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Abstract

This thesis explores the development and application of innovative algorithmic, data-

driven, machine learning, and natural language processing tools designed to enhance hu-

man reliability analysis in critical sectors such as nuclear power, aviation, and oil and

gas. Motivated by identified challenges and opportunities in these industries, a suite of

advanced tools was created to address key aspects of safety analysis and management.

Presented in this work are six tools, the first- and second- generation Virtual Human

Factors Classifiers, the Human-Centric Summarizer, the High-Potential Violation Trig-

ger Identification tool, the Ambiguity Identifier and finally the Human Factors Causal

Relationships tool.

The Virtual Human Factors Classifiers were designed to automatically read analyze ac-

cident reports to classify the contributing factors. The primary motivation for this de-

velopment was the expansion of a human reliability analysis database (MATA-D, Multi-

attribute Technological Accidents Dataset), to provide the additional data necessary to

address the issue of missing information and reduce the uncertainty of human error prob-

ability models. The tools have also demonstrated additional applications such as aiding

assessors in their reviews of accidents and informing the procedure design process.

Complimentarily the Human-Centric Summarizer was developed to distill lengthy acci-

dent reports into high-quality concise summaries, that emphasize the human role in the

incident. The summarizer serves a dual purpose. Firstly, it aids researchers and safety

professionals in rapidly grasping each report, as well as any models based on the incid-

ent, without delving into the pages of detailed reports. Secondly, it assists in maintaining

and updating the MATA-D. The summaries generated provide a quick reference to the

key points of each incident, facilitating easier analysis and review of performance shaping

factor classification.
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In high-risk industrial environments, the clarity and accuracy of standard operating pro-

cedures are critical for ensuring safety and regulatory compliance. The presence of am-

biguities in standard operating procedures can lead to misunderstandings, errors, and

increased risks. While violations of procedural directives can significantly contribute to

catastrophic outcomes.

To address these issues, two additional tools are introduced that leverage both rule-based

and machine learning methodologies in natural language processing to evaluate the qual-

ity of standard operating procedure documents. The High-Potential Violation Trigger

Identification tool identifies directives within procedural guides that when violated pose

a high-risk potential. And the Ambiguity Identifier has been designed to detect various

types of ambiguities and misleading steps within procedure guides.

By addressing these linguistic and procedural discrepancies, the tools aim to enhance the

clarity and applicability of standard operating procedures, ultimately improving adher-

ence and reducing risks in complex operational settings.

The final tool presented in this work is the Human Factors Causal Relationships Tool.

It leverages data collected through the MATA-D to identify causal relationships among

performance shaping factors. This tool is designed to reduce reliance on expert judgment

in the development of human error models, thereby helping to mitigate concerns related

to subjectivity and bias.

Case studies are presented for each tool, demonstrating their real-world utility and effect-

iveness in critical industry contexts. This thesis highlights the potential of data-driven

and natural language processing approaches to revolutionize human reliability analysis

practices, ultimately enhancing safety across critical industries.
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Chapter 1

Introduction

In today’s interconnected and highly complex industrial landscape, safety and risk man-

agement are paramount. Industries such as nuclear power, aviation, oil and gas, and

chemical manufacturing operate under conditions where human error can lead to cata-

strophic consequences. In these high-stakes environments, Human Reliability Analysis

(HRA) provides a systematic approach to identify, evaluate, and mitigate human errors,

thereby enhancing overall safety and system reliability.

HRA methodologies help in understanding how human actions impact system safety, fa-

cilitating the development of strategies to reduce error rates. Human errors can manifest

in various forms, including lapses, slips, and mistakes, all of which compromise safety

(Moura 2023). Recognizing this, authoritative bodies such as the International Atomic

Energy Agency (IAEA), the US Nuclear Regulatory Commission (NRC), and the In-

ternational Organization for Standardization (ISO) advocate for the use of HRA as an

essential tool for improving safety in critical operations (IAEA 1996; NRC 2006; ISO

2018).

The significance of HRA cannot be overstated. It provides a structured approach to under-

standing human behavior in operational contexts, enabling the identification of potential

errors before they result in incidents. By incorporating HRA into safety management

systems, industries can enhance their resilience and ensure safer operational practices.

Moreover, HRA facilitates the design of better training programs and the development of

more effective human-machine interfaces (Gunda and Singh 2023).

1
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Human Error Probability (HEP) is a key metric in HRA, representing the likelihood of

error during task execution. As a quantifiable estimate, HEP plays a critical role in sys-

tem safety assessments by indicating the probability of human error in specific operational

contexts (Sun et al. 2012). By determining HEP, industries can identify high-risk tasks

and implement measures to mitigate these risks, thereby reducing the potential for acci-

dents.

Determining HEP involves several steps:

1. Task Analysis: Breaking down tasks into smaller, manageable components to un-

derstand the specific actions required and where errors might occur.

2. Data Collection: Gathering data from various sources such as historical accident

reports, operational data, and expert judgments to inform the probability calcula-

tions.

3. Modeling Techniques: Using probabilistic models, such as the Technique for Human

Error Rate Prediction (THERP) (Swain and Guttmann 1983) or the Human Cognit-

ive Reliability (HCR) (Hannaman et al. 1985) model, to estimate error probabilities

based on collected data and defined tasks.

4. Validation and Calibration: Comparing the model predictions with actual observed

data to ensure accuracy and to adjust the models as necessary to reflect real-world

conditions accurately (Sun et al. 2012).

HEP provides a quantitative basis for assessing human reliability and is integral to design-

ing interventions that enhance safety by reducing the likelihood of human error.

Various Performance Shaping Factors (PSFs) influence HEP, including environmental,

organizational, technological, and personal factors (Hollnagel 1998). PSFs are the condi-

tions and influences that affect human performance and can either increase or decrease

the likelihood of errors. Evaluating PSFs requires both qualitative and quantitative meth-

ods. Qualitative approaches, such as structured expert judgment elicitation and scenario
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analysis, help interpret complex interactions and contextual factors that are difficult to

quantify (Kirwan 1994). These methods are complemented by quantitative techniques

involving statistical models and empirical data.

Key PSFs include:

• Environmental Factors: Conditions such as lighting, noise, temperature, and work-

space layout that can affect an individual’s ability to perform tasks accurately.

• Organizational Factors: Elements like management practices, communication sys-

tems, and safety culture that impact how tasks are performed and supervised.

• Technological Factors: The design and functionality of equipment, tools, and inter-

faces that workers use, which can facilitate or hinder task performance.

• Personal Factors: Individual characteristics such as experience, training, stress levels,

and cognitive abilities that influence how tasks are executed (Hollnagel 1998).

Evaluating PSFs is vital for accurate HRA and effective risk management. By under-

standing how these factors interact and influence human performance, industries can

design better systems, processes, and training programs to reduce the probability of er-

rors (Moura et al. 2016). This comprehensive approach ensures a more reliable and safer

operational environment.

However, implementing HRA comes with several challenges and limitations. There is a

growing demand for more quantitative, evidence-based methods to support analysis and

decision-making across various fields. This demand relies on accurate and comprehensive

data, which is often unavailable. As collecting the required data is labor-intensive and

time-consuming, requiring meticulous analysis to ensure all relevant factors are identified

(Moura et al. 2016). Consequently, HRA heavily depends on expert judgments, which can

introduce subjective biases and inconsistencies in the analysis.

Given the complexity of the systems and the numerous factors influencing human per-

formance, it can be difficult to explain the rationale behind conclusions and decisions

reached. This lack of explainability can hinder the acceptance and implementation of

HRA recommendations by stakeholders (French et al. 2011).

The field increasingly desires to incorporate more data-driven and computational ap-
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proaches, leveraging technological advances to enhance HRA. By utilizing data, advanced

analytics, and machine learning (ML) in various and innovative ways, industries can be-

nefit all processes and improve overall safety.

Inspired by this demand and technological advancements, this thesis discusses the devel-

opment of several computational tools, integrating ML and Natural Language Processing

(NLP) techniques, to tackle various challenges in HRA.

1.0.1 Motivation, Goals and Contributions

The motivation for this project stems from the need to modernize HRA by integrat-

ing data-driven approaches. Traditional HRA techniques often depend on expert judg-

ment and qualitative assessments, which can limit consistency and scalability. This thesis

presents a suite of tools designed to support key aspects of HRA processes through nat-

ural language processing (NLP) and machine learning (ML). Together, the contributions

aim to enhance the precision, efficiency, and practical utility of HRA in safety critical

contexts.

To increase the utilization of data and ML in HRA, the first challenge to address is data

availability. Collecting HRA relevant information, particularly from real-world incidents,

is a labor-intensive and time-consuming process. Developing more efficient data collec-

tion methods is essential to ensure the availability of comprehensive and accurate data

for analysis. Improving this process not only accelerates the identification of key factors

and trends in human error but also supports more informed modeling and evidence based

safety interventions. While faster access to insights can improve responsiveness, the ulti-

mate goal is to enable deeper, data-supported understanding that underpins robust and

deliberate safety decisions.

The first tool developed to improve the efficiency of HRA data collection, while effective,

lacks the precision and contextual understanding required for unsupervised data collec-
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tion with confidence. Therefore, there is a need to develop a second-generation tool that

utilizes advanced ML models capable of collecting data that is more reflective of real-

world scenarios. This improvement would lead to increased confidence in the data, and to

better-informed decision-making and more effective risk mitigation strategies.

The first tool presented is a classifier, developed to improve the efficiency of HRA data

collection. While effective in reducing manual effort, it lacks the precision and contextual

awareness needed for fully unsupervised operation. To address this a second-generation

classifier has been developed. This tool leverages advanced ML techniques to improve

the accuracy and contextual relevance of collected data, making it more representative

of real-world scenarios. These improvements increase confidence in the data and support

better informed decision-making and more effective risk mitigation strategies.

Effective safety management also depends on the clear and context-rich communication of

insights. Accident reports typically contain extensive and complex narratives, which can

obscure critical information related to human involvement. The third tool presented is a

summarization tool developed to distill these reports into concise, accessible summaries

that highlight human elements. These summaries are designed to support comprehensive

analysis by making key insights easier to interpret and communicate across stakeholders.

With enhanced data availability and improved interpretation, it becomes feasible to un-

cover and analyze the complex dependencies and interactions between various PSFs. A

fourth tool (presented last in this thesis) addresses this need by applying machine learning

techniques to identify and model the relationships between PSFs based on collected hu-

man reliability data. By learning from real-world patterns, the tool generates structured

representations of how different factors influence each other and contribute to human

error. These data-driven models allow for the visualization and support the quantitative

estimation of HEP.

Building on this analytical foundation, the final tools presented in this thesis focus on

enhancing the clarity, consistency, and safety impact of standard operating procedures

(SOPs). SOPs play a critical role in guiding human actions in complex and high-risk

environments, but they can often suffer from ambiguity, inconsistent phrasing, or poor
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alignment with operational context.

The fifth tool analyzes SOP text to identify vague language, syntactic complexity, and

structural inconsistencies that may contribute to misinterpretation or non-compliance.

The sixth tool builds on this by identifying high-risk directives that are critical to safety.

By flagging these elements, the tool enables focused review and targeted intervention,

helping organizations ensure that critical instructions are not only clear but also reliably

followed.

Together, these tools support a more systematic and data-informed approach to proced-

ural design, contributing to reduced human error, improved compliance, and stronger

overall safety outcomes.

While this work emphasizes improving the efficiency of data handling, interpretation, and

communication, its deeper purpose is to enhance the quality of safety-related decision-

making. The tools are designed not to replace expert judgment, but to support it, provid-

ing timely, structured, and relevant insights that help ensure safety interventions are

grounded in careful, comprehensive understanding.

Based upon these motivations this thesis sets out the following main goals;

• (G1) Overcome data collection constraints by developing a more efficient approach

for learning data from accident reports.

• (G2) Increase confidence in the automated extraction and collection of data.

• (G3) Support more efficient decision making, while maintaining understanding and

explainability when reviewing the human role in incidents.

• (G4) Reduce reliance on expert opinion in HRA model construction.

• (G5) Improve the clarity and accuracy of SOPs, particularly focusing on ambiguity

and directives with high-risk potential if violated.
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1.0.1.1 Contributions

This thesis’ main contribution is the development of a suite of tools that aim to tackle

each of the goals, thereby enhancing HRA and improving safety outcomes across various

high-risk industries.

To address (G1) the a automated classification tool (presented in Chapter 3 has been

development, designed to automate the identification of influencing factors and human

errors in accident reports, enabling more efficient collection of HRA data.

(G2) is to address the limitations encountered in the initial response to (G1). To increase

confidence in automated data collection, and utilise developments in NLP, a second-

generation classifier was designed (presented in Chapter 4). This tool leverages a large

language model (LLM), specifically BERT.

To meet (G3), together with the classifier tools, a tool for summarizing the human role

within accident reports has been created, introduced in Chapter 4. This tool provides

evidence and explainability for the classification, in a concise format that facilitates a

more structured and accessible evaluation process. This supports faster understanding,

with the goal of enabling informed and carefully considered decisions.

To reduce the reliance on expert opinion in model construction (G4), a data-driven tool

to support the identification of the causal relationships between PSFs has been developed.

The tool leverages established approaches in Bayesian network (BN) construction, with

the option of integrating expert opinion (Chapter 6, Section 6.4).

Finally, to address (G5), two distinct tools were developed that combine linguistic rules,

NLP, and ML techniques. The first of these tools is designed to identify ambiguous word-

ing, structure, and terminology in SOPs. The second leverages insights from past incidents

to flag directives with high-risk potential if violated. Both SOP focused tools are presented

in Chapter 5.
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1.0.2 Thesis Structure

In the following chapters, the development, implementation, and case study applications

of the tools, designed to address the identified motivations and achieve the intended im-

pacts, are presented.

The second chapter provides the background on HRA, data, and ML methods. It details

the relevant and related studies for each of the identified challenges. This chapter further

supports the motivations behind each of the developed tools.

Chapter 3 introduces the Virtual Human Factors Classifier, designed to automate the

identification of influencing factors and human errors in accident reports, enabling more

efficient collection of HRA data. This chapter is based on a journal paper co-authored by

the candidate, paper [P1], titled “Identification of Human Errors and Influencing Factors:

A Machine Learning Approach,” published in Safety Science Journal - Volume 146 in

February 2022 (Morais et al. 2022a).

Chapter 4 begins with a discussion of the limitations of the classifier from Chapter 3

and other challenges associated with the use of data and ML, particularly regarding ex-

plainability. This is followed by the introduction of the second-generation Virtual Human

Factors Classifier, which leverages advancements in NLP and LLM. Additionally, a tool

for summarizing the human role within accident reports is introduced (Humane-Centric

Summarizer), providing evidence and explainability for the classification and enabling

quicker evaluation and decision-making. This chapter is based upon work presented at

the European Safety and Reliability Conference (ESREL 2023) in the paper, [C3] titled

“Natural Language Processing Tool for Identifying Influencing Factors in Human Reliab-

ility Analysis and Summarizing Accident Reports” (Johnson et al. 2023b).

Chapter 5 introduces the development of two distinct tools designed to help improve

the quality, clarity and accuracy of SOPs. These tools leverage a mixture of linguistic

rules, NLP and ML techniques to identify potentially ambiguous wording, structure and

terminology, and to identify directives with the SOP that when violated or circumven-

ted can lead to significant increase in risk potential. The chapter is based upon, [P2],

“Enhancing Procedure Quality: Advanced Language Tools for Identifying Ambiguity and
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High-Potential Violation Triggers” submitted to Reliability Engineering & System Safety

journal. The work was also presented at the European Safety and Reliability Conference

(ESREL 2024), [C4], titled “Identifying Ambiguity And Potential Violations In Standard

Operating Procedures Using Natural Language Processing Tools” (Johnson et al. 2024).

Chapter 6 consists of the mathematical/statistical background and technical implementa-

tion of the tools, in part based on work presented at UNCECOMP 2023 - 5th ECCOMAS

Thematic Conference on Uncertainty Quantification in Computational Sciences and En-

gineering, [C2], titled “AI Tools for Human Reliability Analysis” (Johnson et al. 2023a).

Chapter 6 also discusses one final tool (Human Factors Causal Relationships tool), presen-

ted at ESREL 2022, [C1], “A Data Driven Approach to Elicit Causal Links between Per-

formance Shaping Factors and Human Failure Events” (Johnson et al. 2022)).

Finally, Chapter 7 presents its the main contributions, implications and recommendations

for the future.

All data supporting this thesis is available at https://datacat.liverpool.ac.uk/1018/.

(Moura et al. 2016), and https://safetyzone.iogp.org/ (IOGP 2024).

Additional methodological details and supplementary code are provided in Appendix A.

The full source code for all developed tools is available at the following repositories,

• https://github.com/VirtualRaphael/Human-Factors-Classifier-1.0

• https://github.com/VirtualRaphael/Human-Factors-Classifier-2.0

• https://github.com/VirtualRaphael/Human-Centric-Summarizer

• https://github.com/VirtualRaphael/Ambiguity-Identifier

• https://github.com/VirtualRaphael/Violation-Trigger-Tool

• https://github.com/VirtualRaphael/Human-Factors-Relationships-Tool

https://datacat.liverpool.ac.uk/1018/
https://safetyzone.iogp.org/
https://github.com/VirtualRaphael/Human-Factors-Classifier-1.0
https://github.com/VirtualRaphael/Human-Factors-Classifier-2.0
https://github.com/VirtualRaphael/Human-Centric-Summarizer
https://github.com/VirtualRaphael/Ambiguity-Identifier
https://github.com/VirtualRaphael/Violation-Trigger-Tool
https://github.com/VirtualRaphael/Human-Factors-Relationships-Tool


Chapter 2

Background and Existing Studies

2.1 Human Reliability Analysis & Data

HRA involves the evaluation, assessment and estimation of HEPs, and the factors that

influence it, in various operational contexts. To carry out quantitative HRA and calculate

HEPs, a range of data sources are often utilized, each with distinct advantages and lim-

itations. These sources include expert judgments, data from simulators, real operations,

near misses, and accidents (Kirwan 1994).

Expert elicitation involves gathering insights and predictions from experienced practition-

ers in the field. This data source is useful for scenarios where empirical data is scarce or

difficult to obtain. However, expert judgments can be subject to biases such as overcon-

fidence and anchoring (Mosleh et al. 1988). Despite these limitations, expert elicitation

remains an essential component of analysis, providing contextual understanding that com-

plements quantitative data sources.(Laumann 2020).

Simulators are used to mimic real-world systems and environments, allowing operators

to practice and be evaluated in a controlled setting. This data is valuable for studying

human-machine interactions, especially in high-risk industries like nuclear power, aviation,

and chemical processing. Data from simulators can often be limited to human-machine in-

terfaces in control rooms and may not fully capture all PSFs due to the de-contextualized

nature of the tasks studied. Other limitations include the artificial nature of the envir-

10
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onment, operators know that their actions have no real consequences and that they are

being observed, which can influence their behavior (Park et al. 2004).

Real operation data is typically considered the most reliable for estimating human er-

ror probabilities as it reflects real-world events and conditions. It provides direct insights

from actual operational environments, capturing genuine human behaviors and error rates

under real-world conditions (James et al. 2014). This authenticity ensures that the data

reflects true operational stresses, constraints, and complexities. Real operation data en-

compasses a wide range of information, from routine performance logs to detailed incident

reports. This breadth of data provides a holistic view of human performance and error

patterns across different scenarios.

Real operation data includes near-miss reports. These are incidents that could have res-

ulted in an accident but did not, often due to timely intervention or luck. By analyzing

near-misses, organizations can identify potential hazards and error patterns before they

result in significant consequences and implement preventive measures to mitigate risks

proactively.

Accident reports are a critical component of real operational data, offering several unique

advantages. These reports provide a detailed analysis of incidents, including a thorough

examination of the interplay between human, machine, and organizational factors leading

to failures. This in-depth analysis helps uncover root causes and contributing factors that

may not be evident in other data sources.

One significant advantage of accident reports is their inclusion of root cause analyses.

These analyses explore the underlying reasons for failures, offering a comprehensive un-

derstanding essential for developing effective strategies to prevent future incidents. Learn-

ing from past incidents is crucial for improving safety and risk mitigation, as past events

offer valuable insights and recommendations for preventing future incidents.

The availability and accessibility of many accident reports provide a wealth of informa-

tion for researchers and practitioners. Public access to these reports ensures that valuable

lessons from past incidents can be widely disseminated and applied across different indus-



2.1. Human Reliability Analysis & Data 12

tries. This openness enhances the collective understanding of safety and risk management

practices. Accident reports are invaluable for their detailed analyses, root cause invest-

igations, accessibility, and the actionable insights they provide. By learning from these

reports, organizations can enhance their safety practices and prevent future incidents.

2.1.1 MATA-D

The Multi-Attribute Technological Accidents Dataset (MATA-D) encompasses a substan-

tial collection of 238 major accidents sourced from a variety of complex industrial sectors

such as aviation, chemicals, oil & gas, nuclear, and waste treatment. This dataset provides

a unique opportunity for cross-sectorial learning and analysis of major industrial accidents,

focusing on human, organizational, and technological factors that contribute to such in-

cidents (Moura et al. 2016)

MATA-D is compiled from detailed accident investigation reports, each thoroughly ana-

lyzed to distill contributing PSFs. These reports are primarily in English and averaging

two hundred pages in length, offer rich insights into diverse accidents across multiple in-

dustrial settings. Of these, 110 reports are publicly accessible and have been crucial in

both training and testing data analysis tools (Morais et al. 2020).

To classify the contributing human factors in these accidents, the Cognitive Reliability

and Error Analysis Method (CREAM) was employed. Developed by (Hollnagel 1998), this

framework categorizes errors and PSFs into organizational, technological, and individual

elements. This taxonomy not only aids in accident analysis but also enhances risk assess-

ment capabilities by pinpointing prevalent factors in accidents.

The dataset categorization involved a meticulous manual coding process, referencing the

CREAM taxonomy to classify each report with Boolean values, indicating the presence

or absence of specific factors (Moura et al. 2016). This process required a substantial time

commitment, however ensured a high level of detail and accuracy. This is necessary for

developing reliable human reliability models with confidence. This binary classification

allows for the application of straightforward statistical methods or sophisticated models
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to identify patterns and predict future risks. MATA-D, coded in Excel, provides an easy-

to-use interface for researchers and practitioners to access and analyze data, available for

download at https://datacat.liverpool.ac.uk/1018/.

The MATA-D capitalizes on reports from a wide range of sectors to support cross-industry

learning, each characterized by its unique format and vocabulary. The diversity in report

format is not only evident in the varying number of pages but also in the reproducibility of

sections within the corpus (Morais et al. 2022a). Similarly, the vocabulary differs signific-

antly, reflecting the specific jargon and taxonomy relevant to each industry’s investigative

methodologies. Despite the additional challenges presented by the varied structures and

vocabulary, these allow the MATA-D to provide insights into the specific conditions and

factors contributing to accidents across various industries but also supports the devel-

opment of robust analytical models capable of interpreting complex and diverse data

effectively.

Within the MATA-D there are two significant subsets of reports. First, it contains a col-

lection of 57 reports from the US Chemical Safety and Hazard Investigation Board (CSB),

focusing on industrial chemical accidents. The second subset is comprised of 20 reports

from the US National Transportation Safety Board (NTSB), this subset focuses on trans-

portation accidents (Moura et al. 2016).

MATA-D is a valuable resource for advancing HRA, offering comprehensive, cross-industry

data on human factors in major accidents. Its detailed classification of human errors and

PSFs, combined with ease of access, makes it an essential tool for enhancing predict-

ive models and developing effective strategies to reduce human error and improve safety

across various industries.

https://datacat.liverpool.ac.uk/1018/
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2.2 Machine Learning, Natural Language Processing

in HRA

The availability of data has led to increased interest in data-driven decision-making and

ML modeling across various industries. For instance, in aviation, HRA models have been

developed to predict maintenance needs and enhance safety protocols, employing tech-

niques such as the Human Error Assessment and Reduction Technique (HEART) and BN

models to evaluate and manage human errors (Yazgan and E. 2024). In the healthcare

sector, HRA is utilized to improve patient safety by systematically analyzing incident

reports to identify and mitigate human errors (Sujan et al. 2020).

However, for these models to be reliable and reflect a broader range of possible situations,

more data is required. Increasing the volume and variety of data enhances the models’

robustness and helps in capturing more nuanced patterns that may not be apparent in

smaller datasets.

ML and NLP have been identified as effective means to automate the collection of data,

particularly through the classification of textual data.

2.2.1 Automated Classification

As might be expected, fields and industries that generate substantial textual data have

always shown the most interest in ways to process and analyze this information.

At the beginning of this project, studies that used ML strategies to classify textual nar-

ratives into safety and risk features were identified. The sample also focused in industries

with similar level of organizational and technological complexity as found in MATA-D, as

well as those that have investigated at least one human factor as one of the features, such

as aviation (Robinson et al. 2015), railway (Hughes et al. 2016; Heidarysafa and Brown

2018), oil & gas (Ribeiro et al. 2020), civil construction (Goh and Ubeynarayana 2017)

and maritime industries (Grech and Smith 2002). A comprehensive review of the applica-
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tion of ML techniques in occupational accident analysis, mixing multiple industries with

lower level of complexity is provided by Sarkar and Maiti (2020).

Despite large research and application of ML approaches, gaps and needs for risk and

reliability analysis remain. Previous studies have not classified full accident reports into

a human reliability taxonomy, nor have any attempts been made to expand databases of

human reliability with the support of ML, or within multiple industry sectors. This led

to the first development of this thesis, the first-generation classifier (Morais et al. 2022a).

Since the beginning of this project, interest in NLP has increased substantially, leading to

a surge in the automation of text and report analysis and the inclusion of more advanced

techniques.

The healthcare sector, with its daily influx of incident and patient safety reports, has

become a focal point for the application of NLP methods and tools. A comprehensive re-

view of such research is presented by Trinh et al. (2023), concerned particularly with the

risk of falls.Within this domain, an approach focused on categorizing factors from patient

safety event reports employs a methodology similar to the first-generation classifier. It

utilizes Bag of Words (BoW) representations and machine learning models, enhanced by

a systematic selection of information-rich sentences, which significantly improves categor-

ization performance (Tabaie et al. 2023).

More recently developed approaches, using technologies such as BERT (Macêdo et al.

2022) and Contextual Word Embeddings (Macedo et al. 2023), have been leveraged to

identify the causes of accidents across various industry sectors. However, these works

have predominantly concentrated on specific industry domains, such as aviation (Jing

et al. 2023) or Oil & Gas (Macêdo et al. 2022) rather than adopting a cross-industry

perspective. Moreover, they tend to identify a limited array of specific factors, in contrast

to this research’s aim of comprehensively mapping the full spectrum of factors. As well

as this, much of the existing literature on accidents is geared towards categorizing the

severity of incidents, rather than uncovering their root causes (Ramos et al. 2022; Oliaee

et al. 2023).



2.2. Machine Learning, Natural Language Processing in HRA 16

2.2.2 Summarization

The growing complexity and volume of data necessitate effective summarization tech-

niques to make sense of extensive textual information and support efficient understanding

and explainability of other automated analyses.

There are two main approaches to automated summarization, extractive and abstract-

ive. Extractive summarization involves targeting and extracting key phrases, sentences,

or segments directly from the source text, and then combining these to form a sum-

mary. Extractive summarizations consist of portions of the original text verbatim and

is therefore generally very accurate in terms of factual correctness. However, these may

lack coherence, be less fluent, and may miss out on conveying the overall essence of the

original text. Abstractive summarization involves aiming to understand the main ideas of

the source text and then expressing them in a new and concise way. These can produce

more coherent and fluent summaries, that often capture the overall essence of the text

more effectively than extractive methods. With this increased creativity there is a higher

risk of inaccuracies or distortions of the original text’s meaning, as the process involves

paraphrasing and interpretation (Zhu et al. 2021). Inconsistency in the text structure of

accident reports may prevent extractive summarization algorithm’s ability to extract the

key points, and variation in the written styles can affect the algorithm’s ability to consist-

ently identify the most relevant information. The success of extractive algorithms relies

heavily on the quality and clarity of the source text, poorly written texts with industry

specific language, ambiguous phrasing, and/or complex sentence structures can impede

the model’s ability to extract meaningful content. Extensive comparison of the two types

of summarizations can be found in (Bhargav et al. 2022).

When it comes to abstractive summarization there are two main approaches, one is to

fine-tune your model for your specific task, the other is to leverage the pre-trained summar-

ization models on specifically targeted text. The main challenge with fine-tuning summar-

ization tools is the data requirements. Fine-tuning often requires large, high-quality data-

sets that contain both the original texts and corresponding summaries (El-Kassas 2011).

Gathering and preparing such datasets would be extremely time-consuming and resource-
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intensive, comparable with the original construction of the MATA-D, if not greater due

to the required quality of such summaries, as they should be accurate, coherent, and ef-

fectively capture the main points of the original text.

Recent developments of more sophisticated models has significantly enhanced the capab-

ilities of text summarization tools. LLMs use deep learning techniques to understand and

generate human-like text, enable them to create summaries that are not only accurate

but also contextually rich and coherent with remarkable nuance and relevance (Liu et al.

2023).

There have been limited applications of such automated summarization approaches within

the domain of accident reports. One approach, concerned with summarizing coal mine ac-

cident reports, specifically targets sections before summarizing/rearranged to optimize

clarity (Zhao et al. 2020). The algorithmic approach, using the TextRank and Word2Vec

packages, is designed to generate summaries of the entire reports, leveraging the consist-

ent structure these reports typically follow. However, this contrasts with the objectives of

this work, which has a dual focus: firstly, to summarize incidents, focusing specifically on

human behavior and errors, as well as the influencing factors, and secondly, to be versatile

enough for application across industry where variations in report quality and structure

encountered are significant.

Our aim in developing the summarization tool is to create a more adaptable method that

can effectively handle diverse reporting formats and content complexities, while harness-

ing the identified strengths of both summarization types.

2.2.3 HEP Modelling – Bayesian Networks

HRA involves understanding and modelling the factors that influence human performance

and error. These factors are often interdependent, necessitating the consideration of their

interrelationships (Groth and Mosleh 2012). This requirement has led to the development

of causal models that explicitly capture these dependencies. Such models not only calcu-

late HEP but also elucidate why errors occur and how they can be prevented.
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BNs have become a popular choice for building these models due to their graphical struc-

ture, which clearly illustrates the causal links between PSFs and events. This visual repres-

entation makes the relationships easily understandable even to those not directly involved

in the model’s construction. The influence of these factors on each other can be extracted

from the conditional probability tables (CPTs) included in the model (Groth and Mosleh

2012).

The use of BNs addresses several challenges within HRA, including the shift towards data-

driven models. Analysts can combine information from various sources, such as empirical

data (e.g. MATA-D) and expert opinions, to build these models. Successful applications

of BNs to model HEP with differing levels of complexity can be found in (Groth and

Mosleh 2011; Fan et al. 2022; Mkrtchyan et al. 2015; Podofillini and Dang 2013).

However, while empirical data is often used to estimate the conditional probabilities,

the network structure is typically derived from expert judgment. This reliance on expert

opinion to identify causal links can introduce biases, potentially overlooking some causal

relationships between factors (Mkrtchyan et al. 2015).

2.3 Standard Operating Procedures

SOPs are pivotal in various sectors for enhancing consistent quality, safety, and reducing

miscommunications. The primary benefits of SOPs include error prevention, facilitating

knowledge transfer, and ensuring consistent guidelines are available (Gough and Hamrell

2009). The development of effective SOPs must involve those who perform the tasks, in a

‘walk-through/talk-through’ process, not only to encourage ownership and adherence of

the end user, but also to enable the analyst or SOP writer to see if procedures are accurate

reflection of how things are really done (Institute 2020). This process is usually known in

human factors community as ‘work as done versus work as imagined, and benefits from

the “Plan-Do-Check-Act” cycle, a dynamic model that promotes continuous improvement

through iterative updates and feedback (Amare 2012, Institute 2020).
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Moreover, SOPs are instrumental in regulatory compliance and efficient business opera-

tions. They serve as a first line of defense during inspections and are legally binding doc-

uments, underscoring their importance in maintaining consistent, quality outputs across

all operational processes. The literature highlights challenges when SOPs are outdated,

contradictory, or not reflective of actual practices, which necessitates regular updates and

internal compliance to align with true operational procedures (Gough and Hamrell 2009).

This alignment is also crucial as SOPs and quality management systems are interdepend-

ent, evolving with the business to continuously improve processes and ensure product

integrity.

Clear and high-quality design and writing are essential for effective SOPs. Hollman and

Nechyporenko (2020) provided “Ten simple rules on how to write a standard operating

procedure,” which include identifying when an SOP is necessary, defining the purpose and

scope and reviewing and approval of the SOP.

Responsibilities for writing, reviewing, and approving the SOP should be clearly assigned,

and the SOP should be tested with colleagues, specifically the ‘end users’, to ensure its

effectiveness. Regular reviews and updates are crucial to adapt the SOP to procedural

changes and to improve the document continually (Ahmed et al. 2020).

Despite the critical role of SOPs in ensuring safety and compliance, their effectiveness

can be undermined by ambiguity (Steen-Tveit et al. 2024). The MATA-D is a collec-

tion of major accident reports drawn from various industrial sectors such as aviation,

chemicals, oil & gas, nuclear, and waste treatment (Moura et al. 2016). This dataset has

used a framework categorizes errors and performance-shaping factors into organizational,

technological, and individual elements. In this study, particular attention is given to the

factor “Inadequate procedure”. Analysis of the MATA-D entries reveals that 45% of the

accidents were influenced by “Inadequate procedure” as a contributing factor.

Kim et al. (2022) conducted an empirical study on HEP related to procedure-extraneous

behaviors, which are commission errors occurring when operators engage in actions not

explicitly guided by procedures. Using data from a nuclear power plant simulator, the

study estimated error probabilities. The findings highlight the importance of accurate

and clear SOPs, as errors stemming from deviations or misinterpretations can lead to

operational failures.
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Ultimately, SOPs are relevant influencing factors that influence human performance when

executing a task. The majority of HRA techniques cited by the review from Health

and Safety Executive UK, account for procedure quality as a performance influencing

factors (Bell and Holroyd 2009). Including, Technique for THERP, CREAM, HEART,

Standardized Plant Analysis Risk-Human Reliability Analysis Method (SPAR-H), Ac-

cident Sequence Evaluation Program (ASEP), A Technique for Human Event Analysis

(ATHEANA).

2.3.1 Identifying Ambiguity

The first challenge is how to automatically detect and identify steps and instructions that

are ambiguous in some manner. This is a challenging problem, that has grown in signi-

ficance with the increased popularity and development of research around NLP. This has

necessitated the development of sophisticated tools to identify and measure ambiguity

in natural language texts, a crucial aspect for enhancing communication, interpretation

and understanding. Various strategies and tools have been proposed in recent research to

tackle the identification and resolution of ambiguities in text.

Ambiguity in language can manifest in multiple forms, each type poses unique challenges

in detection. Several studies have proposed different methodologies for addressing these.

Ceccata et al. (2005) developed a tool for aiding writers by identifying ambiguous phrases

in document. The tool utilizes lexical databases, like WordNet, to assess the potential

meanings of each word and how the word’s context within a sentence might affect its

interpretation. This process aims to pinpoint words that could be understood in multiple

ways, thus contributing to textual ambiguity. Once potential ambiguities are identified,

the tool measures the extent of the ambiguity, based on a quantifiable scale derived from

the number of possible interpretations a word or phrase may have. Similarly, later Kiyavit-

skaya et al. presented a two-step tool approach for software requirements specifications

(Kiyavitskaya et al. 2008). The first tool identifies sentences that could be understood in
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more than one way based on measures defined within the tool. While the second elucidates

these ambiguities, leaving the resolution to human analysts.

The advent of computational linguistics has further aided the automation of ambiguity

detection. The study presented by Gleich and Kof (2010) also discusses a tool that auto-

mates the detection of ambiguous statements in requirements documents. The tool uses

computational linguistics techniques, specifically part-of-speech (PoS) tagging, to ana-

lyze texts for ambiguity. It categorizes ambiguities into different types based on existing

frameworks like the Ambiguity Handbook (Berry et al. 2003). The tool aims to not only

detect ambiguities but also to educate the users about potential sources of ambiguity in

their documents.

A recent exploration into the use of AI (artificial intelligence) tools, like ChatGPT, versus

traditional rule-based methods provides insightful comparisons (Fantechi et al. 2023). This

study evaluates the effectiveness of AI-driven approaches against deterministic rule-based

systems in detecting ambiguities within software requirements documents. Findings sug-

gest that while AI tools show promise, they require significant further enhancement to

match the consistency and reliability of rule-based approaches. The lack of pre-labeled

or annotated corpus of documents poses a significant challenge for training AI models to

analyze texts effectively. NLP tools, which rely on ML, greatly benefit from large-scale,

example-driven data for training (Valcamonico et al. 2024). Creating a sufficiently annot-

ated dataset to train a purely AI-driven tool would be both difficult and time-consuming.

2.3.2 Procedure Violations

For procedure guides to be an effective tool in safety management, they not only need to

be clear and unambiguous, but also must truly reflect real-world operations. Violations

refer to instances where individuals or groups deviate from established safety protocols

or procedures, typically in a non-malicious manner (Dougherty 1995), and are known to

increase the risk of accidents in industrial contexts. These deviations can be intentional

and often vary based on their circumstances and perceived necessity.
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There are three main types of violations (Reason et al. 1998). Routine violations are

deliberate deviations where individuals bypass established procedures, that they perceive

as inconvenient or unnecessary. This type of violation is often habitual and occurs when the

consequences of non-compliance are minimal or unenforced (Lawton 1998). An example

of this would be in a manufacturing setting, an operator might routinely skip a machine’s

shutdown process to save time, assuming it poses no immediate risk. There are also

situation violations, these occur when individuals or groups break rules or norms due

to specific circumstances or situations. These violations are often influenced by external

pressures or constraints within a particular context (Lawton 1998). These are typically

not premeditated and occur because of factors like stress, lack of resources, or unforeseen

circumstances that compel individuals to deviate from expected behaviors. For example, a

worker might ignore safety protocols to meet a critical deadline. Then there are exceptional

Violations, these are rare and occur under extreme conditions or in high-pressure scenarios

where the usual protocols appear insufficient. These are emergency-driven decisions where

individuals take extraordinary steps to mitigate perceived threats (Lawton 1998). During

a critical system failure at a nuclear facility, engineers might bypass certain safety checks

to initiate a faster shutdown, believing it is the only way to prevent a meltdown.

Violations can undermine safety culture, promoting a careless attitude towards regulations

and increasing the risk of accidents. While some violations may appear to save time or

resources initially, they often lead to greater inefficiencies, such as equipment damage and

increased maintenance needs, due to improper use.

The systematic reviews by Alper and Karsh (2009) and Boskeljon-Horst et al. (2024)

explore the empirical causes and systemic solutions to violations. Their study provides

an exhaustive examination of the intentional, though not malevolent, breaches of safety

norms in various industries. The review identifies key causes of such violations through a

comprehensive literature search focusing on sectors including healthcare, aviation, mining,

railroads, and construction. The works identifies potential causes, including,

• Individual Characteristics: Attributes such as age, experience, and personal atti-

tudes towards safety compliance.
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• Information/Education/Training: The role of adequate training and the dissemina-

tion of information in preventing violations.

• Design to Support Worker Needs: How workplace design can influence the occur-

rence of safety violations.

• Safety Climate: The impact of organizational culture on safety practices.

• Competing Goals: Workplace demands that might conflict with safety compliance.

• Problems with Rules: The clarity and applicability of safety rules and their enforce-

ment.

The review advocates for viewing violations not just as failures of individual workers but

as indicators of broader systemic issues within organizational safety protocols (Alper and

Karsh 2009). When tasks in a SOP are not possible to execute, due to physical constraints

or to poor quality written procedures, there is high potential that the end users are not

going do the work as imagined by the SOP writer (Institute 2020).

Focusing on Norwegian offshore supply bases, Boskeljon-Horst et al. (2024) address the

challenge of aligning formal safety procedures with actual workplace practices, emphasiz-

ing that procedural violations are often symptomatic of larger systemic issues rather than

mere non-compliance by workers. The study demonstrates that simplifying procedures

and involving workers in procedural design significantly enhances compliance and safety

perception. It stresses the importance of closing the gap between ’work as imagined’ and

’work as actually done’.

These studies underscore the importance of systemic approaches to managing safety viola-

tions, suggesting that addressing these issues requires a multifaceted strategy that includes

improving procedural clarity, worker training, and safety culture. By adopting such ap-

proaches, industries can enhance their overall safety standards and reduce the incidence

of accidents caused by violations. This alignment between theoretical safety procedures

and practical application on the ground is crucial for building safer work environments.

Although violations are known to disrupt the integrity of procedure documentation and

completed safety analyses, it is also known that impractical rules encourage violation

(Health and (HSE) 1995). Incorporating feedback from ground-level operations into pro-

cedural documentation is crucial for making safety protocols practically applicable and
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helping safety analysts identify risks more accurately and develop effective mitigation

strategies (Hollnagel 2017).

Violations of certain procedural steps, especially at critical times, can significantly in-

crease risk and lead to accidents. Some steps are more prone to violations, and when

these steps have a high likelihood of being violated and a significant impact on risk, it

becomes a major concern. Therefore, identifying such procedural steps is therefore crucial

to minimizing risk and preventing potential accidents.

Through the critical examination of SOPs and their pivotal role in ensuring safety and

compliance, key benefits and potential pitfalls of SOPs in various industries have been

identified. The recurring issue of outdated, ambiguous, or misaligned procedures points

to a significant challenge in maintaining operational integrity, especially when procedures

are not reflective of actual practices. These insights serve as the foundational motivation

for the project, which seeks to develop tools to detect ambiguities and identify steps prone

to non-malevolent violations in procedural documentation. While the aim is to support

more efficient and accurate communication of safety-critical information, it is equally

important that any changes to SOPs or implementation of safety measures are based

on a deep understanding of operational contexts. SOPs must be carefully analyzed and

thoughtfully updated to ensure they accommodate the full range of real-world scenarios

they are intended to govern. Fast communication should support and not replace rigorous

and evidence-based decision-making when it comes to safety interventions.



Chapter 3

Machine Learning Approach to
Automated Human Reliability Data

Collection

One of the most acknowledged ways to prevent design errors in complex industries is

to conduct risk assessment, where multi-disciplinary teams revise a design according to

information from past accidents, components, and human reliability. There are industrial

recommended practices on how companies should use lessons learnt from past accidents

(CCPS 2010), research on how they are actually using it (Drupsteen et al. 2013) or how it

could be used (Moura et al. 2017b, Moura et al. 2017a). The lessons learnt encompass not

only hazards but also their frequency of occurrence, which are used to quantify risks in

probabilistic risk analysis, or to estimate order of magnitude in semi-quantitative analysis

(e.g. Layers of Protection Analysis (LOPA)) and qualitative analysis when risk ranking

is required (Baybutt 2015).

Regarding frequency, component failure databases play a central role in quantitative risk

analysis, where data is majorly provided by components manufacturers and sometimes

shared within groups of industry operators, such as the Maintenance Steering Group

(MSG-3) in aviation (Gonçalves and Trabasso 2018) and the Offshore and Onshore Reli-

ability Data (OREDA) in upstream oil & gas (Lima et al. 2019). However, there is still

plenty of space for the development of databases to support system safety, which should

25
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be able to include systems and installations rather than only components’ parts, as well as

the interaction between human, organizational and technological factors (Leveson 2020).

To fill this information gap, the MATA-D (Section 2.1.1) was created (Moura et al. 2016).

Although it is already possible to use it for HRA (Morais et al. 2022b), it is desirable

to reduce its uncertainty, leading to more precise risk estimates. To understand how to

decrease its uncertainty, it is important to understand the different representation of the

uncertainties within the dataset: aleatoric to model uncontrollable events, e.g. impair-

ments and cognitive bias, or epistemic/reducible uncertainty due to missing data and

theoretically reducible (Patelli 2016). It is acknowledged in the human reliability field

that human behavior is dependent on the context, varying according to organizational

and technological factors Hollnagel 1998. The lack of information on these factors’ in-

teractions (seldomly observed and reported) is the major contribution to the epistemic

uncertainty. Thus, to reduce epistemic uncertainty it would be desirable to expand the

database, by collecting more accident reports and classifying them in order to increase

the chance of describing more human-machine-organization interactions.

However, collecting empirical data is time-consuming and expensive, especially in human

reliability field, where data collection and classification are usually done by other humans

(experts in their fields). MATA-D database have been constructed through extensive read-

ing and classifying 238 accident investigation reports (Moura et al. 2016), a task that have

taken around one year to be completed. The classification also required specialized know-

ledge, as the assessors had to be minimally trained on the taxonomy used to pursue the

classification.

It is therefore proposed to enlarge the human reliability dataset by replacing (or support-

ing) human coding by automated classification of accident reports from any industrial

sector using a pre-defined human factor’s taxonomy. In order to absorb lessons learnt

from different industry sectors, the objective is to continually add to the dataset reports

only from industries with the same level of complexity regarding the interaction of or-

ganizational structure, technology and humans (Moura et al. 2016). The aim is not only

to expand MATA-D, but to do it faster and timely. The use of a ML strategy for text

recognition and classification is herein proposed, as an experienced expert takes around 3

days to read and classify one accident report, which contains about two hundred pages,
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whereas a ML approach would take less than one minute. Thus, the development of a

computer support, that could support risk specialists, or directly collect and update the

database for every new accident report of interest, is proposed. Caution would be needed

on the acceptance criteria of this new data, as depending on the sample quality the un-

certainty might increase (Siegrist 2012). Therefore, a central research question of this is

whether a ML approach is capable of both accelerating the expansion of a human reliab-

ility database and maintaining the same data quality offered by human experts.

The approach, here named Virtual Human Factors Classifier (and HF Classifier going

forwards) might be useful in other ways. For instance, it may be used to improve human

reliability models (Morais et al. 2022b) or to support cross-learning from different industry

sectors. It can also support incident investigators in an unbiased fashion to consider pos-

sible PSFs, which might have triggered human errors (instead of focusing only on human

errors). On the original aim of expanding MATA-D, risk assessors should benefit from the

provision of more data, providing more possible combinations between PSFs and human

errors, and minimizing missing data problem in probabilistic approaches.

This chapter has been divided into three parts. The first section will examine the machine-

learning strategies, the second section discusses the methodology and implementation. The

third section is concerned with evaluating the performance of the developed tool, before

section four explores two case studies based on accident reports from aviation (Boeing 737

MAX) and oil & gas industry (FPSO CDSM, Cidade de Sao Mateus floating production

storage and offloading unit). The chapter concludes with a brief conclusion and some

discussion of any limitations.
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3.1 Automated Text Analysis

Before classifying a document, the text features need to be extracted to generate a rep-

resentation of the document, capturing the properties that are important for further clas-

sification (Goldberg 2017). There are many feature extraction methods available, some

popular options at the time of the tools development were BoW, Term Frequency - Inverse

Document Frequency (TF-IDF) and word2vec (Waykole and Thakare 2018).

A BoW model extracts features from the text, specifically the vocabulary of known words

and their frequency of occurrence. The reason the model is called a ‘bag’ of words is that

it does not consider any information about the order or structure of words. To use it on

a set of documents, data is collected from text files and organized into a list, forming

a vocabulary. To improve results and save computational time and memory the model

ignores case, punctuation, and other frequent words that do not contain relevant inform-

ation, such as stop words (e.g. “a”, “the”, “of ”). To score the known words in each file

(i.e. document), their presence is marked as Boolean values (0 and 1) – thus, using the

list of words previously prepared, each new file is analyzed and converted into a binary

vector. To extract features from files, the order of words is discarded (Brownlee 2020).

Bag-of-bigrams is a special case of feature combinations that counts consecutive word se-

quences of a given length, which proves to be more powerful than BoW, as word-bigrams

are more informative than individual words. However, it is difficult to know a-priori which

bigrams will be useful for a specific task, thus the modeler should assign the less important

combinations previously with low weights. Bag of trigrams are also common, differently

from 4-grams and 5-grams that are sometimes used for letters, but rarely for words due

to sparsity issues (Goldberg 2017).

TF-IDF accounts for the frequency of each word in a set of documents and its useful to

give higher scores to domain specific words, something that is considered a drawback for

BoW (as domain specific words which does not have higher frequency within a document

may be ignored). TF-IDF reduces the score of frequent words in a document that are also

frequent among all the documents, highlighting the words that are unique (Hughes et al.

2016, Waykole and Thakare 2018).
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Word2vec assumes that words that occur in the same contexts tend to have similar mean-

ings (Kim et al. 2020), thus models constructed by word2vec algorithms will place words

with common contexts next to each other in a vector space (Heidarysafa and Brown

2018, Waykole and Thakare 2018). Word2vec models are two-layer neural networks, and

depending on their architecture they are able to consider nearby context words more

heavily than words with distant context (i.e. continuous skip gram), or to not account for

context at all (i.e. continuous bag-of-words) (Waykole and Thakare 2018).

3.1.1 Classifying text features

After the text relevant features are captured from the document and represented in a

model, they are ready to be classified by a machine-learning technique. At the time

of the tools first development, some of the most known and broadly tested techniques

for automated text classification were the dictionary method, Naïve Bayes, support vec-

tor machines (SVM), latent Dirichlet allocation (LDA), latent semantic analysis (SMA),

structural topic model (STM) (Kim et al. 2020). Aside from the dictionary method, they

can be mostly divided into supervised and unsupervised learning methods (some authors

further distinguish semi-supervised approaches, in which the training set contains a small

amount of data with known categories and a large amount of data with unknown categor-

ies (Ratsaby and Venkatesh 1995). The method selection might be based on how texts are

going to be classified, and if some documents have been previously classified by humans

(allowing their use as examples to train the machine) (Goldberg 2017, Kim et al. 2020).

As the classification categories are known and predefined, a supervised learning approach,

a dictionary-based or rule-guided method, is appropriate for training the model for the

HF Classifier. This approach enables the algorithm to learn direct associations between

textual inputs and their corresponding HF categories, leveraging labeled data to optimize

classification accuracy and reliability.

In dictionary-based methods, the machine uses predefined set of words to infer particular

features of a text, relying on the user defined dictionary. In such methods, the categories of
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interest are represented by single words, which are searched by an algorithm through large

bodies of text (Kim et al. 2020, Iliev et al. 2014). In the classification of organizational

factors in accidents, it would be equivalent to define into the algorithm that every time

the words and expressions work shift, jetlag, lack of sleep, circadian rhythm are found in

the text the algorithm should classify it as the organizational factor of irregular working

hours.

Naïve Bayes and SVM are popular supervised learning methods for text classification.

Naïve Bayes is a simple Bayesian classifier which assumes that all attributes are independ-

ent of each other, thus independent of the word context and position in the document

(Zubrinic et al. 2013, McCallum and Nigam 1998). Naïve Bayes classifiers are reported

to have better resilience to missing data than SVM classifiers (Shi and Liu 2011), which

potentially makes naïve Bayes better to analyze fragments of texts (e.g. few paragraphs)

and SVM to classify whole documents (Goh and Ubeynarayana 2017, Wang and Manning

2012)

SVMs are one of the most popular supervised ML algorithms, due to its little need for

adjustments, and to due to their excellent prediction and generalization capabilities (Goh

and Ubeynarayana 2017, Arrieta et al. 2020). They can be used for classification, regres-

sion, or other tasks such as outlier detection (Arrieta et al. 2020). The SVM algorithm

constructs a hyper-plane (or a set of them) in a high-dimensional space, so that a good

separation between classes is achieved by the hyperplane that has the largest distance

to the nearest training data point of any class (Arrieta et al. 2020). The simplest case,

when data have only two classes, a SVM classifies data by finding the maximum-margin

hyperplane which separates the data points of one class from those of the second class.

The support vectors cross the data points that are closest to the hyperplane that sep-

arate the classes. As SVM is a supervised learning model, it has to be trained before it

cross-validates the classifier. Only then, the trained machine can be used to predict or

classify new data. SVM is usually suggested if features’ interaction might be important

for classification, similar to a semantic space, as learned hyperplane separates documents

belonging to different topics in the input space (Zubrinic et al. 2013). While the literat-

ure often suggests that more complex problems may benefit from using alternative SVM



3.1. Automated Text Analysis 31

kernel functions to improve predictive accuracy, previous studies indicate that this is not

always the case. For example, the linear kernel has been shown to outperform non-linear

polynomial kernels in certain contexts, including multi-word classification tasks where

contextual information of individual words is taken into account (Zhang et al. 2008).

3.2 Methodology

For the development of the HF Classifier, SVM is proposed to automatically evaluate and

classify accident reports into potential human factors, with the support of BoW model

for data extraction. The model was trained and tested using data from MATA-D. This

section better describes the procedures applied to train and test the models.

3.2.1 Dataset

The decision to choose and focus the work on the MATA-D (detailed in Section 2.1.1) was

based on its conceptual advantages, specifically the potential for cross-learning lessons

from accidents across different sectors. Additionally, it offers two technical advantages

regarding machine-learning application. Firstly, the majority of accident reports were

available for training and testing the machine-learning model against expert-classified

opinions. Secondly, the dataset has a specific taxonomy, simplifying the decision on the

automated text technique to use.

The reports in the MATA-D dataset cover various industry sectors, they present different

formats and vocabularies. The format changes not only in terms of the number of pages

but also in terms of reproducible sections in a corpus. The vocabularies vary not only due

to the specificity of the different industrial sectors but also due to the taxonomy applied,

usually connected to the investigation methodology. This variety in vocabulary trains the
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tools to handle a wide range of accident reports from different industries.

It is important to note that although the MATA-D dataset contains information on how

238 accident reports have been labeled against the CREAM taxonomy, only the publicly

available reports were used to train and test the HF Classifier in the presented version.

3.2.2 Machine Technique

Since the classification categories are known (i.e., predefined taxonomy) and the dataset

was previously labeled by experts, a supervised learning method is the most appropriate.

This narrowed the decision down to either Naïve Bayes or SVM. Naïve Bayes classifiers

have been shown to perform better with missing data (Shi and Liu 2011), making them

a good choice for identifying human factors interactions in major accidents, which are

considered rare and uncertain events (Morais et al. 2020). However, SVM has the poten-

tial to better capture feature interactions and classify larger documents more effectively

(Zubrinic et al. 2013, Wang and Manning 2012). Given that interaction patterns have

been observed between MATA-D factors (Moura et al. 2017a) and the goal is to apply

the tool to accident reports averaging 200 pages, an SVM model with a linear kernel was

chosen for classification.

BoW was selected as the feature extraction tool to pre-process the features to be clas-

sified by SVM. The choice was not only due to its recognized simplicity and flexibility

(Waykole and Thakare 2018), but also because the intention to classify accident reports

with no specific sector or domain suggested that it was better not to use models that

capture too much the context from the training set into account – to avoid giving much

higher importance to sector specific words or set of words (Goldberg 2017). A simplified

workflow of the proposed approach is shown in Figure 3.1.
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Figure 3.1: Simplified Workflow - HF Classifier

In the first module, accident investigation reports are analyzed. The documents in port-

able document format (i.e., files with PDF extension) were processed to check if the text

in files was recognized by the machine and, if not, an optical character recognition soft-

ware (OCR) was used to convert them to text files, an important step for relatively old

accident reports.

After this pre-treatment, the tool scanned the accident reports, and their texts were

sent to the next module. The most likely start and end of the targeted sections, recom-

mendation and lessons learned, are identified by a confidence scoring system (detailed in

Section A.1.2), and these sections are the output into the next module. Finally, the text

was pre-processed to clean punctuation, stop words, and reduce words to their stem (e.g.,

“testing” was reduced to “test”).

In the second module the tool took each accident report’s file name and found the corres-

ponding entry in the MATA-D. For this reason, the accident reports had equally assigned
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names in dataset and correspondent PDF file. This gave the machine-learning component

the desired output for each accident report, which was a combination of selected section

texts and their known human factors.

Then, the selected text was converted into BoW objects (X in Figure 3.1 forming the

input of the model), and the factors extracted from the MATA-D (Y in Figure 3.1 served

as the output of the model). The module partitioned the data into a training set (80% of

total) and a testing set (20% of total).

In the third module, the model based on SVM was trained and tested using data in-

put from the previous two modules. Finally, the parameters of the classifier were recorded

and overall performance metrics (accuracy, precision, recall and F1-score) were calculated

based on test sets in all categories. Only then, the tool was prepared to be used in the

next module.

The fourth and final module of the tool allowed users to add a new report that was not

yet part of the MATA-D. The result was a list of the human reliability factors identified

by the tool (an array of the predicted positive factors), a small table with all positives

and negatives predictions (the 53 factors of the chosen taxonomy), and a word cloud of

the most relevant words in the report.

3.2.3 Implementation

All the computational work was carried out using MATLAB software, and supported

by the text analytics toolbox, which used the BoW model to extract text strings

from files and prepare data for the ML algorithm. The MATLAB statistics and the

machine-learning toolbox was used to transform text inputs into binary classification

adopting the SVM. Data was extracted from the Excel based MATA-Dataset, while the

accident report were in portable document format (i.e., PDF extension). The text re-

cognition software embedded in Adobe Acrobat Pro was used to convert text-images to

text-strings in cases where original reports had been saved as images (e.g. relatively old
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accident reports, such as the Public Inquiry into the Piper Alpha Disaster (Cullen 1993).

The dataset MATA-D with labeled classifications of each report is available at: https:

//doi.org/10.17638/datacat.liverpool.ac.uk/1018 (Moura et al. 2016). Detailed

discussion on the tools technical background is included in the Appendix, Section A.1.

3.3 Evaluating Performance

For evaluating the performance of classification models, first the true positives (TP), true

negatives (TN), false positives (FP), and false negatives (FN) need to be identified. These

terms represent the different possible outcomes of the predictions made by a classification

model when compared to the actual labels in the dataset (Goh and Ubeynarayana 2017).

TPs refer to the instances where the models correctly predicts the positive class. For

example, in this case if Missing Information was classified as a factor in the accident by

the tool and by the expert in the MATA-D, this would a TP. Whereas a True Negative

(TN) is where the model correctly predicts the negative class, or in this case the absence

of an influencing factor.

FPs, also known as Type I errors, occur when the model incorrectly predicts the positive

class, so if the model were to predict Inadequate plan as a factor in the accident and the

expert did not in the MATA-D this would be a FP. FNs, or Type II errors, happen when

the model fails to detect a positive condition (a present factor).

Different errors have distinct consequences depending on the domain of use. For example,

in the field of safety management and in accident analysis, a FN (failing to identify a PSF

leading to an accident) is typically more severe than a FP (incorrectly identifying a factor

as contributing to an accident). This is because a FN could result in overlooking critical

factors, potentially leading to unmitigated hazards in future situations. Conversely, a

FP in this context, while potentially less dangerous, may cause unnecessary allocation

of resources towards non-critical issues, which could divert attention and resources away

from more significant safety threats.

https://doi.org/10.17638/datacat.liverpool.ac.uk/1018
https://doi.org/10.17638/datacat.liverpool.ac.uk/1018
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However, informing trend analysis and policy decisions, FPs can be more detrimental. If

irrelevant factors are consistently misclassified as contributors across a large dataset, they

may skew statistical analysis and risk assessments, leading to misplaced priorities and

ineffective interventions. In such cases, the cumulative effect of FPs can create systemic

misdirection, while occasional FNs may have a lesser impact on long term safety strategy.

These concepts can also be used to define several key performance metrics, that each serve

to quantify different aspects of the model’s performance.

Accuracy is a straightforward and intuitive measure of a model’s overall correctness, as

it represents the ratio of correctly predicted observations, both positive and negative, to

the total number of observations (Shung 2018).

Accuracy =
T P+FP

T P+T N +FP+FN
(3.1)

However, its usefulness can be limited in scenarios where there is an imbalance in class

distribution. In such situations, a model could still achieve high accuracy by predominantly

predicting the majority class, but this would not necessarily reflect its effectiveness in

identifying the minority class, which could often be more critical.

The MATA-D is an example of an unbalanced dataset, as a typical accident entry in the

dataset is attributed with only a few factors (an average of 46 negatives out of the 53

factors were identified per incident) (Morais et al. 2022b). So, when evaluating the model’s

performance other metrics are essential.

Precision measures only the correctness achieved in positive prediction. It indicates the

proportion of positive identifications that were correct and is particularly important in

scenarios where false positives are a significant concern (Shung 2018).

Precision =
T P

T P+FP
(3.2)

Whereas Recall assesses a model’s ability to identify all relevant instances within a dataset.

Recall is crucial in situations where failing to detect positives can have severe consequences

(Shung 2018).

Recall = T P
T P+FN

(3.3)
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Finally, F1-score represents the harmonic mean of precision and recall, providing a single

metric that balances both the concerns of precision and recall (Shung 2018). It is especially

useful when the classes are imbalanced and both error types are of concern.

F1-Score = 2× Precision×Recall
Precision+Recall (3.4)

The performance of a classification model cannot be adequately assessed by a single

metric. A comprehensive evaluation requires considering accuracy, precision, recall, and

the F1-score, along with the context and requirements of the model.

In the construction of the HF Classifier models, 80% of the available data was used for

training purposes, and the remaining 20% was withheld to serve as a test set to evaluate

the model’s performance. The discussed metrics, accuracy, precision, recall and F1-score,

were calculated for each of the models during the iterative training process. As each factor,

and therefore model, are of equal importance in the overall assessment of the HF Classifier

the macro-average was then calculated.

Macro Average Metric = 1
N

N

∑
i=1

Metrici (3.5)

Where N is the number of models, and Metrici is the calculated metric for the i-th model

(Leung 2022.

3.3.1 HF Classifier Performance

To measure the performance of the HF classifier, the binary classifications available in

MATA-D were used as target classes. The performance metrics achieved are given in

Table 3.1.
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Metric HF Classifier
Accuracy 86%
Precision 60%
Recall 46%
F1-Score 52%

Table 3.1: HF Classifier Performance Metrics

In this study, the collective SVM models trained with all public reports have achieved

an accuracy of 86%, precision of 60%, recall of 46%, and F1-score of 52%. The results

obtained have performed similarly to the benchmarked studies, which have presented ac-

curacies from 44 to 90% (Robinson et al. 2015, Heidarysafa and Brown 2018), Ribeiro

et al. 2020); precision from 22 to 84% (Goh and Ubeynarayana 2017, Grech and Smith

2002, Robinson et al. 2015); recall from 63 to 89% (Goh and Ubeynarayana 2017, Grech

and Smith 2002); and F1-scores from 33% to 71% (Heidarysafa and Brown 2018, Ribeiro

et al. 2020, Goh and Ubeynarayana 2017)

It has been noted, that performance benchmarking has to consider not only the numbers,

but the descriptions from authors from previous works. For example, when more reports

have been tested in (Grech and Smith 2002) the precision of 84% dropped to 48%, and

the recall, which before achieved 89%, has not been calculable (due to zero TPs and FNs).

To provide a visual aid, a word cloud has been generated to inspect the BoW contents

used in the training process Figure 3.2. As the BoW representation is based on stemmed

tokens, the words appear in their post-stemming form. The size of each word in the cloud

corresponds to its frequency within the training text. Another important type of perform-

ance is the training time required by the ML algorithm. The elapsed time taken for the

linear SVM to train and test with all reports was approximately one minute, once the

models are trained these can be stored and a new report can be evaluated in around 30

seconds.

Utilizing this approach can drastically reduce the time required for task completion com-
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Figure 3.2: Word Cloud of Report Training Text Data (after word stemming)

pared to relying solely on an expert. While users may be hesitant to fully trust the system

initially, it provides significant support, enabling them to focus their evaluation efforts

more effectively. This allows users to either expedite their work or use it to check their

work, ultimately enhancing overall efficiency and accuracy.

3.4 Case Studies

In order to test the model on new accident reports (not yet in the MATA-D), two invest-

igation reports from different industry sectors (aviation and oil & gas) were chosen to be

analyzed. These new reports were classified by the same expert that classified the reports

in the MATA-D. The results of the automated classification were not shown to him before

the task, to avoid any bias. The results shown in Table 3.2 and Table 3.3 present the

results when the tool analyzed the full report.
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3.4.1 Aviation case study – 2018 Boeing 737 MAX 8 Aircraft

final accident report

On October 2018, an accident with a Lion Airline aircraft, led to 189 fatalities ()KNKT

2019. Five months later, in 2019, an Ethiopian Airlines plane crashed minutes after take-

off, killing all 157 onboard (Marks and Dahir 2020). The fact that both accidents involved

the same aircraft model, a Boeing 737-8 MAX, had concerned civil society and safety reg-

ulators about the possible common flaws, which resulted in all 387 planes with same

model grounded globally (BBC 2019). The two events have been famously known by the

potential design flaws of the Maneuvering Characteristics Augmentation System (MCAS)

which might have mislead the pilots’ actions (Chronopoulos and Guzman 2020).

The HF Classifier is tested here on the final accident report of the Lion Air Aircraft

flight, issued on October 2019, approximately one year after the accident (KNKT 2019).

The final accident report was previously classified by the same experts which have clas-

sified MATA-D within the CREAM human factors taxonomy, in order to compare their

similarity in new reports. Table 3.2 shows the comparison between the human factors

classifications obtained with human coding and the HF Classifier.

The table has been color coded according to the legend below to help the reader under-

stand how the model prediction metrics were calculated.

True positives: dark green (expert classified as ‘1’ and machine predicted correctly

as ‘1’)

True negatives: light green (expert classified as ‘0’ and machine predicted correctly

as ‘0’)

False negatives: dark red (expert classified as ‘1’, but machine wrongly predicted as

‘0’)

False positives: red (expert classified as ‘0’, but machine wrongly predicted as ‘1’)



3.4. Case Studies 41

Expert

Classification

HF

Classifier

HUMAN Action Execution

(Error

Modes)

Wrong Time 1 0

Wrong Type 0 0

Wrong Object 0 0

Wrong Place 1 1
Specific

Cognitive

Functions

Observation Observation Missed 0 0

False Observation 0 0

Wrong Identification 0 0

Interpretation Faulty diagnosis 1 1

Wrong reasoning 0 0

Decision error 0 0
Delayed

interpretation
1 0

Incorrect prediction 0 0

Planning Inadequate plan 1 0

Priority error 1 0
Temporary

Person

Related

Functions

Memory failure 0 0

Fear 0 0

Distraction 1 0

Fatigue 0 0
Performance

Variability
0 0

Continued on next page
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Expert

Classification

HF

Classifier

Inattention 0 0

Physiological stress 0 0

Psychological stress 0 1
Permanent

Person

Related

Functions

Functional impair-

ment
0 0

Cognitive style 0 0

Cognitive bias 0 0

TECHNOLOGY Equipment Equipment failure 1 1

Software fault 0 0

Procedures
Inadequate

procedure
1 1

Temporary

Interface
Access limitations 0 0

Ambiguous

information
1 0

Incomplete

information
1 0

Permanent

Interface
Access problems 0 0

Mislabeling 0 0

ORGANIZATIONCommunication
Communication

failure
1 0

Missing information 1 1

Organization Maintenance failure 1 1

Inadequate quality

control

1 1

Management

problem
1 0

Design failure 1 1

Continued on next page
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Expert

Classification

HF

Classifier

Inadequate task

allocation
1 1

Social pressure 0 0

Training Insufficient skills 1 1
Insufficient

knowledge
1 1

Ambient

Conditions
Temperature 0 0

Sound 0 0

Humidity 0 0

Illumination 0 0

Other 0 0

Adverse ambient

conditions

0 0

Working

Conditions
Excessive demand 1 0

Inadequate work

place layout

0 0

Inadequate team

support

1 0

Irregular working

hours

0 0

Sum of true

positives
11

Sum of true

negativies
30

Sum of false

positives
1

Continued on next page
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Expert

Classification

HF

Classifier

Sum of false

negatives
11

Accuracy 77%

Precision 92%

Recall 50%

F1-Score 65%

Table 3.2: Virtual expert vs. Expert classification for Lion Airline accident report (Boeing
737-8MAX)

The following factors were observed by the classifier in the Lion Air accident operating with the

Boeing 737 MAX: human error of execution of wrong place (i.e. action out of sequence); the

cognitive function failure of faulty diagnosis; the technological factors of equipment failure and

inadequate procedure; the organizational factors of missing information, maintenance failure,

inadequate quality control, design failure, inadequate task allocation, insufficient skills, insuffi-

cient knowledge.

The confusion matrix heatmap in Figure 3.3 visualizes the classifier’s performance in identifying

contributing factors to the Lion Air accident. It shows that while the model correctly recognized

several relevant causes and dismissed many irrelevant ones, it also missed a significant number

of actual contributing factors, indicating areas where the model’s ability could be improved.
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Figure 3.3: Confusion Matrix Heatmap - Lions Air accident

The word cloud is included as it serves as an additional support for the user to check if the

information in the report is being correctly extracted or if there are problems that deserve any

intervention to improve the prediction performance. It is also interesting to visually compare the

differences between the word clouds obtained with the new report, Figure 3.4, with the word

cloud of the training set, Figure 3.2.
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Figure 3.4: Word Cloud for the Boeing 737 MAX accident report

3.4.2 Oil & Gas case study: FPSO CDSM accident report

On February 2015, an explosion onboard FPSO CDSM killed nine, injured 26 workers, as well

as caused damage to the installation, and production halt of two gas production fields. The

Brazilian Oil & Gas regulator (ANP) included in their investigation report root causes from the

design phase to the emergency response. The FPSO (floating production, storage and offloading

unit) was operated by BW Offshore in gas fields under concession to Petróleo Brasileiro S.A

(Petrobras) in Brazilian waters (ANP 2020).

The FPSO CDSM accident report was also classified by the same experts as the MATA-D and

the Lion Airline report. Error! Reference source not found. shows the comparison between human

factors classifications obtained with human coding and the HF Classifier.
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Expert

Classification

HF

Classifier

HUMAN Action Execution

(Error

Modes)

Wrong Time 0 0

Wrong Type 0 0

Wrong Object 0 0

Wrong Place 1 0
Specific

Cognitive

Functions

Observation Observation Missed 1 0

False Observation 0 0

Wrong Identification 0 0

Interpretation Faulty diagnosis 1 0

Wrong reasoning 1 0

Decision error 0 0
Delayed

interpretation
0 0

Incorrect prediction 0 0

Planning Inadequate plan 1 0

Priority error 0 0
Temporary

Person

Related

Functions

Memory failure 0 0

Fear 0 0

Distraction 0 0

Fatigue 0 0
Performance

Variability
0 0

Continued on next page
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Expert

Classification

HF

Classifier

Inattention 0 0

Physiological stress 0 0

Psychological stress 0 0
Permanent

Person

Related

Functions

Functional impair-

ment
0 0

Cognitive style 0 0

Cognitive bias 1 0

TECHNOLOGY Equipment Equipment failure 0 0

Software fault 0 0

Procedures
Inadequate

procedure
1 1

Temporary

Interface
Access limitations 0 0

Ambiguous

information
0 0

Incomplete

information
1 0

Permanent

Interface
Access problems 0 0

Mislabeling 0 0

ORGANIZATIONCommunication
Communication

failure
1 0

Missing information 1 0

Organization Maintenance failure 1 1

Inadequate quality

control

1 1

Management

problem
0 0

Design failure 1 1

Continued on next page
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Expert

Classification

HF

Classifier

Inadequate task

allocation
1 1

Social pressure 1 0

Training Insufficient skills 1 0
Insufficient

knowledge
1 0

Ambient

Conditions
Temperature 0 0

Sound 0 0

Humidity 0 0

Illumination 0 0

Other 0 0

Adverse ambient

conditions

0 0

Working

Conditions
Excessive demand 1 0

Inadequate work

place layout

0 0

Inadequate team

support

0 0

Irregular working

hours

0 0

Sum of true

positives
5

Sum of true

negativies
35

Sum of false

positives
0

Continued on next page
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Expert

Classification

HF

Classifier

Sum of false

negatives
13

Accuracy 75%

Precision 100%

Recall 28%

F1-Score 43%

Table 3.3: Virtual expert x expert classification for FPSO CDSM accident report

The HF Classifier identified the following factors from the FPSO CDSM report: the technological

factor of inadequate procedure, and the organizational factors of maintenance failure, inadequate

quality control, design failure and inadequate task allocation.

Figure 3.5 illustrates the performance of the HF Classifier on the FPSO CDSM report. It shows

a strong overall result, largely driven by the high number of TNs. While the classifier made no

FP errors and correctly flagged some relevant factors, the relatively low number of TPs and the

presence of FNs suggest that its good accuracy is due to the dominance of irrelevant factors in

the dataset rather than consistently accurate detection of contributing causes.
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Figure 3.5: Confusion Matrix Heatmap - FPSO CDSM accident

The word cloud in Figure 3.6 shows that the text extracted from the full report had some fre-

quent words that were not related to any accident cause of human factor. The words “Brazilian”,

“agency”, “biofuel”, and “ssm”, are related to the name of the investigation body that was re-

peated at the footnote in every page – therefore, in future developments this should be auto-

matically removed.
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Figure 3.6: Word Cloud for the full FPSO CDSM accident report

3.4.3 Discussion and Suggestions

This work set out to explore the potential of automatically classifying accident reports using a

trained machine, with the main goal of supporting human reliability data collection. The results

suggest some utility in this approach, but also reveal notable limitations that warrant careful

consideration. Most significantly, the classifier’s overall performance, especially in terms of recall

(46%), highlights the current challenges in reliably detecting all relevant human errors and PSFs.

In safety-critical domains, the cost of missing such factors, and consequently failing to allocate

mitigation resources appropriately, makes recall an especially important metric. While high pre-

cision ensures the categories identified are usually correct and useful for appropriate resource

allocation, the model’s limited recall means a number of critical items may go undetected. The

performance and balance between precision and recall requires further optimization.

Although the testing set provides the performance metrics needed to benchmark the tool against

previous studies, the case studies offer additional contextualized insights into how the model per-

forms in practice. These case studies demonstrate the applicability of the model in two different

industry sectors (aviation and Oil & Gas) and help to better understand how positive and neg-
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ative classes impact the model’s performance. The performance metrics from the case studies

show slight variations compared to the testing set results, particularly in terms of precision and

recall. Notably, in the Oil & Gas case study, the classifier achieved perfect precision (100%), but

its low recall (28%) indicates it is far from comprehensively identifying critical factors. While

the predictions made are reliable, the limited scope of detected factors could lead to significant

omissions in risk management efforts.

Several factors contribute to the model’s performance limitations. Accident reports are often

written in varied narrative styles, differ in structure across organizations, and contain technical

terminology or implicit references that pose challenges for standard NLP models. In addition,

the dataset used for training is highly imbalanced: some contributing factors appear frequently,

while others are rare. This skewed distribution makes it difficult for the model to learn to identify

less common but still important PSFs.

The case study results indicate that the categories detected by the ML approach align with the

26 most significant contributing factors identified by Moura et al. 2017a. This finding suggests

that the model could potentially be trained using only the more frequently occurring categories,

which might lead to improved performance. Nevertheless, the tool was also able to detect an in-

frequent category, namely psychological stress, which appears in only 3% of the 238 investigation

reports. Although this category was misclassified when compared to expert human classification,

its identification demonstrates that the model is capable of recognizing less common but relevant

PSFs.

Further testing was conducted by limiting the training to the 13 most frequent categories. The

results showed no significant changes in overall performance, though there was a slight improve-

ment of approximately 5% in precision, recall, and F1-score, with accuracy remaining largely

stable. Based on these findings, the decision was made to continue investigating all categories.

This approach supports the expansion of the dataset and helps reduce epistemic uncertainties

related to rare combinations of human error and PSFs.

To improve the accuracy of predictions made by automated classifiers, several adjustments to

the format of accident investigation reports are recommended. Reports should adopt a stand-

ardized structure, with consistent chapter titles and sequence. Text should not be embedded in

image format, as this hinders machine readability. Furthermore, reports should be made publicly

available online, if not in English, any other language is acceptable, given the continued advance-

ment of translation tools. Less critical recommendations include ensuring chapter numbers are

used consistently and only in the summary and body text, clearly distinguishing sections that
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describe the normal characteristics of the installation, ideally placing these at the beginning or

end of the report (for example, as an appendix), avoiding the inclusion of causal information

within these descriptive sections, and refraining from repeating the name of the investigative

body in the header or footer on every page.

3.5 Conclusions

The HF Classifier provides automatic classification of accident reports involving human error.

This approach demonstrates potential for efficiently expanding existing human reliability data-

bases (MATA-D) based on accident reports analyzed by a ML algorithm. It has the potential

ability to support and serve as a check for classification tasks typically conducted by human

experts. The objective is to accelerate the work of human experts, as reading full accident re-

ports to classify them into a specific taxonomy is a time-consuming process that can take weeks,

depending on the complexity of the event and the number of reports or inquiries available. While

this work emphasizes the value of accelerating data processing and communication, it does not

suggest that timeliness should override the careful analysis required for implementing safety

measures.

The developed tool offers nearly real-time classification capabilities. These findings are of in-

terest to risk assessors in any industry sector who need to learn more efficiently from past major

accidents, as automated text analysis can help them expand their datasets.

The proposed tool can be easily adapted for use with other human reliability taxonomies or

applied to components’ reliability data, provided a labeled dataset is available along with the

text sources.

While the tool holds promise for supporting human experts, it is important to acknowledge its

current limitations. The classifier’s performance metrics, particularly its recall (46%), highlight

areas that need improvement to ensure comprehensive detection of human errors and PSFs. The

trade-off between precision and recall must also be carefully managed, as undetected risks can

undermine the effectiveness of automated classification. These limitations suggest that, at this

stage, the tool is best used as a complementary aid to human expertise rather than as a stan-

dalone solution. However, the performance metrics achieved, when compared to other previous
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studies, indicate that the automated text techniques chosen are satisfactory and relevant.

By training the tool with reports from diverse industry sectors and incorporating a wide range

of human reliability categories, this study demonstrates the feasibility of cross-industry lesson

learning. The classifier shows promise mapping information from different sectors onto a com-

mon human reliability classification scheme, enabling the integration of lessons learned across

industries. However, its limited recall and sensitivity to less frequent categories highlight the

need for expanding the dataset and refining the classification approach to reduce epistemic un-

certainties.

In conclusion, while the HF Classifier showcases the potential for ML to improve empirical data

collection for HRA, its current performance metrics reflect both strengths and limitations. The

tool represents a step forward in leveraging automation for HFs analysis, but further work is

required to enhance its recall, address variability across contexts, and ensure comprehensive and

accurate classifications. These findings underscore the value of ML in supporting HRA while

highlighting the importance of continued development to realize its full potential.



Chapter 4

Natural Language Processing for
Human Reliability Analysis -
Supporting Data Collection,

Explainability and Expanding
Applications

The simple models used in the development of the HF Classifier imposed limitations in its

ability to capture context, nuanced meanings of text, handle the variations present in natural

language These limitations impacted its performance metrics, particularly accuracy and recall.

Consequently, this affects user confidence in the tool. Moreover, the ability to use the tool to

directly expand the MATA-D is constrained, as users cannot rely on its classifications without

extensive manual verification. This underscores the need for more advanced models that can

better handle the complexities of natural language and understand context, to improve per-

formance metrics and bolster user trust.

NLP is branch of AI concerned with enabling computers to understand, interpret, and respond

to human language, with various applications such as speech recognition, machine translation,

and chatbots (Chowdhary 2020). A key advancement in NLP is the development of LLMs, which

are sophisticated algorithms trained on vast datasets of text. These models exhibit a remarkable

ability to understand text due to their extensive training on diverse datasets. Employing deep

learning techniques, they have demonstrated remarkable proficiency in generating coherent and

56
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contextually relevant text. They are instrumental in powering complex tasks such as question-

answering systems, text summarization, and language generation tasks.

To address the limitations and enhance the performance of the methodology employed by the

HF Classifier, a popular LLM named BERT (Bidirectional Encoder Representations from Trans-

formers), (Devlin et al. 2018), has been selected as the foundation for the newly developed clas-

sification tool, termed the Second-Generation Virtual HF Classifier (HF Classifier 2.0). This

tool retains the core idea of the original approach, wherein a classification layer is fine-tuned

using the labeled accident reports from the MATA-D, thereby leveraging BERT’s advanced un-

derstanding of context and language nuances to improve classification accuracy.

In addition to classification, the development of a secondary tool that offers a summarization cap-

ability leveraging BART (Bidirectional and Auto-Regressive Transformers) (Lewis et al. 2019)

to be known as, Human-Centric Summarizer, is presented (Johnson et al. 2023b). This fea-

ture is designed to distill lengthy accident reports into concise, informative summaries focusing

particularly on the human role in each accident. The leveraging of BART allows abstractive

summarizations, that are not simple truncations of the original text but rather overviews that

highlight the key elements related to human factors and system interactions.

The tool’s summarization functionality serves multiple purposes. The developed tool aids re-

searchers and safety professionals in grasping each report, as well as any models based on the

incident, without delving into the pages of detailed reports, which is vital for accurate decision-

making and effective safety management.

Additionally, the summarization tool aids in understanding the outputs of the classification tool,

boosting confidence in the results and related analysis, and facilitating updates to the MATA-D.

The generated summaries offer a reference to the key aspects of each incident, making it easier

to analyze and review the PSF classifications. By capturing critical moments and situations

that may have led to human errors and accidents, the summarization tool serves as an essential

explainability layer for the classification tool. It provides the evidence behind each report’s clas-

sification, highlighting the human role in incidents and uncovering underlying causes of errors.

This transparency enhances the analysis’s comprehensibility and supports more efficient data

use and processing in HRA.

By enhancing the use and applications of NLP in the field of HRA, these tools underscore the

potential of advanced computational techniques to transform the way data collection and pro-

cessing is conducted. Ultimately contributing to more data-driven decisions and the development

of safer operational practices across various complex industries.
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Beyond facilitating the expansion of the MATA-D, the developed tools offer significant real-

world applications. However, they are intended to support, not replace, expert analysis, serving

as valuable aids in focusing initial evaluations, helping identify patterns, and providing direc-

tion for deeper investigations. This is especially useful when reviewing several older incidents to

inform preliminary ideas and approaches.

The classification tool enables safety professionals to efficiently analyze accident reports, pin-

pointing organizational, technological, and individual contributors to incidents. In some cases,

it has been proven capable of identifying factors that experts have overlooked during manual

analysis. The summarizer complements such insights by providing additional human focused

evidence from the original report. While the tools do not eliminate the need for expert input,

the tools can enhance the accuracy of identifying potential risks, providing a reliable starting

point for further evaluation.

Additionally, these tools support compliance with safety regulations by facilitating the sys-

tematic documentation and analysis of relevant human error data and accident insights. This

structured approach promotes continuous improvement in safety protocols and operational pro-

cedures, ultimately contributing to the creation of safer industrial environments. Safety changes,

by their nature, take time and careful consideration. These tools are not a shortcut to immediate

solutions but are intended to streamline the initial steps of analysis, helping professionals focus

their efforts and accelerate the review process.

This chapter will first focus on the development of the HF Classifier 2.0, introducing BERT

before discussing its implementation and performance. The next section will move onto the

Human-Centric Summarizer, where the development of the extractive and abstractive (lever-

aging BART) summarization algorithm is discussed and evaluated. Having introduced the tools

the next section explores some case studies that demonstrate the usability of the developed tools.

This is followed by some discussion about the limitations and scope for future development of

the tools, before the chapter closes with a brief conclusion. Discussion of past related studies

and different approaches/methodologies is given in Secion 2.2.
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4.1 Dataset

As with the development of the first-generation HF Classifier, the second-generation tool also

uses the MATA-D as its target training and validation data.

4.2 Classification Tool

Building on the predecessor, insights from previous studies, and mainly the advancements in

NLP, the HF Classifier 2.0, a new classification tool, has been developed to overcome the

limitations of its predecessor and deliver superior performance. Central to this advancement is

BERT, a LLM whose functionality and capabilities are discussed. In this section the development

of the tool, how BERT’s technology is leveraged and fine-tuned to meet our specific objectives

is detailed. The discussion concludes with a comparative analysis of the performance of both

generations, highlighting the enhancements achieved with the integration of BERT.

4.2.1 BERT

BERT represented a breakthrough in the field of NLP (Devlin et al. 2018). BERT employs the

Transformer architecture, primarily its encoder component, to better understand contextual re-

lationships between words in a text. Unlike traditional models that process words sequentially

(either left-to-right or right-to-left), BERT examines text bidirectionally, providing a deeper

understanding of language context and semantics. The core innovation of BERT lies in its use

of the Transformer’s attention mechanism, which allows the model to weigh the importance of

different words relative to others in a sentence, regardless of their position (Lin et al. 2022). This

means it can simultaneously consider the context of a word from both the left and the right

sides of it within a sentence, effectively understanding language in a way that mirrors human

comprehension more closely.
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BERT is pre-trained on a massive corpus, including the BooksCorpus and English Wikipedia,

which encompasses over 3 billion words (Devlin et al. 2018). This pre-training involves learning

by masking some words in the text and predicting them based only on their context, a method

known as Masked Language Modeling (MLM) (Salazar et al. 2020). This unsupervised learning

allows BERT to develop a sophisticated sense of language structure and word relationships be-

fore it’s ever used for specific tasks.

BERT is used for classification by adding a classification layer on top of the pre-trained BERT

model, which is fine-tuned using a labeled dataset specific to the task at hand. Here, the final

hidden state corresponding to the classification token is used to predict the class labels. This ap-

proach leverages BERT’s pre-trained contextual mappings, significantly enhancing its efficiency

and accuracy in class-specific tasks. When compared to traditional ML classifiers, BERT offers

superior performance by effectively capturing complex language nuances that are often missed

by more conventional methods (Garrido-Merchan and Gonzalez-Carvajal 2023).

BERT utilizes WordPiece tokenization, which breaks words down into meaningful sub-units,

allowing the model to effectively handle out-of-vocabulary (OOV) words by processing them as

sequences of sub-words. This capability is particularly useful in dealing with specialized vocab-

ularies and unusual terms, which are common in domain-specific texts (Sennrich et al. 2015).

The architecture comprises multiple layers of attention and feed-forward networks, which allow

it to capture and analyze complex relationships and dependencies in text. Each layer computes

representations of the input data with increasing levels of abstraction and complexity, which

enhances BERT’s ability to classify texts with nuanced meanings or intricate structures effect-

ively (Wang et al. 2024).

In the context of accident report analysis, the ability of BERT to handle diverse and complex

text structures is particularly valuable. Given the variable formats and specialized vocabularies

of industrial accident reports, BERT’s robust pre-training allows it to adapt to this domain

with relatively little additional training. However, it’s noteworthy that BERT is only capable

of handling sequences up to a 512 tokens in length, the model requires tailored preprocessing

steps for all documents to effectively manage longer texts typical of accident reports. This pre-

processing involves segmenting texts and removing less informative parts to reduce the amount

of segmenting necessary due to the token limit, ensuring that the most relevant information is
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retained for classification.

This model’s capacity to integrate and understand the contextual relationships in text makes

it an advisable tool for the automated classification and analysis of extensive accident reports,

paving the way for more insightful and actionable safety analytics.

4.2.2 Second-Generation Virtual HF Classifier

The HF Classifier 2.0 follows a similar initial process and logic to that of the first-generation

tool.

First, all incoming accident reports are initially processed and converted to text files. If the

document is not machine-readable, OCR software is used to convert them into text files, ensur-

ing that the data input into the system is standardized and accessible for further processing.

These text files are then scanned for specific sections of interest, such as “recommendations” and

“lessons learned”. If found these specific sections are extracted and used in place of the complete

report, if not found the entire report is used. Utilizing the WordPiece tokenization scheme, the

text data is broken down into manageable pieces. This tokenization, identical to the pre-training

scheme of BERT, allows for effective handling of various word forms and enhances the model’s

ability to process and understand complex vocabulary.

The tokenized texts are combined with predefined labels from the MATA-D dataset to create

the training data. At the core of the HF Classifier 2.0 is a pre-trained BERT model, imported

from the Hugging Face Transformers library (Face 2023b). To adapt BERT for the classification

task, a fully connected classification layer is appended to its final hidden layer. This layer uses

the output embedding of the special [CLS] token—which captures the overall meaning of the

input sequence—as input, and produces a probability score for each class. The entire model

is trained using stochastic gradient descent with a binary cross-entropy loss function. During

training, hyperparameters are fine-tuned based on the model’s performance.

To address BERT’s limitation with processing long text sequences (maximum 512 tokens), doc-

uments exceeding this threshold are divided into smaller chunks of 500 tokens. During both

training and inference, each chunk is processed independently through the model. Rather than

assigning labels to each chunk individually, the model outputs (logits) from all chunks of a doc-

ument are averaged to form a single, aggregated representation. This aggregated output is then
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Figure 4.1: Simplified Workflow of the HF Classifier 2.0

used to compute the final classification, ensuring that the model learns from the entire extracted

text context and reducing label noise introduced by chunk-level supervision.

The trained model classifies the accident reports, identifying the factors involved in each incid-

ent. The output is a binary array that represents the presence or absence of each of the 53 factors

outlined in the MATA-D. This facilitates easy updating and expansion of the dataset with new

incidents. Post-training, the model is saved for future use. This ensures that new reports can be

classified efficiently using the established protocol. The saved model streamlines the process for

future accident report evaluations, maintaining consistency and accuracy in classifications.

The process from data input through to output generation is outlined in Figure 4.1. Further

details regarding the tools background can be found in Section 6.1 and Section A.2.

4.2.3 Classification Tool Performance

This tool is evaluated using the same metrics used to evaluate the first-generation tool in Sec-

tion 3.3.
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• Accuracy: The proportion of true results (both TPs and TNs) among the total number of

cases examined.

• Precision: The ratio of TPs to the sum of true and FPs, indicating the correctness of

positive predictions.

• Recall: The ratio of TPs to the sum of TPs and FNs, reflecting the ability to identify all

relevant instances.

• F1-Score: The harmonic mean of precision and recall, providing a balance between the

two when their values vary widely.

As with the first-generation tool to assess the effectiveness of the second-generation classifier, the

binary classifications from the MATA-D dataset are used as the target classes. The performance

metrics obtained by the first-generation serve as the benchmark for this version’s performance.

Given the large number of TNs typically observed in MATA-D, where an average of 46 out

of 53 categories are identified as negatives across all reports, the dataset could be considered

imbalanced. In such scenarios, the F1-score, which balances precision and recall, is often more

reflective of the model’s performance than accuracy alone.The performance metrics for the HF

Classifier 2.0 are given in Table 4.1.

Metric HF Classifier 2.0
Accuracy 91%
Precision 82%
Recall 74%
F1-Score 78%

Table 4.1: HF Classifier 2.0 Performance Metrics

The model, trained with all available reports in the MATA-D dataset, achieved an accuracy of

91%, precision of 82%, recall of 74 and an F1-score of 78%. These results represent a substan-

tial improvement over the benchmark metrics from the previous version, which reported 86%

accuracy, 60% precision, 46% recall, and 52% F1-score.

The enhanced performance demonstrates the tool’s capability to accurately classify binary

classes within the MATA-D dataset. The improvements in precision and recall indicate a stronger

ability to manage the complexities of the dataset, including imbalanced classes, while maintain-

ing reliability. Additionally, with the capacity to process reports at a rate of approximately one
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minute per report, the tool offers improved efficiency compared to its manual assessment, along

with significantly greater confidence in its results compared to its predecessor.

However, while the tool marks a meaningful advancement, it is important to recognize that it

is not without limitations. Its recall of 74% and F1-score of 78% indicate there is still room for

improvement in consistently capturing all relevant classifications, particularly in highly nuanced

or edge cases. These performance metrics, while strong, reflect the inherent challenges of apply-

ing automated classification to complex, context-rich data.

The tool is designed primarily to support the collection and structuring of human reliability data

from accident reports, helping to expand empirical databases used for safety analysis. Within

risk analysis, it does not aim to replace human expertise but rather to enhance it by streamlining

the initial stages, offering a solid foundation for further investigation. It serves as a powerful

aid for safety professionals, helping focus their efforts and enabling efficient evaluations. At the

same time, expert validation remains essential to address the subtleties and contextual nuances

that are critical to understanding human factors and making informed safety recommendations.

4.2.4 Classification of Shorter Reports

One of the limitations of the predecessor model was its inability to effectively handle small re-

ports. The SVM approach used in the first generation performs better with larger documents

(Morais et al. 2022a). Testing of the first-generation tool on shorter reports, such as near miss

summaries, confirmed the expected decline in performance. This limitation has been highlighted

by industry stakeholders during demonstrations and testing, particularly in relation to shorter

reports describing minor events. These reports often contain limited textual content, which re-

duces the the inclusion of keywords that the first-generation model relies on to identify relevant

PSFs. As a result, the tool often returns no classifications or identifies irrelevant factors, limiting

its usefulness for analyzing such cases.

In contrast, the performance of the second-generation classifier is not heavily dependent on the

length of the accident report. To evaluate this, ten reports from the test set were selected: five

reports ranging from 5 to 20 pages and five over 100 pages. The performance metrics for each

group showed only slight variation, with the shorter reports experiencing a minor (<5%) de-

crease in accuracy, recall, and precision. This suggests that while there is a slight decrease in
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performance due to the reduced context available in shorter reports, the performance remains

satisfactory, supporting the tool’s application to reports of various lengths.

Longer texts pose the challenge of requiring more splitting, which can lead to the fragmentation

of context. This fragmentation makes it challenging for BERT to understand the full meaning

if critical information is split across chunks. However, the additional context in longer texts

can help BERT make more informed decisions. Conversely, shorter texts require less chunking,

reducing the potential for information loss or misclassifications that might occur when the text

is divided arbitrarily. This is an advantage of shorter texts that partly compensates for the

reduced context.

Overall, the main factor influencing the tool’s performance is the quality of the report. Shorter

reports should still contain the necessary details to evaluate the accident and the PSFs. Ex-

tremely short reports, less than two pages long, remain a challenge for the tool as they are

unlikely to provide all the necessary insights. This would be a challenge and limitation for any

data-driven tool, and is an unrealistic expectation that could only be resolved with increased

data from more comprehensive reporting. However, additional pre-training on domain-specific

context could help improve the model’s ability to extract meaningful information from shorter

or less detailed reports.

Further details of the technical development of the HF Classifer is presented in Chapter 6,

Section 6.1.1.

4.3 Summarization Tool

Following the development and demonstration of the capabilities of the advanced classification

tool, another specialized tool added to our technological suite: the Human-Centric Summar-

izer is introduced. This tool utilizes BART to condense lengthy accident reports into concise

summaries. Prioritizing the human elements of each incident, it captures complex interactions

and significant details beyond simple truncation. These sections explore the functionality and

strategic advancements of BART within this application. By combining BART’s capabilities

with an initial extractive summarization phase how the tool effectively produces comprehensive

summaries is demonstrated.



4.3. Summarization Tool 66

Evaluating the performance of such summarizations presents unique challenges, therefore, mul-

tiple assessment methods have been implemented. This approach provides a thorough evaluation

of the tool’s effectiveness, ensuring that the summaries are both informative and reflective of

the original reports.

4.3.1 BART

In the development of the Human-Centric Summarizer, the BART model was chosen for the

abstractive summarization step. The accurate summarization of complex accident reports can

support decision-making and analysis, however traditional extractive summarization methods

often fall short in capturing the nuanced essence of such texts. However, BART, a sequence-to-

sequence model renowned for its effectiveness in generating coherent and contextually relevant

summaries, promises far greater understanding and interpretability.

BART integrates the Transformer architecture in a sequence-to-sequence framework (Lewis et al.

2019). Unlike BERT, which is primarily an encoder model used for understanding text, BART

extends this with a decoder module, enabling it to generate new text based on the understood

context. BART is pre-trained using a combination of denoising auto-encoding and sequence-to-

sequence tasks. The denoising aspect involves corrupting the original text (via masking, deletion,

or order shuffling) and training the model to reconstruct it, which equips BART with robust

paraphrasing capabilities crucial for summarization (Lewis et al. 2019).

BART excels in abstractive summarization, where it generates paraphrased text that summar-

izes key points while possibly omitting redundant information. The seq2seq framework of BART,

combined with its training on denoising and paraphrasing tasks, uniquely positions it for sum-

marization. It can produce summaries that are not only context-aware but also maintain the

essence and continuity of the original text (Venkataramana et al. 2022).

BART’s effectiveness in summarization is underscored by its ability to handle complex document

structures and generate summaries that are accurate and reflective of the original text’s intent

and factual content.
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4.3.2 Summarization Tool Development

The summarization process used in the Human Centric Summarizer is highly effective for ana-

lyzing accident reports. It excels at extracting key sections and generating concise, informative

summaries. This provides interested parties with further context and evidence, beyond the list

of identified PSFs, without the significant task that is reading the entire report. The following

steps and complete process is illustrated in Figure 4.2.

Figure 4.2: Simplified Workflow of the Human Centric Summarizer

The initial phase involves data cleaning to ensure the accuracy and relevance of the informa-

tion fed into the model. This step includes the extraction of critical sections within the reports,

specifically targeting ’recommendations’ and ’lessons learned’.

Additionally, the model identifies and extracts sentences that contain pronouns or human-related

nouns (such as “user”, “operator”, “manager”) from the entire text. This capability is imple-

mented using the Python package NLTK (Natural Language Toolkit), which enables NLP tasks

(Bird et al. 2009). Our custom pipeline leverages these tools to accurately detect and extract

sentences with pronouns and human-related nouns. This approach provides a flexible and robust

solution capable of handling diverse and complex text data, enabling the precise extraction of

sections detailing the human role in the incident, which are essential for generating a human-

centered summary. These extracted parts are then aggregated and stored with the target sections

for further processing.

If the word count of the combined text exceeds 1024 words, it is segmented into smaller sections

to facilitate manageable summarization tasks. This segmentation ensures that the model can

handle large texts efficiently. Each segment is summarized and then combined, if exceeding the

word count again it automatically iterates through the tool until the entire summary is below
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the target threshold (500 words).

The text is tokenized using the pre-trained BART tokenizer from the Hugging Face Trans-

formers library (Face 2023a). This process converts the raw text into a format that the BART

model can interpret, preparing it for the summarization phase. BART processes the tokenized

text to generate multiple summary candidates, utilizing a controlled beam search technique.

This method allows the model to explore several possible summaries simultaneously, ultimately

selecting the summary that achieves the highest score based on language model probabilities

(Lewis et al. 2019). Finally, the selected summary is converted back into human-readable text

using the BART tokenizer’s decoding method. This text represents the distilled essence of the

original report, emphasizing crucial insights and actionable information.

Additional details of the Human-Centric Summarizer is presented in Chapter 6, Section 6.2.

4.3.3 Summarization Tool Performance

When assessing the performance of our summarization tool, some key factors need to be con-

sidered,

• Quality: The accuracy and readability of the summary.

• Relevance: The pertinence of the summary content to the original text.

• Length: The conciseness of the summary relative to the original content.

• Domain-Specific Performance: The tool’s effectiveness in handling jargon and specifics of

the domain.

There are several evaluation metrics that can also be used such as, ROUGE (Recall-Oriented

Understudy for Gisting Evaluation), BLEU (Bilingual Evaluation Understudy), and METEOR

(Metric for Evaluation of Translation with Explicit ORdering) to assess the quality of the gen-

erated summaries (Lin 2004, Papineni et al. 2002, Lavie and Agarwal 2007). ROUGE measures

the overlap between the n-grams of the generated summary and reference text. ROUGE vari-

ants include ROUGE-N for n-gram overlap, ROUGE-L for sequence matching, ROUGE-S for

capturing long-distance word pairs, and ROUGE-W for prioritizing longer sequences. ROUGE

metrics generally evaluate two aspects. These are Recall, the fraction of the words from the
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reference summaries that appear in the generated summary, and Precision, the fraction of the

words in the generated summary that appear in the reference summaries (line). Similarly, to

the classification performance metric, F1-score for the ROUGE measure, which combines recall

and precision into a single metric using a harmonic mean, is reported.

While ROUGE can be useful, it has limitations as it does not account for semantic equivalence

(different words with the same meaning), a significant drawback when using an abstractive sum-

marization. The metric also does not evaluate the generated text for coherency or readability.

Despite this ROUGE is still used in multiple studies and serves as a benchmark metric for com-

parison in this study (Maples 2017).

Given these challenges, human judgment is crucial for a thorough assessment of summary qual-

ity. Therefore, the tool’s performance is not only evaluated through automated metrics but also

by manually comparing the generated summaries with sections extracted from the original acci-

dent reports. This manual assessment focuses specifically on the readability and conciseness of

the summaries.

Additionally, the co-development of the classification tool allows for both the summaries and

the original texts to be used as inputs. This facilitates the calculation and comparison of classi-

fication performance metrics, providing insights into the information retained or lost during the

summarization process. By integrating these various approaches, a comprehensive assessment of

the Human Centric Summarizer can be achieved.

For this study, 30 reports were randomly selected to evaluate the performance of the summar-

ization tool.

4.3.3.1 ROUGE Metrics

To calculate the ROUGE metrics, the final summarizations were compared to the text extracted

directly from the original report, more specifically the critical sections “recommendations” and

“lessons learned”, and the sentences that contain pronouns or human-related nouns (such as

“user”, “operator”, “manager”). This extracted text had an average length of approximately

3000 words. The F1-score for ROUGE-1, ROUGE-2, ROUGE-L and ROUGE-S are given in

Table 4.2.
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ROUGE Metric F1-Score
ROUGE-1 51%
ROUGE-2 40%
ROUGE-L 45%
ROUGE-S 32%

Table 4.2: ROUGE Performance Metrics for Human Centric Summarizer

The F1-score of 51% for ROUGE-1 suggests a moderate performance in terms of capturing rel-

evant keywords from the original text in the summary. This metric is critical as it ensures that

the summarization includes most of the crucial terms that appear in the reference text most

frequently, thereby maintaining the core factual content. Within the reports there are industry

and situation specific terms that are essential for understanding the context and implications

of the report, this score indicates that the summarization tool it limited but has the ability

to retain key information. This is particularly useful in scenarios where stakeholders need to

understand the essential details without delving into the full document. The ROUGE-2 score at

40% is lower than ROUGE-1, which is expected because it measures the more challenging task

of capturing consecutive word pairs (bigrams). This score is moderate and suggests that while

the tool is reasonably effective at maintaining some of the original meaning, there is room for

improvement in capturing more complex relationships within the text. This decrease reflects the

inherent difficulty in compressing detailed content into a shorter form while preserving specific

two-word phrases that may be critical for conveying nuanced meanings. In this context, losing

some of these nuances can mean missing out on subtler context or technical descriptions, which

could be significant for a full understanding but might be less critical for a high-level overview.

With an F1-score of 45%, the ROUGE-L metric shows that the summarization tool has an ad-

equate ability to maintain the order and structure of the content. This score reflects how well the

summary preserves the longest common subsequences (LCS) within the reference, indicating the

tool’s effectiveness at capturing the flow and narrative structure of the original text. Although

not as high as ROUGE-1, this level of performance is sufficient for ensuring that the overall

coherence and logical sequence of ideas are maintained, which is vital for summaries intended

to provide actionable insights.

The lowest score of 32% in ROUGE-S indicates a challenge in capturing skip-bigrams, which

involve non-consecutive but contextually related word pairs. This metric highlights a limitation
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of the tool in preserving the broader contextual connections within the text, which can be crucial

for fully understanding complex interactions and sequences in accident scenarios. The relatively

lower score suggests that while the tool captures direct content effectively, it struggles more with

interconnected content spread across the original document. This aspect is particularly relevant

where understanding the broader implications of specific actions or events within an accident

report is necessary.

The ROUGE scores obtained from our tool demonstrate a reasonable level of accuracy in sum-

marizing complex, human-centered content from lengthy accident reports. While the F1-scores

are not near-perfect, it is crucial to consider the inherent complexity of summarizing detailed

accident reports, which often contain nuanced information that is challenging to condense ef-

fectively. These scores are also comparable to those achieved in a similar study where BART

was used to summarize long financial reports, with F1-scores of 45% for ROUGE-1, 32% for

ROUGE-2, 44% for ROUGE-L and 37% for ROUGE-S (Zmandar et al. 2023).

The primary goal of our summarization tool is to highlight critical human-related insights rather

than to replicate the original text verbatim. Thus, a lower score in some ROUGE metrics does

not necessarily indicate poor performance but rather reflects the summarization tool’s focus on

extracting essential meanings rather than exact phrasings. However, the scores also highlight

areas where the tool may struggle, such as preserving exact word sequences and the structure

of the original text (as evidenced by the lower scores in ROUGE-2 and ROUGE-S).

The ROUGE metrics provide valuable insights into our overall assessment of the performance

of our summarization tool, underscoring its effectiveness in capturing key content while also

pointing out limitations in handling complex narrative structures. The utility of the tool, partic-

ularly in contexts where efficient assimilation of critical information is needed, such as in safety

protocol development or accident response planning, remains significant. This is especially true

when a multidisciplinary team is risk assessing a system and wants to find evidence of similar

scenarios in accident reports.
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4.3.3.2 Classification Tool Comparison

Additionally, the impact of summarization on the performance of the HF Classifier 2.0, spe-

cifically in terms of PSF classification, is evaluated. This comparison, outlined in Figure 4.3,

provides insight into any potential information loss resulting from the summarization process.

Metric Original Reports Summarized Reports
Accuracy 91% 79%
Precision 82% 70%
Recall 74% 61%
F1-Score 78% 65%

Table 4.3: Original vs. Summarized Report - Classification Performance Comparison

These results show a decrease in all performance metrics when using summarized reports com-

pared to the original reports. This reduction can be expected due to the compression of the

content, where essential details might be lost or altered. Despite this, the summarized reports

still maintain a relatively high performance, suggesting that the critical aspects of human roles

and influencing factors in accidents are preserved effectively in the summaries.

One significant factor contributing to the decline in classification performance is the exclusion of

more detailed, technical sections in the text extraction process of the tool. Our tool is designed

to focus primarily on human-related aspects of the accident reports, such as actions, decisions,

and roles. Consequently, it tends to omit sections that discuss the technical, intricate mechanical

details, or complex system. These sections often contain specialized terms and information that

are critical for a fully nuanced understanding of the accident causes, particularly the technolo-

gical PSFs.

The current performance of our classification tool on summarized content demonstrates the ef-

fectiveness of the summarization in retaining critical information about human roles. However,

the decrease in classification metrics suggest possible need for the development of another sum-

marization tool, that can better accommodate the technical complexities inherent in accident

reports, ensuring that all essential aspects are represented accurately in the summaries. This

combined approach will enhance the utility for a broader range of applications, particularly in
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detailed technical assessments and safety compliance monitoring. Integrating insights from his-

torical incidents refines any analysis, ensuring that lessons learned from past accidents inform

the risk assessment processes for new projects. This incorporation of past knowledge strengthens

our overall approach to safety and reliability.

4.3.3.3 Manual Assessment

The final verification of the summarizer’s performance is a manual assessment, achieved by

manually reading and comparing the reports and respective summaries of ten accident reports.

From this, it can be said that the tool generates a summary that accurately captures the main

points and key information of the identified sections in a concise and readable format in an effi-

cient manner. However, in an attempt to fit to the token limit, the tool can sometimes combine

human actions in a way that misrepresents what is stated in the original accident report, missing

key information of contextual significance. An instance of this is, “...The operator shut down the

pump when a leak was detected in the pipeline... The technician repaired the leak and the pump

was restarted...” was summarized to “The operator shut down the pump, the technician restarted

the pump.” Here any information regarding the leak and repair was excluded. Such omissions

highlight the challenges of maintaining the contextual integrity of accident reports.

To enhance the accuracy and relevance of the summaries, especially concerning domain-specific

terminology and critical incident details, the development of a fine-tuned layer for the summar-

ization tool could be suggested. This layer would utilize summaries written by human experts as

a training base. Although this approach would require a significant time investment in the initial

stages, the long-term benefits shown in similar applications that such investments in domain-

tailored training significantly enhance tool performance, improving accuracy and the contextual

relevance of automated summaries (Yadav et al. 2023).

The Human-Centric Summarizer, despite some observed limitations in detail retention as shown

by the ROUGE metrics and classification tool performance, has demonstrated substantial poten-

tial in processing extensive accident reports both swiftly and effectively. The ability to extract
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and condense crucial human-centered information from detailed and lengthy reports into a more

manageable form presents significant benefits. It facilitates decision-making, enhances the ac-

cessibility of essential data, and provides evidence for the PSFs identified by the classification

tool.

4.4 Case Studies

Having explored the development and performance of the tools, some practical case studies

are presented that underscore their utility. These three case studies demonstrate the tool’s

efficacy in analyzing incidents, extracting critical insights, and enhancing incident investigation

processes. Through the lens of two distinct accidents and one SOP, how the developed tools aid in

understanding the underlying causes of incidents and provide important context is demonstrated.

The case studies provide an example of how the tools outputs can be used to inform proactive

risk mitigation strategies and highlight the most influential PSFs in a procedure to aid assessors

of HRA.

4.4.1 First Case Study - FPSO CDSM 2015 Incident

The first case study revisits the accident report for the FPSO CDSM incident, discussed in

Section 3.4.2 (Vinnem 2018). This report has been classified by an expert and the first-generation

tool, providing an opportunity to compare the outcomes generated by different generations of

the classification tool.

Table 4.4 shows the comparison between the human factors classifications obtained by the human

expert and both versions of the classifier tools.
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Expert
First

Gen

Second

Gen

HUMAN Action Execution

(Error

Modes)

Wrong Time 0 0 0

Wrong Type 0 0 0

Wrong Object 0 0 0

Wrong Place 1 0 1
Specific

Cognitive

Functions

Observation Observation Missed 1 0 0

False Observation 0 0 0

Wrong Identification 0 0 0

Interpretation Faulty diagnosis 1 0 1

Wrong reasoning 1 0 1

Decision error 0 0 0
Delayed

interpretation
0 0 0

Incorrect prediction 0 0 0

Planning Inadequate plan 1 0 0

Priority error 0 0 0
Temporary

Person

Related

Functions

Memory failure 0 0 1

Fear 0 0 0

Distraction 0 0 0

Fatigue 0 0 0
Performance

Variability
0 0 0

Continued on next page
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Expert
First

Gen

Second

Gen

Inattention 0 0 1

Physiological stress 0 0 0

Psychological stress 0 0 0
Permanent

Person

Related

Functions

Functional

impairment
0 0 0

Cognitive style 0 0 0

Cognitive bias 1 0 1

TECHNOLOGY Equipment Equipment failure 0 0 0

Software fault 0 0 0

Procedures
Inadequate

procedure
1 1 0

Temporary

Interface
Access limitations 0 0 0

Ambiguous

information
0 0 0

Incomplete

information
1 0 1

Permanent

Interface
Access problems 0 0 0

Mislabeling 0 0 0

ORGANIZATIONCommunication
Communication

failure
1 0 1

Missing information 1 0 1

Organization Maintenance failure 1 1 1

Inadequate quality

control

1 1 1

Management

problem
0 0 0

Design failure 1 1 1

Continued on next page
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Expert
First

Gen

Second

Gen

Inadequate task

allocation
1 1 1

Social pressure 1 0 0

Training Insufficient skills 1 0 1
Insufficient

knowledge
1 0 1

Ambient

Conditions
Temperature 0 0 0

Sound 0 0 0

Humidity 0 0 0

Illumination 0 0 0

Other 0 0 0

Adverse ambient

conditions

0 0 0

Working

Conditions
Excessive demand 1 0 1

Inadequate work

place layout

0 0 0

Inadequate team

support

0 0 0

Irregular working

hours

0 0 0

Sum of true positives 5 14
Sum of true

negativies
35 33

Sum of false

positives
0 2

Sum of false

negatives
13 4

Accuracy 75% 89%

Continued on next page
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Expert
First

Gen

Second

Gen

Precision 100% 88%

Recall 28% 78%

F1-Score 43% 83%

Table 4.4: Case Study - FPSO CSDM, HF Classifier Comparison

Both the SVM and BERT methods demonstrate high precision and accuracy. However, the

BERT method shows a significant improvement in recall and, consequently, in the F1-score.

Recall can be considered the most crucial metric for a human factors classifier, given the severe

implications of undetected human errors or PSFs, that would remain unaddressed, with no re-

source allocated to its risk reduction, can have more severe consequences than false alarms.

On the other hand, precision is also important when allocating resources, as it ensures that the

identified factors are mostly accurate, preventing wasteful investments. The F1-score, which bal-

ances precision and recall, thus emerges as the most valuable metric. The marked enhancement

in the F1-score with the BERT method, as evidenced by the performance metrics Table 4.1 and

illustrated in this case study, support the development of the BERT-based tool.

The improvement in the tools ability to correctly identify present factors (TPs), is highlighted

in Figure 4.3, especially when compared with Figure 3.5.
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Figure 4.3: Confusion Matrix Heatmap - FPSO CSDM acident (HF Classifier 2.0)

In this incident within the oil & gas sector, the BERT tool identified several human failures

and PSFs. The human failures included: human errors of execution such as wrong place, inter-

pretation with faulty diagnosis and wrong reasoning, and permanent person related functions

due to cognitive bias. Technological factors included issues like incomplete information related

to temporary interfaces. Organizational factors encompassed communication failures, missing

information, maintenance lapses, inadequate quality control, design flaws, improper task alloc-

ation, insufficient skills and knowledge, and excessive demands related to working conditions.

Additionally, the tool identified two personal factors related to temporary functions, memory

failures and inattention, not identified by the expert assessment. These findings do not neces-

sarily indicate mistakes by the tool but rather highlight areas where further investigation might

be necessary, challenging the assumption of a flawless manual assessment.

For the summarization of this accident report the metrics used in the evaluation of the tool can

again be calculated, namely the ROUGE metrics and the classification tool comparison, these

are given in Table 4.5 and Table 4.6.
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ROUGE Metric F1-Score
ROUGE-1 40%
ROUGE-2 30%
ROUGE-L 33%
ROUGE-S 25%

Table 4.5: Case Study - FPSO CDSM, Summarized Report ROUGE Metrics

Metric Original Reports Summarized Reports
Accuracy 89% 79%
Precision 88% 65%
Recall 78% 58%
F1-Score 83% 61%

Table 4.6: Case Study - FPSO CDSM, Original vs Summarized Classification Performance

The performance of the summarizer tool on this report was found to be lower compared to in

Section 4.3.3. The report itself is extensive, spanning 380 pages and containing approximately

65,000 words. During the text extraction phase, sections totaling 8,000 words were identified for

summarization, which were then condensed to just 500 words.

This may be a cause of the lower performance as this particular report is significantly longer than

the majority of reports tested in the evaluation section, meaning more vocabulary and context

has to be excluded to meet the word cap of the summary. Despite this limitation, a manual as-

sessment revealed that the summarized report remained readable and provided a broad overview

of the incident. The summarization tool provides evidence to explain the identification of many

of the factors by the classification tool. For example, the factor of “Incomplete Information”

is illustrated by the statement, “They lacked access to information necessary for executing the

jobs that should be included in the service ticket report for their relevance...”. “Communication

Failure” is highlighted with the observation of “...unsuitable communication between shifts....”

Furthermore, “Insufficient Skills” and “Insufficient Knowledge” are demonstrated in the sum-

mary by “the operational practice did not include all phases, only the starting and stopping, and

it was not in the guide.”

However, the summarization process struggled to capture factors concerning control room design,

equipment and maintenance, and how these might have contributed to errors. For instance, while

the text mentions operational and technical issues, specifically the degradation of systems and
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equipment and inadequate emergency response systems, these aspects were not explicitly de-

tailed in the summary. This omission can be attributed in part to the initial text extraction

phase, which prioritizes human actions over more technical sections. Given this example, it may

be beneficial to adjust the word count cap for summarization, especially for comprehensive doc-

uments like this report, to ensure a more complete representation of the content, including both

human and technical factors.

4.4.2 Second Case Study - Firefighting System Incident

The second accident case study, examines a report regarding an incident involving the spuri-

ous activation of the carbon dioxide firefighting system during maintenance work on the diesel

generators, trapping two employees in the room, leading to one fatality. This document was

originally in Portuguese and was translated into English using the free document translation

option available on Google Translate before being input into the tool. This report contained a

“Human Factors analysis” section that allows us to compare the tools’ classification with the

assessment of a different HFs expert. This section was removed before the report was uploaded

to simulate the application of the tool instead of a HFs expert. The results are presented in

Table 4.7.

Expert

Classification

HF

Classifier

2.0

HUMAN Action Execution

(Error

Modes)

Wrong Time 0 0

Wrong Type 0 0

Wrong Object 0 0

Wrong Place 0 1

Continued on next page
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Expert

Classification

HF

Classifier

2.0

Specific

Cognitive

Functions

Observation Observation Missed 0 0

False Observation 0 0

Wrong Identification 0 0

Interpretation Faulty diagnosis 0 0

Wrong reasoning 0 0

Decision error 0 0

Delayed interpreta-

tion

0 0

Incorrect prediction 0 0

Planning Inadequate plan 0 0

Priority error 0 0
Temporary

Person

Related

Functions

Memory failure 0 0

Fear 0 0

Distraction 0 0

Fatigue 1 1
Performance

Variability
0 0

Inattention 0 0

Physiological stress 0 0

Psychological stress 0 0

Continued on next page
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Expert

Classification

HF

Classifier

2.0

Permanent

Person

Related

Functions

Functional impair-

ment

0 0

Cognitive style 0 0

Cognitive bias 1 0

TECHNOLOGY Equipment Equipment failure 1 0

Software fault 0 0

Procedures
Inadequate

procedure
1 1

Temporary

Interface
Access limitations 1 1

Ambiguous

information
0 0

Incomplete

information
0 0

Permanent

Interface
Access problems 0 0

Mislabeling 0 0

ORGANIZATIONCommunication
Communication

failure
1 1

Missing information 1 1

Organization Maintenance failure 1 0

Inadequate quality

control

1 1

Management

problem
0 0

Design failure 1 1
Inadequate task

allocation
1 1

Social pressure 0 0

Continued on next page
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Expert

Classification

HF

Classifier

2.0

Training Insufficient skills 1 0
Insufficient

knowledge
1 0

Ambient

Conditions
Temperature 0 0

Sound 0 0

Humidity 0 0

Illumination 0 0

Other 0 0

Adverse ambient

conditions

1 0

Working

Conditions
Excessive demand 1 1

Inadequate work

place layout

1 1

Inadequate team

support

1 0

Irregular working

hours

0 0

Sum of true

positives
10

Sum of true

negatives
36

Sum of false

positives
1

Sum of false

negatives
7

Continued on next page
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Expert

Classification

HF

Classifier

2.0

Accuracy 87%

Precision 91%

Recall 63%

F1-Score 70%

Table 4.7: Case Study - Firefighting System Incident, HF Classifier Output

The tool and expert agreed on the following PSFs, Fatigue, Inadequate procedure, Access limit-

ations, Communication failure, Missing information, Inadequate quality control, Design failure,

Inadequate task allocation, Excessive demand, Inadequate work place layout. However, the ex-

pert additionally identified the following factors, Cognitive bias, Equipment failure, Insufficient

skills, Insufficient knowledge, Adverse ambient conditions, Inadequate team support. This is

reflected in Figure 4.4 and in the lower recall performance.

Figure 4.4: Confusion Matrix Heatmap - Firefighting System accident
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One potential reason for this decline is that the report was initially written in Portuguese.

Translating it likely introduced vocabulary and phrasing unfamiliar to the tool from its training

phase. Furthermore, the tool has been trained and benchmarked against assessments from a

single expert, potentially embedding a shared bias that might affect performance when compar-

ing to another expert’s judgement.

However, the tool identified the factor Wrong Place, which the expert initially did not identify.

After further review it has been labelled as an oversight by the expert, highlighting the utility

of the tool in complementing human expertise. Despite the challenges posed by translation, the

majority of factors identified by the expert were also recognized by the tool, demonstrating its

promising capabilities.

The summarization of this report takes the original report of 70 pages and 16,000 words, first to

1500 words after the extraction phase and then down to 485 words following the summary. As

before shown before the metrics used in the evaluation of the tool can be calculated, and these

are given in Table 4.8 and Table 4.9.

ROUGE Metric F1-Score
ROUGE-1 50%
ROUGE-2 41%
ROUGE-L 45%
ROUGE-S 29%

Table 4.8: Case Study - Firefighting System Incident, Summarized Report ROUGE Met-
rics

Metric Original Reports Summarized Reports
Accuracy 87% 78%
Precision 91% 72%
Recall 63% 63%
F1-Score 70% 67%

Table 4.9: Case Study - Firefighting System Incident, Original vs Summarized Classifica-
tion Performance

For this accident report there was a comparable level of performance to that displayed in Sec-

tion 4.3.3. This report is similar in length to the test reports, and therefore requires less sum-

marization, in turn losing less information.

The generated summary concisely, successfully, and accurately details the events that led to
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the accident, providing context for many of the factors identified by the tool. For example,

“There was a lack of communication in the activities carried out in the engine generator room”

identifies a critical Communication Failure, and “The unit lacked information about the safety

procedures...” highlights that the crew was Missing Information that impacted their reactions.

The summary also included, “...inspections by the safety technicians overlooked failures in the

design of the fixed CO2 system, the absence of a lockout valve...” This is not perfectly accurate

to the original report, as these are two separate points that have been merged. However, this

quote from the summary provides evidence for the classification identifying Inadequate Quality

Control and Design Failure as PSFs in the accident. The error missed by the human expert

but identified by the classification tool, Wrong Place, is supported by the summary including

“People remained in the room after the alarm...”

The summarized report provides the necessary understanding of the human role in the incident

to understand and engage with the human reliability/factors part of the accident review.

4.4.3 Third Case Study - Pigging Operation Procedure

Finally, the utility of HF Classifier 2.0 in assessing procedure guides is explored, taking a trans-

fer learning approach leveraging the shared vocabulary and context of industrial procedure and

accidents, to preemptively identify vulnerabilities to specific influencing factors.

The exploratory case study focuses on a pigging operations guide from the oil and gas sector,

an area where precise and reliable procedures are critical. Pigging ensures pipeline integrity

by using devices to clean, inspect, and maintain pipelines without halting flow. The procedure

provides details of the preparation, execution, and response to abnormalities, with stringent

safety measures and specialized equipment. Effective pigging operations are vital for maintain-

ing the efficiency and safety of oil and gas transportation systems.

The HF Classifier 2.0, initially untrained on procedure guides, has exhibited a remarkable cap-

ability to parse and analyze these documents due to its underlying understanding of language

concerning processes and actions. By dissecting the procedure guide into individual steps and

analyzing each for PSFs, multiple vulnerabilities, including faulty diagnosis, wrong reasoning,

and inadequate procedures have been identified. Such insights are invaluable, providing the op-

portunity for potential risks to be further assessed and preemptively mitigated. This has the



4.4. Case Studies 88

potential to aid HRA assessors to identify and assess the possible vulnerability due to PSFs in

safety critical procedures.

Feedback from industry experts highlights the potential of this tool as a supportive aid in incid-

ent investigation and operational safety analysis. While its ability to direct attention to potential

areas of concern has been positively received, it is crucial to underscore that the tool’s role is to

assist, not to provide definitive solutions. By analyzing procedural documents and identifying

potential latent risks or PSFs, it offers suggestions that require further investigation and expert

evaluation.

This capability proves valuable in raising targeted questions, such as, “Are we confident this step

is sufficiently robust?” or “Could this factor be contributing to a performance issue?” These in-

sights generated are not conclusive but serve as a starting point for deeper exploration. In some

cases, the tool might flag areas that, upon thorough evaluation by experts, could lead to action-

able safety improvements that might have been otherwise overlooked.

While promising in its ability to support the identification of risks and PSFs, the tool should

be considered a complementary resource within a comprehensive safety strategy. Its outputs

require validation and integration with expert judgment, detailed investigations, and broader

contextual analysis to effectively contribute to meaningful improvements in incident prevention

and operational safety.

The case study of the tool’s application in procedure guides demonstrates its utility in identifying

and classifying human factor-related vulnerabilities, setting an example for its broader applic-

ation in enhancing safety across high-stakes industries. However, it is essential, outside of data

collection, to view the tools findings as insights providing a foundation for further exploration

rather than definitive solutions.

Through these case studies, the practical applications of the developed tools in incident ana-

lysis, classification, and summarization are highlighted, showcasing their potential to improve

incident investigation methodologies. By offering a systematic way to assess human factors in

risk analysis, the tools can contribute to the enhancement of operational safety across various

industries.
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4.5 Limitations and Future Work

The tools’ benefits and potential use in practical accident and safety assessments are underscored

by robust performance metrics and successes in practical case studies. Despite these achieve-

ments, there remain avenues for improvement. Here, the challenges and constraints faced during

development, implementation, and application are outlined, as well as areas that warrant fur-

ther investigation and innovation. By acknowledging these limitations and charting a course for

future work, a contribution to the continued advancement and refinement of automated accident

analysis and the adoption of NLP and AI technologies in the field of human reliability and safety

analysis is aimed for.

First, the size of the dataset in MATA-D poses a notable limitation, comprising only 238 acci-

dents. The initial reason for this project’s development is also a significant limiting factor in the

training and performance of the developed tool. Additionally, the relatively small dataset size

contributes to the risk of overfitting, particularly when fine-tuning advanced models like BERT,

which require substantial and diverse data for optimal performance. Expanding the dataset will

be a key focus for future iterations, potentially involving collaborations with industry stakehold-

ers to collect and integrate additional reports.

Another concern is related to bias within the training data, the MATA-D was constructed and

manually coded by a single expert. Thus, embedding the tool with their bias, as suggested when

compared with another expert’s assessment in the second case study. There have been efforts

to mitigate bias through adherence to the CREAM framework and the provision of reasoning

in MATA-D. However, to address this concern effectively, a manual assessment of a subset of

reports, requiring expert involvement, would be beneficial albeit time-consuming.

The summarization tool can be characterized as a blend of extractive and abstractive techniques.

While it targets specific sections and keywords, it employs abstractive methods to condense

information into a readable summary. Currently, the tool is designed to prioritize the human

factors in reports, which aligns with its intended purpose. However, this focus means that certain

technical aspects influencing human performance may not receive the same level of attention.

To enhance the accuracy and relevance of the summaries, especially concerning domain-specific

terminology and critical incident details, the training of a fine-tuned layer for the summariza-

tion tool has been suggested. This layer would utilize summaries written by human experts as a

training base. Although this approach would require a significant time investment in the initial
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stages, the long-term benefits could be substantial.

When assessing the performance of the summarization tool, the limitations of the ROUGE met-

rics are highlighted. ROUGE primarily relies on vocabulary matching, disregarding nuances in

semantics. The use of other assessment addresses these challenges in this work, however the in-

corporation of more advanced and recently developed metrics such as ROUGE-SEM, are worth

consideration (Zhang et al. 2024). While the summarization effectively targets the human role,

concerns regarding the potential omission of sections detailing the technical aspects that influ-

ence human performance, have been considered. A reworked extraction phase or the development

of a separate technical summarizer could address this limitation effectively.

Continual advancements in NLP and LLM underline the importance of staying up to date with

technological innovations. Future iterations of our tool should leverage these advancements, es-

pecially in the handling of multimedia elements like images and graphs.

The classifier can efficiently aid in identifying recurrent influencing factors, its role in informing

specific safety recommendations should be viewed with caution. The classification output alone

does not provide the detailed causal narratives required for meaningful safety interventions.

Future work should explore ways to link classified factors with contextual causal descriptions,

possibly through deeper integration of causal reasoning modules or human-in-the-loop methods

to interpret classifier outputs more precisely.

Finally, the development of a user-friendly website to integrate our tools and facilitate data

collection for MATA-D is imperative. This platform would enhance accessibility and usability

for a wider audience, fostering further data accumulation and tool refinement.

4.6 Conclusion

This section presents key improvements in automated accident analysis. The improved perform-

ance of the HF Classifier provides greater confidence in its ability to support updates to the

MATA-D repository, enhancing its value as a resource for structured data collection and trend

identification within HRA, which can support deeper safety investigations and expert-led causal

analysis. Expert oversight remains essential, albeit less intensive than with the previous version

of the tool. This shift allows experts to focus on rarer and more nuanced factors in the dataset
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(Moura et al. 2017a).

The tools demonstrate strong performance in classification and summarization, their primary

value lies in supporting data organization and initial scoping of accident reports. The classific-

ation of influencing factors, such as identification of “Training” or “Inadequate Procedure”, is

not intended to directly generate safety recommendations. Rather serve as entry points for more

nuanced investigations. Meaningful safety improvements require a granular understanding of

accident causality, procedural context, and human-machine interaction, aspects that go beyond

what automated tools can currently extract.

The integration of the Human-Centric Summarizer further enriches the analytical toolkit,

providing users with compact yet comprehensive insights into the human role and PSFs in

accidents. Rather than accelerating the overall process, it enhances specific early stage steps,

summarizing and contextualizing accident reports, allowing users to focus their efforts on areas

of interest identified by the tool. By distilling complex accident reports into digestible sum-

maries, the tool supports users in efficiently identifying potential areas of interest for further

investigation. While this aids understanding and prioritization, informed decision-making and

concrete risk mitigation strategies still rely on expert-led analysis.

The exploration of three case studies provided a thorough evaluation of the classifier and sum-

marizer, showcasing their practical applications in incident analysis. The studies revealed the

tools’ robust capabilities in identifying human errors and PSFs across diverse scenarios. For

instance, in the FPSO CDSM incident, critical human errors and organizational issues such

as faulty diagnosis and inadequate procedures were identified. The firefighting system incident

highlighted similar insights, including communication failures and design flaws. Additionally,

the analysis of a pigging operation procedure underscored the tool’s potential to assess SOPs

and preemptively identify vulnerabilities. A significant outcome of these case studies was the

tool’s ability to identify factors originally overlooked by human experts, a fundamental result

that emphasizes the importance of integrating automated tools in accident analysis to enhance

comprehensiveness. These results are promising but must be framed as supportive rather than

definitive. The tools flag potential factors for further expert validation and investigation, and

while they can point to issues overlooked in initial assessments, actionable insights require sub-

sequent analysis and contextual understanding.

The case studies provided valuable insights into the performance and utility of the summariz-

ation tool. They confirmed the tool’s effectiveness in condensing lengthy and complex accident

reports into concise, readable summaries. This capability is particularly beneficial in scenarios



4.6. Conclusion 92

where efficient assimilation of information is critical, allowing users to gain a coherent overview

of the incidents without sifting through extensive documentation. Although challenges were

noted in maintaining nuanced information from extensive reports with dense technical content

or complex narrative structures. This limitation suggests that while the summarizer is adept at

providing a high-level summary, it may sometimes omit finer details that could be significant in

a full technical analysis.

Importantly, the case studies emphasized the Human-Centric Summarizer’s role as an explain-

ability layer for the classification tool. By providing clear and accessible interpretations of the

classified factors, the summarizer enhances the transparency and usability of the classification

results. This dual functionality not only supports the classification process by enhancing under-

standing of its outcomes but also helps communicate overall findings and ideas to stakeholders,

particularly those who may lack the time or expertise to analyze full reports. However, it does

not replace the need for experts to conduct in-depth reviews and thorough analysis when critical

decisions are at stake.

Looking ahead, the trajectory of NLP models promises continued evolution and refinement. As

new technologies emerge and datasets expand, NLP models will yield even more nuanced and ac-

curate results, further enhancing their applicability in HRA. This work exemplifies the practical

application of NLP in HRA, whether through data gathering initiatives or automating labor-

intensive text-based tasks, thus paving the way for enhanced accident analysis methodologies

and proactive safety measures.



Chapter 5

Enhancing Procedure Quality:
Advanced Language Tools for

Identifying Ambiguity and
High-Potential Violation Triggers

This chapter introduces two novel tools that combine rule-based and ML techniques in NLP to

improve the quality and clarity of SOPs in high-risk industries. The development was motivated

by findings from the MATA-D dataset, where 45% of accidents were attributed to the Inadequate

Procedure factor, highlighting the need for systematic approaches to improve procedural docu-

mentation. Designed to work in parallel, the first tool identifies ambiguities, while the second is

trained on historical data to flag steps with high-risk potential if violated. Their development

and application aim not only to ensure that SOPs are comprehensive, clear, and logical but

also to support the deliberate refinement of procedures based on well-grounded safety insights.

This approach fosters a proactive yet thoughtful strategy for enhancing safety and improving

organizational performance in high-risk industries.

The first tool systematically analyzes SOPs to detect linguistic and structural ambiguities that

could lead to misinterpretation or inconsistent execution. Using rule-based methodologies and

NLP techniques, this tool identifies vague language, unclear instructions, and complex sentence

structures that might introduce uncertainty. By flagging these ambiguities, the tool enables SOP

authors and safety analysts to refine and clarify procedural directives, ensuring that instructions

are easily comprehensible for operators. This proactive approach enhances the effectiveness of

93
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SOPs by minimizing the likelihood of human error and improving compliance with industry

standards.

The second tool is designed to identify SOP directives that, when violated, have significant con-

sequences, thereby highlighting procedural steps that require enhanced clarity and enforcement.

This tool is trained on datasets of past accidents, incidents, and near-misses, many of which

involved procedural violations. By analyzing these historical events, it identifies directives that

were previously violated and were associated with severe outcomes. The tool is then applied to

SOPs to flag similar directives that share characteristics with those previously violated, thus

identifying critical steps where compliance is most essential. By pinpointing high-risk directives,

this tool provides a proactive approach to mitigating operational failures and ensuring proced-

ural adherence in high-risk industries.

Each tool independently processes a submitted SOP. Upon submission, the text is extracted from

the document and undergoes necessary preprocessing. The preprocessed SOP is then passed into

either the Ambiguity Identifier or the Violation Trigger Tool, depending on the selected analysis.

The Ambiguity Identifier outputs three files containing directives with issues related to 1.incon-

sistent units of measurement, 2.potentially ambiguous language, and 3.undefined abbreviations

and acronyms. Conversely, the Violation Trigger Tool outputs a file containing directives that,

based on past incident data, are associated with a high-potential risk if violated. This separation

of tools ensures tailored evaluations depending on the specific quality aspect under review. A

simplified workflow is shown in Figure 5.1.

While this work emphasizes the importance of timely communication, it equally recognizes that

the development and modification of SOPs must be grounded in a thorough understanding of

operational complexities. The tools presented here are designed to aid, not replace, human ex-

pertise and review, ensuring that procedural changes are deliberate and well-informed.

SOPs are foundational tools used by organizations and in industrial environments to ensure

consistency and efficiency in the execution of tasks. SOPs dictate routine and emergency prac-

tices, encompassing purpose, terminology, roles, and step-by-step instructions detailing how to

perform complex operations safely, effectively and consistently, thus forming the backbone of

industrial safety management. They are critical in a wide range of industries, particularly in

high-risk sectors like nuclear, oil & gas, and chemical processing, where precise, repeatable pro-

cesses are essential to maintain quality, safety and compliance with regulatory standards (Office

2007). The clarity and accuracy of these procedures are paramount. Clear and precise SOPs are

essential for consistent and correct execution, reducing the risk of errors, enhancing productivity,



5. Enhancing Procedure Quality 95

Figure 5.1: Workflow of Developed SOP tools

supporting effective training and communication, and ensuring compliance with industry stand-

ards and regulations. In environments where safety and precision are crucial, the importance of

unambiguous instructions cannot be overstated.

Ambiguity in SOPs can lead to inconsistent outcomes, increased training costs due to the extra

time needed to clarify unclear instructions, a higher rate of mistakes, and an overall increase

in risk (Isin 2012). In general, ambiguity refers to the possibility of interpreting information

in multiple ways (Curley et al. 1986). In the context of SOPs, ambiguity can arise from vague

language, overly complex instructions, or insufficient details that leave too much room for indi-

vidual interpretation. Such ambiguities can challenge even those deeply involved in the design

and writing of guides, as their familiarity may mean they overlook practical operator perspect-

ives (Manghani 2011). The presence of ambiguity can compromise the effectiveness of the SOP

and lead to operational failures and contribute to cascading failures in high-risk environments

(Sun et al. 2024).

Clear and easy-to-follow procedures are essential for minimizing factors that could increase the

probability of human error because they ensure that all operators understand the tasks in the

same way, reducing the chances of misinterpretation. By providing precise and straightforward

instructions, SOPs help create a consistent workflow, thereby enhancing efficiency and safety

across operations. This consistency is crucial for maintaining high standards of performance and

reliability, ultimately leading to fewer mistakes and a more controlled and predictable opera-
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tional environment.

Violations occur when work processes or activities are deliberately deviated from the stand-

ard procedures they should refer to, with the possibility of exposure to additional safety risks

(Hudson et al. 1998) These violations often stem from perceived inefficiencies within the SOPs,

resistance to standard practices, misunderstanding of the requirements, or extenuating circum-

stances. Violations are typically categorized into routine (habitual and often overlooked), situ-

ational (response to specific circumstances), and exceptional (rare, in extreme situations) types

(Dougherty 1995). Such violations, whether due to oversight or inadequate design, undermine

the efficacy of SOPs and introduce significant operational risks. Identifying procedural steps

susceptible to intentional violations is crucial for enhancing compliance and rectifying potential

operational vulnerabilities.

The term “circumvention” can serve as an alternative to “violation” when describing situations

where operators intentionally omit or modify action sequences of SOPs to improve efficiency in

task performance (Jang et al. 2021). This practice is based on their experience and belief that

they can accomplish their tasks while saving time and minimizing the use of cognitive and phys-

ical resources. However, “circumvention” is more commonly associated with the nuclear power

plant industry. Given that this work uses data from different industrial sectors, this intended

action will continue to be described as “violation.”

The concept of “work as done” versus “work as imagined” is a critical concept within organiz-

ational and safety management (Hollnagel 2017). “Work as imagined” refers to how tasks and

procedures are designed and documented, often assuming ideal conditions and complete adher-

ence to protocols. In contrast, “work as done” represents the reality of how tasks are actually

performed in the field, where deviations from procedures often occur due to various practical

challenges. This discrepancy poses a significant challenge because procedures based solely on

“work as imagined” may not account for real-world complexities and constraints. It is essential

that procedure guides reflect “work as done” to ensure that task analysis and safety protocols

are both realistic and practical, thereby enhancing their effectiveness and adherence.

Further details of the motivations and any related studies are earlier discussed in Section 2.3.

The chapter begins by examining various types of ambiguity and the rules developed to identify

them. Following this, the development of the tool for identifying high-potential violation triggers

is detailed. The tools are subsequently applied to two case studies to demonstrate their practical

application. Finally, the challenges, limitations, and opportunities for future work are discussed,

concluding with a summary of the developments and their potential impact.
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5.1 Ambiguity

In operational settings, ambiguity in SOPs can significantly impede clarity, consistency, and

safety. Ambiguity occurs when instructions, guidelines, or procedural documentation allow for

multiple interpretations, leading to operational inefficiencies and heightened potential of human

errors. Ambiguities encountered in SOPs include general linguistic issues found in various texts,

such as lexical and syntactic ambiguities, as well as domain-specific issues related to clarity about

quantity, scope, abbreviations, and units of measurement. Each type of ambiguity introduces

unique challenges that can lead to misunderstandings and discrepancies in the execution of tasks,

thereby compromising the effectiveness of safety analysis.

5.1.1 Lexical Ambiguity

Lexical ambiguity involves the use of words or phrases that have multiple meanings (Li et

al. 2024a). In general, the context of the word provides the necessary information to prevent

misunderstanding or incorrect actions, however this is not always the case. An example that

may be found in an industrial context is, “Check the tank is clear.” This phrase could lead

to confusion due to the ambiguity of the word “clear.” One interpretation could be visually

clear, suggesting one needs to ensure that the tank is visually free from obstructions and debris,

meaning nothing is physically inside that should not be. Another possibility is that “clear”

refers to the composition of the contents, implying that the tank’s contents be clear, free from

contaminants, sediment, or impurities.

This type of ambiguity can lead to erroneous actions, which are particularly critical in scenarios

requiring precise operational standards.

To mitigate lexical ambiguity, SOPs should specify the context clearly within the document.

Use of clear, unambiguous language and avoidance of jargon (unless defined) are essential steps

towards clarifying SOPs at the lexical level.
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5.1.2 Syntactic Ambiguity

Syntactic ambiguity emerges from unclear sentence structures, where the grammatical arrange-

ment of words leads to multiple potential interpretations (Li et al. 2024a). The sentence structure

could make it unclear how procedural steps are related to each other.

An SOP stating, “Report all leaks observed after shutting down the system to the supervisor.”

Has multiple potential interpretations, this example could be interpreted as, leaks should only

be reported if they are noticed after the system has already been shut down, or alternatively,

first shut down the system and then report any leaks observed, regardless of when they were

noticed.

This type of ambiguity can be particularly hazardous as it may lead to improper sequencing of

tasks, potentially compromising safety. Clarification can be achieved by restructuring sentences

to eliminate grammatical ambiguities and using bullet points or numbered steps to delineate

procedures clearly.

5.1.3 Temporal Ambiguity

Ambiguity related to the lack of specific timing, sequence, or frequency of operations, which can

cause inconsistencies in maintenance and routines, can be known as Temporal ambiguity (Camp-

bell 2000). An instruction like “Periodically shut down the machine” could lead to variations in

the maintenance schedule, affecting the machine’s performance. Overuse or insufficient main-

tenance can both have dire consequences on the operational lifespan and safety of machinery.

SOPs should specify exact time intervals or conditions under which tasks are to be performed

to avoid temporal ambiguity. Incorporating schedules, calendars, or explicit time-based triggers

in SOPs can help standardize maintenance and operational procedures.
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5.1.4 Quantity Ambiguity in SOPs

Another form of ambiguity occurs when the quantity or degree of action required is not specified,

this arises particularly from vague quantifiers like “some”, “a few”, “enough”, and others, which

leave too much room for interpretation. In the directive to “add some lubricant to the gear” there

is unclear guidance on the amount of lubricant, therefore operators might use an excessive or

insufficient application, risking equipment failure or inefficiency. To address this, SOPs should

provide precise measurements, potentially supported by visual aids or examples, to ensure that

operators can achieve consistent results in tasks requiring specific quantities.

5.1.5 Conditional and Scope Ambiguity in SOPs

Conditional ambiguity arises when it is unclear under what circumstances certain actions should

be taken (Geurts 2004). An SOP instruction like, “If necessary, adjust the settings,” requires

operators to make judgment calls that may not be consistent across the board. Whereas scope

ambiguity arises when the extent or limits of a task are not well-defined (Li et al. 2024a). This

could be in “clean the workspace” or “perform maintenance on equipment” where the specific

areas/equipment and the level and degree of cleaning/maintenance required is not clearly spe-

cified. Conditional and scope ambiguities are two forms of instruction uncertainty that can sig-

nificantly affect operational consistency and efficiency, creating room for interpretation that can

lead to varied practices among operators. This variability can compromise the standardization

of processes, which is critical in many environments. Clear criteria or examples are warranted

and should be included to standardize responses to varying operational conditions.
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5.1.6 Abbreviation and Acronym Ambiguity

Acronym ambiguity arises in SOPs when abbreviations or acronyms are used without being

defined. This practice can lead to confusion, especially for new or less experienced operators

who may not be familiar with the abbreviated terms. The confusion stems from the assumption

that all readers have the same level of knowledge as designers and writers. Unfamiliar terms

can hinder understanding and lead to procedural errors as employees may misinterpret what is

required of them or fail to follow steps correctly.

For example, an SOP that instructs operators to “consult the VFD” could be misleading if

the employees do not know that “VFD” stands for “Variable Frequency Drive”, a device used

for adjusting motor speed. Without knowing what “VFD” refers to, operators might ignore

the instruction, seek help, or waste time trying to decode the abbreviation, thereby disrupting

workflow and potentially compromising safety.

To mitigate this type of ambiguity, it is crucial to either define each acronym or abbreviation

the first time it is used in the document or to include a glossary or reference table of terms at

the beginning or end of the SOP. This approach ensures that all personnel, regardless of their

familiarity with the terminology, have a clear and consistent understanding of the procedures,

enhancing compliance and operational efficiency.

5.1.7 Units of Measurement Ambiguity

Ambiguity in units of measurement in SOPs pose significant risks, particularly in tasks requiring

high precision. This type of ambiguity occurs when the units of measurement are not specified

or are inconsistent throughout the SOP. For example, an instruction such as “measure and

compare the length” without stating whether the measurement can lead to critical discrepancies.

Such discrepancies can significantly affect the quality of the output, safety, and compliance with

industry standards. Throughout the SOP, inconsistent application of measurement units, such

as switching between metric and imperial, can also cause confusion and errors.

To address these issues effectively units of measurement should be specified in each step of where

measurements are required. Ideally one measurement system/unit should be used throughout
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the SOP to avoid confusion, and if industry standard varies or if certain parts require to use

different units of measurement, include a conversion table within the SOP. This table should

provide a quick reference to convert all units used in the SOP to the standard units used by the

industry/company to ensure consistency and ease of understanding.

5.1.8 Mitigating Ambiguity in SOPs

Eliminating ambiguity in SOPs is imperative to enhancing operational clarity, safety, and effi-

ciency. This requires a comprehensive approach to identifying and resolving ambiguous language

and instructions across all aspects of SOP documentation. By ensuring that SOPs are precise,

unambiguous, and systematically reviewed for clarity, organizations can significantly reduce

operational risks and improve compliance with standards, thereby fostering a safer and more

efficient working environment. A proactive approach to SOP management not only enhances

operational outcomes but also supports a culture of safety and precision in industrial settings

and reduces the probability of human error.

5.2 Ambiguity Identification Tool

To enhance the management, assessment, and review of SOPs, a dedicated tool (Ambiguity

Identifier) has been developed specifically to identify ambiguities and uncertain procedural in-

structions. The creation of such a tool was motivated by the inherent difficulties associated with

identifying ambiguous texts. Often, the text seems clear to those who write it, while the indi-

viduals executing the SOPs do not always have the opportunity to highlight their difficulties in

understanding it. This tool aims to assist the writers of the SOPs or human reliability assessors

in evaluating and enhancing the quality of the procedures before they are handed over to the

executors. By doing so, it ensures that the procedures are clear and comprehensible, ultimately

reducing the risk of user errors and improving operational efficiency.

A significant challenge is the absence of a pre-labeled or annotated corpus of ambiguous texts, es-
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pecially those that are procedural in nature. This scarcity is compounded by the time-consuming

nature of manually constructing a sufficiently large dataset.

Given these constraints, an AI-driven approach was not considered feasible at this stage. In-

stead, the tool adopts a rule-based methodology, which has been shown to be effective in similar

studies. This approach involves the application of predefined, structured rules to systematically

analyze text for ambiguities. These rules are meticulously crafted based on established linguistic

principles, recognized patterns, and specific vocabularies known to lead to ambiguities.

Beyond the minimal data requirement there are multiple advantages of employing a rule-based

system. The structured nature of the rules supports systematic analysis, ensuring a consistent

and comprehensive examination of texts. Rule-based systems can also quickly analyze texts with

clear and explainable outputs, aiding swift decision-making. The rules can be easily modified or

extended as new patterns of ambiguities are discovered, for specific domains and industries, or

as procedural requirements evolve.

For each type of ambiguity previously identified, a corresponding set of rules and algorithms

have been developed. This methodological choice ensures that the tool is not only tailored to

address specific ambiguities but is also capable of evolving to include new types of ambiguities.

5.2.1 Lexical Ambiguity Rule

Developing a way to identify lexical ambiguity within text requires identifying terms with mul-

tiple possible meanings, and then incorporating the surrounding contexts meaning to decide

whether the terms meaning is clearly implied.

The PoS tagger from WMatrix, a corpus analysis and comparison tool, inspired an approach to

achieve this (Rayson 2009). The PoS tagger profiles words by quantifying their usage in different

grammatical contexts. It can discern how likely a word is to be a noun versus a verb. For example

the term “Document” appears multiple times in one SOP, for one occurrence the PoS tagger

assigned, NN1 (singular common noun) – 66 and VV0 (base form of a verb) - 34, meaning it is

66% confident it’s a noun, and then another time it assigned NN1 - 100 and VV0 – 0, meaning

it is 100% certain it’s a noun in this context.

This inspired the approach to the rule and functionality developed in this work to identify lexical

ambiguity. First using a different PoS tagger potentially ambiguous words are identified, specific-
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ally homographs. Homographs are words that are spelled the same but have different meanings

(and sometimes different pronunciations) when they represent different parts of speech (Gram-

marly 2023).

The sentences containing these words are then encoded and input into the LLM, BERT (Devlin

et al. 2018). One of the outputs from the BERT model contains the contextual embedding for

each word. This is a representation that takes into account the context in which they appear,

making them powerful for understanding nuanced meanings.

Then for each ambiguous term, the possible definitions are retrieved from a lexical database.

It then calculates the embeddings for each definition. A similarity calculation is then used to

compare these definition embeddings with the context informed embeddings from the BERT

model, to find the most probable matching definition in the lexical database.

If the most probable definition is not the first three in the lexical database, or if none of the

definitions have a satisfactory similarity, the word and sentence is flagged as ambiguous.

5.2.2 Syntactic Ambiguity Rule

The syntactic rule-based algorithm designed to detect syntactic ambiguities, focuses primarily

on complex sentences with subordinate clauses and potential ambiguities introduced by prepos-

itional phrases.

5.2.2.1 Identification of Complex Sentences with Subordinate

Clauses

The first rule of the algorithm determines the complexity of a sentence by identifying the presence

and number of subordinate clauses. Subordinate clauses are dependent clauses that contain

a subject and a verb but do not express a complete thought and cannot stand alone as a

sentence (Traffis 2020). These clauses typically complicate sentence structure, which can lead to

ambiguity.
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Subordinate clauses can contain additional information that modifies or clarifies the main clause.

However, if the placement or connection of the subordinate clause to the main clause is unclear, it

can lead to multiple interpretations. Sentences containing subordinated clauses are usually longer

and structurally more complex. This complexity might obscure the necessary actions, especially

when multiple subjects and verbs rely on implicit relationships within the main clause that are

not immediately obvious. When subordinate clauses are nested within each other, it can be

particularly challenging to decipher the sentence. Each additional layer of subordination adds to

the cognitive load required to parse the sentence, increasing the potential for misinterpretation.

The algorithm uses dependency parsing to analyze the grammatical structure of sentences.

This technique represents the sentence as a tree-like structure where each word is connected to

another through a dependency relation. Subordinate clauses are identified by searching for tokens

with a specific dependency label, which denotes markers of subordination (e.g., conjunctions,

prepositions, or other types of subordinating words). A sentence is considered complex and

potentially ambiguous if it contains more than two subordinate clauses.

5.2.2.2 Detection of Prepositional Phrase Attachment Ambigu-

ities

The second part of the syntactic algorithm focuses on detecting ambiguities related to the attach-

ment of prepositional phrases. These phrases begin with a preposition and end with an object

of the preposition, often including modifiers that describe the object. Prepositional phrases can

logically modify more than one element in a sentence, leading to different interpretations de-

pending on their attachment (Merlo and Ferrer 2006). These phrases often imply relationships

that rely heavily on contextual understanding, which can lead to confusion.

The algorithm checks for the preposition tag and examines the two preceding words or tokens.

If both preceding words could logically be modified by the prepositional phrase, the sentence is

flagged for potential attachment ambiguity.

The combination of these rule-based algorithms effectively highlights sentences with potential
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syntactic ambiguities, arising from subordinate clauses and prepositional phrases. By systemat-

ically identifying these structures and the ambiguities due to their complexities, the algorithm

serves as an effective tool for evaluating procedural steps. Allowing the reallocation of time spent

manually identifying syntactic ambiguity to the improvement and refinement of SOPs.

5.2.3 Temporal Ambiguity Rule

Identifying temporal ambiguity in instructions involves detecting instances where the timing,

sequence, or duration of events or actions is unclear or can be interpreted in multiple ways. A

corpus of vague temporal words and expressions was constructed, that is terms which do not

specify exact timings, including terms such as “frequently”, “periodically”, “every so often” etc.

A simple algorithm then checks each procedural step for these terms and flags any occurrences

as potentially ambiguous.

Other temporal conjunctions and adverbs such as “before”, “after”, “during”, “simultaneously”,

etc. are not inherently ambiguous, however they can be if it is not clear which events they are

connecting. Ambiguity arises when instructions do not explicitly state the sequence of actions,

potentially leading to multiple valid interpretations of the order in which tasks should be com-

pleted.

To identify these potential ambiguities, the algorithm begins by parsing each word in a sen-

tence searching for temporal conjunctions and adverbs. Again, using dependency parsing, the

surrounding grammatical structures within the text are analyzed to determine the relationships

between the identified temporal qualifier and the adjacent nouns or verbs. This analysis helps

identify whether the temporal phrases could modify the preceding and/or following actions.

Sentences where such potential ambiguity is detected are flagged, as they have the potential to

lead to confusion about the timing of events.

Combining both algorithms gives a comprehensive tool for identifying potential temporal ambi-

guity. These can then be manually resolved by clarifying or revising the wording to specify the

timing, sequence, or relationships more explicitly.
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5.2.4 Quantity Ambiguity in SOPs Rule

The approach for identifying quantity related ambiguity is similar to the first part of the temporal

ambiguity approach. In general, many terms and ways of expressing quantity can be very precise,

however also not. A corpus of ambiguous quantity related words was constructed, containing

terms such as “some”, “many”, “a handful”, “enough”, by combining existing lists of numeric

hedge words and other terms identified from the reading and analysis of example SOPs (Ferson

et al. 2015).

A simple algorithm then checks each step of the procedure, flagging any containing terms from

the ambiguous quantity corpus. The flagged steps should then be reviewed and clarified to

ensure precision and consistency in the communication of quantity within the procedure. This

review process may involve consulting subject matter experts, vendors, the system designers,

and the design specifications, to determine the intended meaning behind the flagged terms

and potentially replacing them with more specific or quantifiable language where necessary.

Additionally, providing context or defining the intended range or amount can help mitigate

ambiguity and ensure that the procedure can be effectively followed by users without confusion

or misinterpretation.

5.2.5 Conditional and Scope Ambiguity in SOPs Rules

Conditional ambiguity often arises when it’s unclear whether the outcome described in the

main clause of a sentence strictly depends on the condition stated in the subordinate clause.

Conditional conjunctions such as “if ”, “when”, “unless”, etc. are identified, their presence indic-

ates that the sentence likely has a conditional structure. If a conditional keyword is found, the

sentence’s grammatical structure, specifically the dependency parse tree is then analyzed. The

condition is identified in the structure and is checked for disjunctive conjunctions (like “or” and

“either”) and additional conditional conjunction.

Disjunctive conjunctions can introduce confusion in conditional sentences by creating multiple

possible scenarios within the same condition. When these conjunctions are used within a con-

ditional clause, they often split the condition into separate parts, each leading to potentially
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different outcomes or interpretations of what must be true for the main clause to take effect.

This can make it unclear which specific condition or set of conditions need to be met for the

consequence in the main clause to occur, including further conditional dependencies.

Having a conditional clause nested within another conditional clause can lead to confusion due

to the layering of multiple, dependent conditions that must be satisfied for the outcome to oc-

cur. This creates a more complex logical structure that can be difficult to follow and interpret

accurately. In such sentences, each conditional clause adds a new layer of criteria that influences

the ultimate outcome stated in the main clause. This layering requires the reader to keep track

of multiple contingencies and understand how they interact, which can easily lead to misunder-

standings and mistakes.

This approach to identifying conditional ambiguity, by analyzing the presence of conditional

conjunctions and the structural complexity of the dependency parse tree, is effective because it

systematically dissects sentence structure to pinpoint potential sources of confusion.

Identifying scope ambiguity presents multiple challenges, and creating a comprehensive set of

rules to cover all possible cases of scope ambiguity is extremely challenging, as there can be

subtle nuances and contextual factors that affect the scope interpretation. The interpretation

of scope often depends on the broader context. Attempting to check for this contextual inform-

ation is a significant challenge, it requires a deeper understanding of the domain and complete

document than can be coded within a ruleset.

In task directives the presence of a direct object to specify the target of the verb’s action typ-

ically enhances this clarity. The absence of direct objects can contribute to scope ambiguity,

affecting the extent and responsibility of the task. The rule identifies and tags each verb, before

analyzing the surrounding syntactic structure of the sentence using dependency parsing. For

each verb, the code looks at its children, tokens that depend syntactically on the verb. The code

filters these children to find the words where the dependency label is direct object. If it is unable

to locate such a token this sentence is flagged as potentially ambiguity.

As well as this, several other contributors to scope ambiguity include factors identified by other

rules developed in this project, in particular the quantity ambiguity and the conditional ambi-

guity rules.

Accurately identifying and resolving conditional and scope ambiguities presents significant chal-

lenges and necessitates a detailed analysis of sentence structure using advanced linguistic meth-
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ods. Refining these rules to include specific operational contexts will help develop a more robust

rule set, ensuring the highest standards of clarity and effectiveness in SOPs. Future integration

of advancements in NLP will be crucial for a smarter approach to detecting these ambiguities

in SOPs.

5.2.6 Abbreviation and Acronym Ambiguity Rules

Without proper definition and context, shorthand forms can lead to confusion and misinterpret-

ation. Our methodology addresses this ambiguity by systematically identifying and verifying

abbreviations and acronyms using regular expression (regex) techniques (Li et al. 2008).

To detect potential abbreviations and acronyms, a regex pattern designed to capture sequences

that are typically all uppercase and range between 2 to 5 characters in length has been emplyed.

The regex pattern used is “\b[A-Z]{2,5}\b”, which is used to identify these sequences within

the document and temporarily store them as potentially ambiguous.

Once identified, the next step is to verify whether each abbreviation or acronym has been

defined within the text. Using several regex patterns found in Table 5.1 common definition

formats are searched for, this table can be easily expanded to include other formats found in

specific company’s SOPs. These patterns help in capturing most definition styles employed any

acronyms/abbreviations found in this format are removed from the potentially ambiguous list.

Free Form Text Regex Pattern
Acronym/Abbreviation (Full Form) \b([A-Z]{2,5})\s*\(([^)]+)\)
Full Form (Acronym/Abbreviation) \b([^)]+)\s*\(([A-Z]{2,5})\)
Acronym/Abbreviation - Full Form \b([A-Z]{2,5})\s*-\s*([^.\n]+)
Full Form – Acronym/Abbreviation \b([^.\n]+)\s*-\s*([A-Z]{2,5})

Table 5.1: Acronym/Abbreviation Definition Regex Patterns

It is also necessary to differentiate between abbreviations/acronyms and units of measurement.

This differentiation is crucial as units are often formatted similarly but do not necessarily re-

quire in-text definitions. This is achieved by checking if numerical data proceeds the potential

acronyms/abbreviations, filtering these out to prevent them being erroneously identified as po-
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tential causes of ambiguities.

Additionally, acronyms/abbreviations are often defined within tables. Therefore, tables within

the document also need to be checked. The table structure is extracted and checked for the

earlier identified acronyms/abbreviations. If found in the table structure, adjacent cells are in-

spected for text strings, it is assumed that these strings likely serve as definitions or explanations

for the abbreviations or acronyms found within the table, removing these from the potentially

ambiguous list.

The remaining acronyms/abbreviations not defined through the above methods are output as

potentially ambiguous. These can then be manually reviewed, and then defined within the SOP

if determined to be necessary. This approach captures a broad spectrum of abbreviation and

acronym definitions, the practical implementation could potentially be improved by incorpor-

ating domain-specific dictionaries that frequently appear within certain contexts or domains.

However, despite the potential familiarity of some terms within specialized domains, it is a best

practice to define every abbreviation or acronym at least once in a document to prevent any

misunderstanding, thereby enhancing the clarity of the communication, efficiency and reducing

the risk of human error.

5.2.7 Units of Measurement Ambiguity Rule

Inconsistent or unclear usage of measurement units can lead to significant discrepancies in un-

derstanding procedural requirements. This classification aids in the systematic analysis of the

documents. To detect ambiguities in the presentation of numerical data, specifically related to

measurement units within SOPs, a comprehensive set of measurement units was compiled. These

units are categorized by what they measure: length, weight, volume, etc., and were further sub-

divided into groups based on measurement systems, such as metric (mm, cm, m, km) versus

imperial (inch, feet, yard, mile).

From the analysis of various SOPs, it was determined that the majority of numerical and meas-

urable values are presented within tables, with units included in the table headings. This stand-

ardized presentation significantly reduces ambiguity in data interpretation.

For numerical data outside of tables, including content but excluding page numbers and section

headings, the document is searched for numbers. The presence of a defined unit immediately
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following a numeric value is then verified. If no unit is present, the sentence is flagged.

The consistency of unit usage within a single document is also examined. Inconsistencies, such

as the mixed use of metric and imperial units or different units of the same type (e.g., mixing

mm, cm, and yards), all units causing this inconsistency are output. This step is crucial as

changing unit types within a document can confuse the reader, leading to potential oversight

and erroneous assumptions. This output might be used to support SOPs’ walkthroughs in real

installations, so the user can check if the different units in procedures match the units shown in

the human machine interfaces.

The methodology presented here provides an effective strategy for identifying ambiguities in the

use of measurement units in SOPs. This structured approach to managing measurement units

within SOPs sets a foundation for clearer communication and enhanced operational precision

across various sectors, mitigating risks associated with misinterpretation of critical measurements

and data.

5.2.8 Implementation

By combining these developed rules and algorithms together, this specialized tool effectively

addresses the challenge of identifying ambiguities in SOPs through a robust, rule-based meth-

odology. By meticulously crafting rules based on established linguistic principles and recognized

patterns, the tool systematically analyzes procedural texts to pinpoint ambiguities that could

potentially compromise clarity and operational efficacy. The tool’s design allows for the con-

sistent, comprehensive examination of texts, providing clear, explainable outputs that facilitate

swift decision-making and continuous improvement of SOPs.

The implementation of these rules leverages various Python libraries and toolkits, enhancing

the tool’s capability to handle complex textual analysis efficiently. Users can then select specific

types of ambiguities they wish to identify, tailoring the analysis to their needs. The tools pro-

cesses are outlined in Figure 5.2. First, the documents are converted from PDF into a raw text,

stripping non-essential elements, such as formatting, to focus purely on the content.

The tool analyzes the text by applying the selected rules one by one, thoroughly examining

each directive for potential ambiguities. The results are systematically compiled into a text file

that lists potentially ambiguous sentences. Additionally, two separate files are generated, one
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Figure 5.2: Ambiguity Identifier Workflow

for Units of Measurement, which provides the units identified during the consistency check, and

one for undefined Abbreviations and Acronyms. These outputs not only highlight areas of con-

cern but also organize the findings in a manner conducive to further review and refinement of

the SOPs, thereby enhancing the precision and reliability of procedural documentation across

various domains.

Further discussion on the technical development of the Ambiguity Identifier is presented in

Chapter 6, Section 6.5.1.

5.3 High-Potential Violation Trigger Identification Tool

The High-Potential Violation Trigger Identification tool (Violation Trigger tool) leverages past

incidents to enhance learning opportunities. Initially, a database of incident reports was com-

piled and manually analyzed to identify violations as influencing factors. This data is used to

train an NLP classification model, based on the hypothesis that shared language between incid-

ent reports and SOPs will enable the model to apply its insights to procedural directives. Despite
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structural differences, this linguistic overlap supports model generalization. Rather than expli-

citly identifying the potential for violation in the SOPs, the model highlights procedural steps

that exhibit linguistic characteristics of high-risk directives if violated based on past incidents,

improving predictive capabilities.

5.3.1 Dataset

To gather the necessary data for training the NLP classification model, a database comprising

two key sources has been assembled. The first source includes incident reports from the Inter-

national Oil and Gas Producers (IOGP), which focus on oil and gas industry incidents (IOGP

2024). The second source, MATA-D, offering its cross-industry perspective (Moura et al. 2016).

Together, these sources provide a comprehensive dataset of 300 reports used to train the model.

5.3.2 IOGP Database

The IOGP manages a comprehensive database known as the Safety Zone, established to collect

and analyze data on incidents within the oil and gas industry (IOGP 2024). This repository

includes detailed records of fatal incidents dating back to 1991, capturing events reported by

both companies and contractors, and more recently, incidents involving third-party fatalities.

Since 2000, the IOGP has also been collecting data on high potential events, which are incidents

or near misses that could realistically have resulted in one or more fatalities under different cir-

cumstances (IOGP 2024). A near miss is an incident where an adverse event is narrowly avoided.

Although no actual harm or significant damage results, near misses are still considered critical

safety concerns as they highlight potential vulnerabilities in the system or process (Jones et al.

1999).

It is important to note that the IOGP database is not exhaustive and should not be considered

a complete record of all high potential events in the upstream oil industry or among its mem-

bership. Despite this, the information contained in the database offers valuable insights into

violations and their impacts, which are crucial for the development and refinement of predictive
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models aimed at enhancing safety measures.

Within both IOGP collections, 119 incidents where a violation was stated or named as a cause

or contributing factor were identified and form a critical part of the training dataset for the

NLP classification model. The database entries typically include three sections, “Incident De-

scription”, “What Went Wrong” and “Corrective Action”. These sections are combined into a

single “Incident Report” in the compiled dataset, providing the training text data necessary for

the model.

5.3.3 MATA-D

Part of the data used in this tools development is from the MATA-D (Section 2.1.1). However,

violations are not directly accounted for in the framework used in its construction, so they

had to be manually assessed. This assessment involved reviewing the comments added to each

accident report by the original authors, keyword searches and reviewing report summaries using

the Human-Centric Summarizer (Section 4.3).

The MATA-D contributes 184 accidents to the compiled dataset, with 16 identified as having a

violation committed discussed in the accident report.

5.3.4 Compiled Dataset

The compiled dataset contains 303 total reports, with 135 identified as having a violation as a

contributing factor. Although there are several thousand more incidents available, particularly in

the IOGP database, they are not included to maintain a balanced training set. The non-violation

related data is instead included from the MATA-D, where the reports are more comprehensive.

This compiled dataset contains an “Incident Report” field and a binary classification indicating

whether a violation was an influencing factor in the incident or not.

An analysis of the vocabulary in SOP documents and the compiled incident reports was com-

pleted to showcase the similarities and support the underlying hypothesis that the model will

be able to effectively apply its findings to procedural directives.
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First text was extracted from several SOPs and the incident reports. Then, punctuation, num-

bers, common stop words (like “the”, “and”, “of ”), and place/company names were removed,

leaving just the keywords. These keywords contained a mix of ordinary nouns and verbs, as well

as industry-specific language and terms.

Each word was then reduced to its stem form, meaning that words were simplified to their root

form (e.g., “running” becomes “run”), and the frequency of occurrence in the texts was coun-

ted. Of the keywords identified in the procedure guides, 99.5% of the terms were also present

in the compiled incident reports from IOGP and the MATA-D. Therefore, the model has been

fine-tuned on a text dataset very similar to its target domain and has learnt most of the vocab-

ulary it will encounter in the SOPs from within a similar context. The main limitation of this

approach is that the specific SOPs referenced in the training dataset do not perfectly align with

the SOPs to be analyzed by the tool. However, procedural violations often exhibit common

patterns across industries, which allows for generalization (Phipps et al. 2015). But expanding

the training dataset to include a broader range of incidents, and eventually labeled SOPs will

improve model accuracy in industry-specific applications.

To further highlight the shared language between both document types, word clouds for each

document type’s keywords are shown in Figure 5.3 and Figure 5.4. The larger the terms, the

more frequently they occur. From these word clouds, it can be seen that terms such as “piping”,

“fire”, “process”, and “pressure” are common in both document types. Additionally, document-

specific language is evident: words like “incident”, “explosion”, and “investigate” occur more

frequently in incident reports, while “test”, “startup”, and “process” are more common in SOPs.

5.3.5 Classification Model

The compiled database is used as the training date for the proposed Violation Trigger tool model.

This tool utilizes the same methodology as the HF Classifier 2.0 (Section 4.2). It leverages a

modified BERT model, with an additional output classification layer, fine-tuned on a pre-labeled

dataset.

The model’s nuanced understanding of context makes it highly adaptable to various types of

text. This capability can then be effectively transferred to related domain texts, which often
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Figure 5.3: SOP Keyword Word Cloud

Figure 5.4: Incident Report Keyword Word Cloud
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share similar formal language and thematic elements. As demonstrated in Section 4.4.3 (Third

Case Study - Pigging Operation Procedure), the fine-tuned classification model was successfully

applied to different types of documentation without the need for additional specialized training

in such materials,

This process exemplifies transfer learning, where a model trained in one domain is adapted

for use in another, leveraging its learned features for different but related tasks. This is a key

strength of BERT, making it ideal for the proposed approach, fine-tuning the classification task

on incident reports and applying it to SOP directives.

5.3.6 Out-Of-Distribution Considerations

While the model has been designed for cross-industry generalization, it is important to consider

how this shift from descriptive narratives (incident reports) to structured directives (SOPs) may

introduce out-of-distribution (OOD) characteristics.

Despite strong vocabulary overlap across industries, differences in structure and linguistic form

between incident reports and SOPs could introduce a distributional shift (Liu et al. 2024).

Incident reports are post-event narratives, often written in past tense and with cause-effect rela-

tionships, whereas SOPs are prescriptive and imperative, detailing required actions. While the

core concepts remain aligned, these differences in linguistic framing and information presenta-

tion can impact how the model interprets high-risk procedural steps.

This scenario does not fit into far-OOD (completely different domains) or near-OOD (same

domain, different categories) (Hendrycks et al. 2020). Instead, it falls somewhere in between,

where the content remains procedural but the format and intent shift from reactive to proactive.

BERT-based models, like the one used in our tool, handle domain generalization well but can

be sensitive to structural variations (Liu et al. 2024). This is due to representation anisotropy,

where embeddings of different sentence types (narrative vs. directive) may cluster differently in

vector space, potentially impacting how well the model transfers its learned representations to

new formats

Several design choices in the approach help mitigate these structural differences and improve the

model’s ability to generalize across SOPs and incident reports. The model is trained on incident

reports from multiple industries, ensuring exposure to a diverse set of contexts. This reduces
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the risk of overfitting to a single industry’s linguistic style and helps it capture commonalit-

ies in procedural violations, even when structural variations exist between reports and SOPs.

Additionally, the model utilizes contextualized word embeddings, rather than relying solely on

surface-level text matching, allowing it to associate narrative-style descriptions of past viola-

tions (e.g., “The operator bypassed the safety interlock”) with their corresponding prescriptive

SOP directives (e.g., “Ensure the safety interlock is engaged before proceeding”). By focusing on

semantic similarity rather than exact phrasing, the model can better generalize across formats.

5.3.7 Implementation

Before the fine-tuned classification model can be applied to new text, the input must be pre-

processed. To facilitate this, the necessary preprocessing functionality has been integrated into

the tool. First, from the uploaded SOPs irrelevant sections, such as title pages, contents, and

appendices, and formatting such as page numbers, footers, etc. are removed. Then the remain-

ing text is split into procedural steps and sections. This is accomplished using NLP techniques

where the text is segmented into individual sentences and sections based on punctuation and

formatting cues. Each segmented section of text is then tokenized and prepared to be processed

through the fine-tuned BERT classification model. The model evaluates each section for lan-

guage patterns and contexts indicative of high-potential violation. Sections identified as such

are flagged and subsequently stored. Finally, these are aggregated and output as a text file for

further review and analysis. This systematic approach ensures that each part of the report is

thoroughly analyzed, allowing for precise identification of critical points where violations with

high-risk potential may occur. This information is intended to supplement expert analysis and

should be reviewed within the context of full operational understanding and system constraints

before any procedural changes are implemented. The data gathering, labeling, modeling training

and testing are outlined in Figure 5.5.
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Figure 5.5: High-Potential Violation Trigger Identification Tool Development Process
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5.3.8 Performance and Assessment

To assess the performance of the Violation Trigger tool, its performance classifying incident

reports withheld from the training process can be analyzed. The performance of classification

tools is again quantified using the metrics from Section 3.3 (Evaluating Performance): accuracy,

precision, recall and F1-score. In this context, a TP is a correct classification where a violation

was a factor, and a TN is a correct classification where a violation was not a factor. Conversely,

a FP is an incorrect prediction where a violation was classified as a factor when it was not, and

a FN is an incorrect prediction where a violation was not classified as a factor when it was.

The performance metrics for the Violation Trigger tool, obtained from a test set comprising

approximately 40 cases (20% of the total dataset), are given in Table 5.2.

Metric Score
Accuracy 94.6%
Precision 96.9%
Recall 90.5%
F1-Score 93.6%

Table 5.2: Violation Classifier Performance on Test Set

These metrics indicate significantly higher performance compared to the metrics obtained by the

HF Classifier 2.0 using the same methodology (Table 4.1). The improvement can be attributed

to this study’s focus on a single factor and the use of a well-balanced dataset. The previous

study demonstrated effective application when applied to different documents, despite lower

performance metrics. Therefore, given its higher performance, it is expected that this tool will

achieve at least equal success and provide valuable insights when applied to this projects target

domain of SOPs.

Assessing the tool’s possible performance on SOPs is challenging, as even manually identifying

procedure directives that may be violated with high-risk potential is a significantly difficult task.

To evaluate the tool, it has been applied to five SOPs. Directives or sections classified with a

high-potential violation factor were then manually reviewed to assess the risk potential if they

are not followed correctly.

From the five SOPs, which ranged from seven pages to 240 pages, 26 sections were identified
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as directives vulnerable to high-potential violations. Among these, two sections were incorrectly

identified as directives when they were more administrative in nature. In four cases, the identified

directives were very unlikely to lead to significant risk if violated. In eight cases, the potential

violations were higher risk but still unlikely to lead to a major incident. In the remaining 12

cases, it was determined violating the directive could lead directly to a significant increase in

risk and the likelihood of a major incident.

The manual assessment revealed that the tool tends to identify steps involving terms such as

“ensuring” or “confirming”, or those mentioning initial or final checks. This pattern suggests

that the tool is particularly sensitive to actions that require verification or validation, which are

critical control points in many processes. These steps are often pivotal in preventing errors and

ensuring compliance, hence their frequent flagging by the tool. While this sensitivity helps in

identifying high-risk areas, it may also result in FPs, particularly in sections where such language

is used for administrative purposes rather than operational directives.

Overall, the Violation Trigger tool shows promising results. Its application could be a key com-

ponent of an effective strategy to identify procedural steps susceptible to high potential viol-

ations. By incorporating this tool, organizations can improve the quality of their SOPs before

issuing them to the operators. This way they can then liaise with operators to identify actual op-

erations and behaviors, discuss the identified high-risk steps, emphasize these more in the SOPs,

and provide additional training if necessary. This proactive approach can enhance compliance,

reduce the likelihood of major incidents, and improve overall operational safety.

5.4 SOP Tools - Case Studies

These case studies examine SOPs from two companies in the offshore oil and gas industry,

referred to as Company A and Company B. Both SOPs are instrumental in outlining the op-

erational protocols necessary to ensure safety in high-risk environments. These SOPs provide

an opportunity to test the specialized tools developed in this work for pinpointing ambiguities

and identifying high-risk potential steps in procedural documentation. The subsequent sections
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provide insights into their effectiveness and areas for improvement. When presenting examples

from the SOPs, certain details have been modified to ensure confidentiality. The example actions

within a procedure are described in a generalized form, this approach retains the integrity of

the process explanation without revealing sensitive or specific operational data.

5.4.1 Case Study One - PIG Operations

Company A’s SOP encompasses a concise document of 7 total pages, however the complete

procedure steps are contained within just 3 pages. It is designed to guide the operational process

involving Pipeline Inspection Gauges (PIGs), which are tools used for cleaning and inspecting

pipelines. The SOP outlines necessary equipment, special precautions, and step-by-step instruc-

tions for conducting PIG operations, emphasizing the importance of maintaining pipeline integ-

rity and preventing blockages.

Company A’s SOP is a simple guide, mainly comprised of short, simple and clear directives.

Despite this the ambiguity tool identified several potential ambiguities.

The lexical ambiguity rule identified multiple sections containing industry-specific terminology

used, such as “pig”, “pigging”, “Christmas (tree)” and “scale-deposits.” Out of the industrial

context how these terms have been used could be potentially misleading or confusing. However,

this demonstrates a limitation of the current version of the tool when handling industry and

domain specific vocabulary.

The SOP showed no examples of syntactic ambiguity, as expected given its short and simple

directives. The longest directive, at 42 words, is split into three sentences, reducing the likelihood

of encountering syntactic ambiguity.

However, the tool did flag sections containing temporal and quantity ambiguities. For example,

the terms “periodically” and “enough space” are used, these require judgment calls based on

experience, which can lead to inconsistent operation, maintenance and assessments. To improve

clarity, these can be easily addressed, “periodically” can be replaced with a precise frequency

dependent on the requirements, and “enough” should be quantified or further explanation of

how to determine sufficiency should be provided.

Additionally, the conditional ambiguity rule identified three cases of potential ambiguity. For

example, “If abnormalities not described above occur, contact...”, as the main condition “if ”
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contains a nested condition, “not described...” however in this case it adds clarity and precision.

Whereas, another example identified, “If there..., wet ... water, avoiding ... and ...” is ambigu-

ous. It is not clear whether the main condition is linked to either the verb “wet” or the entire

sentence. It could be interpreted as modifying either the verb or serving as a separate instruc-

tion. This can be resolved by explicitly linking the conditional phrase to the verb or separating

it as a distinct instruction.

The scope ambiguity and units of measurement rules did not identify any potential issues.

However, there were several abbreviations/acronyms identified that were not defined within the

SOP. Besides the company name and the term “PIG,” there are six other abbreviations/ac-

ronyms undefined. While some may be well-known within the industry, it remains best practice

to provide definitions of abbreviations/acronyms in SOPs to enhance understanding and ease of

use. Additionally, included these can better facilitate translations if the SOP needs to be used

in countries where languages other than English are spoken.

Addressing the highlighted ambiguities would further improve the quality and clarity of the

SOP, reducing potential misunderstandings and inefficiencies, and minimizing potential risks.

The radar chart, Figure 5.6, provides a proportional visualization of the ambiguity types iden-

tified in Company A’s SOP, based on the total of observed instances of potential ambiguity.

Each axis represents a category of ambiguity, and the values are scaled to show their relat-

ive frequency. Lexical ambiguity stands out as the most common, accounting for nearly 30%

of the total, reflects the expected use of domain specific language. The presence of temporal

and quantity ambiguities suggests areas where operational timing and material thresholds are

left open to interpretation, relying on user experience, potentially affecting consistency. In con-

trast, categories like syntactic and scope ambiguity appear minimal, which aligns with an SOP’s

straightforward, directive-based structure. The chart emphasizes that while the document is

structurally sound, domain language and vague descriptors remain key sources of interpretive

risk.
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Figure 5.6: Proportional distribution of ambiguity types in Company A’s SOP.

The Violation Trigger tool identified one critical section of the SOP, “Open ... carefully, if possible

... professional, to check ... radioactive material and remove ...” This step must be followed

carefully and correctly due to the significant risks associated with exposure to radiation and the

potential contamination risks. The tool’s identification of this section is likely due to the use of

terms such as “check”, “radioactive” and “carefully.” The importance of adhering to this step

is well underscored and does not necessitate any revisions. However, it would be beneficial to

analyze the performance influencing factors of this specific task (e.g. human-machine interface),

and emphasize this step in any training related to the process to ensure it is executed safely and

meticulously.

5.4.2 Case Study Two - Biocide Storage

Company B’s SOP, which spans 20 pages, details the procedures for applying biocide to storage

tanks to prevent the growth of sulfate-reducing bacteria. These bacteria can produce hydrogen-

sulfide, posing significant health and safety risks. This document is considerably more complex

than the first example, incorporating detailed guidelines for the use of biocides, continuous

monitoring procedures, and the necessary steps emergency response. It reflects a comprehensive
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approach to managing environmental and safety risks associated with biofouling and chemical

treatments in storage tanks used in offshore oil and gas operations.

Company B’s SOP was input to the ambiguity tool, and a few examples of lexical ambiguity

were identified, terms such as “interface”, “blanket” and “shock” have domain specific meanings

that do not line up with the most common definitions. These examples could be potentially con-

fusing to those without as much industrial experience, and providing some additional definition

or explanation may be helpful. However, these also again highlight the challenge of handling

industrial vocabulary using the current approach.

Despite being overall well-written, precise, and easy to follow, there are a couple of examples of

ambiguous and vague terms that were flagged by the tool related to quantity and timing, such as

“extended time” and “ample.” The phrase “extended time” is subject to individual interpretation

and could be replaced with a more definitive duration. Similarly, the term “ample” necessitates

a judgment call and should generally be avoided in procedural descriptions. It would be better

replaced with a precise measurement or a method to determine the correct amount.

The phrase “Where ... present, and thus ... is required, no further action is required” triggered

the scope ambiguity rule. The syntax does not clarify alone what the scope of “no further action”

refers to as it lacks a direct object specifying the exact action or process to which this inaction

applies. The standalone directive is correctly identified as potentially ambiguous, however within

the context of the entire guide clarity is provided.

The use of conditional conjunctions in the document is frequent, yet they are straightforward and

lack nested conditions or disjunctions. Overall, the SOP is consistent with its use of measurement

units. The only inconsistency noted was the use of both “ppm” and “mg/L” for concentration

measurements. This is not necessarily problematic, as specific units may be required when meas-

uring and quantifying certain substances, particularly if these are the units shown at the specific

human-machine interfaces described in the task. However, including a conversion table within

the SOP may be useful. Common industry specific rules related to units of measurement could

also be added to the algorithm to improve the tools efficiency.

The SOP helpfully includes a table of abbreviations and acronyms at the beginning, which

defines most of these terms. However, the tool identified four terms that are not defined any-

where in the SOP. These could be easily added to the initial table to enhance clarity.

Figure 5.7 illustrates the relative distribution of ambiguity types found in Company B’s SOP,

highlighting areas where clarity could be improved. The most prominent issue is the presence of

undefined acronyms, despite an existing glossary. Lexical ambiguities are also notable, largely
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due to specialized terms that may confuse non-expert readers. While temporal, quantity, scope,

and unit ambiguities occur less frequently, they still suggest minor areas of vagueness that could

impact operational consistency. The absence of syntactic and conditional ambiguities reflects

the SOP’s otherwise clear and structured language. Figure 5.7

Figure 5.7: Proportional distribution of ambiguity types in Company B’s SOP.

The radar charts for Company A (Figure 5.6)and Company B’s (Figure 5.6) SOPs highlight

both similarities and key differences. Both documents show notable lexical ambiguity, stem-

ming from domain-specific terms. However, Company A’s SOP exhibits a broader spread of

ambiguity types, including a greater proportion of temporal, quantity, and conditional ambi-

guities, reflecting more general and imprecise phrasing. In contrast, Company B’s ambiguities

are more concentrated, with undefined acronyms being the most prominent issue, and minimal

syntactic or conditional ambiguity. This may suggest that Company A’s SOP is simpler but less

precise, while Company B’s is more technical and structurally consistent.

As expected, due to the increased length and detail in this SOP, the violation tool identified a

higher number of cases, eleven in total. Of these, only one was an administrative section that can

be disregarded. The remaining ten cases pertain to critical operational tasks, which include one

or more of the following: simultaneous operations, overrides, fire and gas detection, and safety

instrumented function testing.

Simultaneous operations refer to different activities occurring at the same time that may in-

terfere with each other, potentially leading to complications. Without careful management,
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simultaneous activities can create unsafe working conditions, increasing the risk of accidents

due to conflict or hazardous task interactions. The complexity of simultaneous operations can

exacerbate the consequences of even minor errors, potentially leading to catastrophic outcomes.

Overrides, such as those involving start-up/shutdown sequence overrides, timer settings, and

critical instrumentation, need control. Uncontrolled overrides may cause excessive stress on

equipment, leading to premature failure or malfunctions. If critical system functions like pres-

sure or temperature control are overridden without strict controls, it could lead to failures that

escalate into high-risk potential scenarios. Ultimately, an override might be bypassing a safety

barrier function defined by the designers (CCPS 2020).

The primary function of fire and gas detection systems is to identify hazardous conditions early

before they develop into more severe incidents. Non-operational systems cannot provide these

early warnings. Without functioning detection systems, there may be a delay in emergency re-

sponse, allowing a fire or gas release to grow uncontrolled (Cowdrey 2023).

Similarly, safety instruments are crucial for detecting deviations and returning processes to a

safe state. Failing to these systems can lead to inadequate safety responses when they are most

needed. Without reliable safety instruments, equipment and systems become more susceptible to

conditions that can lead to catastrophic failures, potentially resulting in, environmental damage,

significant operational downtime, and high-risk situations for operators.

Common vocabulary present in the identified procedural steps falls into three main categories,

operational terms, safety and compliance terms and technical components. Operational terms

such as “start-up”, “check”, “commissioning”, “shutdown”, “safety”, “detection”, and “instru-

mentation” are foundational to understanding the functional aspects of the processes being

analyzed. These terms help the tool in pinpointing procedural stages where precise actions are

necessary to ensure the smooth running of operations. For instance, during the “start-up” or

“shutdown” phases, the precise execution of steps is imperative to avoid operational failures or

safety breaches.

Similarly, the presence of terms such as “compliance”, “safety”, “risk”, and “management”, are

usually included in steps where there is an emphasis on safety and compliance, therefore strict

adherence is essential.

The category of technical components, featuring terms such as “integrated”, “overrides”, “fire

and gas”, and “commissioning”, focuses on the technical equipment and safety systems integral

to industrial operations. The tool outputs a positive response, presence of a high-potential vi-

olation trigger, as it has learnt that these terms underscore steps that interact with or impact
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high risk systems.

The Violation Trigger tool can play a pivotal role in enhancing safety and compliance within in-

dustrial operations. By effectively highlighting procedural steps that necessitate focused review,

the tool aids in identifying where safety breaches are most likely and where high-risk operational

failures could occur.

5.5 Limitations and Future Work

The development and implementation of the tools, designed to identify potentially ambiguous

directives and potential high-risk violation triggers within SOPs, have demonstrated significant

promise in enhancing the safety and compliance of industrial operations. However, as with any

emerging technology, there are limitations and opportunities for further refinement. This section

outlines the prospective avenues for future enhancements and addresses the current constraints

of our tools. Through this discussion, a roadmap for evolving these tools into more robust,

automated, and universally applicable systems that significantly contribute to industrial safety

protocols is provided.

The first significant development is that of an integrated web version of these tools which will sig-

nificantly increase their accessibility and ease of use. This platform would allow users to upload

documents directly, interact with the tool’s outputs, and contribute to the ongoing refinement

of the tools through feedback.

The effectiveness of both tools is significantly enhanced by the manual preprocessing of the

input SOPs. Current automated preprocessing attempts to extract the sections of interest, and

remove formatting, page numbers, and other non-relevant text. Improving the algorithms that

handle these tasks could further streamline the analysis process and output quality. Addition-

ally, encouraging a uniform layout would simplify the task and effectiveness of such algorithms.

Adopting a standardized document format for SOPs is strongly recommended, as it would signi-

ficantly reduce common sources of ambiguity, particularly those related to inconsistent syntax

and undefined abbreviations. A structured format that includes mandatory sections such as

a definitions table, units of measurement, step-by-step actions, and responsible roles can help

ensure that critical information is consistently captured and clearly presented. For instance,
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requiring a dedicated section for abbreviations and acronyms would help prevent misinterpret-

ation by ensuring that all technical terms are explicitly defined. Moreover, enforcing consistent

linguistic patterns and formatting across SOPs would facilitate automated analysis, enhance

readability, and support training and compliance efforts across different teams and depart-

ments. As such, standardization is not only a means of reducing ambiguity but also a practical

step toward improving procedural clarity, safety performance, and communication in high-risk

environments.

5.5.1 Ambiguity Tool Enhancements and Limitations

The current ambiguity tool does not significantly utilize ML due to data limitations. Future

work should explore the development of an ML-based approach to ambiguity detection. Such an

approach could leverage context from the entire document to enhance rule-based analyses, par-

ticularly for addressing scope and conditional ambiguities. Training of an ML model is dependent

on the creation of a sufficiently large dataset of procedural texts with labeled ambiguities.

To facilitate the development of an ML model, this work proposes an effort to gather procedural

steps with ambiguities, via the website hosting the integrated tools. This system would allow

users to submit examples of ambiguous procedural language, which would be invaluable for

training and refining ML algorithms. This collected data could also be used to refine and test

the current rules-based approach.

Additionally, enhancing the ambiguity tool, particularly in the areas of lexical ambiguities, ab-

breviations/acronyms, and units of measurement, by incorporating industry and domain-specific

vocabularies, definitions, and rules could significantly improve the tool’s performance. Special

attention to these elements is crucial, as it directly impacts the tool’s effectiveness. Creating a

dynamic database of industry-specific terms and commonly used phrases would further refine

the tool’s capability to identify ambiguities effectively.

Another potential avenue of development draws on the research in (Ferson et al. 2015). This

study explores how common natural language terms, referred to as numerical hedges or approx-

imators, such as “about”, “around”, and “at least”, impact the interpretation of numerical data.
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It empirically measured the quantitative implications these words have on the perceived uncer-

tainty of numbers and offers specific numerical bounds for these interpretations. The ambiguity

tool could be enhanced to suggest specific bounds and ranges in place of vague quantitative and

temporal terms. This improvement would help address a common source of ambiguity in SOPs.

5.5.2 Developments for the High-Potential Violation Trigger Iden-

tification Tool

The Violation Trigger tool is trained solely on past incident reports, rather than its target

domain of SOPs. This poses some limitations, primarily due to the nature and scope of the doc-

uments. While focusing on negative and known outcomes helps in risk management, it restricts

the tool’s exposure to a variety of procedural contexts that have not resulted in accidents but

may still contain critical safety insights. This narrow focus might hinder the tool’s ability to

fully identify potential safety issues. Incident reports may also not include all the technical or

industry-specific terminology that is present in SOPs. If the tool lacks exposure to this broader

vocabulary, it might fail to recognize or properly interpret important steps or instructions when

analyzing other procedural documents, leading to inaccurate assessments of risk.

The tool has been mainly trained on reports from the oil and gas industry, so it would likely

perform best on SOPs from this sector, where it has greater exposure to the specific industry

vocabulary. Broader training is necessary to improve its usability in other sectors.

Further manual analysis of SOPs could help improve the automated tool, providing a compre-

hensive dataset of procedure steps or vocabulary that are typically associated with high-risk

potential could be incorporated into the model’s training process. This would provide deeper

insights into the nuances of procedural language that the systems trained only on incident re-

ports. Additionally, expanding the dataset would not only improve training but also enable

better evaluation of the current model’s performance, ensuring that its assessments align with

real-world safety risks across various industries.

Much of the training data currently comes from the oil and gas sector, this may lead to biases

based on the predominant data sources which could affect their performance in other sectors.

Collecting and analyzing documents from other industries would improve the tool’s perform-

ance. This diversity in data sources would allow the tool to learn a broader range of operational
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contexts, terminologies, and safety standards, enhancing the tool’s versatility and accuracy.

A potential avenue for future research is developing a structured dataset that links accident

reports to the specific SOPs involved in incidents. This would enable the training of targeted

models to predict SOP violations and their consequences. However, industry participation is

essential, as access to SOPs and expert insights are crucial for accurately mapping procedural

steps to historical incidents.

Leveraging existing datasets like MATA-D and the IOGP database could be a starting point,

but acquiring SOPs remains a challenge since they are often proprietary. Collaboration with

industry stakeholders would be necessary to access these documents and ensure accurate align-

ment between procedural directives and reported violations. Industry experts would play a key

role in verifying these mappings, given their contextual understanding of SOP applications in

accident scenarios.

With a robust dataset, ML models could assess the risk of noncompliance in procedural direct-

ives, enabling proactive identification of high-risk SOP steps and enhancing safety measures in

complex operational environments.

Beyond additional data collection, further enhancements to the tool’s performance and ad-

aptability could be achieved by incorporating uncertainty-based filtering, where low-confidence

classifications trigger human review, ensuring that OOD cases are appropriately flagged. This ap-

proach aligns with research on OOD detection, which suggests that confidence-based techniques

improve reliability when models encounter distributional shifts (Liu et al. 2024). Additionally,

contrastive learning methods could be employed to refine sentence embeddings for both incident

reports and SOPs, enhancing the model’s ability to differentiate between structurally distinct yet

semantically related procedural texts (Cheng et al. 2023). By integrating these refinements, the

tool can continue to improve its accuracy and reliability, while maintaining strong cross-industry

generalization.
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5.5.3 Limitations in Addressing Context-Dependent Risks

The developed tools effectively identify ambiguities in SOPs and flag procedural steps with

high potential for violations, enhancing procedural clarity and compliance. However, they re-

main limited to static analysis, evaluating textual and structural elements without considering

external operational goals, conflicting objectives, or situational constraints that influence real-

world decision-making. While they can highlight steps where violations are hazardous, they do

not assess why or when these violations occur, such as due to time pressure, competing priorities,

or systemic workarounds developed by operators.

Procedural violations often arise as adaptations to operational constraints rather than deliber-

ate non-compliance. In high-risk industries, workers frequently develop workarounds to balance

efficiency and safety when strict procedural adherence is impractical (Steen et al. 2024). These

adaptations are shaped by misleading procedural guidance, conflicting operational goals, and

cognitive workload, underscoring the need for safety assessments that consider these complexit-

ies rather than relying solely on procedural compliance (Podofillini et al. 2021). Since the current

tools do not evaluate these factors, they may overlook key contributors to risk escalation.

Normalization of deviance further embeds violations into operational practices. When proced-

ural shortcuts do not lead to immediate negative outcomes, they may become standard practice,

increasing systemic failure risks (Sedlar et al. 2023). While the violation detection tool identifies

critical steps requiring strict compliance, it does not analyze the underlying drivers of these

violations. Incorporating scenario-specific analysis would provide deeper insight into these risks.

A systems-thinking approach is essential, as procedural compliance alone is insufficient for man-

aging risk. Effective safety management must account for interactions between procedural guid-

ance, organizational culture, and external constraints (Leveson 2011). Without these consid-

erations, safety interventions may address only symptoms rather than root causes. While the

current tools enhance procedural correctness by improving clarity and identifying critical steps,

they do not dynamically assess real-world complexities.

Scenario-specific analysis can be approached through systematic methodologies such as HRA

Bell and Holroyd (2009) or safety-critical task analysis Institute (2020). These methodologies

assess critical tasks within procedures and consider key contextual factors (PSFs). This chapter

addresses specifically the PSF often known as procedure quality. However, a comprehensive

HRA would involve evaluating additional factors, including human-machine interface, physical
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layout, and training.

Future work could integrate these tools with simulation-based risk assessments or decision-

support systems that account for situational constraints. Scenario modeling would enable a

broader understanding of how SOPs function in practice. Refining the violation identification

model with domain-specific incident data would improve its ability to recognize contextual

drivers of violations. Additionally, developing a framework for assessing procedural vulnerabil-

ities under different operational conditions could enhance risk mitigation strategies.

The proposed enhancements, including the creation of an integrated web platform and improve-

ments to preprocessing algorithms, along with a move towards standardizing document formats,

are likely to significantly boost the usability and effectiveness of these tools. Furthermore, the

shift towards a ML-based approach for ambiguity detection and the expansion of training data-

sets for both tools underscore a commitment to technological evolution and precision.

To further enhance their impact, future developments should integrate a systems-thinking ap-

proach to procedural risk assessment. This includes exploring methods to incorporate scenario-

specific analysis and identifying contextual factors.

By addressing existing limitations and integrating user feedback into continuous development

cycles, these tools are set to become more robust, adaptable, and essential components of SOP

evaluation and HRA assessments, with an improved ability to anticipate and mitigate proced-

ural risks in high-risk environments.

As such, the tools are not intended to promote hasty procedural changes but to serve as analyt-

ical aids that enhance the ability of experts to make informed, carefully considered decisions. By

augmenting human judgment, they help ensure that any modifications to procedures are based

on a deep understanding of operational realities.

5.6 Conclusion

This work presents the development and application of advanced language tools designed to

enhance the quality of SOPs by identifying potential ambiguities and high-risk potential steps if

violated. The tools, employing a combination of rule-based, NLP and ML techniques, represent

a significant advancement in the field of safety within high-risk industries.
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The value of these tools is multifaceted. Firstly, they serve as critical aids for those involved in

the creation and review of SOPs, offering a means to ensure clarity and prevent the oversight of

potentially ambiguous or high-risk content. This is particularly crucial in industries where the

precise execution of procedures can be the difference between safe operations and catastrophic

failures. The ability of the tool to efficiently scan and flag areas of concern in both existing

and newly written SOPs not only saves valuable time but also significantly enhances procedural

understanding and safety. Automating these processes allows the time spent reviewing the SOPs

to be allocated to improving and refining them.

Secondly, the historical and pre-existing SOPs, which often remain unchecked due to their volu-

minous nature, can now be revisited with these tools. This allows organizations to update and

refine their operational documents without the daunting task of manually reviewing each one,

thereby maintaining a current and highly relevant body of procedural documentation.

Additionally, the tool supports human reliability analysts as it helps to assess the quality of

SOPs, an important PSF for many HRA techniques.

In summary, the integration of these NLP tools into the review processes of SOPs is not merely

an enhancement of compliance measures but a transformative move towards a more proactive

and informed approach to safety management. Their ability to identify high-potential violations

and ambiguities ensures that all personnel are well-equipped to perform their duties safely and

effectively, ultimately safeguarding human lives and environmental health.

The ongoing proposed refinement of these tools, coupled with broader adoption and integra-

tion into existing safety frameworks, will make a substantial contribution to industrial safety

management. The implications for future advancements in this technology are extensive and

represent a significant step forward in the evolution of procedural safety and efficiency.



Chapter 6

Technical Development and
Implementation

This chapter presents the technical development and implementation of a collection of compu-

tational, data-driven, and ML tools specifically designed to address a range of challenges within

the HRA domain, as introduced in the preceding chapters (plus an additional tool not yet dis-

cussed).

The technical development of each tool has been kept separate and mostly confined to this

chapter for several reasons. Firstly, the preceding chapters have been designed to focus on the

idea, motivation, and practical use and testing of the tools, targeting users and those interested

in the application of ML, NLP, and data in HRA. This ensures that the practical implications

and benefits of the tools can be understood without being overwhelmed by technical details.

Secondly, a dedicated chapter for technical aspects allows for a deeper exploration of the work-

ings of ML and NLP, and how they have been integrated, catering to readers interested in the

technical side. Including these details earlier could be confusing and distract from the focus on

the use and benefits of the tools.

The tools have a wide range of goals, from supporting data gathering, enhancing explainability,

learning from past accidents, constructing data-driven models and evaluating and improving

procedural safety.

The core tools discussed in this chapter are:

134
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• HF Classifier(s): These tools are designed to automatically analyze accident reports and

classify the contributing factors, as presented in Chapter 3 (Machine Learning Approach

to Automated Human Reliability Data Collection) and Section 4.2 (Classification Tool)

(Morais et al. 2022a), Johnson et al. 2023b)

• Human-Centric Summarizer: Focused on delivering concise, human role-centric summar-

ies of incidents, this tool helps safety professionals quickly grasp the critical aspects of

events without wading through extensive documentation, introduced in Section 4.3 (Sum-

marization Tool) (Johnson et al. 2023b

• Human Factors Causal Relationships tool: This, not yet discussed, tool identifies the

dependency relationships between contributing factors and integrates expert knowledge

to construct Human Error (HE) models (Johnson et al. 2022, Johnson et al. 2023a).

• Violation Trigger tool: This tool identifies directives within procedural guides that when

violated pose a high-risk potential, presented in Section 5.3 (High-Potential Violation

Trigger Identification Tool) (Johnson et al. 2024).

• Ambiguity Identifier: Designed to detect various types of ambiguities and misleading steps

within procedure guides, this tool ensures that safety protocols are clear and unambiguous,

introduced in Section 5.2 (Ambiguity Identification Tool) (Johnson et al. 2024).

This chapter will detail the technical aspects of these tools, discussing their development, under-

lying algorithms, and software implementation. This chapter is essential as it further explains

how the tools work to build trust and encourage their use, provides a foundation for future

developments, and highlights how the technology is and can be utilized.

6.1 Virtual Human Factors Classifier(s)

In the Chapter 3 (Machine Learning Approach to Automated Human Reliability Data Collec-

tion), the need for and development of the Human Factors Classifiers was discussed. The first

generation utilized SVM and BoW objects, and its implementation is detailed within Chapter 3.
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6.1.1 Second Generation - BERT

Following this the second-generation tool (HF Classifier 2.0) that leveraged BERT was intro-

duced and presented in Chapter 4, Section 4.2 (Classification Tool).

This section will now provide a more detailed explanation of how BERT works, how it has been

leveraged, and how each step and process within the HF Classifier 2.0 works.

6.1.1.1 Data Preparation

The first step in developing the second-generation HF Classifier 2.0 involved preparing the tex-

tual data from accident reports. The available accident reports are mostly “text PDFs”, these

are PDFs that were created from digital sources, where the text is easily extractable. However,

some are “image PDFs”, these are essentially digital images of physical documents, typically

created by scanning printed or handwritten materials. The text in these documents is not as

simply extracted as the content is represented as an image. For simplicity, all reports were first

converted into plain text files (.txt).

To convert text PDFs to plain text, the “PyPDF2” library in Python was utilized, which is cap-

able of extracting text directly from PDF files created from digital source (Fenniak et al. 2022).

Each report was iteratively converted to plain text. First, the PDF file was opened in binary

read mode (“rb”), which means the file is read as a binary file. This is necessary for handling

the PDF file format, which is a binary format containing various data types beyond just plain

text. A “PdfReader” object is created to handle the PDF file. The script iterates through each

page of the PDF, extracting text using the “extract_text” method of the “PdfReader” object.

The extracted text from each page is accumulated in a string variable, and stored in a plain text

file. The text file is opened in write mode with “UTF-8” encoding to ensure compatibility with

various characters, ensuring that the text content is properly saved.

After this initial conversion, the script checks if the resulting text file is empty or not. If the file

is empty, this likely meant that the report was an “image PDF”, for such files OCR is required

(Sharma 2023).

First, utilizing the “pdf2image” library each page of the PDF is converted into an image (Belval
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INCIDENT INDUSTRY LOCATION YEAR Wrong Time Other Factors...
1 Upstream Piper Alpha 1998 1 0|...

Table 6.1: MATA-D Example Extract

2023). Then the “pytesseract” library, a Python wrapper for Google’s Tesseract-OCR Engine

which is one of the most accurate and widely used OCR engines, is used to process the image

files and extract the text content embedded within the images (Hoffstaetter 2023, Smith 2007).

The OCR engine processes images to detect lines of text and distinguish individual characters.

It converts the visual data into readable text using models trained to recognize and interpret

character shapes.

The recognized text string is then written to a plain text file, again with “UTF-8” encoding. The

plain text version of the reports is then saved and stored with the same name as the original

PDF.

In addition to this, some modification to the MATA-D was required. The MATA-D in its original

state is laid out as shown in Table 6.1. However, to remove the additional complexity of trying

to automate the pairing of the accident report with the corresponding row, the “INCIDENT”,

“INDUSTRY”, “LOCATION” and “YEAR” columns were removed and manually replaced with

a column stating the report file name in the MATA-D file used for training the model.

6.1.1.2 Data Processing and Tokenization

The next step involved isolating specific sections of interest, such as “recommendations” and

“lessons learned” within the report texts. This system relies on a dictionary of key terms that

are most likely to indicate the start and end of these targeted sections, defined in the develop-

ment of the first generation tool (Morais et al. 2022a).

The confidence scoring system operates by scanning the text for these predefined start and end

target words. When these words are detected, the system marks the likely beginning and con-

clusion of a section. The segments of text enclosed between these markers are then extracted

as the content of interest. This approach allows for targeted extraction based on the contextual

appearance of specific words and phrases identified during the development of our dictionary.

For instance, a report might contain a sentence like “The following recommendations are pro-
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posed based on the investigation findings.” The keyword “recommendations” would trigger the

system to mark this as the potential start of the targeted section. Similarly, phrases such as

“In conclusion” or “End of recommendations” may indicate the endpoint, allowing for accurate

extraction of the intervening text.

This method ensures that the extracted sections are those most relevant to the objectives of the

analysis, improving the precision of the data fed into the model. If the system identifies these

key sections within a report, the extracted text replaces the complete report, if not, the original

report remains unaltered.

Having extracted the contents of interest from the original reports, the text now needs to be

prepared for input into the model. Tokenization is a foundational preprocessing step in NLP, it

is essential for transforming text into a format suitable for model training and inference. This

process involves breaking down text into smaller, manageable units called tokens, which can be

words, subwords, or characters (Jurafsky and Martin 2008).

Consider the simple sentence “Pilot miscommunication led to the incident.” The tokenizer might

split this into tokens: [‘Pilot’, ‘mis’, ‘communication’, ‘led’, ‘to’, ‘the’,‘incident’,

‘.’], where “communication” is a subword token generated using the “WordPiece” method.

The BERT model was pretrained using specific tokenization rules, the input data must be token-

ized using the same methods and rules to ensure that the model processes the input correctly.

The BERT tokenizer handles special tokens like “[CLS]”, “[SEP]”, and “[PAD]” which are in-

tegral to the model’s functioning (Devlin et al. 2018). These tokens are used to indicate the

beginning of a sequence, separation of segments, and padding of sequences to uniform length,

respectively. These tokens have specific positions in the BERT vocabulary and are crucial for

tasks like classification.

A typical input might look like: [‘[CLS]’, ‘The’, ‘aircraft’, ‘experienced’, ‘engine’, ‘failure’, ‘[SEP]’,

‘Crew’, ‘responded’, ‘with’, ‘emergency’, ‘procedures’, ‘[SEP]’, ‘[PAD]’, ..., ‘[PAD]’], where “[PAD]”

is repeated to fill up to the maximum token length.

The BERT tokenizer, which employs the “WordPiece” method, deconstructs text into meaning-

ful units (Song et al. 2020). This approach helps in handling unfamiliar and OOV terms while

maintaining a manageable vocabulary size, which is critical for model efficiency and perform-

ance.

Consider the rare term “autostartsequence,” which may not exist in BERT’s vocabulary. The

“WordPiece” tokenizer would break this down into subword units such as [‘auto’, ‘start’,

‘sequence’]. Even though the full word is unfamiliar, the tokenizer enables the model to infer
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its meaning based on the known subcomponents. This mechanism allows the model to generalize

better to technical or compound terms that were not seen during pretraining.

Each report text file is processed by the BERT tokenizer using the “Transformers” library from

Hugging Face, and the tokenized texts are stored as objects within Python Face 2023c.

Due to BERT’s architectural constraint, which limits inputs to 512 tokens, reports exceeding

this token limit are segmented into smaller sections, each containing up to 512 tokens. To mit-

igate information and context loss, an overlap of 50 tokens is included at the beginning and

end of each segment. For example, a report with 900 tokens would be split into two segments:

Segment 1 (tokens 0–511) and Segment 2 (tokens 462–900), creating a 50-token overlap. This

segmentation strategy allows each part of the text to be independently processed by the BERT

model, accommodating the entire text without minimal data loss. Each segment is assigned the

PSFs for the corresponding accident from the MATA-D.

This segmentation presents significant challenges, particularly for reports where target sections

were not identified, leading to the creation of numerous segments. Different parts of the reports

discuss a wide range of incident aspects, and each segment contains only a portion of the overall

narrative. This results in a loss of broader context and can lead the model to associate cer-

tain phrases or words incorrectly with classifications. Manually assigning classifications could

address this limitation, but it would be very time-consuming, but worth considering in further

developments. Despite these challenges, the numerous other advantages of using a BERT-based

approach make it a valuable tool.

6.1.1.3 Word Embedding

After tokenization, the text data undergoes a transformation process to convert the tokenized

text into embeddings using BERT’s pre-trained layers. These embeddings are high-dimensional

vectors that encapsulate the semantic meanings of the tokens (Devlin et al. 2018).

An embedding is a dense vector representation of a token, mapping tokens to continuous vector

spaces of lower dimensionality where semantically similar tokens have similar representations

(Patil et al. 2023). Unlike one-hot encoding, which creates sparse vectors with high dimension-

ality, embeddings generated by BERT are high-dimensional vectors (typically 768 dimensions

for BERT-base) that capture the contextual information of each token within the sentence
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(Devlin et al. 2018). This process involves converting each tokenized input sequence into three

types of embeddings: token embeddings, segment embeddings, which indicates which sentence

a token belongs to, and position embeddings, representing the position of the token in the se-

quence. These embeddings are summed to produce the final embedding for each token, which is

then passed through BERT’s transformer layers to capture contextual information, as shown in

Figure 6.1(Devlin et al. 2018). Consider the sentence “The drilling crew initiated a controlled

shutdown after detecting abnormal pressure.” In traditional one-hot encoding, the word “pres-

sure” would be represented as an isolated binary vector, treating it as unrelated to other domain

specific terms like “shutdown” or “blowout.” However, BERT embeddings capture semantic re-

lationships and contextual usage. In this sentence, BERT will represent “pressure” as a dense

vector that reflects its relationship with operational terms like “drilling” and “shutdown.” In

another context, such as “pressure from regulatory bodies,” the same word would receive a

different vector because BERT adjusts the representation based on surrounding words.

Figure 6.1: Input Word embeddings for BERT Model (Devlin et al. 2018)

6.1.1.4 Transformer Layers

Transformer layers are the core components of BERT and other transformer-based models,

consisting of multiple layers of multi-head self-attention mechanisms and feed-forward neural

networks (FNNs) (Vaswani et al. 2017). These layers process input sequences in parallel, enabling

the model to capture long-range dependencies and contextual relationships more efficiently than

sequential models like RNNs (Recurrent Neural Networks).

Self-attention mechanisms allow each token in the input sequence to focus on, or attend to,

every other token in the sequence. This is achieved by computing a set of attention weights that

quantify the importance of other tokens to the current token. The self-attention mechanism
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computes three vectors for each token: the Query (Q), Key (K), and Value (V) vectors,

Q = KW Q,K = XW Q,V = XWV (6.1)

where, X is the input sequence, and W Q,W K ,WV are learned weight matrices (Vaswani et al.

2017).

These vectors are used to compute the attention scores and the weighted sum of the value

vectors,

Attention(Q,K,V ) = so f tmax(
QKT
√

dk
) (6.2)

where, dk is the dimensionality of the Key vectors, and the softmax function ensures that the

attention scores sum to 1 (Vaswani et al. 2017).

Multi-head attention involves applying the self-attention mechanism multiple times in parallel,

each with different learned weight matrices (Vaswani et al. 2017). The results are concatenated

and linearly transformed to produce the final output. The process can be expressed as,

MultiHead(Q,K,V ) =Concat(head1, ...,headh)W O (6.3)

where,

headi = Attention(QW Q
i ,KW K

i ,VWV
i ) (6.4)

and W O is a learned weight matric (Vaswani et al. 2017).

Each transformer layer also includes a position-wise FFNs applied to each position separately

and identically, consisting of two linear transformations with a ReLU (Rectified Linear Unit)

activation in between,

FFN(x) = max(0,xW1 +b1)W2 +b2 (6.5)

where, W1,W2,b1,b2 are learned parameters (Shen et al. 2023).

Consider a report sentence from an offshore incident log: “After a sudden drop in wellhead pres-

sure, the drilling supervisor ordered an immediate evacuation due to suspected gas influx.”

Using the self-attention mechanism, BERT can learn that “gas influx” is semantically and caus-

ally linked to “sudden drop in wellhead pressure” and “evacuation.” Even though these phrases
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are several tokens apart, self-attention allows the token “evacuation” to attend more strongly to

“gas influx” and “pressure” than to unrelated parts of the sentence. This captures critical cause-

effect relationships, which traditional RNNs would struggle to retain over longer sequences.

In the multi-head attention mechanism, different heads may focus on distinct aspects of the

sentence, one head might focus on technical terminology (“wellhead,” “pressure,” “gas influx”),

another on action-oriented language (“ordered,” “evacuation”), and yet another on timing or

sequence (“after,” “immediate”). When these diverse perspectives are concatenated, the model

builds a multidimensional understanding of the situation.

This capacity to understand complex, interdependent relationships between technical terms, ac-

tions, and causes is especially valuable in this project, where precise interpretation of events is

essential for effective classification.

6.1.1.5 Model Configuration

To construct the HF Classifier 2.0 model the pre-trained BERT model is fine-tuned for each

factor’s classification task, this involves adding a classification layer on top of BERT to handle

the binary classification of individual factors. This additional layer typically consists of a dense

(fully connected) layer followed by a sigmoid activation function to output probabilities for each

class (Qasim et al. 2022). The classification function is represented as,

p = σ(Wh +b) (6.6)

where, p represents the vector of predicted probabilities for each factor, W and b are the weights

and biases of the classification layer, h is the hidden state from BERT (the output of the last

transformer layer) and σ is the sigmoid functions, which maps logits to probabilities (Devlin

et al. 2018).

The implementation leverages “TFBertForSequenceClassification” from the “Transformers”

library (Face 2023c).
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6.1.1.6 Loss Function and Optimization

In the fine-tuning process, the binary cross-entropy loss function measures the discrepancy

between the predicted probabilities and the actual labels, making it suitable for binary clas-

sification tasks. The loss function is defined as,

L =−[y log(p)+(1− y) log(1− p)] (6.7)

where, y is the actual label (0 or 1), p is the predicted probability for that instance (Goodfellow

and Courville 2016).

The Adam optimizer is used to update the model parameters. Adam is an adaptive learning rate

optimization algorithm that computes individual learning rates for different parameters based

on estimates of the first and second moment s of the gradients (Kingma and Ba 2014). The

parameter update rule is given by,

θt+1 = θt −η
mt√
vt + ε

(6.8)

where, θ is the model parameters at step t, η is the learning rate, mt and vt are the first and

second moment estimates of the gradients (mean and uncentred variance, respectively), and ε

is a small constant to prevent division by zero (Kingma and Ba 2014).

If a report is labeled as involving “Wrong Time” (y = 1) but the model predicts a probability

of 0.2, the binary cross-entropy loss penalizes this low confidence in the true class. The Adam

optimizer then adjusts weights to reduce similar errors in future predictions.

The loss function and the optimizer are implemented using the “Tensorflow” library with the

functions “tf.keras.losses.SparseCategoricalCrossentropy” and

“tf.keras.optimizers.Adam” (TensorFlow 2015).
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6.1.1.7 Training Procedure

The training procedure involves multiple epochs for each binary classification model, where each

epoch consists of a forward pass, loss computation, backward pass, and parameter update. To

accommodate long input sequences, each report is split into overlapping or non-overlapping

chunks of up to 500 tokens, allowing the model to process the full content without truncation.

During the forward pass, all chunks associated with a single report are independently passed

through the BERT model. The resulting logits from each chunk are then averaged to produce a

single, aggregated prediction for the entire report.

These aggregated logits are passed through a softmax activation function (for two-class clas-

sification with num_labels=2) to compute class probabilities (Qasim et al. 2022). The binary

cross-entropy loss is then calculated between the predicted probabilities and the true label of

the original report. This per-report loss is used for backpropagation, where the gradients of the

loss with respect to the model parameters are computed using backpropagation (Goodfellow and

Courville 2016).

The model parameters are updated using the Adam optimizer, which applies the computed

gradients to adjust the model’s weights and biases in the direction that minimizes the loss. This

process is repeated for each batch of chunked inputs in the training set. An epoch is completed

once all batches have been processed. Typically, multiple epochs are required for the model to

converge, at which point performance stabilizes and loss is minimized.

By repeating this training process for each binary factor, an ensemble of fine-tuned BERT-based

classification models is produced—one for each human factor. Collectively, these models com-

prise the HF Classifier 2.0, which can be used during inference to generate predictions for new,

unseen incident reports. The evaluation of both the first- and second-generation classifiers is

provided in Section 3.3 (Evaluating Performance) and Section 4.2.3 (Classification Tool Per-

formance), respectively.

Further methodological details, supplementary code and explanation can be found in the Ap-

pendix, first-generation in Section A.1 and second-generation in Section A.2.
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6.2 Human-Centric Summarizer

The Human-Centric Summarizer is a tool designed to summarize accident reports, focusing on

the human role. It supports explainability of identified factors and provides stakeholders with

clear, concise understanding of events, particularly for those not involved in detailed analysis.

By highlighting human involvement, the summarizer aids timely, informed decision-making in

safety management. It condenses lengthy and detailed accident reports into concise summaries,

emphasizing critical human-related details. This automation saves time and resources, enhan-

cing productivity in safety analysis and risk assessment.

The outline of its process, application, and evaluation is provided earlier in Section 4.3 (Sum-

marization Tool). The technical process of the tool involves extracting relevant sections and

sentences, followed by using an abstractive summarization approach to condense and structure

the information. This section will detail the tool’s processes and explain how BART is leveraged

to achieve high-quality summarization.

6.2.1 Information Extraction

Similar to theHF Classifiers, the Human-Centric Summarizer requires the accident report to be

in a PDF format. The tool therefore also uses the same process to convert the PDF to raw text

(.txt), whether the file is a “text PDF” or an “image PDF”.

From here an extractive summarization process is employed to identify and extract specific

sections and sentences of interest from the raw text. Part of this uses the same algorithms as

the HF Classifiers to identify such as the “recommendations” and “lessons learned”.

Alongside these sections the algorithm defines a set of keywords to identify specific sentences that

may be of interest. These include pronouns such as “he”, “she”, “they”, and a comprehensive

list of personnel and job roles such as “operator”, “user”, “engineer”. Using regular expression

libraries “re.split” function, the text is split into sentences, and sentences containing any of

the keywords are extracted. These sentences are then combined with the extracted sections of

interest and saved (Foundation 2023).

In a nuclear incident report, the algorithm might extract the section titled “Lessons Learned,”
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which contains statements such as “Operators failed to follow reactor cooldown procedures.” It

also captures individual sentences like “The technician did not verify the valve status,” where

keywords like “technician” and pronouns such as “he” signal relevance to human performance

issues.

6.2.2 Abstractive Summarization

Traditional purely extractive summarization techniques, which select and concatenate sentences

directly from the source text, may fail to produce coherent and logically structured summaries

(Giarelis and Karacapilidis 2023). Therefore, the addition of an abstractive summarization ap-

proach, which involves generating novel sentences that convey the essence of the original text, is

preferred. The approach here utilizes another popular transformer based LLM, known as BART

designed for sequence-to-sequence tasks (Lewis et al. 2019).

Instead of directly quoting “The operator missed a step in the reactor startup checklist, which

led to pressure buildup,” the BART model might generate an abstractive summary such as:

“Failure to follow procedures in startup resulted in operational risk.” This captures the core

meaning in a more concise, generalized form for review.

6.2.3 BART

BART, developed by Facebook AI, is a sophisticated model used for various NLP tasks, including

abstractive summarization (Lewis et al. 2019). Its architecture combines the strengths of two

types of transformers: bidirectional encoders and autoregressive decoders. This unique dual-

encoder-decoder architecture makes BART particularly effective for summarization tasks Zhang

et al. 2022.

The bidirectional encoder in BART reads the entire input sequence bidirectionally, that means

it processes the sequence from both beginning to the end (left-to-right) and the end to the

beginning (right-to-left) simultaneously (Lewis et al. 2019). This bidirectional approach allows

the encoder to capture the context of each word considering both its preceding and succeeding



6.2. Human-Centric Summarizer 147

words. This helps in building a comprehensive understanding of the input text.

The decoder generates the output sequences in an autoregressive manner, which means it predicts

one token at a time from left-to-right. At each step, the decoder considers all previously generated

tokens to predict the next token. The sequential dependency ensures that the generated text is

coherent and logically flows from one word to the text.

The BART model is trained using a denoising autoencoder approach, where the original input

sequence X = (x1,x2, ...,xn) is corrupted using a noising function, q(X |X ′). This means that certain

parts of the sequence are randomly masked, deleted, or shuffled to create a noisy version, X ′, of

the original sequence (Lewis et al. 2019). The model is then trained to reconstruct the original

sequence,X , by minimizing the reconstruction loss function,

L(X ,X ′) =−
n

∑
t=1

log(P(xt |X ′,θ)) (6.9)

where, P(xt |X ′,θ) represents the probability of the model correctly predicting the t-th token,

xt , given the noisy input X ′and the model parameters θ (Lewis et al. 2019). This loss function

computes the negative log-likelihood of each token’s prediction, and the summation aggregates

this across the entire sequence. The goal is to adjust the model parameters θ to maximize the

probability of accurately reconstructing the original sequence from the noisy input.

Given a sentence like “A pressure buildup in the secondary containment vessel was not noticed

due to sensor calibration failure”, the bidirectional encoder understands context like “pressure

buildup” and “sensor failure,” while the autoregressive decoder rewrites it coherently.

6.2.3.1 BART for Summarization

BART performs text summarization through its encoder-decoder architecture, effectively redu-

cing the length of the input text by identifying and retaining key information. The input text

that needs to be summarized is passed through BART’s bidirectional encoder, the encoder pro-

cesses the entire input sequence in both directions, capturing rich contextual information for

each token by considering both its preceding and succeeding words. This helps the encoder build

a comprehensive understanding of the text, including identifying important concepts, entities,

and relationships.
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The encoder outputs a set of contextual embeddings that represent the comprehensive under-

standing of the input text (Peters et al. 2018). These embeddings encapsulate the meaning and

context of each token within the entire sequence, highlighting the critical information that needs

to be conveyed in the summary.

The decoder then takes these contextual embeddings and begins generating the summary in

an autoregressive manner (Lewis et al. 2019). It starts with a special start token and predicts

the next token in the sequence one at a time. The decoder uses an attention mechanism to

focus on different parts of the encoder’s outputs, prioritizing the most relevant and important

information from the input text (Vaswani et al. 2017). This selective attention helps the decoder

emphasize tokens that contribute to the main idea or key points, while omitting less important

details and redundant information.

Each token generated by the decoder is influenced by all previously generated tokens as well as

the contextual embeddings from the encoder. This ongoing interaction ensures that the summary

is coherent and logically flows from one word to the next. Previously trained to use more concise

language to convey the same meaning, the decoder aims to replace long descriptive phrases with

single words or shorter phrases that capture the essence of the original text (Lewis et al. 2019).

This allows the model to construct a shorter sequence that still accurately represents the original

text, maintaining coherence and focus throughout the summary.

6.2.3.2 Tokenization

As with BERT, before the extracted text can be input into BART, it must first be tokenized,

which involves converting the text into a format that the model can process. BART uses a

subword tokenizer, which is particularly efficient for handling rare words by breaking them into

more frequent subwords (Sennrich et al. 2015). This approach ensures that even complex or

infrequent words can be effectively processed by the model.

In this model “BartTokenizerFast” from the pre-trained BART model is used to tokenize the

input text (Face 2023a). The tokenization process involves converting the text into a sequence

of “token IDs” that the model can then process. BART employs Byte-Pair Encoding (BPE), a

subword tokenization technique that iteratively merges the most frequent pairs of bytes in a given

text corpus, creating a fixed vocabulary of subwords (Khanna 2021). The “BartTokenizerFast”
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is an optimized version of the BPE tokenizer that allows it to handle a wide range of text inputs,

ensuring that the tokenization and detokenization processes are efficient and aligned with the

model’s expectations (Face 2023a).

In this process, the input text is split into subword units using the BPE algorithm, and then

these subwords are then converted into corresponding “token IDs” based on the pre-trained

vocabulary of the BART model, forming numerical representations that the model can process.

Special tokens such as “[CLS]“ (classification token), “[SEP]“ (separator token), and “[PAD]“

(padding token) are added as needed to help the model understand the structure of the input and

manage different text segments (Face 2023a). The tokenized output consists of input IDs, which

are sequences of numerical IDs representing the text, and an attention mask, which indicates

which tokens are actual input tokens (1) and which are padding (0), allowing the model to focus

on the relevant parts of the input (Lewis et al. 2019).

6.2.3.3 Iterative Summarization

Now that the extracted sections from the accident report are tokenized, they can now be input

into the BART model for summarization.

However, BART has an architectural constraint that limits the maximum input length to 1024

tokens. To manage this constraint the tokenized text is split into equal chunks, the number of

chunks is determined by rounding the number of tokens up to the next thousand, and then

dividing by 1000. Each chunk is then independently fed into the model to generate “summary

IDs” which represent the tokens of the summarized text. The generated “summary IDs” are then

decoded back into human-readable text using the tokenizer. Each “numerical ID” corresponds

to a subword token in the tokenizer’s vocabulary. The tokenizer uses the predefined mappings,

that pairs each ID with a specific subword token, to convert the summary IDs into subwords

(Khanna 2021).

These subwords then need to be combined to form complete words. During the training phase

the tokenization learnt a set of rules to split the words, during detokenization BART follows the

reverse of these rules to recombine the subwords (Lewis et al. 2019). The final step is to assemble

these words into coherent sentences by adding spaces, proper punctuation, and capitalization

based on convention.
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The generated summaries for each chunk, are then combined and the length checked if the

summary remains greater than 500 words, the process is repeated. Again splitting into chunks

and summarizing until the desired length is achieved. This strategy ensures that long documents

are adequately summarized, without completely discarding sections of the extracted text.

The final generated summary is then output as a raw text file, this can easily be combined with

the HF Classifier’s output and formatted into an official report to share with invested parties.

By leveraging BARTs sophisticated transformer architecture, the approach provides coherent

and concise summaries that are well-suited for practical safety investigation and management.

Further methodological discussion and discussion on the code can be found in the Appendix,

Section A.3.

6.2.3.4 ROUGE Metrics

To assess the Human-Centric Summarizer, the ROUGE metrics were selected over BLEU and

METEOR due to their demonstrated effectiveness, specifically by measuring content overlap

between original texts and their summaries more accurately (Ng 2015). ROUGE is primarily

used to evaluate the quality of summaries by comparing them to one or more reference texts.

The key variants of ROUGE include ROUGE-N, ROUGE-L and ROUGE-S.

ROUGE-N measures the overlap of n-grams—continuous sequences of n words—between the

generated and reference texts (Lin 2004). Overlap refers to the number of n-grams that appear

in both the generated summary and the reference summary. ROUGE-1 and ROUGE-2 are the

most common variants, focusing on unigrams (single words) and bigrams (two-word sequences),

respectively. ROUGE-N scores are usually reported as F1-scores, which combine precision (the

proportion of generated n-grams that are also in the reference) and recall (the proportion of

reference n-grams that are captured in the generated summary).

Recall = Overlapping Number of n-grams
Number of n-grams in reference text (6.10)

Precision =
Overlapping Number of n-grams

Number of n-grams in generated summary (6.11)
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where, “Overlapping Number of n-grams” is the count of the n-grams in both the reference

and summary (Kızılırmak 2023). The F1-score, the harmonic mean of recall and precision is

calculated as previously defined in Section 3.3.

ROUGE-L focuses on the LCS, LCS is the longest sequence of words that appear in both the

summary and reference text, while keeping the order of the words intact, it is important to

note that LCSs are not necessarily consecutive but still in order (Kızılırmak 2023). This metric

is useful for assessing the fluency of the summary. To calculate the ROUGE-L first the LCS

between the two texts is identified. Once this is identified recall and precision are calculated as,

Recall = LCS(S,R)
|R|

(6.12)

Precision =
LCS(S,R)
|S|

(6.13)

where, LCS(S,R) is the length of (number of words in) the LCS, |R| is the length of (number of

words in) the reference text, R, and |S| is the length of (number of words in) the summary, S

(Kızılırmak 2023). The ROUGE-L is again given by the F1-score.

Finally, ROUGE-S which measures skip-bigram co-occurrence statistics (Kızılırmak 2023). A

skip-bigram is any pair of words in their sentence order, allowing for arbitrary gaps. For example,

in the sentence “Operators must report any equipment malfunction immediately”, skip-bigrams

include adjacent pairs like (“must”, “report”) and (“equipment”, “malfunction”), as well as non-

adjacent pairs such as (“operators”, “equipment”) or (“report”, “immediately”), as long as the

original word order is maintained. This allows for the measurement of the semantic relationship

between words that are not necessarily adjacent but are in close proximity. Recall and precision

are calculated similarly to the previous version given as,

Recall = Overlapping Number of skip-bigrams
Number of skip-bigrams in reference text (6.14)

Precision =
Overlapping Number of skip-bigrams

Number of skip-bigrams in generated summary (6.15)
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where, “Overkapping Number of skip-bigrams” is the count of the skip-bigrams in both the refer-

ence and summary (Kızılırmak 2023). Allowing the F1-score to be calculated for the ROUGE-S

metric.

The ROUGE metrics, as well as other assessments of the Human-Centric Summarizer are

provided in Section 4.3.3 (Summarization Tool Performance).

6.3 Human Error Modeling – Bayesian Networks

With the gathered data and a comprehensive understanding of the events, effective modeling

becomes crucial for accurate analysis and decision-making. BNs have been extensively utilized

in HRA and HEP modeling (Mosleh and Groth 2012). A BN is a probabilistic graphical model

that represents a set of variables and their conditional dependencies through a directed acyclic

graph (DAG). In a BN, nodes represent variables or factors, and directed arcs between nodes

indicate causal influences. The strength of these relationships is quantified through CPTs, which

specify the likelihood of a variable given its parent variables (Kosko and Noble 2009).

BNs explicitly capture and visualize these interdependencies, enhancing the clarity and compre-

hensibility of the relationships between PSFs. This makes it easier for analysts and stakeholders

to understand the causal links and dependencies within the model.

By incorporating conditional probabilities, BNs can be used to compute the HEP under differ-

ent contextual conditions. They help explain why certain human errors occur by illustrating the

interconnections and influences among various PSFs. Understanding these causal relationships

allows for the identification of interventions that can mitigate the risk of human errors.

Despite the advantages of BNs, there is a notable reliance on expert opinion rather than empirical

data for determining the structure of these models (Mosleh and Groth 2012). While empirical

data is often used to estimate the conditional probabilities within the network, the identific-

ation of causal links and the overall structure are predominantly based on expert judgments.

This reliance on expert opinion introduces potential biases, as experts may overlook or misin-

terpret causal relationships due to cognitive biases or limited perspectives (Nunes et al. 2018).
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By not fully leveraging available data, analysts may miss critical insights into the true nature of

dependencies among PSFs, which could affect the reliability and effectiveness of HRA and HEP

assessments. Therefore, incorporating more data-driven approaches to structure learning could

enhance the accuracy and credibility of BNs in human reliability and error modeling.

6.4 Human Factors Causal Relationships Tool

Rather than relying purely on expert opinion to construct the model, there are many different

approaches to structure learning in use in other fields. There are three classes of algorithms

typically used to learn the structure of BNs from data. These are constraint-based algorithms,

which use conditional independence tests to learn the dependence structure of the data, score-

based algorithms, which use goodness-of-fit scores as objective functions to maximize, and then

hybrid algorithms that combine aspects of both approaches (Scutari et al. 2019). The Human

Factors Causal Relationships tool (HF Relationships tool) has been developed to incorporate the

strengths of both constraint and score based algorithms to identify the conditional dependencies

between PSFs, and in turn build the structure of a HEP model (Johnson et al. 2022).

6.4.1 Constraint-Based Algorithms

Constraint-based algorithms rely on conditional independence tests to determine the structure of

the network. These approaches use statistical tests to discover dependencies and independencies

among the variables, which can then be used to construct the network structure (Steck 2001).

The general approach followed by constraint-based algorithms is:

1. Start with a complete undirected graph, where all variables are connected to each other.

2. Perform a series of conditional independence tests to remove edges between variables that

are conditionally independent given a subset of the other variables.
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3. Orient the remaining undirected edges to form a DAG representing the BN structure,

based on certain rules and patterns in the remaining edges (Steck 2001).

6.4.2 Score-Based Algorithms

Score-based algorithms search through the space of possible network structures and evaluate

each candidate structure using a scoring function, which measures how well the structure fits

the data (Scutari et al. 2019).

The general approach for score-based algorithms can be summarized as follows:

1. The first step is to choose a scoring function, a mathematical criterion used to evaluate

how well a proposed network structure explains the observed data. This function typically

balances goodness-of-fit with model complexity, penalizing overly complex networks to

avoid overfitting (Scutari et al. 2019).

2. The next step is to search through the space of possible network structures to find the

structure(s) that maximize the chosen scoring function. This search space can be incredibly

large, even for a moderate number of variables, so efficient search strategies are required.

3. Various search strategies can be employed, including greedy search, hill-climbing, sim-

ulated annealing, and genetic algorithms. These strategies explore the search space by

making local changes to the current network structure, such as adding, removing, or re-

versing edges.

4. For each candidate network structure encountered during the search, the scoring function

is computed on the data to evaluate how well the structure fits the data.

5. The search continues until a termination criterion is met (e.g., a maximum number of

iterations, a score threshold, or convergence). The algorithm then returns the network

structure(s) with the highest score(s) as the learned BN structure (Bouchaala et al. 2010).
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6.4.3 Chosen Algorithms

The HF Relationships tool leverages the advantages of both approaches, by integrating one

constraint-based and one score-based algorithms into the tool’s functionality. The chosen constraint-

based algorithm is the NPC algorithm.

1. Initialization:

• This algorithm requires an input dataset of variables and the values, and starts with

a fully connect undirected graph, G, where each node represents a variable. Every

variable is initially considered to be potentially connected to every other variable.

2. Iterative Conditional Independence Testing:

• For each pair of variables X and Y , test for conditional independence given various

subsets S of other variables.

• Remove edges, if X and Y are found to be conditionally independent given S, (X ⊥

Y |S), remove the edge X−Y from the graph, G.

• Record S as the seperating set for X and Y

3. Edge Orientation Using PC-Stable Rules:

• Apply the following rules to orient the remaining edges in the undirected graph:

– If X −Z−Y is identified, where X and Y are not directly connected, and Z is

in the separating set of X and Y , then orient X−Z−Y as X → Z←Y to create

v-structures.

– For each directed edge, X → Y , if there exists and undirected edge Y −Z such

that X and Z are not connected, orient Y −Z as Y → Z

– For each pair of nodes X → Y and Y → Z, if the edge X −Z exists orient it as

X → Z to prevent cycles.

• terate these rules until all edges are oriented.

4. Once all the edges are oriented, the final DAG is the learned structure of the BN (GUI

2020).

For the score-based approach the K2 algorithm, a heuristic search approach, was chosen.

1. Initialization:
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• This algorithm requires an input dataset, D, with m, cases, the set of n nodes, and

an upper bound, u, on the number of parents a node can have.

• The algorithm also requires a predefined ordering of the nodes which can be either

be randomly generated or determined using some other method. This initial ordering

can have significant effect on the final network structure.

• Let πi represent the parent set of the node Xi. The parent set is the set of parent

nodes. A parent node of a given node, Xi, is any node, X j that has direct influence

on Xi. That is the directed edge X j→ Xi exists.

2. For each node, i = 1, ..,n, the algorithm uses the scoring function f (i,πi), to evaluate how

well the parent set explains the data for a given node,

f (i,πi) =
qi

∏
j=1

(ri−1)!
(Ni j + ri−1)!

ri

∏
k=1

αi jk! (6.16)

where, πi is the set parents of node Xi

qi = |ϕi|

ϕi is the list of all possible instantations of the parents of Xi in the database, D. That

is, if P1, ...,Ps are the parents of Xi then ϕi is the Cartesian product, {vP1
1 , ...,vP1

rP1
}× ...×

{vPs
1 , ...,v

Ps
rPs
}, of all possible values of the attributes P1 through Ps.

ri = |Vi|

Vi| is the list of all possible values of the attribute Xi.

αi jk is the number of cases in D in which the attribute Xi is instantiated with its kth value,

and the parents of Xi in πi are instantiated with the jth instantiation in ϕi.

Ni j = ∑ri
k=1 αi jk. The number of instances in D in which the parents of Xi in πi are instan-

tiated with the jth instantiation of ϕi.

3. For each node iterate through the other nodes in the given order,

• Let the current node be Xi.

• Initialize the best parent set for Xi as empty, πi =∅.

• Calculate the score for Xi with no parents.

• Incrementally add parents to Xi from the set of nodes preceding Xi in the given order.

• For each potential parent X j (where j < i according to the node order).

– Temporarily add X j to the parent set, πi, of Xi.

– Calculate the new score for Xi with this updated parent set.
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– If the new score is better than the current best score,

(a) Update the best parent set to include X j,

(b) Update the best score to the new score.

– If no improvement is found, move to the next potential parent.

• The best parent set for Xi is finalized once the addition of more parents does not

improve the score or the upper bound, u, on the number of parents a node can have

is reached.

• This process is repeated for each node in the predefined order until all nodes have

their parent sets determined.

4. The determined parent sets are then used to construct the final BN structure (Cooper

and Herskovits 1992).

To determine the initial node ordering for the K2 algorithm, a methodology based on information

theory has been developed, based on ideas first presented by Benmohamed et al (Benmohamed

et al. 2022).

1. The mutual information (MI), a measure of the amount of information one random vari-

able contains about another, for each conditional relationship is calculated,

I(X ;Y ) = H(X)−H(X |Y ) (6.17)

where,

H(X) is the entropy of X

H(X |Y ) is the conditional entropy of X given Y .

Entropy is a measure of the uncertainty or randomness in a random variable, given by,

H(X) =−∑
x∈X

P(x) logP(x) (6.18)

and,

H(X |Y ) =−∑
y∈Y

P(y) ∑
x∈X

P(x|y) logP(x|y) (6.19)
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where,

P(x) is the probability of of x, P(y) of the probability of y, and P(x|y) is the probability of

x given y (Brownlee 2020).

2. Pairwise triangular structures are then tested. Nodes X and Y are tested with another node

Z to check if they form a cycle. By the directivity property, the amount of MI between the

input messages and the output messages is likely to become smaller once the exchanged

message has gone through multi-level treating.

I(X ;Y )≤ I(X ;Z)+ I(Z;Y ) (6.20)

After some manipulation it the following condition is obtained,

(I(X ;Y )> I(X ;Z))∨ (I(X ;Y )> I(Z;Y )) (6.21)

If this is satisfied, it suggests that a dependency relationship between X and Y exists

(Benmohamed et al. 2022).

3. A dependency matrix, D, is constructed based on the identified dependency relationships,

with entries of 1if variables i and j are dependent and 0 otherwise.

4. As MI is symmetric, it cannot be determined whether X or Y is the parent in the relation-

ship. Therefore, the conditional relative average entropy (CRAE) is calculated for each

dependency relationship to determine which is the parent node. The CRAE measures how

much uncertainty about X remains when Y is known, normalized by the entropy of X and

the number of states of X ,

CR(Y ;X) =
H(X |Y )

H(X)×|X |
(6.22)

CR(X ;Y ) =
H(Y |X)

H(Y )×|Y |
(6.23)
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where,

|X | and |Y | represent the number of possible states/values X and Y can take.

CR(Y ;X) measures the relative uncertainty of X when Y is known, and CR(X ;Y ) measures

the reverse. Therefore, if

CR(Y ;X)<CR(X ;Y ) (6.24)

it can be said that knowing Y reduces the uncertainty in X more than the reverse, therefore

Y is likely the parent, and X is the child (Braverman 2011).

5. The order is compiled from the dependency matrix by evaluating the CRAE for each

dependency relationship. This ensures that the order reflects the hierarchical structure of

dependencies, starting from nodes with fewer dependencies (higher in the hierarchy) to

nodes with more dependencies (lower in the hierarchy) (Benmohamed et al. 2022).

6.4.3.1 Integrating Expert Knowledge

To address any potential knowledge gaps in the learnt models due to data availability, the tool

includes the option to include previously determined conditional relationships based on expert

opinion in the model structure. The tool has been encoded with a conditional relationship table

for the 53 included PSFs. This is based on a conditional relationship table originally proposed

with the development of the CREAM method (Hollnagel 1998).

An antecedent is a factor that influences another factor, while a consequent is the factor being

influenced. The relationships between these factors were established so that each consequent

corresponds to one or more antecedents from a different set of factors. A scheme of these re-

lationships and the start of a table summarizing these relationships was proposed (Hollnagel

1998). Entries within the table show (forward) links between the factors, with the columns rep-

resenting the antecedents, listed in the top row, and the rows representing consequents, listed in

the left column. This table was then completed by Morais et al. following the provided scheme
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(Morais et al. 2022b).

This table contains links in both directions and cycles between some factors. Such relationships

would cause issue in the generation and use of a BN, therefore based on additional expert opinion

these instances were resolved.

6.4.3.2 Grouped Performance Shaping Factors

The MATA-D provides the dataset for training the NPC and K2 algorithms. However, due to

the potential challenges posed by the sparseness of the data, an average of 46 negatives out of

the 53 factors were identified per incident, an option to use a grouped version of the dataset and

PSFs has also been developed(Morais et al. 2022b).

The data is originally classified into 53 factors, which are breakdowns of 15 categories; “Error

Action”, “Observation”, “Interpretation”, “Planning”, “Temporary Person Related Functions”,

“Permanent Person Related Functions”, “Equipment”, “Procedures”, “Temporary Interface”,

“Permanent Interface”, “Communication”, “Organization”, “Training”, “Ambient Conditions”,

“Working Conditions” (Hollnagel 1998, Moura et al. 2016). In this grouped version of the dataset

the average incident has 5 out of the 15 factors attributed to its cause. The K2 and NPC

algorithms are likely to exhibit improved performance with the grouped dataset due to the

reduction in data sparsity and a more balanced representation of the factors. Nevertheless, it is

important to acknowledge that valuable information is lost in the process of grouping factors.

Consequently, the tool has been designed to offer both the original and grouped dataset options

to ensure comprehensive analysis capabilities.

The grouped option also required the modification of the expert opinion table, as grouping the

factors lead to more two-way links and cycles, these were again addressed by further expert

evaluation.
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6.4.4 Implementation

The HF Relationships tool was developed and implemented in MATLAB (Inc. 2023). First, the

user selects the desired method (K2, NPC, Expert Knowledge, or Aggregated) through a dialog

box created using. The “Aggregated” method combines results from the K2 and NPC algorithms

along with expert knowledge. The aggregated DAG is determined by simply only including links

that are presence at least two of the three methods DAGs. A simplified workflow of this process

is outlined in the following Figure 6.2.

Figure 6.2: Simplified workflow of the Human Factors Causal Relationship tool (Aggreg-
ated Option)

The user then can choose whether they want to proceed with either the original PSFs or the

grouped version. This allows the user to select features of interest, perhaps the PSFs identified

by HF Classifier tools if analyzing and reviewing an accident.

Depending on the method chosen, additional parameters such as the significance level for the

NPC algorithm and the maximum number of parents per node for the K2 algorithm are reques-

ted.

The K2 algorithm, NPC algorithm, node ordering algorithm and other supporting functions

are custom implemented within the MATLAB code. These algorithms and functions rely on
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MATLAB’s built-in functions for mathematical calculations, “sum”, “prod”, “randperm”, and

“gammaln”, statistical tests, “chi2inv” and array manipulation, indexing, “find”, and, “unique”.

These built-in functions facilitate efficient computation and enable the custom algorithms to op-

erate effectively within MATLAB’s environment, leveraging MATLAB’s robust mathematical

and statistical capabilities. The NPC algorithm script used in the tool is based upon the work

developed by Guangdi Li (Li 2009).

The HF Relationships tool outputs an adjacency matrix, A,for the chosen factors. If n factors

were chosen, the adjacency matrix is an n×n matrix, where the entries determine where there is

a directed edge (link) between the nodes. For example, the entry at row i and column j indicates

whether there is a directed edge from i to j, 1 if there is and 0 if not. The tool then creates a

visualization of the DAG based off this adjacency matrix using the “digraph” function.

6.4.5 Performance

The primary objective of developing this tool was to reduce reliance on expert opinion and chal-

lenge past biases. Therefore, instead of comparing the algorithm outputs to an expert-derived

table, the efficacy of the algorithms were assessed based on their ability to reconstruct a known

DAG from simulated data. A test network with 15 nodes was constructed to serve as the goal

DAG. Following the method described by Oehm, synthetic datasets were generated by sampling

from the conditional probability distributions defined by this DAG (Oehm 2019). This process

produced three datasets with 50, 200, and 2000 entries, respectively. These varying sample sizes

enabled assessment of the algorithms’ performance under different data availability conditions.

Both the NPC and K2 algorithms were tested on each of these three datasets. The resulting

adjacency matrices were then compared with that of the known DAG to evaluate their perform-

ance. To assess the performance of the algorithms, the same logic and metrics, precision, recall

and F1-score, as defined in Section 3.3 were used. The performance metrics achieved by both

algorithms on each dataset is given in Table 6.2.
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Metric NPC Algorithm K2 Algorithm
50 Samples 200 Samples 2000 Samples 50 Samples 200 Samples 2000 Samples

Accuracy 73% 86% 91% 77% 83% 87%
Precision 7% 52% 55% 14% 52% 55%
Recall 14% 72% 77% 15% 72% 74%
F1-Score 9% 60% 64% 15% 60% 63%

Table 6.2: Performance of NPC and K2 Algorithms on Different Sample Sizes

For this test network, the algorithms performed well for all metrics with the 2000 samples. How-

ever, the algorithms also performed well with 200 samples, which is closer to how many samples

are in the MATA-D. The algorithms performed better in the recall metric than precision, this

means that the algorithm is more likely to produce a false positive than a false negative.

In the implemented tool the aggregated network in part addresses these limitations by incor-

porating the expert opinion table, and in practice additional expert judgement could be used to

prune the network, checking and removing arcs that are considered misleading or incorrect.

6.4.6 Example

An example network has been generated using all grouped features, employing the aggregated

approach, as shown in Figure 6.3. This visual representation illustrates the conditional depend-

encies inferred between various human and system-related factors. Some of the links within the

network align well with expected relationships. For example, the progression from Organisa-

tion to Planning and Action, as well as the influence of an Observation error on an Action,

reflect well-established causal pathways observed in system design and human reliability literat-

ure (Hollnagel 1998). These links suggest that higher-level organizational factors influence how

operators plan and act, which in turn impacts task performance.

However, several unexpected or questionable links also appear, notably Action to Working Con-

ditions and Action to Interpretation. Intuitively, one would expect Working Conditions to affect

Action, not the reverse. Similarly, Interpretation, often a cognitive precursor to action, would

more logically influence Action than be affected by it. These counterintuitive dependencies likely
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Figure 6.3: Example Output of Human Factors Causal Relationships Tool (Johnson et al.
2022)

result from limitations in the data, such as small sample sizes, unobserved confounding variables,

or insufficient granularity in the sequencing of events. In this framework, where associations are

inferred from co-occurrence patterns, such limitations can lead to erroneous directional assump-

tions.

It is also possible that some of these relationships reflect indirect effects that are not well captured

in a simplified network. For example, repeated actions may indeed feed back into interpretations

over time through learning or bias development, suggesting a bidirectional relationship that is

not well represented in a static model.

These issues underscore a key limitation of the current approach. While the aggregated data-

driven method allows for rapid structure generation, it does not always respect known causal

constraints or expert domain logic. This highlights the need for integrating real-time or dynamic

expert judgement into the model-building process.
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6.4.7 Conclusion

While the current model reveals promising insights and some expected pathways, it also high-

lights the risks of drawing strong inferences from limited data.

Nevertheless, the core concept of the HF Relationships tool, integrating data-driven structure

learning with expert oversight, remains a compelling approach for developing robust, inter-

pretable models of human-system interaction.

The tool enables identification of causal links between PSFs, construction of BNs, and model-

ing of HEP through real-world data. This has potential to reduce complete reliance on expert

judgment while still leveraging their domain expertise.

By aligning structure learning with established methods for determining CPTs, it is possible

to develop a human reliability model grounded entirely in empirical data. This approach helps

mitigate confirmation and financial biases, leading to more objective HEP estimates and clearer

identification of key error-reduction targets.

To improve model confidence and broaden insights, additional data is needed—highlighting the

importance of expanding the MATA-D dataset.

Additional methodology details and code discussion for the HF Relationships tool can be found

in the Appendix, Section A.6.

6.5 Tools for Procedure Guides

Chapter 5 (Enhancing Procedure Quality: Advanced Language Tools for Identifying Ambiguity

and High-Potential Violation Triggers) introduces the development, application and testing of

tools developed to improve procedural clarity and quality. These tools aim to minimize the

chances of mistakes and associated risks. The two innovative tools developed are Violation

Trigger tool and the Ambiguity Identifier. These tools leverage a mix of advanced ML and

traditional rule-based NLP techniques to enhance the quality and effectiveness of SOPs. This

following section will focus on the technical implementation of the Ambiguity Identifier, as
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the Violation Trigger tool employs the same methodology (Section 6.1.1 (Second Generation –

BERT)) to train the background model as the HF Classifier 2.0, utilizing the data detailed in

Section 5.3.1 (Dataset). Further details, including the specific differences, can be found in the

Appendix, Section A.5.

6.5.1 Ambiguity Identifier for Procedure Guides

The Ambiguity Identifier was developed to detect various types of ambiguities and misleading

steps within procedure guides. The target types of ambiguity, the logic and algorithms applied

to identify these and some example applications of this tool are detailed in Chapter 5. The

tool employs a range of techniques and methodologies to support the algorithms developed to

identify these ambiguities.

Corpus-based approaches are applied for detecting temporal and quantity ambiguities by lever-

aging predefined collections (corpora) of vague terms and quantifiers. These corpora serve as

reference lists containing words and phrases commonly associated with ambiguity. When such

terms are detected in procedural instructions, they are flagged as potentially unclear, prompting

further review or revision to improve precision and consistency.

PoS tagging is used in the identification of syntactic, conditional, and scope ambiguities by tag-

ging words to determine their grammatical roles and relationships (Sharma 2024). Dependency

parsing analyzes the grammatical structure of sentences to identify complex and potentially

confusing constructions that lead to syntactic ambiguities (Yamamoto et al. 2022).

Regular expressions (regex) are employed to detect instances where abbreviations and acronyms

are used without proper definition, using specific patterns to capture and verify these terms

(Friedl 2006).

To handle lexical ambiguity, terms identified as homographs by the PoS, are checked against

a dictionary, specifically “WordNet”, to identify the multiple definitions (Miller 1995, Oram

2001). This process is enhanced with contextual word embeddings from the BERT model, which

helps determine the meaning of each term in the given context (Devlin et al. 2018). Potential

ambiguity is identified by comparing the contextual definition to the dictionary definitions.

To implement the rules and techniques, the text is first tokenized using the “word\_tokenize”

function from the “NLTK” library (Bird et al. 2009). This tokenization process is essential for
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subsequent analysis steps, as it allows the text to be processed at the level of individual tokens.

By incorporating these techniques, the tool ensures a comprehensive and systematic approach to

identifying and resolving ambiguities within procedure guides, ultimately enhancing the clarity,

consistency, and safety of operational protocols.

6.5.1.1 Corpus-Based Approach

The corpus-based approach began with compiling a dictionary of terms derived from domain

knowledge and an analysis of typical SOP language. This dictionary includes terms known to

cause ambiguity, such as imprecise temporal conjunctions and quantifiers. Examples include

terms like “frequently”, “periodically”, “some”, and “enough”, which can lead to varied inter-

pretations.

The algorithm iterates through the tokenized text and matches the tokens against the corpus

of ambiguous terms. Each token is checked to determine if it corresponds to any term in the

dictionary. When a match is found, the algorithm flags the entire sentence containing the am-

biguous term for further review. This step is essential as it helps in pinpointing specific parts

of the SOP that may need clarification due to potential ambiguity. The flagged sentences are

stored and output as a list for further analysis, reviewers can then assess and address these

potential ambiguities.

This approach effectively combines domain-specific knowledge with NLP techniques to identify

and flag potentially ambiguous instructions within SOPs.

6.5.1.2 Part-of-Speech Tagging

PoS tagging is a fundamental NLP technique where words in the text are tagged with their

corresponding parts of speech (nouns, verbs, adjectives), helping to analyzing their grammatical

roles and relationships (Sharma 2024). For instance, the word “lead” can be tagged as a noun

(NN) or a verb (VB) depending on its context within the sentence.

The PoS tagger used in this tool is development is supplied by the “spaCy” library (Honnibal
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and Montani 2017). This tagger has been trained to handle complex sentences and accurately

evaluate grammatical roles. The tagged text is further evaluated using a dependency parser to

identify different types of ambiguities.

To detect syntactic ambiguity arising from prepositional phrases, the tokenized text is first

tagged. For each preposition tagged, “(token.dep_=='prep')”, the method examines the two

preceding tokens to determine if both can be logically modified by the prepositional phrase. The

suitability of these tokens is evaluated based on their PoS tags, specifically considering nouns,

proper nouns, and verbs as potential candidates for modification. These relationships are then

evaluated using the dependency parser.

For example, in the sentence “Secure the panel with the clamps near the turbine”, the phrase

“near the turbine” could attach either to “clamps” or “panel”. Both would be tagged as nouns

(NNS and NN respectively), making both grammatically viable targets of the prepositional phrase.

The parser assesses the dependency tree to determine which noun the prepositional phrase most

likely modifies. If both options are structurally valid, the sentence is flagged for prepositional

phrase ambiguity.

Conditional ambiguity arises when the conditions in a sentence, often introduced by conjunctions

such as “if ”, “when”, and “unless”, are not clearly defined. The PoS tagger identifies the condi-

tional conjunctions, before dependency parsing is utilized to examine the dependency structure

of each sentence to check if these conjunctions are followed by well-defined condition clauses. For

instance, in the instruction “Activate the cooling system if pressure rises and temperature falls

below threshold”, the use of the conjunction “and” creates uncertainty, is the condition triggered

when both sub-conditions are met, or is either sufficient.

Scope ambiguity arises when the extent or boundaries of actions within a sentence are unclear,

often due to poorly defined associations between verbs, subjects, and direct objects. By iterating

over tokens and analyzing PoS tags the presence of a nominal subject and a main verb for each

direct object is verified. Dependency parsing is then applied to check the relationship between

these objects, by checking the token’s dependencies and their hierarchical structure to confirm

clear associations. If any of these components are absent or incorrectly associated, the sentence is

flagged for scope ambiguity. For example, consider the instruction, “The supervisor will approve

the inspection and the checklist for the maintenance task.” PoS tagging identifies “approved”

as the main verb and “inspection”, “checklist”, and “task” as noun phrases. However, the de-

pendency structure reveals that “inspection” is a clear object of “approved”, while it is not clear

whether “the checklist” is also subject to “approves”, or if it is associated with “the maintenance
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task” as part of a different clause. Furthermore, “for the maintenance task” could modify either

“checklist” or the entire phrase. As not all objects are unambiguously tied to the main verb, the

parser is unable to resolve the verb direct object mapping. As a result, the sentence would be

flagged for scope ambiguity.

6.5.1.3 Dependency Parsing

Dependency parsing analyzes the grammatical structure of sentences to identify complex con-

structions that might lead to ambiguities in SOPs, using the “spaCy” library again (Honnibal

and Montani 2017). Dependency parsing represents each sentence as a tree where words are

nodes, and dependencies between words are edges (Yamamoto et al. 2022). This tree structure

helps in identifying how words in a sentence relate to each other, making it easier to identify

complex syntactic constructions that could be ambiguous. The dependency parser in “spaCy”

assigns a head (a root word) and dependencies to each token in a sentence. By examining these

dependencies, the tool can identify various relationships and structures within sentences.

This capability, combined with the PoS, has been utilized in several ways, including identify-

ing the presence or absence of required clauses, detecting sentences with multiple subordinate

clauses, analyzing nested structures, and pinpointing ambiguous prepositional phrase attach-

ments.

Prepositional phrase attachment ambiguity is detected by examining the dependencies of the

identified prepositional phrases. A prepositional phrase consists of a preposition and its object

(“with a wrench”, “in the chamber”) and typically functions to modify a noun or a verb. At-

tachment refers to the grammatical process of linking a prepositional phrase to another element

in the sentence to indicate which word or phrase it modifies. These attachments are crucial for

interpreting sentence meaning. However, ambiguity arises when a prepositional phrase could lo-

gically modify more than one part of the sentence, leading to multiple plausible interpretations.

The parser evaluates the potential attachment points for each prepositional phrase based on

syntactic structure and dependency relations. If a prepositional phrase can attach to more than

one constituent without a clear disambiguating cue, the sentence is flagged for ambiguity.

For conditional ambiguity, after the conditional conjunctions are tagged and identified, the al-

gorithm then examines the dependency structure of each sentence to check if these conjunctions
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Figure 6.4: Dependency Parsing and PoS Tagging visualization

are followed by well-defined condition clauses. Specifically, the function looks for adverbial clause

(a group of words that functions like an adverb) dependencies associated with the conjunctions,

which indicate a clear conditional relationship. If such dependencies are absent, the condition

is marked as ambiguous. Scope ambiguity also relied upon dependency parsing to check the

tokens, of the nominal subject and main verbs, dependencies and their hierarchical structure

to confirm clear associations. An example of dependency parsing and PoS tagging is visualized

in Figure 6.4, generated using “SkillNER” (Fareri et al. 2021). Sentences containing multiple

subordinate clauses can be syntactically ambiguous as the relationships between the clauses

may become unclear, leading to multiple potential interpretations of the sentence’s meaning.

To address this, the tool iterates through each sentence and identifies subordinate clauses by

looking for tokens with the dependency label, “mark”. If a sentence contains more than two

subordinate clauses, it is flagged as potentially ambiguous. As an example, the sentence “The

system will reboot when the voltage drops, if the coolant fails, and unless the override is engaged”,

the presence of three conditional subordinate clauses (“when”, “if ”, and “unless”) complicates

the logical flow and makes the condition for reboot ambiguous.

Nested structures complicate sentence interpretation when a subordinate clause contains an-

other subordinate clause, creating layers of dependencies that can obscure the sentence’s main

point (Lakretz et al. 2020). The dependency parser detects these nested structures by analyz-

ing the hierarchical relationships between clauses, and checking if any subordinate clause has

children with the “mark” dependency label. If subordinate clauses are nested within each other,

the sentence is flagged due to the increased complexity and potential for misunderstanding. For

example, in the sentence “If the operator acknowledges that the pressure drops when the pump

is activated, then the process may continue”, the clause “that the pressure drops when the pump

is activated” contains a nested subordinate clause inside a conditional statement. This layering

increases processing complexity and potential misinterpretation, prompting the system to flag

it as a potentially ambiguous.
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6.5.1.4 Regular Expression (Regex)

Regular expressions are a powerful tool for detecting patterns in text and have been applied to

identify acronyms and abbreviations that are undefined (Friedl 2006). The implementation of

regex in Python is facilitated by the “re” module, which provides a set of functions for working

with regular expressions (Foundation 2023).

Regex patterns are defined to match specific text sequences. Acronyms and abbreviations usually

consist of uppercase sequences of 2 to 5 characters. The pattern used to identify the acronyms

and abbreviations is “r'\b[A-Z]{2,5}\b'”. In this pattern, “\b” denotes a word boundary,

“[A-Z]” specifies uppercase letters, and “{2,5}” indicates the sequence length must be between

2 and 5 characters. This pattern effectively matches any word boundary followed by 2 to 5

uppercase letters and ending with another word boundary. For example, it would match terms

such as HSE, PPE, and SOP, but would not match lowercase words or mixed-case terms like Co2

or risk.

To extract acronyms and abbreviations a text, the “re.findall” function is used. This func-

tion returns all non-overlapping matches of the pattern in the string as a list. This approach

provides a straightforward way to collect these patterns for further analysis. These are stored

as potentially ambiguous acronyms/abbreviations.

After extraction, it now needs to be verified whether the acronyms or abbreviations are defined

within the text or not. This verification can be done using additional regex patterns to search

for common definition formats. The patterns used are given in Section 5.2.6 (Abbreviation and

Acronym Ambiguity Rules). These are patterns that state whether the acronym/abbreviation

is followed or proceeded by its full form/definition in parentheses or with a hyphen.

By defining these patterns and the identified acronyms/abbreviations, the text can be searched,

using the “re.search” function, to see if corresponding definitions are provided. If a definition

is identified the term is removed from the list of potentially ambiguous acronyms/abbreviations

list. For example, if zzApplication Programming Interface (API)” is found in the document, then

“API” would be excluded from the final ambiguity list.

Acronyms and abbreviations are also often defined in tables within SOPs. To ensure these are

not overlooked, it is important to extract and inspect the table structures for definitions.

Using the “Camelot” library, tables are extracted from SOP PDF documents and then con-

verted into a structured tabular format using a DataFrame object from the “pandas” library
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(Developers 2021, Team 2024). “Camelot” is specifically designed for parsing tables from PDFs,

while “pandas” provides powerful data structures and operations for data manipulation and

analysis, making it well-suited for structuring and processing the extracted table data. After

extracting the tables, iterate through each table to search for previously identified acronyms

or abbreviations. For each identified acronym or abbreviation in a table, the adjacent cells are

checked (to the left/right in the same row) for potential definitions or explanations. If an ac-

ronym or abbreviation is found in a table and a definition is present in an adjacent cell, remove

this term from the list of potentially ambiguous acronyms/abbreviations.

The final list of potentially ambiguous acronyms and abbreviations is then generated for review.

It is best practice to define each term at least once in an SOP. This ensures that all terms

are clearly explained, thereby reducing ambiguity. By doing so, the clarity and precision of

technical documents are significantly enhanced, making them more user-friendly and easier to

understand. This approach not only aids in compliance and accuracy but also improves overall

communication and operational efficiency.

6.5.1.5 Lexical Ambiguity Methodology

To manage lexical ambiguity in procedural documents, lexical databases are integrated with

advanced NLP techniques. First, potential homographs are identified in the text using a PoS

tagger, which labels each word based on its grammatical role. Homographs are words that are

spelled the same but have different meanings and sometimes different pronunciations (Gram-

marly 2023). The PoS tagger processes the text and assigns a PoS tag to each word, indicating

its grammatical role (e.g., noun, verb, adjective). By examining the PoS tags, words that are

used in different grammatical contexts are identified. If a word appears with multiple PoS tags

(e.g., both as a noun and a verb), it is flagged as a potential homograph.

For example, consider the sentence, “The workers will lead the briefing before inspecting the lead

shielding.” Here, the word “lead” appears twice, first as a verb (to guide) and then as a noun

(a heavy metal). The PoS tagger identifies the first instance as a verb (VB) and the second as

a noun (NN), flagging it as a homograph due to its different grammatical roles and potential

meanings.

After identifying these homographs, “WordNet” is used to retrieve all possible meanings of the
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terms. “WordNet” organizes English words into sets of synonyms (synsets), providing definitions

and example sentences for each synset (Oram 2001, Miller 1995). For each identified homograph,

the associated synsets are retrieved, offering a comprehensive list of potential meanings.

For the word “lead”, WordNet may return multiple synsets,

• lead.n.01: a soft heavy toxic metallic element

• lead.v.01: to take charge or guide

• lead.v.02: to cause someone to go with one

To disambiguate the meanings of homographs within specific contexts, BERT is employed. This

leverages BERT’s pre-training on a large corpus of text and its ability to understand the context

of words bidirectionally (Devlin et al. 2018).

The process starts by encoding the sentences containing the homographs using BERT, generating

contextual embeddings for each word. The embeddings encapsulate the meaning of the word

within the specific sentence context. For each synset retrieved from “WordNet”, the embeddings

are also generated.

The similarity between the contextual embedding of the homograph and each synset embedding

is calculated using cosine similarity (Porter 2023. Cosine similarity between two vectors A and

B is defined as,

cos(θ) =
A ·B
|A||B|

=
∑n

i=1 AiBi√
∑n

i=1 A2
i

√
∑n

i=1 B2
i

(6.25)

where, A and B are the embedding vectors of the homograph in context and the synset definition,

respectively. Cosine similarity is a measure used to determine the similarity between two vectors

by calculating the cosine of the angle between them, with scores ranging from−1 and 1. A score of

1 indicates that the vectors are identical in orientation, meaning they point in the same direction

and are highly similar. A score of 0 signifies orthogonality, where the vectors are at a right angle

to each other, indicating no similarity. A score of −1 denotes that the vectors are diametrically

opposed, pointing in opposite directions and signifying complete dissimilarity (Porter 2023). In

this tool’s context, analyzing homographs using BERT embeddings and “WordNet” synsets, a

cosine similarity close to 1 suggests that the synset meaning aligns closely with the homograph’s

contextual use, while a score near 0 indicates poor alignment, and −1 would indicate that the

meanings are completely opposed.
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The similarity scores help identify the synset that best matches the homograph in its given

context. If the highest similarity score is below 0.5 or if multiple definitions have similar scores,

the term and therefore sentences containing it are flagged as potentially ambiguous.

Continuing the earlier example, the BERT embeddings of the first instance of “lead” in “lead

the briefing” are compared against verb synsets, while the second instance in “lead shielding” is

compared against noun synsets. The tool computes cosine similarities for each case,

• Contextual embedding (lead as verb) vs. lead.v.01: similarity = 0.81

• Contextual embedding (lead as noun) vs. lead.n.01: similarity = 0.68

These scores confirm the appropriate contextual meanings, and no ambiguity would be flagged.

By combining these techniques and approaches, the Ambiguity Identifier can significantly en-

hance the use of established and emerging NLP technology to tackle critical safety and com-

pliance challenges in high-risk industries. By systematically addressing ambiguities, these tools

not only enhance the clarity and effectiveness of SOPs but also contribute to overall operational

safety and efficiency. Additional methodology and coding choices for the Ambiguity Identifier

are detailed in the Appendix, Section A.4.

Integrating the Violation Trigger tool and the Ambiguity Identifier into standard safety prac-

tices ensures a proactive approach to managing procedural risks and supports the continuous

improvement of safety protocols in complex industrial settings.

6.6 Future Work

There is room for future development across each tool, as discussed in each of the previous

chapters. Future enhancements will initially focus on improving the usability, ensuring that the

tools are accessible to a broader audience, including those with limited technical expertise.

A significant and valuable piece of future work will be to develop a user-friendly interface that

incorporates each tool, integrates their outputs, and supports data collection. This could take

the form of either a web-based platform or standalone software, depending on user requirements.

A web-based solution would facilitate easier data sharing, centralized access, and collaborative
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use across organizations. In contrast, downloadable software may be preferable in settings where

data privacy, local control, or offline access is a priority. In either case, the core objective is to

provide seamless access to all tools through a unified interface.

Further development will also explore expanding the datasets used for training the models,

incorporating more diverse sources of data to improve the robustness and generalizability of

the tools. This expansion would help in addressing the epistemic uncertainties and adapting to

changes in human behavior, societal norms, and technological advancements.

Continued research and development efforts should aim to integrate the latest technologies to

further enhance the capabilities and reach of these tools. One promising avenue is incorporating

NLP models for various languages, which would allow for a more comprehensive and accurate

analysis of linguistic and grammatical structures, better than the pre-translation of documents

into English (Intrator et al. 2024). Additionally, there are advanced NLP techniques that can

handle multilingual data, which would support cross-cultural and international studies and learn-

ing (Li et al. 2024b). This multilingual support would significantly broaden the impact of these

efforts, enabling more inclusive and globally relevant research.

Accident reports and safety documents often contain critical information embedded in images,

diagrams, and charts. Integrating NLP models with image and multimedia analysis capabilities

would significantly increase the available information and enhance the functionality of these

tools (Jiao et al. 2024). By developing the ability to analyze and interpret visual data alongside

textual data, these tools can provide a more holistic understanding of incidents.

By fostering collaboration between academia, industry, and regulatory bodies, future work can

drive the continuous improvement and adoption of these advanced tools, ultimately contributing

to safer and more reliable safety-critical systems.

6.7 Conclusion

This work has successfully demonstrated the innovative application of ML, data-driven tech-

niques, and NLP in HRA and safety assessment.

By leveraging cutting-edge techniques and developing novel adaptations and methodologies,

these tools provide valuable insights into the complexities of human factors in safety-critical
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systems.

The integration of ML algorithms, alongside innovative NLP approaches, has resulted in tools

that not only automate but also enhance the analysis and understanding of human factors in

high-risk industries. This underscores the importance of interdisciplinary approaches in address-

ing complex safety challenges, combining expertise from ML, NLP, and HRA domains to develop

practical and impactful solutions.



Chapter 7

General Conclusions and Future
Work

The developments presented in this thesis represent a significant advancement for the field

of HRA, offering a comprehensive suite of tools that enhance data gathering, explainability,

learning from past accidents, constructing data-driven models, and evaluating and improving

procedural safety. By leveraging cutting-edge techniques and developing novel adaptations and

methodologies, these tools provide valuable insights into the complexities of human factors in

safety-critical systems. The first-generation HF Classifier (Chapter 3) automates the identi-

fication of human errors and influencing factors in accident reports, enhancing the efficiency of

HRA data collection. Building on this, the HF Classifier 2.0 (Chapter 4, Section 4.2), leveraging

BERT, improves classification accuracy and contextual understanding. Additionally, the Human-

Centric Summarizer (Chapter 4, Section 4.3), utilizing BART, provides concise and informat-

ive summaries of accident reports, supporting informed and deliberate safety decision-making

by reducing cognitive load and information review time. The High-Potential Violation Trigger

Identification tool (Chapter 5, Section 5.3) and the Ambiguity Identification tool (Chapter 5,

Section 5.2) for improving SOPs are a move towards a more proactive and informed approach to

safety management. Their ability to identify high-potential violations and ambiguities ensures

that all personnel are well-equipped to perform their duties safely and effectively, ultimately

safeguarding human lives and environmental health. Furthermore, the HFHF Relationships tool

(Chapter 6, Section 6.4) offers a data-driven approach to identifying causal links between PSFs,

supporting the development of data-driven human error models.

177
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This work underscores the importance of interdisciplinary approaches in addressing complex

safety challenges, combining expertise from the ML, NLP, and HRA domains to develop prac-

tical and impactful solutions. The practical applications of these tools are vast, extending across

various high-risk industries such as aviation, nuclear power, and healthcare, where understand-

ing human factors and clear and accurate procedures are crucial for preventing accidents and

maintaining operational safety.

7.1 Implications to HRA and Safety Practices

The usefulness of the tools is further demonstrated by their ability to integrate seamlessly into

existing safety practices, providing stakeholders with advanced analytical capabilities without

requiring extensive technical expertise. This accessibility ensures that the benefits of these tools

can be widely realized, leading to safer and more reliable operations across diverse sectors.

HRA plays a crucial role in understanding, assessing, and mitigating human errors within safety-

critical systems. Presently, HRA employs various methods to evaluate human performance and

identify potential sources of error and increased risk. These methods typically encompass qual-

itative assessments, such as expert judgments, checklists, and cognitive task analyses, alongside

quantitative approaches, including probabilistic risk assessments and statistical analyses of in-

cident data.

However, traditional HRA methods encounter several significant challenges. One major issue

is the subjectivity and bias inherent in expert judgment. While invaluable, expert input can

introduce these elements, potentially compromising the consistency and accuracy of HRA out-

comes. Additionally, the processes involved in comprehensive HRA are often time-consuming

and resource-intensive, posing difficulties for frequent and thorough analyzes.

The tools developed in this thesis address these challenges by offering automated, data-driven

solutions that support and enhance the efficiency of HRA. These tools contribute to enhanced

objectivity and consistency by automating the analysis of accident reports and other safety-

related documents. This automation reduces reliance on subjective judgment, providing more

consistent and objective insights into human errors and contributing factors.

The tools significantly improve the efficiency of the HRA process by automatically processing
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textual data. By automating labor-intensive tasks to support more efficient yet thorough ana-

lysis, the tools optimize resources, freeing up valuable assets that can be redirected to other

critical activities. For example, allowing organizations to dedicate more time to refining their

safety protocols, ensuring that these remain up-to-date and responsive to new information and

emerging risks.

The tools are able to identify latent conditions and systemic issues that may not be immediately

apparent through traditional methods. By analyzing and learning the patterns and correlations

in the data, the tools uncover underlying factors contributing to human errors, allowing organ-

izations to address root causes rather than merely treating symptoms.

Beyond specific HRA applications, these tools contribute to general safety improvements in sev-

eral ways. The development of the SOP focused tools facilitates proactive risk management. By

detecting potentially high-risk violation triggers and identifying ambiguities, the tools enable

the early identification of risks so that they can be addressed through thorough evaluation and

informed intervention before incidents occur. Additionally, the developed tools support train-

ing improvements by providing key information of recent incidents and identified key procedure

directives, ensuring that personnel receive relevant and up-to-date training.

The integrated use of the presented tools provides a holistic approach to gathering human factors

data, enhancing the explainability of human reliability, and improving safety protocols. Valid-

ation through case studies showcases their potential to transform safety practices by providing

insights and supporting informed decision-making.

Importantly, the tools are not intended to expedite changes without appropriate review, but

to assist safety professionals in identifying where detailed scrutiny is warranted, ensuring any

updates are carried out with the necessary diligence and validation.
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7.2 Recommendations for Future Work and Improve-

ments

Throughout the chapters that introduce, detail the development, implement, and apply the tools,

various opportunities for future work and improvements have been identified. These opportun-

ities mainly relate to a few areas, the development of a user-friendly interface, the continued

integration and leveraging of advancing technologies, further efforts to collect and analyze data,

along with some more specific suggestions.

Developing a user-friendly interface is considered essential for enhancing the accessibility and

usability of the tools developed in this project. While a web-based platform offers significant

advantages, such as centralized access, streamlined document uploads, and integrated outputs,

it also supports data sharing and collaboration across organizations. Alternatively, a standalone

application may be more appropriate in contexts where data privacy, offline access, or strict

security protocols are required. Regardless of the delivery mode, the interface should enable

seamless interaction with the tools, allowing users to upload documents, view and interpret

results, and work across modules with minimal friction. To support ongoing improvement, a

feedback mechanism will be integrated, enabling users to report issues, suggest enhancements,

and share real-world insights. This feedback loop will drive a continuous development cycle,

ensuring that the tools evolve to meet user needs and maintain their relevance in practice.

To improve the tools’ performance and generalizability continuous efforts to collect and analyze

diverse data sources will be required. This involves collecting documents from a wide range of

industries and sources to address epistemic uncertainties and adapt to changes in human beha-

vior, societal norms, and technological advancements overtime. The website will facilitate this

data collection, which will not only enable users to submit documents for analysis, but also

submit manually reviewed texts whether this be procedural steps with ambiguities or classified

accident reports. This user-contributed data will be invaluable for training and refining ML

models, enhancing the overall effectiveness of the tools.

Staying at the forefront of technological advancements in NLP and ML is crucial for the con-

tinued development of these tools. Future iterations should focus on leveraging the latest ad-

vancements in NLP and LLMs, which are rapidly evolving and offer new capabilities that can

significantly enhance the functionality of the tools. One key area of development is the integ-
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ration of NLP models with image and multimedia analysis capabilities. Safety documents and

incident reports often contain critical information embedded in images, diagrams, and charts.

Developing the ability to analyze and interpret visual data alongside textual data will provide

a more comprehensive understanding of incidents.

Additionally, to support the automated analysis of documents, several suggestions are made to

the industries. The most significant recommendations include ensuring consistency in document

format, such as using similar chapter titles and sequences throughout. Furthermore, if possible,

accident reports should be made publicly available on the internet to facilitate easier access and

analysis. Additionally, from the review and evaluation of many SOPs, the inclusion of a table of

definitions for all acronyms, abbreviations, and units at the beginning of the documents is also

recommended.

Less significant recommendations also include ensuring that sections dedicated to normal char-

acteristics are clearly separated and preferably placed at the beginning or end of the file. As

well as critical information regarding accident causes not being mixed within such sections of

the document.

Reducing the amount of unimportant text, such as company names in headers and footers, will

also aid in improving the clarity of the extracted text. Some of these suggestions are considered

unlikely to be fully implemented. Therefore, the development of improved pre-processing and

targeted text extraction algorithms will be necessary to effectively address these challenges.

This work has shown how NLP and ML can be effectively applied to a range of HRA-related

tasks, offering scalable and consistent support to traditionally qualitative processes. Beyond

these there are numerous related challenges, areas and fields that could benefit from the integ-

ration of such technologies. Some suggested areas of future work include,

• Automatic generation of tailored safety training materials based on recent incidents, iden-

tified risks, or specific job roles.

• Analysis of internal communications, surveys, and reports to gauge the overall safety

culture within an organization and identify areas for improvement.

• Development of a tool trained on safety regulations and internal policies, which can then

be used to scan and review documentation and communications to ensure adherence.
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In conclusion, this work represents a significant step forward in the field of HRA and safety

assessment. The developed tools contribute to the development of safer operational practices,

ultimately safeguarding human lives and environmental health. Their outputs are intended to

inform structured reviews, ensuring that procedural and safety-related decisions maintain the

depth of understanding required in complex systems. They exemplify how innovative applications

of ML and NLP can lead to substantial improvements in understanding and mitigating human

factors in safety-critical environments.
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Appendix A

Further Methodological Details and
Supplementary Code

This appendix provides additional methodological details and supplementary code for each of

the tools presented in the main body of the thesis.

A.1 Virtual Human Factors Classifier (First Genera-

tion)

The first-generation Virtual HF Classifier automates the identification of contributing human

errors and PSFs in accident reports, presented in Chapter 3. The classifier used a BoW repres-

entation of preprocessed text data and applied linear SVM models for classification.

Reports were matched with labels using a classification table derived from the MATA-D data-

set. Important textual sections are extracted using rule-based keyword detection, before pre-

processing which includes punctuation removal, tokenization, stop word elimination, and word

normalization.

It was implemented in MATLAB and makes us of the built-in functions and toolboxes given in

Table A.1.

xx



A.1. Virtual Human Factors Classifier (First Generation) xxi

Function(s) Toolbox / Source
tokenizedDocument,
removeWords,
normalizeWords,
bagOfWords,
removeInfrequentWords,
encode

Text Analytics Toolbox

fitcecoc, cvpartition Statistics and Machine Learning
Toolbox

readtable, xlsread Built-in Spreadsheet Functions
extractFileText Built-in (PDF Text Extraction)
regexprep, strsplit,
contains, lower, isempty

Core MATLAB String Functions

Table A.1: Functions and their required toolboxes or sources.

A.1.1 Report-Label Matching and Extraction

This script serves as the starting point, by aligning accident reports with labels from the MATA-

D classification table. It attempts to match each PDF with an entry in the MATA-D based on

the available metadata (location, year), before extracting the text from the matching files and

attaching the corresponding CREAM labeling.

The key operations include,

• Cleaning metadata (location, year) and handling fuzzy string matches.

• Extracting text from the PDFs using extractFileText.

• Section filtering using getImportantSection.m

The function outputs a composite cell array, where each row represents a report and includes, a

report ID, filename, extracted text, and the associated classification labels.
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A.1.1.1 Metadata Cleaning (Location and Year)

The code first cleans metadata by trimming the header and selecting relevant columns from the

Excel sheet. It processes the location strings by removing punctuation and normalizing spacing.

Any NaN values are replaced with zero.

function [output] = dataCompiler(folderDir ,getImpSection)

% Read Classification Table

[numTable ,stringTable ,~] = xlsread("MATA-D.xlsx","CREAM Categories");

% Data clean up

stringTable = stringTable(5:end,2:3);

splitLocNames = {};

numTable = numTable(:,[1 4:end]);

numTable(isnan(numTable)) = 0;

% Create splitLocNames by removing punctuations and multiple spaces

for i = 1:size(stringTable ,1)

currentLoc = regexprep(regexprep(stringTable(i,2),

'[^0-9a-zA-Z]',' '),' +',' ');

splitLocNames{i} = strsplit(string(currentLoc{1}),' ');

end

A.1.1.2 Matching Metadata to PDF Files

The function then loops through each PDF filename to determine if it matches an entry in the

metadata using criteria such as location string match, 4-digit year match, and filtering with

an ignore word list. The matching algorithm uses a scoring mechanism based based on these

factors, if the match confidence exceeds a threshold (3 or more), the file is considered successfully

matched.

% Try to match PDFs with Classification Table rows

docDirectory = {};

for i = 1:length(reports)

currentName = reports(i).name;
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...

for j = 1:size(numTable ,1)

...

if contains(lower(currentName),lower(stringTable(j,2)))

matchConfidence = matchConfidence + 1;

end

...

if matchConfidence >= 3 && wrongYearConfidence == false

docDirectory = [docDirectory {numTable(j,1)

;string(currentName);matchConfidence}];

end

end

end

A.1.2 Targeted Section Filtering

This function identifies and extracts the most informative part of a report, typically sections

titled “Recommendations,” “Lessons Learned,” or similar. The goal is to focus classification only

on sections most likely to contain relevant insights. This script,

• Scans all lines and assigns confidence scores to those matching target phrases.

• Identifies valid start-end pairs while attempting to avoid common non-informative sections

(e.g., “Appendices” or “References”).

• Selects the highest confidence and longest section for use.

This is done to improve the classifier performance and reduce noise by ignoring irrelevant report

content like legal disclaimers or background information.
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A.1.2.1 Splitting and Set Up

The document is first split by newline characters into a list of individual lines for analysis.

lineArray = strsplit(inputDocument ,'\n');

Within the function categories of keywords are defined,

startTargetWords = ["recommendation", "lessons learned",

\\ "advice to planning authorities"];

endTargetWords = ["reference", "appendix", "annex", "conclusion", ...];

lesserEndTargetWords = ["accordingly", "section", "\figure"];

A.1.2.2 Identifying Candidate Start and End Lines

The function searchForLineNumsAndConfidence analyzes each line in the document and assigns

a confidence score based on keyword prominence and structural patterns.

[startLineNumsAndConfidence] = searchForLineNumsAndConfidence(lineArray ,

startTargetWords , []);

[endLineNumsAndConfidence] = searchForLineNumsAndConfidence(lineArray ,

endTargetWords , lesserEndTargetWords);

Each line is cleaned and evaluated as follows,

1. Characters are restricted to letters, digits, hyphens, commas, and periods.

2. If the line contains a target keyword, a base confidence of 2 is awarded.

3. The score is adjusted depending on how much of the line the keyword occupies,

• 0 points - if the keyword is less than 25% of the line.

• +1 point - if over 50%.

• +1 more - if over 70%.
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4. If the keyword is “appendix” and followed by a single character (“Appendix A”), an

additional point is awarded.

5. Lines with apparent section numbers (“3.2 Recommendations”) get +1.

6. Lines with multiple keyword matches or illegal characters are disqualified (confidence set

to 0).

7. Lines surrounded by empty lines (above or below) receive a contextual bonus of +1 for

each side.

For example,

currentLineArray = regexp(lower(lineArray(i)),'[a-zA-Z0-9-,.]+','match');

currentLine = strjoin(currentLineArray);

if contains(currentLine , targetWords(1,j))

targetWordsConfidence = targetWordsConfidence + 2;

...

if targetWordLength / currentLineLength > 0.5

targetWordsConfidence = targetWordsConfidence + 1;

end

A similar but less strict scoring scheme is used for the lesser target words.

A.1.2.3 Selecting Best Section Start and End

From all candidates, the function selects the most confident starting lines using,

startRows = getMaxRows(startLineNumsAndConfidence , 2);

It then searches for a matching end line that follows each start line. If no strong end is found

(confidence is less than 4), it defaults to the end of the document.

if isempty(endsForCurrentStart)

startRows(i,4) = size(lineArray ,2);

else
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startRows(i,4) = endsForCurrentStart(1,1) - 1;

end

Each candidate start-end pair is scored by the total number of characters in the range. This

helps prefer longer, richer sections.

A.1.2.4 Excluding Table of Contents Matches

To avoid selecting headings from a Table of Contents a check is implemented within the function.

If a start line is within 20 lines of a Table of Contents heading, it is discarded.

[tableOfContentsNumsAndConfidence] = searchForLineNumsAndConfidence

(lineArray , ["table of content"], ["content"]);

...

if likelyToC(j,1) < startRows(i,1) && likelyToC(j,1) + 20 > startRows(i,1)

startRowsToRemove = [startRowsToRemove i];

end

A.1.2.5 Important Section Output

Among the valid candidates, the section with the most characters is selected as the final output,

longestPossibleSectionsInfo = getMaxRows(startRows , 5);

outputSection = lineArray(finalStartLineNum:finalEndLineNum);

This enables reliable extraction of meaningful sections from diverse document formats using a

combination of lexical cues, structural patterns, and scoring heuristics.
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A.1.3 Text Preprocessing

This script prepares raw report text for vectorization. It performs the following steps,

1. Punctuation Removal, using erasePunctuation()

2. Tokenization, using tokenizedDocument() to structure the text.

3. Stop Word Removal, common non-informative words are discarded.

4. Word Length Filtering, extremely short or long tokens are removed.

5. Word Normalization, stemming/lemmatization to reduce inflected forms.

Using the built-in functions from the Text Analytics Toolbox,

output = erasePunctuation(input);

output = lower(output);

output = tokenizedDocument(output);

output = removeWords(output, stopWords);

output = removeShortWords(output, 2);

output = removeLongWords(output, 15);

output = normalizeWords(output);

This standardization is critical to ensure consistency and reduce vocabulary sparsity before

creating the BoW representation.

A.1.4 Classifier Training and Evaluation

This script drives the model training and evaluation loop. The key steps are,

1. Compile labeled data using dataCompiler.m.

2. Preprocess text and convert to BoW model.

3. Partition data into training/test sets using cvpartition.

4. Train a classifier for each CREAM label using fitcecoc.
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5. Predict on test data and calculate performance metrics.

6. Prepare new report, apply trained model and save predictions.

A.1.4.1 Preparing Data, BoW Model, Test and Training Sets

The process begins by compiling labeled text data using the function dataCompiler.m.

folderDir = pwd + "/Reports"; % Directory containing all reports

getImpSection = false; % Flag for extracting a specific section (

optional)

classTable = dataCompiler(folderDir , getImpSection);

The result, classTable, is a table where:

• Columns 1-3: Metadata (file name, source)

• Column 3: Narrative text data

• Columns 4 onward: Binary labels for CREAM factors

Next, the dataset is partitioned into training and testing subsets using cvpartition. The ex-

tracted text is then preprocessed and converted into a BoW model.

textDataTrain = [dataTrain{:,3}]';

documents = preprocess(textDataTrain); % Custom function to clean text

bag = bagOfWords(documents); % Convert to BoW

bag = removeInfrequentWords(bag, 2); % Remove rare terms

[bag, idx] = removeEmptyDocuments(bag); % Remove empty docs

XTrain = bag.Counts; % Feature matrix

The resulting BoW model is filtered to eliminate infrequent and empty documents. These steps

help reduce dimensionality and noise in the input space.

The data is then split into training and test subsets,

cvp = cvpartition(cell2mat(newClassTable(:,4,:)), 'Holdout', 0.1);
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dataTrain = newClassTable(cvp.training ,:);

dataTest = newClassTable(cvp.test,:);

YTrain = cell2mat(dataTrain(:,4:end));

YTest = cell2mat(dataTest(:,4:end));

YTrain(idx,:) = []; % Match filtered training docs

A.1.4.2 Training the Classifier

The classification model used is a linear SVM wrapped in MATLAB’s fitcecoc function, which

supports multiclass learning via error-correcting output codes. A separate classifier is trained

for each CREAM factor.

mdlArray = {};

for i = 1:size(YTrain, 2)

mdl = fitcecoc(XTrain, YTrain(:,i), 'Learners', 'linear');

mdlArray{end+1, 1} = mdl;

YPred = predict(mdl, XTest);

YPreds(:,i) = YPred;

end

Each column in YTrain corresponds to a binary label for a CREAM category. The loop trains one

classifier per label and stores the models in mdlArray. Predictions for the test set are collected

in YPreds.

A.1.4.3 Testing and Performance Metrics

After training, predictions are compared with the ground truth using a custom function accmetrics.m.

function [Accuracy ,Precision ,Recall,F1Score] = accmetrics(x,y)

TrueP=0; TrueN=0; FalseP=0; FalseN=0;
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for i = 1:size(x,1)

for j= 1:size(x,2)

if x(i,j)==1

if y(i,j)==1

TrueP=TrueP+1;

else

FalseP=FalseP+1;

end

elseif x(i,j)==0

if y(i,j)==0

TrueN=TrueN+1;

else

FalseN=FalseN+1;

end end end end

Accuracy = (TrueP+TrueN)/(TrueP+TrueN+FalseP+FalseN);

Precision =TrueP/(TrueP+FalseP);

Recall= TrueP/(TrueP+FalseN);

F1Score=2*(Precision*Recall)/(Precision+Recall);

end

This returns the standard classification performance metrics.

A.1.4.4 Application to a New Report

The trained classifiers are then applied to a new, unseen incident report. The user uploads a PDF

file, which is read, preprocessed, and encoded using the previously generated BoW vocabulary.

parentdir = pwd + "/Uploads";

uploads = dir(fullfile(parentdir , "*.pdf"));

filepath = parentdir + "/" + uploads.name;

temp = strsplit(extractFileText(filepath), "\n"); % Extract raw text

str = strjoin(temp);

documentsNew = preprocess(str); % Clean text

XNew = encode(bags{1,1}, documentsNew); % Convert to BoW
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The vectorized document is passed to each trained model for prediction,

for j = 1:size(mdlArray ,1)

labelsNew = predict(mdlArray{j}, XNew);

result1(j,:) = labelsNew;

end

The predicted labels are converted into readable strings and saved to a text file,

[Out, ~] = print_string(result1);

OutString = strrep(string(Out(2:end,1)), '_', ' ');

fid = fopen([savepath + "/Results/" + 'factors.txt'], 'wt');

fprintf(fid, '%s\n', OutString);

fclose(fid);

This concludes the complete workflow of the first-generation Virtual HF classifier. The complete

code is available at https://github.com/VirtualRaphael/Human-Factors-Classifier-1.0.

A.2 Virtual Human Factors Classifier (Second Gen-

eration)

The second-generation, HF Classifier 2.0 leverages transformer-based models to automate the

identification of PSFs from accident reports, presented in Chapter 4, Section 4.2. Each PSF is

treated as an independent binary classification task. Unlike the first-generation BoW and SVM

model approach, this version incorporates semantic understanding via BERT and addresses

common NLP challenges such as sequence length truncation and model scalability.

The process is composed of two primary components,

https://github.com/VirtualRaphael/Human-Factors-Classifier-1.0
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• A modular training pipeline (HF_Classifier_2.0_Training.py)

• A robust inference system for new reports (HF_Classifier_2.0_NewReport.py)

A.2.1 Model Training Pipeline

This section will detail the model training pipeline of the HF Classifier 2.0, detailing the con-

figuration, text chunking, data manipulation, logit aggregation, training loop and model saving.

Similar to the first-generation classifier target sections within the reports are extracted using a

keyword matching system, and are paired with the corresponding entries in the MATA-D.

A.2.1.1 Text Chunking

To accommodate BERT’s input length limit of 512 tokens, the extracted accident descriptions are

split into token chunks. The following function splits each accident description into overlapping

chunks.

def chunk_text(tokenizer , text, max_len):

# Tokenize the input text

tokens = tokenizer.tokenize(text)

# Initialize a list to hold the resulting text chunks

chunks = []

# Loop over the token list in steps of `max_len`

for i in range(0, len(tokens), max_len):

# Extracttokens with length up to `max_len`

chunk = tokens[i:i + max_len]

# Convert token chunk back to a text string

chunk = tokenizer.convert_tokens_to_string(chunk)

# Append the string chunk to the list

chunks.append(chunk)

# Return the list of text chunks

return chunks
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For every chunk, token IDs, attention masks, and associated labels are generated, along with a

report identifier,

def chunk_reports(df, label_col , tokenizer , max_len):

# Initialize lists to hold the results

input_ids , attention_masks , labels, report_ids = [], [], [], []

# Iterate over the rows of the DataFrame with an index

for report_id

# Extract and chunk the accident description

chunks = chunk_text(tokenizer , getattr(row, "Accident Description")

, max_len - 2)

# Tokenize the chunks together , applying truncation and padding

encoding = tokenizer(chunks, truncation=True, padding=True,

return_tensors='pt', max_length=max_len)

# Append token IDs and attention masks

input_ids.append(encoding['input_ids']) # Shape: (

num_chunks , max_len)

attention_masks.append(encoding['attention_mask']) # Shape: (

num_chunks , max_len)

labels.extend([getattr(row, label_col)] * len(chunks))

# Extend report ID list, same report ID for all its chunks

report_ids.extend([report_id] * len(chunks))

# Concatenate all batches of input tensors into single tensors

return (

torch.cat(input_ids),

torch.cat(attention_masks),

torch.tensor(labels),

torch.tensor(report_ids))
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A.2.1.2 Report-Level Logit Aggregation

Each chunk is passed through the BERT model independently to generate chunk-level logits.

These logits are then grouped by their original report and averaged to compute a single logit

vector per report. This aggregated logit is compared against the report-level ground truth using

a cross-entropy loss. This allows the model to be trained with long documents, despite BERT’s

input size limitations, by enabling report-level supervision from chunk-level processing.

# Pass input chunks through the BERT model

outputs = model(input_ids , attention_mask=attention_mask)

# Extract logits from the model

logits = outputs.logits

report_logits = defaultdict(list) # Stores list of logits per report

report_targets = {} # Stores the ground truth label per report

# Group chunk-level logits and labels by their corresponding report ID

for i, rid in enumerate(report_ids):

report_logits[rid.item()].append(logits[i])

report_targets[rid.item()] = labels[i]

# Compute loss per report by aggregating its chunk logits

report_losses = []

for rid, logit_list in report_logits.items():

avg_logit = torch.stack(logit_list).mean(dim=0, keepdim=True)

label = report_targets[rid].unsqueeze(0) # Shape: (1,)

# Compute cross-entropy loss between averaged logits and true label

loss = F.cross_entropy(avg_logit , label)

report_losses.append(loss)

# Average all report-level losses to get a final scalar loss

loss = torch.stack(report_losses).mean()
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A.2.1.3 Mixed Precision Training and Optimization

To reduce memory usage and increase speed, the training process leverages PyTorch’s automatic

mixed precision,

# Initialize the gradient scaler for AMP

scaler = torch.cuda.amp.GradScaler()

# Enable autocasting for mixed precision

with torch.cuda.amp.autocast():

# Forward pass through the model

outputs = model(input_ids , attention_mask=attention_mask)

# Get logits

logits = outputs.logits

... # (chunk-level to report-level aggregation and loss computation)

loss = F.cross_entropy(avg_logit , label)

# Scale the loss to prevent underflow and perform backward pass

scaler.scale(loss).backward()

# Perform optimizer step only at specific intervals to accumulate gradients

if (step + 1) % GRADIENT_ACCUM_STEPS == 0:

scaler.step(optimizer)

scaler.update()

scheduler.step()

A.2.1.4 Looping Over Labels

Each contributing factor is modeled independently using a one-vs-rest binary classification ap-

proach. The script loops over a predefined list of contributing factor labels, training a separate

BERT model for each one,

LABEL_COLUMNS = [

"Wrong Object", "Memory failure", "Fear", ...]

for label_col in LABEL_COLUMNS:

print(f"\nTraining model for: {label_col}")
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train_df, val_df = train_test_split(df[[TEXT_COLUMN , label_col]],

test_size=0.1)

train_inputs , train_masks , train_labels , train_rids = chunk_reports(

train_df, label_col , tokenizer , MAX_LEN)

val_inputs , val_masks , val_labels , val_rids = chunk_reports(val_df,

label_col , tokenizer , MAX_LEN)

train_dataset = ChunkedReportDataset(train_inputs , train_masks ,

train_labels , train_rids)

train_loader = DataLoader(train_dataset , batch_size=BATCH_SIZE , shuffle

=True)

model = BertForSequenceClassification.from_pretrained('bert-base-

uncased', num_labels=2).to(device)

...

# Training loop for this label

for epoch in range(EPOCHS):

model.train()

...

This structure enables the system to,

• Train a separate binary classifier for each contributing factor.

• Use the same data pipeline and model architecture for all labels.

• Produce a dedicated model that can be evaluated and deployed independently.

Each trained model is saved under a unique folder name corresponding to the label,

save_path = f"Models/BERT_{label_col.replace(' ', '')}"

model.save_pretrained(save_path)

tokenizer.save_pretrained(save_path)
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A.2.2 Inference Pipeline

The inference pipeline is responsible for analyzing new accident reports and predicting the

presence of each PSF using the models trained in the previous stage. Each label is processed

independently using a one-vs-rest approach.

A.2.2.1 Preprocessing and Tokenization

The input report text is chunked in the same way as during training, ensuring that the input

format remains consistent,

def chunk_text(tokenizer , text, max_len):

# Tokenize the input text into subword tokens

tokens = tokenizer.tokenize(text)

chunks = []

# Loop through the token list in steps of `max_len`

for i in range(0, len(tokens), max_len):

chunk = tokens[i:i + max_len]

chunk = tokenizer.convert_tokens_to_string(chunk)

chunks.append(chunk)

# Return the list of text chunks

return chunks

# Split the long input text into chunks of up to 510 tokens

chunks = chunk_text(tokenizer , report_text , max_len=510)

# Tokenize the chunks as a batch, add padding and truncation

encoding = tokenizer(

chunks,

truncation=True,

padding=True,

return_tensors='pt',

max_length=512)

input_ids = encoding['input_ids'].to(device)
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attention_mask = encoding['attention_mask'].to(device)

A.2.2.2 Prediction and Aggregation

Each model is stored under a folder named after the factor it was trained to detect. These are

loaded dynamically before inference.

from transformers import BertForSequenceClassification , BertTokenizer

# Construct the model directory path

model_path = f"Models/BERT_{label_name.replace(' ', '')}"

# Load trained BERT model

# and move it to the appropriate device (e.g., GPU or CPU)

model = BertForSequenceClassification.from_pretrained(model_path).to(device

)

# Load the tokenizer

tokenizer = BertTokenizer.from_pretrained(model_path)

# Set the model to evaluation mode

model.eval()

Each chunk is passed through the model. The logits from all chunks are averaged to produce a

single prediction at the report level,

# Disable gradient computation for inference to save memory

with torch.no_grad():

# Forward pass through the model using the input IDs and attention mask

outputs = model(input_ids , attention_mask=attention_mask)

# Extract logits from the model output

logits = outputs.logits

# Average logits across all chunks to obtain a single prediction vector

for the full report

avg_logits = logits.mean(dim=0)

# Convert averaged logits to probabilities using the softmax function

probabilities = torch.softmax(avg_logits , dim=-1)

# Convert to binary classification
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predicted_class = int(probabilities[1] > 0.5)

This averaging step mirrors the report-level logit aggregation used during training, maintaining

consistency in how predictions are interpreted.

A.2.2.3 Iterating Over All Labels

The script loops through all factor models, applying the corresponding model to the same input

text. The predictions are stored in a structured dictionary or output file.

predictions = {}

for label_name in LABEL_COLUMNS:

model, tokenizer = load_model_and_tokenizer(label_name)

chunks = chunk_text(tokenizer , report_text , max_len=510)

...

predicted_class = run_model_on_chunks(model, tokenizer , chunks)

predictions[label_name] = predicted_class

The final predictions are returned as a mapping of labels to binary outcomes.

This architecture enables reliable and interpretable predictions on real-world safety data, sup-

porting automated data collection with potential to support analysis and decision-making in op-

erational environments. The full code is avaialable at https://github.com/VirtualRaphael/

Human-Factors-Classifier-2.0.

https://github.com/VirtualRaphael/Human-Factors-Classifier-2.0
https://github.com/VirtualRaphael/Human-Factors-Classifier-2.0
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A.3 Human-Centric Summarizer

This section details the Human-Centric Summarizer, a hybrid extractive-abstractive pipeline

for generating summaries of accident reports, discussed in Chapter 4, Section 4.3. The system

is specifically engineered to elevate human roles and contextual narratives typically embedded

in lengthy documents.

A.3.1 File Validation and Text Extraction

The summarizer only accepts PDF files, once this is validated the document is read page by

page using PyPDF2.

if not file_path.endswith('.pdf'):

return 'Please convert file to PDF.'

with open(file_path , 'rb') as file:

reader = PyPDF2.PdfReader(file)

extracted_text = [page.extract_text() for page in reader.pages]

A.3.2 Semantic Filtering - Section Targeting

This first pass extracts key sections (“recommendation”, “lessons learned”, etc.) by locating

them using start and end phrases.

# Define phrases that indicate the start of the section

start_phrases = ["recommendation", "lessons learned", "advice to planning

authorities"]

# Define phrases that indicate the end of the section

end_phrases = ["reference", "appendix", "annex", "list of", "conclusion",

...] # Replace `...` with actual phrases

# Initialize a list to hold the extracted lines
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extracted_part = []

# Flag to indicate whether the start of the target section has been found

found_start = False

# Iterate over each line in the extracted document text

for line in extracted_text:

# If any start phrase is found in the current line mark the start

if any(phrase in line.lower() for phrase in start_phrases):

found_start = True

# If the target section has started, keep appending lines

if found_start:

extracted_part.append(line)

# If any end phrase is found in the current line, stop extraction

if any(phrase in line.lower() for phrase in end_phrases):

break

A.3.3 Semantic Filtering - Human-Focused Sentence Mining

In parallel, the system searches for individual sentences that include human roles and pronouns,

which often encode decision-making and accountability.

# Define keywords

keywords = ["he", "she", "they", "I", "user", "operator", "manager", ...]

# Initialize a list to store sentences

extracted_sentences = []

# Iterate over each line in the extracted document text

for line in extracted_text:

sentences = re.split(

r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s',

line)

# Check each sentence for presence of any defined keyword

for sentence in sentences:

if any(keyword in sentence.lower() for keyword in keywords):

# If a keyword is found, add the sentence to list
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extracted_sentences.append(sentence)

A.3.4 Preprocessing, Chunking and Tokenization

The extracted sections and sentences are concatenated and cleaned for uniformity.

combined_text = ' '.join(extracted_part + extracted_sentences)

Then, as BART has a max input length (1024 tokens), text is tokenized and split into manageable

chunks with an overlap (stride) between each chunk.

# Tokenize the combined input text and get the token IDs

tokens = tokenizer(combined_text , return_tensors='pt')['input_ids'][0]

# Define the maximum size of each chunk

chunk_size = 1000

# Define overlap between chunks

stride = 50

# Create overlapping chunks

chunks = [

tokens[i:i + chunk_size]

for i in range(0, len(tokens), chunk_size - stride)]

A.3.5 Iterative Summarization Using BART

Each chunk is summarized independently. These summaries are then recursively re-summarized

until a compressed final summary is under the token limit.

def summarize_text(text, max_length=200):

inputs = tokenizer.encode(

"summarize: " + text,

return_tensors='pt',



A.3. Human-Centric Summarizer xliii

max_length=1024,

truncation=True)

# Generate summary token IDs using beam search

summary_ids = model.generate(

inputs,

max_length=max_length , # Maximum length of the summary

min_length=40, # Minimum length of the summary

length_penalty=2.0, # Penalty to discourage long outputs

num_beams=4,

early_stopping=True)

# Decode the summary token IDs into text

return tokenizer.decode(summary_ids[0], skip_special_tokens=True)

# Generate the summary

summaries = [

summarize_text(tokenizer.decode(chunk, skip_special_tokens=True))

for chunk in chunks]

A.3.6 Final Output

Once the summary is within length constraints, the system returns it as final output.

return combined_summary

The Human-Centric Summarizer uses a multi-phase architecture that integrates,

• Top-down extractive heuristics,

• Fine-grained sentence mining for human narratives,

• BART-powered iterative abstraction and compression.
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This layered approach ensures that the resulting summaries capture events, and the human role

within them. The complete code for the Human-Centric Summarizer is available at https:

//github.com/VirtualRaphael/Human-Centric-Summarizer

A.4 Ambiguity Identifier

Here the implementation of the Ambiguity Identifier is broken down by each specific ambiguity

type, with code extracts to illustrate key logic in each detection pipeline. The tool’s developemnt

and application is presented in Chapter 5, Section 5.2.

A.4.1 Undefined Abbreviations and Acronyms

This module identifies abbreviations/acronyms that appear without definition. It uses regular

expressions to extract capitalized terms and compares them against long-form definitions.

A.4.1.1 Pattern Definitions

First, the abbreviation/acronym and definition formats are defined:

abbreviation_pattern = re.compile(r'\b[A-Z]{2,5}\b')

definition_patterns = [

re.compile(r'\b([A-Z]{2,5})\s*\(([^)]+)\)'),

re.compile(r'\b([^)]+)\s*\(([A-Z]{2,5})\)'),

re.compile(r'\b([A-Z]{2,5})\s*-\s*([^.\n]+)'),

re.compile(r'\b([^.\n]+)\s*-\s*([A-Z]{2,5})')

]

https://github.com/VirtualRaphael/Human-Centric-Summarizer
https://github.com/VirtualRaphael/Human-Centric-Summarizer
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These patterns cover both forward and reverse definitions, including definitions linked with

dashes.

A.4.1.2 Extracting Text and Tables

The PDF is processed to extract all content. Regular body text is extracted using “PyPDF2”,

and any structured table content is extracted using “Camelot”. Table content is converted into

plain text so that the same acronym detection logic can be applied consistently.

def extract_text_from_pdf(pdf_path):

# Initialize an empty string to hold the full extracted text

text = ""

# Open the PDF file

with open(pdf_path , 'rb') as file:

# Create a PDF reader object

reader = PyPDF2.PdfFileReader(file)

# Iterate over all pages in the PDF

for page_num in range(reader.numPages):

# Get the page object

page = reader.getPage(page_num)

# Extract text from the page and append to the overall text

text += page.extractText()

# Return the concatenated text from all pages

return text

def extract_tables_from_pdf(pdf_path):

# Use Camelot to read tables from all pages of the PDF

tables = camelot.read_pdf(pdf_path , pages='all')

# Initialize a list to store the text representation of each table

table_texts = []

# Loop through the extracted tables

for table in tables:

df = table.df # Get the table as a pandas DataFrame

# Convert the DataFrame to plain text

table_text = df.to_string(header=False, index=False)

# Append the plain text version of the table to the list
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table_texts.append(table_text)

# Return the list of all extracted table texts

return table_texts

A.4.1.3 Abbreviation and Definition Extraction

All uppercase tokens that match the abbreviation pattern are collected. Separately, any abbreviation/acronym-

definition pairs are extracted using the previously defined patterns and stored in a dictionary.

def find_abbreviations(text):

# Use a Regex pattern to find all abbreviations in the text

# Return them as a set to remove duplicates

return set(abbreviation_pattern.findall(text))

def find_defined_abbreviations(text):

# Initialize an empty dictionary to store abbreviation -definition pairs

definitions = {}

# Loop through regex patterns that match definitions

for pattern in definition_patterns:

# Find all matches of the current pattern in the text

matches = pattern.findall(text)

for match in matches:

if len(match) == 2:

key, value = match

key = key.strip()

value = value.strip()

# Check which part of the match is the abbreviation based

on the abbreviation pattern

if abbreviation_pattern.fullmatch(key):

definitions[key] = value

elif abbreviation_pattern.fullmatch(value):

definitions[value] = key

return definitions
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The dictionary stores known abbreviation/acronym–definition pairs in either direction depending

on the format found in the text.

A.4.1.4 Identifying Undefined Abbreviations

After collecting all used and defined abbreviations from both the main text and tables, undefined

abbreviations are determined by subtracting the set of defined abbreviations from the set of all

used abbreviations.

def find_undefined_abbreviations(text, table_texts):

# Combine the main text and all table texts into one large string

full_text = text + " " + " ".join(table_texts)

# Find all abbreviations mentioned anywhere in the text or tables

all_abbrs = find_abbreviations(full_text)

# Extract all abbreviations that have an explicit definition

defined_abbrs = find_defined_abbreviations(full_text)

# Identify abbreviations that are used but not defined

undefined = all_abbrs - set(defined_abbrs.keys())

# Return the set of undefined abbreviations

return undefined

A.4.2 Unit of Measurement Ambiguity

This module identifies ambiguity introduced by using multiple unit systems (e.g., metric and

imperial) for the same measurement type (e.g., length, weight) in a single SOP. Such inconsist-

encies can cause confusion, especially in regulated or international contexts.
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A.4.2.1 Defining Unit Categories and Systems

A dictionary is constructed to define valid units for different types of physical measurements.

Each category (e.g., length, weight) contains units grouped into metric, imperial, etc. systems.

units = {

"length": {

"metric": ["nm", "µm", "mm", "cm", "m", "km"],

"imperial": ["inch", "inches", "ft", "feet", "yard", "yards", "mile

", "miles"]

},

"weight": {

"metric": ["ng", "µg", "mg", "g", "kg", "tonne"],

"imperial": ["oz", "lb", "stone", "ton"]

},

"volume": {

"metric": ["ml", "l", "m3"],

"imperial": ["fl oz", "cup", "pint", "quart", "gallon"]

},

...

}

A.4.2.2 Unit Detection and Tokenization

The input text is tokenized using the “spaCy” NLP library. Each token is compared against all

known units. The system records which units from which system are used under each measure-

ment type.

def detect_units_inconsistency(doc):

# Initialize a nested dictionary to track which units are used for each

type

# and which measurement system they belong to

used_units = {

measure: {system: set() for system in measure_data}
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for measure, measure_data in units.items()

}

# Iterate over each token in the document

for token in doc:

token_text = token.text.lower()

# Check if the token matches any defined units

for measure, systems in units.items():

for system, unit_list in systems.items():

if token_text in unit_list:

# Record the unit under its respective measure and

system

used_units[measure][system].add(token_text)

A.4.2.3 Inconsistency Detection

After scanning all tokens, the system flags any measurement type where for example, metric

and imperial units are used. These cases are considered ambiguous.

# Initialize a list to collect inconsistencies

inconsistencies = []

# Iterate over each type of measurement and its associated systems

for measure, systems in used_units.items():

# Check which unit systems have at least one unit used

non_empty_systems = [s for s, vals in systems.items() if vals]

# If more than one system is used for the same measure, it's an

inconsistency

if len(non_empty_systems) > 1:

# Record the inconsistent measure and the systems involved

inconsistencies.append((measure, systems))

# Return the list of all detected inconsistencies

return inconsistencies

The result is a list of ambiguous measurement types and the units used from each system.
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A.4.3 Temporal Ambiguity

The temporal ambiguity module targets both vague temporal expressions and syntactic con-

structions involving temporal conjunctions that may result in unclear sequencing or timing of

events.

A.4.3.1 Temporal Lexicon Definition

Two curated lists are used to detect potentially ambiguous time references:

• Vague temporal words, words that indicate imprecise frequency or duration.

• Temporal conjunctions, words that connect clauses in time but can introduce ambiguity

if sentence structure is complex.vague_temporal_words = [

"frequently", "periodically", "every so often", "sometimes", "

occasionally",

"often", "regularly", "from time to time", "at times", "once in a while

",

"rarely", "seldom", "usually", "generally", "normally", "typically", "

extended time"]

temporal_conjunctions = [

"before", "after", "during", "simultaneously", "while", "when", "until"

,

"once", "since", "as soon as", "whenever"]

A.4.3.2 Detection of Vague Temporal Words

The first detection function flags sentences that contain any of the vague terms above.

def detect_vague_temporal_words(doc):
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# Iterate over each token

for token in doc:

# Check if any tokens are in predefined list

if token.text.lower() in vague_temporal_words:

# If a vague temporal word is found

return True

# else

return False

This method ensures that any sentence using imprecise frequency terms (for example “occasion-

ally monitor the pressure”) is flagged as temporally ambiguous.

A.4.3.3 Detection of Conjunction Based Ambiguity

Temporal conjunctions can introduce ambiguity, especially in complex sentences. This func-

tion uses syntactic parsing (via “spaCy”) to check for dependency structures that may indicate

unclear temporal relationships.

def detect_temporal_conjunction_ambiguities(doc):

# Iterate over each token in the document

for token in doc:

# Check if the token is a temporal conjunction

if token.text.lower() in temporal_conjunctions:

# Get the syntactic head of the conjunction

head = token.head

# Ensure the head is a verb or auxiliary verb

if head and head.pos_ in ["VERB", "AUX"]:

# Inspect the dependents of the head verb

for child in head.children:

# Look for markers of subordinate or prepositional

if child.dep_ in ["advcl", "prep", "mark"] and child !=

token:

# If such a structure is found,
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return True

# If not

return False

This first checks if a temporal conjunction effects a verb, and then looks for other dependent

phrases that could compete in scope. If multiple adverbial or clause-like elements exist, the

temporal relation may be unclear.

A.4.3.4 Combined Ambiguity Check

The full check processes the input text using “spaCy”, and applies both checks to each sentence.

Any sentence that triggers one or both heuristics is marked as ambiguous.

def check_temporal_ambiguity(text):

# Load the SpaCy English language model

nlp = spacy.load("en_core_web_sm")

doc = nlp(text)

# Initialize ambiguous list

ambiguous_sentences = []

# Iterate over each sentence in the document

for sent in doc.sents:

# Check for defined terms

has_vague_temporal_word = detect_vague_temporal_words(sent)

# Check for use of temporal conjunctions

has_temporal_conjunction_ambiguity =

detect_temporal_conjunction_ambiguities(sent)

if has_vague_temporal_word or has_temporal_conjunction_ambiguity:

ambiguous_sentences.append(sent.text)

# Return all ambiguous sentences
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return "\n".join(ambiguous_sentences)

A.4.4 Syntactic Ambiguity

The syntactic ambiguity module focuses on two common sources, complex subordinate clause

nesting and unclear prepositional phrase attachment.

A.4.4.1 Detection of Subordinate Clauses

The first function scans for the presence of multiple subordinate constructions in a sentence.

While one or two are typically manageable, three or more can lead to significant ambiguity.

def detect_subordinate_clauses(doc):

# Initialize a counter for subordinate clauses

subordinate_clauses = 0

# Iterate over each token in the parsed document

for token in doc:

# Check if the token is part of a subordinate clause based on its

dependency label

if token.dep_ in ["mark", "advcl", "acl"]:

# Increment the counter

subordinate_clauses += 1

return subordinate_clauses
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The function identifies subordinate clauses based on three specific dependency labels, mark,

advcl, and acl. The label mark corresponds to markers that introduce subordinate clauses, such

as “although” or “because”. The advcl label denotes adverbial clause modifiers that typically

provide context like time, reason, or condition. The acl label refers to clausal modifiers of nouns.

If more than two of these structures are found in a single sentence, the sentence is flagged as

potentially syntactically ambiguous.

A.4.4.2 Detection of Prepositional Phrase Attachment Ambigu-

ity

This check looks for possible ambiguity in the attachment of prepositional phrases, where it may

be unclear what the phrase modifies.

def detect_prepositional_phrase_attachment_ambiguities(doc):

# Initialize a list for storage

potential_ambiguities = []

# Iterate over each token in the parsed document

for token in doc:

# Check if the token is a preposition (ADP = Adposition)

if token.pos_ == "ADP":

# Get the head of the preposition

prev_token_1 = token.head

# Get the head of the head

prev_token_2 = prev_token_1.head if prev_token_1.dep_ != "ROOT"

else None

# If the preposition is not directly attached to the root and

there's a higher-level head, it may be ambiguously attached

if prev_token_2 and prev_token_1.dep_ != "ROOT":

# Add this preposition to the list of potential ambiguities

potential_ambiguities.append(token)

return potential_ambiguities
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This function analyzes each token in the parsed document and checks whether its part-of-speech

tag is ADP, which corresponds to adpositions, typically prepositions. For each such token, it re-

trieves its syntactic head using token.head, referred to as prev_token_1. It then attempts to

retrieve the head of that head, stored in prev_token_2, provided that prev_token_1 is not the

root of the sentence. The conditional check ensures that only nested dependency structures are

considered. If both prev_token_1 and prev_token_2 exist and the preposition is not directly

attached to the root, the function assumes a potentially ambiguous attachment and adds the

preposition token to the potential_ambiguities list. This logic is designed to capture situ-

ations where a prepositional phrase is embedded within a deeper dependency structure, which

can obscure the intended referent of the phrase.

A.4.4.3 Combined Ambiguity Detection

The main function applies both checks and flags any sentence meeting either criterion.

def check_syntactic_ambiguity(text):

# Load the English SpaCy model

nlp = spacy.load("en_core_web_sm")

# Process the input text

doc = nlp(text)

# Initialize a list to collect sentences

ambiguous_sentences = []

# Iterate over each sentence in the document

for sent in doc.sents:

# Count the number of subordinate clauses in the sentence

subordinate_clauses = detect_subordinate_clauses(sent)

# Detect possible prepositional phrase attachment ambiguities

prepositional_phrase_ambiguities =

detect_prepositional_phrase_attachment_ambiguities(sent)

# If the sentence has more than 2 subordinate clauses

# or contains ambiguous prepositional phrase attachments

if subordinate_clauses > 2 or prepositional_phrase_ambiguities:

# Add it to the list
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ambiguous_sentences.append(sent.text)

return "\n".join(ambiguous_sentences)

The threshold of 2 subordinate clauses can be adjusted depending on SOP style.

A.4.5 Scope Ambiguity

This module identifies scope ambiguity that arises when a verb lacks a clearly defined direct ob-

ject. In SOPs, missing objects can obscure which component, action, or material the instruction

refers to, leading to misinterpretation.

A.4.5.1 Verb Object Detection

The function checks each verb in the sentence to ensure it has an explicitly linked direct object. A

verb without a dobj (direct object) dependency is considered ambiguous if used in an imperative

or instructive context.

def detect_scope_ambiguity(doc):

for token in doc:

# Check if the token is a verb

if token.pos_ == "VERB":

# Check verb's dependency tree for direct object

has_direct_object = any(child.dep_ == "dobj" for child in token.

children)

# If the verb has no direct object

if not has_direct_object:

return True

return False
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This function iterates through each token in the parsed document. If a token has PoS tag VERB,

it examines that verb’s children in the dependency tree. Using a generator expression, it checks

whether any child has the dependency label dobj, which “spaCy” assigns to direct objects. If

no such object is found for a verb, the sentence is considered potentially ambiguous and the

function returns True. Otherwise, it continues checking remaining tokens. The logic assumes

that omitting an object for an action verb may leave the scope of the instruction underspecified.

A.4.5.2 Full Sentence-Level Evaluation

The following function wraps the detector above to process an entire text. Each sentence is

checked independently, and ambiguous ones are collected.

def check_scope_ambiguity(text):

# Load SpaCy model

nlp = spacy.load("en_core_web_sm")

# Process the input text

doc = nlp(text)

# List to store sentences

ambiguous_sentences = []

# Iterate through each sentence in the document

for sent in doc.sents:

# Use detect_scope_ambiguity function

has_scope_ambiguity = detect_scope_ambiguity(sent)

# Append the sentence's text to the results

if has_scope_ambiguity:

ambiguous_sentences.append(sent.text)

return "\n".join(ambiguous_sentences)

This module is effective in identifying underspecified actions where the target of the action

is missing. While some imperative sentences may omit the object intentionally, these can be

domain-specific and could benefit from refinement.
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A.4.6 Quantity Ambiguity

This module detects quantity related ambiguity caused simply by vague or imprecise quantifiers.

A.4.6.1 Ambiguous Quantity Lexicon

A predefined list of ambiguous quantity terms is used to identify potentially problematic expres-

sions. These include both modifiers (“a little”, “a lot”) and approximators (“approximately”,

“more or less”).

ambiguous_quantity_words = [

"some", "many", "enough", "several", "few",...]

A.4.6.2 Token-Based Detection of Quantity Terms

The detection function scans each token in a sentence and returns True if any token matches an

entry in the list above.

def detect_ambiguous_quantity_words(doc):

# Iterate over each token

for token in doc:

# Check if token in predefined list

if token.text.lower() in ambiguous_quantity_words:

# If a match is found

return True

return False
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This function iterates through the “spaCy”-parsed doc and checks each token. If the token

exactly matches any item in the ambiguous_quantity_words list, the function concludes that

the sentence contains a vague quantity and returns True. Otherwise, it proceeds through all

tokens without raising a flag.

The main function processes the input text by sentence and applies the detection logic to each.

Sentences that contain ambiguous quantity expressions are collected and returned.

def check_quantity_ambiguity(text):

# Load the SpaCy model

nlp = spacy.load("en_core_web_sm")

# Process the input text

doc = nlp(text)

# Initialize a list

ambiguous_sentences = []

# Iterate through each sentence in the document

for sent in doc.sents:

# Check sentence for defined list

has_ambiguous_quantity_word = detect_ambiguous_quantity_words(sent)

# Add to list

if has_ambiguous_quantity_word:

ambiguous_sentences.append(sent.text)

# Join all sentences to one list

return "\n".join(ambiguous_sentences)

This module uses lexical matching, which is fast and effective for known vague expressions.

A.4.7 Lexical Ambiguity

This module detects lexical ambiguity, which occurs when a word has multiple possible meanings

and the context does not clearly indicate which sense is intended. This is particularly important

in SOPs, where domain-specific terminology may overlap with general vocabulary.



A.4. Ambiguity Identifier lx

A.4.7.1 POS Tagging and Synset Retrieval

The input text is first processed using “spaCy” to assign POS tags. These tags are mapped to

WordNet compatible formats to retrieve sense definitions (synsets) for each word.

def get_pos_tags(text):

# Process the input text using SpaCy

doc = nlp(text)

# Return a list of tuples

return [(token.text, token.tag_) for token in doc]

def get_wordnet_pos(spacy_tag):

# Map the SpaCy POS tag to WordNet's categories

if spacy_tag.startswith('J'):

return wn.ADJ # Adjective

elif spacy_tag.startswith('V'):

return wn.VERB # Verb

elif spacy_tag.startswith('N'):

return wn.NOUN # Noun

elif spacy_tag.startswith('R'):

return wn.ADV # Adverb

else:

return None # Not supported by WordNet

def extract_top_synsets(word, pos_tag, top_n=3):

# Convert the SpaCy POS tag to a WordNet POS

wn_pos = get_wordnet_pos(pos_tag)

# Lookup synsets for the word with the specific POS

if wn_pos:

synsets = wn.synsets(word, pos=wn_pos)

else:

synsets = wn.synsets(word) # Fall back to all POS if mapping is

unavailable

# Return the top synsets

return synsets[:top_n]
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This step ensures that only relevant synsets are considered by aligning the “spaCy” PoS tag

with WordNet’s expected POS categories. For example, the word “monitor” can serve as both a

noun (“a computer screen” or “a person who observes”) and a verb (“to observe or track”). By

first identifying the word’s POS tag using “spaCy”, and then mapping it to the corresponding

WordNet tag, the module filters the synsets so that only definitions appropriate to that gram-

matical role are retrieved. If “monitor” is tagged as a noun, verb-based meanings are excluded,

reducing noise in later similarity comparisons.

A.4.7.2 Sentence and Definition Embedding

Each target word and each of its corresponding WordNet definition texts are embedded using a

BERT model. The BERT model produces high-dimensional vector representations that capture

semantic context. For the word in question, its contextual embedding is extracted from the full

sentence using token-level representations. Separately, each definition from WordNet is encoded

as an independent sentence and averaged across tokens to produce a single embedding. Cosine

similarity is then computed between the word’s in context embedding and each definition em-

bedding. The highest similarity score is interpreted as the best contextual fit. If the highest

similarity is still below a defined threshold, the word is considered lexically ambiguous.

def encode_sentence(sentence):

# Tokenize the input sentence and return PyTorch tensors

inputs = tokenizer(sentence , return_tensors='pt')

# Pass the inputs through the model

outputs = model(**inputs)

# Return the token embeddings for each word

return outputs.last_hidden_state

def get_sentence_embedding(sentence):

# Get token embeddings for the sentence

embeddings = encode_sentence(sentence)

# Average the embeddings across all tokens to get a single vector

return embeddings.mean(dim=1).squeeze().detach().numpy()
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def get_definition_embedding(definition):

# Reuse sentence embedding function for definition string

return get_sentence_embedding(definition)

def calculate_similarity(embedding1 , embedding2):

# Use cosine similarity to measure how close two sentence vectors are

return cosine_similarity([embedding1], [embedding2])[0][0]

A.4.7.3 Lexical Ambiguity Detection

A sentence is considered lexically ambiguous if a polysemous word appears in it and none of its

top senses closely match the usage context.

def check_lexical_ambiguity(text, threshold=0.5):

# Get PoS tags for all words in the input text

pos_tags = get_pos_tags(text)

# Initialize a list

ambiguous_sentences = []

# Iterate over each word and its POS tag in the sentence

for i, (word, pos_tag) in enumerate(pos_tags):

# Retrieve the top synsets from WordNet

synsets = extract_top_synsets(word, pos_tag)

# If the word has more than one possible sense, continue

if len(synsets) > 1:

sentence = ' '.join([w for w, _ in pos_tags])

# Get the embedding for the word in its sentence context

word_embedding = encode_sentence(sentence)[0][i].detach().numpy

()

# Initialize maximum similarity score

max_similarity = 0

# Compare the word's context embedding to each synset

definition

for synset in synsets:

# Get the definition text of the synset
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definition = synset.definition()

# Encode the definition into an embedding

definition_embedding = get_definition_embedding(definition)

# Compute cosine similarity between word and definition

similarity = calculate_similarity(word_embedding ,

definition_embedding)

# Keep the highest similarity found

if similarity > max_similarity:

max_similarity = similarity

# If none of the meanings match the word's usage closely, store

if max_similarity < threshold:

ambiguous_sentences.append(sentence)

# Return all flagged sentences

return "\n".join(ambiguous_sentences)

This method combines symbolic (WordNet) and distributional (BERT) semantics to detect

ambiguity. The threshold (0.5) can be tuned to balance sensitivity and specificity.

A.4.8 Conditional Ambiguity

This module detects conditional ambiguity in sentences where multiple conditions or disjunct-

ive conjunctions (“or”, “either”) may obscure the logic or intended outcome of a procedural

instruction.

A.4.8.1 Definition of Conjunction Lists

Two sets of conjunctions are used to identify conditional and disjunctive logic structures,

conditional_conjunctions = ["if", "when", "unless",...]

disjunctive_conjunctions = ["or", "either",...]
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A.4.8.2 Detection of Conditional and Disjunctive Elements

The module includes separate functions for detecting conditionals and disjunctions in a sentence,

def detect_conditional_conjunctions(doc):

# Iterate over each token

for token in doc:

# Check if the token in list

if token.text.lower() in conditional_conjunctions:

# If found

return True

# Else

return False

def detect_disjunctive_conjunctions(doc):

# Iterate over each token

for token in doc:

# Check if the token is in list

if token.text.lower() in disjunctive_conjunctions:

# If found

return True

# Else

return False

Each function iterates through the tokens in a sentence and checks whether the lowercase form

of any token appears in the corresponding conjunction list. If a match is found, the function

returns True, indicating that the sentence includes a conditional or disjunctive structure.
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A.4.8.3 Detection of Nested Conditions

Nested or repeated conditions can cause ambiguity when the logical relationship between them

is not clear. The function below counts the number of conditionals in a sentence and flags it if

more than one is present.

def detect_nested_conditions(doc):

# Initialize a counter

condition_count = 0

# Iterate over each token

for token in doc:

# Check if the token is a conditional conjunction

if token.text.lower() in conditional_conjunctions:

# Increment the counter if a condition is found

condition_count += 1

# If more than one condition is detected , flag

if condition_count > 1:

return True

# Else

return False

The function maintains a counter for conditional tokens. If more than one such token is found,

the sentence is flagged as potentially ambiguous due to multiple overlapping conditions.

A.4.8.4 Overall Conditional Ambiguity Check

This wrapper function combines all three detection routines. A sentence is flagged if it contains

a conditional and either a disjunction or a nested conditional structure.

def check_conditional_ambiguity(text):

# Load SpaCy model

nlp = spacy.load("en_core_web_sm")

# Process the input text
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doc = nlp(text)

# Initialize a list

ambiguous_sentences = []

# Iterate over each sentence

for sent in doc.sents:

# Check if the sentence contains a conditional conjunction

has_conditional_conjunction = detect_conditional_conjunctions(sent)

# Check if the sentence contains a disjunctive conjunction

has_disjunctive_conjunction = detect_disjunctive_conjunctions(sent)

# Check if the sentence contains nested or multiple conditions

has_nested_conditions = detect_nested_conditions(sent)

# Flag the sentence as ambiguous if it contains both,

# A condition , and

# Either a disjunction or multiple nested conditions

if has_conditional_conjunction and (has_disjunctive_conjunction or

has_nested_conditions):

ambiguous_sentences.append(sent.text)

# Output

return "\n".join(ambiguous_sentences)

This module targets logical ambiguity caused by overlapping or compound conditions. It helps

identify instructions where the triggering criteria or logical pathways may be misinterpreted.

A.4.9 Combined Ambiguity Detection Pipeline

This final script integrates all individual ambiguity detection modules into a single pipeline. It

processes SOP documents in PDF format, applies the selected ambiguity checks, and writes the

results to output files for review and traceability.
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A.4.9.1 Import and Setup

All individual ambiguity checkers are imported from their respective modules. The system also

uses PyMuPDF (imported as fitz) to extract text from the PDF.

from ambiguity_conditional import check_conditional_ambiguity

from ambiguity_lexical import check_lexical_ambiguity

from ambiguity_quantity import check_quantity_ambiguity

from ambiguity_scope import check_scope_ambiguity

from ambiguity_syntactic import check_syntactic_ambiguity

from ambiguity_temporal import check_temporal_ambiguity

from ambiguity_uomeasurement import check_uomeasurement_ambiguity

from undefined_abbreviations_acronyms import

check_undefined_abbreviations_acronyms

A.4.9.2 Text Extraction from PDF

The text is extracted from all pages of the input PDF using fitz. This raw text is passed to

each ambiguity detection function.

def extract_text_from_pdf(pdf_path):

# Open the PDF document using PyMuPDF

pdf_document = fitz.open(pdf_path)

# Initialize an empty string

text = ""

# Iterate over all pages in the PDF

for page_num in range(pdf_document.page_count):

# Access the current page

page = pdf_document[page_num]

# Extract text from the current page

text += page.get_text()

# Return the full extracted text

return text
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A.4.9.3 Main Processing Logic

The main function takes in the path to a PDF, a list of ambiguity types to check, and an output

directory. It calls the relevant ambiguity detection functions conditionally, depending on the

user-specified configuration.

def main(pdf_path, output_dir , ambiguity_checks):

# Extract text from the input PDF

text = extract_text_from_pdf(pdf_path)

# Check which ambiguity checks to run

if "ambiguous_sentences" in ambiguity_checks:

ambiguous_sentences = ""

if "conditional" in ambiguity_checks:

ambiguous_sentences += check_conditional_ambiguity(text)

if "lexical" in ambiguity_checks:

ambiguous_sentences += check_lexical_ambiguity(text)

if "quantity" in ambiguity_checks:

ambiguous_sentences += check_quantity_ambiguity(text)

if "scope" in ambiguity_checks:

ambiguous_sentences += check_scope_ambiguity(text)

if "syntactic" in ambiguity_checks:

ambiguous_sentences += check_syntactic_ambiguity(text)

if "temporal" in ambiguity_checks:

ambiguous_sentences += check_temporal_ambiguity(text)

if "uomeasurement" in ambiguity_checks:

inconsistencies , sentences_with_issues =

check_uomeasurement_ambiguity(text)

# If ambiguities are found

if sentences_with_issues:

write_output_to_file(

"\n".join(sentences_with_issues),

os.path.join(output_dir , "

Potentially_Ambiguous_Sentences.txt"))
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A.4.9.4 Handling Abbreviations and Unit Consistency Separ-

ately

The check for undefined abbreviations/acronyms and unit of measurements inconsistencies are

handled in distinct blocks and written to individual output files.

# If abbreviations requested

if "undefined_abbreviations" in ambiguity_checks:

undefined_abbreviations = check_undefined_abbreviations_acronyms(

pdf_path)

# Write the list of undefined abbreviations to an output file

write_output_to_file(

undefined_abbreviations ,

os.path.join(output_dir , "Undefined_Abbreviations_and_Acronyms.txt"

))

# If UoM requested

if "inconsistent_units" in ambiguity_checks:

inconsistent_units = check_uomeasurement_ambiguity(text)

# Write inconsistencies to an output file

write_output_to_file(

inconsistent_units ,

os.path.join(output_dir , "Inconsistent_Use_of_Units.txt"))

A.4.9.5 Execution Entry Point

Finally, a configuration block allows it to be run as a standalone program. The ambiguity types

to check are defined as a list and passed to the main function.

if __name__ == "__main__":

pdf_path = "SOP_File.pdf"

output_dir = "output folder"

ambiguity_checks = [
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"conditional", "lexical", "quantity", "scope",

"syntactic", "temporal", "uomeasurement",

"undefined_abbreviations", "inconsistent_units"

]

main(pdf_path, output_dir , ambiguity_checks)

This methodological pipeline enables modular execution of ambiguity checks and generates sep-

arate logs for each type of ambiguity. Each component can be toggled on or off depending on

the desired focus or type of SOP under review.

A.5 High-Potential Violations Trigger Identification

tool

This section describes the development and application of the Violation Trigger tool, designed to

identify SOP sections that contain directives with high risk potential if regulatory or procedural

violations are committed, presented in Chapter 5, Section 5.3. Similar to HF Classifer 2.0 the

system uses a fine-tuned BERT model trained on past incident data.

A.5.1 Training Pipeline

The model is trained using the bert-base-uncased architecture from Hugging Face’s “Transformers”

library. The input data is a labeled Excel file containing incident description text and binary

violation labels.
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A.5.1.1 Data Preparation and Tokenization

Each accident description is processed using a BERT tokenizer.

# Load the training data

df = pd.read_excel('Violation_Training_Data.xlsx')

# Split the data into training and validation sets

train, val = train_test_split(df, test_size=0.2)

# Load the BERT tokenizer

# Tokenize the training data

train_encodings = tokenizer(

train['Combined Text Data'].tolist(),

truncation=True,

padding=True,

return_tensors='pt',

max_length=512)

# Tokenize the validation data in the same way

val_encodings = tokenizer(

val['Combined Text Data'].tolist(),

truncation=True,

padding=True,

return_tensors='pt',

max_length=512)

A.5.1.2 Model Training

The classifier is implemented using BertForSequenceClassification with two output labels.

It uses mixed precision training for efficiency, and optimizes using the AdamW optimizer with

a linear learning rate scheduler.

# Load BERT model for sequence classification

model = BertForSequenceClassification.from_pretrained(

'bert-base-uncased',
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num_labels=2)

# Set up the AdamW optimizer

optimizer = AdamW(model.parameters(), lr=2e-5)

# Set up a linear learning rate scheduler

scheduler = get_linear_schedule_with_warmup(

optimizer ,

num_warmup_steps=0,

num_training_steps=len(train_dataloader) * num_epochs)

# Initialize mixed precision gradient scaler

scaler = torch.cuda.amp.GradScaler()

for epoch in range(num_epochs):

model.train() # Set model to training mode

for batch in train_dataloader:

# Automatic mixed precision

with torch.cuda.amp.autocast():

# Forward pass

outputs = model(

input_ids ,

attention_mask=attention_mask ,

labels=labels # Computes loss)

# Scale loss

loss = outputs.loss / gradient_accumulation_steps

# Scale loss and backpropagate gradients

scaler.scale(loss).backward()

# ... (gradient accumulation , optimizer step, scaler update,

scheduler step)

Evaluation is performed using accuracy, precision, recall, and F1-score after each epoch.
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A.5.1.3 Validation and Model Saving

The model is evaluated on the validation set using standard metrics, then saved along with the

tokenizer for later inference.

val_acc = accuracy_score(val_labels , val_preds)

torch.save(model.state_dict(), 'bert_model.pt')

tokenizer.save_pretrained('bert_tokenizer')

A.5.2 Violation Detection on SOP PDFs

The trained model is applied to full SOP documents in PDF format. The system segments

SOPs into finer-grained textual sections for individual classification, to improve granularity and

interpretability.

A.5.2.1 Text Extraction and Preprocessing

Text is extracted from each page using PyMuPDF, then cleaned by removing repeated content

and formatting.

def extract_text_from_pdf(pdf_path):

# Open the PDF file with PyMuPDF

document = fitz.open(pdf_path)

# Extract plain text from each page

return [page.get_text("text") for page in document]

def remove_formatting(text):

# Remove common footer/header patterns

text = re.sub(r'Page \d+ of \d+', '', text)

... # Additional formatting cleanup

return text
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To focus analysis on procedural content, only pages between “Introduction” and “Appendix”

are analyzed. Each page is split into smaller sections based on double newlines or heading-like

formatting cues.

def split_into_sections(text):

# Split the text using either

# Two or more consecutive newlines , or

# A single newline before a line that looks like a heading or starts

with a label

sections = re.split(r'\n{2,}|\n(?=\w.+?:)', text)

# Remove empty entries and space

return [s.strip() for s in sections if s.strip()]

A.5.2.2 Section Classification and Output

Each section is independently tokenized and classified using the fine-tuned BERT model. Sections

classified as violations are saved along with their corresponding page number.

for section in sections:

if section.strip():

# Use a classification model to predict the label

prediction = classify_text(section, model, tokenizer , device)

# If the model predicts class 1

if prediction == 1:

# Add the section and pg. number to the results

classified_sections.append(f"Page {page_num}:\n{section}")

The system writes all flagged sections to an output file for further review.

# Save text to output file

with open('High Potential Violation Directives.txt', 'w') as file:

for section_text in classified_sections:

file.write(section_text + "\n\n")
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The final output can assist compliance officers and reviewers by automatically surfacing poten-

tially risky instructions that may require further consideration, emphasis or extra training. The

full code is available at https://github.com/VirtualRaphael/Violation-Trigger-Tool.

A.6 Human Factors Causal Relationship Tool

The HF Relationships tool, presented in Chapter 6, Section 6.4, constructs the DAG structures

for BN based on human reliability data, modeling potential causal dependencies between PSFs.

A.6.1 Inputs and Configuration

The users interactively select,

• Factor Mode, either 53 original CREAM factors or Grouped categories.

• Inference Method,

– K2, score-based greedy structure learning.

– NPC, constraint-based learning using conditional independence.

– Expert, causal structures based on past publications, defined in external Excel

sheets.

– Aggregated, includes edges appearing in at least two of the above.

• Other Parameters,

– Maximum parent count for K2.

– Significance level for conditional independence tests in NPC.

https://github.com/VirtualRaphael/Violation-Trigger-Tool
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A.6.2 Main Interface

The entry point is the function run_causal_inference, which provides a graphical dialog for

users to select model configuration options:

% Create a dialog window

d = dialog('Position',[300 300 400 300], 'Name', 'Causal Inference Config')

;

...

% Create a dropdown list inside the dialog

methodMenu = uicontrol('Parent', d, ...

'Style', 'popupmenu', ...

'String', {'k2', 'npc', 'expert', 'aggregated'}, ...

...);

After the user confirms selections, the appropriate dataset and expert matrix are loaded:

if useGrouped

% If using grouped data, load the grouped data matrix

dataMatrix = readmatrix('MATA_D_Matrix_Grouped.xlsx');

% Load the expert link matrix corresponding to grouped data

expertMatrix = readmatrix('Grouped_ExpertOp.xlsx');

else

% Else, load the full data matrix

dataMatrix = readmatrix('MATA_D_MatFormFull.xlsx');

% Load the expert link matrix for the full data

expertMatrix = readmatrix('Expert Links Format.xlsx');

end

Based on the selected method (k2, npc, expert, or aggregated), different learning functions

are invoked to generate the DAG.
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A.6.3 Entropy Based Ordering for K2

To guide the K2 structure search, a variable ordering is computed using MI and CRAE. This

follows an approach adapted from (Benmohamed et al. 2022)

% Calculate mutual information between variables i and j

MI(i,j) = mutual_info(Data(:, i), Data(:, j));

MI(i,j) = mutual_info(Data(:,i), Data(:,j));

...

% Compute conditional entropy ratios in both directions

CR_yx = Hx_y / (Hx * states_x);

CR_xy = Hy_x / (Hy * states_y);

% Determine direction of causality based on the smaller normalized

conditional entropy ratio

if CR_yx < CR_xy

% Variable j causes variable i

Dir(j, i) = 1;

else

% Variable i causes variable j

Dir(i, j) = 1;

end

A topological sort on this directed matrix provides a causally informed order used in K2.

A.6.4 K2 Structure Learning

The K2 algorithm operates under the assumption that a valid ordering of the nodes is provided

in advance, this prevents cycles and ensures acyclicity in the resulting graph. In this implement-

ation, the node ordering is derived automatically using the entropy-based approach described in

Section A.6.3.

The main objective of K2 is to identify the optimal parent set for each node in the DAG such

that the overall network score, which reflects the likelihood of the data given the structure, is
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maximized. For each node Xi, the algorithm considers only the nodes that appear earlier in the

specified order as potential parents.

The structure learning process begins by initializing the node with no parents. Then, parents

are added one at a time from the pool of allowable candidates if they increase the score provided

by the scoring function GClosedFun. This process continues until either,

• The maximum number of parents is reached, or

• No additional parent yields an improved score.

The core logic of the algorithm is as follows,

for p = 1:d

i = Order(p); % Get index of the current node from the order

Parent = zeros(d,1); % Initialize empty parent set

Pold = GClosedFun(LGObj, i, find(Parent)); % Initial score with no

parents

LocalMax = Pold;

OKToProceed = true;

while OKToProceed && sum(Parent) < MaxParents

BestCandidate = -1;

for q = 1:p-1

j = Order(q);

if Parent(j) == 0

Parent(j) = 1; % Temporarily add j as a parent

NewScore = GClosedFun(LGObj, i, find(Parent)); % Score with

j

Parent(j) = 0; % Remove candidate

if NewScore > LocalMax

LocalMax = NewScore;

BestCandidate = j; % Store best scoring

end

end

end

if BestCandidate ~= -1
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Parent(BestCandidate) = 1; % Permanently add best parent

DAG(BestCandidate , i) = 1; % Record edge: parent → child

Pold = LocalMax;

else

OKToProceed = false; % No further improvements

end

end

Scores(i) = Pold; % Save final score for node i

end

This process is repeated for all nodes in the order, gradually constructing a complete DAG.

The GClosedFun function, explained in the next section, serves as the evaluation metric for

comparing different parent combinations.

A.6.4.1 Scoring Function

The scoring function GClosedFun evaluates how well a node is explained by its parent configura-

tion using a Bayesian Dirichlet equivalent uniform score. This score is computed using frequency

tables derived from the training data and considers both the number of parent configurations

and the number of states the child variable can take.

First, the relevant components are extracted,

Frequency = LGObj.FreqTable{i}; % Conditional frequency table for node i

ri = LGObj.r(i); % Number of discrete states of node i

qi = size(Frequency , 1) / ri; % Number of unique parent configurations

GFunValue = 0; % Initialize score accumulator

Then, for each parent configuration j, the function computes the log-likelihood of observing each

possible child state k summed over all states and configurations,

for j = 1:qi
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% Initialize sum of frequencies for the current group j

Sum = 0;

for k = 1:ri

% Accumulate frequency counts

Sum = Sum + Frequency((j - 1) * ri + k);

% Increment GFunValue

GFunValue = GFunValue + gammaln(Frequency((j - 1) * ri + k) + 1);

end

% Update GFunValue

GFunValue = GFunValue + gammaln(ri) - gammaln(Sum + ri);

end

Here,

• Frequency((j-1)*ri + k) accesses the count of observing value k of Xi under parent

configuration j.

• The use of gammaln (log(Γ(x))) improves numerical stability and avoids underflow issues

common in high-dimensional models.

This function returns a score that increases with better model fit (when the child node’s behavior

is well-explained by its parents). The K2 algorithm uses this score to guide its greedy parent

selection process.

Together, k2_structure_learning.m and GClosedFun.m form an efficient implementation of

the K2 algorithm.

A.6.5 NPC Structure Learning

The NPC method is a constraint-based algorithm for learning the structure of a BN. NPC relies

on statistical independence tests to determine whether an edge should exist between two nodes.

This method proceeds in two stages,
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1. Identifying undirected dependencies using pairwise mutual information.

2. Optionally orienting edges based on heuristic assumptions or further constraints.

The algorithm starts by assuming a fully connected undirected graph and then systematically

removes edges between nodes that are found to be (conditionally) independent. Independence

is determined via mutual information and tested for statistical significance using a chi-squared

test.

The core of the algorithm is implemented as follows,

% Initialize a fully connected adjacency matrix (size d x d)

% Iterate over all unique pairs of variables (i, j)

for i = 1:d

for j = i+1:d

% Compute conditional MI between variables i and j

[MI, R, M] = ConditionallyIndependent_MutualInformation(LGObj, i, j

);

% Perform a chi-squared test

if CITest_ChiTwoVar(MI, R, M, alpha)

% If i and j are conditionally independent , remove the edge by

setting adjacency entries to 0

Undirected(i,j) = 0;

Undirected(j,i) = 0;

end

end

end

Here,

• MI is the mutual information between variables Xi and X j.

• R is the degrees of freedom used in the chi-squared test.

• M is the number of data samples.

• The edge is removed if the variables are deemed conditionally independent at the signi-

ficance level α.
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After pruning edges, the adjacency matrix is optionally converted into a directed graph. In the

current implementation, directions are added heuristically (by assigning direction from lower to

higher index) to maintain compatibility with further steps,

for i = 1:d

% Find indices of nodes connected to node i in the undirected graph

neighbors = find(Undirected(i, :) == 1);

% Iterate over each neighbor j of node i

for j = neighbors

% Only assign direction for edges where i < j

if i < j

% Set the edge direction from node i to node j

DAG(i, j) = 1; % Heuristic: i → j

end

end

end

This results in a sparse, acyclic structure that reflects only statistically significant dependencies.

A.6.5.1 Mutual Information

This supporting function computes MI between two variables, optionally conditioned on a third.

The MI quantifies how much knowing one variable reduces uncertainty about the other.

For unconditioned MI,

% Update MI, add contribution from the joint frequency of (u, v)

MI = MI + (Frequency(u,v)/M) * log2(Frequency(u,v)*Sum / (Fu(u)*Fv(v)));

Where,

• Frequency(u,v) is the joint frequency count of X = u, Y = v.

• Fu(u), Fv(v) are marginal frequencies.
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• M is the total number of observations.

If a third variable is supplied (conditional MI), the function partitions the data according to the

conditioning variable and computes the MI for each subgroup.

This approach ensures that even indirect influences can be detected and handled, supporting

more robust edge pruning.

A.6.5.2 Chi-Square Test

Once the MI has been computed, the independence test determines whether it is statistically

significant. This is implemented using a chi-squared threshold,

Threshold = chi2inv(1-a, R); % Critical value for chi-squared distribution

CI = Threshold < 2*M*MI; % Compare MI statistic to threshold

Where,

• α is the significance level.

• R is the degrees of freedom (typically (ri−1)(r j−1)).

• M is the total frequency.

• The result CI is a Boolean indicating independence (true) or dependence (false).

This test helps avoid spurious edge inclusion, especially in sparse datasets, and provides statist-

ical grounding for the learned structure.
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A.6.6 Learning Object Builders

Both the K2 and NPC methods rely on a common learning object structure, LGObj, which stores

all required data characteristics. These builder functions perform preprocessing steps to convert

the raw MATA-D matrix into the format required for scoring or testing.

The key contents of LGObj include,

• FreqTable, cell array of conditional frequency tables for each variable.

• r, Number of discrete states for each variable.

• RangeVecs vectors indicating valid state ranges, used for indexing and table construction.

• NumCases, total number of training samples.

This layer supports compatibility across the different learning algorithms.

A.6.7 Expert and Aggregated Models

If expert is selected, a DAG is loaded directly from Excel. If aggregated is selected, all three

models (K2, NPC, Expert) are computed and merged,

DAG = (DAG_K2 + DAG_NPC + DAG_Expert) >= 2;

This ensures that only relationships agreed upon by a majority are retained.

A.6.8 Final DAG Visualization

The tool visualizes the final directed acyclic graph,

G = digraph(DAG);

plot(G);
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This plot provides an interpretable representation of inferred causal structure among human

factors.

The full code for the HF Relations tool is available at https://github.com/VirtualRaphael/

Human-Factors-Relationships-Tool.

https://github.com/VirtualRaphael/Human-Factors-Relationships-Tool
https://github.com/VirtualRaphael/Human-Factors-Relationships-Tool
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