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ABSTRACT

The author believes CO; to be a promising future refrigerant due to the threat to the
HFCs of restriction or elimination posed by legislation planned in many countries.
This thesis addresses the feasibility of using reciprocating compressors 1n a
transcritical CO, heat pump working in cooling and/or heating modes through the use
of computer modeling. A detailed simulation model of a reciprocating compressor 1s
combined with semi-detailed gas cooler, evaporator and internal heat exchanger
models to produce complete cycle model of systems having one and two stages of

compression. Measured data from the open literature for CO, compressors and

single-stage heat pumps was used to validate the models.

Piston ring-cylinder leakage and valve dynamics are included in the compressor

model. The influence of ring-cylinder clearance on heat pump performance is

investigated as is the influence of heat pump running conditions on valve dynamics.

Prior to this study, there were no models known to the author for CO; heat pumps
which incorporate a detailed simulation of the compression process. Furthermore,
there were no models for CO; heat pumps incorporating multi-stage compression.
This study provides insight into the manner in which a CO; heat pump might perform
in both cooling and heating modes for running conditions representing summer and

winter.The models are believed to be of value to other research workers, plant

designers and plant operators.

As a result of this study, useful techniques have been provided for the design and

manufacture of environmentally safe and energy efficient heat pump systems; 1t 1s

hoped that they will make a positive contribution to the reduction of effects harmful

to the environment and 1ts inhabitants in the future.
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NOMENCLATURE

The following symbols are used 1n this thesis, and are defined where they first appear

in the text. Some symbols have been assigned more than one meaning, but 1t will be

evident from the context.

Symbol Description Unit
Latin Letters

A area m’

Ay flow area of valve gap m’

Ar valve equivalent (effective) force area m’

Ap piston cross sectional area m’

A, valve surface area -

Ag cylinder wall surface area -

Cp specific heat at constant pressure J/kg K
Cy specific heat at constant volume J/kg K
Cp pressure drag coefficient -

Cr, K flow or discharge coefficient -

Coil o1l correction factor -

Citick sticktion coetficient -

COP coefficient of pertormance -

d, valve port diameter m

D diameter m

Dy diameter of suction line m

E energy J

EER energy efficiency ratio Btu/hr W
F.f friction coefficient -
I hydraulic drag coeftficient -
/i inertia drag coefficient -
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Re

SVR

spring pre-load

gas force

sticktion force

Froude number

gravitational acceleration

mass flux

specific enthalpy (or heat transfer coefficient or height)
spring stiffness (or thermal conductivity)

length of connecting rod

piston ring width

length of suction line

log mean temperature difference of section/segment
mass

total mass of the refrigerant released

polytropic index

compressor speed

Nusselt number

pressure

Prandtl number

power

cooling/heating eftect

throttling loss

heat flux density through tube wall to fluid
heat (or cooling/heating capacity)

crank radius

gas constant (or thermal resistance or viscous damping
coefficient)

Reynolds number

specific entropy

swept volume ratio

time (or HTF temperature)

temperature

Z Z Z

m/s

kg/m2 S

J/kg (or W/m* K or
N/m (or N/m K)

m

J/kg
J/kg
J/m* K
J (or W)
m

J/kg K (or K/W or
N s/m)

J/kg K

s (or 0C)
K (or °C)
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T thermodynamic average heat rejection temperature K

U specific internal energy (or characteristic velocity) J/kg (or m/s)
U overall heat transfer coefficient W/m* K
V specific volume m’/kg
V volume m’
W specific work J/kg
W swirl velocity rad/s
/4 work J/kg
We Weber number i
X refrigerant vapor quality -
Xy Lockhart-Martinelli parameter -
Y, compressor valve displacement m
Yo maximum valve lift m
z piston displacement m
Z head m

Greek Letters
amount of CO; released in generating electricity kg CO,/ kWh

energy consumption of the system during its whole lifetime  kWh kg/m’

1sentropic exponent -

> = ™ K

change in -

effectiveness -

M

efficiency -
angular displacement rad
ratio of crank radius to connecting rod length -
dynamic viscosity N/m
local pressure drop -
density kg/m s
surface tension -

two phase multiplier -

Q® S Q L T P N N

crank angular speed rad/s

X V111



Subscripts
act

av, m

ch
cl

D, dis
avc

avo

elec

hx

ind

LO
mech

nb

S, suc
SVC

SVO

th
IP

actual

average

compressor (or gas cooler)
cylinder head

clearance

convective (or control volume)
down stream (or discharge)
discharge

discharge valve close
discharge valve open

evaporator (or equivalent)

electrical

1senthalpic

heat exchanger

inlet

indicated

leakage (or liquid)
liquid only
mechanical

nucleate boiling

outlet

piston

refrigerant

1senthalpic (or suction)

suction

suction valve close
suction vale open
theoretical
two-phase

upper stream

vapor

X1X



Superscripts

time rate of change

mean value

XX



BWR
CFC
COHEPS
CSD
DGWP
ECS
ECU
EXV
FCHV
HC
HCFC
HEFC
HP
HPWH
HTF
HVAC
ICEC
ID
IDGWP
IDLH
IEA
[HX

IPCC
LP
LXV
MBWR
OD
ODP

LIST OF ABBREVATIONS

Benedict-Webb-Rubin
Chlorofluorocarbon

CO; Heat Pump Systems
Carnahan-Starling-DeSanits

Direct Global Warming Potential
Extended Corresponding States
Environmental Control Unit

Electronic Expansion valve

Fuel Cell Hybrid Vehicle

Hydrocarbon

Hydrochlorofluorocarbon
Hydrofluorocarbon

High Pressure

Heat Pump Water Heater

Heat Transfer Fluid

Heating Ventilation Air Conditioning
International Compressors Engineering Conference
Indoor

Index of Direct Global Warming Potential
Immediately Dangerous to Life or Health
International Energy Agency

Internal Heat Exchanger
Intergovernmental Panel on Climate Change
LLow Pressure

Level-control Expansion Valve

Modified Benedict-Webb-Rubin

Outdoor

Ozone Depletion Potential

X X1



RACE
SCHX
TDC
TEWI
TLV
TR
TXV
VCC

Refrigeration and Automotive Climate under Environmental Aspects

Subcooling Heat Exchanger

Top Dead Center

Total Equivalent Warming Index
Threshold Limit Value

Ton of Refrigeration (= 12000 Btu/hr)
Thermostatic Expansion valve

Vapor Compression Cycle

X X11



Chapter 1

Introduction

1.1 General background

Refrigeration and heat pumping play an important role in modern human life. They
not only offer a comfortable and healthy living environment but also offer great
advantages 1n severe weather conditions. The accelerated technical development and
the economic growth of most countries during the last century have produced severe
environmental problems. We have recognized the fact that man-made products,
while contributing to human comfort, have side effects which threaten our health as a
result of harming the environment by causing ozone depletion and global warming.
The desire to limit man-made climate change is the major driving force for the
technical innovation and future development of the refrigeration and heat pumping

industry.

1.1.1 Refrigerants and environmental impacts

The impact of refrigerants on the environment can be divided into the following

points (Steimle et al. 1999a).
Toxicity to human beings and animals

Influence on biological and genetic areas

1.
2
3. Odours

4. Flammability and explosiveness

5. Direct impact on the global warming
6
7

Total energy due to plant construction, operation and refrigerant manufacture.

Possible influence on the ozone-layer

Over the years more than 50 chemical substances have been used as refrigerants in

compression type refrigeration and heat pump systems, with varying degree of

success. The very first machines, as developed by Perkins in 1834 and later Harrison



1856 used ether (or “a fluid for cleaning printing types”), which was neither safe nor

particularly suitable for the purpose. More appropriate compounds, carbon dioxide

CO,, ammonia NH3; and sulphur dioxide SO,, were introduced in the 1870s and

1880s, and dominated the trade for a substantial period (Lorentzen 1994a).

In the early 1920s concerted efforts were made to find substitutes of the commonly
used toxic refrigerants: ammonia, sulphur dioxide, methyl chloride, etc. Charles
Kettering and Thomas Migley finally succeeded in inventing chlorofluorocarbons
(CFCs) 1n 1928 as suitable refrigerants. Halocarbon, CF,Cl, (CFC-12), took over
much of the market from 1932 on. After the Second World War only one of the old
refrigerants, ammonia, was still used extensively in large industrial systems, all other

fields were completely dominated by the new refrigerants which were primarily

CFCs and hydrochlorofluorocarbons (HCFCs).

CFCs and HCFCs were belived to be incapable of causing harm to life, were very

stable, non-toxic and non-flammable.

1.1.1.1 Ozone Depletion Potential

The first major environmental concern to strike the refrigeration and heat pumping
industry was due to depletion of the ozone layer as the result of the emission of man-
made chemicals into the atmosphere. The first evidence that man-made chemicals
containing chlorine destroy the earth’s ozone layer was discovered by scientists as
early as in the 1970’s. Rowland and Molina (1974) presented the theory that the
halocarbons could be broken up by sunlight in the stratosphere to release chlorine
which united with ozone thus removing it as a protective barrier which prevented
ultra-violet radiation, dangerous to life, from reaching the earth surface.
Subsequently, an extensive worldwide programme of stratospheric ozone monitoring
confirmed the existence of a pattern of depletion which is most pronounced over the

Antarctic during springtime. It took more than a decade before this state of affairs

was accepted as a proven fact.



1.1.1.2 Global Warming

The second major environmental concern 1s global warming. Global warming arises
because of the greenhouse effect. The frequency distribution of the radiation from the

sun closely approximates that from a black body at a temperature of about 5800 K.
The spectrum wavelengths range from the less than 1 nm to hundreds of meters: the
peak in the spectrum 1s in the visible region at about 500 nm. When solar radiation
(1360 W/m®) arrives at the earth, about 30% is reflected back into space and most of
the remainder passes through the atmosphere to the ground. This heats up the earth,
which then behaves approximately as a black body, radiating energy with a spectral
peak 1n the infrared. This infrared radiation cannot pass through the atmosphere
because of absorption by water vapor, carbon dioxide and the other infrared
absorbers. As a consequence, heat energy is trapped and the temperature at the

surface of the earth 1s higher than it would be without the insulating blanket of the

atmosphere.

Global warming 1s a good thing 1n itself and allows life to exist in all its varieties.
The concern 1s that man’s activities are increasing the concentration of carbon
dioxide and other greenhouse gases in the atmosphere, so causing the amount of

absorbed infrared radiation to increase, and leading to increased atmospheric

temperatures and consequent long-term climate changes.

There are two types of global warming effect. The first one is the Direct Global
Warming Potential (DGWP) due to emission of refrigerants into the atmosphere. The
second is the Indirect Global Warming Potential (IDGWP) due to emission of CO,
by consuming the energy, which is obtained by combustion of fossil fuels. The
combined effect of these two global warming potentials 1s called the Total
Equivalent Warming Impact (TEWI). The GWP of a refrigerant is not the proper
criterion to use in judging the impact of a refrigeration or heat pump system on
global warming. The main reason is that in most countries most of the global
warming due to refrigeration and heat pump systems (including air-conditioning) 1s

due to the CO, released during the production of the electricity required for its



operation. A much better criterion for a refrigerant in a particular system is the TEWI
(Steimle et al. 1999a):

TEWI:GWPXM+(1><B

where, GWP  GWP of the fluid, relative to CO, (GWP CO, = 1)
M total mass of the refrigerant released (kg)
Qa amount of CO, released in generating electricity (kg CO,/ kWh)

3 energy consumption of the system during its whole lifetime (kWh)

The TEWI 1s directly dependent on how electricity is produced i.e.:
- 1f all energy comes from hydraulic power generation, a = 0
- 1f electric power derives from fuel, a is around 0.6 - 0.8 kg CO, / kWh

(depending on the types and efficiencies of the power stations)

Governmental response has been to accept that the man-made global warming issue
1s real, and to set targets for reducing greenhouse gas emissions. The target has been
established by the United Nations Intergovernmental Panel on Climate Change
(IPCC), founded in 1988. They are to be found 1n their reports from a series of Earth
Summits and Global Warming Conferences at Sundsvall, Rio de Janeiro, Berlin,
Kyoto and Buenos Aires, in 1990, 1992, 1995, 1997 and 1998, respectively (see the
[PPC website at www.ipcc.ch). The targets are couched in terms of reducing

greenhouse gas emissions to 1990 levels by some date after 2000.

The Koyto Agreement (1997) was established to reduce emissions of global warming
gases. As shown in Table 1.1, greenhouse warming occurs when the carbon dioxide
is released mostly from the burning of fossil fuels (o1l, natural gas and coal). The

release of other gases such as methane CHy, nitrous oxide N,O, ozone Os, CFCs,

HCFCs and water vapor also contribute (Hartmann 1994).

The direct contribution of HCFCs to global warming 1s smaller than that of CFCs but

still much larger than that of natural refrigerants. The relative contributions of

DGWP and IDGWP in different applications are shown in Table 1.2 (Cavallinm1 1996)



Table 1.1 Contribution of gases to the greenhouse effect (%)

23

C
Man-made gases 1n 1988 2
Natural greenhouse '
2 2 3 - 70
eftect

Table 1.2 DGWP and IDGWP portion in different applications (%)
o Household Automotive Retail | Commercial
Application |
Refrigerator a/c Refrigerator Chiller
G
el I L O

As can seen 1n this table, IDGWP is much larger than DGWP. IDGWP results from

burning fossil fuels to generate energy. Policies to reduce global warming force
industries to develop technologies that will reduce energy consumption. Therefore, it

1s important to develop alternative refrigerants which have lower DWGP and lower,

or at least equivalent IDGWP.

1.1.2 Natural refrigerants as alternatives

Presently, the most pressing research issue in the field of refrigeration and heat
pumping systems is the search for new and environmentally acceptable working
fluids which can replace the CFCs and HCFCs. Most of the substances considered
are new synthetic compounds, namely pure hydrofluorocarbons (HFCs) and
binary/ternary HFC blends. Even though these new compounds are extensively tested
with regard to toxicity, flammability etc., they are synthetic and not natural.
Consequently, widespread use of these fluids will always include a risk of unforeseen
global environmental effects, as has already been experienced with CFCs and
HCFCs. Moreover, the HFCs are already known as relatively strong greenhouse
gases (Greenhouse Warming Potential ranging from 1300 to 3800 for the most

common HFCs). The environmental effects of selected refrigerants are shown in

Table 1.3 (McMullan 2002).



Table 1.3 Environmental effects of refrigerants

Refrigerants ObP DUWE
(CFC-11=1) (CO; =1)
CFC-11 ] 3800
CFCs CFC-12 ] 8100
CFC-114 0.8 9300
HCFC-22 0.055 1700
ope. | HOFC-123 0.02 | 90
HCFC-124 0.022 | 480
HCFC-141b 0.11 630
HFC-134a 0 1300
HFC-245fa 0 900
HFCs HFC-134 0 1300
R-407C (HFC-32/125/134a) 0 | 1600
R-410A (HFC-32/125) 0 1900
Air (R-729) 0 0
Water (R-718) 0 0
Natural Carbon Dioxide (R-744) 0 ]
Refrigerants | Ammonia (R-717) 0 0
Propane (HC-290) 0 3
Butane (HC-600) 0 3

This has prompted researchers worldwide to consider the development of new
refrigerants and/or the investigation of refrigerants occurring naturally 1n the
environment. However, the development of chemically manufactured fluids to be
used as refrigerants may result in the same dilemma the world currently faces with
several fluorocarbons based refrigerants. There <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>