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Abstract

Salmonella spp. are the second most common cause of foodborne illness in the
United Kingdom (UK) and the European Union (EU). Pigs are relatively more
likely to be infected with Salmonella spp. compared to other species of livestock.
A recent EFSA survey isolated Salmonella from 21.2% of lymph node samples.
Given the high prevalence of Salmonella infection in pigs, with a serotype of human
health significance, pig meat is thought to be the third most important contributor
to Salmonella infection in humans, behind poultry meat and eggs (EFSA, 2006).
This has prompted the EU to set targets for reduction of Salmonella spp. in
slaughter-age pigs and breeding pigs, which are due to come into force in the next
1-2 years.

For reductions in the prevalence of Salmonella infection in live pigs, intervention at
the farm level (be it at the sow or pig level) will be required. Current evidence for
the effect of farm level interventions such as the use of organic acids in feed/water
or vaccination is scarce, as experimental or observational studies are expensive and
so studies thus far have been small. Hence, the relevance of these limited and small
studies is limited when interpreting the results for the development of a National
Control Plan for Salmonella in pigs, therefore mathematical modelling studies are
useful to assess the effectiveness of on-farm interventions in reducing the burden
of human salmonellosis.

This thesis presents a number of determinsitic and stochastic models on the sub-
ject of Salmonella introduction/transmission between pigs, progressing from a sim-
ple determinstic SIR model of grower-finisher production to a detailed stochastic
model incoproating all stages of production and considering the source of infection.
The dynamics of infection in the deterministic models was similar. With current
parameter estimation, infection was self-sustaining in pen populations across the
models, whether there were 1 or 300 pens. Stability analysis of each of the models
suggested that the homogeneous infected steady state would be the result of at
least one infected pig entering the herd. Travelling wave analysis of the multi-
pen models suggested that the speed of transmission between pens, via faecal-oral
transmission, was relatively slow, such that infection would probably be limited
to a few pens by the time pigs were sent to slaughter. Very different dynamics
were observed for the stochastic models, where stochastic fade-out was the most
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common result from infection entering a herd.

The models developed in this thesis allow an insight into the complex dynamics of
transmission and intervention on pig farms, which is currently not possible through
observational study due to the large number of variables that must be controlled.
The final model incorporates several advancements in the field of Salmonella in
pig transmission modelling that have not been considered before (e.g. the explicit
inclusion of the magnitude of (intermittent and variable) shedding, farm man-
agement systems and sources of infection). These advances highlight new and
interesting dynamics, suggesting that the sow is by far the most important source
of infection of pigs. In particular, the level of Salmonella shedding of individual
pigs/sows appears to be crucial to the dynamics of infection, but this has not been
captured before. This seems a fairly intuitive conclusion, given that Salmonella is
mainly transmitted via the faecal-oral route and is dose-dependent. However, it is
not normally captured in models because of the complexity of doing so, and the
lack of data to parameterise such a model. In the case of Salmonella in pigs, when
dealing with various sources, complex management systems and highly variable
shedding rates, then the inclusion of shedding dynamics at a more detailed level
appears warranted, as the dynamics change markedly according to whether it is
included or not.

In conclusion, this thesis has established a set of models for the investigation of
the introduction, transmission and intervention of Salmonella in pigs. The final
model suggests that the sow is a major source of infection, and hence intervention
should first and foremost be introduced to the breeding herd. However, decreasing
the resistance of the weaner/finisher pig to infection, and conducting All-In-All-
Out production, would lessen the transmission of infection between pigs during
later stages of production. The final model has already been used to inform the
development of the UK National Control Plan (to investigate the accuracy of
several sampling schemes and as an input for Cost-Benefit Analysis), and research
will continue to improve the assumptions and parameter estimation of the model.

iii



Contents

1 Introduction 1
1.1 Salmonella in pigs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Pig production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Disease transmission models . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Deterministic transmission models . . . . . . . . . . . . . . . 11
1.3.2 Linear stability analysis . . . . . . . . . . . . . . . . . . . . 16
1.3.3 Stochastic transmission models . . . . . . . . . . . . . . . . 17
1.3.4 Previous models for Salmonella in pigs . . . . . . . . . . . . 26

1.4 Thesis motivation and outline . . . . . . . . . . . . . . . . . . . . . 31

2 One- and two-pen deterministic models 35
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 1-pen model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.1 Model definition . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.2 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.3 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 Two-pen deterministic model . . . . . . . . . . . . . . . . . . . . . 46
2.3.1 Model definition . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.2 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.3 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 Multi-pen determinstic model 63
3.1 Introduction and farm setup . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4 Travelling wave analysis . . . . . . . . . . . . . . . . . . . . . . . . 71
3.5 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Multi-pen determinstic model with contamination 87
4.1 Modelling faecal-oral transmission explicitly . . . . . . . . . . . . . 87

iv



4.2 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.1 Homogeneous steady state . . . . . . . . . . . . . . . . . . . 92
4.2.2 Stability to homogeneous steady state . . . . . . . . . . . . 94
4.2.3 Existence of Turing spatial patterns . . . . . . . . . . . . . . 101

4.3 Solutions for travelling wave of cross contamination model . . . . . 109
4.4 Numerical solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.4.1 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . 113
4.4.2 Cross-contamination model epidemic curve . . . . . . . . . . 113

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5 Stochastic versions of standard SIR and cross-contamination mod-
els 126
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.2 Model development . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2.1 Further development of standard SIR model . . . . . . . . . 127
5.2.2 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . 132
5.2.3 Standard dynamic model results . . . . . . . . . . . . . . . . 138

5.3 Cross-contamination model . . . . . . . . . . . . . . . . . . . . . . . 139
5.3.1 Transistion: Susceptible → Excretor . . . . . . . . . . . . . 139
5.3.2 Transistions: Excretor → Carrier & Carrier → Susceptible

and implementation of model . . . . . . . . . . . . . . . . . 143
5.3.3 Algorithm for cross contamination model . . . . . . . . . . . 143
5.3.4 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . 143
5.3.5 Cross-contamination model results . . . . . . . . . . . . . . 144

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6 Stochastic model from birth to slaughter and including sources of
infection 151
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.2.1 Model algorithm and overview . . . . . . . . . . . . . . . . . 153
6.2.2 Management of farms . . . . . . . . . . . . . . . . . . . . . . 156
6.2.3 Transmission model . . . . . . . . . . . . . . . . . . . . . . . 161
6.2.4 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . 172
6.2.5 Sensitivity analysis and model interrogation . . . . . . . . . 179

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.3.1 Baseline results . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.3.2 Sensitivity analysis and model interrogation . . . . . . . . . 181

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7 Analysis of intervention mechanisms in reducing Salmonella in
slaughter-age pigs 199
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.2 Modification of farm transmission model to investigate interventions 200

v



7.2.1 Interventions investigated . . . . . . . . . . . . . . . . . . . 200
7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8 Discussion & Conclusions 213
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
8.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
8.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

vi



Chapter 1

Introduction

1.1 Salmonella in pigs

Salmonella spp. are the second most common cause of foodborne illness in the

United Kingdom (UK) and the European Union (EU). The total number of re-

ported cases in the EU was 131,468 in 2008 (EFSA, 2010b). Over 10,000 of these

were reported by the UK Health Protection Agency (HPA) (EFSA, 2010b). Given

an under-reporting factor of at least 1 in 3 (Wheeler et al., 1999) the total number

of cases in the UK are likely to be over 30,000 per year. In 2010, the most common

serotype, Salmonella Enteritidis, accounted for 4,361 (39%) of total reported cases

in the UK, and is predominantly associated with poultry and egg consumption.

The second most commonly isolated human serotype is Salmonella Typhimurium,

where 1,923 (17% of total) cases were reported in 2008 (HPA, 2009). This serotype

has a much broader host range, and can be found in poultry and all major mam-

malian livestock species (pigs, cattle, sheep). It is especially common in pigs;

in a recent survey by the European Food Safety Authority (EFSA) over 70% of
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Salmonella isolates taken from slaughter pig lymph node samples in the UK were

serotyped as S. Typhimurium (EFSA, 2008b). Pigs are relatively more likely to be

infected with Salmonella spp. compared to other species of livestock. The same

EFSA survey isolated Salmonella from 21.2% of lymph node samples, whereas a

similar EFSA survey for the second most commonly infected species, broiler chick-

ens, isolated Salmonella from just over 8% of broiler flocks in the UK (EFSA,

2010a).

Given the high prevalence of Salmonella infection in pigs, with a serotype of human

health significance, pig meat is thought to be the third most important contributor

to Salmonella infection in humans, behind poultry meat and eggs (EFSA, 2006).

As part of European Commission (EC) Regulation 854/2004 a commitment was

made to reduce the level of zoonotic pathogens in food. This has prompted the EU

to set targets for reduction of Salmonella spp. in live animals for many livestock

species, including layer chickens, turkeys, broiler chickens and pigs. Four National

Control Programmes (NCPs) have already been put in place for specific types

of poultry (including laying chickens and broilers) for a number of years (Defra,

2010). Due to vaccination and other measures, the UK has currently achieved all

of its targets.

As poultry-related Salmonella infection is reduced, then the relative importance

of S. Typhimurium, and pig-meat borne salmonellois, increases. As a result the

EU have set in process a chain of research to establish the human cost-benefit

and evidence base for setting targets for each Member State to reduce Salmonella

in slaughter and breeding pigs. Two surveys, one in slaughter pigs and one on

breeding holdings, have been carried out by EFSA (EFSA, 2008b, 2009a) to set

the baseline against which the targets will be measured against. Each Member

State (MS) will be required to develop their National Control Plan to achieve the
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given targets within a specified timeframe (yet to be agreed). Two NCPs, one for

breeding pigs and one for slaughter pigs, are to be required from each MS.

For reductions in the prevalence of Salmonella infection in live pigs, intervention at

the farm level (be it at the sow or pig level) will be required. Current evidence for

the effect of farm level interventions such as the use of organic acids in feed/water

or vaccination is scarce, as experimental or observational studies are expensive

and so studies thus far have been small. Hence, the relevance of these small

studies is limited when interpreting the results for the development of a NCP,

and risk assessment/mathematical modelling studies are thus required to assess

the effectiveness of on-farm and abattoir interventions in reducing the burden of

human salmonellosis.

1.2 Pig production

The management of fattening pigs is extremely variable, with many systems in

place to rear pigs to slaughter weight. However, for the purposes of this thesis

we need only consider differences in management systems that affect Salmonella

introduction and/or transmission. First, the vast majority of pigs slaughtered in

the EU, especially in the large pork-producing countries (e.g. Denmark, Germany

and France) will be produced on large intensive farms. These farms will produce

perhaps 80-90% of of all pigs destined for slaughter in the EU. In the UK, this

weighting towards commercial pig production is even more pronounced; we esti-

mate that the vast majority of pigs for slaughter, over 95%, will originate from

large, commercial farms (Hill, prep).

Within typical commercial production in the UK there are two largely distinct
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categories of farm: breeding and fattening. At the top of the production pyramid

are the breeding herds, including the nucleus and multiplier herds (see Figure

1.1). The nucleus herd is highly specialised, and focused solely on improving the

genetic characteristics of the pig population. Sows within the nucleus herd are

chosen for desirable genetic characteristics, and are bred with similarly valuable

boars (through natural or artificial insemination). There may be only a few nucleus

herds within each individual company, and so in order to provide enough pigs for

the production cycle, the offspring of the nucleus sows are then sent to one of 10-20

multiplier herds, where the desired traits (related to meat quality, production rate

etc. . . ) are scaled up in terms of the number of pigs by breeding these sows. Any

inferior quality stock from nucleus and multiplier herds may be sold for slaughter,

but the pigs from these herds are not primarily produced for meat.

The offspring from the multiplier herds may be sold as gilts or weaners, and are

then sent to the production herds for either further breeding purposes (replacement

gilts producing pigs for slaughter on a farrow-to-finish farm), or are reared from

weaning to slaughter on specialised contract finishing farms. It is these farrow-

to-finish and contract finishing farms that will be considered in this thesis, as it

is the pigs from these farms that make up the majority of pigs slaughtered in

the UK and the EU. In the UK, pig production is roughly split half and half (in

numbers of pigs slaughtered), between farrow-to-finish (production) and multi-site

farms (sow herds selling pigs to specialist contract finishing herds). For the rest of

the thesis, we define ‘sows’, unless otherwise specified, as those on farrow-to-finish

farms producing pigs for slaughter, and ‘pigs’ as the offspring of those sows that

are solely intended for meat production.

Within production herds the time it takes to rear pigs to slaughter weight, and

the phases of rearing which each pig goes through, is fairly standard (see Figure
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Figure 1.1: Schematic of pig production in the UK. Pig production is split into
two distinct categories: breeding and production. Breeding herds (nucleus and
multiplier) are specialist units where improvements to the genetic characteristics
of the breeds are made; only production herds, and specialist contract finishing
herds, rear pigs solely for slaughter to provide meat for human consumption.

1.2), although there are a wide range of systems in place to rear the fattening pig.

The vast majority of production systems can be defined in terms of distinct stages
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Figure 1.2: Rearing of pigs to slaughter weight. Sows are typically arranged into
groups; servicing is staggered such that a group of sows will reach partuition every
one or two weeks. Picture taken from www.ukagriculture.com.

of rearing, which are:

• Farrowing: Between 8-15 piglets born to a sow, each sow and litter within

its own pen; around 15-50 pens within individual compartments. Piglets

weaned between 21-42 days of age.

• Weaning(nursery): Pigs are moved into specialist accommodation for the

purpose of weaning the pigs onto feed and growing them to around 30kg; the
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ambient temperature is usually strictly maintained as weaners are less able

to regulate temperature at this age. Litters of piglets are grouped together

into pens of around 10-50 pigs each. Pigs are moved onto either dry or wet

feed, and stay within these pens until 8-12 weeks of age.

• Growing: Pigs are moved into bigger pens. Becoming less common in modern

systems, this intermediate stage will generally see relatively little mixing of

pigs from different pens, and pigs will stay here for approximately 6-8 weeks.

(The growing phase may be conjoined with the finishing phase to produce a

longer overall finishing period).

• Finishing: Pigs are moved into specialist accommodation. These farms/buildings

tend to be larger, as pigs are fattened to slaughter weight over a period of

8-16 weeks. Contract finishing farms may source their stock from a number

of weaner (nursery) or grower farms.

Not all farmers will practice all of these stages of rearing, and differences may be

found in mixing patterns and the age of pigs within each system. Information

relating to the transmission of Salmonella between different ages of pigs is limited,

therefore we conclude that it is sufficient to differentiate between these rearing

groups rather than specific age groups.

The main management difference between farms relates to how the farmer manages

the transfer of pigs through the different stages of rearing. There are many different

ways to organise the serving of sows, mixing of pigs etc, but the main difference

will be if pigs are raised in an all-in-all-out (AIAO) or a continuous system1, with

1AIAO production is the priniciple of raising pigs as a distinct cohort that have no direct
contact with another cohort of pigs. Theoretically, AIAO production should be carried out by
building, so there is a distinct period between batches where rigorous cleaning and disinfection
will take place. Practically, most AIAO production is conducted by room, not by building.
Continuous production captures all other systems of management.
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the assumption being that AIAO limits the number of pigs that contact each other,

and whether or not there is any movement of pigs between farms.

A special form of AIAO production, and of crucial importance for the Salmonella

status, is whether farms apply batch production, and how this is applied through

the production chain. Batching is a result of farrowing 20-50 sows simultaneously

(i.e. within a few days) in one compartment, such that all of the progeny are

very close in age. This cohort of piglets can then be raised as a distinct man-

agement group up until slaughter, without introducing or allowing contacts with

other pigs. Within that system the piglets from the same litter can also be kept

together in the same pen up to slaughter. Batching is perceived as beneficial be-

cause of the ability of the farmer to plan ahead and reduce peaks and troughs in

labour demands, together with associated productivity gains. Batching of sows

into groups can be done on either a 1, 2 or 3 weekly-cycle, such that groups of

sows give birth within a defined weekly period. In addition pigs produced in these

systems reach slaughter up to one month earlier than in old traditional systems

with a continuous production (which is considered to be as a result of improved

health status). Of basic importance for the efficacy of this system is that a clean-

ing and disinfection (C&D) procedure is applied between batches. In discussion

with pig farming experts (industry, vets etc) AIAO production will be at a com-

partment level (where cohorts of similarly-aged pigs are moved into and out of a

room/section of a building separately from other cohorts).

Harder to define, but a crucial difference between farms, is biosecurity. We define

biosecurity as anything that provides a barrier between the Salmonella-free pig on

the farm and the (possibly) Salmonella-positive environment outside (or indeed

inside) the pigs’ dwelling, including any cleaning and disinfection routines. Biose-

curity would include the maintenance of any pig housing, good hygiene during
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production (in particular good manure management that decreases pig exposure

to contaminated faeces), cleaning and disinfection between batches of pigs, and

storage of feed to prevent it being accessed by birds and rodents (e.g. open stor-

age/non silos). Also important, and related to biosecurity, is whether the pig

is kept indoors or outdoors. Outdoor production has become more popular for

large-scale production within the last couple of decades (especially in the UK)

and has particular differences to inside production that could affect Salmonella

introduction and transmission; for example exposure to wildlife including birds

and rodents, mixing of sows and type of feed. However, according to analysis of

the UK data collected as part of the EFSA breeding survey (EFSA, 2009a; Hill,

prep) large-scale outside production is still quite rare in the UK beyond the stage

of weaning (see Figure 1.3).

Figure 1.3: Proportion of UK pig production herd (by head) kept indoors and
outdoors.

The production system factors identified previously are probably important to

consider regardless of the particular infectious organism. However, for Salmonella

introduction and transmission we are also interested in two other factors: feed

and flooring. Feed can be a source of Salmonella infection in pigs, however it

can also be a factor in reducing the level of transmission (Lo Fo Wong and Hald,
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2000; O’Connor et al., 2008). Clearly contaminated feed poses a risk to pigs, and

has been highlighted as probably the main cause of infection in regions where

Salmonella infection in pigs is low (e.g. some Scandinavian countries) (EFSA,

2006, 2008a, 2010c), but the relationship between feed and Salmonella infection

in pigs is complex. Within the UK, the serotypes commonly associated with feed

contamination (e.g. S. Agona, S. Mbandaku) are not usually those which are

commonly associated with pig infection, such as S. Typhimurium and S. Derby

(EFSA, 2008a). As with management systems, feeding systems are variable be-

tween farms. The main factor with relevance to Salmonella transmission appears

to be the way in which the feed affects the pH and content of organic acids in the

pig gut (O’Connor et al., 2008; Wales et al., 2010). There will be variation in the

type of food used, the additives used, and how the feed is presented to the pigs

(meal/mash/pellets/grinding). All of these factors affect the ecology of the pig

gut. The lower the pH the more hostile the environment for any Salmonella, and

hence infection is less likely. Of particular importance is whether the feed is pre-

sented as a dry or wet form, or whether it is pelleted or non-pelleted (Lo Fo Wong

and Hald, 2000; O’Connor et al., 2008).

While the evidence for flooring type affecting Salmonella transmission is varied

(some studies point to it as a risk factor, most don’t) (lo fo Wong et al., 2004;

Nollet et al., 2004), logical thinking suggests that slatted flooring may well have

some effect as it will remove faeces/Salmonella from the pig environment. Again,

there are many flooring types (partially slatted, bare concrete, straw-laden), which

will all have different characteristics in preventing/aiding exposure of pigs to faecal

material. Based on the previous discussion, the five main risk factors considered

for large pig farm management are: rearing stages; AIAO vs continuous production;

feed; flooring and finally inside vs outside production.
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There are other factors that may well influence Salmonella introduction and trans-

mission (e.g. stocking density, age of building, storage of feed). However, while

some of these factors have been identified as risk factors in some studies (e.g.

stocking density, number of pigs on the farm), the evidence is less clear than for

the other factors mentioned above. Most other factors are also less descriptive

than the ones considered above. For example, it is not clear what drives the in-

creased risk of infection in pigs on larger farms, but there could be an underlying

factor regarding management of these farms which is driving this increased risk

(above and beyond that larger farms may have a lower propobability of stochastic

fade-out). However, if we do not know the underlying risk factor, we cannot model

it. We therefore consider the most appropriate course of action to model the five

main factors, and highlight where appropriate where other factors that have not

been modelled may contribute to the variation in the likelihood of infection.

1.3 Disease transmission models

This section will provide the rationale for the use of the models chosen in the later

chapters. Previous models in the area of Salmonella in pigs will also be reviewed;

advantageous characteristics of these models will be used and expanded in later

chapters.
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1.3.1 Deterministic transmission models

Definition

The main characteristic of a deterministic model is that given a unique set of initial

conditions and parameters, the model will always produce the same outcome, with

no random variation. Hence, if the initial conditions and model system are known

then we can always predict the outcome of the model. For example, E = MC2 is a

determinstic model that predicts with extreme precision the energy of an electron

given that the mass of an electron is known to high precision and speed of light is

known with complete precision.

Overview of determinstic disease transmission modelling

Many biological phenomena can be described by recursion relations, also called dif-

ference equations (e.g. nk+2 = nk+nk+1), including cell division, plant growth and

the logarithmic spirals on the abalone Haliotis. Such difference equations have also

been applied to epidemic growth of disease in humans and animals. The earliest

account of mathematical modelling applied to disease spread (disease transmission

modelling) was by Daniel Bernoulli in 1766, on the subject of inoculation against

smallpox. One of the most famous advances made by subsequent mathematicians

and physicists was by A. G. McKendrick and W. O. Kermack, who proposed a

simple (by today’s standards) deterministic (compartmental) model which pre-

dicted the spread of disease within a closed population (assuming a homogeneous

population with no age or social structure), over continuous time. Three popula-

tion states are considered: Susceptible (S), Infected (I) and Recovered (R). This

type of model is hence known as a SIR model. The change in the population of
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Susceptible, Infected and Recovered over time is given by

dS

dt
= −βSI

dI

dt
= βSI − γI

dR

dt
= γI

(1.1)

where β and γ are constants defining the rate at which humans/animals in Sus-

ceptible and Infected states are infected and recover respectively. Many authors

also use the term force of infection, which is denoted as λ and is equal to βI.

A key value derived from the above equations is the epidemiological threshold, R0,

and is defined as follows

R0 =
βS

γ
(1.2)

In equilibrium, this epidemiological threshold is one of the most important mea-

sures in epidemiology, and defines the number of secondary infections caused by

a single primary infection (before the primary infection’s recovery). If R0 < 1,

then each infected human/animal produces less than one new infection, so the

outbreak will eventually die out. However, when R0 > 1 then the number of new

persons/animals infected is one or more, and hence the outbreak will continue and

expand.

The basic SIR model described above was not commonly used until two seminal

papers by Anderson and May (Anderson and May, 1979; May and Anderson, 1979).

They redeveloped the SIR model to include the dynamics of birth and death (i.e. a
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changing population) and indirect transmission. Since then, a number of variations

of the basic SIR model have been developed. The epidemiological threshold R0

can be re-formulated for each. However, there are three main categories of SIR

model depending on the disease characteristics. They are typically called SIR,

SIS and SEIR models (where E represents the number in a population that have

been exposed/infected, but are not yet infectious to others). They are shown

schematically in Figure 1.4.

Figure 1.4: Some of the main compartment types for disease transmission models.
The model used depends on the assumptions made about the disease characteris-
tics.

The models developed in this thesis are extensions of the broad principles laid

down by McKendrick & Kermack and Anderson & May. Previous models in the
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area of Salmonella in pigs have also followed similar approaches (see Section 1.3.4).

Discrete and continuous time

Discrete time is the discontinuation of a system’s time domain by sampling at a

finite level, such that time is measured and sampled in appropriately measurable

units, such as seconds, minutes, days or weeks. By contrast, continuous time

assumes that time is infinitely divisible. The key difference we are concerned

with is that continuous time is represented by the use of differential equations

(potentially with other continuous variables), whereas discrete time is associated

with difference equations, such as that given in the example at the top of Section

1.3.1.

A simple example is that of radioactive decay, where the number of particles

left after time t, N , is given by the formula N = N0e
−λt. As radioactive decay

is one of the most perfect examples of random decay known, then the formula

can predict N to a high accuracy and in theory we are able to plot N against

continuous time. However, while gamma ray detectors are capable of measuring

decays occurring less than a nanosecond apart, estimates of λ are usually made

by measuring the number of decays per second (in units of bequerels). Hence,

an appropriate difference equation to represent the decay of atoms over time is

Nt+1 = Nt − nt, where nt is the number of decays recorded per second. Reducing

the time step to ms or µs will improve the accuracy of the λ estimate, but for many

radioactive isotopes with a half-life of more than one hour it is not necessary.

A very simple but compelling reason to use discrete time is that biological phe-

nomena can commonly be most conveniently measured over fixed time intervals:

for example, the population of a species on a yearly basis, or the proportion of
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individuals with a specific gene in the nth generation. In addition, numerical solu-

tions of difference equations can be used to approximate the solution to a complex

differential equation, such as those commonly associated with disease transmis-

sion models, where the overarching function is not known, or it is not possible to

analytically solve the functions for S (t), I (t) etc. . . .

For deterministic models discrete time difference equations are usually sufficient.

However, when dealing with stochastic (probabilistic) models the use of contin-

uous time is more common, as continuous time is an intrinsic property of many

probability distributions used in stochastic modelling (see next section).

1.3.2 Linear stability analysis

Equation (1.1) is a set of non-linear partial difference equations. The non-linearity

of the term SI can lead to an intractable analytical solution for such a set of

equations. However, key properties of a biological system may be investigated

by linearising the system to produce a set of linear difference equations. A key

analytical method is that of determining steady state solutions, that is when there

is no change in the system, for example when dS
dt

= dI
dt

= dC
dt

= 0 in Equation (1.1).

Generally, a steady state solution satisfies the recursion relation xn+1 = xn = x̄,

where x̄ defines the steady state value of x.

Such a property may seem of marginal interest for systems which describe popula-

tion growth or disease transmission, but by looking at the stability of such steady

states important insight can often be generated into the behaviour of a system.

For example, it can be of value to know if a system is unstable so that we may

expect change in the near future.
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There are two types of steady state: stable and unstable. A steady state is defined

as stable if neighbouring states are attracted to it, and unstable if the opposite is

true. This property of stable and unstable steady states allows us to investigate

the non-linear system in question. We assume a sufficiently small perturbation

away from the steady state x̄, such that the change in x, dx, is approximated by

the linearised version of the non-linear model.

The theory of linear analysis is appropriate for investigating whether the steady

state x̄ is attractive or repulsive. A recursion relation such as xn+1 = axn will have

solutions of the form

xn = Cλn, (1.3)

where λ is the eigenvalue of the system. The theory of linear analysis states

that where there are two or more solutions, then any linear combination of these

eigenvalues λ1, λ2 etc. . . is again a solution. These eigenvalues are fundamental in

determining steady states such as x̄. As can be seen in Equation (1.3) if λ > 1

then xn will become progressively larger as n increases, but will decrease if λ < 1.

This same principle can be applied to the linearised systems of non-linear recursion

equations such as Equation (1.1) to identify if small perturbations to steady states

of the system will grow (λ > 1, unstable) or decay back to the steady state (λ < 1,

stable). If there are two or more solutions, the largest valued eigenvalue will tend

to govern the dynamics of the system. Further detail on the method for linear

stability analysis is given in Chapter 2.
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1.3.3 Stochastic transmission models

Definition

The models proposed by McKendrick & Kermack and Anderson & May are de-

terministic, i.e. the state of the population (number of Susceptibles, Infecteds

etc. . . ) at some time t can be predicted with complete accuracy if the prior state

of the population at a previous time is known. Such models are useful for large

populations, where random effects are averaged out according to the law of large

numbers. However, random processes tend to dominate when dealing with small

numbers, such as the number of pigs commonly grouped in one pen.

There is some debate over whether the physics of nature is at some base level

deterministic or non-deterministic, that is even if all of the processes of a physical

system are completely known, whether or not the state of the system can be

predicted with complete certainty. If so then randomness is simply an artefact of

our incomplete knowledge. However, what is certain is that random processes are

especially important in biological mechanisms, as the complexity of such systems

means that complete knowledge of the system is virtually impossible (e.g. the

height of a human is not only determined by complex genetic factors, but also

years of accumulated environmental stresses, the combination of which makes it

impossible to know/model with complete certainty the eventual height of any

person).

A stochastic model therefore takes into account variability in the model pathway,

where the time to the next event, or which event will occur next, is uncertain. In

such circumstances the number of the population being modelled at any one time

can be modelled by an appropriate probability distribution.
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Analytical solutions

In certain circumstances, stochastic models can be solved analytically. One of

the simplest and most common examples is of a birth process of single-celled

organisms from a starting point of N(0) organisms (see Renshaw (1991)). Treating

the problem determinstically, then we can assume a constant birth rate λ, where

in a small time interal h there are precisely λh organisms produced. Solving the

resultant equations for the number of organisms alive at time t, N(t), leads to

N(t) = N(0)eλt

.

That is, the population of organisms grows exponentially. However, in a stochas-

tic treatment of the same problem we do not assume that there is a constant

predictable production of organisms. Given a population of cells that grow by

division we cannot say that within any particular time interval that a particular

cell will divide, only that there is a certain probability of division. By using an

appropriately small time interval h, we can ensure that the probability of more

than one birth is negligible, such that the population size in between (t, t + h)

is either N(t) + 1 (with probability λhN) or N(t) (with probability 1 − λhN).

The solution of the resultant equation for N(t) is more complicated but can be

analytically solved, leading to a negative binomial distribution of the number of

organisms at time t, where the probability that the population is of size N at time

t, p(t), is given by

p(t) =

(
N − 1

n0 − 1

)
e−λn0t

(
1− e−λt

)N−n0
(N = n0, n0 + 1, . . . ) (1.4)
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Such an analytical solution requires a substantial amount of algebraic manipula-

tion, even given that this is a very simple system considering only idealised growth

of organisms, which makes a number of biologically implausible assumptions (e.g.

there is no death process, and no maximum capacity of organisms due to nutrient

and space contstraints). Analytical solutions are possible for more complicated

models including predator/prey and disease transmission models, but in many cir-

cumstances any biologically plausible model cannot be solved analytically. When

this point is reached it is necessary to use numerical simulation.

Numerical solutions

There are many simulation methods, but all have the same objective: to re-

construct the analytically intractable probability distribution of the output by

generating large numbers of indivudal realisations of the system process and then

combining the results into a probability distribution that in theory should reflect

the variability in the true output.

A simulation typically has the following steps: define the range of inputs; gener-

ate inputs randomly from input probability distributions; perform a deterministic

computation of the output; aggregate the results into the final probability mass

function. The joint probability distribution is estimated by constructing the prob-

ability mass function of the output, where the probability of the output lying in

the range X is determined by the frequency with which the output from the many

distributions lay within the range X. That is, P (x = X) = N(x=X)
N

, where N is

the number of iterations, and N(x = X) is the number of iterations where the

output fell within the range X.

One of the most common methods for simulation is Monte Carlo simulation. This
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uses a random number generator to determine the random variables for each of the

input distributions on each iteration, and constructs the probability mass function

directly as described above. A large number of iterations are run in order to ensure

the full range of each input probability distribution has been sampled. Convergence

criteria are used to ensure that the resulting output probability distribution is

stable to additional iteration results. There are no absolute criteria that must

be used, but typical criteria used are, for example, less than 1.5% deviation from

the mean, or 5th/95th, percentiles of the output distribution after a further 500

iterations runtime.

There are other simulation methods, for example Latin Hypercube sampling, which

bin the range of each of the input probability distributions, and then ensures that

each section of the probability distribution is sampled at the correct frequency.

This method can reduce the number of iterations necessary for convergence of the

model, as the model is forced to pick values from all sections of the range, when

low-frequency parts of an input distribution may be missed.

The stochastic birth process example in Section 1.3.3 can be simulated numerically

by considering the inter-event time, in this case the time between each birth. The

time S to the next event is an exponentially distributed random variable where

Pr(S ≥ s) = e−λNs (s ≥ 0),

To simulate a value of s we select a uniformly distributed random number, Y , in

the range (0,1) and put e−λNS = Y . Rearranging then

s =
−[loge(Y )]

λN
.
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Using this algortihm then a large number of iterations to simulate N(t) (10,000 or

more) will then converge upon the anaytically derived mean and variance for N(t)

from Equation (1.4) (Renshaw, 1991).

The model above is a continuous time model. However, as described above in Sec-

tion 1.3.1 discrete time is commonly used in disease transmission models. Stochas-

tic models can also be developed for these discrete time models and numerically

simulated, using the formula in Equation (1.5).

Discrete- and continuous-time stochastic models

Discrete and continuous time have the same definitions when applied to stochas-

tic modelling as for deterministic modelling. A common example of a stochastic

continuous time model is a simple predator-prey model (as discussed in Mur-

ray (2008); Law and Kelton (2000)), which can be analytically solved, e.g. the

change in prey population over time, x(t), where one formulation can be given by

dx
dt

= rx(t) − ax(t)y(t), where x(t) denotes the prey population over time and r

and a are random variables describing the growth rate and predation rate of the

prey respectively.

The above predator-prey model is theoretically a continuous model, where it is

possible to solve for x(t) and y(t) and the outputs will be real numbers. However,

in reality the numbers of predator and prey are integers, and therefore discrete.

Hence, some rounding function would be required to produce realistic discrete out-

puts. This is a simple and common example of where both continuous and discrete

elements are required in a model to produce realistic outputs. Most reasonably

complex simulation models will require a combination of discrete and continuous

events occurring (or at least quasi-continuous). For example, the model described
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in Chapter 6 has clearly discrete time events (e.g. the number of pigs infected in a

timestep of one day), but also arguably continuous time state events (e.g. the shed-

ding of large numbers of Salmonella into the environment reaching some threshold

at an indeterminate time where infection of pigs leads to higher magnitudes of

shedding). In reality, these combined discrete-continuous models are typically

solved numerically, where continuous time is approximated using discrete-event

simulation, such as Monte-Carlo simulation. This discrete-event method is used

in Chapter 6.

Markov Chains

Both stochastic models described in Chapters 5 and 6 are too complex to be solved

analytically and so must be solved with numerical simulation, and specifically are

implemented using Markov Chains and Monte Carlo simulation.

In a discrete time model, the state of the system over time can be described by a

chain of events based on the probabilities associated with transition. Such a model

is called a Markov Chain model, after the Russian mathematician Andrey Markov.

A simple graphical representation of a Markov Chain is given in Figure 1.5 for the

SIR model. The primary attribute of a Markov Chain is the Markov property,

which is that the probability of transition is independent of all that has occurred

in previous timesteps, and therefore is only dependent on the current model state.

Common probability distributions used in stochastic disease transmis-

sion modelling

There are a range of random, or stochastic, processes that have been mathemat-

ically described. Two important processes for disease transmission modelling are
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Figure 1.5: A simple example of a Markov Chain applied to the SIR model, where
the chain of events is described by the probabilities of transition between states,
and S, I and R are the number of individuals in each state.

the Binomial and Poisson processes.

The application of randomness to the SIR models described in Section 1.3.1 was

first proposed by Reed & Frost in 1927 (although never formally published) and

then re-formulated by Fine (1977). The rate of transition between Susceptible and

Infected, λ (t), can be given by

λ (t) = 1− (1− p)I(t) , (1.5)

where p is the probability of an effective contact (i.e. sufficient for infection to

occur) between a Susceptible and Infected person/animal, and I (t) is the number

of infecteds at time t. If the number of Susceptibles is defined as S (t), then the

number of newly Infecteds at the next timestep, NI (t+ 1), can be described as a

Binomial random variable, where
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NI (t+ 1) = B (S (t) , λ (t)) . (1.6)

The probability of an event which has two outcomes can be described by the

binomial probability, where the probability of obtaining exactly k successes in n

trials is

P (X = k) =

(
n

k

)
pk (1− p)(n−k) , (1.7)

where p is the probability of success and
(
n
k

)
= n!

k!(n−k)!
. Such a system can be

used to represent the probability of transition from Susceptible → Infected or

Infected → Recovered etc . . . An inherent trait of the Binomial theorem is that it

retains no memory of previous timesteps, i.e. the probability of transition depends

only on the state of the system at that time point, and is independent of all prior

timepoints, which meets the requirement of the Markov property. We can therefore

use the Binomial process to determine the number transferring between states in

a Markov Chain, and this is indeed the main methodology behind much of the

stochastic modelling in this thesis.

The Binomial process produces discrete outcomes from a discrete number of trials

(e.g. the number of infected animals and the number of animals respectively). As

such, the Binomial process is technically the correct process for the majority of

processes that occur in the models in this thesis (e.g. the number of infections per

day, the number of organisms transferred between pens). However, the statisti-

cal algorithms used to generate random variables from the Binomial process are

computationally expensive. When the number of events is sufficiently large, the

Poisson process is a very good approximation of the Binomial process (the Pois-
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son process is derived from the Binomial process, and letting t → 0). Using the

Poisson process to generate random variables is relatively much quicker than the

corresponding Binomial calculations. Therefore, where events commonly involve

more than 100 ‘events’ we replace the Binomial process with the Poisson process

(100 was chosen as a reasonable compromise between speed and accuracy of the

calculation).

The probability of obtaining k events in the interval (t, t + τ ] of some continuum

(e.g. time) is

P [N (N (t+ τ)−N (t)) = k] =
e−λτ (λτ)k

k!

where λ is the rate parameter, such that the expected number of events per interval

is λτ .

1.3.4 Previous models for Salmonella in pigs

The first dedicated transmission models for Salmonella in pigs were published in

2004 (van der Gaag et al., 2004; Ivanek et al., 2004). Both are based on the tradi-

tional SIR model, although Ivanek et al. use a deterministic approach while van

der Gaag takes a stochastic approach. The model of Ivanek et al. (2004) describes

the transmission of infection in a deterministic manner via the introduction of one

pig into a herd of grower-finisher pigs, which are housed in one barn, with no sepa-

ration by pens. At any time, pigs may be in one of four states: susceptible, latent,

infected and carrier. It is a basic SEIR model, dealing with a closed population

of pigs over a defined period of time, where the recovered state is replaced with a

carrier phase (C). A schematic representation of the model is given in Figure 1.6.
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Figure 1.6: State transitions of previous Salmonella in pigs models Ivanek et al.
(2004); van der Gaag et al. (2004); Hill et al. (2008); Lurette et al. (2008a); Soumpa-
sis and Butler (2009).

van der Gaag’s farm transmission model is part of a larger stochastic farm-to-

slaughter model, including both multiplying and finishing herds, and is an individual-
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based model, following 100 pigs in one cohort from birth to slaughter (and the

subsequent processing of the carcasses). van der Gaag separates infection into

four states and susceptibility into two as described in Figure 1.6. Pigs may be sus-

ceptible and serologically-negative (S1), infectious and serologically-negative (I1),

infectious and serologically-positive (I2), carriers and serologically-positive (C),

recovered and susceptible and serologically-positive (S2) and finally re-infected

and infectious (I3). There are probabilities associated with transitions between

all states, and the probability of initial infection (S1 → I1) is assumed to be

dependent not only on the number of infected animals in the cohort, but also

feed contamination and external sources of infection (wildlife etc. . . ). Sojourn

times in each state are assumed to be exponentially-distributed, for example the

probability of the transition I1 → I2 is governed by the equation 1 − e−δ, where

δ = 1/seroconversion period (1/day).

These first two models were important steps in the field, especially van der Gaag’s,

which includes serology and the penning of pigs for the first time. Both produce

reasonable results in terms of the number of pigs infected at the point of slaughter

(around 10-20%). However, both these models are limited in their applicability

to intervention analysis, given their reliance on abstract transmission parameters

describing the probabilities of transition. While the van der Gaag model does

differentiate between infection from pigs and from the environment, the parameter

estimation is necessarily based on expert opinion due to a lack of relevant data to

apportion infection between sources.

The next development came from an individual-based model for British grower-

finisher production by Hill et al. (2008). This model had a similar scope to van der

Gaag et al. (2004), including both serological response and penning of pigs. How-

ever, once a pig had been infected, it was assumed that serological conversion was
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then independent of the course of infection (see Figure 1.6), whereas van der Gaag

et al. (2004) assumed there was a clear dependence between progression of disease

and serological response. Analysis of observational data (Kranker et al., 2003) sug-

gests that the exponentially-distributed sojourn time between Infected and Carrier

in the van der Gaag et al. (2004) model leads to a much quicker transition than

what occurs in reality. The Hill model therefore assumes the sojourn times be-

tween Excretor and Carrier, and Carrier and Susceptible are Weibull-distributed.

The major difference in assumption is that Hill et al assume that transfer between

states becomes more likely as time progresses, whereas Ivanek and van der Gaag

assume a constant rate of transfer between states. The assumption of a vary-

ing hazard function in the Hill model effectively violates the Markov property, as

the probability of transition is no longer memoryless. Another development within

the Hill model is the inclusion of continuous production, where pigs are introduced

continually over the rearing period. This also removes the simplifying assumption

of a closed population of the original SIR model. The removal of the assumptions

of a memoryless system and closed population make the model far more complex

than preceding models. However, the inclusion of continuous production (very

common in Great Britain) and the modelling of a varying hazard function reflects

real-world data more realistically. Hill et al. (2008) also attempt to estimate the

transmission parameter β from data for the first time. The UK monitoring pro-

gramme in place at the time (the Zoonoses Action Plan) was a Meat Juice ELISA

(MJE) based monitoring programme conducted at the abattoir for a large ma-

jority of British pig herds. The model was anchored to fit observational data on

the prevalence of MJE-positive pigs, by adjusting the values for the within and

between pen transmission parameters.

A regularly updated transmission model for finishing pigs has been developed by
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Soumpasis & Butler (Soumpasis and Butler, 2009, 2011). The main difference

between this group of models and the models described above is the distinction

between high dose and low dose infection. This is a sensible development, given

several papers note that pigs shed more salmonellas if they are infected at a higher

dose (Fedorka-Cray et al., 1994; Jensen et al., 2006). The Infected class is therefore

split into two states, High Infectious (HI) and Low Infectious (LI). Whether pigs

are infected with a high or low dose is decided by the ”Infectious Equivalent” (IE),

which is a proxy for the environmental load of Salmonella. The equation given for

IE is

IE =
HI + ε ∗ LI

N

where ε is a reduced transmissibility rate to reduce the level of β when the model

is governed by Low Infection dynamics. Hence, once IE rises above a certain

threshold, IEd, the model switches to the High Infection dynamics, and all infected

pigs after this point transfer to the HI state rather than the LI state. This

switching between two dynamics has the result of speeding up the epidemic once

infection reaches a certain level. Stochasticity is incorporated into the model via

the ”τ -leap method”. Rather than taking each pig and determining whether it

makes a transition from one state to another on any given time step, the number

of ”events”, or pigs that transfer from one particular state to another, is assumed

to be Poisson distributed. For example, the number of High Infection events

(S → HI) per day is given by Poisson(β ∗ S ∗ IE) (if IE > IEd). Further work

anchored the model to a field study to give more realistic parameter estimates.

Finally, a very detailed model has been developed by Lurette et al. (2008a,b, 2009),

which first models the production of pigs through a farrow-to-finish farm (including
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the mixing of pigs at weaning, and the mixing of pigs towards the end of finishing

when underweight pigs are transferred to a group of pigs of similar weight), and

then overlays the transmission of Salmonella on top of this production model. Such

a model is much more realistic in mimicking the contacts of pigs with others, if at

the expense of complexity. The transmission model is also very complex; Lurette et

al assume that pigs will shed a relatively high load of Salmonella while they remain

seronegative (transition S → I−), but much less when the pig seroconverts (I− →

I+) (see Figure 1.6). They also consider the environmental contamination of the

pen (Q) by the shedding of the infected pigs. This environmental contamination

model is more detailed than the one by Soumpasis & Butler, including a decay

function (η) that removes contamination to the pen environment. The probability

of infection is dose-dependent (ie. it is a function of Q), although the dose-response

function is arbitrarily constructed from expert opinion.

Since the models of van der Gaag et al. (2004) and Ivanek et al. (2004), there

has been an obvious improvement and increase in complexity as authors have

strived to create more realistic models. Several key issues for intervention analysis

have been addressed with varying levels of success, including dose-dependency (in

various forms) and modelling of the production system. Several key factors of

these models (e.g. dose-dependent shedding, modelling of the environment and

the flow of pigs on the farm) should be captured in the models developed in this

thesis. However, there is also plenty of scope for advancing the methodology of

Salmonella in pig transmission modelling, not least in bringing to bear new data

sources to more accurately model the source of infection and parameterise the

model using UK production system data.
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1.4 Thesis motivation and outline

As discussed in Section 1.1, the presence of Salmonella in pigs at slaughter has

been assessed as one of the most important food safety priorities at a national

and EU level. While intervention is to be a food-chain wide approach, the EU

has made it clear that the focus of intervention is on reducing the prevalence of

Salmonella infection in pigs at slaughter. Indeed, the targets to be set by the EU

once the evidence gathering phase is complete are to be measured using lymph-

node infection at slaughter (at the time of writing, the EU have just received the

final piece of required evidence, the cost-benefit analysis for breeding pigs (FCC,

2011)) . Therefore, most National Control Plans, including the UK’s, will probably

focus on on-farm interventions (whether at the breeding or fattening farm).

The aim of this thesis is to develop a series of transmission models capable of

assessing the effect of on-farm interventions on British pig farms. In the previous

section models for Salmonella in pigs were briefly reviewed. We conclude that the

production/transmission model by Lurette et al. (2008a,b) represents the most

relevant model for Salmonella in pig intervention analyses. As such, developments

made by Lurette et al have been the main inclusions in the model development

described throughout this thesis.

The chapters in this thesis are arranged to demonstrate the natural progression in

complexity and accuracy of the transmission models. Chapters 2 and 3 describe

progressively more detailed (1-, 2- and multi-pen) deterministic transmission mod-

els, building on the original principles set out by Ivanek et al. (2004), and using

standard SIR/compartment model methodology. The models developed in these

chapters are analysed analytically and numerically. The former has not been car-

ried out in such detail before. The special conditions of local and global stability
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at equilibrium are solved analytically for all three models, and allow insight in

the dynamics of the transmission via relatively straightforward mathematics. In

Chapter 3, concerning the multi-pen model, the model is also analysed spatially to

identify the existence of any Turing spatial patterns or the existence of any trav-

elling waves. The epidemic curve for each model is derived numerically and these

results are used to check and strengthen the analytical solutions for equilibrium

and stability/spatial patterns.

In Chapter 4 the transmission parameters within the standard multi-pen model

(Chapter 3) are replaced by explicitly including faecal shedding of Salmonella (the

new model is denoted as the “cross-contamination” model). A dose-response func-

tion is also incorporated to determine the probability of infection given exposure

to environmental contamination. The model is formulated deterministically, and

so again stability conditions are determined, and the existence of spatial patterns

or travelling waves are investigated. As before, numerical solutions are also found

to derive an epidemic curve and strengthen the analytical results.

Chapter 5 re-formulates the standard and cross-contamination multi-pen models

into stochastic models. This is carried out by assuming the number of newly

infected pigs at each time step can be estimated by an equation similar to that

described in Equation (1.6). In addition, the numbers of pigs making the Excretor

→ Carrier state transition are assumed to be distributed according to the Weibull

distribution. Numerical simulations are provided and contrasted with the results

from the deterministic models. The stochastic version of the standard multi-pen

model is a modification of the Hill model described above (Hill et al., 2008).

In Chapter 6 the stochastic environment model is developed further, including a

more detailed version of environmental contamination and subsequent pig expo-
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sure. Three primary sources of infection are considered: faecal shedding by pigs;

feed contamination and external contamination of the environment (by wildlife

such as rodents or birds). Similar to the model of Lurette et al. (2008a,b) the

transmission model runs on top of a new generic production model describing the

flow of pigs, designed to be used by any EU MS (in this thesis it is parameterised

for the UK). The production model enables the modelling of 56 farm types, and

extends the range of production back to farrowing on the breeding farms, so that

the initial time of infection can be modelled, rather than concentrating only on

the fattening herd.

The penultimate chapter (Chapter 7) focuses on the use of the final produc-

tion/transmission model for intervention analysis. As the model from Chapter

6 is designed from the outset to assess interventions, a wide range of interventions

can be modelled. The wider results of the intervention analyses were ultimately

included and interpreted in an EFSA Scientific Opinion (EFSA, 2010c), which is

to be used as a cornerstone of the evidence base for setting the targets each MS

will be set to reduce the prevalence of infection in slaughter pigs.

In Chapter 8 a discussion on the advantages and disadvantages of the models

developed over the chapters, and where future improvements could be made, is

provided. The impact of the results of the models developed in this thesis for

policy-making is discussed.
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Chapter 2

One- and two-pen deterministic

models

2.1 Introduction

The aim of this chapter is to describe the first and second in a series of trans-

mission models for Salmonella in pigs which are suitable for intervention analysis.

In Section 1.3 several published transmission models for Salmonella in pigs have

been discussed. The simplest of these is by Ivanek et al. (2004), and is proposed as

the starting point for the series of models in this thesis (i.e. the 1-pen model dis-

cussed directly below in Section 2.2). The model is re-constructed here with some

modifications, as the foundation for further model development in later chapters.

Following on from Ivanek et al. (2004), the modifications are applicable to the

grower-finisher stage of production.

Factors likely to affect the transmission of Salmonella in a grower-finisher herd

include whether the pigs are reared indoors or outdoors, the number of sources from
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which a farmer buys their pigs, and (importantly for modelling considerations)

whether a farm is run on an All-In-All-Out (AIAO) or continuous basis (Berends

et al., 1996). Even strict AIAO practices are likely to break the assumption of

typical SIR models that the population is closed. This means the closed, singly

housed population of the one-pen model described in Section 2.2 is unrealistic.

Therefore, two updates to the one-pen model are relevant: first, we model penned

housing, which is ubiquitous on UK pig farms; and two, we model continuous

production (or the movement of pigs on and off the farm over the time period of

the model). The number and placement of pens within a pig house are highly

variable, but typically there may be 10-20 pens in one house. Therefore, as a first

step to investigating multiple penning beyond the single pen description, and the

inclusion of penned populations, a two-pen model is described and then analysed.

2.2 1-pen model

2.2.1 Model definition

The mechanisms of Salmonella transmission between pigs have been discussed in

detail in Section 1.1. Briefly, the dominant mechanism is thought to be the faecal-

oral route, with some potential for airborne transmission (Fedorka-Cray et al.,

1994; Gray et al., 1996; Lo Fo Wong and Hald, 2000; Proux et al., 2001). Hence,

an SIR model, where the force of infection, λ, is directly proportional to the number

of infected pigs within the pen/herd, is applicable as a first order approximation.

Explicitly, λ = βI, where β is the probability of an effective contact between an

excreting and susceptible pig and I is the number of excreting pigs within the

population (for clarity the term infection is reserved as an all-encompassing term
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including both shedding and non-shedding pigs that are infected in the lymph

nodes). There will also be some recovery from Salmonella infection over time,

first to a carrier state, where pigs remain infected (within the lymph nodes) but

do not excrete the organism (equivalent to the Recovered state in a traditional

SIR model), and then finally back to the Susceptible state. According to Bailey

(1975) the timestep of the model should be equivalent to the average latent period

of infection. In the case of Salmonella in pigs, this period of latency is around

24-48 hours (Straw et al., 1999). Using a timestep of 1 day means that there is no

need to include the latent state, as it is captured implicitly. Therefore, there are

three states: Susceptible (S), Excretor (I) and Carrier (C). The total number of

pigs within a pen, n, is assumed to be constant (and is equal to S + I + C = n).

The number of pigs within each state at time t will be governed by the transition

rates between Susceptible-Excretor (λ = βI), Excretor-Carrier (γ) and Carrier-

Susceptible (δ). For one pen, Equation (2.1) can be used to describe the change

in the number of pigs within each state over time t

dS

dt
= −βSI + δC,

dI

dt
= βSI − γI,

dC

dt
= γI − δC.

(2.1)

For ease of analysis, we non-dimensionalise this set of Ordinary Differential Equa-

tions (ODEs), where time t is the independent variable (in units of days) and S,

I and C are the dependent variables in units of number of pigs. Replacing each of

the variables by writing S = S̃〈S〉, I = Ĩ〈I〉, C = C̃〈C〉 we get
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dS̃〈S〉
dt

= −βS̃〈S〉Ĩ〈I〉+ δC̃〈C〉,

dĨ〈I〉
dt

= βS̃〈S〉Ĩ〈I〉 − γĨ〈I〉,

dC̃〈C〉
dt

= γĨ〈I〉 − δC̃〈C〉.

(2.2)

On setting 〈S〉 = 〈I〉 = 〈C〉 = n and β̃ = βn, Equation (2.2) reduces to

dS̃

dt
= −β̃S̃Ĩ + δ

(
1− S̃ − Ĩ

)
,

dĨ

dt
= β̃S̃Ĩ − γĨ,

(2.3)

where S̃ and Ĩ ∈ [0, 1] are the non-dimensionalised proportions of pigs in either

the Susceptible or Excretor state respectively in a pen of n pigs, and we have

used C̃ = 1 − S̃ − Ĩ. For convenience the tilde notation is dropped and S, I

etc. . . are taken to denote the non-dimensionlised versions of the model variables

and parameters. The rescaled model is investigated analytically in the next section

using stability analysis methods.

2.2.2 Stability analysis

Equilibrium solutions

An equilibrium solution is when the d
dt

terms in Equation (2.3) are zero. We denote

the equilibrium solutions by S = S∗ and I = I∗. Setting the d
dt

terms in Equation

(2.3) to zero and solving the corresponding algebraic equations simultaneously the
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following equilibrium points can be found

(S∗, I∗) =


(1, 0)(
γ
β
, δ(β−γ)
β(γ+δ)

) (2.4)

We refer to the first steady state (i.e. (1, 0)) as the fully-susceptible steady state,

and the second steady state (i.e.
(
γ
β
, δ(β−γ)
β(γ+δ)

)
) as the infected steady state.

Local stability

We now explore the stability of these two equilibria, by exploring the linear sta-

bility of these states. If any small deviation from the equilibrium points S∗, I∗ is

considered then the system can be approximated by an appropriately linearised

system (Roussel, 2005). Generally, if we have a set of autonomous ODEs, for

example

ẋ = f(x),

where ẋ is shorthand notation for dx
dt

. If x∗ = {x∗1, x∗2, . . . , x∗n} ∈ Rn is an equi-

librium point and dx = x− x∗ is the displacement from x∗, then the multivariate

Taylor expansion of f(x) is as follows

ẋ = f(x∗) +
∂f

∂x

∣∣∣∣
x∗

(x− x∗) +
∂2f

∂x2

∣∣∣∣
x∗

(x− x∗)2

2!
+ . . .

By definition the first term of this equation is zero at equilibrium. For local

stability we are only interested in small deviations away from x∗, i.e. when dx

is small. Hence, we assume that only the second term is significant and we can
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ignore the subsequent terms as being small. The leading order system can be

collected in matrix form to give the Jacobian matrix, J. Given the state vector

x = (x1, x2, . . . , xn) and rate vector f = (f1, f2, . . . , fn) then

J =

∣∣∣∣∣∣∣∣∣∣
∂f1
∂x1

. . . ∂f1
∂xn

... · · · ...

∂fn
∂x1

. . . ∂fn
∂xn

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
x=x∗

.

The solution of the leading order system can be written as a superposition of

terms in the form eµt, where {µ} are the set of eigenvalues of the Jacobian. If

eigenvalues of the Jacobian are complex, then the complex part simply contributes

an oscillatory component to the solution. Hence, it is only the real parts of the

eigenvalues that are important to determine asymptotic stability, as this shows

whether the scale of dx grows (one or more eigenvalues have a positive real part)

or diminishes (all eigenvalues have a negative real part). Hence, if all eigenvalues

have negative real parts then ∂x → 0 as t → ∞ and the equilibrium point x∗ is

locally stable; otherwise ∂x will grow and x∗ will be unstable.

Specifically for the system considered in Equation (2.3) then the Jacobian matrix

for the 1-pen system is as follows.

J =

 −βI∗ − δ −βS∗ − δ
βI∗ βS∗ − γ

 .
Substituting the equilibrium solutions from Equation (2.4) in turn then gives the

following:

Equilibirum 1: (S∗, I∗) = (1,0)
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J1 =

 −δ −β − δ
0 β − γ

 .
This matrix is upper triangular, hence the diagonal entries of J1 are the eigenvalues

of this first equilibrium point. As both δ and β are real and positive then −δ is

always negative. Therefore, the first equilibrium point will be stable if γ > β.

This makes sense intuitively as this means that the fully-susceptible steady state

is stable if the rate of recovery is greater than the rate of transmission, which

biologically would ensure that infection would die out.

Equilibrium 2: (S∗, I∗) =
(
γ
δ
, δ(β−γ)
β(γ+δ)

)
The Jacobian at the second equilibrium point is

J2 =

 − δ(β−γ)
(γ+δ)

− δ −γ − δ
δ(β−γ)
(γ+δ)

0

 .
J2 can be converted to a lower triangular matrix by switching rows. Hence,

J2 =

 δ(β−γ)
(γ+δ)

0

− δ(β−γ)
(γ+δ)

− δ −γ − δ

 .
Given the row switch, stability is reached when the top diagonal eigenvalue is

positive and the lower diagonal eigenvalue is negative. Therefore as the lower

diagonal eigenvalue of J2 is always negative (−γ − δ < 0), the second equilibrium

is stable if δ(β−γ)
(γ+δ)

, i.e. if β > γ. In summary, the 1-pen system will settle to the

fully susceptible steady state if γ > β and to the infected steady state if β > γ.
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Global stability

In the section above we have investigated stability of the 1-pen system in the

localised region of the steady state (i.e. for small displacements from (S∗, I∗)).

However, for planar systems we can also use phase-plane plots to assess the global

stability. Phase plane plots for the 1-pen system can easily be constructed us-

ing the direction field plot capability in Maple (Maplesoft, 2010). We investigate

global stability of the 1 pen system by constructing phase-plots in (S, I) space

with different (S(0), I(0)) initial conditions in the Susceptible (γ > β) and in-

fected (β > γ) cases (see Figure 2.1). The yellow curves indicate the trajectory

towards the fully-susceptible and infected steady states from the initial conditions

(S, I): (0.4, 0.1),(0, 0.9) and (0.7, 0.3) (only three initial points are shown in each

case for clarity; similar asymptotic behaviour is observed for all initial conditions

investigated.). We therefore conclude that the system appears to be globally stable

under the same conditions for local stability.

2.2.3 Numerical solution

The parameter estimates are listed in Table 2.1.

Table 2.1: Parameter estimates for the deterministic models
Notation Description Value Reference

β (β̃n) Probability of an effective contact be-
tween a susceptible and infected pig

0.4 Dent et al.
(2009)

γ (γ̃) Rate of transition from Excretor to
Carrier

0.038
days−1

Kranker et al.
(2003); Gray
et al. (1995)

δ (δ̃) Rate of transition from Carrier to Sus-
ceptible

0.022
days−1

Gray et al.
(1995)

The values for the probabilities of effective contact are taken from analysis carried
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Figure 2.1: Direction field plots for the trivial and non-trivial steady states of the
1-pen system. Both stability conditions are invariant to initial conditions for S and
I. For the trivial steady state phase plot (left hand side) then β = 0.2, γ = 0.3 and
δ = 0.1, and for the non-trivial steady state (right hand side) then β = 0.3, γ = 0.2
and δ = 0.1.

out on a British longitudinal study of Salmonella in pigs (Dent et al., 2009). The

rate of transition between Excretor and Carrier, γ, is the reciprocal of the average

duration of shedding Salmonella. Pigs are likely to intermittently shed Salmonella

after one-two weeks of infection (Kranker et al., 2003; Nollet et al., 2005). As a

simplifying assumption, it is assumed that pigs that intermittently shed Salmonella

shed relatively little Salmonella compared to newly infected pigs, and hence can be

ignored for the purposes of modelling transmission at this stage. Taking this into

account, several studies estimate the average duration of shedding of Salmonella

by pigs. Kranker et al. (2003) and Gray et al. (1996) both estimate an approximate

duration of shedding of 26 days. Therefore, γ = 1/26 = 0.0385d−1.

The rate of transition between Carrier and Susceptible, δ, is the reciprocal of the

average duration of Salmonella carriage (i.e. the pig is infected in the lymph node,

but not shedding Salmonella). Concordant with the assumption made regarding
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intermittent shedding above, it is assumed that the duration of carriage includes

the period of intermittent shedding, and any remaining time after complete cessa-

tion of Salmonella excretion in which the pig is still infected in the lymph nodes.

No data are available for the duration of the intermittent-shedding/carrier sta-

tus; however, a study by Gray et al. (1995) estimated the average total time of

infection as 70 days. Since the length of the shedding period is known, an es-

timate for the duration of carrier status is obtained by subtracting the duration

of the infection from the total time of infection, which gives 44 days. Therefore

δ = 1/44 = 0.022d−1.

For simplicity it was assumed that all pigs in a pen are susceptible except the one

which has entered the Excretor state, therefore at t = 0 then I = 1
40

and S = 1− 1
40

(using the dimensionless versions of I and S).

Given the current parameter estimation then β = 0.40 (β̃n = 0.01 ∗ 40) and

γ = 0.038. Hence, we would expect that the system should settle to the infected

steady state (β̃ > γ), where S∗ = γ

β̃
= 0.095 and I∗ =

δ(β̃−γ)
β̃(γ+δ)

= 0.332.

The solution curves are obtained by numerically solving Equation (2.3) in MAT-

LAB (MATLAB 2011a, The MathWorks Inc., Natick, MA, 2011) using the ODE45

solver. With the current parameter estimation, the one-pen model produces the

epidemic curve as shown in Figure 2.2. As indicated by the linear analysis above,

the epidemic reaches an infected equilibrium towards the end of the rearing period

(80-90 days).
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Figure 2.2: Time course of infection within one pen of 40 pigs with no outside
force of infection. Parameter values are given in Table 2.1

2.2.4 Summary

The one-pen model is a gross simplification of the reality of pig farming and the

spread of Salmonella between pigs, but provides a simple foundation on which to

build. Carriers do not contribute to infection in any way; they are not contributing

to the level of Salmonella in the environment (represented by β) and are not

available for infection. Hence, stability of the system does not depend on Carriers.

If the rate of infection (β) is greater than the rate of ceasing shedding (γ), then

the dynamics of infection within one pen are of a rapid transmission of infection

between pigs in the pen, followed by a steady state of excretion. If γ < β, then
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any infection will rapidly fade away.

The one-pen model is identical to that of Ivanek et al. (2004), save for the removal

of a latent stage of infection. However, the epidemic curves produced by both

models are significantly different, due to the parameter estimation and initial con-

ditions. Ivanek et al. (2004) assume a much higher proportion of Excretors in the

initial conditions, a much lower probability of an effective contact (β), and almost

double the average duration of shedding. The parameter estimates β and γ were

updated in this model due to new longitudinal data (and subsequent statistical

analysis) not available at the time of the development of the Ivanek model.

2.3 Two-pen deterministic model

2.3.1 Model definition

The inclusion of multiple pens means there must be consideration of the interaction

between pigs from different pens. As transmission predominantly occurs via the

faecal-oral route, it was considered reasonable as a first assumption that faecal

material from excreting pigs will largely remain within the pen that contains the

pigs from which the contaminated faeces originate, but that there will be leakage

of contamination via some process (for example, airborne contamination, cleaning

of pens, farmer incursion). For a two-pen system Equation (2.1) can be modified

to give the system in Equation (2.5)
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dS1

dt
= −β1S1I1 − β2S1I2 + δC1,

dS2

dt
= −β1S2I2 − β2S2I1 + δC2,

dI1

dt
= β1S1I1 + β2S1I2 − γI1,

dI2

dt
= β1S2I2 + β2S2I1 − γI2,

dC1

dt
= γI1 − δC1,

dC2

dt
= γI2 − δC2,

(2.5)

where β1 and β2 denote the probability of an effective contact between a susceptible

and excreting pig within the same pen, and an excreting and susceptible pig within

adjacent pens respectively, we expect that β1 > β2. The variables S1, I1, C1, S2, I2

and C2 represent the number of pigs within each state within the first (subscript

1) and second (subscript 2) pens. The force of infection for this 2-pen system is

for pen 1,2 λ1 = β1I1 + β2I2, λ2 = β1I2 + β2I1 respectively.

Re-scaling Equation (2.5) in a similar fashion as for the one-pen system (where

〈S1〉 = 〈I1〉 = 〈C1〉 = 〈S2〉 = 〈I2〉 = 〈C2〉 = n) then
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dS̃1

dt̃〈t〉
= −β1

n
S̃1Ĩ1 −

β2

n
S̃1Ĩ2 + δC1,

dS̃2

dt̃〈t〉
= −β1

n
S̃2Ĩ2 −

β2

n
S̃2Ĩ1 + δC2,

dĨ1

dt̃〈t〉
=
β1

n
S̃1Ĩ1 +

β2

n
S̃1Ĩ2 − γĨ1,

dĨ2

dt̃〈t〉
=
β1

n
S̃2Ĩ2 +

β2

n
S̃2Ĩ1 − γĨ2,

dC1

dt̃〈t〉
= γĨ1 − δC1,

dC2

dt̃〈t〉
= γĨ2 − δC2.

(2.6)

Setting β̃1 = β1n, 〈t〉 = 1
β1n

, β̃2 = β2
β1

, δ̃ = δ
β1n

and γ̃ = γ
β1n

leads to Equation (2.7)

dS̃1

dt
= −S̃1Ĩ1 − β̃2S̃1Ĩ2 + δ̃

(
1− S̃1 − Ĩ1

)
,

dS̃2

dt
= −S̃2Ĩ2 − β̃2S̃2Ĩ1 + δ̃

(
1− S̃2 − Ĩ2

)
,

dĨ1

dt
= S̃1Ĩ1 + β̃2S̃1Ĩ2 − γ̃Ĩ1,

dĨ2

dt
= S̃2Ĩ2 + β̃2S̃2Ĩ1 − γ̃Ĩ2.

(2.7)

As for the one-pen model the criteria for linear stability are investigated using the

non-dimensionalised form of the system in Equation (2.7). Again, for convenience,

tildes are dropped from the notation.
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2.3.2 Stability analysis

Equilibrium solutions

We denote the equilibrium values by S1 = S∗1 , S2 = S∗2 , I1 = I∗1 , I2 = I∗2 . Setting the

d
dt

terms in Equation (2.7) to zero, solving the corresponding algebraic equations

simultaneously, the following set of equilibrium points are found:

(S∗1 , S
∗
2 , I
∗
1 , I

∗
2 ) =


(1, 1, 0, 0)(

γ
β2+1

, γ
β2+1

, δ(β2−γ+1)
(β2+1)(δ+γ)

, δ(β2−γ+1)
(β2+1)(δ+γ)

)
(

1− I∗1 (δ+γ)

δ
, 1− I∗2 (δ+γ)

δ
, δ((1−β2)(1−β2−γ)±

√
a)

2(1−β2)(δ+γ)
,
I∗1 ((δ+γ)I∗1−δ+δγ)

β2(δ−(δ+γ)I∗1 )

)
,

(2.8)

where a = (1− β2)2(1− β2 − γ)2 + 4(β2(1− β2)(1− β2 − γ).

Local stability

For the system considered in Equation (2.7), the Jacobian matrix for the 2-pen

system is as follows.

J =



−I∗1 − β2I
∗
2 − δ 0 −S∗1 − δ −β2S

∗
1

0 −I∗2 − β2I
∗
1 − δ −β2S

∗
2 −S∗2 − δ

I∗1 + β2I
∗
2 0 S∗1 − γ β2S

∗
1

0 I∗2 + β2I
∗
1 β2S

∗
2 S∗2 − γ


.

As before we now explore linear stability of the equilibria, by exploring the eigen-

values of J for each equilibrium point in turn.

49



Equilibirum 1: (S∗1 , S
∗
2 , I
∗
1 , I

∗
2 ) = (1, 1, 0, 0), which we will refer to as the non-

infection state.

The Jacobian becomes

J′1 =



−δ 0 −1− δ −β2

0 −δ −β2 −1− δ

0 0 1− γ β2

0 0 β2 1− γ


.

The eigenvalues of J1 are (−β2 +1−γ, β2−γ+1,−δ,−δ). Given that by definition

δ is a real and positive number then the third and fourth eigenvalues will always

be negative. Hence for the fully susceptible solution (1, 1, 0, 0) to be stable we then

require that −β2 + 1 − γ < 0 and β2 + 1 − γ < 0. In other words, β2 > 1 − γ

and β2 < γ− 1. The non-shaded area in Figure 2.3 represents the region in (β2, γ)

space where these two expressions both hold (in the region β2 > 0).

Equilibrium 2: (S∗1 , S
∗
2 , I
∗
1 , I

∗
2 ) =

{
γ

β2+1
, γ
β2+1

, δ(β2−γ+1)
(β2+1)(δ+γ)

, δ(β2−γ+1)
(β2+1)(δ+γ)

}
, which represents an infection state in which the level of infectivity is the same in

both pens.

From which, we obtain the Jacobian

J2 =



−ψ − δ 0 − γ
β2+1
− δ − β2γ

β2+1

0 −ψ − δ − β2γ
β2+1

− γ
β2+1
− δ

ψ 0 γ
β2+1
− γ β2γ

β2+1

0 ψ β2γ
β2+1

γ
β2+1
− γ


,
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where ψ = δ(β2+1−γ)
(δ+γ)(β2+1)

+ β2δ(β2+1−γ)
(δ+γ)(β2+1)

. The eigenvalues of J2 are:

λ1,2 = 1
2(δ+γ)

(
−δ (β2 + 1 + δ)±

√
δ2(β2 + 1 + δ)2 − 4δ(δ + γ)2 (β2 − γ + 1)

)
,

λ3,4 = 1
2(β2+1)(δ+γ)

(
Ω±

√
Ω2 − 4δ (β2 + 1) (β2

2 + β2γ + 2β2 + 1− γ) (δ + γ)
)
,

where Ω = − (δ + δβ2
2 + 2β2δγ + δ2β2 + 2γ2β2 + δ + 2δβ2).

Since both Ω and −δ (β2 + 1 + δ) are negative then both negative roots of λ1,2 and

λ3,4 are negative. Inspection of the first term in λ1,2 highlights that the positive

root of λ1,2 will be negative if the square root term is less than δ(β2 + 1 + δ),

which will hold if β2 > γ − 1. Similarly, the positive root of λ3,4 will be negative

if β2
2 + β2γ + 2β2 + 1− γ > 0. Solving this last quadratic inequality gives:

β2 > −
(2 + γ)

2
± 1

2

√
γ (γ + 8) = β∗2

.

The second equilibrium will therefore be stable provided that β2 > β∗2 and β2 >

γ − 1. The region of stability is indicated by the shaded region in Figure 2.3.

Equilibrium 3:

(S∗1 , S
∗
2 , I
∗
1 , I

∗
2 ) =

(
1− I∗1 (δ+γ)

δ
, 1− I∗2 (δ+γ)

δ
, δ((1−β2)(1−β2−γ)±

√
a)

2(1−β2)(δ+γ)
,
I∗1 ((δ+γ)I∗1−δ+δγ)

β2(δ−(δ+γ)I∗1 )

)
, where

a = (1− β2)2(1− β2 − γ)2 + 4(β2(1−β2)(1−β2− γ). This represents an infection

state in which infectivity is different in pens 1 and 2.

Inspection of the steady state equations can shed light on the validity of this third

steady state solution. Recall that S∗1 , S∗2 , I∗1 , I∗2 must all lie between 0 and 1, and

δ, γ ≥ 0. We also expect β2 ∈ [0, 1] since this is the rescaled inter-pen infectivity
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with respect to β1 and we assume that β1 > β2. We first make an observation

about the numerator of I∗1 , which is

δ
[
(1− β2) (1− β2 − γ)±

√
a
]

=

δ (1− β2) (1− β2 − γ)±
√
δ2 (1− β2)2(1− β2 − γ)2 + 4δ2 (β2 (1− β2) (1− β2 − γ)).

The square root term will always be greater than δ(1−β2)(1−β2−γ), since β2 < 1

and β2 > 1− γ, hence the negative square root value for I∗1 will be less than zero,

which violates the condition that I∗1 ≥ 0. Thus the negative root is not a valid

solution.

We also require that S∗1 ≥ 0 and I∗1 ≥ 0 . Solving these two inequalities using the

equilibrium points for S∗1 and I∗2 as shown above (i.e. S∗1 = 1 − I∗1 (δ+γ)

δ
> 0 and

I∗2 =
I∗1 ((δ+γ)I∗1−δ+δγ)

β2(δ−(δ+γ)I∗1 )
> 0), after some rearranging gives

δ

δ + γ
≥ I∗1 ≥

δ(1− γ)

δ + γ
. (2.9)

Substituting the positive square root expression for I∗1 into Equation (2.9) we then

have

δ

δ + γ
≥ δ ((1− β2) (1− β2 − γ) +

√
a)

2 (1− β2) (δ + γ)

≥ δ (1− γ)

δ + γ
.

(2.10)

Deleting similar terms from each side of Equation (2.10) and rearranging, we have

from the first inequality
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2 (1− β2)− (1− β2) (1− β2 − γ) >
√
a

⇒
(
1 + γ − β2

2 − β2γ
)2

> a

⇒ (β2 − 1)2 (γ + β + 1)2 > (β2 − 1)2 (γ + β + 1)2 − 4γ (1− β2)

⇒ 4γ (1− β2) > 0.

Performing a similar rearrangement for the second inequality, we have

(β2 − 1)2 (γ − β − 1)2 ≤ (1− β2)2 (1− β2 − γ)2 + 4β2 (1− β2) (1− β2 − γ)

⇒ (β2 − 1)2 (γ − β − 1)2 ≤ (β2 − 1)2 (γ − β − 1)2 +−4γβ2
2 (β2 − 1)

⇒ 4γβ2
2 (β2 − 1) ≥ 0.

In summary, we have 4γ (1− β2) > 0 and 4γβ2
2 (β2 − 1) ≥ 0. By definition γ > 0

and so the first condition implies that β2 < 1. However employing this in the

second condition gives β2 ≥ 1, which is a contradiction and therefore this final

steady state solution must be invalid.

Since the third state is not valid, both pens must converge to the same state;

either they both settle to the fully-susceptible steady state, or they both settle to

an identical infected steady state. That is, there appears to be no capacity in this

case for the pens to settle to a steady state where the infection level is different in

the pens.
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Figure 2.3: The area enclosed by the lines β2 = 0 and β2 = γ − 1 represents the
parameter space of [β2, γ] when the 2-pen system settles to the non-infected steady
state, and the shaded area represents the parameter space when the 2-pen system
settles to the infected steady state (Equilibrium 2).

Comparison of stability analysis results against R0

We can also think of the above result for the stability of the 1-pen and 2-pen

systems in terms of the reproductive ratio R0, which equals:

R0 = rate of infection × the duration of infection × the number of contacts .

In the unscaled case, the rate of infection is either β or β1 + β2, and the average

duration of infection is 1
γ
. Therefore the basic reproductive ratios for the 1- and

2-pen systems, R0(1) and R0(2), are equal to β̃n
γ

and
(β̃1+β̃2)n

γ
respectively. For

an epidemic to continue R0(1) or R0(2) must be greater than one, which will only
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occur if β̃n > γ or
(
β̃1 + β̃2

)
n > γ, which we find are identical to the conditions

for the infected steady state in our system.

Phase space plots

The variation in the value of the steady state {S∗1 , S∗2 , I∗1 , I∗2} in the parameter

space [β2, γ] is shown in Figure 2.4. The transition between the fully-susceptible

system and infected steady state occurs at β2 = γ − 1, represented by the black

lines in Figure 2.4 - the susceptible steady state occurs when β2 < γ − 1. The

first thing to observe is that the phase space plots for both pens are identical,

confirming that if the pens are to settle to equilibrium they must be at the same

level of infection. There is a much steeper gradient in the change of the steady

state values for I∗1 and I∗2 than there is S∗1 and S∗2 . The values for I∗1 and I∗2 in the

infected steady state are very close to zero for much of the [β2, γ] parameter space,

whereas there is much more gradual increase in the infected steady state values

for S∗1 and S∗2 . This occurs because γ determines the proportion in the Carrier

state (C). Hence, as γ increases, so the proportion of Excretors is reduced as most

pigs transfer to the Carrier state by the stage of equilibrium. The proportion of

Susceptibles is unaffected by this dynamic.

Examples of the dynamics over time as the solutions tend to these two steady

states are given in Figure 2.5, where values of β2 and γ have been selected from

the appropriate part of the parameter space of [β2, γ]. Parameter values for the

fully-susceptible graph are γ = 1.8 and β2 = 0.8, and for the infected steady state

graph γ = 1.0 and β2 = 1.0. The damped oscillatory pattern as the system settles

down to the non-infected state in the left hand plot is apparent (corresponding to

complex eigenvalues with negative real components).
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Figure 2.4: Change in the steady state values for {S∗1 , S∗2 , I∗1 , I∗2} over parameter
space [β2, γ]. The black lines represent the intersection β2 = γ − 1. Parameter
values are given in Table 2.1

Global stability

Numerical analysis of the 2-pen system shows that the stability conditions are

independent of initial starting conditions for S1, S2, I1 and I2 (see Figure 2.6 for

an example). The contour colour of the surface plots represents the value of I∗1

(top) and I∗2 (bottom) after 200 days. We see that for γ < β2 + 1 the infected

steady state is reached, regardless of the initial level of infecteds, but for γ ≥ β2 +1

the same susceptible state is reached - again, independent of the intitial state of

the system. Direction field plots showing the trajectory of the epidemic curve from
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Figure 2.5: Examples of epidemic curves settling down to one of two distinct steady
states (fully susceptible or infected) over time, given appropriate values of β2 and
γ. LHS γ = 1 and β2 = 1, RHS γ = 1.8 and β2 = 0.8. The remaining parameters
are as in Table 2.1.

initial starting conditions to either the fully-susceptible or infected steady states

are shown in Figure 2.7. For the non-infected steady state phase plot (left hand

side) then β = 0.1, γ = 1.2 and δ = 0.1, and for the infected steady state (right

hand side) then β = 1.2, γ = 0.1 and δ = 0.1. In both cases, the curves all converge

to the same suceptible state, for the LHS and RHS respectively, suggesting that

the 2-pen system is globally stable under the same conditions as for local stability.
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Figure 2.6: Stability conditions are invariant to intitial conditions for S1, S2, I1

and I2; the particular steady state which the system tends to depends on the value
of γ alone. The parameters β2 and δ determine where the transition from one
steady state occur. For these particular simulations β2 = δ = 0.2.
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Figure 2.7: The purple lines represent the trajectories of the proportion of suscep-
tible and infected pigs to the steady states in both the trivial (LHS) and non-trivial
(RHS) plots. Both stability conditions are invariant to initial conditions for S1,
S2, I1 and I2. The steady state values are represented by red circles. For the
non-infected steady state phase plot (left hand side) then β = 0.1, γ = 1.2 and
δ = 0.1, and for the infected steady state (right hand side) then β = 1.2, γ = 0.1
and δ = 0.1.
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2.3.3 Numerical solution

The parameter estimates are listed in Table 2.2.

Table 2.2: Parameter estimates for the 2-pen deterministic model
Notation
(non-
scaled)

Description Value Reference

β1 Probability of an effective contact be-
tween a susceptible and infected pig in
the same pen

0.01 Estimate

β2 (β2
β1

) Probability of an effective contact be-
tween a susceptible and infected pig be-
tween pens

0.1 Estimate

γ ( γ
β1n

) Rate of transition from Excretor to
Carrier

0.095
days−1

Kranker et al.
(2003); Gray
et al. (1995)

δ ( δ
β1n

) Rate of transition from Carrier to Sus-
ceptible

0.055
days−1

Gray et al.
(1995)

For the numerical solution, we take β2 = 0.1, where β2 is an approximation in the

absence of data (and is taken to be a tenth of the value of β).

The two-pen model produces an epidemic curve as shown in Figure 2.8. As for

the one-pen model, then the majority of pigs will become infected during the 84

day grower-finisher period. Again, as for the infection case in the one-pen model,

the epidemic appears to be reaching equilibrium towards the end of the rearing

period.

60



F
ig

u
re

2.
8:

T
im

e
co

u
rs

e
of

in
fe

ct
io

n
w

it
h
in

tw
o

p
en

s
p
ig

s
w

it
h

a
fo

rc
e

of
in

fe
ct

io
n

b
et

w
ee

n
p

en
s

te
n

ti
m

es
le

ss
er

th
an

th
e

fo
rc

e
of

in
fe

ct
io

n
w

it
h
in

a
p

en
.

T
h
e

2-
p

en
m

o
d
el

re
ac

h
es

a
ve

ry
si

m
il
ar

st
ea

d
y

st
ae

va
lu

e
as

fo
r

th
e

1-
p

en
m

o
d
el

(t
h
e

1-
p

en
ep

id
em

ic
cu

rv
e

is
sh

ow
n

as
d
as

h
ed

li
n
es

).

61



2.3.4 Discussion

We show that as with the 1-pen system, the 2-pen system will always converge

to either an infection state (with the infection levels the same in both pens) or a

disease-free state in both pens. The steady state to which the system converges

to depends only on the rate of infection (in the case of the 1-pen system, β, and

in the case of the 2-pen system, β2) and the rate of recovery γ.

For each system (1-pen and 2-pen) there is a subdivision of phase space of {β, γ}

or {β2, γ},respectively for 1-pen and 2-pen cases, below which the system settles

to the fully-susceptible steady state, and above which the system settles to the

infected steady state. If the rate of recovery is greater than the rate of infection

then the system will settle to the fully-susceptible steady state. If vice versa,

then the system will settle to the infected steady state. This result is biologically

consistent, as it would be expected that if more pigs are recovering than becoming

infected, then infection should eventually die out.

Despite the simplicity of the one-pen and two-pen models, much can be learnt

about the dynamics of infection from the stability analysis techniques above. The

results suggest that once infection is introduced it will continue indefinitely, having

reached the infected steady state. Of interest is the fact that this result appears

to hold no matter what the initial conditions are, i.e. that the steady state is

globally stable. If such a result were to hold in reality, then it has significance for

the interventions that can be effective in reducing Salmonella in pigs. For example,

if rodent control is only effective in reducing the numbers of initially infected pigs,

rather than eliminating infection, then the benefit of such an intervention may well

be cancelled out, as the infected pigs will still continue to transmit infection.
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Chapter 3

Multi-pen determinstic model

3.1 Introduction and farm setup

As described in Chapter 1, British pig farming is typified by penned housing and

continuous production (i.e. pigs of different ages live within the same house, and

hence there are ‘continuous’ introductions to and departures from the house over

the course of one rearing stage period). The ways in which farmers employ penned

housing and continuous production are many and varied, and hence in order to

reduce the complexity of the initial multi-pen model (and thus much of the farm

to farm variability present in the UK) the ‘most common’ approach to grower-

finisher production in the UK is considered. Expert opinion (Rob Davies, VLA;

Paul Blanchard, BASF, personal communication) is used to define a typical farm,

within which the majority of pigs in the UK will be produced. This typical farm has

the following attributes: inside production; exclusive grower-finisher herd; single

site/house; continuous system of production; pens used to segregate the herd into

smaller groups.
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There are a range of penning systems used, but for simplicity it is assumed that

pig pens are typically arranged as in Figure 3.1. In this particular case, there

are two rows (Ir = {1, 2}) each with 6 pens (J = {1, 2.., 6}). To facilitate the

investigation of continuous production as a risk factor, it is assumed that pens

are depopulated/repopulated on a weekly basis. The times (t) at which each pen

is depopulated/repopulated is given in Figure 3.1. Initial conditions are that the

model starts when a pen of weaner pigs is transferred into Pen (i = 1,j = 1) at

t = 1, where i can be any element from the set Ir and j can be any element of

the set J . The rearing period is set at 84 days, such that all other pens have been

depopulated/repopulated by the time the pigs in Pen (1,1) reach slaughter weight

and are sent to slaughter (t = 85).

Figure 3.1: Schematic diagram of pen layout for the multi-pen determinstic model.
The t indicated denotes the time of depopulation/repopulation of that pen in the
model.

3.2 Model description

Expanding to the 12-pen system described in Figure 3.1 then the force of infec-

tion must include all potential contamination from each pen. Hence, the set of
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differential equations for the 12-pen farm system described above can be written

in general terms as

dSi,j
dt

= −λmSi,j + δCi,j,

dIi,j
dt

= λmSi,j − γIi,j,

dCi,j
dt

= γIi,j − δCi,j,

λm =
2∑

k=1

6∑
l=1

βk,lIk,l,

(3.1)

where βk,l is the probability of an effective contact between an excreting pig in

pen (k,l) and a susceptible pig in Pen (i,j). For simplicity the probability of an

effective contact is split into within-pen, within-row and between-row terms, that

is

βk,l =


β1 if i = k & j = l,

β2 if i = k & j 6= l,

β3 if i 6= k.

Such a model is intractable for analytical solutions, and so a slightly modified

version is defined for the analytical methods used in the following sections. Defin-

ing a continuous, infinite string of compartments (in this case pens) is a common

method to allow analytical solutions, which avoid additional complexity caused by

boundary conditions. The inclusion of a simpler spatial framework allows for more

analytical methods to be used: we can investigate spatially heterogeneous stability

conditions (using the specific method of Turing stability analysis) and determine

the existence of travelling waves, where the speed of transmission between pens

65



can be deduced.

3.3 Stability analysis

For the stability analysis, we assume an infinitely long string of pens, equivalent

to one row of pens in Equation (3.1). However, the assumption that within-

row between-pen transmission is equal across all pens in an infinite pen system

would be biologically implausible. Therefore, we limit between-pen transmission

to adjacent pens only. Using the same non-dimensionalisation as for the 2-pen

system (see Equation (2.7)) the dynamics of the n-pen system can be described

as:

dSj
dt

= −SjIj − β2Sj

(
Ij−1 + Ij+1

2

)
+ δ (1− Sj − Ij) ,

dIj
dt

= SjIj + β2Sj

(
Ij−1 + Ij+1

2

)
− γIj.

(3.2)

where Sj and Ij are the proportions of Susceptibles and Excretors in pen j at time

t respectively, β2, γ and δ are defined as before in the 2-pen system, and j ∈ Z.

Homogeneous steady state

By definition, a spatially uniform homogeneous steady state of the n-pen system

will have Sj = S∗ ∀ j and Ij = I∗ ∀ j, i.e. all pens will settle to the same values

of Susceptibles and Excretors. Therefore, in a homogeneous equilibrium Equation

(3.2) at steady state will reduce to
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0 = −S∗I∗ − β2S
∗I∗ + δ (1− S∗ − I∗) ,

0 = S∗I∗ + β2S
∗I∗ − γI∗.

(3.3)

Solving for S∗ and I∗ we have

S∗ =
γ

1 + β2

,

I∗ =
δ (1 + β2 − γ)

γ + β2γ + δ + δβ2

.

(3.4)

Given S∗ and I∗ are positive real numbers then the homogeneous steady state is

only valid when

γ < β2 + 1. (3.5)

This condition is the same as for the stability of the 2-pen infected steady state,

and again the combined within- and between-pen force of infection must be greater

than the rate of transition from Excretor to Carrier (γ) in order for the infected

steady state to remain stable.

Examining the existence of spatial patterns (Turing stability analysis)

A well-documented area of research in mathematical biology is the study of pat-

terns, typically in determining the development of form and shape during devel-

opment (morphogenesis). One of the most important contributions to this field

was by Alan Turing with his seminal paper on the potential for diffusion to lead
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to chemical morphogenesis (Turing, 1952). Briefly, Turing assumed a uniform,

positive stable steady state when two chemicals are well-mixed (i.e. in the absence

of diffusion), and showed that small inhomogeneous perturbations may lead to

the formation of spatial patterns in the presence of diffusion of the two chemicals.

Diffusion-driven spatial patterns have been recognised as playing a crucial role in

many aspects of chemical morphogenesis. For example, the prepattern of chemical

concentration produced by inhomogeneous perturbations may determine the cell

type into which embryonic cells will form (Edelstein-Keshet, 1988).

While the system of infection dynamics described in this chapter is clearly very

different to chemical morphogenesis, the mathematics of Turing pattern formation

is applicable, as the spread of infection between pens of pigs is analogous to the

diffusion process. The conditions for a stable homogeneous steady state that is

then unstable to inhomogeneous perturbations are found by linearising the non-

linear system in question and choosing an appropriate form of spatially varying

perturbation. Interpreting this mathematical process biologically (for the particu-

lar case of Salmonella in pig pens), then as shown for the 1-pen and 2-pen models

an infected steady state is reached if the rate of infection is greater than the rate

of recovery. However, small perturbations in the level of infection in a pen may

come from inhomogeneous environmental transfer of Salmonella between wildlife

and pigs in different pens, or from infected pigs shedding Salmonella at slightly

different rates in different pens. These perturbations are entirely plausible, and

indeed would be expected to be the norm, rather than the exception.

We linearise Equation (3.2) using
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Sj = S̄j + S∗

Ij = Īj + I∗
(3.6)

where S̄j and Īj denote perturbations of Sj and Ij from their respective equilibria.

Substituting Equation (3.6) into Equation (3.2) and ignoring higher order terms

(e.g. S̄2
j , since we assume that S̄j and Īj are small) we get

dS̄j
dt

= −S̄jI∗ − S∗Īj − β2S
∗
(
Īj−1+Īj+1

2

)
− β2S̄jI

∗ − δ
(
S̄j + Īj

)
,

dĪj
dt

= S̄jI
∗ + S∗Īj + β2S

∗
(
Īj−1+Īj+1

2

)
+ β2S̄jI

∗ − γĪj.
(3.7)

Now we look for spatially varying solutions of the form S̄j = Ŝeµt+iλj and Īj =

Îeµt+iλj, where Ŝ and Î are constants, µ is the temporal growth rate of spatial

modes of wavelength λ. The constant µ determines whether the inhomogeneous

perturbation will grow to lead to instability (and potentially spatial patterns), or

simply settle back to the steady state. The latter part of the exponential, iλj is a

complex term that contributes a spatial oscillatory part to the perturbation; j is

the number of a pen.

Rearranging we have

(
µŜ + ŜI∗ + S∗Î + β2S

∗Î
(
eiλ+e−iλ

2

)
+ β2ŜI

∗ + δ
(
Ŝ + Î

))
· eµt+iλj = 0(

µÎ − ŜI∗ + S∗Î − β2S
∗Î
(
eiλ+e−iλ

2

)
− β2ŜI

∗ + γÎ
)
· eµt+iλj = 0.

Dividing through by eµt+iλj and converting into matrix form we then get
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 µ+ I∗ + β2I
∗ + δ S∗ + β2S

∗k (λ) + δ

−I∗ − β2I
∗ µ− S∗ − β2S

∗k (λ) + γ

 ·
 Ŝ

Î

 =

 0

0

 . (3.8)

where k(λ) = cos(λ) ≡ eiλ+e−iλ

2
∈ [−1, 1]. The characteristic equation of the

matrix is of the form µ2 +a1µ+a2 = 0, the roots of which have negative real parts

if a1 > 0 and a2 > 0. Expanding the determinant in Equation (3.8) and collecting

terms then gives

a1 =
δβ2

2 − β2γ
2k (λ)− β2γk (λ) δ + γδβ2 + β2γ

2 + 2δβ2 + δ2β2 + δ + δ2

(1 + β2) (γ + δ)
,

a2 =
δ (β2

2 − β2γk (λ) + 2β2 + 1− γ)

(1 + β)
.

(3.9)

Note that a1 and a2 are linear functions in k (λ). We can determine the fixed

gradients of a1 and a2 in terms of the remaining parameters by differentiating,

namely:

da1

dk
= − (β2γ

2 + γδβ2)

(1 + β2)(γ + δ)
, (3.10a)

da2

dk
= − δβ2γ

(1 + β2)
. (3.10b)

Since these are both strictly negative and a1 (k = 1) and a2 (k = 1) are both as-

sumed to be strictly positive so that S∗ and I∗ are stable to homogeneous pertur-

bations, this means that a1, a2 > 0 ∀ k ∈ [−1, 1], and so Turing spatial patterns

are not predicted. Hence, we may expect that even in a large n-pen system that

all pens will eventually settle to the same level of infection over a sufficient period
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of time.

3.4 Travelling wave analysis

In the previous section no Turing spatial patterns were found, suggesting that

the multi-pen model solutions will eventually settle to one of the uniform steady

states. Therefore, of interest is the speed of the spread of infection between pens,

and how fast the system will settle to the chosen steady state.

For many physical and chemical processes, the formation of waves is crucial in

transferring energy, mass and/or information, and the same can be said for a vast

array of biological phenomena, for example wound healing and epidemic spread.

A travelling wave can be defined as a wave which travels with constant speed and

shape, and the mathematics associated with these types of waves were formalised in

the first half of the 20th Century. A classic pedagogical example is given by Fisher

(1937), who described by the formation of travelling waves the spatial spread of a

favoured gene in a population.

As for the homogeneous stability analysis and formation of Turing spatial patterns,

the method for travelling wave analysis involves linearisation of the non-linear sys-

tem. In addition, the analytical system of ODEs can be simplified by transferring

to a moving frame of reference in which the wave will appear stationary, i.e. a

moving frame of reference that moves at same fixed speed as the wave.

The spatially homogeneous steady state of the n-pen system {I∗, S∗}, and its

conditions for stability has already been described in Section 3.3. To investigate

the existence of any travelling waves, we start with Equations (3.2) and (3.7).

As described in Edelstein-Keshet (1988), a travelling wave is a function that moves
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along some spatial axis over time t at a constant speed, c, whilst retaining a fixed

shape. It is useful to convert from the stationary observer frame of reference (in j

and t) to the frame of reference of the moving observer, where both space and time

dependence are described by one parameter, z. Conversion to z in our infinite pen

system is achieved by the following relation.

z = j − ct

where c is the wave speed. Therefore, we write

S(z) = S(j, t), I(z) = I(j, t).

This change of reference frame is depicted visually in Figure 3.2. The top panel

depicts the movement of the travelling wave in the (j, t) frame of reference. At some

initial starting point j0 infection spreads out from this pen into fully susceptible

pens, moving further along the string of pens in time, at speed c. The wavefront,

followed by a wave of fixed shape, moving at some constant speed c, initially

introduces a small amount of infection into a pen, but as time moves forward the

infection level within the pen increases to the infection steady state (I∗).

Changing into the moving frame of reference (bottom panel of Figure 3.2) the ob-

server moves along with the wave at the same speed as the wave, c, and so observes

a static wave. Therefore, instead of having both time and space dependency, the

moving frame of reference incorporates both time and space into one dependent

variable, z. We can use the general case in Figure 3.2 to explicitly consider what

happens to S∗ and I∗ over time. In the non-stationary frame of reference (top

72



panel), then at time t0, I (0, 0) is positive but small, and S (0, 0) ≈ 1. At time

t0, as j → ∞ then I (j, t0) → 0 and S (j, t0) → 1. As t increases, the level of

infection in pen j0 increases to I∗, and infection spreads out into the adjacent

pens, until eventually as t → ∞, I (j, t) → I∗ and S (j, t) → 0. In the stationary

frame of reference (the bottom panel of Figure 3.2) as z → ∞, I (z) → 0 and

S (z) → 1, i.e. infection has yet to reach pens far away from z0. Conversely, as

z → −∞, I (z) = I∗ and S (z) = S∗, i.e. the pens in negative z have all reached

the homogeneous steady state.

In summary, as z → ±∞ the following limits apply.

lim
z→−∞

S(z) = S∗

lim
z→−∞

I(z) = I∗

lim
z→∞

S(z) = 1

lim
z→∞

I(z) = 0.

Taking the general result above and applying it to the system described in Equation

(3.2), then S((j, t) and I (j, t) can be transformed into the z frame of reference,

giving

dSj (t)

dt
=
dS (z)

dt

=
dSj
dz
· dz
dt

= −c · dS (z)

dz
. (3.12a)

73



Figure 3.2: Travelling wave of infection spreading through string of pens as viewed
from stationary frame of reference (top) and moving frame of reference (bottom).
Bars denote level of infection in pens. Converting to the moving frame of reference
(bottom) creates a static wave as a function of z, which can be described as the
distance along the wave from some arbitrary point, z0.

Similarly

dIj
dt

= −c · dI (z)

dz
. (3.12b)

Substituting Equations (3.12a) and (3.12b) into Equation (3.2) we obtain

−c · dS (z)

dz
= −SzIz − β2Sz

(
I (z − 1) + I (z + 1)

2

)
+ δ (1− Sz − Iz) ,

−c · dI (z)

dz
= SzIz + β2Sz

(
I (z − 1) + I (z + 1)

2

)
− γIz.

(3.13)

We now perform a similar linearisation of the system as for the n-pen stability

analysis. Defining similar perturbations as in Equation (3.6), that is
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Sz = S̄z + S∗

Iz = Īz + I∗
(3.14)

where S̄z and Īz are the perturbations of Sz and Iz respectively and we again

assume these perturbations are small. Iz is a positive real number, and so travelling

wave solutions cannot have an oscillatory approach to Iz = 0 (as otherwise Iz

would become negative as it approached zero - we will refer to this point again

later). We linearise about the steady state as z → ∞, i.e. (S, I) = (1, 0). Using

S (z) = 1− S̄ (z) and I (z) = Ī (z) we get

−c · S̄ ′ = −Īz − β2

(
Ī (z − 1) + Ī (z + 1)

2

)
− δ

(
S̄z + Īz

)
,

−c · Ī ′ = Īz + β2

(
Ī (z − 1) + Ī (z + 1)

2

)
− γĪz.

(3.15)

Given that we now have linear ODEs in terms of z then an appropriate form of

solution we have

ū = ûeλz for ū = S̄ and Ī (3.16)

for some wavenumber λ and constants Ŝ and Î. In other words

S̄z = Ŝeλz,

Īz = Îeλz.

(3.17)
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Substituting the perturbations S̄ (z) and Ī (z) from Equation (3.17) in Equation

(3.15) and transferring all components to the LHS we derive the following

(
−cλŜ + Î + β2Î

(
eλ + e−λ

2

)
+ δ

(
Ŝ + Î

))
· eλz = 0,(

−cλÎ − Î − β2Î

(
eλ + e−λ

2

)
+ γÎ

)
· eλz = 0.

(3.18)

Dividing through by eλz and converting to matrix form

 −cλ+ 1 + δ 1 + β2k (λ) + δ

0 −cλ− 1− β2k (λ) + γ


︸ ︷︷ ︸

A

·

 Ŝ

Î

 =

 0

0

 , (3.19)

where this time k (λ) = cosh (λ) ≡ eλ+e−λ

2
. For equations of the general form of

Equation (3.19), i.e. A · x = 0, then a non-trivial solution can only occur if the

determinant of A is equal to zero. Evaluating the determinant at zero we then

have

det A = − (cλ− δ) (−cλ− 1− β2 cosh (λ) + γ) = 0. (3.20)

Therefore, either c = δ
λ

or c is given by

(cλ+ 1 + β2 cosh (λ)− γ) = 0. (3.21)

Kolmogorov et al. (1937) showed that it is always true that propagating-wave

solutions of PDEs (should they exist) must satisfy some minimum wave speed if
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certain initial conditions are satisfied. Generally, these initial conditions are of the

form of the wavefront for the system given here (i.e. compact initial conditions;

just one pen being infected at t = 0). As mentioned above, complex roots for

the function (cλ+ 1 + β2 cosh (λ)− γ) = 0 are not realistic. It turns out that

this gives a restriction on c, namely there exists a minimum wave speed, cmin.

Plotting (cλ+ 1 + β2 cosh (λ)− γ) = 0 gives a unimodal functon in [c, λ] space

with a minimum at cmin.

An example is given in Figure 3.3, using β2 = 0.6 and γ = 1. The boundary be-

tween red ((cλ+ 1 + β2 cosh (λ)− γ) > 0) and blue ((cλ+ 1 + β2 cosh (λ)− γ) <

0) represents the values in [c, λ] parameter space where (cλ+ 1 + β2 cosh (λ)− γ) =

0. Hence, solutions for Equation (3.21) in the blue regions involve complex roots of

λ are are therefore not valid. The minimum wavespeed is located at the value for c

where there is one real repeated root for λ. According to Kolmogorov et al. (1937),

for sufficiently compact initial conditions, all waves with these chosen parameter

values in our system will move at exactly this minimum speed.

Plotting the minimum wavespeed over a range of β2 and γ values we obtain Figure

3.4 for cmin in units of pens/timestep. Travelling waves will lead to the infected

steady state when β2 > γ − 1, hence there are no valid travelling waves for β2 ≤

γ − 1, indicated on the graph by the white shaded area.

Indicated by a white dot on Figure 3.4 is the combination of β2 and γ which are

used for the numerical solutions shown below in Section 3.5. We therefore estimate

that the travelling wave should move with a speed of roughly 1 pen per timestep.
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Figure 3.3: Solutions of Equation (3.21) have been found and plotted in over (c, λ)
parameter space. Complex roots for λ occur in the blue region and are not valid.
The minimum valid wavespeed occurs at the value for c for where there is one real
repeated root for λ. β2 = 0.6 and γ = 1.
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Figure 3.4: Surface plot indicating minimum wavespeed, cmin, over [β2, γ] param-
eter space, using a timestep of 1 day. The white dot represents the combination
of γ and β2 used in the numerical solution shown in Figure 3.5.
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3.5 Numerical solution

As for the one- and two-pen models it was assumed that one newly excreting pig

enters the farm at t = 1 along with other new stock. Therefore, S1,1 = 1− 1
40

and

I1,1 = 1
40

. For all other pens we assume all pigs are in the Susceptible state.

We numerically solve both formulations of the multi-pen model, i.e. the 12-pen

model (Equation (3.1)) and a much longer 1-dimensional string of pens (to mimic

the infinite string case) (Equation (3.2)), to highlight the interesting dynamics

that occur based on the assumptions made.

The output for each pen of the 12-pen model is very similar to the one and two-

pen model epidemic curves (see Pen (1,1) in Figure 3.5). The only difference is

the epidemic curves within adjacent pens to the initially infected pen (Pen (1,1))

because of the repopulation/depopulation at varying times. Peaks of infection are

higher in pens restocked with susceptible pigs at the point when other pens around

it are reaching peak infection (as the value of λm is higher at this timepoint, around

10-20 days). However, the epidemic curve in Pen(1,1), where pigs are slaughtered

on day 85, is very similar to the one and two pen models.
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Naturally, the hypothetical infinite string of pens cannot be solved for an infinite

number of pens. Instead, it is solved for a large number of pens, such that the

interactions between the first pen infected at t = 0 (Pen 1) is sufficiently removed

from that of the last uninfected pen. Three hundred pens was judged sufficient

to meet this criterion and to allow us to numerically estimate the travelling wave

speed. The numerical solution of the epidemic curve is shown for the first twelve

pens for ease of comparison against the 12-pen model (see Figure 3.6). This sys-

tem does not have the feature of continuous production, and so the similarity in

the epidemic curves between pens (and to the epidemic curves of the one and two

pen models) can clearly be seen. Another dynamic that becomes apparent is the

progressive delay in the peak of infection and equilibrium as the pen number in-

creases, explicitly showing the travelling wave. We can estimate the speed of the

travelling wave across the 300 pens by subtracting the time it takes for pen q to

settle to the steady state from the time it takes pen q + 1, and then taking an

average over all 300 pens. The speed of the travelling wave for a string of pens

governed by realistic parameter estimation is around 1.6 pens/timestep. This com-

pares relatively well with the estimate from the travelling wave analysis of around

1 pen per timestep. In non-scaled terms, the travelling wavespeed is estimated

to be around 0.4 and 0.6 pens per day for the analytical solution and numerical

solution estimates respectively.
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3.6 Discussion

The stability conditions for the multi-pen model are the same as for the two-

pen model. This is expected, as the multi-pen model analysed for stability is a

generalisation of the 2-pen model to an infinite string of pens. The infinite string

of pens model allows analysis of spatial characteristics; the first we investigated

is the possibility of Turing spatial patterns. Spatial patterns are not predicted

analytically, and numerical analysis confirmed this. Given that the system always

settles to an homogeneous steady state then it is relevant to investigate the speed

of transmission between pens; for this, we used travelling wave analysis. Analytical

and numerical solutions suggests the minimum wavespeed is around 0.4-0.6 pens

per day, when β2 = 0.1 and γ = 0.095.

Numerical analysis of the more realistic farm setup described in Equation (3.1) in-

cludes allowance for continuous production, where batches of pigs would be sent to

slaughter weekly. As discussed in Section 2.3.4, if β2 � β1 then β2 effectively pro-

vides no more than a small load of infection into adjacent pens, at which point the

within-pen transmission component (β1) dominates. Hence, the epidemic curves

in all pens are almost identical, except for the weekly slaughtering of pigs from

alternate pens. Therefore, the use of continuous production with the current mod-

elling framework, for deterministic models at least, seems to be a complication

that adds little to the essential dynamics of the system, apart from momentarily

disrupting the equilibrium of each pen.

Travelling wave analysis shows that every pen will eventually settle to the same

infected steady state. Variation in the initial conditions did not change this result

(analysis not shown). Hence, again, if these results are applicable in reality then

pigs will sustain infection independent of other sources such as rodents or feed.
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Each of the pens in the numerical solution are only approaching equilibrium to-

wards the end of the rearing period (1 timestep ∼ 2.5 days, finishing period 84

days). Hence, the relevance of the equilbirium situation is limited for commercial

pig production (although may well be much more relevant for premium, slower-

growing breeds). Several observational studies confirm that infection on pig farms

is extremely heterogeneous (VLA, 2009; Jensen et al., 2006; Kranker et al., 2003).

Not only is infection often found only in a small number of pens, but there is

little equilibrium in infection between pens over time. Indeed, infection appears to

be extremely intermittent. The sampling methods used may well explain a large

proportion of the variation in infection over space and time on a pig farm (the

sensitivity of faecal sampling is known to be very poor, and so it is likely that

infection in pigs/pens is simply missed on a large number of occasions). However,

given the sheer variation found in observational studies, and that Salmonella is

ubiquitous in the environment and found in a number of sources, it is likely that

there is more of a dynamic ‘peak and trough’ of infection on an infected pig farm

as new infected pigs enter the finishing house and disturb any equilibrium between

pens.

The slow rate of transmission between pens (given current parameter estimation)

would explain some of the variation in pen infection. If the rate of transmis-

sion between pens is very slow, then other modes of infection may dominate over

faecal-oral transmission. For example, rodent or feed contamination may intro-

duce infection independently of faecal-oral transmission; this would explain the

heterogeneity observed in many observational studies.

Therefore, the next step is to start to build into the model a more realistic consid-

eration of important variables on the farm. Two major contributions to variability

in infection dynamics are varying and multiple sources of infection on any one
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farm, and the environmental contamination of the environment due to variable

shedding of Salmonella by pigs (and wildlife) and variable efficiency of removing

the Salmonella in the pig pen environment by cleaning and disinfection (C&D).

To consider both the source of infection and variable shedding rates, and how these

two factors determine the dynamics of Salmonella transmission, we must consider

the dose-response of the pig to exposure through various sources of infection. The

source of infection will determine the level of exposure (e.g. contaminated faeces

contain a far greater concentration of Salmonella organisms than contaminated

feed) and hence the likelihood of infection, and the level of exposure, will play

an important role in the eventual level of shedding from an infected pig (Jensen

et al., 2006; Osterberg and Wallgren, 2008; Osterberg et al., 2009). The source of

infection and variable shedding responses to infection will be taken into account

with more complex stochastic models in later chapters, but in the next chapter we

modify the multi-pen model and explicitly introduce the modelling of environmen-

tal contamination and dose-response. The model described in this chapter did not

display any heterogeneity or dynamics other than each pen eventually settling to

the same infected homogeneous steady state; however, the introduction of added

complexity of bacterial shedding may well produce markedly different dynamics,

for example by producing Turing patterns in the level of pen infection. Hence,

we investigate this new environmental ‘cross-contamination’ model using the same

techniques as described in this chapter (Turing stability analysis, travelling wave

propagation).
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Chapter 4

Multi-pen determinstic model

with contamination

4.1 Modelling faecal-oral transmission explicitly

The models described above in the previous chapters have the advantage of being

analytically amenable and simple. However, these models produced very similar

dynamics of infection in each pen, where infection in each pen always settled to the

same homogeneous steady state. One of the main disadvantages of this form of de-

terministic model, and a potential cause of the over-simplified dynamics described

in previous chapters, is that transmission is governed by just one parameter, the

probability of an effective contact, β or β1 etc. The probability of an effective

contact is determined by many factors, including the type of housing/flooring, the

type of production system used and the feed type (Berends et al., 1996). However,

formulating and parameterising a model that splits the transmission parameter

into all of its contributing parts (e.g. for all the different farm types in Great
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Britain, and then for intervention modelling) is impractical.

Therefore, in this chapter, we develop a model that explicitly accounts for two of

the major components of the transmission parameter: first, the level of shedding

of Salmonella by pigs and the subsequent contamination of the pen and wider

farm environment, and second the resulting (dose-response) exposure of suscep-

tible pigs. The amount of Salmonella in the environment is largely determined

by the following main factors: how much Salmonella is shed by pigs, the rate of

decay of Salmonella in the pen environment and the rate of cross-contamination

of Salmonella between pens (cleaning and disinfection is also important when de-

populating/repopulating). The susceptibility of a pig to infection given exposure

to Salmonella can be modelled using a standard dose-response function. Such a

“cross-contamination” model is much more amenable to intervention analysis, as

the farm environment can be modified via the pen level contamination parame-

ter to describe interventions including cleaning and disinfection and biosecurity

(including effective barriers between pens), and the dose-response model can be

modified to investigate interventions such as vaccination, organic acids or the use

of wet/fermented feed instead of dry feed.

For the multi-pen model described in the previous chapter, neither continuous

production or multiple rows of pens had a significant effect in changing the overall

epidemic curve within a pen. Therefore, for simplicity, we modify the theoretical

string of pens model in Equation (3.2) to include cross-contamination. Combining

all of the factors described above for a pen j we get:
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dSj
dt

= −D (fj)Sj + δCj,

dIj
dt

= D (fj)Sj − γIj,

dCj
dt

= γIj − δCj,

dfj
dt

= pfIj − dffj + η (fj+1 + fj−1 − 2fj) .

(4.1)

where fj is the amount of Salmonella contained within faecal material within pig

pen j, pf is a parameter describing the magnitude of pig excretion, df is the

rate of decay (per day) for Salmonella in the pen environment, η is the rate of

cross-contamination between pens and D (fj) is a dose-response function. An

appropriate sigmoidal function has been chosen so that

D (fj) =
c1f

m
j

c2
m + fmj

,

where c1, c2 and m are real and positive parameters describing the shape of the

dose-response curve. Such a sigmoidal function has a form as shown in Figure 4.1.

When m is non-zero and positive, then the dose-response function has some key

characteristics: first, there is a monotonically increasing probability of infection

with increasing dose; second, the dose-response function approaches an asymptote

at c1 as dose becomes large. The value of m determines the shape of the function

and represents the important dynamics of infection: as m increases, so the ‘influ-

ential’ range of doses decreases. For example, in Figure 4.1, when m = 1 there is

a broad range of doses where the probability of infection markedly increases, and

so a change in all but the lowest and highest doses can have a significant effect

on the probability of infection. However, for m > 1 then there is a much more
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distinct three-phase dose-response curve; a shallow gradient at low doses (repre-

senting where a pig’s immune response may overcome a small exposure), a steeper

gradient at medium doses (where the dose ingested could sufficiently challenge the

immune response and infection becomes more likely as more and more salmonellas

are ingested), and finally a shallower gradient as the dose approaches the asymp-

tote (representing where the immune response could be completely overwhelmed

and infection is all but certain). The scale parameter c2 determines how quickly

the probability of infection reaches the asymptote; as c2 increases a larger dose is

required to reach the asymptote.

To ease analysis, Equation (4.1) is re-scaled in a similar fashion as for the standard

n-pen model in Chapter 3. We define S = S̃〈S〉, I = Ĩ〈I〉, f = f̃〈f〉 and t = t̃〈t〉,

and then set 〈S〉 = 〈I〉 = 〈C〉 = n. Therefore S̃ + Ĩ + C̃ = 1, and C̃ = 1− S̃ − Ĩ.

Also setting 〈t〉 = 1/δ̃, 〈f〉 = c2, c̃1 = c1〈t〉 = c1/δ, γ̃ = γ/δ, p̃f = pf/δ, d̃f = df/δ

and η̃ = η/δ then gives

dS̃j

dt̃
=
(

1− S̃j − Ĩj
)
−Df (f̃j)S̃j, (4.2a)

dĨj

dt̃
= Df (f̃j)S̃j − γ̃Ĩj, (4.2b)

df̃

dt̃
= p̃f Ĩj − d̃f f̃j + η̃

(
f̃j+1 + f̃j−1 − 2f̃j

)
, (4.2c)

Df (f̃j) =
c̃1f̃

m
j

1 + f̃j
m . (4.2d)

As for previous re-scalings, the tilde notation is dropped from now on for notational

simplicity.

As for the multi-pen model described in Chapter 3, we analyse the system under
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Figure 4.1: Shape of the dose-response function for m = 1, 2, 3. c2 = 1. The value
of c1 in this specific example is 1, hence the maximum probability of infection
tends to 1 as dose gets large.

both homogeneous and spatially varying perturbations.
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4.2 Stability analysis

4.2.1 Homogeneous steady state

The system described in Equation (4.2) is at a spatially uniform equilibrium when

Sj = S∗, Ij = I∗ and Cj = C∗ so that

(1− S∗ − I∗)−Df (f
∗)S∗ = 0, (4.3a)

Df (f
∗)S∗ − γI∗ = 0, (4.3b)

pfI
∗ − dff ∗ = 0. (4.3c)

Algebraic manipulation of Equation (4.3b) gives

Df (f
∗) =

γI∗

S∗
. (4.4a)

Substituting Equation (4.4a) into Equation (4.3a) and then rearranging for S∗

gives

S∗ = 1− (1 + γ) I∗. (4.4b)

Hence,

Df (f
∗) =

γI∗

S∗
=

γI∗

1− (1 + γ) I∗
. (4.4c)
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Now, using the expression for Df (f
∗) then gives

c1f
m
j

c2
m + fmj

=
γI∗

1− (1 + γ) I∗
. (4.4d)

In addition, we can use Equation (4.3c) to give

f ∗ =
pf
df
I∗. (4.4e)

Therefore f ∗ is directly proportional to I∗, by a scale factor pf/df , which we will

from here on after refer to as c3. Substituting Equation (4.4e) into (4.2d), the

following must then hold at the homogeneous steady state

γI∗

1− (1 + γ) I∗
=

c1c3
mI∗m

1 + cm3 I
∗m . (4.5)

The number of solutions to Equation (4.5) is dependent on the parameter values,

especially m, which determines the shape of the dose-response curve. Solving for

steady states rapidly becomes intractable above m > 2. Straightforward algebraic

manipulation of Equation (4.5) when m = 1, 2 shows that

(S∗, I∗) =


(0, 1) if m = 1, 2, fully susceptible s.s.,(
γ(c3+1+γ)

c3b
,− (γ−c1∗c3)

c3b

)
if m = 1,2 infected s.s.,(

1− (1+γ)(c1c3±a)
2c3b

, c1c3±a
2c3b

)
if m = 2, an additional infected s.s..

where a =
√
c2

1c
2
3 − 4γ2 − 4c1γ − 4c1γ2 and b = (γ + c1 + c1γ).

For the cases when m > 2, we can also numerically solve Equation (4.4c) in order
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to determine the number of steady states that occur in different parts of parameter

spaces. An example of how the number of steady states vary as c1 and m varies is

shown in Figure 4.2. Figure 4.3 shows the results of numerically solving the LHS

and RHS of Equation (4.5) to determine the number of possible solutions over

parameter space (γ, c1) when m = 1.

Figure 4.2: Each subplot shows the number of solutions for specific combinations
of parameter values γ, c1 and m. Each intersection represents one solution for a
homogeneous steady state (represented by red dots).

4.2.2 Stability to homogeneous steady state

We can investigate the stability of the multiple steady states identified above by

phase plane analysis, where an example is shown in Figure 4.4. The blue lines
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Figure 4.3: Number of steady states over parameter space (γ, c1) when m = 1.
The number of steady states is one when dfγ > c1pf (trivial non-infected steady
state), and two when c1pf > dfγ (infected steady state). We have df = 0.04,
pf = 0.4.

describe the trajectory in (S, I) space over time from various initial conditions

for the parameter values used in Figure 4.2. The red circles indicate a stable

steady state, and the green circle represents an unstable steady state. We note

that I∗ = 0 is always a stable steady state in the first and second case, and the

maximum possible infected steady state is also always stable.
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Analytically determining the stability of steady states rapidly becomes intractable

for m > 1. However, it is possible to analytically determine the stability of the

steady states for m = 1 by evaluating the sign of the eigenvalues of the Jacobian.

When m = 1 then Df (f ∗) = c1f
1+f

and D′f (f) = c1
1+f
− c1f

(1+f)2
, and the Jacobian

evaluated at (S∗, I∗, f ∗) = (1, 0, 0) is

J0 =


−1 −1 −c1

0 −γ c1

0 pf −df


The eigenvalues of J0 are

(
−1,−df

2
− γ

2
+
√
a

2
,−df

2
− γ

2
−
√
a

2

)
, where a = df

2 −

2γdf + γ2 + 4c1pf . The real parts of the first and third eigenvalues are always

negative. The second eigenvalue will be negative if

−df
2
− γ

2
+

√
df

2 − 2γdf + γ2 + 4c1pf

2
< 0

Rearranging this gives

√
df

2 − 2γdf + γ2 + 4c1pf < df + γ

df
2 − 2γdf + γ2 + 4c1pf < (df + γ)2

df
2 − 2γdf + γ2 + 4c1pf < df

2 + 2dfγ + γ2,

⇒ c1pf < dfγ

Hence, the fully-susceptible steady state will be stable (in the case m = 1) if

dfγ > c1pf . Both df and γ are parameters describing removal of within-pen
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contamination, where γ is the rate of transition from Excretor to Carrier, and df

describes the rate of decay of Salmonella in the pen environment. The product of

these two parameters must be greater than the product of two “contamination”

parameters, where c1 determines the magnitude of the dose-response function, and

pf describes the magnitude of contamination produced by excreting pigs. This is

analogous to the one, two and multi-pen homogeneous steady states, where the

fully-susceptible steady state is only stable if the recovery rate is greater than the

probability of an effective contact.

Consequently, the fully susceptible steady state is unstable when c1pf > dfγ. The

plot in Figure 4.3 describes both cases where dfγ > c1pf and dfγ < c1pf . When

dfγ > c1pf then there is only one (susceptible only state) steady state and when

dfγ < c1pf there are two steady states, where the fully-susceptible steady state is

unstable, and the infected steady state is stable.

When m > 1 then three steady states may exist depending on the other parameter

values (see for example Figure 4.3). In this case we must adopt a more general

treatment. The Jacobian for general m is

J0m =


−1−Df (f

∗) −1 −∂D(f∗)
∂f

S∗

Df (f
∗) −γ ∂D(f∗)

∂f
S∗

0 pf −df

 .

The detererminant is |λI− J|, where I is the identitiy matrix. The resulting

determinant is then
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λ+ 1 +Df (f

∗) 1 ∂D(f∗)
∂f

S∗

−Df (f
∗) λ+ γ −∂D(f∗)

∂f
S∗

0 −pf λ+ df

 = 0.

We now determine the Routh-Hurwitz criteria to investigate whether the multiple

steady states are stable or not. The general characteristic equation for a 3x3

matrix with eigenvalues λ is λ3 + a2λ
2 + a1λ + a0 = 0. The coefficients of a2, a1

and a2 in this specific case are

a2 = Df (f
∗) + 1 + γ + df , (4.6a)

a1 = df +Df (f
∗) (df + γ + 1) + γdf + γ − ∂D (f ∗)

∂f
S∗pf , (4.6b)

a0 = (γ +Df (f
∗)) df −

∂D (f ∗)

∂f
S∗pf +Df (f

∗)γdf . (4.6c)

The Routh-Hurwitz criteria for stable steady states for a cubic polynomial are

a0 > 0, a2 > 0 and a1a2 − a0 > 0. As all parameters are real and positive the

coefficient a2 is always greater than zero (Equation (4.6a)). Using the chain rule

then gives

∂Df (I∗)

∂I
=
∂Df (f ∗)

∂f

∂f

∂I
=
∂Df (f ∗)

∂f

pf
df
, (4.7)

so that

∂Df (f ∗)

∂f
=
df
pf

∂Df (f ∗)

∂I
. (4.8)
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Substituting Equations (4.4c), (4.4b) and (4.7) into (4.6c) then gives

a0 =

(
γ +

γI∗

1− (1 + γ) I∗

)
df −

∂Df (I∗)

∂I

(1− (1 + γ) I∗) df
pf

+
γI∗

1− (1 + γ) I∗
γdf .

(4.9)

For a steady stable state we require that a0 > 0. Solving this inequality for
∂Df (I∗)

∂I

then gives

∂Df (I∗)

∂I
<

γ

(1− (1 + γ) I∗)2 . (4.10)

The RHS of the inequality (4.10) is the gradient of γ

(1−(1+γ)I∗)2
. The inequal-

ity (4.10) then shows that if the slope of Df (I∗) is more shallow than that of

γ

(1−(1+γ)I∗)2
at the homogeneous steady state then that state may be stable (we

would still need to confirm that a1a2 − a0 > 0). But, importantly, inequality

(4.10) demonstrates that if Df (I∗) is steeper than the curve γ

(1−(1+γ)I∗)2
at the

steady state then a0 < 0 at that state and so it must be unstable. This then shows

that in the two steady state case (e.g. panel 2 in Figure 4.2) the susceptible only

state is unstable and in the 3 steady state case (e.g. panel 3 in Figure 4.2) the

intermediate infection state is unstable. The condition a1a2−a0 > 0 is analytically

intractable but we find from numerical investigation that the remaining states in

the 2,3 steady state cases are always stable.

As for the ‘standard’ multi-pen model in Chapter 3 the system can be linearised

to indicate the stability of the above steady state solutions when perturbed homo-

geneously and heterogeneously to explore the existence of Turing patterns.
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4.2.3 Existence of Turing spatial patterns

Linearising about the steady state by setting Sj = S̄j + S∗, Ij = Īj + I∗ and

fj = f̄j + f ∗ and substituting into Equation (4.2) gives

S̄j
′
= 1− S̄j − S∗ − Īj − I∗ −Df

(
f̄j + f ∗

) (
S̄j + S∗

)
Īj
′
= Df

(
f̄j + f ∗

) (
S̄j + S∗

)
− γ

(
Īj + I∗

)
f̄j
′
= pf

(
Īj + I∗

)
− df

(
f̄j + f ∗

)
+ η

((
f̄j+1 + f ∗

)
+
(
f̄j−1 + f ∗

)
− 2

(
f̄j + f ∗

))
(4.11)

As we assume that S̄j, Īj and f̄j are small then any combination of terms such as

S̄j Īj will be considered to be negligible. Expanding Df

(
f̄j + f ∗

)
using a Taylors

series expansion about f ∗, namely Df

(
f̄j + f ∗

)
= Df (f ∗)+

dDf
df

∣∣∣∣
f=f∗

f̄j+D
(
f 2
j

)︸ ︷︷ ︸
small

≈

Df (f ∗) + D′f (f ∗) f̄j. Removing negligible terms and using the steady state con-

ditions (Equation (4.3)) then gives

S̄j
′
= −S̄j − Īj −Af̄jS∗ −Df (f

∗)S̄j,

Īj
′
= Af̄jS∗ +Df (f

∗)S̄j − γĪj,

f̄j
′
= pf Īj − df f̄j + η

(
f̄j+1 + f̄j−1 − 2f̄j

)
,

(4.12)

where A =
dDf (f∗)

df
. Similar to the n-pen system the spatial perturbations S̄, Ī

and f̄ can be written as Ŝeµt+iλj, Îeµt+iλj and f̂ eµt+iλj respectively, where Ŝ, Î

and f̂ are constants, λ is the spatial wavenumber and µ is the growth rate of

the perturbations. Substituting these expressions into Equation (4.12) and then
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rearranging

(
µŜ + Ŝ + Î +Af̂jS∗ +Df (f

∗)Ŝj

)
eµt+iλj = 0,(

µÎ −Af̂S∗ −Df (f
∗)Ŝj + γÎ

)
eµt+iλj = 0,(

µf̂ − pf Î + df f̂ − 2ηf̂ (cosλ− 1)
)
eµt+iλj = 0.

(4.13)

Dividing by eµt+iλj and converting to matrix form gives


µ+ 1 +Df (f

∗) 1 AS∗

−Df (f
∗) µ+ γ −AS∗

0 −pf µ+ df − 2η (K − 1)


︸ ︷︷ ︸

A

·


Ŝ

Î

f̂

 =


0

0

0



where K = k (λ) = cosλ. For non-trivial solutions Ŝ, Î and f̂ are non-zero, in

which case the determinant of A must be zero. We use the Routh-Hurwitz criteria

to determine the roots of the determinant and whether spatial (Turing) patterns

will occur. The determinant in this case is of the form µ3+a1µ
2+a2µ+a3µ = 0. The

Routh-Hurwitz criteria are a1 > 0, a3 > 0 and ∆ = a1a2− a3 > 0. As discussed in

Chapter 3, spatial patterns occur when the homogeneous steady state is stable to

homogeneous perturbations, but when one or more of the Routh-Hurwitz criteria

are violated for the steady state when there are heterogeneous perturbations. The

coefficients of a1, a2 and a3 in this case are
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a1 =2η (1−K) + 1 + df +Df (f
∗) + γ,

a2 =−AS∗pf + 2Dη (1−K) + 2γη (1−K) + 2η (1−K)

+Df (f
∗)df +Df (f

∗)γ + γdf + d+Df (f
∗) + γ,

a3 =−AS∗pf + 2γη (1−K) + 2Df (f
∗)γη (1−K) + γdf +Df (f

∗)df

+ 2Df (f
∗)η (1−K) +Df (f

∗)γdf .

(4.15)

Therefore, for homogeneous perturbations (where K = 1, i.e. where λ = 0 and the

perturbations have the form ueµt for u = S, I, f), then conditions (4.15) reduce

to

a1 (K = 1) = 1 + df +Df (f
∗) + γ, (4.16a)

a2 (K = 1) = γdf + γ +Df (f
∗) +Df (f

∗) (df + γ)−AS∗pf + df , (4.16b)

a3 (K = 1) = −AS∗pf + γdf +Df (f
∗)γdf +Df (f

∗)df . (4.16c)

As all parameters are real and positive then a1 (K =∞) will always be positive.

Inspection of a1 (K) shows that, since a1 (K) > 0, and K ∈ [−1, 1], then a1 (K) > 0

∀ K ∈ [−1, 1]. Therefore, Turing patterns will only occur when both a3 (k = 1) > 0

and ∆ (k = 1) > 0, and either a3 (k = [−1, 1)) < 0 or ∆ (k = [−1, 1)) < 0.

Stability to homogeneous perturbations (K = 1)

The remaining two conditions, a3 and ∆, define two lines which delimit the relevant

regions of (A, pf ) parameter space into stability or instability to homogeneous
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perturbations. These are found by solving for A when a3(K = 1) = 0 and ∆(K =

1) = 0.

First, the two conditions a3 (K = 1) and ∆ (K = 1) can be specified in terms of only

I∗. Using the chain rule we can write A in terms of I∗, i.e. AI∗ =
∂Df (f∗)

∂f
∂f
∂I

= Apf
df

.

From Equation (4.4b) we have S∗ = 1 − (1 + γ) I∗ and from Equation (4.4c) we

have Df (f ∗) = γI∗

1−(1+γ)I∗
. Therefore, solving a3(K = 1) = 0 and ∆(K = 1) = 0

respectively, gives

H1 : A =
γ

(1− (γ + 1) I∗)2 , (4.17a)

H2 : A =
a [df (γ2 + γ (1 + df ) + 1 + df ) I

∗ − (1 + df ) (df + γ)]

df (1− (1 + γ) I∗)2 ((df + γdf + γ2) I∗ − df − γ)
, (4.17b)

where a =
[(

(γ + 1)2 − γ
)
I∗ − γ − 1

]
. As we are unable to identify general solu-

tions for I∗ for all m we fix I∗ at a biologically reasonable value (we find that our

results are insensitive to our choice of I∗ ∈ (0, 1)). In doing this we also fix the

value of γ through Equation (4.5). Rearranging Equation (4.5) for γ then gives

γ =
−c1(

pf
df

)mI∗m (I∗ − 1)

I∗
(

1 + (
pf
df

)mI∗m + c1(
pf
df

)mI∗m
) .

Substituting in appropriate values for free parameters (I∗, pf , df , m) we can plot

the two lines (H1 and H2 in (A, pf ) parameter space). From numerical solutions in

previous chapters the infection steady state is usually reached when around 20-30%

of pigs in a pen are infected. Hence we set I∗ = 0.2; we also set df = 0.04 (Gray

and Fedorka-Cray, 2001; Tannock and Smith, 1972) and m = 1.5 (value chosen

to produce bistable kinetics, see later). The resulting plot is shown in Figure 4.5,
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where the Routh-Hourwitz conditions, a3(k = 1) > 0 and ∆(k = 1) > 0 are met

in the parameter space below the red and green curves respectively (green shaded

area). Hence, the steady state I∗ = 0.2 is stable under homogeneous perturbations

in the green shaded area.

Figure 4.5: The green shaded area represents when both criteria a3(K = 1) > 0
(red) and ∆(K = 1) > 0 (green) are met in (A, pf ) parameter space, and the
steady state is stable to homogeneous perturbations.

Stability to heterogeneous perturbations (k ∈ [−1, 1)

Generally, a3 > 0 and ∆ > 0 can be solved for A to give
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H3 : A =
γ (2η (1−K) + df )

df (1− (γ + 1) I∗)2 ,

H4 : A =
ab

df (1− (γ + 1) I∗) g
,

where

b = (K − 1) (2γη + 2η + 4ηdf ) + (1−K) (2ηI∗)
(
1 + 2df + γ + γ2 + 2dfγ

)
−
(
4η2
) (
K2 + 1

)
(I∗ + 1) + 4γηI∗ (1− 2K) + 4η2K (2 (1 + (1 +K) I∗)) ,

and

g =
(
2η (K − 1) + 2ηI∗ (γ + 1) (1−K)− γ − df + dfI

∗ + γI∗df + γ2I∗
)
.

(4.18)

The gradient of H3 as a function of K is negative, hence if H1 is positive then H3

will also be positive over the domain of K = [−1, 1]. That is, it is not possible to

violate the Routh-Hurwitz criterion (i.e. a3 < 0) in this case. For the criterion

H4 we make some observations about its characteristics, and how these compare

against the criteria for Turing patterns to occur, that is for H4 < 0 when H2 > 0.

We first note that ∆ is a quadratic in K, i.e. it has the form aK2 + bK + c.

The coefficient of K2 is 4η2 (γ +D (f ∗) + 1). As all parameters are real positive

numbers then this coefficient is always positive, and hence we know that d∆
dK = 0

is the minimum value of the quadratic equation.

To reiterate, the criteria for Turing patterns to occur is for a steady state to be

stable to homogeneous perturbations but unstable to heterogeneous perturbations.
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Taking this knowledge and knowing that we have a positive K2 coefficient we can

sketch some conditions that must be met for Turing patterns to occur (H2 >

0, H4 < 0), see Figure 4.6. The black curves signify when the criteria for Turing

pattern formation are met, and the grey curves when the criteria are not met.

The key criteria are: that ∆ (K = 1) > 0, and that either ∆ (K) < 0 when d∆
dK = 0

for some K ∈ [−1, 1], or ∆ (K = −1) < 0 given d∆
dK = 0, K /∈ [−1, 1].

Figure 4.6: Sketch of conditions for Turing patterns to occur for condition H4 over
the domain of K ∈ [−1, 1]. Black lines represent curves which allow the formation
of Turing patterns, grey lines when Turing patterns cannot form.

If H1 is positive then H3 can never be negative due to its negative gradient over

the domain of K [−1, 1]. Therefore we perform a similar check for H4 by evaluating
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the slope of ∆ at K = 1. Differentiating Equation (4.18) (H − 4) and substituting

in K = 1 gives

d∆

dK

∣∣∣∣
K=1

= −(γ2I∗ − 1 + gI∗ + I∗ − γ) q(
(−1 + I∗ + γI∗)3 df

) , (4.19)

where q = (γ2I∗ + 2γI∗df + γI∗ + 2dfI
∗ + I∗ − γ − 2df − 1).

As for the homogeneous perturbation analysis in the previous section, we can

delineate between regions of (A, pf ) parameter space (or whichever parameter

space we choose). Taking the same values as for the fixed parameters in the

previous analysis for homogeneous perturbations we get the graph in Figure 4.7.

The red curve denotes ∆ (K = 1) = 0, where below the curve ∆ (K = 1) > 0 and

above it ∆ (K = 1) < 0. The green curve denotes d∆
dK

∣∣
K=1

= 0, where above the

curve d∆
dK

∣∣
K=1

> 0 (i.e. H4 has a positive gradient at K = 1) and below the curve

d∆
dK

∣∣
K=1

< 0 (i.e. H4 has a negative gradient at K = 1). Hence, for the parameter

space where ∆ (K = 1) > 0 (homogeneous steady state is stable) then d∆
dK

∣∣
K=1

< 0

(that is the gradient of the curve for ∆ (K = 1) is negative. Therefore, as ∆ (K)

is a quadratic with a positive K2 coefficient, then d∆
dK < 0 ∀ K ≤ 1. Hence,

Turing patterns cannot form as there is a negative gradient of ∆ (K) along the

valid domain of Kı [−1, 1], and therefore if H2 is positive then H4 must always be

positive in the valid range of K.
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Figure 4.7: The red curve denotes the equation ∆ (K = 1) = 0 in (A, pf ) parameter
space. The steady state is stable to homogeneous perturbations in the region below
this curve. The green curve denotes the equation d∆

dK

∣∣
K=1

= 0, where below the
line represents a negative gradient to H4 over the domain of K.

4.3 Solutions for travelling wave of cross contam-

ination model

The analysis above on Turing patterns suggests that the n-pen cross-contamination

system of ODEs settles to the homogeneous steady state and no Turing patterns

are possible. Therefore, as for the standard n-pen system, we look for travelling
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waves to assess the speed at which the system settles to the infected homogeneous

steady state. In addition, with the potential of bistability that may occur with the

cross-contamination model, we can also investigate regions of parameter space that

will lead to more complex wave dynamics, e.g. the possibility of pinning. Pinning

is where the travelling wave is stationary and two infection levels stably exist in

pens either side of the pinned wave. Therefore, when examining the system, we

also examine parameter ranges that will lead to the existence of two infected steady

states and hence bistable kinetics.

The frame of reference transformations of S ′j (t) and I ′j (t), as described in Equa-

tions (3.12a) and (3.12b) in Section 3.4, are still applicable to the cross-contamination

model. A similar transformation can be made for f ′j (t). Substituting these trans-

formations into the linearised form of the cross-contamination model in Equation

(4.12) gives

−c · dS̄ (z)

dz
= −S̄z − Īz −Af̄zS∗ −Df (f

∗)S̄z

−c · dĪ (z)

dz
= Af̄zS∗ − γĪz +Df (f

∗)S̄z

−c · df̄ (z)

dz
= pf Īz − df f̄z + η

(
f̄z+1 + f̄z−1 − 2f̄z

) (4.20)

where z = j − ct as shown in Section 3.4. Now setting the spatial perturbations

S̄z, Īz and f̄z to Ŝeλz, Îeλz and f̂ eλz respectively, where Ŝ, Î and f̂ are constants

and λ is the spatial decay rate, and substituting S̄, Ī and f̄ into Equation (4.20)

and rearranging gives
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(
(−cλ+ 1 +Df (f

∗)) Ŝ + Î +Af̂S∗
)
eλz = 0(

(−cλ+ γ) Î −AS∗f̂ −Df (f
∗)Ŝ
)
eλz = 0(

(−cλ+ df − 2η (K − 1)) f̂ − pf Î
)
eλz = 0

(4.21)

where K = k (λ) = eλ+e−λ

2
= coshλ.

Dividing through by eλz, and converting into matrix form then gives


−cλ+ 1 +Df (f

∗) 1 AS∗

−Df (f
∗) −cλ+ γ −AS∗

0 −pf df − cλ− 2η (K − 1)

 ·

Ŝ

Î

f̂

 =


0

0

0

 .

As before for the n-pen system, we consider the case where the state ahead of the

infection travelling wave (i.e. I∗ = 0 and S∗ = 1 as z →∞) and we consider S̄, Ī

and f̄ to be perturbations of this state so that Equation (4.23) reduces to


−cλ+ 1 1 0

0 −cλ+ γ 0

0 −pf df − cλ− 2η (K − 1)


︸ ︷︷ ︸

A

·


Ŝ

Î

f̂

 =


0

0

0

 .

For non-trivial solutions Ŝ, Î and f̂ are all non-zero, and the determinant of A

must then be equal to zero. Hence,

(1− cλ) (γ − cλ) (df − 2η (coshλ− 1)− cλ) = 0.
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Solutions of which are c = 1
λ
, γ
λ
,
df−2η(K−1)

λ
. The first two solutions only result in

forward waves (i.e. c > 0). Pinning can only occur when c = 0 and this can only

occur with the third solution. A plot of the third solution for c against λ is shown

in Figure 4.8. As can be seen there is no real minimum wavespeed as c decreases

monotonically as λ increases with a vertical asymptote at λ = 0, which corresponds

to the homogeneous solution. In this case the local dynamics are bistable, and in

this case the speed and direction of travelling wave speed are often determined by

the non-linearities of the system.

Figure 4.8: Plot of wavespeed c against λ; η = 10 and df = 0.04.

4.4 Numerical solutions

The same principle is used to numerically solve the cross-contamination model as

for the standard string of pens model described in Section 3.5; i.e. we model the
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transmission of infection between a string of 300 pens, where Pen 1 is infected at

t = 0 and the remaining pens are all in the non-infection steady state.

4.4.1 Parameter estimation

Where relevant, the same parameter estimates are used for the cross-contamination

model as for the non-contamination models in previous chapters. Parameter es-

timates for pf , η and c1 are not available from the literature, hence biologically

plausible values have been chosen to produce an epidemic curve that results in

a similar steady state value for I∗ as possible to the n-pen model in Chapter 31.

Choosing parameter values that produce a similar epidemic curve as the standard

model will allow comparison of the dynamics between the standard and cross-

contamination models.

Table 4.1: Parameter estimates for the cross-contamination model
Notation Description Value1

pf Shedding rate parameter 18.8
df Rate of Salmonella decay in pen envi-

ronment
1.9

c1 Dose-response parameter 3
η Faecal cross-contamination parameter 1
m Dose-response shape parameter 3

4.4.2 Cross-contamination model epidemic curve

The resulting epidemic curve for the cross-contamination model is shown in Fig-

ure 4.9. Despite the more complicated interactions of faecal shedding and dose-

response included in the cross-contamination model, similar dynamics of infection

1More detailed parameter estimation will be undertaken for the dose-response and shedding
parameters of the more sophisticated stochastic model in Chapter 6.
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can be seen in this model as for the standard multi-pen model (Figure 3.5). The

value of η was set to explicitly demonstrate the progressive delay in equilibrium

being reached as pen number increases. As can be seen in Figure 4.9 when η is

set to 1 (meaning the non-scaled value of η is 0.02 - hence ∼ 2% of contaminated

faecal material is cross-contaminated between pens each day) spread of infection is

fairly slow at the scale of the non-dimensionalised timestep, at approximately 1 pen

per timestep. However, the timestep used in the non-scaled version of the cross-

contamination model is 1
δ
, or approximately 50 days. Therefore, spread between

pens is relatively much slower when compared to the length of the growing-finishing

period (84-116 days). Detailed numerical analysis of the travelling wavespeed is

presented in the next section.
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Numerical investigation of the wave speed and the existence of pinning

Using the same numerical technique for evaluating the wavespeed of the travelling

wave as described in Section 3.5 the precise speed of the wavefront for the cross-

contamination parameterised as above is 1.6 pens per timestep (see Figure 4.9). In

non-scaled terms this is equivalent to 0.032 pens per day (1.6 pens per 50 days), far

slower than the equivalent standard model. While we cannot compare precise nu-

merical quantities of wavespeed (as the standard and cross-contamination models

are not entirely equivalent and use different parameter estimates), we can qualita-

tively compare the trend for how wavespeed differs for given parameter values. For

example, the cross-contamination model parameter c1 is comparable to the prob-

ability of an effective contact, β2. The variation in the travelling wavespeed for

β2 versus γ (see Figure 4.11) is qualitatively similar to the variation of wavespeed

for c1 versus γ in Figure 3.4. Both have similar curved contours and both have

the maximum wavespeed when γ and either c1 or β2 are at their largest values.

Hence, while the standard and cross-contamination models are markedly different

in terms of how infection is modelled, they still have similar qualitative behaviour

in terms of their wavespeeds.

Of interest is the situation where two infected steady states exist, i.e. where there

is the potential for pinning through bistable kinetics. It is proposed that in or-

der to produce bistability there are three main criteria: (i) a positive feedback

loop, (ii) a mechanism for filtering out small stimuli and (iii) a mechanism for

preventing explosion (Willhelm, 2009). It is thought that, of prime importance,

any automonous differential system (such as the cross-contamination model equa-

tions described here) requires a positive feedback mechanism to induce bistability

(Cinquin and Demongeot, 2002). The positive feedback process should have hys-
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teresis, allowing the process to retain its activity without a persistent signal. In

the cross-contamination model, the contaminated faecal material is produced by

pigs, which infects more pigs, causing more production of faecal material and so

on. However, the faecal material is still able to infect pigs even if the pigs that

originally produced the contaminated material recover or are moved away (ful-

filling the criterion of hysteresis). The decay of Salmonella in the contaminated

material may serve to fulfil both the second and third criteria described above.

The decay of material over a timestep is sufficient enough to cancel out any small

stimuli such as environmental contamination; it also prevents a runaway increase

in contaminated material. Bistability only occurs when the dose response param-

eter m > 1, but yet all of the above criteria are met when m ≤ 1. However,

one other criterion is also presupposed to be necessary in some circumstances for

bistability to occur: that there is “some type of non-linearity” (Willhelm, 2009).

Of course, the cross-contamination system is already non-linear, but when m > 1

the non-linearity is magnified (allowing for three equilibrium states to occur). It

is possible that the non-linearity of the dose-response model drives the bistability

in this case, as when the two infected steady states are sufficiently stable, the

perturbation from contamination from adjacent pens may well be insufficient to

change the steady states and hence the travelling wave will stop.

We first identify combinations of parameter values that will produce two infected

steady states, by a similar process as for that carried out to produce Figures

4.3. From Equation (4.5), m, c1 and γ all determine the number of steady states.

Solving Equation (4.5) in (m, γ), (m,c1) and (c1,γ) parameter space, we can identify

the combination of parameter values where two infected steady states exist, and

their associated minimum and maximum values for I∗ (illustrated in Figure 4.10).

For the fixed parameters we choose values, m = 3, c1 = 0.1, γ = 1.9, pf = 18.8
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and df = 1.9.

Figure 4.10: Minimum and maximum values of infected steady states over regions
of parameter space where there are two infected steady states, unless otherwise
stated m = 3, c1 = 0.1, γ = 1.9, pf = 18.8 and df = 1.9.

The wavespeed for all parameter spaces can be found in a similar fashion as de-

scribed in Section 3.4. Iterating over all regions of the parameter space described

above. The contour plots show the variation in wavespeed for each combination

of the dsecribed parameter regions (see Figure 4.11).
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Using relevant values for the maximum and minimum infected steady states as

shown in Figure 4.10, we set the level of infection I in the first 150 pens of the

300-pen string model to halfway between the minimum and maximum infected

steady states, and the remaining pens to halfway between zero and the minimum

infected steady state. The level of Susceptibles is set using Equation (4.4b). These

initial conditions ensure that the level of infection is not accidentally set at any of

the steady states, so we can be certain that the absence of a travelling wave is due

to pinning and not numerical artifacts. It is assumed that there is no contaminated

faecal material in any pens at t = 0. Keeping all other parameters at the same

value as above in Table 4.1, and setting c1 = 2, then we vary γ between 3.5 and

4.5. The effect on the travelling wave speed is displayed in Figure 4.12.

For large γ, we observe an advancing wave of infection. For small γ, the infection

recedes and the travelling wave eventually restores each pen to the susceptible only

state. However, for γ values in the bounded ’pinning’ region (see panel (c) in Figure

4.12), we observe a static wavefront. Here, both infection and susceptible only

states are homogeneously stable, and the spatially heterogeneous stable solution is

the static solution, in which the pens which were initially in the basin of attraction

of the infection/susceptible stabe states evolve to and stay in these states and a

pinned wave is observed.
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4.5 Discussion

The cross-contamination model is significantly more complex than the standard n-

pen model, but provides several advantages over the latter. The cross-contamination

model explicitly includes faecal contamination and dose-response, rather than in-

corporating both implicitly into one transmission parameter. This provides a

model that is much more amenable to intervention analysis and parameter es-

timation. However, we find that the system still settles to the same infectious

behaviour as we observe for the standard model in Chapter 3. However, we find

the additional feature of pinning as described in Section 4.4.2.

The cross-contamination model takes significantly longer to reach overall equilib-

rium (i.e. the time when infection in all pens is at the infected steady state) than

the standard model for the parameters chosen for the numerical solutions. Here,

we predict a cross-contamination travelling wave speed of around 0.02 pens per

day, compared to the standard model speed of 0.4-0.6 pens per day. It is hard

to directly compare the two travelling wave speeds, as the cross-contamination

parameters associated with each model, η and β2, are estimates in the absence of

data. However, if the true value of η should lie near the current estimate (η = 1)

then the infected steady state is unlikely to be reached in many pens (if any), over

the timeframe of the growing-finishing period (between 84-116 days). Hence, the

heterogeneity between pen infection observed in studies on pig farms may well sim-

ply be reflecting the fact that the infection levels within pens have not had chance

to increase towards the predicted equilibrium. Accompanied with continuous pro-

duction and heterogeneous exposure to environmental Salmonella burden, then it

is highly unlikely that pig populations remain constant enough for equilibrium to

be reached in normal grower-finisher rearing periods.
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The stability analysis conducted in this and previous chapters represent a way

to highlight some key dynamic principles of a complex non-linear system such as

Salmonella infection between pigs. With current parameter estimation, the within-

pen infected steady state will be reached fairly quickly, within the timeframe of

grower-finisher production (84-116 days). Our best guess at estimating between-

pen transmission suggests that infection will travel slowly between pens (assuming

it only depends on the direct spread of faecal material between adjacent pens), at

a rate which means that infection will be unlikely to spread significantly before the

end of grower-finisher production. This suggests that one potential opportunity

to reduce Salmonella infection in pigs is to prevent cross-contamination between

pens, which would further slow the process of cross-contamination.

Infection in pig pens tends to be extremely heterogeneous, with clustering of in-

fection within one or two pens (VLA, 2009). This would support the conclusion

above that between-pen transmission is slow, but also it supports the hypothesis

that the introduction of Salmonella into a herd is also very heterogeneous (e.g.

the continual introduction of new, stressed, and possibly infected, weaners onto

the farm). This spatially heterogeneous introduction of Salmonella, or the precise

source of infection, has not been considered in the models developed so far, in

order to simplify the model dynamics. As reducing the contamination of sources

of Salmonella includes several prime intervention candidates (e.g. cleaning and

disinfection of pens between depopulation and re-population, decontamination of

feed) then this is an important factor to consider, and is dealt with in Chapter 6.

The cross-contamination model introduced complex dynamics that we thought

may have led to the potential for Turing patterns. However, no Turing patterns

are predicted, and all pens tended to the stable infected homogeneous steady

state once infection is introduced. Under certain parameterisations of the model
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bistability occurs, where there are two possible infected steady states, one stable

and one unstable. Pinning may occur under certain combinations of c1 and γ.

In this case, the infection levels are held at their initial state almost indefinitely,

for a time much longer than the period of rearing (see Figure 4.12). In order to

produce such a situation in reality would mean intervening to change the dose-

response of pigs (perhaps through vaccination or the use of organic acids), or by

changing the duration of infection, in order to ‘pin’ the infection within a certain

part of the farm. If intervention is sufficient, then the values of the parameters

can also be modified such that the level of infection in pens can be rolled back to

zero (see Figure 4.12). The cross-contamination model described in this chapter

is the final deterministic model developed in this thesis. Additional complexity

would almost certainly mean analytical solutions for steady states and stability

become intractable. Instead, in the next chapter we turn to stochastic (numerical)

simulation models to develop models that contain further important factors for

Salmonella transmission, such as considering explicit sources of infection.
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Chapter 5

Stochastic versions of standard

SIR and cross-contamination

models

5.1 Introduction

In the previous two chapters a deterministic multi-pen model based on standard

SIR model dynamics (here called the ‘standard’ model) and a deterministic cross-

contamination model, where the shedding of contaminated faeces is explicitly de-

scribed, were developed. Analysis of these models highlighted key dynamics of

infection, for example if infection is introduced, it is probable that an infected

steady state will be reached, rather than infection dying out. In addition, this

steady state appears to be globally stable, such that the steady state is reached

independent of initial conditions. However, it is noted that the similarities of

infection dynamics between pens is not easily explained when compared to ob-
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servational studies (Kranker et al., 2003; Jensen et al., 2006; VLA, 2009). Also,

the small number of pigs within each distinct population group (i.e. within each

pen) means that overall infection dynamics are vulnerable to stochastic variation,

which are not captured in determinstic models. The modelling methodologies

available for stochastic modelling have been described in Chapter 1. Therefore, in

this chapter, we investigate the development of two stochastic models, building on

the deterministic models previously described in Chapters 3 - 4, in order to better

describe the natural variability inherent in pig infection dynamics.

5.2 Model development

5.2.1 Further development of standard SIR model

The non-scaled multi-pen deterministic model was defined in Chapter 3 as

dSi,j
dt

= −

(
2∑

k=1

6∑
l=1

βk,lIk,l

)
Si,j + δCi,j,

dIi,j
dt

=

(
2∑

k=1

6∑
l=1

βk,lIk,l

)
Si,j − γIi,j,

dCi,j
dt

= γIi,j − δCi,j,

(5.1)

where the subscripts i and j represent the pen where susceptibles are exposed to

infection, as defined in Chapter 3, i ∈ Ir = {1, 2}, and j ∈ J = {1, . . . , 6}, and

k and l represent the position and row of where the force of infection originates,

k ∈ K = {1, 2} and l ∈ L = {1, . . . , 6}.

The stochastic transmission model has the same aims as the deterministic model
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described in Chapter 4: to describe the epidemic curve in a 12 pen pig grower-

finisher house given the initial introduction of Salmonella in one pig in pen (1,1)

at time t = 0.

The methods for stochastic modelling were outlined in Chapter 1; we apply these

methods, and further develop them, for the specific case of the 12-pen model de-

scribed above in Equation (5.1). In particular, we first replace the rate of tranmis-

sion (β, β1, β2 etc. . . ) with a stochastic probability of infection, as first described

by Reed & Frost in 1927 and formalised in the literature by Fine (1977). Sec-

ond, we replace the assumption of constant rates of transistion between Excretor

and Carriers (γ), and Carriers and Susceptibles (δ) with probabilistic parameters

defining the length of duration in each state for each individual infected pig. The

end result is an indiviudal-based stochastic SIRS model, which incorporates large

amounts of variability. We now take the reformulation of each transition in turn.

Transistion: Susceptible → Excretor

The standard form of the Reed-Frost model was described by Fine (1977), and the

rate of transistion between Susceptible and Excretor, λ (t), can be given by

λ (t) = 1− (1− p)I(t) , (5.2)

where p is the probability of an effective contact (i.e. sufficient for infection to

occur) between a susceptible and excreting pig, and in this case I (t) is the number

of excreting pigs at time t. If the number of susceptible pigs is defined as S (t),

then the number of newly excreting pigs at time t, NI (t), is
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NI (t) = λ (t)S (t) . (5.3)

The deterministic formulation of this model can easily be transformed into a

stochastic version by considering each contact between Susceptible and Excretor

as a binomial trial, with S(t) trials and λ(t) probability of ”success” (infection).

Therefore, the number of newly infected pigs at time t is a random variable deter-

mined by

NI (t) ∼ B (S (t) , λ (t)) , (5.4)

where B denotes a binomial distribution. The stochastic probability of an effective

contact, p, is equivalent to the deterministic probability of an effective contact, β,

β1 etc. . .. As for βk,l in Equation (5.1) we can assume that p will vary according to

where the susceptible and excreting pigs are placed relative to each other. We can

therefore describe the multi-pen system by modifying Equation (5.2) using similar

assumptions as proposed in Section 3.

The stochastic, multi-pen force of infection for pen (i,j) , λi,j is thus

λi,j (t) = 1−
3∏

m=1

(1− pm)Im(t) , (5.5)

where m = {1, 2, 3} and p1, p2 and p3 denote the probability of an effective contact

between a susceptible and excreting pig in the same pen, different pens within the

same row and different pens within different rows respectively. The number of

excreting pigs applicable to each p are defined by the following equation
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Im (t) =


Ii,j (t) if m=1,∑

l∈L:l 6=L Ik,l if m=2, i = k,∑
l∈L Ik,l if m=3, i 6= k.

(5.6)

We can write similar expressions for the addition of newly infected pigs to pen

(i, j) within one timestep, NIi,j (t), as for Equation (5.4)

NIi,j (t) ∼ B (λi,j (t) , Si,j (t)) . (5.7)

Transitions: Excretor → Carrier & Carrier → Susceptible

As for the transition between Susceptible and Excretor pigs, the duration of infec-

tion and carriage will be variable between pigs. Assuming independence between

the individual duration of excretion and carriage then we can define a function

for each to describe the variation between pigs. For each pig q infected at time

t a duration of excretion, γs (q), and a duration of carriage, δs (q), are defined.

The appropriate choice of function for, and the subsequent parameter estimation,

depends on the data available, and both are therefore described in more detail in

Section 5.2.2.

Algorithms for the stochastic model

The initial conditions are set the same as for the multi-pen deterministic model

(i.e. one excretor pig enters pen (i, j) at t = 0). Each iteration of the discrete-time

model is updated at every timestep using the following alogrithm.
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• The number of newly infected pigs in each of the 12 pens in the time period

[t, t+ 1), NIi,j (t), is calculated using Equation (5.7).

• For each newly infected pig q in pen (i, j) random variables, ωi,j(q) and µi,j(q)

are generated from appropriate probability distributions for the durations of

excretion (γs (q)) and carriage (δs (q)) respectively. The times at which each

infected pig q transitions from Excretor to Carrier, tC , and from Carrier to

Susceptible, tS, are t+ ωi,j(q) and t+ µi,j(q) respectively.

• The number of pigs transitioning at each timestep (i.e. t = tC or t = tS)

is stored in memory. The number of pigs in pen(i, j) making the transition

E → C and C → S at time t are defined asNCi,j(t) andNSi,j(t) respectively.

The number of pigs within each state in pen (i, j) at time t+ 1 is therefore given

by

Si,j (t+ 1) = Si,j (t)−NIi,j (t) +NSi,j (t) ,

Ii,j (t+ 1) = Ii,j (t) +NIi,j (t)−NCi,j (t) ,

Ci,j (t+ 1) = Ci,j (t) +NCi,j (t)−NSi,j (t) .

(5.8)

Each iteration of the model is run using the algorithm for stochastic simulation in

Section 1.3.3, using Monte Carlo simulation techniques. At 5000 iterations stan-

dard convergence criteria were used to ensure the model had converged sufficiently

(i.e. the mean and 5th and 95th percentiles of the output change less than ±1.5%

over 500 iterations. The output is taken to be the proportion of pigs in each state

at the last timestep).
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The model is implemented in MATLAB 2010b ( c©Mathworks Inc., USA). Each

simulation consists of 5000 iterations.

5.2.2 Parameter estimation

The parameter estimates for the stochastic standard SIRS model are given in

Table 5.1. The parameter estimates for p1, p2 and p3 are the same as for β1, β2

and β3 within the deterministic model. The duration of shedding and duration

of carriage are derived individually for each pig in the stochastic model, and are

random variables from the functions γs (q) and δs (q).

Table 5.1: Parameter estimates for the stochastic model
NotationDescription Value Reference

n Number of pigs within a pen 40 MLC (2009)
p1 Probability of an effective

contact between a suscepti-
ble and infected pig within
the same pen

0.01 Dent et al.
(2009)

p2 Probability of an effective
contact between a suscepti-
ble pig in penq and an in-
fected pig within a different
pen in row i

0.001 Dent et al.
(2009)

p3 Probability of an effective
contact between a suscepti-
ble pig in penq and an in-
fected pig within a different
pen in opposite row i

p2/3 Expert opinion

γs (q) Duration of shedding Weibull(35.32,1.50) Kranker et al.
(2003)

δs (q) Duration of carriage LogNorm(134,90) -
γs (q) , δs (q) ≥ 0

Ivanek et al.
(2004)

There are several (experimental or observational) studies that investigate the dy-

namics of infection in pigs (Kranker et al., 2003; Jensen et al., 2006; Osterberg
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et al., 2009). Kranker et al. (2003) is the only observational study, and hence we

choose this study for parameter estimation. Kranker et al. (2003) took monthly

faecal and blood samples from 180 pigs in three herds over a period of up to 140

days. The faecal results for each individual pig are shown in Figure 5.1(a). Data

of such form, especially where the dataset is right-censored (i.e. several of the

culture-positive pigs were slaughtered before a culture-negative sample was taken)

are appropriate for the development of a survival function. We therefore conduct

survival analysis on the dataset to estimate the probability density function (PDF)

for the duration of shedding, γs (q).

The raw dataset from Kranker et al. (2003) was obtained from the authors. To

conduct the survival analysis we make the same assumptions as were made by the

authors for their own analysis:

• Shedding began 1 week prior to the first isolation and lasted, uninterrupted,

until 1 week after the last isolation, unless;

• If an individual pig was found to be culture negative, or one sample was

missing between two culture-positive samples, then the pig was considered

to be shedding for the entire time period between the two positive samples;

• If an individual pig that had previously tested culture positive was found

to be culture negative on two or more successive sampling occasions then

the pig was assumed to have recovered from the shedding stage of infection;

further culture-positive samples were assumed to indicate re-infection.

Suvival analysis involves the modelling of time to event data, which in this case is

the time from initial infection until a pig ceases to shed Salmonella in its faeces.

Typically, a survival function, Sf (t), is constructed, describing the probability

that the time of an event (in this case ceasing shedding), T , is greater than the
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time since infection, tinf . Mathematically, Sf (t) = P (T > tinf ); this function

has the form of a complementary cumulative density function (CCDF). An initial

plot, treating censored datapoints as uncensored, shows the preliminary survival

function for the Kranker dataset (Figure 5.1(b)).

Two common distributions fitted to ”time-to-failure” data (in this case, time to

ceasing shedding) are the Exponential and Weibull, and examples of the respective

CCDFs are shown in Figure 5.2. The Exponential CCDF is dependent on one

variable, λ, which results in a constant hazard function, i.e. the probability of

a failure occurring is independent from the time since infection. The Weibull

CCDF contains two parameters, λ and κ, the latter being a shape parameter.

This shape parameter determines whether the probability of failure decreases over

time (κ < 1), stays constant (κ = 1, equivalent to the Exponential function), or

increases over time (κ > 1).

Biologically, it would appear more realistic that the probability of ceasing shedding

should increase as time since infection increases. That is, a suitable function would

be a Weibull function with κ > 1. The shape of the survivial function in Figure

5.1(b) supports this assumption. Therefore, we fit the data from the Kranker

study to a Weibull CCDF. The forms of the Weibull CCDF (Fc) and PDF (f) for

a random variable X are as follows

f (t;λ, κ) =
κ

λ

(
t

λ

)κ−1

e−(t/λ)k t ≥ 0, κ, λ > 0,

Fc (t;λ, κ) = e−(t/λ)k .

.

Defining a right censored datapoint as one where the pig was still shedding Salmonella
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(a) Estimated shedding times of Salmonella Typhimuirim in 88 pigs (of 180) that
tested positive on at least one occasion during the 140 day period of the Kranker et
al study. Individuals represented by bars with asterisks are assumed to be reinfected.
Figure taken from Kranker et al. (2003) .

(b) A plot of the survival function for the data shown in Figure 5.1(a)

Figure 5.1:
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Figure 5.2: Comparison of Complementary Cumulative Distribution Functions for
the Exponential (λ = 26) and Weibull (λ = 26 and κ = 5).

when the last sample was taken, then 24 of the 88 pigs identified as shedding at

one or more sampling points were right censored. No pigs were found to be shed-

ding Salmonella at the first sample point, therefore there was no left censoring

of the data. Using the assumptions for time of infection listed above and the

distribution fitting tool in MATLAB 2010a then Maximum likelihood Estimates

(MLEs) for λ and κ are 35.32 and 1.50 respectively. The resulting CCDF and

PDF are shown in Figure 5.3. Other distributions, for example the Exponential

and Gamma, were fitted to the censored Kranker dataset but none fitted as well

as the Weibull distribution. We therefore have
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γs (k) ∼ Weibull(35.32, 1.50). (5.9)

Figure 5.3: PDF and CCDF for the Weibull distribution fitted to the censored
Kranker dataset (λ = 35.32 and k = 1.50). The average time of shedding is 31.89
days. As κ = 1.5 then the survival function is not too disimilar from that of the
Exponential survival function (κ = 1) and there is steep gradient of decline in the
first 50 days.

A number of studies have investigated the time course of overall Salmonella infec-

tion in pigs by sampling various organs/lymph nodes (Fedorka-Cray et al., 1994;

Gray et al., 1996; Kranker et al., 2003). Of the lymph nodes and organs sampled,

there is a trend across all studies that the most commonly infected sites are the

ileo-caecal lymph nodes and cecum, which also tend to remain infected the longest.

We therefore define the Carrier state as the period where a pig has ceased shedding

of Salmonella in its faeces, but is still infected in the ileo-caecal lymph node (as
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this was also the site chosen for sampling for the slaughter pig survey conducted by

the European Food Safety Authority (EFSA) in 2008 (EFSA, 2009a)). As lymph

nodes can only be sampled once the pig has been slaughtered, it is not possible to

collect individual longitudinal data as for faecal shedding. There is further discus-

sion of parameterisation for the duration of the carrier stage in Chapter 6, but for

the purposes of this preliminary stochastic model we assume the same parameter

estimation for the duration of carriage for an individual pig q, δ (q), as in Ivanek

et al. (2004) (see Table 5.1).

5.2.3 Standard dynamic model results

The epidemic curve that results from infection of one pig in pen (1, 1) at t = 0

(averaged over all iterations) is shown in Figure 5.4 (there are very similar curves

for each pen, with only a small delay in the epidemic peaks of other pens due

to between-pen transmission). The first observation is that the average epidemic

curve is very similar to that of the equivalent pen in the deterministic model

in Figure 3.6. However, as shown in Figure 5.5 the epidemic curve for individual

iterations vary, although this variation does not markedly change the overall shape

and timing of the epidemic curve. The probability of stochastic fade-out1 is very

low (6 ∗ 10−4), with only one iteration of the model resulting in no transmission of

infection either within- or between-pen. The epidemic curves in each of the other

pens are similar to that in pen (1,1), with a very similar probability of stochastic

fade-out.

1Stochastic fade-out is defined as when there are no infected pigs on the farm. This can be
defined at any point in the 150 day period, but given the average duration of shedding is 26
days, the probability of stochastic fade-out was calculated at 50 days, as the initially infected
pig should then have recovered to Carrier status, and no longer be infectious.
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Figure 5.4: Plot of average epidemic curves for Excretors and Carriers from the
1500 iterations of the model.

5.3 Cross-contamination model

5.3.1 Transistion: Susceptible → Excretor

The rate of infection in the standard stochastic SIRS model above is governed by

the probability of an effective contact, p1, p2 etc . . ., which encapsulates all factors
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Figure 5.5: Plot of 1000 randomly selected epidemic curves from the 5000 iterations
of the model (grey lines). The average number of Excretors (blue) and Carriers
(red) over time is also displayed.

that affect transmission (e.g. the amount of Salmonella in the environment, the

type of feed being fed to the pigs). The cross-contamination model proposed in

Chapter 4 is a preliminary step towards separating out these individual factors,

by explicitly incorporating faecal contamination of the pig pen environment. As

for the standard SIR model we can incorporate stochastic effects within the cross-

contamination model. The deterministic model equations are as follows
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dSj
dt

= −Df (fj)Sj + δCj,

dIj
dt

= Df (fj)Sj − γIj,

dCj
dt

= γIj − δCj,

dfj
dt

= pfIj − dffj + η (fj+1 + fj−1 − 2fj) ,

(5.10)

where fj is the amount of Salmonella in the pig pen j, pf is a parameter describing

the magnitude of pig excretion, df is the rate of decay (per day) for Salmonella

in the pen environment, η is the rate of cross-contamination between pens and

Df (fj) is a dose-response function. An appropriate sigmoidal function has been

chosen and so

Df (fj) =
c1fj

m

c2
m + fj

m ,

where c1, c2 and m are real and positive dose-response parameters.

The dose-response parameter Df (fj) is the equivalent of the Reed-Frost force of

infection, λ. The inclusion of the explicit faecal parameter f directly describes

the amount of cross-contamination that occurs between pens, so there is no need

to sum the probabilities of effective contacts from different pens (as in Equation

(5.2)). Similar equations for the transition between Susceptible and Excretor in

pen j can be written as for the standard model described in Equation (5.6), except

λms is replaced by the value of the dose response parameter Df (fj, t) in pen j at

time t.
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NIj (t+ 1) = B (Sj (t) , Df (fj, t)) , (5.11)

where the amount of contaminated faecal material in pen j at time t is given by

fj (t+ 1) = f ∗j (t) + τj−1 + τj+1 − τbj. (5.12)

The parameter f ∗j (t) is the amount of contaminated material left in the pen after

decay and cross-contamination are accounted for. The terms τj−1 and τj+1 repre-

sent the amount of faecal contamination that are cross contaminated during the

timestep from pen j to pens j−1 and j+1 (within the same row) respectively. For

end-of-row pens then only the terms relating to the single adjacent pen are used.

The term τbj denotes the amount of faecal material spread to the neighbouring

row of pens during the timestep from pen j.

The amount of faecal material left in the pen after decay and cross-contamination,

f ∗j (t), is described by a multinomial distribution. This then provides the values

for τj−1, τj+1 and τbj etc. . . , which can then be used in subsequent calculations for

pens j − 1 and j + 1.

{fd, τj−1, τj+1, τbj, f
∗
j (t)} = MN (fj (t) , {df , pj−1, pj+1, pbj, (1− pj−1 − pj+1 − pbj)}) ,

where fd is the amount of Salmonella that decays reducing the total amount of

contaminated material. Hence, the term fd is not re-assigned to any pen and means

that without any excreting pigs the total amount of contamination will reduce over

time. The terms df , pj−1, pj+1 and pbj are the probabilities of an amount of faecal
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material decaying or being cross-contaminated to pens j− 1, j+ 1 or the opposite

row of pens. The amount of faecal material cross-contaminated to the oppositie

row is randomly assigned to one of the pens in the opposite row (hence, at any

given timestep, a pen may receive none or 1 to 6 times τbj amounts of contaminated

faecal material from pen j).

5.3.2 Transistions: Excretor → Carrier & Carrier → Sus-

ceptible and implementation of model

The transistions Excretor-Carrier and Carrier-Susceptible, and how the model is

implemented, are identical to the standard SIRS model (see Sections 5.2.1 and

5.2.1).

5.3.3 Algorithm for cross contamination model

The algorithms for each iteration and the overall simulation are the same as for

the standard model.

5.3.4 Parameter estimation

We use the same parameter estimates for the dose response function D (fj), the

magnitude of faecal shedding and decay of Salmonella, (pf , df ) as have been

given in Table 4.1 for the deterministic model. As cross-contamination between

adjacent pens will not necessarily cancel out in a stochastic model as it will for the

deterministic model, we also need parameter estimates for the cross-contamination

factors, pj+1, pj−1 and pbj. There are no data available to estimate the rate of cross-
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contamination between pens or between rows. We have therefore chosen values

which appear biologically plausible.

Table 5.2: Parameter estimates for the stochastic cross-contamination model
Notation Description Value Reference/Notes

pj−1, pj+1

for all j
Proportion of contaminated fae-
cal material in pen j at time t that
is cross-contaminated to adjacent
pen

0.06 Author’s best
guess

pnj Proportion of contaminated fae-
cal material in pen j at time t that
is cross-contaminated to a pen in
another row in one timestep

0.009 Author’s best
guess

5.3.5 Cross-contamination model results

The average epidemic curve over all iterations for all pens is given in Figure 5.6.

The first observation is that there is some variation between pens as there is a

delay between the initital infection time of each pen. Also, the average epidemic

curve peaks at a far lower level than for the deterministic model in Figure 4.9

(and hence the standard stochastic model result above). The reason for this is

that, given the initial conditions (one infected pig in Pen (1,1)), the probability

of stochastic fade-out of infection is high (0.785). The epidemic curves in each

of the other pens are similar to that in Pen (1,1), with a very similar probability

of stochastic fade-out over all pens (0.804) as for Pen (1,1) (although there is a

time delay for between-pen infection, which produces a corresponding time delay

in the peak of infection in each pen). The similarity between the two probabilities

of stochastic fade-out reflects the fact that should infection be maintained in the

initially infected pen then between-pen transmission is highly likely to occur (con-

versely if stochastic fade-out occurs, then between-pen transmission is extremely
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unlikely). The probability of stochastic fade-out across the pig house is almost

constant no matter where it is measured (t =50 days - 0.8036, t =100 days -

0.8056, t =150 days - 0.8104), hence very few, less than 0.2% of iterations, result

in stochastic fade-out of infection if within and between-pen transmission occurs.
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The reason for the much greater probability of stochastic fade-out in the cross-

contamination model compared to the standard model is clear from Figure 5.7,

where only the iterations with no stochastic fade-out are plotted. The average epi-

demic curve for these iterations (blue - Excretor, red - Carrier) is also shown. The

variation between iterations is far more pronounced in the cross-contamination

model, and indeed most iterations result in no transmission of infection at all,

with the initially infected pig recovering before transmission occurs. Where infec-

tion does occur the timing of the epidemic varies, which also flattens the average

epidemic curve and lowers the average peak of infection. These new dynamics are

generated by the inclusion of dose-response and explicit faecal shedding. The mag-

nitude of faecal shedding is a function of the number of infected pigs in a pen, but

because of stochastic variation and variable shedding, the dose-response functon

is more variable than the equivalent force of infection from the standard model.

We have attempted to make the comparison of results between the standard and

cross-contamination models as valid as possible, by using the same parameter es-

timates and initial conditions where possible, and attempting to produce similar

rates of transmission through the force of infection λi,j(t) (standard model) and

the dose-response relationship for the cross-contamination model. Hence, any dif-

ferences in the model results should be as much a reflection of the model structure

as possible, rather than changes in parameter estimation. The key difference in

dynamics, that is of far more variability in the epidemic curve of individual itera-

tions (and the peak of infection) for the cross-contamination model compared to

the standard model, is generated through the stochastic nature of faecal contam-

ination of adjacent pens, and the more variable dose-response function (which is

dependent on the variable faecal contamination).
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Figure 5.7: Plot of the average epidemic curve over all 1500 iterations of the
cross-contamination model (blue - Excretor, green - Carrier).

5.4 Discussion

The stochastic models presented in this chapter are modifications of the previous

deterministic models. The main differences are the use of the Reed-Frost/explicit

faecal shedding models to create individual-based models that describes stochastic

transmission, along with the inclusion of individual parameter estimation of du-

ration of shedding/carriage. When infection is maintained, the average epidemic

curves produced by both the standard and cross-contamination models are very

similar to those from the deterministic models. However, there is a high propob-
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ability of stochastic fade-out for the stochastic cross-contamination model, hence

over all iterations the average epidemic curve for this model peaks at a much

lower level of infection than for the equivalent deterministic model. At an indi-

vidual iteration level, the stochastic effects of the standard model did not produce

markedly different results. However, the stochastic effects included in the cross-

contamination model mean that the infection dynamics between pens can be very

different; for example, the exact timing of the epidemic within a farm is very vari-

able. However, when an epidemic occurs, most iterations of the model produce

an epidemic curve that is similar in shape to the average epidemic curve, even if

the peak of infection is lower/higher than average, and/or the timing of that peak

is delayed. The stochastic fade-out introduces an interesting dynamic where the

average prevalence of infection at slaughter is dominated by a few farms that are

highly infected, while the rest of the farms are not infected or infected at a very

low level. This particular result replicates observational studies much better than

the deterministic models, and suggests that stochastic fade-out of infecton is an

important dynamic to consider.

Of note is that when transmission does occur, then the stochastic models still

tend to produce an equilibrium of sorts, especially if the average epidemic curve is

considered. Hence, the stochastic models suggest that once infection is established

in 2 or more pigs then the pen will tend to remain infected until the end of the

finishing period. Thus, the stochastic models suggest only subtle differences in the

conclusions of the determinstic models: that infection will, by and large, sustain

itself once it has spread between 2 or more pigs. In terms of intervention, the results

of the stochastic models would not produce any dramatically different conclusions

than the deterministic ones; faecal-oral transmission is more than likely to sustain

itself, so completely preventing the infection of pigs within a cohort (e.g. pen,
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building) is the only reliable and effective way to reduce spread of the organism

with current parameter estimates.

All of the models described up until now have been for grower-finisher production.

Initial conditions of numerical simulations have been set without thought to realism

in order to investigate the basic dynamics of infection. However, as the previous

investigation of continuous production highlighted, the time of infection is very

important in determining the prevalence of infection at the point of slaughter.

Therefore, greater attention must be paid to this factor. Given most observational

studies point to initial infection between farrowing and reaching the grower-finisher

stage, then these stages of rearing should be included in a more realistic model. The

source of infection is also likely to influence infection dynamics as well. Hence, in

the next chapter we develop the stochastic cross-contamination model described

in this chapter, to include earlier stages of rearing and the source of infection.

The cross-contamination model also allows the inclusion of farming management

specific parameter estimation (as these farming practices are reflected in the level of

contamination of the farm, and the dose-response of pigs to Salmonella exposure),

and so this is also captured.
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Chapter 6

Stochastic model from birth to

slaughter and including sources of

infection

6.1 Introduction

The models in previous chapters dealt with transmission of Salmonella once in-

troduced into a typical grower-finisher pig house. However, many interventions

depend on preventing introduction of infection from farrowing onwards (biosecu-

rity, rodent control), and the introduction/transmission of Salmonella has been

shown to be dependent on farm management factors not currently included in the

model (e.g. feed type, flooring type) (Nollet et al., 2004; VLA, 2005; O’Connor

et al., 2008). The model dsecribed in this chapter therefore incorporates features

to deal with these factors.

The developments described in this chapter are motivated not only by this thesis,
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but also for the production of a farm model capable of assessing interventions

between EU Member States (MSs), for the EFSA QMRA described in Chapter 1.

While there are many factors (such as climate) that may affect the transmission

of Salmonella within a MS, the primary difference that is amenable to modelling

is the management of the farm; hence differences in the effect of interventions

between MSs can best be identified by differentiating between management types

within MSs.

The farm model described in this chapter is a direct continuation of the method-

ological progress described in the previous chapters, and is intended to a) describe

as realistically as possible how transmission dynamics differ according to differ-

ent pig farming management practices, and b) assess the contribution of different

sources of infection to transmission and the eventual prevalence of infection in

slaughter-age pigs. Such developments are applicable for describing the difference

between farm management systems in the UK (the main subject of this thesis),

but also for the differentiation of dynamics between MSs (the focus of the EFSA

QMRA). While we discuss the model results in the context of the UK situation (a

high-prevalence country, where the prevalence of lymph-node infection at slaugh-

ter was recorded as 21.2% in the slaughter pig baseline survey conducted by EFSA

(EFSA, 2009a)), we also include the results of a farm model developed for a much

lower-prevalence country than the UK (for political reasons we cannot name this

MS, and label it MS1) in order to highlight some of the important dynamics and

sources of infection under different scenarios.

Such aims described above require a large extension and modification of the

stochastic cross-contamination model described in Chapter 5, which are detailed

in the next section.
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6.2 Methods

6.2.1 Model algorithm and overview

For clarity we define a distinct difference between the use of the terms ‘sow’ and

‘pig’. Pigs are explicitly defined as those animals which are raised only for slaughter

and progress through all the rearing stages of farrowing, weaning, growing and

finishing. Sows are explicitly those animals producing the pigs raised for slaughter

in farrow-to-finish or production herds (as opposed to breeding sows in multiplier

or nucleus herds).

In order to explicitly include management systems, sources of infection and a more

realistic accounting of the contamination of the environment, several extensions of

the cross-contamination model described in Chapter 4 have been made:

• We initially model the flow of pigs through a pig farm from birth to slaughter,

much like the model of Lurette et al. (2008a). Hence, we are able to model

the contacts, and transmission of Salmonella, between cohorts.

• Three sources of infection are included (at the following stages of produc-

tion); the sow (farrowing), feed contamination (weaning to finishing) and

“external” contamination, e.g. by rodents/birds (all stages).

• Dose-response and faecal shedding are explicitly modelled with a focus on

detailed parameter estimation, in order to capture mechansitically the ef-

fects of different farm management practices (e.g. C&D) on environmental

contamination.

• Difference in farm types is captured by a combination of changes to the pro-

duction flow framework and/or parameter estimation of model parameters.
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Such a model is far more complex than the models described in previous chapters,

and hence the model algortihm is also correspondingly more complex. We outline

the following chronology of the model process in the following schematic (Figure

6.1).

The farm model is an individual-based stochastic Susceptible-Infected-Susceptible

(SIS) model, adapted to take account of i) multiple changing populations, rather

than a single closed population and ii) intermittent shedding of Salmonella. The

model is implemented using Monte-Carlo simulation, where each iteration repre-

sents production from one farm over a 500 day period, incorporating farrowing,

weaning, and grower and finisher production. Over this 500-day cycle of produc-

tion batches of pigs are sent to slaughter each week. Two outputs are generated

for each batch of pigs sent to slaughter: the prevalence of lymph-node infection

and a distribution for the concentration of Salmonella shed within the faeces of

infected pigs.

For each iteration there are a large number of spatial and temporal events that

can occur at random, including the seeding of infection into the farm, the response

to exposure (in terms of whether or not infection occurs) and subsequently the

shedding rate. All farms are set to be Salmonella-negative at the start of an it-

eration (day 1). There are three assumed sources of infection that will lead to

pig infection: sows, feed and wildlife. All pigs born are assumed to be suscepti-

ble, and hence the first infection of a pig must occur because of one of the three

sources; only then can pig-to-pig transmission take place. Following initial infec-

tion of the herd, which can occur at any time, transmission is described by an

individual-based environmental infection model, which tracks i) the shedding and

inactivation/movement of Salmonella in the environment and ii) the dose-response

of pigs exposed to environmental contamination.
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Figure 6.1: Model algorithm.

There are 32 farm types included in the model, depending on the combination

of factors such as feed type, flooring type and whether the farm is a farrow-to-

finish or multi-site farm (see Section 6.2.2). The farm type is selected randomly
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at the beginning of an iteration based on the relative proportions of each farm

type (derived from various data sources). The initial condition routine determines

which sows shed Salmonella and which batches of feed are contaminated over the

entire period of modelling. All three sources of infection are “static”, i.e. they are

not affected by the dynamic transmission of Salmonella between pigs, hence these

initial conditions will remain the same over the whole timeframe considered.

The baseline model is run for 1000 iterations (representing 1000 farms). Manage-

ment factors (for example flooring, feed type used) are used to define farm types,

for which more description is given later. Farm types are allocated proportionally

to the 1000 farms to represent the national structure of the pig herd within a par-

ticular MS (see Section 6.2.4). Hence, it is assumed that summing the predicted

number of lymph-node positive pigs over all batches/farms and dividing by the

total number of pigs within the batches provides an estimate for the prevalence of

lymph-node positive pigs being sent to slaughter (i.e. leaving the farm gate) for a

particular MS.

6.2.2 Management of farms

Large variability in breeding herd and slaughter pig prevalence across EU MSs is

apparent from two baseline surveys carried out in 2006-8 (EFSA, 2008b, 2009a).

While some of this variability can be assumed to originate from topography and

climate, the majority will result from the types of production systems used by

farmers. We included management systems and practices for which there was

sufficient evidence to show a direct effect on transmission of Salmonella. Indi-

vidual farms within the model are assigned a farm type based on these relevant

characteristics. The options modelled are described in Table 6.1.

155



Table 6.1: Description of management factors included within the farm model.

Management
factor

Description

One site or two-
site farm

Two types of farm are considered: farms rearing slaughter pigs
from birth to slaughter weight (breeder-finisher) or farms rear-
ing birth to approximately 8 weeks old and then transferring
pigs to a specialist finisher site (breeder-weaner and finisher
only).

All-in-all-out
versus continu-
ous production

All-in-all-out (AIAO) production has been shown to be a pro-
tective factor for Salmonella infection (lo fo Wong et al., 2004;
Nollet et al., 2004). AIAO production as modelled is the the-
oretical ideal; batches of pigs are kept together in one room
for each of the weaning, growing and finishing stages without
any direct contact with any other batches all the way through
rearing. All other systems are termed “continuous”.

Indoor ver-
sus outdoor
production

According to data from the EFSA baseline survey for breed-
ing pigs (EFSA, 2009a) large-scale outside production is still
quite rare for pigs beyond the stage of weaning, and there-
fore only the farrowing stage is included as a possible outside
production stage.

Feed type Feed can be both a source of Salmonella infection in pigs and
a factor in determining the level of transmission. Of par-
ticular importance is whether the feed is presented in a dry
or wet form, or whether it is pelleted or non-pelleted ((lo fo
Wong et al., 2004; Farzan and Friendship, 2005; O’Connor
et al., 2008). Only the distinction between wet or dry feed
is assumed because there is some information on the relative
effect of wet/dry feed on the prevalence of Salmonella infec-
tion in pigs and good information on whether a farmer uses
wet/dry feed from the EFSA baseline survey for breeding pigs
(EFSA, 2009a).

Flooring type While the evidence for flooring type affecting Salmonella
transmission is varied, logical thinking suggests that prop-
erly maintained slatted flooring may well have some effect as
it will remove faeces/Salmonella from the pig environment.
There are many flooring types (partially slatted, bare con-
crete, straw-laden), but with current data we can only differ-
entiate between slatted and solid flooring.

It is assumed that all slaughter pigs will go through four main stages of rearing:

farrowing, weaning, growing and finishing (fattening) and will be moved into spe-
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cialist accommodation for each stage of rearing (pigs can be transported between

farms at the end of weaning if a two-site system is used). Pigs will be batched in

some way, such that there are distinct age cohorts that move through the system

at well-identified times. A batch cohort is defined as one group of sows that all

give birth at the same time in one of the five farrowing houses (see Figures 6.2 and

6.3). Given current parameter estimation (see Table 6.3) then there are 16 sows

within each farrowing house cohort, producing 10 piglets each; these 160 piglets

are grouped into pens of 40 at weaning (28 days). As each group of piglets reach

weaning age the group of sows is replaced with another group of sows reaching par-

turition, after a week of the pen being empty for cleaning and disinfection (C&D).

From the farrowing building, each batch cohort will spend 4 weeks in the wean-

ing house, 6 weeks in the growing house and 12 weeks in one of the two finishing

houses. If the system is multi-site, there there will be a stage of transport between

weaning and growing. The model explicitly tracks pens, rather than batches, over

the 500 day production cycle. Batch cohorts are moved between these pens over

time as shown. Over a 500 day cycle of production, there are 67 batches of finishing

pigs sent to slaughter.

Pigs will spend sa days in the farrowing house before being weaned, wa days in the

weaning accommodation, and then ga and fa days in the growing and finishing

stages respectively, before being sent to slaughter on a weekly basis at times t =

{1, 8, 15, . . . , 498}. There are npig pigs in pen j, npen pens in room l, and nroom

rooms in a building. At the beginning of the model (t=1) each pen/room/building

is populated with pigs (except for one farrowing building, which is left empty

for cleaning and disinfection for one week). The system is relatively flexible, and

differences between rearing stage, inside/outside and AIAO/continuous production

are captured via parameter estimation of the farm management system factors.
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Figure 6.2: Schematic of pig flow through generic large farm system as modelled.
Examples of flow are given by shaded annotations: i) single-hatched; piglets are
weaned and grouped into batch of 4 pens within one weaner room at the start of
Week 1, moved to growing accommodation on Week 5, finishing accommodation
on Week 11 and slaughtered on Week 23; ii) double-hatched; new group of sows
moved into vacated farrowing building 5 on Week 16; piglets are weaned at start
of Week 20 and pass through rooms in subsequent accommodation as they become
empty at the time where movement occurs.

For computational efficiency it was also assumed that pig movement is regimented

and efficient, such that the pens containing the individual batch of pigs sent to

slaughter at times t are filled immediately with the group of pigs within the grow-

ing house that have reached finishing weight, and that group is replaced by the

batch of pigs reaching the required growing weight etc. . . (with the exception of

the farrowing house, where there is a week’s delay before re-population with the

next batch of sows reaching partuition). For slaughter pigs that are finished on
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Figure 6.3: The model explicitly tracks pens over the 500 day production cycle.
Batch cohorts are moved between these pens over time as shown. Over a 500 day
cycle of production, there are 67 batches of finishing pigs sent to slaughter.

a grower-finisher farm, it is assumed that they were reared on a breeder-weaner

farm and transported to the grower-finisher farm. Transport has been highlighted

as a risk factor for Salmonella transmission between pigs (Berends et al., 1996),

hence Salmonella transmission during transport is included in the model if this

farm type is selected. Transport between farms is assumed to be almost identical

to transport between the finishing house and abattoir, hence the model we use

here is largely based on a Transport & Lairage model (Simons et al., prep), except

it is assumed only one cohort (batch) is transported at a time.
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6.2.3 Transmission model

Model states

Rather than the SIRS compartment model of the previous models, a more com-

plex system is used in this model in order to account for intermittent and variable

shedding of Salmonella. This is necessary, as Salmonella is a dose-dependent,

faecally-transmitted infection, and in order to capture the effect of farm manage-

ment practices on the environmental contamination of the farm, we must model in

more detail the shedding of Salmonella by infected pigs. Therefore, we introduce

variability into the infectious state I, such that pigs may or may not be shedding

(intermittent shedding) and if they do shed that shedding is variable. These traits

have been observed in a number of studies (Kranker et al., 2003; Jensen et al.,

2006; Nollet et al., 2005). Inspection of the time of excretion (as determined by

faecal sampling) and infection (as determined by presence of Salmonella in various

organs) suggests that pigs are able to shed intermittently throughout the duration

of being infected (Gray et al., 1996; Jensen et al., 2006), hence the assumption of

intermittent shedding effectively removes the need for the Carrier status. This is

because pigs are no longer assumed to cease shedding at the end of the infectious

period, but rather could cease/restart shedding a number of times before the infec-

tion is finally cleared. The model is therefore classed as an SIS model, see Figure

6.4.

Therefore, it was assumed that a pig will be in one of two states at time t; Suscep-

tible or Lymph-node positive (specifically infection in the ileo-caecal lymph node).

Similar to the principle introduced by Soumpasis and Butler (2009) the concen-

tration of Salmonella shed by Lymph-node positive pigs is dependent on whether

the pig is infected by a ‘low’ (< 106 CFUs) or ‘high’ (≥ 106 CFUs) dose.
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Figure 6.4: Schematic of SIS compartment model used in this model. This trans-
mission model is overlaid on top of the production flow model described in Section
6.2.2

Lymph-node positive status was used to determine infection as it is an ideal char-

acteristic at the point of slaughter for which to validate the model (given the ileo-

caecal lymph node was the primary sample type for the EFSA baseline slaughter

pig survey (EFSA, 2008b)). However, being lymph-node positive does not nec-

essarily mean that the pig will be actively excreting Salmonella. Rather, it is

an indication of the fact that the pig still has a Salmonella infection and can

potentially shed Salmonella. Therefore, it is important to note that at some time-

points no shedding of Salmonella may occur, even if a pig is lymph-node positive

(i.e. ‘intermittent shedding’). As no data were available, it was assumed that

pigs immediately return to the ‘Susceptible’ state following recovery from being

lymph-node positive. Recovery from the ‘Lymph-node positive’ state takes tLN

days.

Introduction of Salmonella into pig herd

The sources of infection were based on the opinion of EFSA (2006), which are:

other infected pigs (sows/new stock/mixing of cohorts), feed and wildlife. The

herd prevalence for Salmonella infection in breeding sows, pherd, is estimated for

each of the case study MSs (UK and MS1) from the EFSA breeding herd survey
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(EFSA, 2009a). At the start of each iteration, the infection status of the breeding

herd/farm is assigned according to the value of pherd. The within-herd prevalence

of Salmonella shedding on breeding herds, pw, will vary between farms, as well

as MSs. The number of sows shedding Salmonella within a batch cohort, b, is

binomially distributed according to pw and the number of sows within the cohort,

nsow, that is Isow (j, t) ∼ B (nsow, pw). Once the piglets of the current batch of sows

in the farrowing house are weaned, the building stays empty for a week to allow

effective cleaning and disinfection, before a new cohort of sows is brought into the

building to farrow. The number of infected sows in a new group is recalculated

using the same process as before.

Each sow in pen j will produce fsow (j, t) faeces per day. If the sow is currently

shedding it will excrete Salmonella into the environment at a rate cs (j, t) (CFUs

per gram of faeces). Note that sows are treated as a ‘static’ source of infection

within the model: they are not infected by either of the other sources considered,

or by the shedding of their neighbours. We assume each sow remains in the same

infection state for the duration of farrowing.

For simplicity, it was assumed that feed can be broken down into two major types:

wet (w) and dry (d). Pigs will consume g (k, j, t) grams of feed per day and

it is assumed that pigs consume from a new batch of feed every 7 days. We

define the prevalence of feed batch contamination as pfeed, and randomly select

whether each batch of feed is contaminated with Salmonella. The concentration

of Salmonella within contaminated feed is denoted as cf (k, j, t) per gram of feed

(equal to zero if feed batch is Salmonella-negative). The Salmonella shed by sows is

incorporated into the overall environmental contamination calculations described

in Section 6.2.3.
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There are little data to quantify the frequency and magnitude (and the associated

variability over time and between farms) of any external contamination of the farm.

However, there are some data on wildlife incursions onto farms and the amount

of Salmonella rodents or birds contaminate the environment with via defecation

(Davies and Wray, 1995; Skov et al., 2008). While recognising other external

sources of infection exist, it is assumed that only wildlife (specifically rodents and

birds) contributes as a source of external contamination of the farm/infection of

the pigs.

Skov et al. (2008) investigated the transmission of Salmonella between wildlife and

pigs; the study results suggest that wildlife within the vicinity of farms are more

commonly infected with Salmonella if the pigs themselves are infected. Therefore,

it is assumed that the Salmonella status of the wildlife is equivalent to the status

of the farm, i.e. infected or not infected. Rodents and birds are then assumed to

contribute λe (k, j, t) salmonellas to the exposure dose of each pig for each time step

onwards from when infection occurs on a farm (assuming, in the absence of any

other data, each pig will ingest roughly 1g of rodent/bird faeces per day). Studies

have shown that prevalence within rodents/birds on an infected pig farm (pwild)

are fairly low, around 1-5% (Davies and Wray, 1995; Skov et al., 2008). Therefore a

Bernoulli random variable (with p = 0.03) was used to indicate whether a pig would

ingest contaminated wildlife faeces such that pig ingestion of Salmonella through

external contamination occurs relative to the prevalence of infection within the

wildlife. The concentration of Salmonella within wildlife faeces appears to be

similar to that within pigs (Davies and Wray, 1995). Hence, in the absence of

rigorous quantitative data, a Lognormal distribution for λe (k, j, t) was assumed,

as visual inspection suggested it provided a biologically plausible fit (see Table

6.3).
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Transmission of infection via the contaminated environment

There are two major routes of transmission assumed within the model: by the

faecal-oral route via the shedding of contaminated faeces (whether pigs, sows or

wildlife) or the ingestion of Salmonella from contaminated feed. Observational

studies (Kranker et al., 2003; Jensen et al., 2006; Nollet et al., 2005) show inter-

mittent shedding by infected pigs at low levels (usually less than 100 CFU/g of

faeces) and a fairly low incidence of infection. A schematic diagram of this dy-

namic is shown in the transmission model framework for one pen (relevant to all

pens, buildings and stages of production), given in Figure 6.5.

The total faecal material in the pen, F (j, t), is added to each day by Susceptibles

(S (j, t)), Lymph-node positive pigs (I (j, t)), infected and non-infected sows (in the

farrowing house,) as well as from cross-contamination from other pens (Fxc). The

faecal material in pen j is simultaneously reduced each day via cross-contamination

(Fxc) or removal (Fold). This faecal material contains E (j, t) salmonellas, which

are added to each day from the infected group via shedding in their faeces and

reduced each day as a result of decay, δ, and cross-contamination Exc. Pigs ingest

λi organisms per day via the amount in the faeces, λf via feed and λe via the

environment (and λs, organisms from sow faeces if piglets during farrowing). This

process results in e (j, t) new infections according to the dose ingested and the

dose-response relationship applied.

Shedding and removal of faeces

Salmonella is primarily transmitted via the faecal-oral route (Heard and Linton,

1966; Proux et al., 2001) and infection is dependent on the dose ingested (Loy-

nachan and Harris, 2005). In order to examine a range of specific interventions

(for example vaccination, changing feed type, cleaning) the amount of Salmonella
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Figure 6.5: Schematic diagram of transmission model. Only the interactions asso-
ciated with pen j are shown.

ingested by a pig and the subsequent dose-response must be considered. The

methods used in previous models (Hill et al., 2008; Lurette et al., 2008a) have

been expanded; in particular shedding and the subsequent movement/ingestion of

faecal material. For the rest of this section a general parameter definition is used

for all stages of production (farrowing, weaning etc. . . ) unless explicitly stated.

The total amount of faecal material in pen j of room l at time t is defined as

F (j, t). The amount of faecal material shed by a pig, k, during any one timestep

(one day) is defined as f (k, j, t) ∼ N
(
µf , σ

2
f

)
. Similarly, fsow (j, t) ∼ N (µs, σ

2
s)
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for sows. It is assumed that fresh faeces (i.e. those shed on day t) will be more

viscous than older faeces and will hence be more amenable to fall through slatted

flooring. The proportions of faecal material shed on day t in pen j of house l and

removed that day via slatted flooring and cross-contamination to an adjacent pen

are given by βF,day (j, t) and βxc (j, t) respectively. Regarding faecal material shed

prior to day t, that is faecal material present on day t-1, the proportion removed

via slatted flooring is βF,old (j, t). The amount of faecal material present in pen j

of house l at the end of day t is calculated using Equations (6.1) - (6.4) as follows:

The total amount of faecal material shed by pigs on day t is

Fpig (j, t) =

npig∑
k=1

f (k, j, t), (6.1)

except in the farrowing building where Fpig (j, t) =
npig∑
k=1

f (k, j, t) + fsow (j, t)

The amount of faecal material shed on day t removed from pen j is given by

Fday (j, t) = Fpig (j, t) · (1− βF,day (j, t)− βxc (j, t)) . (6.2)

The amount of faecal material shed before day t and removed via slatted flooring

on day t is given by

Fold (j, t) = F (j, t− 1) · βF,old (j, t) . (6.3)

The amount of faecal material shed before day t and cross-contaminated to either

pen j -1 or j+1 or day t is given by
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Fxc (j, t) = F (j, t− 1) · βxc (j, t) . (6.4)

Finally, the amount of faecal material left in the pen at time t is given by

F (j, t) =F (j, t− 1) + Fday (j, t) + Fxc (j − 1, t) /2

+ Fxc (j + 1, t) /2− Fold (j, t)− Fxc (j, t) .

(6.5)

For pens at the end of a row (j = 1, 6), then the redundant cross-contamination

is removed, either Fxc (j − 1, t) /2 or Fxc (j + 1, t) /2.

The set of pens depopulated through each production stage are assumed to be

cleaned out before new pigs are moved in. We assume cleaning out of faecal

material at this depopulation time is efficient, therefore F (j, t) = 0, for all rooms

which are depopulated/re-populated at times t. In contrast, it is assumed that

Salmonella removal will not be 100% efficient (as Salmonella may be released from

the faecal material and reside in biofilms or hard-to-clean areas such as feeder tube

nipples). This inefficient removal is mathematically described below.

Dissemination of Salmonella into pig envrionment

The amount of Salmonella shed onto the pen environment each day by each pig

(γ (k, j, t)) or sow (γs (j, t)) can be given by

γ (j, t) =


npig∑
k=1

cp (k, j, t) · f (k, j, t) if wean, grow or finishing stage,

npig∑
k=1

(cp (k, j, t) · f (k, j, t)) + cs (j, t) · fsow (j, t) if farrowing stage,

(6.6)
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where cp (k, j, t) and cs (k, j, t) are the concentrations of Salmonella per gram of fae-

ces shed by a pig and sow respectively. The concentrations cp (k, j, t) or cs (k, j, t)

are zero for susceptible pigs/sows (cp (k, j, t) and/or cs (k, j, t) may also be zero

for infected pigs/sows that are intermittently shedding). Similar equations for the

total number of Salmonella in the pen environment, as for faecal material ((6.1) -

(6.4)), can be defined. Therefore,

Eday (j, t) = γ (j, t) · (1− βf,day (j, t)− βxc (j, t)) , (6.7a)

Eold (j, t) = E (j, t− 1) · βf,old (j, t) , (6.7b)

Exc (j, t) = E (j, t− 1) · βxc (j, t) , (6.7c)

where Eold and Exc are the amounts of Salmonella present at day t−1 and removed

during day t via slatted flooring and cross-contamination respectively. Therefore,

the total amount of Salmonella in pen j at the end of day t, E (j, t) is given by

E (j, t) =



(
10log(E(j,t−1))−δ)+ Eday − Eold (j, t)−

Exc (j, t) + Exc (j − 1, t) /2 + Exc (j + 1, t) /2 if t 6= t

10log(E(j,t−tc)·βC)−δ·tc if t = t

(6.8)

where δ is the decay rate of Salmonella (in logs) per day, tC is the time in between

depopulation and repopulation of the pen (7 days in a farrowing house, zero in

all other stages of production) and βC ∼ Beta(αβc , ββc) and is the fraction of

Salmonella remaining in the pen environment after cleaning. For end pens, either
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the Exc (j − 1, t) /2 or Exc (j − 1, t) /2 terms are removed from the equation.

For simplicity it was assumed that Salmonella is homogeneously mixed within

all faecal material in the pen. Therefore the average concentration of Salmonella

within a gram of contaminated faecal material, c, is given by

c (j, t) =
E (j, t)

F (j, t)
. (6.9)

It was assumed that all (Salmonella-negative and positive) pigs ingest some faecal

material each day. Therefore, each pig will ingest λi (k, j, t) organisms through

faecal ingestion, where

λi (k, j, t) = Poisson (µ · c (j, t)) , (6.10)

and µ is a random variable describing the mass of faeces ingested by a pig. The

total number of Salmonella ingested by each pig on day t, λ (k, j, t) can therefore

be given as

λ (k, j, t) = λi (k, j, t) + λf (k, j, t) + λe (k, j, t) (6.11)

where λi (k, j, t), λe (k, j, t) and λi (k, j, t) represent the amount of Salmonella in-

gested by pig k through ingestion of faeces, envrionmental contamination (rodent,

bird faeces) and feed respectively.

From experimental data (Loynachan and Harris, 2005), the probability of a pig

becoming infected through ingesting λ (k, j, t) organisms, pinf (k, j, t), was shown

to follow a Beta-Binomial dose-response relationship. Hence, at the individual pig
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level

pinf (k, j, t) = 1−
(

(1−Beta (αDR, βDR))λ(k,j,t)
)
, (6.12)

where αDR and βDR are the shape and scale parameters of the Beta-Binomial dose

response model, and are dependent on feed type. The number of newly infected

pigs in pen j, e (j, t), can therefore be defined as

e (j, t) =

S(j,t)∑
1

B (1, pinf (k, j, t)) . (6.13)

The transition of newly infected pigs through the infection states is similar to the

stochastic models of Chapter 4. Each of the newly infected pigs are assigned a

duration for being lymph-node positive, tLN . Hence, at time tinf + tLN (time of

infection + duration of infection) a pig will return to the Susceptible status (if it

has not been transported to slaughter first). We define w (j, t) to be the sum of

infected pigs in pen j of room l, that have reached the end of their infection period

at time t. Therefore, the number of susceptible (S (j, t)) and infected (I (j, t)) pigs

within a pen at the end of day t is calculated as follows:

I (j, t) = I (j, t− 1) + e (j, t)− w (j, t) , (6.14a)

S (j, t) = S (j, t− 1)− e (j, t) + w (j, t) . (6.14b)

where at t = 1, S (j, t) = npig and I (j, t) = 0. The prevalence of infection within

each pen at time t, p (j, t) is equal to
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p (j, t) =
I (j, t)

npig
. (6.15)

The output of the model is the prevalence of infection (as defined as lymph-node

positive) within batches of pigs placed on transport to slaughter. Transport to

slaughter occurs weekly, i.e. one finishing room (4 pens, 160 pigs) from one of

the finishing buildings is emptied on each of the movement timesteps t discussed

above.

Therefore, the prevalence of lymph-node positive pigs at slaughter within a batch

of pigs sent to slaughter at times t, pi (t), is given by

pi (t) =

4∑
j=1

I(j, t)

4 ∗ npig
. (6.16)

6.2.4 Parameter estimation

The weightings for apportioning farm types were taken from data collected from

the EFSA baseline survey for breeding pigs (EFSA, 2009a). For farms which the

EFSA baseline survey data did not cover (i.e. farms with no breeding herd) other

relevant sources were used (see Table 6.2). There are little or no data to measure

the variation across EU MSs caused by some of the management factors in terms

of Salmonella introduction/transmission (for example number of pigs in a pen),

and hence for simplicity these parameters are assumed to be equal across each case

study MS (see Table 6.3). All other parameter estimates are detailed in Tables 6.4

and 6.5.
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The breeding herd prevalence of each case study MS is taken from the EFSA

breeding pig survey and assumed to be directly equivalent to pherd. In the absence

of data for all case study MSs, it is assumed that, as a worse case scenario, the

within-herd prevalence is equal to the UK estimate. The prevalence of Salmonella

contamination has been identified to be between 1-10% for samples from feed types

commonly used for pigs (EFSA, 2008a). However, there are many issues with sam-

pling of feed for determining prevalence (EFSA, 2006; Cannon and Nicholls, 2002).

Of concern is the extremely small sample mass relative to the tonnage produced,

meaning that it is highly likely that positive batches are missed if contamination

is heterogeneous. Therefore, a conservative estimate of pfeed = 10% is used for

both case study MSs.

Assuming that pigs excrete intermittently during the whole time period of infection

(as defined by presence of Salmonella in lymph-node), survival analysis methods

were used to estimate the duration of lymph-node positivity (Kranker et al., 2003;

Jensen et al., 2006). A recent longitudinal study of outdoor pigs (Jensen et al.,

2006) enumerated Salmonella at the individual pig level for six weeks (six weekly

samples). Two cohorts of pigs (one high and one low dose group) were seeded

with experimentally infected pigs on outdoor paddocks, before these cohorts were

removed and two new cohorts placed on the vacated paddocks. There were signif-

icantly greater concentrations shed by the high dose group (between 0-106 CFU/g

faeces) than by the low dose group (0-100 CFU/g faeces). Pigs in the second ex-

periment cohorts were then infected quasi-naturally from the contaminated faecal

material shed by the first cohorts, and again, the pigs infected in the high dose

group shed far larger amounts of Salmonella than the low-dose group.

Within the model we assume that once a pig k has been infected then the mag-

nitude of shedding is randomly assigned from 0 - 8 log CFU/g faeces, according
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Table 6.3: Description of management factors included within the farm model.
For more detail refer to (ref).

Notation Description Stage Unit Value Source

npig Number of
pigs within a
pen

Far - 11 Far - 1 sow,
10 piglets (Com-
mission, 2010)

W/G/Fin 40
npen Number of

pens within a
room/building

Far - 16 Assumed

W AIAO 4 Cont
16

G/Fin AIAO 6 Cont
24

nroom Number of
rooms within
a building

Far - 1 Assumed

W AIAO 4 Cont
1

G/Fin AIAO 6 Cont
1

wa Age at wean-
ing

Day 28 Commission
(2010)

wa Growing pe-
riod

Day 42 Commission
(2010)

fa Finishing pe-
riod

Day 42 Commission
(2010)

174



Table 6.4: Description of parameters related to the sources of infection.

Notation Description Unit Value Source

pherd National preva-
lence of Salmonella-
positive breeding
herds

- UK: 0.44; MS1:
0.059

EFSA
(2009a)

pw Prevalence of infec-
tion with a breed-
ing herd

- 0.21 EFSA
(2009a)

pfeed Prevalence of feed
batch contamina-
tion

- 0.10 Assumed
from VLA
(2008), Can-
non and
Nicholls
(2002)
and EFSA
(2008a)

fsow (j, t) Mass of faeces de-
facated by sow per
day

g N(3000,150) Brent (1986)

g Amount of feed
consumed per day

g Wean: 500; Grow:
1620; Fin: 3200

Carr (1998)

cs Concentration
of Salmonella in
contaminated sow
faeces

CFU/g LogNormal(2.36,4.39)VLA (2009)

cf Concentration of
Salmonella in pig
feed

CFU/g Genarlised
Pareto(0.001,0,1)

Sauli et al.
(2005)

λe Amount of
Salmonella in-
gested from the
external environ-
ment per day

CFU LogNormal(0.1,3) Davies and
Wray (1995)
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Table 6.5: Description of biological parameters related to transmission of
Salmonella between pigs.

Notation Description Unit Value Source

f Mass of faeces defa-
cated per day

g Piglet: N(100,10);
Wean: N(753,50);
Grow: N(1194,50);
Fin: N(2580,50)

Carr (1998),
Leek et al.
(2005)

cp Concentration
of Salmonella in
contaminated pig
faeces

CFU/g 0− 107 (see text) Jensen et al.
(2006)

βF,day Removal coefficient
for fresh faeces in
contaminated pig
faeces

- Beta(40,10) Assumed

βF,old Removal coefficient
for old faeces in
contaminated pig
faeces

- Beta(2,10) Assumed

βc Cleaning coefficient
for flooring

- Solid: Beta(3,2);
Slatted: Beta(1,2)

Assumed

βxc Cross-
contamination
coefficient

- Beta(1,10) Assumed

δ Decay constant day−1 0.04 Gray and
Fedorka-Cray
(2001), Tan-
nock and
Smith (1972)

µ Mass of faeces in-
gested by pig per
day

g Piglet: U(0,21);
other: U(0,100)

Sansom
and Gleed
(1981), Gleed
and Sansom
(1982)

αDR, βDR Parameters of dose-
response model

- Wet: 0.1766,
50235; Dry: 0.1766,
20235

Loynachan
and Harris
(2005), Ten-
hagen et al.
(2009)

tLN Duration of inter-
mittent shedding

day Weibull(44.94,1.68) Jensen et al.
(2006)
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Table 6.6: Low-dose correlation matrix describing the probability of shedding x
log CFU/g faeces given pig was shedding y log CFU/g faeces the previous week.
Data taken from (Jensen et al., 2006).

Mag. at week w
Probability of shedding at magnitude y dur-
ing week w + 1
0 2 4 6

Newly infected 0 1 0 0
0 0.44 0.56 0 0
2 0.14 0.64 0.19 0.028
4 0 0.84 0.16 0
6 0 0 1 0

to the dose with which the pig was infected. For every proceeding week after

initial infection that a pig remains within the Lymph-node positive state then

the magnitude of shedding is determined based on the previous week’s magni-

tude. On each day an infected pig may shed up to x log CFU/g faeces, therefore

cp (k, j, t) ∼ U
(
10x−2, 10x

)
if x > 0, else cp (k, j, t) = 0. Correlation matrices have

been generated from the dataset describing the magnitude of shedding (either 0, 2,

4, 6 log CFU/g faeces) from infected pigs in the second, quasi-naturally infected,

cohort, see Tables 6.6 and 6.7. There is one matrix for each dose group (‘low’,

1 − 106 CFU, or ‘high’, ≥ 106 CFU). Hence these correlation matrices give the

probability of a pig shedding x log CFU/g faeces one week, given it had shed y

log CFU/g faeces the previous week.

In order to derive the dose response parameters, αDR and βDR, a Beta-Poisson

model is fitted to experimental dose-response data for pigs fed on dry feed (from

ileo-caecal lymph-nodes) (Loynachan and Harris, 2005). The αDR and βDR param-

eters from the Beta-Poisson model are equivalent to the αDR and βDR parameters

of the Beta-Binomial model. Pigs on wet feed will have a greater resistance to

infection, due to the lowering of pH within the gut making it a more hostile en-

vironment for Salmonella (Wales et al., 2010). The wet feed parameters were
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Table 6.7: High-dose correlation matrix describing the probability of shedding x
log CFU/g faeces given pig was shedding y log CFU/g faeces the previous week.
Data taken from (Jensen et al., 2006).

Mag. at week w
Probability of shedding at magnitude y dur-
ing week w + 1
0 2 4 6 8

Newly infected 0 0.6 0.39 0 0.01
0 0.37 0.63 0 0 0
2 0.15 0.60 0.20 0.05 0
4 0 0.67 0.22 0.11 0
6 0 0 0.33 0.67 0
8 0 0 1 0 0

estimated by anchoring the relative change in slaughter pig prevalence between

dry and wet-feed farms produced by the model to the relative change in preva-

lence observed within a German risk factor study using data collected through the

EFSA baseline survey for slaughter pigs (Tenhagen et al., 2009).

6.2.5 Sensitivity analysis and model interrogation

An Analysis of variance (ANOVA) method was used for sensitivity analysis (Frey

et al., 2004). The inputs (or ‘factors’) were grouped by quartiles and the resultant

F-value from ANOVA indicates the confidence that a given factor has an effect

on the output mean, i.e. the prevalence of infection within a batch of pigs sent

to slaughter (pi (t)). ANOVA decomposes the response variable into an overall

mean, main factor effects, interaction effects, and an error term. ANOVA uses

the F-test to determine whether a statistically significant difference exists among

mean responses for main effects or interactions between factors. The F-test can

used to test the significance of each main and interaction effect (although here it is

just used to test main effects of the parameters included. The relative magnitude

of F values can be used to rank the factors for sensitivity analysis (Mokhtari and
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Frey, 2005; Carlucci et al., 1999). Many of the distributions used within the model

are sampled many times during one iteration of the model. In order to use the

ANOVA method then the mean of the random variable samples drawn from each

distribution of one iteration is used to describe the variability between batches. For

example the relationship between pi (t) and the amount of Salmonella ingested via

external contamination, λe (k, j, t), is determined by investigating how the value

of pi(t) is influenced by the mean value of all the individual values of λe (k, j, t)

drawn from the distribution described in Table 6.3 for the relevant pigs (k), pens

(j), building (l) and time (t).

The relative contribution of each source of infection (sow, feed, external contam-

ination) was investigated by setting, in turn, the contribution of each source to

zero. Analysis of individual iterations was used to investigate complex dynamics,

such as comparing the distribution of doses ingested against the contamination of

the pig environment. Finally, the output was stratified by management factors (for

example feed type, flooring type) and by farm type to elucidate any potentially

significant differences between farm types.

6.3 Results

6.3.1 Baseline results

The average within-batch prevalence of lymph-node positive pigs at slaughter age is

estimated to be 0.007 (5th percentile 0, 95th percentile 0.031) for MS1, and 0.176

(0, 0.813) for the UK, which apply relatively well compared to a recent EFSA

baseline survey of lypmh node samples of pigs at slaughter (21.2% for the UK,

and 1.3% for MS1) (EFSA, 2008b). The percentage of positive batches for MS1
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and the UK are estimated to be 38% and 62.9% respectively. The distribution of

within-batch prevalence (showing only positive batches) is shown in Figure 6.6. It

is clear that most batches being sent to slaughter are either Salmonella-negative,

or infected at a low prevalence. Batches with a high within-batch prevalence

are rarely sent to the slaughterhouse, but it is these high-infection events that

determine the magnitude of the estimated national MS prevalence.

Figure 6.6: Distribution of within-batch prevalence at the point of pigs be-
ing loaded onto slaughterhouse transport. The majority of batches are either
Salmonella-negative or infected at a low prevalence.

6.3.2 Sensitivity analysis and model interrogation

Sensitivity Analysis

The results of the sensitivity analysis are shown in Figure 6.7. The response
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variable is the prevalence of infection within a batch of pigs being sent to slaughter.

The notation given to each bar denotes each of the following parameters in the

model:

• Sow – average number of Salmonella shed by sows that gave birth to pigs

within batch.

• Piglet Weaner, Grower, Finisher – average number of Salmonella shed by

piglets, weaners, growers and finisher pigs respectively.

• Wean feed, Grow feed, Fin feed – average number of Salmonella contaminat-

ing feed during weaning, growing and finishing periods of the batch.

• Ext cont – average external contamination dose ingested by pigs during rear-

ing period of batch.

For the UK the average load of Salmonella shed by sows is dominant (to the

point where the other parameters make little difference). However, for MS1 feed

and external contamination parameters are relatively much more important than

the load shed by the sows (although ultimately the variability associated with

the within-batch prevalence is still largely driven by the average load shed by

piglets and weaners within the batch). Further investigation (not shown) supports

the results of the sensitivity analysis; if a sow/pig sheds Salmonella the relative

contribution of the sow/pig to the dose ingested by susceptible pigs is typically

much larger than that contributed by contaminated feed and/or contaminated

wildlife faeces.

Source attribution

Figure 6.8 summarises the impact of each source of infection in determining the

slaughter pig prevalence within the two case study MSs. Within the UK reducing
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Figure 6.7: Sensitivity analysis for the UK (high prevalence) and MS1 (low preva-
lence).

breeding herd prevalence to zero (i.e. pherd = 0) removes the vast majority of

infections at depopulation; conversely, removing feed or external contamination

as sources does little to change the national pig prevalence. Again, this result

suggests that the sow is a major source of infection; only when sow infection is

rare (as in MS1), does feed play an important role in determining slaughter pig

prevalence.

The results above overwhelmingly suggest that the breeding herd is a major source

of infection for slaughter-age pigs. However, caution must be taken when interpret-

ing this result, especially as it is assumed that the strain of Salmonella infecting

the sows is the one which infects the piglets all the way through to slaughter

(longitudinal studies suggests a much more complex dynamic of competing strain
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Figure 6.8: Relative impact on national pig prevalence for each MS if each source
of infection is set to zero. Baseline (black), breeding herds all negative (dark grey),
feed all negative (light grey), no external contamination events (white).

colonisation (Kranker et al., 2003; Jensen et al., 2006)). However, comparison

of breeding and slaughter pig prevalence for each MS from the respective EFSA

baseline surveys suggests that there is at least some correlation between slaughter

and breeding pig prevalence at a MS level (correlation coefficient 0.457) (EFSA,

2008b, 2009a).

Pen contamination rates

The dynamics which produce the distributions of within-batch prevalence as shown

in Figure 6.6 were also considered by analysing pen contamination rates and the

subsequent Salmonella doses ingested by pigs.

Pen contamination is highly variable, regardless of production stage (farrowing,
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weaning, growing or finishing), ranging between 0− 109 CFUs within a farrowing

pen on a single day, and 0−108 CFUs in weaning/growing/finishing. Examples of

pen contamination for each stage of production are shown in Figures 6.9 and 6.10.

The positive breeding herd has a large effect in increasing the contamination rates

within pens at all stages of production relative to negative breeding herds (Fig-

ure 6.9). This is because sows shed proportionally more salmonellas than pigs

if infected (as they shed more faeces). This means that relatively more piglets

are likely to be infected with ’high’ doses (> 106 CFUs), and these piglets will

go on to shed significantly more Salmonella into the environment (at all stages

of production) than pigs infected at ’low’ doses. The consistently higher contam-

ination levels within all stages of production occur because high dose infection

is self-sustaining: piglets are initially infected at high doses, and then shed large

amounts of Salmonella into the environment across the farrowing and weaning

stages, leading to more highly-infected pigs. Hence, while the initially infected

piglets may recover sometime around the weaning/growing stage, high-infection

transmission can be sustained long after.

It is difficult to validate such results from the literature, primarily because enu-

meration of pen contamination is rarely done, and because the studies that are

available are small, meaning that the rare high levels of contamination are proba-

bly missed. However, contamination levels of between 1.8− 550 CFUs per 100cm2

have been isolated from pens in lairage (Boughton et al., 2007). This is within the

range commonly estimated by the model given high shedding rates (which might

be assumed for pigs during transport and lairage).
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Doses ingested by pigs

Comparison of the non-zero doses ingested by pigs on infected farms with the

average dose-response curve for Salmonella infection is shown for one iteration of

the model in Figure 6.11. Infection is, on average, only more likely to occur than

not occur (i.e. pinf > 0.5) for a very small proportion of exposure events (those

above 106CFUs). This dynamic corresponds to the results of Figure 6.6, where

the vast majority of batches sent to slaughter are infected at a very low prevalence

level, despite fairly consistent low-level pen contamination.

Figure 6.11: Comparison of doses ingested by pigs (from all stages of production)
against the average probability of infection (using only non-zero doses from the
model). The majority of doses ingested by pigs (from faeces, feed and external
contamination) are unlikely to result in infection at the average probability of
infection. Note different scales of two y axes.

Farm management influence
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A novel aspect of this model is the inclusion of a number of farm types, based on

the characteristics of the five main management factors (feed, flooring, production

system, inside/outside production, number of sites). Preliminary analysis shows

that there are significant confounding factors with the management data (for ex-

ample within the UK, dry feed was far more common on AIAO farms than on

continuous production farms). Therefore, reliable insight can only be generated

by observing the results stratified by farm type as a package of management fac-

tors (see Figure 6.12). The significant result is that one management factor, the

production system (AIAO versus continuous), dominates the risk by farm type.

AIAO production reduces risk to approximately one third of that for continuous

production. The impact of other management factors is negligible by comparison

(or at least is swamped by confounding factors).

6.4 Discussion

The objective of developing this transmission model was to describe the dynamics

of Salmonella transmission in pigs in sufficient detail to a) differentiate between the

dynamics of infection at a farm and MS level, b) investigate the sources of infection

and the link, if any, between the breeding herd and infection at slaughter and c)

investigate interventions. The latter objective is discussed in the next chapter 7.

In order to meet these objectives the methodology presented in previous chapters

has been modified and advanced (including modelling of the environment in much

more detail than has been attempted before). Varying management practices have

also been considered for the first time in a model of this type. A recent model

explicitly included the pig environment, but they did not attempt to differentiate

between farm types (Lurette et al., 2008a). In addition, parameterisation of the
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Figure 6.12: Stratification of output (prevalence of within-batch infection) by farm
type (for clarity only UK inside breeder-finisher herds shown, however results
apply to all types). Key: I — Inside, A — AIAO production, C — Continuous
production, So — Solid floor, Sl — Slatted floor, D — Dry feed, W — Wet feed.

model has been improved, especially the dose-response component, including a

two-stage shedding component, advancing on that proposed by Soumpasis and

Butler (2011).

Exposure to Salmonella, and the response to Salmonella infection in pigs, is incred-

ibly variable, as evidenced by a number of observational and longitudinal studies

(Lo Fo Wong and Hald, 2000; Kranker et al., 2003; Jensen et al., 2006). The

model reflects this variability, hence contamination of the pen can vary between

10-109 organisms over short time periods; such large variation in contamination

unsurprisingly leads to large variation in the amount of Salmonella ingested by

a pig and subsequently the incidence of Salmonella infection. However, in the
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majority of situations contamination of the pig environment will result in expo-

sure at a level insufficient to cause infection. It is only in rare cases, where a sow

sheds a high level of Salmonella numbers (or rarer still when feed or the envi-

ronment is contaminated at a very high level) that a high incidence of infection

within a batch is predicted. Accordingly, the results of the model suggest that

within-batch prevalence is typically relatively low. It is the relative contribution

of highly-infected batches that determine whether a MS has a low or high slaugh-

ter pig prevalence. Highly-infected batches t slaughter overwhelmingly originate

from farrowing batches where the sow shed a high level of Salmonella. The effect

of highly-infected batches is even more heavily weighted given that shedding rates

in the model are higher if pigs are infected with doses above 106 CFUs, for which

doses of this magnitude are much more likely to occur in highly-infected batches

originating from a highly infected sow. This is an extremely important result, as

it suggests that controlling the shedding rate of sows/pigs may be just as effective

at controlling the final slaughter pig prevalence for GB or another MS, if not more

so, than reducing prevalence by a significant degree. Interventions, such as vacci-

nation or organic acids, are likely to reduce shedding rates even if infection is not

fully prevented.

Management factors applied to each MS are confounded, for example in GB dry

feed is more likely to be fed on AIAO farms than continuous ones. Hence, analysis

of management factors was only possible at a broader farm type level. This analysis

(shown in Figure 6.12) clearly demonstrates that AIAO production is by far the

most important risk factor of the management factors considered. Indeed, there

were negligible differences between all other farm management factors (for example

feed, flooring). It must be pointed out that the AIAO production system assumed

in the model is a theoretical description unlikely to be achieved in reality on all but
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the most strict systems of AIAO production. Of note is that it was not so much

that cleaning and disinfection that makes AIAO farms less of a risk, but rather

the strict segregation of pigs minimising the opportunity for spread of infection

between concurrent cohorts.

Piglets are able to become infected while still suckling from their mother, although

the evidence is mixed for whether (sero-) positive pigs make the progeny more or

less likely to be infected at the point of weaning (Lo Fo Wong and Hald, 2000; Nollet

et al., 2005). Within these studies there is the indication that infection in piglets

could be under-estimated because of a high likelihood of false negatives. Indeed,

the studies referenced were relatively small given the number of animals followed;

there is certainly the probability they simply didn’t sample any highly-infected

piglet groups because these are relatively rare. However, the broad consensus from

these studies is that it is not until weaning (when piglets are faced with the double

stresses of being weaned and mixed with other unfamiliar pigs) that a significant

proportion of pigs may become infected with Salmonella. Comparing the model

and these findings, the broad trends are certainly the same as observed in these

studies. Infection in piglets is rare and usually at a low incidence rate. While

stress/feed change during weaning is not modelled, pigs are mixed together. The

larger amount of Salmonella shed by weaners relative to piglets, and the fact there

are more pigs directly exposed to this Salmonella, means that the peak prevalence

of infection is usually observed during the weaning period. There is generally a

diminishing prevalence of infection at the point of slaughter. This agrees with

most current observational data (Kranker et al., 2003; VLA, 2009).

While the model mathematically describes more variability than most equivalent

models, not all factors that describe variability in Salmonella risk in individual

slaughter pigs between farms or between MSs have been included. Indeed, the
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variability included is limited to the data available for quantitative modelling.

For example, most management factors have been split into dichotomous options:

wet/dry feed, solid/slatted flooring, AIAO/continuous production. However, in re-

ality the options available for each factor are multiple and complex. The following

potentially important factors have not been included in the farm model: further

differentiation between feed types (for example pelleted versus non-pelleted), clus-

tering of Salmonella in faeces, varying growth rate (such that pigs are held back

in production), and transmission dynamics between sows. Further differentiation

between feed types would have been difficult to parameterise, but could potentially

be important. However the difference in risk between wet/dry feed was assessed to

be the largest of all potential feed type combinations, and this difference in risk was

negligible when compared to the difference in risk between AIAO and continuous

production. Clustering of Salmonella in faecal material has been modelled before

(Arnold and Cook, 2009), but would also require a more complex model. The

effect of clustering in faeces would be to vary (even more so) the daily exposure

of pigs to Salmonella, where some pigs would ingest considerably more organisms

than currently modelled, and some considerably less. The vast majority of pigs

ingest no Salmonella, but there is a relatively broad distribution of the numbers in-

gested given exposure occurs. Further variability would probably mean that most

farms would be infected at very very low levels, but the remaining high-prevalence

farms would be infected at even higher levels. The slaughter pig prevalence would

not change significantly, but we would probably expect to see average shedding

rates go up as more pigs would ingest higher levels of Salmonella, creating mre

“high-dose” pigs. The implications for public health would probably be that less

people would be exposed, but those who are exposed may face higher concentra-

tions. The overall risk assessment model developed for EFSA could be used to
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investigate the effect of different levels of clustering on salughter pig prevalence

and human health. Over the large number of pigs and timesteps used in the cur-

rent model, it can be hypothesised that the effect of this clustering averages out,

but this cannot be stated with certainty. An important simplifying assumption is

that all pigs born into the same cohort will be slaughtered at the same time. In

reality, a varying growth rate of individual pigs means pigs may need to be kept

back behind their cohort before reaching the correct weight to be moved into a

different stage of production or sent to slaughter. This has not been included be-

cause of the difficulty in including any variation in pig group size (computationally

pig cohorts are represented as matrices, and matrix manipulation is only possible

with identical or compatible matrices). Keeping certain pigs back and allowing

more mixing between cohorts would almost certainly increase the spread of infec-

tion within the model, as the allowance for contact between cohorts in continuous

production systems within the model is one of the greatest upward pressures on

prevalence for the prevalence of infection in slaughter pigs. Also, there may well

be correlation between high shedding levels and being kept back as a result of poor

condition due to heavy Salmonella infection, which could also mean any spread

was greater than average transmission.

Important data gaps highlighted by the model development were the (variation

in) dose-response of pigs to infection, the movement of faecal material and the

amount of Salmonella that might be present in the environment due to feed or

other external sources of contamination (rodents, birds etc). However, for all

information gathered for this model, the trend was that regardless of the type of

data needed, it was unlikely that current observational, experimental, longitudinal

or survey data would be sufficient to be confident that all the variability had been

accurately captured (for example the amount of Salmonella shed by a sow is based
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on one study that shows high variation between pigs – but did the study capture

the entire range of variation?). Hence, as with all models, the results produced

must be viewed in conjunction with the simplifying assumptions made, which were

necessary both because of the need to reduce the complexity of a highly variable

pig production system across the EU and the data gaps that result because of this

complex system.

It is difficult to quantitatively validate the current farm transmission model, as

quantitative data are scarce. However, qualitatively the farm transmission model

appears to agree well with observed data, and replicates a number of important

trends observed in the field (for example the relationship between breeding herd

prevalence and MS-level slaughter pig prevalence, peaks and troughs in prevalence

at meaning and finishing, extremely variable nature of infection, and the difference

between AIAO and continuous production). The results of this model, combined

with a Transport & Lairage model for slaughter pigs, were well-validated for three

of four case study MSs modelled, using lymph node prevalence data from the EFSA

slaughter pig baseline survey (EFSA, 2008b; Simons et al., prep). In summary,

given the need to balance potentially myriad risk factors against the need for a

parsimonious model that uses reliable data, we are of the opinion that the model

provides a useful summary of the variation that is sufficient to describe the relative

importance of different risk factors between farms and MSs and provides a strong

platform for investigating on-farm interventions.

Analysis of the model pointed to one overwhelming conclusion: the level of infec-

tion within a MS’s breeding herd largely determines the slaughter pig prevalence

for that MS. The analysis showed that if the sow is infected and shedding at high

levels, then commonly (although not always) this will mean one or more piglets

will become infected: when this occurs then the shedding of Salmonella by infected
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pigs, at the farrowing stage or later, dominates the risk (as once a slaughter pig

is infected, the subsequent shedding of Salmonella more than outweighs the con-

tribution of contamination within the environment provided by feed and/or the

external environment). Such a phenomenon is also hypothesised as a major risk

factor for cattle ‘super-shedding’ VTEC O157 (Pearce et al., 2004; Arthur et al.,

2009). However, in low prevalence MSs of which MS1 is typical, infection of the

sow is relatively rare (such that it is unlikely that a ‘super-shedder’ sow will occur

in the 500 days of production modelled) and the proportion of initial infections

of a piglet, weaner etc. . . via either feed or external contamination are relatively

much higher. This result of breeding herd prevalence determining slaughter pig

prevalence is supported by data from the EFSA Salmonella in pig surveys; breed-

ing herd prevalence was correlated, at least to some degree, with slaughter pig

prevalence (EFSA, 2008b, 2009a). Incoming infected pigs are also considered to

be a primary source of infection for weaning and finishing houses (EFSA, 2006).

In summary, breeding herd prevalence is likely to be a strong predictor of national

pig prevalence and feed only becomes an important source of infection once con-

tamination of the environment by sows or other slaughter pigs is reduced to low

levels.

A more extensive discussion of the role of the sow as a source of infection is

given in an accompanying paper (Hill et al., prepa). Briefly, the extent of the

role of the sow as a source of infection for slaughter pigs is uncertain, although

longitudinal studies do suggest that sows are commonly infected with the same

strain of Salmonella as piglets/weaners within the same cohort (Nollet et al., 2005;

VLA, prep). The dynamics of infection are complicated by the presence of multiple

strains on farms causing intermittent infections, which is inadequately captured

by insensitive sampling methods. Evidence also exists for strains persisting in the
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weaning/finishing herd environment, which exposes susceptible pigs to challenge

long after they have been weaned; this type of persistent infection of farms is not

well captured in the current model due to a lack of data on the environmental load.

To summarise, the model results suggest that intervening at the breeding herd is

a necessity if slaughter pig prevalence is to be reduced substantially. However,

further studies on the link between sow infection/environmental contamination

and slaughter pig infection is required to firmly establish the links that exist at

a farm and MS level. In addition, the same issue of poor quality of intervention

study applies to sows/piglets as much as it does to finishing pigs, indeed more so.

The above result also indicates an important factor that is commonly missed by

most, if not all, observational studies, and that is the importance of the magnitude

of shedding from indivudal pigs. Most studies simply record the presence/absence

of Salmonella in various sample types (faeces, lymh nodes, tonsils etc. . . ); however,

the relative burden of Salmonella in the environment will be strongly correlated

with high-shedding sows/pigs, and the experimental results of Jensen et al. (2006)

seem to confirm this. Using data from this study as an example, then most pigs will

shed up to 100 CFU/g faeces. If there is one pig shedding 10,000 CFU/g faeces,

then that pig contributes as much Salmonella to the environment as 100 low-

shedding pigs. It is therefore clear that recording prevalence alone is insufficient

to capture the dynamics of Salmonella infection.

The model described in this chapter is farm more complex than even the stochastic

cross-contamination model of the last chapter. It includes sources of infection, all

stages of the rearing process, 56 different farm types, and a detailed environmental

contamination model. These additions, while requiring significant development

time, have added much to the realism of Salmonella in pig models, both in this

thesis and in the wider scientific literature. Capturing the wide variation in the
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shedding rates of sows and pigs is probably the biggest crucial step forward, as

it allows the model to replicate the wide distribution of within-batch prevalence

observed in the literature. Indeed, the level of sow shedding is the key parameter

of the model, being the major determinant of final slaughter pig prevalence.

The steady state level of infection in pens observed in previous models is almost

non-existent in this model; the variation in the magnitude of contaminated fae-

cal shedding interrupts the progression to the steady state. However, the simple

dynamics of the previous models captured the main dynamics of this model: that

once infection is introduced, it is likely to sustain itself among pigs (albeit at a

much lower incidence than was observed in the standard SIRS model), and that

the introduction of a new infected batch of pigs is much more likely to lead to

infection than between-pen transmission, because of the speed of the travelling

wave.
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Chapter 7

Analysis of intervention

mechanisms in reducing

Salmonella in slaughter-age pigs

7.1 Introduction

In this chapter we discuss the use of the final farm transmission model, described in

Chapter 6, to assess potential intervention mechanisms for reducing the prevalence

of lymh-node infection in slaughter-age pigs. The assessment of interventions is one

of the primary aims for the development of this model and thesis. The majority

of intervention results presented in this chapter are similar to those originally

presented in the EFSA QMRA report (Hill et al., prepb), where the effect of

on-farm interventions was investigated to predict the effect on the risk of human

illness as well as the prevalence of infection in slaughter pigs. The results presented

in this chapter are a mixture of those results relevant from the original QMRA,
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as well as further investigations to assess the effect of on-farm interventions in

more detail. While in this chapter we only explicitly describe the effect of on-

farm interventions on the prevalence of infection in slaughter-age pigs, the results

are indicative of reductions in human cases as well, as for GB there was a high

correlation between national slaughter pig prevalence and the predicted number of

human cases attributable to domestic pig meat consumption (Hill et al., prepb).

7.2 Modification of farm transmission model to

investigate interventions

7.2.1 Interventions investigated

In concord with the EU and the EFSA Working Group on Salmonella in Pigs the

EFSA QMRA consortium priortisied the following specific on-farm interventions:

reduction of feed contamination, reducing the number of suppliers to contract fin-

ishing farms, improved hygiene/biosecurity and finally interventions for decreas-

ing the pig’s susceptibility to infection (e.g. vaccination, use of wet/fermented

feed, organic acids). As highlighted by reviews of Salmonella interventions in pigs

(O’Connor et al., 2008; Denagamage et al., 2007; Wales et al., 2010) there is a

distinct lack of reliable quantiative data to assess the effect of at least three of the

main on-farm interventions, i.e. vaccination, feed modifications and feed additives.

A literature search carried out as part of the EFSA QMRA intervention analysis

(Hill et al., prepb) identified few studies relevant for the quantiative assessment

of biosecurity/hygiene control measures, and those which were identified tended

to contradict each other. It was therefore concluded that while the EFSA farm
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model is capable of assessing specific interventions such as vaccination, organic

acids etc. . . , currently there are not enough quantitative data to assess specific

interventions with any confidence.

Hence, in the EFSA QMRA report and this thesis it is has been decided to use the

farm model described in Chapter 6 to assess the broad mechanisms of interven-

tion. These broad mechanisms of intervention include the reduction of Salmonella

infection in the sows (which the analysis of the farm model in Chapter 6 sug-

gested was a major driver in the eventual national slaughter pig prevalence of

infection), the reduction/removal of Salmonella from the pen environment, and

finally the decrease in susceptibility of pigs to Salmonella infection. These broad

mechanisms of intervention can be modelled by re-parameterising key parameters

of the model (for example modifying the dose-response relationship parameters to

signify an increase in the protective effect of the immune response to Salmonella

infection). The interventions investigated and the modifications to the baseline

model described in Chapter 6 are described in Table 7.1.

In addition, in order to implement any of the interventions, two critical factors

were assumed: that uptake of each intervention is 100% across all farms across a

MS; and that all farmers rigorously implement interventions in such a way as to

consistently produce the effect desired.

The results of the farm model in Chapter 6 suggest that national breeding herd

prevalence is a dominant factor in determining national slaughter pig prevalence

(i.e. low breeding herd prevalence leads to low slaughter pig prevalence, and vice

versa). Hence, breeding herd interventions would seem to provide potential for

reductions in slaughter pig prevalence. However, as for all pig herds, quantitative

data are severely lacking to assess interventions at the breeding herd. We therefore
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Table 7.1: Interventions investigated within the analysis.
Intervention Baseline parameter

estimate(s)
Intervention analysis pa-
rameter estimates

Reduce breeding herd
prevalence, pherd

0.44 pherd =
{0,0.01,0.05,0.1,0.2,0.3,0.4,0.5}

Reduce probability of
feed batch contamina-
tion

0.10 Set pfeed =
{0.01,0.03,0.07,0.1}.

Increased resistance of
pigs to Salmonella in-
fection by using e.g.
wet feed, vaccination
or organic acids

αDR = 0.1766; βDR
= 50235 (wet feed) or
20235 (dry feed)

βDR modified to 200,235 for 1-
log increase in dose response
and 2,000,235 for 2-log increase
for both dry and wet feed farm
types.

Increased effectiveness
of cleaning and disin-
fection (C&D)

Cleaning at depopula-
tion removes a fraction
pclean of contamination
in pen j: pclean =
Beta(3,2) or Beta(1,2)
for solid or slatted
flooring respectively.

pclean modified to Beta(3,50)
for 1-log decontamination and
Beta(3,500) for 2-log reduc-
tion.

Reduce magnitude of
shedding by 1 or 2 logs
by infected sows

Lognormal (2.36, 4.39) 1 log: Lognormal(1.36,3.39); 2
log: Lognormal(0.36,2.39).

Cap magnitude of pig
faecal shedding

cp varies between 0-108

CFU/g faeces
Excess probabilities associated
with shedding greater than 4
log CFU/g faeces transferred
to probability of shedding 4 log
CFU (such that the probabil-
ity of shedding between 0 and
4 log CFU/g is 1).
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assessed a hypothetical range of percentage reductions in the breeding herd preva-

lence, pherd. The range of values modelled (0-50%) was chosen to reflect the range

of breeding herd prevalence recorded across the EU in the breeding pig holding

survey by EFSA (EFSA, 2009a).

There are no national data to suggest how prevalence of feedlot contamination

(i.e. the percentage of feed batches that are contaminated with Salmonella) might

be reduced. Hypothetical changes in the prevalence of feedlot contamination,

pfeed, rather than hypothetical changes in the numbers of Salmonella present in

contaminated feed, were investigated, as the concentration in contaminated feed

has been shown to be relatively low when investigated (O’Connor et al., 2008;

Sauli et al., 2005). The range of values chosen reflect data that suggests prevalence

commonly varies between 1% and 10% (EFSA, 2009b), but also modelling (Cannon

and Nicholls, 2002) that suggests prevalence is highly likely to be markedly under-

estimated using current sampling schemes.

There are three ways to incorporate an improvement in biosecurity or hygiene.

First, the efficiency of cleaning and disinfection (C&D) (between batches) in re-

moving Salmonella can be increased. Second, the inclusion of downtime between

batches of weaning, growing and finishing pigs (in the same way as for farrowing

groups described in Chapter 6) may reduce contamination of the pig pen envi-

ronment before the repopulation of the pen. Finally, external contamination (e.g.

infected rodents, birds) can be prevented from entering the farm. As external

contamination (via rodent/bird faeces contamination) was both predicted to be of

little importance in the analysis of the farm model (6) and expensive to implement

(Monterio Souza et al., prep) no further investigation of biosecurity barriers was

carried out in the intervention analysis.
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There are qualitative data that do suggest that cleaning can have a positive effect

in reducing Salmonella levels within a pen (VLA, 2009). However, there are little

data to quantitatively estimate the differences in Salmonella levels before and after

C&D. A British experimental study that investigated improvements to standard

C&D routines for red meat lairage pens suggested that an extra reduction of 1-2

logs could be achieved over and above typical C&D routines (Small et al., 2007).

We therefore increased the baseline model reductions achieved by cleaning by an

extra 1 or 2 logs (see Table 7.1). It was assumed that the main mechanism by which

downtime achieves a reduction in Salmonella contamination is by the drying out

of the pen, which reduces the number of Salmonella in the pen environment that

are available for carry-over of infection. Assuming that any reduction achieved by

drying is independent of any C&D routines applied then a 4 and 7 day downtime

between restocking of pens would achieve an additional 0.16 or 0.28 log reduction

in contamination of a pen before restocking (see Table 7.1).

Systematic reviews of vaccination (Denagamage et al., 2007) and pH/moisture

content of feed (O’Connor et al., 2008) concluded that there are few studies that are

of the relevant quality for assessing the effect of either in reducing Salmonella levels

in market age pigs. The overall conclusion from the former systematic review was

that there does appear to be a positive effect of vaccination in reducing Salmonella

prevalence in pigs, and O’Connor et al. (2008) made a low-confidence assessment

that wet feed and acidified feed were effective in reducing Salmonella prevalence

relative to dry and non-acidified feed respectively. Recent studies on organic acids,

not included in the systematic review, are also inconclusive on the effect of organic

acids in reducing Salmonella in pigs at slaughter (VLA, 2009; Wales et al., 2010).

Similar conclusions can also be drawn for non-pelleted feed (O’Connor et al., 2008),

where evidence does exist for a positive effect, but little data are available to
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conclusively prove and enumerate such an effect.

From the above evidence, it was not possible to quantitatively assess the effect

these interventions might have on prevalence/shedding magnitude in slaughter

pigs. However, vaccination, feed and organic acids can all be considered interven-

tions that increase the resistance of the pig to infection. Vaccination boosts the

immune response to infection, while introduction of organic acids and wet feed

can be considered to alter the gut ecology/microbiology such that Salmonella do

not survive and multiply as easily within the digestive system (hence reducing the

potential for infection). Given that the quantitative effects of each mechanism are

not known, it was assumed that the qualitative effect is the same - it takes more

Salmonella to reach the equivalent baseline probability of pig infection. The dose

response model parameters are adjusted until there is roughly a 1 or 2 log increase

in the average dose needed to cause the same probability of infection (see Table

7.1). See Figure 7.1 for the effect on the dose-response model.

An important point missing from the vast majority of studies in the literature is

the effect of these interventions on microbial numbers in the faeces. Given the

current dynamics of infection for both pigs and humans modelled in the QMRA

model (Snary et al., prep), which suggest that a consistent 2-log reduction in con-

tamination levels of carcasses would decrease human illness by over 90%, then this

mode of reduction (if successful in reducing the magnitude of shedding across all

pigs) may provide better results than trying to reduce the prevalence of Salmonella

infection in pigs. Analysis of the EFSA QMRA model shows that it is infected

faeces leaking onto the exterior of a carcass during processing that contributes

most of the risk to human infection (Snary et al., prep). At least one study has

shown that there is a reduction in the contamination levels of faecal material from

vaccinated sows of around 1-2 logs (Hur et al., 2010). Another study suggested
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Figure 7.1: Modification of the dose-response model. The dose-response parameter
βDR was adjusted until it would take a dose of approximately 1 or 2 logs extra to
elicit the same average probability of infection in a pig.

that organic acids capped the magnitude of faecal shedding (Hur and Lee, 2011).

Hence, we investigated a) a hypothetical reduction of 1 and 2 logs in the magni-

tude of shedding of infected sows to replicate this type of intervention mechanism

and b) a cap of 104 CFU/g faeces produced in pigs beyond the age of weaning due

to feeding of organic acids (see Table 7.1).

7.3 Results

The effect of reducing breeding herd prevalence on the slaughter pig prevalence is

shown in Figure 7.2. For the UK, which has a high baseline slaughter pig preva-

lence, there is a strong proportional relationship between reduction in slaughter

pig prevalence and reduction in the number of cases. The relationship for MS1 is
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not as strongly proportional, but there is a definite downward trend in cases as

slaughter pig prevalence is reduced. Breeding herd prevalence has already been

established as a significant factor within the farm model, via sensitivity analysis

(Hill et al., prepa). Broadly speaking, low breeding herd prevalence (low number

of positive sows ∼ low number of positive piglets) equates to low slaughter pig

prevalence and vice versa. This intervention analysis produces a similar result.

Figure 7.2: Relationship between breeding herd prevalence and slaughter pig preva-
lence for low-prevalence MS1 and high-prevalence MS UK.

The effect of varying feed contamination within MS1 and the UK is shown in

Figure 7.3. The result supports the farm model analysis in Chapter 6, where

feed contamination made little impact as a source of infection in the UK (shown

here by the minimal rise in slaughter pig prevalence over a 10% point range in
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feed contamination prevalence), but showed it to be a major source of infection

for a low-prevalence country such as MS1 (shown here having a marked effect in

increasing slaughter pig prevalence).

Figure 7.3: The effect on MS slaughter pig prevalence by varying the prevalence
of feed contamination.

While the mechanisms for removing Salmonella are different for downtime and

cleaning, the effect is similar a reduction in the Salmonella levels present in a pen

at the point where a new batch of pigs enters the pen. However, on average, neither

the implementation of improved C&D routines or downtime across all farms within

a MS significantly reduced the slaughter pig prevalence relative to the baseline

model. Within the model, the resistance of the pig to infection is governed by

the probability of infection given ingestion of a particular dose. Modifying the
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dose-response relationship for ALL pigs at ALL stages of production across a MS

produces over a 90% reduction in slaughter pig prevalence given a 1-log increase

in dose to produce the same average probability of infection as the baseline model

produces.

The effect of reducing the magnitude of contaminated faecal shedding in sows and

pigs is substantial, reducing UK slaughter pig prevalence by 33% and 70% given a

1 or 2 log reduction in the magnitude of sow shedding of Salmonella respectively

(see Figure 7.4). A cap on the magnitude of faecal shedding, to 4 log CFU/g faeces

in pigs in the weaning, growing and finishing stages produced a 70% reduction in

slaughter pig prevalence, similar to a 2 log reduction in sow shedding rates.

Figure 7.4: Effect of reducing the magnitude of Salmonella shedding by sows by
an average of 1 or 2 logs, using UK model.
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7.4 Discussion

The baseline model described in Chapter 6 has been modified in order to investi-

gate the relative effect of interventions in reducing slaughter pig prevalence and the

distribution of the magnitude of shedding for infected pigs at slaughter-age. There

are limited data to quantitatively assess the impact of relevant interventions such

as vaccination, organic acids or feed measures, hence we investigated hypothetical

changes in the mechanisms of interventions (e.g. reducing the amount of environ-

mental Salmonella contamination that would remain in the pig pen environment

after improved C&D procedures).

Given the results of Chapter 6 we should expect that UK slaughter pig preva-

lence to be strongly correlated with breeding herd prevalence, but for there to be

only a small correlation with feed contamination. The results of the hypothetical

reductions in breeding herd prevalence and feed contamination prevalence show

precisely this effect, again confirming that the model dynamics suggest targeting

the breeding herd first and foremost.

Neither of the biosecurity measures investigated, C&D and downtime, produced

any visible reduction in slaughter pig prevalence. This is a logical result from the

model, given that in Chapter 6 we showed that the majority of infected pigs orig-

inated from batches with “super-shedding” pigs, hence the role of environmental

contamination in the infection of susceptible pigs was negligible compared to the

role of direct contaminated faecal shedding by pigs in the same pen.

Only two of the the on-farm intervention mechanisms investigated produced a

visible reduction in slaughter pig prevalence. The first was by reducing the sus-

ceptibility of the pig to infection, where modification of the dose-response curve
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(such that it takes 1-2 logs extra to produce a similar probability of infection

as for the baseline curve ) produces a significant effect in reducing slaughter pig

prevalence. The effect modelled is by a constant modification of the dose-response

relationship, and hence current intervention trials, where the application of or-

ganic acids or vaccination is applied only over limited time frames, are unlikely to

achieve similar reductions in slaughter pig prevalence.

The second effective on-farm intervention was reducing/capping the level of fae-

cal shedding, which produced a marked reduction in slaughter pig prevalence.

Therefore, more promising interventions may be changing feed type (as this can

be applied over weaning-finishing) and/or applying organic acids over the whole

course of production. However, several systematic reviews have noted that there

is not enough evidence to state with any confidence the likely effect of these inter-

ventions if universally adopted by pig industries across a MS (Denagamage et al.,

2007; O’Connor et al., 2008; Friendship et al., 2009). Reducing feed contamina-

tion is only likely to have a measurable effect on slaughter pig prevalence when

the transmission of Salmonella from pig to pig has been brought to a low level. As

for all interventions modelled here, the magnitude of effect that can be achieved

in reality is very uncertain, given that it is not known what the prevalence or

contamination levels of feed are across the EU.

Of interest is the results of reducing the magnitude of faecal shedding. An inter-

vention needn’t directly be targeted at completely preventing infection, as all of

the ones above are. Indeed, interventions such as vaccination and organic acids

may be more effective in the mechanism of simply reducing the level of Salmonella

shedding that occurs, rather than the rather limited effects of preventing infection

completely seen in some studies. The results presented in this thesis are highly

speculative, as there are literally a few studies that investigate the effect of in-
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terventions on the magnitude of faecal shedding (Hur et al., 2010; Hur and Lee,

2011). However, as has been shown by Loynachan and Harris (2005) Salmonella

infection in pigs is dose-dependent, and so reducing the level of contamination in

the environment below that necessary to infect pigs would appear to be a suitable

intervention. Previous results in Chapter 6 suggest that the environmental contam-

ination level of Salmonella on the farm through feed or rodent/bird contamination

is unlikely to result in pig infection very often, and most of the contamination of

the farm comes from pigs themselves.

The assessment of contamination level in such detail as described in Chapter 6

was undertaken as by the rationale of dose-dependency it is logical that under-

standing the doses to which pigs are exposed is important for accurate modelling

of transmission dynamics. However, it may have been unnnecessary if it had been

that pigs were susceptible to a wide range of doses at a similar probability. The

results shown here in the last chapter and this chapter show that modelling the

environment, and having a confident assessment of the level of Salmonella pigs

are exposed to is important, for understanding transmission and for identifying

effective interventions. There is no way to reliably validate these findings at the

present time, as we have yet to identify a sufficiently large study that has tracked

contamination levels or the doses to which pigs are exposed.
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Chapter 8

Discussion & Conclusions

8.1 Introduction

The main aim of research into Salmonella in pigs is to prevent human infection via

consumption of pig meat. Several country-level programmes have been put in place

to reduce Salmonella in pigs, although the results have been less favourable than

expected (Nielsen et al., 2001; BPEx, 2009; Blaha, 2004). The EU is also required

to take action on the most important foodborne pathogens, and Salmonella in

pig meat is seen as one of the main food/pathogen pairs to address. As such,

EU MSs will be expected to implement National Control Plans to reduce the

prevalence of Salmonella infection in pigs at slaughter. This course of action has

been controversial, as the pig industry would prefer to take action in the abattoir

where (perceived) more reliable interventions can be brought to bear to reach a

MS target 1.

1Certainly in the short term there appear to be much more consistent interventions available
at the abattoir; as a review of intervention studies in this thesis highlighted, much more research
is needed to produce consistent effects for on-farm interventions such as organic acids or the
modification of feeding regimes.
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It is difficult for researchers to conduct a large enough study, and control all possi-

ble variables, to assess meaningfully the introduction/transmission of Salmonella

between pigs, or to assess the effect of on-farm interventions in reducing slaughter

pig prevalence. Indeed, at the current time, it is still not known with any certainty

the contribution to slaughter pig prevalence originating from sources of infection

such as feed and new stock, and there are no consistently proven interventions

available for pig farmers to use. Hence, mathematical modelling of transmission

and intervention can play a vital role in elucidating key factors for the introduction

and transmission of Salmonella between pigs, and the eventual infection status of

pigs when they are slaughtered.

With this in mind, this thesis aimed to build upon previous models used to as-

sist the development of Salmonella in pig control policies in several countries (in-

cluding the UK), in order to assess the major driving factors behind introduc-

tion/transmission in British pigs, and to indicate intervention measures that may

be useful as part of a future UK NCP.

8.2 Main results

Chapters 2, 3 and 4 deal with deterministic forms of a typical grower-finisher herd

model. The 1 and 2 pen models served as a foundation on which to build the more

complicated multi-pen and cross-contamination models. However, the dynamics

of infection in all of these models was similar. With current parameter estimation,

infection was self-sustaining in pen populations across the models, whether there

were 1 or 300 pens. Stability analysis of each of the models suggested that the

homogeneous infected steady state would be the result of at least one infected pig

entering the herd. Travelling wave analysis of the multi-pen models suggested that
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the speed of transmission between pens, via faecal-oral transmission, was relatively

slow, such that infection would probably be limited to a few pens by the time pigs

were sent to slaughter.

The deterministic multi-pen models were converted into stochastic simulations in

Chapter 5. Similar dynamics were observed in the standard stochastic model as

for the deterministic model, however the stochastic cross-contamination model

showed a very different dynamic of infection to the deterministic model. In the

stochastic cross-contamination model the greater variation in faecal shedding led

to stochastic fade-out of infection more often than not, and only in relatively few

cases, where high shedding of Salmonella occurred, did transmission take place.

However, if transmission did take place, it produced a similar epidemic curve as

to the deterministic model. Overall, the average prevalence of infection was signif-

icantly reduced. Hence, the inclusion of faecal contamination and dose-response

were seen as two important characteristics of the model, as they had the effect of

markedly changing the transmission dynamics.

The final model developed in Chapter 6 is significantly more complex than the

previous models. However, it builds on the developments made throughout the

thesis, as well as drawing on the development of other models in the field (Lurette

et al., 2008a,b; Soumpasis and Butler, 2009), in order to model farm management

systems and sources of infection. This is the first model to explicitly deal with

both farm management systems and sources of infection. The inclusion of farm

management systems and sources of infection were thought to be vital in accu-

rately representing transmission dynamics and hence the effect of interventions.

As the results of the farm model show, including sources of infection and farm

management practices led to two of the most important conclusions of the mod-

elling conducted in this thesis: that the sow is a major risk factor for slaughter pig
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infection, and that AIAO production was the most important farm management

factor that would reduce transmission between pigs.

Also of crucial importance to the model developed in Chapter 6 is the explicit

inclusion of environmental contamination via faecal shedding of Salmonella, and

the corresponding dose-response function implemented. These two factors have

been modelled and parameterised in detail, over and above what has been carried

out elsewhere in previous models. The inclusion of all of these new (and compli-

cated) factors (environmental contamination, dose-response, source of infection,

farm management) produce markedly different dynamics of infection than those

seen in previous models, in this thesis and in the literature, but which tend to

agree with the observational data regarding the intermittent form of infection on

pig farms and between pens (VLA, 2009; Nollet et al., 2005; Jensen et al., 2006).

The prevalence of infection in slaughter-age pigs is highly variable, but is likely

to be low by the time of slaughter. This was observed in both case study MSs,

despite differing sources of infection and transmission. Within the UK, the major

result of the farm transmission model was that the sow appeared to be the major

source of infection, such that other sources, such as feed and wildlife, were almost

negligible in comparison. Feed and wildlife became important when the breeding

herd prevalence was very low (< 5%), as for MS1. Only one farm management

practice, All-In-All-Out production, was significantly associated with a reduction

in the prevalence of infection at slaughter.

There are still not enough quantitative data in the literature to confidently param-

eterise on-farm interventions. Instead, we investigated a number of hypothetical

scenarios to elucidate the effect of broad intervention mechansims (e.g. chang-

ing the susceptibility of the pig to infection, reducing the level of environmental
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contamination through C&D). The results of the intervention analysis (Chapter

7) highlighted the major dynamics largely captured in the previous chapter when

interrogating the final farm model. C&D practices had little effect on slaughter

pig prevalence, as the majority of contamination that causes infection is produced

by the infected pigs in the pens during occupation. Breeding herd prevalence was

highly correlated with slaughter pig prevalence, confirming the role of the sow as a

major source of infection. On-farm interventions such as vaccination and organic

acids could work in reducing slaughter pig prevalence, either through significantly

modifying the susceptibility of the pig, or perhaps more promisingly, through re-

ducing the magnitude of shedding should a pig become infected.

8.3 Discussion

The models summarised in the previous section allow an insight into the com-

plex dynamics of transmission and intervention on pig farms, which is currently

not possible through observational study due to the large number of variables that

must be controlled. The final model incorporates several advancements in the field

of Salmonella in pig transmission modelling that have not been considered before

(e.g. the explicit inclusion of the magnitude of (intermittent and variable) shed-

ding, farm management systems and sources of infection). These advancements

highlight new and interesting dynamics, suggesting that the sow is by far the most

important source of infection of pigs. In particular, the level of Salmonella shedding

of individual pigs/sows appears to be crucial to the dynamics of infection, but this

has not been captured before. This seems a fairly intuitive conclusion, given that

Salmonella is mainly transmitted via the faecal-oral route and is dose-dependent.

However, it is not normally captured in models because of the complexity of doing
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so, and the lack of data to parameterise such a model. In the case of Salmonella in

pigs, when dealing with various sources, complex management systems and highly

variable shedding rates, then the inclusion of shedding dynamics at a more detailed

level appears warranted, as the dynamics change markedly according to whether

it is included or not.

Linear stability analysis of the deterministic models is something that has not been

done in Salmonella in pig modelling before, and provided a useful first analytical

capability to assess the dynamics of infection in relatively simple systems. While

the relevance of the conclusions drawn from the analyses were limited as in reality

there is so much movement and heterogeneity in the pig production system, the

conclusions were useful in shaping the direction of the stochastic models, and

also indicated, through relatively simple analysis, the importance of the pig as a

self-sustaining source of infection to other pigs. Similar linear stability analyses

could be useful for other livestock transmission models, especially where simpler

production systems exist, such as for broiler chickens. The stochastic models are

more appropriate for pig production, where groups of pigs are small and hence

random effects will be important. The standard stochastic model did not result

in enough heterogeneity in the dynamics of infection to replicate the results of

observational and longitudinal studies. However, the cross-contamination and final

birth-to-slaughter models replicate the heterogeneity of pig infection well. The

final birth-to-slaughter model also includes a much more detailed description of

the source of infection and shedding dynamics, based on observation published in

the scientific literature: this is necessary if detailed intervention analysis at the

farm level is to be sufficiently accurate.

It must be recognised that while great efforts have been made to ensure the correct

parameterisation of the final model, there are still large uncertainties about much
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of the data used in the model, and the assumptions made about the model itself.

Key examples include the dose-response of pigs to Salmonella exposure (the dose-

response model was fitted to a very small study of a specific breed of pig, with a

specific serotype of Salmonella) and the assumption that pigs are not mixed during

rearing (e.g. it is known that pigs are commonly held back from the slaughterhouse

and mixed with another cohort if they have not yet reached slaughter weight).

The impacts of such assumptions and uncertainties have been discussed in detail

in Chapter 6, but one key impact of data scarcity is the lack of any data to validate

the model in any significant detail. The dynamics of infection qualitatively match

those observed in several studies (Kranker et al., 2003; Nollet et al., 2005; Jensen

et al., 2006), but this is as much as we can say at the moment. However, the most

important conclusion, that the sow is the driving force of infection in slaughter

pigs, is validated to some extent by analysis of the EFSA breeding survey data,

which shows a clear relationship between breeding herd prevalence and slaughter

pig infection between MSs. There are some clear outliers, e.g. Denmark, and

it would be interesting to use the current final model (or extend/modify it) to

investigate the factors which cause these individual anomalies.

8.4 Conclusions

In conclusion, this thesis has established a set of models for the investigation of the

introduction, transmission and intervention of Salmonella in pigs. The final model

suggests that the sow is a major source of infection, and hence intervention should

first and foremost be introduced to the breeding herd. However, increasing the

susceptibility of the pig to infection, and conducting All-In-All-Out production,

would lessen the transmission of infection between pigs during later stages of pro-
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duction. The final model has already been used to inform the development of the

UK NCP (to investigate the accuracy of several sampling schemes and as an input

for Cost-Benefit Analysis), and research will continue to improve the assumptions

and parameter estimation of the model.
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