2
s y m b c ,1 1 ,2 ,9 0
sym b c ,1 1 ,2 , -9 0
c s y s ,0
n a i l
C*** D is p la c e m e n t  c o n s t r a in t s  -  P le a s e  s e l e c t
C*** s e le c t  edg es o n ly
C*** L e f t  Hand Edge
l s r s e l , ,2 ,5 4 ,4
l s a s e l , ,1 3 ,2 9 ,1 6
l s a s e l , ,5 3 ,6 3 ,1 0
l s a s e l , ,7 0 ,1 4 7 ,7
C*** A d d  i n  To p  Edge
l s a s e l , ,1 4 8 ,1 5 1 ,3
l s a s e l , ,3 7 0 ,3 7 2 ,2
C*** Add  i n  R ig h t  H and Edge
l s a s e l , ,2 4 0 ,2 5 0 ,1 0
l s a s e l , ,2 5 7 ,2 9 0 ,3
l s a s e l , ,2 9 5 ,2 9 9 ,4
l s a s e l , ,3 0 4 ,3 6 9 ,5
C*** O p t io n a l  C e n t r e l in e
c*** l s a s e l , ,4 ,5 6 ,4
c*** l s a s e l , ,2 5 ,4 5 ,2 0
c*** l s a s e l , ,6 1 ,1 5 2 ,7

c*** Now g e t  n o d es  fro m  l i n e s
n l i n e , l
d , a l l , a l l , 0
n a l l
l s a l l
C*** A d d  i n  lo a d  o p t io n
a p s f , a l l , , , 0 , 2 ,R * 2 ,9 .8 1 E - 6
w s o r t , x
AFW RIT
F IN I
/ IN P U T ,27 
F IN I
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C*** M o d if ie d  f i l e  : R ig i d  Head
C*** -  Change I n  p o s t p r o c e s s in g  s t r i p  s i z e
C*** -  Head th ic k n e s s  ( r e a l , 2) In c lu d e d
C*** -  Change i n  mesh a b ove  s a d d le  p o r t i o n  ( n i c e r  lo o k in g  !? )
MDV1 C. MDV2
C***
C*** -  (b ) d e s ig n a t o r  means v a l i d  A < 0 .4 R  
C***
/PREP7
/ n o p r
C***
C *»* 31/10/94 : :  : :
/ T IT L E ,T W IN  SADDLE VESSEL -  R ig i d  C o n s t r a in e d  Head u s in g  CERIQ
C*** F ix e d  s a d d le  a n g le  o f  60 d e g re e s
C*** L e n g th  f a c t o r  LFAC
C*** S a d d le  p o s i t i o n  AFAC
C*** S a d d le  W id th  BFAC
C*** T h ic k n e s s  -  s h e l l  TKS
C*** T h ic k n e s s  -  h e a d  TKH
C*** DEFIN E PARAMETERS
TKS=10
TKH=10
R=1000
AN 0=60
LFAC=36
L=LFAC*R
AFAC=9
A=AFAC*R
BFAC=0.2
B=BFAC*R
B2=B/2
L2=L/2
L2 A = L2 -A
C* *‘  S e tu p  v a lu e s  
/ s h o w ,3 d , , 1  
/ v i e w , l
c*** M ATERIAL VALUES and THICKNESSES 1) SHELL 2) HEAD 
E X ,1,210000

NUXY,1 ,0 .3  
R , 1 , TKS 
R , 2 , TKH
C * * *  D E FIN E  K EYPO IN TS

- » ^ 1 . 0  u c n u u i n e
k ,  2 , (A -B 2 )  ! 
w id t h
c * * * k , 3 , ( A - ( 1 . 5 * B 2 ))
l .  5 * h a lf  s a d d le  w id t h  
c * * * k ,4 ,(A -B )  
w id t h
C * * * k ,5 , ( A - (3 * B 2 ) ) 
s a d d le  w id t h
C*** N o te  i f  A  i s  l e s s  th a n  0 .4 »R  t h i s  f n e  w i l l  n o t  w ork  
C * - 5i f  A  h a ,  t o  b e  l e s s  th a n  0 .4 R  th e n  n o d i f y  positions o f  k 3 ,4

k p o in t  2 i s  a t  ( s a d c l )  m in u s  h a l f  s a d d le  

' kP°l n t  3 i s  a t  ( s a d c l )  m in u s  

1 k p o in t  4 i s  a t  ( s a d c l )  m in u s  s a d d le  

k p o ln t  5 i s  a t  ( s a d c l )  m in u s  3 * h a lfI

C*** i f  2 nd  s e t  i s  u s e d . . 
f i l e

•watch o u t  f o r  l i n e  s h i f t  h a l f w ay down

c*** a t  n e g a t iv e  Z c o o r d  o f  K ,5  
C***
C*** Do a s e a rc h  on  W atch 
c***
k , 3 , ( A - ( 1 . 2 * B 2 )) 
k , 4 , ( A - ( 1 . 5 * B 2 )) 
k , 5 , ( A - ( 1 . 7 5 * B 2 ))
C * * *  U s in g  c o - o r d  s y s te m  : 
l o c a l , 1 1 , 1 , , R , , ,9 0  
c s y s , l l  
d s y s , l l
k g e n ,2 , l , 2 , l ,  , 2  
a , 1 , 2 , 7 , 6
C * * *  G e n e ra te  a re a s  l t l 4  o f  s a d d le :
a g e n ,1 4 , 1 , 1 , 1 , , 2
km erge
C*** C o n t in u e  w i t h  s a d d le .  T r a n s i t i o n a l  a re a  o f  s a d d le -  
k g e n , 2 ,5 9 , , , ,2 , ( 0 . 5 * B 2 )  “
k g e n , 2 , 5 8 , 5 9 , l , ,2  
a , 5 8 ,8 ,5 9 ,5 9
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a , 5 8 ,9 ,8 ,8  
» ,5 9 ,8 ,1 2 ,1 2
C*** a l 5 t l7  fo rm  t r a n s ' n  i n  s a d d le  (=  p a t c h  15) 
legen, 2 , 8 , 9 , 1 , , 2  
legen , 2 , 1 2 , , , , 2  
a , 8 ,9 ,1 6 ,1 3  
a , 1 2 ,8 ,1 3 ,1 7
C+ + * a l8+19 = PATCH 16 o f  s a d d le
a g e n ,1 5 ,1 8 ,1 9 ,1 ,  ,2
km erge
C*** a lt4 7  fo rm  s a d d le
C*** S t a r t  on  1 s t  t r a n s 'n b a n d  :
legen, 2 ,3  , , , , 4
a , 2 , 3 , 2 0 ,7
a , 7 , 2 0 , 1 0 , 1 0
C*** a48+49 = T r a n s ' n o f  P a tc h  1+2 o f  s a d d le
a g e n ,1 5 ,4 8 ,4 9 ,1 , ,4
lemerge
C »**  a48t77 fo rm  1 s t  t r a n s '1  b a n d  f ro m  s a d d le
C*+* s t a r t  2nd t r a n s '1  b and  
legen , 2 , 4 , , , , 8  
a , 3 , 4 , 2 1 , 2 0  
a , 2 0 ,2 1 ,3 2 ,3 2
C*** a7B+79 s t a r t  o f  seq uen ce
a g e n ,7 ,7 8 ,7 9 ,1 , ,8
km erge
legen , 2 , 1 1 2 , , , ,4 
a , 1 1 8 ,1 1 2 ,3 2 ,1 5 0
C * * » a92 r e g u la r  i n  2nd t r a n s '1  b a n d  , a78t92  fo rm  2nd TB
C* + * S t a r t  on 3 r d  TB 
legen , 2 , 5 , , , , 1 6  
a , 4 ,5 ,3 3 ,2 1  
a , 2 1 ,3 3 ,4 0 ,4 0
C * * *  a93+94 s t a r t  se q u en ce  o f  3 rd  TB
a g e n ,3 ,9 3 ,9 4 ,1 , ,1 6  
lerne rg e
le g e n ,2 ,8 2 , , , , 1 2  
a , 8 6 ,8 2 ,5 2 ,1 1 2

a , 1 1 2 ,5 2 ,3 2 ,3 2
C*** »99+100 i r r e g u l a r  fro m  o t h e r ,  i n  3 r d  TB , a 9 3 t!0 0  fo rm  3 r d

C*** END OF SADDLE + TR A N S ITIO N  BANDS
C*** up  t o  90 d e g . ( in c l u d i n g  a n o th e r  .a d d le
k g e n ,2 ,1 2 3 ,1 5 0 ,2 7 , ,2 0
k g e n ,2 , 1 2 0 , 1 2 1 , 1 , , 2 0
k g e n ,2 ,3 2 ,5 2 ,2 0 , ,2 0
a , 1 2 3 ,1 2 1 ,7 4 ,5 6
a , 1 2 1 ,1 2 0 ,7 1 ,7 4
a , 1 2 0 ,1 5 0 ,6 5 ,7 1
a , 1 5 0 ,3 2 ,7 6 ,6 5
a , 3 2 ,5 2 ,8 8 ,7 6
k g e n ,2 ,5 6 ,7 1 ,1 5 ,,1 0
k g e n ,2 ,6 5 ,7 6 ,1 1 ,,1 0
k g e n ,2 , 8 8 , , , , 1 0
C*** T r a n s i t i o n
a , 5 6 ,7 4 ,9 4 ,9 4
a , 7 4 ,9 5 ,9 4 ,9 4
a , 7 4 ,7 1 ,9 5 ,9 5
a , 7 1 ,6 5 ,9 8 ,9 5
a , 6 5 ,7 6 ,1 0 0 ,9 8
a , 7 6 ,8 8 ,1 0 6 ,1 0 0
C*** a l O l t l l l  fo rm  u p t o  90 d e g .
C++* cha ng e t h a t  
a d e l ,1 0 9 ,111 
1d e l , 224,229 
a , 7 1 ,6 5 ,9 5 ,9 5  
a , 6 5 ,7 6 ,1 0 0 ,9 5  
a , 7 6 ,8 8 ,1 0 6 ,1 0 0  
k d e l ,98

t r a n s i t i o n )

C * * *  u p p e r  90 d eg  segm ent ( a b ove  s a d d le + T B 's )
k g e n ,2 ,9 4 ,9 5 ,1 , ,3 0
k g e n ,2 ,1 0 0 ,1 0 6 ,6 ,,3 0
a , 9 4 ,9 5 ,1 0 7 ,9 8
a , 9 5 ,1 0 0 ,1 1 0 ,1 0 7
a , 1 0 0 ,1 0 6 ,1 1 6 ,1 1 0
a g e n ,3 ,1 1 2 ,1 1 4 ,1 , ,3 0
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km erge
C*** R e f in e  r e g io n  ab ove  s a d d le  h o rn  g r i d
MDV1=4
HDV2=2
l d v s ,2 1 9 , ,HDVI 
l d v s ,2 2 0 , ,MDV1 
l d v s , 2 2 1 ,,MDV1 
l d v s , 2 2 3 ,,MDV1 
l d v s , 2 2 4 ,,MDV1 
l d v s , 2 2 5 ,,HDV1 
l d v s , 2 2 7 ,,HDV2 
C*** U p p e r 90 deg c o n p le te
C*** a l t l 2 0  fo rm  180 deg segm ent ( s a d d le  + TB + re m a in e r )
l o c a l , 1 2 , 0 , A , 0 , 0
a r s y m ,0 , 1 , 1 2 0  
lanerge
C*** G e n e ra te  a re a s  t o  head
c a y s , 1 1
C***
C * * *  S e le c t  n e g a t iv e  Z c o o rd  o f  K ,5  ! H e re  f o r  - v e  Z o f
K ,5
C***
C*** W atch 
C***
C***
J c p r s e l , z  , -  ( A -  (3 * B 2 )) 
l s ) c p , l
k g e n ,2 , 5 , 5 , 1 , , , (A - (3 * B 2 ) )
1 ,5 ,1 1 9
a d r a g ,1 4 3 ,1 6 8 ,1 9 2 ,1 6 2 ,2 1 7 ,2 2 7 ,2 4 6
a d r a g ,2 3 4 ,2 4 4 ,2 5 4 ,, , ,2 4 6
lemerge
k p a l l
l s a l l
C*** A re a s  t o  c e n t r e  o f  v e s s e l  fro m  s a d d le  p o r t i o n :
k p r s e l , z ,0
l s ) c p , l
l g e n , 2 , a l l , , , , , —L 2

k p a s , ,234 
1 ,1 2 8 ,2 3 4
a d r a g ,2 5 6 ,2 9 8 ,3 3 3 ,3 3 8 ,3 4 3 ,3 4 8 ,3 6 8
a d r a g ,3 5 3 ,3 5 8 ,3 6 3 , , , ,3 6 8
k p a l l
l s a l l
km erge
d a y s , 0
C*** S t a r t  m e sh in g
e t , 1 ,4 3  
r e a l , 1
C*** S t a r t  a t  s a d d le
l d v s , l , , 2
e l s i , , 1 , 2
a m e s h ,l ,14
e l s i , , 2 , 2
a m esh ,1 8 ,1 9
e l s i , , 1 , 1
a m esh ,1 5 ,1 7
e l s i , , 2 , 2
a m esh ,2 0 ,4 7 ,1
C*** 1 s t  T r a n s 'n  b a n d  fro m  s a d d le  
RXF1>4
l d v s , 4 9 , , REF1/2
l d v s , 6 9 , ,R K F l/ 2
l d v s , 1 6 9 , ,RZF1/2
e l s i z , , REF1/2
a m esh ,4 8 ,6 3 ,1
e l s i z e , , R S F 1 ,2
am e sh ,6 4 ,7 6 ,2
e l s i z , , RBF1
a m e sh ,6 5 ,7 7 ,2
C*** 2 nd  T r a n s 'n  b a n d
R XF2-4
l d v s , 1 7 0 , ,RSF2 
e l s i z , , REF2/2 
a m esh ,7 9 ,8 5 ,2  
e l s i z , , RSF2/ 2 ,2



a m e s h ,7 8 ,8 4 ,2
e l s i , , R E F 2
am esh ,8 7 ,9 1 ,2
e l s i , , R E F 2 , 2
a m e sh ,8 6 ,9 2 ,2
C*** 3 rd  T r a n s 'n  b a n d
C*** WREF i s  t h e  t r a n s i t i o n  r e g io n  a t  a re a s  9 3 t l0 0  w id th
r e f in e m e n t
WREF=4
e ls i , ,M R E F ,2
am esh ,9 3 ,9 5 ,2
e ls i , ,W R E F
am esh ,9 4 ,9 6 ,2
am esh ,9 8 ,1 0 0 ,2
e l s i , , WREF,2
a m e s h ,9 7 ,9 9 ,2
C*** Mesh re m a in d e r  up  t o  h e a d  : : A n g le  r e f in e m e n t  ARSF m ust
b e  d i v i s i b l e  b y  4
AREF=20
l d v s ,2 0 7 , ,AR EF,0 .2  

W  l d v s , 1 8 6 ,,A R E F ,5
©  l d v s , 2 1 0 , ,A R E F ,5

l d v s , 2 1 3 ,,A R E F ,5 
l d v s , 2 1 5 ,,A R E F ,5 
l d v s , 2 2 6 ,,2  
l d v s , 2 2 2 , , 2  
l d v s , 2 1 7 , , (AREF/4) 
e l s i , , 2 , 2  
a m e sh ,101,104 
e l s i z , , 2  
a m e sh ,105 
e l s i , , 1
a m e sh ,1 0 6 ,1 1 1 ,1  
e l s i , , 2 , 2  
a m e sh ,1 1 2 , 1 2 0 , 1  
l s r s , ,246 
I s a s , ,2 5 9 ,2 7 4 ,3  
I s a s , ,3 0 3 ,3 1 3 ,5

l d v s , a l l , , ( (4 * A F A C )+ 2 ) ,2 .5
e l s i , , 2 , 2
a m esh ,2 4 1 ,2 4 9 ,1
k p a l l
l s a l l
a r a l l
n a i l
e a l l
n o o n p re
e c o o p re
m erge
l o c a l , 1 2 , 0 ,A , 0 , 0
a d e l , 1 2 1 ,2 4 0 ,1 ,a l l
a r s y m ,0 , l , 1 2 0
m erge
km erge
c s y s , 1 1
l s r s , ,368
I s a s , ,4 5 9 ,4 6 9 ,1 0
I s a s , ,4 8 0 ,4 9 4 ,7
I s a s , ,499
I s a s , ,5 0 7 ,5 0 9
l d v s , a l l , , ( 4 0 - (2 * A FA C )) , 0 . 1
e l s i z e , , 2 , 2
a m esh ,2 5 0 ,2 5 8 ,1
k p a l l
l s a l l
a r a l l
m erge
n o o a p r
e c o o p r
c***
c*** R i g i d  E n d  C o n s t r a in t s  f o r  C o s p a r s io n  w i t h  F o u r i e r  M odel
c s y s , 0
c*** D e f in e  M ass E le m e n t a t  C e n t r e  o f  D is c
n ,  10000, ,R  
e t , 2 , 2 1  
r , 3 , l



r e a l ,3  
e , 10000 
n r s e l , x , 0
c*** D e f in e  R ig id  S u r fa c e  C o n s t r a in t s
c e r i g , 1 0 0 0 0 , a l l ,  0
n a i l
C*** Loads £ B C 's  fro m  l o a d l i n e . f l B
C*** Add i n  b i t s  t o  c o n p le t e  ru n
c s y s ,0
n u s e l , x ,0
c s y s , 1 1
n r o t a t , a l l
s y m b c , l l , 3 , - L 2
s ym b c ,1 1 ,2 ,9 0
s ym b c ,1 1 ,2 , -9 0
c s y s ,0
n a i l
C*** D is p la c e m e n t  c o n s t r a in t s  -  P le a s e  s e l e c t
C*** select edges only
C*** L e f t  Hand Edge
l s r s e l , ,2 ,5 4 ,4
l s a s e l , ,1 3 ,2 9 ,1 6
l s a s e l , ,5 3 ,6 3 ,1 0
l s a s e l , ,7 0 ,1 4 7 ,7
C*** A d d  i n  To p  Edge
l s a s e l , ,1 4 8 ,1 5 1 ,3
l s a s e l , ,3 7 0 ,3 7 2 ,2
C*** A d d  i n  R ig h t  Hand Edge
l s a s e l , ,2 4 0 ,2 5 0 ,1 0
l s a s e l , ,2 5 7 ,2 9 0 ,3
l s a s e l , ,2 9 5 ,2 9 9 ,4
l s a s e l , ,3 0 4 ,3 6 9 ,5
C*** o p t io n a l  C e n t r e l in e
c*** l s a s e l , ,4 ,5 6 ,4
c*** l s a s e l , ,2 5 ,4 5 ,2 0
c*** l s a s e l , ,6 1 ,1 5 2 ,7
C*** Now g e t  n odes fro m  l i n e s

n l i n e , 1  
d , a l l , a l l , 0 
n a i l  
l s a l l
C*** A d d  i n  lo a d  o p t io n
a p s £ , a l l , , , 0 , 2 ,R * 2 , 9 . 81B -6
wsort,x
AFW RIT
F IN I
/ IN P U T ,27 
F IN I



APPENDIX 6

File - Various End Types - capell.fl8; capsph.fl 8; capflatfl8

I
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File - capell.flS

C*** - c*** ellipsoidal head 2:1 
C*** This file must follow cyl.fl8 
FAC=0.5
csys,11 
k, 500
c s y s ,0
l o c a l , 2 1 , 1 , ,R , , , , , 2  
c s y s , 1 1
k ,  5 0 1 , , ,R*FAC 
c s y s , 2 1
l ,  154,501 
l d i v , 3 7 3 ,0 .8 5  
l d v s ,3 7 3 ,,1 2  
l d v s ,5 0 0 , , 4
csys, 0
arot,373,500,, 
arot,503,504 , , 
arot,510,511,, 
arot,514,515,, 
arot,518,519,, 
arot,522,523,, 
arot,526,527,, 
arot,530,531,, 
arot,534,535,,

, ,5 0 0 ,5 0 1 ,-3 0  
, ,5 0 0 ,5 0 1 ,-3 0  
, ,5 0 0 ,5 0 1 ,-3 0  
, ,5 0 0 ,5 0 1 ,-1 0  
, ,5 0 0 ,5 0 1 ,-2 0  
, ,5 0 0 ,5 0 1 ,-1 2  
, ,5 0 0 ,5 0 1 ,-1 6  
, ,5 0 0 ,5 0 1 ,-1 6  
, ,5 0 0 ,5 0 1 ,-1 6

kmerge
e l s i z , , 2  
am esh, 259,264 
e l s i z , , 2 , 2  
am esh,2 6 5 ,2 7 5 ,2  
e l s i z , , 2
amesh,266,276,2

File > capsph.fl8
C*** spherical head
C*«* This file must follow cyl.fis
FAO-1
csys,11 
k , 500
c s y s ,0
l o c a l , 2 1 , 1 , ,R  
c s y s , 1 1
k ,  5 0 1 , , , R*FAC 
c s y s , 21
l ,  154,501 
l d i v , 3 7 3 ,0 .8 5  
l d v s , 3 7 3 ,,1 2  
l d v s ,5 0 0 , ,4  
c s y s ,0
a r o t , 3 7 3 , 5 0 0 , , , ,  
a r o t , 5 0 3 ,5 0 4 , , , ,  
a r o t , 5 1 0 ,5 1 1 , , , ,  
a r o t , 5 1 4 ,5 1 5 , , , ,  
a r o t , 5 1 8 ,5 1 9 , , , ,  
a r o t , 5 2 2 ,5 2 3 , , , ,  
a r o t , 5 2 6 ,5 2 7 ,,  , , 
a r o t , 5 3 0 ,5 3 1 , , , ,  
a r o t , 5 3 4 ,5 3 5 , , , ,  
km erge 
e l s i z , , 2  
a m esh ,259,264 
e l s i z , , 2 , 2  
am e sh ,2 6 5 ,2 7 5 ,2  
e l s i z , , 2  
am e sh ,2 6 6 ,2 7 6 ,2

,500,501,-30
,500,501,-30
,500,501,-30
,500,501,-10
,500,501,-20
,500,501,-12
,500,501,-16
,500,501,-16
,500,501,-16



File - capflat.fl8

u»u»■u

C*** f l a t  head 
c a y s , 1 1  
k , 5 0 0 , , , - l
k ,  501
l ,  154,501 
l d l v , 3 7 3 ,0 .8 5  
l d v s ,3 7 3 ,,1 2  
l d v s ,5 0 0 ,,4  
c a y s ,0
a r o t ,3 7 3 ,5 0 0 , , ,  
a r o t ,5 0 3 ,5 0 4 , , ,  
a r o t ,5 1 0 ,5 1 1 , , ,  
a r o t , 5 1 4 ,5 1 5 ,, ,  
a r o t , 5 1 8 ,5 1 9 ,, ,  
a r o t , 5 2 2 ,5 2 3 ,, ,  
a r o t , 5 2 6 ,5 2 7 ,, ,  
a r o t , 5 3 0 ,5 3 1 , , ,  
a r o t , 5 3 4 ,5 3 5 , , ,  
¡emerge
C*** E le m e n t th

,,5 0 0 ,5 0 1 ,-3 0  
, ,5 0 0 ,5 0 1 ,-3 0  
, ,5 0 0 ,5 0 1 ,-3 0  
, ,5 0 0 ,5 0 1 ,-1 0  
, ,5 0 0 ,5 0 1 ,-2 0  
, ,5 0 0 ,5 0 1 ,-1 2  
, ,5 0 0 ,5 0 1 ,-1 6  
, ,5 0 0 ,5 0 1 ,-1 6  
, ,5 0 0 ,5 0 1 ,-1 6

le k n e s s  i s  r e a l
r e a l , 2  
e l s i z , , 2 
am esh ,2 5 9 ,2 6 4  
e l s i z , , 2 , 2  
am esh ,2 6 5 ,2 7 5 ,2  
e l s i z ,  , 2  
am esh ,2 6 6 ,2 7 6 ,2

2



APPENDIX 7

File - pcinput

600 200 
1 2  2 0

0 . 18290E+04 0 . 20700E+06 0 .3 0 0  2.66300E+01 0.54858E+05
1

0 O.OOOOOE+OO 0.00000B+00 0 .9 8 1 0 0 E -0 5  180.000 0 . 00000E+00
0 . 68580E+04 79.00000E+00 0.68580E+04 8 1 .000E+0 0.100E+00
0.68580E+04 162.000 0 .0 0 0  0 . 76200E+03 2

70 70 70 
0 0

Bourne shell control file - run
# !/ b in / s h

ech o  " R / t  r a t i o  25 t o  300, P o s i t io n  18R t o  2R " > R e s u l t s f i l e  
f o r  j  i n  'c a t  T h ic k n e s s ' 

do
f o r  1 i n  'c a t  M id d le ' 

do
e c h o  " t e s t  " > PCINPUT 
e c h o  " 600 200 " »  PCINPUT 
e c h o  " 1 2 2 0 " »  PCINPUT 
e c h o  " " »  PCINPUT
e c h o  " 0 . 10000E+04 0.20700E+06 0 .3 0 0  $ j $ i "  »  PCINPUT
e c h o  " 1 " »  PCINPUT
e c h o  " 0 0.00000E+00 0.00000E+00 0 .9 8 1 0 0 E -0 5  180.000 0.00000E+00 " »  PCINPUT
e c h o  " 9 0 0 0 .0  59 .00 0 0  90 0 0 .0  61.0000 0 .100E+00 " »  PCINPUT
e c h o  " 9 0 0 0 .0  120 0 .0 0 0  2 0 0 . 0 0  2 " »  PCINPUT
e c h o  " " »  PCINPUT
e c h o  " 50 50 50 " »  PCINPUT
e c h o  " 0 0 " »  PCINPUT

c p  PCINPUT IN P U T e n d $ j$ i

c y l l
s a d
c y l 2
s m a ll
cp  PCOUT O U TP U Te n d $ j$ i 
c p  PCSORT S O R Tend $ J$ i 

f o r  k  i n  'c a t  PCSMALL' 
do

e c h o  " $k " »  R e s u l t s f i l e  
done 

d on e  
done

Program - small.f

p ro g ra m  s m a ll  t o  f i n d  t h e  m inim um  v a lu e  f o r  th e  h o r n  o u t s id e  c i r c .  s t r e s s  
o p e n ( 2 0 , f i l e = ’ PCSORT’ , s t a t u s = ■o l d ’ ) 
s m a l le s t =1000000 

10 r e a d ( 2 0 ,* ,end=90) v a lu e
i f  ( v a l u e . I t . s m a l l e s t )  s m a lle s t = v a lu e  

g o to  10
90 c l o s e (2 0 )

o p e n ( 2 1 , f i l e =  ’ PCSM M A' , s t a t u s * ' unkno w n ' )  
w r i t e ( 2 1 ,* )  s m a l le s t  
c l o s e ( 2 1 ) 
en d

1
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APPENDIX 8

File - VariousFlexible Saddle Types: normal, semi rig, stwothick, semirig.sol, 
solid.rig

1
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File - normal

/COM ****************************
/COM,******THE PARAMETERS********
/COM,****************************
/ U N IT S ,S I 
*AFUN,DEG

/COM, **«GEOMETRICAL PARAMETERS TO BE M ODIFIED*** 
*AFUN,DEG

NW=3 
w id t h  !
NA=10
s a d d le  a n g le  !
C=0.1
B =0.1
( t h e t a = 0 ) !

THETA=60 
RADIUS=1 
BETA=10
( e x t e r n a l  web) ! 

CWEB=1
( y = l  o r  n=0 ) ! 
EXTWEB=1 
( y = l  o r  n=0 ) ! 

NWEB=3 
m id d le  web ! 
T=1*C/NW 
n o t  webed !

THETA2=2* THETA/2/NA

NWEB-1 !
ELNUM3=NA/3
T H IC Y L -0 .0 1 2

! Number o f  d i v i s i o n s  a c ro s s  th e  s a d d le

! Number o f  d i v i s i o n s  a c ro s s  th e  h a l f

! H a l f  s a d d le  w id t h  !
! H e ig h t  a t  c e n t e r  o f  th e  s a d d le

! H a l f  s a d d le  a n g le  !
! R a d iu s  o f  t h e  s a d d le  !

! I n c l i n e  a n g le  o f  th e  f i r s t  web

! Do yo u  w an t t o  p u t  a web i n  th e  m id d le

! Do y o u  w a n t t o  p u t  an e x t e r n a l  web

! T o t a l  num ber o f  webs w it h o u t  th e

! W id th  o f  t h e  c y l i n d r i c a l  p a r t  w h ic h  i s

! T=i*C/NW  w i t h  1 -0  t o  NW-1 f 
! S a d d le  a n g le  o f  n o t  webed p a r t  !
! TH ETA 2 = i * THETA/2/NA w it h  1=0 t o  N A -

/COM, * * * CALCULATED PARAMETERS***

THIWEB—0 .006
THICPRIN=0.006

TH ETA1=THETA-TH ETA2
CC=2*C/NW
ELNUM1—NW-T*NW/C
ELNUM4=T*NW/C
ELNUM5—THETA2 /THETA* 2 *NA
TO L Y -TH E TA /  8 /NA
TO L Z -C C /8
X - C -T
ND IV*»2 *NA-THETA2 * 2 * NA/THETA 
ALPHA—THETA/NA/ 2 
L=R AD IUS*SIN  (TH ETA1)
H l—B -R AD IU S* (S IN  (9 0 -TH E TA 1 ) -1 )
L B A S E -L -H 1  *TAN (BETA)

/COM, * * «M ATER IAL PROPERTIES TO  BE MODIFIED***

EXX-210E9
N U -.3

/COM,************************* 
/COM,***THE SADDLE BUILDING*** 
/C O M , *************************

/COM, * * «ELEM ENT TYPE AND M ATERIAL PROPSRTIRs D E F IN IT IO N *  

/PREP7
/ V IE W ,,1 ,1 ,1  
E T , 1 ,9 3  
M P ,E X ,1 , EXX 
MP, N UXY, 1 , NU 
R ,1 ,T H IC Y L  
R , 2 , THIWXB 
R , 3 , TH IC P R IN
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R , 4 , THIW EB/2

/COM, ‘ “ C YLIN D R IC AL PART MODELING***

C S Y S ,1 
K ,1
K , 2 , , ,C
K , 3 , R A D IU S ,-9 0 ,0
K ,  6 ,R A D IU S ,-9 0 ,X
L , 3 , 6
AROTAT , 1 , , , , , , 1 , 2 ,  -ALP H A 
ADEN, N D IV , 1 , , , , -A LP H A

/COM,* * * SADDLE ETREM ITY STIFFENER***

C S Y S ,0
K , 1001, -LEAS E , -  (RADIUS+B) ,X  
K , 1002, -L E A S E , -  (RADIUS+B) ,0 
A , 4*N D IV ,4 * N D IV + 1 , 1 0 0 1 , 1 0 0 2

/COM,***OTHER STIFFENERS***

♦DO, 1 , 1 , NW EB-1,1 
D IS T = (N W E B -I)* LBASE/NWEB 
AS = A S IN  (D IS T/R A D IU S )
N I= N IN T(A S / A LP H A )
K I= 4 * N I+ 3
* Q E T ,X K ,K P ,K I ,L O C ,X  
* O E T ,Y K ,K P ,K I,L O C ,Y  
K , 1001+10*1 ,X K , -  (RADIUS+B) ,X  
K , 1002+10*1,X K ,-(R A D IU S + B ) ,0  
A , K I . K I + 3 , 1001+10*1,1002+10*1 
♦ENDDO

/COM,**‘ MIDDLE STIFFENER***

K ,1 0 0 1 + N W EB * 1 0 ,0 ,-(R A D IU S + B ) ,X  
K ,1 0 0 2 + N W E B * 1 0 ,0 ,-(R A D IU S + B ),0

A , 3 , 6 , 1001+NWEB*10, 1002+NWEB*10 

/COM,**‘ BASE***

* D O ,1 , 0 , N W E B -1 ,1

A , 1002+1*10,1001+1*10,1011+1*10,1012+1*10
* ENDDO

/COM, ***CENTRAL WEB***

K J* 4 * N D IV  
♦DO,1 , 1 , NW EB,1 
D IS T -(N W E B -I )  * LBASE/NWSB 
A S -A S IN  (D IS T/ R A D IU S )
N I -N IN T  (AS/ALPHA)
K I-4 * N I+ 3
LARC, K J , K I , 1 , RADIUS
AL,4*N DIV+3*(N W EB+1)+2*N W EB+I, 4 * N D IV + 3 * I, 4*NDIV+3*NWEB+3+2*1 4*N 
D IV + 3 * (1 + 1 ) + ,+  w
K J -K I  
*ENDDO

/COM, **‘ BENDING PART ACROSS THE WIDTH***

*I F , C , O T , X , THEN 
C S YS ,1
K ,  2 0 0 0 ,R A D IU S ,- 9 0 , C
L ,  6 ,2000

A R O T A T ,4 * < N D IV + 1 )+ 6 * N W E B ,,,,, ,1 , 2 , -A LP H A  
A O E N ,N D IV ,N D IV + 3 * N W E B + 2 ,, , , -A LP H A  
•ENDIF

/COM,***BENDINO PART ACROSS THE SADDLE ANOLE***

* I F , TH E TA 2 , O T , 0 , THEN
A R O TA T ,4* N D I V -2 , , , , , , 1 , 2 , -TH E TA 2  
* IF ,C ,O T ,X ,T H E N  
A R O TA T, 8*NDIV+6*NWEB+1 1 , 2 , -TH E TA 2



339

♦ENDIF 
♦ENDIF 
NUMMRG.KP

/COM,**«NUMBER OF D IV IS IO N S  ON THE C Y L ID R IC A L  PART LINES*** 

C S Y S ,1
L S E L , S , LO C , X , RADIUS 
L S E L ,R ,L O C ,Z ,0 ,X  
L S E L , U , LO C , Z ,0 
L S E L ,U ,L O C ,Z ,X  
L E S IZ E , A L L , , , ELNUM1

L S E L ,S ,L O C ,Z ,C  
L S E L , A , LOC, Z ,X  
L S E L , A , LO C , Z , 0 
L S E L , R , LO C , X , RAD IU S
LS E L  , U , LO C , Y , -  ( 90+THETA1) , -  ( 90+THETA)
L E S IZ E ,A L L ,  , ,1

L S E L , S , LO C , X , RADIUS 
L S E L ,R ,L O C ,Z ,X ,C  
L S E L , U , LO C , Z , C 
L S E L ,U ,L O C ,Z ,X  
L E S IZ E ,A L L ,  , , ELNUM4

L S E L , S , LOC, Z ,C  
L S E L , A , LO C , Z , X 
L S E L , A , LO C , Z ,0 
L S E L , R , LO C , X , RADIUS
L S E L , R , LO C , Y , -  (90+TH ETA1) , -  (90+THETA)
L E S IZ E ,A L L ,  , , ELNUM5

/ COM, * * »NUMBER OF D IV IS IO N S  ON STIFFEN ER S AND CENTRAL 
LIN ES***

A LLS E L
* D O ,I,0 ,N W E B ,1

NEB

L E S IZ E ,4«N D IV + 3 * 1 + 3 , , , ELNUM3 
♦ENDDO

*I F , CWEB, E Q , 0 , THEN 
K=NWEB-1
♦ E L S E IF , CWEB, E Q ,1
K-NWEB
*ENDIF

* D O , I ,0 ,K ,1
L E S IZ E , 4 * N D IV + 3 * I+ 1 , , , ELNUM3 
L E S IZ E ,4 * N D IV + 3 * I+ 2 ,, , BLNUM1 
*ENDDO

N IP R E O N D IV  
* D O , I , 1 , NWEB,1 
D IS T -(N W E B -I )  «LBASE/NWEB 
A S -A S IN  (D IS T/ R A D IU S )
N I -N IN T  (AS/ALPHA)
N I I -N IP R E C -N I
L E S IZ E ,4*N D IV+5*N W EB +3+I,, , N I I
L E S IZ E ,4 * N D IV+ 3 * (N W E B + 1 )+2*1-1
L E S IZ E , 4*NDIV+3*(NW EB+1)+ 2 * 1 ,,
N IF R E O N I
ENDDO
A LLSEL

/COM,*****************
/COM,***THE MESHING***
/C O M , *****************

T Y P E ,1 
R E A L ,1
* D O , I , 1 ,N D IV ,1  
AM ESH,I
*I F , C , G T , X , THEN 
AMESH, NDIV+3*NNEB+1+I 
♦ENDIF

, , , N I I  
, N i l



340

♦ENDDO
*I F , C , O T , X , THEN 
AMESH, 2*NDIV+3*NWEB+2 
AMESH, 2*NDIV+3*NWEB+3 
•ELSE
AMESH, NDIV+3*NWEB+2 
♦ENDIF

ESHAPE,2 
R E A L ,2
*I F , EXTWEB, E Q , 1 , THEN 
AMESH, NDIV+1 
♦ENDIF
* I F , NWEB , OT , 1 , THEN 
AMESH, NDIV+2 , NDIV+NWEB, 1 
♦ENDIF

* I F , CWEB, E Q , 1 ,THEN 
R E A L ,4
AMESH, NDIV+NWEB+1 
♦ENDIF

R E A L ,3
AMESH , NDIV+2*NWEB+2 , NDIV+3*NWEB+1,1 

NUMMRO, ELEM

ADELE , NDIV+NWEB+2 , NDIV+2 *NWEB+1,1
♦ D O ,1 , 1 , NWEB,1
L D B L E , 4»NDIV+3*NW EB+2+2*I
♦ENDDO

♦ IF ,C W E B ,E Q ,0 ,TH E N  
A D E LE , NDIV+NWEB+1
LD ELE , 4*NDIV+3*NWEB+1, 4*NDIV+3*NWEB+2,1 
♦ENDIF

♦ I F , EXTW EB ,EQ,0 , THEN

A D E L E ,NDIV+1
LDKLB, 4 * N D IV+ 1 , 4*N D IV+ 2 ,1 
♦BNDIF

NUMMRO,NODE

A S E L , S , L O C , Z ,0 ,0  
A S E L , IN V E  
C S YS ,0
ARSYM, Z , A L L , , , , 0 , 0

NUMMRO, NODE 

C S YS ,1
N S E L , S , L O C , X , RADIU S 
NR OTAT, A L L  
A LLS E L

F IN IS H

/COM,****************** 
/COM,***THE SOLUTION*** 
/COM,******************

/SOLU
A N TYP E , S TA T 

C S YS ,0
N S E L , S , L O C , Y , - (RADIUS+B) 
D ,A L L ,A L L

C S YS ,0
N S E L, S , LO C , X ,0  
DSYM, SYMM, X ,0

»C FO P EN , d l a p l l O , n o r  
*DO, 1 , 1 , NW,1  
* D O ,J J , 0 ,N A -1 ,1



J = N A -1 -J J

/SOLU
A N T Y P E , STAT 

C S Y S ,1
SFEDELE , A L L , , PRES 
N S E L ,S ,L O C ,X , RADIUSNSEL R LOC,Z,C-(I-l)*CC+TOLZ,C-I*CC-TOLZ
NSEL ’ R , LO C , Y , -  (90+THETA) +J * 2 *ALPHA-TOLY , -  
(90+THETA) + ( J + l )  *2*ALPHA+TOLY 
E S L N ,R ,1
S F E ,A L L , , P R E S ,, -1  
A LLS E L

«SOLVE
F IN IS H

/POST1 
SET , LAST 
R S Y S ,1
♦ D O ,1 1 ,1 ,NW,1 
* D O ,K K ,1 , 2 * N A -1 ,2  
K=2*NA-KK

n IIl ' r ' ^ ' z ' ^ 2 * II- 1 ) * CC/ 2 ' C- ( 2 *I I _ 1 ) *CC/2
N S E L ", R : LO C , Y ; -  (90+TH ETA) +K* A L P H A ,- (90+TH ETA ) +K+ALPHA

N SO R T,UY 
* G E T , D IS P ,H A X  
♦VWRITE ,D IS P  
(E 1 3 .6 )
N S E L ,A L L  
♦ENDDO 
+ ENDDO 
A LLS E L

F IN IS H  
+ENDDO

•ENDDO
♦CFCLOSE
/E X IT

File - semi_rig

/BATCH 
/ U N IT S ,S I

/COM, ***GEOMETRICAL PARAMETERS*** 
*AFUN, DEG

NW-3
w id t h  !
N A -10
s a d d le  a n g le  !
C -0 .1
B -0 .1
( t h e t a = 0 ) !
TH E TA -6 0  
RADIUS—1 
CWEB-0
( y » l  o r  n « 0 ) ! 
LEXTWEB—0 .0 5  
EXTWEB-1 
( y » l  o r  n=0 ) !
NWEB-3 
m id d le  web I 
T»1*C/NW 
n o t  w ebed !

THETA2—2*TH ETA /2/NA

NNXB-1 !
ELNUM2=1 
ELNUM3—4 
T H IC Y L -0 .0 1 2

I Num ber o f  d i v i s i o n s  a c r o s s  t h e  s a d d le

! Num ber o f  d i v i s i o n s  a c r o s s  t h e  h a l f

! H a l f  s a d d le  w id t h  I
1 H e ig h t  a t  c e n t e r  o f  t h e  s a d d le

I H a l f  s a d d le  a n g le  t 
t R a d iu s  o f  t h e  s a d d le  1
! Do y o u  w an t t o  p u t  a web i n  t h e  m id d le

! Do y o u  w an t t o  p u t  an e x t e r n a l  web

I T o t a l  num ber o f  w ebs w i t h o u t  th e

! W id th  o f  t h e  c y l i n d r i c a l  p a r t  w h ic h  i s

! T -i* C / N W  w i t h  i —0 t o  NW-1 I 
I S a d d le  a n g le  o f  n o t  w ebed p a r t  1 
! TH X TA 2 -1  * THETA/ 2 /NA w i t h  i - 0  t o  N A -
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THIW EB=0.006 
TH IC P R IN = 0 .006

TH E TA 1 -TH E TA -TH E TA 2
CC-2*C/NW
ELNUM1—NW-T*NW/C
ELNUM4=T*NW/C
ELNUM5-THETA2 /THETA* 2*NA
TO LY=TH ETA/8 /HA
TOLZ-CC/B
X = C -T
NDIV=2*NA-THETA2*2*NA/THETA 
ALPHA=THETA/NA/2 
L=RADIUS*SIN (TH ETA1)
LBASE=L+LEXTWEB 
R-LEXTW EB/ (1 -C O S  (TH ETA1) )
X O = - (L-R *COS (TH ETA1) )
Y O = - (RAD1US*C0S (TH ETA 1 ) +R*SIN (TH ETA1) )

S=2*ASIN  ( (C -X )  / (2*RADIUS) ) 
S YL= TH E TA 2 -S

/COM, **«M ATERIAL PARAMETERS***
EXX=210E9
NU“ . 3

/COM, ***BUILD THE MODEL***

/VIEW , ,1 ,1 ,1  
/PREP7 
/SH OW ,XI1 
E T , 1 ,93 
MP , E X , 1 , EXX 
MP, NUXY , 1 ,NU

R ,1 , T H IC Y L  
R , 2 , THIWEB 
R ,3 ,T H IC P R IN / 2  
R , 4 , THIWEB/2

C S YS ,1 
K ,1
K , 2 , , , C
K , 3 , R A D IU S ,-9 0 ,0
K ,  6 ,R A D IU S ,- 9 0 , X
L ,  3 ,6
A R O TAT, 1 , , , , , , 1 , 2 , -A LP H A  
A S S N ,N D IV ,1 , , , , -A L P H A

C S YS ,0
K , 999,X O , Y O ,0  
K ,1 0 0 0 ,X O ,Y O ,X
AR O TAT, 4 *ND I V - 2 , , , , , , 999,1000 ,THETA1 
K ,1 0 0 1 ,-(L + L E X T W X B ), - (R A D IU S + B ),X  
K , 1 0 0 2 , - (L+ LEX TW EB ), - (R A D IU S + B ),0  
A , 4 * N D IV+ 3 , 4 * N D IV+ 4 ,1001,1002

* D O , I , 1 ,N W EB -1 ,1
D I S T -(N W E B -I )* LEASE/KWEB
A S -A S IN (D IS T / R A D IU S )
N I -N IH T  (AS/ALPHA)
K I —4*HI+3
*O ET, X K , K P , K I , LO C , X 
* O ET, Y K , K P , K I , L O C , Y 
* I F , I , B Q ,1 , THEN 
XKMKI 
*ENDIF
K , 1001+10*1,X K ,- (R A D IU S + B ),X  
K , 1002+10*1,X K ,- (R A D IU S + B ) ,0  
A , K I , K I + 3 , 1001+10*1,1002+10*1 
♦ENDDO

K ,1 0 0 1 + N W E B * 1 0 ,0 ,-(R A D IU S + B ),X
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K,1002+NW EB*10, 0 , - (R A D IU S + B ),0 
A , 3 , 6 , 1001+NWEB*10, 1002+NWEB*10

* D O ,I,0 ,N W E B -1 ,1
A , 1002+1*10,1001+1*10,1011+1*10,1012+1*10 
♦ENDDO

*I F , NWEB, EQ , 1 , THEN
KK=3
«E N D IF
L ,K K ,4 * N D IV + 3

K J= 4 * N D IV
*DO, 1 , 1 , NWEB,1
D IS T =  (N W EB -I) *LBASE/NWEB
AS=AS IN  (D IS T/R A D IU S )
N I= N IN T(A S / A LP H A )
K I= 4 * N I+ 3
LA R C , K J , K I , 1 ,RADIUS 
* I F , I , E Q , 1 , THEN
A L ,  4*NDIV+5*NWEB+8, 4*N D IV+ 2 , 4*NDIV+5*NWEB+7
A L , 4*NDIV+5*NWEB+7, 4 * N D IV+ 6 , 4*NDIV+3*NWEB+B , 4*NDIV+9
♦ELSE
A L , 4*NDIV+5*NW EB+7+I, 4 * N D IV+ 3 + 3 * I, 4*NDIV+3*NW EB+6+2*I, 4*NDIV+6+3 
♦ I
♦ENDIF
K J= K I
♦ENDDO

*I F , C , G T , X , THEN 
C S Y S ,1
K ,  2 0 0 0 ,R AD IU S, - 9 0 , C
L ,  6 ,2000
A R O TA T, 4*NDIV+6*NWEB+8 , , , , , , 1 ,2  , -A LP H A  
AGEN , N D IV , NDIV+3*NWEB+4 , , , , -ALPHA 
•ENDIF

AROTAT , 4 * N D IV -2  , , , , , , 1 , 2 ,  -C3AMA

A R O TAT, 8*NDIV+6*NWKB+5, , , , , , 1 , 2 , -OAMA

NUMMRO,KP

L S E L , S , L IN E , ,6 ,4 * N D IV ,2  
L S E L , A , L I N E , , 1 , 2 , 1  
L S E L ,A ,L I N E , , 8 * N D IV+ 6*NNEB+8 
L E S IZ E  , A L L , , , ELNUM1

A LLS E L
L S E L ,S , L I N E , , 5 , 4 * N D IV -1 ,2  
L S E L ,A ,L I N E , ,3 ,4 ,1  
L S E L ,A , L I N E , , 8*NDIV+6*NWEB+9 
L S E L ,A , L I N E , , 8*NDIV+6*NWEB+11 
L E S I Z E ,A L L , , , ZLNUM2

A LLS E L
A S E L, S , AREA, ,NDIV+3*NW EB+4, 2*NDIV+3*NWEB+3 
A S E L, A , AREA,,2*NDIV+3*NW EB+5 
LS  L A , S
L E S I Z E ,A L L , , ,1  

A LLS E L
♦D O,1 , 0 , NWEB,1
L E S IZ E ,4 * N D IV + 3 * I+ 6 ,, , ELNUM3 
L E S IZ E ,4 * N D IV + 3 * I+ 4 ,, ,ELNUM3 
L E S IZ E ,4 * N D IV + 3 * I+ 5 ,, , ELNUM1 
♦ENDDO

L E S IZ E , 4* N D IV+ 1 , , , ELNUM1 
L E S IZ E ,4 * N D IV + 2 ,, , ELNUM4 
L E S IZ E ,4» N D IV + 3 , , , ELNUM4

N IP R E O N D IV  
♦D O,1 , 1 , NWEB,1 
D IS T » (N W E B -I)  «LBASE/NWEB 
A S ^ A S IN (D IS T/ R A D IU S )
N I-N IN T (A S / A L P H A )
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N II= N IP R E C -N I
* IF , I ,E Q ,1 ,T H E N
L E S IZ E , 4*NDIV+5*NWEB+7, , , N I I
L E S IZ E  , 4*NDIV+5*NWEB+8 , , , N I I
L E S IZ E , 4‘ NDIV+3*NWEB+8, , , N I I
L E S IZ E ,4 ‘ NDIV+3*NW EB+7,, , H I I
‘ ELSE
L E S IZ E , 4*NDIV+5*NWEB+7+I, , , N I I
L E S IZ E , 4 ‘ NDIV+3*NW EB+5+2*I, , , N I I
L E S IZ E , 4‘ NDIV+3*NW EB+6+2*I, , , N I I
‘ EN D IF
N IPR EC=N I
‘ ENDDO
A LLS E L

T Y P E ,1 
MAT, 1

R E A L , 1
‘ DO ,1 ,1 ,  N D IV , 1 
AMESH, I
AMESH, N D IV+3‘ NWEB+3+I 
‘ ENDDO
AMESH, 2 ‘ NDIV+3*NWEB+4 
AMESH, 2*NDIV+3*NWEB+5

R E A L ,2
* I F , EXTWEB, E Q , 1 , THEN 
AMESH, NDIV+1 
‘ EN D IF
R E A L ,3
AMESH, NDIV+2*NWEB+3

ESHAPE,2 
R E A L ,2
* I F , EXTWEB, E Q , 1 , THEN 
AMESH, NDIV+2

»E N D IF
AMESH, N D IV + 3 , NDIV+NWKB+1,1

*I F , CWEB, E Q , 1 , THEN 
R E A L ,4
AMSSH, NDIV+NWEB+2 
‘ EN D IF

R E A L ,3
AMESH,NDIV+2*NWEB+4 ,NDIV+3*NW EB+4 , 1

ADELE , NDIV+NWEB+3 , NDIV+2*NWEB+2,1
‘ DO, 1 ,1 ,  NWSB, 1
L D E LE , 4*NDIV+3*NWEB+5+2*I
‘ ENDDO

* I F , CVfEB , E Q , 0 , THEN 
A D E LE, NDIV+NWEB+2
L D E L E , 4*NDIV+3*NWEB+4, 4*NDIV+3*NWHB+5, 
‘ EN D IF

* I F , BXTWEB, E Q , 0 , THEN 
A D ELS ,N D IV+ 1  
AD E LE ,N D IV +2  
L D E L E ,4 ‘ NDIV+1
IU E L H ,4 ‘ N D IV + 3 ,4 ‘ N D IV + 5 ,1 
‘ EN D IF

NUMKR0,NODE

A S X L , S , L O C , Z ,0 ,0  
A S E L ,IN V S  
C S TS ,0
ARSYM, Z , A L L , , , , 0 , 0

NUMMRG, NODE
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C S Y S ,1
N S E L , S , LO C , X , RADIUS 
HROTAT , ALL 
A LLS E L

F IN IS H

c*** SOLUTION PHASE STARTS HERE 

/SOLU
A N TY P E , STAT 

C S Y S ,0
N S E L , S , LO C , Y , -  (RADIUS+B)
D ,A L L ,A L L  
A LLS E L

C S Y S ,0
N S E L ,S ,L O C ,X ,0  
DSYM, S Y M M , X ,0  
A LLS E L

♦CFOPEN, d l s p l x , r i g  
*DO, 1 , 1 , N A ,1 
*DO, J , 0 , N C -1 ,1

/SOLU
A N TY P E , STAT 

C S Y S ,1
SFE D ELE , A L L , , PRES 
N S E L , S , LO C , X , RADIUS
N S E L , R , LO C , Z , C - ( I - 1 ) *CC+TOLZ, C -1 * C C -TO LZ  
NSEL , R , LO C , Y  , -  ( 90+THETA+ALPHA) + J*  2 * A L P H A -T O L Y , -  
(93+TH ETA) + ( J + l )  *2*ALPHA+TOLY 
E S L N , R ,1
SFE , A L L , , PRES , , -1

A LLSEL

SOLVE
F IN IS H

/POST1 
S E T ,L A S T  
R S YS ,1
* D O ,1 1 ,1 ,N A ,1 
* D O ,K ,1 , 2 * N C -1 ,2  
N S E L ,S ,L O C ,X ,R A D IU S

N S E L ,R ,L O C ,Z ,C - (2 * 1 1 -1 )* C C / 2 ,C -(2 * 1 1 -1 )* cc/ 2
' Y ' "  (90+THKTA+ALPHA) +K*ALPHA, -  (90+THETA+ALPHA) +K*ALPHA! NSORT, UX 

* O ET, D IS P , MAX 
♦ V N R ITE , D IS P  
(E 1 3 .6 )
N S E L ,A L L  
*ENDDO 
♦ENDDO 
A LLS EL

F IN IS H  
* ENDDO 
*ENDDO

♦CFCLOSE
/ E X IT

File - stwothick

/ U N IT S ,S I
/CO M ,«»«G EO M ETR IC AL PARAMETERS*** 
*AFUN, DBS
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NW=3 
w id t h  !
NA=10
s a d d le  a n g le  !
C=0.1 
B = 0 .1
( t h e t a = 0 ) !
THETA=60
R AD IU S-1
BETA=10
( e x t e r n a l  web) ! 
CWEB=1
( y = l  o r  n=0 ) !
EXTWEB=1
( y = l  o r  n=0 ) !

NWEB=3
m id d le  web !
T=1*C/NW
n o t  webed •

THETA2=2 * THETA/ 2/HA

NWEB-1 !
ELNUM2=1 
ELNUM3=4 
TH IC Y L1 = 0 .0 1 2  
T H IC Y L 2 = 0 .006 
THIW EB=0.006 
TH IC P R IN = 0 .006

! Humber o f  d i v i s i o n s  a c ro s s  th e  s a d d le

! Num ber o f  d i v i s i o n s  a c ro s s  th e  h a l f

! H a l f  s a d d le  w id t h  !
! H e ig h t  a t  c e n t e r  o f  th e  s a d d le

! H a l f  s a d d le  a n g le  !
! R a d iu s  o f  t h e  s a d d le  !

! I n c l i n e  a n g le  o f  th e  f i r s t  web

! Do y o u  w an t t o  p u t  a web i n  th e  m id d le  .

! Do y o u  w an t t o  p u t  an e x t e r n a l  web

! T o t a l  num ber o f  webs w it h o u t  th e

! W id th  o f  t h e  c y l i n d r i c a l  p a r t  w h ic h  i s

! T=1*C/NW w i t h  1=0 t o  NW-1 !
! S a d d le  a n g le  o f  n o t  webed p a r t  !
! THBTA2=i*THETA/2/N A w it h  1=0 t o  N A -

RADIUS2=RADIUS- (T H IC Y L 1 -T H IC Y L 2 ) /2
TH ETA1=THETA-TH ETA2
CC=2*C/NW
ELNUM1=NW-T*NW/C
ELNUM4=T*NW/C
ELNUM5=THETA2/THETA* 2 *NA
TOLY=TH ETA/8/NA
TOLZ=CC/8

X = C -T
NDIV=2*NA-THETA2*2*NA/THBTA 
ALPHA=THETA/NA/2 
I^ R A D IU S * S IN (TH E TA 1 ) 
H l-B -R A D IU S *  ( S I N ( 9 0 -TH E TA 1 ) -1 )  
LB ASE= L-H 1 * TAN (B ETA )
S = 2 * A S IN ( (C -X )  / (2*RADIUS) ) 
SYL=OAMA-S

/COM ,**«M ATERIAL PARAMETERS***
EXX=210E9
NU-.3

/COM ,**«BUILD THE MCX5EL***
/ V IE W ,,1 ,1 ,1
/PREP7
E T ,1 ,9 3
M P ,E X , 1 , EXX
MP, NUXY,1 ,  NU
R , 1 , TH IC Y L1
R , 2 ,T H IC Y L 2
R, 3 , THIWEB
R , 4 , TH IC P R IN
R , 5 , THIWEB/2

C SYS,1
K , 1
K , 2 , , , C
K ,  3 , R A D IU S ,-9 0 ,0  
X , 6 ,R A D IU S ,- 9 0 , X
L ,  3 , 6
AR O TAT, 1 , , , , , , 1 , 2 , -A LP H A  
A D E N ,N D IV , 1 , , , , -A LP H A

C S YS ,0
K , 1 0 0 1 ,-L E A S E , - (R A D IU S + B ),X



K , 1002, -L E A S E , -(R A D IU S + B ) ,0 
A , 4 * KD I V , 4*N DIV+1,10 01 ,1 0 0 2

* D O , I , l ,N W E B - l , l  
D IS T = (N W E B -I) * LEASE/NWEB 
AS=AS IN  (D IS T/R A D IU S )
N I= N IN T  (AS/ALPHA)
K I= 4 * N I+ 3
* O E T ,X K ,K P ,K I ,L O C ,X  
* OET , Y K , K P , K I , LO C , Y 
K , 1001+10*1,X K ,-(R A D IU S + B ),X  
K , 1002+10*1,X K ,- (R A D IU S + B ),0 
A , K l , K I + 3 , 1001+10*1,1002+10*1 
*ENDDO

K ,1 0 0 1 + N W E B * 1 0 ,0 ,-(R A D IU S + B ),X  
K ,1 0 0 2 + N W E B * 1 0 ,0 ,-(R A D IU S + B ),0 
A , 3 , 6 , 1001+NWEB*10, 1002+NWEB*10

*DO, 1 , 0 , NW EB-1,1
w  A , 1002+1*10,1001+1*10,1011+1*10,1012+1*10
** *ENDDO

K J=4 *NDIV
*DO , 1 ,1 ,  NWEB , 1
D IS T = (N W E B -I)*LEASE/NWEB
AS = A S IN  (D IS T/R A D IU S )
N I= N IN T  (AS/ALPHA)
K I= 4 * N I+ 3
LA R C , K J , K l , 1 , RAD IU S
A L , 4*NDIV+3* (NWEB+1) + 2*N W EB +1,4*N D IV+3*I, 4*NDIV+3*NW EB+3+2*I, 4*N 
D IV + 3 * (1+1)
K J= K I
*ENDDO

* I F , C , O T ,X ,THEN 
C S Y S , 1
K ,2 0 0 0 ,R ADIUS2, - 9 0 , C

K ,  1 9 9 9 ,R A D IU S 2 , - 9 0 ,X
L ,  1999,2000
AROTAT , 4* (N D IV + 1 ) + 6*NWEB, , , , , , 1 , 2 ,  -A LP H A  
ASEN , N D IV , NDIV+3*NWKB+2 , , , , -ALP H A 
*ENDIF

K , 20 0 1 ,R A D IU S 2 , - (9 0 + TH K TA 1 ),0
K , 2002 ,RADIUS2 , -  (90+THETA1) ,X
L ,  2001,2002

A R O TAT, 8*NDIV+6*NWEB+4 , , , , , , 1 , 2 ,  -TH E TA 2  
*I F , C , O T , X , THEN
A R O TAT, 8*NDIV+6*NWEB+1, , , , , , 1 , 2 , -TH E TA 2  
♦ENDIF

A LLS E L

NUMMRQ, KP

C S YS ,1
L S E L , S , L O C , X , RADIUS 
L S E L , R , L O C , Z , 0 , X 
L S E L ,U ,L O C ,Z ,0 
L S E L ,U ,L O C ,Z ,X  
L E S IZ E ,A L L , , , ELNUM1

L S E L ,S ,L O C ,Z ,C  
L S E L ,A ,L O C ,Z ,X  
L S E L ,A ,L O C ,Z ,0 
L S E L , R , LO C , X , RADIUS
L S E L , U , L O C , Y , — ( 90+THETA1) ,-(9 0 + T H E T A ) 
L B S IZ E .A L L , , , 1

L S E L , S , L O C , X , RADIUS 
L S E L , R , LO C , Z , X ,C  
L S E L ,U ,L O C ,Z ,C  
L S E L ,U ,L O C ,Z ,X  
L S S IZ E ,A L L , , , ELNUM4
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L S E L ,S ,L O C ,Z ,C  
L S E L ,A ,L O C ,Z ,X  
L S E L ,A ,L O C ,Z ,0  
L S E L , R , LOC , X , RADIUS
L S E L , R , LO C , Y , - ( 90+THETA1) , - ( 90+THETA) 
L E S IZ E , A L L , , , ELNUM5

A LLSEL
♦ D O ,1 , 0 , NWEB,1
L E S IZ E ,4 * N D IV + 3 * I+ 3 ,, , ELNUM3 
♦ENDDO

* I F , CWEB, E Q , 0 , THEN 
A D E LE , NDIV+NWEB+1 
K=NWEB-1
♦ E L S E IF , CWEB, E Q ,1
K=NWEB
♦ENDIF

• D O , I ,0 ,K ,1
L E S IZ E ,4 * N D IV + 3 * I+ 1 , , , ELNUM3 
L E S IZ E ,4 * N D IV + 3 * I+ 2 ,, , ELNUMI 
♦ENDDO

N IP R E O N D IV  
* D 0 ,I,1 ,N W E B ,1  
D IS T = (N W E B -I)*LEASE/NWEB 
AS=AS IN  (D I ST/RADIUS)
N I= N IN T  (AS/ALPHA)
N II= N IP R E C -N I
LE S IZ E ,4 * N D IV + 5 * N W E B + 3 + I,, , N I I
L E S IZ E , 4*NDIV+3*(NW EB+1)+ 2 * 1 -1 , , , N I I
L E S IZ E ,4*NDIV+3*(NW EB+1)+ 2 * 1 , , , N I I
N IPR EC=N I
♦ENDDO
A LLS E L

T Y P E ,1
*DO , 1 ,1 ,  N D IV , 1 
R E A L ,1 
AMESH, I
*I F , C , G T , X , THEN 
R E A L ,2
AMESH, NDIV+3*NW EB+1+I
♦ENDIF
♦ENDDO
*I F , C , Q T , X , THEN 
R E A L ,2
AMESH, 2*NDIV+3*NWEB+2 
*I F , T H E T A , O T , TH E TA 1 , THEN 
AMESH, 2*NDIV+3*NWEB+3 
♦ENDIF 
♦ENDIF

R E A L ,3 
ESHAPE,2
*I F , EXTWEB, E Q , I , THEN 
AMESH, NDIV+1 
♦ENDIF
* I F , NWEB, OT , 1 , THEN 
AMESH, N D IV + 2 , NDIV+NWEB,1 
♦ENDIF

♦ IF ,C W EB , E Q , 1 , THEN 
R EA L,S
AMESH, NDIV+NWEB+1 
♦ENDIF

R E A L ,4
AMESH, N DIV+2 *NWEB+2 , NDIV+3 »NWEB+1 , 

NUMMR3, BLEM

ADELE , NDIV+NWEB+2 , NDIV+2*NWEB+1,1



♦DO ,1 ,1 ,  NWEB, 1
L D E L E , 4*NDIV+3*NWEB+2 + 2*I
♦ENDDO

♦ IF ,C W E B ,E Q ,0 ,TH E N  
A D E L E , NDIV+NWEB+1
LDELE , 4*NDIV+3*NWEB+1, 4*NDIV+3*NWEB+2,1 
♦ENDIF

* X F , EXTWEB, E Q , O , THEN 
AD ELE ,N D IV+1
L D E LE , 4 * N D IV+ 1 ,4 * N D IV+ 2 ,1  
♦ENDIF

NUMMRO, NODE

A S E L , S , LO C , Z , 0 ,0  
A S E L ,IN V E  
C S Y S , 0
ARSYM, Z ,A L L , , , , 0 , 0  

NUMMRO, NODE 

C S Y S ,1
N S E L , S , LO C , X , RADIUS 
N S E L , A , LO C , X , RADIUS2 
N S E L , R , LO C , Y , - ( 90+THETA1>
C P IN T F , A L L ,.0 0 5  
A LLS E L

N S E L , S , LO C , X , RADIUS 
N S E L , A , LO C , X , RADIUS2 
N S E L ,U ,L O C ,Y , -9 0
N S E L , U , LO C , Y , -  ( 90+THETA1) , -  (9 0+THETA) 
N S E L ,R ,L O C ,Z ,X  
C P IN T F ,A L L , .025 
A LLS E L

N S E L , S , L O C , X , RADIUS 
N S E L ,A , L O C , X , RADIUS2 
N S E L ,U ,L O C ,Y , -9 0
N SB L, U , L O C , Y , - (90+THETA1) , - <  90+THETA) 
N S E L ,R ,L O C ,Z , -X  
C P IN T F ,A L L , .025 
A LLS E L

C S YS ,1
N S E L , S , L O C , X , RADIUS 
N S E L , A ,L O C , X , RADIUS2 
NR OTAT, A L L  
A LLS E L

F IN IS H

C*** SO LU TIO N  PHASE STARTS HERE.............

/SOLU
A N TYP E, STAT 

C S YS ,0
N S E L , S , L O C , Y , - (RADIUS+B)
D , A L L , A L L

C S YS ,0
N S E L ,S ,L O C ,X ,0  
DSYM, SYMM, X ,0

♦CFOPEN, d i s p , n o r  
♦DO, 1 , 1 , NW,1  
♦ D O ,J ,0 ,N A -1 ,1

/SOLU
A N TYP E , S TA T 

C S YS ,1
SFBDELE, A L L , , PRES
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NSEL S ,L O C ,X , RADIUS
NSEL R LO C , Z , C - <I -1 ) *  CC+TOLZ, C -1 * C C -TO L Z  
N S E L ', R ', LO C , Y , -  < 90+THETA) + J*  2*ALPH A -TOLY , -  
(90+THETA) + ( J + l ) * 2 *ALPHA+TOLY 
E S L N ,R ,1
S F E ,A L L , , PRES, , - 1  
A LLS E L

«SOLVE
F IN IS H

/POST1 
S E T , LAST 
R S Y S ,1
* D O , I I , l , N W , l
* D O ,K , 1 , 2 * N A -1 ,2

T m L  t  ' . U ^ y .  - (90+TH STA) « - A L P H A ,  -  (P O -T B iT A )  « - A L P H A

n s o r t , UX
* G ET,D IS P ,M AX
* VW R ITE ,D IS P
(E 1 3 .6 )
N S E L ,A L L  
!* ENDDO 
!* ENDDO 
A LLS E L

F IN IS H  
!* ENDDO 
!* ENDDO

♦CFCLOSE
/ E X IT

File - semi_rig.sol

/BATCH 
/ U N IT S ,S I

/COM,***GEOMETRICAL PARAMETERS*** 
*AFUN, DEO

NW-3 
w id t h  !
NA^30
s a d d le  a n g le  I
C - O . l
B - O . l
( t h e t a -O )  !
THETAP60 
R AD IU S-1  
CWEB—1
( y —1  o r  n—0 ) ! 
LEXTHEB—0 .0 5  
EXTWEB—1 
(y —1  o r  n—0 ) I 

NWEB-3 
m id d le  web t 
T-1*C/NW  
n o t  w ebed !

TH S TA 2 -2  * THETA/ 2/NA

! Num ber o f  d i v i s i o n s  a c r o s s  t h e  s a d d le

I Num ber o f  d i v i s i o n s  a c ro s s  t h e  h a l f

1 H a l f  s a d d le  w id t h  !
t H e ig h t  a t  c e n t e r  o f  t h e  s a d d le

I H a l f  s a d d le  a n g le  !
! R a d iu s  o f  t h e  s a d d le  !
! Do y o u  w an t t o  p u t  a web i n  t h e  m id d le

I Do y o u  w a n t t o  p u t  an e x t e r n a l  web

! T o t a l  num ber o f  webs w i t h o u t  th e

! W id th  o f  t h e  c y l i n d r i c a l  p a r t  w h ic h  i s

! T »i* C /N W  w i t h  i —0 t o  NW-1 !
1 S a d d le  a n g le  o f  n o t  w ebed p a r t  !
1 THETA2—1* THETA/2/NA w i t h  1 -0  t o  N A -

NWEB-1 I 
ELNUM2-1 
ELNUM6-5
XLNUM3—N IN T (N A / 2 ) 
T H IC Y L —0 .0 1 2  
TH IW E B -0 .0 0 6  
T H IC P R IN -0 .006 
R A D IU S -R A D IU S + TH IC YL/2



TH ETA1=THETA-TH ETA2
CC=2*C/NW
ELNUM1=NW-T*NW/C
ELNUM4=T*NW/C
ELNUM5=THETA2 /THETA* 2 *NA
TO LX = 0 .00001
TO LY=TH ETA/ 8 /NA
TOLZ=CC/8
X = C -T
NDIV=2*NA-THETA2*2*NA/THETA 
ALPHA=THETA/NA/ 2 
L=RADIUS*SIN  (TH ETA1)
LBASE=L+LEXTWEB 
R AD =R AD IU S-TH IC YL 
R = LE X TW EB /(1 -C O S (TH ETA 1 ))
X O = - (L -R *CO S (TH ETA 1 ) )
Y O = - (RADIUS*COS (TH ETA1) +R*SIN (TH ETA 1 ) ) 
S = 2 * A S IN ( ( C - X ) / (2 * R A D IU S ))
S YL= TH E TA 2 -S

/COM, **‘ M ATERIAL PARAMETERS*** 
EXX—210E9 
NU=. 3
/COM ,*“ B UILD  THE MODEL***

/VIEW , ,1 ,1 ,1  
/PREP7 
/SH OW ,XI1 
E T ,1 ,6 3  
E T ,1 0 ,7 3  
E T ,1 1 ,22 
MP, E X , 1 , EXX 
M P ,E X ,1 0 ,EXX 
M P ,E X ,1 1 ,0  
MP, NUXY , 1 , NU 
MP ,NUXY , 10 ,NU

M P ,N U X Y,1 1 ,0  
R , 1 , T H IC Y L  
R , 2 , THIWEB 
R , 3 , TH IC P R IN  
R , 4 , THIW EB/2

C S YS ,1 
K , 1

2 , , ,C
K , 3 , R A D IU S ,-9 0 ,0
K ,  6 ,R A D IU S ,- 9 0 , X
L ,  3 ,6
AROTAT , 1 , , , , , , 1 , 2 ,  -ALP H A 
AOEN, N D IV , 1 , , , , -A LP H A

C S YS ,0
K , 999,X O , Y O ,0  
K ,1 0 0 0 ,X O ,Y O ,X
A R O TA T ,4* N D I V -2 , , , , , , 9 9 9 , 1 0 0 0 , THXTA1 
K , 1 0 0 1 , - (L+ LEX TW EB ), - (R A D IU S + B ),X  
K , 1 0 0 2 , - (L+ LEX TW EB ), - (R A D IU S + B ),0  
A ,4 * N D IV + 3 , 4*N D IV+ 4 ,1 0 01 ,1 0 0 2

* D O , I , l ,N W E B - l , l  
D I S T -  (N W E B -I) * LEASE/NWSB 
A S -A S IN (D IS T / R A D IU S )
N I-N IN T (A S / A L P H A )
K I-4 + N I+ 3
*8E T , X X , K P , K I , LO G , X 
♦GET, Y K ,K P ,K I , LOC , Y 
* 1 7 ,I , E Q , 1 , THEN 
K K -K I 
♦ENDIF
K , 1001+10*1,X K ,- (R A D IU S + B ) ,X  
K , 1002+10*1,X K ,- (R A D IU S + B ) ,0  
A , K I , K I + 3 , 1001+10*1,1002+10*1 
*XNDDO
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K ,1 0 0 1 + N W E B * 1 0 ,0 ,-(R A D IU S + B ),X  
K ,1 0 0 2 + N W EB * 1 0 ,0 ,-(R A D IU S + B ) ,0  
A , 3 , 6 , 1001+NWEB*10, 1002+NWEB*10

* D O ,I,0 ,N W E B -1 ,1
A , 1002+1*10,1001+1*10,1011+1*10,1012+1*10 
♦ENDDO

*I F , NWEB, E Q , 1 , THEN
KK=3
*ENDIF
L ,K K ,4 * N D IV + 3

K J=4 *NDIV
*DO, I , 1 , NWEB,1
D IS T =  (NWEB-1) * LEASE/NWEB
A S = A S IN (D IS T/R A D IU S )
N I= N IN T  (AS/ALPHA)
K I= 4 * N I+ 3
LA R C , K J , K I , 1 ,RADIUS 
* I F , I , E Q , 1 , THEN
A L , 4*NDIV+5*NWEB+8, 4 * N D IV+ 2 ,4 *NDIV+5*NWEB+7
A L , 4*NDIV+5*NWEB+7,4  *N DIV+6 , 4*NDIV+3*NWEB+8, 4*NDIV+9
»E L S E
A L , 4 *NDIV+5*NWEB+7+I , 4 * N D IV + 3 + 3 * I, 4*NDIV+3*NW EB+6+2*I, 4*NDIV+6+3 
* 1
♦ENDIF
K J= K I
♦ENDDO

*I F , C , G T , X , THEN 
C S Y S ,1
K ,  2 0 0 0 ,R A D IU S ,- 9 0 , C
L ,  6 ,2000
AROTAT , 4*NDIV+6*NWEB+8 , , , , , , 1 , 2 ,  -A LP H A  
AG EN , N D IV , NDIV+3*NWEB+4 , , , , -A LP H A  
♦ENDIF

*I F , TH E TA 2 , G T , 0 , THEN
A R O TA T ,4* N D I V -2 , , , , , , 1 , 2 , -TH E TA 2
♦ IF , C , G T , X , THEN
A R O TA T, 8*NDIV+6*NWEB+5, , , , , , 1 , 2 , -TH E TA 2
♦ENDIF
♦ENDIF
NUMMRG.KP

C S YS ,1
L S K L , S , L O C , X , RADIUS 
A S L L , S ,1
V E X T , A L L , , , -T H IC Y L  
A LLS E L

NUMMRG, KP 
C S Y S ,1

A S L V ,S
L S L A , S
L S K L ,  R , L O C , X , RAD+0.0 0 0 1 ,R A D IU S -0 .0001 
L B S IZ K , A L L , , , ELNUM2

A S L V ,S
L S L A , S
L S X L , R , L O C , Z , 0 , X
L S K L , U ,L O C , Z ,0  
L S K L ,U ,L O C ,Z ,X  
L E S I Z E ,A L L , , , ELNUM1

L S K L ,S ,L O C ,Z ,C
L S K L ,A ,L O C , Z , X
L S X L , A ,  LO C , Z , 0
L S X L , R , L O C , X , RAD, RADIUS
L S K L ,U ,L O C ,Y ,- (9 0 + T H K T A l) , - (9 0 + T H X T A )
L X S IZ K , A L L , , , 1

A S L V ,S  
L S L A ,S
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L S E L ,R ,L O C ,Z ,X ,C  
L S E L ,U ,L O C ,Z ,C  
L S E L ,U ,L O C ,Z ,X
L S E L , U , LO C , Y , -  ( 90+THETA1 ) , -  ( 90+THETA)
L E S IZ E , A L L , , , ELNUM4

L S E L , S , LO C , Z , C 
L S E L ,A ,L O C ,Z ,X  
L S E L ,A ,L O C ,Z ,0  
L S E L , R , LOC, X , RAD, RADIUS
L S E L , R , LO C , Y , - ( 9 0 . 1+THETA1) , - ( 8 9 . 9+THETA) 
L E S IZ E ,A L L , , , ELNUM5

A LLS E L
♦DO , 1 , 0 ,  NWEB, 1
L E S IZ E , 4 * N D IV+ 3 * I+ 6 , , , ELNUM3 
L E S IZ E , 4 * N D IV+ 3 * I+ 4 , , , ELNUM3 
L E S IZ E ,4 * N D IV + 3 * I+ 5 , , , ELNUM1 
♦ENDDO

L E S IZ E , 4*N DIV+1, , , ELNUM1 
L E S IZ E ,4» N D IV + 2 ,, , ELNUM6 
L E S IZ E ,4 * N D IV + 3 , , , ELNUM6

N IPR EC =N DIV 
*DO, 1 , 1,  NWEB, 1 
D IS T =  (N W EB -I) * LEASE/NWEB 
A S = A S IN  (D IS T/R A D IU S )
N I -N IN T  (AS/ALPHA)
N II= N IP R E C -N I
♦ I F , I , E Q , 1 , THEN
L E S IZ E , 4*NDIV+5*NWEB+7, , , N I I
LES IZE ,4 * N D IV+ 5 * N W E B + 8 ,, , N I I
L E S IZ E , 4*NDIV+3*NWEB+8, , , N I I
L E S IZ E , 4 *NDIV+3*NWEB+7, , , N I I
♦ELSE
L E S IZ E , 4*NDIV+5*NW EB+7+I, , , N I I

L E S IZ E ,4 * N D IV + 3 * N W E B + 5 + 2 * I,, , N I I
L E S IZ E ,4 * N D IV + 3 * N W E B + 6 + 2 * I,, , N I I
♦ENDIF
N IF R E O N I
♦ENDDO
A LLS E L

T Y P E ,10 
M AT,10 
VMZSH, A LL

T Y P E ,1 
M AT, 1

R E A L ,2
* I F , EXTWEB, E Q , 1 , THEN 
AMESH, NDIV+1 
♦ENDIF
R E A L ,3
AMESH, N DIV+2 *NWEB+ 3 
ESHAPE,2  
R E A L ,2
* I F , EXTWEB, E Q , 1 , THEN 
AM ESH,NDIV+2 
♦ENDIF
AMESH, N D IV + 3 , NDIV+NWEB+1,1

♦ IF , CWEB, E Q , 1 , THEN 
R E A L ,4
AMESH, NDIV+NWEB+2 
♦ENDIF
R E A L ,3
AMESH, N DIV+2 *NWEB+4, NDIV+3*NWEB+4,1

A D E LE , NDIV+NW EB+3, N DIV+2 *NWEB+2,1
♦D O,1 , 1 , NWEB,1
L D E L E , 4*NDIV+3*NWEB+5+2*I
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•ENDDO

* I F , CWEB ,E Q ,0 , THEN
ADELE ,NDIV+NWEB+2
LD ELE , 4«NDIV+3*NW EB+4,4 *NDIV+3*NWEB+5,1 

«E N D IF

*I F , EXTWEB, E Q , 0 , THEN
AD E LE , NDIV+1
A D E LE , NDIV+2
L D E L E ,4 * N D IV + l
LDELE , 4*N DIV+3, 4 * N D IV+ 5 ,1
«E N D IF

NUMMRO, NODE

A S E L , S , LOC , Z , 0 ,0  
A S E L , IN VE 
C S Y S ,0
ARSYM, Z ,A L L , , , ,0 ,0  
V S E L .A L L
VSYMM, Z , A L L , , , ,0 ,0

NUMMRO, NODE 
CSYS 1
N SEL ’, S , LO C , X , R A D -TO L X , RAD+TOLX
T Y P E ,11
M A T ,11
R E A L , S
ESURF
A LLS E L

CSYS 1
N S E L , S , LO C , X , RADIUS
N R O TA T, ALL
A LLS E L
WAVES
F IN IS H

C*** SOLU TION PHASE STARTS HERS.....................
/SOLU
A N TYP E , STAT 

C S YS ,0
N S E L , S , L O C , Y , - (RADIUS+B)
D ,A L L ,A L L  
A LLSEL

C S YS ,0
N S E L ,S ,L O C ,X ,0  
DSYM, SYMM, X , 0 
A LLS E L

«C FO P EN , r lg 3 3 0 , r a d  
* D O , I , 1 ,NW ,1 
* D O ,J J ,0 ,N A -1 ,1  
J “ N A -1 - J J  
/SOLU
A N TYP E , STAT 
C S YS ,1
SFED ELE, A L L , 1 , PRES 
E S E L ,S ,T Y P E , ,11 
N S L Z , A L L  
N S E L ,R ,L O C ,Z ,C ,0
N S E L , R , L O C , Z , C -  ( I  -1 )  *CC+TOLZ, C - I  «C C -TO L Z  
N S E L , R , L O C , Y , - (9 0 + TH E TA )+J* 2 * A L P H A -TO LY , -  
(90+TH ETA) + ( J + l ) * 2 *ALPHA+TOLY 
E S L N ,R ,1
S F E ,A L L ,1 , P R E S ,,1  
E S E L ,S ,T Y P E , ,11 
N S L E , A L L
N S E L ,R ,L O C ,Z ,0 , -C
N S E L , R , L O C , Z , C - ( I - 1 ) «C C + TO LZ , C - I « C C -T O L Z  
N S E L , R , L O C , Y , - (9 0 + TH E TA )+J*  2 «A L P H A -T O L Y , -  
(9 0 + TH ETA ) + ( J + l ) * 2 «ALPHA+TOLY 
ES LN , R ,1
S F E ,A L L ,1 , P R E S ,,1
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A LLS E L
SOLVE
F IN IS H

/POST1 
S E T ,LAST 
R S Y S ,1 
•/show,xll 
!/psf,pres,2 
Iplnsol,u,x 
♦DO,II,1,NW,1 
*DO,KK,l,2*NA-l,2 
K=2*NA-KK 
ESEL,S,TYPE,,11
N S ^ '^ L O C  Z C -  (2 * 1 1 -1 ) * C C /2 ,C - (2 * 1 1 -1 ) *CC/2 
S S ' . r I l Oc ’, Y', -  (90+THETA) +K* ALPHA, -  (90+TH ETA ) +K*ALPHA

N SO R T, U , X 
♦G ET,D ISPX,M AX 
N S O R T ,U ,Y  
♦ G ET,D ISP Y,M A X  
* V W R ITE ,D IS P X , D IS P Y  
(E 1 3 .6  , E1 3 .6 )

n s e l , a l l
! *ENDDO 
! *ENDDO 
A L LS E L  
F IN IS H  
•«ENDDO 
!* ENDDO 
! *CFCLOSE 
/ E X IT

File - solid.rig

/COM, **»GEOM ETRICAL PARAMETERS***

♦AFUN,DEG

NW-5 
width !
N A f30
saddle angle !
C - 0 . 1
B -0 .1
(theta-0) !
THETAr=60
R A D IU S-1
BETAi-10
(external web) ! 
CWEB-1
middle (y=l or n=0) !
EXTWEB=1
(y-1 or n-0) !
NWEB-2 
middle web !
T—2*C/NW  
not webed !
T H E T A 2-2 * T H E T A /2 /N A

! Number of divisions across the saddle

1 Number of divisions across the half

! Half saddle width I
I Height at center of the saddle

! Half saddle angle 1 
! Radius of the saddle t

! Incline angle of the first web

! Do you want to put a stiffener In the

! Do you want to put an external web

! Total number of webs without the

! Width of the cylindrical part which is

! T—i*C/NW with 1-0 to NW-1 I 
I Saddle angle of not webed part <
! THZTA2—l*THETA/2/NA with 1-0 to NA-

NWEB-1 !
SLNUM2-2
ELNUM3—NA/2
T H IC Y L -0 .0 1 2
TH IW E B -0 .006
T H IC P R IN -0 .006
RAD IU S -R A D IU S + T H IC Y L / 2

THETA1—THETA-THETA2 
CC—2*C/NW 
BLNUM1—NW-T*NW/C 
ELNUM4—T*NW/C 
EUIUM5-THETA2 / THETA* 2 *NA 
TOI3C-0.00001 
TOLY—THETA/8/NA



T O L Z -C C /8
X = C -T
NDIV=2*NA-THETA2*2*NA/THETA 
ALPHA=THETA/NA/2 
L=R ADIUS*SIN  (TH ETA1)
H 1 = B -R A D IU S * (S IN (9 0 -T H E T A 1 )-1 )  
LBASE=L-H1*TAN (BETA) 
R AD=R ADIU S-THIC YL

/COM ,**«M ATERIAL PARAMETERS***
EXX=210E9
NU=. 3
/COM,**»B U ILD  THE MODEL***

/VIEW , ,1,1,1 
/PREP7 
E T , 1 ,63 
E T ,1 0 ,7 3  
E T ,1 1 ,2 2  
MP, E X , 1 , EXX

W  MP, E X , 10, EXX
M P ,E X ,1 1 ,0  
MP , NUXY , 1 , NU 
MP, N U X Y,1 0 , NU 
M P ,N U X Y ,1 1 ,0  
R ,1 , T H IC Y L  
R , 2 , THIWEB 
R , 3 , TH IC P R IN  
R , 4 , THIWEB/2

C S Y S ,1 
K , 1
K , 2 , , ,C
K , 3 , R A D IU S ,-9 0 ,0
K ,  6 ,R A D IU S ,- 9 0 , X
L ,  3 ,6
A R O TA T, 1 , , , , , , 1 , 2 , -A LP H A  
ADEN , N D IV , 1 , , , , -A LP H A

CSYS,0
K,1001,-L E A S E ,- (R A D IU S + B ),X 
K,1002,-L E A S E , - (R A D IU S + B ),0 
A , 4 * N D IV ,4 * N D IV + 1 , 1001,1002

*DO, 1 , 1 , NW BB-1,1
D IS T = (N W E B -I)*LEASE/NWEB
A S -A S IN (D IS T / R A D IU S )
N I -N IN T  (AS/ALPHA)
K I-4 * N I+ 3
* O E T ,X K ,K P ,K I,L O C ,X  
* O E T ,Y K ,K P ,K I ,LO C , Y 
K , 1001+10*1,X K ,-(R A D IU S + B ) ,X  
K , 1002+10*1,X K ,- (R A D IU S + B ) ,0 
A , K I , K I + 3 , 1001+10*1,1002+10*1 
♦KNDDO

K ,1 0 0 1 + N W E B * 1 0 ,0 ,-(R A D IU S + B ),X  
K ,1 0 0 2 + N W E B * 1 0 ,0 ,-(R A D IU S + B ),0  
A , 3 , 6 ,1001+NWXB*10, 1002+NWXB*10

♦ D O ,I , 0 ,N W ZB -1 ,1
A , 1002+1*10,1001+1*10,1011+1*10,1012+1*10 
♦KNDDO

K J-4 * N D IV  
♦D O,1 , 1 , NWEB,1 
D IS T= (N W E B -I)»LB A S E/N W EB  
A S -A S IN (D IS T / R A D IU S )
N I -N IN T  (AS/ALPHA)
K I-4 * N I+ 3
LARC, K J , K I , 1 ,  RADIUS
AL,4*N DIV+3*(N W EB+1)+2*N W K B+I, 4 * N D IV + 3 * I, 4*NDIV+3*NW KB+3+2*I, 4*N 
D IV + 3 * (1+1)
K J—K I 
*KNDDO
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* I F , C , G T , X , THEN 
C S YS ,1
K ,  2 0 0 0 ,R A D IU S ,- 9 0 , C
L ,  6 , 2 0 0 0
A R O TA T, 4* (N D IV+1) + 6 *NWEB , , , , , , 1 ,2  , -A LP H A  
AGEN,NDIV,NDIV+3*NW EB+2, , , , -ALPHA 
♦ENDIF

*I F , TH ETA 2 , G T , 0 , THEN
AROTAT , 4 * N D IV -2  , , , , , , 1 , 2 ,  -TH ETA2
* I F , C , G T , X , THEN
AROTAT , 8*NDIV+6*NWEB+1 , , , , , , 1 , 2 ,  -TH E TA 2
♦ENDIF
♦ENDIF
NUMMRO, KP

C S Y S ,1
L S E L , S , LO C , X , RADIUS 
A S L L , S ,1
V E X T , A L L , , , -T H IC Y L
A LLS E L
NUMMRG.KP

C S Y S ,1 
A S L V .S  
L S L A ,S
L S E L ,R , L O C ,X ,R A D + 0 .0001 , R A D IU S -0 .0001 
L E S IZ E  , A L L , , , ELNUM2

A S L V ,S  
L S L A , S
L S E L ,R ,L O C ,Z ,0 ,X  
L S E L ,U ,L O C , Z ,0  
L S E L ,U ,L O C ,Z ,X  
L E S IZ E ,A L L ,  , , ELNUM1

L S E L ,S ,L O C ,Z ,C  
L S E L , A , LO C , Z , X

L S E L , A , L O C , Z , 0
L S E L , R , L O C , X , RAD, RADIUS
L S K L , U , L O C , Y  , -  ( 90+THETA1 ) , -  (90+THETA)
L E S I Z E ,A L L , , , 1

A S L V ,S  
L S L A ,S
L S E L ,R ,L O C ,Z ,X ,C  
L S E L ,U ,L O C ,Z ,C  
L S E L ,U ,L O C ,Z ,X
L S E L ,U ,L O C ,Y , - (9 0 + T H E T A l ) , - (9 0 + T H E T A )  
L E S I Z E ,A L L , , , ELNUM4

L S E L ,S ,L O C ,Z ,C  
L S B L , A ,  LO C , Z , X 
L S E L ,A , L O C , Z ,0  
L S E L , R , L O C , X , RAD, RADIUS
L S B L ,R , L O C ,Y , - ( 9 0 . 1 + TH E TA 1 ), - ( 8 9 . 9+THETA) 
L E S I Z E ,A L L , , , ELNUM5

A LLS E L
* D O ,I,0 ,N W E B ,1
L E S IZ B , 4 * N D IV + 3 * I+ 3 , , , ELNUM3 
♦ENDDO

♦ IF , CWEB, E Q , 0 , THEN 
A D E LE , NDIV+NWXB+1 
K-NW EB-1
♦ ELS EIF ,C W E B , E Q ,1
K-NWEB
♦ENDIF

♦ D O ,I , 0 , K , 1
L E S IZ E ,4*N DIV+3*1 + 1 , , , ELNUM3
L E S IZ E ,4 * N D IV + 3 * I+ 2 ,, , ELNUM1
♦ENDDO
N IPR KC =N DIV
♦DO, X , 1 , NWEB,1



D IS T « (N W E B -I)  *LEASE/NWEB 
AS=AS IN  (D I ST/RADIUS)
N I= N IN T  (AS/ALPHA)
N II= N IP R E C -N I
L E S IZ E ,4 »N D IV+ 5 * N W E B + 3 + I, , , N I I
L E S IZ E ,4 * N D IV+ 3 *  (N W EB + l)+ 2 * 1 -1 , , , N I I
L E S IZ E , 4*NDIV+3*(NWEB+1) + 2 * 1 , , , N I I
N IPR EC=N I
♦ENDDO
A LLS E L

T Y P E ,10 
H A T , 10 
VMESH, ALL

T Y P E ,1 
M AT, 1

! BSHAPE,2 
R E A L ,2
*IF ,E X T W E B ,E Q ,1 , THEN 
AMESH, NDIV+1 
♦ENDIF
*I F , NWEB, G T , 1 , THEN 
AMESH, NDIV+2 , NDIV+NWEB, 1 
♦ENDIF

*I F , CWEB, E Q , 1 , THEN 
R E A L ,4
AMESH, NDIV+NWEB+1 
*ENDIF

R E A L ,3
AMESH , NDIV+2*NWSB+2 , NDIV+3*NWEB+1,1 
NUMMRO, ELEM

ADELE ,NDIV+NVfEB+2 ,NDIV+2*NW EB+1,1 
*DO , 1 , 1 ,  NWEB, 1

LDELE,4*NDIV+3*NWEB+2+2*I 
*XNDDO

♦IF, CWEB, E Q , 0 , THEN 
ADELS, NDIV+NWEB+1
L D E L E ,4*NDIV+3*NWEB+l,4*NDIV+3*NWEB+2 1♦ENDIF

* I F , EXTWEB, E Q , 0 , THEN 
ADELE, NDIV+1
LDELE,4 *NDIV+1,4 »NDIV+2,1 
♦ENDIF

NUMMR3, NODE

ASEL, S , L O C , Z , 0,0 
ASEL,INVX 
CSYS,0
ARSYM,Z ,A L L ,,,,0,0 
V SEL,ALL
VSYMM,Z ,A L L ,,,,0,0 

NUMMRO, NODE 

CSYS,1
NSEL,S ,L O C ,X ,RAD-TOLX,RAD+TOLX
TYPE,11
MAT,11
REAL,5
XSURF
ALLSEL

CSYS,1
NSEL,S ,L O C ,X ,RAD-TOLX,RAD+TOLX
NROTAT,ALL
ALLSXL
WAVES
FINISH
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C*** SOLUTION PHASE STARTS HERB.........
/SOLU
ANTYPE,STAT 
C SYS,0
NSEL , S , LOC, Y , - (RADIUS+B)
D, ALL, ALL

C SYS,0
NSEL,S,LOC,X,0 
D S Y M ,SYMM,X ,0

* CFOPEN,disp530,rad
*DO, 1 ,1 ,NW, 1
*DO, JJ, 0 , NA-1,1
J=HA-1-JJ
/SOLU
ANTYPE,STAT 

C SYS,1
SFEDELE , A L L , 1 , PRES 
ESEL,S,TYPE,,11 
N S L Z , ALL 
NSEL,R,LOC,Z,C,0
NSEL,R,LOC,Z,C-(1-1)*CC+TOLZ,C-I*CC-TOLZ 
N S E L , R , LOC, Y , - ( 90+THETA) + J* 2 »ALPHA-TOLY , 
(90+THKTA) + (J+l)* 2 *ALPHA+TOLY 
E S L N ,R ,1
SFE, ALL, 1, PRES, ,1 
ESEL,S,TYPE,,11 
N S L E ,ALL
NSEL,R,LOC, Z,0,-C
N S E L , R , LO C , Z , C - (I-1)»C C + TO LZ , C -I*C C -TO LZ  
N S E L , R , LO C , Y , -  (90+THETA) + J* 2 * A L P H A -TO LY , 
(90+TH ETA ) + ( J + l )  * 2 * ALPHA+TOLY 
E S L N , R ,1
SFE, ALL, 1, PRES, ,1 
ALLSEL

SOLVE
FINISH

/POST1
SET,LAST
RSYS,1
!/ sh ow , x l 1
!/p»f,pres,2
Iplnaol,u,x
*DO,II,1, NW, 1
*DO,KK,l,2*NA-l ,2
K-2*NA-KX
ESEL,S,TYPE,,11
NSLE, ALL
NSEL,R,LOC,Z,C-(2*11-1)*CC/2,C-(2*11-1) *CC/2
NSEL,R , L O C , Y , - ( 90+THETA) +K*ALPHA, - (90+THETA) +K+ALPHA
NSORT,U,X
*OET , DISPX , MAX
NSORT,U ,Y
*OET,DISPY,MAX
♦VWRITB, DISPX,DISPY
(E13.6,E 1 3 .6)

NSEL, ALL 
♦ENDDO 
*ENDDO 
ALLSEL

FINISH
«ENDDO
♦ENDDO
♦CFCLOSE
/ E X IT



APPENDIX 9

PEAK STRESS EVALUATION USING FORMULA METHOD - 
- used for ASME PVP 91 Paper by D H Nash

A  = 6 8 5 8 t  = 2 6 . 6  9 =  1 6 2

L  = 5 4 8 6 4 R  =  1 8 2 9  b =  7 6 2 D  = L -  ( 2  A )

L T1 R  A D
L R  =  — R t  = -  A R  = - D R

R t  R R  D R  =  2 2 . 4 9 8

A R  = 3 . 7 5

R t  = 6 8 . 7 5 9

L R  = 2 9 . 9 9 7

Note: if DR>18 then Fd is equal to 1.0 if AR>9 then Fa is equal to 1.0
D R  =  i f ( D R > 1 8 , 1 8 , D R )  D R  =  1 8

Basic Stress < r b  = 0 . 0 0 0 6 2 5 ' R 2  7 - t 1,71 CTb  =  1 . 4 7 - 1 0 3 N / m m 2

Weight Factor F w  = —  F  w  = 0 . 8 3 3

**** Now compute the factor Fa based on polynominal coefficients **** 
Factor Fa

F a ^ a  0 ’ a l ’ a 2 , a 3 , a 4 j  = a 0  +  a  +  a  2 ' ^ 2 +  a  +  a  4 ' A R 4

0 . 1 9 2  0 . 4 9 2  - 0 . 1 1 0  0 . 0 1 0 8  - 0 . 0 0 0 3 9 2 5

0 . 0 6 2 8  0 . 3 7 2  - 0 . 0 6 8  0 . 0 0 6 7  - 0 . 0 0 0 2 7 2 8 3 . 3

0 . 0 4 3 5  0 . 3 1 4 7  - 0 . 0 5 3  0 . 0 0 5 2  0 . 0 0 0 2 0 6 R T  = 1 2 5

0 . 0 3 2 9  0 . 2 8 3 9  - 0 . 0 4 5  0 . 0 0 4 8  - 0 . 0 0 0 1 8 1 6 6 . 7

0 . 0 2 1 7  0 . 2 4 8 3  - 0 . 0 3 5  0 . 0 0 3 4  - 0 . 0 0 0 1 4 2 5 0

Fi = F a ( C1i,0’ C1U ’ C1U ’ C1i3 ’ C1L4)

F  a  =  l i n t e r p ( R T , F , R t )  F  a  =  0 . 8 4 6

Fi R T ;
0 . 9 8 3 2 5

0 . 8 0 1 8 3 . 3

0 . 7 1 2 1 2 5

0 . 6 8 2 1 6 6 . 7

0 . 6 1 2 2 5 0

**** Now compute the factor Fd based on polynominal coefficients **** 
Factor Fd

Fd(a Q,a j ,a 2>a 3,a 4J = a q -l- a j -DR+ a 2 DR + a 3 DR + a ¿j-DR4

C 2  :=

0 . 7 6 8  0 . 0 3 1 1  0 . 0 0 1 0 5  0 . 0 0 0 2 7  0 . 0 0 0 0 0 8 6

0 . 7 2 9  0 . 0 3 2 8  - 0 . 0 0 2 7 2  0 . 0 0 0 1 8  0 . 0 0 0 0 0 4 5

0 . 7 0 6  0 . 0 4 1 3  0 . 0 0 4 5 2  0 . 0 0 0 2 8  0 . 0 0 0 0 0 5 9

0 . 7 1 0  0 . 0 3 3 6  0 . 0 0 3 0 4  0 . 0 0 0 1 6  0 . 0 0 0 0 0 2 6

0 . 7 1 9  0 . 0 2 0 7  0 . 0 0 0 7 2  0 . 0 0 0 0 0 5  0 . 0 0 0 0 0 0 9
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Fi :=Fd(C2i 0,C 2 .1 ,C2i;2,C2i3,C2j4j RT_I
25

F j  = linterp(RT,F.Rt) F d = 1.011

F.1__
0.996
1.015
0.999
0.99

0.982

83.3
125
166.7
250

“ Peak stress after factorization F w = 0.833 F = 0.846 F d = 1.011

F a =if(Fa>l, l .Fa) Fa =0.846

Fd: = if(Fd>l, l ,Fd) Fd = l

CTf  =CTb 'F a'F d 'F w  a f =  1 .037-103 N /m m 2

**** Now compute the factor F0 based on polynominal coefficients ****

rad=l d e g E - ^ -  0  = 0 - d e g  0=2.827
180

2 3 4
F®(a 0,a |>a 2>a 3>a 4j  =a 0 +a J-0-H a 2-0 + a 3-0 + a 4-0

C4 =

3.0942
3.0957
4.7471
6.1644
6.2541

-0.7109 
-0.7541 
3.2885 

-5.5586 
- 5.6086

-0.5451
-0.4288
0.8949
2.1783
2.1141

0.2663
0.1918
-0.0646
-0.3609
-0.3090

-0.0344
- 0.0207
- 0.0099 
0.0124 
0.0031

Fj :=F0(C4 0, C4; i , C4ij2, c4i3 , C4j 4)

F q  =  l i n t e r p ( R T , F , R t )  F 0  = 0 . 5 4 8

Fi RT;
0.547 25
0.548 83.3
0.51 125
0.497 166.7
0.511 250

**** n ow compute the factor Fb based on polynominal coefficients ****

B •=— B =0.417
R

FB,

C5

•  a  J  > a  2 ’ a 3 ’a 4 )  = a 0 - I -  a  j  B + a 2

1.6770 -4.871 8.7307 -6.2936 0

1.7040 5.094 9.2423 6.6604 0

1.7303 5.325 9.8450 7.1439 0
1.7563 5.566 10.526 7.7273 0
1.7746 5.738 1 1 . 0 1 1 8.1269 0

1.8110 6.105 12.149 9.1860 0

r>3L 2 *B + a 4 ’B
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Fj FB^C5j 0,C5j j,C5j^,C5i>3,C5j>4j

F ^  =  l i n t e r p ( R T , F . R t )  F j ,  = 0 . 7 0 5

Fj RTj

0.708 25
0.704 83.3
0.704 125
0.706 166.7
0.708 250

**** Now compute the factor FL based on po lynom ia l coefficients ****

FL ̂  a q  , a i  - a 2 ’ a 3 ’ a 4/  ~ a q  -t- a 1 FR  +■ a 2 LR +■ a 3 • LR +- a ^  • LR

05 :=

1.8607
0.4414
0.295
0.8206
1.195

0.1312 0.00681 
0.161 -0.01120 
0.172 -0.01040
0.0393 0.00007

-0.0533 0.00610

0.000151
0.00029
0.00024

-0.000081
0.000234

0.0000012

-0.0000025
-0.0000019
0.0000015
0.0000028

Fi :=FL(C5.t0,C5u>C5.)2,C5.)3,C5M)

F ^  = linterp(RT,F,Rt) Fj^ =0.984

F RTj
0.708 25
0.704 83.3
0.704 125
0.706 166.7
0.708 250

***** Hence final results for factors and peak stress is given by: *****

F w = 0.833 F 0 =0.548 F d = 1

F b =0.705 F a =0.846 F L =0.984

V = °  b F w Fb Fe Fa'Fd'FL 0  P ° 394 239 N/mm2
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