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�. . . Rozum i wiedz� miej w pogardzie,To, 
zym si� sz
zy
i 
zªek najbardziej.Gdy mamidªami 
i� oszukaKuglarsko�
udotwór
za sztuka,Wtedy± si� dostaª w moj¡ mo
�Takiego du
ha daª 
i los,�e gdy przed siebie przesz na wprost,Co tylko spotykasz jest przeszkod¡;Wi�
 z rze
zy mijasz si� urod¡.W przygód 
i� w
i¡gn� korowody,W ar
ybanalne epizody.B�dziesz si� miotaª, wiª, trzepotaª.Nienasy
ony
h powab »¡dzW
i¡» b�dzie o
zom twym migotaª.O napój b�dziesz bªagaª, dr»¡
.I 
ó», »e± mi zaprzedaª dusz�?W r�
e i tak 
i� dosta¢ musz�.�(�Faust�, Johann Wolfgang Goethe)
�. . . Reason and Knowledge only thou despise,The highest strength in man that lies!Let but the Lying Spirit bind theeWith magi
 works and shows that blind thee,And I shall have thee fast and sure!�Fate su
h a bold, untrammelled spirit gave him,As forwards, onwards, ever must endure;Whose over-hasty impulse drave himPast earthly joys he might se
ure.Dragged through the wildest life, will I enslave him,Through �at and stale indi�eren
e;With struggling, 
hilling, 
he
king, so deprave himThat, to his hot, insatiate sense,The dream of drink shall mo
k, but never lave him:Refreshment shall his lips in vain implore�Had he not made himself the Devil's, naught 
ould save him,Still were he lost forevermore!(�Faust�, Johann Wolfgang Goethe)
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ABSTRACTCooling and manipulation of atoms and mole
ules has been re
ently of great interest.Cold atoms provide a useful tool to understand many physi
al phenomena, in
ludingquantum information pro
essing, Bose-Einstein Condensation, atom interferometry,ultra-high pre
ision spe
tros
opy, atomi
 
lo
ks and many others. Most methodsof 
ooling and slowing, however, apply to a relatively small range of temperatures,and 
ooling rather hot samples of atoms requires using more than one method only.Moreover, the majority of existing s
hemes in
luding the most important � Doppler
ooling and magneto-opti
al trapping are limited to the alkali and alkaline earthmetals. For that reason it is very attra
tive to develop new e�e
tive 
ooling s
hemes.In this thesis a novel 
avity 
ooling method based on 
ombined 
avity-atom dynami
shas been investigated. In 
ontrast to Doppler 
ooling, 
avity 
ooling does not relyon the internal stru
ture of the parti
le. Consequently, 
avity 
ooling should beappli
able to a wider range of parti
le spe
ies e.g. mole
ules, whi
h do not havea 
losed atomi
 transition. Furthermore, in some regimes of 
avity 
ooling thetemperature is limited not by the spontaneous emission rate but by the 
avity de
ayrate so the temperature 
an be at or below the Doppler limit. There have beenseveral re
ent 
avity 
ooling experiments. Some of these involved a single atomwhile others have used many atoms intera
ting with the 
avity �eld inside di�erent
avity geometries.This thesis presents several analyti
al and numeri
al results from 
avity 
ooling sim-ulations. These involve 
ooling of atoms in a Fabry-Perot 
avity using two di�erent
on�gurations � one, in whi
h the opti
al 
avity is assumed to be pumped dire
tlyvia one of the 
avity mirrors or alternatively when the atoms are illuminated bylaser beams dire
ted perpendi
ularly to the 
avity axis.Both 
on�gurations are modelled using parti
le based simulations and a new, distribution-v



fun
tion (Vlasov) model of 
avity 
ooling. This Vlasov model should be more pra
-ti
al for modelling 
avity 
ooling experiments involving large numbers of atoms andphotons.In addition to the 
lassi
al models of 
avity 
ooling developed previously, a semi-
lassi
al model is also presented. An analyti
al and numeri
al 
omparison of the
lassi
al and the semi-
lassi
al 
avity 
ooling models is presented. The semi-
lassi
almodel within a low ex
itation regime agrees very well with its 
lassi
al 
ounterpart,however for 
ases whi
h involve the internal degrees of freedom of the atoms thesemi-
lassi
al model reveals new interesting features.Finally, in addition to Fabry-Perot 
avities a ring 
avity with a phase modulatedpump �eld is also studied. This s
heme has the distinguishing feature that theopti
al potential is able to move inside the 
avity whi
h in 
ertain regimes providesan opportunity to 
ontrol the dynami
s of the atomi
 ensemble and 
an eventuallylead to e�e
tive slowing of an atomi
 beam.
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Chapter 1Introdu
tion
1.1 Light For
esThe idea that light may a�e
t the motion of matter originates from the 17th 
en-tury with Kepler who noti
ed that a 
omet tail always points away from the Sunregardless of what dire
tion it was moving in relation to the Sun. Kepler suggestedthat those tails were driven by the pressure of the sunlight, whi
h in fa
t was not
ompletely 
orre
t, but it identi�ed a signi�
ant astrophysi
al e�e
t and stimulatedfurther work to explain its origin. The �rst proper theoreti
al basis of light pressurewas given in 1873 by Maxwell who formulated the ele
tromagneti
 theory of light[1℄ and showed that an ele
tromagneti
 �eld exerts a pressure proportional to theenergy of the �eld per unit volume. Another important step towards understandinglight for
es was made by Einstein, in 1917, who showed that a quantum of light, i.ea photon, 
arries not only energy hν but also momentum hv/c = h/λ. Soon after histheory the parti
le-like nature of radiation was reinfor
ed by subsequent experimentsthat led to further dis
overy of light pressure phenomena. The �rst took pla
e inthe early 1920's with the experimental demonstration of the Compton e�e
t whereele
trons were s
attered by high frequen
y photons and a de
ade after, in 1933, byFris
h in Hamburg who illuminated a thermal beam of sodium atoms with resonantlight [2℄. Although instru
tive, all experiments until then were limited by the inten-1



sity of the sour
e and 
ould not fully reveal the potential of the pressure for
e. Thedis
overy of the laser in 1960 �nally resolved that limitation and resulted in manysubsequent dis
overies: in 1962 Askar'yan showed that an intensity gradient 
ouldexert a substantial for
e on atoms due to an indu
ed dipole moment [3℄, in 1968Letokhov suggested that this so 
alled dipole for
e 
an be used to trap atoms at thenodes (or antinodes) of a standing wave [4℄, and shortly afterwards, in the 1970'sAshkin at Bell Laboratories trapped a small glass sphere between opposing fo
ussedlaser beams [5℄. He also �rst divided light for
es into two 
lasses: a spontaneousfor
e arising from the absorption and spontaneous emission of photons and a dipolefor
e, resulting from absorption followed by stimulated emission of photons. Finallyin 1975 Häns
h and S
hawlow [6℄ proposed that laser light 
ould potentially be usedto 
ool atoms and ions.
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1.2 For
e on Two-Level AtomsThe for
e F a
ting on an atom 
an be de�ned as an expe
tation value of the quantumme
hani
al operator F . This relation is a spe
i�
 example of the Ehrenfest theorem,whi
h links the quantum me
hani
al expe
tation value of an observable and the
orresponding 
lassi
al equation of motion. It simply states that the expe
tationvalue of the quantum me
hani
al operator must 
orrespond to the behaviour of its
lassi
al 
ounterpart [7℄
F = 〈F〉 =

d

dt
〈p〉 (1.1)The above relation is a general 
ase of the time evolution of the expe
tation valueof a time-independent quantum me
hani
al operator, whi
h is given by [8, 9℄

d

dt
〈A〉 =

d

dt

∫

(Ψ∗AΨ) dr

=

∫
(

∂Ψ∗

∂t
AΨ + Ψ∗∂A

∂t
Ψ + Ψ∗A

∂Ψ

∂t

)

dr

=

〈

∂A

∂t

〉

+
1

i~

∫

Ψ∗ (AH−HA) Ψdr (1.2)The 
ommutator of the two operators is de�ned as
[A,B] = AB −BA (1.3)and sin
e they 
ommute if their 
ommutator vanishes (1.2) 
an be written as3



d

dt
〈A〉 =

〈

∂A

∂t

〉

+
1

i~
〈[A,H]〉 (1.4)If the operator A does not depend expli
itly on time we 
an write

d

dt
〈A〉 =

i

~
〈[H, A]〉 (1.5)and hen
e the 
ommutator of H and p is given by

[H, p] = i~
∂H
∂z

(1.6)where the operator p has been repla
ed with −i~(∂/∂z). Consequently from (1.1),(1.5) and (1.6) the for
e a
ting on an atom is
F = −

〈

∂H
∂z

〉 (1.7)Equation (1.7) forms a quantum me
hani
al analogue of the 
lassi
al expression thatthe for
e is a negative gradient of a potential.
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Figure 1.1: Two-level system with the ground state |g〉 and ex
ited state |e〉 whi
hhas a linewidth Γ. The laser frequen
y ωL is red detuned (∆a < 0) from thetransition frequen
y ωaThe Hamiltonian responsible for the intera
tion with the radiation �eld is given by
H′ = −e~E(~r, t) · ~r (1.8)where

~E(~r, t) = E0 ǫ̂ cos(kz − ωLt) (1.9)whi
h 
an be used in equation (1.7) in order to �nd the for
e on atoms by light �elds
〈F〉 = F = e

〈

∂

∂z

(

~E(~r, t) · ~r
)

〉 (1.10)At this point it is possible to use the ele
tri
 dipole approximation, i.e assume that5



sin
e the ele
tri
 �eld 
hanges on a length s
ale determined by the wavelength of the�eld then for λ mu
h smaller than the size of the atom the spatial variation of theele
tri
 �eld 
an be negle
ted over the size of the atom. In (1.10), this approximationallows the inter
hange of the gradient with the expe
tation value
F = e

∂

∂z

〈(

~E(~r, t) · ~r
)〉

. (1.11)The expe
tation value of (1.11) 
an be found using the general de�nition of theexpe
tation value of an operator
〈A〉 = 〈Ψ|A|Ψ〉 (1.12)where Ψ is the wavefun
tion expanded in a basis set of {φn}
Ψ =

n
∑

i=1

ciφi (1.13)so
〈A〉 =

〈

∑

ij

ciφi|A|cjφj
〉

=
∑

ij

c∗i cj 〈φi|A|φj〉 =
∑

i,j

ρjiaij (1.14)where the elements of the density matrix are
6



ρij = 〈φi|ρ|φj〉 = 〈φi|Ψ〉〈Ψ|φj〉 = cic
∗
j (1.15)Hen
e using (1.14) and (1.15) it is possible to obtain

F =
∂

∂z

〈

c1φ1 + c2φ2| − e~E(~r, t) · ~r|c1φ1 + c2φ2

〉

= −e ∂
∂z

(

c1c
∗
2

〈

φ1|~E(~r, t) · ~r|φ2

〉

+ c∗1c2

〈

φ2|~E(~r, t) · ~r|φ1

〉) (1.16)Assigning the basis φ1,2 to the ground and ex
ited state of a two-level atom andthen eq. (1.16) 
an be rewritten as
F = −e ∂

∂z

(

ρ∗egE0 〈e|r|g〉 + ρegE0 〈g|r|e〉
) (1.17)Obtaining eq. (1.17) requires implementation of the RWA (i.e Rotating Wave Ap-proximation) that negle
ts the terms os
illating with the laser frequen
y.Equation (1.17) 
an be then written as

F = ~

(

∂Ω

∂z
ρ∗eg +

∂Ω∗

∂z
ρeg

) (1.18)where Ω is the Rabi frequen
y de�ned as
7



Ω ≡ −eE0

~
〈e|r|g〉 (1.19)It is useful to to split ∂Ω/∂z in (1.18) into two parts, real and imaginary so that

∂Ω

∂z
= (qr + iqi) Ω (1.20)where qr + iqi is the logarithmi
 derivative of Ω (i.e. if Ω = ueiψ with u and ψ real,then qr = d/dz (lnu) and qi = d/dz (ψ)).Consequently the expression for the for
e expands to

F =~
[

(qr + iqi) Ωρ∗eg + (qr − iqi) Ω∗ρeg
]

F =~qr
(

Ωρ∗eg + Ω∗ρeg
)

+ i~qi
(

Ωρ∗eg − Ω∗ρeg
) (1.21)Equation (1.21) des
ribes the total for
e that 
an be found for any parti
ular sit-uation as long as ρeg 
an be solved (ρeg is the opti
al 
oheren
e between groundand ex
ited state and 
an be found from the opti
al Blo
h equations as a stationarystate).Substituting the steady state of the opti
al 
oheren
e between the ground and theex
ited state ρeg [10℄

8



ρeg =
iΩ

2 (Γ/2 − i∆a) (1 + s)
(1.22)into (1.21) redu
es it to

F =
~s

1 + s

(

−∆aqr +
1

2
Γqi

) (1.23)where s is the saturation parameter de�ned as
s ≡ |Ω|2

2|Γ/2 − i∆a|2
=

|Ω|2/2
∆2
a + Γ2/4

≡ s0

1 + (2∆a/Γ)2
(1.24)where

s0 ≡
2|Ω|2
Γ2

=
I

Isat
(1.25)and

Isat ≡
πhc

3λ3τ
(1.26)where Isat is the saturation intensity 
orresponding to the intensity required for aresonant atom to spend 1/4 of its time in the ex
ited state9



Using equation (1.23) one 
an identify the two general 
omponents of the total for
e.The �rst term of (1.23) is proportional to the detuning between the laser and theatomi
 transition frequen
y ∆a and the se
ond term is proportional to the de
ay rate
Γ of the atom. However their 
ontribution to the total for
e is determined by thereal and imaginary part of the logarithmi
 derivative of Ω, as de�ned in (1.20). Sin
e
qr and qi depend on the ele
tri
 �eld, stri
tly speaking on whether it is a travellingor standing wave, the for
e 
an be predominantly due to the �eld detuning or thes
attering rate and hen
e give the 
ontribution to two di�erent for
es whi
h will bedes
ribed in detail in the following se
tions.

10



1.3 S
attering or Radiation Pressure For
eConsider a travelling wave of the ele
tri
 �eld given by
E(z) =

E0

2

(

ei(kz−ωt) + c.c.
) (1.27)The Rabi Frequen
y for su
h a wave 
an be found using the de�nition given earlierin (1.19) where the wavefun
tion Ψ(~r, t) has been expanded in the terms of φn su
has

Ψ(~r, t) =
∑

k

ck(t)ψk(~r)e
−iωkt (1.28)Sin
e the amplitude of the wave does not depend on z its gradient is zero so itslogarithmi
 derivative is zero too and hen
e qr = 0.The phase of the wave 
ontributing to Ω is not zero however if after applying RWAthe only surviving part is a negative frequen
y 
omponent whose derivative equalssimply the wave number k hen
e qi = k.When qr = 0 and qi = k the for
e equation (1.23) redu
es to

F =
1

2
~kΓ

s

1 + s
(1.29)and substituting the saturation parameter de�ned earlier in (1.24) gives

11



Fscat = ~k
Γ

2

s0

1 + s0 + (2∆a/Γ)2
. (1.30)Equation (1.30) 
an be also written in terms of the population of the ex
ited state

ρee =
1

2
(1 − w) =

s

2(1 + s)
=

1

2

s0

1 + s0 +
(

2∆a

Γ

)2 (1.31)where w is the population di�eren
e
w =

1

(1 + s)
(1.32)so that

Fscat = ~kΓρee (1.33)It 
an be seen now that the for
e saturates to a maximum value ~kΓ/2 sin
e themaximum value of ρee is 1/2 .The me
hanism of the radiation pressure for
e a
ting on an atom originates from thefundamental laws of 
onservation of energy and momentum during the absorptionand emission of light. An atom 
an emit a photon in two ways: by spontaneousemission or stimulated emission. The s
attering for
e 
an be understood as a resultof 
y
les of absorption followed by spontaneous emission (absorption and stimulated12



emission play more important roles in dipole 
ooling whi
h will be explained in thefollowing 
hapters)
h k

1

m <v> = h k

3
m v = h k

2

Figure 1.2: Photon pi
ture of the s
attering for
e: a two level atom, initially inthe ground state, absorbs a photon with momentum ~k 1 , ex
ited atom in
reasesits velo
ity by ~k/m, in the dire
tion of the in
oming beam 2 , the internal en-ergy is released by spontaneous emission of a photon, in a dire
tion des
ribed by asymmetri
 probability distribution so the average velo
ity 
hange is zero 3Consider an atom with mass m absorbing a photon with energy ~ω (�g. 1.2).The energy of the photon that has been absorbed by an atom is 
onverted intoits internal energy i.e. the atom ends up in an ex
ited state. However a photon
arries also a momentum ~k that after absorption 
auses the atom to re
oil in thedire
tion of the in
oming light and 
hanges its velo
ity v by an amount ~k/m. Theex
ited atom does not stay in this state forever and soon returns to the ground stateby spontaneously emitting a photon. The 
onservation of momentum during theemission 
auses another re
oil in the opposite dire
tion to the emitted photon. There
oil 
aused by an absorption is always in the dire
tion of the laser beam, howeverthe se
ond re
oil due to spontaneous emission is 
ompletely random in dire
tion.For that reason the spontaneous emission does not 
ontribute to the net for
e and13



after ea
h 
y
le an atom 
hanges its velo
ity by ~k/m. Note that the s
atteringfor
e is dissipative be
ause the reverse of spontaneous emission is not possible andtherefore the a
tion of the for
e 
annot be reversed. The s
attering for
e 
an thenbe used to slow and 
ool atoms [11, 12, 13, 14, 15, 16℄.In 
ontrast to the s
attering for
e the dipole for
e is 
onservative and without adissipative me
hanism 
an be used to trap atoms; this will be dis
ussed in moredetail in the following 
hapters.
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1.3.1 Doppler Cooling and Opti
al MolassesThe 
on
ept of using laser radiation for the purpose of 
ooling atoms was �rstproposed by Häns
h and S
hawlow in 1975 [6℄. The idea was to illuminate an atomwith laser beams of the same frequen
y, intensity and polarisation but dire
tedagainst ea
h other. The lasers are also slightly detuned to the red of the atomi
frequen
y (ωL < ωa) [17℄. For the atom at rest the two radiation pressure for
esexa
tly balan
e ea
h other and the net for
e is equal to zero. However, an atommoving slowly along the light beams sees on
oming light Doppler shifted 
loser to theresonan
e whereas 
o-propagating light is shifted further away from the resonan
e.As shown in �g. 1.3 the atom s
atters more light from the 
ounter-propagating beamthan from the 
o-propagating beam. The atom therefore experien
es a net fri
tionfor
e and is slowed. Su
h a method of using radiation pressure to slow atoms is
alled opti
al molasses; one of the most 
ommon 
ooling methods used [18, 19℄.
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Figure 1.3: Doppler 
ooling in 1D, resulting from the imbalan
e between the radia-tion pressure for
es of two 
ounterpropagating laser wavesIt is possible to demonstrate the existen
e of a fri
tion for
e using the expressionderived for the s
attering for
e (1.30). The s
attering for
e 
an be written in termsof the saturation intensity for the 
ase of opposing dire
tions (+) and (-) using
F± = ± ~k

Γ

2

s0

1 + s0 + (2∆a ∓ kv/Γ)2
= ±~k

Γ

2

I/Isat
1 + I/Isat + (2∆a ∓ kv/Γ)2(1.34)It is now straightforward using the above equation to estimate the total for
e on anatom in opti
al molasses. For the low intensity 
ase the for
es from ea
h of the lightbeams 
an be simply added to give
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Ftotal = ~k
Γ

2







I/Isat

1 + I/Isat +
(

2(∆a−kv)
Γ

)2 − I/Isat

1 + I/Isat +
(

2(∆a+kv)
Γ

)2






(1.35)
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Figure 1.4: Velo
ity dependen
e of the light pressure for
e in a one-dimensionalopti
al molasses. The dashed lines show the two 
omponents of the for
e (eq. 1.34)in the ±k dire
tion. The solid line shows the sum of the two for
es, whi
h is linearfor small velo
ities. The parameters used are: s0 = 2,∆a = −Γ

Ftotal ∼=
8~k2∆as0v

Γ
(

1 + s0 +
(

2∆a

Γ

)2
)2 ≡ −βv (1.36)17



where β is the velo
ity damping rate, de�ned as
β = − 8~k2∆as0

Γ
(

1 + s0 +
(

2∆a

Γ

)2
)2 (1.37)Figure 1.4 shows the velo
ity dependen
e of the opti
al damping for
es for one-dimensional opti
al molasses as 
al
ulated from eq. (1.34). Ea
h of the 
ounter-propagating beams exerts a for
e with a Lorentzian velo
ity dependen
e. The dashedlines show the two 
omponents of the for
e in ±k dire
tion. The solid line showsthe sum of the two for
es, whi
h has a linear dependen
e for small velo
ities.
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1.4 Dipole For
eAn atom in the presen
e of an os
illating ele
tri
 laser �eld a
quires an ele
tri
 dipolemoment that intera
ts with the laser �eld. If the �eld is spatially inhomogeneous(as in a standing wave or a fo
ussed Gaussian laser beam) the intera
tion varies inspa
e and therefore 
an be des
ribed in terms of a spatially varying potential. Thefor
e asso
iated with su
h a potential is proportional to the gradient of the �eld'sintensity and is 
alled the gradient or dipole for
e.In order to �nd the mathemati
al expression of the dipole for
e, we 
an follow asimilar derivation as for the s
attering for
e that has been shown in se
tion 1.3.Here, in 
ontrast, we 
onsider a standing wave for whi
h the ele
tri
 �eld equation
an be written as
E(z) = E0cos(kz)

(

e−iωt + c.c.
) (1.38)In 
al
ulating the Rabi frequen
y we again �nd that only the negative 
omponentof (1.38) survives the RWA, but the gradient does not depend on it and equals zero.However for a standing wave the gradient of the amplitude is non-zero and hen
ethe logarithmi
 
omponents of Ω be
ome qr = −ktan(kz) and qi = 0. If submittingthis to the general for
e equation (1.23) gives:

Fdip =
~s

(1 + s)
δ k tan(kz) (1.39)whi
h for the value of the lo
al saturation parameter s be
omes:19



Fdip =
2~kδs0sin2kz

1 + 4s0cos2kz + (2δ/γ)2
(1.40)where s0 is the saturation parameter 
orresponding to ea
h of the two oppositelydire
ted travelling waves that 
onstitute the standing wave.It needs to be emphasised that unlike the s
attering for
e, the dipole for
e does notsaturate and 
an be made very large for large intensities [10, 13, 20℄.1.4.1 AC-Stark ShiftThe dipole for
e originates from the dynami
al shift of the atom's energy levels in thepresen
e of the external �eld [21, 22, 23℄. This energy shift, 
alled the light shift orAC Stark shift, is the energy displa
ement of the ground level ∆Eg, whi
h is dire
tlyproportional to the light intensity and inversely proportional to the detuning, so that

∆Eg = ~Ω2

4∆a
, as shown in �g. 1.5.
e

ωA

∆A

ωAωL

∆Εgg (a) ∆a < 0

e

ωAωA ωL

∆A

∆Εg

g (b) ∆a > 0Figure 1.5: Light shift of the ground state |g〉 of an atom produ
ed by a non-resonantlight ex
itation detuned to the red side of the atomi
 transition (a) or to the blueside (b). This is known as a AC-Stark shift.It is the gradient of this shift that produ
es a dipole for
e on an atom. When, for20



instan
e, the frequen
y of the external �eld is tuned below the atomi
 resonan
e (∆ais negative), the energy shift be
omes negative and the potential energy is minimumthere (�g. 1.5a). Sin
e the shift in
reases while the intensity in
reases the atom isattra
ted to the regions of the high �eld intensity (an atom is 
alled a high-�eldseeker). On the other hand if the frequen
y of the laser is tuned above the atomi
resonan
e (∆a > 0) the shift be
omes positive and the potential 
reates a hill thatis repulsive to the atom (in this 
ase the atom is 
alled a low �eld seeker, �g. 1.5b).The dipole for
e 
an be used to trap atoms in high intensity or low intensity regionsdepending on the detuning [16, 24, 25℄. The simplest form of su
h a trap is asingle fo
ussed TEM00 Gaussian laser beam red detuned to the atomi
 resonan
e.Here atoms will be attra
ted to the fo
al point of the beam and its 
entre wherethe intensity is greatest. Su
h traps are also 
alled opti
al tweezers sin
e they
an be used to �grab� and move diele
tri
 obje
ts, in
luding e.g biologi
al samples.Similarly, low �eld seekers 
an be trapped using the �hollow� modes e.g LG0n, (n =

1, 2, . . . , n) laser beam mode, whi
h have an intensity minimum on the beam axis(hollow beam).For the 
ase of standing waves that are also 
hara
terised with an inhomogeneousintensity distribution atoms will be attra
ted towards the �eld antinode where theintensity is maximum (for red detuned light) or pushed away from antinodes towardnodes (for blue detuned light), where the intensity is minimum. This propertylies behind the prin
iple of the 
avity trapping (
ooling) methods whi
h with anadditional dissipative me
hanism 
an be used to slow and 
ool atoms [21, 23, 26,27, 28, 29℄.
21



1.4.2 Sisyphus CoolingSisyphus 
ooling is a method of 
ooling whi
h involves the dipole for
e. A propertreatment of Sisyphus 
ooling requires a quantum-me
hani
al des
ription of theatom-light intera
tion. In the so 
alled dressed-atom pi
ture the atom and the �eldare not treated separately but are 
onsidered as a single system [30, 31, 32, 33℄.In the dressed-atom pi
ture the energy of the atom and the �eld are added together.If we initially ignore the intera
tion of the �eld the two states |g〉 and |e〉, additionally
hara
terised by the number of photons in the �eld n, form a ladder of energymanifolds, separated by the photon energy ~ωL. The states in ea
h manifold are ofthe form: |g, n〉 and |e, n−1〉, |e, n〉 and |g, n+1〉 as shown in �g. 1.6a. If the atom-�eld 
oupling is in
luded the energy levels split (due to the AC-Stark shift) and areseparated by the energy proportional to Rabi frequen
y ~Ω (�g. 1.6b). The dressedstates asso
iated with the energy shift |1, n〉 and |2, n〉, |1, n− 1〉 and |2, n− 1〉 aremixtures of the basi
 states su
h that:
|1, n〉 = cosθ|e, n〉 + sinθ|g, n+ 1〉 (1.41)
|2, n〉 = −sinθ|e, n〉 + cosθ|g, n+ 1〉 (1.42)where the angle θ is given by

tan2θ ≡ −Ω/∆a (1.43)The me
hanism of Sisyphus 
ooling is based on the fa
t that the energies of thedressed states, and so the energy shift, vary in spa
e, i.e in the dire
tion of theatomi
 motion. This takes pla
e when the laser intensity is not homogeneous as is22



the 
ase in a standing wave opti
al �eld.
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Figure 1.6: Dressed-atom energy diagram for ∆a > 0. a) when the 
oupling is nottaken into a

ount, b) in
luding laser-atom 
oupling.
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Consider an atom moving through the dressed atom potentials 
reated by the bluedetuned laser light, as shown in �g. 1.7. Lets assume the atom starts in the groundstate at a �eld node with n + 1 photons in the �eld. The atom 
annot undergo aspontaneous emission at su
h a pla
e sin
e it is in a pure ground state and hen
ewill 
ontinue its traje
tory. While 
limbing the potential hill 
reated by the �eldintensity the atom in
reases its potential energy but at the same time de
reases itskineti
 energy. As the intensity in
reases the Rabi frequen
y in
reases so at theantinode of the standing wave the dressed atoms have a large 
ontribution from theex
ited state and transition 1 → 2 
an o

ur. If the de
ay is to another |1〉 statein a di�erent pair its motion is una�e
ted. But if the de
ay is to level |2〉 the atom�nds itself again at the bottom of the potential well and will 
ontinue 
limbing untilrea
hing the next hill. In 
ontrast to the upper sideband, here the transition 2 → 1will o

ur preferentially at the node of the wave where the atom is in a pure ex
itedstate with n photons. Consequently the most probable transitions 1 → 2 and 2 → 1will for
e the atom to �see� more uphills than downhills and it will be slowed down.This type of 
ooling me
hanism is generally referred to as Sisyphus 
ooling sin
e onaverage atoms spend most time 
limbing hills losing kineti
 energy, in analogy tothe Greek myth about Sisyphus. This me
hanism is parti
ularly interesting sin
eit provides 
ooling for a laser �eld tuned above the atomi
 resonan
e, 
ontrary toDoppler 
ooling. However it works for �slow� parti
les only, i.e. parti
les that movea distan
e of λ/4 (from the node to the antinode of the standing wave) within, orless, its natural life time.
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ooling of an atom in a standing wave for ∆a > 0. The dashedlines represent the spatial variation of the dressed atom energy levels and the fulllines represent the �traje
tory� of a slowly moving atom. The moving atom seesmore �uphills� than �downhills� (�gure adapted from Ref. [30℄)
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1.5 Cavity CoolingDoppler 
ooling is based on the s
attering for
e whi
h relies on a 
ompli
ated me
h-anism of 
losed 
y
les of absorption and spontaneous emission of atomi
 populationand is limited to spe
ies with simple spe
tros
opi
 stru
tures. It has been provento be very su

essful for 
ooling alkali and alkaline earth metals but is rather in-a

essible to 
ool more 
omplex systems, like mole
ules whi
h do not have 
losedatomi
 transitions. Cavity 
ooling is based on the dipole for
e whi
h does not relyon the internal stru
ture of an atom but uses the o�-resonant intera
tion betweenan opti
al 
oherent �eld and a polarisable parti
le. However, the dipole for
e isa 
onservative for
e and requires an additional dissipative me
hanism. In 
avity
ooling the dissipation 
hannel is via de
ay of the opti
al �eld that is 
oupled to anatom or a mole
ule [34, 35℄.1.5.1 Histori
al Ba
kgroundThe �rst 
omplete 
avity 
ooling s
heme was proposed by Vuleti¢ and Chu in 2000[36℄. The model was addressed to the translational motion of polarisable parti
lesat low saturation and large detuning from the parti
les' resonan
es. The authorspointed out that this s
heme should be appli
able to mole
ules or multilevel atoms asthe method is independent of the parti
les' internal level stru
ture [27, 35, 37, 38℄.Another potential advantage of the s
heme was the �nal a
hievable temperaturewhi
h, in this 
ase, is limited by the dipole for
e heating in a two-level system[13, 30℄ and 
an be at or below the re
oil limit.In 2002, Domokos and Rits
h [39℄ proposed a di�erent set-up and suggested illumi-nating atoms in the 
avity from the side instead of sending the pump light dire
tlyinto the 
avity. In su
h a 
on�guration the 
avity-mediated atom-atom 
oupling26




an lead to strong 
ooperative e�e
ts and enhan
e 
ooling and trapping. Su
h ane�e
t strongly depends on the number of atoms inside the 
avity and the strengthof the pump �eld (the origin of the 
ooperative e�e
t in this 
on�guration will beexplained in 
hapter 3).Results from the �rst 
avity 
ooling experiment were reported in 2003 by Chan,Bla
k and Vuleti¢ [40, 41, 42, 43℄. The experimental setup 
onsisted of a 
avity inwhi
h 3×106 Cesium atoms (freely falling under the gravity for
e) were illuminatedby two laser beams sent perpendi
ularly to the 
avity axis. Observed results showedthat one-third of the falling sample was stopped by the standing wave 
avity �eld.In addition, strong de
eleration of up to 1500m/s2 and 
ooling to temperatures aslow as 7µK was observed.1.5.2 Cavity GeometriesThere are two main 
avity geometries taken into a

ount in a 
avity 
ooling setups:Fabry-Perot 
avity and a ring 
avity. In the �rst 
ase atoms 
an be illuminatedeither inje
ting the pump through a 
avity mirror or dire
tly illuminating the atoms,whi
h then s
atter light into the 
avity mode. While in the �rst 
ase some �eldalways builds up even in the absen
e of atoms, the se
ond 
ase needs the presen
e ofparti
les to populate the 
avity mode via s
attering. Hen
e the latter 
ase exhibitsmore intriguing physi
al e�e
ts su
h as self-ordering of the atoms in the opti
alpotentials. In a Fabry-Perot 
avity in spite of the dire
tion of a pump �eld, potentialsbuilt by an os
illating �eld are �xed in spa
e and 
annot travel inside the 
avity.In the se
ond 
ase of a ring 
avity this restri
tion 
an be removed. The di�erentboundary 
onditions for the �eld in the ring 
avity 
ase allow the positions of the�eld nodes/antinodes and hen
e the opti
al potentials to move in the 
avity.
27



1.5.3 Results from the Cavity Cooling Simulations Presentedin this WorkThe following 
hapters present analyti
al and numeri
al results from 
avity 
oolingsimulations. It is important to mention that this work has been greatly in�uen
edby the 
avity 
ooling experiment that has been 
arried out at the University Collegeof London (UCL) by Prof Ferru

io Renzoni's group. The experiment involved aMOT 
hamber with a pre-
ooled 
loud of ∼ 106 Cs55 atoms and a verti
al 
avity,opti
ally pumped along the 
avity axis with an 852nm laser. Initially the Cesiumatoms are fed to the MOT and pre-
ooled to a temperature of 160µK. After theMOT is swit
hed o�, the atoms are trapped and 
ooled in the standing wave 
avity�eld.The parameters used in the experiment are listed below [44℄:Number of atoms: N ∼ 1 ×106Cavity linewidth: κ = 10.0 ×106 HzLaser wavelength: λ = 852.4 ×10−9 mCs de
ay rate: Γlw = 32.89 ×106 HzCoupling 
onstant: g0 = 222.38 ×103 HzCs mass: m = 2.21 ×10−25 kgInitial temperature: Tini = 160.0 ×10−6 KPump-atom detuning: ∆A = (-250 : 250) ×106 HzLaser power: P ≤ 0.3 W
where N is the number of atoms, κ is the 
avity de
ay rate, Γlw is the spontaneousemission linewidth, g0 is the measure for the atom-
avity 
oupling strength, m isthe Cesium mass, Tini is the initial temperature of the atomi
 
loud that intera
ts28



with the 
avity �eld, ∆a = ωp − ωa is the laser-atom detuning and P is the laserpower. Corresponding s
aled parameters have been used in the series of numeri
alsimulations for various 
avity 
on�gurations and are presented in this work. Thiswork is organised as follows:Chapter 2 
ontains the derivation of the 
avity 
ooling model (parti
le model) forthe single atom and many atoms 
on�ned inside a Fabry-Perot 
avity pumped alongthe 
avity axis (here 
alled the 
avity-pump 
ase). Obtained equations are solvednumeri
ally and the �gures 
hara
terising the most important features, in
ludingthe 
ooling rates of this s
heme are presented. Afterwards, with the respe
t tothe parti
le model of the 
avity pump 
on�guration, equivalent model based on adistribution-fun
tion (Vlasov model) is developed. Both models are then 
omparedand the numeri
al results are analysed.Chapter 3 introdu
es 
ooling of atoms illuminated from light sent perpendi
ularly tothe 
avity axis (here 
alled atom-pump 
ase). This 
hapter has a similar stru
tureto that of 
hapter 2 for the 
avity-pump 
ase and hen
e 
ontains a derivation of theparti
le model, main features of this model and numeri
al solutions obtained fromthe solution of its equations. A

ordingly the distribution fun
tion, Vlasov modelis derived for the same atom-pump 
on�guration and the results from numeri
alsimulations are 
ompared with the parti
le model.Chapters 4 and 5 present the semi-
lassi
al models of the 
avity-pump and the atom-pump 
on�guration, respe
tively. In both 
ases the semi-
lassi
al models are derivedand 
ompared with equivalent 
lassi
al models. The models are �rst 
omparedanalyti
ally and then veri�ed using numeri
al results. Additionally, 
hapters 4 and5 
ontain numeri
al simulations of the semi-
lassi
al models for both the 
avitypump and the atom-pump 
on�gurations for the 
ase of blue detuned light. Theresults from the simulations are presented and analysed.29



In 
hapter 6 the possibility of slowing and 
ooling atomi
 gas using a phase-modulatedpump �eld is being investigated. This model assumes atoms being 
on�ned in ahigh-quality ring 
avity illuminated by light sent through one of the 
avity mirrors.Unlike in the Fabry-Perot 
avity in this 
on�guration the opti
al potentials builtup by the �eld 
an freely travel inside the 
avity. Hen
e, three di�erent regimes, inwhi
h both the �eld and the atoms reveal qualitatively di�erent behaviour, are iden-ti�ed. The atom-�eld intera
tion 
hara
teristi
s for ea
h regime are presented andanalysed using results obtained from numeri
al simulations of the model equations.In 
hapter 7 all results from this work are reviewed and summarised.
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Chapter 2Cavity-Pump Con�guration
The following 
hapter introdu
es the 
avity 
ooling model for 
ases where a singleatom and many atoms are 
on�ned inside a Fabry-Perot 
avity pumped throughone of the 
avity mirrors, along the 
avity axis. Equations for the parti
le modeland the alternative Vlasov model will be derived and the results from the numeri
alsimulation of both models will be 
ompared and analysed.
2.1 Classi
al Derivation of Single Atom CoolingLet us 
onsider a system 
onsisting of a single atom inside an opti
al 
avity, pumpedby an external �eld inje
ted through one of the mirrors, with a standing wave light�eld far detuned from any atomi
 transition (�g. 2.1).The 
avity �eld indu
es a dipole moment in the atom whi
h in turn 
ontributes tothe plane wave ele
tri
 �eld as a driving term in Maxwell's wave equation [35℄

− ∂2

∂x2
E(x, t) +

1

c2
∂2

∂t2
E(x, t) + µoσ

∂

∂t
E(x, t)

= −µo
∂2

∂t2
P (x, t) + µoσ

∂

∂t
Eext(x, t) . (2.1)
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Figure 2.1: Parti
le moving inside a driven opti
al 
avity, pumped along the 
avityaxis. The 
avity pumping rate, spontaneous loss rate and 
avity de
ay rate aredetermined by the parameters η, Γ and κ respe
tivelywhere σ is the 
ondu
tivity of the 
avity mirrors, µo is the magneti
 permeability, cis the speed of light, P (x, t) is the polarisation of the atom and Eext is the ele
tri
�eld of the external pump �eld. The third term on the LHS and se
ond term onthe RHS of (2.1) des
ribe damping and external pumping of the 
avity, respe
tively.The ele
tri
 �eld and polarisation 
an be written as
E(x, t) = E(t)e−iωpt u(x) + c.c. (2.2)
P (x, t) = P(t)e−iωpt u(x) + c.c. (2.3)where u(x) is the intra
avity mode fun
tion - cos(kx) with wave number k. Sub-stituting eq. (2.2) and (2.3) into (2.1), �nding the derivatives and assuming that Eand P are slowly varying amplitudes (|Ė | ≪ ωp|E| and analogously for P and Eext)one 
an rewrite eq. (2.1) as
Ė + (κ− i∆c)E ≈ iωpP

2ǫo
+ κEext . (2.4)32



Here ∆c is the detuning between the pumping �eld and 
avity frequen
y (∆c =

ωp − ωc) and κ = σ/2ǫo is the 
avity de
ay rate.The dynami
s of the atomi
 dipole 
an be modelled as an elongation of an elasti
allybound ele
tron under the in�uen
e of an ele
tri
 �eld:
ÿ(t) + 2Γẏ(t) + ω2

oy(t) =
e

m
E(xa, t) , (2.5)where xa is the atomi
 position, m is the ele
tron mass, e is the 
harge, Γ is thes
attering rate and where we have introdu
ed the slowly varying 
omplex amplitude

Y (t) via
y(t) = Y (t)e−iωpt + c.c. (2.6)Inserting eq. (2.6) into eq. (2.5) and solving for steady state one obtains:

Y (t) =
e E(t)/m

2ωp(−iΓ + (ω2
o − ω2

p)/2ωp)
cos(kxa) . (2.7)The polarisation density 
an be de�ned as P (x, t) = ey(t) δ(x − xa)/A where δ isa Dira
 delta fun
tion and A is the 
avity 
ross-se
tion. Using de�nition (2.3) andde�ning a �ma
ros
opi
� polarisation P(t) = (2/d)

∫ d/2

−d/2 dxP (x, t)cos(k, x), where ddenotes 
avity length, it is possible to obtain the following expression for the slowlyvarying amplitude:
P(t) = i

e2

(mωpV )

cos2(kxa)

(Γ − i∆a)
E(t) . (2.8)where ∆a is the frequen
y detuning ωp − ωo.Substituting (2.8) into (2.4) one obtains33



˙E(t) = [−κ− γ(xa) + i∆c − iU(xa) ]E(t) + κEext , (2.9)where
γ(x) =

Γ

Γ2 + ∆2
a

g2
ocos

2(kx) , (2.10)
U(x) =

∆a

Γ2 + ∆2
a

g2
ocos

2(kx) . (2.11)The parameter γ(x) 
an be understood as the total rate at whi
h the atom s
atterslight and U(x) as the frequen
y shift of the 
avity due to the intera
tion with theatom. Here go = |e|/
√

(2V ǫom) is a measure of the atom-
avity 
oupling strength.The dipole for
e a
ting on the atom is given by
F (xa) = ∇[e y(xa, t)E(xa, t)], (2.12)so substituting (2.2), (2.6) and (2.7) into (2.12) produ
es

F (xa) = −∇
[

e2

2ωpm

∆a

Γ2
a + ∆2

a

E(t)cos2(kxa)

]

. (2.13)Introdu
ing the e�e
tive pumping term η and rewriting (2.9) and (2.13) in terms ofa dimensionless parameter α, asso
iated with the average 
avity photon number:
|α2| =

ǫo|E2|V
~ωp

(2.14)
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it is �nally possible to write the following set of equations for the atom-
avity dy-nami
s:
dα

dt
= [−κ− γ(x) + i∆c − iU(x) ]α+ η (2.15)

dp

dt
= −~|α|2 d

dx
U(x) (2.16)

dx

dt
=

p

m
(2.17)Equation (2.15) des
ribes the time evolution of the �eld amplitude; here α is the
omplex, dimensionless parameter whose absolute squared value |α|2 is asso
iatedwith the average photon number, η 
hara
terises the driving laser strength given bythe free-spa
e Rabi frequen
y and κ is the total 
avity de
ay rate. The parameter

γ(x) = γ0 cos
2(kx) 
an be understood as the total rate at whi
h the atom s
atterslight where

γo =
Γ

Γ2 + ∆2
a

g2, (2.18)des
ribes the absorptive e�e
t of the atom as it broadens the resonan
e line of the
avity.Equation (2.16) and (2.17) are the equations of motion of the atomi
 
entre-of-mass, where x refers to the position of the atom and p to its momentum. U(x) =

U0 cos2(kx) is the frequen
y shift of the 
avity due to the intera
tion with theparti
le, where
Uo =

∆a

Γ2 + ∆2
a

g2 (2.19)35



des
ribes the dispersive e�e
t of the atom as it shifts the resonan
e line of the 
avity.In order to understand the basi
 idea of the 
avity 
ooling me
hanism let us 
onsidera massive point-like polarisable parti
le strongly 
oupled to a high �nesse opti
al
avity pumped dire
tly along the 
avity axis (�g. 2.1). Depending on the 
on�gu-ration a laser �eld, whi
h 
an be pumped along the 
avity axis or perpendi
ularly,forms a standing wave 
avity mode to whi
h an atom is 
oupled. Be
ause of theele
tri
 dipole moment the �eld detuned from any atomi
 transition exerts a for
eon the parti
le and 
onsequently modi�es its momentum and position inside the
avity.
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x (λ)Figure 2.2: Potential U(x) and intra
avity intensity |α|2 versus parti
le position x� red 
urve when parti
le moving, blue when steady (�gure adapted from Ref. [34℄)
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The detuning between the �eld and an atom (∆a) plays a signi�
ant role in thewhole system dynami
s. If ∆a < 0, we say the �eld is red detuned and the for
e isdire
ted along the gradient of intensity so an atom is attra
ted to an antinode. Forblue detuning, ∆a > 0, the for
e is dire
ted against the gradient of intensity anda parti
le will be pushed towards a node. In turn, due to atom-�eld 
oupling theparti
le's position strongly in�uen
es the �eld amplitude.
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κtFigure 2.3: Time evolution of parti
le momentum. The parameters used are: U0 =
0.76κ, γ0 = 0.07κ, ∆c = 1.2κ (�gure adapted from Ref. [34℄)For a typi
al 
ooling regime, and assuming ∆a < 0, the maximum �eld amplitudewill be obtained when the parti
le sits at an antinode of a standing wave and willbe minimum when the parti
le sits at a node (�g. 2.2). For a parti
le with non-zeromomentum, be
ause of the �nite 
avity response time, the maximum �eld intensitywill be attained after the parti
le passed the minimum potential. Thus, for properlys
aled values this atom-�eld 
ross-talk 
an be 
ontrolled in a way that the parti
lewill 
limb potential hills at times of higher intra
avity intensity and run down at37



times of lower intra
avity intensity. Over an entire 
y
le the parti
le will lose itskineti
 energy and after being slowed it 
an be trapped in a single potential well(�g. 2.3),[34℄. More results from the numeri
al simulations of the parti
le model,in
luding 
ooling rates for the 
ase of many parti
les inside the 
avity will be shownin the next se
tions.
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2.2 Cavity Cooling In
luding Many Parti
les - Par-ti
le ModelIn this se
tion, the model derived in se
tion 2.1 is extended to des
ribe the 
asewhere many parti
les are 
oupled to the same 
avity mode, as shown in �g. 2.4.Be
ause of the presen
e of many atoms, the 
avity resonan
e shift is now due to thetotal phase shift indu
ed by the position of all the atoms inside the 
avity [45℄.
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Figure 2.4: Cavity resonator with many parti
les 
oupled to the light �eld. The
avity pumping rate, spontaneous loss rate and 
avity de
ay rate are determined bythe parameters η, Γ and κ respe
tivelySimilarly, the absorptive e�e
t is a fun
tion of the total s
attering from ea
h of theparti
les separately. Hen
e equations (2.15) , (2.16) & (2.17) be
ome:
dα

dt
= [−κ− γo

∑

j

cos2(kxj) + i∆c − iUo
∑

j

cos2(kxj) ]α+ η (2.20)
dpj
dt

= −~Uo|α2| d
dx
cos2(kxj) (2.21)

dxj
dt

=
pj
m

(2.22)where the parameters α, κ, γ(x), U(x),∆c and η represent the same physi
al quan-tities as in a single atom 
on�guration (se
tion 2.1) and j = 1...N is the parti
le39



index.In the parti
le model the knowledge of the system at a given time requires infor-mation about the instantaneous position and momentum of ea
h of the parti
les.This information in turn 
ontributes to the evolution of the total �eld intensity andphase as des
ribed by eq. (2.20). The whole idea is to use that interplay and �ndparameters for whi
h 
ooling 
an be obtained. The 
ooling me
hanism for the 
aseof many parti
les in the 
avity is similar to the single atom 
ase. For red parti
le-�eld detuning U0 < 0 the parti
les are drawn towards the �eld intensity maxima atthe mode antinodes, as explained earlier in se
tion 1.5. This in
reases their average
oupling to the �eld and thus enlarges the e�e
tive refra
tive index of the 
loudshifting the 
avity resonan
e towards a lower frequen
y. Under suitable operating
onditions, when the pump frequen
y is also below the 
avity resonan
e, su
h a shiftde
reases the pump-
avity frequen
y mismat
h and leads to an in
rease in the 
avityphoton number. In turn this deepens the opti
al potential and further 
on�nes the
loud near the antinodes.In reality the position and momentum distribution in an atomi
 
loud is fully ran-dom. In the 
avity pump 
on�guration the external �eld does not provide any
orrelation between the motion of the atoms so in prin
iple the 
ross-talk betweenparti
les should in
rease the trapping time. Numeri
al solutions of eqs. (2.20) -(2.22) provide information about 
ertain parameters e.q. number of parti
les orpump strength that 
an in�uen
e the 
ooling of the sample.
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2.2.1 S
alability of the Cavity Pump Con�gurationNumeri
al simulations using the 
lassi
al model (eqs. (2.20 - 2.22)) predi
t faster
ooling for small number of parti
les and slower 
ooling for larger ensembles. It isimportant to mention that this model does not in
lude spontaneous emission and anyspread of the atomi
 momentum is due to intera
tion with the 
lassi
al 
avity �eldonly. The 
avity pump 
on�guration is 
hara
terised by strong s
alability [45, 46℄.Sin
e U0 is the 
avity frequen
y shift due to the intera
tion with the atom, hen
ein
reasing the number of parti
les by a fa
tor r, dividing the intera
tion potential
U0 by r and in
reasing the pump strength by √

r should in prin
iple lead to similarresults.In the following example this s
alability law has been applied to initial parameters(N = 1 × 103,η = 70.0κ, U0 = −0.004κ) and 
ooling has been demonstrated for
5 × 103, 1 × 104, 1 × 105 and , 1 × 106 parti
les.
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Figure 2.5: Cooling rate (
onstant 
ooling parameter) as a fun
tion of number ofparti
les (N). The linear de
rease of the 
ooling rate with atom number is 
learlyvisible here.
As shown in �g. 2.5 the 
ooling time s
ales linearly with respe
t to the number ofatoms inside the 
avity and in
reases if the number of atoms in
reases.
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Note, the s
aled parameters found for N = 1 × 106 atoms
η = 2300.0 κ
∆a = -125.0 κ
Γ = 3.25 κ
g0 = 0.02 κ
σ = 28.0 ~k


orrespond to those being used in 
urrent 
avity 
ooling experiments at UCL (Uni-versity College of London), where the above parameters 
orrespond to the real ex-perimental parameters:
avity linewidth: κ = 1.6×106 Hzlaser wavelength: λ = 852.4 ×10−9 mCs de
ay rate: Γlw = 5.23 ×106 Hz
oupling 
onstant: g0 = 35.4 ×103 HzCs mass: m = 2.21 ×10−25 kgInitial temperature: Tini = 160.0 ×10−6 Katom-
avity detuning: ∆A = -200 ×106 Hzlaser power: P ≤ 0.1 W
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2.3 Validity of the Classi
al Model of Cavity Cool-ingIn previous studies of 
avity 
ooling [27, 37, 38, 39℄, whi
h assumed a single atomor a small number of atoms and a 
avity mode 
ontaining few photons, the atomi
momentum spread or temperature is mainly due to �u
tuations in the for
es a
tingon the atoms and is limited by the 
avity linewidth. In this thesis, we 
onsider
ases where the number of atoms is very large (typi
ally N > 105 in e.g. the UCLexperiments) and 
onsequently the 
avity �elds are relatively intense and 
ontaina large number of photons (i.e. |α|2). In these 
ases the behaviour of the systemwill be essentially 
lassi
al and the temperature/momentum spread of the atomi
ensemble will be mainly due to the relatively large height of the opti
al potentialenergy asso
iated with the 
avity mode amplitude [47, 48℄. In what follows thisqualitative argument for the validity of the 
lassi
al model is investigated in moredetail and a 
ondition for its validity is derived.Starting from the expression for the for
e on an atom in the 
avity (eq. 2.21)
F = ~kU0|α|2sin(2kx) (2.23)then it is possible to derive a position-dependent potential energy

V (x) = −
∫

Fdx =
1

2
~U0|α|2cos(2kx) (2.24)The temperature asso
iated with this potential energy 
an be dedu
ed by 
onsideringthe fa
t that the atoms trapped in the potential will have a maximum kineti
 energyof 44



p2

2m
=

1

2
Vmax(x) = ~U0|α|2 (2.25)so the varian
e in atomi
 momentum will be

〈p2〉 ∼ m~U0|α|2 (2.26)and the asso
iated 
lassi
al momentum spread of the ensemble will be
σp =

√

〈p2〉 =
√

m~U0|α|. (2.27)For 
omparison the kineti
 energy of individual atoms due to sto
hasti
 �u
tuationsin the dipole for
e has been shown to be [37, 49℄
p2

2m
∼ ~κ (2.28)so

p2 ∼ 2m~κ (2.29)with a 
orresponding momentum spread
σp ∼

√
2m~κ (2.30)Consequently, the ratio of the spreads 
an be written as

σp(int)

σp(fluc)
=

√
m~U0|α|√
m~κ

=

√

1

2

U0

κ
|α| (2.31)45



For a 
avity pumped 
lose to resonan
e, the mode amplitude |α| will be
|α| ∼ η

κ
= η̄,

U0

κ
= Ū0 (2.32)so in terms of the parameters de�ned in se
tion 2.1, the ratio of the 
lassi
al inter-a
tion spread and the quantum me
hani
al ��u
tuations� spread is

σp(int)

σp(fluc)
=

√

1

2
Ū0η̄ (2.33)Consequently, a 
lassi
al model whi
h negle
ts sto
hasti
 �u
tuations in the opti
alfor
es should be a good approximation in the limit where σintp ≫ σflucp i.e.

1

2
Ū0η̄

2 ≫ 1 (2.34)whi
h in real dimensional units 
an be written as
1

2

g2
0

∆a

η

κ3
≫ 1 (2.35)whi
h implies strong-atom �eld 
oupling and large pump photon numbers as wouldbe expe
ted from a 
lassi
al limit.The validity of this 
lassi
al limit 
an be demonstrated by a 
omparison of the 
las-si
al model (eqs. 2.20 and 2.22) where the momentum di�usion due to �u
tuatingopti
al for
es is negle
ted, with the 
orresponding equations whi
h in
lude momen-tum di�usion arising as a result of sto
hasti
 �u
tuations in the opti
al dipole for
ei.e.
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dα

dt
= [−κ− γo

∑

j

cos2(kxj) + i∆c − iUo
∑

j

cos2(kxj) ]α+ η (2.36)
dpj
dt

= −~Uo|α2| d
dx
cos2(kxj) + ξ(t) (2.37)

dxj
dt

=
pj
m

(2.38)where ξ(t) is a Gaussian random variable with zero mean and varian
e D su
h that
ξ(t) = 0 and ξ(t)ξ(t− T ) = 2Dδ(T ) where the overbar indi
ates a time average[50, 51℄. The e�e
t of the random part of the for
e in eq. (2.37), ξ(t), is therefore to
ause momentum di�usion su
h that p2 ≃ 2Dt. The momentum di�usion 
oe�
ient,D is de�ned as [39, 47℄

D = 2γ0|α|2
[

~
d

dx
g(x)

]2

+ ~
2k2ū2g(x)2 (2.39)where g(x) is the 
avity mode fun
tion and k2ū2 is the mean value of the re
oilmomentum proje
ted onto the 
avity axis.
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Figure 2.6: Comparison of the time evolution of the �eld intensity with and withoutmomentum di�usion due to �u
tuating opti
al for
es. The parameters used are:
N = 100,∆a = −40κ, U0 = −2.5 × 10−2κ, γ0 = 6.25 × 10−5κ, η = 15κFigures 2.6 and 2.7 show a 
omparison of the 
lassi
al model de�ned by eqs. (2.20and 2.22), where momentum di�usion is negle
ted, and its quantum 
ounterparteqs. (2.36 and 2.38) where momentum di�usion is in
luded.
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Figure 2.7: Comparison of the time evolution of the parti
le's momentum spreadwith and without momentum di�usion due to �u
tuating opti
al for
es. The param-eters used are: N = 100,∆a = −40κ, U0 = −2.5×10−2κ, γ0 = 6.25×10−5κ, η = 15κThe parameters used in �gures 2.6 and 2.7 are: N = 100,∆a = −40κ, U0 = −2.5 ×

10−2κ, γ0 = 6.25 × 10−5κ, η = 15κ so the 
ondition derived in eq. (2.34) for thevalidity of the 
lassi
al model, i.e. negle
ts of quantum me
hani
al momentumdi�usion, is satis�ed. It 
an be seen from �gures 2.6 and 2.7 that the 
onditionis valid as the behaviour of the momentum spread and the �eld intensity is notsigni�
antly a�e
ted by the in
lusion of momentum di�usion.
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2.4 Vlasov Model of the Many Atom-Cavity SystemThe parti
le model is a powerful tool for simulating a limited number of parti
les. Forlarger ensembles the requirement of information about the position and momentumof all the atoms at all times makes the numeri
al simulations more time-
onsuming.An alternative method to simulate systems involving large numbers of atoms orparti
les is to use a distribution fun
tion f(x,p, t).In the absen
e of 
ollisions an ensemble of parti
les 
an be des
ribed by a distributionfun
tion f(x,p, t) in six-dimensional phase spa
e. Liouville's theorem
df

dt
= 0 (2.40)asserts that the phase-spa
e distribution fun
tion is 
onstant along the traje
toriesof the system - that is, the density of system points in the vi
inity of a given systempoint travelling through phase-spa
e is 
onstant with time. For a large number ofparti
les, moving under the in�uen
e of an ele
tromagneti
 �eld, equation (2.40) is
alled the Vlasov equation [52℄.The Vlasov equation des
ribing the evolution of 1-D distribution fun
tion f(x, p, t),for a 
ollisionless gas of parti
les is:

df

dt
=
∂f

∂t
+ ẋ

∂f

∂x
+ ṗ

∂f

∂p
= 0 (2.41)where · ≡ ∂

∂t
and f(x, p, t) is normalised su
h that:

∫ ∫

f(x, p, t) dx dp = 1.
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For a gas of N atoms, equations (2.20) - (2.22) 
an be written as
dα

dt
=
[

−κ− γ̄ + i∆c − iŪ
]

α+ η (2.42)
dpj
dt

= ~kU0 |α|2 sin(2kxj) (2.43)
dxj
dt

=
pj
m

(2.44)where the sum over theN atoms has been repla
ed with the overbar (...) ≡∑N
j=1(...).Using equations (2.43) and (2.44) the Vlasov equation, eq. (2.41), 
an be written as

∂f

∂t
+
p

m

∂f

∂x
+ ~kU0|α|2 sin(2kx)

∂f(x, p, t)

∂p
= 0 (2.45)and 
onsequently

∂f

∂t
+
p

m

∂f

∂x
− i

~kU0

2
|α|2

(

e2ikx − e−2ikx
) ∂f(x, p, t)

∂p
= 0. (2.46)The spatial periodi
ity of the for
es on the atoms allows us to assume that the atomi
distribution fun
tion is also spatially periodi
 with period λ/2. Consequently, we
an expand f as a Fourier series su
h that

f(x, p, t) =
2

λ

∞
∑

n=−∞
fn(p, t)e

2inkz where f−n = f ∗
n (2.47)and rewrite the Vlasov equation in eq. (2.46) as

∂fn
∂t

+ 2ink
p

m
fn − i

~kU0

2
|α|2

(

∂fn−1

∂p
− ∂fn+1

∂p

)

= 0. (2.48)51



The wave equation, (2.42), 
an be written in terms of the Fourier series (eq. (2.47))using
dα

dt
= (−κ+ i∆c)α− (γ0 + iU0) cos2(kx)α+ η

= (−κ+ i∆c)α− (γ0 + iU0)

2
(1 + cos(2kx))α+ η

=

(

−κ+ i∆c −
N

2
(γ0 + iU0)

)

α− 1

4
(γ0 + iU0) (e2ikx + e−2ikx)α+ ηso that repla
ing

(...) ≡ N

∫ ∞

−∞

∫ λ/2

0

f(x, p, t)(...) dx dpprodu
es
dα

dt
=

(

−κ+ i∆c −
Nγ0

2
− i

NU0

2

)

α− N

4
(γ0 + iU0)

∫ ∞

−∞
(f−1 + f1) dp α + η.(2.49)It is useful, for numeri
al simulations, to de�ne the dimensionless variables p̄ = p

~k, t̄ = κt, γ̄0 = γ0
κ
, Ū0 = U0

κ
, ω̄r = 2~k2

mκ
, η̄ = η

κ
and f̄ = ~kf , so that equations (2.48)and (2.49) 
an be rewritten in the dimensionless form

∂f̄n
∂t̄

= −inω̄rp̄f̄n +
i

2
Ū0|α|2

(

∂f̄n−1

∂p̄
− ∂f̄n+1

∂p̄

) (2.50)
dα

dt̄
=

(

−1 + i∆̄c −
Nγ̄0

2
− i

NŪ0

2

)

α− N(γ̄0 + iŪ0)

4

∫ ∞

−∞

(

f̄−1 + f̄1

)

dp̄ α + η̄(2.51)The Vlasov model equations (2.50) - (2.51) are 
ompletely equivalent to the parti
le52



model equations (2.20) - (2.22) derived earlier. In the following se
tion numeri
alsolution of both models will be presented. It will be shown that using the sameinitial 
onditions and parameters both models display ex
ellent agreement [53℄.
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2.5 Comparison Between the Parti
le Model andthe Vlasov Model (Cavity-Pump Con�guration)The time evolution of the �eld intensity and the parti
les average momentum forthe Vlasov and parti
le model are now investigated for the 
ase of the 
avity pump
on�guration (�g. 2.4).Figure 2.8 shows the time evolution of the �eld intensity for the 
avity-pump 
on�g-uration, as 
al
ulated from the parti
le model (eqs. (2.20) - (2.22)) and the Vlasovmodel (eqs. (2.50) - (2.51)). It 
an be seen from �g. 2.8 that both models displayrapid saturation of the �eld at (κt ≈ 5) and small os
illations at longer times.
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Figure 2.8: Cavity pump 
on�guration: 
omparison of the �eld intensity evolutionof the Vlasov (blue 
urve) and the Parti
le model (red 
urve). S
aled parameters:
N = 2 × 105, ∆c = −1.5κ, η = 1500κ, U0 = −5.0 × 10−6κ
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In addition to agreement in the evolution of the 
avity �eld both the parti
le andVlasov models also give almost identi
al results for the evolution of averaged quan-tities of the atomi
 sample like the average momentum and momentum spread. Fordemonstration purposes the initial mean velo
ity of the parti
les has been 
hosen tobe nonzero, so that 〈p〉 = 10~k with a spread of σ = 5~k. The damped os
illationsof the average momentum shown in �g. 2.9 are due to the trapping of the atoms inthe potential wells formed by the intra
avity standing wave �eld. It is worth men-tioning that despite the average velo
ity de
rease, trapped parti
les initially gainsome kineti
 energy when falling towards the potential minima, so that the velo
ityspread initially in
reases in time (�g. 2.10).
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The ex
ellent agreement between the two models and the validity of the Vlasovapproa
h is 
learly demonstrated by �gs. 2.8 - 2.10.
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Figure 2.9: Cavity pump 
on�guration: 
omparison of the mean momentum evolu-tion of the Vlasov (blue 
urve) and the Parti
le model (red 
urve). S
aled parame-ters: N = 2 × 105, ∆c = −1.5κ, η = 1500κ, U0 = −5.0 × 10−6κ, 〈p0〉 = 10~k
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Figure 2.10: Cavity pump 
on�guration: 
omparison of the momentum spread evo-lution of the Vlasov (blue 
urve) and the Parti
le model (red 
urve). S
aled pa-rameters: N = 2 × 105, ∆c = −1.5κ, η = 1500κ, U0 = −5.0 × 10−6κ, 〈p0〉 = 10~k,
σ = 5~kThe good agreement between the two models 
an be further demonstrated by 
om-parison of phase spa
e evolution in both the parti
le model and the Vlasov model.A simulation of the phase spa
e evolution for the parti
le model is presented in�gure 2.11. Initially the parti
les are uniformly distributed over one wavelength ofthe wave and normally distributed in momentum spa
e with a Gaussian momentumdistribution. Depending on a parti
le's position in the opti
al potential it 
an bea

elerated or de
elerated. Parti
les whi
h do not have enough kineti
 energy toes
ape the potential are trapped in the single potential well (κt = 10, κt = 15).The half-wavelength periodi
ity of the potential �eld in this 
on�guration is 
learlyvisible.
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(a) κt = 0 (b) κt = 5

(
) κt = 10 (d) κt = 15Figure 2.11: Time evolution of phase spa
e 
al
ulated from a numeri
al simulationof the parti
le model, eqs. (2.20) - (2.22). S
aled parameters:: N = 2 × 105, ∆c =
−1.5κ, η = 1500κ, U0 = −5.0 × 10−6κ, 〈p0〉 = 10~k, σ = 5~kFigure 2.12 shows the time evolution of the momentum distribution fun
tion f(x, p, t)for the Vlasov model. It shows that the same behaviour is also demonstrated by theVlasov model. Here equations (2.50) - (2.51) have been solved numeri
ally with thesame parameters as previously used in the parti
le model (�g. 2.11).
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(a) κt = 0 (b) κt = 5

(
) κt = 10 (d) κt = 15Figure 2.12: Time evolution of the momentum distribution fun
tion f(x, p, t) froma numeri
al simulation of the Vlasov model, eqs. (2.50) - (2.51). Parameters usedare the same as those in �g. 2.11 i.e N = 2 × 105, ∆c = −1.5κ, η = 1500κ,
U0 = −5.0 × 10−6κ, 〈p0〉 = 10~k, σ = 5~kNumeri
ally, the agreement of the Vlasov model with the parti
le model dependsmainly on a su�
ient number of Fourier harmoni
s fn used to represent the distribu-tion fun
tion in the expansion eq. (2.47) and a su�
ient number of dis
rete pointsused to simulate the momentum distribution. In this 
ase the number of spatialharmoni
s was 
hosen to be 30 and the number of momentum points was equal 100.
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2.6 Numeri
al Methods for the Parti
le Model andthe Vlasov ModelThe parti
le model is 
omposed of the (2N + 1) 
oupled di�erential equations (2.20)- (2.22) hen
e the simulation of this model is based on the simultaneous numeri
alsolution of ea
h of the equations. Sin
e this is a typi
al initial value problem the4th order Runge-Kutta method, 
ommonly used in similar models, has been appliedhere. The 4th order Runge-Kutta method makes an ex
ellent 
ompromise betweenthe speed and the a

ura
y of numeri
al 
al
ulations [54℄. In 
ontrast, the Vlasovmodel is a set of two partial di�erential equations (2.50) - (2.51). From the varietyof numeri
al methods for solving partial di�erential equations, the Finite Di�eren
eMethod was 
hosen. More spe
i�
ally the impli
it Crank-Ni
holson s
heme was useddue to its simpli
ity and good a

ura
y.The 
odes for both parti
le and the Vlasov methods were written using Fortran 90.This general-purpose programming language is espe
ially suited to high-performan
enumeri
 
omputation and s
ienti�
 
omputing. In order to further improve thespeed and performan
e of the 
al
ulations some of the 
odes were parallelised withthe memory shared multipro
essing method also known as OpenMP. More detailsof the numeri
al method for solving the Vlasov model 
an be found in Appendix A.
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Chapter 3Atom-Pump Con�guration
In the previous 
hapter, the opti
al 
avity was assumed to be pumped dire
tly viaone of the 
avity mirrors. In this 
hapter an alternative pumping 
on�guration is
onsidered, where atoms are illuminated by the pump �eld whi
h propagates trans-versely into the 
avity (�g. 3.1). This results in an atomi
-position e�e
tive pumpingterm, whi
h is responsible for the presen
e of an additional for
e a
ting on the atoms.This for
e, dependent on �eld intensity, originates from the 
oherent redistributionof photons between the pump and the �eld mode and leads to 
ooperative a
tionand self-organization of the atoms in the 
avity [39, 55, 56℄.3.1 Classi
al Derivation of Atom-Pump Con�gura-tionConsider a system 
onsisting of an opti
al 
avity 
ontaining atoms illuminated bythe �eld being sent transversely into the 
avity (�g. 3.1).The external �eld indu
es a dipole moment in the atom whi
h in turn 
ontributesto the ele
tri
 �eld as a driving term in the wave equation

− ∂2

∂x2
E(x, t) +

1

c2
∂2

∂t2
E(x, t) + µoσ

∂

∂t
E(x, t) = −µo

∂2

∂t2
P (x, t) (3.1)where σ is the 
ondu
tivity of the 
avity mirrors, µo is the magneti
 permeability61
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Figure 3.1: S
hemati
 representation of an atom-pumped resonator. The 
avitypumping rate, spontaneous loss rate and 
avity de
ay rate are determined by theparameters η, Γ and κ respe
tivelyand c is the speed of light.The ele
tri
 �elds (pump and 
avity) and polarisation are de�ned as follows
Ep(y, t) = ξpe

−iωpt up(y) + c.c. (3.2)
Ec(x, t) = ξce

−iωct uc(x) + c.c. (3.3)
P (x, t) = Pe−iωpt + c.c. (3.4)where uc(x) is the intra
avity mode fun
tion cos(kx) with wave number k. Substi-tuting (3.2) - (3.4) into (3.1), �nding the derivatives and assuming that ξ and P areslowly varying amplitudes then eq. (3.1) 
an be redu
ed to
ξ̇c + (κ− i∆c) ξc ≈

iωpP
2ǫo

. (3.5)62



where ∆c is the detuning between the pumping �eld and 
avity frequen
y (∆c =

ωp − ωc).The polarisation has a 
ontribution from both the 
avity and transverse pump �eldsand 
an be written as
P (x, t) = αpol [ξcuc(x) + ξpup(y)] e

−iωt δ(x− xa)/A (3.6)where δ(x − xa) is a Dira
 delta fun
tion and A is the 
avity 
ross-se
tion. αpol isan ele
troni
 polarisability de�ned as [57℄
αpol =

e2

(2mωp)(−iΓ + (ω2
o − ω2

p))/2ωp
(3.7)or

αpol =
e2

(2mωp)(−iΓ − ∆a)
. (3.8)where we have used the approximation (ω2

o − ω2
p)/2ωp = (ωo − ωp)(ωo + ωp)/2ωp ≈

−∆a. Using (3.4), (3.6) and with P = 2
d

∫ d/2

−d/2 dxP (x, t)cos(kx), where d denotes the
avity length, then
P =

αpol
V

[ξcuc(x) + ξpup(y)] cos(kx) (3.9)so
P = i

e2

(2mωpV )

cos2(kxa)

(Γ − i∆a)
ξc + i

e2

(2mωpV )

cos(kx) up(y)

(Γ − i∆a)
ξp (3.10)Inserting (3.10) into (3.5) the latter be
omes63



ξ̇c = − e2

(2mV ǫo)

cos2(kx)

(Γ − i∆a)
ξc − (κ− i∆c) ξc −

e2

(2mV ǫo)

cos(kx) up(y)

(Γ − i∆a)
ξp (3.11)whi
h 
an be written in terms of the position dependent s
attering rate γ(x) andfrequen
y shift U(x), de�ned as

γ(x) =
Γ

Γ2 + ∆2
a

g2
ocos

2(kx) = γocos
2(kx), (3.12)and

U(x) =
∆a

Γ2 + ∆2
a

g2
ocos

2(kx) = Uocos
2(kx) (3.13)respe
tively, where go is the 
avity-atom 
oupling strength, i.e

go =

√

e2

(2mV ǫo)
(3.14)Consequently, eq. (3.11) 
an be written as

ξ̇c = [−κ− γ(x) + i∆c − iU(x) ]ξc −
g2
ocos(kx) up(y)

(Γ − i∆a)
ξp. (3.15)It is useful to rewrite eq. (3.15) in terms of a dimensionless variable α, whose squaredabsolute value is asso
iated with the average 
avity photon number:

|α2| =
ǫo|ξ2|V

~ωp
(3.16)
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so that
ξc =

√

ǫoV

~ωp
α, ξp =

√

ǫoV

~ωp
αp (3.17)and �nally after substitution

α̇ = [−κ− γ(x) + i∆c − iU(x) ]α− ηeffup(y)cos(kx) (3.18)In the above we have de�ned the laser pumping rate η = goαp and e�e
tive pumpingstrength ηeff = ηgo/(Γ − i∆a).As was demonstrated in se
tion 2.1 the total for
e a
ting on an atom is given by
F = ~∇(~d · ~E). (3.19)Assuming that both 
avity and pump �elds are polarised in the z dire
tion

Ec(x, t) = (ξce
−iωct uc(x) + c.c.)ẑ (3.20)

Ep(y, t) = (ξpe
−iωpt up(y) + c.c.)ẑ (3.21)we have

F =

(

d · ∂E
∂x

,d · ∂E
∂y

,d · ∂E
∂z

) (3.22)so the for
e in the ”x” dire
tion is
Fx = d · dE

dx
=

(

dx∂Ex
∂x

+
dy∂Ey
∂x

+
dz∂Ez
∂x

)

=
dz∂Ez
∂x

(3.23)65



De�ning the ele
tron dipole moment
dz = αpolE =

{

αpol [ξcuc(x) + ξpup(y)] e
−iωpt + c.c.

} (3.24)and the derivative of the total ele
tri
 �eld
∂Ez
∂x

= ξc
duc(x)

dx
e−iωpt + ξ∗c

duc(x)

dx
eiωpt (3.25)into (3.23) gives

Fx =
|ξc|2
2

du2
c(x)

dx
(αpol + α∗

pol) +

(

αpolξpξ
∗
xup(y)

duc(x)

dx
+ c.c.

) (3.26)where the fast os
illating terms (e−2iωpt, e2iωpt) have been dropped.For 
larity ea
h term on the RHS of eq. (3.26) will now be 
onsidered individually.The polarizability αpol is de�ned in eq. (3.8) so it 
an be rewritten in the form
αpol =

e2(−∆a + iΓ)

(2mωp)(∆2
a + Γ2)

. (3.27)Writing (3.26) in the form Fx = Fx1
+ Fx2

then substituting αpol into (3.26) gives
(αpol + α∗

pol) = − e2

mωp

∆a

∆2
a + Γ2

(3.28)so the �rst term of (3.26) i.e. Fx1
is

Fx1
= −|ξc|2

[

e2

2mωp

∆a

∆2
a + Γ2

]

du2
c(x)

dx
. (3.29)
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Multiplying and dividing (3.29) by V , ǫo and ~ and introdu
ing Uo, g2
o and |α|2 (eqs.(3.13) (3.14) and (3.16) respe
tively) then it is possible to write

Fx1
= −~Uo|α|2

du2
c(x)

dx
(3.30)The se
ond term of (3.26) 
an be written as

Fx2
= up(y)

duc(x)

dx
(αpolξ

∗
c ξp + c.c.) (3.31)and one 
an use the dimensionless variable, α, previously de�ned, so that

α =

√

ǫoV

~ωp
ξ αp =

√

ǫoV

~ωp
ξp (3.32)

ξc =

√

~ωc
ǫoV

αc ξ∗c =

√

~ωc
ǫoV

α∗
c (3.33)

ξp =

√

~ωp
ǫoV

αp ξ∗p =

√

~ωp
ǫoV

α∗
p (3.34)and 
onsequently

Fx2
=

~ωp
ǫoV

up(y)
duc(x)

dx
(αpolα

∗αp + c.c.) (3.35)or alternatively
Fx2

= i~up(y)
duc(x)

dx

(

e2

(2mǫoV )(Γ − i∆a)
αpα

∗ + c.c.

)

. (3.36)67



Introdu
ing the laser pumping rate, η = goαp, and e�e
tive pumping term ηeff =

ηgo/(Γ − i∆a) gives the �nal expression for Fx2
:

Fx2
= −i~up(y)

duc(x)

dx

(

η∗effα− ηeffα
∗) . (3.37)Combining both parts of the total for
e (3.30) and (3.37) and re
alling equation(3.18) we obtain self-
onsistent set of equations whi
h des
ribe the dynami
s of the�eld amplitude α and the 
entre of mass motion of N dipoles along the 
avity axisx, [39℄:

α̇ = i

[

∆c − Uo
∑

j

cos2(kxj)

]

α

−
[

κ+ γo
∑

j

cos2(kxj)

]

α− ηeff
∑

j

cos(kxj) (3.38)
ṗj = −~Uo

(

|α2|
) d

dxj
cos2(kxj)

− i~
(

η∗effα− ηeffα
∗) d

dxj
cos(kxj) (3.39)

ẋj =
pj
m

(3.40)In the following se
tion more detailed features of the atom-pump parti
le modelwill be demonstrated. Moreover, analogously to the 
avity pump 
on�guration,an alternative Vlasov model of the atom-pump 
on�guration will be derived andnumeri
al simulations from both models will be 
ompared.
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3.2 Parti
le Model of Atom-Pumped Con�gurationUsing (3.38 - 3.40) derived in se
tion 3.1, it is now possible to investigate the dy-nami
al behaviour of an atom-pumped 
avity 
ontaining a gas of N atoms. Theparameters in (3.38 - 3.40) des
ribe the same physi
al quantities as in the 
avitypump model des
ribed in se
tion 2.2, in eqs. (2.20) - (2.22). Note that the maindi�eren
e between the �eld evolution equations in ea
h 
on�guration (eq. 2.20 andeq. 3.38) is in the pumping term. For atom-pumping, eq. (3.38) is des
ribed by
ηeff

∑

j cos(kxj) whi
h is a position dependent pumping term proportional to
ηeff =

ηgo
−i∆a + Γ

, (3.41)where η is the pumping strength, given by the maximum free-spa
e Rabi frequen
y.The for
e on ea
h atom in the atom-pumped 
on�guration, eq. (3.39) 
ontains asum of two terms. The �rst term 
orresponds to a for
e arising from an opti
aldipole potential ∝ cos2(kx), whi
h has potential minima at kx = nπ. The se
ondterm in (3.39) originates from 
oherent redistribution of photons between the pumpand the �eld mode. This se
ond for
e is proportional to cos(kx) and has oppositesigns at kx = 2nπ and kx = (2n + 1)π. If for instan
e momentarily there aremore atoms in even wells so that ∑ cos(kx) > 0 and the detuning is su
h that
∆c − Uo

∑

cos2(kxj) < 0, then the 
osine potential has wells at kx = 2nπ thatdeepen the cos2(kx) opti
al latti
e and has hills at kx = (2n + 1)π that redu
eattra
tive wells at cos2(kx). During the 
ooling pro
ess those two for
es 
ompetewith ea
h other and self-amplify until all the atoms are in the same even or odd wells.On
e the atoms redistribute the 
onstru
tive interferen
e of the s
attered light givesrise to the stationary �eld intensity and self-organization is further stabilised. Inother words the self-organisation of the atoms in the 
avity 
an be understood as a69



bun
hing of the atoms on the s
ale of the opti
al wavelength (or potential), givingrise to 
oherent s
attering [39℄.Self-organisation in the atom-pump model strongly depends on the number of atomsinside the 
avity. It 
an be seen from �g. 3.2 that for low number of atoms the�eld does not build up and self-organisation 
annot be established. For a su�
ientnumber of atoms generated photons build up the �eld whi
h 
an be re
ognised as agrowth of the 
avity �eld intensity.
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Figure 3.2: Steady-state intensity |α|2 as a fun
tion of number of atoms N for theatom-pump 
on�guration. Quadrati
 dependen
e of the 
avity mode intensity onthe atom number demonstrates the 
ooperative e�e
t. The parameters used are:
U0 = −1.0 × 10−3κ, γ0 = 1.0 × 10−6κ, η = 500κ.
Strong self-organisation of the atoms 
an, in fa
t, lead to faster trapping and 
oolingof the atomi
 
loud. Sin
e the number of atoms inside the 
avity plays an importantrole in this pro
ess it 
an be seen that, for given parameters, in
reasing the number70



of atoms (N) 
an in
rease the 
ooling rate.
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Figure 3.3: Cooling rate vs. number of parti
les N for the atom-pump 
on�guration.The parameters used are: U0 = −1.0 × 10−3κ, γ0 = 1.0 × 10−6κ, η = 500κ.
The 
avity 
ooling rates and their dependen
e on the number of atoms inside the
avity are presented in �g. 3.3 for the atom-pump 
on�guration. Comparison of�g. 3.3 with the 
orresponding graph for 
avity-pump 
on�guration (�g. 2.5) showsa dramati
 di�eren
e in the dependen
e of the 
ooling rates on N for ea
h 
on�gu-rations.The self-organisation of the atoms in the atom-pumped 
avity 
on�guration willbe further demonstrated in the following se
tion where the parti
le model will be
ompared with the alternative momentum distribution (Vlasov) model and the timeevolution of the phase spa
e will be presented.71



3.3 Vlasov ModelIt is possible to follow the same pro
edure as was 
arried out in the 
ase of the
avity pump 
on�guration (se
tion 2.4) to �nd the Vlasov model for a gas of atomsin a 
avity being pumped o�-axis (�g. 3.1). For a gas of N atoms equations (3.38 -3.40) be
ome
dα

dt
=
[

−κ− γ̄ + i∆c − iŪ
]

α+ η̄eff (3.42)
dpj
dt

= ~kUo|α2| sin(2kxj) + i ~k
(

η∗effα− ηeffα
∗) sin(kxj) (3.43)

dxj
dt

=
pj
m

(3.44)where the sum over theN atoms has been repla
ed with the overbar (...) ≡∑N
j=1(...).The Vlasov equation for the distribution fun
tion f(x, p, t) of the atomi
 gas is

df

dt
=
∂f

∂t
+ ẋ

∂f

∂x
+ ṗ

∂f

∂p
= 0 (3.45)whi
h with equations (3.43) and (3.44) 
an be rewritten in the form

∂f

∂t
+
p

m

∂f

∂x
+ ~kU0|α|2 sin(2kx)

∂f(x, p, t)

∂p
+ i ~k

(

η∗effα− ηeffα
∗)×

× sin(kx)
∂f(x, p, t)

∂p
= 0 (3.46)so 
onsequently 72



∂f

∂t
+
p

m

∂f

∂x
− i

~kU0

2
|α|2
(

e2ikx − e−2ikx
)∂f(x, p, t)

∂p
+

~k

2

(

η∗effα− ηeffα
∗)×

×
(

eikx − e−ikx
)∂f(x, p, t)

∂p
= 0.(3.47)It 
an again be assumed that the atomi
 distribution fun
tion f(x, p, t) is spatiallyperiodi
 in spa
e (on this o

asion with period λ), whi
h allows f to be written asa Fourier series su
h that

f =
1

λ

∞
∑

n=−∞
fne

inkz , where f−n = f ∗
nand Vlasov equation in eq. (3.47) 
an be expressed as

∂fn
∂t

+ ink
p

m
fn −

i

2
~kU0|α|2

(

∂fn−2

∂p
− ∂fn+2

∂p

)

+
1

2
~k
(

η∗effα− ηeffα
∗)×

×
(

∂fn−1

∂p
− ∂fn+1

∂p

)

= 0. (3.48)Similarly, the wave equation, eq.( 3.42), 
an be written as
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dα

dt
= (−κ+ i∆c)α− (γ0 + iU0) cos2(kx)α− ηeffcos(kx)

= (−κ+ i∆c)α− (γ0 + iU0)

2
(1 + cos(2kx))α− ηeffcos(kx)

=

(

−κ+ i∆c −
1

2
(γ0 + iU0)

)

α− 1

4
(γ0 + iU0) (e2ikx + e−2ikx)α−

− 1

2
ηeff (eikx + e−ikx) (3.49)

where the overbar (...) ≡∑N
j=1(...) represents a sum over the atoms. Rewriting thissum in terms of the distribution fun
tion f

(...) ≡ N

∫ ∞

−∞

∫ λ

0

f(x, p, t)(...) dx dpthen (3.49) be
omes
dα

dt
=

(

−κ+ i∆c −
Nγ0

2
− i

NU0

2

)

α− N

4
(γ0 + iU0)

∫ ∞

−∞
(f−2 + f2) dp α−

N

2
ηeff

∫ ∞

−∞
(f−1 + f1) dp(3.50)De�ning the dimensionless variables p̄ = p

~k
, t̄ = κt, γ̄0 = γ0

κ
, Ū0 = U0

κ
, ω̄r = 2~k2

mκ
,

η̄ = η
κ
and f̄ = ~kf , then eq. (3.48) and (3.50) 
an be rewritten in the dimensionlessform
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∂f̄n
∂t̄

= −1

2
inω̄rp̄f̄n +

i

2
Ū0|α|2

(

∂f̄n−2

∂p̄
− ∂f̄n+2

∂p̄

)

− 1

2

(

η∗effα− ηeffα
∗)×

×
(

∂f̄n−1

∂p̄
− ∂f̄n+1

∂p̄

) (3.51)
dα

dt̄
=

(

−1 + i∆̄c −
Nγ̄0

2
− i

NŪ0

2

)

α− N(γ̄0 + iŪ0)

4

∫ ∞

−∞

(

f̄−2 + f̄2

)

dp̄ α−

N

2
η̄eff

∫ ∞

−∞

(

f̄−1 + f̄1

)

dp̄ (3.52)The Vlasov equations for the atom-pump 
on�guration eqs. (3.51 - 3.52) are 
om-pletely equivalent to the parti
le model equations (3.38 - 3.40) derived in se
tion3.1 and, as will be shown in the following se
tion, both models are in ex
ellentagreement [53℄.
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3.4 Comparison Between the Parti
le Model andthe Vlasov Model (Atom-Pump Con�guration)In this se
tion, numeri
al simulations of both the parti
le model and the Vlasovmodel are 
arried out for the 
ase of the atom-pump 
on�guration.A 
omparison between evolution of the �eld intensity from the parti
le model andthe Vlasov model is shown in �g. 3.4. In 
ontrast to the 
avity pump 
on�guration,where the �eld intensity indi
ated almost instantaneous saturation (�g. 2.8), hereboth models display a slow saturation time after whi
h the �eld os
illates. Ashas been mentioned in se
tion 3.2 this is due to fa
t that the �eld builds up dueto the s
attering of the �eld from small initial density �u
tuations. Initially thegrowth of the �eld is slow as the randomly positioned atoms s
atter the pump �eldin
oherently. However due to the self-organisation or bun
hing of the atoms underthe a
tion of the �elds, the s
attering of the pump be
omes more 
oherent and theampli�
ation of the �eld mu
h more rapid, leading to the exponential ampli�
ationshown in �g. 3.4
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Figure 3.4: Atom-pump 
on�guration: 
omparison of the �eld intensity evolutionusing the Vlasov model (blue 
urve) and the Parti
le model (red 
urve). S
aledparameters: N = 2 × 105, U0 = −5.0 × 10−6κ, ∆c = −2.5κ, η = 10κ.In addition to the ex
ellent agreement that was shown in the �eld intensity evolutionbetween the parti
le model and the Vlasov model (�g. 3.4) both models show almostidenti
al results when 
omparing the average momentum evolution (�g. 3.5) and themomentum spread evolution (�g. 3.6).
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Figure 3.5: Comparison of the mean momentum evolution of 2× 105 parti
les usingthe Vlasov model (blue 
urve) and the Parti
le model (red 
urve) (atom-pump
on�guration). The other parameters used are: U0 = −5.0 × 10−6κ, ∆c = −2.5κ,
η = 10κ.Despite the fa
t that the atoms are trapped in the potential wells whi
h 
an be seenas an os
illation of the average momentum shown in �gure 3.5 the parti
les underthe in�uen
e of the strong �eld still os
illate qui
kly in the potentials and hen
e thegrowth of the momentum spread 
an be observed (�g. 3.6).
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Figure 3.6: Comparison of the momentum spread evolution using the Vlasov (blue
urve) and the Parti
le model (red 
urve). S
aled parameters: 2 × 105 parti
les,
U0 = −5.0 × 10−6κ, ∆c = −2.5κ, η = 10κ.The pro
ess of self-organisation of atoms inside the 
avity is 
learly visible in �gure3.7, showing the phase spa
e evolution as 
al
ulated using the parti
le model (3.38- 3.40). Initially the parti
les are uniformly distributed over one wavelength ofthe wave and normally distributed in momentum spa
e (t=0). Finally, however,more parti
les are lo
alised in the even than odd wells whi
h 
on�rms the di�erentstru
ture of the potential �eld in this 
on�guration (t=60) (
ompare the phase spa
eevolution for the 
ase of 
avity pump 
on�guration shown in �g. 2.11). As mentionedin se
tion 3.2 this is due to the fa
t that there are two di�erent potentials in theatom-pump 
on�guration. The potentials 
ompete with ea
h other and self-amplifyuntil all the atoms are in the same even or odd wells.
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(a) κt = 0 (b) κt = 45

(
) κt = 50 (d) κt = 60Figure 3.7: Time evolution of phase spa
e density (atom-pumping) from a numeri
alsimulation of the parti
le model eq. (3.38) - (3.40). S
aled parameters: N = 2×105,
U0 = −5.0 × 10−6κ, ∆c = −2.5κ, η = 10κ.The Vlasov model of the atom-pump 
on�guration (eqs. (3.51) and (3.52)) wassolved numeri
ally with the same initial 
onditions as used for the model � parti
lesneed to be uniformly distributed over one wavelength of the wave and normallydistributed in momentum spa
e. The results from the Vlasov model are presentedin �gure 3.8. The distribution fun
tion evolves from the initial 
onditions, at κt = 0to the �nal state at κt = 60. The periodi
ity of the potential �eld is already visibleat κt = 50 and be
omes sharper for longer times. This result again agrees well withthe results obtained from the parti
le model simulations (see �g. 3.7 for 
omparison)
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(a) κt = 0 (b) κt = 45

(
) κt = 50 (d) κt = 60Figure 3.8: Time evolution of the momentum distribution fun
tion f(x, p, t) (atom-pumping) from a numeri
al simulation of the Vlasov model eq. (3.51) - (3.52). S
aledparameters: N = 2 × 105, U0 = −5.0 × 10−6κ, ∆c = −2.5κ, η = 10.0κ.From the numeri
al point of view, the Vlasov equations for the atom-pump 
on�g-uration eqs. (3.51 - 3.52) are more 
omplex that the Vlasov equations derived for
avity pump 
on�guration eqs. (2.50 - 2.51), however the same numeri
al method �Finite Di�eren
e Method (see Appendix A), as was used to solve eqs. (2.50 - 2.51),was used in the 
ase of the atom-pump 
on�guration.
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Chapter 4Semi-Classi
al Model of Two-LevelAtoms in a Cavity
In previous 
hapters it has been assumed that the atoms behave as 
lassi
al po-larisable parti
les and the internal dynami
s of the atoms are essentially negle
ted.In order to in
lude the e�e
ts asso
iated with the internal atomi
 dynami
s it ispossible to use a system of Maxwell-Blo
h equations extended to in
lude the atomi
of 
entre mass motion. This is the so-
alled semi-
lassi
al model as it treats theinternal atomi
 degrees of freedom (dipole moment, population di�eren
e) quantumme
hani
ally and the ele
tromagneti
 �eld along with external degrees of freedom(atomi
 position and momentum) 
lassi
ally. The semi-
lassi
al model is 
omple-mentary to the 
lassi
al model and in the limit of negligible atomi
 ex
itation mustsimplify to show the same behaviour as in the 
lassi
al model. The 
avity andatom-pump 
on�guration derived in previous 
hapters were assumed to be valid forthe 
ase of low atomi
 ex
itation. In su
h a limit where the atom-pump frequen
ydetuning is large the semi-
lassi
al model must redu
e to 
lassi
al one.
4.1 Semi-Classi
al Derivation of Cavity-Pump Con-�gurationThe model 
onsists of an ensemble of two-level atoms 
on�ned inside a simple Fabry-Perot 
avity illuminated by the pump �eld dire
ted along the 
avity axis, as shown82



s
hemati
ally in �g. 4.1. In the following se
tions the evolution equations for theinternal atomi
 degrees of freedom (dipole moment and the population di�eren
e),external degrees of freedom (position and momentum) and 
avity �eld are derived.
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Figure 4.1: An ensemble of two-level atoms in a 
avity pumped along its axis viaone of the 
avity mirrors (
avity-pump 
on�guration). |g〉 represents a ground stateof an atom while |e〉 represents an ex
ited state of an atom. The 
avity pumpingrate, spontaneous loss rate and 
avity de
ay rate are determined by the parameters
η, Γ and κ respe
tively.4.1.1 Internal Degrees of FreedomThe atoms in the ensemble are assumed to have two internal energy states. The lowerand upper energy states are labelled |g〉 and |e〉 respe
tively. The Blo
h equationsfor the density matrix elements asso
iated with ea
h atom ρjk, j, k = e, g are:

∂ρeg
∂t

= − (Γeg + iωeg) ρeg +
iEµ

~
(ρgg − ρee) (4.1)

∂

∂t
(ρgg − ρee) = −Γee (ρgg − ρee) +

2iEµ

~

(

ρeg − ρ∗eg
)

, (4.2)where Γee and Γeg are the longitudinal and transverse atomi
 de
ay rates, respe
-83



tively and the dipole moment is:
dj = µ

(

ρge + ρ∗ge
)

ê (4.3)where µ is the dipole matrix element and ρeg is the density matrix element de�nedas
ρeg = S(x)e−iωt, (ρge = ρ∗eg) (4.4)and S is the 
oheren
e of the atom.The population di�eren
e is here de�ned as

D =
ρgg − ρee

2
. (4.5)The �eld in the 
avity 
an be written in the form:

E =
(

A(x)e−iωt + c.c.
)

g(x) (4.6)where g(x) is a 
avity mode fun
tion and it has been assumed E = Eê, µge =

µeg = µê ,Inserting (4.4) and (4.6) into (4.1) produ
es
(

dS

dt
− iωS

)

e−iωt = − (Γeg + iωeg)Se
−iωt +

iµ

~
(ρgg − ρee)

(

Ae−iωt + c.c.
)

g(x)(4.7)Multiplying (4.7) by eiωt and using the de�nition of eq. (4.5) eq. (4.7) be
omes
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dS

dt
= −ΓegS + i (ω − ωeg)S +

2iµD

~
Ag(x) (4.8)where terms varying as e2iωt have been negle
ted.Similarly, substituting for (4.4), (4.5) and (4.6) in (4.2) gives

dD

dt
= −Γee (D −Deq) − iµ

~
(AS∗ − A∗S) g(x) (4.9)where Deq = 0.5 in the absen
e of any external ex
itation of the atom and we haveagain fast os
illating terms have been negle
ted.Equations (4.8) and (4.9) des
ribe the internal degrees of freedom of ea
h atomunder the in�uen
e of the 
avity �eld.

4.1.2 Atomi
 Centre-of-Mass Dynami
sThe external degrees of freedom of atoms - the position and momentum - will bedes
ribed 
lassi
ally.As shown in 
hapter 2, the dipole for
e in the x dire
tion a
ting on the jth atom isgiven by:
Fx = d · ∂E

dx
(4.10)whi
h using (4.3) and (4.6) be
omes
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Fx = µ
(

Ae−iωt + c.c.
) (

Se−iωt + c.c.
) dg(x)

dx

= (SA∗ + S∗A)
dg(x)

dx
(4.11)

4.1.3 Ele
tromagneti
 Field Dynami
sMaxwell's wave equation is
(

∇2 − 1

c2
∂2

∂t2

)

E =
1

ǫ0c2
∂2P

∂t2
(4.12)where the polarisation, P , is de�ned as

P =
∑

j

dj δ (r − rj) (4.13)
= µê

∑

j

(

Se−iωt + c.c.
)

δ (r − rj)After �nding the derivatives for an ensemble of point-like atoms eq. (4.12) 
an berewritten as
[

−k2A+
2ω

c2

(

i
dA

dt
+
ωA

2

)]

g(x)e−iωt + c.c. = −µ0ω
2µ
∑

j

(

Se−iωt + c.c.
)

δ (r − rj)(4.14)
[

−k2A+
2ω

c2

(

i
dA

dt
+
ωA

2

)]

g(x) = −µ0ω
2µ
∑

j

Sδ (r − rj) (4.15)
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where the slowly-varying envelope approximation (SVEA) has been used (i.e. | ∂
∂t
| ≪

ω, | ∂
∂z
| ≪ k ).As ω2

c2
= k2 and 1√

µ0 ǫ0
= c2, then eq. (4.15) be
omes

dA

dt
g(x) =

iωµ

2ǫ0

∑

j

Sδ (r − rj) (4.16)so multiplying both sides of (4.16) by g(x) and integrating over the 
ross-se
tionarea of the 
avity A, (V = AL) produ
es
AdA
dt

∫ L

0

g(x)2dx =
iωµ

2ǫ0

∫ L

0

g(x)dx
∑

j

Sδ (r − rj) (4.17)Then, if the 
avity mode fun
tion is of the form
g(x) = cos(kx), or g(x) = sin(kx) (4.18)eq. (4.17) 
an be expressed as

Aλ
4

dA

dt
=
iωµ

2ǫ0

∑

j

Sg(x)

⇒ dA

dt
=

2iωµ

Aλǫ0
∑

j

Sjcos(kxj)

⇒ dA

dt
=
iωµ

V ǫ0

∑

j

Sjcos(kxj) (4.19)Equations (4.8), (4.9), (4.11) and (4.19) together make a 
losed set of evolutionequations whi
h 
ompletely des
ribe the self-
onsistent intera
tion of an ensembleof two-level atoms with the 
avity mode inside a Fabry-Perot 
avity:87



dSj
dt

= −Γeg + i (ω − ωeg)Sj +
2iµD

~
Ag(x) (4.20)

dDj

dt
= −Γee (Dj −Deq) − iµ

~
(AS∗ − A∗S) g(x) (4.21)

dpj
dt

= (SA∗ + S∗A)
dg(x)

dx
(4.22)

dA

dt
=
iωµ

V ǫ0

∑

j

Sjcos(kxj) (4.23)As in previous 
hapters, it is 
onvenient to introdu
e the dimensionless parameter
α whose absolute squared value |α|2 is asso
iated with the average photon number

|α2| =
ǫo|A|2V

~ω
(4.24)This implies

α =

√

ǫoV

~ωp
A, A =

√

~ωp
ǫoV

α (4.25)and equations (4.20)-(4.23) be
ome
dSj
dt

= −ΓegS + i∆aS + 2ig0Dα cos(kxj) (4.26)
dDj

dt
= −Γee (Dj −Deq) − ig0 (αS∗ − α∗S) cos(kxj) (4.27)

dpj
dt

= −~kg0 (Sα∗ + S∗α) sin(kxj) (4.28)
dα

dt
= ig0

∑

j

Sj cos(kxj) (4.29)where g0 = µ
√

ω
~ǫ0V

is the atom-
avity 
oupling 
onstant and V is the 
avity mode88



volume.4.1.4 Comparison with the Classi
al ModelIn order to 
ompare the 
lassi
al and the semi-
lassi
al models it is ne
essary toensure that the parameters used 
orrespond to a regime in whi
h both models arevalid. As stated before the validity of the 
lassi
al model that has been presentedearlier implies negligible ex
itation of the atomi
 ensemble and within that limitonly 
an a proper 
omparison wit the semi-
lassi
al model be 
arried out.If it is assumed that all atoms remain in the ground state, whi
h implies the 
ondition
∆2
a ≫ 4g2

0|α|2 whi
h 
an be obtained from the steady states of eqs. (4.26 and 4.27),it is possible to set Dj = 1/2 (if assumed that all atoms are in the ex
ited state thenobviously Dj = −1/2). After performing this pro
edure eq. (4.26) produ
es
0 = −ΓegSj + i∆aSj + 2ig0Dα cos(kxj)so

Sj =
ig0α

Γeg − i∆a

cos(kxj) (4.30)Substituting the steady state value of the 
oheren
e eq. (4.30) into the for
e equation(4.28) gives
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Fx = −~kg0 (Sα∗ + S∗α) sin(kxj)

= −~kg2
0cos(kxj)|α|2

[−i(Γeg − i∆a)

Γ2
eg + ∆2

a

+
i(Γeg + i∆a)

Γ2
eg + ∆2

a

]

sin(kxj)

= −2~kg2
0cos(kxj)|α|2

[

∆a

Γ2
eg + ∆2

a

]

sin(kxj)

= ~
g2
0∆a

Γ2
eg + ∆2

a

|α|2sin(2kxj) (4.31)where we have used the trigonometri
 identity 2sin(kx)cos(kx) = sin(2kx).Re
alling that the frequen
y shift and the position dependent s
attering rate arede�ned as
γ(x) =

Γ

Γ2 + ∆2
a

g2
ocos

2(kx) = γocos
2(kx) , (4.32)

U(x) =
∆a

Γ2 + ∆2
a

g2
ocos

2(kx) = Uocos
2(kx) . (4.33)gives �nally

Fx = −~|α|2 d
dx
U(x) (4.34)whi
h is the same equation for the for
e produ
ed by the 
avity �eld as derived inse
tion 2.1 from a 
lassi
al model, see eq. (2.16).Similarly substituting (4.30) into the �eld equation (4.29) we �nd
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dα

dt
= ig0

∑

j

cos(kxj)
ig0α

Γeg − i∆a

cos(kxj)

= −g2
0

(Γeg + i∆a)

Γ2
eg + ∆2

a

α
∑

j

cos2(kxj) (4.35)Again using (4.32) and (4.33) gives
dα

dt
= − (γ0 + iU0)α

∑

j

cos2(kxj) (4.36)whi
h is the equation as derived in se
tion 2.1, see eq. (2.15) without the 
avity de
ayand the external �eld pump rate. Nevertheless, as expe
ted, the semi-
lassi
al modelwithin the limit of low ex
itation population simpli�es to the 
lassi
al model.The missing 
avity de
ay rate and the pump term still need to be added to the RHSof (4.29) in order to be 
ompletely equivalent to the 
lassi
al model equations. Withan external �eld, equation (4.29) has an additional term
dα

dt
= ig0

∑

j

Sj cos(kxj) + ηe−i∆ct (4.37)where η = κ αext is the pumping term and ∆c is the pump-
avity frequen
y detuning.De�ning new �eld and 
oheren
e variables α = α′e−i∆ct and S = S ′e−i∆ct, thenequations (4.26)-(4.29) be
ome
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dS ′
j

dt
= −ΓegS

′ + i∆′
aS

′ + 2ig0Dα
′ cos(kxj) (4.38)

dDj

dt
= −Γee (Dj −Deq) − ig0 (α′S ′∗ − α′∗S ′) cos(kxj) (4.39)

dpj
dt

= −~kg0 (S ′α′∗ + S ′∗α′) sin(kxj) (4.40)
dα′

dt
= ig0

∑

j

S ′
j cos(kxj) − (κ− i∆c)α

′ + η (4.41)where ∆′
a = ωp − ωeg and the extra 
avity de
ay term −κα′, has been added to theright side of (4.29).

4.2 Comparison Between the Classi
al and the Semi-Classi
al Models (Numeri
al Simulations)Equations (4.38) - (4.41) have been solved numeri
ally and the results were 
omparedwith the results obtained for the same parameters with the 
lassi
al model of the
avity pump 
on�guration (2.20) - (2.22).Fig. 4.2 
ontains a series of simulations showing the 
ooling rates for a �xed numberof atoms (N = 1000) and pumping strength η = 70.0κ but varying ∆a and g0 sothat U0 = const. = −4.0 × 10−3κ. It shows that in
reasing the detuning improvesthe agreement between the semi-
lassi
al and the 
lassi
al model.
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(f) 〈D〉Figure 4.2: Evolution of atomi
 momentum spread and average population di�eren
e(〈D〉) 
al
ulated using the semi-
lassi
al model for di�erent ∆a and g0 for N = 1000parti
les (U0 = const.)
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Figure 4.3: Cooling rates 
al
ulated using the semi
lassi
al-model for di�erent ∆aand g0 (U0 = const.) (Data 
olle
ted from the gradient of the momentum spreadevolution graphs shown in �g. 4.2). The bla
k horizontal line marks the 
ooling ratefound from the 
lassi
al model for U0 = −0.004κThis is seen more 
learly in �g. 4.3 whi
h shows the 
ooling rate as a fun
tion of thepump-atom detuning. The bla
k line represents the result obtained from 
lassi
almodel and it is 
lear now that the results from the semi-
lassi
al model agrees wellwith the 
lassi
al model for far detuned �elds as predi
ted in the previous 
hapter.For demonstration purposes the evolution of the �eld intensity (�g. 4.4), momentum(�g. 4.5) and momentum spread (�g. 4.6) using both semi-
lassi
al and 
lassi
almodels has been also shown.
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Figure 4.4: Comparison of the �eld intensity evolution of the 
lassi
al (bla
k 
urve)and semi
lassi
al model (red 
urve) for far detuned �elds in the 
avity pump 
on�g-uration. The parameters used are: N = 1 × 103, η = 70κ, ∆a = −1000κ, g0 = 2.0κUsing the same parameters as previously, i.e.: N = 1000, η = 70.0κ and with largepump-atom detuning ∆a = −1000κ the agreement seems to be ex
ellent even forlonger times as shown in the three following �gures:
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Figure 4.5: Comparison of the average momentum evolution of the 
lassi
al (bla
k
urve) and semi
lassi
al model (red 
urve) for a far detuned �eld in the 
avity pump
on�guration. The parameters used are: N = 1 × 103, η = 70κ, ∆a = −1000κ,
g0 = 2.0κ
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Figure 4.6: Comparison of the momentum spread evolution of the 
lassi
al (bla
k
urve) and semi
lassi
al model (red 
urve) for far detuned �eld in the 
avity pump
on�guration. The parameters used are: N = 1 × 103, η = 70κ, ∆a = −1000κ,
g0 = 2.0κComparison of the 
lassi
al model (eqs. (2.20) - (2.22)) and the semi-
lassi
al model(eqs. (4.38) - (4.41)) within the same negligible atomi
 ex
itation regime have been96




arried out in this se
tion. The results from numeri
al simulations using both modelsshow ex
ellent agreement and 
on�rm the analyti
al result obtained in se
tion 4.1.4showing that for the negligible ex
itation of the atomi
 ensemble the semi-
lassi
almodel is equivalent to the 
lassi
al one.
4.3 Cooling Atoms with Blue Detuned LightThe results of the previous se
tion show that in the low ex
itation regime (〈D〉 ≈

1/2), the semi-
lassi
al model agrees well with its 
lassi
al 
ounterpart. Whenatomi
 ex
itation is signi�
ant however (〈D〉 ≪ 1/2) the 
lassi
al model is, in prin
i-ple, not su�
ient approximation and may not fully represent the physi
al pro
esseso

urring in the system. Another advantage of the semi-
lassi
al model relies in thepossibility of simulating 
avity 
ooling pro
esses in whi
h the internal degrees offreedom of the atoms play an a
tive part in the 
ooling me
hanism. Su
h a pro
ess
an o

ur when the 
avity �eld is blue detuned with respe
t to the atomi
 reso-nan
e regime that involves stimulated emission and 
an lead to Sisyphus 
ooling asdes
ribed in se
tion 1.4.2.As an example of 
avity 
ooling using blue detuning, a setup similar to the UCL ex-periment is assumed. As mentioned earlier in se
tion 1.5.3, the experiment involvedthe following parameters:Number of atoms: N ∼ 1 ×106Cavity linewidth: κ = 10.0 ×106 HzLaser wavelength: λ = 852.4 ×10−9 mCs de
ay rate: Γlw = 32.89 ×106 HzCoupling 
onstant: g0 = 222.38 ×103 HzCs mass: m = 2.21 ×10−25 kg97



Initial temperature: Tini = 160.0 ×10−6 KPump-atom detuning: ∆A = (-250 : 250) ×106 HzLaser power: P ≤ 0.3 W
Corresponding s
aled parameters have been used in the series of numeri
al simula-tions with the semi-
lassi
al model, eqs. (4.38) - (4.41). The following simulationsin
lude the dependen
e of the 
ooling rate and the �nal temperature of the numberon atoms in the 
avity (�gs. 4.7 and 4.8), pump-atom detuning (∆a) (�gs. 4.9 and4.10), pump-
avity detuning (∆c) (�gs. 4.11 and 4.12) and the pump strength (η)(�gs. 4.13 and 4.14):
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Figure 4.7: Cooling rates for blue detuned light 
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ulated using the semi-
lassi
almodel for varying number of atoms N . The parameters used are: η = 2300.0κ,
∆a = 125κ, ∆c = 0.4κ, Γ = 3.25κ, g0 = 0.02κ, σ = 28.0~k
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Figure 4.8: Final temperatures for blue detuned light 
al
ulated using the semi-
lassi
al model for varying number of atoms N . The parameters used are: η =
2300.0κ, ∆a = 125κ, ∆c = 0.4κ, Γ = 3.25κ, g0 = 0.02κ, σ = 28.0~k
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Figure 4.9: Cooling rates for blue detuned light 
al
ulated using the semi-
lassi
almodel for varying pump-atom detuning ∆a. The parameters used are: N = 1×106,
η = 2300.0κ, Γ = 3.25κ, g0 = 0.02κ, σ = 28.0~k
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Figure 4.10: Final temperatures for blue detuned light 
al
ulated using the semi-
lassi
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Figure 4.11: Cooling rates for blue detuned light 
al
ulated using the semi-
lassi
almodel for varying pump-
avity detuning ∆c. The other parameters used are: N =
1 × 106, η = 2300.0κ, ∆a = 75.0κ, Γ = 3.25κ, g0 = 0.02κ, σ = 28.0~k
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Figure 4.12: Final temperatures for blue detuned light 
al
ulated using the semi-
lassi
al model for varying pump-
avity detuning ∆c. The other parameters usedare: N = 1 × 106, η = 2300.0κ, ∆a = 75.0κ, Γ = 3.25κ, g0 = 0.02κ, σ = 28.0~k
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Figure 4.13: Cooling rates for blue detuned light 
al
ulated using the semi-
lassi
almodel for varying pumping strength η. The other parameters used are: N = 1×103,
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Figure 4.14: Final temperatures for blue detuned light 
al
ulated using the semi-
lassi
al model for varying pumping strength η. The other parameters used are:
N = 1 × 103, ∆a = 125κ, ∆c = 0.7κ, Γ = 3.25κ, g0 = 0.02κ, σ = 28.0~k
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The �rst series of simulations for di�erent numbers of parti
les (N = 1×104 . . . 5×

106 parti
les), �g. 4.7 and �g. 4.8, shows very fast 
ooling � almost independent ofthe number of parti
les inside the 
avity (for 
omparison see the graphs of 
oolingrate vs. N for red detuned light in �g. 2.5). A signi�
ant de
rease of the 
oolingrate was observed for samples 
ontaining more that 5×106 parti
les. Su
h a drop of
ooling rate indi
ates a la
k of a 
ooperative e�e
t in this 
on�guration. Similarly,the �nal temperatures for up to 1 × 106 parti
les rea
hed values below 20µK andheating was seen for 5 × 106.The se
ond series of simulations for di�erent pump-atom detunings(∆a = 50, 75, 125, 175, 200κ), �g. 4.9 and �g. 4.10, shows a higher 
ooling rate forsmall detuning that de
reases rapidly for larger detunings and rea
hes a minimumfor ∆a = 200. The �nal temperature (initially ∼ 160µK) varies from 30µK for
∆a = 50κ to 110µK for ∆a = 200κ. Os
illations of the �nal momentum spread
σ are responsible for the dis
repan
y of the �nal temperature for ∆a = 50, 75κ(�g. 4.10).In the third series of simulations for di�erent pump-
avity detunings, �g. 4.11 and�g. 4.12, a narrow region of 
ooling was observed. The region extends from approx-imately ∆c = 0.0κ to ∆c = 5.0κ, outside whi
h the 
ooling rate de
reases dramat-i
ally. The �nal temperature falls into the same region and rea
hes a minimum of
30µK for ∆c ≈ 1.0κ. For all other values of ∆c no 
ooling was observed.The last, fourth series of simulations for di�erent pump strengths (η), �g. 4.13 and4.14, indi
ates rapid growth of the 
ooling rate for higher intensity. Su
h behaviouris rather 
hara
teristi
 for a Sisyphus-type 
ooling s
hemes. Despite the fa
t the
ooling rate 
an in
rease with the pump intensity the �nal temperature 
an belimited by the opti
al potential energy asso
iated with the 
avity mode amplitude,whi
h 
an be seen on �g. 4.14 where the similar �nal temperatures were obtained103



for η = 2, 3, 4, 5 × 103κ. However it needs to be mentioned that the 
ooling wasobserved un
hanged even when the �eld evolution was swit
hed o� i.e. α �xed at avalue ∝ η
κ+∆2

c
(as obtained from the steady state of the �eld equation (4.41)). Thisleads to the 
on
lusion that the role of the 
avity is only to 
onvert a unidire
tionaltravelling wave pump �eld into a bidire
tional standing wave �eld of higher intensity,and the dynami
al evolution of the 
avity �eld does not play a signi�
ant role. In thissense the 
ooling pro
ess is essentially that of free spa
e blue molasses as originallydis
overed by Aspe
t et al. [32℄
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Chapter 5Semi-Classi
al Model of Atom-PumpCon�guration
In 
hapter 3 a 
lassi
al model of the atom-pump 
on�guration was derived. Inthis se
tion this model is extended to in
lude semi-
lassi
al atomi
 dynami
s. Theresults from both 
lassi
al and semi-
lassi
al models of atom-pumping are 
omparedand found to agree within the limit where atomi
 ex
itation is negligible.
5.1 Derivation of Semi-Classi
al Model of Atom-Pump Con�gurationAs in 
hapter 4 the situation 
onsidered is an ensemble/gas of two-level atoms 
on-�ned inside a Fabry-Perot resonator. Unlike in the 
avity pump 
on�guration de-s
ribed in 
hapter 4, here the atoms are dire
tly illuminated by the pump �eld whi
htravels perpendi
ular to the 
avity axis as shown in �g 5.1. The �eld is assumed tobe detuned from any atomi
 resonan
e.
5.1.1 Internal Degrees of FreedomFollowing the derivation des
ribed in se
tion 4.1, it assumed that the atoms havetwo internal energy states. The lower and upper energy states are labelled |g〉 and105
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Figure 5.1: Two-level atom in a 
avity (atom-pump 
on�guration). The 
avitypumping rate, spontaneous loss rate and 
avity de
ay rate are determined by theparameters η, Γ and κ respe
tively. |g〉 represents a ground state of an atom while
|e〉 represents an ex
ited state of an atom
|e〉 respe
tively. The Blo
h equations for the density matrix elements ρjk, j, k = e, gare the same as those for the 
avity-pump 
on�guration but are restated here for
ompleteness:

∂ρeg
∂t

= − (Γeg + iωeg) ρeg +
iEµ

~
(ρgg − ρee) (5.1)

∂

∂t
(ρgg − ρee) = −Γee (ρgg − ρee) +

2iEµ

~

(

ρeg − ρ∗eg
) (5.2)As before, the dipole moment is

dj = µ
(

ρge + ρ∗ge
)

ê (5.3)and the density matrix element 106



ρeg = Se−iωt, (ρge = ρ∗eg). (5.4)The �eld in the atom-pump 
on�guration in
ludes two waves
E1 =

(

A1e
−iωt + c.c.

)

g(x) (5.5)
E2 =

(

A2e
−iωt + c.c.

)

h(y) (5.6)where the E1 and E2 are the 
avity and the pump �elds respe
tively. and so thetotal �eld will be of the form
E =

(

A1e
−iωtg(x) + A2e

−iωth(y) + c.c.
) (5.7)where g(x) and h(y) are 
avity mode fun
tions and it has been assumed that E1 =

E1ẑ, E2 = E2ẑ, µge = µeg = µẑ ,Inserting (5.4) and (5.7) into (5.1) gives
dS

dt
= −ΓegS − i (ωeg − ω)S +

2iµD

~
(A1g(x) + A2h(y)) (5.8)where we have used the population di�eren
e variable de�ned in 
hapter 4, D =

(ρgg − ρee) /2 and negle
ted terms varying as e2iωt.Similarly, substituting for (5.4), (4.5) and (5.7) into (5.2) gives
dD

dt
= −Γee (D −Deq) − iµ

~
{[A1g(x) + A2h(y)]S

∗ − c.c.} (5.9)where Deq = 0.5 in the absen
e of any external ex
itation of the atom and we have107



dropped fast os
illating terms.Equations (5.8) and (5.9) des
ribe the internal degrees of freedom of ea
h atomunder the in�uen
e of the 
avity �eld in the atom-pump 
on�guration.
5.1.2 Atomi
 Centre-of-Mass Dynami
sAs in 
hapter 4, the external degrees of freedom of atoms - the position and mo-mentum - are des
ribed 
lassi
ally.The dipole for
e in the x dire
tion a
ting on the jth atom is given by:

Fx = dj ·
dE

dx
=

(

dx∂Ex
∂x

+
dy∂Ey
∂x

+
dz∂Ez
∂x

)

=
dz∂Ez
∂x

. (5.10)Substituting the dipole moment
dz = µ

(

Se−iωt + c.c
) (5.11)and the total �eld derivative

∂Ez
∂x

=
(

Ae−iωt + c.c.
) dg(x)

dx
(5.12)into (5.10) gives the �nal expression of the dipole for
e in the x dire
tion
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Fx = µ (A∗S + S∗A)
dg(x)

dx
. (5.13)

5.1.3 Ele
tromagneti
 Field Dynami
sFollowing similar pro
edure to that of se
tion 4.1.3 and starting with Maxwell'swave equation
(

∇2 − 1

c2
∂2

∂t2
− µ0σ

∂

∂t

)

E =
1

ǫ0c2
∂2P

∂t2
(5.14)where σ is the 
ondu
tivity of the 
avity mirrors, µo is the magneti
 permeabilityand the polarisation P is de�ned as

P =
∑

j

dj δ (r − rj) (5.15)
= µê

∑

j

(

Se−iωt + c.c.
)

δ (r − rj)where eq. (5.4) has been used.After �nding the derivatives the wave equation eq. (5.14) 
an be rewritten as
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[

k2A1 −
i2ω

c2
dA1

dt
− ω2

c2
A1 − iωµ0σA1

]

g(x)e−iωt + c.c. =

µ0ω
2µ
∑

j

(

Se−iωt + c.c.
)

δ (r − rj)

[

k2A1 −
i2ω

c2
dA1

dt
− ω2

c2
A1 − iωµ0σA1

]

g(x) =

µ0ω
2µ
∑

j

Sδ (r − rj) (5.16)where we have assumed the slowly-varying envelope approximation (SVEA), i.e.
∂A1

∂t
<< ωA1.Multiplying both sides of (5.16) by −c2/i 2ω we get
[

−ω
2
cA1

2iω
+
dA1

dt
+
ω2A1

2iω
+
c2µ0σA1

2

]

g(x) =
iµ0ωc

2µ

2

∑

j

Sδ (r − rj δ) (5.17)In the �rst and third terms of the LHS of eq. (5.17) the 
avity and the pump �eldfrequen
y are ωc and ω respe
tively. These terms 
an be a further approximatedsin
e
−(ω2

c − ω2)

2 i ω
= −(ωc − ω) (ωc + ω)

2 i ω
=

∆c2ω

2 i ω
= −i∆c (5.18)where ∆c = ω − ωc is the pump-
avity frequen
y detuning. Hen
e equation (5.17)be
omes
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[

dA1

dt
+ (κ− i∆c)A1

]

g(x) =
iωµ

2ǫ0

∑

j

Sδ (r − rj) (5.19)as
c =

1√
ǫ0µ0

, κ =
σ

2ǫ0
(5.20)Multiplying both sides of (5.19) by g(x) and integrating over the 
ross-se
tion areaof the sample A, gives

AdA1

dt

∫ L

0

g(x)2dx+ (κ− i∆c)A1A
∫ L

0

g(x)2dx =
iµω

2ǫ0

∑

j

Sjg(x) (5.21)Substituting the 
avity mode fun
tion of the form
g(x) = cos(kx) (5.22)into eq. (5.21) produ
es

dA1

dt
= (−κ+ i∆c)A1 +

2iµω

Aλǫ0
∑

j

Sg(x) (5.23)whi
h 
an be further simpli�ed and the �nal form of the �eld equation be
omes
dA1

dt
= (−κ+ i∆c)A1 +

iµω

V ǫ0

∑

j

Sg(x) (5.24)Equations (5.8), (5.9), (5.13) and (5.24) make a 
losed set of evolution equations111



whi
h 
ompletely des
ribe the self-
onsistent intera
tion of an ensemble of two-levelatoms with the 
avity mode inside a Fabry-Perot 
avity:
dSj
dt

= −ΓegSj + i (ω − ωeg)Sj +
2iµD

~
(A1g(x) + A2h(y)) (5.25)

dDj

dt
= −Γee (Dj −Deq) − iµ

~

{

[A1g(x) + A2h(y)]S
∗
j − c.c.

} (5.26)
dpj
dt

= µ
(

SjA
∗
1 + S∗

jA1

) dg(x)

dx
(5.27)

dA1

dt
= (−κ+ i∆c)A1 +

iµω

V ǫ0

∑

j

Sjg(x) (5.28)Rewriting eqs. (5.25 - 5.28) in terms of α de�ned in eq. (4.24)then equations (5.25)-(5.28) for (1D) be
ome
dSj
dt

= −ΓegSj + i∆aSj + 2ig0D(α1cos(kx) + α2) (5.29)
dDj

dt
= −Γee (Dj −Deq) − ig0 {[α1cos(kx) + α2]Sj∗ − c.c.} (5.30)

dpj
dt

= −~kg0

(

Sjα
∗
1 + S∗

jα1

)

sin(kx) (5.31)
dα1

dt
= (−κ+ i∆c)α1 + ig0

∑

j

Sjcos(kxj) (5.32)where ∆a = ω − ωeg is the pump � atom detuning and go = µ
√

ω
~ǫoV

is the atom-
avity 
oupling 
onstant.5.1.4 Comparison with the Classi
al ModelIn order to 
ompare the 
lassi
al and the semi-
lassi
al equations for the atom-pump
on�guration we must remain within the same regime for both models. As stated112



before the validity of the 
lassi
al model that has been presented earlier implies lowex
itation 
ondition of the atomi
 ensemble so within that limit the semi-
lassi
almodel should redu
e to the 
lassi
al model.Lets assume all atoms to be in a ground state. Setting D = 1/2, as the 
onditionfor negligible ex
itation, then at steady state equation (5.29) 
an be written as
Sj =

ig0(α1cos(kxj) + α2)

Γeg − i∆a

(5.33)Substituting the steady state of the 
oheren
e variable S, (eq. 5.33) into the for
eequation, (eq. 5.31), gives
Fx = − ~kg0

[−ig0(|α1|2cos(kxj) + α1α
∗
2)

Γeg − i∆a

+
ig0(|α1|2cos(kxj) + α∗

1α2)

Γeg + i∆a

]

sin(kxj)

⇒− ~k

[−2ig2
0|α1|2cos(kxj)∆a

Γ2
eg + ∆2

a

− ig0α1α
∗
2

Γeg − i∆a

+
ig0α1α

∗
2

Γeg + i∆a

]

sin(kxj) (5.34)Rearranging eq. 5.34 and re
alling that the frequen
y shift and the position depen-dent s
attering rate are de�ned as
γ(x) =

Γ

Γ2 + ∆2
a

g2
ocos

2(kx) = γocos
2(kx) , (5.35)

U(x) =
∆a

Γ2 + ∆2
a

g2
ocos

2(kx) = Uocos
2(kx) . (5.36)gives

Fx = −~U0|α|2
d

dx
cos2(kxj) − i~

(

η∗effα1 − ηeffα
∗
1

) d

dx
cos(kxj) (5.37)113



where we have used the trigonometri
 identity sin(2kx) = 2sin(kx)cos(kx) andwhere
η = g0α2 (5.38)and

ηeff =
ηg0

Γ − i∆a

(5.39)Equation 5.37 is the same equation as derived in se
tion 3.1, eq. (3.39) for the
lassi
al model.Similarly substituting the steady state value of S (5.33) into the derived �eld equa-tion (5.32) gives
dα1

dt
= (−κ+ i∆c)α1 + ig0

∑

j

(

ig0α1

Γeg − i∆a

cos(kxj) +
ig0α2

Γeg − i∆a

)

cos(kxj)

= (−κ+ i∆c)α1 − α1 (γ0 + iU0)
∑

j

cos2(kxj) − ηeff
∑

j

cos(kxj) (5.40)where we have again used known identities (5.35), (5.36), (5.38) and (5.39)After rearranging (5.40) we �nally obtain
dα

dt
= i
[

∆c − Uo
∑

j

cos2(kxj)
]

α−
[

κ+ γo
∑

j

cos2(kxj)
]

α− ηeff
∑

j

cos(kxj)(5.41)whi
h is the same equation as derived in se
tion 3.1 see eq. (3.38) from the 
lassi
almodel. As expe
ted, the semi-
lassi
al model within the limit of low ex
itationsimpli�es to the 
lassi
al model. 114



In the next se
tion, results from numeri
al simulations of the 
lassi
al model andthe semi-
lassi
al model will be 
ompared.
5.2 Comparison Between the Classi
al and the Semi-Classi
al Models (Numeri
al Simulations)It is instru
tive to show, using numeri
al results, that in the low ex
itation limitthe semi-
lassi
al model shows similar behaviour to that of the 
lassi
al model, aspredi
ted by the analysis des
ribed in se
tion 5.1.4. The 
lassi
al model eqs. (3.38- 3.40) and the semi-
lassi
al model, eqs. (5.29 - 5.32) have been solved numeri
allyfor the same initial parameters and the results are presented below.Figure 5.2 shows the time evolution of the �eld intensity within the time periodof t = 100κ. The number of atoms here is 1 × 103, ∆a = −1000κ (rather largepump-atom detuning), g0 = 1.0κ and η = 100κ. It 
an be seen that both modelsshow very good agreement during the entire time of intera
tion. In both models the�eld evolution is seen to display small os
illations.
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Figure 5.2: Comparison of the �eld intensity evolution of the 
lassi
al (bla
k 
urve)and semi
lassi
al model (red 
urve) for a far detuned �eld in the atom-pump 
on-�guration. The parameters used are: N = 1 × 103, η = 100κ, ∆a = −1000κ,
g0 = 1.0κ
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Figure 5.3: Comparison of the average momentum evolution of the 
lassi
al (bla
k
urve) and semi
lassi
al model (red 
urve) for a far detuned �eld in the atom-pump
on�guration. The parameters used are: N = 1 × 103, η = 100κ, ∆a = −1000κ,
g0 = 1.0κ
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Figure 5.4: Comparison of the momentum spread evolution of the 
lassi
al (bla
k
urve) and semi
lassi
al model (red 
urve) for a far detuned �eld in the atom-pump
on�guration. The parameters used are: N = 1 × 103, η = 100κ, ∆a = −1000κ,
g0 = 1.0κThe time evolution of the average momentum, and the momentum spread is pre-sented in �g. 5.3 and �g. 5.4, respe
tively. Both �gures 
ompare the results from the
lassi
al and the semi-
lassi
al models within a short time period of t = 100κ−1 andfor the same parameters as used in the previous �gure (N= 1 × 103, ∆a = −1000κ,
g0 = 1.0κ, η = 100κ). As expe
ted, the results from both models again agree verywell and 
on�rm the analyti
al result obtained in the previous se
tion 5.1.4.
5.3 Cooling Atoms with Blue Detuned Light (Atom-Pump Con�guration)In the previous se
tion the results from numeri
al simulation of the 
lassi
al model(eqs. (3.38 - 3.40)) and the semi-
lassi
al model (eqs. (5.29 - 5.32)) for the 
ase ofthe atom-pump 
on�guration were 
ompared. As shown, in the negligible atomi
ex
itation regime, the results 
on�rmed (with the analyti
al result, se
tion 5.1.4)117



ex
ellent agreement between the two models. However, as demonstrated earlier inse
tion 4.3 the semi-
lassi
al model has an advantage in that it 
an des
ribe 
avity
ooling pro
esses in whi
h the internal degrees of freedom of the atoms play an a
tivepart in the 
ooling me
hanism. In the 
ase when the 
avity �eld is blue detuned withrespe
t to the atomi
 resonan
e, stimulated emission 
an lead to Sisyphus 
oolingas des
ribed in se
tion 1.4.2. In this se
tion an example of 
avity 
ooling using bluedetuned light for the 
ase of the atom-pump 
on�guration is demonstrated.The semi-
lassi
al model equations (eqs. (5.29 - 5.32)) have been solved numeri
allyfor the following parameters: N = 1× 103, ∆a = 1000κ, η = 400κ, Γee = Γeg = 1.0κand the results are presented in the �gures below.Fig. 5.5 shows the time evolution of the �eld intensity. The �eld intensity growsrapidly within κt ≈ 2500 and slowly saturates for longer times.
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al
ulated from a numeri
al simula-tion of the semi
lassi
al model (eqs. (5.29 - 5.32)) for blue detuned light in the atom-pump 
on�guration. Parameters used are: N = 1 × 103, ∆a = 1000κ, η = 400κ,
Γee = Γeg = 1.0κThe evolution of the �eld intensity shown in �g. 5.5 is strongly 
orrelated withthe evolution of the bun
hing parameter (�g. 5.6), |b|, and the evolution of the118



momentum spread (�g. 5.7) with respe
t to time.
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κtFigure 5.6: Time evolution of the bun
hing, |b|, parameter 
al
ulated from a numer-i
al simulation of the semi
lassi
al model (eqs. (5.29 - 5.32)) for blue detuned lightin the atom-pump 
on�guration. Parameters used are: N = 1 × 103, ∆a = 1000κ,
η = 400κ, Γee = Γeg = 1.0κThe time evolution of the bun
hing parameter |b| (�g. 5.6) indi
ates very strongbun
hing of the atoms in the 
avity. The steady state value of |b| for κt > 1 × 104approa
hes |b| ≈ 1 whi
h, as mentioned in se
tion 3.2, is responsible for 
olle
tives
attering of the light on atoms and their self-organisation in the opti
al potentials.
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olle
tive s
attering and the self-organisation of atoms
an lead to e�e
tive 
ooling of the atomi
 ensemble. This 
an be seen in �g. 5.7showing the time evolution of the momentum spread. As the atoms redistribute inthe 
avity and in
rease the �eld intensity, the momentum spread de
reases rapidly(�g. 5.7) indi
ating trapping and 
ooling of the atomi
 ensemble.
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Chapter 6Ring Cavity and Phase ModulatedPump Field
The previous 
hapters involved studies of the dynami
s of an ensemble of atoms 
on-�ned in a simple Fabry-Perot 
avity (see �g. 2.4 and 3.1). The previously 
onsidered
ases di�er only in the dire
tion of the pump �eld, however both are based on thestanding wave 
avity �eld for whi
h the nodes and the antinodes of the os
illating�eld are �xed in spa
e. This means that the potentials 
reated by the �eld are also�xed in spa
e and 
annot travel inside the 
avity. This restri
tion 
an be removedusing a ring 
avity with two 
ounter propagating light �elds inside (�g. 6.1). In this
on�guration the opti
al �elds produ
e potentials that are not �xed in spa
e butare able to move inside the 
avity.It has been re
ently shown that the e�e
t of a phase-modulated beam on Colle
-tive Atomi
 Re
oil Lasing (CARL) [58, 59℄ 
an give rise to three di�erent dynami
alregimes depending on the frequen
y of modulation [60℄. Moreover it has been demon-strated experimentally [61℄ that even weakly modulated light 
an produ
e relativelystrong opti
al for
es that 
an be potentially used for 
ooling or de�e
tion of movingatoms. In this 
hapter we will give a deeper insight into this idea and show how this
an be used to 
ontrol the dynami
s of atoms and eventually for slowing or 
oolingatomi
 beams.
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6.1 ModelThe dynami
s of N linearly polarisable parti
les moving inside a high-Q ring 
avity
an be, to a good approximation, des
ribed by four 
oupled 
lassi
al equations ofmotion [62, 63℄:
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Figure 6.1: S
hemati
 diagram of a bidire
tional ring 
avity driven by two mono
hro-mati
 �elds with pump rates η+, η−. α− and α+ are the amplitudes of the pumpand the probe �elds, respe
tively.
dxj
dt

=
pj
m

(6.1)
dpj
dt

= 2~k
[

U0i
(

α∗
+α−e

−2ikx − α∗
−α+e

2ikx
)

+ γ0

(

α∗
+α+ − α∗

−α−
)] (6.2)

dα±

dt
= [i∆± −N(γ0 + iU0) − κ]α± −N(γ0 + iU0)

〈

e∓2ikx
〉

α∓ + η± (6.3)If we restri
t the general model to a uni-dire
tionally pumped 
avity only (see�g. 6.2) and modify it to in
lude the e�e
t of pump phase modulation the modelbe
omes:
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dxj
dt

=
pj
m

(6.4)
dpj
dt

= 2~kU0i
[

α∗
+α−e

−2ikx − α∗
−α+e

2ikx
] (6.5)

dα+

dt
= [i∆+ −NiU0 − βκ−]α+ −NiU0

〈

e−2ikx
〉

α− (6.6)
dα−

dt
= [i∆− −NiU0 − κ−]α− −NiU0

〈

e2ikx
〉

α+ + η− e(iαmsin(Ωmt)) (6.7)where γ0 ≪ |U0| has been assumed.
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Figure 6.2: S
hemati
 diagram of uni-dire
tionally pumped ring 
avity. Two 
ounterpropagating �elds 
ir
ulate in a high-�nesse 
avity, η− is the pumping rate term, α−and α+ are the amplitudes of the pump and the probe �elds, respe
tively.The �rst two equations (6.4 - 6.5) des
ribe the dynami
s of the j th atom movingunder the in�uen
e of the dipole for
e in the potential 
reated by the 
ounterprop-agating 
avity �elds; xj and pj are the position and the momentum of j th atomrespe
tively, m is the atomi
 mass and k = 2π/λ is the wavenumber. Equations (6.6- 6.7) des
ribe the evolution of the amplitudes of the two 
ounterpropagating �elds:the pump �eld (α−) and the ba
ks
attered probe �eld (α+). The parameter β = κ+

κ
−des
ribes the ratio of the probe (κ+) and the pump (κ−) 
avity de
ay (note, therelative size of 
avity de
ay rates 
an be modi�ed using devi
es su
h as a Faraday123



rotator [64, 65℄). ∆± is the 
avity-�eld detuning for the probe (+) and the pump(-)�eld and U0 is the e�e
tive mode frequen
y shift:
U0 =

∆a

Γ2 + ∆2
a

g2. (6.8)where ∆a is the atom-pump detuning, Γ is the spontaneous emission linewidthand g the atom-mode 
oupling 
onstant de�ned as g2 = e2/4ǫ0mV . Here we haveassumed that the pump and probe �elds are far-detuned from any atomi
 resonan
e(∆a ≫ Γ).The phase-modulated e�e
tive pumping rate, eq. (6.7) is:
η− e(iαmsin(Ωmt)) (6.9)where η− is the pumping rate term, αm is the modulation strength and Ωm is thephase modulation frequen
y of the 
avity pump �eld.
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6.2 CARL Instability and Derivation of a GrowthRate (gr)Finding the frequen
y modulation regimes requires �nding the growth rate of theprobe �eld intensity. The growth rate (gr) 
an be found numeri
ally using (eqs. (6.4)and (6.7) from the slope of the evolution of |α|2 in absen
e of pump modulation
αm = 0. However the result 
an be 
on�rmed by the result that 
an be foundanalyti
ally using following approximation.It is possible to introdu
e small �u
tuations about the steady state system and seewhether the system is stable and returns to the initial state or unstable and grows intime [66℄. In absen
e of pump modulation αm = 0 the system of previously derivedequations, (6.4) - (6.7) be
omes

dxj
dt

=
pj
m

(6.10)
dpj
dt

= −2~kU0i
(

α∗
−α+e

2ikx − c.c.
) (6.11)

dα+

dt
= (i∆+ − iNU0 − β)α+ − iNU0

〈

e−2ikx
〉

α− (6.12)Introdu
ing small �u
tuations (δx, δp, δα+
) of the form

xj(t) = xj0 + δx(t) (6.13)
pj(t) = pj0 + δp(t) (6.14)
α+(t) = α+0

+ δα+(t) (6.15)
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where the steady states values are de�ned as
xj0 = (0, 2π]

pj0 = 0

α+0
= 0

α−0
= α−and where δx(t), δp(t) and δα+(t) are the �u
tuations of the jth atoms position,momentum and the �u
tuation of the probe �eld amplitude respe
tively. Note wehave negle
ted the �u
tuation of the pump �eld amplitude (α−) as it 
an be shownthat they do not play a role in the linear stability of the system.Substituting (6.13) - (6.15) into equations (6.10 - 6.12) gives:

dδxj
dt

=
δpj0
m

(6.16)
dpj
dt

= −2~kiU0

(

δα+α
∗
−e

2ikxj0 − δα∗
+α−e

−2ikxj0

) (6.17)
dδα+

dt
= (i∆+ − iNU0 − β) δα+ − 2kNU0

〈

δxe−2kixj0

〉

α− (6.18)where 〈e−ikxj0 〉 = 0 as the atoms are initially evenly distributed. We 
an rewriteequations (6.16) - (6.18) in terms of 
olle
tive variables [67℄
b = −2ik

〈

δxe−2ikxj0

〉

P =
〈

δpe−2ikxj0

〉126



whi
h greatly redu
es the number of equations to be solved from 2N + 1 to 3:
db

dt
=

−2ik

m
P (6.19)

dP

dt
= −2i~kU0δα+α

∗
− (6.20)

dδα+

dt
= (i∆+ − iNU0 − β) δα+ − iNU0 b α−. (6.21)If we now look for solutions of eqs. (6.19)-(6.21) with the form b, P, δα+ ∝ eλt thenit 
an be shown that

λb =
−2ik

m
P (6.22)

λP = −2i~kU0δα+α
∗
− (6.23)

λδα+ = (i∆+ − iNU0 − β) δα+ − iNU0 b α− (6.24)from whi
h we 
an �nd b and P
P =

−2i~kU0δα+α
∗
−

λ

b =
−4~k2U0δα+α

∗
−

m λ2and hen
e obtain:
λδα+ = (i∆+ − iNU0 − β) δα+ +

4iN~k2U2
0 |α−|2

m λ2
δα+

[

λ3 − λ2 (i∆+ − iNU0 − β) − 4iN~k2U2
0 |α−|2

m

]

δα+ = 0

λ3 − λ2 (i∆+ − iNU0 − β) − 4iN~k2U2
0 |α−|2

m
= 0. (6.25)127



Sin
e the growth rate is simply de�ned as gr = Re(λ) we 
an 
ompare the analyti
alresult of the growth rate and the result obtained from numeri
al simulations ofthe CARL model equations (eqs. (6.4) and (6.7)) in absen
e of pump modulation
αm = 0.For the following parameters: ∆+ = −0.3κ, U0 = 1 × 10−4κ, |α−|2 ≈ 2 × 105,m =

5 × 104
~k2/κ substituted into eq. (6.25)

λ3 + λ2 (0.3i− 0.1i)κ− 4i · 1 × 103 · 1 × 10−8κ2 · 2 × 105

5 × 104~k2/κ
= 0the resultRe(λ) = 0.0283κ was obtained. Sin
e forRe(λ) > 0 required for instabilitythis result 
learly indi
ates a growth of α+.The behaviour of the growth rates as a fun
tion of detuning and pump intensity isshown in �gures 6.3 and 6.4 respe
tively.

Figure 6.3: Growth rate as a fun
tion of the pump intensity obtained from thesolution of eq. (6.25). The parameters used are: N = 1000,∆+ = −0.3κ, U0 =
1 × 10−4κ,m = 5 × 104

~k2/κ 128



Figure 6.4: Growth rate as a fun
tion of the pump-
avity detuning obtained from thesolution of eq. (6.25). The parameters used are: N = 1000, U0 = 1× 10−4κ, |α−|2 =
2 × 105,m = 5 × 104

~k2/κ

As we looked for the solution of α+ ∝ eλt so for |α+|2 ∝ eλ2t the growth rate of theprobe intensity is �nally gr ≈ 0.056κ. This result very well agrees with the value of
gr ≈ 0.055 found numeri
ally from the slope of the |α|2 as shown in �g. 6.5 obtainedfor the same parameters as used above in the analyti
al formula, eq. (6.25).
6.3 Frequen
y Modulation RegimesThe nature of the atom-�eld intera
tion in the model 
an be dedu
ed by 
ombiningthe Bessel fun
tion identity [68℄:
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Figure 6.5: Growth rate of the probe �eld (α+) obtained from the numeri
al sim-ulation of eqs. (6.4) and (6.7) in the absen
e of pump modulation αm = 0. Theparameters used are: N = 1000, η− = 450κ,∆+ = −0.3κ, U0 = 1 × 10−4κ, µ =
5000~k,m = 5 × 104

~k2/κ

exp(i z sin(φ)) =
∞
∑

n=−∞
Jn(z)e

inφ (6.26)performing adiabati
 elimination on eq. (6.7) gives
α− =

NiU0〈e2ikx〉
[i∆c

−

−NiU0 − κ−]
− 1

[i∆c
−

−NiU0 − κ−]
η−e

iαmsin(Ωmt)

=
1

[NiU0 − ∆c
−

+ κ−]
η−e

iαmsin(Ωmt). (6.27)Substituting the expression eq. (6.27) into eq. (6.5) then the for
e on the jth atom
an be written as
dpj
dt

=
2~kUoi

NiUo − i∆− + κ−

[

α∗
+η−e

−i(2kx−αmsin(Ωmt)) − c.c
]

, (6.28)130



whi
h after applying (6.26) to (6.28) leads to the form:
dpj
dt

=
2~kUoi

NiUo − i∆− + κ−

[

α∗
+η−

∞
∑

n=−∞
Jn(αm)e−i(2kx−nΩmt) − c.c

]

. (6.29)It 
an be seen from eq. (6.29) that the for
e a
ting on the atoms 
an be interpretedas an due to in�nite number of opti
al potentials (n), ea
h of whi
h moves with aphase velo
ity that is proportional to an integer number of the modulation frequen
y
nΩm. These potentials 
an be 
onsequently resonant with the atoms, if: pj

m
≈ nΩm

2k
,i.e. if the atomi
 velo
ity ≈ phase velo
ity of the nth opti
al potential.Further inspe
tion of eq. (6.29) shows that the width of ea
h potential/resonan
eis proportional to ∝

√

|α+|J(αm) while the separation,in frequen
y or phase ve-lo
ity, between the resonan
es is proportional to Ωm. It will be shown in whatfollows that the number of the potentials/resonan
es that intera
t with the atoms
an signi�
antly a�e
t the atomi
 dynami
s.The behaviour of the system 
an be divided into three main regimes (�g. 6.6) de-pending on the value of the modulation frequen
y with respe
t to the 
olle
tive re
oilbandwidth (growth rate, gr) i.e. the growth rate of the probe �eld in the absen
eof modulation: the high modulation frequen
y (Ωm ≫ gr), intermediate modulationfrequen
y (Ωm ≈ gr) and low modulation frequen
y (Ωm ≪ gr). The growth rateof the probe �eld, gr, 
an be found keeping |α−| 
onstant and setting κ+ = 0, alsoassuming no phase modulation of the pump �eld.
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)Figure 6.6: S
hemati
 diagram showing the width and the separation of the poten-tials/resonan
es (shaded regions) for three frequen
y modulation regimes: (a) highfrequen
y (b) intermediate frequen
y (
) low frequen
y. Here Ωm is proportional tothe separation of the potential/resonan
e while the width of the potential/resonan
eis proportional to: ∝√|α+|J(αm)6.4 High Modulation Frequen
y (Ωm ≫ gr)In the high frequen
y modulation regime the resonan
es are widely separated (�g. 6.6(a))and it is possible to assume that the atoms intera
t with only one of the resonan
es.In the following example N=1000 parti
les with initial mean momentum µ = 5000~kand momentum spread σ = 0~k have been uniformly distributed in phase spa
e. Ini-tially we set the pump �eld η− = 450κ and the probe-
avity detuning ∆+ = −0.3κ(here and later the parameters given in the units of κ refer to the pump 
avity de
ayrate κ−).For su
h initial parameters the 
hara
teristi
 growth rate/frequen
y was found to be
gr = 0.055κ, as shown in �g. 6.5 in se
tion 6.2. Consequently we set the modulationfrequen
y Ωm = 0.55κ and the amplitude modulation αm = 1. It 
an be seen in�g. 6.7 that the intensity of the probe �eld |α2

+| is ampli�ed exponentially thenos
illates after saturation, similar to the 
ase of no pump modulation, se
tion 6.2.In turn the average momentum of the sample 〈p〉 and the momentum spread σ donot di�er substantially from their initial values, as shown in�g. 6.8, whi
h shows histograms of the atomi
 momentum distribution at three132
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Figure 6.8: Histograms of the atomi
 momentum distribution for the high modula-tion frequen
y regime (Ωm ≫ gr) at κt=0, 1000, 2500. The parameters used are thesame as in �g. 6.7di�erent times, and in �gures (6.9 & 6.10) whi
h show the time evolution of theaverage momentum and momentum spread respe
tively.The general feature of the evolution of both the �eld intensity and the atomi
 dy-133



nami
s are similar to those where the pump phase modulation is absent (se
tion 6.2).The reason for this is that in both 
ases where high frequen
y pump modulation andno modulation o

urs, the atom-�eld intera
tion involves only a single resonan
e.In the following se
tions it will be shown that 
hanging the frequen
y of the phasemodulation 
an introdu
e additional resonan
es into the atom-�eld intera
tion anddramati
ally alter the evolution of both the �eld intensity and the atomi
 dynami
s.
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y regime (Ωm ≫ gr). The parameters used are the same as in �g. 6.7
6.5 Intermediate Modulation Frequen
y (Ωm ∼ gr)In the 
ase of intermediate frequen
y modulation, (Ωm ∼ gr), the resonan
es aremu
h 
loser to ea
h other than in the high modulation frequen
y 
ase as showns
hemati
ally in �g. 6.6(b). When the �eld is su�
iently ampli�ed the width of theresonan
es (∼ √|α+|) in
reases and the resonan
es 
an overlap. On
e the overlaptakes pla
e atoms di�use 
haoti
ally within a large momentum range. The momen-tum range 
an be found using results from previous studies of the parametri
allyfor
ed pendulum i.e. there are nonlinear resonan
es whi
h o

ur when the phase134
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y regime (Ωm ≫ gr). The parameters used are the same as in �g. 6.7term on the RHS of eq. (6.28) is stationary i.e. when
p/m+ αmΩmcos(Ωmt)/2k = 0 (6.30)It is known from studies of ki
ked rotors and pendula that these nonlinear resonan
esgives 'ki
ks' whi
h tend to randomise the motion of the atoms leading to the di�usionof the atomi
 momenta [69℄. In the 
ase where the probe �eld is detuned from 
avityresonan
e so that α+ ∝ ei∆+t we 
an use eq. (6.30) to predi
t the velo
ity rangewithin whi
h the atom 
an di�use:

−∆+ − αmΩm

2k
≤ p

m
≤ αmΩm − ∆+

2k
. (6.31)Assuming the atoms di�use uniformly over the momentum spa
e between theselimits, the average momentum of the atoms will eventually be 〈p〉 = −∆+m/2k. In135



order to satisfy the intermediate frequen
y modulation 
ondition (Ωm ∼ gr) we set
Ωm = 0.055κ and αm = 10. From eq. (6.31) and for the following initial parameters:
〈p0〉 = 5000~k, σ = 0~k and m = 50000~k2/κ the predi
ted momentum di�usionrange should be approximately: −6000~k ≤ p ≤ 20000~k.
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y regime. The parameters used are: N = 1 × 103, 〈p0〉 = 5000~k, m =
50 × 103

~k2/κ, ∆+ = −0.3κ, η = 450κ, U0 = 0.0001κ, Ωm = 0.055κNumeri
al results 
on�rm this result and a similar momentum range 
an be foundin the momentum distribution at κt = 10000 shown in �g. 6.12. Sin
e β ≈ 1× 10−5is nonzero the probe intensity eventually de
reases after being ampli�ed as seen in�g. 6.11.
6.6 Low Modulation Frequen
y (Ωm ≪ gr)In the 
ase of low frequen
y modulation where (Ωm ≪ gr) the resonan
es are su�-
iently 
lose together (see s
hemati
 diagram, �g. 6.6(
)) that they 
an overlap evenat the very early stages of the intera
tion.Sin
e many resonan
es are involved at the early stage of probe ampli�
ation the136
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reasing their momentum and 
onse-quently amplifying the probe �eld.Similarly to eq. (6.30) the atom will be resonant with the ponderomotive for
e/potential137
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~k2/κ, ∆+ = −0.3κ, η = 450κ, U0 = 0.0001κ, Ωm = 0.0055κ(i.e. experien
e a 
onstant for
e) if:
p/m+ (αmΩmcos(Ωmt) + ∆+)/2k = 0. (6.32)138
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Figure 6.16: Histograms showing evolution of the atomi
 momentum distributionfor the low modulation frequen
y regime (Ωm ≪ gr) at κt=0, 2700, 4000. Theparameters used are the same as in �g. 6.15We 
an assume, to a good approximation, that for su�
iently small β the systemis Hamiltonian and obeys the 
onstant of motion (|α2
+| + N

2~k
〈p〉 ≈ 
onst.). Thisimplies that if the probe intensity |α|2 in
reases, resonan
e 
an be maintained onlyif we allow the atoms to de
rease their momentum. For numeri
al simulation ofthe low modulation frequen
y regime we set Ωm = 0.0055κ and αm = 100 with theother initial 
onditions un
hanged. It 
an be seen in �g. 6.15 & �g. 6.16 that thein
rease of probe �eld intensity 
oin
ides with a de
rease of the atomi
 momentum.During the whole intera
tion time the probe intensity and the average momentumos
illate periodi
ally with a period of 2π/Ωm and from eq. (6.32) the lowest attain-able momentum is predi
ted to be pmin = −(∆+ + αmΩm)m/2k. These predi
tedvalues of the os
illation period (≈ 1100κ−1) and minimum attainable momentum(≈ −6200~k) are 
on�rmed by the results from the numeri
al simulations shown in�g. 6.16 & 6.17.
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6.6.1 Slowing a Beam of Cold AtomsComparison of the three frequen
y modulation regimes indi
ates that the low fre-quen
y modulation to be the most useful for the purpose of slowing atomi
 beams.Although both the intermediate and the low frequen
y modulation regimes allow alarge de
rease in the average atomi
 momentum to be produ
ed, the intermediatefrequen
y modulation regime produ
es di�usive momentum spread growth, whi
his generally undesirable for appli
ations. In 
ontrast, the low modulation frequen
yregime produ
es a large de
rease in average atomi
 momentum while maintaininga relatively narrow momentum distribution for substantial fra
tion of the atomi
ensemble.As shown in �g. 6.17 the initial average momentum of the atoms 
an be de
reasedto the minimum attainable value (pmin = −(∆+ + αmΩm)m/2k), after whi
h theatoms are again a

elerated and along with the probe �eld intensity os
illate withperiod 2π/Ωm. Here we 
an show that the �nal value of the minimum momentum isalso a fun
tion of the parameter β whi
h as explained earlier des
ribes the ratio ofthe probe (κ+) and the pump (κ−) 
avity de
ay (β = κ+

κ
−

). To maintain the os
illa-tions of the probe �eld and the average atomi
 momentum, β has to be su�
ientlysmall, otherwise the high 
avity de
ay rate will prevent the �eld being ampli�edrepeatedly. However, for the purpose of slowing beams of atoms this does not haveto be ful�lled and a single os
illation of the average momentum will su�
e to slowthe atoms. Fig. 6.19 presents the minimum average momentum obtained within,single os
illation, for di�erent values of β.It 
an be seen in �g. 6.19 for a 
ase where the initial atomi
 momentum p0 = 5000~kthat for β ∼ 0.06 the initial average momentum of atoms was de
reased to zero andfor β < 0.06 the dire
tion of the atomi
 beam was reversed (〈pmin〉 < 0).141
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 energy loss vs 〈p0〉 for the low frequen
y modulation regime.The parameters used are: N = 1 × 103, β = 1 × 10−3, m = 50 × 103
~k2/κ, ∆+ =

−0.3κ, η = 450κ, U0 = 0.0001κ, Ωm = 0.0055κFigure 6.20 shows the total kineti
 energy loss vs. initial average momentum of theatoms for �xed β = 1 × 10−3. Intuitively for larger values of initial values of 〈p0〉one would expe
t the e�
ien
y of slowing to de
rease.However as 
an be seen in �g. 6.20 the kineti
 energy loss 
an be larger for higher142



initial momentum. This is due to the fa
t that, as mentioned before, the system hasa rather well de�ned minimum attainable momentum (pmin = −(∆++αmΩm)m/2k)whi
h 
an be un
hanged for a 
ertain range of initial average momenta. For thatreason the 〈p0〉 
an be in
reased until the maximum e�
ien
y of the slowing 
anbe rea
hed. When 〈p0〉 ex
eeds the optimum value (∼ 18000 here), the e�
ien
yde
reases and eventually when 〈p0〉 be
omes too large no slowing 
an be seen.6.6.2 Slowing a Beam of Atoms with Finite TemperatureIn the pro
eeding se
tion it has been assumed that the atomi
 beam has been initially
old, with zero momentum spread, i.e. zero temperature. For the 
ase of a beamof atoms with �nite temperature the system preserves all the features that wereobserved for the low frequen
y modulation regime. In addition adjusting the probe-
avity frequen
y detuning (∆+) and probe-pump 
avity loss ratio (β) it is possibleto obtain even better 
ontrol over the atomi
 dynami
s. In the following examplethe low frequen
y modulation regime is used to slow a group of N = 2000 atomswith initial average momentum 〈p0〉 = 5000~k and momentum spread σ0 = 500~k.In order to avoid many os
illations of the �eld and the momentum β ≈ 2 × 10−4 is
hosen. This allows only single ampli�
ation of the probe intensity to be produ
ed,as shown in �g. 6.21.Fig. 6.22 shows that, fast and hot atoms split into two groups. First, a smallerfra
tion of the total ensemble does not ex
hange energy with the �eld and remainsat approximately the initial momentum. The other, signi�
antly larger group, afterrea
hing the minimum attainable momentum, i.e. pmin ≈ −6000~k, in
reases itsmomentum and stops at 〈p〉 = 0 as shown in �g. 6.23.
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ular time of the intera
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old atoms) and the �nal momentum distribution of the atoms (κt ∼ 6400) isapproximately equal to its initial value before any intera
tion took pla
e. Hen
eslowing a beam of 'hot' atoms without introdu
ing additional heating has beendemonstrated [70℄.
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Chapter 7Con
lusions
7.1 SummaryResults from studies of atoms 
on�ned in a Fabry-Perot 
avity indi
ate two di�erentbehaviours of the atom-�eld intera
tion depending on the dire
tion of the pump�eld with respe
t to the 
avity axis. For the 
ase of a pump �eld being sent dire
tlythrough one of the 
avity mirrors (here 
alled the 
avity-pump 
ase) one 
an observealmost instantaneous growth of the 
avity �eld and strong intera
tion with the
on�ned atoms. Slowing and 
ooling of the sample 
an be 
learly seen, however,
loser inspe
tion 
on�rms a linear in
rease of the 
ooling time with atom number,whi
h as pointed out in previous works [39℄ makes su
h systems rather impra
ti
alfor very large ensembles. Signi�
antly di�erent behaviour 
an be observed for the
ase when the pump �eld is dire
ted perpendi
ular to the 
avity axis and hen
ethe atoms are illuminated dire
tly by the light �eld (here 
alled the atom-pump
ase). Contrary to the 
avity-pump 
on�guration the atom-pump 
on�gurationneeds the presen
e of parti
les to populate the 
avity mode via s
attering. Forsu�
iently strong �elds, and large atomi
 ensembles, one 
an observe self-orderingof the parti
les whi
h 
an lead to fast lo
alisation and 
ooling of the atoms. As hasbeen shown 
hapter 3 for given parameters the 
ooling rate 
an in fa
t in
rease withthe number of atoms in the 
avity. 146



As the number of atoms plays an important role in numeri
al simulations of theparti
le models the equivalent Vlasov model has also been presented. The resultsfrom simulation of the Vlasov models for both the 
avity-pump and the atom-pumpmodels show ex
ellent agreement with their parti
le 
ounterparts. However, theadvantage of the Vlasov model over the parti
le model relies in the fa
t that thenumeri
al e�ort 
an be greatly redu
ed for simulations involving large atomi
 en-sembles.Whereas 
hapter 2 and 3 
onsidered 
lassi
al models of atom-
avity intera
tions,
hapters 4 and 5 des
ribed semi-
lassi
al models of both the 
avity-pump and theatom-pump 
on�gurations. These semi-
lassi
al models show very good agreementwith the 
lassi
al models in the limit where atomi
 ex
itation is negligible. As ex-pe
ted from the analyti
al examination of the semi-
lassi
al equations the numeri
alsimulations show an improving agreement between the semi-
lassi
al and 
lassi
almodels as the pump-atom detuning is in
reased. Furthermore semi-
lassi
al modelsof the 
avity-pump and the atom-pump 
ase reveal relatively fast 
ooling of atomsfor blue detuned light 
ompared to red detuned light.Results from study of atoms 
on�ned in the ring 
avity pumped by the phase mod-ulated light show the presen
e of three di�erent regimes in whi
h both the �eldand the atoms reveal qualitatively di�erent behaviour. This behaviour depends onthe number of resonan
es that atoms 
an intera
t with and three 
ases 
an be dis-tinguished: single resonan
e (high modulation frequen
y) and the multi resonan
eswhi
h 
an overlap due to growth of the probe intensity (intermediate modulationfrequen
y) or when the resonan
es are su�
iently 
lose to ea
h other (low modu-lation frequen
y). As has been shown, the low frequen
y modulation regime givesan opportunity to 
ontrol the dynami
s of the atomi
 ensemble and 
an eventuallylead to e�e
tive slowing of the atomi
 beam. Moreover the slowing of a beam of147



hot atoms using the low frequen
y modulation regime does not introdu
e furtherheating to the atoms.
7.2 Future WorkAll of the 
avity 
ooling models presented in this work 
ould be the subje
t offurther work. One obvious topi
 for future studies 
ould be the extension of themodels des
ribed in 
hapters 2 - 5 from 1 to 2 or even 3 dimensions and using avariety of pumping geometries and 
avity geometries. Although the 
omputationtime asso
iated with su
h models is prohibitive at present, the rapid development of
omputing hardware and parallel programming te
hniques may make them feasiblewithin a few years.Another extension to the work des
ribed here is the modelling of a quantum gas e.q.Bose-Einstein 
ondensate (BEC) or a Fermi gas. Although these systems are not ofinterest for 
ooling, they o�er the possibility to study new regimes of light-matterintera
tions, and 
ould be used as an analogue for several 
ondensed matter systemsinvolving quantum degenerate matter intera
ting with spatially periodi
 potentials.The work des
ribed in 
hapter 6 involving ring 
avities and phase-modulated pump-ing o�ers the possibility of new methods for slowing and 
ooling atoms. An ob-vious area for future studies would be to investigate di�erent types of modulatione.g. amplitude modulation, 
ombined amplitude/phase modulation, non-sinusoidalmodulation as is performed in so-
alled �opti
al rat
hets� [71, 72, 73℄ and dedu
ethe optimum type of modulation for e�
ient atomi
 
ooling and slowing.
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Appendix ANumeri
al Methods for Solving theVlasov Model (se
. 2.4)
The Crank-Ni
olson s
heme is based on the Finite Di�eren
e Method for solvingpartial di�erential equations. It is an impli
it method whi
h means that to obtainthe �next� value of a fun
tion in time a system of algebrai
 equation must be solved.This method 
an be explained using an example of a simple partial di�erentialequation of the form:

∂u

∂t
= c

∂u

∂x
(A.1)Eq. (A.1) 
an be dis
retized using the Crank-Ni
olson s
heme su
h that:
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where the subs
ript i 
orresponds to spa
e and j 
orresponds to time and ∆x and ∆tare the spa
e and the time step size respe
tively, as shown on the sten
il presentedin the �g. A.1
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Figure A.1: The Crank-Ni
olson sten
il for a 1D problem
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Hen
e eq. (A.1) 
an be written as:
1

4∆x

[

uj+1
i+1 − uj+1

i−1 + uji+1 − uji−1

]

=
1

∆t

[

uj+1
i − uji

]

. (A.4)This s
heme 
an be similarly applied to the Vlasov model (eqs (2.50) - (2.51), se
tion2.4).
∂f̄n
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= −inω̄rp̄f̄n +
i
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)

dp̄ α + η̄(A.6)Using the Crank-Ni
olson dis
retisation of eq. (A.5) one obtains:
(LHS) : f(n)j+1

i − i

8
Ū0|α|2

∆t

∆p

{

[

f(n− 1)j+1
i+1 − f(n− 1)j+1

i−1

]

−
[

f(n+ 1)j+1
i+1 − f(n+ 1)j+1

i−1

]

} (A.7)and
(RHS) : (1 − inωrpi∆t)f(n)ji +

i

8
Ū0|α|2

∆t

∆p

{

[

f(n− 1)ji+1 − f(n− 1)ji−1

]

−
[

f(n+ 1)ji+1 − f(n+ 1)ji−1

]

} (A.8)151



where the �new� elements (j + 1) and �old� elements (j) have been separated onthe LHS and the RHS respe
tively. Obviously in eqs. (A.7 and A.8) the subs
ript i
orresponds to momentum spa
e.Similarly the �eld equation, eq. (A.6) 
an be written as
αj+1 =

{

(

−1 + i∆̄c −
Nγ̄0

2
− i

NŪ0

2

)

αj−N
4

(

γ̄0 + i∆̄0

)

×
∫ ∞

−∞

[

f(−1) + f(1)
]

}

∆t+ αj.(A.9)Equations (A.7, A.8 and A.9) together make a 
losed set of evolution equations. Inthis form eqs. (A.7, A.8 and A.9) 
an be easily implemented in a numeri
al 
ode andsolved using one of many available methods for solving linear system of equations,e.g. LAPACK [74℄
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This appendix 
ontains publi
ations whi
h have arisen from the work des
ribed inthis thesis. These publi
ations are:� T. Griesser, H. Rits
h, M. Hemmerling and G.R.M. Robb, � A Vlasov approa
hto bun
hing and selfordering of parti
les in opti
al resonators �, Eur. Phys. J.D 58, 349-368 (2010)� M. Hemmerling and G.R.M. Robb, � Slowing atoms using opti
al 
avitiespumped by phase-modulated light �, Phys. Rev. A 82, 053420 (2010)
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