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ABSTRACT

Parasitic diseases of animals place a large constraint on livestock production world-

wide. The parasite Theileria parva, and the disease East Coast fever it produces, are

responsible for the deaths of thousands of cattle each year in central and eastern Africa.

Disease control is one way in which agricultural production can be improved, and is

a matter of fundamental importance to developing countries where levels of nutrient

intake are dangerously low over the majority of the population.

This thesis presents computer simulation models to study East Coast fever and

its control. Models are constructed based on expert rules extracted from over 80 years

of scientific literature concerning the disease. Rules are translated into programming

code, and their outcome investigated by computer experimentation. The models are

climate driven, and one chapter of this thesis concerns the development of a model to

generate sequences of daily weather data from minimal datasets.

This thesis also contains deterministic models studying the dynamics of other, more

general, parasitic diseases, and also the competition between similar species of parasite.

These models are constructed using difference equations and analysed analytically and

by simulation. This approach is adopted further to specifically consider the behaviour

of the level of Theileria parva infection amongst vector and host populations.



1. INTRODUCTION

"Now, here, you see, it takes all the running you can do, to keep

in the same place. If you want to get somewhere else, you must

run at least twice as fast as that!"

Lewis Carroll, Alice Through the Looking-Glass.

In Africa the average nutrient intake per member of the population is 30% to 40%

below that of the rest of the world. Predictions indicate that the future will bring

increased food shortages as the growth of the human population exceeds that of food

production. In 1960 the human population of Africa was around 200 million, by 1985

the population had risen to 460 million, more than doubling in 25 years. It is estimated

that the population will increase annually by 3%, reaching 730 million by the end of the

century, and 1.8 billion by the middle of the next century. Achieving a corresponding

3% annual increase in agricultural production in Africa is a formidable, yet essential,

task. But even if a 3% annual increase in food production could be achieved, many

people would remain undernourished.

African food crop yields remain extremely low despite increasing on a global scale.

Between 1965 and 1987 world yields of sorghum and millet increased by 46% and 26%

respectively, yet in Africa production remained constant. Yields of wheat, maize and

rice have increased globally by 93%, 65% and 58% respectively over the same time

period, but in Africa the yields of all three crops were lower in 1987 than in 1965. The

cattle population of Africa, responsible for dairy and beef production, has risen little.

In 1958 the number of cattle was estimated as around 106 million, which rose to around

170 million in 1985, representing an annual increase of about 2.5% per year. Disease

remains the most important constraint on livestock productivity in tropical regions,

even with the development of vaccines, antibiotics and anthelmintics that act against

viruses, bacteria and parasitic worms. In Africa, trypanosomiasis is by far the most

important disease of livestock. It is estimated to affect livestock production over an

area of 10 million km 2 (Murray and Gray, 1984). In such areas, human populations

may be devastated by serious epidemics of sleeping sickness (Duggan, 1970). East Coast
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fever, described as the second most important cattle disease in Africa (Morrison, et al.,

1986), puts at risk around 25 million cattle in Central and Eastern Africa.

In other continents, disease and agricultural pests also place a massive constraint on

livestock production. In Australia, the cattle tick Boophilus raicroplus, and the disease

babesiosis it vectors, are their greatest threat to cattle, and cost the industry annually

around A$40 million in control costs and production losses (Anon., 1975). Without

control, the production losses, already around A$27 million, would be vastly increased.

In Queensland, 80% of the national loss is incurred (Sutherst and Dallwitz, 1979), and

the tick is regarded as the major restraint on the dairy and beef industries. In the

UK, yearly losses due to fascioliasis, liver fluke disease, are estimated to be in excess of

.C60 million (Gettinby, 1974). Not only are the effects of disease and pests devastating,

but major and important diseases such as malaria, trypanosomiasis and schistosomiasis

are increasing in prevalence. Global warming trends indicate that the habitats of many

pests and disease vectors are extending. Average temperature increases of 2°C and the

south of England could become favourable to mosquitos, bringing malaria to Britain.

Given the threat and importance of diseases, how can mathematics possibly be of help

in their understanding and shed light on their control?

The indications are that mathematics can and does aid in our understanding of

biological processes. Early work by Mendel on the genetic variation observed in breed-

ing experiments with peas, has led to the mathematical laws governing genetics. If

mathematics can improve our understanding of disease, then improved understanding

may lead to improved methods of control. Mathematical models for disease have al-

ready proved useful in aiding the control of malaria in West Africa (Molineaux and

Gramiccia, 1980).

Early models

Early models for disease were constructed to describe the passage of epidemics by

extending previous theory on birth and death processes. A population would be con-

sidered to contain susceptible, infective and removed individuals. Susceptibles are those

members of the population who are at risk from the disease; infectives are those who

have contracted the disease and are infectious to other individuals; and removed mem-

bers are those who have either recovered or died from the disease and cannot become

reinfected. A susceptible becoming infected is equivalent to a 'death' within the sus-

ceptible population, and a 'birth' within the infective population. Denoting z(t), y(t)

and z(t) as the number of susceptibles, infectives and removed cases respectively at
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time t, p as the infection rate of susceptibles and 7 as the removal rate of infectives

leads to the simple continuous time epidemic model (Bailey, 1975):

dx = —13"'

dy = SzY
dz

= 7Y.

Examination of these equations showed that the behaviour of the infection was

dependent on the initial number of susceptibles z(0), and the value of the relative

removal rate r = 7/13. If r < z(0) then no epidemic could occur, only a small

number of susceptibles becoming infected. However, if r > z(0) then an epidemic

does occur. The profile of the epidemic can be predicted for different initial conditions,

along with other theoretical properties such as the epidemic intensity — the proportion

of initial susceptibles that eventually contract the infection. This model assumes that

the population is of constant size and homogeneously mixing, and that a susceptible

becomes infectious instantaneously. Later models were constructed to deal with non-

homogeneously mixing groups, and susceptibles encountering a latent period before

becoming infectious.

Assuming a constant latent period and a short infectious period, properties com-

mon to many diseases such as mumps and measles, discrete time epidemic models can

be produced. The time-step between observations being the latent period of the disease,

and the infectious period being a single point in time.

These early models were deterministic, providing a precise and unique disease

profile, soley dependent on the initial conditions. However, when considering small

populations this deterministic approach was seen to be inadequate. Mollison (1981)

stated that when considering populations where there are periods of time when only

a small number of individuals exist, differential equations will adequately describe the

main course of the process, but stochastic analysis is needed for the critical periods

when numbers are small. Chance contacts between infectives and susceptibles are an

important factor in the spread of disease, especially when the population is small.

Chain binomial models were constructed, where the number of new infectives at time

t +1 was assumed to follow a binomial distribution. A number of different formulae for

the probability of an individual susceptible becoming infected, p, have been proposed,

such as the Greenwood model where p depends only on the presence or absence of

infection; or the Reed-Frost model where p is dependent on the number of infectious
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individuals. These models could be used not only to predict the most likely outcome

of the epidemic, but also the theoretical probability distribution of the total number

of susceptibles contracting the disease, and the frequency of different routes of disease

transfer. Data on the spread of measles amongst small households in Providence,

Rhode Island during 1929-1934 was used to test the fit of the models, which appeared

inadequate (Bailey, 1975).

In fact, many of these early models, although of mathematical interest, shed little

light on forecasting and controlling specific diseases. They did, however, provide the

inspiration for the development of realistic disease models. With the aim of accurate

disease prediction, rather than elegant or interesting mathematics, modelling parasitic

diseases of animals developed in two directions towards index models and analytical

and simulation models.

Index models

Index models arose from early disease studies which revealed that key environmental

factors seem to correlate well with the incidence of disease. It was therefore attractive

to try to combine these factors into a simple quantitative index which could be used to

predict the incidence or occurrence of disease. Historically the most important of these

was developed by 011erenshaw and Rowlands (1959). They used a simple M t index

of wetness as an aid to predicting the risk of fascioliasis, liver fluke disease, amongst

sheep and cattle in different parts of Britain. The parasite life cycle is complex. As

an adult it exists in the liver of its host, but immature stages exist on the pasture and

within the snail host Lymnaea truncatu/a. Two important factors in the development

of the parasite are temperatures in excess of 10°C, essential for the development of

the egg and intra-snail stages, and the presence of surface water which is essential if

the parasite is to succeed in finding a snail to infect. Thus, 011erenshaw and Rowlands

(1959) assumed temperatures were too low for parasite development in the winter, and

so the Mt index was proposed to assess whether or not the habitat was wet enough for

the parasite for each month from May to October:

Mt = (R — P + 5)n

where R is the rainfall in inches, P is the potential transpiration and n is the number

of rain days for a specific month t. A weighted sum of the Mt index for each month

provided a measure of fascioliasis risk, and could be useful in assessing the need for

taking preventative control measures.
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For ostertagiasis in sheep, Thomas and Starr (1978) obtained good predictions for

the onset of peak pasture contamination using an algorithm with day and night rainfall

measurements and the number of sunshine hours per day. Donnelly and MacKellar

(1970) suggested that the incidence of redwater fever could be predicted from the mean

monthly maximum air temperatures recorded 14 days earlier. Further discussion of

these and other models can be found in Gettinby and Gardiner (1980) and Gibson

(1978).

More recently, the ecoclimatic index, El, calculated by the Climex model

(Sutherst and Maywald, 1985) has proved useful in the study of African ticks (Lessard

et al., 1990), which vector many important parasitic diseases of cattle such as East

Coast fever, anaplasmosis, and heartwater. This index is produced from the product

of two indices: a growth index, calculated from temperature, moisture and daylength

data, and a survival probability reflecting the success of the species through the un-

favourable season. This probability is calculated from the values of hot stress, cold

stress, wet stress and dry stress estimated for the species at a particular site. The

study of Lessard et al. (1990) showed that areas where ticks were known to exist pro-

duced favourable values of the El. However, many areas where high El values were

predicted represented areas where ticks were absent. The El only accounts for climatic

suitability of an area to a specific species, and does not account for other factors that

influence the distribution of the species such as vegetation type. Lessard et al. (1990)

used a normalised difference vegetation index, NDVI, to distinguish areas containing

vegetation suitable to ticks. This index was estimated from measurements of infrared

and red reflectance obtained by satellite, and is known to be effective in determining

vegetation cover. When the two indices were used together, the predicted distribution

of ticks was very close to that observed. Some favourable areas still uninfested by ticks

were identified as areas where caution must be taken in preventing future introduction

of the tick.

Analytical and simulation models

Although many index models have been sufficiently accurate to make disease predic-

tions possible, they do, however, represent an oversimplification of the dynamics of

the parasitic life cycles. Analytical and simulation models, on the other hand, have

attempted to accurately predict the incidence of disease by modelling all factors that

have a bearing on the parasitic life cycle. These models have the disadvantage of being

more complex than the simple index models, but have the flexibility of being able to not
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only predict levels of disease but quantify the intensity of infection. This provides the

potential to assess disease control strategies leading to effective disease management.

MacDonald (1965) developed a probabilistic model for the disease of man, schisto-

somiasis, caused by the trematode worms Schistosoma mansoni and S. haematobium.

By modelling the parasite and host populations and their interactions, the relative

benefits of various disease control strategies were contrasted. The study proved useful

in showing that the provision of safe water supplies was of greater importance than

the building of latrines. This followed from the prediction that a reduction in the

number of times humans became exposed to the parasite was more effective in con-

trol than a comparable reducion in the intensity of contamination present. The model

also highlighted that improving sanitation alone is not a sufficient measure by which

to eliminate the parasite. However, the disease could be successfully controlled by in-

tensive treatment of infected individuals alongside improved sanitation. Application

of a simple density-dependent model for general host-vector-parasite systems to model

schistosomiasis (Deitz, 1988) yielded similar results. When the model was applied to

malaria it was concluded that a vaccine developed to attack the parasite at the sporo-

zoite stage would be more effective than a vaccine attacking it at the later gametocyte

stage. Much work on modelling aspects of schistosomiasis has been presented by An-

derson (Anderson, 1978, Anderson and May, 1979, Anderson et al., 1982), with special

reference to the prevalence of parasite infection within the intermediate snail host. The

approach of Anderson has been to consider experimental studies presented in the lit-

erature, and, based on these, to develop simple mathematical models to capture the

biological features of the infection. In addition to highlighting areas where more de-

tailed biological data is required, these models have been useful in exploring different

hypotheses explaining experimental observations.

Rogers (1988) developed a general mathematical model describing the prevalence

of sleeping sickness, Trypanosome infection, amongst two host populations, either man

and domestic animals or domestic and wild animals, and a population of tsetse ffies,

the disease vector. Differential equations were developed to predict the changes in the

proportions of hosts and vectors infected.

Letting

z i = the proportion of hosts infected for species i, for i = 1 or 2,

ai = the biting rate for species i, for i = 1 or 2,
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bi = the proportion of infected bites producing infection in the host for species i, for

i = 1 or 2,

rrli = the ratio of vector to host numbers for species i, for i = 1 or 2,

y = the proportion of vectors infected,

wi = the proportion of hosts currently incubating infection for species i, for i = 1, 2,

zi = the proportion of hosts currently immune to infection for species i, i = 1, 2,

r i . the host recovery rate for species i , for i = 1 or 2,

c = the probability that an infected blood meal produces infection in the vectors,

f = the proportion of the vector population incubating infection,

u = the mortality rate of vectors,

T = the incubation time of infection within the vector,

and by assigning a circumflex to parameters to refer to the value of that parameter one

incubation period previously, it then follows that a i bimi i is the number of infected bites

occurring one incubation period of species i ago, (1 — ii — tbi — ii ) is the probability

that a fly bites a susceptible host of species i, one incubation period ago, and riz i is

the proportion of hosts of species i to recover.

Thus
dzi

= at b im1 i(1 — — ibi — ii ) — riz i , i --= 1, 2.
dt

It also follows that (ai i i + a2 i 2 )c is the probability that infection is passed on to a

fly, one vector incubation period ago, (1 — i — .") is the probability that a specific fly is

susceptible to infection one vector incubation period ago, e- ta is the mortality rate of

flies during the disease incubation period, and uy is the removal rate of flies, so that

dy
= (ai i i -I- a2 e2 )c(1— g - h e-ur _ uy.

dt

Equations were derived for equilibrium disease prevalence and for the basic repro-

ductive rate of the infection, R0 , for each host species. The basic reproductive rate

represents the number of new infections that eventually arise from a single current infec-

tion. The model was fitted using parameter estimates obtained from the literature, and

some interesting results were obtained. By considering the basic reproductive rates for

Trypanosoma brucei infection amongst man and animals, Rogers inferred that human

sleeping sickness cannot be maintained in the human host alone, but requires animal
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hosts acting as a reservoir for the disease. This lead to the result that greater reduction

in human sleeping sickness may be achieved by treating the animal population rather

than the human population.

A more complicated model for trypanosomiasis was presented by Milligan and

Baker (1988) which allowed for differences in susceptibility to infection of tsetse flies of

different ages, seasonality and imigration and emigration in the tsetse fly population,

and chemotherapy of infected domestic host.

Gettinby, Hope-Cawdery and Grainger (1974) developed a model for Fasciola hep-

atica development, and later Gettinby and McLean (1979) developed a more complex

model based on Leslie matrices (Leslie, 1945) to assess control of the infection in sheep.

The optimal timings of molluscicide and flukicide application were concluded. Gettinby,

Bairden, Armour and Benitez-Usher (1979) developed a simulation model for Osterta-

gia ostertagi, the nematode worm responsible for the disease ostertagiasis in sheep and

cattle. Daily rainfall and temperature data were used to predict the survival and devel-

opment of the parasite in its free-living stages. Predicted levels of larval contamination

showed good correlation with observed levels of larvae on pasture. Gettinby, Soutar,

Armour and Evans (1989) developed a model for 0. circumcincta to study the onset of

genetic resistance to anthelmintic drugs. The model was designed to serve as a decision

tool for use at farm level.

A model for the Australian cattle tick B. microplus was discussed by Sutherst and

Dallwitz (1979), and later a more complex network model for the African cattle tick

Rhipicephalus appendiculatus was developed (Gettinby, Newson, CaIpin and Paton,

1988) where probabilities were incorporated into model decisions by employing ran-

dom numbers, a method known as Monte Carlo simulation. This model used daily

temperature data to predict tick development (King, Gettinby and Newson, 1988),

and was used to investigate tick resistance to acaricide at different sites and for differ-

ent hypotheses of genetic selection. In some cases, resistance occurred within a year,

whereas in other cases the acaricide could be assumed effective in controlling ticks for

over 15 years. More recently, Mount and Haile (1989) developed a simulation model

to study the population dynamics of the American Dog Tick, Dermacentor variabilis,

which is the primary vector of Rocky Mountain spotted fever in the eastern United

States. This, and other tick-borne diseases of man such as lymes disease, are becoming

increasingly important due to increased suburbanisation and the reversion of farmland

to woodland. Both factors increase the contact rate of humans to ticks, and extend
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tick habitats. The model uses weather data comprising average weekly temperatures

and saturation deficits for one year to simulate tick development and survival, and also

accounts for differences in habitat type between different geographical locations. Model

predictions showed good agreement with observed seasonal densities of ticks at several

locations studied. The model is regarded as the framework for a future model to study

the control of Rocky Mountain spotted fever.

Many other simulation models have been developed, and with the advent and ac-

cessibility of microcomputers, this has become the age of simulation. Disease prediction

and control is not the only area of application. Simulation models are used to predict

the allowable mesh sizes for trawling nets in order to maintain fish stocks, the content of

oil reservoirs and the optimum drilling sites for oil extraction, and even the predicted

effects of nuclear accident on an area in an aid to constructing effective evacuation

plans.

Future trends in modelling

Spatial models for the geographical spread of diseases have been developed (Mollison,

1987), such as for the spread of rabies passed by the red fox Vulpes vulpes (Ball,

1985). Rabies epidemics may be controlled by erecting barriers to prevent infected

foxes from moving into clean areas, and so spatial simulation models are a valuable

tool in predicting the rate of spread of an epidemic, and in optimising the positioning

of barriers. The stochastic nature of such models is of major importance, as barriers

must be located at sites where the epidemic is unlikely to have reached.

With the advent of remote sensing, the potential of index models for estimation

of disease risk over vast areas is enormous. Satellites can be employed to measure

maximum and minimum temperatures, greenness indexes predicting vegetation type

and state, rock and soil types, along with a multitude of other data. Even measurements

on the density of puddles in an area could be taken, and compared from day to day to

predict suitable mosquito breeding sites. Data can be collected over short time intervals,

increasing model accuracy. Remote sensed data has already been used to help identify

the habitats of ticks and tsetse flies in Africa, with an aim to aiding disease control

(Hugh-Jones, 1989).

Geographical Information Systems (GISs) provide a powerful new tool for manipu-

lating and investigating spatial data. A GIS is a computerised mapping system whereby

data obtained from maps, aerial and satellite surveys and mathematical models can be

—9-



displayed and investigated. By overlaying different maps, the interactions between

different variables can be analysed. This provides great potential in understanding

the factors controlling disease prevalence, and producing accurate and sensitive index

models to assess disease risk.

The accessibility of microcomputers and powerful software such as GISs, expert

system packages and programming languages provides a facility for mathematicians and

non-mathematicians to produce predictive models of disease and disease risk. Computer

modelling and computer simulation allows models of increased complexity and accu-

racy, because models need no longer be constrained by their mathematical structure.

Computers can be used in providing a framework for performing experiments to inves-

tigate the behaviour of models that are too complex to yield analytical solutions. The

effect and importance of model parameters can be investigated by comparing model

predictions under different parameter values. The concept of computer modelling and

computer experimentation is of vital importance in increasing understanding, and im-

proving control, of disease.

Contents

In chapter 2 of this thesis classical modelling techniques are employed to produce simple

deterministic models of interactions between species to find conditions for coexistence.

Chapter 3 is concerned with East Coast fever, and contains sections on the disease

and its control, along with descriptions of the life cycles of the disease vector and

parasite. In chapter 4, modelling techniques similar to those presented in chapter 2 are

employed to produce models to investigate the infection level in tick populations under

different scenarios: constant tick populations, seasonal tick populations, non-uniform

tick attachments, resistance of cattle to ticks, resistance of cattle to infection, and

chemotherapy of infected cattle. Chapter 5 contains the description of. stochastic models

for tick populations, the spread of East Coast fever and its control by acaricidal dipping

and chemotherapy with antitheilerial drugs. Climatic data is an essential requirement

of the models in chapter 5, and so chapter 6 describes methods for generating sequences

of daily weather data from monthly mean values, using extreme value distributions and

time series analysis. Chapter 7 gives an overview of the operation and philosophy of

ECFXPERT, an integrated model designed to investigate East Coast fever and its

control, using models developed earlier. Chapter 8 contains the results of a number of

computer experiments using ECFXPERT.
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2. COMPETITION MODELS FOR SIMPLE PARASITE SYSTEMS

"Government and cooperation are in all things the laws of life;

Anarchy and competition, the laws of death."

John Ruskin, Unto this last.

2.1 INTRODUCTION

Over the past ten years chaos has emerged as a new explanation to some of the com-

plexity observed in nature, and has been the subject of interest to scientists working

under many disciplines. In mathematical terms, chaos is the randomness generated

by simple non-linear dynamical systems. Typically, a system might be expressed in

discrete form by:

X t-1-1 = f (X t),	 t = 0,1,2,...

where Xt is an observation on the system at time t and f is a non-linear function of

X t .

Chaotic behaviour is observed when a very small change in the initial conditions,

X0 , produces an unpredictably large difference in the resulting sequence {X; n =

1, 2, ...} . Such apparent randomness is a feature frequently observed in nature.

It was with the advent and increasing accessibility of microcomputers that the

complex behaviour of chaotic systems became apparent. Prior to this, chaos and other

complex properties exhibited by even the most simple of dynamical 'systems remained

unexplored. As a simple example, consider the logistic difference equation:

Xt+i = rXt(1 — Xt)

where r is known as the non-linearity parameter, and represents a growth rate related

to food supply, fertility, etc. This is proposed to describe a population growing in a

constrained environment. In 1968, the behaviour of this system was described as mod-

elling populations that remain constant or fluctuate "with rather regular periodicity"

(Maynard-Smith, 1968).
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However, in the following decade, new light was to be shed on this and other

non-linear systems, and by using computer methods a new world of complexity was

unearthed. May (1976) studied the dynamics of the logistic system, and discovered an

amazing variety of possible evolutions as the parameter, r, was varied. By performing

repeated iterations at a multitude of different parameter values, the points to which

the system settled could be plotted against the value of the non-linearity parameter,

r. When the parameter was low, the population became extinct. As the parameter

was increased, the level of the population stabilised to a single equilibrium, the value of

which increased with the parameter. Under such conditions, the system is said to have

a stable fixed point. At a specific parameter value, the equilibrium split in two, and

the population began to alternate between two levels. As the parameter was increased

further, each equilibrium level split again, producing a stable population which cycled

between four levels, then eight, then sixteen, and so on. This phenomenon is known

as period doubling, or bifurcation. Mathematical conditions for the stability of such

cycles have been derived, and rely upon the application of the Fixed Point Theorem.

The plot of the behaviour of the system is termed a bifurcation map, and observation

of this showed areas where the system attained no periodic equilibrium. These were

areas of chaotic behaviour.

The implications of chaos existing in such simple biological models are immense. If

all the laws that govern a system are known, then an exact model can be constructed.

But, even if an exact model is produced, the initial conditions of the system must also

be known exactly. In nature, such parameters can only be estimated to within a certain

order of accuracy. A small difference in initial conditions can cause a huge difference in

the resulting model predictions which throws into question the usefulness of such mod-

els. On the other hand, these models offer the prospect of explaining the behaviour of

systems that appear to be totally random and unpredictable, as evidence now suggests

that such behaviour can be produced by models with very simple structures.

In this chapter, three models describing the growth and interactions between

species are explored. These models are constructed with specific parasitic systems

in mind, although are general enough to be applied to a range of biological systems.

The models are represented in the form of network models, as introduced by Lewis

(1976), and are analysed using the properties of difference equations, and by computer

simulation.
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2.2 SINGLE SPECIES MODEL

The protozoan parasite Ent amoeba histolytica is a serious pathogen producing dysen-

tery in man and some animals. The parasite occurs on a global scale, although is more

prevalent in tropical and subtropical regions. Within the vertebrate host, the organism

colonises the small and large intestines where it multiplies by binary fission. Parasites

spread from animal to animal via a cystic form which is passed in faeces. The growth

of the species within a single host is constrained by the capacity of the host to maintain

the parasite. The maximum parasite burden, or carrying capacity, of a host will be

dependent on parameters such as intestinal size, food intake and the level of the hosts

immune response.

Ostertagiasis, haemonchosis and nematodiris are some of the important diseases

which are typical of the many nematode worms which infect sheep and cattle producing

parasitic gastroenteritis. Adult worms, located in the abomasum of the host, produce

eggs daily which are passed onto pasture in faeces. Eggs hatch and develop into an in-

fective L3 larval stage. Ingested L3 larvae develop through a number of stages into adult

worms within a number of weeks. The parasite life cycle can be simplified by ignoring

the stages spent by the parasite in free existence. Simplistically, adult worms give rise

to a daily number of ingested L3 larvae, which may develop into adult worms. The

number of worms parasitising any member of the host population will be constrained

by the maximum worm burden attainable by the host.

A simple model to describe the dynamics of a parasite population such as E.

histolytica existing within a single host, or nematodes within a constant and uniform

herd or flock can be simply constructed.

2.2.1 Model description

The growth of a species, A, is restricted by the carrying capacity of its environment.

The population can never contain more than K members. This represents a maximum

parasite burden. On each cycle only a proportion, R(n) , of the total population, A(n) ,

is able to successfully reproduce. This proportion is the reproductive potential at the

nth cycle and is given by:

K — A(n) 
R(n) = K

which becomes smaller as the population becomes more dense.

When a member of the species reproduces, this gives rise to f progeny. If repro-

- 13 —



L®
KEY

duction is asexual then f = 1+ b, where b is the number of offspring from one parent.

If reproduction is sexual, then the model is confined to the female population only.

The male population can then be assumed to be of a size proportional to the size of

the female population having taken the ratio of sexes into account. Each member of

the population has a probability p of surviving to the next cycle. The life cycle can be

represented in network form as shown in Figure 1.

A(0)

I • fecundity	 p • survival	 n • time

R(n) • reproductive potential A(n) • population size

Figure 1.	 Network representation of the parasite life cycle.

In this network a square box refers to a time delay, a circle containing a parameter

indicates multiplication and a circle containing a + sign is an accumulator. At first

the population contains A(0) members. From these, a proportion R(0) reproduce to

give f R(0)A(0) individuals; the remainder do not reproduce. Combining reproducing

and non-reproducing members gives the population size after reproduction, and should

only a proportion p survive to commence the next cycle, then

A(1) = p[f R(0)-1- 1— R(0)]A(0)

The general system is given by:

A(0) = constant

A(n) = p[f R(n — 1) + 1 — R(n — 1)]A(n — 1),	 n = 1, 2, 3
	 (1)

A(0)
A(1)
A(2)
A(3)

A(n)

- -0— accumulator

-111- time delay

—0-- multiplier



2.2.2 Analysis and results

The difference equations (1) can be expressed in terms of the population size for each

cycle to give:

A(0) = constant

A(n) = fpA(n— 1) — — 1--i.---(f — 1)PA(n — 1)2, 	 n =1,2,3...
	 (2)

If the system approaches a single equilibrium point, L, then setting A(n)-...- A(n- 1) =

...= L gives L = G(L) where

(I —1)pL2 G(L) = fpL
K

The values of L satisfying this equation are known as the fixed points.

described by (2) have fixed points, L, at:

L = 0,	 and	 L = K(1 — Pf) 
P(1— 1) •

A fixed point, L, of the system A(n) = G(A(n — 1)), is described as stable

or attractive if, for values A(n — 1) close to L, the resulting sequence of values

A(n),A(n+ 1), ... tend towards L. Conversely, if the fixed point is unstable or re-

pulsive then a value of A(n — 1) close to L results in A(n) being pushed away from

the fixed point.

When fp is small, fp < 1, the population A becomes extinct. The speed of

extinction is increasing with smaller fp. However, species with higher survival rates
K(1-pf) or fecundities, 1 < fp < 3, will attain an equilibrium at a stable limit L =
P( 1 —.f) •

These results follow from the Fixed Point Theorem which states that if G(L) is

differentiable in a neighbourhood of a fixed point, L, then if GU) evaluated at the

fixed point is less than one in absolute value the fixed point is stable. Otherwise the

fixed point is unstable. This is a special case of the Principle of the contraction mapping

(Goult et al., 1973).

For fp > 3, the two fixed points are both unstable. Thus, for species that are

prolific, fp > 3, no single equilibrium level can be attained, the behaviour exhibited

depending on the values of f and p. Two-cycles can be attained when the two non-

zero fixed points of the system A(n -I- 1) = G(G(A(n — 1))) become stable. The

mathematical criterion for this being established by application of the Fixed Point

Theorem. Similarly, four-cycles are achieved when the four fixed points of the system

A(n+ 3) = G4 (A(n — 1)) become stable, and so on.

Equations
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Letting a = fp, and b= (f 7(1)P , the system A(n) = aA(n — 1) — bA(n— 1)2 can

be represented as a mapping ax — bx2 y, followed by a mapping y x. The

fixed points occur at the intersection of the curve y = ax — bz 2 with the line y = z.

2a.	 2b.	 2c.

Figure 2.	 Fixed points of the system A(n) = aA(n — 1) — bA(n — 1)2

When the height of the parabola is less than the carrying capacity K then:

3< fp < 2 + 2(1 —p)1/2.

This is illustrated in (a) of figure 2.

The behaviour of the system within this range has been discussed by May (1976),

and can take the form of stable cycles between 2, 4, 8 or more limits, or chaotic

behaviour where no period can be established.

When the height of the parabola exceeds K, but the non-zero fixed point is less

than K, as illustrated in (b) of figure 2, then:

fp > Max{3, 2 -F 2(1 — p)1/2 },	 and	 p< 1.

The parabola appears truncated because if the population A(n) ever exceeds the car-

rying capacity K, then a number A(n)— K is removed as there are not the resources

to accommodate them.

The presence of the carrying capacity K in the model has a stabilising effect on

the behaviour observed. In this case, the behaviour exhibited by the system becomes

increasingly more stable with larger values of fp, and eventually stabilises into a cycle

between two limits, K and Kp, when fp is large enough.

When the height of the parabola reaches K, the value of fp reaches a critical

value, given by C = 2 + 2(1 — p) 1/2 . If the survival probability is high, p > 0.75, then

this critical value is less than 3 meaning that the parabola reaches a height of at least

K before the non-zero fixed point becomes unstable. In this case the population will

cycle between K and Kp. The smaller the survival probability p, the larger the critical
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Values of the system

50 -

40 -

30 -

20 -

10'

0

2.5

60

53.53 4
fp

4.5 5.5

value C becomes, and so the more complex behaviour the system can exhibit. This is

illustrated by comparison of Figure 3a with Figure 3b. Figure 3a shows a bifurcation

map for a system with carrying capacity K = 50, and survival probability p = 0.3.

Figure 3b shows a similar bifurcation map for a system with carrying capacity K = 50,

and survival probability p = 0.4. In each case, the value of fp is increased by altering

the fecundity f.

Values of the system

	

25	 3	 3.5	 4
	

4.5
	

5
	

5.5
fp

	

Figure 3a.	 Behaviour of the system under increasing f when K = 50 and p = 0.3

Figure 3b.	 Behaviour of the system under increasing f when K = 50 and p = 0.4
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The single line at the start of each bifurcation map refers to the single limit that

would be obtained if fp < 3. More than one point at a value of fp indicates a cycling

between points, and a scatter of points could refer to chaotic behaviour.

In Figure 3a where p = 0.3, the critical point C = 2 + 2(1 — p)1/2 is given by C

equal to 3.67. Values of fp lower than 3.67 permit the system to attain stable cycles

between 2, 4, 8 and higher numbers of points. In particular, a cycle between two points

occurs at fp = 3.3, and a cycle between four points at fp = 3.5. A cycle between 4

limits is shown in Figure 4. Chaotic behaviour appears to occur at fp = 3.66.

A(n)

50

26

o
0	 2	 4	 6	 8	 10	 12	 14	 16	 18	 20

n

Figure 4.	 A stable cycle between 4 limits for fp = 3.5.

However, for p = 0.4 in Figure 3b, the critical point occurs at C equal to 3.55,

meaning that much of the more complex behaviour is avoided.

Finally, figure 2(c) illustrates the situation in which the height of the parabola and

the non-zero fixed point both exceed K. The conditions are:

fp > 3 , and	 p = 1,

and a single equilibrium level at K is attained.

Species with a very high fecundity, f, usually have a correspondingly low survival

probability, p. For example, nematode worms produce a very high number of eggs, but

few of them survive to reproduce as adults. High f and low p means that the critical

value of C = 2 + 2(1 — p)1/2 is dose to 4. This means that nearly all of the complex

behaviour described by May (1976) can occur, all except extinction by catastrophe

which requires critical values of 4. Clearly, having an environmental carrying capacity

has a beneficial effect to a species, as however prolific the population is, it is unable to

fatally destroy itself through catastrophe.
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On the other hand, species with a low reproductive rate and high survival rate,

such as E. histolytica, are likely to exhibit little complex behaviour, and attain stable

cycles between a small number of limits for most values of fp.

Increasing the survival chances of a species by making the environment more

favourable, has the effect of making the population more stable and therefore more

predictable.

2.3 TWO SPECIES COMMENSALISM MODEL

Glossina, or tsetse flies, are important blood sucking flies which transmit several species

of trypanosomes which cause fatal diseases in man and animals. The habitat of tsetse

flies is confined to the subtropical and tropical areas of Africa. Female tsetse flies

produce a single larva at a time. The larva develops in the uterus of the female, and

when eventually deposited, submerges itself in the soil and develops into a pupa. Pupae

develop into adult ffies. Adult ffies rely on regular blood meals from their hosts. Some

species of host are more suitable than others, and the prevalence of flies is dependent

on the number and suitability of their hosts (Soulsby, 1982). G. palpalis feeds mainly

on humans, which maintain a relatively constant and static population. G. morsitans,

however, is dependent mainly on big game and cattle, the density of which can be

strongly affected by migration and disease. In the Transvaal, the fly disappeared when

the big game were devastated by serious outbreaks of rinderpest (Soulsby, 1982). Such

observations indicate the existence of a maximum challenge level per host, producing

a constraint on the fly population.

Maxima to the burden levels of Ixodid ticks on cattle have been observed (Yeoman,

1966). Beyond a threshold challenge level, the responses of the hosts immune system to

ticks feeding, and behavioural changes due to tick irritation and distress are responsible

for limiting the numbers of ticks that may remain attached to a host.

A population of tsetse flies or ticks is dearly dependent on the size and state of

the host population. Ignoring the possibility of the insects acting as disease vectors,

the host population can be assumed unaffected by the size of the insect population.

2.3.1 Model description

The commensalism model describes a system consisting of two species, A and B.

Species B is dependent on species A as species A provides the resources necessary for

the maintenance of species B. It is assumed that species B does not affect the success

of species A, and so the equations describing species A are identical to equations (1)
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KB(l— fBpB)
LB= 0, and LB — lim{A(n)}.

PB( 1 fB)

of the single species model:

A(0) = constant

A(n) = PAVARA(n— 1)+1— RA (n —1)1A(n — 1),	 n = 1,2,3...

PA is the survival probability, fit is the fecundity, RA(n) 
= KA-A(n) 
 K-Awhere,

(3)

is the

reproductive potential, and KA is the carrying capacity for species A.

The network describing the dynamics of species B is of the same form as that

presented earlier in Figure 1. The carrying capacity for species B is dependent on

the size of population A. If one member of population A can support at most KB

individuals of species B, then the carrying capacity for species B on the nth cycle is

given by KB (n)= K B A(n). The reproductive potential RB (n) is therefore given by:

K BA(n) — B(n) 
KBA(n) •

The fecundity and survival probability of members of species B are fB and pB re-

spectively.

The difference equations describing the dependent population, B, are given by:

B(0) = constant	
(4)

B(n) = PB[iB RB(n— 1)+1— RB(n— 1)1/3(n —1),	 n= 1,2,3...

2.3.2 Analysis and results

The system of equations (3) describing the independent population, A, reduce to equa-

tions (2) as before:

A(0) = constant

(.fit — 1)PAA(n —1)2	 (5)
A(n) = lApA A(n — 1)	 n = 1,2,3...

KA

The equations (4) describing the dependent population, B, can be expressed in terms

of the population size at each cycle by:

B(0) = constant
(6)

B(n) 	 =1,2,3...n)	 CfB — 1)PB B(n —1)2 
= APBB(n— 1)	 K B A(n — 1)

The behaviour of population A is independent of population B and depends on the

value of fApA as described earlier. The fixed points of the system describing B are:

RB(n) —
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The fixed point LB equal to 0 is stable if fBPB < 1. The non-zero fixed point is

constant if A(n) reaches a limit as n tends to infinity, which occurs when 1 < fAPA <

3, and is stable if 1 < fspa < 3. Thus the overall behaviour of population B can be

deduced from the behaviour of population A, and the earlier results:

If species A becomes extinct, fApA < 1, then species B is forced into extinction,

as both fixed points, LB, are zero and stable.

However, if species A attains a single equilibrium, 1 < fAPA 3, then the

dynamics of population B will depend on fBpB . For low values, fBpB < 1, population

B will become extinct, for higher values, 1 < fBpB < 3, population B will coexist in

equilibrium with species A, the equilibrium level being:

KB(1— pBfB) r
LB LI=	 LA,

PB( 1— fB)

where LA is the equilibrium level of population A. An example of such an outcome is

shown in Figure 5.

A(n)	 B(n) 
150	 1500

...... .

-60060 -

Hoot (A)	 Parasite (B)

0

6	 10	 16	 20	 25	 30

n

Figure 5.	 Parasite and host populations coexisting at equilibrium.

For hpB still higher, APB > 3, population B coexists with species A but attains

no unique equilibrium level; the behaviour exhibited depending on the value of fB and

PB• As earlier, a high survival rate, pB > 0.75, causes the population to cycle between

the two limits KB LA and KB LAPB, or exist at equilibrium at KB LA if the survival

rate is 1. A lower survival rate, pB < 0.75, causes the behavioural properties of the

system to be more complex for lower values of pB , when fBpB is below the critical

value CB = 2 + 2(1 _ pB)1/2. For fBpB above this critical value, population B will

cycle between a small number of limits, just two limits, KB LA and KB LAPB, if isPB

is very large.
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If species A has high fecundity and survival, fApA> 3, then species B will either

become extinct when fBpB < 1, or will coexist with species A when fBpB > 1. In

this case population B cannot attain a single equilibrium level as the non-zero fixed

point:
KB(1— fBPB)

LB =
Pfi( l — JB)

lim {44(n)},
n—poo

is not unique, because the system A(n) does not have a unique limit as n tends

to infinity. An example of this case is shown in Figure 6, where fApA > 3 and fBPB

lies between 1 and 3.

A(n)
	

B(n) (Thousands)

n

Figure 6.	 Parasite and host populations coexisting not at a single equilibrium.

It is apparent that the behaviour of the host population affects the stability of the

parasite population. For example, tsetse flies feeding on stable host populations, such

as G. palpalis feeding on humans, will exhibit behaviour that appears independent of

the host. Tsetse flies have a low reproductive rate and high survival, and so G. palpalis

are likely to maintain a very stable population. However, a population of G. mortisans

tsetse flies will be controlled by the large seasonal changes in the density of big game.

One question when dealing with such a parasite or vector systems is how to control,

or remove, the parasite population. This model assumes that species B has no serious

effect on species A, that species A can maintain species B without causing its fecundity

or survival probability to be reduced. Generally, parasites do have a debilitating effect

on their host, but not one that would cause death of the host. Normally the effect of

a parasite would be to deteriorate the health of its host and lead to production losses.

Thus control is an important issue. The four methods of controlling the size of the

parasite population, B, are to reduce the host population, A, the parasite fecundity

fB , the parasite survival rate pB and the carrying capacity per host, KB.
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On pasture, ticks questing for a host remain in very close proximity to the place

where they were deposited. Therefore, increasing the grazing area of the host popula-

tion will have the effect of reducing host density by decreasing the number of potential

hosts available to a questing tick, A(n) . A decrease in host density also decreases pB .

Traps employed to distract and kill tsetse flies before they attack potential hosts

have a similar effect in reducing pB .

KB, the carrying capacity per host, and pB , can be reduced by drug use which

make the environment more hostile to the parasite. Ear tags impregnated with araricide

can be attached to cattle which maintain a low concentration of the chemical over the

area most vulnerable to tick attack.

2.4 TWO SPECIES COMPETITION MODEL

It is a common observation that a host infected with one species of parasite may also

be infected with other strains of the same parasite, or with other species of parasite.

Malaria, caused by species of Plasmodium protozoa, often occurs as an infection of sev-

eral species of the parasite, particularly in the tropics where the disease is widespread

(Richie, 1988). In a study of field observations on human malaria, Richie (1988) no-

ticed that the number of mixed infections that were recorded was often fewer than

expected by chance, suggesting that one parasite has excluded another, or suppressed

its parasitaemia to undetectable levels. The suppression hypothesis was supported by

experimentation where laboratory animals were inoculated with 2 Plasmodium species;

many studies have shown that 1 or both species are suppressed. Richie (1988) suggests

that a possible cause for this may be competition for host cells or nutrients.

Competition between Plasmodium species in a host infected with two species, or

between two different nematode species parasitising the same host can be investigated

using a simple competition model of a similar form to those described earlier.

2.4.1 Model description

Two species, A and B, are in direct competition for resources. The reproduction

success of each species is reduced by the presence of the other species. The reproductive

potential for each species is given by:

A(n) B(n) =
lis(n) .RA (n) = 1 — — _

KA	 ii B

In the absence of species B, the reproductive potential for species A is that of

a single species. Species have associated with them carrying capacities, KA and Kg,
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(9)

survival probabilities, P A and pB , and fecundities, fA and fB , for species A and

species B respectively. The carrying capacities reflect the total number of a species

the environment can sustain, in the absence of the other species.

The network representation of each species is similar to that presented earlier in

Figure 1.

Difference equations describing the two populations are given by:

A(0) = constant

A(n)= PAVA RA(n — 1) + 1 — RA (n — 1)[A(n — 1), n = 1,2,3...

B(0) = constant

B(n)= pB[fB RB(n— 1)-1- 1— RB(n-1)]B(n— 1), n = 1,2,3...

2.4.2 Analysis and results

The systems of equations (7) and (8) after substitution became:

A(0) = constant

A(n)= fApAA(n — 1) (IA —1)PA  A(n— 1)2
KA

(IA —1)PA A(n-1)B(n —1), n = 1, 2, 3 ...
KB

B(0) = constant

B(n) 	 — 1 )PB B(n _ 1)2
= fBpB B(n— 1)

KB	 (10)

— (fB —1)12B A(n-1)B(n — 1), n = 1,2,3...
KA

The fixed points to which the population may converge, VA and LI for species A and

B respectively, are given by:

KAVA= 0, Or PA = lim (A1 (n)} — —LB
n—...›3	 KB

KBLI = 0, Or LI = lim {k(n)} — —LsA
n—nco	 KA

where, At(n) are the sequence of population values for species A in the absence of

species B:

—_
Ai(n) = IAPA A1(n — 1) (fA 1 )PA Af(n 1)2 ,

KA

and B i (n) is the analogous system describing population B in the absence of A:

1 (n) = iBPB-Bi (n — 1) (f B —, 1)PB/3	 Bf(ri — 1)2.
.11B

(12)
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(1 — p1)

Denoting the limits as n tends to infinity of these two systems as LA and LB respec-

tively, then:

K A T*

L*A = 0, or L*A = LA
K

--LB
B

KB , *
4 = 0, Or 41 = L B — —, .1J A

it A

For A and B to coexist in equilibrium, LA and LB must be non-zero and constant.

That is, the systems for each population in the absence of the other must attain a

constant non-zero limit. The condition for this is, as determined earlier:

1< fAPA,fBps < 3.

Given LA and LB are constant, equations (13) yield L*A and L*B both non-zero.

Species A and B can coexist if:

(1 — pA)
,, = 1	

(1 — pB) 
1

PA(fA —1 )	 PB(Is — 1)•

Letting the fitness of a population I be:

OM =1
Mil —1)

as a measure in [0,1] representing how well adapted a species is to the environment

it is placed into; where (1 — p /) is the probability of death, pi is the probability of

survival and (h — 1) is the number of new offspring per reproductive act.

Hence coexistence of two species A and B can only occur if:

(a) fAPA> 1, and fBpB > 1 and (b) 4(A) = 4)(B). .

Moreover, two species can only coexist, both in equilibrium, if:

(a) 1 < fApA < 3, and 1 < /BpB < 3 and (b) 4)(A) = 95(B).

It can be shown that if 15(B) > 0(A) and both fApA and fBpB are greater than 1,

then species B will dominate and cause the eventual extinction of species A:

If 0(B) > 0(A) then:

(1— pa)	 (1 — pA)1 	 t ,	 ,, > 1 	 t ,	 ,,
Paws — .)	 PAkJA — .1-17

PB(fB —1 ) — ( 1— pa) PA(fA —1) — ( I- — PA) 

	

,	 >

	

PBCfB — 1 )	 PA(f A —1)

(fBPB —1 ) (fAPA — 1)

	

t c	 i‘ >	 t c	 1\
PBUB — 1 ) PAwt — .1-)'

(13)

(14)
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KB(1 — fBPB) K A(1 — f AP A) 

KBPB(1 - fB) A APAk i - !All
\ > ,.,	 fi	 iN

LB	 LA	
(15)

KB - KA•

Assuming that limn.,{B(n)} = 0 it follows that the fixed point LI equal to zero

is stable and the non-zero fixed point is negative. Using equations (13) this condition

can be expressed mathematically as:

KBLI = LB — 
KA 

VA < 0

which implies that:

LBB 
_„. KB r*

LI '',.. 
KA
	 (16)

If limn_..{B(n)} = 0, then L *A = LA and equation (16) becomes: LB � liZALLA-

This produces a contradiction, because the condition for 4)(B) > 4)(A) of equation

(15) states that LB > PA-LA. Thus the initial assumption that lim,{B(n)} = 0

is incorrect, proving that limn_..{B(n)} $ 0. Because species A and B are not of

equal fitness, and because species B does not become extinct, it follows that species A

becomes extinct.

Such an event is illustrated in Figure 7.

A(n)	 B(n) 
logo	 100

0	 6	 10	 16	 20
	

90
n

Figure 7.	 Species A is suppressed by the competition of species B.

When condition (14) is satisfied, the equations for non-zero L'A and L *B reduce to

a single equation providing an infinity of possible sets of limits .L:i and L. The values

of L *A and L73 obtained on each simulation are unique and depend on the choice of

starting conditions A(0) and B(0). It can easily be shown that increasing the starting
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value A(0) has the effect of increasing the resulting limit V:4 and reducing LI, as

might be expected:

Equations (9) and (10) describing the size of the two populations A and B at each

cycle can be expressed in the following simpler form:

A(n) = aA(n — 1) — bA(n —1) 2 — cA(n-1)B(n — 1)

B(n) = aB(n — 1) — I3B(n —1) 2 — 7A(n —1)B(n — 1)
	 (17)

Letting B(0) = A(0) + d it follows that:

A(1) = (a — cd)A(0)— (b + c)A(0)2

B(1) = (a + 7d)B(0)— (f3 +7)B(0)2
	 (18)

By increasing the value of A(0) by e and keeping B(0) constant such that B(0) =

A(0) + d — e it follows that:

A(1) = (a — cd)A(0)— (b + c)A(0)2 + ceA(0)

B(1) = (a + 7d)B(0)— (fi + 7)B(0) 2 — 7eB(0)
	 (19)

Comparison of equations (18) and (19) shows that an increase in A(0) results in an

increase in A(1) and a decrease in B(1). This argument can be continued inductively

to produce the required result.

The results can be summarised as follows:

If one species becomes eliminated, species A say, then the behaviour of the other

species, B, is as reported for the single species case.

If, however, neither population becomes extinct, 0(A) = (0(B), then either both

populations will achieve equilibrium, if 1 < f Ap A < 3 and 1 < fBPB < 3, the limits

depending on A(0) and B(0); or neither will coexist at a unique equilibrium level, if

at least one of fApA and fspB exceeds 3.

2.5 RULES FOR THE COEXISTENCE OF N COMPETING SPECIES

The two competing species model can be extended to N species competing for the same

resources. The results obtained are that for N species to coexist then the following

two conditions must be satisfied:

(a) Each species must be able to exist in the environment in the absence of the others.

I.e. fipi > 1, for I = 1,2,3, ... N,

(b) The species must be equally suited to the environment.
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I.e. W) = (I)(I + 1), for 1= 1,2, 3, ...N — 1.

2.6 CONCLUSIONS

Competing species often find environments in which they can happily coexist. It seems

that the criterion of equal fitness is rather too strict to occur very often. However,

in practice, the environment constantly undergoes small changes which will effect the

carrying capacities, survival rates and fecundities of the species contained in that envi-

ronment. Thus the fitness of a species will be constantly changing with the environment.

Competing species with close fitnesses can then coexist as their fitnesses will constantly

be becoming greater than and then less than each other. Thus, the species of greatest

fitness is given the opportunity to cause the extinction of the others, but due to further

changes in the environment, this opportunity is removed before too much damage to

any population is done. Only when an advantage can be maintained for any length of

time can a species become the victim of the competition of another. Serious environ-

mental changes are often attributable to man, who constantly manufactures the planet

into an environment most suitable to him, at the expense of the other occupants.

Final remarks

It is not satisfactory only to be able to predict which, out of a number of different

species, can exist together in a given environment. The above sections illustrate that it

is impossible to predict analytically the relative frequencies of species existing together,

even for the simple models discussed. These models are general models, and represent

enormous oversimplifications of the life cycles of specific parasites. If even such simple

sets of equations remain insoluble analytically, simulation appears to provide the most

rewarding method of analysis of these and more complex systems. In fact, if this is so,

then keeping models mathematically simple is a ridiculous concept. If equations cannot

be solved, then why keep them simple? Simulation is the way forward in providing

useful, practical and meaningful models of biological processes.



3. EAST COAST FEVER

"So, naturalists observe a flea

Hath smaller fleas that on him prey;

And these have smaller fleas to bite 'em,

And so proceed ad infinitum".

Jonathon Swift, On Poetry: A Rhapsody.

The models for parasite systems contained in the previous chapter, provide useful

insights into patterns of behaviour of populations under different hypotheses. To con-

struct a model of practical value for complex diseases such as East Coast fever, however,

it is important to gain a full understanding of the disease process.

3.1 EAST COAST FEVER

Development of agricultural production in Africa has attracted much international

interest and investment (Young et al., 1988), due to the problems caused by past

and present food shortages. The majority of people living in Africa are subsistence

farmers and, due to the lack of long term agricultural planning, periods of environmental

mishap, such as drought, can become major disasters. The holding of livestock, in

particular cattle, plays an important role in the subsistence way of life, and cattle have

become culturally accepted status symbols. Most farming families will hold only a

small number of cattle, and the loss of any one member of the herd is regarded of a

major financial blow. The development of the livestock industry represents one area

where aid is being directed. Disease places a large restraint on such development.

East Coast fever (ECF) has been described as the second most important African

cattle disease after trypanosomiasis (Morrison, et al., 1986). The disease is caused by

the protozoan parasite Theileria parva, which is transmitted to cattle by the three host

tick Rhipicephalus appendiculatus. The prevalence of ECF is normally restricted to

central and eastern Africa — regions where the cattle hosts, Bos taurus and Bos indicus,

the tick vector, and the parasite share the same geographical location. Figure 1 displays

the current geographical locations of R. appendiculatus and ECF (Lessard et al., 1990).
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Figure 1. The geographical location of R. appendiculatus and East Coast fever,

reproduced with permission of Lessard et al. (1990). The distribution of R. appen-

diculatus is based on observations and expert opinion. The distribution of East Coast

fever is based on the distribution of T. parva antibodies. It should be noted that the

distribution of antibodies to T. parva in southern Sudan was reported on the basis of

samples taken from within the administrative boundary, and it is unlikely that T. parva

antibodies are found throughout the province.

ECF is a major economic threat, putting at risk the lives of about 25 million cattle

in Burundi, Kenya, Malawi, Mozambique, Rwanda, Sudan, Tanzania, Uganda, Zaire,

Zambia, and Zimbabwe. The disease has been reported to be the cause of half a million

deaths in cattle per year in East Africa (Miller et al., 1977). In Kenya alone, it has

been estimated that 50 — 80% of the national cattle population (currently around 10

million animals) are exposed to the tick, and of these animals 1% die of ECF each year

(Dolan 1989). The real figures, however, may be considerably higher. Duffus (1976)

claimed that out of 115,000 heifer calves born in Kenya between 1974 and 1975, around

10 — 12% died before they reached a calving age. It should also be noted that these

figures take account of the use of tick control methods, without which the disease is
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likely to be even more devastating.

Economic losses due to ECF cannot be simply restricted to losses caused by mor-

tality. Losses in the productivity of recovering cattle, and the cost of disease control

must also be considered. The presence of ECF also limits the stock of cattle suitable

for an area. Higher yielding cattle stocks have been developed by crossing natural

stocks with imported European animals. This results in increased milk and liveweight

productivity, but also a reduction in natural resistance to local diseases. In areas where

ECF is endemic, even intensive tick control may not permit the introduction of such

fully susceptible stock (Morrison et al., 1986).

Figure 1 also illustrates that the tick occurs in many areas where the disease is

currently absent. As cattle can now be easily transported great distances, the threat

of introducing ECF to clean areas, via the importation of infected ticks or cattle, is of

great concern. Illegal cattle movements have been responsible for severe outbreaks of

the disease in the past (Irvin 1983, Dolan 1989).

Before examining the clinical features of the disease and present control strategies,

it is important to understand the life cycles of the vector and the parasite.

3.2 LIFE CYCLE OF THE TICK

Theiler (1904) identified the three host tick R. appendiculatus as the principle vector of

ECF in cattle. Since this discovery, the importance of the tick in transmitting a major

disease has stimulated tick communities to be studied in great detail, and the life cycle

of R. appendictzlatus is now well documented at certain geographical loci. This life

cycle is ilustrated in figure 2.

A number of weeks after being deposited, eggs (1) will normally hatch and release

larvae (2). The development of eggs before the emergence of larvae is known as the

pre-eclosion phase, and the length of time spent in this phase is controlled mainly by

temperature (Branagan, 1978). Larvae (2) will initially remain in the vegetation for a

number of days whilst the cuticle hardens. Once this is completed, they periodically

climb up and down the grasses and scrub, in search of a suitable host (3). This process

is known as questing, and ticks can survive unfed in this stage for many days. Questing

ticks only move very small lateral distances from where they develop, and so larval

ticks are observed in very large clusters close to the area where an egg mass was laid.

When a passing animal comes within range, the questing larvae are able to attach

(4). It is believed that ticks can sense the presence of a host by being able to detect
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exhaled carbon dioxide (Norval, unpublished). Once attached, the larva makes its way

to the head of the animal to feed (4). Here it will spend a few days extracting a blood

meal before dropping back to the vegetation (5) to moult into the nymphal form (6).

Nymphal ticks repeat the cycle, eventually moulting into adult ticks (7) — (10).

Figure 2.	 Stages in the life cycle of R. app endiculatus.

The activity of questing adult ticks is dependent on satisfactory conditions of

temperature, rainfall and daylength (Short and Norval, 1981). Periods of inactivity in

adult ticks are believed to induce the seasonality observed in many tick populations.

When questing adult ticks (11) succeed in finding a host (12), they engorge for a few

days whilst completing their sexual development. Males then seek receptive female

ticks to mate with, and may mate with several females before dropping from the host

and dying (13). After mating, females continue to engorge — increasing in weight up

to a hundred times. The final weight of the engorged female having a bearing on the

— 32 —



number of eggs it will eventually produce. The engorged female then returns to the

vegetation (13) and goes through pre-oviposition, a developmental period when the

eggs are produced. Sperm from the male ticks that was stored during mating fertilises

the eggs as they are being laid. Eggs are sensitive to desiccation, and so female ticks

will normally seek a sheltered, humid place in which to deposit the egg mass (14). This

will often be at the base of a grass stalk. Typically, the number of eggs laid per female

may be between 4000 and 6000, after which the female dies.

R. appendiculatus is described as a three host tick as it requires three blood meals

for successful completion of its life cycle. Usually each meal will be from a different

host. The length of the complete life cycle is influenced by various climatic factors, and

in a year up to two generations of ticks can be observed (Short and Norval, 1981).

3.3 LIFE CYCLE OF THE PARASITE

The parasite, Theileria parva, is maintained in cattle and ticks by a simple host—vector

relationship. Ticks contract the infection whilst feeding on cattle infected with the

parasite. Infected ticks transmit the infection whilst feeding on uninfected cattle. The

parasite is unable to be transmitted through the egg stage of the tick life cycle. Hence,

it is only the nymphal and adult tick stages that can transmit T. parva to cattle, having

received the infection whilst feeding as larvae and nymphae respectively. ECF cannot

be naturally passed between cattle without the intervention of the tick vector.

Development of the parasite is well documented, at least qualitatively. Figure 3

shows in detail the life cycle of T. parva in the tick and vertebrate hosts, based on

the accounts given by Cowdry and Ham (1932) and, more recently, by Mehlhorn and

Schein (1984), and Fawcett et al. (1985).

The first stage (1) commences at the point of transmission of the parasite from the

cow to the tick, when the tick feeds and ingests erythrocytes containing the parasite

in piroplasmic form. The piroplasms are released into the gut of the tick (2) and

transform into male and female gametes (3a, 3b). The gametes fuse and penetrate the

gut epithelial cells to give rise to zygotes (4) which grow into ookinetes (5).

Weeks later, when the tick moults from larva to nymph or nymph to adult, the

ookinetes are released from the gut cells into the haemolymph (6), and migrate to

the tick salivary glands. The tick is now questing, and the parasite can survive many

months whilst the tick remains unfed. A number of acini in the salivary glands may each

become infected by a single ookinete when the tick commences feeding (7). Thereafter,
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the ookinete differentiates into a multinucleated mass known as a sporoblast (8) which

eventually produces numerous sporozoites (9).

On about the fourth day of feeding, the parasitised acini cells rupture, releasing

the infective sporozoites into the saliva of the tick (10). The tick becomes clean of the

parasite, and cannot transmit ECF to another animal without first ingesting a further

dose of parasitised erythrocytes. The length of time a tick is attached to its host does

not permit it to induce an ECF infection rapid enough to reinfect itself.

During the blood meal, the sporozoites drain into the lymphatic system of the cow,

where they rapidly penetrate the lymphoid cells (11). The sporozoites differentiate into

schizonts (12), sometimes referred to as macroschizonts, which induce lymphoid cell

division. At this stage the first signs of the disease become apparent in the animal.

Around thirteen days after infection, the schizonts produce merozoites (13) which

enter the bloodstream and penetrate the erythrocytes to form piroplasms (14-16).

These piroplasms may now infect other feeding ticks, and so the life cycle is maintained.
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1. Parasite transmission to and from tick and animal.
2. Piroplasms released in gut of tick.	 3a,b. Male and female microgametes.
4. Zygote within gut epithelial cells.	 5. Developing ookinete.
6. Ookinete released into the haemolymph.
7. Infected acinus cell.
8. Developing sporoblast within an infected acinus cell.
9. Sporoblast produces sporozoites.
10. Sporozoites are released into the tick saliva.
11. Infected lymphocyte. 	 12. Schizont.
13. Schizont producing merozoites. 	 14. Piroplasm dividing within a red cell.
15. Free piroplasm.	 16. Piroplasm infected red cell.

Figure 3.	 Stages in the life cycle of T. parva.
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3.4 CLINICAL FEATURES OF THE DISEASE

Having penetrated the lymphoid cells of the vertebrate host, the parasite initiates these

cells to divide, and rapidly engulfs the lymphatic system. Initially animals display a

lack of appetite and are dull and listless. Their bodily condition and milk production

deteriorates as the parasite infects more and more of the white blood cells. As the

preferred sites of tick feeding are the ears and head of cattle, infection is normally

first noticed by the swelling of the parotid lymph nodes (Irvin, 1983). These lymph

nodes drain the site of the initial sporozoite entry just below the ears. As the infection

spreads, all lymph nodes become painfully swollen and hot. Body temperature rises

above the normal level, and can approach temperatures in excess of 42°C (Irvin, 1983).

A febrile response of at least 39.5°C is normally reached around ten to fourteen days

after infection. The precise timing of this being dependent on the level of schizont

parasitisation (Jarrett, 1969).

As the disease progresses, the bodily condition of the animal deteriorates greatly,

and animals become reluctant or unable to move. Thirteen days after infection, piro-

plasms begin to appear in the red blood cells. Animals become anaemic due to ery-

throcyte destruction.

The terminal stages of the disease are anaemia and severe respiratory distress.

Animals receiving fatal doses will normally die within four weeks of contracting the

disease. In those animals that recover, schizonts will normally disappear eighteen days

after the initial infection. However, it is unclear as to the persistence of piroplasms in the

blood stream of recovered cattle. One school of thought is that piroplasms eventually

disappear and the animal ceases to be infective to feeding ticks (Purnell, 1977). Others

believe that the parasite levels in the blood of recovered animals persist indefinitely,

waxing and waning, producing an infectious carrier state (Dolan, unpublished).

There is general agreement that, on recovery, the animal will become immune to

challenge with homologous strains of the T. parva parasite (Irvin, 1983). The animal,

however, may not be at all resistant to challenge with an unrelated parasite strain. As

strains vary between geographical locations, animal stocks that are considered immune

to ECF may suffer great losses when transported to other areas.



3.5 DISEASE CONTROL

Due to the devastation caused by ECF in the past, disease control has become a priority

issue. Many counties make it illegal for farmers not to adhere to their recommended

disease control strategies, as the disease is regarded as a national problem.

Disease control strategies can be divided into two groups: those that control the

level of parasite infection by employing various methods of tick control and herd man-

agement, or those that attack the parasite, or influence the host response to the parasite.

3.5.1 Tick control and herd management

Tick control strategies are employed in many developing countries, as most of these

countries are faced with a multitude of different species of ticks which transmit vari-

ous tick-borne diseases. Tick control can therefore be used not only to restrict ECF

outbreaks, but also to control other major tick-borne diseases such as anaplasmosis,

babesiosis and heartwater.

Many countries use acaricidal dips to remove attached ticks from cattle. Acaricides,

however, are expensive, and intensive dipping strategies are difficult to sustain. In

Kenya the annual budget for acaricidal dipping in 1987 was US$ 6-10 million, and in

Zimbabwe the national dipping strategy had to be cut from weekly dips to fortnightly

dips due to the costs (Tatchell, 1987).

Dipping cattle has been seen to be of some use in controlling ECF, but does not

represent long term control. Tick populations can rarely be eradicated because ticks

make use of wild hosts, often buffalo, as well as attaching to domestic hosts. Also,

due to new selection pressures, tick populations will eventually become resistant to the

acaricide used. The onset of resistance is often speeded up by farmers failing to use

the recommended strength of dip solution. Due to the expense of acariddes, using

sub-strength dip is an attractive proposition, and has become fairly widespread. Some

farmers prefer to use spray races rather than dips to administer acaridde. These appear

more conservative on dip solution, as well as being less stressful for cattle.

An alternative to dipping is to use eartags impregnated with acaricide to control

ear ticks such as R. appendiculatus. These have the advantage of being very easy

to administer, unlike the labour intensive dipping strategies. However, they must be

treated with some caution as the speed at which ticks become resistant to the acazidde

may well be increased. In flies that transmit disease to animals there has been some

evidence for the development of resistance by this method in the USA (Young et al.,
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1988).

Simple management strategies can be used to help control disease. For example,

by providing tick proof quarantine quarters for infected cattle, the transmission of the

parasite from cow to tick can be controlled. As tick populations are relatively static,

the level of T. parva infection in a local population can be much reduced. Similar

effects can be attained by intelligent management of grazing areas.

Cattle have been seen to have a variable resistance to ticks. Ticks feed more

successfully on certain cattle, and tick burdens between members of the same herd can

vary substantially. The tick resistant trait is increasingly being seen as important in

cattle stock breeding programs, as the tick resistant cattle are less likely to be affected

by tick- borne disease.

Finally, work is underway in developing a tick vaccine that can be given to cattle

to kill attached ticks. By isolation of various tick antigens from saliva or the midgut,

it may be possible to find the specific antigen that produces an immune response in

cattle, and thus use this as the basis of a vaccine. This method has recently proved

successful in the development of a vaccine for the Boophilus microplus tick in Australia.

3.5.2 Parasite control

Theiler demonstrated that cattle could be immunized using splenic and lymphoid cells

obtained from ECF cases. Between 1911 and 1914 238,000 cattle in South Africa were

immunized by this method. Laboratory tests showed that the immunization procedure

proved fatal to 25% of cattle, but out of those that survived, 60% were apparently

immune to ECF (Dolan, 1989).

Experiments have been done on the exact dose of schizonts required to success-

fully immunize cattle, but the results were often very unpredictable.. Due to this, and

problems of being unable to store living schizonts for any length of time, this method

was abandoned.

Immunization of cattle can also be achieved by artificial infections of tick sporo-

zoites from titrated R. appendiculatus ticks, followed by drug treatment. This method

is known as "infect and treat". It has the advantage that sporozoite suspensions are

able to be cryopreserved, making the method much more practical. Due to differences

between strains of parasites, a combination of isolates (known as a cocktail) is recom-

mended — such as the "Muguga cocktail" comprised of Theileria parva parva (Muguga),

T. p. parva (Kiambu 5), and T. p. lawrencei (Serengeti). Two approaches are possible.
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A global cocktail, such as the Muguga cocktail, can be used, or local parasite strains

can be isolated and used to produce a local cocktail. A local cocktail has the advantage

of being site specific. Cocktails, however, may not always protect against challenge

in the field. "Breakthrough" may occur, when an animal immunized against certain

strains encounters a different strain. In this event, cattle must be immunised against

this other strain by isolating it and adding it to future cocktails.

Cattle that have the disease can also be treated using chemotherapy. Three main

antitheilerial compounds are available on the market: Halofuginone, taken orally with

water, and Parvaquone (Clexon, Welcome) and Buparvaquone (Butalex, Coopers) ad-

ministered by intramuscular injection. Each drug is expensive to use. The mode of

action of the drug is usually towards attacking the schizont form of the parasite. The

drug destroys parasitised lymphocytes, causing the schizonts to be released. These

schizonts are vulnerable and degenerate (Mehlhorn and Schein, 1984). Unparasitised

lymphocytes remain intact. These drugs consequently have an effect of the piropla,sm

levels in the bloodstream of infected cattle, which affects the transmission of the par-

asite to the tick. A major problem with chemotherapy is that the success of a drug

relies upon diagnosis of the disease in its early stages.

A schizont vaccine is an area where current research interests are being directed.

Such a vaccine could lead to fast and effective disease control. The parasite itself is

never likely to be eradicated by such a method, due to the large pool of wild host, many

of which are carriers of certain strains. However, the impact of the disease on treated

cattle could be significantly reduced. The goal of a schizont vaccine is well founded, as

prevention of the disease is regarded as being better than cure.



4. MODELS BASED ON EXPERT RULES FOR PARASITE

BEHAVIOUR

"All nature is but art unknown to thee;

All chance, direction which thou canst not see;

All discord, harmony not understood;

All partial evil, universal good;

And, spite of pride, in erring reason's spite;

One truth is clear, `whatever IS, is RIGHT'"

Alexander Pope, Essay on Man.

Construction of a mathematical model requires an intimate knowledge of the biology

of the processes being studied. In this modelling approach, expert rules were extracted

from published findings and data, or taken from expert opinion, and were translated

into a programming language for implementation. This is not dissimilar to the approach

of expert systems, where knowledge is stored in a rulebase and conclusions made by

chaining through the subset of rules relevant to a particular query. An expert system, in

fact, has the advantage that knowledge stored in the rulebase remains in an intelligable

form where it can easily be editted to consider the consequences of different hypotheses

or opinions. A simple expert system model for T. parva was created using Expertech's

XiPlus package (Gettinby and Byrom, 1989), but this approach was abandoned as

present technology provides only a very limited facility for incorporation of mathemat-

ical structures. Future expert systems that can interface qualitative and quantitative

knowledge will provide a powerful modelling tool. This chapter illustrates the role of

classical modelling in constructing a quantitative model using expert rules extracted

from literature on the dynamics of ECF infections. The problem of disease control is

briefly considered by investigating a number of simple disease control strategies.



4.1 QUANTITATIVE STUDIES ON THE LIFE CYCLE

The life cycle of the parasite T. parva was described in detail in the previous chapter.

Along with much qualitative information, numerous studies report data concerning the

development of the parasite. The question arises, how best can knowledge be integrated

to increase understanding, and to determine viable methods of controlling T. parva in

areas where the disease is prevalent?

Many studies that report data on the life cycle of T. parva have dealt with the

effect of drugs and immunization techniques on particular stages of the life cycle. Con-

sequently, the data are not directly useful. However, some papers have specifically

addressed the issue of the development of the parasite in the animal and tick, provid-

ing suitable data for a numerical study of the life cycle of the ECF parasite. (It may

be useful to refer to the life cycle diagram in chapter 3 whilst reading this section).

In 1969, Jarrett et al. carried out a detailed study of the kinetics of replication

of T. parva in high-grade cattle. Cattle were challenged with groups of 10, 100 and

1000 ticks. The ticks were infected with a well defined strain of T. parva known as

Muguga. Daily observations on blood samples taken from the animals enabled the size

of the schizont and piroplasm populations to be estimated. The schizont count was

expressed as the macroschizont index (MSI), which is the number of schizonts per 100

lymph cells examined. From these findings, important deductions were possible: the

growth rate of schizonts was tenfold every 3 days and independent of the tick challenge;

each infected cell from a tick transmitted 5 x 10 4 infective particles; the day of fever

occurred when the number of schizonts reached 7 x 10 9 and did not depend on the

tick challenge; piroplasm counts did not increase after the MSI reached 100%; and

piroplasms appeared at the same time irrespective of tick challenge.

A similar study in cattle was reported in 1974 by Radley et al., but instead of nat-

ural challenge using ticks, cattle were infected with suspensions of T. parva sporozoites.

These suspensions were produced by grinding together the salivary glands from a batch

of infected ticks. The infective doses received by cattle can be more accurately quanti-

fied using this method of infection. From the results it was conduded that the growth

rate of schizonts, the time to fever, the length of prepatent period and the survival time

of cattle were dependent on the size of the infective dose of sporozoites transmitted in

the saliva of the tick, whereas time to piroplasm production did not depend on this.

The finding that the growth rate of schizonts was dose-dependent was at variance with

that of Jarrett et al. (1969), and suggested that immunization could be enhanced by
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using a low dose of sporozoites to produce a slowly developing infection.

More recently, Dolan et al. (1984) found experimental relationships between the

size of an infective sporozoite dose and time to appearance of schizonts, time to febrile

response, time to death, probability of death, and time to production of piroplasms.

The findings also indicated that time to recovery was not dependent on sporozoite

challenge. The day of recovery was defined as being the last day on which schizonts

could be detected in the host. Also, Morrison et al. (1986) stated that the prepatent

period of the infection ends when the MSI reaches 0.05%.

The above findings essentially span the development stages of the parasite from

sporozoite to piroplasm within the animal, that is, stages 11 to 16 in figure 3 of Chapter

3. These results suggest that it should be possible to model this part of the life cycle,

although no data are present on the merozoite stage.

Few quantitative data are available concerning the development of the parasite

within the tick. However, in the study of Purnell et al. (1974), nymphal ticks were

fed on high-grade cattle infected with T. parva (Muguga). The proportion of ticks

found to be infective and the average number of infected acini per infected tick were

then correlated with the level of piroplasms measured in cattle the day before the ticks

completed feeding. Piroplasm counts were expressed as parasitaemia, which was the

percentage of piroplasms per 1000 red cells examined. The experiments showed that

whether the parasitaemia in cattle was waxing or waning was an important factor, and

that variation among ticks was considerable. The findings provide an important and

unique data base for the relationship between the infective status of cattle and the

degree of infectivity produced in ticks. They also provide sufficient information to link

stage 1 of the life cycle, in figure 3 of Chapter 3, to stage 10.

4.2 SIMPLE MATHEMATICAL MODEL

From the reported findings a set of rules can be established as a basis for a model of

the T. parva life cycle. These are primary rules because they are substantiated by

published findings. Some of these findings, however, depend on assumptions made by

the experimenter, and so affect the accuracy of the model.

Primary rules

P1. The mean total lymphoid cell count per animal is 2.4 x 10 12 (Jarrett et al., 1969).

P2. The growth rate of macroschizonts is tenfold every 3 days, and is independent of

dose (Jarrett et al., 1969).
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P3. Patency occurs when the MSI reaches 0.05% (Morrison et al., 1986).

P4. The first day of fever occurs when the number of macroschizonts first exceeds

7 x 109 , i.e. the MSI has reached 0.31% (Jarrett et al., 1969).

P5. Macroschizonts are accurately quantifiable when the MSI reaches 1% (Jarrett et

al., 1969).

P6. The day of commencement of piroplasm production is independent of dose, and is

13 days after infection (Radley et al., 1974).

P7. Piroplasm levels increase exponentially, and level out when the MSI reaches 100%

(Jarrett et al., 1969).

P8. The growth rate of piroplasms is independent of dose (Jarrett et al., 1969).

P9. An animal is infectious when piroplasms infect more than 1% of the erythrocytes

(Purnell et al., 1974).

P10. Death or recovery is dependent on the dose (Dolan et al., 1984).

P11. The day of death is linearly related to the logarithm of the sporozoite dose, and

occurs no earlier than 11 days after infection (Radley et al., 1974, Dolan et al.,

1984).

P12. The day of recovery is independent of dose, and does not occur until 18 days after

infection (Dolan et al., 1984).

In rule P3, patency is defined as the day on which schizonts become detectable in a non-

regional lymph node. Schizonts are likely to be detected one or two days earlier in the

regional lymph node. The lymphoid cell count in rule P1 was derived from observations

on young adult cattle. Rules P9, P10, and P11 are derived from observations on

indigenous African Boran cattle; the other rules from observations on European stock.

Two issues arise. First, the consequences of certain rules may be of interest or rules

may be in conflict, in which case the model can be used to test possible outcomes. The

rules of interest or in conflict then become test rules. Secondly, the primary and test

rules may not form a sufficient set and secondary rules must be added to compensate

for nonexistent data. These secondary rules should be kept to a minimum and should

at least be based on expert opinion.

Test rules

An examination of the papers of Jarrett et al. (1969) and Purnell et al. (1974) suggests

— 43 —



that the infective status of ticks is important to the transmission of the disease. In the

experiments of Jarrett et al. (1969), batches of nymphal ticks fed on infected cattle

are considered to be 100% infective, each tick having an average of 10 infected acini

cells. Ticks are assumed to transmit the bulk of their infection on the fourth day of

feeding, so extrapolation of the MSI growth curves to day 4 provides an estimate of

the number of sporozoites contained in each infected acinus cell. The estimate given

by Jarrett et al. (1969) using this method was approximately 5 x 10 4 sporozoites per

infected acinus. This is an estimate of the number of sporozoites per acinus that are

successful in penetrating lymph cells. Purnell et al. (1974) indicate that ticks fed

on infected cattle can be expected to produce an infection rate closer to 40% and each

infected tick has on average only 6 infected acini. Similar extrapolation, using the same

growth curves, implies each infected acinus will have on average 17.5 x 10 4 sporozoites.

This is much larger than that estimated by Fawcett et al. (1985) from comparison of

sporozoite to acinus cell volumes. However, Morrison et al. (1986) suggest that initial

replication of the parasite is at a much faster rate than that estimated by Jarrett et

al. (1969), causing backward extrapolation of the growth curve to overestimate the

number of sporozoites per acinus. The difference in the sporozoite count per infected

acinus has implications for the transmission of the disease. Consequently, the model is

used to compare challenge from batches of infective ticks where:

Either:

Ti. An infective tick has on average 10 infected acini and each acinus transmits 5 x 104

sporozoites (Jarrett et al., 1969);

or:

T2. An infective tick has on average 6 infected acini and each acinus transmits 17.5 x104

sporozoites (Purnell et al., 1974).

Comparisons are made on the basis of parameters relevant to the course of disease

within the animal.

Secondary rules

No data exist on the rate at which a piroplasm population declines in animals which

recover. The following rule is proposed:

Si. If an animal recovers, the rate of decay of the piroplasm population is equal to the

growth rate observed during the increase phase.

The rule set only provides the relationships between certain stages shown in the life
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piroplasms sporozoites

cycle in figure 3 of Chapter 3. The life cycle can then be represented in the reduced

form shown in figure 1 below.

piroplasms	 schizonts

Iff-Y

multiplier: 0

accumulator:

Infected acird piroplasms

Figure 1.	 Mathematical representation of the parasite life cycle.

The rule set can be programmed, and the growth profiles of the parasite in schizont

and piroplasm form can be predicted. A given tick challenge is converted into a sporo-

zoite infection using rules Ti or T2. This sporozoite infection is used to predict the

fate of the infected animal, and the timing of death or recovery using rules P10—P12.

The initial MSI can be calculated using rule P1, and daily changes in the MSI can be

predicted using rule P2. Disease responses such as the timing of patency, first fever

and schizont detection can be predicted from the MSI using rules P3—P5. Similarly,

the growth profile of piroplasms can be predicted using rules P6—P9 and Si.

In order to test the rules Ti and T2, the model predictions can be compared.

Table 1 shows the predictions under rules Ti and T2 when batches of 1, 2, 3, 4, 5,

9, 10, and 20 infective ticks feed on cattle as adults. The rules have been translated

into equations and a computer model developed for use on a microcomputer using the

programming language Prospero Pascal.

The model shows that under Ti an animal can be expected to die when the tick

challenge is 10 or more. An animal is expected to die if the sporozoite dose it receives

exceeds the LD50 . The prepatent period and days to febrile response decrease as the

infective tick challenge increases. Under T2, an animal can be expected to die when the

tick challenge is as low as 4 infective ticks. If the tick challenge is any lower the animal

— 45 —



recovers. As challenge increases, the prepatent period and day of fever decrease. The

infectious period is short when the tick challenge is low (1-3 infective ticks) and the

animal recovers, but also when the tick challenge is high (10 or more infective ticks)

because the animal dies shortly after contracting the disease. The latter prediction

from the mathematical model is supported by the experimental findings of Branagan

(1969), where, in some cases, death reactions were so severe that animals died before

producing piroplasms. Moderate tick challenges of 4 to 5 infective ticks produce the

largest infectious periods. This suggests it is possible that the severity of the disease

is limiting. When the level of infection in the tick population exceeds a threshold,

the infectious period in cattle drops due to rapid deaths. Subsequently, the level of

infection falls in the tick population.

Table 1. Predicted time in days from infection of disease characteristics in cattle when

Rules T1* and T2* are examined using challenges with different numbers of

infective ticks.

1

Infective Tick Challenge

2	 3	 4	 5	 9 10 20

Rule Ti:

Prepatent period (day) 11 10 9	 9 9 8 8 7

Days to febrile response 13 12 12	 11 11 10 10 9

Days to 1% MSI 15 14 13	 13 12 12 12 11

Day of recovery 18 18 18	 18 18 18

Day of death -	 20 16

Duration of infectious period 5 5 5	 5 5 5 7 3

Rule T2:

Prepatent period (day) 10 9 8	 8 8 7 7 6

Days to febrile response 12 11 11	 10 10 9 9 8

Days to 1% MSI 13 13 12	 12 11 11 10 10

Day of recovery 18 18 18

Day of death -	 21 20 16 16 12

Duration of infectious period 5 5 5	 8 7 3 3 0

* See text for explanation.
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Contrasting the two rules, the main difference is in the infective tick challenge required

to kill the animal. The differences in the other parameters are not so noticeable. In

fact, under experimental conditions, the course of the infection would appear similar in

animals that recover, irrespective of tick challenge or the infective capacity of each tick.

Figure 2 illustrates, under rule Ti, the predicted growth curves of the macroschizont

index and the percentage piroplasms in an animal which recovers after challenge with

5 infective ticks, assuming each tick has 10 infected acini and each acinus has 5 x 104

sporozoites. Similar growth curves are shown in figure 3, only under rule T2 each tick

is assumed to have 6 infected acini and each acinus 17.5 x 10 4 sporozoites. On day 19

the animal dies.

MACROSCHIZONT INDEX
	

PIROPLASMS

100	

ISCHIZ0NT8 -B- PIROPLABIA.

DAY AFTER INFECTION

Figure 2.
	 Predicted parasite growth in animals challenged with 5 ticks under Ti.

MACROSCHIZONT INDEX	 111 PIROPLASMS

100- 
ISCHIZONTS -9- PIROPLA81411 I

	
0	 .0--a

0-51-51-53-$-W-53-$-.19-53-5/	 n
0 1 2 3 4 5 6 7 8 910 11 12 13 141615 17 18 19

DAY AFTER INFECTION

Figure 3.
	 Predicted parasite growth in animals challenged with 5 ticks under T2.
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The problem now is distinguishing between the two rules to find which provides

the results more consistent with reference to other expert knowledge on the disease.

Yeoman (1967) surveyed the density of adult R. appendiculatus ticks attached to

cattle in various areas of differing ECF disease severity. He found that in areas where

the disease is enzootic (that is, where fatalities due to ECF are high in young cattle

as they are still susceptible, but low in adult cattle as they have built up a resistance

to the disease) an average of 50 adult ticks were observed attached to each animal.

He also stated that the average period of attachment for ticks is about 5 days; thus

representing an attachment rate of around 10 adult ticks per animal per day. If we

assume that larvae, nymphs and adults are found on cattle in similar proportions, then

we expect that in an enzootic area 30 ticks attach per animal per day.

Walker et al. (1981) in their study of an enzootic area estimated that between 1%

and 2% of adult ticks were infected with the parasite. We assume that a similar pro-

portion of nymphs are also infected, say 1.5% of adult and nymphal ticks are infected.

Larvae do not have to be considered as they are only capable of contracting infection

and not transmitting.

So, in accordance with the above observations, consider the following scenario.

Ticks attach at a rate of 30 per animal per day, and drop off after 5 days. The proba-

bility of a tick being infected is 0.01. Assume further that the infection transmitted by

ticks attaching within the same 5 day interval is that which determines the course of

the ECF reaction; and any infected ticks biting after this 5 day interval will have little

effect as the disease is already well established. Thus we need only consider a typical 5

day period to compare the two test rules.

From the above results we see that for a death reaction we require a challenge

of 10 infective ticks under Ti, or 4 infective ticks under T2. Given that 150 ticks

are likely to attach in a 5 day period, and the probability of a tick being infective is

0.01, then the number of infective ticks attaching in a 5 day period, X, will follow a

binomial distribution with mean 150 x 0.01 and variance 150 x 0.01 x 0.99. Thus, the

probabilities of an animal receiving a fatal tick challenge under the two test rules are:

Ti:	 Prob(10 or more infective ticks attaching out of 150)

= P(X > 10) =-• 0.000003.

T2:	 Prob(4 or more infective ticks attaching out of 150)

= P(X > 4) 0.19.
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Infections causing deaths in young cattle are expected to be fairly common in an

enzootic area, so the probability of a death under Ti seems much too low; whereas

under T2 a death is quite likely. A challenge of less than the fatal number of infective

ticks will result in recovery of the animal and solid immunity to subsequent homologous

challenge (Irvin, 1983).

Hence, from a modelling viewpoint, T2 appears to best describe the expected

disease dynamics, for an enzootic area at least. As stated earlier, the estimated number

of sporozoites per acinus under T2 is at variance with experimental observations, but

due to initial parasite replication being at a higher rate (Morrison et al., 1981) it

provides a more realistic description of the disease dynamics when the replication rate

of the parasite within lymphocytes is assumed tenfold every 3 days.

From the model under T2 we see that the duration of an animal's infectious period

is dependent on the size of infective tick challenge. This relationship is illustrated in

table 2.

Table 2. Predicted duration of the infectious period of cattle under T2 for different

infective tick challenges.

Infective Tick Challenge	 Infectious period (days)

0 0

1,2,3 5

4 8

5 7

6 6

7 5

8,9 4

10,11 3

12,13 2

14,15,16 1

17+ 0

From challenges of 4 infective ticks or more, the duration of the infectious period

decreases almost linearly. If we assume that the infectious period also increases linearly
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for tick challenges less than 4 (recovery reactions), then the following function for the

infectious period is obtained:

/	
2x;	 0 < x < 4,

F(x) = 8 — (8/13)(x — 4); 4 < x < 17,
0;	 otherwise,

where, F(x) is the estimated infectious period in an animal receiving a challenge of x

infective ticks.

The assumption that infectious periods increase with infective tick challenge for re-

covery reactions is logical, as for lower tick challenge you might expect fewer piroplasms

to be produced.

It is now possible to construct a deterministic model to describe the passage of

infection amongst a herd of cattle and a population of ticks. The sporozoite dose to

infectious period relationship describes the infection within the herd, and the data

presented by Purnell et al. (1974) describes the infection within the tick population.

The remainder of this chapter concerns the development of such a model. Observations

on the behaviour of the expected level of infection in the tick population under various

scenarios are reported.

4.3 A DETERMINISTIC MODEL FOR THE BEHAVIOUR OF THE

LEVEL OF INFECTION AMONGST A TICK POPULATION

Primary rules

The primary rules Pl, P2, P3 and P4 employed by this model are taken from the

previous model. Rules P5, P6 and P7 are constructed to deal with a field situation.

Pl. The mean total lymphoid cell count per animal is 2.4 x 1012 (Jarrett et al., 1969).

P2. The growth rate of macroschizonts is tenfold every 3 days, and is independent of

dose (Jarrett et al., 1969).

P3. The day of commencement of piroplasm production is independent of dose, and is

13 days after infection (Radley et al., 1974).

P4. An animal is infectious when piroplasms infect more than 1% of the erythrocytes

(Purnell et al., 1974).

P5. Ticks remain attached on cattle for 5 days before dropping off (Yeoman, 1967).

P6. Infection is passed from animal to tick on the first day of tick feeding (Reichenow,

1940).
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P7. Infection is passed from tick to animal on the fourth day of tick feeding (Mehlhorn

and Schein, 1984).

Secondary rules

The previous model only contained one secondary rule which was concerned with the

decline in piroplasm numbers in a recovering animal. As Ti and T2 have now been

tested, T2 becomes a secondary rule (S2). Further secondary rules are required to deal

with superinfection. Superinfection occurs when an animal that is already infected

receives a further challenge from infective ticks at some time after the initial infection.

No experiments looking into the disease reactions following superinfection have been

reported. However, Stagg et al. (1984) observed in their experiments that an infected

lymphocyte may be reinfected with further sporozoites, but offer little information on

the infection dynamics as a result of this. Mehlhorn and Schein (1984) in their study

of the stages in the T. parva life cycle state that when a lymphocyte has multiple

infection the size of the resulting schizonts is reduced. This could suggest that the

resulting merozoite output of any infected lymphocyte is independent of the number of

schizonts contained by the cell. Thus, any sporozoites entering parasitised lymphocytes

will not have any influence on the resulting disease dynamics. With reference to the

above, rules S3, S4, and S5 were constructed.

Si. If an animal recovers, the rate of decay of the piroplasm population is equal to the

growth rate observed during the increase phase.

S2. An infective tick has on average 6 infected acini and each acinus transmits 17.5 x104

sporozoites.

S3. If a sporozoite penetrates a parasitised lymphocyte then it is assumed not to affect

the disease dynamics.

S4. Sporozoites that enter unparasitised lymphocytes become schizonts.

S5. The disease reaction following superinfection is calculated by adding the proportion

of the new dose of sporozoites that infect unparasitised lymphocytes to the level

of schizonts estimated for that day. Backward extrapolating the schizont growth

curve to day 0 will yield the number of sporozoites required to be transmitted on

day 0 to bring about this new level of infection. The corresponding infective period

can then be calculated.

S6. The duration of infectious period in cattle is given by F(x), where z = the number
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of infective ticks in the challenge

/	
2x;	 0 < x < 4,

8—F(x) =	 (8/13)(x — 4); 4 <z <i7,
0;	 otherwise.

S7. If the infectious period is not an integer, then the animal is assumed infective to

feeding ticks for a fraction of a day. This is accounted for by reducing the chance

of ticks receiving infection on this day by multiplying the infection probability by

this fraction.

S8. The herd size remains constant.

S9. The tick population remains constant.

S10. The time between successive tick attachments is constant.

S11. Tick attachments are constant over the herd.

Rule S6 is a secondary rule because it is taken from the results of the earlier model

that relied upon secondary rules.

Test rules

The following three rules become the test rules, as it is by their adjustment that the

behaviour of the level of infection in the tick population is dictated:

Ti. The number of ticks attaching per animal per day is N.

T2. The probability that a tick receives infection from an infective animal is a.

T3. The probability that an engorged tick survives and reattaches is p.

Analysis of the model

The model rules were translated into program code using the Prospero Pascal program-

ming language. For certain Ti, T2, and T3, the number of infective ticks to attach per

animal per day is obtained. Moreover, the infection level in the tick population can be

studied as time progresses. The time-step employed by the model is the length of time

spent by a tick between blood meals. This length of time is defined to be the duration

of one cycle of ticks. Because the time between successive attachments is constant, from

rule S10, a cohort of feeding ticks will attach on the next cycle with the larvae, nympha,e

and adults comprising the cohort having developed into nymphae, adults and larvae

respectively. Given an initial tick challenge, the resulting "effective tick challenge" on

the next cycle of ticks can be obtained. The effective tick challenge is the equivalent

number of infective ticks to attach on one day having allowed for superinfection.
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For example, to illustrate the chaining of rules, if one infective tick attaches to an

animal initially, then by S6 the infectious period of that animal will be 2 days. The

number of infective ticks to attach next cycle will be 2Nap from Ti, T2, T3 and S9.

But, as the infectious period was 2 days, this represents challenges of Nap infective

ticks on two consecutive days from S10. These challenges of infective ticks are converted

to a sporozoite dose, X, for each day using rule S2.

By rules S3 and S4, the number of sporozoites penetrating unparasitised lympho-

cytes on the first day is X, and on the second day is less than X as some lymphocytes

are now parasitised. The proportion of sporozoites successful in penetrating unpara-

sitised lymphocytes is equal to the proportion of unparasitised lymphocytes, q:

X 
q = 1

2.4 x 1012
by rule P1.

Thus, the active sporozoite dose for day 2 is given by:

Y = qX

Using rules P2 and S4, the number of schizonts on day 2, after superinfection is calcu-

lated as:

Z = X101/3 + Y.

By rules S5 and P2, the number of sporozoites input on day 1 to bring about this level

of schizonts on day 2 is given by:

A = Z/10113

The effective tick challenge can finally be calculated by converting this number of

sporozoites, A, into a number of infective ticks by using rule S2.

Thus, the initial infective period function can be translated, using the other rules,

into a relationship between tick challenge and the effective tick challenge on the next

cycle of ticks. Let this relationship be denoted by G(x), where G(x) is the effective

tick challenge next cycle, resulting from an effective challenge of x infective ticks this

cycle. The form of this transformation of F(x) into G(x) is illustrated in Figure 4.
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Figure 4.	 Transformation of the infective period function F(x) into the effective

tick challenge function G(z).

It is observed that the shape of the function G(z) is always similar. The amplitude

of the function, however, varies with choice of the parameters N, a, and p.

The analysis is now simple, as we have obtained the graphical representation of

a difference equation scheme. That is, starting with a challenge of z infective ticks

per animal, we expect a challenge of effectively G(z) ticks next cycle, followed by a

challenge of G(G(z)) the next cycle, and so on. Denoting the initial number of infective

ticks by A0 , and the effective number of ticks biting on cycle re by A; we attain the

difference equation scheme:

An+1 = G(A),	 n = 0,1, 2, ...

This can be expressed graphically by a vertical mapping of z = An onto the

function y = G(x); followed by a horizontal mapping of y = G(An) onto the line

y = z, to yield the new number of infective ticks z = An+i . This is repeated, and the

behaviour of the level of infection in the tick population can be observed from cycle to

cycle for different Ti, T2, and T3. An example of this is illustrated in figure 5.



	

x	 x

	

Figure 6.
	 Two possible cases: one or two fixed points.

Case 1	 Case 2

G(X)	 tux)
y. x
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Figure 5. Graphical representation of the change in the level of infection in the tick

population.

The analysis can now be confined to the analysis of two possible cases, each case

represented in figure 6.

The point(s) at which the line y = z crosses the curve y = G(z) are known as

stationary points or fixed points. These represent possible limits of the system:

An+i = G(A),	 n = 0,1,2,...	 as	 n —+ oo.

Whether or not these limits are attained is determined by the Fixed Point Theorem

which states that if G(z) is differentiable in a neighbourhood of a fixed point, L, then

if Gi (z) evaluated at the fixed point is less than one in absolute value the fixed point

is stable. Otherwise the fixed point is unstable.

Stability of a fixed point L means that in a neighbourhood of L, the elements of
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the series {A„;n = 1,2,3 ...} tend towards L. That is, L is attractive. Instability

implies the converse. Consider the two cases of figure 6 separately.

Case 1

The graph in figure 6 clearly shows that there is only one fixed point, which occurs at

z = 0. It is also clear that, in this case, this fixed point is stable, because the gradient

of y = G(z) is positive and less than 1 (the gradient of y = z). In this case, therefore,

the eventual extinction of T. parva in the tick population is certain. It now remains to

find the conditions in Ti, T2, and T3 for this case arising.

Define the disease-potential, D, as the number of ticks attached to an infective

animal that become infected and will survive to reattach after moulting. From Ti, T2,

and T3 this can be calculated as D = Nap

Now, consider an effective tick challenge of less than 0.5 ticks. This produces an

infective period of less than 1 day in the animal (S6). Therefore, the number of new

infective ticks resulting from this infection will attach on the same day next cycle (S10),

and so superinfection does not occur.

Thus, for 0 < z < 0.5

	

F(z) = 2z,	 by S6

and
	

G(z) = 2zNap	 by S10, Ti, T2, and T3.

For stability of the fixed point at zero, it is required that:

dG(z) 1	 < 1
dz I x=0

Therefore, 2Nap < 1, and the disease-potential, D < 0.5.

Thus, we have the condition that if the disease-potential is less than or equal to a

half, then eventually the tick population will become clean of the parasite.

Case 2

The condition for case 2 is therefore that the disease- potential must be greater than a

half. If this is so, it follows that the fixed point at zero is now unstable as the gradient

of G(z) at the origin is greater than one.

Other properties of the function G(z) are now of interest. The non-zero fixed

point may be stable permitting an equilibrium level of infection to be attained in the

tick population (figure 7).
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G(X)

X

Figure 7.	 The non-zero fixed point of G(z) is stable.

Alternatively the non-zero fixed point may be unstable causing the level of infection

in the tick population to either cycle or fluctuate erratically (figure 8a), or to become

extinct — if the amplitude of the function G(z) is great enough to permit escape from

the positive z — y quadrant (figure 8b), and catastrophe of the system.

Unfortunately, due to the superinfection rules S3—S5, the order of the function

G(z) increases with z and so becomes extremely complex for values of z greater than

0.5. It is, therefore, difficult to find analytical conditions for each of these possibilities.

(a) Erratic behaviour
	

(b) Catastrophe
G(X)
	 eco

Figure 8.	 The non-zero fixed point of G(z) is unstable.

The properties of the system can be established by performing repeated simulations

of the process under increasing values of D, and plotting the results in the form of a

bifurcation map. This bifurcation map is illustated in figure 9.
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Figure 9. Bifurcation map showing the behaviour of the level of infection in the

tick population under increasing disease-potential, D.

For D < 7.48 a single line appears on the diagram, showing that the process attains

equilibrium at a single non-zero fixed point. For example, at D = 7 the number of

infected ticks on each cycle converges to around 12. At D = 7.48, the line divides

into two. This represents the point at which the non-zero fixed point of G(z) becomes

unstable, and the two non-zero fixed points of the function G(G(z)) become stable.

Hence the process oscillates between the two equilibria. When D reaches 8.82, the

fixed points of G(G(z)) become unstable, but the four fixed points of G4 (z) become

stable causing the level of infection to flip between four limits. These points become

unstable at D = 8.95, and for D> 8.95 chaotic behaviour is observed at most values of

D. There are, however, a number of regions for D > 8.95 where oscillations between a

small number of points exist, such as the cycle between six points at D = 8.98; but, in

general, chaos appears to dominate this region until at D = 9.13 catastrophe occurs.

Catastrophe occurs at the point when the amplitude of the function G(z) becomes

great enough to permit extinction of the parasite because the disease reaction is so

severe that the cattle are dying before producing piroplasms.

The behaviour is summarised in table 3.



Table 3. The behaviour of the level of infection in the tick population for various

values of D.

Disease-potential (D)	 Limiting behaviour

D < 0.5	 Extinction.

0.5 < D < 7.48	 Equilibrium level achieved.

7.48 < D < 8.82	 Cycling behaviour between two limits.

8.82 < D < 8.95	 Cycling behaviour between four limits.

8.95 < D < 9.13	 Erratic behaviour.

D > 9.13	 Escape from positive z — y quadrant.

Extinction of the infection.

It is interesting that these results have similarities to those reported for the sim-

ple difference equation systems described in chapter 2. Period doubling appears to

commence at around a disease-potential of D = 7.48, chaotic behaviour at around

D = 8.95 , and catastrophe at around D = 9.13. However, one difference is apparent: in

this case the bifurcation map is discontinuous, suddenly leaping to a different set of fixed

points at D = 8.1135. In fact, two pairs of fixed points exist for 8.0365 < D < 8.1135 ,

but only one pair is attained, dependent on the choice of initial conditions. By observ-

ing the zeros of the function H(z) = G(G(z))— z for 8.0365 < D < 8.1135 it becomes

clear that a third pair of fixed points exists, but these fixed points are never attained.

The values of this pair of unstable fixed points always lie between the values of the

two stable pairs, and form an unstable branch to the bifurcation map which connects

the two overlapping stable branches. This phenomonen is known as hysteresis, and is

illustrated for the lower branch of the bifurcation map in figure 10. The two possible

stable branches are drawn with a solid line, the connecting unstable branch with a

broken line.
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Figure 10. Behaviour of the lower branch of the bifurcation map of figure 9 at the

point of discontinuity.

The results on the behaviour of the level of parasitisation in the tick population

gives an indication as to how the infection affects the cattle population. The predicted

behaviour of ECF under different disease potentials (D) are listed below:

(a) D < 0.5

Extinction of infection in the ticks, causing elimination of ECF in cattle after an initial

outbreak.

(b) 0.5 < D < 7.48

Equilibrium of the infection level in ticks, implying that cattle are always under a

constant challenge. This could possibly represent an area where ECF is either enzootic

or epizootic.

(c) 7.48 < D < 9.13

Fluctuating levels of infection in the tick population, suggesting that sudden outbreaks

of ECF may occur erratically. ECF is possibly epidemic.

(d) D > 9.13

Extinction of infection in the tick population due to death of cattle. ECF is absent due

to the absence of the cattle population!

It is clear that the potential damage that ECF can inflict to a cattle population is

controlled by the disease potential, which in turn depends on the number of ticks per

beast (N), the chance of a tick becoming infected from an infective animal (a), and the
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survival and attachment rates of ticks (p). Many external and environmental factors

influence the value of these parameters, such as cattle density, tick density, tick control

strategies, climatic conditions, vegetation type and state, cattle breed, and T. parva

strain. Many of these factors are inter-linked. For example, it might be thought that

increasing the cattle density would increase the attachment chances of ticks. However,

due to increased grazing pressure, the vegetation length may be reduced sufficiently to

make tick attachment more difficult.

Conclusions

The bifurcation map presented in figure 9 gives some clues to controlling the level of

infection in a tick population. Where D is less than 8 it is seen that the equilibrium

levels of infection achieved increase with D. Thus, for areas represented by disease

potentials below 8, the best way of reducing the infection level in the ticks, and therefore

controlling the disease, would be to reduce D. As D = Nap, reduction of D would

involve reducing N, the number of ticks attaching per day, reducing a, the probability

that a tick receives infection from an infective animal, or reducing p, the probability

that an engorged tick survives to reattach next cycle. Reduction of these parameters

could be achieved as follows:

(a) Dipping cattle would reduce p the survival probability, and also N, as ticks are

less likely to attach to cattle recently treated with acaricide.

(b) Adopting herd management strategies:

(i) Pasture switching reduces the numbers of ticks surviving and attaching (N

and p),

(ii) Quarantine of animals exhibiting clinical symptoms would reduce the proba-

bility of cattle transmitting infection to ticks ( a).

(c) Treatment of animals showing clinical symptoms would reduce the infective periods

of infective cattle and hence reduce a.

(d) Changing the vegetation type of pastures to grasses that support ticks less effec-

tively would reduce survival and attachment chances (p and N).

It is interesting, however, that where D > 8, the bifurcation map shows two equilibria

which the process cycles between. The higher equilibrium point increases slowly with

D, but the lower branch is seen to decrease rapidly as D increases. This suggests that

the average level of infection of the tick population over two cycles of ticks is decreasing

as D increases. Thus, for values of D in this region, reduction of D would cause the
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average infection level to rise, and therefore increase the danger of ECF. In fact, it

appears that increasing the disease potential would provide the most beneficial results!

Where the process cycles between a small number of limits, if fresh susceptible

cattle are to be introduced to pastures it would be most sensible to time their intro-

duction with the predicted time of occurrence of the lowest tick infection level. This

would provide an early low input of infection which may provide a level of resistance

to subsequent higher infections.

When the process is in chaos, D > 8.95, two possibile methods are available to

control the disease, either:

(a) Attempt to reduce N, a, or p to reduce D and hopefully throw the system into

a stable cycle — so that times of high infection can be predicted and catered for,

Or

(b) increase D in attempts to cause catastrophe of the system and thus extinction

of the parasite. It should be noted, however, that heavy mortality of the herd is

required to bring about such behaviour, and so this option may not be practical.

4.4 FURTHER MODELS

The infective period function F(x) was based on the results of a mathematical model

developed for cattle of a certain susceptibility to tick challenge, and a certain suscep-

tibility to ECF. This function will change for cattle resistant to tick challenge, and

cattle which produce an immune response to sporozoites. The previous model assumed

a constant tick population and constant tick attachments over the herd, but the effects

of seasonality amongst ticks and the randomness of tick attachments can also be taken

into account. Finally, the effects of drug treatment of animals suffering from ECF

can also be investigated by making modifications to the model. The remainder of this

chapter considers each extension in turn.

4.4.1 Increased resistance to tick challenge

Ticks attaching to tick-resistant cattle do not feed as effectively as those attaching to

fully susceptible cattle. This would suggest that, as ticks ingest less erythrocytes when

feeding on resistant cattle, the degree of infection received by the tick would be reduced.

Because the host's disease response is dose dependent, if ticks carry less sporozoites,

then more infected ticks will be required to bring about a specific disease reaction. To

take account of the increased numbers of ticks required, the function F(x) , the infective
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period of an animal with an effective tick challenge of z ticks, is stretched along the

z-axis.

Any transformation on F(z) representing a stretch along the z-axis by a factor

'S', causes an identical transformation of the function G(z) by the same factor. There-

fore, the conditions on D for certain behaviour to exist are now conditions on D I S

and should be modified accordingly.

So, for example, let Fl(z) = F(z/2)

z;
/	

0 < z < 8,
Fl(z) = 8 — (4/13)(z — 8); 8 < z < 34,

0;	 otherwise.

The resulting behaviour exhibited by this system at different disease potentials is

summarised in table 4.

Table 4. The behaviour of the level of infection in the tick population for various values

of D, under function Fl(z).

Disease-potential (D)	 Limiting behaviour

	

D < 1.0	 Extinction.

1.0 < D < 14.96	 Equilibrium level achieved.

14.96 < D < 17.64	 Cycling behaviour between two limits.

17.64 < D < 17.9	 Cycling behaviour between four limits.

17.9 < D < 18.26	 Erratic behaviour.

	

D> 18.26	 Escape from positive z — y quadrant.

Extinction of the infection.

Conclusions

Due to the similarity of this system to the earlier system, the inferences made from the

bifurcation map are identical to those made earlier. However, by comparison of tables

3 and 4 it follows that increased resistance to ticks reduces the effect of the disease at

a given disease potential.
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/2(z — 2);	 2 < z < 6,
8—F2(z) =	 (8/13)(z — 6); 6< z < 19,

0;	 otherwise.

G(X)	 G2(X )

I

4.4.2 Increased resistance to sporozoites

Sporozoites are only exposed to ECF antibodies for an extremely short time before

they penetrate the lymphocytes. If cattle become more resistant to sporozoites, this

might suggest that the animal's immune system could effectively deal with a certain

level of infection received at any one time. Above this level, some sporozoites may

avoid destruction and be successful in penetrating lymphocytes to become schizonts.

This can be represented by transforming the function F(z), the infective period of

an animal under challenge, by a translation along the x-axis. The point at the origin

being translated to a point on the positive x-axis corresponding to the threshold level

of sporozoites required to bring about a disease reaction in the animal.

So, for example, consider a positive translation of F(z) by 2 units along the x-

axis. This represents a threshold level of 2 infected ticks, below which all sporozoites

are destroyed by the animal's immune system. The infective period function can then

be expressed as:

This gives rise to an identical transformation of G(z) to G2(z), illustrated in

figure 11.

x	 x

Figure 11. Transformation of G(z) to G2(z) to account for increased resistance to

sporozoites.

Observation of the function G2(z) shows that the line y = z does not cross the

curve y = G2(z) at the origin, and so no fixed points need in fact exist. If there are

no fixed points then extinction of the parasite from the tick population is immediate.

If fixed points exist, then the behaviour of the system is dependent on their sta-
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bility. Plotting the bifurcation map, figure 12, reveals that a number of stable cycles

do exist before the system becomes chaotic and eventually extinct. This behaviour is

summarised in table 5.

7 8	 8.1	 8.4	 8.7	 9	 9.3
	

9.6
	

9.9
	

10.2
Disease-potential (D)

Figure 12. Bifurcation map showing the behaviour of the level of infection in the

tick population under increasing disease-potential ( D ), allowing for increased resistance

to sporozoites.

Table 5. The behaviour of the level of infection in the tick population for various values

of D, under function F2(z).

	Disease-potential 	 (D)	 Limiting behaviour

	

D < 2.0	 Extinction.

	

2.0 < D < 8.42	 Equilibrium level achieved.

	

8.42 < D < 9.73	 Cycling between two limits

	

9.73 < D < 9.81	 Cycling between four limits

	

9.81 < D < 10.03	 Erratic behaviour.

	

D> 10.03	 Escape from positive x — y quadrant.

Extinction of the infection.
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Conclusions

By comparison of tables 3 and 5, it follows that increased resistance to sporozoites

reduces the effects of the disease at specific disease potentials, as might be expected.

Other inferences are as for the earlier systems.

4.4.3 Seasonally fluctuating tick population

The assumption made in rule S9 that the tick population is constant is not consistent

with field observations. Tick populations often follow distinct seasonal cycles dictated

by climatic conditions.

First, consider the simplest case of a tick population alternating between two levels,

causing the number of ticks to attach each cycle to alternate between two levels, N1

and N2 say. This can be represented by applying in turn two different functions for

the effective tick challenge, G1 (z) and G2 (Z) ; where G1 (x) allows for an attachment

rate of N1 ticks per animal per day, and G2 (z) for N2 ticks. Letting Ao be the initial

number of infected ticks, and An be the effective tick challenge on the nth cycle of

ticks, the dynamics of infection within the tick population can be described by the

following difference equation scheme:

Al=

A2 = G2(A1) = G2(Gi(Ao)),

A3 = Gl(G2(G1(A0)))-

etc..

As earlier, it is found that for an effective tick challenge, z, of less than a half, superin-

fection on the next cycle of ticks does not occur. In this case the effective tick challenge

next cycle can be simply expressed as:

G1 (z) = NiapF(z) = 2N1apz;	 i = 1,2.

The two subsequences {Ao, A2, A4, ...} and {A1 , A3, A5 , ...} can be considered sep-

arately to establish whether or not the process An becomes absorbed at zero as n

increases. Defining Zn = G2 (G1 (Zn_1 )), and Yn = GI (G2 (Yn_ 1 )), each referring to

one of the above subsequences, then for absorption we require both subsequences to

tend to zero. That is, the fixed point at zero must be stable for both Zn and Y,.
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Now,
GI (G2 (z)) = 2.Niap(2N2apz)

= 4a2p2 Ni N2Z

= G2(Gi(z)),

which means that the stability condition is the same for both processes, as might be

expected. By the fixed point theorem, the condition for stability of the fixed point at

zero is:

d(GAG2(z)) 1

	 < 1,
clz	 I r.o	 '

Therefore,
4a2p2 Ni N2 < 1

D 1 D2 < (0.5)2,

where D1 is the disease potential of the process under G i (z) alone, and D2 is the

disease potential under G2 (z) alone.

(D1 /3 2 )°'5 <0.5.

This is the condition that the geometric mean of the disease potentials D1 and

D2, GM(Di, D2) is less than 0.5

Extending this result to the case of a tick population switching between N levels,

the general condition for stability of the fixed point at zero becomes:

D1D2 . . . D N < (0.5) N .

GM(Di, D2, . . . D N) < 0.5

Unfortunately, no similar results can be easily obtained concerning the stability of the

non-zero fixed point, due to the complexity of G(z) for a > 0.5. The properties of the

system for a > 0.5 have been investigated by simulation.

It now remains to define a suitable sequence of functions G i (a) such that the sea-

sonal fluctuations in the size of the tick population are accurately accounted for. The

literature provides some general observations. Branagan (1973) showed that tempera-

ture is the strongest controlling factor in the time of development of ticks through their

various stages. Tukahirwa (1976), stated that humidity has a strong influence on the

survival chances of eggs. Short and Norval (1981), observed peak numbers of ticks in

the field corresponding to the position and duration of the rainy seasons. If we assume
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that tick numbers fluctuate sinusoidally over the year, and the period of this sine wave

is one year, this might correspond to a location with one major rainy season.

The time between successive attachments is d days, which implies that the tick

population can go through n = 365/d cycles per year.

Defining Ni to be the number of ticks attaching on day 1 of the ith cycle, Ni is

given by:

2ri
Ni = A+ B sin(—).n

The behaviour of the level of infection in the tick population is dependent on the

values taken by Ni , which itself depends on A, B, and n. Consider, as an example,

the situation when ticks have a reattachment probability, a = 0.5; a probability of

receiving infection from an infective cow, p = 0.4; and a period, d= 45 days, between

cycles. This produces aprcaimately 8 cycles per year, causing the number of ticks to

attach per cow each cycle to be described by:

2ri
Ni = A -I- B sin(—)

8

and so
No = A,

N1 = A+ B/2",

N2 = A+ B,B,

N3 = A+ B/2°5,

N4 = A,

N5 = A — B /2" ,

N6 = A — B,

N7 = A—B/2°5,

Ng = A = NOs

Ng = N1,

etc..

The behaviour of the system is dependent on the choice of the parameters A and B,

and by varying these, different properties can be observed. As shown earlier, the fixed

point at zero is stable if GM is less than a half. In this case N = 8, and the mean

disease potential is given by:
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GM = [D0D1D2D3D4D5D6N1/8

= [(ap)8A(A + B")(A + B)(A + B°.5)

X A(A — B°-5 )(A — B)(A — B0.5)]1/8

i ig= [(ap)8 A2 (A2 — B2 ) (
A2 

2
— 

B2 )2]-1-

So the condition for stability of the fixed point at zero is:

[(ap)8 A2 (A2 — B2)(
A2 ; B2 )2 ] 1/8 < (0.5)

* A2 (A2 — B2 )(A2 — B2 /2)2 < ( i - -ip )8

If satisfied, the tick population will eventually become clean of the parasite; otherwise

the fixed point will be unstable, and the only way for the tick population to become

clean is by catastrophe of the system.

Simulation studies suggest that the behaviour of the system for values of GM

greater than a half is dependent not only on the size of GM but also on the magnitude

of the amplitude of the sine wave controlling the fluctuations of tick numbers, B. That

is, for similar values of GM different behaviour of the system can be observed, due

to the position and height of the sine wave. From the constant tick population model

it was seen that certain bands of disease-potentials exist, each referring to a different

type of behaviour exhibited by the system. In the fluctuating tick population case,

we have a sinusoidally fluctuating disease potential, which traverses a number of these

behavioural bands. The average level of the sine wave being Aap and the amplitude

being Bap. This function for the disease potential is shown in figure 13.

Figure 13.	 Change in disease potential traversing various behavioural bands.
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The time spent in each zone has an influence on the resulting behaviour of the

system. The results of a number of simulations are given below in table 6.

Table 6. The behaviour of the level of infection in a sinusoidally fluctuating tick pop-

ulation with 8 cycles per year, for different A and B.

A B GM Aap Bap Behaviour

2 2 0 0.4 0.4 Extinction (rapid)

2 1 0.376 0.4 0.2 Extinction (rapid)

2.5 0.5 0.495 0.5 0.1 Extinction (slow)

2.5 0.25 0.498 0.5 0.05 Extinction (v. slow)

3 2.25 0.498 0.6 0.45 Extinction (v. slow)

10 5 1.866 2 1 Cycling between 8 points

10 10 0 2 2 Extinction (eventual)

20 5 3.940 4 1 Cycling between 8 points

30 5 5.958 6 1 Cycling between 8 points

40 5 7.969 8 1 Cycling between 8 points

43 2 8.595 8.6 0.4 Cycling between 8 points

43 2.5 8.593 8.6 0.5 Chaos

43 3 8.590 8.6 0.6 Catastrophe

44 0.6 8.800 8.8 0.12 Cycling between 8 points

44 1.5 8.797 8.8 0.3 Chaos

44 1.75 8.796 8.8 0.35 Catastrophe (extinction)

46 1 9.200 9.2 0.2 Catastrophe (extinction)



Discussion

Consider the two cases, GM < 0.5 and GM > 0.5, separately.

1. GM < 0.5

The mean disease potential over one period of the sine curve is less than 0.5,

which means that the tick population will eventually become clean of the parasite.

This behaviour is supported by the results presented in the first five lines of table 6,

where extinction always occurs when GM is less than a half. As expected, the closer

to a half GM becomes, the slower the absorption at zero is. An interesting result is the

absorption at zero predicted for the case when A = 10, and B = 10. GM is zero, so

absorption is certain. However, the level of infection in the tick population fluctuates

for a long time before the inevitable extinction. This is because the vast majority of the

disease-potential sine wave lies out of the zone referring to stability of the fixed point

at zero and so absorption is achieved eventually. The speed of absorption depends very

much on the choice of starting value.

2. GM > 0.5

When considering the remaining results presented in table 6 it is useful to recall

that if the disease-potential of a system with a constant tick population becomes greater

than 7.5, the non-zero fixed point also becomes unstable; if it becomes greater than 8.9

chaos is possible; and if it exceeds 9.1 catastrophe is possible. With reference to this,

consider the following examples.

For (A,B)= (10, 5), (20,5), or (30, 5) the disease potential of the system always

lies between 0.5 and 7.5, suggesting that at each cyde of ticks there exists a non-zero

attractive fixed point. Thus, the result of an equilibrium being attained where the

level of infection cycles between N = 8 points, is not surprising. It should be noted,

however, that these 8 fixed points are not the same as the 8 equilibrium points expected

if the model was run separately for constant tick attachments of No, N1,...,N7. This

behaviour is illustrated in figure 14.
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Figure 14.	 The infection level achieves a stable cycle for seasonal ticks.

For (A, B) = (40, 5) the disease-potential of the system varies between 7.0 and 9.0.

Most of the time, the disease-potential lies within the bifurcation zone 7.5 < D < 8.9,

but exists below 7.5 for a small amount of time. The resulting behaviour is, as before, a

stable cycling between 8 points. It appears that the alternation of functions Gi(z), has

a stabilising effect on the system. This is further highlighted by the observed behaviour

of the system for (A, B) = (44,0.6), where the disease-potential is always greater than

7.5. At each cycle there is no unique attracting fixed point, but a stable cycle between

8 points is still achieved.

The dependence of the system on the amplitude and position of the disease-

potential sine wave is shown by the differing behaviours of the system under (A, B) =

(43,2), (43, 2.5), and (43, 3). In each case the average position of the disease-potential

sine wave is Aap = 8.6. Increasing the amplitude of this function . (Bap) makes the

system less stable, even though GM is reduced. For B = 2, a stable cycling between

8 points is observed; increasing B to 2.5 throws the system into chaos; and increasing

B further to 3 causes catastrophe, producing a tick population clean of the parasite.

This behaviour is illustrated by the bifurcation map of figure 15 where A = 43 and B

is varied from 0 to 3.
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Figure 15. Bifurcation map showing the behaviour of the level of infection in the

seasonal tick population where Aap = 8.6 and Bap is varied from 0 to 3.

At B = 0 the tick population is constant with D = 8.6, hence the oscillation

between two points. As D increases the process oscillates between 8 points and becomes

more and more noisier until chaos at around B = 2.4. Finally catastrophe occurs at

around B = 2.9.

Similar results are observed for (A, B) = (44, 0.6), (44, 1.5), and (44, 1.75).

Clearly the stability of the system is very much dependent on the average level of

disease-potential (Aap), and the degree of variation from this level (Bap) which brings

the system temporarily into different behavioural zones.

For (A, B) = (46, 1) the disease-potential of the system extends into the catastro-

phe region, and catastrophe can, and does, occur, as illustated in figure 16.
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Figure 16.	 The tick population becomes clean of infection due to catastrophe.

Thus, the simulation study suggests that for a sinusoidally fluctuating tick popu-
. 2ri

lation, where the number of ticks attaching per cycle is given by Ni = A+ B sin();
8

the resulting behaviour of the level of infection in the tick population is dependent of

the values of a, p, A, and B.

The behaviour observed could be a gradual cleaning of the tick population with

eventual extinction of the parasite and ECF for small A and B; or, for larger A and

B, a stable fluctuation of the number of infected ticks reflecting the seasonal changes

in tick numbers, and possibly causing seasonal outbreaks of the disease. Alternatively,

for even larger A and B, the level of infection in the tick population may fluctuate

erratically producing sudden outbreaks of disease which are not seasonally controlled;

or sudden disappearance of the parasite due to an extremely severe case of ECF when

A and B are still larger.

Conclusions

Because the condition for extinction of the parasite is that GM is less than a half, the

best way to control the parasite is to reduce GM. However, efforts can be optimised

by looking at the position and form of the disease potential sine wave. If tick control

strategies are to be used then it may be the case that reduction of GM is most effective

when cattle are dipped at times when the tick population is at peak levels. It may,

therefore, appear most conservative to dip only at these times. However, it should also

be noted that the change in the level of infection in the tick population may bear no

relationship to the rise and fall of the number of ticks, and so tick control strategies
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may not always provide the desired results in disease control.

4.4.4 Random tick attachments

The assumption of rule Sll that daily tick attachments are constant over the herd is

also inconsistent with observations. Challenge can vary considerably between members

of the same herd. As the tick population is assumed constant (rule S9), it follows

that the number of questing ticks per day is also constant. Letting the number of tick

attachments over a herd of size N be X per day, we can assume that the number of

ticks to attach to a specific animal follows a Poisson process of rate A = XIN.

Thus, the expected infective period of an animal can be calculated as:

co Axe—AF(x)
E[infective period of animal] = E 	

X!
X=0

where F(X) is the infective period function. The function F(X) is zero for X < 1

and X> 17, and so this reduces to:

x-1--.
7 Ax e— A F(X) 

E[infective period of animal] = 2_,
x!

X=1

As the herd contains N animals, the expected infective period of the herd is given by:

E [infective period of herd] = N X E [infective period of animal]

17 Axe_AF(x)
= N E 	

X!x=1

as opposed to the earlier deterministic estimate of NF(XIN) for the herd under uni-

form tick challenge (rule S11). The functions for the deterministic and probabilistic

infective period, F(z) and F4(z), and effective tick challenge, G(z) and G4(z), are

contrasted below in figures 17 and 18.
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Figure 17.	 Infective period of cattle under constant and Poisson attachments.
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Figure 18. Functions G(z) and G4(z) for effective tick challenge for constant and

Poisson attachments.

The main effect of Poisson attachments is to extend the right hand tail of each

function. This heavier tail influences the behaviour of the system, which can be seen

in the bifurcation map of figure 19 and is summarised in table 7 below.
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Figure 19. Bifurcation map showing the behaviour of the level of infection in the

tick population where attachments are Poisson, for increasing disease-potential (D).



Table 7. The behaviour of the level of infection in the tick population for various values

of D, under function F4(z).

Disease-potential (D)

D < 0.5

0.5 < D < 9.65

9.65 < D < 12.45

12.45 < D < 13.05

13.05 < D < 13.15

13.15 < D < 13.25

13.25 < D < 14.85

14.85 < D < 16.25

16.25 < D < 16.75

16.75 < .0 < 16.85

16.85 < D < 19.05

19.05 < D <19.9

:

Limiting behaviour

Extinction.

Equilibrium level achieved

Cycling between two limits

Cycling between four limits

Cycling between eight limits

Cycling between 16 limits

Chaos

Note: 6-cycle at D = 13.4

5-cycle at D = 13.9

Cycling between three limits

Cycling between six limits

Cycling between 12 limits

Chaos

Note: 5-cycles at D = 18.1

and 17.55 < D < 17.75

Cycling between four limits

(two close to zero)

Conclusions

In general the inferences made from this model are similar to those made earlier. It

should be noted, however, that the system can never attain catastrophe. This is because

the right hand tail of the function G4(z) approaches zero asymptotically, and so there

is no non-zero value of z for which G4(z) equals zero. This is rather unrealistic, as

there must come a point, L say, where for z > L, G4(z) corresponds to an infection

of less one infected acinus, or even less than one sporozoite.
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4.4.5 Drug treatment of infected cattle

A small amount of data from clinical trials performed by Wellcome Research Labo-

ratories was made available to investigate and quantify the effects of drug action on

the disease response of treated cattle. This data is discussed in more detail in Chap-

ter 5. However, the main effects of drug treatment are increased survival chances of

cattle receiving normally lethal tick challenges; reduced probability of infected cattle

being infective to feeding ticks; and longer infective period in recovering cattle that are

infective.

In order to construct a model allowing for chemotherapy, the following rules are

required in addition to those presented earlier:

T4. Cattle that would die if left untreated have a probability, f, of death following

treatment.

T5. Those animals that would normally die on day z without treatment, will die on

day Dx if the treatment is unsuccessful, and will be infectious to feeding ticks.

T6. Those animals that recover following treatment will be infective to feeding ticks

with a probability i.

In the absence of chemotherapy, rule S6 dictated the relationship between challenge of

infected ticks, x, and the resulting infectious period in the animal, F(z):

2z;
/	

0 < z < 4,
F(x) = 8 — (8/13)(z — 4); 4 < z < 17,

0;	 otherwise.

where, cattle recover from challenges of z < 4, and die if the challenge exceeds this.

Taking account of the three new rules, the function F(z) can be transformed

into a function F5(z), which describes the infectious period of cattle treated with an

antitheilerial agent. This transformation can be brought about by performing three

consecutive mappings on the function F(z):

F(x) 4 Fl(x) -E1n F2(z) -24 F5(z)

Mapping [1] takes account of the increase in the day of death in cattle that re-

ceive potentially fatal tick challenges; mapping [2] accounts for the reduced chances of

recovering animals being infective to ticks; and mapping [3] allows for the reduced prob-

ability of animals dying from potentially fatal doses. These mappings are illustrated in

figure 20, and are discussed below.
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Figure 20. Transformations on the infective period function F(x) to account for

chemotherapy.

Mapping [1] — using rule (T5).

Animals receiving challenges which would normally be fatal if left untreated (x > 4)

will now survive for a longer period before dying. Moreover, if their infective period is

normally I days, it will now be dl days, where d = (Dx — 13)/(x — 13), due to the

prolonged disease response. Allowing for this, the infective period function becomes:

2x;
/	

0 < x < 4,
Fl(x) = 8d — (8/13)d(x — 4); 4 < x < 17,

0;	 otherwise,

as illustrated in Figure 20, where a2 = dal.

Mapping [2] — using rule (T6).

In those animals that would normally recover from challenge without drug treatment

(x < 4), chemotherapy may mean that piroplasms will not always be produced. Only

a proportion, i, of these animals will be infectious to feeding ticks, having an infectious

period of 2x days, the remainder will not transmit infection, being infectious for 0

days. Thus, for challenges of no more than four infected ticks, the expected infectious

period is given by:
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F(x) = i(2x) + (1 — i)(0) = 2ix, (z � 4).

So the infective period function Fl(z) is transformed to the function F2(x), where:

/	
2ix;	 0 < z < 4,

8d —F2(z) =	 (8/13)d(z — 4); 4 < x < 17,

	

0;	 otherwise.

This is illustrated in Figure 20, where a3 = ial.

Mapping [3] — using rule (T4).

Those cattle receiving potentially fatal doses (z > 4) have a probability f of dying

with infective period 8d— (8/13)d(z — 4), and a probability (1 — f) of recovering with

infective period 8i. Those cattle receiving very high doses (x > 17) still have a chance

(1 — 1) of recovery with infective period 8i. Allowing for this, the final transformation

yields the required infectious period function F5(x) below:

2ix;

1	

0 < z < 4,
8 f d(x — 4) F5(x) = 8f d + 841 — f)

	

	 ; 4 < z < 17,
13

8i(1 — f);	 otherwise.

This is illustrated in Figure 20, where a4 = fdal + (1 — f)ial, and a5 = (1 — nial .

Analysis of the model

As before, the height of this function G(z) is dependent on the size of the disease-

potential D = Nap,

where

N = the number of ticks attaching to each cow per day.

a = the probability that a tick receives infection from an infective animal.

p = the probability that a tick survives to reattach.

The higher the parameter Nap, the greater the amplitude of G(x). This effects

the gradient of G(x) at the intersection of the curve y = G(x) with the line y = x ,

and hence the behaviour of the system: X,,, = G(X„_ i ), through time (fixed point

theorem). However, in this case the shape of the curve G(x) is also influenced by the

choice of parameters d, i, and f. The size of i(1— f) controls the steepness and extent

that the function G(z) decreases from its maximum value. The parameter d has an

influence on the size of the maximum. This can be seen clearly in Figure 21.
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(11) d • 1.6, I • 0.5, f • 0.5
	

(b) d • 1.5, I • 0.2, f • 0.8	 (C) d • 1.5, I • 0.8, f • 0.2

000	 ono

X

Figure 21. Forms of the function G(z) for the chemotherapy model under different

values of the parameters i and f, when d = 1.5.

In each case (a), (b), and (c), the parameter d takes a value of 1.5. In case (a), i

and f are both 0.5, and the function G(z) is seen to steeply rise to its maximum at

z = 4+, then descend gradually to become a straight line at z = 17. Case (c), when

i = 0.8 and f = 0.2, is similar but the peak caused by the maximum is smoothed out

due to the large value of i(1 — f). In case (b), i = 0.2 and f = 0.8, however, the

maximum of the function is very well pronounced due to the steep descent to a small

global minimum value at z = 17. The behaviour of the system with chemotherapy is

therefore going to be very dependent on the choice of parameters d, i and f.

The systems described by cases (a) and (c) will achieve stable equilibria at all

disease-potentials, due to the gradient of the functions G(z) never exceeding 1 in

absolute value at the point of intersection of the line y = z (fixed point theorem).

However, case (b) is of greater interest. Clearly, due to the function G(z) becoming

a straight line for z > 17, the system Xn = G(Xn—i) , will eventually acheive a stable

equilibrium for Nap large enough. Before that point some interesting behaviour is

observed, as illustrated by figures 22 and 23.

Figure 23 shows the behaviour of the system for disease-potentials from 7.0 to

57.0. The predicted eventual stable equilibrium occurs at around D = 55. Figure 22

shows the behaviour at disease-potentials of 7.0 to 13.0 in more detail. Clearly the

discontinuities in the function G(z) produce some irregular changes in the behaviour

of the system.
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Figure 22. Bifurcation map showing the behaviour of the level of infection in the

tick population for the chemotherapy model with d = 1.5, i = 0.2 and f = 0.8, and

disease-potentials (D) increasing from 7 to 13.

Infected ticks

7	 17	 27	 37
	

57
Disease-potential (D)

Figure 23. Bifurcation map showing the behaviour of the level of infection in the

tick population for the chemotherapy model with d = 1.5, i = 0.2 and f = 0.8, and

disease-potentials (D) increasing from 7 to 57.

Conclusions

The administration of chemotherapy on a herd appears to be a stabilising influence on
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the resulting infection level in the tick population. Certainly, little complex behaviour

is observed for most drug regimes, making ECF outbreaks more predictable. There is

clearly a balance of effects to be allowed for when considering the application of a new

drug. A drug that extends the life-expectancy of a suffering animal, also extends its

infectious period, and so has a bad influence on the level of infection amongst the ticks,

allowing infection to increase. However, a drug that reduces the chance of a recovering

animal being infective has the opposite effect. These two factors, which are both side-

effects of most drugs, have to balance themselves out to prevent the infection level

in the tick population increasing and producing problems in the future. In the field,

most chemotherapy regimes are administered alongside acaricidal dipping strategies,

which would certainly prevent the tick population receiving high infection due to the

prolonged disease reactions of suffering cattle.

The functions G(z) estimated from clinical trials data for single and double doses

of Parvaquone totalling 10mg/kg and 20mg/kg are shown below in figures 24 and 25.

The higher doses clearly result in less infection in the tick population. Single and

double doses do not appear to effect the resulting transmission of infection to ticks,

although double doses are significantly more effective as a cure of the disease, and are

those recommended by the manufacturer.

(I) Parvaquone, lx10mg/ko	 00 Parvaquone, lx20mg/kg

C(X)	 O(X)
10	 18

10 1	 10

.

o	 a	 lo'	 is	 so	 as	 ao
X

d • 2.063, I • 0.688, f • 0.486

I	 io	 as	 . ao	 as	 90

X
d • 2.863, I • 0.286, f - 0.033

Figure 24. Forms of the functions G(z) estimated for single treatments with Par-

vaquone at doses of 10 and 20mg/kg.



(I) Parvaquone, 2x5mg/kg

o(x)
II

(II) Par/mime, 2x10mg/kg

0(X)
15

10

4

10

•

• -,• 10	 is	 20	 24	 ao
X

d • 2.821, I • 1.000, f • 0.033

S	 10	 is	 20	 24	 so
X

d • 1.958, I • 0.242, f • 0.057

Figure 25.	 Forms of the functions G(z) estimated for double treatments with

Parvaquone at doses of 10 and 20mg/kg.

4.5 DISCUSSION

One of Africa's possible answers to disease control is to breed cattle for resistance.

The indigenous African cattle are genetically more tolerant than exotic breeds to the

important African diseases such as trypanosomiasis and ECF. Previously, exotic cattle

were introduced and crossed with indigenous animals in attempts to increase milk and

liveweight productivity. This, however, resulted in increased disease prevalence. Due

to the severe effects of disease, thoughts are now returning to support the theory that

natural disease resistance outweighs the benefits of increased productivity.

Tick resistance is a property that is thought to be partly innate and partly acquired.

Resistance to ECF is also seen to vary with different breeds of cattle. Therefore, both

these traits are properties that can be developed by the careful management of breeding

programs. The models presented in sections 4.4.1 and 4.4.2 illustrate the benefits of

the tick and sporozoite resistant traits respectively.

Results from the earlier model of section 4.3 and the model for increased resistance

to ticks of section 4.4.1 are given in tables 3 and 4 respectively. It is clear that under each

model the level of infection amongst the tick population exhibits the same behavioural

characteristics. However, equivalent behaviour occurs at much higher disease-potentials

under the model allowing for the effects of tick resistance. For example, at a disease-

potential of D = 7 a single equilibrium level of infection is obtained with both models.

For the no tick resistance case, this level represents an effective tick challenge of around

12 infected ticks per cycle. When S = 2, as for the example in section 4.4.1, the

model for increased tick resistance predicts an equilibrium level of around effectively 9
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infected ticks per cycle. Tick resistance is clearly a property of great value in lowering

the number of infected ticks present, and therefore lowering the number of fatalities

caused by ECF.

The benefits of breeding for sporozoite resistance are not so straight forward. Com-

parison of tables 3 and 5 shows that similar behaviour occurs under each model, and

equivalent behaviour occurs at higher disease-potentials with the model assuming sporo-

zoite resistance. However, in the example considered in section 4.4.2, the threshold level

required for a disease reaction was represented by an effective tick challenge of 2 in-

fected ticks. Comparing figures 9 and 12 shows that this causes the equilibrium level(s)

predicted by this model to be at higher values than those predicted by the earlier model.

This is because more ticks are now required to bring about a similar disease reaction.

For the parasite to survive, it must cause a disease reaction in the host it infects. If no

disease reaction occurs, no piroplasms will be produced in the host, and the parasite

will not be passed on to future feeding ticks as the life cycle has been broken. Thus, if

the parasite is to exist, it needs to be able to adapt to the more hostile environment

by infecting more ticks. This illustrates an important warning. Although at similar

disease-potentials the number of fatalities amongst a sporozoite resistant herd are likely

to be lower than amongst a fully susceptible herd, the corresponding infection level in

the tick population is likely to be higher. Great care, therefore, must be taken when

introducing fully susceptible stock into areas colonised by ECF resistant cattle.

The final disease control method considered was chemotherapy, where infected cat-

tle are treated with an antitheilerial drug to increase their chances of survival. Com-

parison of figures 9 and 23 shows that not only can a drug have the effect of reducing

fatalities amongst a herd of cattle, but it may also stabilise the behaviour of the level

of infection in the tick population, making disease challenge more regular and more

predictable. Chemotherapy depends on rapid diagnosis of disease, which is often dif-

ficult in the African situation. It is also greatly limited by expense. It could well be,

therefore, that the answers to the problems of disease in the African cattle industry lie

in the pool of genetic information contained in the cattle population of Africa.



5. SIMULATION MODELS OF TICK AND CATTLE POPULATIONS

AND DISEASE TRANSMISSION

"The rule is, jam tommorrow and jam yesterday

— but never jam today."

Lewis Carroll, Alice Through The Looking-Glass.

The models described earlier in chapters 2 and 4 illustrate the difficulties involved in

extracting analytical solutions from even very simple mathematical models. Modelling

using computer simulation provides a way of obtaining specific solutions to models of

complex mathematical structure. This chapter discusses the formulation of computer

simulation models to investigate East Coast fever and its control. Certain mathematical

techniques are discussed, but the models themselves are not presented in mathematical

form as analytical results are not sought. Four models were developed: a tick model,

an ECF model, a dipping model, and a chemotherapy model. The tick model is a

population model which describes the day-to-day changes in the numbers of eggs, lar-

vae, nymphae and adults in relation to site-specific environmental factors. The ECF

model simulates the transmission of the East Coast fever infection between such a tick

population and a herd of cattle. The number of cattle dying from the disease under

different circumstances can be investigated. The dipping model introduces acaricidal

tick control strategies to consider the effects of dipping both on the tick population and

on the disease, and the chemotherapy model investigates the effects of drug treatment

on disease prevalence.

In the following sections, each model is presented in turn, along with the expert

knowledge important in their composition. The tick model is described first, as each

of the other models are centred around its basic structure.

5.1 THE TICK MODEL

The initial stage in the formulation of any life cycle model is to divide the cyde into

a sequence of distinct stages, and to define properties associated with each stage. The

life cycle of the R. appendiculatus tick was discussed in detail in chapter 3. It was

observed that ticks develop through four successive stages: egg, larva, nymph and
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STAGES IN THE TICK
LIFECYCLE

QUESTING
NYMPH

If
ATTACHED

NYMPH

QUESTING
LARVA/

EGG

TIME DELAYS: TI - egg development and larval pre-attachment; T2 - larval feeding.
development, and nymphal pre-attachment; T3 - nymphal feeding, development, and
adult pre-attachment; T4 - adult questing; T5 - adult feeding; Te - pre-oviposition;

MULTIPLIERS: 11,ntal - survival rates during development to larva, nymph and adult;
I2,n2,a2 - daily survival rates of larvae, nymphae and adults whilst questing;
p - daily attachment chance for questing tick;	 F - proportion of attached adults that
are female; b - fecundity of egg laying female.

KEY

0 - multiplier

n , time delay

- accumulator

adult. For the purposes of modelling, these stages can be further subdivided into

periods of development, questing, and feeding which takes place during attachment.

These twelve distinct stages are illustrated in figure 1.

ATTACHED	 DEVELOPING

r

LARA ---11. NYMPH \
PREOVIPOSITIONING	 DEVELOPING

FEMALE	 ADULT

NATTACHED	 QUESTING
FEMALE 4- •••' FEMALE

ATTACHED	 QUESTING....
MALE	 MALE

Figure 1.	 Important stages in the life cycle of R. appendiculatus

The life cycle can be translated into a mathematically concise form, using a network

representation (Lewis, 1976) as displayed below in figure 2.

Figure 2.	 Network representation of the life cycle of R. appendiculatus
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In this representation, square boxes represent time delays, corresponding to the

times spent developing, feeding, or questing. The length of each delay, in days, is given

by the parameter in the box. A cohort of ticks arriving at a time delay cannot proceed

until the appropriate number of days has elapsed. Circles represent multipliers and

contain mortality rates (11, n1 , al, 12, n2, a2), attachment probabilities (p), the

proportion of female to male adult ticks (F), and the number of eggs laid by an egg-

laying female ( b ). When a cohort of ticks arrives at a multiplier, a number of ticks are

added or removed from the cohort, depending on the value of the multiplier. Questing

is represented by a feedback loop or accumulator. Ticks entering the loop are added to

the pool of ticks already questing. An individual tick has a probability p of attaching

to a host on a given day. Those ticks that are successful in attaching that day go on to

feed, but the remaining ticks encounter a time delay, normally of one day, before they

again have an opportunity to attach.

The network description of the life cycle is as follows. A cohort of newly laid

eggs commence by entering the time delay box containing the variable Ti. All the

development time delays are variable, and are driven by field temperatures (Branagan,

1978). Ti days later the eggs emerge as questing larvae. However, only a proportion,

11, of the initial cohort of eggs will survive to commence questing as larvae. Each

day, questing larvae have a probability p of attaching to a host, and a survival rate

of 12. Larvae that find a host spend a length of time, T2, feeding then returning

to the vegetation to eventually emerge as questing nymphae. Attached larvae have

a probability, n1 , of feeding successfully and surviving to join the pool of questing

nymphae. Nymphal ticks have a daily survival rate of n2 whilst questing.

Successful questing nymphs are delayed by a time, T3, corresponding to the time

spent attached to the host, and the time spent moulting into an adult tick. The

probability of a nymph surviving to become a questing adult is given by al. The

activity of adult ticks is controlled by climate (Short and Norval, 1981), and so an

adult tick that is unable to attach to a host on a given day will have to wait for a

variable length of time, T4, before it can quest again. The probability that a given

adult tick survives the T4 days of inactivity is given by a2.

Attached adult ticks spend T5 days feeding and mating whilst on the host. A

proportion, F, of these ticks are female and go on to the egg laying stage, which

consists of a pre-oviposition time-delay, T6, followed by the production of b eggs.

The network representation effectively identifies the minimal set of parameters
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required for modelling the tick life cycle. These parameters must be estimated, where

possible, from published findings. In the absence of published results, they should

at least be based on expert opinion. The model allows certain parameters to remain

variable, and allows the user the facility to alter their value. Such parameters may be

those that are important in accurately describing the site being studied. Alternatively,

these may be parameters which have not been measured in the literature, and the value

of these can be investigated by computer experimentation. Once these parameters have

been estimated, the network structure can be taken and transformed into programming

code, to create a working model of the life cycle. The programming language used was

Prospero Pascal, and details of the computer programs are discussed later in chapter

7.

The remainder of this section concentrates on the data available for estimation

of these fundamental model parameters, and, where appropriate, looks at methods of

incorporating this data into the model.

5.1.1 Time delays

The time delays in the tick life cycle are attributable to times spent developing, such as

the nymph to adult moult; pre-questing times, when the tick cuticle hardens following

the moult; attachment times, when the tick feeds and adult ticks mate; and the periods

of inactivity of adult ticks. For example, the time delay T2 is composed of the time

spent feeding in the larval stage, the duration of the larva to nymph moult, and the

pre-questing time of the nymphal tick. Consider each attribute separately.

(1) Development times

The development stages of ticks have been studied extensively. Branagan (1973a,b)

investigated the climatic factors controlling tick development both in the laboratory

(Branagan, 1973b) and in the field (Branagan, 1973a). All four development phases:

pre-eclosion, larva to nymph moult, nymph to adult moult, and pre-oviposition, were

studied. A similar study was later reported by Punyua (1984).

The work of Branagan (1973a,b) provides the basis for a model of tick development

driven by climate. The laboratory data provides the detailed information required for

constructing a model, and the field data provides a source by which to validate the

model.

In laboratory studies, Branagan (1973b) concluded that temperature was the ma-

jor factor controlling the speed of tick development. When tick populations were kept

— 90 —



at constant temperature, it was observed that higher temperatures increased the devel-

opment rate whereas at lower temperatures development was retarded. Temperatures

below 4°C were observed to be lethal to developing ticks. Between 4°C and 9°C ticks

did not develop, and between 9°C and 15°C development was very slow. Development

times were seen to reduce rapidly as the temperature was raised from 18°C to 29°C.

Above 29°C no apparent reduction in the development times was observed.

Branagan (1973b) presented data on the experimental duration of tick development

phases at each of the constant temperature regimes: 15, 18, 21, 25 and 29°C. The data

were presented in the form of the mean, modal, maximum and minimum development

times observed for each tick stage at each temperature. Due to the skewed nature of

the development times, we can assume the mode to be the most appropriate statistic

to consider at each temperature. The modal development times for each of the four

stages at each of the temperature regimes are presented below in table 1.

Table 1. Modal development periods for ticks in different stages at various constant

temperature regimes. (Branagan, 1973).

Days to develop at constant temperatures ( ° C)

18	 21	 25

Development stage:

Pre-oviposition 13 9 8

Pre-eclosion 76 52 30

Larva to nymph moult 33 18 12

Nymph to adult moult 56 28 17

For each development phase it is possible to fit curves to these data in order to esti-

mate development times at temperatures other than those observed in the experiments.

Given that development does not occur below 9°C, and the rate does not significantly

increase at temperatures above 29°C, it is possible to estimate the development time

for ticks at any constant temperature.

The literature presents two possible methods for estimation of development times

at constant temperature regimes, and then applying these estimates to the field sit-

uation where temperatures fluctuate daily and within each day. The two methods

are degree-days (H. Chao-Kuang and H.D. Levine, 1977), and development fractions

(Gettinby et al., 1974, 1979).
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(a) Degree-days

The degree-day method assumes that the relationship between the development rate,

1/D(T), and temperature, T, is linear crossing the z-axis at the threshold temperature

for development, 9°C.

On a specific day, the number of degree-days accumulated is calculated as the days

average temperature minus the threshold temperature. Denoting the number of degree-

days associated with day i as D, then development in a phase is considered complete

after n days when the sum of successive degree-days exceeds a certain total. The total

degree-days required for development can be calculated from the development rate to

temperature graph. Figure 3, for example, shows the fitted line for development rate

against temperature for the nymph to adult moult data.

Development rate (1/D(T))

0	 5	 910	 15	 20
	

25
	

90
Temperature (T)

Figure 3. Relationship between development rate and temperature for the nymph

to adult moult phase.

Using this graph it can be seen that at 20°C the development rate for the nymph

to adult moult is approximately 0.035 days. This represents a develop. ment time of 28.6

days at a constant 20°C. With a threshold for development of 9°C, a tick requires

28.6 x (20 — 9) = 314.6 degree-days to complete the nymph to adult moult. Thus, for

the nymph to adult moult, the rule for completion of development becomes:

If
n

DA) � 314.6,
i=1

Then development complete on day n

where Di = average temperature (day i) - 9.
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To apply the degree-day method to the fluctuating conditions in the field, a measure

of each days average temperature is required. This can be estimated as (maximum +

minimum temperature)/2.

It should be noted at this stage, however, that the data presented in figure 3 may

throw into question the assumption of a linear relationship between development rate

and temperature. Using figure 3 to estimate the development time of ticks kept at

15°C, yields an estimate of 52.4 days for completion of the nymph to adult moult. The

observed development time at 15°C is 75 days. Estimation inaccuracies arise due to

the development rate of these ticks increasing exponentially with temperature. This

may affect the accuracy of the method when applied to fluctuating field temperatures.

(b) Development fractions

Data for the development times, D, for ticks in each stage kept at various constant

temperatures, T, (Branagan, 1973b) provide relationships of the form:

D = f(T).

Maximum and minimum daily temperatures can be used to estimate the relationship

between temperature, T, and time of day, t (0 < t < 1). Numerical integration of

F
 = I

1 1
—dt

0 AT)

yields an estimate of the fraction of development, F,, completed by a tick in a

given stage on a given day, i. Development within a stage is considered complete when

the sum of the development fractions on successive days exceeds one:

If
n

E(Fj ) >, 1
i=1

Then development complete on day n.

This approach was satisfactorily accomplished by King et al. (1988). Using the

data of Branagan (1973b), King et al. (1988) suggested that the development time,

D(T), reduced exponentially with increasing temperature, T, for each of the four

development stages in the tick life cycle. Development times data were, therefore,

interpolated using curves of the form 1/(aX +b) or ezp{1/(aX+b)} for temperatures

at the lower end of the scale where the development time appears to decrease very

sharply with increasing temperature. Linear interpolation was employed at higher

temperatures, where development times appeared more stable. A summary of the
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development curves fitted relating development time D(T) to temperature T is given

below in table 2.

Table 2. Summary of development curves relating constant temperature T to develop-

ment time D(T). (King et al., 1988).

Development stage	 Temperature	 D(T)

Pre-oviposition

Pre-eclosion

T < 15

15 < T < 18

18 < T < 21

21 < T < 29

T < 15

15 < T < 18

18 <T< 21

21 < T < 29

exp{1/(0.00149 + 0.0193T)}

121 — 6T

37 — 1.33T

24.75 — 0.75T

1/(0.00109T — 0.00738)

280 — 11.33T

220 — 8T

115 — 3T

Larva to nymph T < 15 1/(0.00236T — 0.01458)

moult 15 < T < 18 1/(0.00258T — 0.01786)

18 < T < 21 1/(0.00899T — 0.13333)

21 < T < 25
	

47.5 — 1.5T

25 < T < 29
	

37 — T

Nymph to adult T < 15 1/(0.00139T 7 0.00750)

moult 15 < T < 18 1/(0.00111T — 0.00333)

18 < T < 21 1/(0.00555T — 0.08333)

21 < T < 25
	

93.3 — 3T

25 < T < 29
	

49.25 — 1.25T

These curves appear to describe the data satisfactorily. For example, the curves

fitted to the modal development times for the nymph to adult moult are illustrated in

figure 4.
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Figure 4. Relationship between development time and temperature for the nymph

to adult moult phase.

In this figure, the observed development time at each of the five experimental tem-

peratures is presented as a blank square accompanied by the appropriate numerical

value. Due to discrepancies in the data, the curves fitted are not perfectly smooth, as

each curve is knotted between two observed values. This, however, has the advantage

of describing the data accurately which is of greater importance to the model, as an

approximation to the true data may disregard information important in characterising

the system it describes.

These curves provide the means of estimating the length of tick development pe-

riods at any constant temperature regime. In the field, however, temperatures are far

from constant. Typical daily temperatures at an African site might range from around

10°C at 6.00 a.m., to around 35°C at noon.

In their paper, King et al. (1988) fitted a mixed sinusoidal function to each days

temperature profile. It was assumed that the minimum temperature of the day occurs at

around 6 a.m., and the maximum temperature at noon. At near equatorial locations this

assumption is likely to hold fairly rigidly throughout the year. Denote the times 06.00,

12.00, and 18.00 hrs. as t = 0, t = 0.5 and t = 1 respectively. Letting the current

days minimum and maximum temperatures be denoted as Ti and T2 respectively,

and the subsequent days minimum temperature as T3, the daily temperature profile

can be approximated by a mixture of sine functions:

T = Al + B1 sin(2rt — T/2)
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and
(T2-T1) .

B1 =I 2/ 	 7
(T2-T3) .

2	 I

where,
(T1A-T2) .

Al = {	 2 7
(T2-FT3) .

2	 )

0 < t < 0.5
0.5 < t <1

0 < t < 0.5
0.5 < t < 1

The days development fraction, Fi , can then be given by:

tO.5	 1	 t2	 1

Fi = in .
1_. --, ) dt + I

0.5 D(T)dt

where the times ti and t2 represent the lower and upper endpoints of the period of

the day when the temperature exceeds the threshold for development, 9°C.

This method has two clear advantages over the degree-day method. Firstly, de-

velopment fractions take more account of the true development time to temperature

relationship by more elaborate curve fitting, and secondly, development fractions take

more account of the way temperatures fluctuate during a given day.

(c) Comparison of predictions from degree-day and development fractions

methods.

Between 1967 and 1968, Branagan (1973a) performed an extensive experiment at

Muguga in Kenya, in an attempt to quantify the effect of temperature on develop-

ment times of ticks under field conditions. In each month of the test period, batches of

new eggs or freshly engorged larvae, nymphae or adults were deposited in transparent

plastic tubes in the vegetation. Observations on the development of ticks in each tube

were made daily, and the range of development times for tick batches deposited during

each month was presented. King et al. (1988) estimated modal development times

from these ranges. These observed development times provide a way to compare the

two proposed prediction methods.

Each model was executed using climatic data from Muguga in 1968. Temperature

data were obtained in the form of maximum and minimum temperatures for each

day of the year. For each method, development times for each phase, pre-oviposition,

pre-eclosion, larva to nymph moult and nymph to adult moult, were predicted. Tick

batches were assumed to be deposited on the first day of each month. The resulting

development time predictions under each method for ticks deposited each month are

displayed in table 3.
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Table 3. Predicted and observed development times for ticks deposited each month at

Muguga, Kenya (1968).

Pre-oviposition	 Pre-eclosion	 larva-nymph	 nymph-adult

ohs dd df	 obs dd dl	 obs dd df	 obs dd df

Jan : 15 22 13 92 70 74 33 22 23 55 40 40

Feb : 14 19 14 91 75 80 34 19 26 48 41 45

Mar : 14 25 17 96 86 88 35 25 31 52 47 53

Apr : 23 25 18 108 100 99 37 25 34 58 50 59

May : 30 28 21 102 126 114 36 28 41 58 59 71

Jun : 34 35 26 105 126 117 42 35 48 65 79 83

Jul : 42 46 34 98 116 107 43 46 55 64 82 78

Aug : 21 41 32 99 100 97 36 41 45 56 67 66

Sep : 15 30 20 99 88 88 27 30 33 '46 51 52

Oct : 18 22 16 86 83 85 26 22 27 49 45 52

Nov : 17 27 20 84 84 82 29 27 36 48 51 56

Dec : 14 25 17 80 75 76 25 25 30 43 47 46

ohs — observed value, 	 dd — degree-day prediction,

df — development fraction prediction.

The observed development times and the predicted times using the development

fractions method were taken from King et al. (1988). The predicted development

times for the degree-day method were calculated by using (maximum + minimum

temperature)/2 as an estimate of each days average temperature. The number of

degree-days required for complete development in each phase was taken to be 108.0 for

pre-oviposition, 550.0 for pre-eclosion, 161.8 for the larva to nymph moult, and 314.6

for the nymph to adult moult.

Inspection of the results shows that both methods perform fairly well, although

a number of bad estimates do occur — such as for the nymph to adult moult in July.

The development fraction method appears to provide more accurate estimates in well

over 50% of the total predictions. However, the degree-day method predictions are

extremely good considering the simplicity of the model.

— 97 —



Because the development fractions method appears to perform slightly better,

and because the method appears to take more account of the physical process, it is

this method that is used in the tick model. It should be noted that the development

fractions method assumes all members of a cohort of ticks entering a development phase

on the same day will complete development in the same period of time. This has many

programming advantages, as treating large numbers of ticks as cohorts conserves both

computer time and memory, allowing large tick populations to be efficiently simulated.

However, the assumption will not always hold. Development times within batches of

ticks can vary considerably, especially at lower temperatures. This has consequences for

the model, as non-constant developments will smooth out the profiles of ticks in each

stage throughout the year. At present, large numbers of eggs and larvae developing

at the same time cause large jumps in the egg and larval frequency curves. This may

effect the predicted spread of disease.

The experimental results of Branagan (1973b) provide the mean, mode, maximum,

minimum and standard deviation of development times of ticks in pre-oviposition, pre-

eclosion, larva to nymph moult, and nymph to adult moult phases. In the absence of

the observed probability distributions, it is possible that this data could be used to

estimate the probability distribution for the development time of ticks in each phase.

Assuming that theoretical probability distributions could be estimated for the

constant temperature regimes reported by Branagan (1973b), then it should be possible

to infer the probability distributions of other constant temperatures by interpolation

over a surface. In a similar way to the development fractions method it should then

be possible to make some inferences about the range of probable development times

of ticks under fluctuating temperatures. Section (d), below, highlights the difficulties

in estimating the distribution of tick development times from very limited data, and

illustrates the problems associated with such a method.

(d) The distribution of tick development times

Developments at constant temperature

At a constant temperature T, the time taken by a tick to develop through a specific

phase, D(T), is given by

D(T) =-- AT + ET t

where AT is the mean development time of ticks at temperature T , and ET is the

error associated with that estimate such that E[ET] = 0 and Var [ET] -..- al. 4 is the
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variance of the development times at temperature T.

Thus E[D(T)] = PT, and Var [D(T)] = 4, which can both be estimated from the

experimental results of Branagan (1973b) for a number of different values of T.

Development fractions at constant temperature

Letting FT be the development fraction associated with constant temperature T, then

1 	 1
FT = 17(-7—,) (pT + eT)

1	 ET -1
= (-)(1 + —) •

PT	 PT

By Taylors theorem this becomes

ET	 El.
+ — +

PT	 PT P'T PT

Second order approximations to the mean and variance of the development fraction at

constant temperature T are

	

pri 1	 2	 -3
v i 	 CT j_ ET	 CT	 )1

2	 „3 ' ' • vi

	

PT	 PT PT PT

ER-xi — -ET + 4)1

	

PT	 PT AT

	

1	 2

= (- )(1 	)

	

PT	 PT
Var[FT] = E[F] — E2[FT]

	1 	 2E7,	 3E2
E[()(1— —

	

PT	 PT PT
1	 o2

()(1+
PT	 PT

	

34	 1	 „.2

- (-)(1+ 4)2

	

AT	 PT	 AT	 AT

	

1 I 03,	 O4
= k	

t

2 A 2
AT PT PT

At each temperature, the mean development time is seen to be much greater than

the variance of development times. Hence, disregarding terms of order (eThiT) 3 and

above, should not result in a great loss of accuracy in these estimates. However, given

the mean and variance of FT, it still remains to find the probability distribution of

FT if we wish to randomly generate development fractions. Remembering that the

development fraction is the inverse of the development time, development fractions can

be randomly generated if we know the distribution of the development time D(T).

— • • .A
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Distribution of the sum of development fractions

Development was defined complete when the sum of each days development fractions

first exceeds one. Letting Sn be the sum of development fractions for the first n days

of development, then
n

Sn = EfFTi}
1=1

where FTi is the development fraction associated with day i, at constant temperature

T. As T is constant, the FTi are identically distributed having the same mean and

variance as estimated earlier. It would also appear fair to assume that for a given tick

the development fractions for each day will be independent of each other.

By the central limit theorem, as Sn is the sum of n independent identically dis-

tributed random variables, Sn will tend towards a Normal distribution with mean and

variance:
n	 n

E[Snj = E[E{PTi}] = E{E[PTia
1=1	 1=1

1)(	

0.2
= n(-1 + 4-)

AT	 AT
ra	 n

Var[Sn] = Var[E{FTi}l = E{Var[FTi]}
i=1	 1=1

= n(12—„ ) ( c,-23L — ;-44.)
PT PT PT

Thus, Sn , N(n()(1-1- g ),nor )(g_ (4 )),_.	 ..,	 ,-7'	 ,-T	 r-T

Distribution of the number of days to develop

Denote the number of days required for a tick to complete development as N. The

probability that a tick has developed by day N is equal to the probability that the

sum of development fractions is greater than one by day N. That is

Thus,

P(N < n) = P(Sn > 1)

P(N = n) = P(N < n) — P(N < n — 1)

-. P(Sn > 1) — P(Sn—i > 1)

= {1 — P(Sn < 1)} — {1 — P(Sn—i < 1)}

= P( Sn—i < 1) — P(Sn <1)
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Standardising Sn— i and Sn this becomes

1 — — 1 )( 1 /PT)( 1 +4/4)= P(Z <
— 1 )( 1 1147'2 )(414 —	14)

)

— P(Z 1 — n(11 itT)( 1 + (414) <
A/n( 114)(414 — 014 4)

)

where Zr-N(0,1).

Thus, the probabilities of the value of N, the time to develop, can be estimated

from standard Normal tables.

Results

Consider the data on development times presented in the experiments of Branagan

(1973b) for the larva to nymph moult phase. The range, mean, mode and standard

deviation of development times observed for batches of 2749 to 2840 ticks kept under

constant temperature regimes of 18°C, 21°C and 25°C are presented below in table

4.

Table 4. Distribution of development times of ticks moulting from larva to nymph.

(Branagan, 1973b).

Development (days)

Temperature(°C) Minimum Maximum Mode Mean Standard deviation

18 31 41 33 34.30 2.117

21 16 22 18 18.12 1.066

25 10 15 12 11.89 1.049

The data suggest that the distribution of development times of ticks at constant tem-

perature is skewed.

Using the above theory, the distribution of the larva to nymph development time

can be predicted and compared to the observed data. Consider first development at

25°C.

At 25°C the sum of development fractions, S n (25) is assumed to follow a N(0.0848n,

(0.00739)20) distribution. Thus, P(Sn < 1) =	 — 0.0848n)/0.00739y4O.

P(Sn < 1) is calculated as 1, 1, 0.9971, 0.2530, 0.000066 and 0 for n taking

values of 9, 10, 11, 12, 13 and 14 days respectively. Hence, P(N n) is calculated as
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0, 0.0029, 0.7441, 0.2529, 0.000066 and 0 for n equal to 10, 11, 12, 13, 14 and 15 days

respectively.

This expected distribution of development times is certainly skewed, although its

range is smaller than that observed. The expected range is from 11 days to 14 days,

whereas the observed development times vary from 10 days to 15 days. This inadequacy

is further highlighted by the results of the expected development times at 18°C.

At 18°C the sum of development fractions, Sn (18) is assumed to follow a Normal

distribution with mean and variance 0.02927n and (0.0017960) 2n respectively. This

gives rise to the following probability density function for N, the number of days to

develop.

n <32 33 34 35 36 >37

P(N = n) 0 0.0046 0.3169 0.6715 0.0111 0

The expected range in development times is from 33 to 36 days, whereas the

observed range was from 31 to 41 days.

In both cases, the expected range in development times is smaller than that ob-

served. The most likely reason for this is that the assumption that development frac-

tions from day to day are independent is not valid. A tick developing slowly on one day

may be morphologically different to other ticks, and so may be likely to develop slowly

on other days. Without allowing for this dependence structure, the expected variation

in development times is likely to be smaller than that observed, which is consistent

with the results generated. In the absence of hard data it is difficult to establish the

true distribution of D(T).

Without a well fitting theoretical probability distribution, or an accurate observed

distribution, it is difficult to progress further with this method. As described earlier,

if obtained, such a method would be difficult to implement efficiently into a working

model due to limited memory and user-time (see chapter 7). In the absence of a suitable

alternative, the model employs deterministic development time prediction.

(2) Pre-questing times

The pre-questing time is the minimum time that a newly emerged larva, nymph or adult

spends in the vegetation preparing to commence questing. Minimum durations pro-

posed by Branagan (1973b) were 13 days for unattached larvae, 17 days for unattached

nymphae, and 21 days for unattached adults. These are treated as constant time delays

as it is uncertain what, if any, factors control the length of these periods.
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(3) Attachment times

The length of time that a tick spends attached to a host is fairly constant within each

stage, larva, nymph, adult male and adult female. For attached larvae and nymphae,

Branagan (1973b) estimates feeding periods of 5 and 6 days respectively. For attached

male and female ticks, Gettinby (1987) quotes estimated durations of 18 and 9 days

respectively. These estimates were obtained from personal communication with Dr. R.

M. Newson.

(4) Adult activity periods

The seasonal occurrence of R. appendiculatus has been well documented at a number

of different locations. MacLeod and Colbo (1976) and MacLeod et al. (1977) report

observations on ticks in Zambia; Yeomann (1966), Tatchell and Easton (1986), and

McCulloch et al. (1968) studied ticks in Tanzania; and Branagan (1973a,b), Rechav

(1982) and Short and Norval (1981) report the seasonal occurrence of ticks at sites in

Kenya, South Africa and Zimbabwe respectively. This is not an exhaustive list. Studies

of many other locations have also been reported.

Seasonality appears to become most marked at locations furthest away from the

equator. Equatorial locations do not experience large climatic changes from month to

month, and so tick populations remain fairly constant throughout the year.

The life cycles of some species of Ioxdid ticks, such as R. appendiculatus, are

interrupted by periods of diapause induced by seasonal climatic change (Balashov,

1968). Diapause occurs either as a pause in the development of fed ticks, or as a period

of inactivity in unfed ticks. Such inactivity in unfed ticks is known as quiescence.

Based on his extensive laboratory studies, Branagan (1973a) observed no evidence

to suggest that periods of diapause occur during the development of the engorged

tick stages. Short and Norval (1980) showed, however, that unfed , adults may enter

a period of quiescence before feeding. In a later study on the seasonality of ticks at

eight different African sites, Short and Norval (1981) inferred that daylength, rainfall

and temperature are the major climatic factors responsible for controlling quiescence

in unfed adult ticks. They also suggested that it is quiescence in adult ticks that is

solely responsible for the observed seasonality in tick populations.

The precise conditions suggested by Short and Norval (1981) for monthly activity

of unfed adults are as follows:
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If rainfall per month > lOmm

and mean monthly minimum temperature > 15°C

and (mean monthly maximum temperature <3000

or > 30°C and monthly rainfall > 20mm)

and hours of daylight > llhrs

Then adult tick active

Otherwise adult tick inactive.

By reviewing the climatic data of each month, a decision can be made as to whether

unfed adult ticks are active or quiescent. In the absence of daylength data for most

sites, only the rules for rainfall and temperature are used by the model to determine

periods of inactivity.

The seasonal patterns of ticks observed in simulations can be compared to those

presented in the literature to validate the model (see chapter 8).

5.1.2 Survival rates

Many studies on tick survival have been reported. In Kenya, Branagan (1973a) provided

the first quantitative data on the survival of R. appendiculatus ticks under quasi-natural

conditions at two sites, Muguga and Kedong. More recently, also in Kenya, Newson et

al. (1984) produced lifetables for tick survival based on the observed survival of ticks

kept in paddocks at Muguga.

Tukahirwa (1976) investigated the longevity of ticks under laboratory conditions.

Different combinations of relative humidity and temperature were seen to affect sur-

vival. His study suggested that eggs and larvae were especially sensitive to low humidity,

and that as temperatures increased longevity decreased. Tukahirwa.found that in the

micro-environment of a long grass habitat, temperature and humidity fluctuations were

much less pronounced than in a similar short grass habitat, suggesting that eggs and

larvae are especially vulnerable in short grass habitats. Tukahirwa also performed a

number of experiments on tick survival under changing temperature regimes. No simple

temperature dependent relationship was established.

More recently, Pegram and Banda (in press) investigated the survival of ticks under

quasi-natural conditions in Zambia. Over a two year period, ticks of each stage were

placed in pastures at times coinciding with their natural life cycle. Data was recorded

in the form of 95% mortality periods. Short (1984) also performed field experiments on
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the survival of ticks in Harare, Zimbabwe. Between 1980 and 1981 batches of eggs or

unfed ticks were deposited in both short and long grass pastures in the three distinct

climatic seasons: warm wet (February), cool dry (June), and hot dry (September). The

survival of all tick stages was seen to be not significantly affected by season in the long

grass habitat. However, in short grass the survival of eggs and larvae was significantly

reduced during the hot dry season.

Daily survival probabilities estimated from the 95% survival periods quoted by

Pegram and Banda (in press) are given below in table 5.

Table 5. Estimated daily survival probabilities of ticks in various stages of development.

Tick stage	 Daily survival probability

Pre-eclosion development

Larva to nymph moult

Nymph to adult moult

Pre-oviposition development

Questing larva

Questing nymph

Questing adult

0.988

0.997

0.995

1.000

0.950

0.975

0.991

These survival rates appeared to produce the closest to a steady state tick popu-

lation in most simulation experiments when the fecundity of ticks was 4000.

The daily survival probabilities of eggs and larvae in dry seasons in short grass

habitats were estimated as 0.700 and 0.841 respectively, from the work of Short (1984).

A month was defined dry when the monthly rainfall total fell below 5mm (Dr. A.

Norval, personal communication).

Norval (personal communication) suggested that the daily survival rates of unfed

adult ticks increase, perhaps as much as tenfold, during periods of quiescence. This is

due to the tick remaining inactive in a suitable niche where the micro-environmental

conditions are stable and favourable. In the model, daily survivals of unfed adult ticks

are increased to 0.998 and 0.997 for females and males respectively during periods of

quiescence, estimated from the results of Newson et al. (1984).

Fivaz (1984) investigated the feeding stages of the tick and estimated the percent-

- 105 —



age of attached larval, nymphal and adult ticks that feed successfully to be 20%, 35%

and 20% respectively. If a tick is unable to feed successfully, it is unlikely to be capable

of attaching to another host, and so these feeding rates can be regarded as survival

rates.

The use of random numbers in model decisions

Random numbers can be used to decide whether or not a tick survives a particular day,

based on the daily survival probabilities presented above. Most modern programming

languages are supplied with library routines including random number generators. Such

a generator produces a stream of pseudo random numbers. These numbers are not

truly random as each number is calculated from the value of the last. However, most

random number generators are sophisticated enough to provide a sequence of numbers

that certainly appears random. Commonly used algorithms for generation of Uniform

random numbers are discussed by Ripley (1988).

Thus, letting the daily survival rate of a certain tick be F, a typical decision can

be made by simulating a Bernoulli trial as follows:

1. Generate a Uniform random variate, U, in the interval [0,1)

2. If U < P then the tick survives that day

Otherwise the tick dies.

More generally, for n ticks in a particular stage with daily survival rate F, the binomial

distribution can be used as the sampling distribution to simulate the number of ticks,

X, that go forward:

1. Let X = 0

2. Generate a Uniform random variate, U, in the interval [0,1)

3. If U < P then X = X + 1

4. Repeat steps 2 and 3 n times

5. Return X.

The speed of the simulation model greatly depends on the efficiency of the program-

ming. Procedures and functions should be executed as little as possible. Performing

one Bernoulli trial for each tick in each stage will be slow and inefficient. However,

when n is large and P is small, the Poisson approximation to the binomial distribu-

tion can be used. An algorithm for the generation of random variables from a Poisson

process of rate nP is as follows (multiplicative method):
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1. Let X = -1, M = 1

2. Generate a Uniform random variate, U, in the interval [0,1)

3. Let M=MxUandX=X+ 1

4. If M > e-nP then go to step 2

5. Return X

Alternatively, when n is large and nP or n(1 - P) > 5, the Normal approximation to

the binomial distribution can be used. The polar-marsaglia algorithm for the generation

of random variables from a Normal distribution with mean nP and variance nP(1-12)

is as follows:

1. Generate Uniform[-1,1) random variates Ul and U2

2. Let W = U1 2 + U22

3. If W> 1 then go to step 1

4. Let C = V-2W-1 /nW x Ul

5. Return X = C VnP(1- P) + nP

Derivations of the algorithms for Poisson and Normal random variable generation are

based on the theoretical properties of sums and products of independent random vari-

ables. These can be found in Devroye, L. (1986) and Ripley, B.D. (1987) respectively.

5.1.3 Attachment rates

No accurate measurements of the attachment rates of ticks in the field have been

published. An attachment probability of 0.04 is chosen as default, but can be adjusted

by the user. The effect of changing this parameter is discussed with other results in

chapter 8.

5.1.4 Ratio of sexes of adult ticks

The ratio of female to male ticks has been observed to follow the usual Mendelian law

for sexual reproduction, being 1:1 (Branagan, 1973b). This makes the probability of

an individual adult tick being female, F, to be 0.5.

5.1.5 Fecundity

Engorged female ticks are seen to produce between 4000 and 6000 eggs. The fecundity

of ticks is chosen to be 4000, but can be adjusted to a more appropriate value by the

user.
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5.2 THE ECF MODEL

The model for ECF follows the rules composing the tick model along with a number of

additional rules concerned with modelling the disease and the cattle population. The

tick model assumes a constant herd, whereas in this model a herd is defined where

natural births and deaths can occur on a random basis. The growth of the parasite

within infected cattle is modelled using similar rules to those described in chapter 4.

Questing ticks attach randomly to herd members, and may become infected depending

on the disease status of their host. Ticks that are infected contain a random quantity

of the parasite, which is transferred to cattle during the next blood meal. This section

concentrates on the model for the herd, and for the disease dynamics.

5.2.1 Modelling the herd

The state vector xy describes the age structure of the herd in year y. The elements

of this state vector consist of the number of cattle in each age group: 0-1 yrs, 1-2 yrs,

..., 9-10 yrs. Cattle are assumed to be removed from the herd if they exceed the age

of 10 yrs. Along with each age group is a yearly natural mortality rate pi , and a yearly

calving rate ft ( i = 0,1, ..., 9). A deterministic model for the change in herd structure

from year y to year y + 1 would use the recurrence equation

4+1 = Lxy

where L is a Leslie transition matrix (Leslie, 1945) containing the annual mortality

and calving rates of cattle in each of the age groupings:

	

i

fo fi 12	 fo

P1	 0

P2
0	 • • •

Theory presented on such matrix models (Leslie, 1945) shows that the dominant

eigenvalue of the matrix 1, is equivalent to the growth rate of the population it describes.

This provides a numerical check for the calving and natural mortality rates before

commencing a simulation. The herd growth rate must be at least one, or the herd

would eventually die out even in the absence of ECF.

The deterministic model provides a description of the expected behaviour of the

herd in the absence of disease. However, a stochastic model is more appropriate as

L=

p8 0
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the tick population is modelled stochastically. It is also appropriate to adjust the

herd parameters to allow for day-to-day changes in the herd, as the tick population is

modelled using a daily time-step. Transforming the yearly mortality rates into daily

mortality rates, an animal in age group i—i + 1 yrs will have a daily survival rate

of di = (1 _ p)1/365 . On a given day, the decision as to whether or not a specific

animal dies can be made by using Uniform random numbers. Decisions are made in an

identical way to the method described earlier for tick survivals in section 5.1.2.

Births occur at random times throughout each year. A female member of the herd

in age group i—i + 1 yrs will be expected to give birth to A offspring once during

a year, the timing of the birth being equally likely to occur on any day of the year.

Assuming equal proportions of male and female animals, a selected herd member has

a probability of 0.5 of being female. In this manner, random day-to-day changes in the

herd are taken into account.

5.2.2 Tick attachments

As discussed in the previous section, there are no published data giving estimates of

the attachment rate of ticks. This parameter is under the control of the user. However,

those ticks that do attach each day are assigned randomly to specific members of

the herd. Each herd member is equally likely to become the host for a specific tick.

In practice, however, it is unknown whether or not this assumption reflects the true

field situation. Younger animals, due to their naivety, might not avoid large clusters

of questing ticks and so become heavily burdened. Older, more wary animals, may

positively avoid such areas of high tick density, and thus avoid heavy infestation. In

the absence of data concerning the relationship between host age and tick burden, the

assumption of Uniform tick attachments appears reasonable.

5.2.3 The disease

Much of the model for the disease dynamics has been presented in chapter 4. For

simplicity, consider the disease within the tick population and the herd separately.

(a) Infection within the tick population

From the experiments of Purnell et al. (1974), ticks feeding on cattle with a para-

sitaemia exceeding 1% appear to have a probability of 0.4 of subsequently becoming

infected with the parasite. Parasitaemia was defined earlier to be the percentage of

red blood cells that were infected with the parasite per 1000 red cells examined. Ticks

feeding on cattle with lower levels of parasitaemia do not become infected. A measure
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of the size of infection received by feeding ticks can be obtained by dissection of the

ticks salivary glands. The number of acini cells containing the parasite in sporozoite

form reflects the size of infection the tick is capable of transmitting on its next blood

meal. From the data published by Purnell et al. (1974), the number of infected acini

contained in each parasitised tick appeared to follow a Normal(6.2,1.6 2 ) distribution.

Thus the algorithm for randomly assigning infection to ticks feeding on infective cattle

consists of two parts: performing a Bernoulli trial to establish whether or not the tick

is to be infected; then, if infected, sampling from a Normal distribution to assign an

appropriate amount of infection.

(b) Infection within the herd

In areas where ECF is prevalent, cattle can be assigned to five distinct groups reflect-

ing their status with respect to the disease. These five distinct disease status groups

are: healthy, infected, infective, immune and dead. Cattle can move between specific

groups, as the disease spreads amongst the herd. A healthy cow that is bitten by

an infected tick immediately becomes infected with the parasite. Thirteen days later,

piroplasms begin to appear in the bloodstream, and when the parasitaemia reaches 1%

the animal becomes infective to feeding ticks. A number of days later the animal either

dies or recovers and returns to the healthy group. Alternatively, a recovered animal

could become immune to the disease. Immune cattle may or may not be infective to

feeding ticks. The passage of disease amongst a population of cattle can, therefore, be

represented in compartmental form as shown in figure 5.

IMMUNE

APPROXIMATE TIME SCALE WW1

DEAD

Figure 5.	 Compartmental representation of the disease in cattle.

The development of the parasite within the bovine host is modelled using rules

P1—P12 contained in section 4.1 of chapter 4, and rules P6, P7 and S1—S7 of section
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4.3, with the following alterations.

(i) Rule S6, Infectious period function

In this rule, the infectious period of a recovering cow was assumed to be 5 days, due

to lack of data. This infectious period has been adjusted to 20 days in line with expert

opinion. The effects of changing this parameter are discussed with the model results in

chapter 8.

(ii) Rule S5, Superinfection rule

In the previous model, the superinfection rule was as follows:

The disease reaction following superinfection is calculated by adding the proportion

of the new dose of sporozoites that infect unparasitised lymphocytes to the level of

schizonts estimated for that day. Backward extrapolating the schizont growth curve to

day 0 will yield the number of sporozoites required to be transmitted on day 0 to bring

about this new level of infection. From this new dose specific disease responses, such

as death or recovery, are predicted.

This rule appeared to reduce the effects of the parasite too severely, as few animals

were seen to die from ECF in most simulations. The rule was abandoned in favour of

the following rule:

S5. If an infected animal receives a further infection then only a proportion of this new

infection, equal to the proportion of lymphocytes that are uninfected that day, is

assumed active. This fraction of the new dose is added to the initial infective dose

to calculate specific disease responses such as death or recovery.

(iii) Rule P10, Probability of death

From the titration experiments of Dolan et al. (1984), a probability density function

can be constructed for the probability of death over a range of infective doses. The

data presented (Dolan et al., 1984) yields the following probabilities of death, at certain

doses, presented in table 6 below.



Table 6. Predicted probabilities of death at various sporozoite doses (Dolan et al., 1984)

Infected acinus dose 	 Probability of death

40 8/10

40/32 2/9

40/64 1/9

40/128 1/10

40/256 0/9

Linear interpolation can be employed to estimate probabilities at doses not listed

below 40 infected acini. Above this dose, cattle are assumed to die from ECF with

probability 1. The sporozoite dose can be simply calculated from the number of infected

acini by assuming each infected acinus contains 17.5 x 10 4 sporozoites (rule S2). The

decision as to whether an animal dies after receiving a certain dose of sporozoites can

be made by generating Uniform random numbers to perform Bernoulli trials with the

appropriate probability of death.

5.3 THE DIPPING MODEL

The dipping model contains the ECF model along with a number rules describing the

treatment of cattle with acaricides. Ticks attached to cattle being dipped, or that have

been dipped recently, will have a reduced survival chance due to the presence of the

chemical. The following rules specify a particular dipping strategy:

Ti. The number of days between dips, the dipping interval, is D.

T2. The probability of the acaricide killing an attached tick, the acaricidal efficacy, is

P.

T3. The number of days the chemical remains active on the coat of treated cattle after

the day of dipping, the residual effect, is d.

Therefore on a specific day, n, the acaricide will be active if

Remainder (n/D) < d

If the chemical is active then the chance of a freshly attached tick dying is p, otherwise

this probability is zero.

The dipping interval of tick control strategies employed in most African countries

is once or twice a month. Dipping is generally limited by the cost it entails. Acaricidal
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efficacy and residual effect depend on the choice of chemical, but normally acaricides

do not remain active for much longer than a week following dipping, and are unlikely

to destroy all attached ticks.

5.4 THE CHEMOTHERAPY MODEL

As mentioned earlier in chapter 4, a small amount of data from clinical trials performed

by Wellcome research laboratories was made available to investigate and quantify the

effects of drug action on the disease response of treated cattle. This data was kindly

offered by Dr. N. McHardy at Cooper Pitmann-Moore Animal Health Ltd., Berkham-

sted, who was responsible for many of the trials.

The Wellcome clinical trials data suggested that there are a number of factors that

have an influence on the success of any antitheilerial drug. Of these, there appeared to

be five major factors that strongly attributed to the success or failure of a drug during

a clinical trial. These were, firstly, the source of the parasite used, either from parasite

stabilates extracted from infected ticks at Kiambu, Muguga or other sites, or from

natural tick challenge at various sites. Secondly, different drugs were seen to behave

differently. Most data concerned the use of four drugs — Menoctone, Halofuginone,

Parvaquone and Buparvaqoune. Finally, the quantity of drug administered, whether

infected cattle received the drug in a single or a double treatment, and the timing of the

commencement of treatment were all seen to influence the resulting disease reaction.

In most trials the time of treatment was similar: three or four days after the

appearance of schizonts and a febrile response (TS3, or TS4) for a single treatment,

or on the fifth and seventh day of schizont detection (S5 and S7) if two doses were

administered.

In most experiments, cattle were given a potentially lethal dose of sporozoites,

and in the majority of trials all control cattle died. The effect of any drug could,

therefore, be seen both in the increased survival probability of treated cattle, and in

the more prolonged death of those cattle that were treated but did not survive. The

relationship between drug regime and day of death in treated cattle that die is important

in calculating the increased length of time these cattle are infective to feeding ticks.

Drug action also appeared to have an effect on the piroplasm levels of recovering

cattle. Many recovering cattle were seen to have only a slight parasitaemia. This

observation is supported by Dolan et al. (1984) who state that in some infected cattle

that were treated, only very low levels of parasitaemia were observed. If cattle are
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assumed to be infectious to ticks only when parasitaemia reaches at least 1% (Rule

P4, Purnell et al., 1974), then for each drug regime the probability that a recovering

treated animal becomes infectious to feeding ticks can be established.

Thus, the clinical trials data yields estimates of three important chemotherapy

responses: the probability of recovery following treatment, the timing of death for

treated animals that die and the probability of parasitaemia above 1% for treated

animals that recover. These parameters can be estimated for various combinations of

stabilate, drug, number of doses, and size of dose. It is then possible to adjust the

ECF model to take account of drug action on the parasite by employing the following

additional rules:

Ti. Cattle that would die if left untreated have a probability f of death following

treatment.

T2. Those animals that would normally die on day z without treatment, will die on

day clz if the treatment is unsuccessful.

T3. Those animals that recover following treatment will be infective to feeding ticks

with a probability i.

By performing Bernoulli trials with Uniform random numbers these rules can be ad-

ministered.

The clinical trials data was sparse, but a number of parameter estimates were

made for common drug regimes on cattle infected with the T. parva (Muguga) stabilate.

These estimates are given below in table 7. Only the results of drug action using the

Muguga stabilate were used for consistency, as this stabilate was also employed in much

of the experimental work that comprises other rules in the ECF model.



Table 7. Estimates of the action of various chemotherapy regimes on the resulting dis-

ease reaction in infected cattle.

Regime I d i

Parvaquone, 1 x 10mg/kg 0.486 2.063 0.688

Parvaquone, 1 x 20mg/kg* 0.033 2.863 0.286

Buparvaquone, 1 x 1.25mg/kg 0.250 1.305 0.000 (!)

Buparvaquone, 1 x 2.50mg/kg* 0.208 2.472 0.552

* manufacturers recommended dosage.

It should be noted that the infective probability, i, for Buparvaquone at 1 x

1.25mg/kg is estimated to be zero, and is lower than the estimate obtained for Bupar-

vaquone at a higher dose. Only a small quantity of data was available to make this

estimate, and it should be treated with caution.

The effect of using Parvaquone and Buparvaquone in a field situation are investi-

gated, along with other computer investigations, in chapter 8.

5.5 CONCLUSIONS

This chapter has demonstrated that it is possible to pull together enough detailed

information about a very complex process, and to produce a sufficiently complicated

model to mimic its behaviour under different conditions. The process of modelling

illuminates areas where knowledge is lacking, such as the rate of tick attachments and

the role of carrier status, and encourages the formulation of hypotheses to bridge gaps

in the knowledge. Such hypotheses can be based on observations on other similar

systems, or purely on speculation, and a model can be instrumental in assessing the

practicability of different hypotheses. This aids future research.

Different hypotheses concerning tick attachment rates and carrier status are con-

sidered in the results sections of chapter 8.



6. GENERATION OF WEATHER SEQUENCE DATA

"I shall never believe that God plays dice with the world".

Albert Einstein.

6.1 INTRODUCTION

Climate is one of the crucial factors that distinguishes disease patterns from area to

area. The use of climatic data as a controlling factor within ECFXPERT leads to

a site-specific model of disease. The relationships between ticks and climate have

been well documented. Branagan (1978) showed that temperature is the major factor

controlling the speed of tick development in each of the four developmental phases: pre-

eclosion, larva to nymph moult, nymph to adult moult, and pre-oviposition. Branagan

(1978) also published data characterising the relationship between temperature and

the time taken to complete development in each phase. Short (1986) reported that

the monthly rainfall total had an influence on tick survival, especially on the survival

of eggs and larvae in short grass habitats. From a study of a number of sites, Short

and Norval (1981) inferred that the monthly average for daily maximum and minimum

temperatures, the monthly rainfall total, and the daylength, influenced the activity of

adult ticks. Thus it is climate that dictates the suitability of ticks to different sites,

and that creates the seasonality of tick populations by affecting adult activity. This in

turn has an influence on the timing of disease outbreaks.

This section briefly explores some existing models for randomly generated climatic

data. The results of one method are explored in detail and an alternative method

proposed which involves time series analysis of a number of climatic datasets from sites

in Africa.

6.2 EXISTING MODELS FOR RAINFALL AND TEMPERATURE

Weather patterns are typically represented by models to predict rainfall and tempera-

ture. Most models attempt to predict the daily level of rainfall. Then, depending on

the wet or dry status of a day, and preceding days, the daily maximum and minimum

temperatures are predicted. In some cases solar radiation and evaporation are also
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predicted, which are of special importance to models predicting plant growth.

Due to problems caused by the high proportion of zero observations in daily rainfall

data, most models for rainfall consist of two parts, modelling the occurrence of wet days

and modelling the amount of rainfall on wet days.

Gabriel and Neumann (1962) proposed a first order Markov chain model to predict

the occurrence of wet or dry days. The probability of rainfall on any day depended on

whether the previous day was wet or dry. The two parameters used by the model were

therefore

P1 = P (wet day I previous day wet)

Po = P (wet day I previous day dry)

The model was fitted to data from Tel Aviv on 27 rainy seasons. This period

spanned a total of 2437 days, and the empirical data:

Day

Dry	 Wet

	

Previous Dry	 1049	 350

day

	

Wet	 351	 687

yielded estimates of 0.250 for Po and 0.662 for P1.

A wet spell of length W was defined as W successive wet days followed by a dry

day. Thus, given day 1 is wet, and W is the length of time up to, and not including,

the next dry day

P(W = n) = P(Xi = 1 = X2 = X3 = ... = X„, Xn+i = VI = 1)

= Pi-1 ( 1 — /31)

= (0.662)n-1(0.338)

Similarly, the probability of a dry spell, D, of length m is given by

P(D = m) = (1 — 130 )"1-1 P0 = (0.750)m-1(0.250)

A weather cycle is defined as a wet spell followed by a dry spell. The distribution of

the length C of a weather cycle is therefore
n-1

P(C = n) = E{P(i wet days, followed by (n — i) dry days)}
1=1

n-1

= Ev1(1- 130) n—i 1
1=1
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as successive spells were assumed to be independent, following evidence presented in

earlier work (Gabriel and Neumann, 1957)

= 
Po(1 — POO — PO"' — P11-1) 

1 — Po — P1

Gabriel and Neumann (1962) used the theoretical distributions for the lengths of wet

and dry spells, and of weather cycles, to test the fit of the model. They stated that

significance tests show these computations to give a satisfactory fit to the observed

distributions.

The distribution of the number of wet days, 5, among n successive days was

also obtained. The computation of these formulae presented a difficult and complex

problem in combinatorics. Once obtained, the theoretical and observed distributions of

the number of wet days in a week were calculated and compared. These distributions

are presented below in table 1.

Table 1. Theoretical and observed distributions of the number of wet days in a week

using data for Tel Aviv (Gabriel and Neumann, 1962)

Number of wet days

in the week

Theoretical frequency

frequency

Observed

frequency

0 36 39

1 51 38

2 63 73

3 65 65

4 57 69

5 42 45

6 25 18•

7 12 13

total: 351	 total: 351

The Chi Squared test was used to assess the fit of the model based on the number of

wet days occurring in each week, which was concluded satisfactory (p = 0.1-0.2).

The time unit of seven day intervals was chosen for ease of calculating the theo-

retical frequencies. For larger time units, accurate computation becomes increasingly

difficult, and approximations to the formulae have to be made. This proves to be a

disadvantage. Clearly the idea of using the observed and predicted lengths of wet and
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dry spells to validate the model is well founded. It would not be difficult to produce

a model that accurately conserves the mean or variance of the number of wet or dry

days. Accurately mimicing extreme events, such as long periods of dry or wet weather,

however, is more difficult but of absolute importance. A model predicting the suitabil-

ity of a species of crop to an area that does not allow for the possibility of longer than

average periods of dryness, must be treated cautiously. It is these extreme events that

govern the long-term success or failure of a species in a habitat.

The theoretical properties of the Markov chain model are certainly of interest, but

cannot be repeated when the model is extended to second or higher orders. A new

approach is required to bridge mathematical thought with reality. Previously, models

have been developed by mathematicians, with an interest in mathematics. Models, such

as the one described above, had to be kept simple, to allow the extraction of theoretical

properties. Simulation provides a way forward. Instead of obtaining the theoretical

frequencies of certain events to validate a model, the model can be programmed and

estimates of these theoretical frequencies obtained by simulation. Ensuring the random

number generator provides numbers that are close enough to uniform (Ripley, 1988),

and that the number of simulations is great enough, these estimates should be very close

to the true theoretical frequencies. The advantages of this approach are twofold. First,

the model can be made as complex as required, and second, any observed property of

the system can be used to validate the model. In the case of the Markov chain model,

perhaps the number of wet or dry days in a month rather than a week would have

provided a more satisfactory test of validation, but the theoretical formulae proved too

complex to accurately deal with this case.

The Markov chain model is a model for simulating the sequence of rain or no-rain

days, and does not consider the amount of rainfall falling on wet days. Woolhiser and

Pegram (1979) adapted the Markov chain model to describe daily rainfall totals:

Letting	 Zt = XtYt

where

and

Zt = amount of rain on day t,
xi = Jo, if day t is dry,

1 1, if day t is wet,
Yt = amount of rain falling on day t when Xi = 1.

{Xt} was in the form of the first order Markov chain of Gabriel and Neumann (1962).

{Yt } was assumed to be described by a mixture of two exponential distributions. Not
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surprisingly, they found that the mixed exponential distribution fitted significantly

better than the simple exponential distribution.

Given data covering a period of years, the parameters of each process {xt} and

{Yt } were estimated separately for each day of the year, then the seasonal change

in estimates described with a finite number of terms from a Fourier series. Maximum

likelihood estimates of these Fourier coefficients were calculated numerically. Woolhiser

and Pegram (1979) concluded that, with careful selection of the method for estimating

the Fourier coefficients for each parameter, the model yielded "acceptable results" at

each of the four sites considered.

Other distributions for {Yt } have also been proposed, such as a gamma distribution

by Bruhn, Fry and Fick (1980). Bruhn, Fry and Fick (1980) had access to 30 years

of daily rainfall data at the two sites they considered, from which to estimate the

parameters of the gamma probability density function for {Y}. Fitting a function to

such a vast quantity of data appears to be totally unnecessary. Thirty years of daily

data is likely to represent the exact probability density of {Y}. Approximating the

data by a curve only has the effect of discarding information, some of which might be

critical in describing the true process.

Their model, however, also included temperature generation. The temperature

component was described by a trivariate Normal distribution. Maximum temperature

was correlated with maximum temperature on the previous day, minimum temperature

was correlated with the current days maximum temperature. The parameters of the

probability distribution depended on whether the previous day was wet or dry. The pa-

rameters were estimated separately for each month to take some account of seasonality,

using 30 years of climatic data at two sites, Geneva and Fort Coffins.

The results of the rainfall model were good, the actual and simulated distributions

of the amount of rainfall being very similar. There were no significant differences

between the distributions of simulated and observed temperatures for either Geneva or

Fort Coffins using the Kolmogorov-Smirnov non-parametric test.

Nicks and Harp (1980) fitted a first order Markov chain model to climatic data

from each month to predict the occurrence of rainfall. They daimed that "to generate

representative air temperature data, simulated temperatures must be related to the

sequence of rain or no-rain days". The model for maximum temperature they presented

was

Ti(k,m) = (k, m) -I- rT(k , m)[Ti—i( k, m) - -T(k,m)] + error
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where,

error = t8T (k,m)[1— 4(k, m)1112

1, for D-D,
/ 2, for D-W,

k = the wet/dry sequence =

m = month,

T = mean daily maximum temperature,

rr = lag 1 correlation,

711 = current days maximum temperature,

Ti_. 1 = previous days maximum temperature,

sT = standard deviation of daily maximum temperatures,

and
	

t = N(0,1) random variable.

The derivation of the error term is given later in this chapter.

A similar model was used for minimum temperatures.

Nicks and Harp (1980) used the Kolmogorov-Smirnov statistic to confirm the good-

ness of fit of the theoretical to the observed distribution of maximum and minimum

temperatures. Richardson (1981) produced a more complex model, whereby maximum

temperature and minimum temperature were considered to have different means and

standard deviations for each day of the year, conditioned on the wet or dry status of

the day. A number of years data were used to estimate the means and standard devia-

tions for wet days and dry days for each of the 365 days in the year. These parameters

were plotted, and the seasonal fluctuations of each were smoothed by fitting a finite

Fourier series to each sequence. The observed daily sequences were then standardised

by subtracting the expected mean and dividing by the expected standard deviation,

resulting in a series of standardised residuals. These residuals were claimed to follow a

Normal(0,1) distribution with an auto-correlation structure, and cross-correlations be-

tween maximum and minimum temperatures. This supported Richardson's claim that

maximum temperatures should be serially correlated from one day to the next, and

maximum and minimum temperatures on a given day should be related, due to heat

storage of the soil and surrounding atmosphere. An appropriate first order Markov

chain model was proposed to generate the standardised residuals. The predicted tem-

peratures could then be obtained by multiplying by the appropriate estimated standard

deviation and adding the appropriate estimated mean.

3, for W-D,
4, for W-W,
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Richardson (1984) estimated that twenty years of precipitation records, and ten

years of temperature records are sufficient for accurate parameter estimation at most

sites.

8.3 SIMULATION MODEL REQUIREMENTS

For accurate parameter estimation a vast supply of daily meteorological data is re-

quired, up to 20 years of rainfall and temperature records in most cases. A user

interested in the simultion models discussed in chapter 5 is unlikely to have access to

such information, and is unlikely to have the resources to enter all the data, especially

if a number of sites are being compared. Weather records for African sites are rarely

accessible in daily form, and if so are unlikely to span more than a few years, rendering

parameter estimation difficult. Most climatic data that are readily accessible are in

the form of monthly averages of the daily maximum and minimum temperatures, and

monthly rainfall totals. This data is usually averaged over a number of years (often

twentyfour), and is presented with standard deviations. Such data can be found in the

F.A.O. handbook (1984a,b), and, because of its accessibility, operational models are

constrained to utilise data of this form. As rainfall data are only presented as monthly

totals, then the conditioning of maximum and minimum temperatures on the sequence

of rain or no-rain days is impossible. Thus, a method is required to generate weather

sequences using minimal datasets, and in particular monthly averaged data, that is

representative enough to provide reliable estimates at different sites.

The models discussed paid special attention to the accurate generation of rainfall

sequences. Accurate rainfall sequences are certainly of major importance to agricul-

tural models comparing crop growth and yield for different sites. In modelling tick

development, rainfall is less critical. Tick growth and development are temperature-

driven, and, although rainfall does affect tick survival, monthly rainfall levels are likely

to be sufficient for the prediction of survival rates.

8.4 MATERIALS AND METHODS

Five detailed datasets of one years daily maximum and minimum temperatures were

available for examining different simulation methods. These datasets were obtained

from meteorological records at a number of sites in Kenya, Tanzania and Zambia. ECF

is endemic in these areas, and it is hoped that a model appropriate for generating

accurate climate sequences at these sites would be also suitable at other sites where

ECF is a threat. The data were collected from the following sites in East Africa:
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Muguga, Kenya for 1968; Kizimbani, Kenya for 1984; Zanzibar Airport, Tanzania for

1986; and Chipata, Zambia for 1986 and 1987.

Missing values were few and usually due to failure of equipment. The appropriate

monthly mean value was inserted in place of the missing data to preserve the monthly

mean.

When comparing various proposed methods for climate data simulation, an appro-

priate statistic is required to keep the comparisons within the context of being useful

to the tick model rather than providing a more accurate climatic data sequence. The

statistic chosen was the expected time spent developing through all the four develop-

mental stages: egg, larva, nymph and adult. This statistic, E, can be calculated as

follows

	

4	 4

E = E(Ej) = E(365/Si)

	

i=1	 i=1

where Ei is the expected time spent by a tick developing in stage i and Si is the sum

of each days development fraction over the year, for ticks in stage i.

The value of E does not represent the expected length of the ticks life cycle, as

the complete life cycle also involves periods of questing and feeding in addition to the

periods of growth and development.

The performance of a model can be assessed by comparing the expected develop-

ment times calculated from the observed climatic datasets, with the expected devel-

opment times estimated using the predicted sequences of climatic data obtained from

model predictions. In testing stochastic models, the results of a number of simulations

will have to be considered. In such cases, the minimum number of simulations thought

appropriate was ten.

6.5 SIMULATION MODELS

6.5.1 Extreme value distribution

The approach adopted by Gumbel (1952) was to consider the theoretical properties of

largest and smallest values within samples of a known size, then extend this theory to

obtain asymptotic results for the distribution of extreme values. Consider a random

variate X described by cumulative density function F(z) and probability density func-

tion f (z). The probability that n independent observations are at most as large as

some value, z, is given by Fn (z) . This is the probability that the largest value out of
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a sample of size n does not exceed x.

Denoting the largest out of n observations by zn and the cumulative density

function of the largest value by 41n(zn),

P(xn � z) = 41„(zn ) = Fn(zn),

and differentiating,

P(zn = z) = 4n(zn)= nFn-1 (zn)f(zn )	 (1)

If the initial distributions are known, this provides the formulae required for calculation

of extreme large values from samples of size n. Similar results can be found for extreme

small values. However, given very large samples, such formulae make calculations

difficult, and asymptotic results are required.

Return period

The return period is the number of observations expected to be required before an

event is repeated. For example, if the event (X < z) is seen to occur m times out of

n then

P(X > z) = 1 - F(z) = 1 - ILI =	
1 

n n/(n - m)

where T = n/(n - m) is the return period for the event (X > z). In general, T(z) =

1/(1 - F(z)), where T(z) is the expected number of observations required to yield one

observation of at least z in size.

Expected extremes

To obtain the expected extreme, T is treated as a fixed number of trials, n. Then a

certain large value, un, can be uniquely defined by the probability

F(un ) = 1 - -ii.	(2)

as F(z) is monotonic increasing.

The expected number of values at least un from a sample of n is n(1-F(un)) = 1.

Hence un is the expected largest value. Define a n = nf(un). By multiplying both

sides of equation (2) by f(u)dun the following is obtained:

f(u) 
an dun = 

1 - F(un) 
dun
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The right hand side of this equation being simply the conditional probability of a value

lying in the interval (us, us -I- due) given that this value exceeds /In.

Differentiation of equation (2) gives

f(un)
dun	 1
dn = n2

which leads to
du„ = 1—.

dlogn a„

So Vots is a measure of the increase of the expected largest value with the log of the

sample size. Probability functions F(z) which converge towards unity with increasing

a at least as quickly as an exponential function are said to be of exponential type. The

formal property of exponential type distributions (Von Mises, 1936) is

L. i d 1 — F(a)
.t..m.. .1. dz f (z ) } — 0

Such distributions include the exponential, normal, F-distributions and logistic

distributions, and investigations will be limited to these.

The asymptotic distribution of the extreme largest value

The mode of the largest value, in , is obtained by finding the maximum of the proba-

bility density function of the largest value given in equation (1). Setting the derivative

of this equation to zero yields

(n — 1)f(z) f(x)_
F(z)	 f(z)

Because distributions of exponential type are being considered, the right hand side

of this equation can be approximated by f(z)/(1—F(z)) for x large enough (L'Hopitals

rule), so equation (3) becomes

(n — 1)f(z) ,  Az) 
F(x)	 — 1 — F(z)

which leads to F(z) c.-_, 1 — 1/n, where a is the solution for the mode of the largest

value, which also satisfies equation (2), the definition of the expected largest value.

Hence, is ---) us.

By writing a = us + a — un, and expanding as a Taylor series, the equation for

the cumulative density function of a becomes

F(x) = F(un + z — un)
(z — us )2 „

= F(us) -I- (z — us)r(us) +	 21	 F (un)-F +....
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It is easily shown that F i (un) = anln, using the chain rule

dFdF dn= —
dun dn dun

and for subsequent terms, L'Hopitals rule is employed as before

F"(un) Fm(un )
= 
	 f(u) 

Fi(un) — F"(un) — • 	 1 — F(un)

Thus, the equation for F(x) can be reduced to

— an

F(x)= 1 — (11n)ezp{—an (z — un)}

Letting the asymptotic cumulative density function for the largest value be f(z), then

f (z) = nlimoo {fn(z)} = nlim.{Fn(z)}

= nlim.{[l — (1/n)ezp{—a n(z — Un)}in}

= ezp{—exp{—yn}},

where yn = an(z — un), the reduced largest value, un is the mode of the largest value

and Ilan is a measure of dispersion.

Similar working yeilds the asymptotic cumulative density function for the extreme

smallest value

I (I' (z) = 1 — ezp{ —e2/2{-1/1 }},

where yi = a 1 (z — u1) , the reduced smallest value, u 1 is the mode of the smallest

value and a l = nf(ti l ).

Parameter estimation

In the case of climatic data, the distribution of temperature within a day is unknown,

although maximum and minimum daily temperatures can easily be measured. The pa-

rameters of the asymptotic distribution, therefore, have to be estimated from observed

data.

Let the moment generating function of the largest reduced value, y, be Gn(t).

This has been shown to be (Fisher and Tippett, 1928, Gumbel, 1944)

G(t) = r(1— t),

where

I'm = f {xt-le-rdz}.
z=0
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Hence population means and standard deviations of the reduced extreme largest values

are

fin = 7 = 0.577215665, Euler's constant
,	 r

(7(lin) = — respectively.
V6

As ya = an (z — tin), then the theoretical mean and standard deviation of the extreme

largest daily temperatures, x(n ) , are

and

F(n) = un 4- —7 ,	 and
an

7 1
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r 1

cr(z(n)) = IT6 c7-1

By estimating the population mean and standard deviation of the extreme largest daily

temperature, E(n) and cr(z(0 ), by the observed quantities, Fn and s(z)

and so

fin = In —
7—' and

ofn 

7V-6 , ,
Skzn)•r

1	 Nij i N

— = —SkZ)n
an 7

Similarly, for the extreme smallest daily temperature

,	 —	 7 	 and 1 = .
n/

.9k14	
,	 ,

1 = xi — =, ana — —21)a l 	 a1

Random number generation from extreme value distribution

Using the inversion method, the algorithm for generating daily maximum temperatures

from observed mean m and standard deviation 3 is simply obtained (Morgan, 1984),

and is as follows:
r

1. Let ci = —s
Nr6

72. Let c2 = m — —
Cl

3. Generate a uniform random variate U in the interval (0,1)

4. Return maximum temperature = c2 — ln(-1n(U))/ci

The algorithm for generation of minimum temperatures is similarly constructed.
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Results

Using the mean and standard deviations of the monthly maximum and minimum tem-

peratures for each of the five datasets, daily maximum and minimum temperatures are

simulated by sampling from the appropriate extreme value distribution. Values for the

expected development time of ticks, E, are obtained and compared with the true B

value obtained from the genuine daily temperature sequences at each site. The results

of ten simulations at each site are displayed below in table 2.

Table 2. Expected developmental times, E, for ticks at each site using climatic

data generated from extreme value distributions and using the true climatic data

for five East African sites.

D at aset

Muguga	 Chipata	 Chipata	 Kizimbani	 Zanzibar

1968	 1986	 1987	 1984	 1986

	

238.53	 79.67	 67.06	 66.19	 59.54

	

238.17	 73.08	 68.08	 65.87	 66.00

	

237.94	 79.88	 67.76	 65.92	 64.48

	

237.55	 71.50	 60.28	 67.92	 67.30

	

240.33	 82.34	 63.63	 63.52	 66.69

	

237.48	 78.51	 58.12	 66.33	 62.48

	

236.26	 81.07	 58.51	 67.17	 65.31

	

238.47	 84.82	 63.11	 67.63	 65.78

	

236.27	 74.72	 64.62	 65.67	 66.33

	

238.80	 81.35	 65.07	 65.18	 66.90

mean	 237.98	 78.69	 63.62	 66.11	 65.10

st. dev.	 1.20	 4.28	 3.65	 1.23	 2.40

95% C.I. (237.12, 238.84)*	 (61.01, 66.23)*	 (63.37, 66.80)*

(75.63, 81.76)*	 (65.23, 66.99)*

true value	 277.39	 99.73	 90.42	 76.63	 74.40

The 95% confidence intervals for the mean expected development time were con-
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structed using the t-statistic. Those confidence intervals marked with an asterisk are

those which correspond to sequences of climate data that are unsatisfactory as the true

expected development time is very unlikely to represent the mean time from simula-

tions. It is clear that the extreme value distribution method is not satisfactory, as the

development time for ticks is consistently underestimated. The consequence of this

underestimate can be seen by considering the predictions for Chipata 1987. From the

ten simulations the minimum, maximum, and mean of expected development times,

E, were 58.12 days, 68.08 days and 63.62 days respectively. The true expected devel-

opment time is 90.4 days, so prediction estimates represent an error as large as one

month per year. The extreme value distribution was used as the sampling distribution

for generating climatic data by King et al. (1988) in their study of tick development

times at five sites in Kenya. The suitability of this distribution was not considered,

and the above results must throw considerable doubt over the conclusions they made.

6.5.2 Time series analysis

A time series is a collection of observations made sequentially in time, such as temper-

ature, share prices or population size. The analysis of a time series is an attempt to

describe and explain the underlying process that produces these observations, and often

to provide the means of predicting a sequence of future observations. The five sets of

one years daily maximum and minimum temperatures result from extremely complex

physical processes which are both highly periodic and highly correlated. To describe

such a process it is neccesary to transform the data into a sequence of observations

that are stationary. Such a sequence is one in which there is no systematic change in

the mean and variance of the observations through time, and no periodic influences.

It is then possible to fit a model to the transformed data. Statistics thought useful

in identifying appropriate models for stationary data are autocorrelations and partial

autocorrelations (Box and Jenkins, 1976). This approach describes a suitable transfor-

mation on the sequences of extreme temperature measurements, and then considers a

number of models to describe the transformed data.

Observation of the monthly means of daily maximum or minimum temperatures

for each site reveals seasonal temperature changes, suggesting that each sequence is

non-stationary. This is further illustrated by Figures 1 and 2, which show the auto-

correlation functions (ACFs) for maximum and minimum temperatures at Chipata in

1987.
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Figure 1.	 Autocorrelation function of the maximum temperature sequence for

Chipata, 1987.
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Figure 2.	 Autocorrelation function of the minimum temperature sequence for

Chipata, 1987.

Each function is very slowly decaying, which suggests non-stationarity. Non-

stationarity of a time series, however, can be due to either fluctuating mean or fluctu-

ating variance. The variances within each month do not appear to change substantially

between months, and when the years data for each site is boxplotted by month, the

— 130 —



monthly change in mean appears to be the most significant variable. One might expect

the variance of maximum temperatures, for example, to be perhaps greatest during

months exhibiting the highest daily maximum temperatures, and lowest when this

statistic is at lower values. However, possibly due to the proximity to the equator of

most of these sites, the variance does not change greatly from month to month, as in

fact the mean temperature measurements do no differ between successive months by

more than 2 or 3 degrees. At more seasonal locations, changes in the variance are likely

to play a more important role. The month to month changes in mean daily maximum

and minimum temperature can be observed from the graph of the data for Chipata in

1987 in Figure 3.

MEAN TEMPERATURE
36

I
—.— Daily inaglas -9- Daily Malan I

2	 3	 4	 6	 8	 7	 8
MONTH

Figure 3. Changes in the mean monthly maximum and minimum temperatures for

Chipata in 1987.

Given the constraint of modelling from monthly averaged data, it is important to

find a suitable transformation on the daily data that utilises the monthly summary

statistics. If a curve is fitted to the monthly means it is possible to obtain estimates

of the mean maximum and minimum temperature for each day of the year. These

estimates could be subtracted from the observed values to remove the effect of daily

fluctuations in the means. On inspection of the monthly means at the various sites it

was concluded that linear interpolation between monthly means would be adequate,

each monthly mean being positioned at the midpoint of each month. When the ap-

propriate estimated mean maximum and minimum temperatures were subtracted from

each observed value, the new time series appeared stationary for each site. More-over,
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the resulting process

Wt = Xt - A	 (4)

where
Wt = adjusted maximum or minimum value for day t,

Xt = observed maximum or minimum temperature on day t,

A = expected maximum or minimum temperature on day t,

appeared to follow an autoregressive process of order 1 (an AR(1) process) for both

maximum and minimum temperature. That is, the value of the adjusted temperature,

Wt , is partially dependent on the value of the previous day, Wt_. 1 . This is illustrated

by the autocorrelation and partial autocorrelation functions (PACFs) for the adjusted

maximum and minimum temperature time series at Chipata in 1987 shown in Figures

4, 5, 6 and 7. At a specific lag, the sample autocorrelation or partial autocorrelation

can be assumed significantly greater than zero if its absolute value exceeds 2/-‘5,

where 365 is the sample size of one years daily data (Box and Jenkins, 1976).
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Figure 4. Autocorrelation function of the adjusted maximum temperature sequence

for Chipata, 1987.
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Figure 5. Partial autocorrelation function of the adjusted maximum temperature

sequence for Chipata, 1987.
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Figure 6. Autocorrelation function of the adjusted minimum temperature sequence

for Chipata, 1987.
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Figure 'T. Partial autocorrelation function of the adjusted minimum temperature

sequence for Chipata, 1987.

The AR(1) process is characterised by a quickly decaying ACF, and a PACF with

a spike at lag 1 only (Box and Jenkins, 1976).

The correlations between the daily maximum and minimum temperatures at each

site were generally low and could be ignored. The importance of the random element to

the model can be investigated by considering two possibilities. Firstly by ignoring the

noise element completely and modelling daily temperatures by their interpolated values

using the formula .kt = Mg. Or, secondly, by allowing for randomness by simulating

the noise using an AR(1) process.

Interpolated means

Taking the monthly mean maximum and minimum temperatures to be the temper-

atures for the middle day of each month, and fitting a straight line between points

provides estimates for each day of the year. Using these estimates, the expected devel-

opment time for ticks, E, can be calculated and compared to the value obtained with

the true climatic data. True and predicted values of E are presented in table 3.



Table 3. Expected developmental times, B, for ticks at each site using climatic

data from interpolated monthly mean temperatures and using the true climatic

data for five East African sites.

Dataset

Muguga Chipata Chipata Kizimbani Zanzibar

Year:	 1968 1986 1987 1984 1986

Interpolated data 273.77 109.10 99.05 78.79 75.74

True data	 277.39 99.73 90.42 76.63 74.40

The differences between true and predicted values are within the order of ten days in

each case. However, although these estimates are fairly good, the non-randomness of

the simulation method means that climate data generated for each year will be identical.

This is unrealistic, and does not allow for extreme occurrences in climate which could

render certain sites unfavourable to ticks. More detailed examination of the sum of

development fractions over the year for each stage, Si , showed that prediction was

unsatisfactory for certain stages. Predicted values of Si for each stage at each site are

displayed below in table 4.
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Tick stage:

Pre-oviposition true:

pred:

Pre-eclosion	 true:

pred:

Larva to nymph true:

moult	 pred:

Nymph to adult true:

moult	 pred:

Table 4. Development fractions sums, S, for ticks in each stage at each site using

climatic data from interpolated monthly mean temperatures and using the true

climatic data for five East African sites.

Dataset

Muguga Chipata Chipata Kizimbani Zanzibar

1968 1986 1987 1984 1986

16.48 122.16 222.86 151.85 167.83

16.15 56.95* 106.14* 94.02* 125.74*

3.61 8.37 9.04 10.73 10.99

3.80 7.92 8.46 10.64 10.90

9.36 29.66 33.28 36.70 37.83

9.13 25.96 28.16 36.19 37.36

3.17 8.94 9.75 12.06 12.43

3.17 8.58 9.24 11.96 12.34

In the table, those Si values marked with an asterisk correspond to values that are

largely under-estimated when compared with the true values. Other values appear to

be well approximated. The reasons for the inaccuracy stem from the absence of noise in

the model. The relationship between temperature and time to development of a tick is

non-linear. A small difference above the mean temperature advances.tick development.

A small difference below the mean temperature slows down tick development, although

the magnitude of this is less great due to the exponential nature of the development

curve. Thus, the noise element is critical to the model for climate.

Interpolated means with AR(1) noise

Given that the adjusted process, {W}, in equation (4) follows a stationary AR(1)

process, then the complete model for the system would be characterised by

Wt = rikt -1 + Zt
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where, {Zi } is white noise with mean zero and variance cr 2 , and r is the lag 1 corre-

lation of {Wt}.

A model was fitted to each adjusted maximum and minimum temperature se-

quence, and estimates of the lag 1 correlation and error variance were obtained for

each.

The residuals of each fitted model were analysed by inspection of their dot plots,

normal scores plots, ACFs and PACFs. The dot plots of Pt) appeared symmetrical

and centered on zero in most cases, although slightly skewed towards the right in two

of the cases. The normal scores plots were generally linear but, however, in a num-

ber of cases these plots were slightly curved. Observation of the ACF and PACF of

each adjusted sequence sugested that there was little remaining significant autocorre-

lation structure. This is illustrated by the ACF and PACF of {Zt} from the adjusted

maximum temperature sequence of the Chipata 1987 data, shown in Figures 8 and 9

respectively.
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Figure 8. Autocorrelation function of the noise from the fitted AR(1) process for

adjusted maximum temperatures at Chipata, 1987.
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Figure 9. Partial autocorrelation function of the noise from the fitted AR(1) process

for adjusted maximum temperatures at Chipata, 1987.

It was concluded that a normal distribution would be an adequate first approxi-

mation of {Zt }, based on the limited data.

Hence the process git = rikt_ i -I-Zt , can be easily simulated. The polar Marsaglia

algorithm is used to generate the normal random variables constituting the process

{Z1 }, as described earlier in Chapter 5. The predicted temperatures {kt } can then be

retrieved by adding the appropriate days mean

±e = lire + Mt.

The estimates of lag 1 correlation and error standard deviation for the adjusted AR(1)

model when fitted to the daily maximum and minimum temperature sequences for each

site are shown in table 5.



Table 5. Estimated lag 1 correlations and error standard deviations for adjusted

maximum and minimum temperature sequences from five East African sites.

Adj. max.

temp.

Adj. min.

temp.

Dataset: lag 1 corr Error s.d. Lag 1 corr Error s.d.

Muguga 1968 0.48 1.45 0.20 1.08

Chipata 1986 0.62 2.03 0.67 1.37

Chipata 1987 0.59 2.13 0.62 1.51

Kizimbani 1984 0.38 1.02 0.32 0.90

Zanzibar 1986 0.25 1.17 0.34 1.25

Results

Using the mean and standard deviations of the monthly maximum and minimum tem-

peratures for each of the five datasets, daily maximum and minimum temperatures are

simulated using the fitted AR(1) models. Values for the expected development time of

ticks, E, are obtained and compared with the true E value obtained from the genuine

daily temperature sequences at each site. The results of ten simulations at each site

are displayed below in table 6.



Table 6. Expected developmental times, E, for ticks at each site using climatic

data generated from AR(1) models fitted to adjusted climatic data and using the

true climatic data for five East African sites.

Dataset

Muguga	 Chipata	 Chipata	 Kizimbani	 Zanzibar

1968	 1986	 1987	 1984	 1986

	

279.14	 95.32	 82.77	 75.21	 75.28

	

279.35	 102.91	 95.58	 76.77	 75.78

	

277.03	 97.80	 87.83	 76.86	 76.14

	

279.25	 99.08	 94.73	 72.32	 75.71

	

283.93	 99.33	 81.29	 77.17	 75.24

	

280.51	 101.79	 92.09	 76.86	 76.23

	

279.38	 104.87	 91.67	 76.17	 75.83

	

278.57	 100.45	 83.58	 76.63	 75.37

	

279.81	 99.32	 86.50	 76.88	 75.82

	

279.43	 113.10	 96.72	 78.99	 75.25

mean	 279.64	 101.39	 89.28	 76.39	 75.66

st. dev.

1.76	 4.90	 5.65	 1.71	 0.36

95% C.I. (278.38, 280.90)	 (85.24, 93.32)	 (75.40, 75.92)*

(97.89, 104.90)	 (75.16, 77,61)

true value	 277.39	 99.73	 90.42	 76.63	 74.40

The 95% confidence intervals for the mean expected development time were constructed

using the t -statistic. Only one of these confidence intervals does not contain the true

expected development time. This confidence interval was obtained from the model

predictions using climatic data from Zanzibar airport, and is marked with an asterisk.

However, the magnitude of this error is in the order of only one day, which is negligible.

The adjusted AR(1) model therefore appears to produce very satisfactory results.
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When using the interpolated means model, it was observed that the sum of the

years development fractions for a specific stage in the tick life cycle, S, was grossly

under-predicted for large values of the sum. The highest values of this sum were

observed for the pre-oviposition phase which is the most rapid, and when employing

the adjusted AR(1) model the development fractions sums in table 7 were obtained for

pre-oviposition at each site.

Table 7. Development fractions sums, S i , for ticks in pre-oviposition at each site

using climatic data generated from AR(1) models fitted to adjusted temperatures

and using the true climatic data for five East African sites.

Dataset

Muguga Chipata Chipata Kizimbani Zanzibar

1968	 1986	 1987	 1984	 1986

	

16.36	 143.93	 209.76	 148.27	 163.16

	

16.39	 105.96	 128.03	 148.32	 155.41

	

16.54	 148.00	 199.60	 127.40	 148.23

	

16.41	 121.04	 182.72	 148.19	 160.74

	

16.02	 117.74	 219.10	 128.51	 169.34

	

16.27	 107.81	 196.44	 128.22	 157.85

	

16.31	 116.29	 173.86	 135.90	 160.90

	

16.48	 122.54	 204.68	 140.53	 158.24

	

16.38	 149.17	 257.60	 139.80	 153.46

	

16.39	 75.80	 164.40	 111.74	 152.89

mean	 16.36	 120.83	 193.62	 135.69	 .158.02

st. dev.	 0.14	 22.40	 34.70	 11.90	 5.96

true value: 16.48	 122.16	 222.86	 151.85	 167.83

It is clear that the sums of development fractions for the pre-oviposition stage for each

year simulated are fairly accurately predicted at each site. The predicted sums for the

development fractions of the other three stages were also close to the true values.

Thus the model appears adequate in predicting the expected development times

for ticks. If more data on sequential years of daily temperatures were available, the
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variance of the predictions could also be investigated for accuracy. However, there is

no reason to assume that the method is not satisfactory with the data given.

Discussion

A number of questions now arise. Firstly, how much data is required to accurately

estimate the lag 1 correlation of each adjusted process ort l, and how sensitive is the

model to poor estimation of the lag 1 correlation? Secondly, is it possible to obtain

theoretical estimates of any of the model parameters so that predictions can be obtained

for sites where only monthly averaged climatic data is available?

Estimation of the lag 1 correlation of {Wt}

For each site, the lag 1 correlation for {Wt} was calculated for the first 5,15, 25, 35, ...,

365 days of the year ; For each data set, the values of the estimate fluctuate erratically

at first, but eventually stabilise. Given that one years data are the maximum available

for some sites, then the number of daily data required for estimating the parameter

to within the order of accuracy obtained from a full years data would be around 200

days for both the maximum and minimum temperature sequences. This is illustrated

in Figures 10 and 11 showing the change in the estimated lag 1 correlation with sam-

ple size for the Chipata 1987 data. The estimates seem fairly stable after 180 days

for the maximum temperature sequence, Figure 10, and after 150 days for minimum

temperatures, Figure 11.
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Figure 10. Estimated lag 1 correlation against increasing sample size of the adjusted

maximum temperature sequence for Chipata, 1987.
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Figure 11. Estimated lag I correlation against increasing sample size of the adjusted

minimum temperature sequence for Chipata, 1987.

Sensitivity of the model to changes in the lag 1 correlation

Examination of the Chipata 1987 climate sequence indicates the importance of the

lag 1 correlation both in the prediction of the expected sum of development fractions,

E1 , for each tick stage i, and in the variance of these estimates. The estimates of

lag 1 correlation for the adjusted maximum and minimum temperature sequences at

Chipata 1987 are both around 0.6. Assuming that the two lag 1 correlations are equal,

the effects of changing the lag 1 correlations on the resulting development fractions sum

can be investigated by varying their values over the range 0 to 1.

The graph of a 95% confidence interval for the expected development fractions sum

for the oviposition stage, Figure 12, illustrates typical results. The confidence intervals

were obtained from ten simulations at lag 1 correlation values of 0, 0.1,0.2, ... , 0.9.



95% C.I. FOR MEAN EXPECTED DEVELOPMENT
600

0.2	 0.9	 0.4	 0.5	 0.8	 0.7	 0.8	 0.9
LAG 1 AUTO-CORRELATION

Figure 12. 95% confidence intervals for the expected sum of development fractions

for ticks in preoviposition for Chipata 1987 under various values of lag 1 correlation.

As the lag 1 correlation increases so does the variance of the development time

statistic estimated. This is due to the exponential nature of the temperature to devel-

opment time relationship. When the lag 1 correlation is zero, the adjusted temperatures

for adjacent days are independent. In this case, it is likely that dose to a half of the

generated temperatures, .t t , will be greater than their corresponding expected val-

ues, M; and around a half of the generated temperatures will be less than this value.

Increasing the lag 1 correlation reduces the likelihood that half of the generated tem-

peratures are greater than expected, and half are less than expected, as long series

of values greater than or less than the mean become more probable. Because of the

exponential relationship between temperature and the speed of tick development, this

has the effect of producing a more variable estimate of the development time.

Similarly the expected value of the estimate seems to increase beyond a certain

point. It would appear that for lag 1 correlations less than around 0.65 there is not

much difference in the average prediction of the sum of development fractions; and for

lag 1 correlations less than 0.4 there is little difference in the variance of the predicted

development fractions sums.

It is clear, therefore, that the autoregressive nature of the model is important, but

that some flexibility in the accuracy of the lag 1 correlation estimate is permissible

without greatly affecting the resulting tick development predictions. This observation

is consistent with the results following similar analyses of the temperature sequence

models fitted to the other climatic datasets. This suggests that a default lag 1 corre-
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lation estimate may provide reliable results for sites where daily temperature records

are unavailable.

Theoretical estimates of the error variance for the AR(1) model

The AR(1) model for daily maximum or minimum temperature can be written in the

form

Xt — A = r(Xt—i — Mt—i)+ Zt
	

(5)

The Mt are estimated from the monthly mean maximum and minimum temperatures

by linear interpolation. Most climatic datasets also include the variance of the daily

maximum and minimum temperatures for each month. It is possible to use these sample

variances to estimate the variance of the noise process ga.

Rearranging equation (5) gives

Xt = Mt+ r(Xt—i — Mt—i) + Zt

and so	 Var(Xt) = Var(Mt + r (Xt—t — Mt--1) + Zt)

= Var(rXt _ i + Zt)

= r2 Var(Xt-1 )-F Var(Zt).

That is,	 Var(Zt) = Var(Xi) — r2Var(Xt—i)

Assuming that Var(X 1 ) = Var(Xt _ i ) = al for all t, then

Var(Z
= 0.2 (1 _7,2).t)

Var(Xt ) is not the variance of daily maximum or minimum temperatures within a

month. The variance of the daily extreme temperatures within a month is a measure

of spread about the months average maximum or minimum temperature. Var(Xt ) is

a measure of the dispersion of the maximum or minimum temperature for a specific

day, t, about the expected maximum or minimum temperature for that day, A. The

expected temperature, A, changes for each day of the month, and so the months

variance is not a valid measure of the variation in daily extreme temperatures.

The daily maximum temperatures for one month consists of the sequence X1,X2,...,

X„, where each Xt is a random variable from a distribution with mean A and variance

q2 • The monthly summary statistics consist of the mean, X, and variance, 4. , of the

Xt values, where
n Xt

X = 7 -
I-, nt=1

(6)
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En (Xt — X)2
Tit=1

and 2
SX =

IV

as

ce 0.

Now, Xt can be expressed in the form

Xt = A + Et

where E[e t] = 0 and Var( e t ) = (72 , and so the mean and variance of daily maximum

temperatures for the month can be approximated as follows:

nEmt+et 
nt=i

n	
t	

n

=E
m E et_ + _

	

n	 nt=i	 t=1

.1' =

al = E[(Mt + et) 2]— E2 [(A + et)]

= ERA + etr] — {E 'Alto }2
t=1

Now,
n 

M
2	

n e2	 n ,, ,
ERA + Et ri =E 7_;L+E,+E.tet.

,=,	 ,=, n	 t=i Ti

The degree of change in the mean daily maximum or minimum temperatures between

successive months is usually within two degrees, and so it is likely that

n	 n

E

2MeEt	 %—. Et
-- = 2M 2., — = 0

n	 n
t=1	 t=1

where M is the mean of the M.

Hence, the variance of the months daily maximum temperatures can be approximated

as



Jan

Feb

Mar T3

1-12

T1

32
z3

,2
-z2

32z1

•

•

Dec T12 ,2
-z12

Rearranging this equation, yields an estimate of o2 = var( X2)

n m2
0.2 =, 32x E t +/E_mi,2

nt=1	 t=1

It is, therefore, possible to estimate Var( Xt ) from monthly averaged data. The variance

of the noise process {Z} can now be estimated using equation (6) as

Var(Zt ) = (1 — r2 ){s2x —	 +	 ALtn }2}.	 (7)
t=1	 t=1

There are now two possible methods for applying this theory to predict the error vari-

ance for an AR(1) model with lag 1 correlation r, from a years monthly averaged

data:

mean daily maximum	 variance of daily

month	 temperature	 maximum temperatures

Method 1

Let the years average daily maximum temperature = Z

7 =  + + • • • + T12 
12

and the years variance of daily maximum temperatures = 	 it can easily be shown

52 = E(33i) E(71) 
12

Where,

3 2 . the variance of daily maximum temperatures for month izi

T i the mean of daily maximum temperatures for month i

that
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1.41

1.63

1.15

0.98

1.31

Chipata 1986	 1.96 (2.02)

Chipata 1987	 2.12 (2.13)

Muguga 1968	 1.47 (1.45)

Kizimbani 1984 1.21 (1.02)*

Zanzibar 1986	 1.51 (1.17)*

(1.37)

(1.51)

(1.08)

(0.90)

(1.25).

Let Tii be the expected maximum temperature for day j of month i, estimated by

linear interpolation of the Ti.

-2365Z — E(4) 
So,	 Var(Tii) = 4 = +z

365

_ E(32zi ) E(T2i ) -z2 3652-2 — E(Ti2j)
—	 12	 +	 365

_E(,) +E() E(T)	 2= 0—	 12	 365
Now,	 Var(Zi) = Var(T13 )(1 — r2)

= { E(331) E(l) E(4) }(1 — r2)12	 365

When this method was applied to each data set, estimates of the error standard

deviation were obtained. These are displayed in table 8, with the true error standard

deviations obtained by fitting the full AR(1) models presented in brackets.

Table 8. Estimates of the error standard deviation for the adjusted AR(1) model

using method 1, for data from 5 East African sites.

Site	 estimated error	 standard deviation (truevalue)

Max. temps	 Min. temps

* - poor estimate

Most estimates of the error standard deviation are good, except for two. Estimation

inaccuracies arise in two ways. Firstly, the approximations neccesary in producing the

formula for the variance estimate, equation (7), will create inaccuracies. Secondly, the

average of the expected extreme temperatures for each month will not equal the ob-

served monthly average extreme temperature. This is due to the linear interpolation
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between month midpoints. There appears to be no simple, suitable method of inter-

polation to estimate the expected daily maximum or minimum temperatures whilst

preserving the observed monthly mean. Those datasets with the largest estimation

inaccuracies of the error standard deviation are those in which there is the biggest

departure between successive monthly mean extreme temperatures. This increases in-

accuracies in both the ways described above.

Method 2

An alternative approach is to treat each month seperately, and to obtain an estimate

of the error variance for each month.

Let	 Var(Zti)=Var(Zt) for month j.

Var(Zti )= Var(T1 )(1 — r2)
-2

= {32,2 + 
nZ-1 — E(T4) 

}(1 — r2)
n•

.7

where,

82 -- the variance of daily maximum or minimum temperatures for month j,zj

z; :---- the mean of daily maximum or minimum temperatures for month 5,

2"1; = the expected maximum or minimum temperature for the ith day of month j,

n • = the number of days in month 5..7

When this method was applied to the Chipata 1987 monthly averaged data, the

estimates of the error standard deviation for each month displayed in table 9 were

obtained.
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Table 9. Estimates of the error standard deviation for the adjusted AR(1) model

using method 2, for data from Chipata in 1987.

error standard deviations - S.d( eii)

month Max. temps Min. temps

Jan 1.84 0.63

Feb 1.63 0.68

Mar 1.56 0.89

Apr 1.63 1.66

May 2.35 1.91

Jun 2.83 1.55

Jul 1.69 1.74

Aug 2.11 1.77

Sep 1.88 1.73

Oct 3.14 2.50

Nov 1.60 1.64

Dec 2.42 1.04

mean = 2.05 mean = 1.47

true = 2.13 true = 1.51

It should be noted that the mean of the error standard deviations for each month is

very close to the actual error standard deviation when the AR(1) model is fitted to

the true data. The validity of this method, however, is dubious because the lag 1

correlation is not estimated seperately for each month. A vast number of years data

would be required for estimating the lag 1 correlation for each month. Because of its

impractability, and due to its increased complexity, this method is abandoned.

Default values of lag 1 correlation and error variance

It is clear from the argument presented above that, given an estimate of the lag 1

correlation, the error variance can be accurately estimated from the within month

variances presented in the monthly averaged data (using method 1). Thus, if a default

value of the lag 1 correlations for maximum and minimum temperatures can be found

to give reasonable development fractions estimates, then only the monthly averaged

data would suffice to run simulations from. This is the objective, as monthly averaged
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data is the only readily accessible form of climate data available to users of the model.

Taking the average of the lag 1 correlations for maximum and minimum tempera-

ture for the five sites gives mean lag 1 correlations of 0.462 and 0.431 for the adjusted

maximum and minimum temperature sequences respectively. Using the monthly av-

eraged data along with these mean lag 1 correlations, the estimates of model error

standard deviation are obtained (method 1 above). These estimates are presented in

table 10.

Table 10. Estimates of the error standard deviation for the adjusted AR(1) model

using method 2, for data from 5 sites in East Africa, when the lag 1 correlations

for the maximum and minimum temperature models are assumed 0.462 and 0.431

respectively.

error standard deviations - S.d(e ii )

Dataset max. temp. min.temp.

Muguga 1968 1.98 1.30

Chipata 1986 2.21 1.71

Chipata 1987 2.32 1.87

Kizimbani 1984 1.16 0.93

Zanzibar 1986 1.38 1.26

Using these parameters, ten simulations at each site were performed, and values of the

expected tick development time, E, obtained. These are displayed and summarised in

table 11.
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Table 11. Expected developmental times, E, for ticks at each site, using climatic

data generated from AR(1) models using lag 1 correlations of 0.462 and 0.431 for

adjusted maximum and minimum temperatures respectively.

Dataset

Muguga	 Chipata	 Chipata	 Kizimbani	 Zanzibar

1968	 1986	 1987	 1984	 1986

	

267.95	 96.58	 89.41	 73.86	 73.65

	

275.20	 102.93	 86.31 75.93	 73.87

	

271.30	 98.83	 89.20	 76.86	 74.44

	

268.82	 100.07	 91.58	 77.67	 74.03

	

276.73	 100.41	 87.58	 75.27	 73.48

	

272.85	 102.19	 90.15	 77.10	 74.43

	

279.91	 104.53	 84.52	 77.36	 74.03

	

272.73	 100.41	 85.33	 77.67	 74.10

	

274.69	 101.35	 91.92	 75.75	 74.45

	

293.81	 110.80	 94.78	 78.58	 73.88

mean	 275.40	 101.81	 89.08	 76.41	 74.04

st. dev.	 7.38	 3.84	 3.21	 1.37	 0.33

95% C.I. (270.11, 280.68)	 (86.78, 91.38)	 (73.80, 74.28)*

(99.06, 104.56)	 (75.43, 77.39)

true value	 277.39	 99.73	 90.42	 76.63 •	 74.40

Only one of the 95% confidence intervals for the mean does not contain the true value,

that being for simulations from the Zanzibar airport data (marked with the asterisk).

However, the magnitude of this error is in the order of only one day, which is negligable

as far as the model is concerned. The adjusted AR(1) model with default lag 1 cor-

relations and estimated error variances therefore appears to produce very satisfactory

results. In fact, comparison of these results with those for when an AR(1) model was

fitted seperately to each dataset, presented earlier in table 6, suggests that the mean

and standard deviation of the predicted expected developmnet time, E, is very sim-
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ilar under both approaches. Only for the data from Mug-uga in 1968 is there a large

difference in the standard deviation of these predictions. It would appear, therefore,

that the default parameters provide an adequate approximation in the absence of site-

specific parameter estimates.

6.6 CONCLUSIONS

Most models discussed in the literature concentrate on daily rainfall levels, daily tem-

peratures being estimated once the sequence of rain or no-rain days is predicted. These

models are unsuitable for modelling ticks, as temperature is the crucial factor required,

and daily data for predicting rainfall sequences is rarely available.

The extreme value distribution method for predicting maximum and minimum

tempertatures (Gumbel, 1952) provides a rainfall-independent method. However, de-

velopment times estimated from temperature data predicted by this model appear

consistently underestimated.

The proposed method, using an AR(1) model to predict a sequence of adjusted

temperatures, appears to give rise to development times close to those expected. More-

over, the model appears robust enough to allow the use of default lag 1 correlations of

0.462 for maximum temperatures and 0.431 for minimum temperatures.



7. ECFXPERT: AN INTEGRATED MODEL

"Machines are worshipped because they are beautiful,

and valued because they confer power;

they are hated because they are hideous,

and loathed because they impose slavery."

Bertrand Russell, Sceptical Essay.

ECFXPERT is an integrated computer model designed for the investigation of Rhipi-

cephalus appendiculatus tick populations, the disease East Coast fever (ECF) and its

control. The model is designed to be used by a wide range of users from many dis-

ciplines in helping to answer differently motivated questions concerning ticks and the

disease. A tick ecologist, for example, may be interested in investigating the factors

that control various seasonal patterns exhibited by ticks, or the consequences of global

warming on tick populations. A parasitologist may wish to explore the effects and im-

portance of carrier status in recovered cattle. Alternatively, a farm manager might be

interested in determining the most effective and economical method of disease control

at a given location. ECFXPERT provides the facility to explore these questions. The

model can also be used as a planning tool to determine effective research programmes

by performing computer experiments to assess the suitability of a research thrust, and

as an aid to experimental design.

Because it is intended that the model should be accessible to users from diverse

areas of interest, the package is supported with comprehensive up-to-date data con-

cerning all aspects of the disease. This enables all users to effectively understand and

employ the models, and to interpret the results. In fact, the motivation in constructing

such a package is that it would not just be of interest to scientists working in the area,

but that planners and managers on local and national levels would find it a useful tool

in decision making. It is therefore important to design the package in such a way that

it can be used as effectively by experts and non-experts alike. Certainly, the opinions

of scientists involved in ECF research is of major importance in critically evaluating

the models and establishing its shortcomings and strengths. Shortcomings can be dealt

with and strengths built upon, allowing the model to evolve into a useful and accurate
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tool for studying disease control. If nothing else is achieved, the process of modelling a

system will at least highlight those areas where knowledge is lacking, and where further

research is required to complete our understanding of the problem. However, the model

should not stop there. Once accepted by experts, it should be made available to the peo-

ple involved in making decisions, such as composing reliable national dipping strategies,

or cattle movement and importation laws. The consequences of such decisions involve

great financial risk. For example, currently the governments of most African countries

where ECF is a problem spend millions of dollars each year in maintaining intensive

dipping strategies. Many experts now believe this to be a massive waste of resources.

In fact, recommendations following the International Tick Symposium, ICIPE, Nairobi

(1990) suggested that dipping should be reduced because intensive tick control reduces

disease challenge, and consequently reduces resistance to disease. This can have devas-

tating effects in areas where dipping is terminated or where ticks become resistant to

acaricides. Possibly the most effective control is to reduce tick numbers sufficiently to

prevent fatal disease, but allow mild infections which maintain disease resistance. The

degree of tick control required to permit such a situation is likely to be finely balanced,

and is a question that should be addressed by mathematical models if they are to be of

practical value. The motivation behind ECFXPERT is that it will evolve into a state

from where such powerful results can be extracted. To allow this, however, scientists

and managers need to view models not as the hideous constructions of mathematicians,

but in the light of their potential value. Present scepticism is a result of mathematical

models being created to produce interesting or beautiful mathematics, not to effectively

describe the complexity of the system under study. These models are not of interest

to non-mathematicians. ECFXPERT offers the alternative approach, aimed not to

produce elegant mathematics, but to generate improved understanding of the natural

process.

7.1 ECFXPERT ENVIRONMENT AND KNOWLEDGE BASE

ECFXPERT runs on IBM and compatible microcomputers, and provides a user-friendly

environment for performing computer experiments. The models are completely menu-

driven, and on entering the package the user can select to run either the tick, ECF,

dipping, or drug models, or to view a demonstration. Associated with each model are

data screens containing default values for each model parameter. Screen editors allow

these parameters to be viewed and edited. In addition, different climatic datasets can

be selected, or created and saved within the package.
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Expert knowledge available to the user is stored in three ASCII text files — a

help file, a dictionary and a bibliography. Help messages are associated with every

parameter contained in the data entry screens of each model, and provide current

knowledge to assist in the choice of parameter value. Keywords, indicating areas where

more information is available, appear highlighted on a particular message. Thus, in a

hypertext-like manner, a user can progress through a series of help screens, increasing

their knowledge on a particular aspect of the disease. Keywords and their associated

messages are stored in the dictionary, which can easily be updated and extended —

providing a growing and developing pool of knowledge available to educate the user. In

a similar way, specific references to relevant literature and scientific papers are made

available on request, or can be viewed in the bibliography which lists all scientific

literature important in constructing the models and in understanding the disease.

Output screens provide graphical plots of numbers of ticks in each stage each day

of the year, and dot-plots of weekly changes in the numbers of cattle to become infected,

and die. Simple univariate summary statistics are displayed throughout runtime which

provide useful and meaningful indices of disease risk. Statistics thought to distinguish

different geographical sites as disease risks indude: the percentage of the tick population

questing, the percentage of infected questing ticks, and the average development times

of ticks through their various developmental stages. A comprehensive summary of data

describing the course of a particular simulation is stored in an output file for later study

and analysis.

7.2 PROGRAMMING DETAILS

A major constraint in the development of the computer programs, was that the model

was required to be fast and efficient enough to effectively simulate the biological pro-

cesses in a length of time that will retain the attention of the user. Users will lose

interest in models that are too slow, or badly presented.

In the process of programming, two main problems arose: how to present on screen

the yearly profiles of ticks graphically, given the year to year changes in tick numbers;

and how to efficiently store data on the tick population in such a way that each tick

can be individually followed through its life cycle, and vast numbers of ticks can be

dealt with.
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Dynamic scaling of the tick population graph

Tick populations vary in size from year to year and from simulation to simulation. If

the scaling of the graph is fixed, then a decaying tick population would be shown as

a mass of lines close to the z-axis, and an expanding tick population would disappear

off the top of the graph.

To optimise the scaling of the tick population graph, eggs and larvae are scaled

differently to nymphae and adults to allow for the vast difference in the number of ticks

in each stage, and the scalings are adjusted at the beginning of each year depending

on the state of the tick population in the previous year. The algorithm that appeared

most effective is as follows:

1. Record last years maximum counts of eggs, larvae, and nymphae.

2. Adjust the y-axis scaling by positioning last years nymphal peak three quarters

of the way up the scale.

3. Scale down the number of larvae by positioning last years larval peak at the top

of the new scale, and deducing the appropriate scaling factor for larvae.

4. Scale down the number of eggs in an identical way to the larval scaling.

A problem arises in choosing a suitable starting scale for the first year of the simulation

experiment. This is chosen from experience, but is not too critical as it may take the

tick population some years to stabilise into a steady state.

Data structures for handling the tick population

The majority of data handled in the simulation program is concerned with the tick

population. The herd is assumed small enough (less than 200 animals) to present no

real problems, and information on the age and status of each animal in the herd is

stored in an array of records. The fecundity of ticks is required to be between 4000

and 6000 eggs per female in oviposition, so the total number of ticks present at any one

time in a typical simulation experiment is likely to be in the order of many thousands.

It is important, therefore, to choose data structures that will enable the program to be

most time and memory efficient. The data structures used in the simulation of the tick

life cycle are illustrated below in Figure 1.

The length of time spent in the feeding stages is constant for each stage (Branagan,

1978). The numbers of ticks feeding in each stage can, therefore, be stored in a single

1-[D] array of length equal to the time spent in that stage. At the beginning of each
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day, ticks that have completed feeding are removed from the end of the array, and the

other elements moved down one place. The number of newly attached ticks is placed

in the first entry in the array. This number of newly attached ticks is calculated by

generating a random variable from a Binomial(n,p) distribution, where n is the number

of questing ticks of the appropriate stage, and p is the daily attachment probability.

Efficient generation of random variables from the Binomial distribution was discussed

in chapter 5.

Questing ticks will remain questing until they either die or attach. The number of

ticks in each questing stage is stored as a single variable, which is incremented daily by

newly developed ticks, and decremented daily by newly attached ticks.

Developing ticks can be handled as cohorts because ticks entering a developmental

phase on the same day will become fully developed on the same day in the future. Each

cohort will represent the number of engorged ticks, or eggs laid, arriving on any one

day. The numbers of ticks in each developmental phase are stored in a circular list of

sufficient length to never become totally full. Newly entering ticks are placed at the

bottom of the list, newly developed ticks are removed from the top of the list. Pointers

are kept assigned to the first element and last element of the list, and are adjusted

whenever entries are removed or added. The number of entries in the list is recorded

so as it is obvious whether the list is empty or full.

Associated with each block of ticks is a constant which enables the fraction of

development completed by the start of any day to be established. A cumulative sum

of each days development fraction for each developmental stage is kept throughout the

simulation. When a new batch of ticks enters a developmental phase, they are assigned

a developmental value, d, equal to the cumulative sum of development fractions up

to that day, S(day). Hence, when the sum of development fractions minus the de-

velopmental value becomes at least 1, then the tick batch has developed. I.e. When

S(day + n) — d > 1, for some integer n, the ticks have developed.
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Figure 1.	 Data structures employed by the tick life cycle model.

The advantages of storing data in this way are great, as they facilitate the speed

and simplicity of the program. Firstly, storing ticks in cohorts allows random events,

such as the number of ticks surviving a particular day in a particular cohort, to be

more efficiently simulated by using Poisson or Normal approximations to the Binomial

distribution. Groups of developing ticks are stored in the order of most developed at

top of list, least developed at the bottom of the list. This allows . fast and efficient

searching for developed ticks. Also, development fractions are only calculated once for

all the ticks in a phase, rather than individually for each group of ticks. The numerical

integration required to calculate development fractions is costly, and this enables the

model to run faster.



7.3 THE ECFXPERT PACKAGE

ECFXPERT is supplied on a single 3.5 or 5.25 inch diskette and will run on IBM

compatible microcomputers with 640K RAM and a VGA colour monitor. The package

comes complete with up-to-date bibliography and dictionary files containing current sci-

entific knowledge concerning the disease. These files are named BIB.TXT and ECFX-

PERT.DIC respectively. Help messages are stored in the text file ECFXPERT.HLP.

Also supplied are a dozen or more climatic data sets, containing temperature and rain-

fall statistics for sites in Kenya, Tanzania, Zambia, and Zimbabwe. These are contained

in files named with the extension .CLI. The package allows the facility to create and

save new climatic data sets within ECFXPERT. Summary statistics describing the

course of a simulation are stored in the text files TKSTAGES.TXT and TKATT.TXT

for the tick model, and ECFOUT.TXT, DIPOUT.TXT and CHEMOUT.TXT for the

ECF model, dipping model and chemotherapy models respectively. Summary statistics

for the tick model consist of weekly predicted numbers of eggs, larvae, nymphae and

adults and weekly predicted numbers of attached larvae, nymphae and adults. For the

other models, these summary statistics consist of monthly numbers of questing ticks,

yearly numbers of new ECF cases and yearly numbers of ECF fatalities. To use ECFX-

PERT simply copy the files from the diskette into a directory on the hard disk of your

computer and type ECFXPERT.

The package was designed and assembled by G. Gettinby and W. Byrom at the

University of Strathclyde for the Overseas Development Administration, U.K. The

authors gratefully acknowledge the following persons and organisations for their advice

and cooperation:

D. Berkvens,	 T. Dolan,	 J. Doyle,

E. Flach,	 S. Hazelwood,	 N. McHardy,

I. Morrison,	 S. Morzaria,	 R. Newson,

A. Norval,	 B. Perry,	 N. Short,

Cooper Pitman-Moore Animal Health Ltd., Berkhamsted, U.K.

International Laboratory for Research on Animal Diseases, Nairobi, Kenya.

The results of the models do not neccesarily represent the specific views of those people

who generously contributed to the discussions.



8. RESULTS

"The roots of education are bitter,

but the fruit is sweet."

Aristotle, Life.

In the following sections, the results of a number of computer experiments are pre-

sented. These experiments were performed to help validate the ECFXPERT models,

and to investigate the effects of certain parameters on model predictions. In all ex-

periments, unless otherwise stated, the tick attachment rate was assumed 0.04, the

herd was assumed to contain all immune cattle but offspring would be fully susceptible

until challenged with the disease, and immune cattle were assigned carrier status with

a probability of 0.05 of infecting feeding ticks. The herd parameters reflected an ex-

panding herd commencing with only 30 members, with high growth and takeoff rates.

In the absence of the disease, over 700 new cattle could be expected to be produced by

the herd in a twenty year period, and of these around 300 would remain for their first

year at least.

Within each simulation, various statistics were recorded to describe the behaviour

of the tick population and the disease. Statistics thought useful in describing the tick

population were the seasonal occurrence of the attached stages, which also correspond

to periods of possible disease outbreak, and the number of questing ticks present each

month of the year. Questing tick totals were summarised as mean, maximum and

minimum monthly totals for each year of each simulation, and describe the yearly

and within year changes in tick challenge. Tick data from the first five years of each

simulation were discarded, as it was observed that this period of time was required for

the tick population to stabilise. Statistics recorded to assess disease prevalence were

the number of incidences of disease in a particular simulation, and the proportion of

these infections that resulted in fatalities. All Statistical tests, comparing predictions

under different conditions, were performed on the results using 5% or less significance

levels.
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8.1 VALIDATION OF MODELS

Many studies at different geographical locations report observations on the seasonal

abundance of attached ticks. These reports can be used to help validate the tick

model. The development fractions technique has already been shown to be satisfactory

(King et al., 1988) by comparison of predicted development times with field observations

(Branagan, 1973b). Unfortunately, validation of the ECF model is not straight forward.

Field tests of the model at different sites where ECF is endemic are required.

The observed occurrence of attached ticks

Four tick surveys reported in the literature were investigated:

Mwanza, Tanzania (2°S, 33°E): Larvae, nymphae and adults are present through-

out the year (McCulloch et al., 1968).

Nyabubinza, Tanzania z ): Peak numbers of adults, larvae and nymphae

occur from October to March, February to August and May to November respectively

(Yeoman, 1966).

Nanduba, Zambia (16°S, 28°E): Adults occur between November and June, larvae

between February and August, and nymphae between March and October. Moreover,

two peaks of nymphs appeared to occur in May and July (MacLeod and Colbo, 1976).

Lake McLlwaine, Zimbabwe (18°S,31°E): Adults occur between November and

June. Larvae and nymphae occur in high numbers between March and December, and

May and January respectively (Short and Norval, 1981a).

Model predictions

The model was seen to produce very satisfactory predictions at three of the four sites

considered. Figures la, lb, lc and id illustrate the predicted abundance of attached

larvae (thin solid line), nymphae (broken line) and adults (thick solid line) at Mwanza,

Nyabubinza, Chipata and Lake McLlwaine respectively. Chipata ( 13°S, 32°E) was

chosen in place of Nanduba, as climatic data were not available for this site. Predictions

for Mwanza using the ECFXPERT tick model are good. It is predicted that ticks of each

stage will be found attached to animals throughout the year. At Nyabubinza predicted

adult and larval presence is very close to that observed. Two peaks of nymphae are

predicted, one from January to April, the other from May to October. The second

peak correlates well with observations, the first peak not being reported.
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Figure 1.	 Predicted seasonal occurrence of attached ticks at four sites.

At Chipata, the predicted seasonality of attached ticks in all stages follows closely

to that observed for Nanduba. The observed bimodal nymphal distribution is also pre-

dicted, maxima occurring between March and May, and July and August. Predictions

for Lake McLlwaine show that the time of appearance of attached ticks in each stage is

consistent with observations. However, attached ticks are observed on animals for much

longer periods than those predicted. This could possibly be overcome by reduction of

the questing tick attachment probability, causing peaks to become more elongated.

8.2 THE OBSERVED VARIATION IN MODEL OUTPUT

To illustrate the natural variation exhibited by the model, a computer experiment

comprising of ten simulations of the ECF model over a 20 year horizon at Chipata

was performed. Ten simulations were observed to be sufficient in producing reliable

estimates of the mean and variance of predicted statistics. In this experiment, all

recovered cattle were assumed carriers, each with a probability of 0.05 of infecting

feeding ticks.

- 163 -



0 30 00 SO ISO ISO 110 2/0 240 270 300 330
DAY

,,

,
,

1...

Yearly variation in the distribution of attached ticks

Figure 2 illustrates the variation in the numbers of larvae and nymphae attached to

animals within a single 20 year simulation. The thin solid line, thick solid line and

broken line represent output from the fourth, seventh and tenth years of the simulation

respectively. The general position and height of the peaks is similar from year to year,

although much variation is seen to occur which may have an effect on disease. Little

year to year variation in the distribution of attached adults was observed.

(a) ATTACHED LARVAE
	

(b) ATTACHED NYMPHAE

FREQUENCY
	

FREQUENCY

Figure 2.	 Predicted variation in attached ticks at Chipata.

Yearly variation in the duration of developmental periods

Expected modal development times can be calculated by dividing 365 by the sum of

development fractions for each day of the year. The observed modal development times

may not be equal to those expected because of the seasonality observed at Chipata,

however, this statistic does give an indication of the variation seen in model output.

Within a single 20 year simulation the expected mode duration of the pre-eclosion,

larva to nymph moult, nymph to adult moult, and pre-oviposition phases were seen to

vary from 43 to 46 days, 13 to 14 days, 22 to 24 days and 8 to 9 days respectively.

Variation in disease incidence over a 20 year period

The disease incidence varied substantially from year to year within a single 20 year

simulation. In all years, most susceptible cattle contracted the disease, but the propor-

tion of infections that were fatal varied from none in some years, to almost all infected

cattle in other years. Results of the computer experiment showed that the proportion

of infections that were fatal in each 20 year simulation varied from 0.246 to 0.406. The

mean proportion of infections in 20 years resulting in fatal disease reactions was 0.301,

with standard deviation 0.050.
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8.3 THE EFFECTS OF THE TICK ATTACHMENT PROBABILITY

ON TICK POPULATIONS AND ECF

The effects of changing the tick attachment probability was investigated by perform-

ing computer experiments using meteorological data for Chipata, where ticks exhibit

strong seasonality (Figure lc), and for Mwanza, where ticks of each stage are present

throughout the year (Figure la). At both sites computer experiments comprising of

10 simulations, each of 20 years, were performed for a range of attachment probability

values: 0.045, 0.04 [default], 0.03, 0.025 and 0.02. At each site an attachment proba-

bility of 0.045 produced a tick population that was rapidly increasing, the number of

ticks exceeding as many as 1000 million before the end of a single 20 year simulation.

Attachments of 0.04 and 0.03 appeared to produce fairly steady state tick populations

at both sites.

Attachment rates of 0.025 at Chipata caused extinction of the tick population

within the 20 year simulation 8 out of 10 times. In one case, extinction was attained

as early as day 70 in year 8. Extinction of the tick population was observed for all 10

simulations at Chipata when the attachment rate was as low as 0.02.

However, at Mwanza, the effects of lowering the daily attachment rates to 0.025

and 0.02, did not cause extinction of the tick population in any of the simulations

performed. This is because conditions for ticks are more favourable at Mwanza, and

adult ticks exhibit little quiescence and so the attachment probability is less critical.

Statistical analysis was performed on measurements of disease severity for predic-

tions from each site. Analysis was confined to comparing the groups with attachment

rates of 0.04, 0.03 and 0.025. In those simulations that continued for the full 20 years

at Chipata, the mean numbers of ECF cases were 247, 212 and 166 per simulation

when attachment rates were 0.04, 0.03 and 0.025 respectively. A multiple range test

suggested that the incidence of disease was highest when the tick attachment rate was

0.04, and lowest when the tick attachment rate was 0.025. However, the mean pro-

portion of infections that were fatal in each group did not appear to be significantly

different (p = 0.886).

For predictions at Mwanza, the mean numbers of infections arising in simulations

when the tick attachment rate was 0.04, 0.03 and 0.025 were 215, 309 and 231 re-

spectively. In the case when the attachment rate was 0.03 there appeared significantly

more infections than in the other two cases. This is a strange result. The mean propor-

tions of infections resulting in fatalities were not significantly different between groups
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(p = 0.752), being 0.325, 0.314 and 0.313 for groups with attachment rates of 0.04,

0.03 and 0.025 respectively.

8.4 THE EFFECTS OF INFECTIVE PERIOD AND CARRIER

STATUS ON DISEASE

Using data for Mwanza and Chipata, it was observed that when the infectious period

of recovering cattle was 5 days this was not sufficient to maintain the disease. Typically

cattle and ticks ceased to become infected within 2 years, resulting in extinction of the

parasite.

The infectious period of cattle that recover was increased to 20 days, which was

more in line with expert opinion, although no published data were available to estimate

this parameter. In this case, disease challenge was maintained for a longer period, but

in all simulations dissappeared within the first 5 years.

It is clear that infection cannot be maintained simply from a short infectious period

in cattle that are infected. In this case the timing of the infectious period becomes

critical, and because it may not always correspond to a period of high tick challenge,

the parasite is doomed to eventual extinction.

Carrier status was introduced, whereby cattle that recover become immune to the

disease, but maintain small numbers of parasites in their bloodstream which can be

transferred to feeding ticks. In this case, disease challenge was maintained throughout

all simulations up to 20 years. The effects of varying the infectivity rate of carrier cattle

is discussed below in section 8.9.

There exists much disagreement amongst experts as to the role of carrier status

amongst recovered cattle. The model results suggest that carrier status must exist

for the infection to be maintained, although this result excludes the possibility of wild

hosts providing a reservoir for maintaining transmission of the disease.

8.5 THE EFFECTS OF CLIMATIC CHANGE ON TICK

POPULATIONS AND ECF

To investigate the effects of climatic change on ticks and disease, two sites were con-

sidered: Chipata and Mwanza. At each site, mean monthly maximum and minimum

temperatures were reduced by 5 degrees, 2 degrees, and 1 degree, not changed, and

increased by 1 degree, 2 degrees and 5 degrees respectively, producing a total of 7

computer experiments for each location. Each computer experiment comprised of ten

simulations of the ECF model over a 20 year horizon. All recovered cattle were assumed
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carriers, each with a probability of 0.05 of infecting feeding ticks.

Effects on the distribution of attached ticks

When temperatures were reduced by 5 degrees at Mwanza, the tick population soon

became extinct due to the predicted period of quiescence in adult ticks extending over

the whole year. Similar reduction in temperatures at Chipata predicts adults to be

inactive for 11 months in the year. In some cases this was sufficient to cause extinction

of the tick population. Figures 3 and 4 contrast the change in the yearly distribution of

attached ticks when temperatures were reduced by 2 degrees and increased by 5 degrees

at Chipata and Mwanza. Larvae are represented by a thin solid line, nymphae by a

broken line and adults by a thick solid line. These Figures can be compared to Figures

lc and la showing the distribution of attached ticks at Chipata and Mwanza predicted

using the default climatic data for each site.

(a) TEMPERATURES REDUCED 2 DEGREES (b) TEMPERATURES INCREASED 5 DEGREES

Figure 3.	 The effect of temperature change on the seasonal distribution of

attached ticks at Chipata.

When temperatures were reduced by 2 degrees at Chipata, the distribution of

attached larvae and nymphae changed from being bimodal (Figure 1c) to having a

single mode (Figure 3a). The period of time larvae and nymphae were observed attached

to animals was reduced significantly: larvae were observed for 5 months instead of 9

months, nymphae for 6 months instead of 10 months. The distribution of attached

adult ticks remained very similar. When temperatures were increased by 5 degrees, the

bimodality of the distribution of larvae and nymphae again disappeared (Figure 3b),

but the period of time for which ticks of these stages were observed was maintained.

Again, the distribution of adult ticks remained similar.
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Figure 4.	 The effect of temperature change on the seasonal distribution of

attached ticks at Mwanza.

Reduction of temperatures by 2 degrees at Mwanza, caused the distribution of

attached ticks to change from ticks of all stages being observed all year round (Figure

la) to bimodal patterns (Figure 4a). Larvae were predicted to occur in high numbers

between December and March, and June and August; nymphae between February and

May, and August and September; and adults between October and December, and

March and April. When temperatures were increased by 5 degrees (Figure 4b), a short

period of quiescence in adult ticks between June and August caused attached adults

to be absent during these months. This consequently caused larval numbers to drop

between August and October, and nymphal numbers between September and October.

Effects on the development times of ticks

"

Figure 5 shows the expected modal development times for the pre-oviposition, nymphal

moult, larval moult and pre-eclosion phases, predicted for each computer experiment

performed at Mwanza.
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Figure 5. The effect of temperature change on the development times of ticks

at Mwanza.

In each case, as temperatures increase, development times decrease. The sum

of expected mode developments for the four phases was reduced from 171.0 to 57.7

days over the range of temperatures considered. At Chipata, a similar reduction in

development times was observed, from 157.3 to 50.3 days over the same temperature

range.

Effects on the timing and prevalence of disease

Ticks contract infection whilst feeding in larval and nymphal stages, and transmit in-

fection to cattle whilst feeding as nymphae and adults. The timing of disease outbreaks

therefore corresponds with periods of nymphal and adult feeding.

Under the default climatic data for Chipata, infections can occur all year round,

although are most likely between mid-February and mid-April, July and September,

and November and December (Figure 1c). A reduction of temperatures by 1 degree

has little effect on the timing of disease, but a reduction of 2 degrees, however, has

a significant effect: infections are not observed between August and October, and the

main periods of disease outbreak are February to May and November to December

(Figure 4a). Increasing temperatures at Chipata has little effect on the timing of

disease (Figure 4b).

At Mwanza, infections can occur all year round under the default climatic data

(Figure la). Reducing temperatures by 1 degree has little effect on the timing of

infections, the disease is still present all year round. When temperatures are reduced

by 2 degrees, infections can still occur at any time of the year, but are more likely

between February and mid-May, and mid-July and November (Figure 5a). Increasing
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temperatures at Mwanza appears to have no significant effect on the timing of disease.

For each site, the proportion of infections that were fatal after 20 years of simu-

lations using the default climatic data, temperatures reduced by 2 degrees and tem-

peratures increased by 5 degrees, were tested for differences using one-way analysis of

variance. At Chipata there appeared to be no significant difference (p = 0.682) in the

proportion of infections causing death after ten simulations under each of the three

different climatic scenarios.

However, at Mwanza the proportion of infections that were fatal under the default

data appeared to be higher than under the reduced or increased temperature data, using

a multiple range test. This observation, however, was not quite statistically significant

(p < 0.061). The mean proportions of infections that were fatal were 0.298, 0.299 and

0.325 for experiments with temperatures reduced by 2 degrees, increased by 5 degrees

and not changed, with standard deviations of 0.0272, 0.0229 and 0.0307 respectively. A

possible explanation for the difference is the appearance of periods of quiescence when

the temperature data are changed. When temperatures are reduced by 2 degrees, adult

ticks are predicted inactive between May and September, and when temperatures are

increased by 5 degrees adults are predicted to quiesce between June and August. This

will affect the survival of adult ticks, which may produce the observed changes in disease

prevalence.

8.6 THE EFFECTS OF GRASS LENGTH ON TICK POPULATIONS

AND ECF

Four computer experiments comprising 10 simulations over a 20 year horizon were per-

formed at Mwanza and Chipata under short and long grass habitats. In each experiment

recovered cattle were assumed carriers with an infective probability of 0.05.

The results for each site were quite different. At Chipata under long grass condi-

tions, tick populations exhibited strong seasonality (Figure 1c) due to the long period

of adult quiescence between May and October. In short grass conditions, the dry sea-

son corresponded with the timing of maximum questing activity of larval ticks. This

reduced the number of larvae to such an extent that in all 10 simulations for short grass

habitats the tick population became extinct within 6 years. In some cases extinction

was as rapid as 2 years. This could suggest that in such strongly seasonal locations,

heavy grazing may have a detrimental effect on ticks and disease.
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Figure 6.	 Predicted distribution of the total tick population in short grass

habitats at Mwanza.
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Figure 7.	 Predicted distribution of the total tick population in long grass

habitats at Mwanza.

At Mwanza, however, the effects of short grass were not so catastrophic, but just

as dramatic. Figures 6 and 7 present the predicted yearly distribution of eggs, larvae,

nymphae and adults for ticks in short and long grass habitats respectively. These

Figures illustrate the total numbers in each stage, not just the numbers of attached

ticks. Figure 7 shows that eggs, larvae, nymphae and adults are present throughout

the year in long grass habitats. However, Figure 6 shows that when the grass is short,

seasonality is observed. This seasonality is produced by the level of rainfall in July

being low, causing egg and larval numbers to be reduced due to desiccation. This

consequently effects nymphal and adult numbers which are predicted to occur in two

waves each year. The observed behavioural differences in the tick population have

an influence on disease. In long grass habitats, disease was predicted to occur at

any time of year. However, in short grass habitats, disease was unlikely to occur in
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October. Moreover, in long grass habitats the proportion of infections that were fatal

in 20 years of simulations appeared higher (p < 0.051) than in short grass habitats.

The proportion of infections that were fatal had means 0.325 and 0.299 with standard

deviations of 0.0307 and 0.0202 for long and short grass habitats respectively.

8.7 THE EFFECTS OF DIPPING ON TICK POPULATIONS AND ECF

For ticks at each site, Mwanza and Chipata, four different dipping strategies were

investigated by computer experimentation and compared to the predictions when no

dipping was performed. Different acaricides were investigated by changing the efficacy

and residual period parameters, and different strategies investigated by changing the

number of days between successive dips. The dipping strategies considered were:

Strategy Dipping interval Residual period Efficacy

[Al 15 days 3 days 30%

[13] 15 days 3 days 50%

[C] 30 days 6 days 30%

[D] 30 days 6 days 50%

For each site, 10 simulations comprising a 20 year period were performed under

each dipping strategy and for the no dipping case. Recovered cattle were assumed to

have carrier status, with a probability 0.05 of infecting feeding ticks.

Computer experiments at Mwanza predicted that the mean proportions of infec-

tions that were fatal were 0.325, 0.298, 0.318 and 0.300 for the no dipping case, dipping

strategy [A], dipping strategy [C] and dipping strategy [D] respectively. It was impossi-

ble to analyse the data from dipping strategy [B] as in all but one of the 10 simulations

the tick population became extinct. Analysis of variance showed no significant differ-

ence in the proportion of infections that were fatal in the dipping and no dipping cases

(p = 0.247). The mean number of infections that were recorded over 20 years under

each scenario were 215, 252, 266 and 257 for the no dipping case, dipping strategy [A],

dipping strategy [Cl and dipping strategy [D] respectively. Analysis of variance of these

data suggested the surprising result that no significant difference in the number of in-

fections occurring in the no dipping and dipping cases could be observed (p = 0.221).

These results support the theory that only one tick is required to transmit the disease,

and that the infection vectored by one infected tick is sufficient to produce fatal ECF.

The predicted yearly means of monthly questing tick totals from years 6 to 20

in each of the ten simulations under each of the five treatment groups for Mwanza
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were analysed using a repeated measures design. The interaction between year and

dipping strategy was not significant, suggesting that similar patterns of questing ticks

could be observed through time in the predictions for each group. The mean monthly

totals of questing ticks at Mwanza were 27001, 13857, 547, 17987 and 11117 for the

no dipping case, dipping strategy [A], dipping strategy [B], dipping strategy [C] and

dipping strategy [D] respectively. The predictions for dipping strategy [D] represent a

98% decrease in the size of the tick population. A multiple range test indicated that the

numbers of questing ticks predicted under each dipping strategy were all significantly

different. Strategy [B] was the most effective in reducing tick numbers, then strategy

[D], then strategy [A], then strategy [C]. Each strategy was a significant improvement

over the no dipping case. Similar patterns were obtained from the maximum and

minimum monthly numbers of questing ticks.

At Chipata, where ticks are predicted to exhibit seasonal behaviour rather than

be present throughout the year as at Mwanza, predictions indicated that the mean

proportions of infections that were fatal were 0.301, 0.302, 0.283 and 0.304 for the

no dipping case, dipping strategy [A], dipping strategy [C] and dipping strategy [D]

respectively. As before, the data from dipping strategy [B] were unable to be analysed

as in all of the 10 simulations the tick population became extinct. The tick population

became extinct once out of the 10 simulations under dipping strategy [A], and four

times out of 10 under dipping strategy [D]. Only the infections data corresponding to

simulations where the tick populations persisted for the full 20 year period were used

in the analysis, which again indicated that dipping had no significant effect on the

proportion of infections producing fatal disease (p = 0.663). The mean total number

of infections occurring over 20 years under each scenario were 246, 195, 189 and 163 for

the no dipping case, dipping strategy [A], dipping strategy [C] and dipping strategy [D]

respectively. The data suggested that under dipping strategies [C] and [D] there may

be fewer infections than under dipping strategy [A], and that dipping strategy [A] may

permit fewer infections than the no dipping case (p < 0.065). This result is not quite

significant, but is different to that for simulations at Mwanza, that clearly indicated no

differences between the groups (p = 0.221).

Repeated measures analysis on the mean monthly totals of questing ticks predicted

for Chipata again indicated that the interaction between year and dipping strategy was

not significant. The mean monthly total numbers of questing ticks in each group

were 65, 2741, 3815, 6628 and 11386 for dipping strategy [B], dipping stategy [D],
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dipping stategy [A], dipping stategy [C], and the no dipping case respectively. The

predictions for dipping strategy [D1 represent a 99.4% decrease in the size of the tick

population when compared to the predictions for the no dipping group. A multiple

range test indicated that all dipping strategies significantly reduced the mean monthly

total number of questing ticks. Analysis also suggested that dipping stategy [B] was the

most effective in reducing the monthly total of questing ticks, then dipping strategy [D],

then dipping strategy [A], and then dipping strategy [C]. Similar patterns were obtained

from the mean minimum and maximum monthly totals of questing ticks. This result

is analogous to that obtained from predictions using the data for Mwanza.

Figure 8 shows the mean monthly number of questing ticks for each year under

each scenario at Chipata. The differences between the five groups are clearly illustrated,

and it is interesting to note that the tick population appears to have achieved a steady

state in each case.
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Figure 8. Predicted changes in the numbers of questing ticks under each dipping

strategy at Chipata.

It is interesting that for simulations for both sites strategy [A] appears better than

strategy [C], and strategy [B] appears better than strategy [D]. Strategies [A] and [C]

both employ an acaricide of 30% efficacy, but in strategy [A] the acaricide is assumed

active for only half the time of strategy [C], but is administered twice as regularly. The

same is true of strategies [B] and [D], only the acaricide efficacy is increased to 50% in

these cases. One might expect, therefore, that the net effects of strategies [A] and [C],

and [B] and [D], would be the same. However, the predicted differences can be explained

by considering the proportion of the tick population that is likely to be affected by the
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acaricide under each strategy. As mentioned in chapter 5, female ticks normally spend

a period of 9 days attached to a host whilst engorging and mating. When the dipping

period is 15 days and the residual effect of the acaricide is 3 days, only those female

ticks attaching one or two days after the chemical has ceased to be active will avoid its

effects. However, when the dipping period is 30 days and the residual effect increased

to 6 days, female ticks attaching between 1 and 23 days after the acaricide has ceased

to be efficacious will not be affected by the chemical. This represents a much higher

proportion of the female tick population that are not challenged by the acaricide, and

may go on to produce eggs.

8.8 THE EFFECTS OF CHEMOTHERAPY ON DISEASE

The effects of drug treatment of infected cattle were considered for two drugs, par-

vaquone and buparvaquone, administered at the manufacturers recommended doses,

1 x 20mg/kg and 1 x 2.5mg/kg respectively. The parameters describing the action

of each drug were estimated from clinical trials data supplied by Dr. N. McHardy at

Cooper Pitman-Moore Animal Health Ltd. and are as follows:

Parvaquone at 1 x 20mg /kg :

Increase in the infective period of treated cattle that die: x 2.863 days,

Probability that the treatment is unsuccessful: 0.033,

Probability that treated cattle that recover become infectious to feeding ticks: 0.286.

Buparvaquone at 1 x 2.5mg /kg :

Increase in the infective period of treated cattle that die: x 2.472 days,

Probability that the treatment is unsuccessful: 0.208,

Probability that treated cattle that recover become infectious to feeding ticks: 0.552.

Computer experiments were performed to investigate drug action at Mwanza and

Chipata. At each site, 10 simulations were repeated under three scenarios: no treat-

ment of infected animals, treatment of infected animals with parvaquone (clexon) and

treatment with buparvaquone (butalex). Simulations were recorded over a 20 year

horizon and recovered cattle were assumed to have carrier status with a probability

0.05 of infecting feeding ticks. Oneway analysis of variance was performed on the two

statistics describing predicted disease prevalence at each site: the number of infections

observed within the herd in each 20 year period and the proportion of these infections

that resulted in fatalities. The results of the statistical analysis are as follows.
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For cattle at Mwanza, the mean proportions of infections that were fatal were

0.325, 0.008 and 0.064 for the no treatment, parvaquone treatment and buparvaquone

treatment groups respectively. A multiple range test indicated that both drugs signifi-

cantly reduced the proportion of infected cattle that died, and also that parvaquone was

significantly more effective in reducing fatalities than buparvaquone. The mean num-

bers of infections in the 20 year periods were 215, 404 and 417 for the no treatment,

parvaquone treatment and buparvaquone treatment groups respectively. A multiple

range test also suggested that significantly more infections were observed amongst the

herd when treating infected animals with drugs, than when not treating infected ani-

mals. This result is somewhat of a red-herring, as drug treatment allows more cattle to

survive, and the herd to expand at a greater rate — hence more infections are observed

as there are more cattle present.

At Chipata, similar predictions were obtained. The mean proportions of infections

that were fatal were 0.301, 0.009 and 0.061 for the no treatment, parvaquone treatment

and buparvaquone treatment groups respectively. Again, using a multiple range test it

appeared that both drugs significantly reduced the proportion of infected cattle that

died, and also that parvaquone was significantly more effective than buparvaquone. The

mean numbers of infections recorded in the 20 year periods were 246, 288 and 302 for the

no treatment, parvaquone treatment and buparvaquone treatment groups respectively.

Analysis of variance suggested that the number of infections occurring in the groups

treated with drugs could be larger than in the no treatment group (p < 0.06), for the

same reasons as discussed above.

The results of simulations for both sites clearly illustrate the benefits of chemother-

apy on ECF control. However, the result that parvaquone is more effective in control

than buparvaquone should be treated with great caution. The data used in evaluating

parameters for each drug were based on laboratory trial results using the same T. parva

(Muguga) parasite strain. However, host differences in each trial are not accounted for,

as many trials concerned the testing of just one of the two drugs. In fact, the data for

buparvaquone includes the results of one trial which gave poor results and where par-

vaquone was not used. Obtaining standardised data for comparison of the two drugs

is vital, as the model prediction that parvaquone is superior to buparvaqoune is at

variance with field trial results (McHardy, personal communication).
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8.9 THE EFFECTS OF THE CARRIER INFECTIVITY RATE ON

DISEASE

To investigate the effects of the infectivity of carrier cattle, a computer experiment

was performed using data for Chipata. The ECF model was used to test five different

values of the carrier infectivity rate — 0.4, 0.2, 0.1, 0.05, 0.025. The infectivity rate was

assumed at most 0.4, as this is the literature estimate for the infectivity rate of cattle

suffering from the disease (Purnell et al., 1973). For each scenario, ten simulations each

over a 20 year horizon were performed, and the resulting predicted numbers of ECF

infections fatalities were recorded. The results were as follows.

When the carrier infectious probability was 0.4, the herd became extinct due to

severe ECF three times out of the ten simulations, and twice out of ten when the

infectious probability was 0.2. In the other three scenarios, none of the predicted disease

outbreaks were not severe enough to cause loss of the herd. In those simulations where

the herd survived the full 20 year period, the mean number of incidences of disease

in 20 years was 184, 245, 242, 256 and 249 for the cases when the carrier infectious

probability was assumed 0.025, 0.1, 0.05, 0.4 and 0.2 respectively. There appeared to

be no significant differences between the groups (p = 0.062). It is possible, however,

that when the infectious probability is 0.025 there are fewer infections than in the other

cases, which follows from a multiple range test at a significance level of 10%. The mean

proportion of infections that were fatal over 20 years of simulations were 0.299, 0.301,

0.311, 0.347 and 0.442 for the groups with infectious probabilities 0.025, 0.05, 0.1, 0.2

and 0.4 respectively. A multiple range test indicated that the proportion of infections

that resulted in death of the host was significantly higher when the carrier infectious

probability was 0.4 than in the other groups. It is interesting that the proportion of

fatalities in the other groups increases with the infectious probability. This is as might

be expected, although the predicted differences were not statistically significant.

8.10 CONCLUSIONS

As mentioned in an earlier chapter, one aim of building a complicated model of a com-

plex system is to investigate areas where knowledge concerning the system is lacking.

One such area is the attachment rate of ticks, which is a parameter rarely attempted to

be measured experimentally. The results of section 8.3 suggest that when between 3%

and 4% of questing ticks are able to attach each day, this leads to a fairly steady state

tick population, at least for the sites under study. Below this attachment rate, tick

populations are predicted to decline and eventually disappear; above this rate popula-
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tions are predicted to expand uncontrollably. The attachment rate of ticks is unlikely

to be a simple figure, such as 4%, but is more likely to be controlled by a number of

factors. In particular, age and breed differences are seen to influence tick burdens. It

would be interesting to design experiments to investigate, and attempt to quantify, the

effects of host age and breed on tick pick-up rates.

Another area of uncertainty that was investigated by the model was the role of

carrier status in the disease dynamics. These results are presented in detail in sections

8.4 and 8.9. Predictions indicated that carrier status must exist for the infection to

persist in cattle. It is clearly very difficult to ensure parasite transmission from animal to

tick if only clinical cases are infectious. The infectious period of an animal suffering from

East Coast fever is likely to be less than 3 weeks. This would require a large number of

ticks to attach within a short period of time, to ensure successful parasite transmission

from the infected animal to the tick population, and then eventually back from the

tick population to another animal. It is not in the interests of the parasite, which has

survived successfully for such a long period of time, to live so dangerously. Although

many experts state that recovered animals are capable of transmitting infection to

feeding ticks, the literature does not contain any data quantifying the infectivity of

these animals. Clearly, the carrier state in recovered animals is plays a vital role in the

mechanism of the disease, and in the interests of disease control, should be understood

more completely.

Finally, the model has also proved useful in considering the relative impact of

different acaricidal dipping strategies on tick populations and the disease (section 8.7).

The dangers of switching from fortnightly dipping to monthly dipping regimes has been

clearly illuminated by the model predictions. Many developing countries, faced with the

inhibitive costs of tick control, are forced to reduce dipping. This, however, could have

more serious financial consequences when both ticks and tick-borne diseases increase

in prevalence.

To conclude, the philosophy behind building ECFXPERT has already proved its

worth, but further extensions and development of the ECFXPERT models are likely

to produce even more powerful results.



9. DISCUSSION

"All streams flow into the sea,

yet the sea is never full.

To the place where streams come from,

there they will return again."

Ecclesiastes 1:7, (N.I.V.).

This thesis has investigated the application of a number of different modelling tech-

niques to processes in nature. Each approach has involved obtaining a degree of un-

derstanding of the natural process, then based on this producing a model to increase

understanding. In each chapter, the approaches have been quite different. In chapter

2, simple deterministic models for the dynamics of specific parasites were constructed.

These models were theoretical, being based only loosely on scientific knowledge specific

to each parasite. This produced models that are general enough to facilitate applica-

tion to other parasite systems. However, although general and simple, these models

do allow valuable insights into the dynamics of parasite systems. The single species

model highlighted the dramatic differences in the predicted behaviour of population size

through time between parasites having low survival and high fecundity, such as nema-

todes, and parasites having high survival and low fecundity, such as the protozoan gut

parasite Entamoeba histolytica. The earlier observation is important in understanding

that high levels of nematode infestation within a herd or flock under observation, may

not always correlate with periods of climatic favourability. There is. always an unpre-

dictable element to such biological systems, which means that favourability models,

such as the A index discussed in chapter 1, may occasionally be misleading. The two

species commensalism model highlighted the dependence of parasite systems on the

state and behaviour of their corresponding host populations. When applied to different

species of tsetse flies, the model predicted that Glossina palpalis are likely to maintain

a relatively constant population size, whereas the population of Glossina mortisans is

likely to be more changeable. Observations such as this are of great practical value,

even though they arise from very simple models. Clearly, tsetse fly control methods

would have to be species specific.
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It is clear that the model simplicity does not always mean that the model will

not produce powerful results. The models in chapter 2 have yielded results of a fairly

simple nature, but results that are by no means obvious. The models have, therefore,

been valuable as understanding has been increased. Over the last decade, such dis-

crete analytical models have been revisited by researchers because of the discovery of

their interesting chaotic properties. Mathematical techniques do not extend far enough

to provide the means to satisfactorily analyse such models. Some theory does exist

concerning simple maps, An = f(An_i ) where f is continuous, such as if the system

has a period point of period 3, then it must have periodic points of all other periods

(see Devaney, 1989). However, mathematics is, as yet, unable to deal with the overall

complexity arising from such simple mathematical structures. The development of new

models encourages the concurrent development of theory required to analyse the new

models. Perhaps in the next decade, new exciting breakthroughs in mathematics will

allow increased understanding of these models. However, due to the advancing power

of computing methods, it has become attractive and fashionable to analyse models

by simulation alone. It was through simulation that the interesting and unpredicted

properties of non-linear dynamical systems were discovered, but it is only through

mathematics that these properties can be fully understood. Simulation has highlighted

the need for increased understanding, but does not provide this understanding in itself.

The models presented in chapter 4 are likewise discrete and also display compli-

cated behaviour, but were developed as models that could be applied only to Theileria

parva, the parasite responsible for East Coast fever in cattle. Models were constructed

around a set of rules taken from published results and expert opinion. In this way, a

sufficient set of rules could be established that described the dynamics of the parasite

through all its developmental stages. This rule set provided the basis for the models.

Rules were translated into a programming language, and the model took life. It was

observed that each model was described by a set of difference equations, and that cer-

tain behaviour could be explained by observing the nature of the graph of the initial

population state against the subsequent population state. This has direct similarities

with the models described in chapter 2, the only difference being that in this case the

exact mathematical structures of the models are unknown due to the complexity of

the rule sets composing each model. Mathematical techniques, therefore, have limited

value, and simulation is required for the complete analysis of each model. Bifurcation

maps provide a useful way of displaying the behaviour of each model over a range of
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conditions, and enable the comparison of different models. Model behaviour exhibited

strong similarities with that observed for the models in chapter 2, being composed of

areas of periodicity and areas of chaos. The models were extended to consider the

effects of chemotherapy, and it was observed that the nature of the graph of initial to

subsequent numbers of infected ticks provided a useful tool in comparing the relative

benefits of different drugs. This is a useful observation, and enforces the importance of

mathematics in model analysis. Attempting to translate a very complex model into a

structure similar to that produced by mathematical models of much simpler structure,

facilitates a more detailed understanding of the predicted outcomes than just simula-

tion alone. Due to the increased specificity of these models, the resulting predictions

produced more detailed conclusions concerning the parasite. The relative benefits of

breeding stocks of cattle for resistance could be compared to the benefits of drug treat-

ment of susceptible cattle when challenged with disease. Interesting and surprising

conclusions were made concerning the control of the infection at different parameter

values.

The chaos theme was extended further through into the stochastic models for

East Coast fever presented in chapter 5. These models implemented an algorithm for

generating streams of uniform random numbers which formed a basis for all model

decisions. Such a generator would be of the form X.+ 1 = f(X) mod m (see Morgan,

1984), where m and the parameters of the function f are chosen carefully so as to

produce a sequence of values {X„} that are in chaos. It follows, therefore, that the

.output of the simulation models presented is chaotic. This is supported by the results

of simulations using each model presented in chapter 8. Under a specific parameter set,

the model was run ten times, each time starting at a different position in the sequence

of predicted random numbers {X„}. In each case, a different sequence of events was

predicted, suggesting chaos. This predicted variation enabled statistical comparison of

different scenarios, such as the efficacy of different control regimes. This is an element

absent in the previous deterministic modelling approaches, and is of vital importance

to a model which is to be used in decision making at local or national levels. When

linked with an economic component, the financial risks and gains of different disease

control strategies will become apparent. Without the economic component, however,

ECFXPERT has yielded interesting predictions that do increase understanding of the

disease. For example, the importance of carrier status in the disease dynamics has

been illuminated, which remains an area of uncertainty amongst experts. The model

— 181 —



itself is only a first approximation to the true field situation, and further modelling and

validation is required before a useful management tool is produced. Factors such as

host immune response to ticks and parasite, the effects of temperature on the success

of the parasite within the tick, and the implementation of a possible tick vaccine may

be important to a future version of the model.

The requirement of models to be continually changed and adjusted to consider

different hypotheses, or to mimic more complex situations, highlights a great problem

to those involved in modelling. The time involved in taking a complex system, such as

that describing East Coast fever, and condensing it into a number of components that

can be modelled together is immense. ECFXPERT required over 3 years development

time, and alterations and extensions to the model may also prove costly. A large amount

of the time spent developing the model was spent on the programming and testing of

the computer code. There is a great demand for modelling software that will enable

the programming and testing time to be drastically reduced.

At Strathclyde University, such a piece of software is being developed by S. Hazel-

wood and G. Gettinby, called a Network Flow Simulator. The package provides a

user friendly environment for defining and simulating discrete time models. The aim

is that any population, or group of populations, that can be expressed in the form of

a network can be modelled by the simulator. The user divides the population into

stages, and defines links between stages and appropriate time delays and survival rates

associated with each stage. The simulator then converts relationships into a high level

programming language and simulates. This piece of software has already proved useful

in producing a climate driven model for anthelmintic resistance amongst nematodes in-

fecting sheep (Gettinby, Hazelwood and Armour, in press). This model was of similar

structure to that reported by Gettinby, Soutar, Armour and Evans (1989), but required

only a fraction of the time to create. Adaptations and changes to the model can also

be undertaken rapidly. The benefits of this approach are paid for in the reduced speed

of simulation, as the package is not moulded to a specific biological system, and in

the possible inflexibility of the structure of the package when dealing with diversely

different systems. These problems, however, are of minor nature, and can be addressed

as the software is implemented and developed further. The Network Flow Simulator is

an exciting breakthrough and should provide a much needed modelling tool.
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