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�. . . Reason and Knowledge only thou despise,The highest strength in man that lies!Let but the Lying Spirit bind theeWith magi works and shows that blind thee,And I shall have thee fast and sure!�Fate suh a bold, untrammelled spirit gave him,As forwards, onwards, ever must endure;Whose over-hasty impulse drave himPast earthly joys he might seure.Dragged through the wildest life, will I enslave him,Through �at and stale indi�erene;With struggling, hilling, heking, so deprave himThat, to his hot, insatiate sense,The dream of drink shall mok, but never lave him:Refreshment shall his lips in vain implore�Had he not made himself the Devil's, naught ould save him,Still were he lost forevermore!(�Faust�, Johann Wolfgang Goethe)
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ABSTRACTCooling and manipulation of atoms and moleules has been reently of great interest.Cold atoms provide a useful tool to understand many physial phenomena, inludingquantum information proessing, Bose-Einstein Condensation, atom interferometry,ultra-high preision spetrosopy, atomi loks and many others. Most methodsof ooling and slowing, however, apply to a relatively small range of temperatures,and ooling rather hot samples of atoms requires using more than one method only.Moreover, the majority of existing shemes inluding the most important � Dopplerooling and magneto-optial trapping are limited to the alkali and alkaline earthmetals. For that reason it is very attrative to develop new e�etive ooling shemes.In this thesis a novel avity ooling method based on ombined avity-atom dynamishas been investigated. In ontrast to Doppler ooling, avity ooling does not relyon the internal struture of the partile. Consequently, avity ooling should beappliable to a wider range of partile speies e.g. moleules, whih do not havea losed atomi transition. Furthermore, in some regimes of avity ooling thetemperature is limited not by the spontaneous emission rate but by the avity deayrate so the temperature an be at or below the Doppler limit. There have beenseveral reent avity ooling experiments. Some of these involved a single atomwhile others have used many atoms interating with the avity �eld inside di�erentavity geometries.This thesis presents several analytial and numerial results from avity ooling sim-ulations. These involve ooling of atoms in a Fabry-Perot avity using two di�erenton�gurations � one, in whih the optial avity is assumed to be pumped diretlyvia one of the avity mirrors or alternatively when the atoms are illuminated bylaser beams direted perpendiularly to the avity axis.Both on�gurations are modelled using partile based simulations and a new, distribution-v



funtion (Vlasov) model of avity ooling. This Vlasov model should be more pra-tial for modelling avity ooling experiments involving large numbers of atoms andphotons.In addition to the lassial models of avity ooling developed previously, a semi-lassial model is also presented. An analytial and numerial omparison of thelassial and the semi-lassial avity ooling models is presented. The semi-lassialmodel within a low exitation regime agrees very well with its lassial ounterpart,however for ases whih involve the internal degrees of freedom of the atoms thesemi-lassial model reveals new interesting features.Finally, in addition to Fabry-Perot avities a ring avity with a phase modulatedpump �eld is also studied. This sheme has the distinguishing feature that theoptial potential is able to move inside the avity whih in ertain regimes providesan opportunity to ontrol the dynamis of the atomi ensemble and an eventuallylead to e�etive slowing of an atomi beam.
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Chapter 1Introdution
1.1 Light ForesThe idea that light may a�et the motion of matter originates from the 17th en-tury with Kepler who notied that a omet tail always points away from the Sunregardless of what diretion it was moving in relation to the Sun. Kepler suggestedthat those tails were driven by the pressure of the sunlight, whih in fat was notompletely orret, but it identi�ed a signi�ant astrophysial e�et and stimulatedfurther work to explain its origin. The �rst proper theoretial basis of light pressurewas given in 1873 by Maxwell who formulated the eletromagneti theory of light[1℄ and showed that an eletromagneti �eld exerts a pressure proportional to theenergy of the �eld per unit volume. Another important step towards understandinglight fores was made by Einstein, in 1917, who showed that a quantum of light, i.ea photon, arries not only energy hν but also momentum hv/c = h/λ. Soon after histheory the partile-like nature of radiation was reinfored by subsequent experimentsthat led to further disovery of light pressure phenomena. The �rst took plae inthe early 1920's with the experimental demonstration of the Compton e�et whereeletrons were sattered by high frequeny photons and a deade after, in 1933, byFrish in Hamburg who illuminated a thermal beam of sodium atoms with resonantlight [2℄. Although instrutive, all experiments until then were limited by the inten-1



sity of the soure and ould not fully reveal the potential of the pressure fore. Thedisovery of the laser in 1960 �nally resolved that limitation and resulted in manysubsequent disoveries: in 1962 Askar'yan showed that an intensity gradient ouldexert a substantial fore on atoms due to an indued dipole moment [3℄, in 1968Letokhov suggested that this so alled dipole fore an be used to trap atoms at thenodes (or antinodes) of a standing wave [4℄, and shortly afterwards, in the 1970'sAshkin at Bell Laboratories trapped a small glass sphere between opposing foussedlaser beams [5℄. He also �rst divided light fores into two lasses: a spontaneousfore arising from the absorption and spontaneous emission of photons and a dipolefore, resulting from absorption followed by stimulated emission of photons. Finallyin 1975 Hänsh and Shawlow [6℄ proposed that laser light ould potentially be usedto ool atoms and ions.

2



1.2 Fore on Two-Level AtomsThe fore F ating on an atom an be de�ned as an expetation value of the quantummehanial operator F . This relation is a spei� example of the Ehrenfest theorem,whih links the quantum mehanial expetation value of an observable and theorresponding lassial equation of motion. It simply states that the expetationvalue of the quantum mehanial operator must orrespond to the behaviour of itslassial ounterpart [7℄
F = 〈F〉 =

d

dt
〈p〉 (1.1)The above relation is a general ase of the time evolution of the expetation valueof a time-independent quantum mehanial operator, whih is given by [8, 9℄

d

dt
〈A〉 =

d

dt

∫

(Ψ∗AΨ) dr

=

∫
(

∂Ψ∗

∂t
AΨ + Ψ∗∂A

∂t
Ψ + Ψ∗A

∂Ψ

∂t

)

dr

=

〈

∂A

∂t

〉

+
1

i~

∫

Ψ∗ (AH−HA) Ψdr (1.2)The ommutator of the two operators is de�ned as
[A,B] = AB −BA (1.3)and sine they ommute if their ommutator vanishes (1.2) an be written as3



d

dt
〈A〉 =

〈

∂A

∂t

〉

+
1

i~
〈[A,H]〉 (1.4)If the operator A does not depend expliitly on time we an write

d

dt
〈A〉 =

i

~
〈[H, A]〉 (1.5)and hene the ommutator of H and p is given by

[H, p] = i~
∂H
∂z

(1.6)where the operator p has been replaed with −i~(∂/∂z). Consequently from (1.1),(1.5) and (1.6) the fore ating on an atom is
F = −

〈

∂H
∂z

〉 (1.7)Equation (1.7) forms a quantum mehanial analogue of the lassial expression thatthe fore is a negative gradient of a potential.
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Figure 1.1: Two-level system with the ground state |g〉 and exited state |e〉 whihhas a linewidth Γ. The laser frequeny ωL is red detuned (∆a < 0) from thetransition frequeny ωaThe Hamiltonian responsible for the interation with the radiation �eld is given by
H′ = −e~E(~r, t) · ~r (1.8)where

~E(~r, t) = E0 ǫ̂ cos(kz − ωLt) (1.9)whih an be used in equation (1.7) in order to �nd the fore on atoms by light �elds
〈F〉 = F = e

〈

∂

∂z

(

~E(~r, t) · ~r
)

〉 (1.10)At this point it is possible to use the eletri dipole approximation, i.e assume that5



sine the eletri �eld hanges on a length sale determined by the wavelength of the�eld then for λ muh smaller than the size of the atom the spatial variation of theeletri �eld an be negleted over the size of the atom. In (1.10), this approximationallows the interhange of the gradient with the expetation value
F = e

∂

∂z

〈(

~E(~r, t) · ~r
)〉

. (1.11)The expetation value of (1.11) an be found using the general de�nition of theexpetation value of an operator
〈A〉 = 〈Ψ|A|Ψ〉 (1.12)where Ψ is the wavefuntion expanded in a basis set of {φn}
Ψ =

n
∑

i=1

ciφi (1.13)so
〈A〉 =

〈

∑

ij

ciφi|A|cjφj
〉

=
∑

ij

c∗i cj 〈φi|A|φj〉 =
∑

i,j

ρjiaij (1.14)where the elements of the density matrix are
6



ρij = 〈φi|ρ|φj〉 = 〈φi|Ψ〉〈Ψ|φj〉 = cic
∗
j (1.15)Hene using (1.14) and (1.15) it is possible to obtain

F =
∂

∂z

〈

c1φ1 + c2φ2| − e~E(~r, t) · ~r|c1φ1 + c2φ2

〉

= −e ∂
∂z

(

c1c
∗
2

〈

φ1|~E(~r, t) · ~r|φ2

〉

+ c∗1c2

〈

φ2|~E(~r, t) · ~r|φ1

〉) (1.16)Assigning the basis φ1,2 to the ground and exited state of a two-level atom andthen eq. (1.16) an be rewritten as
F = −e ∂

∂z

(

ρ∗egE0 〈e|r|g〉 + ρegE0 〈g|r|e〉
) (1.17)Obtaining eq. (1.17) requires implementation of the RWA (i.e Rotating Wave Ap-proximation) that neglets the terms osillating with the laser frequeny.Equation (1.17) an be then written as

F = ~

(

∂Ω

∂z
ρ∗eg +

∂Ω∗

∂z
ρeg

) (1.18)where Ω is the Rabi frequeny de�ned as
7



Ω ≡ −eE0

~
〈e|r|g〉 (1.19)It is useful to to split ∂Ω/∂z in (1.18) into two parts, real and imaginary so that

∂Ω

∂z
= (qr + iqi) Ω (1.20)where qr + iqi is the logarithmi derivative of Ω (i.e. if Ω = ueiψ with u and ψ real,then qr = d/dz (lnu) and qi = d/dz (ψ)).Consequently the expression for the fore expands to

F =~
[

(qr + iqi) Ωρ∗eg + (qr − iqi) Ω∗ρeg
]

F =~qr
(

Ωρ∗eg + Ω∗ρeg
)

+ i~qi
(

Ωρ∗eg − Ω∗ρeg
) (1.21)Equation (1.21) desribes the total fore that an be found for any partiular sit-uation as long as ρeg an be solved (ρeg is the optial oherene between groundand exited state and an be found from the optial Bloh equations as a stationarystate).Substituting the steady state of the optial oherene between the ground and theexited state ρeg [10℄
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ρeg =
iΩ

2 (Γ/2 − i∆a) (1 + s)
(1.22)into (1.21) redues it to

F =
~s

1 + s

(

−∆aqr +
1

2
Γqi

) (1.23)where s is the saturation parameter de�ned as
s ≡ |Ω|2

2|Γ/2 − i∆a|2
=

|Ω|2/2
∆2
a + Γ2/4

≡ s0

1 + (2∆a/Γ)2
(1.24)where

s0 ≡
2|Ω|2
Γ2

=
I

Isat
(1.25)and

Isat ≡
πhc

3λ3τ
(1.26)where Isat is the saturation intensity orresponding to the intensity required for aresonant atom to spend 1/4 of its time in the exited state9



Using equation (1.23) one an identify the two general omponents of the total fore.The �rst term of (1.23) is proportional to the detuning between the laser and theatomi transition frequeny ∆a and the seond term is proportional to the deay rate
Γ of the atom. However their ontribution to the total fore is determined by thereal and imaginary part of the logarithmi derivative of Ω, as de�ned in (1.20). Sine
qr and qi depend on the eletri �eld, stritly speaking on whether it is a travellingor standing wave, the fore an be predominantly due to the �eld detuning or thesattering rate and hene give the ontribution to two di�erent fores whih will bedesribed in detail in the following setions.
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1.3 Sattering or Radiation Pressure ForeConsider a travelling wave of the eletri �eld given by
E(z) =

E0

2

(

ei(kz−ωt) + c.c.
) (1.27)The Rabi Frequeny for suh a wave an be found using the de�nition given earlierin (1.19) where the wavefuntion Ψ(~r, t) has been expanded in the terms of φn suhas

Ψ(~r, t) =
∑

k

ck(t)ψk(~r)e
−iωkt (1.28)Sine the amplitude of the wave does not depend on z its gradient is zero so itslogarithmi derivative is zero too and hene qr = 0.The phase of the wave ontributing to Ω is not zero however if after applying RWAthe only surviving part is a negative frequeny omponent whose derivative equalssimply the wave number k hene qi = k.When qr = 0 and qi = k the fore equation (1.23) redues to

F =
1

2
~kΓ

s

1 + s
(1.29)and substituting the saturation parameter de�ned earlier in (1.24) gives
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Fscat = ~k
Γ

2

s0

1 + s0 + (2∆a/Γ)2
. (1.30)Equation (1.30) an be also written in terms of the population of the exited state

ρee =
1

2
(1 − w) =

s

2(1 + s)
=

1

2

s0

1 + s0 +
(

2∆a

Γ

)2 (1.31)where w is the population di�erene
w =

1

(1 + s)
(1.32)so that

Fscat = ~kΓρee (1.33)It an be seen now that the fore saturates to a maximum value ~kΓ/2 sine themaximum value of ρee is 1/2 .The mehanism of the radiation pressure fore ating on an atom originates from thefundamental laws of onservation of energy and momentum during the absorptionand emission of light. An atom an emit a photon in two ways: by spontaneousemission or stimulated emission. The sattering fore an be understood as a resultof yles of absorption followed by spontaneous emission (absorption and stimulated12



emission play more important roles in dipole ooling whih will be explained in thefollowing hapters)
h k

1

m <v> = h k

3
m v = h k

2

Figure 1.2: Photon piture of the sattering fore: a two level atom, initially inthe ground state, absorbs a photon with momentum ~k 1 , exited atom inreasesits veloity by ~k/m, in the diretion of the inoming beam 2 , the internal en-ergy is released by spontaneous emission of a photon, in a diretion desribed by asymmetri probability distribution so the average veloity hange is zero 3Consider an atom with mass m absorbing a photon with energy ~ω (�g. 1.2).The energy of the photon that has been absorbed by an atom is onverted intoits internal energy i.e. the atom ends up in an exited state. However a photonarries also a momentum ~k that after absorption auses the atom to reoil in thediretion of the inoming light and hanges its veloity v by an amount ~k/m. Theexited atom does not stay in this state forever and soon returns to the ground stateby spontaneously emitting a photon. The onservation of momentum during theemission auses another reoil in the opposite diretion to the emitted photon. Thereoil aused by an absorption is always in the diretion of the laser beam, howeverthe seond reoil due to spontaneous emission is ompletely random in diretion.For that reason the spontaneous emission does not ontribute to the net fore and13



after eah yle an atom hanges its veloity by ~k/m. Note that the satteringfore is dissipative beause the reverse of spontaneous emission is not possible andtherefore the ation of the fore annot be reversed. The sattering fore an thenbe used to slow and ool atoms [11, 12, 13, 14, 15, 16℄.In ontrast to the sattering fore the dipole fore is onservative and without adissipative mehanism an be used to trap atoms; this will be disussed in moredetail in the following hapters.
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1.3.1 Doppler Cooling and Optial MolassesThe onept of using laser radiation for the purpose of ooling atoms was �rstproposed by Hänsh and Shawlow in 1975 [6℄. The idea was to illuminate an atomwith laser beams of the same frequeny, intensity and polarisation but diretedagainst eah other. The lasers are also slightly detuned to the red of the atomifrequeny (ωL < ωa) [17℄. For the atom at rest the two radiation pressure foresexatly balane eah other and the net fore is equal to zero. However, an atommoving slowly along the light beams sees onoming light Doppler shifted loser to theresonane whereas o-propagating light is shifted further away from the resonane.As shown in �g. 1.3 the atom satters more light from the ounter-propagating beamthan from the o-propagating beam. The atom therefore experienes a net fritionfore and is slowed. Suh a method of using radiation pressure to slow atoms isalled optial molasses; one of the most ommon ooling methods used [18, 19℄.
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Figure 1.3: Doppler ooling in 1D, resulting from the imbalane between the radia-tion pressure fores of two ounterpropagating laser wavesIt is possible to demonstrate the existene of a frition fore using the expressionderived for the sattering fore (1.30). The sattering fore an be written in termsof the saturation intensity for the ase of opposing diretions (+) and (-) using
F± = ± ~k

Γ

2

s0

1 + s0 + (2∆a ∓ kv/Γ)2
= ±~k

Γ

2

I/Isat
1 + I/Isat + (2∆a ∓ kv/Γ)2(1.34)It is now straightforward using the above equation to estimate the total fore on anatom in optial molasses. For the low intensity ase the fores from eah of the lightbeams an be simply added to give
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Ftotal ∼=
8~k2∆as0v

Γ
(

1 + s0 +
(

2∆a

Γ

)2
)2 ≡ −βv (1.36)17



where β is the veloity damping rate, de�ned as
β = − 8~k2∆as0

Γ
(

1 + s0 +
(

2∆a

Γ

)2
)2 (1.37)Figure 1.4 shows the veloity dependene of the optial damping fores for one-dimensional optial molasses as alulated from eq. (1.34). Eah of the ounter-propagating beams exerts a fore with a Lorentzian veloity dependene. The dashedlines show the two omponents of the fore in ±k diretion. The solid line showsthe sum of the two fores, whih has a linear dependene for small veloities.
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1.4 Dipole ForeAn atom in the presene of an osillating eletri laser �eld aquires an eletri dipolemoment that interats with the laser �eld. If the �eld is spatially inhomogeneous(as in a standing wave or a foussed Gaussian laser beam) the interation varies inspae and therefore an be desribed in terms of a spatially varying potential. Thefore assoiated with suh a potential is proportional to the gradient of the �eld'sintensity and is alled the gradient or dipole fore.In order to �nd the mathematial expression of the dipole fore, we an follow asimilar derivation as for the sattering fore that has been shown in setion 1.3.Here, in ontrast, we onsider a standing wave for whih the eletri �eld equationan be written as
E(z) = E0cos(kz)

(

e−iωt + c.c.
) (1.38)In alulating the Rabi frequeny we again �nd that only the negative omponentof (1.38) survives the RWA, but the gradient does not depend on it and equals zero.However for a standing wave the gradient of the amplitude is non-zero and henethe logarithmi omponents of Ω beome qr = −ktan(kz) and qi = 0. If submittingthis to the general fore equation (1.23) gives:

Fdip =
~s

(1 + s)
δ k tan(kz) (1.39)whih for the value of the loal saturation parameter s beomes:19



Fdip =
2~kδs0sin2kz

1 + 4s0cos2kz + (2δ/γ)2
(1.40)where s0 is the saturation parameter orresponding to eah of the two oppositelydireted travelling waves that onstitute the standing wave.It needs to be emphasised that unlike the sattering fore, the dipole fore does notsaturate and an be made very large for large intensities [10, 13, 20℄.1.4.1 AC-Stark ShiftThe dipole fore originates from the dynamial shift of the atom's energy levels in thepresene of the external �eld [21, 22, 23℄. This energy shift, alled the light shift orAC Stark shift, is the energy displaement of the ground level ∆Eg, whih is diretlyproportional to the light intensity and inversely proportional to the detuning, so that

∆Eg = ~Ω2

4∆a
, as shown in �g. 1.5.
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g (b) ∆a > 0Figure 1.5: Light shift of the ground state |g〉 of an atom produed by a non-resonantlight exitation detuned to the red side of the atomi transition (a) or to the blueside (b). This is known as a AC-Stark shift.It is the gradient of this shift that produes a dipole fore on an atom. When, for20



instane, the frequeny of the external �eld is tuned below the atomi resonane (∆ais negative), the energy shift beomes negative and the potential energy is minimumthere (�g. 1.5a). Sine the shift inreases while the intensity inreases the atom isattrated to the regions of the high �eld intensity (an atom is alled a high-�eldseeker). On the other hand if the frequeny of the laser is tuned above the atomiresonane (∆a > 0) the shift beomes positive and the potential reates a hill thatis repulsive to the atom (in this ase the atom is alled a low �eld seeker, �g. 1.5b).The dipole fore an be used to trap atoms in high intensity or low intensity regionsdepending on the detuning [16, 24, 25℄. The simplest form of suh a trap is asingle foussed TEM00 Gaussian laser beam red detuned to the atomi resonane.Here atoms will be attrated to the foal point of the beam and its entre wherethe intensity is greatest. Suh traps are also alled optial tweezers sine theyan be used to �grab� and move dieletri objets, inluding e.g biologial samples.Similarly, low �eld seekers an be trapped using the �hollow� modes e.g LG0n, (n =

1, 2, . . . , n) laser beam mode, whih have an intensity minimum on the beam axis(hollow beam).For the ase of standing waves that are also haraterised with an inhomogeneousintensity distribution atoms will be attrated towards the �eld antinode where theintensity is maximum (for red detuned light) or pushed away from antinodes towardnodes (for blue detuned light), where the intensity is minimum. This propertylies behind the priniple of the avity trapping (ooling) methods whih with anadditional dissipative mehanism an be used to slow and ool atoms [21, 23, 26,27, 28, 29℄.
21



1.4.2 Sisyphus CoolingSisyphus ooling is a method of ooling whih involves the dipole fore. A propertreatment of Sisyphus ooling requires a quantum-mehanial desription of theatom-light interation. In the so alled dressed-atom piture the atom and the �eldare not treated separately but are onsidered as a single system [30, 31, 32, 33℄.In the dressed-atom piture the energy of the atom and the �eld are added together.If we initially ignore the interation of the �eld the two states |g〉 and |e〉, additionallyharaterised by the number of photons in the �eld n, form a ladder of energymanifolds, separated by the photon energy ~ωL. The states in eah manifold are ofthe form: |g, n〉 and |e, n−1〉, |e, n〉 and |g, n+1〉 as shown in �g. 1.6a. If the atom-�eld oupling is inluded the energy levels split (due to the AC-Stark shift) and areseparated by the energy proportional to Rabi frequeny ~Ω (�g. 1.6b). The dressedstates assoiated with the energy shift |1, n〉 and |2, n〉, |1, n− 1〉 and |2, n− 1〉 aremixtures of the basi states suh that:
|1, n〉 = cosθ|e, n〉 + sinθ|g, n+ 1〉 (1.41)
|2, n〉 = −sinθ|e, n〉 + cosθ|g, n+ 1〉 (1.42)where the angle θ is given by

tan2θ ≡ −Ω/∆a (1.43)The mehanism of Sisyphus ooling is based on the fat that the energies of thedressed states, and so the energy shift, vary in spae, i.e in the diretion of theatomi motion. This takes plae when the laser intensity is not homogeneous as is22



the ase in a standing wave optial �eld.
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Figure 1.6: Dressed-atom energy diagram for ∆a > 0. a) when the oupling is nottaken into aount, b) inluding laser-atom oupling.
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Consider an atom moving through the dressed atom potentials reated by the bluedetuned laser light, as shown in �g. 1.7. Lets assume the atom starts in the groundstate at a �eld node with n + 1 photons in the �eld. The atom annot undergo aspontaneous emission at suh a plae sine it is in a pure ground state and henewill ontinue its trajetory. While limbing the potential hill reated by the �eldintensity the atom inreases its potential energy but at the same time dereases itskineti energy. As the intensity inreases the Rabi frequeny inreases so at theantinode of the standing wave the dressed atoms have a large ontribution from theexited state and transition 1 → 2 an our. If the deay is to another |1〉 statein a di�erent pair its motion is una�eted. But if the deay is to level |2〉 the atom�nds itself again at the bottom of the potential well and will ontinue limbing untilreahing the next hill. In ontrast to the upper sideband, here the transition 2 → 1will our preferentially at the node of the wave where the atom is in a pure exitedstate with n photons. Consequently the most probable transitions 1 → 2 and 2 → 1will fore the atom to �see� more uphills than downhills and it will be slowed down.This type of ooling mehanism is generally referred to as Sisyphus ooling sine onaverage atoms spend most time limbing hills losing kineti energy, in analogy tothe Greek myth about Sisyphus. This mehanism is partiularly interesting sineit provides ooling for a laser �eld tuned above the atomi resonane, ontrary toDoppler ooling. However it works for �slow� partiles only, i.e. partiles that movea distane of λ/4 (from the node to the antinode of the standing wave) within, orless, its natural life time.
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1.5 Cavity CoolingDoppler ooling is based on the sattering fore whih relies on a ompliated meh-anism of losed yles of absorption and spontaneous emission of atomi populationand is limited to speies with simple spetrosopi strutures. It has been provento be very suessful for ooling alkali and alkaline earth metals but is rather in-aessible to ool more omplex systems, like moleules whih do not have losedatomi transitions. Cavity ooling is based on the dipole fore whih does not relyon the internal struture of an atom but uses the o�-resonant interation betweenan optial oherent �eld and a polarisable partile. However, the dipole fore isa onservative fore and requires an additional dissipative mehanism. In avityooling the dissipation hannel is via deay of the optial �eld that is oupled to anatom or a moleule [34, 35℄.1.5.1 Historial BakgroundThe �rst omplete avity ooling sheme was proposed by Vuleti¢ and Chu in 2000[36℄. The model was addressed to the translational motion of polarisable partilesat low saturation and large detuning from the partiles' resonanes. The authorspointed out that this sheme should be appliable to moleules or multilevel atoms asthe method is independent of the partiles' internal level struture [27, 35, 37, 38℄.Another potential advantage of the sheme was the �nal ahievable temperaturewhih, in this ase, is limited by the dipole fore heating in a two-level system[13, 30℄ and an be at or below the reoil limit.In 2002, Domokos and Ritsh [39℄ proposed a di�erent set-up and suggested illumi-nating atoms in the avity from the side instead of sending the pump light diretlyinto the avity. In suh a on�guration the avity-mediated atom-atom oupling26



an lead to strong ooperative e�ets and enhane ooling and trapping. Suh ane�et strongly depends on the number of atoms inside the avity and the strengthof the pump �eld (the origin of the ooperative e�et in this on�guration will beexplained in hapter 3).Results from the �rst avity ooling experiment were reported in 2003 by Chan,Blak and Vuleti¢ [40, 41, 42, 43℄. The experimental setup onsisted of a avity inwhih 3×106 Cesium atoms (freely falling under the gravity fore) were illuminatedby two laser beams sent perpendiularly to the avity axis. Observed results showedthat one-third of the falling sample was stopped by the standing wave avity �eld.In addition, strong deeleration of up to 1500m/s2 and ooling to temperatures aslow as 7µK was observed.1.5.2 Cavity GeometriesThere are two main avity geometries taken into aount in a avity ooling setups:Fabry-Perot avity and a ring avity. In the �rst ase atoms an be illuminatedeither injeting the pump through a avity mirror or diretly illuminating the atoms,whih then satter light into the avity mode. While in the �rst ase some �eldalways builds up even in the absene of atoms, the seond ase needs the presene ofpartiles to populate the avity mode via sattering. Hene the latter ase exhibitsmore intriguing physial e�ets suh as self-ordering of the atoms in the optialpotentials. In a Fabry-Perot avity in spite of the diretion of a pump �eld, potentialsbuilt by an osillating �eld are �xed in spae and annot travel inside the avity.In the seond ase of a ring avity this restrition an be removed. The di�erentboundary onditions for the �eld in the ring avity ase allow the positions of the�eld nodes/antinodes and hene the optial potentials to move in the avity.
27



1.5.3 Results from the Cavity Cooling Simulations Presentedin this WorkThe following hapters present analytial and numerial results from avity oolingsimulations. It is important to mention that this work has been greatly in�uenedby the avity ooling experiment that has been arried out at the University Collegeof London (UCL) by Prof Ferruio Renzoni's group. The experiment involved aMOT hamber with a pre-ooled loud of ∼ 106 Cs55 atoms and a vertial avity,optially pumped along the avity axis with an 852nm laser. Initially the Cesiumatoms are fed to the MOT and pre-ooled to a temperature of 160µK. After theMOT is swithed o�, the atoms are trapped and ooled in the standing wave avity�eld.The parameters used in the experiment are listed below [44℄:Number of atoms: N ∼ 1 ×106Cavity linewidth: κ = 10.0 ×106 HzLaser wavelength: λ = 852.4 ×10−9 mCs deay rate: Γlw = 32.89 ×106 HzCoupling onstant: g0 = 222.38 ×103 HzCs mass: m = 2.21 ×10−25 kgInitial temperature: Tini = 160.0 ×10−6 KPump-atom detuning: ∆A = (-250 : 250) ×106 HzLaser power: P ≤ 0.3 W
where N is the number of atoms, κ is the avity deay rate, Γlw is the spontaneousemission linewidth, g0 is the measure for the atom-avity oupling strength, m isthe Cesium mass, Tini is the initial temperature of the atomi loud that interats28



with the avity �eld, ∆a = ωp − ωa is the laser-atom detuning and P is the laserpower. Corresponding saled parameters have been used in the series of numerialsimulations for various avity on�gurations and are presented in this work. Thiswork is organised as follows:Chapter 2 ontains the derivation of the avity ooling model (partile model) forthe single atom and many atoms on�ned inside a Fabry-Perot avity pumped alongthe avity axis (here alled the avity-pump ase). Obtained equations are solvednumerially and the �gures haraterising the most important features, inludingthe ooling rates of this sheme are presented. Afterwards, with the respet tothe partile model of the avity pump on�guration, equivalent model based on adistribution-funtion (Vlasov model) is developed. Both models are then omparedand the numerial results are analysed.Chapter 3 introdues ooling of atoms illuminated from light sent perpendiularly tothe avity axis (here alled atom-pump ase). This hapter has a similar strutureto that of hapter 2 for the avity-pump ase and hene ontains a derivation of thepartile model, main features of this model and numerial solutions obtained fromthe solution of its equations. Aordingly the distribution funtion, Vlasov modelis derived for the same atom-pump on�guration and the results from numerialsimulations are ompared with the partile model.Chapters 4 and 5 present the semi-lassial models of the avity-pump and the atom-pump on�guration, respetively. In both ases the semi-lassial models are derivedand ompared with equivalent lassial models. The models are �rst omparedanalytially and then veri�ed using numerial results. Additionally, hapters 4 and5 ontain numerial simulations of the semi-lassial models for both the avitypump and the atom-pump on�gurations for the ase of blue detuned light. Theresults from the simulations are presented and analysed.29



In hapter 6 the possibility of slowing and ooling atomi gas using a phase-modulatedpump �eld is being investigated. This model assumes atoms being on�ned in ahigh-quality ring avity illuminated by light sent through one of the avity mirrors.Unlike in the Fabry-Perot avity in this on�guration the optial potentials builtup by the �eld an freely travel inside the avity. Hene, three di�erent regimes, inwhih both the �eld and the atoms reveal qualitatively di�erent behaviour, are iden-ti�ed. The atom-�eld interation harateristis for eah regime are presented andanalysed using results obtained from numerial simulations of the model equations.In hapter 7 all results from this work are reviewed and summarised.
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Chapter 2Cavity-Pump Con�guration
The following hapter introdues the avity ooling model for ases where a singleatom and many atoms are on�ned inside a Fabry-Perot avity pumped throughone of the avity mirrors, along the avity axis. Equations for the partile modeland the alternative Vlasov model will be derived and the results from the numerialsimulation of both models will be ompared and analysed.
2.1 Classial Derivation of Single Atom CoolingLet us onsider a system onsisting of a single atom inside an optial avity, pumpedby an external �eld injeted through one of the mirrors, with a standing wave light�eld far detuned from any atomi transition (�g. 2.1).The avity �eld indues a dipole moment in the atom whih in turn ontributes tothe plane wave eletri �eld as a driving term in Maxwell's wave equation [35℄

− ∂2

∂x2
E(x, t) +

1

c2
∂2

∂t2
E(x, t) + µoσ

∂
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E(x, t)

= −µo
∂2

∂t2
P (x, t) + µoσ

∂

∂t
Eext(x, t) . (2.1)
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Figure 2.1: Partile moving inside a driven optial avity, pumped along the avityaxis. The avity pumping rate, spontaneous loss rate and avity deay rate aredetermined by the parameters η, Γ and κ respetivelywhere σ is the ondutivity of the avity mirrors, µo is the magneti permeability, cis the speed of light, P (x, t) is the polarisation of the atom and Eext is the eletri�eld of the external pump �eld. The third term on the LHS and seond term onthe RHS of (2.1) desribe damping and external pumping of the avity, respetively.The eletri �eld and polarisation an be written as
E(x, t) = E(t)e−iωpt u(x) + c.c. (2.2)
P (x, t) = P(t)e−iωpt u(x) + c.c. (2.3)where u(x) is the intraavity mode funtion - cos(kx) with wave number k. Sub-stituting eq. (2.2) and (2.3) into (2.1), �nding the derivatives and assuming that Eand P are slowly varying amplitudes (|Ė | ≪ ωp|E| and analogously for P and Eext)one an rewrite eq. (2.1) as
Ė + (κ− i∆c)E ≈ iωpP

2ǫo
+ κEext . (2.4)32



Here ∆c is the detuning between the pumping �eld and avity frequeny (∆c =

ωp − ωc) and κ = σ/2ǫo is the avity deay rate.The dynamis of the atomi dipole an be modelled as an elongation of an elastiallybound eletron under the in�uene of an eletri �eld:
ÿ(t) + 2Γẏ(t) + ω2

oy(t) =
e

m
E(xa, t) , (2.5)where xa is the atomi position, m is the eletron mass, e is the harge, Γ is thesattering rate and where we have introdued the slowly varying omplex amplitude

Y (t) via
y(t) = Y (t)e−iωpt + c.c. (2.6)Inserting eq. (2.6) into eq. (2.5) and solving for steady state one obtains:

Y (t) =
e E(t)/m

2ωp(−iΓ + (ω2
o − ω2

p)/2ωp)
cos(kxa) . (2.7)The polarisation density an be de�ned as P (x, t) = ey(t) δ(x − xa)/A where δ isa Dira delta funtion and A is the avity ross-setion. Using de�nition (2.3) andde�ning a �marosopi� polarisation P(t) = (2/d)

∫ d/2

−d/2 dxP (x, t)cos(k, x), where ddenotes avity length, it is possible to obtain the following expression for the slowlyvarying amplitude:
P(t) = i

e2

(mωpV )

cos2(kxa)

(Γ − i∆a)
E(t) . (2.8)where ∆a is the frequeny detuning ωp − ωo.Substituting (2.8) into (2.4) one obtains33



˙E(t) = [−κ− γ(xa) + i∆c − iU(xa) ]E(t) + κEext , (2.9)where
γ(x) =

Γ

Γ2 + ∆2
a

g2
ocos

2(kx) , (2.10)
U(x) =

∆a

Γ2 + ∆2
a

g2
ocos

2(kx) . (2.11)The parameter γ(x) an be understood as the total rate at whih the atom satterslight and U(x) as the frequeny shift of the avity due to the interation with theatom. Here go = |e|/
√

(2V ǫom) is a measure of the atom-avity oupling strength.The dipole fore ating on the atom is given by
F (xa) = ∇[e y(xa, t)E(xa, t)], (2.12)so substituting (2.2), (2.6) and (2.7) into (2.12) produes

F (xa) = −∇
[

e2

2ωpm

∆a

Γ2
a + ∆2

a

E(t)cos2(kxa)

]

. (2.13)Introduing the e�etive pumping term η and rewriting (2.9) and (2.13) in terms ofa dimensionless parameter α, assoiated with the average avity photon number:
|α2| =

ǫo|E2|V
~ωp

(2.14)
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it is �nally possible to write the following set of equations for the atom-avity dy-namis:
dα

dt
= [−κ− γ(x) + i∆c − iU(x) ]α+ η (2.15)

dp

dt
= −~|α|2 d

dx
U(x) (2.16)

dx

dt
=

p

m
(2.17)Equation (2.15) desribes the time evolution of the �eld amplitude; here α is theomplex, dimensionless parameter whose absolute squared value |α|2 is assoiatedwith the average photon number, η haraterises the driving laser strength given bythe free-spae Rabi frequeny and κ is the total avity deay rate. The parameter

γ(x) = γ0 cos
2(kx) an be understood as the total rate at whih the atom satterslight where

γo =
Γ

Γ2 + ∆2
a

g2, (2.18)desribes the absorptive e�et of the atom as it broadens the resonane line of theavity.Equation (2.16) and (2.17) are the equations of motion of the atomi entre-of-mass, where x refers to the position of the atom and p to its momentum. U(x) =

U0 cos2(kx) is the frequeny shift of the avity due to the interation with thepartile, where
Uo =

∆a

Γ2 + ∆2
a

g2 (2.19)35



desribes the dispersive e�et of the atom as it shifts the resonane line of the avity.In order to understand the basi idea of the avity ooling mehanism let us onsidera massive point-like polarisable partile strongly oupled to a high �nesse optialavity pumped diretly along the avity axis (�g. 2.1). Depending on the on�gu-ration a laser �eld, whih an be pumped along the avity axis or perpendiularly,forms a standing wave avity mode to whih an atom is oupled. Beause of theeletri dipole moment the �eld detuned from any atomi transition exerts a foreon the partile and onsequently modi�es its momentum and position inside theavity.
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The detuning between the �eld and an atom (∆a) plays a signi�ant role in thewhole system dynamis. If ∆a < 0, we say the �eld is red detuned and the fore isdireted along the gradient of intensity so an atom is attrated to an antinode. Forblue detuning, ∆a > 0, the fore is direted against the gradient of intensity anda partile will be pushed towards a node. In turn, due to atom-�eld oupling thepartile's position strongly in�uenes the �eld amplitude.
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0.76κ, γ0 = 0.07κ, ∆c = 1.2κ (�gure adapted from Ref. [34℄)For a typial ooling regime, and assuming ∆a < 0, the maximum �eld amplitudewill be obtained when the partile sits at an antinode of a standing wave and willbe minimum when the partile sits at a node (�g. 2.2). For a partile with non-zeromomentum, beause of the �nite avity response time, the maximum �eld intensitywill be attained after the partile passed the minimum potential. Thus, for properlysaled values this atom-�eld ross-talk an be ontrolled in a way that the partilewill limb potential hills at times of higher intraavity intensity and run down at37



times of lower intraavity intensity. Over an entire yle the partile will lose itskineti energy and after being slowed it an be trapped in a single potential well(�g. 2.3),[34℄. More results from the numerial simulations of the partile model,inluding ooling rates for the ase of many partiles inside the avity will be shownin the next setions.
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2.2 Cavity Cooling Inluding Many Partiles - Par-tile ModelIn this setion, the model derived in setion 2.1 is extended to desribe the asewhere many partiles are oupled to the same avity mode, as shown in �g. 2.4.Beause of the presene of many atoms, the avity resonane shift is now due to thetotal phase shift indued by the position of all the atoms inside the avity [45℄.
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Figure 2.4: Cavity resonator with many partiles oupled to the light �eld. Theavity pumping rate, spontaneous loss rate and avity deay rate are determined bythe parameters η, Γ and κ respetivelySimilarly, the absorptive e�et is a funtion of the total sattering from eah of thepartiles separately. Hene equations (2.15) , (2.16) & (2.17) beome:
dα

dt
= [−κ− γo

∑

j

cos2(kxj) + i∆c − iUo
∑

j

cos2(kxj) ]α+ η (2.20)
dpj
dt

= −~Uo|α2| d
dx
cos2(kxj) (2.21)

dxj
dt

=
pj
m

(2.22)where the parameters α, κ, γ(x), U(x),∆c and η represent the same physial quan-tities as in a single atom on�guration (setion 2.1) and j = 1...N is the partile39



index.In the partile model the knowledge of the system at a given time requires infor-mation about the instantaneous position and momentum of eah of the partiles.This information in turn ontributes to the evolution of the total �eld intensity andphase as desribed by eq. (2.20). The whole idea is to use that interplay and �ndparameters for whih ooling an be obtained. The ooling mehanism for the aseof many partiles in the avity is similar to the single atom ase. For red partile-�eld detuning U0 < 0 the partiles are drawn towards the �eld intensity maxima atthe mode antinodes, as explained earlier in setion 1.5. This inreases their averageoupling to the �eld and thus enlarges the e�etive refrative index of the loudshifting the avity resonane towards a lower frequeny. Under suitable operatingonditions, when the pump frequeny is also below the avity resonane, suh a shiftdereases the pump-avity frequeny mismath and leads to an inrease in the avityphoton number. In turn this deepens the optial potential and further on�nes theloud near the antinodes.In reality the position and momentum distribution in an atomi loud is fully ran-dom. In the avity pump on�guration the external �eld does not provide anyorrelation between the motion of the atoms so in priniple the ross-talk betweenpartiles should inrease the trapping time. Numerial solutions of eqs. (2.20) -(2.22) provide information about ertain parameters e.q. number of partiles orpump strength that an in�uene the ooling of the sample.
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2.2.1 Salability of the Cavity Pump Con�gurationNumerial simulations using the lassial model (eqs. (2.20 - 2.22)) predit fasterooling for small number of partiles and slower ooling for larger ensembles. It isimportant to mention that this model does not inlude spontaneous emission and anyspread of the atomi momentum is due to interation with the lassial avity �eldonly. The avity pump on�guration is haraterised by strong salability [45, 46℄.Sine U0 is the avity frequeny shift due to the interation with the atom, heneinreasing the number of partiles by a fator r, dividing the interation potential
U0 by r and inreasing the pump strength by √

r should in priniple lead to similarresults.In the following example this salability law has been applied to initial parameters(N = 1 × 103,η = 70.0κ, U0 = −0.004κ) and ooling has been demonstrated for
5 × 103, 1 × 104, 1 × 105 and , 1 × 106 partiles.
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Figure 2.5: Cooling rate (onstant ooling parameter) as a funtion of number ofpartiles (N). The linear derease of the ooling rate with atom number is learlyvisible here.
As shown in �g. 2.5 the ooling time sales linearly with respet to the number ofatoms inside the avity and inreases if the number of atoms inreases.
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Note, the saled parameters found for N = 1 × 106 atoms
η = 2300.0 κ
∆a = -125.0 κ
Γ = 3.25 κ
g0 = 0.02 κ
σ = 28.0 ~k

orrespond to those being used in urrent avity ooling experiments at UCL (Uni-versity College of London), where the above parameters orrespond to the real ex-perimental parameters:avity linewidth: κ = 1.6×106 Hzlaser wavelength: λ = 852.4 ×10−9 mCs deay rate: Γlw = 5.23 ×106 Hzoupling onstant: g0 = 35.4 ×103 HzCs mass: m = 2.21 ×10−25 kgInitial temperature: Tini = 160.0 ×10−6 Katom-avity detuning: ∆A = -200 ×106 Hzlaser power: P ≤ 0.1 W
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2.3 Validity of the Classial Model of Cavity Cool-ingIn previous studies of avity ooling [27, 37, 38, 39℄, whih assumed a single atomor a small number of atoms and a avity mode ontaining few photons, the atomimomentum spread or temperature is mainly due to �utuations in the fores atingon the atoms and is limited by the avity linewidth. In this thesis, we onsiderases where the number of atoms is very large (typially N > 105 in e.g. the UCLexperiments) and onsequently the avity �elds are relatively intense and ontaina large number of photons (i.e. |α|2). In these ases the behaviour of the systemwill be essentially lassial and the temperature/momentum spread of the atomiensemble will be mainly due to the relatively large height of the optial potentialenergy assoiated with the avity mode amplitude [47, 48℄. In what follows thisqualitative argument for the validity of the lassial model is investigated in moredetail and a ondition for its validity is derived.Starting from the expression for the fore on an atom in the avity (eq. 2.21)
F = ~kU0|α|2sin(2kx) (2.23)then it is possible to derive a position-dependent potential energy

V (x) = −
∫

Fdx =
1

2
~U0|α|2cos(2kx) (2.24)The temperature assoiated with this potential energy an be dedued by onsideringthe fat that the atoms trapped in the potential will have a maximum kineti energyof 44



p2

2m
=

1

2
Vmax(x) = ~U0|α|2 (2.25)so the variane in atomi momentum will be

〈p2〉 ∼ m~U0|α|2 (2.26)and the assoiated lassial momentum spread of the ensemble will be
σp =

√

〈p2〉 =
√

m~U0|α|. (2.27)For omparison the kineti energy of individual atoms due to stohasti �utuationsin the dipole fore has been shown to be [37, 49℄
p2

2m
∼ ~κ (2.28)so

p2 ∼ 2m~κ (2.29)with a orresponding momentum spread
σp ∼

√
2m~κ (2.30)Consequently, the ratio of the spreads an be written as

σp(int)

σp(fluc)
=

√
m~U0|α|√
m~κ

=

√

1

2

U0

κ
|α| (2.31)45



For a avity pumped lose to resonane, the mode amplitude |α| will be
|α| ∼ η

κ
= η̄,

U0

κ
= Ū0 (2.32)so in terms of the parameters de�ned in setion 2.1, the ratio of the lassial inter-ation spread and the quantum mehanial ��utuations� spread is

σp(int)

σp(fluc)
=

√

1

2
Ū0η̄ (2.33)Consequently, a lassial model whih neglets stohasti �utuations in the optialfores should be a good approximation in the limit where σintp ≫ σflucp i.e.

1

2
Ū0η̄

2 ≫ 1 (2.34)whih in real dimensional units an be written as
1

2

g2
0

∆a

η

κ3
≫ 1 (2.35)whih implies strong-atom �eld oupling and large pump photon numbers as wouldbe expeted from a lassial limit.The validity of this lassial limit an be demonstrated by a omparison of the las-sial model (eqs. 2.20 and 2.22) where the momentum di�usion due to �utuatingoptial fores is negleted, with the orresponding equations whih inlude momen-tum di�usion arising as a result of stohasti �utuations in the optial dipole forei.e.
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dα

dt
= [−κ− γo

∑

j

cos2(kxj) + i∆c − iUo
∑

j

cos2(kxj) ]α+ η (2.36)
dpj
dt

= −~Uo|α2| d
dx
cos2(kxj) + ξ(t) (2.37)

dxj
dt

=
pj
m

(2.38)where ξ(t) is a Gaussian random variable with zero mean and variane D suh that
ξ(t) = 0 and ξ(t)ξ(t− T ) = 2Dδ(T ) where the overbar indiates a time average[50, 51℄. The e�et of the random part of the fore in eq. (2.37), ξ(t), is therefore toause momentum di�usion suh that p2 ≃ 2Dt. The momentum di�usion oe�ient,D is de�ned as [39, 47℄

D = 2γ0|α|2
[

~
d

dx
g(x)

]2

+ ~
2k2ū2g(x)2 (2.39)where g(x) is the avity mode funtion and k2ū2 is the mean value of the reoilmomentum projeted onto the avity axis.
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Figure 2.6: Comparison of the time evolution of the �eld intensity with and withoutmomentum di�usion due to �utuating optial fores. The parameters used are:
N = 100,∆a = −40κ, U0 = −2.5 × 10−2κ, γ0 = 6.25 × 10−5κ, η = 15κFigures 2.6 and 2.7 show a omparison of the lassial model de�ned by eqs. (2.20and 2.22), where momentum di�usion is negleted, and its quantum ounterparteqs. (2.36 and 2.38) where momentum di�usion is inluded.
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Figure 2.7: Comparison of the time evolution of the partile's momentum spreadwith and without momentum di�usion due to �utuating optial fores. The param-eters used are: N = 100,∆a = −40κ, U0 = −2.5×10−2κ, γ0 = 6.25×10−5κ, η = 15κThe parameters used in �gures 2.6 and 2.7 are: N = 100,∆a = −40κ, U0 = −2.5 ×

10−2κ, γ0 = 6.25 × 10−5κ, η = 15κ so the ondition derived in eq. (2.34) for thevalidity of the lassial model, i.e. neglets of quantum mehanial momentumdi�usion, is satis�ed. It an be seen from �gures 2.6 and 2.7 that the onditionis valid as the behaviour of the momentum spread and the �eld intensity is notsigni�antly a�eted by the inlusion of momentum di�usion.
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2.4 Vlasov Model of the Many Atom-Cavity SystemThe partile model is a powerful tool for simulating a limited number of partiles. Forlarger ensembles the requirement of information about the position and momentumof all the atoms at all times makes the numerial simulations more time-onsuming.An alternative method to simulate systems involving large numbers of atoms orpartiles is to use a distribution funtion f(x,p, t).In the absene of ollisions an ensemble of partiles an be desribed by a distributionfuntion f(x,p, t) in six-dimensional phase spae. Liouville's theorem
df

dt
= 0 (2.40)asserts that the phase-spae distribution funtion is onstant along the trajetoriesof the system - that is, the density of system points in the viinity of a given systempoint travelling through phase-spae is onstant with time. For a large number ofpartiles, moving under the in�uene of an eletromagneti �eld, equation (2.40) isalled the Vlasov equation [52℄.The Vlasov equation desribing the evolution of 1-D distribution funtion f(x, p, t),for a ollisionless gas of partiles is:

df

dt
=
∂f

∂t
+ ẋ

∂f

∂x
+ ṗ

∂f

∂p
= 0 (2.41)where · ≡ ∂

∂t
and f(x, p, t) is normalised suh that:

∫ ∫

f(x, p, t) dx dp = 1.
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For a gas of N atoms, equations (2.20) - (2.22) an be written as
dα

dt
=
[

−κ− γ̄ + i∆c − iŪ
]

α+ η (2.42)
dpj
dt

= ~kU0 |α|2 sin(2kxj) (2.43)
dxj
dt

=
pj
m

(2.44)where the sum over theN atoms has been replaed with the overbar (...) ≡∑N
j=1(...).Using equations (2.43) and (2.44) the Vlasov equation, eq. (2.41), an be written as

∂f

∂t
+
p

m

∂f

∂x
+ ~kU0|α|2 sin(2kx)

∂f(x, p, t)

∂p
= 0 (2.45)and onsequently

∂f

∂t
+
p

m

∂f

∂x
− i

~kU0

2
|α|2

(

e2ikx − e−2ikx
) ∂f(x, p, t)

∂p
= 0. (2.46)The spatial periodiity of the fores on the atoms allows us to assume that the atomidistribution funtion is also spatially periodi with period λ/2. Consequently, wean expand f as a Fourier series suh that

f(x, p, t) =
2

λ

∞
∑

n=−∞
fn(p, t)e

2inkz where f−n = f ∗
n (2.47)and rewrite the Vlasov equation in eq. (2.46) as

∂fn
∂t

+ 2ink
p

m
fn − i

~kU0

2
|α|2

(

∂fn−1

∂p
− ∂fn+1

∂p

)

= 0. (2.48)51



The wave equation, (2.42), an be written in terms of the Fourier series (eq. (2.47))using
dα

dt
= (−κ+ i∆c)α− (γ0 + iU0) cos2(kx)α+ η

= (−κ+ i∆c)α− (γ0 + iU0)

2
(1 + cos(2kx))α+ η

=

(

−κ+ i∆c −
N

2
(γ0 + iU0)

)

α− 1

4
(γ0 + iU0) (e2ikx + e−2ikx)α+ ηso that replaing

(...) ≡ N

∫ ∞

−∞

∫ λ/2

0

f(x, p, t)(...) dx dpprodues
dα

dt
=

(

−κ+ i∆c −
Nγ0

2
− i

NU0

2

)

α− N

4
(γ0 + iU0)

∫ ∞

−∞
(f−1 + f1) dp α + η.(2.49)It is useful, for numerial simulations, to de�ne the dimensionless variables p̄ = p

~k, t̄ = κt, γ̄0 = γ0
κ
, Ū0 = U0

κ
, ω̄r = 2~k2

mκ
, η̄ = η

κ
and f̄ = ~kf , so that equations (2.48)and (2.49) an be rewritten in the dimensionless form

∂f̄n
∂t̄

= −inω̄rp̄f̄n +
i

2
Ū0|α|2

(

∂f̄n−1

∂p̄
− ∂f̄n+1

∂p̄

) (2.50)
dα

dt̄
=

(

−1 + i∆̄c −
Nγ̄0

2
− i

NŪ0

2

)

α− N(γ̄0 + iŪ0)

4

∫ ∞

−∞

(

f̄−1 + f̄1

)

dp̄ α + η̄(2.51)The Vlasov model equations (2.50) - (2.51) are ompletely equivalent to the partile52



model equations (2.20) - (2.22) derived earlier. In the following setion numerialsolution of both models will be presented. It will be shown that using the sameinitial onditions and parameters both models display exellent agreement [53℄.
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2.5 Comparison Between the Partile Model andthe Vlasov Model (Cavity-Pump Con�guration)The time evolution of the �eld intensity and the partiles average momentum forthe Vlasov and partile model are now investigated for the ase of the avity pumpon�guration (�g. 2.4).Figure 2.8 shows the time evolution of the �eld intensity for the avity-pump on�g-uration, as alulated from the partile model (eqs. (2.20) - (2.22)) and the Vlasovmodel (eqs. (2.50) - (2.51)). It an be seen from �g. 2.8 that both models displayrapid saturation of the �eld at (κt ≈ 5) and small osillations at longer times.
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Figure 2.8: Cavity pump on�guration: omparison of the �eld intensity evolutionof the Vlasov (blue urve) and the Partile model (red urve). Saled parameters:
N = 2 × 105, ∆c = −1.5κ, η = 1500κ, U0 = −5.0 × 10−6κ
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In addition to agreement in the evolution of the avity �eld both the partile andVlasov models also give almost idential results for the evolution of averaged quan-tities of the atomi sample like the average momentum and momentum spread. Fordemonstration purposes the initial mean veloity of the partiles has been hosen tobe nonzero, so that 〈p〉 = 10~k with a spread of σ = 5~k. The damped osillationsof the average momentum shown in �g. 2.9 are due to the trapping of the atoms inthe potential wells formed by the intraavity standing wave �eld. It is worth men-tioning that despite the average veloity derease, trapped partiles initially gainsome kineti energy when falling towards the potential minima, so that the veloityspread initially inreases in time (�g. 2.10).
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The exellent agreement between the two models and the validity of the Vlasovapproah is learly demonstrated by �gs. 2.8 - 2.10.
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Figure 2.9: Cavity pump on�guration: omparison of the mean momentum evolu-tion of the Vlasov (blue urve) and the Partile model (red urve). Saled parame-ters: N = 2 × 105, ∆c = −1.5κ, η = 1500κ, U0 = −5.0 × 10−6κ, 〈p0〉 = 10~k
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Figure 2.10: Cavity pump on�guration: omparison of the momentum spread evo-lution of the Vlasov (blue urve) and the Partile model (red urve). Saled pa-rameters: N = 2 × 105, ∆c = −1.5κ, η = 1500κ, U0 = −5.0 × 10−6κ, 〈p0〉 = 10~k,
σ = 5~kThe good agreement between the two models an be further demonstrated by om-parison of phase spae evolution in both the partile model and the Vlasov model.A simulation of the phase spae evolution for the partile model is presented in�gure 2.11. Initially the partiles are uniformly distributed over one wavelength ofthe wave and normally distributed in momentum spae with a Gaussian momentumdistribution. Depending on a partile's position in the optial potential it an beaelerated or deelerated. Partiles whih do not have enough kineti energy toesape the potential are trapped in the single potential well (κt = 10, κt = 15).The half-wavelength periodiity of the potential �eld in this on�guration is learlyvisible.
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(a) κt = 0 (b) κt = 5

() κt = 10 (d) κt = 15Figure 2.11: Time evolution of phase spae alulated from a numerial simulationof the partile model, eqs. (2.20) - (2.22). Saled parameters:: N = 2 × 105, ∆c =
−1.5κ, η = 1500κ, U0 = −5.0 × 10−6κ, 〈p0〉 = 10~k, σ = 5~kFigure 2.12 shows the time evolution of the momentum distribution funtion f(x, p, t)for the Vlasov model. It shows that the same behaviour is also demonstrated by theVlasov model. Here equations (2.50) - (2.51) have been solved numerially with thesame parameters as previously used in the partile model (�g. 2.11).
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(a) κt = 0 (b) κt = 5

() κt = 10 (d) κt = 15Figure 2.12: Time evolution of the momentum distribution funtion f(x, p, t) froma numerial simulation of the Vlasov model, eqs. (2.50) - (2.51). Parameters usedare the same as those in �g. 2.11 i.e N = 2 × 105, ∆c = −1.5κ, η = 1500κ,
U0 = −5.0 × 10−6κ, 〈p0〉 = 10~k, σ = 5~kNumerially, the agreement of the Vlasov model with the partile model dependsmainly on a su�ient number of Fourier harmonis fn used to represent the distribu-tion funtion in the expansion eq. (2.47) and a su�ient number of disrete pointsused to simulate the momentum distribution. In this ase the number of spatialharmonis was hosen to be 30 and the number of momentum points was equal 100.
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2.6 Numerial Methods for the Partile Model andthe Vlasov ModelThe partile model is omposed of the (2N + 1) oupled di�erential equations (2.20)- (2.22) hene the simulation of this model is based on the simultaneous numerialsolution of eah of the equations. Sine this is a typial initial value problem the4th order Runge-Kutta method, ommonly used in similar models, has been appliedhere. The 4th order Runge-Kutta method makes an exellent ompromise betweenthe speed and the auray of numerial alulations [54℄. In ontrast, the Vlasovmodel is a set of two partial di�erential equations (2.50) - (2.51). From the varietyof numerial methods for solving partial di�erential equations, the Finite Di�ereneMethod was hosen. More spei�ally the impliit Crank-Niholson sheme was useddue to its simpliity and good auray.The odes for both partile and the Vlasov methods were written using Fortran 90.This general-purpose programming language is espeially suited to high-performanenumeri omputation and sienti� omputing. In order to further improve thespeed and performane of the alulations some of the odes were parallelised withthe memory shared multiproessing method also known as OpenMP. More detailsof the numerial method for solving the Vlasov model an be found in Appendix A.
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Chapter 3Atom-Pump Con�guration
In the previous hapter, the optial avity was assumed to be pumped diretly viaone of the avity mirrors. In this hapter an alternative pumping on�guration isonsidered, where atoms are illuminated by the pump �eld whih propagates trans-versely into the avity (�g. 3.1). This results in an atomi-position e�etive pumpingterm, whih is responsible for the presene of an additional fore ating on the atoms.This fore, dependent on �eld intensity, originates from the oherent redistributionof photons between the pump and the �eld mode and leads to ooperative ationand self-organization of the atoms in the avity [39, 55, 56℄.3.1 Classial Derivation of Atom-Pump Con�gura-tionConsider a system onsisting of an optial avity ontaining atoms illuminated bythe �eld being sent transversely into the avity (�g. 3.1).The external �eld indues a dipole moment in the atom whih in turn ontributesto the eletri �eld as a driving term in the wave equation

− ∂2

∂x2
E(x, t) +

1

c2
∂2

∂t2
E(x, t) + µoσ

∂

∂t
E(x, t) = −µo

∂2

∂t2
P (x, t) (3.1)where σ is the ondutivity of the avity mirrors, µo is the magneti permeability61
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Figure 3.1: Shemati representation of an atom-pumped resonator. The avitypumping rate, spontaneous loss rate and avity deay rate are determined by theparameters η, Γ and κ respetivelyand c is the speed of light.The eletri �elds (pump and avity) and polarisation are de�ned as follows
Ep(y, t) = ξpe

−iωpt up(y) + c.c. (3.2)
Ec(x, t) = ξce

−iωct uc(x) + c.c. (3.3)
P (x, t) = Pe−iωpt + c.c. (3.4)where uc(x) is the intraavity mode funtion cos(kx) with wave number k. Substi-tuting (3.2) - (3.4) into (3.1), �nding the derivatives and assuming that ξ and P areslowly varying amplitudes then eq. (3.1) an be redued to
ξ̇c + (κ− i∆c) ξc ≈

iωpP
2ǫo

. (3.5)62



where ∆c is the detuning between the pumping �eld and avity frequeny (∆c =

ωp − ωc).The polarisation has a ontribution from both the avity and transverse pump �eldsand an be written as
P (x, t) = αpol [ξcuc(x) + ξpup(y)] e

−iωt δ(x− xa)/A (3.6)where δ(x − xa) is a Dira delta funtion and A is the avity ross-setion. αpol isan eletroni polarisability de�ned as [57℄
αpol =

e2

(2mωp)(−iΓ + (ω2
o − ω2

p))/2ωp
(3.7)or

αpol =
e2

(2mωp)(−iΓ − ∆a)
. (3.8)where we have used the approximation (ω2

o − ω2
p)/2ωp = (ωo − ωp)(ωo + ωp)/2ωp ≈

−∆a. Using (3.4), (3.6) and with P = 2
d

∫ d/2

−d/2 dxP (x, t)cos(kx), where d denotes theavity length, then
P =

αpol
V

[ξcuc(x) + ξpup(y)] cos(kx) (3.9)so
P = i

e2

(2mωpV )

cos2(kxa)

(Γ − i∆a)
ξc + i

e2

(2mωpV )

cos(kx) up(y)

(Γ − i∆a)
ξp (3.10)Inserting (3.10) into (3.5) the latter beomes63



ξ̇c = − e2

(2mV ǫo)

cos2(kx)

(Γ − i∆a)
ξc − (κ− i∆c) ξc −

e2

(2mV ǫo)

cos(kx) up(y)

(Γ − i∆a)
ξp (3.11)whih an be written in terms of the position dependent sattering rate γ(x) andfrequeny shift U(x), de�ned as

γ(x) =
Γ

Γ2 + ∆2
a

g2
ocos

2(kx) = γocos
2(kx), (3.12)and

U(x) =
∆a

Γ2 + ∆2
a

g2
ocos

2(kx) = Uocos
2(kx) (3.13)respetively, where go is the avity-atom oupling strength, i.e

go =

√

e2

(2mV ǫo)
(3.14)Consequently, eq. (3.11) an be written as

ξ̇c = [−κ− γ(x) + i∆c − iU(x) ]ξc −
g2
ocos(kx) up(y)

(Γ − i∆a)
ξp. (3.15)It is useful to rewrite eq. (3.15) in terms of a dimensionless variable α, whose squaredabsolute value is assoiated with the average avity photon number:

|α2| =
ǫo|ξ2|V

~ωp
(3.16)
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so that
ξc =

√

ǫoV

~ωp
α, ξp =

√

ǫoV

~ωp
αp (3.17)and �nally after substitution

α̇ = [−κ− γ(x) + i∆c − iU(x) ]α− ηeffup(y)cos(kx) (3.18)In the above we have de�ned the laser pumping rate η = goαp and e�etive pumpingstrength ηeff = ηgo/(Γ − i∆a).As was demonstrated in setion 2.1 the total fore ating on an atom is given by
F = ~∇(~d · ~E). (3.19)Assuming that both avity and pump �elds are polarised in the z diretion

Ec(x, t) = (ξce
−iωct uc(x) + c.c.)ẑ (3.20)

Ep(y, t) = (ξpe
−iωpt up(y) + c.c.)ẑ (3.21)we have

F =

(

d · ∂E
∂x

,d · ∂E
∂y

,d · ∂E
∂z

) (3.22)so the fore in the ”x” diretion is
Fx = d · dE

dx
=

(

dx∂Ex
∂x

+
dy∂Ey
∂x

+
dz∂Ez
∂x

)

=
dz∂Ez
∂x

(3.23)65



De�ning the eletron dipole moment
dz = αpolE =

{

αpol [ξcuc(x) + ξpup(y)] e
−iωpt + c.c.

} (3.24)and the derivative of the total eletri �eld
∂Ez
∂x

= ξc
duc(x)

dx
e−iωpt + ξ∗c

duc(x)

dx
eiωpt (3.25)into (3.23) gives

Fx =
|ξc|2
2

du2
c(x)

dx
(αpol + α∗

pol) +

(

αpolξpξ
∗
xup(y)

duc(x)

dx
+ c.c.

) (3.26)where the fast osillating terms (e−2iωpt, e2iωpt) have been dropped.For larity eah term on the RHS of eq. (3.26) will now be onsidered individually.The polarizability αpol is de�ned in eq. (3.8) so it an be rewritten in the form
αpol =

e2(−∆a + iΓ)

(2mωp)(∆2
a + Γ2)

. (3.27)Writing (3.26) in the form Fx = Fx1
+ Fx2

then substituting αpol into (3.26) gives
(αpol + α∗

pol) = − e2

mωp

∆a

∆2
a + Γ2

(3.28)so the �rst term of (3.26) i.e. Fx1
is

Fx1
= −|ξc|2

[

e2

2mωp

∆a

∆2
a + Γ2

]

du2
c(x)

dx
. (3.29)
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Multiplying and dividing (3.29) by V , ǫo and ~ and introduing Uo, g2
o and |α|2 (eqs.(3.13) (3.14) and (3.16) respetively) then it is possible to write

Fx1
= −~Uo|α|2

du2
c(x)

dx
(3.30)The seond term of (3.26) an be written as

Fx2
= up(y)

duc(x)

dx
(αpolξ

∗
c ξp + c.c.) (3.31)and one an use the dimensionless variable, α, previously de�ned, so that

α =

√

ǫoV

~ωp
ξ αp =

√

ǫoV

~ωp
ξp (3.32)

ξc =

√

~ωc
ǫoV

αc ξ∗c =

√

~ωc
ǫoV

α∗
c (3.33)

ξp =

√

~ωp
ǫoV

αp ξ∗p =

√

~ωp
ǫoV

α∗
p (3.34)and onsequently

Fx2
=

~ωp
ǫoV

up(y)
duc(x)

dx
(αpolα

∗αp + c.c.) (3.35)or alternatively
Fx2

= i~up(y)
duc(x)

dx

(

e2

(2mǫoV )(Γ − i∆a)
αpα

∗ + c.c.

)

. (3.36)67



Introduing the laser pumping rate, η = goαp, and e�etive pumping term ηeff =

ηgo/(Γ − i∆a) gives the �nal expression for Fx2
:

Fx2
= −i~up(y)

duc(x)

dx

(

η∗effα− ηeffα
∗) . (3.37)Combining both parts of the total fore (3.30) and (3.37) and realling equation(3.18) we obtain self-onsistent set of equations whih desribe the dynamis of the�eld amplitude α and the entre of mass motion of N dipoles along the avity axisx, [39℄:

α̇ = i

[

∆c − Uo
∑

j

cos2(kxj)

]

α

−
[

κ+ γo
∑

j

cos2(kxj)

]

α− ηeff
∑

j

cos(kxj) (3.38)
ṗj = −~Uo

(

|α2|
) d

dxj
cos2(kxj)

− i~
(

η∗effα− ηeffα
∗) d

dxj
cos(kxj) (3.39)

ẋj =
pj
m

(3.40)In the following setion more detailed features of the atom-pump partile modelwill be demonstrated. Moreover, analogously to the avity pump on�guration,an alternative Vlasov model of the atom-pump on�guration will be derived andnumerial simulations from both models will be ompared.
68



3.2 Partile Model of Atom-Pumped Con�gurationUsing (3.38 - 3.40) derived in setion 3.1, it is now possible to investigate the dy-namial behaviour of an atom-pumped avity ontaining a gas of N atoms. Theparameters in (3.38 - 3.40) desribe the same physial quantities as in the avitypump model desribed in setion 2.2, in eqs. (2.20) - (2.22). Note that the maindi�erene between the �eld evolution equations in eah on�guration (eq. 2.20 andeq. 3.38) is in the pumping term. For atom-pumping, eq. (3.38) is desribed by
ηeff

∑

j cos(kxj) whih is a position dependent pumping term proportional to
ηeff =

ηgo
−i∆a + Γ

, (3.41)where η is the pumping strength, given by the maximum free-spae Rabi frequeny.The fore on eah atom in the atom-pumped on�guration, eq. (3.39) ontains asum of two terms. The �rst term orresponds to a fore arising from an optialdipole potential ∝ cos2(kx), whih has potential minima at kx = nπ. The seondterm in (3.39) originates from oherent redistribution of photons between the pumpand the �eld mode. This seond fore is proportional to cos(kx) and has oppositesigns at kx = 2nπ and kx = (2n + 1)π. If for instane momentarily there aremore atoms in even wells so that ∑ cos(kx) > 0 and the detuning is suh that
∆c − Uo

∑

cos2(kxj) < 0, then the osine potential has wells at kx = 2nπ thatdeepen the cos2(kx) optial lattie and has hills at kx = (2n + 1)π that redueattrative wells at cos2(kx). During the ooling proess those two fores ompetewith eah other and self-amplify until all the atoms are in the same even or odd wells.One the atoms redistribute the onstrutive interferene of the sattered light givesrise to the stationary �eld intensity and self-organization is further stabilised. Inother words the self-organisation of the atoms in the avity an be understood as a69



bunhing of the atoms on the sale of the optial wavelength (or potential), givingrise to oherent sattering [39℄.Self-organisation in the atom-pump model strongly depends on the number of atomsinside the avity. It an be seen from �g. 3.2 that for low number of atoms the�eld does not build up and self-organisation annot be established. For a su�ientnumber of atoms generated photons build up the �eld whih an be reognised as agrowth of the avity �eld intensity.
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Figure 3.2: Steady-state intensity |α|2 as a funtion of number of atoms N for theatom-pump on�guration. Quadrati dependene of the avity mode intensity onthe atom number demonstrates the ooperative e�et. The parameters used are:
U0 = −1.0 × 10−3κ, γ0 = 1.0 × 10−6κ, η = 500κ.
Strong self-organisation of the atoms an, in fat, lead to faster trapping and oolingof the atomi loud. Sine the number of atoms inside the avity plays an importantrole in this proess it an be seen that, for given parameters, inreasing the number70



of atoms (N) an inrease the ooling rate.
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Figure 3.3: Cooling rate vs. number of partiles N for the atom-pump on�guration.The parameters used are: U0 = −1.0 × 10−3κ, γ0 = 1.0 × 10−6κ, η = 500κ.
The avity ooling rates and their dependene on the number of atoms inside theavity are presented in �g. 3.3 for the atom-pump on�guration. Comparison of�g. 3.3 with the orresponding graph for avity-pump on�guration (�g. 2.5) showsa dramati di�erene in the dependene of the ooling rates on N for eah on�gu-rations.The self-organisation of the atoms in the atom-pumped avity on�guration willbe further demonstrated in the following setion where the partile model will beompared with the alternative momentum distribution (Vlasov) model and the timeevolution of the phase spae will be presented.71



3.3 Vlasov ModelIt is possible to follow the same proedure as was arried out in the ase of theavity pump on�guration (setion 2.4) to �nd the Vlasov model for a gas of atomsin a avity being pumped o�-axis (�g. 3.1). For a gas of N atoms equations (3.38 -3.40) beome
dα

dt
=
[

−κ− γ̄ + i∆c − iŪ
]

α+ η̄eff (3.42)
dpj
dt

= ~kUo|α2| sin(2kxj) + i ~k
(

η∗effα− ηeffα
∗) sin(kxj) (3.43)

dxj
dt

=
pj
m

(3.44)where the sum over theN atoms has been replaed with the overbar (...) ≡∑N
j=1(...).The Vlasov equation for the distribution funtion f(x, p, t) of the atomi gas is

df

dt
=
∂f

∂t
+ ẋ

∂f

∂x
+ ṗ

∂f

∂p
= 0 (3.45)whih with equations (3.43) and (3.44) an be rewritten in the form

∂f

∂t
+
p

m

∂f

∂x
+ ~kU0|α|2 sin(2kx)

∂f(x, p, t)

∂p
+ i ~k

(

η∗effα− ηeffα
∗)×

× sin(kx)
∂f(x, p, t)

∂p
= 0 (3.46)so onsequently 72



∂f

∂t
+
p

m

∂f

∂x
− i

~kU0

2
|α|2
(

e2ikx − e−2ikx
)∂f(x, p, t)

∂p
+

~k

2

(

η∗effα− ηeffα
∗)×

×
(

eikx − e−ikx
)∂f(x, p, t)

∂p
= 0.(3.47)It an again be assumed that the atomi distribution funtion f(x, p, t) is spatiallyperiodi in spae (on this oasion with period λ), whih allows f to be written asa Fourier series suh that

f =
1

λ

∞
∑

n=−∞
fne

inkz , where f−n = f ∗
nand Vlasov equation in eq. (3.47) an be expressed as

∂fn
∂t

+ ink
p

m
fn −

i

2
~kU0|α|2

(

∂fn−2

∂p
− ∂fn+2

∂p

)

+
1

2
~k
(

η∗effα− ηeffα
∗)×

×
(

∂fn−1

∂p
− ∂fn+1

∂p

)

= 0. (3.48)Similarly, the wave equation, eq.( 3.42), an be written as
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dα

dt
= (−κ+ i∆c)α− (γ0 + iU0) cos2(kx)α− ηeffcos(kx)

= (−κ+ i∆c)α− (γ0 + iU0)

2
(1 + cos(2kx))α− ηeffcos(kx)

=

(

−κ+ i∆c −
1

2
(γ0 + iU0)

)

α− 1

4
(γ0 + iU0) (e2ikx + e−2ikx)α−

− 1

2
ηeff (eikx + e−ikx) (3.49)

where the overbar (...) ≡∑N
j=1(...) represents a sum over the atoms. Rewriting thissum in terms of the distribution funtion f

(...) ≡ N

∫ ∞

−∞

∫ λ

0

f(x, p, t)(...) dx dpthen (3.49) beomes
dα

dt
=

(

−κ+ i∆c −
Nγ0

2
− i

NU0

2

)

α− N

4
(γ0 + iU0)

∫ ∞

−∞
(f−2 + f2) dp α−

N

2
ηeff

∫ ∞

−∞
(f−1 + f1) dp(3.50)De�ning the dimensionless variables p̄ = p

~k
, t̄ = κt, γ̄0 = γ0

κ
, Ū0 = U0

κ
, ω̄r = 2~k2

mκ
,

η̄ = η
κ
and f̄ = ~kf , then eq. (3.48) and (3.50) an be rewritten in the dimensionlessform
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∂f̄n
∂t̄

= −1

2
inω̄rp̄f̄n +

i

2
Ū0|α|2

(

∂f̄n−2

∂p̄
− ∂f̄n+2

∂p̄

)

− 1

2

(

η∗effα− ηeffα
∗)×

×
(

∂f̄n−1

∂p̄
− ∂f̄n+1

∂p̄

) (3.51)
dα

dt̄
=

(

−1 + i∆̄c −
Nγ̄0

2
− i

NŪ0

2

)

α− N(γ̄0 + iŪ0)

4

∫ ∞

−∞

(

f̄−2 + f̄2

)

dp̄ α−

N

2
η̄eff

∫ ∞

−∞

(

f̄−1 + f̄1

)

dp̄ (3.52)The Vlasov equations for the atom-pump on�guration eqs. (3.51 - 3.52) are om-pletely equivalent to the partile model equations (3.38 - 3.40) derived in setion3.1 and, as will be shown in the following setion, both models are in exellentagreement [53℄.
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3.4 Comparison Between the Partile Model andthe Vlasov Model (Atom-Pump Con�guration)In this setion, numerial simulations of both the partile model and the Vlasovmodel are arried out for the ase of the atom-pump on�guration.A omparison between evolution of the �eld intensity from the partile model andthe Vlasov model is shown in �g. 3.4. In ontrast to the avity pump on�guration,where the �eld intensity indiated almost instantaneous saturation (�g. 2.8), hereboth models display a slow saturation time after whih the �eld osillates. Ashas been mentioned in setion 3.2 this is due to fat that the �eld builds up dueto the sattering of the �eld from small initial density �utuations. Initially thegrowth of the �eld is slow as the randomly positioned atoms satter the pump �eldinoherently. However due to the self-organisation or bunhing of the atoms underthe ation of the �elds, the sattering of the pump beomes more oherent and theampli�ation of the �eld muh more rapid, leading to the exponential ampli�ationshown in �g. 3.4
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Figure 3.4: Atom-pump on�guration: omparison of the �eld intensity evolutionusing the Vlasov model (blue urve) and the Partile model (red urve). Saledparameters: N = 2 × 105, U0 = −5.0 × 10−6κ, ∆c = −2.5κ, η = 10κ.In addition to the exellent agreement that was shown in the �eld intensity evolutionbetween the partile model and the Vlasov model (�g. 3.4) both models show almostidential results when omparing the average momentum evolution (�g. 3.5) and themomentum spread evolution (�g. 3.6).
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Figure 3.5: Comparison of the mean momentum evolution of 2× 105 partiles usingthe Vlasov model (blue urve) and the Partile model (red urve) (atom-pumpon�guration). The other parameters used are: U0 = −5.0 × 10−6κ, ∆c = −2.5κ,
η = 10κ.Despite the fat that the atoms are trapped in the potential wells whih an be seenas an osillation of the average momentum shown in �gure 3.5 the partiles underthe in�uene of the strong �eld still osillate quikly in the potentials and hene thegrowth of the momentum spread an be observed (�g. 3.6).
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Figure 3.6: Comparison of the momentum spread evolution using the Vlasov (blueurve) and the Partile model (red urve). Saled parameters: 2 × 105 partiles,
U0 = −5.0 × 10−6κ, ∆c = −2.5κ, η = 10κ.The proess of self-organisation of atoms inside the avity is learly visible in �gure3.7, showing the phase spae evolution as alulated using the partile model (3.38- 3.40). Initially the partiles are uniformly distributed over one wavelength ofthe wave and normally distributed in momentum spae (t=0). Finally, however,more partiles are loalised in the even than odd wells whih on�rms the di�erentstruture of the potential �eld in this on�guration (t=60) (ompare the phase spaeevolution for the ase of avity pump on�guration shown in �g. 2.11). As mentionedin setion 3.2 this is due to the fat that there are two di�erent potentials in theatom-pump on�guration. The potentials ompete with eah other and self-amplifyuntil all the atoms are in the same even or odd wells.
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(a) κt = 0 (b) κt = 45

() κt = 50 (d) κt = 60Figure 3.7: Time evolution of phase spae density (atom-pumping) from a numerialsimulation of the partile model eq. (3.38) - (3.40). Saled parameters: N = 2×105,
U0 = −5.0 × 10−6κ, ∆c = −2.5κ, η = 10κ.The Vlasov model of the atom-pump on�guration (eqs. (3.51) and (3.52)) wassolved numerially with the same initial onditions as used for the model � partilesneed to be uniformly distributed over one wavelength of the wave and normallydistributed in momentum spae. The results from the Vlasov model are presentedin �gure 3.8. The distribution funtion evolves from the initial onditions, at κt = 0to the �nal state at κt = 60. The periodiity of the potential �eld is already visibleat κt = 50 and beomes sharper for longer times. This result again agrees well withthe results obtained from the partile model simulations (see �g. 3.7 for omparison)
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(a) κt = 0 (b) κt = 45

() κt = 50 (d) κt = 60Figure 3.8: Time evolution of the momentum distribution funtion f(x, p, t) (atom-pumping) from a numerial simulation of the Vlasov model eq. (3.51) - (3.52). Saledparameters: N = 2 × 105, U0 = −5.0 × 10−6κ, ∆c = −2.5κ, η = 10.0κ.From the numerial point of view, the Vlasov equations for the atom-pump on�g-uration eqs. (3.51 - 3.52) are more omplex that the Vlasov equations derived foravity pump on�guration eqs. (2.50 - 2.51), however the same numerial method �Finite Di�erene Method (see Appendix A), as was used to solve eqs. (2.50 - 2.51),was used in the ase of the atom-pump on�guration.
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Chapter 4Semi-Classial Model of Two-LevelAtoms in a Cavity
In previous hapters it has been assumed that the atoms behave as lassial po-larisable partiles and the internal dynamis of the atoms are essentially negleted.In order to inlude the e�ets assoiated with the internal atomi dynamis it ispossible to use a system of Maxwell-Bloh equations extended to inlude the atomiof entre mass motion. This is the so-alled semi-lassial model as it treats theinternal atomi degrees of freedom (dipole moment, population di�erene) quantummehanially and the eletromagneti �eld along with external degrees of freedom(atomi position and momentum) lassially. The semi-lassial model is omple-mentary to the lassial model and in the limit of negligible atomi exitation mustsimplify to show the same behaviour as in the lassial model. The avity andatom-pump on�guration derived in previous hapters were assumed to be valid forthe ase of low atomi exitation. In suh a limit where the atom-pump frequenydetuning is large the semi-lassial model must redue to lassial one.
4.1 Semi-Classial Derivation of Cavity-Pump Con-�gurationThe model onsists of an ensemble of two-level atoms on�ned inside a simple Fabry-Perot avity illuminated by the pump �eld direted along the avity axis, as shown82



shematially in �g. 4.1. In the following setions the evolution equations for theinternal atomi degrees of freedom (dipole moment and the population di�erene),external degrees of freedom (position and momentum) and avity �eld are derived.
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Figure 4.1: An ensemble of two-level atoms in a avity pumped along its axis viaone of the avity mirrors (avity-pump on�guration). |g〉 represents a ground stateof an atom while |e〉 represents an exited state of an atom. The avity pumpingrate, spontaneous loss rate and avity deay rate are determined by the parameters
η, Γ and κ respetively.4.1.1 Internal Degrees of FreedomThe atoms in the ensemble are assumed to have two internal energy states. The lowerand upper energy states are labelled |g〉 and |e〉 respetively. The Bloh equationsfor the density matrix elements assoiated with eah atom ρjk, j, k = e, g are:

∂ρeg
∂t

= − (Γeg + iωeg) ρeg +
iEµ

~
(ρgg − ρee) (4.1)

∂

∂t
(ρgg − ρee) = −Γee (ρgg − ρee) +

2iEµ

~

(

ρeg − ρ∗eg
)

, (4.2)where Γee and Γeg are the longitudinal and transverse atomi deay rates, respe-83



tively and the dipole moment is:
dj = µ

(

ρge + ρ∗ge
)

ê (4.3)where µ is the dipole matrix element and ρeg is the density matrix element de�nedas
ρeg = S(x)e−iωt, (ρge = ρ∗eg) (4.4)and S is the oherene of the atom.The population di�erene is here de�ned as

D =
ρgg − ρee

2
. (4.5)The �eld in the avity an be written in the form:

E =
(

A(x)e−iωt + c.c.
)

g(x) (4.6)where g(x) is a avity mode funtion and it has been assumed E = Eê, µge =

µeg = µê ,Inserting (4.4) and (4.6) into (4.1) produes
(

dS

dt
− iωS

)

e−iωt = − (Γeg + iωeg)Se
−iωt +

iµ

~
(ρgg − ρee)

(

Ae−iωt + c.c.
)

g(x)(4.7)Multiplying (4.7) by eiωt and using the de�nition of eq. (4.5) eq. (4.7) beomes
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dS

dt
= −ΓegS + i (ω − ωeg)S +

2iµD

~
Ag(x) (4.8)where terms varying as e2iωt have been negleted.Similarly, substituting for (4.4), (4.5) and (4.6) in (4.2) gives

dD

dt
= −Γee (D −Deq) − iµ

~
(AS∗ − A∗S) g(x) (4.9)where Deq = 0.5 in the absene of any external exitation of the atom and we haveagain fast osillating terms have been negleted.Equations (4.8) and (4.9) desribe the internal degrees of freedom of eah atomunder the in�uene of the avity �eld.

4.1.2 Atomi Centre-of-Mass DynamisThe external degrees of freedom of atoms - the position and momentum - will bedesribed lassially.As shown in hapter 2, the dipole fore in the x diretion ating on the jth atom isgiven by:
Fx = d · ∂E

dx
(4.10)whih using (4.3) and (4.6) beomes
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Fx = µ
(

Ae−iωt + c.c.
) (

Se−iωt + c.c.
) dg(x)

dx

= (SA∗ + S∗A)
dg(x)

dx
(4.11)

4.1.3 Eletromagneti Field DynamisMaxwell's wave equation is
(

∇2 − 1

c2
∂2

∂t2

)

E =
1

ǫ0c2
∂2P

∂t2
(4.12)where the polarisation, P , is de�ned as

P =
∑

j

dj δ (r − rj) (4.13)
= µê

∑

j

(

Se−iωt + c.c.
)

δ (r − rj)After �nding the derivatives for an ensemble of point-like atoms eq. (4.12) an berewritten as
[

−k2A+
2ω

c2

(

i
dA

dt
+
ωA

2

)]

g(x)e−iωt + c.c. = −µ0ω
2µ
∑

j

(

Se−iωt + c.c.
)

δ (r − rj)(4.14)
[

−k2A+
2ω

c2

(

i
dA

dt
+
ωA

2

)]

g(x) = −µ0ω
2µ
∑

j

Sδ (r − rj) (4.15)
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where the slowly-varying envelope approximation (SVEA) has been used (i.e. | ∂
∂t
| ≪

ω, | ∂
∂z
| ≪ k ).As ω2

c2
= k2 and 1√

µ0 ǫ0
= c2, then eq. (4.15) beomes

dA

dt
g(x) =

iωµ

2ǫ0

∑

j

Sδ (r − rj) (4.16)so multiplying both sides of (4.16) by g(x) and integrating over the ross-setionarea of the avity A, (V = AL) produes
AdA
dt

∫ L

0

g(x)2dx =
iωµ

2ǫ0

∫ L

0

g(x)dx
∑

j

Sδ (r − rj) (4.17)Then, if the avity mode funtion is of the form
g(x) = cos(kx), or g(x) = sin(kx) (4.18)eq. (4.17) an be expressed as

Aλ
4

dA

dt
=
iωµ

2ǫ0

∑

j

Sg(x)

⇒ dA

dt
=

2iωµ

Aλǫ0
∑

j

Sjcos(kxj)

⇒ dA

dt
=
iωµ

V ǫ0

∑

j

Sjcos(kxj) (4.19)Equations (4.8), (4.9), (4.11) and (4.19) together make a losed set of evolutionequations whih ompletely desribe the self-onsistent interation of an ensembleof two-level atoms with the avity mode inside a Fabry-Perot avity:87



dSj
dt

= −Γeg + i (ω − ωeg)Sj +
2iµD

~
Ag(x) (4.20)

dDj

dt
= −Γee (Dj −Deq) − iµ

~
(AS∗ − A∗S) g(x) (4.21)

dpj
dt

= (SA∗ + S∗A)
dg(x)

dx
(4.22)

dA

dt
=
iωµ

V ǫ0

∑

j

Sjcos(kxj) (4.23)As in previous hapters, it is onvenient to introdue the dimensionless parameter
α whose absolute squared value |α|2 is assoiated with the average photon number

|α2| =
ǫo|A|2V

~ω
(4.24)This implies

α =

√

ǫoV

~ωp
A, A =

√

~ωp
ǫoV

α (4.25)and equations (4.20)-(4.23) beome
dSj
dt

= −ΓegS + i∆aS + 2ig0Dα cos(kxj) (4.26)
dDj

dt
= −Γee (Dj −Deq) − ig0 (αS∗ − α∗S) cos(kxj) (4.27)

dpj
dt

= −~kg0 (Sα∗ + S∗α) sin(kxj) (4.28)
dα

dt
= ig0

∑

j

Sj cos(kxj) (4.29)where g0 = µ
√

ω
~ǫ0V

is the atom-avity oupling onstant and V is the avity mode88



volume.4.1.4 Comparison with the Classial ModelIn order to ompare the lassial and the semi-lassial models it is neessary toensure that the parameters used orrespond to a regime in whih both models arevalid. As stated before the validity of the lassial model that has been presentedearlier implies negligible exitation of the atomi ensemble and within that limitonly an a proper omparison wit the semi-lassial model be arried out.If it is assumed that all atoms remain in the ground state, whih implies the ondition
∆2
a ≫ 4g2

0|α|2 whih an be obtained from the steady states of eqs. (4.26 and 4.27),it is possible to set Dj = 1/2 (if assumed that all atoms are in the exited state thenobviously Dj = −1/2). After performing this proedure eq. (4.26) produes
0 = −ΓegSj + i∆aSj + 2ig0Dα cos(kxj)so

Sj =
ig0α

Γeg − i∆a

cos(kxj) (4.30)Substituting the steady state value of the oherene eq. (4.30) into the fore equation(4.28) gives
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Fx = −~kg0 (Sα∗ + S∗α) sin(kxj)

= −~kg2
0cos(kxj)|α|2

[−i(Γeg − i∆a)

Γ2
eg + ∆2

a

+
i(Γeg + i∆a)

Γ2
eg + ∆2

a

]

sin(kxj)

= −2~kg2
0cos(kxj)|α|2

[

∆a

Γ2
eg + ∆2

a

]

sin(kxj)

= ~
g2
0∆a

Γ2
eg + ∆2

a

|α|2sin(2kxj) (4.31)where we have used the trigonometri identity 2sin(kx)cos(kx) = sin(2kx).Realling that the frequeny shift and the position dependent sattering rate arede�ned as
γ(x) =

Γ

Γ2 + ∆2
a

g2
ocos

2(kx) = γocos
2(kx) , (4.32)

U(x) =
∆a

Γ2 + ∆2
a

g2
ocos

2(kx) = Uocos
2(kx) . (4.33)gives �nally

Fx = −~|α|2 d
dx
U(x) (4.34)whih is the same equation for the fore produed by the avity �eld as derived insetion 2.1 from a lassial model, see eq. (2.16).Similarly substituting (4.30) into the �eld equation (4.29) we �nd
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dα

dt
= ig0

∑

j

cos(kxj)
ig0α

Γeg − i∆a

cos(kxj)

= −g2
0

(Γeg + i∆a)

Γ2
eg + ∆2

a

α
∑

j

cos2(kxj) (4.35)Again using (4.32) and (4.33) gives
dα

dt
= − (γ0 + iU0)α

∑

j

cos2(kxj) (4.36)whih is the equation as derived in setion 2.1, see eq. (2.15) without the avity deayand the external �eld pump rate. Nevertheless, as expeted, the semi-lassial modelwithin the limit of low exitation population simpli�es to the lassial model.The missing avity deay rate and the pump term still need to be added to the RHSof (4.29) in order to be ompletely equivalent to the lassial model equations. Withan external �eld, equation (4.29) has an additional term
dα

dt
= ig0

∑

j

Sj cos(kxj) + ηe−i∆ct (4.37)where η = κ αext is the pumping term and ∆c is the pump-avity frequeny detuning.De�ning new �eld and oherene variables α = α′e−i∆ct and S = S ′e−i∆ct, thenequations (4.26)-(4.29) beome
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dS ′
j

dt
= −ΓegS

′ + i∆′
aS

′ + 2ig0Dα
′ cos(kxj) (4.38)

dDj

dt
= −Γee (Dj −Deq) − ig0 (α′S ′∗ − α′∗S ′) cos(kxj) (4.39)

dpj
dt

= −~kg0 (S ′α′∗ + S ′∗α′) sin(kxj) (4.40)
dα′

dt
= ig0

∑

j

S ′
j cos(kxj) − (κ− i∆c)α

′ + η (4.41)where ∆′
a = ωp − ωeg and the extra avity deay term −κα′, has been added to theright side of (4.29).

4.2 Comparison Between the Classial and the Semi-Classial Models (Numerial Simulations)Equations (4.38) - (4.41) have been solved numerially and the results were omparedwith the results obtained for the same parameters with the lassial model of theavity pump on�guration (2.20) - (2.22).Fig. 4.2 ontains a series of simulations showing the ooling rates for a �xed numberof atoms (N = 1000) and pumping strength η = 70.0κ but varying ∆a and g0 sothat U0 = const. = −4.0 × 10−3κ. It shows that inreasing the detuning improvesthe agreement between the semi-lassial and the lassial model.
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(f) 〈D〉Figure 4.2: Evolution of atomi momentum spread and average population di�erene(〈D〉) alulated using the semi-lassial model for di�erent ∆a and g0 for N = 1000partiles (U0 = const.)
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Figure 4.3: Cooling rates alulated using the semilassial-model for di�erent ∆aand g0 (U0 = const.) (Data olleted from the gradient of the momentum spreadevolution graphs shown in �g. 4.2). The blak horizontal line marks the ooling ratefound from the lassial model for U0 = −0.004κThis is seen more learly in �g. 4.3 whih shows the ooling rate as a funtion of thepump-atom detuning. The blak line represents the result obtained from lassialmodel and it is lear now that the results from the semi-lassial model agrees wellwith the lassial model for far detuned �elds as predited in the previous hapter.For demonstration purposes the evolution of the �eld intensity (�g. 4.4), momentum(�g. 4.5) and momentum spread (�g. 4.6) using both semi-lassial and lassialmodels has been also shown.
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Figure 4.5: Comparison of the average momentum evolution of the lassial (blakurve) and semilassial model (red urve) for a far detuned �eld in the avity pumpon�guration. The parameters used are: N = 1 × 103, η = 70κ, ∆a = −1000κ,
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Figure 4.6: Comparison of the momentum spread evolution of the lassial (blakurve) and semilassial model (red urve) for far detuned �eld in the avity pumpon�guration. The parameters used are: N = 1 × 103, η = 70κ, ∆a = −1000κ,
g0 = 2.0κComparison of the lassial model (eqs. (2.20) - (2.22)) and the semi-lassial model(eqs. (4.38) - (4.41)) within the same negligible atomi exitation regime have been96



arried out in this setion. The results from numerial simulations using both modelsshow exellent agreement and on�rm the analytial result obtained in setion 4.1.4showing that for the negligible exitation of the atomi ensemble the semi-lassialmodel is equivalent to the lassial one.
4.3 Cooling Atoms with Blue Detuned LightThe results of the previous setion show that in the low exitation regime (〈D〉 ≈

1/2), the semi-lassial model agrees well with its lassial ounterpart. Whenatomi exitation is signi�ant however (〈D〉 ≪ 1/2) the lassial model is, in prini-ple, not su�ient approximation and may not fully represent the physial proessesourring in the system. Another advantage of the semi-lassial model relies in thepossibility of simulating avity ooling proesses in whih the internal degrees offreedom of the atoms play an ative part in the ooling mehanism. Suh a proessan our when the avity �eld is blue detuned with respet to the atomi reso-nane regime that involves stimulated emission and an lead to Sisyphus ooling asdesribed in setion 1.4.2.As an example of avity ooling using blue detuning, a setup similar to the UCL ex-periment is assumed. As mentioned earlier in setion 1.5.3, the experiment involvedthe following parameters:Number of atoms: N ∼ 1 ×106Cavity linewidth: κ = 10.0 ×106 HzLaser wavelength: λ = 852.4 ×10−9 mCs deay rate: Γlw = 32.89 ×106 HzCoupling onstant: g0 = 222.38 ×103 HzCs mass: m = 2.21 ×10−25 kg97



Initial temperature: Tini = 160.0 ×10−6 KPump-atom detuning: ∆A = (-250 : 250) ×106 HzLaser power: P ≤ 0.3 W
Corresponding saled parameters have been used in the series of numerial simula-tions with the semi-lassial model, eqs. (4.38) - (4.41). The following simulationsinlude the dependene of the ooling rate and the �nal temperature of the numberon atoms in the avity (�gs. 4.7 and 4.8), pump-atom detuning (∆a) (�gs. 4.9 and4.10), pump-avity detuning (∆c) (�gs. 4.11 and 4.12) and the pump strength (η)(�gs. 4.13 and 4.14):
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Figure 4.7: Cooling rates for blue detuned light alulated using the semi-lassialmodel for varying number of atoms N . The parameters used are: η = 2300.0κ,
∆a = 125κ, ∆c = 0.4κ, Γ = 3.25κ, g0 = 0.02κ, σ = 28.0~k
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Figure 4.8: Final temperatures for blue detuned light alulated using the semi-lassial model for varying number of atoms N . The parameters used are: η =
2300.0κ, ∆a = 125κ, ∆c = 0.4κ, Γ = 3.25κ, g0 = 0.02κ, σ = 28.0~k
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Figure 4.9: Cooling rates for blue detuned light alulated using the semi-lassialmodel for varying pump-atom detuning ∆a. The parameters used are: N = 1×106,
η = 2300.0κ, Γ = 3.25κ, g0 = 0.02κ, σ = 28.0~k
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Figure 4.10: Final temperatures for blue detuned light alulated using the semi-lassial model for varying pump-atom detuning ∆a. The other parameters usedare: N = 1 × 106, η = 2300.0κ, Γ = 3.25κ, g0 = 0.02κ, σ = 28.0~k
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Figure 4.11: Cooling rates for blue detuned light alulated using the semi-lassialmodel for varying pump-avity detuning ∆c. The other parameters used are: N =
1 × 106, η = 2300.0κ, ∆a = 75.0κ, Γ = 3.25κ, g0 = 0.02κ, σ = 28.0~k
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Figure 4.12: Final temperatures for blue detuned light alulated using the semi-lassial model for varying pump-avity detuning ∆c. The other parameters usedare: N = 1 × 106, η = 2300.0κ, ∆a = 75.0κ, Γ = 3.25κ, g0 = 0.02κ, σ = 28.0~k
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Figure 4.13: Cooling rates for blue detuned light alulated using the semi-lassialmodel for varying pumping strength η. The other parameters used are: N = 1×103,
∆a = 125κ, ∆c = 0.7κ, Γ = 3.25κ, g0 = 0.02κ, σ = 28.0~k
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Figure 4.14: Final temperatures for blue detuned light alulated using the semi-lassial model for varying pumping strength η. The other parameters used are:
N = 1 × 103, ∆a = 125κ, ∆c = 0.7κ, Γ = 3.25κ, g0 = 0.02κ, σ = 28.0~k
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The �rst series of simulations for di�erent numbers of partiles (N = 1×104 . . . 5×

106 partiles), �g. 4.7 and �g. 4.8, shows very fast ooling � almost independent ofthe number of partiles inside the avity (for omparison see the graphs of oolingrate vs. N for red detuned light in �g. 2.5). A signi�ant derease of the oolingrate was observed for samples ontaining more that 5×106 partiles. Suh a drop ofooling rate indiates a lak of a ooperative e�et in this on�guration. Similarly,the �nal temperatures for up to 1 × 106 partiles reahed values below 20µK andheating was seen for 5 × 106.The seond series of simulations for di�erent pump-atom detunings(∆a = 50, 75, 125, 175, 200κ), �g. 4.9 and �g. 4.10, shows a higher ooling rate forsmall detuning that dereases rapidly for larger detunings and reahes a minimumfor ∆a = 200. The �nal temperature (initially ∼ 160µK) varies from 30µK for
∆a = 50κ to 110µK for ∆a = 200κ. Osillations of the �nal momentum spread
σ are responsible for the disrepany of the �nal temperature for ∆a = 50, 75κ(�g. 4.10).In the third series of simulations for di�erent pump-avity detunings, �g. 4.11 and�g. 4.12, a narrow region of ooling was observed. The region extends from approx-imately ∆c = 0.0κ to ∆c = 5.0κ, outside whih the ooling rate dereases dramat-ially. The �nal temperature falls into the same region and reahes a minimum of
30µK for ∆c ≈ 1.0κ. For all other values of ∆c no ooling was observed.The last, fourth series of simulations for di�erent pump strengths (η), �g. 4.13 and4.14, indiates rapid growth of the ooling rate for higher intensity. Suh behaviouris rather harateristi for a Sisyphus-type ooling shemes. Despite the fat theooling rate an inrease with the pump intensity the �nal temperature an belimited by the optial potential energy assoiated with the avity mode amplitude,whih an be seen on �g. 4.14 where the similar �nal temperatures were obtained103



for η = 2, 3, 4, 5 × 103κ. However it needs to be mentioned that the ooling wasobserved unhanged even when the �eld evolution was swithed o� i.e. α �xed at avalue ∝ η
κ+∆2

c
(as obtained from the steady state of the �eld equation (4.41)). Thisleads to the onlusion that the role of the avity is only to onvert a unidiretionaltravelling wave pump �eld into a bidiretional standing wave �eld of higher intensity,and the dynamial evolution of the avity �eld does not play a signi�ant role. In thissense the ooling proess is essentially that of free spae blue molasses as originallydisovered by Aspet et al. [32℄
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Chapter 5Semi-Classial Model of Atom-PumpCon�guration
In hapter 3 a lassial model of the atom-pump on�guration was derived. Inthis setion this model is extended to inlude semi-lassial atomi dynamis. Theresults from both lassial and semi-lassial models of atom-pumping are omparedand found to agree within the limit where atomi exitation is negligible.
5.1 Derivation of Semi-Classial Model of Atom-Pump Con�gurationAs in hapter 4 the situation onsidered is an ensemble/gas of two-level atoms on-�ned inside a Fabry-Perot resonator. Unlike in the avity pump on�guration de-sribed in hapter 4, here the atoms are diretly illuminated by the pump �eld whihtravels perpendiular to the avity axis as shown in �g 5.1. The �eld is assumed tobe detuned from any atomi resonane.
5.1.1 Internal Degrees of FreedomFollowing the derivation desribed in setion 4.1, it assumed that the atoms havetwo internal energy states. The lower and upper energy states are labelled |g〉 and105
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Figure 5.1: Two-level atom in a avity (atom-pump on�guration). The avitypumping rate, spontaneous loss rate and avity deay rate are determined by theparameters η, Γ and κ respetively. |g〉 represents a ground state of an atom while
|e〉 represents an exited state of an atom
|e〉 respetively. The Bloh equations for the density matrix elements ρjk, j, k = e, gare the same as those for the avity-pump on�guration but are restated here forompleteness:

∂ρeg
∂t

= − (Γeg + iωeg) ρeg +
iEµ

~
(ρgg − ρee) (5.1)

∂

∂t
(ρgg − ρee) = −Γee (ρgg − ρee) +

2iEµ

~

(

ρeg − ρ∗eg
) (5.2)As before, the dipole moment is

dj = µ
(

ρge + ρ∗ge
)

ê (5.3)and the density matrix element 106



ρeg = Se−iωt, (ρge = ρ∗eg). (5.4)The �eld in the atom-pump on�guration inludes two waves
E1 =

(

A1e
−iωt + c.c.

)

g(x) (5.5)
E2 =

(

A2e
−iωt + c.c.

)

h(y) (5.6)where the E1 and E2 are the avity and the pump �elds respetively. and so thetotal �eld will be of the form
E =

(

A1e
−iωtg(x) + A2e

−iωth(y) + c.c.
) (5.7)where g(x) and h(y) are avity mode funtions and it has been assumed that E1 =

E1ẑ, E2 = E2ẑ, µge = µeg = µẑ ,Inserting (5.4) and (5.7) into (5.1) gives
dS

dt
= −ΓegS − i (ωeg − ω)S +

2iµD

~
(A1g(x) + A2h(y)) (5.8)where we have used the population di�erene variable de�ned in hapter 4, D =

(ρgg − ρee) /2 and negleted terms varying as e2iωt.Similarly, substituting for (5.4), (4.5) and (5.7) into (5.2) gives
dD

dt
= −Γee (D −Deq) − iµ

~
{[A1g(x) + A2h(y)]S

∗ − c.c.} (5.9)where Deq = 0.5 in the absene of any external exitation of the atom and we have107



dropped fast osillating terms.Equations (5.8) and (5.9) desribe the internal degrees of freedom of eah atomunder the in�uene of the avity �eld in the atom-pump on�guration.
5.1.2 Atomi Centre-of-Mass DynamisAs in hapter 4, the external degrees of freedom of atoms - the position and mo-mentum - are desribed lassially.The dipole fore in the x diretion ating on the jth atom is given by:

Fx = dj ·
dE

dx
=

(

dx∂Ex
∂x

+
dy∂Ey
∂x

+
dz∂Ez
∂x

)

=
dz∂Ez
∂x

. (5.10)Substituting the dipole moment
dz = µ

(

Se−iωt + c.c
) (5.11)and the total �eld derivative

∂Ez
∂x

=
(

Ae−iωt + c.c.
) dg(x)

dx
(5.12)into (5.10) gives the �nal expression of the dipole fore in the x diretion
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Fx = µ (A∗S + S∗A)
dg(x)

dx
. (5.13)

5.1.3 Eletromagneti Field DynamisFollowing similar proedure to that of setion 4.1.3 and starting with Maxwell'swave equation
(

∇2 − 1

c2
∂2

∂t2
− µ0σ

∂

∂t

)

E =
1

ǫ0c2
∂2P

∂t2
(5.14)where σ is the ondutivity of the avity mirrors, µo is the magneti permeabilityand the polarisation P is de�ned as

P =
∑

j

dj δ (r − rj) (5.15)
= µê

∑

j

(

Se−iωt + c.c.
)

δ (r − rj)where eq. (5.4) has been used.After �nding the derivatives the wave equation eq. (5.14) an be rewritten as
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[

k2A1 −
i2ω

c2
dA1

dt
− ω2

c2
A1 − iωµ0σA1

]

g(x)e−iωt + c.c. =

µ0ω
2µ
∑

j

(

Se−iωt + c.c.
)

δ (r − rj)

[

k2A1 −
i2ω

c2
dA1

dt
− ω2

c2
A1 − iωµ0σA1

]

g(x) =

µ0ω
2µ
∑

j

Sδ (r − rj) (5.16)where we have assumed the slowly-varying envelope approximation (SVEA), i.e.
∂A1

∂t
<< ωA1.Multiplying both sides of (5.16) by −c2/i 2ω we get
[

−ω
2
cA1

2iω
+
dA1

dt
+
ω2A1

2iω
+
c2µ0σA1

2

]

g(x) =
iµ0ωc

2µ

2

∑

j

Sδ (r − rj δ) (5.17)In the �rst and third terms of the LHS of eq. (5.17) the avity and the pump �eldfrequeny are ωc and ω respetively. These terms an be a further approximatedsine
−(ω2

c − ω2)

2 i ω
= −(ωc − ω) (ωc + ω)

2 i ω
=

∆c2ω

2 i ω
= −i∆c (5.18)where ∆c = ω − ωc is the pump-avity frequeny detuning. Hene equation (5.17)beomes
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[

dA1

dt
+ (κ− i∆c)A1

]

g(x) =
iωµ

2ǫ0

∑

j

Sδ (r − rj) (5.19)as
c =

1√
ǫ0µ0

, κ =
σ

2ǫ0
(5.20)Multiplying both sides of (5.19) by g(x) and integrating over the ross-setion areaof the sample A, gives

AdA1

dt

∫ L

0

g(x)2dx+ (κ− i∆c)A1A
∫ L

0

g(x)2dx =
iµω

2ǫ0

∑

j

Sjg(x) (5.21)Substituting the avity mode funtion of the form
g(x) = cos(kx) (5.22)into eq. (5.21) produes

dA1

dt
= (−κ+ i∆c)A1 +

2iµω

Aλǫ0
∑

j

Sg(x) (5.23)whih an be further simpli�ed and the �nal form of the �eld equation beomes
dA1

dt
= (−κ+ i∆c)A1 +

iµω

V ǫ0

∑

j

Sg(x) (5.24)Equations (5.8), (5.9), (5.13) and (5.24) make a losed set of evolution equations111



whih ompletely desribe the self-onsistent interation of an ensemble of two-levelatoms with the avity mode inside a Fabry-Perot avity:
dSj
dt

= −ΓegSj + i (ω − ωeg)Sj +
2iµD

~
(A1g(x) + A2h(y)) (5.25)

dDj

dt
= −Γee (Dj −Deq) − iµ

~

{

[A1g(x) + A2h(y)]S
∗
j − c.c.

} (5.26)
dpj
dt

= µ
(

SjA
∗
1 + S∗

jA1

) dg(x)

dx
(5.27)

dA1

dt
= (−κ+ i∆c)A1 +

iµω

V ǫ0

∑

j

Sjg(x) (5.28)Rewriting eqs. (5.25 - 5.28) in terms of α de�ned in eq. (4.24)then equations (5.25)-(5.28) for (1D) beome
dSj
dt

= −ΓegSj + i∆aSj + 2ig0D(α1cos(kx) + α2) (5.29)
dDj

dt
= −Γee (Dj −Deq) − ig0 {[α1cos(kx) + α2]Sj∗ − c.c.} (5.30)

dpj
dt

= −~kg0

(

Sjα
∗
1 + S∗

jα1

)

sin(kx) (5.31)
dα1

dt
= (−κ+ i∆c)α1 + ig0

∑

j

Sjcos(kxj) (5.32)where ∆a = ω − ωeg is the pump � atom detuning and go = µ
√

ω
~ǫoV

is the atom-avity oupling onstant.5.1.4 Comparison with the Classial ModelIn order to ompare the lassial and the semi-lassial equations for the atom-pumpon�guration we must remain within the same regime for both models. As stated112



before the validity of the lassial model that has been presented earlier implies lowexitation ondition of the atomi ensemble so within that limit the semi-lassialmodel should redue to the lassial model.Lets assume all atoms to be in a ground state. Setting D = 1/2, as the onditionfor negligible exitation, then at steady state equation (5.29) an be written as
Sj =

ig0(α1cos(kxj) + α2)

Γeg − i∆a

(5.33)Substituting the steady state of the oherene variable S, (eq. 5.33) into the foreequation, (eq. 5.31), gives
Fx = − ~kg0

[−ig0(|α1|2cos(kxj) + α1α
∗
2)

Γeg − i∆a

+
ig0(|α1|2cos(kxj) + α∗

1α2)

Γeg + i∆a

]

sin(kxj)

⇒− ~k

[−2ig2
0|α1|2cos(kxj)∆a

Γ2
eg + ∆2

a

− ig0α1α
∗
2

Γeg − i∆a

+
ig0α1α

∗
2

Γeg + i∆a

]

sin(kxj) (5.34)Rearranging eq. 5.34 and realling that the frequeny shift and the position depen-dent sattering rate are de�ned as
γ(x) =

Γ

Γ2 + ∆2
a

g2
ocos

2(kx) = γocos
2(kx) , (5.35)

U(x) =
∆a

Γ2 + ∆2
a

g2
ocos

2(kx) = Uocos
2(kx) . (5.36)gives

Fx = −~U0|α|2
d

dx
cos2(kxj) − i~

(

η∗effα1 − ηeffα
∗
1

) d

dx
cos(kxj) (5.37)113



where we have used the trigonometri identity sin(2kx) = 2sin(kx)cos(kx) andwhere
η = g0α2 (5.38)and

ηeff =
ηg0

Γ − i∆a

(5.39)Equation 5.37 is the same equation as derived in setion 3.1, eq. (3.39) for thelassial model.Similarly substituting the steady state value of S (5.33) into the derived �eld equa-tion (5.32) gives
dα1

dt
= (−κ+ i∆c)α1 + ig0

∑

j

(

ig0α1

Γeg − i∆a

cos(kxj) +
ig0α2

Γeg − i∆a

)

cos(kxj)

= (−κ+ i∆c)α1 − α1 (γ0 + iU0)
∑

j

cos2(kxj) − ηeff
∑

j

cos(kxj) (5.40)where we have again used known identities (5.35), (5.36), (5.38) and (5.39)After rearranging (5.40) we �nally obtain
dα

dt
= i
[

∆c − Uo
∑

j

cos2(kxj)
]

α−
[

κ+ γo
∑

j

cos2(kxj)
]

α− ηeff
∑

j

cos(kxj)(5.41)whih is the same equation as derived in setion 3.1 see eq. (3.38) from the lassialmodel. As expeted, the semi-lassial model within the limit of low exitationsimpli�es to the lassial model. 114



In the next setion, results from numerial simulations of the lassial model andthe semi-lassial model will be ompared.
5.2 Comparison Between the Classial and the Semi-Classial Models (Numerial Simulations)It is instrutive to show, using numerial results, that in the low exitation limitthe semi-lassial model shows similar behaviour to that of the lassial model, aspredited by the analysis desribed in setion 5.1.4. The lassial model eqs. (3.38- 3.40) and the semi-lassial model, eqs. (5.29 - 5.32) have been solved numeriallyfor the same initial parameters and the results are presented below.Figure 5.2 shows the time evolution of the �eld intensity within the time periodof t = 100κ. The number of atoms here is 1 × 103, ∆a = −1000κ (rather largepump-atom detuning), g0 = 1.0κ and η = 100κ. It an be seen that both modelsshow very good agreement during the entire time of interation. In both models the�eld evolution is seen to display small osillations.
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Figure 5.2: Comparison of the �eld intensity evolution of the lassial (blak urve)and semilassial model (red urve) for a far detuned �eld in the atom-pump on-�guration. The parameters used are: N = 1 × 103, η = 100κ, ∆a = −1000κ,
g0 = 1.0κ
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Figure 5.3: Comparison of the average momentum evolution of the lassial (blakurve) and semilassial model (red urve) for a far detuned �eld in the atom-pumpon�guration. The parameters used are: N = 1 × 103, η = 100κ, ∆a = −1000κ,
g0 = 1.0κ
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Figure 5.4: Comparison of the momentum spread evolution of the lassial (blakurve) and semilassial model (red urve) for a far detuned �eld in the atom-pumpon�guration. The parameters used are: N = 1 × 103, η = 100κ, ∆a = −1000κ,
g0 = 1.0κThe time evolution of the average momentum, and the momentum spread is pre-sented in �g. 5.3 and �g. 5.4, respetively. Both �gures ompare the results from thelassial and the semi-lassial models within a short time period of t = 100κ−1 andfor the same parameters as used in the previous �gure (N= 1 × 103, ∆a = −1000κ,
g0 = 1.0κ, η = 100κ). As expeted, the results from both models again agree verywell and on�rm the analytial result obtained in the previous setion 5.1.4.
5.3 Cooling Atoms with Blue Detuned Light (Atom-Pump Con�guration)In the previous setion the results from numerial simulation of the lassial model(eqs. (3.38 - 3.40)) and the semi-lassial model (eqs. (5.29 - 5.32)) for the ase ofthe atom-pump on�guration were ompared. As shown, in the negligible atomiexitation regime, the results on�rmed (with the analytial result, setion 5.1.4)117



exellent agreement between the two models. However, as demonstrated earlier insetion 4.3 the semi-lassial model has an advantage in that it an desribe avityooling proesses in whih the internal degrees of freedom of the atoms play an ativepart in the ooling mehanism. In the ase when the avity �eld is blue detuned withrespet to the atomi resonane, stimulated emission an lead to Sisyphus oolingas desribed in setion 1.4.2. In this setion an example of avity ooling using bluedetuned light for the ase of the atom-pump on�guration is demonstrated.The semi-lassial model equations (eqs. (5.29 - 5.32)) have been solved numeriallyfor the following parameters: N = 1× 103, ∆a = 1000κ, η = 400κ, Γee = Γeg = 1.0κand the results are presented in the �gures below.Fig. 5.5 shows the time evolution of the �eld intensity. The �eld intensity growsrapidly within κt ≈ 2500 and slowly saturates for longer times.
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momentum spread (�g. 5.7) with respet to time.
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Chapter 6Ring Cavity and Phase ModulatedPump Field
The previous hapters involved studies of the dynamis of an ensemble of atoms on-�ned in a simple Fabry-Perot avity (see �g. 2.4 and 3.1). The previously onsideredases di�er only in the diretion of the pump �eld, however both are based on thestanding wave avity �eld for whih the nodes and the antinodes of the osillating�eld are �xed in spae. This means that the potentials reated by the �eld are also�xed in spae and annot travel inside the avity. This restrition an be removedusing a ring avity with two ounter propagating light �elds inside (�g. 6.1). In thison�guration the optial �elds produe potentials that are not �xed in spae butare able to move inside the avity.It has been reently shown that the e�et of a phase-modulated beam on Colle-tive Atomi Reoil Lasing (CARL) [58, 59℄ an give rise to three di�erent dynamialregimes depending on the frequeny of modulation [60℄. Moreover it has been demon-strated experimentally [61℄ that even weakly modulated light an produe relativelystrong optial fores that an be potentially used for ooling or de�etion of movingatoms. In this hapter we will give a deeper insight into this idea and show how thisan be used to ontrol the dynamis of atoms and eventually for slowing or oolingatomi beams.
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6.1 ModelThe dynamis of N linearly polarisable partiles moving inside a high-Q ring avityan be, to a good approximation, desribed by four oupled lassial equations ofmotion [62, 63℄:
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Figure 6.1: Shemati diagram of a bidiretional ring avity driven by two monohro-mati �elds with pump rates η+, η−. α− and α+ are the amplitudes of the pumpand the probe �elds, respetively.
dxj
dt

=
pj
m

(6.1)
dpj
dt

= 2~k
[

U0i
(

α∗
+α−e

−2ikx − α∗
−α+e

2ikx
)

+ γ0

(

α∗
+α+ − α∗

−α−
)] (6.2)

dα±

dt
= [i∆± −N(γ0 + iU0) − κ]α± −N(γ0 + iU0)

〈

e∓2ikx
〉

α∓ + η± (6.3)If we restrit the general model to a uni-diretionally pumped avity only (see�g. 6.2) and modify it to inlude the e�et of pump phase modulation the modelbeomes:
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dxj
dt

=
pj
m

(6.4)
dpj
dt

= 2~kU0i
[

α∗
+α−e

−2ikx − α∗
−α+e

2ikx
] (6.5)

dα+

dt
= [i∆+ −NiU0 − βκ−]α+ −NiU0

〈

e−2ikx
〉

α− (6.6)
dα−

dt
= [i∆− −NiU0 − κ−]α− −NiU0

〈

e2ikx
〉

α+ + η− e(iαmsin(Ωmt)) (6.7)where γ0 ≪ |U0| has been assumed.
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Figure 6.2: Shemati diagram of uni-diretionally pumped ring avity. Two ounterpropagating �elds irulate in a high-�nesse avity, η− is the pumping rate term, α−and α+ are the amplitudes of the pump and the probe �elds, respetively.The �rst two equations (6.4 - 6.5) desribe the dynamis of the j th atom movingunder the in�uene of the dipole fore in the potential reated by the ounterprop-agating avity �elds; xj and pj are the position and the momentum of j th atomrespetively, m is the atomi mass and k = 2π/λ is the wavenumber. Equations (6.6- 6.7) desribe the evolution of the amplitudes of the two ounterpropagating �elds:the pump �eld (α−) and the baksattered probe �eld (α+). The parameter β = κ+

κ
−desribes the ratio of the probe (κ+) and the pump (κ−) avity deay (note, therelative size of avity deay rates an be modi�ed using devies suh as a Faraday123



rotator [64, 65℄). ∆± is the avity-�eld detuning for the probe (+) and the pump(-)�eld and U0 is the e�etive mode frequeny shift:
U0 =

∆a

Γ2 + ∆2
a

g2. (6.8)where ∆a is the atom-pump detuning, Γ is the spontaneous emission linewidthand g the atom-mode oupling onstant de�ned as g2 = e2/4ǫ0mV . Here we haveassumed that the pump and probe �elds are far-detuned from any atomi resonane(∆a ≫ Γ).The phase-modulated e�etive pumping rate, eq. (6.7) is:
η− e(iαmsin(Ωmt)) (6.9)where η− is the pumping rate term, αm is the modulation strength and Ωm is thephase modulation frequeny of the avity pump �eld.
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6.2 CARL Instability and Derivation of a GrowthRate (gr)Finding the frequeny modulation regimes requires �nding the growth rate of theprobe �eld intensity. The growth rate (gr) an be found numerially using (eqs. (6.4)and (6.7) from the slope of the evolution of |α|2 in absene of pump modulation
αm = 0. However the result an be on�rmed by the result that an be foundanalytially using following approximation.It is possible to introdue small �utuations about the steady state system and seewhether the system is stable and returns to the initial state or unstable and grows intime [66℄. In absene of pump modulation αm = 0 the system of previously derivedequations, (6.4) - (6.7) beomes

dxj
dt

=
pj
m

(6.10)
dpj
dt

= −2~kU0i
(

α∗
−α+e

2ikx − c.c.
) (6.11)

dα+

dt
= (i∆+ − iNU0 − β)α+ − iNU0

〈

e−2ikx
〉

α− (6.12)Introduing small �utuations (δx, δp, δα+
) of the form

xj(t) = xj0 + δx(t) (6.13)
pj(t) = pj0 + δp(t) (6.14)
α+(t) = α+0

+ δα+(t) (6.15)
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where the steady states values are de�ned as
xj0 = (0, 2π]

pj0 = 0

α+0
= 0

α−0
= α−and where δx(t), δp(t) and δα+(t) are the �utuations of the jth atoms position,momentum and the �utuation of the probe �eld amplitude respetively. Note wehave negleted the �utuation of the pump �eld amplitude (α−) as it an be shownthat they do not play a role in the linear stability of the system.Substituting (6.13) - (6.15) into equations (6.10 - 6.12) gives:

dδxj
dt

=
δpj0
m

(6.16)
dpj
dt

= −2~kiU0

(

δα+α
∗
−e

2ikxj0 − δα∗
+α−e

−2ikxj0

) (6.17)
dδα+

dt
= (i∆+ − iNU0 − β) δα+ − 2kNU0

〈

δxe−2kixj0

〉

α− (6.18)where 〈e−ikxj0 〉 = 0 as the atoms are initially evenly distributed. We an rewriteequations (6.16) - (6.18) in terms of olletive variables [67℄
b = −2ik

〈

δxe−2ikxj0

〉

P =
〈

δpe−2ikxj0

〉126



whih greatly redues the number of equations to be solved from 2N + 1 to 3:
db

dt
=

−2ik

m
P (6.19)

dP

dt
= −2i~kU0δα+α

∗
− (6.20)

dδα+

dt
= (i∆+ − iNU0 − β) δα+ − iNU0 b α−. (6.21)If we now look for solutions of eqs. (6.19)-(6.21) with the form b, P, δα+ ∝ eλt thenit an be shown that

λb =
−2ik

m
P (6.22)

λP = −2i~kU0δα+α
∗
− (6.23)

λδα+ = (i∆+ − iNU0 − β) δα+ − iNU0 b α− (6.24)from whih we an �nd b and P
P =

−2i~kU0δα+α
∗
−

λ

b =
−4~k2U0δα+α

∗
−

m λ2and hene obtain:
λδα+ = (i∆+ − iNU0 − β) δα+ +

4iN~k2U2
0 |α−|2

m λ2
δα+

[

λ3 − λ2 (i∆+ − iNU0 − β) − 4iN~k2U2
0 |α−|2

m

]

δα+ = 0

λ3 − λ2 (i∆+ − iNU0 − β) − 4iN~k2U2
0 |α−|2

m
= 0. (6.25)127



Sine the growth rate is simply de�ned as gr = Re(λ) we an ompare the analytialresult of the growth rate and the result obtained from numerial simulations ofthe CARL model equations (eqs. (6.4) and (6.7)) in absene of pump modulation
αm = 0.For the following parameters: ∆+ = −0.3κ, U0 = 1 × 10−4κ, |α−|2 ≈ 2 × 105,m =

5 × 104
~k2/κ substituted into eq. (6.25)

λ3 + λ2 (0.3i− 0.1i)κ− 4i · 1 × 103 · 1 × 10−8κ2 · 2 × 105

5 × 104~k2/κ
= 0the resultRe(λ) = 0.0283κ was obtained. Sine forRe(λ) > 0 required for instabilitythis result learly indiates a growth of α+.The behaviour of the growth rates as a funtion of detuning and pump intensity isshown in �gures 6.3 and 6.4 respetively.

Figure 6.3: Growth rate as a funtion of the pump intensity obtained from thesolution of eq. (6.25). The parameters used are: N = 1000,∆+ = −0.3κ, U0 =
1 × 10−4κ,m = 5 × 104

~k2/κ 128



Figure 6.4: Growth rate as a funtion of the pump-avity detuning obtained from thesolution of eq. (6.25). The parameters used are: N = 1000, U0 = 1× 10−4κ, |α−|2 =
2 × 105,m = 5 × 104

~k2/κ

As we looked for the solution of α+ ∝ eλt so for |α+|2 ∝ eλ2t the growth rate of theprobe intensity is �nally gr ≈ 0.056κ. This result very well agrees with the value of
gr ≈ 0.055 found numerially from the slope of the |α|2 as shown in �g. 6.5 obtainedfor the same parameters as used above in the analytial formula, eq. (6.25).
6.3 Frequeny Modulation RegimesThe nature of the atom-�eld interation in the model an be dedued by ombiningthe Bessel funtion identity [68℄:
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~k2/κ

exp(i z sin(φ)) =
∞
∑

n=−∞
Jn(z)e

inφ (6.26)performing adiabati elimination on eq. (6.7) gives
α− =

NiU0〈e2ikx〉
[i∆c

−

−NiU0 − κ−]
− 1

[i∆c
−

−NiU0 − κ−]
η−e

iαmsin(Ωmt)

=
1

[NiU0 − ∆c
−

+ κ−]
η−e

iαmsin(Ωmt). (6.27)Substituting the expression eq. (6.27) into eq. (6.5) then the fore on the jth atoman be written as
dpj
dt

=
2~kUoi

NiUo − i∆− + κ−

[

α∗
+η−e

−i(2kx−αmsin(Ωmt)) − c.c
]

, (6.28)130



whih after applying (6.26) to (6.28) leads to the form:
dpj
dt

=
2~kUoi

NiUo − i∆− + κ−

[

α∗
+η−

∞
∑

n=−∞
Jn(αm)e−i(2kx−nΩmt) − c.c

]

. (6.29)It an be seen from eq. (6.29) that the fore ating on the atoms an be interpretedas an due to in�nite number of optial potentials (n), eah of whih moves with aphase veloity that is proportional to an integer number of the modulation frequeny
nΩm. These potentials an be onsequently resonant with the atoms, if: pj

m
≈ nΩm

2k
,i.e. if the atomi veloity ≈ phase veloity of the nth optial potential.Further inspetion of eq. (6.29) shows that the width of eah potential/resonaneis proportional to ∝

√

|α+|J(αm) while the separation,in frequeny or phase ve-loity, between the resonanes is proportional to Ωm. It will be shown in whatfollows that the number of the potentials/resonanes that interat with the atomsan signi�antly a�et the atomi dynamis.The behaviour of the system an be divided into three main regimes (�g. 6.6) de-pending on the value of the modulation frequeny with respet to the olletive reoilbandwidth (growth rate, gr) i.e. the growth rate of the probe �eld in the abseneof modulation: the high modulation frequeny (Ωm ≫ gr), intermediate modulationfrequeny (Ωm ≈ gr) and low modulation frequeny (Ωm ≪ gr). The growth rateof the probe �eld, gr, an be found keeping |α−| onstant and setting κ+ = 0, alsoassuming no phase modulation of the pump �eld.
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namis are similar to those where the pump phase modulation is absent (setion 6.2).The reason for this is that in both ases where high frequeny pump modulation andno modulation ours, the atom-�eld interation involves only a single resonane.In the following setions it will be shown that hanging the frequeny of the phasemodulation an introdue additional resonanes into the atom-�eld interation anddramatially alter the evolution of both the �eld intensity and the atomi dynamis.
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6.5 Intermediate Modulation Frequeny (Ωm ∼ gr)In the ase of intermediate frequeny modulation, (Ωm ∼ gr), the resonanes aremuh loser to eah other than in the high modulation frequeny ase as shownshematially in �g. 6.6(b). When the �eld is su�iently ampli�ed the width of theresonanes (∼ √|α+|) inreases and the resonanes an overlap. One the overlaptakes plae atoms di�use haotially within a large momentum range. The momen-tum range an be found using results from previous studies of the parametriallyfored pendulum i.e. there are nonlinear resonanes whih our when the phase134
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−∆+ − αmΩm

2k
≤ p

m
≤ αmΩm − ∆+

2k
. (6.31)Assuming the atoms di�use uniformly over the momentum spae between theselimits, the average momentum of the atoms will eventually be 〈p〉 = −∆+m/2k. In135



order to satisfy the intermediate frequeny modulation ondition (Ωm ∼ gr) we set
Ωm = 0.055κ and αm = 10. From eq. (6.31) and for the following initial parameters:
〈p0〉 = 5000~k, σ = 0~k and m = 50000~k2/κ the predited momentum di�usionrange should be approximately: −6000~k ≤ p ≤ 20000~k.
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~k2/κ, ∆+ = −0.3κ, η = 450κ, U0 = 0.0001κ, Ωm = 0.055κNumerial results on�rm this result and a similar momentum range an be foundin the momentum distribution at κt = 10000 shown in �g. 6.12. Sine β ≈ 1× 10−5is nonzero the probe intensity eventually dereases after being ampli�ed as seen in�g. 6.11.
6.6 Low Modulation Frequeny (Ωm ≪ gr)In the ase of low frequeny modulation where (Ωm ≪ gr) the resonanes are su�-iently lose together (see shemati diagram, �g. 6.6()) that they an overlap evenat the very early stages of the interation.Sine many resonanes are involved at the early stage of probe ampli�ation the136
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+| + N

2~k
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6.6.1 Slowing a Beam of Cold AtomsComparison of the three frequeny modulation regimes indiates that the low fre-queny modulation to be the most useful for the purpose of slowing atomi beams.Although both the intermediate and the low frequeny modulation regimes allow alarge derease in the average atomi momentum to be produed, the intermediatefrequeny modulation regime produes di�usive momentum spread growth, whihis generally undesirable for appliations. In ontrast, the low modulation frequenyregime produes a large derease in average atomi momentum while maintaininga relatively narrow momentum distribution for substantial fration of the atomiensemble.As shown in �g. 6.17 the initial average momentum of the atoms an be dereasedto the minimum attainable value (pmin = −(∆+ + αmΩm)m/2k), after whih theatoms are again aelerated and along with the probe �eld intensity osillate withperiod 2π/Ωm. Here we an show that the �nal value of the minimum momentum isalso a funtion of the parameter β whih as explained earlier desribes the ratio ofthe probe (κ+) and the pump (κ−) avity deay (β = κ+

κ
−

). To maintain the osilla-tions of the probe �eld and the average atomi momentum, β has to be su�ientlysmall, otherwise the high avity deay rate will prevent the �eld being ampli�edrepeatedly. However, for the purpose of slowing beams of atoms this does not haveto be ful�lled and a single osillation of the average momentum will su�e to slowthe atoms. Fig. 6.19 presents the minimum average momentum obtained within,single osillation, for di�erent values of β.It an be seen in �g. 6.19 for a ase where the initial atomi momentum p0 = 5000~kthat for β ∼ 0.06 the initial average momentum of atoms was dereased to zero andfor β < 0.06 the diretion of the atomi beam was reversed (〈pmin〉 < 0).141
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initial momentum. This is due to the fat that, as mentioned before, the system hasa rather well de�ned minimum attainable momentum (pmin = −(∆++αmΩm)m/2k)whih an be unhanged for a ertain range of initial average momenta. For thatreason the 〈p0〉 an be inreased until the maximum e�ieny of the slowing anbe reahed. When 〈p0〉 exeeds the optimum value (∼ 18000 here), the e�ienydereases and eventually when 〈p0〉 beomes too large no slowing an be seen.6.6.2 Slowing a Beam of Atoms with Finite TemperatureIn the proeeding setion it has been assumed that the atomi beam has been initiallyold, with zero momentum spread, i.e. zero temperature. For the ase of a beamof atoms with �nite temperature the system preserves all the features that wereobserved for the low frequeny modulation regime. In addition adjusting the probe-avity frequeny detuning (∆+) and probe-pump avity loss ratio (β) it is possibleto obtain even better ontrol over the atomi dynamis. In the following examplethe low frequeny modulation regime is used to slow a group of N = 2000 atomswith initial average momentum 〈p0〉 = 5000~k and momentum spread σ0 = 500~k.In order to avoid many osillations of the �eld and the momentum β ≈ 2 × 10−4 ishosen. This allows only single ampli�ation of the probe intensity to be produed,as shown in �g. 6.21.Fig. 6.22 shows that, fast and hot atoms split into two groups. First, a smallerfration of the total ensemble does not exhange energy with the �eld and remainsat approximately the initial momentum. The other, signi�antly larger group, afterreahing the minimum attainable momentum, i.e. pmin ≈ −6000~k, inreases itsmomentum and stops at 〈p〉 = 0 as shown in �g. 6.23.
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Chapter 7Conlusions
7.1 SummaryResults from studies of atoms on�ned in a Fabry-Perot avity indiate two di�erentbehaviours of the atom-�eld interation depending on the diretion of the pump�eld with respet to the avity axis. For the ase of a pump �eld being sent diretlythrough one of the avity mirrors (here alled the avity-pump ase) one an observealmost instantaneous growth of the avity �eld and strong interation with theon�ned atoms. Slowing and ooling of the sample an be learly seen, however,loser inspetion on�rms a linear inrease of the ooling time with atom number,whih as pointed out in previous works [39℄ makes suh systems rather impratialfor very large ensembles. Signi�antly di�erent behaviour an be observed for thease when the pump �eld is direted perpendiular to the avity axis and henethe atoms are illuminated diretly by the light �eld (here alled the atom-pumpase). Contrary to the avity-pump on�guration the atom-pump on�gurationneeds the presene of partiles to populate the avity mode via sattering. Forsu�iently strong �elds, and large atomi ensembles, one an observe self-orderingof the partiles whih an lead to fast loalisation and ooling of the atoms. As hasbeen shown hapter 3 for given parameters the ooling rate an in fat inrease withthe number of atoms in the avity. 146



As the number of atoms plays an important role in numerial simulations of thepartile models the equivalent Vlasov model has also been presented. The resultsfrom simulation of the Vlasov models for both the avity-pump and the atom-pumpmodels show exellent agreement with their partile ounterparts. However, theadvantage of the Vlasov model over the partile model relies in the fat that thenumerial e�ort an be greatly redued for simulations involving large atomi en-sembles.Whereas hapter 2 and 3 onsidered lassial models of atom-avity interations,hapters 4 and 5 desribed semi-lassial models of both the avity-pump and theatom-pump on�gurations. These semi-lassial models show very good agreementwith the lassial models in the limit where atomi exitation is negligible. As ex-peted from the analytial examination of the semi-lassial equations the numerialsimulations show an improving agreement between the semi-lassial and lassialmodels as the pump-atom detuning is inreased. Furthermore semi-lassial modelsof the avity-pump and the atom-pump ase reveal relatively fast ooling of atomsfor blue detuned light ompared to red detuned light.Results from study of atoms on�ned in the ring avity pumped by the phase mod-ulated light show the presene of three di�erent regimes in whih both the �eldand the atoms reveal qualitatively di�erent behaviour. This behaviour depends onthe number of resonanes that atoms an interat with and three ases an be dis-tinguished: single resonane (high modulation frequeny) and the multi resonaneswhih an overlap due to growth of the probe intensity (intermediate modulationfrequeny) or when the resonanes are su�iently lose to eah other (low modu-lation frequeny). As has been shown, the low frequeny modulation regime givesan opportunity to ontrol the dynamis of the atomi ensemble and an eventuallylead to e�etive slowing of the atomi beam. Moreover the slowing of a beam of147



hot atoms using the low frequeny modulation regime does not introdue furtherheating to the atoms.
7.2 Future WorkAll of the avity ooling models presented in this work ould be the subjet offurther work. One obvious topi for future studies ould be the extension of themodels desribed in hapters 2 - 5 from 1 to 2 or even 3 dimensions and using avariety of pumping geometries and avity geometries. Although the omputationtime assoiated with suh models is prohibitive at present, the rapid development ofomputing hardware and parallel programming tehniques may make them feasiblewithin a few years.Another extension to the work desribed here is the modelling of a quantum gas e.q.Bose-Einstein ondensate (BEC) or a Fermi gas. Although these systems are not ofinterest for ooling, they o�er the possibility to study new regimes of light-matterinterations, and ould be used as an analogue for several ondensed matter systemsinvolving quantum degenerate matter interating with spatially periodi potentials.The work desribed in hapter 6 involving ring avities and phase-modulated pump-ing o�ers the possibility of new methods for slowing and ooling atoms. An ob-vious area for future studies would be to investigate di�erent types of modulatione.g. amplitude modulation, ombined amplitude/phase modulation, non-sinusoidalmodulation as is performed in so-alled �optial rathets� [71, 72, 73℄ and deduethe optimum type of modulation for e�ient atomi ooling and slowing.
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Appendix ANumerial Methods for Solving theVlasov Model (se. 2.4)
The Crank-Niolson sheme is based on the Finite Di�erene Method for solvingpartial di�erential equations. It is an impliit method whih means that to obtainthe �next� value of a funtion in time a system of algebrai equation must be solved.This method an be explained using an example of a simple partial di�erentialequation of the form:

∂u
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(A.1)Eq. (A.1) an be disretized using the Crank-Niolson sheme suh that:
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where the subsript i orresponds to spae and j orresponds to time and ∆x and ∆tare the spae and the time step size respetively, as shown on the stenil presentedin the �g. A.1
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Hene eq. (A.1) an be written as:
1
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. (A.4)This sheme an be similarly applied to the Vlasov model (eqs (2.50) - (2.51), setion2.4).
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where the �new� elements (j + 1) and �old� elements (j) have been separated onthe LHS and the RHS respetively. Obviously in eqs. (A.7 and A.8) the subsript iorresponds to momentum spae.Similarly the �eld equation, eq. (A.6) an be written as
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NŪ0

2

)

αj−N
4

(

γ̄0 + i∆̄0

)

×
∫ ∞

−∞

[

f(−1) + f(1)
]

}

∆t+ αj.(A.9)Equations (A.7, A.8 and A.9) together make a losed set of evolution equations. Inthis form eqs. (A.7, A.8 and A.9) an be easily implemented in a numerial ode andsolved using one of many available methods for solving linear system of equations,e.g. LAPACK [74℄
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Appendix BList of Publiations
This appendix ontains publiations whih have arisen from the work desribed inthis thesis. These publiations are:� T. Griesser, H. Ritsh, M. Hemmerling and G.R.M. Robb, � A Vlasov approahto bunhing and selfordering of partiles in optial resonators �, Eur. Phys. J.D 58, 349-368 (2010)� M. Hemmerling and G.R.M. Robb, � Slowing atoms using optial avitiespumped by phase-modulated light �, Phys. Rev. A 82, 053420 (2010)
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