Collective Dynamics of Cold Atoms in Optical
Cavities

Michal Hemmerling

University of

Strathclyde

Glasgow

Dissertation

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
in Physics at
University of Strathclyde, 2010

Glasgow, Scotland



This thesis is the result of the author’s original research. It has been composed by
the author and has not been previously submitted for examination which has led to
the award of a degree.

The copyright of this thesis belongs to the author under the terms of the United
Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50.
Due acknowledgement must always be made of the use of any material contained
in, or derived from, this thesis.

Signed: Date:

i



”...Rozum i wiedze¢ miej w pogardzie,
To, czym sie szczyci czlek najbardziej.
Gdy mamidtami cie oszuka
Kuglarsko—cudotworcza sztuka,
Wtedy$ sie dostal w moja moc—
Takiego ducha dat ci los,

Ze gdy przed siebie przesz na wprost,
Co tylko spotykasz jest przeszkoda;
Wiec z rzeczy mijasz sie uroda.

W przygod cie weiggne korowody,

W arcybanalne epizody.

Bedziesz sie miotal, wit, trzepotal.
Nienasyconych powab zadz

Wreiaz bedzie oczom twym migotal.

O napo6j bedziesz blagat, drzac.

I c67, ze$ mi zaprzedat dusze?

W rece i tak cie dosta¢ musze.”

("Faust”, Johann Wolfgang Goethe)

”...Reason and Knowledge only thou despise,

The highest strength in man that lies!

Let but the Lying Spirit bind thee

With magic works and shows that blind thee,

And I shall have thee fast and sure!—

Fate such a bold, untrammelled spirit gave him,

As forwards, onwards, ever must endure;

Whose over-hasty impulse drave him

Past earthly joys he might secure.

Dragged through the wildest life, will [ enslave him,
Through flat and stale indifference;

With struggling, chilling, checking, so deprave him
That, to his hot, insatiate sense,

The dream of drink shall mock, but never lave him:
Refreshment shall his lips in vain implore—

Had he not made himself the Devil’s, naught could save him,
Still were he lost forevermore!

("Faust”, Johann Wolfgang Goethe)
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ABSTRACT

Cooling and manipulation of atoms and molecules has been recently of great interest.
Cold atoms provide a useful tool to understand many physical phenomena, including
quantum information processing, Bose-Einstein Condensation, atom interferometry,
ultra-high precision spectroscopy, atomic clocks and many others. Most methods
of cooling and slowing, however, apply to a relatively small range of temperatures,
and cooling rather hot samples of atoms requires using more than one method only.
Moreover, the majority of existing schemes including the most important — Doppler
cooling and magneto-optical trapping are limited to the alkali and alkaline earth

metals. For that reason it is very attractive to develop new effective cooling schemes.

In this thesis a novel cavity cooling method based on combined cavity-atom dynamics
has been investigated. In contrast to Doppler cooling, cavity cooling does not rely
on the internal structure of the particle. Consequently, cavity cooling should be
applicable to a wider range of particle species e.g. molecules, which do not have
a closed atomic transition. Furthermore, in some regimes of cavity cooling the
temperature is limited not by the spontaneous emission rate but by the cavity decay
rate so the temperature can be at or below the Doppler limit. There have been
several recent cavity cooling experiments. Some of these involved a single atom
while others have used many atoms interacting with the cavity field inside different

cavity geometries.

This thesis presents several analytical and numerical results from cavity cooling sim-
ulations. These involve cooling of atoms in a Fabry-Perot cavity using two different
configurations — one, in which the optical cavity is assumed to be pumped directly
via one of the cavity mirrors or alternatively when the atoms are illuminated by

laser beams directed perpendicularly to the cavity axis.

Both configurations are modelled using particle based simulations and a new, distribution-



function (Vlasov) model of cavity cooling. This Vlasov model should be more prac-
tical for modelling cavity cooling experiments involving large numbers of atoms and

photons.

In addition to the classical models of cavity cooling developed previously, a semi-
classical model is also presented. An analytical and numerical comparison of the
classical and the semi-classical cavity cooling models is presented. The semi-classical
model within a low excitation regime agrees very well with its classical counterpart,
however for cases which involve the internal degrees of freedom of the atoms the

semi-classical model reveals new interesting features.

Finally, in addition to Fabry-Perot cavities a ring cavity with a phase modulated
pump field is also studied. This scheme has the distinguishing feature that the
optical potential is able to move inside the cavity which in certain regimes provides
an opportunity to control the dynamics of the atomic ensemble and can eventually

lead to effective slowing of an atomic beam.
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CHAPTER 1

Introduction

1.1 Light Forces

The idea that light may affect the motion of matter originates from the 17th cen-
tury with Kepler who noticed that a comet tail always points away from the Sun
regardless of what direction it was moving in relation to the Sun. Kepler suggested
that those tails were driven by the pressure of the sunlight, which in fact was not
completely correct, but it identified a significant astrophysical effect and stimulated
further work to explain its origin. The first proper theoretical basis of light pressure
was given in 1873 by Maxwell who formulated the electromagnetic theory of light
|!] and showed that an electromagnetic field exerts a pressure proportional to the
energy of the field per unit volume. Another important step towards understanding
light forces was made by Einstein, in 1917, who showed that a quantum of light, i.e
a photon, carries not only energy hr but also momentum hv/c = h/A. Soon after his
theory the particle-like nature of radiation was reinforced by subsequent experiments
that led to further discovery of light pressure phenomena. The first took place in
the early 1920’s with the experimental demonstration of the Compton effect where
electrons were scattered by high frequency photons and a decade after, in 1933, by
Frisch in Hamburg who illuminated a thermal beam of sodium atoms with resonant

light [2]. Although instructive, all experiments until then were limited by the inten-
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sity of the source and could not fully reveal the potential of the pressure force. The
discovery of the laser in 1960 finally resolved that limitation and resulted in many
subsequent discoveries: in 1962 Askar’yan showed that an intensity gradient could
exert a substantial force on atoms due to an induced dipole moment [3], in 1968
Letokhov suggested that this so called dipole force can be used to trap atoms at the
nodes (or antinodes) of a standing wave ||, and shortly afterwards, in the 1970’s
Ashkin at Bell Laboratories trapped a small glass sphere between opposing focussed
laser beams [5]. He also first divided light forces into two classes: a spontaneous
force arising from the absorption and spontaneous emission of photons and a dipole
force, resulting from absorption followed by stimulated emission of photons. Finally
in 1975 Hansch and Schawlow [6] proposed that laser light could potentially be used

to cool atoms and ions.



1.2 Force on Two-Level Atoms

The force F' acting on an atom can be defined as an expectation value of the quantum
mechanical operator F. This relation is a specific example of the Ehrenfest theorem,
which links the quantum mechanical expectation value of an observable and the
corresponding classical equation of motion. It simply states that the expectation
value of the quantum mechanical operator must correspond to the behaviour of its

classical counterpart |7|

F=(F)=—(p) (1.1)

The above relation is a general case of the time evolution of the expectation value

of a time-independent quantum mechanical operator, which is given by [8, 9]

d d .
—(4) = %/@p AW) dr

:/(({Nj A\IJ+\I/*%\II+\P*A8—\D) dr

ot ot ot

_ <%> +%/\p (AH — HA) Wdr (1.2)

The commutator of the two operators is defined as

[A,B] = AB — BA (1.3)

and since they commute if their commutator vanishes (1.2) can be written as



L4y - <%> + o {[A M) (1.4)

If the operator A does not depend explicitly on time we can write

d

SA) = ([, A) (15)

and hence the commutator of H and p is given by

L OH
[H,p| = zhg (1.6)

where the operator p has been replaced with —if(0/0z). Consequently from (1.1),

(1.5) and (1.6) the force acting on an atom is

L o

Equation (1.7) forms a quantum mechanical analogue of the classical expression that

the force is a negative gradient of a potential.



; excited state |e

ground state |g:

Figure 1.1: Two-level system with the ground state |g) and excited state |e) which
has a linewidth I". The laser frequency wy is red detuned (A, < 0) from the
transition frequency w,

The Hamiltonian responsible for the interaction with the radiation field is given by

where

E(F,t) = Ey € cos(kz — wit) (1.9)

which can be used in equation (1.7) in order to find the force on atoms by light fields

<F>=F:e<%(*(ﬁt)-?>> (1.10)

At this point it is possible to use the electric dipole approximation, i.e assume that
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since the electric field changes on a length scale determined by the wavelength of the
field then for A\ much smaller than the size of the atom the spatial variation of the
electric field can be neglected over the size of the atom. In (1.10), this approximation

allows the interchange of the gradient with the expectation value

F= e§<(*<f,t) F)> (1.11)

The expectation value of (1.11) can be found using the general definition of the

expectation value of an operator

(4) = (v|Alw) (1.12)

where W is the wavefunction expanded in a basis set of {¢,}

i=1

SO

<A> - <Z Ci¢i|A|Cj¢j> - ZC Cj ¢Z|A|¢] ijlalj (114)

i i

where the elements of the density matrix are



pij = (@ilplds) = (0| W) |o;) = cic] (1.15)

Hence using (1.14) and (1.15) it is possible to obtain

F = % <C1¢1 + caths| — eE(71) - Flerdy + C2¢2>

= e (crcs {nIEF 1) - 716) + ciex (nlE(7 1) 7161)) (1.16)

Assigning the basis ¢; 5 to the ground and excited state of a two-level atom and

then eq. (1.16) can be rewritten as

0

F = —e— (i, o (elrlg) + pea o {glre) (1.17)

Obtaining eq. (1.17) requires implementation of the RWA (i.e Rotating Wave Ap-

proximation) that neglects the terms oscillating with the laser frequency.

Equation (1.17) can be then written as

0 o
F=h (Epeg + Eﬂeg) (118)

where () is the Rabi frequency defined as



—GEO

Q= h (e|r|g) (1.19)

It is useful to to split 02/0z in (1.18) into two parts, real and imaginary so that

o9 .
5, = (@ +ia;)Q (1.20)

where ¢, + ig; is the logarithmic derivative of Q (i.e. if Q = ue® with u and ¢ real,

then ¢, = d/dz (Inu) and ¢; = d/dz (V)).

Consequently the expression for the force expands to

F =h (g + i) Qply + (¢ — iq;) Q*peg]

F =hg, (Qp:g + Q*peg) + ihg; (szg — Q*peg) (1.21)

Equation (1.21) describes the total force that can be found for any particular sit-
uation as long as p., can be solved (p., is the optical coherence between ground
and excited state and can be found from the optical Bloch equations as a stationary

state).

Substituting the steady state of the optical coherence between the ground and the

excited state peq [10]
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eg = 4 1.22
Pes = 5(T/2 —ilg) (1 +3) (1.22)
into (1.21) reduces it to
hs 1
F = —Auqr + =Tq; 1.23
T s ( G+ 5 q) (1.23)
where s is the saturation parameter defined as
QJ? Q%/2
N —) - %0 (1.24)
2|T/2 —iA,2 A2+T2%2/4 14 (2A,/T)?
where
2|02 I
= — = 1.25
%0 F2 Isat ( )
and
whe
sat = Sg_ 1.26
"7 3N (1.26)

where I, is the saturation intensity corresponding to the intensity required for a

resonant atom to spend 1/4 of its time in the excited state



Using equation (1.23) one can identify the two general components of the total force.
The first term of (1.23) is proportional to the detuning between the laser and the
atomic transition frequency A, and the second term is proportional to the decay rate
I' of the atom. However their contribution to the total force is determined by the
real and imaginary part of the logarithmic derivative of €2, as defined in (1.20). Since
¢- and ¢; depend on the electric field, strictly speaking on whether it is a travelling
or standing wave, the force can be predominantly due to the field detuning or the
scattering rate and hence give the contribution to two different forces which will be

described in detail in the following sections.
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1.3 Scattering or Radiation Pressure Force

Consider a travelling wave of the electric field given by

E(z) = — (ei(kz_“’t) + c.c.) (1.27)

The Rabi Frequency for such a wave can be found using the definition given earlier
in (1.19) where the wavefunction W(7,¢) has been expanded in the terms of ¢,, such

as

W) = e(t)n(Fe (1.28)

k

Since the amplitude of the wave does not depend on z its gradient is zero so its

logarithmic derivative is zero too and hence ¢, = 0.

The phase of the wave contributing to €2 is not zero however if after applying RWA
the only surviving part is a negative frequency component whose derivative equals

simply the wave number k hence ¢; = k.

When ¢, = 0 and ¢; = k the force equation (1.23) reduces to

e tpr®
2 1+s

(1.29)

and substituting the saturation parameter defined earlier in (1.24) gives

11



T S0
Fiput = hk — :
¢ 2 1450+ (2A,/T)2

(1.30)

Equation (1.30) can be also written in terms of the population of the excited state

1 S 1 So
Pee = =(1 —w) = == (1.31)
2 ) 214 g (B

where w is the population difference

(1.32)

so that

Ficat = RET pec (1.33)

It can be seen now that the force saturates to a maximum value AkT'/2 since the

maximum value of p.. is 1/2 .

The mechanism of the radiation pressure force acting on an atom originates from the
fundamental laws of conservation of energy and momentum during the absorption
and emission of light. An atom can emit a photon in two ways: by spontaneous
emission or stimulated emission. The scattering force can be understood as a result

of cycles of absorption followed by spontaneous emission (absorption and stimulated

12



emission play more important roles in dipole cooling which will be explained in the

following chapters)

hk @

Lo

S P

Figure 1.2: Photon picture of the scattering force: a two level atom, initially in
the ground state, absorbs a photon with momentum hk @ , excited atom increases

its velocity by hk/m, in the direction of the incoming beam @ , the internal en-
ergy is released by spontaneous emission of a photon, in a direction described by a

symmetric probability distribution so the average velocity change is zero @

Consider an atom with mass m absorbing a photon with energy hw (fig. 1.2).
The energy of the photon that has been absorbed by an atom is converted into
its internal energy i.e. the atom ends up in an excited state. However a photon
carries also a momentum hk that after absorption causes the atom to recoil in the
direction of the incoming light and changes its velocity v by an amount hk/m. The
excited atom does not stay in this state forever and soon returns to the ground state
by spontaneously emitting a photon. The conservation of momentum during the
emission causes another recoil in the opposite direction to the emitted photon. The
recoil caused by an absorption is always in the direction of the laser beam, however
the second recoil due to spontaneous emission is completely random in direction.

For that reason the spontaneous emission does not contribute to the net force and

13



after each cycle an atom changes its velocity by hk/m. Note that the scattering
force is dissipative because the reverse of spontaneous emission is not possible and
therefore the action of the force cannot be reversed. The scattering force can then

be used to slow and cool atoms [11, 12, 13, 14, 15, 10].

In contrast to the scattering force the dipole force is conservative and without a
dissipative mechanism can be used to trap atoms; this will be discussed in more

detail in the following chapters.
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1.3.1 Doppler Cooling and Optical Molasses

The concept of using laser radiation for the purpose of cooling atoms was first
proposed by Hénsch and Schawlow in 1975 [6]. The idea was to illuminate an atom
with laser beams of the same frequency, intensity and polarisation but directed
against each other. The lasers are also slightly detuned to the red of the atomic
frequency (wr < w,) [L7]. For the atom at rest the two radiation pressure forces
exactly balance each other and the net force is equal to zero. However, an atom
moving slowly along the light beams sees oncoming light Doppler shifted closer to the
resonance whereas co-propagating light is shifted further away from the resonance.
As shown in fig. 1.3 the atom scatters more light from the counter-propagating beam
than from the co-propagating beam. The atom therefore experiences a net friction
force and is slowed. Such a method of using radiation pressure to slow atoms is

called optical molasses; one of the most common cooling methods used [18, 19].
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Figure 1.3: Doppler cooling in 1D, resulting from the imbalance between the radia-
tion pressure forces of two counterpropagating laser waves

It is possible to demonstrate the existence of a friction force using the expression
derived for the scattering force (1.30). The scattering force can be written in terms

of the saturation intensity for the case of opposing directions (+) and (-) using

S0 :Ehk’ E ]/[sat
2 141/ + (2A, F kv/TM)?

(1.34)

r
Fp=+hk — =
* 2 1+ 80+ (20, F kv/T)?

It is now straightforward using the above equation to estimate the total force on an
atom in optical molasses. For the low intensity case the forces from each of the light

beams can be simply added to give
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r 1/1,, 1/1,
Fiota = hk — / . 2 / L )
1+]/Isat+(w) 1+]/]sat+ (M)

5 (1.35)

1D optical molasses

Force [hkl']

Velocity [T'/k]

Figure 1.4: Velocity dependence of the light pressure force in a one-dimensional
optical molasses. The dashed lines show the two components of the force (eq. 1.34)
in the +k direction. The solid line shows the sum of the two forces, which is linear
for small velocities. The parameters used are: sog =2, A, = —I'

Fiotar = - = —fv (1.36)




where (3 is the velocity damping rate, defined as

k2A
B=— 8hk"Aaso (1.37)

O (14 50+ (2))

Figure 1.4 shows the velocity dependence of the optical damping forces for one-
dimensional optical molasses as calculated from eq. (1.34). Each of the counter-
propagating beams exerts a force with a Lorentzian velocity dependence. The dashed
lines show the two components of the force in +k direction. The solid line shows

the sum of the two forces, which has a linear dependence for small velocities.
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1.4 Dipole Force

An atom in the presence of an oscillating electric laser field acquires an electric dipole
moment that interacts with the laser field. If the field is spatially inhomogeneous
(as in a standing wave or a focussed Gaussian laser beam) the interaction varies in
space and therefore can be described in terms of a spatially varying potential. The
force associated with such a potential is proportional to the gradient of the field’s

intensity and is called the gradient or dipole force.

In order to find the mathematical expression of the dipole force, we can follow a
similar derivation as for the scattering force that has been shown in section 1.3.
Here, in contrast, we consider a standing wave for which the electric field equation

can be written as

E(z) = Egcos(kz) (e~ + c.c.) (1.38)

In calculating the Rabi frequency we again find that only the negative component
of (1.38) survives the RWA, but the gradient does not depend on it and equals zero.
However for a standing wave the gradient of the amplitude is non-zero and hence
the logarithmic components of Q become ¢, = —ktan(kz) and ¢; = 0. If submitting

this to the general force equation (1.23) gives:

Fuy = % 5 & tan(k=) (1.39)

(1+s)

which for the value of the local saturation parameter s becomes:
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2hkdsgsin2kz
1 + 4spcos?kz + (25/v)?

Faip = (1.40)

where sg is the saturation parameter corresponding to each of the two oppositely

directed travelling waves that constitute the standing wave.

It needs to be emphasised that unlike the scattering force, the dipole force does not

saturate and can be made very large for large intensities [10, 13, 20].

1.4.1 AC-Stark Shift

The dipole force originates from the dynamical shift of the atom’s energy levels in the
presence of the external field |21, 22, 23]. This energy shift, called the light shift or
AC Stark shift, is the energy displacement of the ground level AE,, which is directly
proportional to the light intensity and inversely proportional to the detuning, so that

AL, = %, as shown in fig. 1.5.

e
‘ o e 4 o,
‘ v f *
O acdo, w | @
1 l | |
i ~AE,
o e . r
(a) Ay <0 (b) A, >0

Figure 1.5: Light shift of the ground state |g) of an atom produced by a non-resonant
light excitation detuned to the red side of the atomic transition (a) or to the blue
side (b). This is known as a AC-Stark shift.

It is the gradient of this shift that produces a dipole force on an atom. When, for
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instance, the frequency of the external field is tuned below the atomic resonance (A,
is negative), the energy shift becomes negative and the potential energy is minimum
there (fig. 1.5a). Since the shift increases while the intensity increases the atom is
attracted to the regions of the high field intensity (an atom is called a high-field
seeker). On the other hand if the frequency of the laser is tuned above the atomic
resonance (A, > 0) the shift becomes positive and the potential creates a hill that

is repulsive to the atom (in this case the atom is called a low field seeker, fig. 1.5b).

The dipole force can be used to trap atoms in high intensity or low intensity regions
depending on the detuning [16, 24, 25]. The simplest form of such a trap is a
single focussed T'E' My, Gaussian laser beam red detuned to the atomic resonance.
Here atoms will be attracted to the focal point of the beam and its centre where
the intensity is greatest. Such traps are also called optical tweezers since they
can be used to “grab” and move dielectric objects, including e.g biological samples.
Similarly, low field seekers can be trapped using the “hollow” modes e.g LG, (n =

1,2,...,n) laser beam mode, which have an intensity minimum on the beam axis

(hollow beam).

For the case of standing waves that are also characterised with an inhomogeneous
intensity distribution atoms will be attracted towards the field antinode where the
intensity is maximum (for red detuned light) or pushed away from antinodes toward
nodes (for blue detuned light), where the intensity is minimum. This property
lies behind the principle of the cavity trapping (cooling) methods which with an

additional dissipative mechanism can be used to slow and cool atoms [21, 23, 20,

? Y ]
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1.4.2 Sisyphus Cooling

Sisyphus cooling is a method of cooling which involves the dipole force. A proper
treatment of Sisyphus cooling requires a quantum-mechanical description of the
atom-light interaction. In the so called dressed-atom picture the atom and the field

are not treated separately but are considered as a single system [30, 31, 32, 33].

In the dressed-atom picture the energy of the atom and the field are added together.
If we initially ignore the interaction of the field the two states |g) and |e), additionally
characterised by the number of photons in the field n, form a ladder of energy
manifolds, separated by the photon energy hwy. The states in each manifold are of
the form: |g,n) and |e,n—1), |e,n) and |g,n+ 1) as shown in fig. 1.6a. If the atom-
field coupling is included the energy levels split (due to the AC-Stark shift) and are
separated by the energy proportional to Rabi frequency A€ (fig. 1.6b). The dressed
states associated with the energy shift |1,n) and |2,n), |I,n — 1) and [2,n — 1) are

mixtures of the basic states such that:

|1,n) = cosfle,n) + sinf|g,n + 1) (1.41)

12,n) = —sinfle,n) + cosf|g,n + 1) (1.42)

where the angle 6 is given by

tan20 = —Q /A, (1.43)

The mechanism of Sisyphus cooling is based on the fact that the energies of the
dressed states, and so the energy shift, vary in space, i.e in the direction of the

atomic motion. This takes place when the laser intensity is not homogeneous as is
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the case in a standing wave optical field.

[1,n>
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Figure 1.6: Dressed-atom energy diagram for A, > 0. a) when the coupling is not
taken into account, b) including laser-atom coupling.
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Consider an atom moving through the dressed atom potentials created by the blue
detuned laser light, as shown in fig. 1.7. Lets assume the atom starts in the ground
state at a field node with n + 1 photons in the field. The atom cannot undergo a
spontaneous emission at such a place since it is in a pure ground state and hence
will continue its trajectory. While climbing the potential hill created by the field
intensity the atom increases its potential energy but at the same time decreases its
kinetic energy. As the intensity increases the Rabi frequency increases so at the
antinode of the standing wave the dressed atoms have a large contribution from the
excited state and transition 1 — 2 can occur. If the decay is to another [1) state
in a different pair its motion is unaffected. But if the decay is to level |2) the atom
finds itself again at the bottom of the potential well and will continue climbing until
reaching the next hill. In contrast to the upper sideband, here the transition 2 — 1
will occur preferentially at the node of the wave where the atom is in a pure excited
state with n photons. Consequently the most probable transitions 1 — 2 and 2 — 1

will force the atom to “see” more uphills than downhills and it will be slowed down.

This type of cooling mechanism is generally referred to as Sisyphus cooling since on
average atoms spend most time climbing hills losing kinetic energy, in analogy to
the Greek myth about Sisyphus. This mechanism is particularly interesting since
it provides cooling for a laser field tuned above the atomic resonance, contrary to
Doppler cooling. However it works for “slow” particles only, i.e. particles that move
a distance of A\/4 (from the node to the antinode of the standing wave) within, or

less, its natural life time.
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Figure 1.7: Sisyphus cooling of an atom in a standing wave for A, > 0. The dashed
lines represent the spatial variation of the dressed atom energy levels and the full
lines represent the “trajectory” of a slowly moving atom. The moving atom sees
more “uphills” than “downhills” (figure adapted from Ref. [30])
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1.5 Cavity Cooling

Doppler cooling is based on the scattering force which relies on a complicated mech-
anism of closed cycles of absorption and spontaneous emission of atomic population
and is limited to species with simple spectroscopic structures. It has been proven
to be very successful for cooling alkali and alkaline earth metals but is rather in-
accessible to cool more complex systems, like molecules which do not have closed
atomic transitions. Cavity cooling is based on the dipole force which does not rely
on the internal structure of an atom but uses the off-resonant interaction between
an optical coherent field and a polarisable particle. However, the dipole force is
a conservative force and requires an additional dissipative mechanism. In cavity
cooling the dissipation channel is via decay of the optical field that is coupled to an

atom or a molecule |31, 35].

1.5.1 Historical Background

The first complete cavity cooling scheme was proposed by Vuleti¢ and Chu in 2000
[36]. The model was addressed to the translational motion of polarisable particles
at low saturation and large detuning from the particles’ resonances. The authors
pointed out that this scheme should be applicable to molecules or multilevel atoms as
the method is independent of the particles’ internal level structure [27, 35, 37, 38].
Another potential advantage of the scheme was the final achievable temperature
which, in this case, is limited by the dipole force heating in a two-level system

[13, 30] and can be at or below the recoil limit.

In 2002, Domokos and Ritsch [39] proposed a different set-up and suggested illumi-
nating atoms in the cavity from the side instead of sending the pump light directly

into the cavity. In such a configuration the cavity-mediated atom-atom coupling
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can lead to strong cooperative effects and enhance cooling and trapping. Such an
effect strongly depends on the number of atoms inside the cavity and the strength
of the pump field (the origin of the cooperative effect in this configuration will be

explained in chapter 3).

Results from the first cavity cooling experiment were reported in 2003 by Chan,
Black and Vuleti¢ |10, 11, 12, 13]. The experimental setup consisted of a cavity in
which 3 x 10° Cesium atoms (freely falling under the gravity force) were illuminated
by two laser beams sent perpendicularly to the cavity axis. Observed results showed
that one-third of the falling sample was stopped by the standing wave cavity field.
In addition, strong deceleration of up to 1500m/s* and cooling to temperatures as

low as 7TuK was observed.

1.5.2 Cavity Geometries

There are two main cavity geometries taken into account in a cavity cooling setups:
Fabry-Perot cavity and a ring cavity. In the first case atoms can be illuminated
either injecting the pump through a cavity mirror or directly illuminating the atoms,
which then scatter light into the cavity mode. While in the first case some field
always builds up even in the absence of atoms, the second case needs the presence of
particles to populate the cavity mode via scattering. Hence the latter case exhibits
more intriguing physical effects such as self-ordering of the atoms in the optical
potentials. In a Fabry-Perot cavity in spite of the direction of a pump field, potentials
built by an oscillating field are fixed in space and cannot travel inside the cavity.
In the second case of a ring cavity this restriction can be removed. The different
boundary conditions for the field in the ring cavity case allow the positions of the

field nodes/antinodes and hence the optical potentials to move in the cavity.
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1.5.3 Results from the Cavity Cooling Simulations Presented

in this Work

The following chapters present analytical and numerical results from cavity cooling
simulations. It is important to mention that this work has been greatly influenced
by the cavity cooling experiment that has been carried out at the University College
of London (UCL) by Prof Ferruccio Renzoni’s group. The experiment involved a
MOT chamber with a pre-cooled cloud of ~ 10° (s atoms and a vertical cavity,
optically pumped along the cavity axis with an 852nm laser. Initially the Cesium
atoms are fed to the MOT and pre-cooled to a temperature of 160uK. After the
MOT is switched off, the atoms are trapped and cooled in the standing wave cavity

field.

The parameters used in the experiment are listed below [14]:

Number of atoms: N ~1x10°

Cavity linewidth: K = 10.0 x10% Hz
Laser wavelength: A = 852.4 x10™" m
Cs decay rate: I = 32.89 x108 Hz
Coupling constant: go  — 222.38 x10° Hz
Cs mass: m =221 x107%° kg

Initial temperature: T = 160.0 x107% K
Pump-atom detuning: A4 = (-250 : 250) x10° Hz

Laser power: P <03W

where N is the number of atoms, « is the cavity decay rate, I, is the spontaneous
emission linewidth, go is the measure for the atom-cavity coupling strength, m is

the Cesium mass, T;,; is the initial temperature of the atomic cloud that interacts
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with the cavity field, A, = w, — w, is the laser-atom detuning and P is the laser
power. Corresponding scaled parameters have been used in the series of numerical
simulations for various cavity configurations and are presented in this work. This

work is organised as follows:

Chapter 2 contains the derivation of the cavity cooling model (particle model) for
the single atom and many atoms confined inside a Fabry-Perot cavity pumped along
the cavity axis (here called the cavity-pump case). Obtained equations are solved
numerically and the figures characterising the most important features, including
the cooling rates of this scheme are presented. Afterwards, with the respect to
the particle model of the cavity pump configuration, equivalent model based on a
distribution-function (Vlasov model) is developed. Both models are then compared

and the numerical results are analysed.

Chapter 3 introduces cooling of atoms illuminated from light sent perpendicularly to
the cavity axis (here called atom-pump case). This chapter has a similar structure
to that of chapter 2 for the cavity-pump case and hence contains a derivation of the
particle model, main features of this model and numerical solutions obtained from
the solution of its equations. Accordingly the distribution function, Vlasov model
is derived for the same atom-pump configuration and the results from numerical

simulations are compared with the particle model.

Chapters 4 and 5 present the semi-classical models of the cavity-pump and the atom-
pump configuration, respectively. In both cases the semi-classical models are derived
and compared with equivalent classical models. The models are first compared
analytically and then verified using numerical results. Additionally, chapters 4 and
5 contain numerical simulations of the semi-classical models for both the cavity
pump and the atom-pump configurations for the case of blue detuned light. The

results from the simulations are presented and analysed.
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In chapter 6 the possibility of slowing and cooling atomic gas using a phase-modulated
pump field is being investigated. This model assumes atoms being confined in a
high-quality ring cavity illuminated by light sent through one of the cavity mirrors.
Unlike in the Fabry-Perot cavity in this configuration the optical potentials built
up by the field can freely travel inside the cavity. Hence, three different regimes, in
which both the field and the atoms reveal qualitatively different behaviour, are iden-
tified. The atom-field interaction characteristics for each regime are presented and

analysed using results obtained from numerical simulations of the model equations.

In chapter 7 all results from this work are reviewed and summarised.
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CHAPTER 2

Cavity-Pump Configuration

The following chapter introduces the cavity cooling model for cases where a single
atom and many atoms are confined inside a Fabry-Perot cavity pumped through
one of the cavity mirrors, along the cavity axis. Equations for the particle model
and the alternative Vlasov model will be derived and the results from the numerical

simulation of both models will be compared and analysed.

2.1 Classical Derivation of Single Atom Cooling

Let us consider a system consisting of a single atom inside an optical cavity, pumped
by an external field injected through one of the mirrors, with a standing wave light

field far detuned from any atomic transition (fig. 2.1).

The cavity field induces a dipole moment in the atom which in turn contributes to

the plane wave electric field as a driving term in Maxwell’s wave equation [37]

0? 1 02 0
—@E(.I, t) —I— gﬁE(l‘,i‘) + [LOO'aE(ZL‘,t)
2

9 exrt
= —uoﬁP(x,t) + ,uOUaE (x,t) . (2.1)
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y’

z X
Figure 2.1: Particle moving inside a driven optical cavity, pumped along the cavity
axis. The cavity pumping rate, spontaneous loss rate and cavity decay rate are
determined by the parameters n, I' and x respectively
where o is the conductivity of the cavity mirrors, pu, is the magnetic permeability, ¢
is the speed of light, P(x,t) is the polarisation of the atom and E** is the electric
field of the external pump field. The third term on the LHS and second term on

the RHS of (2.1) describe damping and external pumping of the cavity, respectively.

The electric field and polarisation can be written as

E(z,t) = E(t)e ™" u(x) + c.c. (2.2)

P(x,t) = P(t)e ™" u(x) + c.c. (2.3)

where u(x) is the intracavity mode function - cos(kz) with wave number k. Sub-
stituting eq. (2.2) and (2.3) into (2.1), finding the derivatives and assuming that £
and P are slowly varying amplitudes (|€] < w,|€| and analogously for P and £¢*)

one can rewrite eq. (2.1) as

iwy P

£ —1A)E &
+ (kK —1A,) 2.

+ KE (2.4)
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Here A, is the detuning between the pumping field and cavity frequency (A. =

w, —w,) and Kk = 0/2¢, is the cavity decay rate.

The dynamics of the atomic dipole can be modelled as an elongation of an elastically

bound electron under the influence of an electric field:

§(0) + 209(8) + W2y(t) = —Bleat) (2.5

where x, is the atomic position, m is the electron mass, e is the charge, I' is the
scattering rate and where we have introduced the slowly varying complex amplitude
Y (t) via

y(t) = Y(t)e ™' + cc. (2.6)

Inserting eq. (2.6) into eq. (2.5) and solving for steady state one obtains:

Y () = e &E(t)/m

= T (i 1 (2 — w2) 2y k) (2.7)

The polarisation density can be defined as P(z,t) = ey(t) d(z — z,)/A where 0 is
a Dirac delta function and A is the cavity cross-section. Using definition (2.3) and

defining a “macroscopic” polarisation P(t) = (2/d) fd/2 dxP(z,t)cos(k, z), where d

—d/2

denotes cavity length, it is possible to obtain the following expression for the slowly

varying amplitude:

Pt) =i <mim E;S_(fzz))g(t) . (2.8)

where A, is the frequency detuning w, — w,.
Substituting (2.8) into (2.4) one obtains
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E(t) = [~k — v(a) + 1A, — iU (x,) E(t) + KES (2.9)

where

_ 2 .2
v(z) = T A35]0003 (kz) , (2.10)
Ulz) = _Ba g>cos?(kx) (2.11)
2+ A27° ' '

The parameter y(x) can be understood as the total rate at which the atom scatters
light and U(z) as the frequency shift of the cavity due to the interaction with the

atom. Here g, = |e|/+1/(2Ve,m) is a measure of the atom-cavity coupling strength.

The dipole force acting on the atom is given by

F(2a) = Ve y(wa, ) (o), (2.12)

so substituting (2.2), (2.6) and (2.7) into (2.12) produces

e? A,
2w,m I'2 + A2

F(z,) =-V E(t)cos* (kxy)| - (2.13)

Introducing the effective pumping term 7 and rewriting (2.9) and (2.13) in terms of

a dimensionless parameter «, associated with the average cavity photon number:

|042| _ € |E2V

ha, (2.14)

34



it is finally possible to write the following set of equations for the atom-cavity dy-

namics:

da

e [—k — () + 1A, —iU(z) Ja + 1 (2.15)
dp o d

de p

- _ 2 2.1
dt m (2.17)

Equation (2.15) describes the time evolution of the field amplitude; here « is the
complex, dimensionless parameter whose absolute squared value |a|? is associated
with the average photon number, 7 characterises the driving laser strength given by
the free-space Rabi frequency and k is the total cavity decay rate. The parameter
v(z) = v cos*(kz) can be understood as the total rate at which the atom scatters

light where

r

= ———¢° 2.18
! F2+Agg’ (2.18)

describes the absorptive effect of the atom as it broadens the resonance line of the

cavity.

Equation (2.16) and (2.17) are the equations of motion of the atomic centre-of-
mass, where z refers to the position of the atom and p to its momentum. U(z) =
Up cos?(kx) is the frequency shift of the cavity due to the interaction with the

particle, where

(2.19)
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describes the dispersive effect of the atom as it shifts the resonance line of the cavity.

In order to understand the basic idea of the cavity cooling mechanism let us consider
a massive point-like polarisable particle strongly coupled to a high finesse optical
cavity pumped directly along the cavity axis (fig. 2.1). Depending on the configu-
ration a laser field, which can be pumped along the cavity axis or perpendicularly,
forms a standing wave cavity mode to which an atom is coupled. Because of the
electric dipole moment the field detuned from any atomic transition exerts a force
on the particle and consequently modifies its momentum and position inside the

cavity.

0.8

x (A

Figure 2.2: Potential U(x) and intracavity intensity |«|? versus particle position z
— red curve when particle moving, blue when steady (figure adapted from Ref. [31])
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The detuning between the field and an atom (A,) plays a significant role in the
whole system dynamics. If A, < 0, we say the field is red detuned and the force is
directed along the gradient of intensity so an atom is attracted to an antinode. For
blue detuning, A, > 0, the force is directed against the gradient of intensity and
a particle will be pushed towards a node. In turn, due to atom-field coupling the

particle’s position strongly influences the field amplitude.

4 100 200 300 400 500
Kt

Figure 2.3: Time evolution of particle momentum. The parameters used are: Uy =
0.76x, vo = 0.07k, A, = 1.2k (figure adapted from Ref. [31])

For a typical cooling regime, and assuming A, < 0, the maximum field amplitude
will be obtained when the particle sits at an antinode of a standing wave and will
be minimum when the particle sits at a node (fig. 2.2). For a particle with non-zero
momentum, because of the finite cavity response time, the maximum field intensity
will be attained after the particle passed the minimum potential. Thus, for properly
scaled values this atom-field cross-talk can be controlled in a way that the particle

will climb potential hills at times of higher intracavity intensity and run down at
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times of lower intracavity intensity. Over an entire cycle the particle will lose its
kinetic energy and after being slowed it can be trapped in a single potential well
(fig. 2.3),[34]. More results from the numerical simulations of the particle model,
including cooling rates for the case of many particles inside the cavity will be shown

in the next sections.
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2.2 Cavity Cooling Including Many Particles - Par-

ticle Model

In this section, the model derived in section 2.1 is extended to describe the case
where many particles are coupled to the same cavity mode, as shown in fig. 2.4.
Because of the presence of many atoms, the cavity resonance shift is now due to the

total phase shift induced by the position of all the atoms inside the cavity [15].

y’
z X
Figure 2.4: Cavity resonator with many particles coupled to the light field. The

cavity pumping rate, spontaneous loss rate and cavity decay rate are determined by
the parameters 7, [' and  respectively

Similarly, the absorptive effect is a function of the total scattering from each of the

particles separately. Hence equations (2.15) , (2.16) & (2.17) become:

d

d_(: =[—Kk—" g cos®(kx;) +iA. — iU, E cos®(kx;) Ja+1n (2.20)
J J

dp; d

d_tj = —hUO‘QQ‘%COSQ(kx]’) (2.21)

dxj _ p;

— == 2.22

. m (2.22)

where the parameters «, k,y(x),U(z), A, and 7 represent the same physical quan-

tities as in a single atom configuration (section 2.1) and j = 1...N is the particle
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index.

In the particle model the knowledge of the system at a given time requires infor-
mation about the instantaneous position and momentum of each of the particles.
This information in turn contributes to the evolution of the total field intensity and
phase as described by eq. (2.20). The whole idea is to use that interplay and find
parameters for which cooling can be obtained. The cooling mechanism for the case
of many particles in the cavity is similar to the single atom case. For red particle-
field detuning Uy < 0 the particles are drawn towards the field intensity maxima at
the mode antinodes, as explained earlier in section 1.5. This increases their average
coupling to the field and thus enlarges the effective refractive index of the cloud
shifting the cavity resonance towards a lower frequency. Under suitable operating
conditions, when the pump frequency is also below the cavity resonance, such a shift
decreases the pump-cavity frequency mismatch and leads to an increase in the cavity
photon number. In turn this deepens the optical potential and further confines the

cloud near the antinodes.

In reality the position and momentum distribution in an atomic cloud is fully ran-
dom. In the cavity pump configuration the external field does not provide any
correlation between the motion of the atoms so in principle the cross-talk between
particles should increase the trapping time. Numerical solutions of egs. (2.20) -
(2.22) provide information about certain parameters e.q. number of particles or

pump strength that can influence the cooling of the sample.
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2.2.1 Scalability of the Cavity Pump Configuration

Numerical simulations using the classical model (eqs. (2.20 - 2.22)) predict faster
cooling for small number of particles and slower cooling for larger ensembles. It is
important to mention that this model does not include spontaneous emission and any
spread of the atomic momentum is due to interaction with the classical cavity field
only. The cavity pump configuration is characterised by strong scalability |15, 16].
Since Uy is the cavity frequency shift due to the interaction with the atom, hence
increasing the number of particles by a factor r, dividing the interaction potential
Up by r and increasing the pump strength by /7 should in principle lead to similar

results.

In the following example this scalability law has been applied to initial parameters
(N =1x10%n = 70.0s, Uy = —0.004x) and cooling has been demonstrated for

5x 103, 1 x 10%, 1 x 10° and , 1 x 10 particles.
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Cooling rate vs. N
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Figure 2.5: Cooling rate (constant cooling parameter) as a function of number of
particles (V). The linear decrease of the cooling rate with atom number is clearly
visible here.

As shown in fig. 2.5 the cooling time scales linearly with respect to the number of

atoms inside the cavity and increases if the number of atoms increases.
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Note, the scaled parameters found for N = 1 x 10° atoms

n = 2300.0 k
A, =-1250k
r

=320k
Jdo =0.02
o = 28.0 hk

correspond to those being used in current cavity cooling experiments at UCL (Uni-
versity College of London), where the above parameters correspond to the real ex-

perimental parameters:

cavity linewidth: k= 1.6x10° Hz
laser wavelength: A —852.4 x107° m

Cs decay rate: I — 5.23 x10° Hz
coupling constant: go = 35.4 x10° Hz
Cs mass: m =221 x107% kg

Initial temperature:  T},; = 160.0 x1076 K
atom-cavity detuning: A, — -200 x10° Hz

laser power: P <0.1 W
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2.3 Validity of the Classical Model of Cavity Cool-
ing

In previous studies of cavity cooling |27, 37, 38, 39|, which assumed a single atom
or a small number of atoms and a cavity mode containing few photons, the atomic
momentum spread or temperature is mainly due to fluctuations in the forces acting
on the atoms and is limited by the cavity linewidth. In this thesis, we consider
cases where the number of atoms is very large (typically N > 10° in e.g. the UCL
experiments) and consequently the cavity fields are relatively intense and contain
a large number of photons (i.e. |a|?). In these cases the behaviour of the system
will be essentially classical and the temperature/momentum spread of the atomic
ensemble will be mainly due to the relatively large height of the optical potential
energy associated with the cavity mode amplitude [17, 18]. In what follows this
qualitative argument for the validity of the classical model is investigated in more

detail and a condition for its validity is derived.

Starting from the expression for the force on an atom in the cavity (eq. 2.21)

F = hkUs|al?*sin(2kx) (2.23)

then it is possible to derive a position-dependent potential energy

1
V(z) = —/Fda: = §hUO|a]2005(2ka:) (2.24)

The temperature associated with this potential energy can be deduced by considering

the fact that the atoms trapped in the potential will have a maximum kinetic energy

of
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1
£ = 5vmm(g,;) = hUo|a? (2.25)
so the variance in atomic momentum will be

(p*) ~ mhUp|a? (2.26)

and the associated classical momentum spread of the ensemble will be

ap =/ (%) = VmhU|al. (2.27)

For comparison the kinetic energy of individual atoms due to stochastic fluctuations

in the dipole force has been shown to be |37, 19]
2
p
~ _~h 2.28
5 ~ e (2.28)
SO
p* ~ 2mhk (2.29)

with a corresponding momentum spread

op ~ V2mhk (2.30)

Consequently, the ratio of the spreads can be written as

oplint) — vmhUola| — [1Up
op( fluc) vVmhr 2 K

ol (2.31)
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For a cavity pumped close to resonance, the mode amplitude || will be

jaf ~ Z =7, —=U (2.32)

so in terms of the parameters defined in section 2.1, the ratio of the classical inter-

action spread and the quantum mechanical “fluctuations” spread is

oplint) 1 _

Consequently, a classical model which neglects stochastic fluctuations in the optical

forces should be a good approximation in the limit where O';nt > Ugluc i.e.

1._
5Uoﬁ2 > 1 (2.34)

which in real dimensional units can be written as

lgsn

A > (2.35)

which implies strong-atom field coupling and large pump photon numbers as would

be expected from a classical limit.

The validity of this classical limit can be demonstrated by a comparison of the clas-
sical model (egs. 2.20 and 2.22) where the momentum diffusion due to fluctuating
optical forces is neglected, with the corresponding equations which include momen-
tum diffusion arising as a result of stochastic fluctuations in the optical dipole force

1.e.
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da

i [k — 7 Z cos®(kx;) +iA. — iU, Z cos®(kx;) Ja+n (2.36)
J J

dp; o d o

— — , 2.
- hU,| \dxcos (kx;) +&(t) (2.37)
drj _ p;

=4 2.38
a m (2.38)

where £(t) is a Gaussian random variable with zero mean and variance D such that
E(t) = 0 and £(t)E(t — T) = 2DS(T) where the overbar indicates a time average
[50, 51]. The effect of the random part of the force in eq. (2.37), £(t), is therefore to
cause momentum diffusion such that p? ~ 2Dt. The momentum diffusion coefficient,

D is defined as [39, 17]

2
D = 2vyy|al? {h%g(m)} + R?k*utg(z)? (2.39)

where g(x) is the cavity mode function and k?u? is the mean value of the recoil

momentum projected onto the cavity axis.
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Figure 2.6: Comparison of the time evolution of the field intensity with and without
momentum diffusion due to fluctuating optical forces. The parameters used are:
N =100,A, = —40rk,Uy = —2.5 x 1072k, 79 = 6.25 x 10™°k,n = 15k

Figures 2.6 and 2.7 show a comparison of the classical model defined by eqgs. (2.20

and 2.22), where momentum diffusion is neglected, and its quantum counterpart

egs. (2.36 and 2.38) where momentum diffusion is included.
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—— without the diffusion
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Figure 2.7: Comparison of the time evolution of the particle’s momentum spread
with and without momentum diffusion due to fluctuating optical forces. The param-
eters used are: N = 100, A, = —40k, Uy = —2.5 x 1072k, 79 = 6.25 x 107°k, n = 15k
The parameters used in figures 2.6 and 2.7 are: N = 100, A, = —40x,Uy = —2.5 X
1072k, 90 = 6.25 x 107k, = 15k so the condition derived in eq. (2.34) for the
validity of the classical model, i.e. neglects of quantum mechanical momentum
diffusion, is satisfied. It can be seen from figures 2.6 and 2.7 that the condition
is valid as the behaviour of the momentum spread and the field intensity is not

significantly affected by the inclusion of momentum diffusion.
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2.4 Vlasov Model of the Many Atom-Cavity System

The particle model is a powerful tool for simulating a limited number of particles. For
larger ensembles the requirement of information about the position and momentum
of all the atoms at all times makes the numerical simulations more time-consuming.
An alternative method to simulate systems involving large numbers of atoms or

particles is to use a distribution function f(x,p,t).

In the absence of collisions an ensemble of particles can be described by a distribution

function f(@x,p,t) in six-dimensional phase space. Liouville’s theorem

a _

- 2.40
il (2.40)

asserts that the phase-space distribution function is constant along the trajectories
of the system - that is, the density of system points in the vicinity of a given system
point travelling through phase-space is constant with time. For a large number of
particles, moving under the influence of an electromagnetic field, equation (2.40) is

called the Vlasov equation [52].

The Vlasov equation describing the evolution of 1-D distribution function f(z,p,t),

for a collisionless gas of particles is:

i of of  of
i o —l—xax—l—pap—o (2.41)

where - = % and f(x,p,t) is normalised such that:

//f(x,p,t) dz dp = 1.
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For a gas of N atoms, equations (2.20) - (2.22) can be written as

d _
=g tin. =il a+y (2.42)
dn.

% = hkUp |a)? sin(2kz;) (2.43)
drj _ pj

— == 2.44
a m (2.44)

where the sum over the N atoms has been replaced with the overbar (...) = Z;VZI()

Using equations (2.43) and (2.44) the Vlasov equation, eq. (2.41), can be written as

af  pof
5t + . + hkUs|a|? sin(2kx)

Of (x,p,t)

= 2.4
2 =0 (245

and consequently

of L P of ~hkU0|a|2 (e2he — g~2ke) of (x,p,t)

z277 o

5 T o = 0. (2.46)

The spatial periodicity of the forces on the atoms allows us to assume that the atomic
distribution function is also spatially periodic with period A/2. Consequently, we

can expand f as a Fourier series such that

(z,p,t Z fa(p,t)e?™ = where f_, = f (2.47)

n=—oo

and rewrite the Vlasov equation in eq. (2.46) as

Ofn
ot

+2kfn

kU o (8fn1 - 0fn+1> _o. (2.48)

2 dp dp
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The wave equation, (2.42), can be written in terms of the Fourier series (eq. (2.47))

using
do ; U cos2 (k)
i (= +iA) a — (0 + iUy) cos?(kz)a + 1
= (—k +iA)a — M(l + cos(2kx))a + 1
: N : 1 . . :
= <—/<; + A, — 0} (y0 + ZU0)> a—7 (70 + iUo) (e%+* + e~ 2k ) 4

so that replacing

()= N/Z /wa(;c,p, t)(...) dz dp

produces
do , N NU; N , >
%:(_fm R 2())@—1(%“00)/ (fr 4 f1) dp o,

(2.49)

It is useful, for numerical simulations, to define the dimensionless variables p = £

= Kt =1, Uy = %, Gy = ZZf, n =1 and f = hkf, so that equations (2.48)

) 70
and (2.49) can be rewritten in the dimensionless form

6fn__. - _7 Z.* 2 8fn—l _8fn+1

5 = inw,pfn + 2Uo|a| ( % % (2.50)

doc -~ Ny .NU N (5 + ilo) /°° 2 EN dmot

dt_<—1+zAC— 5 i )a— 1 _oo(f—1+f1) dp a+1
(2.51)

The Vlasov model equations (2.50) - (2.51) are completely equivalent to the particle
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model equations (2.20) - (2.22) derived earlier. In the following section numerical
solution of both models will be presented. It will be shown that using the same

initial conditions and parameters both models display excellent agreement [53].
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2.5 Comparison Between the Particle Model and

the Vlasov Model (Cavity-Pump Configuration)

The time evolution of the field intensity and the particles average momentum for
the Vlasov and particle model are now investigated for the case of the cavity pump

configuration (fig. 2.4).

Figure 2.8 shows the time evolution of the field intensity for the cavity-pump config-
uration, as calculated from the particle model (eqgs. (2.20) - (2.22)) and the Vlasov
model (egs. (2.50) - (2.51)). It can be seen from fig. 2.8 that both models display

rapid saturation of the field at (xt ~ 5) and small oscillations at longer times.

15X 10
10r ]
S
5, -
—vlasov model
0 — particle model

0 20 40 60 80

t in units of s

Figure 2.8: Cavity pump configuration: comparison of the field intensity evolution
of the Vlasov (blue curve) and the Particle model (red curve). Scaled parameters:
N =2x10°, A, = —1.5x, n = 1500k, Uy = —5.0 x 105
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In addition to agreement in the evolution of the cavity field both the particle and
Vlasov models also give almost identical results for the evolution of averaged quan-
tities of the atomic sample like the average momentum and momentum spread. For
demonstration purposes the initial mean velocity of the particles has been chosen to
be nonzero, so that (p) = 10hk with a spread of 0 = 5hk. The damped oscillations
of the average momentum shown in fig. 2.9 are due to the trapping of the atoms in
the potential wells formed by the intracavity standing wave field. It is worth men-
tioning that despite the average velocity decrease, trapped particles initially gain
some kinetic energy when falling towards the potential minima, so that the velocity

spread initially increases in time (fig. 2.10).
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The excellent agreement between the two models and the validity of the Vlasov

approach is clearly demonstrated by figs. 2.8 - 2.10.

—vlasov model
=5 — particle model |

0 20 40 60 80
Kt

Figure 2.9: Cavity pump configuration: comparison of the mean momentum evolu-
tion of the Vlasov (blue curve) and the Particle model (red curve). Scaled parame-
ters: N =2 x 10°, A, = —1.5k, 57 = 1500, Uy = —5.0 x 10~%4, (po) = 10hk
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Figure 2.10: Cavity pump configuration: comparison of the momentum spread evo-
lution of the Vlasov (blue curve) and the Particle model (red curve). Scaled pa-
rameters: N = 2 x 10°, A, = —1.5x, n = 1500x, Uy = —5.0 x 1075, (py) = 10hk,
o = bhk

The good agreement between the two models can be further demonstrated by com-
parison of phase space evolution in both the particle model and the Vlasov model.
A simulation of the phase space evolution for the particle model is presented in
figure 2.11. Initially the particles are uniformly distributed over one wavelength of
the wave and normally distributed in momentum space with a Gaussian momentum
distribution. Depending on a particle’s position in the optical potential it can be
accelerated or decelerated. Particles which do not have enough kinetic energy to
escape the potential are trapped in the single potential well (kt = 10, kt = 15).
The half-wavelength periodicity of the potential field in this configuration is clearly

visible.
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Figure 2.11: Time evolution of phase space calculated from a numerical simulation
of the particle model, eqs. (2.20) - (2.22). Scaled parameters:: N =2 x 105, A, =
—1.5k, n = 1500k, Uy = —5.0 x 1075k, (py) = 10kk, o = Hhk

Figure 2.12 shows the time evolution of the momentum distribution function f(x, p,t)
for the Vlasov model. It shows that the same behaviour is also demonstrated by the

Vlasov model. Here equations (2.50) - (2.51) have been solved numerically with the

same parameters as previously used in the particle model (fig. 2.11).
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Figure 2.12: Time evolution of the momentum distribution function f(z,p,t) from
a numerical simulation of the Vlasov model, eqs. (2.50) - (2.51). Parameters used
are the same as those in fig. 2.11 i.e N = 2 x 10°, A, = —1.5k, n = 1500k,
Uy = —5.0 x 107%k, (py) = 10hk, o = Shk

Numerically, the agreement of the Vlasov model with the particle model depends
mainly on a sufficient number of Fourier harmonics f,, used to represent the distribu-
tion function in the expansion eq. (2.47) and a sufficient number of discrete points

used to simulate the momentum distribution. In this case the number of spatial

harmonics was chosen to be 30 and the number of momentum points was equal 100.
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2.6 Numerical Methods for the Particle Model and

the Vlasov Model

The particle model is composed of the (2N + 1) coupled differential equations (2.20)
- (2.22) hence the simulation of this model is based on the simultaneous numerical
solution of each of the equations. Since this is a typical initial value problem the
4th order Runge-Kutta method, commonly used in similar models, has been applied
here. The 4th order Runge-Kutta method makes an excellent compromise between
the speed and the accuracy of numerical calculations |51]. In contrast, the Vlasov
model is a set of two partial differential equations (2.50) - (2.51). From the variety
of numerical methods for solving partial differential equations, the Finite Difference
Method was chosen. More specifically the implicit Crank-Nicholson scheme was used

due to its simplicity and good accuracy.

The codes for both particle and the Vlasov methods were written using Fortran 90.
This general-purpose programming language is especially suited to high-performance
numeric computation and scientific computing. In order to further improve the
speed and performance of the calculations some of the codes were parallelised with
the memory shared multiprocessing method also known as OpenMP. More details

of the numerical method for solving the Vlasov model can be found in Appendix A.
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CHAPTER 3

Atom-Pump Configuration

In the previous chapter, the optical cavity was assumed to be pumped directly via
one of the cavity mirrors. In this chapter an alternative pumping configuration is
considered, where atoms are illuminated by the pump field which propagates trans-
versely into the cavity (fig. 3.1). This results in an atomic-position effective pumping
term, which is responsible for the presence of an additional force acting on the atoms.
This force, dependent on field intensity, originates from the coherent redistribution
of photons between the pump and the field mode and leads to cooperative action

and self-organization of the atoms in the cavity [39, 55, 56].

3.1 Classical Derivation of Atom-Pump Configura-

tion

Consider a system consisting of an optical cavity containing atoms illuminated by

the field being sent transversely into the cavity (fig. 3.1).

The external field induces a dipole moment in the atom which in turn contributes

to the electric field as a driving term in the wave equation

2 2 2

10 0
— —FE(z,t)+ E@E(x,t) + MOJEE(x,t) = —MO@P(I,& (3.1)

where o is the conductivity of the cavity mirrors, pu, is the magnetic permeability
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Figure 3.1: Schematic representation of an atom-pumped resonator. The cavity
pumping rate, spontaneous loss rate and cavity decay rate are determined by the
parameters 7, I and k respectively

and c is the speed of light.

The electric fields (pump and cavity) and polarisation are defined as follows

E,(y,t) = &e ™ uy(y) + c.c. (3.2)
E.(z,t) = e ™ uu(x) + cc (3.3)
P(z,t) = Pe ™" +cec. (3.4)

where u.(z) is the intracavity mode function cos(kz) with wave number k. Substi-
tuting (3.2) - (3.4) into (3.1), finding the derivatives and assuming that £ and P are

slowly varying amplitudes then eq. (3.1) can be reduced to

1wy P
2¢,

éc"i_ (’{_iAC) gc ~
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where A, is the detuning between the pumping field and cavity frequency (A. =

Wp — We).

The polarisation has a contribution from both the cavity and transverse pump fields

and can be written as

P(z,t) = Qpol [cue(x) + gpup(y)] et 6(r —x4)/A (3.6)

where 0(z — x,) is a Dirac delta function and A is the cavity cross-section. . is

an electronic polarisability defined as [57]

2

W = G (T T (2 = 2)) 2y (3.1
¢ (3.8)

ol = 2mw,) (—iT — A,)

where we have used the approximation (w} — w?2)/2w, = (wWo — wp)(Wo + W) /2w, ~

—A,. Using (3.4), (3.6) and with P = 2 [*/2

e dxP(z,t)cos(kx), where d denotes the

cavity length, then

P = S Gouc(w) + &y (y)] cos(ka) (3.9)
SO
e cosP(kx,) . e cos(kx) uy(y)
P—i foti & (3.10)

(2mw,V) (I' — iA,) (2mw,V) (' —iA,)

Inserting (3.10) into (3.5) the latter becomes
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2 2

éc:_

50 - (K/_ZAC) gc -

e cos®(kx) e cos(kz) uy(y)

2mVe,) (T —iA,)

2mVe,) (T —iA,)

(3.11)

which can be written in terms of the position dependent scattering rate v(z) and

frequency shift U(x), defined as

r 2.2 2
v(z) = mgocos (kx) = yocos”(kx),

and

Ae

Vo) = oy aet

cos®(kz) = Uycos®(kx)

respectively, where g, is the cavity-atom coupling strength, i.e

e2

Jo = (2mVe,)

Consequently, eq. (3.11) can be written as

g2cos(kx) u,(y)

&= [=h @) +ibe = iU(@) Jo = = E A

(3.12)

(3.13)

(3.14)

(3.15)

It is useful to rewrite eq. (3.15) in terms of a dimensionless variable «, whose squared

absolute value is associated with the average cavity photon number:

60|£2‘V

o] =
hup

64

(3.16)



so that

=i &= (317
and finally after substitution
a=[—k—(x)+iA. —iU(x) Ja — nesruy(y)cos(kx) (3.18)

In the above we have defined the laser pumping rate n = g,c, and effective pumping

strength nerr = ng,/(I' —iA,).

As was demonstrated in section 2.1 the total force acting on an atom is given by

F=V(d E). (3.19)

Assuming that both cavity and pump fields are polarised in the z direction

E.(z,t) = ((.e7™" up(z) + c.c.)2 (3.20)
E,(y,t) = (&e ™ uy(y) +c.c.)2 (3.21)
we have
OE , OE , OFE

so the force in the 2”7 direction is

Fo—d 2 <dxaEw L WOk, | dzé’Ez) _ d.0E,

dz ox ox ox ox (3.23)

65



Defining the electron dipole moment

d, = apa B = {apol [Couc(z) + Eup(y)] e Pt + c.c.} (3.24)

and the derivative of the total electric field

8Ez . duc(x) —iwpt *duc(a:) iwpt
o & . e + fcwe (3-25)
into (3.23) gives
|? du?(z . . duc(r
Fx = |€2| dJ(I )(apol + apol) + <apolépgxup<y) d.i‘ ) + C'C'> (326)

where the fast oscillating terms (e=2“r! ¢2“rt) have been dropped.

For clarity each term on the RHS of eq. (3.26) will now be considered individually.

The polarizability o, is defined in eq. (3.8) so it can be rewritten in the form

N e?(—A, +1l)
LT (2muwy) (A2 +T2)

(3.27)

Writing (3.26) in the form F, = F,, + F,, then substituting o, into (3.26) gives

(- 00) =~ (3.25)
Qpol + Q) = — :
pol T Tipol mwy, A2 + 12
so the first term of (3.26) i.e. F, is
e? A du?(x)
F, = —|&|? e AN 3.29
! £l [mep A2 + F2} dx (3:29)
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Multiplying and dividing (3.29) by V, ¢, and & and introducing U,, ¢> and |a|* (egs.

(3.13) (3.14) and (3.16) respectively) then it is possible to write

E,,

du?(x
g

The second term of (3.26) can be written as

F,

2

and one can use the dimensionless variable, «, previously defined, so that

= up(y)

du(x)

dx

(pai€eép + c.c.)

%vg €,V
o= a, =
hw,, b Fiw,, ™"
hw, . fhwe
e eOVaC & eovac
hwp * hwp *
gp - Eovap gp a Eovap
and consequently
hw du.(z) .
F,, = onﬁup(y) o (Qparayy + c.c.)
or alternatively
du,(z) e

Fy, = ihup@)

dx

(

(2me,V)(I' —iA,)
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(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)



Introducing the laser pumping rate, 7 = g,0,, and effective pumping term 7.5 =

ngo/(I' —iA,) gives the final expression for F,:

. du.(x . .
Fm2 = _Zhup(y) di’ ) (neffa — Neff& ) ' (337)

Combining both parts of the total force (3.30) and (3.37) and recalling equation
(3.18) we obtain self-consistent set of equations which describe the dynamics of the

field amplitude v and the centre of mass motion of N dipoles along the cavity axis

X, [39]:

a=i AC—UOZCOS2(kxj) a
J
— | K+ 7% Z cos®(kx;) | & — esy Z cos(kx;) (3.38)
J J J

: d
p; = —hU, (|?|) %0082(1431’]')

J

—1ih (neffa — Neffox ) %cos(k‘xj) (3.39)
j

i, =" (3.40)

In the following section more detailed features of the atom-pump particle model
will be demonstrated. Moreover, analogously to the cavity pump configuration,
an alternative Vlasov model of the atom-pump configuration will be derived and

numerical simulations from both models will be compared.
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3.2 Particle Model of Atom-Pumped Configuration

Using (3.38 - 3.40) derived in section 3.1, it is now possible to investigate the dy-
namical behaviour of an atom-pumped cavity containing a gas of N atoms. The
parameters in (3.38 - 3.40) describe the same physical quantities as in the cavity
pump model described in section 2.2, in eqgs. (2.20) - (2.22). Note that the main
difference between the field evolution equations in each configuration (eq. 2.20 and
eq. 3.38) is in the pumping term. For atom-pumping, eq. (3.38) is described by

Neff Zj cos(kx;) which is a position dependent pumping term proportional to

N90
eff = 3.41
Tl T TiA T (3:41)

where 7 is the pumping strength, given by the maximum free-space Rabi frequency.

The force on each atom in the atom-pumped configuration, eq. (3.39) contains a
sum of two terms. The first term corresponds to a force arising from an optical
dipole potential < cos®(kx), which has potential minima at kz = nxw. The second
term in (3.39) originates from coherent redistribution of photons between the pump
and the field mode. This second force is proportional to cos(kx) and has opposite
signs at kz = 2nm and kx = (2n + 1)m. If for instance momentarily there are
more atoms in even wells so that ) cos(kz) > 0 and the detuning is such that
A, — U, > cos*(kx;) < 0, then the cosine potential has wells at kz = 2n7 that
deepen the cos?(kx) optical lattice and has hills at kx = (2n + 1)7 that reduce
attractive wells at cos?(kz). During the cooling process those two forces compete
with each other and self-amplify until all the atoms are in the same even or odd wells.
Once the atoms redistribute the constructive interference of the scattered light gives
rise to the stationary field intensity and self-organization is further stabilised. In

other words the self-organisation of the atoms in the cavity can be understood as a
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bunching of the atoms on the scale of the optical wavelength (or potential), giving

rise to coherent scattering [39].

Self-organisation in the atom-pump model strongly depends on the number of atoms
inside the cavity. It can be seen from fig. 3.2 that for low number of atoms the
field does not build up and self-organisation cannot be established. For a sufficient
number of atoms generated photons build up the field which can be recognised as a

growth of the cavity field intensity.

|O(|2 0 Nl.96
2000 ‘ ‘
-@-simulations
—fitting (y=a*NP)
1500+
N
"5 1000¢
5001
0]
0 20 40 60 80 100

Figure 3.2: Steady-state intensity |a|? as a function of number of atoms N for the
atom-pump configuration. Quadratic dependence of the cavity mode intensity on
the atom number demonstrates the cooperative effect. The parameters used are:
Up=—1.0x 1073k, 7o = 1.0 x 107 %x, n = 500k.

Strong self-organisation of the atoms can, in fact, lead to faster trapping and cooling
of the atomic cloud. Since the number of atoms inside the cavity plays an important

role in this process it can be seen that, for given parameters, increasing the number
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of atoms (N) can increase the cooling rate.

cooling rate, in units of [«]
P o
o S

=
oI

Figure 3.3: Cooling rate vs. number of particles N for the atom-pump configuration.
The parameters used are: Uy = —1.0 x 1073k, 79 = 1.0 x 1075, n = 500k.

The cavity cooling rates and their dependence on the number of atoms inside the
cavity are presented in fig. 3.3 for the atom-pump configuration. Comparison of
fig. 3.3 with the corresponding graph for cavity-pump configuration (fig. 2.5) shows

a dramatic difference in the dependence of the cooling rates on N for each configu-

rations.

The self-organisation of the atoms in the atom-pumped cavity configuration will
be further demonstrated in the following section where the particle model will be

compared with the alternative momentum distribution (Vlasov) model and the time

cooling rate vs. N

-3
o am--a--8
fn—
-2
/n”
-4| ,F" J
/n’
ln,
5 1 1 1 1
(0] 20 40 N 60 80 100

evolution of the phase space will be presented.
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3.3 Vlasov Model

It is possible to follow the same procedure as was carried out in the case of the
cavity pump configuration (section 2.4) to find the Vlasov model for a gas of atoms
in a cavity being pumped off-axis (fig. 3.1). For a gas of N atoms equations (3.38 -

3.40) become

da

i [~k =3+ iA. —iU] a+ fegy (3.42)
dn.

% = hkU,|o?| sin(2kz;) + i hk (5 — Neprar) sin(ka;) (3.43)
dl’j Dj

b R} .44
dt m (3:44)

where the sum over the N atoms has been replaced with the overbar (...) = Z;VZI()

The Vlasov equation for the distribution function f(x,p,t) of the atomic gas is

af _of  .of . of
E—E—F 8 —I—pap 0 (3.45)

which with equations (3.43) and (3.44) can be rewritten in the form

of + »9f + hkUs|ar|? sin(2kz)

Of(x,p,t) . (. )
o T mor 5 + i Bk ()00 — Nepra) X

wnt) _ o (3.46)

x sin(kzx) 5
D

so consequently
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E‘FE%—'L 9 |a|2<62 —e 2 >—6p —+ 7(77€ff0z—77€ff0z ) X
: _ika\ O (@, p, 1)
tkx ikx s 2y _
X <e e >—8p 0.
(3.47)

It can again be assumed that the atomic distribution function f(x,p,t) is spatially
periodic in space (on this occasion with period A), which allows f to be written as

a Fourier series such that

1 - inkz *
f=5 > fae™* | where f_, = f;

n=—oo

and Vlasov equation in eq. (3.47) can be expressed as

8fn . P { 2 8fn—2 afn+2 1 * *
Gp ik = g ROl (S5 = S ) gk (migpa = megpa®) X

Ofn-1 Ofnt1)
x( o oy >—0. (3.48)

Similarly, the wave equation, eq.( 3.42), can be written as
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da
dt

= (—k +iA.) a — (v + iUy) cos?(kx)ow — nespcos(kx)

(’70 + ZU())
2

1 1 A A
= (—/i + 1A, — 5 (70 + iUO)) a-7 (7o + iUp) (e2ihz + =2tk ) —

=(—k+iA)a — (1 + cos(2kx))ac — neggcos(kx)

]. - 1 .~
= Glless (€7 + e7h) (3.49)

where the overbar (...) = Zjvzl() represents a sum over the atoms. Rewriting this

sum in terms of the distribution function f

N/ /fxp, .) dz dp

then (3.49) becomes

da . N NU N : *
_:(—/{%—z C—ﬂ—z O)a——(%%—zUo)/ (foo + f2) dp a—

dt 2 2 4
N o0
Eneff/ (faa+ f1) d
(3.50)
Defining the dimensionless variables p = £, t = st, 7o = 2 Uy = 7, W, = anf,

7= "1and f = hkf, then eq. (3.48) and (3.50) can be rewritten in the dimensionless

form
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Ofn 1. o i o (0fus
In — Lindpf+ Lol ( b

dov N7, .NU
o 14iA, — 10 _
a7 ( * > ' )O‘

aanJrZ 1 * *
op ) ) (neffa — Nefr& ) X
Ofn-1 B Ofpi1
X ( o o (3.51)

+U o0
N+ 0/ 2+f2 dp a—

o0

%Ueff/ ( 1+f1) (3.52)

The Vlasov equations for the atom-pump configuration egs. (3.51 - 3.52) are com-

pletely equivalent to the particle model equations (3.38 - 3.40) derived in section

3.1 and, as will be shown in the following section, both models are in excellent

agreement [53].
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3.4 Comparison Between the Particle Model and

the Vlasov Model (Atom-Pump Configuration)

In this section, numerical simulations of both the particle model and the Vlasov

model are carried out for the case of the atom-pump configuration.

A comparison between evolution of the field intensity from the particle model and
the Vlasov model is shown in fig. 3.4. In contrast to the cavity pump configuration,
where the field intensity indicated almost instantaneous saturation (fig. 2.8), here
both models display a slow saturation time after which the field oscillates. As
has been mentioned in section 3.2 this is due to fact that the field builds up due
to the scattering of the field from small initial density fluctuations. Initially the
growth of the field is slow as the randomly positioned atoms scatter the pump field
incoherently. However due to the self-organisation or bunching of the atoms under
the action of the fields, the scattering of the pump becomes more coherent and the
amplification of the field much more rapid, leading to the exponential amplification

shown in fig. 3.4
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—vlasov model

— particle model

0 20 40 60 80 100
t in units of K

Figure 3.4: Atom-pump configuration: comparison of the field intensity evolution
using the Vlasov model (blue curve) and the Particle model (red curve). Scaled
parameters: N =2 x 10°, Uy = —5.0 x 107 %, A, = —2.5k, n = 10k.

In addition to the excellent agreement that was shown in the field intensity evolution
between the particle model and the Vlasov model (fig. 3.4) both models show almost

identical results when comparing the average momentum evolution (fig. 3.5) and the

momentum spread evolution (fig. 3.6).
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Figure 3.5: Comparison of the mean momentum evolution of 2 x 10° particles using
the Vlasov model (blue curve) and the Particle model (red curve) (atom-pump
configuration). The other parameters used are: Uy = —5.0 x 107%x, A, = —2.5x,
n = 10k.

Despite the fact that the atoms are trapped in the potential wells which can be seen
as an oscillation of the average momentum shown in figure 3.5 the particles under

the influence of the strong field still oscillate quickly in the potentials and hence the

growth of the momentum spread can be observed (fig. 3.6).
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Figure 3.6: Comparison of the momentum spread evolution using the Vlasov (blue
curve) and the Particle model (red curve). Scaled parameters: 2 x 10° particles,
Uy = —5.0x 1075, A, = —2.5k, n = 10k.

The process of self-organisation of atoms inside the cavity is clearly visible in figure
3.7, showing the phase space evolution as calculated using the particle model (3.38
- 3.40). Initially the particles are uniformly distributed over one wavelength of
the wave and normally distributed in momentum space (t=0). Finally, however,
more particles are localised in the even than odd wells which confirms the different
structure of the potential field in this configuration (t=60) (compare the phase space
evolution for the case of cavity pump configuration shown in fig. 2.11). As mentioned
in section 3.2 this is due to the fact that there are two different potentials in the
atom-pump configuration. The potentials compete with each other and self-amplify

until all the atoms are in the same even or odd wells.
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(a) kKt =0 (b) Kt =45
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2x/\ 2z /A
(c) Kt =50 (d) xt =60

Figure 3.7: Time evolution of phase space density (atom-pumping) from a numerical
simulation of the particle model eq. (3.38) - (3.40). Scaled parameters: N = 2 x 10°,
Uy = —5.0x 1075, A, = —2.5k, n = 10k.

The Vlasov model of the atom-pump configuration (egs. (3.51) and (3.52)) was
solved numerically with the same initial conditions as used for the model — particles
need to be uniformly distributed over one wavelength of the wave and normally
distributed in momentum space. The results from the Vlasov model are presented
in figure 3.8. The distribution function evolves from the initial conditions, at kKt = 0
to the final state at xt = 60. The periodicity of the potential field is already visible
at kt = 50 and becomes sharper for longer times. This result again agrees well with

the results obtained from the particle model simulations (see fig. 3.7 for comparison)
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(c) kt =50 (d) Kt =60

Figure 3.8: Time evolution of the momentum distribution function f(x,p,t) (atom-
pumping) from a numerical simulation of the Vlasov model eq. (3.51) - (3.52). Scaled
parameters: N =2 x 10°, Uy = —5.0 x 107 %, A, = —2.5k, n = 10.0k.

From the numerical point of view, the Vlasov equations for the atom-pump config-
uration eqs. (3.51 - 3.52) are more complex that the Vlasov equations derived for
cavity pump configuration eqgs. (2.50 - 2.51), however the same numerical method —
Finite Difference Method (see Appendix A), as was used to solve egs. (2.50 - 2.51),

was used in the case of the atom-pump configuration.
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CHAPTER 4

Semi-Classical Model of Two-Level

Atoms in a Cavity

In previous chapters it has been assumed that the atoms behave as classical po-
larisable particles and the internal dynamics of the atoms are essentially neglected.
In order to include the effects associated with the internal atomic dynamics it is
possible to use a system of Maxwell-Bloch equations extended to include the atomic
of centre mass motion. This is the so-called semi-classical model as it treats the
internal atomic degrees of freedom (dipole moment, population difference) quantum
mechanically and the electromagnetic field along with external degrees of freedom
(atomic position and momentum) classically. The semi-classical model is comple-
mentary to the classical model and in the limit of negligible atomic excitation must
simplify to show the same behaviour as in the classical model. The cavity and
atom-pump configuration derived in previous chapters were assumed to be valid for
the case of low atomic excitation. In such a limit where the atom-pump frequency

detuning is large the semi-classical model must reduce to classical one.

4.1 Semi-Classical Derivation of Cavity-Pump Con-

figuration

The model consists of an ensemble of two-level atoms confined inside a simple Fabry-

Perot cavity illuminated by the pump field directed along the cavity axis, as shown
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schematically in fig. 4.1. In the following sections the evolution equations for the
internal atomic degrees of freedom (dipole moment and the population difference),

external degrees of freedom (position and momentum) and cavity field are derived.

Figure 4.1: An ensemble of two-level atoms in a cavity pumped along its axis via
one of the cavity mirrors (cavity-pump configuration). |g) represents a ground state
of an atom while |e) represents an excited state of an atom. The cavity pumping
rate, spontaneous loss rate and cavity decay rate are determined by the parameters
n, I' and k respectively.

4.1.1 Internal Degrees of Freedom

The atoms in the ensemble are assumed to have two internal energy states. The lower
and upper energy states are labelled |g) and |e) respectively. The Bloch equations

for the density matrix elements associated with each atom p;i, j,k = e, g are:

0pe ) 1Eu

8_; = — (Feg + ieg) peg + o (Pgg — Pee) (4.1)
0 2iE .
a (/)gg - pee) = —Tee (pgg - pee) + T (peg - peg) ) (4'2)

where I'cc and I'¢, are the longitudinal and transverse atomic decay rates, respec-
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tively and the dipole moment is:

dj = i (pge + pj,) €

(4.3)

where p is the dipole matrix element and p.4 is the density matrix element defined

as

—iwt

Peg = S(T)e ;o (Pge = p:g)

and S is the coherence of the atom.

The population difference is here defined as

p = Pog e,
2

The field in the cavity can be written in the form:

E = (A(z)e ™" + c.c.) g(z)

(4.4)

(4.5)

(4.6)

where g(x) is a cavity mode function and it has been assumed E = Eé, p, =

Heg = €

Inserting (4.4) and (4.6) into (4.1) produces

dt h

(d—S - in) e = — (Tog + weg) Se™™" + e (Pgg — pee) (Ae™™" + c.c.) g(z)

(4.7)

Multiplying (4.7) by e™* and using the definition of eq. (4.5) eq. (4.7) becomes
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as , 2D
i —LegS +i(w—wey) S+ 7

Ag(x) (4.8)

where terms varying as e?*! have been neglected.

Similarly, substituting for (4.4), (4.5) and (4.6) in (4.2) gives

where D = (0.5 in the absence of any external excitation of the atom and we have

again fast oscillating terms have been neglected.

Equations (4.8) and (4.9) describe the internal degrees of freedom of each atom

under the influence of the cavity field.

4.1.2 Atomic Centre-of-Mass Dynamics

The external degrees of freedom of atoms - the position and momentum - will be

described classically.

As shown in chapter 2, the dipole force in the x direction acting on the jth atom is

given by:

F,=d — 4.1
v dx (4.10)

which using (4.3) and (4.6) becomes
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F,=np (Ae_i“’t + c.c.) (Se_i“’t + c.c.) dg()

dx
dg(x)
= (SA” A 4.11
(54 +574) 2 (111)
4.1.3 Electromagnetic Field Dynamics
Maxwell’s wave equation is
1 02 1 0*°P
2 _ —_—
(V c? 8752) B €oc? Ot? (4.12)
where the polarisation, P, is defined as
P=> d;s(r—r; (4.13)

After finding the derivatives for an ensemble of point-like atoms eq. (4.12) can be

rewritten as

{—kQA + 26—(; (z% + %)} g(x)e ™ + c.c. = —pow? Z (Se™ +cc)d(r—ry)
J
(4.14)
2w dA WA
{—sz + = (z% + 7)] g(x) = —uowZ/,LZ So(r —r;) (4.15)

J
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where the slowly-varying envelope approximation (SVEA) has been used (i.e. |2 <

| | < k).

= ¢?, then eq. (4.15) becomes

dA zwu
2 Z So (r —r;) (4.16)

so multiplying both sides of (4.16) by g(x) and integrating over the cross-section

area of the cavity A, (V = AL) produces

A% 0 g(z)2dz = 2265 /0 (z)dx zj: So (r —r;) (4.17)

Then, if the cavity mode function is of the form

g(x) = cos(kx), or g(x)= sin(kx) (4.18)

eq. (4.17) can be expressed as

ANdA  dwp
DA 2 &0
22wu
dt = e Z Sjcos(kx;)
_iwp
dt = Ve Z Sjcos(kx;) (4.19)

Equations (4.8), (4.9), (4.11) and (4.19) together make a closed set of evolution
equations which completely describe the self-consistent interaction of an ensemble

of two-level atoms with the cavity mode inside a Fabry-Perot cavity:
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: 2ipuD
D Tyt (0= ) S + 22D g (4:20)
O = T (Dy — Do) = P (a5t — 45 () (421)
dp; dg(x)
(A 1 St A 4.2
- (SA* 4+ S*A) - (4.22)
dA  wp
o Ve % S;jcos(kx;) (4.23)

As in previous chapters, it is convenient to introduce the dimensionless parameter

« whose absolute squared value |a|? is associated with the average photon number

|a2| — 60’A|2V

= (4.24)

This implies

€,V hw
= °" A A= L 4.25
“ \ Aw, Ve v (4.25)

and equations (4.20)-(4.23) become

ds.
% = —T'¢yS +iA.S + 2igyDa cos(kx;) (4.26)
D;

_ddtﬂ = —T.. (D; — D) —igy (aS* — a*S) cos(kx;) (4.27)
dp:

% = —hkgo (Sa* + S*a) sin(kz;) (4.28)
dae Z

_w

ey 1S the atom-cavity coupling constant and V' is the cavity mode

where go =
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volume.

4.1.4 Comparison with the Classical Model

In order to compare the classical and the semi-classical models it is necessary to
ensure that the parameters used correspond to a regime in which both models are
valid. As stated before the validity of the classical model that has been presented
earlier implies negligible excitation of the atomic ensemble and within that limit

only can a proper comparison wit the semi-classical model be carried out.

If it is assumed that all atoms remain in the ground state, which implies the condition
A? >> 4g2|a]? which can be obtained from the steady states of eqs. (4.26 and 4.27),
it is possible to set D; = 1/2 (if assumed that all atoms are in the excited state then

obviously D; = —1/2). After performing this procedure eq. (4.26) produces

0=—I,5; +iA,S; + 2igoDo cos(kx;)

SO

1goQ
S] = m COS(kxj> (430)

Substituting the steady state value of the coherence eq. (4.30) into the force equation
(4.28) gives
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F, = —hkgo (Sa* + S*a) sin(kx;)

—i(Tey —iAy)  i(Tey +1A0)] .
= —hkgacos(kx;)|al? l g g sin(kx;)
! 2, + A2 Iz, + Az
A
= —2hkgicos(kx;)|al? [—a’] sin(kx;)
! 2, + A2
2
90Aq 2.5

=h=— 2kx; 4.31

Fzg+A3‘a| sin(2kx;) (4.31)

where we have used the trigonometric identity 2sin(kz)cos(kx) = sin(2kx).

Recalling that the frequency shift and the position dependent scattering rate are
defined as

2 2 2
v(z) = i AZgocos (kz) = y.cos”(kx) | (4.32)
U(z) = B g2cos*(kx) = U,cos® (kx) (4.33)
F2 + AZ o (o] . .
gives finally
Fy = —hjaP LU (@) (4.34)
! dx '

which is the same equation for the force produced by the cavity field as derived in

section 2.1 from a classical model, see eq. (2.16).

Similarly substituting (4.30) into the field equation (4.29) we find
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d—? = 1igo Z cos(k:xj)% cos(kx;)

g T 104)
= g2 F29+Z aans (kx;) (4.35)

Again using (4.32) and (4.33) gives

da

T (70 + iUp) « Z cos®(kx;) (4.36)
j

which is the equation as derived in section 2.1, see eq. (2.15) without the cavity decay
and the external field pump rate. Nevertheless, as expected, the semi-classical model

within the limit of low excitation population simplifies to the classical model.

The missing cavity decay rate and the pump term still need to be added to the RHS
of (4.29) in order to be completely equivalent to the classical model equations. With

an external field, equation (4.29) has an additional term

do

= = igo ZS cos(kx;) + ne At (4.37)

where 1 = K gy is the pumping term and A, is the pump-cavity frequency detuning.

Defining new field and coherence variables & = o/e”*A<! and S = S’e™A<!, then

equations (4.26)-(4.29) become
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s’

U = TS +iALS + 2ig0Dal cos(kr;) (4:38)
dD;

d_t] = —Te (Dj — D) —igo (/' S"™ — &*S") cos(kx;) (4.39)
dv.

% = —hkgo (S'a™ + 5™ sin(kx;) (4.40)
dOé/ . / . /

= = 19 Z S% cos(kr;) — (k —iA.) +n (4.41)

J

where Al = w, — w,, and the extra cavity decay term —xca’, has been added to the

right side of (4.29).

4.2 Comparison Between the Classical and the Semi-

Classical Models (Numerical Simulations)

Equations (4.38) - (4.41) have been solved numerically and the results were compared
with the results obtained for the same parameters with the classical model of the

cavity pump configuration (2.20) - (2.22).

Fig. 4.2 contains a series of simulations showing the cooling rates for a fixed number
of atoms (N = 1000) and pumping strength n = 70.0x but varying A, and go so
that Uy = const. = —4.0 x 1073k. It shows that increasing the detuning improves

the agreement between the semi-classical and the classical model.
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Figure 4.2: Evolution of atomic momentum spread and average population difference
((D)) calculated using the semi-classical model for different A, and gy for N = 1000

particles (Uy = const.)
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5 cooling rate vs. Aa
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Figure 4.3: Cooling rates calculated using the semiclassical-model for different A,
and go (Up = const.) (Data collected from the gradient of the momentum spread
evolution graphs shown in fig. 4.2). The black horizontal line marks the cooling rate
found from the classical model for Uy = —0.004x

This is seen more clearly in fig. 4.3 which shows the cooling rate as a function of the
pump-atom detuning. The black line represents the result obtained from classical
model and it is clear now that the results from the semi-classical model agrees well

with the classical model for far detuned fields as predicted in the previous chapter.

For demonstration purposes the evolution of the field intensity (fig. 4.4), momentum
(fig. 4.5) and momentum spread (fig. 4.6) using both semi-classical and classical

models has been also shown.
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Aé1 = -1000k, 9= 2K

classical model
semi-classical model

0 10 20 30 40 50 60 70 80 90 100
t in units of k

Figure 4.4: Comparison of the field intensity evolution of the classical (black curve)
and semiclassical model (red curve) for far detuned fields in the cavity pump config-
uration. The parameters used are: N = 1 x 103, n = 70x, A, = —1000x, gy = 2.0k
Using the same parameters as previously, i.e.: N = 1000, n = 70.0x and with large

pump-atom detuning A, = —1000x the agreement seems to be excellent even for

longer times as shown in the three following figures:
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Figure 4.5: Comparison of the average momentum evolution of the classical (black
curve) and semiclassical model (red curve) for a far detuned field in the cavity pump
configuration. The parameters used are: N = 1 x 103, n = 70k, A, = —1000x,
go = 2.0k
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Figure 4.6: Comparison of the momentum spread evolution of the classical (black
curve) and semiclassical model (red curve) for far detuned field in the cavity pump
configuration. The parameters used are: N = 1 x 103, n = 70k, A, = —1000x,
go = 2.0k

Comparison of the classical model (egs. (2.20) - (2.22)) and the semi-classical model

(egs. (4.38) - (4.41)) within the same negligible atomic excitation regime have been
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carried out in this section. The results from numerical simulations using both models
show excellent agreement and confirm the analytical result obtained in section 4.1.4
showing that for the negligible excitation of the atomic ensemble the semi-classical

model is equivalent to the classical one.

4.3 Cooling Atoms with Blue Detuned Light

The results of the previous section show that in the low excitation regime ((D) =
1/2), the semi-classical model agrees well with its classical counterpart. When
atomic excitation is significant however ((D) < 1/2) the classical model is, in princi-
ple, not sufficient approximation and may not fully represent the physical processes
occurring in the system. Another advantage of the semi-classical model relies in the
possibility of simulating cavity cooling processes in which the internal degrees of
freedom of the atoms play an active part in the cooling mechanism. Such a process
can occur when the cavity field is blue detuned with respect to the atomic reso-
nance regime that involves stimulated emission and can lead to Sisyphus cooling as

described in section 1.4.2.

As an example of cavity cooling using blue detuning, a setup similar to the UCL ex-
periment is assumed. As mentioned earlier in section 1.5.3, the experiment involved

the following parameters:

Number of atoms: N ~ 1 x10°

Cavity linewidth: K = 10.0 x10% Hz
Laser wavelength: A = 8524 x107% m
Cs decay rate: I = 32.89 x10% Hz
Coupling constant: go  — 222.38 x10% Hz
Cs mass: m =221 x107% kg
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Initial temperature: T = 160.0 x107% K
Pump-atom detuning: A, = (-250 : 250) x10° Hz

Laser power: P <03W

Corresponding scaled parameters have been used in the series of numerical simula-
tions with the semi-classical model, eqs. (4.38) - (4.41). The following simulations
include the dependence of the cooling rate and the final temperature of the number
on atoms in the cavity (figs. 4.7 and 4.8), pump-atom detuning (A,) (figs. 4.9 and
4.10), pump-cavity detuning (A.) (figs. 4.11 and 4.12) and the pump strength (n)
(figs. 4.13 and 4.14):
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Figure 4.7: Cooling rates for blue detuned light calculated using the semi-classical
model for varying number of atoms N. The parameters used are: n = 2300.0k,
A, =125k, A, = 0.4k, I' = 3.25k, go = 0.02k, 0 = 28.0hk
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Figure 4.8: Final temperatures for blue detuned light calculated using the semi-
classical model for varying number of atoms N. The parameters used are: n =
2300.0k, A, = 125k, A, = 0.4k, I' = 3.25k, g9 = 0.02K, 0 = 28.0hk
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Figure 4.9: Cooling rates for blue detuned light calculated using the semi-classical
model for varying pump-atom detuning A,. The parameters used are: N = 1 x 10,
n = 2300.0x, I' = 3.25k, go = 0.02k, 0 = 28.0hk

K]

N
o

Final temperature, |

Final temp. vs.Aa (Tiniz 0.000155[K])
x 10

N
T
\
.

=
5
T
AY
By

3
4

o
o
(@]

100 150
Aq

200

Figure 4.10: Final temperatures for blue detuned light calculated using the semi-
classical model for varying pump-atom detuning A,. The other parameters used
are: N =1 x 10%, n = 2300.0x, I = 3.25k, go = 0.02x, o = 28.0hk
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Figure 4.11: Cooling rates for blue detuned light calculated using the semi-classical
model for varying pump-cavity detuning A.. The other parameters used are: N =
1 x 105, n = 2300.0x, A, = 75.0k, I’ = 3.25k, gy = 0.02k, o = 28.0hk
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Figure 4.12: Final temperatures for blue detuned light calculated using the semi-
classical model for varying pump-cavity detuning A.. The other parameters used
are: N =1 x 10%, n = 2300.0k, A, = 75.0x, ' = 3.25k, go = 0.02k, 0 = 28.0hk
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Fipal temp. vs.n (Tini= 0.000155[K])

1.5.-,X 10
\

J— ‘\
=3 '\
-+~
< \
g \
Q‘ \
g \
g \
T@ 0.5’ ‘\
= “
= \

\

h ~

g----- W-=------m==----= "r
1%00 2000 4000 5000

3000
n

Figure 4.14: Final temperatures for blue detuned light calculated using the semi-
classical model for varying pumping strength 7. The other parameters used are:
N=1x10% A, =125k, A, = 0.7k, I' = 3.25k, gy = 0.02k, 0 = 28.0hk
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The first series of simulations for different numbers of particles (N = 1 x 10*... 5x
10% particles), fig. 4.7 and fig. 4.8, shows very fast cooling — almost independent of
the number of particles inside the cavity (for comparison see the graphs of cooling
rate vs. N for red detuned light in fig. 2.5). A significant decrease of the cooling
rate was observed for samples containing more that 5 x 10° particles. Such a drop of
cooling rate indicates a lack of a cooperative effect in this configuration. Similarly,
the final temperatures for up to 1 x 10° particles reached values below 201K and

heating was seen for 5 x 10°.

The second series of simulations for different pump-atom detunings

(A, = 50,75,125,175,200k), fig. 4.9 and fig. 4.10, shows a higher cooling rate for
small detuning that decreases rapidly for larger detunings and reaches a minimum
for A, = 200. The final temperature (initially ~ 160uK) varies from 30uK for
A, = 50k to 110uK for A, = 200x. Oscillations of the final momentum spread
o are responsible for the discrepancy of the final temperature for A, = 50,75k

(fig. 4.10).

In the third series of simulations for different pump-cavity detunings, fig. 4.11 and
fig. 4.12, a narrow region of cooling was observed. The region extends from approx-
imately A, = 0.0k to A. = 5.0k, outside which the cooling rate decreases dramat-
ically. The final temperature falls into the same region and reaches a minimum of

30uK for A, =~ 1.0k. For all other values of A, no cooling was observed.

The last, fourth series of simulations for different pump strengths (), fig. 4.13 and
4.14, indicates rapid growth of the cooling rate for higher intensity. Such behaviour
is rather characteristic for a Sisyphus-type cooling schemes. Despite the fact the
cooling rate can increase with the pump intensity the final temperature can be
limited by the optical potential energy associated with the cavity mode amplitude,

which can be seen on fig. 4.14 where the similar final temperatures were obtained
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for n = 2,3,4,5 x 103+. However it needs to be mentioned that the cooling was
observed unchanged even when the field evolution was switched off i.e. « fixed at a
value o< =T (as obtained from the steady state of the field equation (4.41)). This
leads to the conclusion that the role of the cavity is only to convert a unidirectional
travelling wave pump field into a bidirectional standing wave field of higher intensity,
and the dynamical evolution of the cavity field does not play a significant role. In this

sense the cooling process is essentially that of free space blue molasses as originally

discovered by Aspect et al. [32]
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CHAPTER 5

Semi-Classical Model of Atom-Pump
Configuration

In chapter 3 a classical model of the atom-pump configuration was derived. In
this section this model is extended to include semi-classical atomic dynamics. The
results from both classical and semi-classical models of atom-pumping are compared

and found to agree within the limit where atomic excitation is negligible.

5.1 Derivation of Semi-Classical Model of Atom-

Pump Configuration

As in chapter 4 the situation considered is an ensemble/gas of two-level atoms con-
fined inside a Fabry-Perot resonator. Unlike in the cavity pump configuration de-
scribed in chapter 4, here the atoms are directly illuminated by the pump field which
travels perpendicular to the cavity axis as shown in fig 5.1. The field is assumed to

be detuned from any atomic resonance.

5.1.1 Internal Degrees of Freedom

Following the derivation described in section 4.1, it assumed that the atoms have

two internal energy states. The lower and upper energy states are labelled |g) and
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Figure 5.1: Two-level atom in a cavity (atom-pump configuration). The cavity
pumping rate, spontaneous loss rate and cavity decay rate are determined by the
parameters 1, I and x respectively. |g) represents a ground state of an atom while

le) represents an excited state of an atom

|e) respectively. The Bloch equations for the density matrix elements p;i, j, k =€, ¢

are the same as those for the cavity-pump configuration but are restated here for

completeness:

0pe ‘ 1Ep
8tg = — (Feg + ieg) peg + o (Pgg — Pee)
) 2iE

ot

As before, the dipole moment is

d; = pi (Pge + PZe) é

and the density matrix element
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peg =S¢, (pge = Peg)- (5.4)

The field in the atom-pump configuration includes two waves
By = (Ae™™ 4 c.c.) g(x) (5.5)
By = (Ase™™" + c.c.) h(y) (5.6)

where the F; and E, are the cavity and the pump fields respectively. and so the

total field will be of the form

E = (Ae™'g(x) + Are ™" h(y) + c.c.) (5.7)

where g(x) and h(y) are cavity mode functions and it has been assumed that Eq =

E127 E2 = E227 l"l’ge = l’l’eg - /,Lé )

Inserting (5.4) and (5.7) into (5.1) gives

ds , 2D
T =TS —i(weg —w) S+ 3

(Arg(z) + Aah(y)) (5.8)

where we have used the population difference variable defined in chapter 4, D =

(Pgg — Pee) /2 and neglected terms varying as e

Similarly, substituting for (5.4), (4.5) and (5.7) into (5.2) gives

dD

T —lee (D — D) — %L{[Alg(l“) + Azh(y)] S — c.c.} (5.9)

where D = (0.5 in the absence of any external excitation of the atom and we have
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dropped fast oscillating terms.

Equations (5.8) and (5.9) describe the internal degrees of freedom of each atom

under the influence of the cavity field in the atom-pump configuration.

5.1.2 Atomic Centre-of-Mass Dynamics

As in chapter 4, the external degrees of freedom of atoms - the position and mo-

mentum - are described classically.

The dipole force in the x direction acting on the jth atom is given by:

dE d.,0FE, d,0FE, d,0F d,0F
F,=d;,-— = T it ) = 2 5.10
7 dx ( Ox * Ox * Ox ) Ox (5.10)
Substituting the dipole moment
d, = p (Se ™" + c.c) (5.11)
and the total field derivative
OFE, L dg(x)
= (Ae™ ™" .C. 12
e (Ae™™" + c.c.) I (5.12)

into (5.10) gives the final expression of the dipole force in the z direction
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dg(r)
de

F, = p(A*S + S*A) (5.13)

5.1.3 Electromagnetic Field Dynamics

Following similar procedure to that of section 4.1.3 and starting with Maxwell’s

wave equation

2 2
(tha——uoag) g L 2P (5.14)
C

where o is the conductivity of the cavity mirrors, pu, is the magnetic permeability

and the polarisation P is defined as

P = Z dj ) (’I” — 'I"j) (515)

where eq. (5.4) has been used.

After finding the derivatives the wave equation eq. (5.14) can be rewritten as

109



2w dA 2 ~
[k:QAl - Zc_;dd_tl — %Al — iw,uoaAl} g(z)e ™ +cc. =

frow? Z (Se™™ +c.c)d(r—ry)
J

2wdA;  W?
k24, — =05
[ e a2

Al — ibd/,LoUA1:| g(SC) =

umﬁuZSé (r —ry) (5.16)

J

where we have assumed the slowly-varying envelope approximation (SVEA), i.e.

0A1

o << wA;.

Multiplying both sides of (5.16) by —c?/i 2w we get

C

w2A dA 2A 2 A
: 1 1 1 4 w : 1 n C" o0 Aq
24w dt 21w 2

o(z) = i“O;CQ“ Y St —r,8) (317

In the first and third terms of the LHS of eq. (5.17) the cavity and the pump field

frequency are w. and w respectively. These terms can be a further approximated

since

_(u)g - w?) _ (we = W).(Wc +w) _ AC>2w = —iA, (5.18)
217w 217w 21w

where A, = w — w, is the pump-cavity frequency detuning. Hence equation (5.17)

becomes
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dAq zw,u
— - A)Al] Zsa r—7r)) (5.19)

as

1 o
= = — 5.20
‘ NG " 2¢9 (5.20)

Multiplying both sides of (5.19) by ¢g(z) and integrating over the cross-section area

of the sample A, gives

an [ro -
A o /0 g(x)dx + (kK —iA,) AlA/ dx = ZS (5.21)

Substituting the cavity mode function of the form

g(x) = cos(kx) (5.22)
into eq. (5.21) produces
dA, , z,uw

which can be further simplified and the final form of the field equation becomes

dA
= (R A Ay o Z Sg(x (5.24)

Equations (5.8), (5.9), (5.13) and (5.24) make a closed set of evolution equations
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which completely describe the self-consistent interaction of an ensemble of two-level

atoms with the cavity mode inside a Fabry-Perot cavity:

S , %D
T = Ly 4 (= weg) S5+ 5 (Aigla) + Ah(y))
D, ;

—d = .. (D; - D) - %“ {[Arg(x) + Ash(y)] S; — c.c.)
dp; N « dg(r)

= (SA] + S5 A) =

dA; , 1w

% = (—/‘i + ZAc) Al + Veo Z S]g(x)

J

Rewriting egs. (5.25 - 5.28) in terms of « defined in eq. (4.24)

then equations (5.25)-(5.28) for (1D) become

ds,;

—b = —TeyS; +i,8; + 2igoD(encos(kz) + a2)

dD;

i = ~Lee (D = D) —igo {[ancos(k) + az) Sjx — c.c.}
d .

—CZJ = —hkgo (S;a; + S;a1) sin(kx)

da1 . .

= = (—Kr +1A.) a1 +igo g Sjcos(kx;)

J

(5.25)
(5.26)
(5.27)

(5.28)

(5.29)
(5.30)
(5.31)

(5.32)

where A, = w — we, is the pump — atom detuning and g, = /55 is the atom-

cavity coupling constant.

5.1.4 Comparison with the Classical Model

In order to compare the classical and the semi-classical equations for the atom-pump

configuration we must remain within the same regime for both models. As stated
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before the validity of the classical model that has been presented earlier implies low
excitation condition of the atomic ensemble so within that limit the semi-classical

model should reduce to the classical model.

Lets assume all atoms to be in a ground state. Setting D = 1/2, as the condition

for negligible excitation, then at steady state equation (5.29) can be written as

_igo(aycos(kx;) + as)

S
/ Loy — i\,

(5.33)

Substituting the steady state of the coherence variable S, (eq. 5.33) into the force

equation, (eq. 5.31), gives

—igo(|aa]?cos(kx;) + aray)  igo(|ar]®cos(kx;) + afan)]
F, = — hk k.
9o [ T., —iA, + T., A, sin(kx;)
—2igg|on[Pcos(kx;) ANy igoon s igoaias | .
= — hk — kx; 5.34
[ T2, + A2 T, — il | T, tin,) ke (5:31)

Rearranging eq. 5.34 and recalling that the frequency shift and the position depen-

dent scattering rate are defined as

_ 2,2 _ 2
() = mgocos (kx) = ~y,cos”(kx) | (5.35)

Uz) = W‘lA(Eg[%COSQ(k:C) = U,cos®(kx) . (5.36)
gives
2 d s o d
F, = —hU|a| 75608 (kxj) — ik (0} pon — nespa}) %cos(k:r;j) (5.37)
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where we have used the trigonometric identity sin(2kz) = 2sin(kx)cos(kx) and

where
N = goa (5.38)
and
190
Melf = TN A (5.39)

Equation 5.37 is the same equation as derived in section 3.1, eq. (3.39) for the

classical model.

Similarly substituting the steady state value of S (5.33) into the derived field equa-

tion (5.32) gives

da , _ 1goQ e
d_tl = (—Kk +1A.) a1 + igo ZJ: <ﬁcos(kxj) + ﬁ) cos(kzx;)

= (—Kk +iA.) a1 — a; (0 + iUp) Z cos®(kx;) — Ness Z cos(kz;)  (5.40)
J J
where we have again used known identities (5.35), (5.36), (5.38) and (5.39)

After rearranging (5.40) we finally obtain

Cfl—? = z‘[Ac - U, Z cosQ(k;:cj)] a— [ K=+ Y Z cosz(kxj)} Q= Neyy Z cos(kx;)
- - -

(5.41)

which is the same equation as derived in section 3.1 see eq. (3.38) from the classical
model. As expected, the semi-classical model within the limit of low excitation

simplifies to the classical model.
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In the next section, results from numerical simulations of the classical model and

the semi-classical model will be compared.

5.2 Comparison Between the Classical and the Semi-

Classical Models (Numerical Simulations)

It is instructive to show, using numerical results, that in the low excitation limit
the semi-classical model shows similar behaviour to that of the classical model, as
predicted by the analysis described in section 5.1.4. The classical model eqgs. (3.38
- 3.40) and the semi-classical model, egs. (5.29 - 5.32) have been solved numerically

for the same initial parameters and the results are presented below.

Figure 5.2 shows the time evolution of the field intensity within the time period
of t = 100k. The number of atoms here is 1 x 103, A, = —1000x (rather large
pump-atom detuning), go = 1.0x and n = 100x. It can be seen that both models
show very good agreement during the entire time of interaction. In both models the

field evolution is seen to display small oscillations.
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Figure 5.2: Comparison of the field intensity evolution of the classical (black curve)
and semiclassical model (red curve) for a far detuned field in the atom-pump con-
figuration. The parameters used are: N = 1 x 103, n = 100k, A, = —1000x,
go = 1.0k
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Figure 5.3: Comparison of the average momentum evolution of the classical (black
curve) and semiclassical model (red curve) for a far detuned field in the atom-pump
configuration. The parameters used are: N = 1 x 10%, n = 100k, A, = —1000x,
go = 1.0k
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Figure 5.4: Comparison of the momentum spread evolution of the classical (black
curve) and semiclassical model (red curve) for a far detuned field in the atom-pump
configuration. The parameters used are: N = 1 x 10%, n = 100k, A, = —1000x,
go = 1.0k

The time evolution of the average momentum, and the momentum spread is pre-
sented in fig. 5.3 and fig. 5.4, respectively. Both figures compare the results from the
classical and the semi-classical models within a short time period of t = 100x~! and
for the same parameters as used in the previous figure (N= 1 x 103, A, = —1000k,

go = 1.0k, n = 100k). As expected, the results from both models again agree very

well and confirm the analytical result obtained in the previous section 5.1.4.

5.3 Cooling Atoms with Blue Detuned Light (Atom-

Pump Configuration)

In the previous section the results from numerical simulation of the classical model
(egs. (3.38 - 3.40)) and the semi-classical model (egs. (5.29 - 5.32)) for the case of
the atom-pump configuration were compared. As shown, in the negligible atomic

excitation regime, the results confirmed (with the analytical result, section 5.1.4)
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excellent agreement between the two models. However, as demonstrated earlier in
section 4.3 the semi-classical model has an advantage in that it can describe cavity
cooling processes in which the internal degrees of freedom of the atoms play an active
part in the cooling mechanism. In the case when the cavity field is blue detuned with
respect to the atomic resonance, stimulated emission can lead to Sisyphus cooling
as described in section 1.4.2. In this section an example of cavity cooling using blue

detuned light for the case of the atom-pump configuration is demonstrated.

The semi-classical model equations (egs. (5.29 - 5.32)) have been solved numerically
for the following parameters: N =1 x 10°, A, = 1000x, n = 400%, T'ee = Ty = 1.0K

and the results are presented in the figures below.

Fig. 5.5 shows the time evolution of the field intensity. The field intensity grows
rapidly within st ~ 2500 and slowly saturates for longer times.

X 104

x 10°*

Figure 5.5: Time evolution of the field intensity calculated from a numerical simula-
tion of the semiclassical model (egs. (5.29 - 5.32)) for blue detuned light in the atom-
pump configuration. Parameters used are: N = 1 x 103, A, = 1000x, n = 400k,
[ee =Ty =10k

The evolution of the field intensity shown in fig. 5.5 is strongly correlated with

the evolution of the bunching parameter (fig. 5.6), |b|, and the evolution of the
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momentum spread (fig. 5.7) with respect to time.

1

0.8f ]

0.6} ]
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Figure 5.6: Time evolution of the bunching, |b|, parameter calculated from a numer-
ical simulation of the semiclassical model (egs. (5.29 - 5.32)) for blue detuned light
in the atom-pump configuration. Parameters used are: N =1 x 103, A, = 1000k,
n =400k, I'ce = I'cy = 1.0k

The time evolution of the bunching parameter |b| (fig. 5.6) indicates very strong
bunching of the atoms in the cavity. The steady state value of |b| for xt > 1 x 10*
approaches |b| ~ 1 which, as mentioned in section 3.2, is responsible for collective

scattering of the light on atoms and their self-organisation in the optical potentials.
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Figure 5.7: Time evolution of the momentum spread calculated from a numerical
simulation of the semiclassical model (egs. (5.29 - 5.32)) for blue detuned light in
the atom-pump configuration. Parameters used are: N = 1 x 10%, A, = 1000k,
n =400k, I'ce = I'ey = 1.0K

As explained in section 3.2 collective scattering and the self-organisation of atoms
can lead to effective cooling of the atomic ensemble. This can be seen in fig. 5.7
showing the time evolution of the momentum spread. As the atoms redistribute in

the cavity and increase the field intensity, the momentum spread decreases rapidly

(fig. 5.7) indicating trapping and cooling of the atomic ensemble.
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CHAPTER 6

Ring Cavity and Phase Modulated
Pump Field

The previous chapters involved studies of the dynamics of an ensemble of atoms con-
fined in a simple Fabry-Perot cavity (see fig. 2.4 and 3.1). The previously considered
cases differ only in the direction of the pump field, however both are based on the
standing wave cavity field for which the nodes and the antinodes of the oscillating
field are fixed in space. This means that the potentials created by the field are also
fixed in space and cannot travel inside the cavity. This restriction can be removed
using a ring cavity with two counter propagating light fields inside (fig. 6.1). In this
configuration the optical fields produce potentials that are not fixed in space but

are able to move inside the cavity.

It has been recently shown that the effect of a phase-modulated beam on Collec-
tive Atomic Recoil Lasing (CARL) [58, 59| can give rise to three different dynamical
regimes depending on the frequency of modulation [60]. Moreover it has been demon-
strated experimentally [61] that even weakly modulated light can produce relatively
strong optical forces that can be potentially used for cooling or deflection of moving
atoms. In this chapter we will give a deeper insight into this idea and show how this
can be used to control the dynamics of atoms and eventually for slowing or cooling

atomic beams.
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6.1 Model

The dynamics of N linearly polarisable particles moving inside a high-Q ring cavity
can be, to a good approximation, described by four coupled classical equations of

motion [62, 63]:

R Cold Atoms R

o+ o=

R=1

Figure 6.1: Schematic diagram of a bidirectional ring cavity driven by two monochro-
matic fields with pump rates n,, n_. a_ and a, are the amplitudes of the pump
and the probe fields, respectively.

% _ % (61)
% = 2hk [Upi (o a—e ™ — % o, ) + 90 (0 oy — ot ar)] (6.2)
dOéi

— = 18 = N(30 + i) = k] ax = N30 + i) R (6.3)

If we restrict the general model to a uni-directionally pumped cavity only (see
fig. 6.2) and modify it to include the effect of pump phase modulation the model

becomes:
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dz _pj (6.4)

a m

dp; _ Tk 2k * 2ika

e 2hkUyi [0 e ot ay et (6.5)
d )
% = [iA, — Nilly — Br_] oy — Nilly (e72%%) o (6.6)
da_

W _ [ZA, . NZU(] . ,‘i,] . — N’on <€2ik:p> o + n_ e(iamsin(th)) (67)

where vy < |Up| has been assumed.

Cold Atoms
R o- ‘

o+ a+

R=1

Figure 6.2: Schematic diagram of uni-directionally pumped ring cavity. Two counter
propagating fields circulate in a high-finesse cavity, n_ is the pumping rate term, a_
and o are the amplitudes of the pump and the probe fields, respectively.

The first two equations (6.4 - 6.5) describe the dynamics of the jth atom moving
under the influence of the dipole force in the potential created by the counterprop-
agating cavity fields; x; and p; are the position and the momentum of jth atom
respectively, m is the atomic mass and k = 27/ is the wavenumber. Equations (6.6
- 6.7) describe the evolution of the amplitudes of the two counterpropagating fields:
the pump field (a_) and the backscattered probe field (ay). The parameter 3 = =+
describes the ratio of the probe (k;) and the pump (k_) cavity decay (note, the

relative size of cavity decay rates can be modified using devices such as a Faraday
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rotator [64, 65]). Ay is the cavity-field detuning for the probe (+) and the pump(-)

field and Uy is the effective mode frequency shift:

A,

Uy=———9".
0 F2—|—Agg

(6.8)

where A, is the atom-pump detuning, I' is the spontaneous emission linewidth
and g the atom-mode coupling constant defined as g? = e?/4eymV. Here we have

assumed that the pump and probe fields are far-detuned from any atomic resonance

(A, >T).

The phase-modulated effective pumping rate, eq. (6.7) is:

n_ eliamsin(@mt)) (6.9)

where 77_ is the pumping rate term, «,, is the modulation strength and €2, is the

phase modulation frequency of the cavity pump field.
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6.2 CARL Instability and Derivation of a Growth

Rate (g,)

Finding the frequency modulation regimes requires finding the growth rate of the
probe field intensity. The growth rate (g,) can be found numerically using (egs. (6.4)
and (6.7) from the slope of the evolution of |a|? in absence of pump modulation
a,, = 0. However the result can be confirmed by the result that can be found

analytically using following approximation.

It is possible to introduce small fluctuations about the steady state system and see
whether the system is stable and returns to the initial state or unstable and grows in
time [66]. In absence of pump modulation «a,, = 0 the system of previously derived

equations, (6.4) - (6.7) becomes

dr; _ p
bl R} 1
.  m (6.10)
% _ . * 2tk
i 2hkUyi (o ovpe c.c.) (6.11)
dj—t* = (iAy —iNUy — B) oy — iNUy (e **) a_ (6.12)
Introducing small fluctuations (0, 6y, da, ) of the form
z;(t) = xj, + 6x(t) (6.13)
pi(t) = pjo + 0p(?) (6.14)
ay (1) = oy + 00 (1) (6.15)
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where the steady states values are defined as

z;, = (0, 27]
Pjo =0

ay, =0
a_,=a_

and where dz(t), dp(t) and day (t) are the fluctuations of the jth atoms position,
momentum and the fluctuation of the probe field amplitude respectively. Note we
have neglected the fluctuation of the pump field amplitude («_) as it can be shown

that they do not play a role in the linear stability of the system.

Substituting (6.13) - (6.15) into equations (6.10 - 6.12) gives:

déxj %

== (6.16)

% = —2hkilUy (Japo” €20 — Sat a_e™ i) (6.17)
ddoy . . —2kizx,

e (iAy —iNUy — ) by — 2kN Uy (dwe™ %0 ) o (6.18)

where (e7™*io) = (0 as the atoms are initially evenly distributed. We can rewrite

equations (6.16) - (6.18) in terms of collective variables [67]

b= -2k <5xe_2ikmf0>

P = <5p6—2ikxj0 >
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which greatly reduces the number of equations to be solved from 2N + 1 to 3:

b —2ik
. (6.19)
dP
—r = —2ihkUpdaa” (6.20)
ds
dj‘* = (iAy — iNUy — B) Scy —iNUy b a_. (6.21)

If we now look for solutions of eqs. (6.19)-(6.21) with the form b, P, da; o< e then

it can be shown that

_ —2ik

= P .22

b - (6.22)
AP = —2ihkUpda ™ (6.23)
May = (1AL —iNUy — ) day —iNUy b o (6.24)

from which we can find b and P

p_ —2ihkUpda a*
A
- —4hk*Usba o

m A2

and hence obtain:

4iNhK?U? o |?
Aoy = (iAy —iNUy — ) day + Z ng |
m

4iNBK2UR o |2
m

50{+

A2 — A\2(iA, — iNUy — B) —

50é+:0

HNBRUZ a2
— _

N — N2 (iAy —iNUy — 3) —

0. (6.25)

127



Since the growth rate is simply defined as g, = Re()\) we can compare the analytical
result of the growth rate and the result obtained from numerical simulations of
the CARL model equations (egs. (6.4) and (6.7)) in absence of pump modulation

a,, = 0.

For the following parameters: A, = —0.3x,Uy = 1 x 10745, |a_|? ~ 2 x 10>, m =

5 x 10*hk? /k substituted into eq. (6.25)

42’-1><103-1><10_8/<a2-2><105_

X+ X2(0.3i — 0.14) K — =
+A°(0.3i — 0.19) & 5 % 10Tk 0

the result Re(\) = 0.0283k was obtained. Since for Re(A\) > 0 required for instability

this result clearly indicates a growth of ay.

The behaviour of the growth rates as a function of detuning and pump intensity is

shown in figures 6.3 and 6.4 respectively.

Re@) vs. |o_|?
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0.0207

Re(A) ]
0.0157
0.0107

0.0057

100000 200000 300000
2
Joc-|

Figure 6.3: Growth rate as a function of the pump intensity obtained from the
solution of eq. (6.25). The parameters used are: N = 1000,A, = —0.3x,Uy =
1 x 107k, m =5 x 10*hk?/k

128



Re(N) vs. AL

0.045 7
0.040
0.035
0.030 7
ReN) 0.025

0.020

0.015

0 01 02 03 04 05 06
Ay

Figure 6.4: Growth rate as a function of the pump-cavity detuning obtained from the
solution of eq. (6.25). The parameters used are: N = 1000,Uy = 1 x 107, |a_|? =
2 x 10°,m =5 x 10*hk?/k

As we looked for the solution of a, oc e so for |ay|? o< e** the growth rate of the
probe intensity is finally g, ~ 0.056x. This result very well agrees with the value of
gr ~ 0.055 found numerically from the slope of the |a|? as shown in fig. 6.5 obtained

for the same parameters as used above in the analytical formula, eq. (6.25).

6.3 Frequency Modulation Regimes

The nature of the atom-field interaction in the model can be deduced by combining

the Bessel function identity [68]:
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growth rate = 0.055 k
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Kt

Figure 6.5: Growth rate of the probe field () obtained from the numerical sim-
ulation of egs. (6.4) and (6.7) in the absence of pump modulation «,, = 0. The
parameters used are: N = 1000,7_ = 450k, AL = —0.3k,Uy = 1 x 107*k, u =
5000k, m = 5 x 10*hk? [k

exp(i z sin(¢)) = Z Jn(2)e™? (6.26)

n=—oo

performing adiabatic elimination on eq. (6.7) gives

Nilp(e) 1

= _ tm sin(Qmt)
T UA,_ —Nily—r] [ibe — Nilp—r_] "
1 . )
_ 3 zamsm(ﬂmt). 6.27
(NilUy — A, +r] " (6:27)

Substituting the expression eq. (6.27) into eq. (6.5) then the force on the jth atom

can be written as

dp 2hkal * —i(2kz—amsin
G N DA o ledneen e ) — el (6.28)
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which after applying (6.26) to (6.28) leads to the form:

dp; 2hkU,i
dt  NiU, —iA_ + k_

an- Z Tt e~ 1R mt) _ o (6.29)

n=—oo

It can be seen from eq. (6.29) that the force acting on the atoms can be interpreted
as an due to infinite number of optical potentials (n), each of which moves with a

phase velocity that is proportional to an integer number of the modulation frequency

nQm

nf),. These potentials can be consequently resonant with the atoms, if: % S T

i.e. if the atomic velocity ~ phase velocity of the nth optical potential.

Further inspection of eq. (6.29) shows that the width of each potential /resonance
is proportional to o \/m while the separation,in frequency or phase ve-
locity, between the resonances is proportional to €2,,. It will be shown in what
follows that the number of the potentials/resonances that interact with the atoms

can significantly affect the atomic dynamics.

The behaviour of the system can be divided into three main regimes (fig. 6.6) de-
pending on the value of the modulation frequency with respect to the collective recoil
bandwidth (growth rate, g,) i.e. the growth rate of the probe field in the absence
of modulation: the high modulation frequency (€2, > g,), intermediate modulation
frequency (Q,, ~ g.) and low modulation frequency (£2,, < g,). The growth rate
of the probe field, g,, can be found keeping |a_| constant and setting x, = 0, also

assuming no phase modulation of the pump field.
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Figure 6.6: Schematic diagram showing the width and the separation of the poten-
tials /resonances (shaded regions) for three frequency modulation regimes: (a) high
frequency (b) intermediate frequency (c) low frequency. Here €, is proportional to
the separation of the potential /resonance while the width of the potential /resonance
is proportional to: o< \/|ay|J(aym)

6.4 High Modulation Frequency (£, > g.)

In the high frequency modulation regime the resonances are widely separated (fig. 6.6(a))
and it is possible to assume that the atoms interact with only one of the resonances.
In the following example N=1000 particles with initial mean momentum g = 5000hk
and momentum spread o = 0hk have been uniformly distributed in phase space. Ini-
tially we set the pump field n_ = 450k and the probe-cavity detuning A, = —0.3x
(here and later the parameters given in the units of x refer to the pump cavity decay

rate K_).

For such initial parameters the characteristic growth rate/frequency was found to be
gr = 0.055k, as shown in fig. 6.5 in section 6.2. Consequently we set the modulation
frequency €2,, = 0.55k and the amplitude modulation «,, = 1. It can be seen in
fig. 6.7 that the intensity of the probe field |aZ| is amplified exponentially then

oscillates after saturation, similar to the case of no pump modulation, section 6.2.

In turn the average momentum of the sample (p) and the momentum spread o do

not differ substantially from their initial values, as shown in

fig. 6.8, which shows histograms of the atomic momentum distribution at three
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Figure 6.7: Time evolution of the probe intensity. The parameters used are: N =
1 x 103, (po) = 5000hk, m = 50 x 103hk? /K, A, = —0.3k, n = 450k, Uy = 0.0001x,

Qm = 0.55kK
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Figure 6.8: Histograms of the atomic momentum distribution for the high modula-
tion frequency regime (£2,, > g,) at kt=0, 1000, 2500. The parameters used are the

same as in fig. 6.7
different times, and in figures (6.9 & 6.10) which show the time evolution of the
average momentum and momentum spread respectively.

The general feature of the evolution of both the field intensity and the atomic dy-
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namics are similar to those where the pump phase modulation is absent (section 6.2).
The reason for this is that in both cases where high frequency pump modulation and
no modulation occurs, the atom-field interaction involves only a single resonance.
In the following sections it will be shown that changing the frequency of the phase
modulation can introduce additional resonances into the atom-field interaction and

dramatically alter the evolution of both the field intensity and the atomic dynamics.

5000

500 1000 1500
Kkt

Figure 6.9: Time evolution of the average momentum in the high modulation fre-
quency regime (€2, > g.). The parameters used are the same as in fig. 6.7

6.5 Intermediate Modulation Frequency (2, ~ g,)

In the case of intermediate frequency modulation, (€2, ~ g,), the resonances are
much closer to each other than in the high modulation frequency case as shown
schematically in fig. 6.6(b). When the field is sufficiently amplified the width of the
resonances (~ \/M) increases and the resonances can overlap. Once the overlap
takes place atoms diffuse chaotically within a large momentum range. The momen-
tum range can be found using results from previous studies of the parametrically

forced pendulum i.e. there are nonlinear resonances which occur when the phase
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Figure 6.10: Time evolution of the momentum spread in the high modulation fre-
quency regime (2, > g,). The parameters used are the same as in fig. 6.7

term on the RHS of eq. (6.28) is stationary i.e. when

p/m + Q2 cos(Qpt) 2k =0 (6.30)

It is known from studies of kicked rotors and pendula that these nonlinear resonances
gives ’kicks” which tend to randomise the motion of the atoms leading to the diffusion
of the atomic momenta [69]. In the case where the probe field is detuned from cavity

1ALt

resonance so that a; o e we can use eq. (6.30) to predict the velocity range

within which the atom can diffuse:

—A+ — O{QO
2k

Py, — Ay
<< — 31
~m 2k (6:31)

Assuming the atoms diffuse uniformly over the momentum space between these

limits, the average momentum of the atoms will eventually be (p) = —A,m/2k. In
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order to satisfy the intermediate frequency modulation condition (€2, ~ g.) we set
Q,, = 0.055k and a,;, = 10. From eq. (6.31) and for the following initial parameters:
(po) = 5000kk, 0 = Ohk and m = 50000hk?/r the predicted momentum diffusion

range should be approximately: —6000hk < p < 20000hk.

0 2500 50?0 7500 10000
K

Figure 6.11: Time evolution of the probe intensity in the intermediate modulation
frequency regime. The parameters used are: N = 1 x 103, (py) = 5000hk, m =
50 x 103hk? /K, Ay = —0.3k, n = 450k, Uy = 0.0001k, ©,,, = 0.055x

Numerical results confirm this result and a similar momentum range can be found
in the momentum distribution at xt = 10000 shown in fig. 6.12. Since 3 ~ 1 x 107
is nonzero the probe intensity eventually decreases after being amplified as seen in

fig. 6.11.

6.6 Low Modulation Frequency (9, < g,)

In the case of low frequency modulation where (2, < ¢,) the resonances are suffi-
ciently close together (see schematic diagram, fig. 6.6(c)) that they can overlap even

at the very early stages of the interaction.

Since many resonances are involved at the early stage of probe amplification the
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Figure 6.12: Histograms showing the evolution of the momentum distribution for
the intermediate modulation frequency regime (2, ~ g,) at kt=0, 1400, 10000. The
parameters used are the same as in fig. 6.11
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0 2000 4000 t6000 8000 10000
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Figure 6.13: Time evolution of the average momentum in the intermediate modula-
tion frequency regime (£2,, ~ g,). The parameters used are the same as in fig. 6.11

atoms pass through successive resonances decreasing their momentum and conse-

quently amplifying the probe field.

Similarly to eq. (6.30) the atom will be resonant with the ponderomotive force /potential
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Figure 6.14: Time evolution of the momentum spread in the intermediate modula-
tion frequency regime (€2, ~ g,). The parameters used are the same as in fig. 6.11

X 106

0 1000 2000 . 3000 4000 5000
K

Figure 6.15: Time evolution of the probe intensity in the low modulation frequency
regime (£, < ¢,). Parameters used are: N = 1 x 103, (py) = 5000hk, m =
50 x 103hk? /K, A, = —0.3k, n = 450k, Uy = 0.0001x, ©Q,, = 0.0055x

(i.e. experience a constant force) if:

p/m + (mQmcos(Qt) + Ay)/2k = 0. (6.32)
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Figure 6.16: Histograms showing evolution of the atomic momentum distribution
for the low modulation frequency regime (Q,, < g¢,) at xkt=0, 2700, 4000. The
parameters used are the same as in fig. 6.15

We can assume, to a good approximation, that for sufficiently small 3 the system
is Hamiltonian and obeys the constant of motion (|a} |+ 5 (p) ~ const.). This
implies that if the probe intensity |a|? increases, resonance can be maintained only
if we allow the atoms to decrease their momentum. For numerical simulation of
the low modulation frequency regime we set €2,, = 0.0055x and «,,, = 100 with the
other initial conditions unchanged. It can be seen in fig. 6.15 & fig. 6.16 that the
increase of probe field intensity coincides with a decrease of the atomic momentum.
During the whole interaction time the probe intensity and the average momentum
oscillate periodically with a period of 27/, and from eq. (6.32) the lowest attain-
able momentum is predicted to be ppi, = —(Ay + @,$2,)m/2k. These predicted
values of the oscillation period (=~ 1100x~!) and minimum attainable momentum

(=~ —6200hk) are confirmed by the results from the numerical simulations shown in

fig. 6.16 & 6.17.
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Figure 6.17: Time evolution of the average momentum for the low modulation fre-
quency regime (€2, < g,). The parameters used are the same as in fig. 6.15
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Figure 6.18: Time evolution of the momentum spread for the low modulation fre-
quency regime (€, < g.). The parameters used are the same as in fig. 6.15

It is important to notice that during the process atoms separate into two distinctive
groups. The first group contains the atoms that do not exchange energy with the
field and remains approximately at its initial momentum (fig. 6.16, xt = 4000).
The other group oscillates in momentum, moving from the top to bottom of the

attainable phase space.
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6.6.1 Slowing a Beam of Cold Atoms

Comparison of the three frequency modulation regimes indicates that the low fre-

quency modulation to be the most useful for the purpose of slowing atomic beams.

Although both the intermediate and the low frequency modulation regimes allow a
large decrease in the average atomic momentum to be produced, the intermediate
frequency modulation regime produces diffusive momentum spread growth, which
is generally undesirable for applications. In contrast, the low modulation frequency
regime produces a large decrease in average atomic momentum while maintaining
a relatively narrow momentum distribution for substantial fraction of the atomic

ensemble.

As shown in fig. 6.17 the initial average momentum of the atoms can be decreased
to the minimum attainable value (ppin = — (A4 + @ny)m/2k), after which the
atoms are again accelerated and along with the probe field intensity oscillate with
period 27 /€,,,. Here we can show that the final value of the minimum momentum is
also a function of the parameter § which as explained earlier describes the ratio of
the probe (x4) and the pump (x_) cavity decay (8 = =*). To maintain the oscilla-
tions of the probe field and the average atomic momentum, 3 has to be sufficiently
small, otherwise the high cavity decay rate will prevent the field being amplified
repeatedly. However, for the purpose of slowing beams of atoms this does not have
to be fulfilled and a single oscillation of the average momentum will suffice to slow

the atoms. Fig. 6.19 presents the minimum average momentum obtained within,

single oscillation, for different values of (.

It can be seen in fig. 6.19 for a case where the initial atomic momentum py = 5000hk
that for 3 ~ 0.06 the initial average momentum of atoms was decreased to zero and

for 5 < 0.06 the direction of the atomic beam was reversed ((pmin) < 0).
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Figure 6.19: Minimum average momentum vs (. The parameters used are: N =
1 x 103, (po) = 5000hk, m = 50 x 103hk?/k, A, = —0.3k, n = 450k, Uy = 0.0001x,
Q. = 0.0055k
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Figure 6.20: Kinetic energy loss vs (pg) for the low frequency modulation regime.
The parameters used are: N =1 x 103, 3 =1 x 1073, m = 50 x 10°hk?/rk, A, =
—0.3k, n = 450k, Uy = 0.0001k, €2,,, = 0.0055x

Figure 6.20 shows the total kinetic energy loss vs. initial average momentum of the
atoms for fixed 3 = 1 x 1073, Intuitively for larger values of initial values of (py)

one would expect the efficiency of slowing to decrease.

However as can be seen in fig. 6.20 the kinetic energy loss can be larger for higher
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initial momentum. This is due to the fact that, as mentioned before, the system has
a rather well defined minimum attainable momentum (p,i, = — (A4 + @,y )m/2k)
which can be unchanged for a certain range of initial average momenta. For that
reason the (pg) can be increased until the maximum efficiency of the slowing can
be reached. When (pg) exceeds the optimum value (~ 18000 here), the efficiency

decreases and eventually when (pg) becomes too large no slowing can be seen.

6.6.2 Slowing a Beam of Atoms with Finite Temperature

In the proceeding section it has been assumed that the atomic beam has been initially
cold, with zero momentum spread, i.e. zero temperature. For the case of a beam
of atoms with finite temperature the system preserves all the features that were
observed for the low frequency modulation regime. In addition adjusting the probe-
cavity frequency detuning (A, ) and probe-pump cavity loss ratio () it is possible
to obtain even better control over the atomic dynamics. In the following example
the low frequency modulation regime is used to slow a group of N = 2000 atoms
with initial average momentum (py) = 5000k and momentum spread oy = 500Ahk.
In order to avoid many oscillations of the field and the momentum 3 ~ 2 x 10~% is
chosen. This allows only single amplification of the probe intensity to be produced,

as shown in fig. 6.21.

Fig. 6.22 shows that, fast and hot atoms split into two groups. First, a smaller
fraction of the total ensemble does not exchange energy with the field and remains
at approximately the initial momentum. The other, significantly larger group, after
reaching the minimum attainable momentum, i.e. p,.;,, ~ —6000Ak, increases its

momentum and stops at (p) = 0 as shown in fig. 6.23.
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Figure 6.21: Time evolution of the probe intensity for a beam of initial finite tem-
perature. The parameters used are: N = 2 x 103, (py) = 5000hk, oo = 500hk,
m = 60 x 103hk? /K, n = 550K, Uy = 0.00005x
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Figure 6.22: Histograms showing evolution of the momentum distribution, (2, <
gr), for a beam of finite temperature initially, at xt=0, 2400, 6400 (note the atoms
separate into two distinctive groups). The parameters used are the same as in
fig. 6.21

Even though, at some particular time of the interaction (e.g. xt ~ 2400, in fig. 6.22),

the momentum spread of the larger group increases (as in the case of the beam of
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Figure 6.23: Time evolution of the average momentum, (£2,, < g,) for a beam of
finite temperature initially. The parameters used are the same as in fig. 6.21
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Figure 6.24: Time evolution of the momentum spread of the two separate groups of
atoms (cf fig. 6.22). The parameters used are the same as in fig. 6.21

cold atoms) and the final momentum distribution of the atoms (xt ~ 6400) is
approximately equal to its initial value before any interaction took place. Hence
slowing a beam of "hot’ atoms without introducing additional heating has been

demonstrated [70].
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CHAPTER 7

Conclusions

7.1 Summary

Results from studies of atoms confined in a Fabry-Perot cavity indicate two different
behaviours of the atom-field interaction depending on the direction of the pump
field with respect to the cavity axis. For the case of a pump field being sent directly
through one of the cavity mirrors (here called the cavity-pump case) one can observe
almost instantaneous growth of the cavity field and strong interaction with the
confined atoms. Slowing and cooling of the sample can be clearly seen, however,
closer inspection confirms a linear increase of the cooling time with atom number,
which as pointed out in previous works |39] makes such systems rather impractical
for very large ensembles. Significantly different behaviour can be observed for the
case when the pump field is directed perpendicular to the cavity axis and hence
the atoms are illuminated directly by the light field (here called the atom-pump
case). Contrary to the cavity-pump configuration the atom-pump configuration
needs the presence of particles to populate the cavity mode via scattering. For
sufficiently strong fields, and large atomic ensembles, one can observe self-ordering
of the particles which can lead to fast localisation and cooling of the atoms. As has
been shown chapter 3 for given parameters the cooling rate can in fact increase with

the number of atoms in the cavity.
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As the number of atoms plays an important role in numerical simulations of the
particle models the equivalent Vlasov model has also been presented. The results
from simulation of the Vlasov models for both the cavity-pump and the atom-pump
models show excellent agreement with their particle counterparts. However, the
advantage of the Vlasov model over the particle model relies in the fact that the
numerical effort can be greatly reduced for simulations involving large atomic en-

sembles.

Whereas chapter 2 and 3 considered classical models of atom-cavity interactions,
chapters 4 and 5 described semi-classical models of both the cavity-pump and the
atom-pump configurations. These semi-classical models show very good agreement
with the classical models in the limit where atomic excitation is negligible. As ex-
pected from the analytical examination of the semi-classical equations the numerical
simulations show an improving agreement between the semi-classical and classical
models as the pump-atom detuning is increased. Furthermore semi-classical models
of the cavity-pump and the atom-pump case reveal relatively fast cooling of atoms

for blue detuned light compared to red detuned light.

Results from study of atoms confined in the ring cavity pumped by the phase mod-
ulated light show the presence of three different regimes in which both the field
and the atoms reveal qualitatively different behaviour. This behaviour depends on
the number of resonances that atoms can interact with and three cases can be dis-
tinguished: single resonance (high modulation frequency) and the multi resonances
which can overlap due to growth of the probe intensity (intermediate modulation
frequency) or when the resonances are sufficiently close to each other (low modu-
lation frequency). As has been shown, the low frequency modulation regime gives
an opportunity to control the dynamics of the atomic ensemble and can eventually

lead to effective slowing of the atomic beam. Moreover the slowing of a beam of
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hot atoms using the low frequency modulation regime does not introduce further

heating to the atoms.

7.2 Future Work

All of the cavity cooling models presented in this work could be the subject of
further work. One obvious topic for future studies could be the extension of the
models described in chapters 2 - 5 from 1 to 2 or even 3 dimensions and using a
variety of pumping geometries and cavity geometries. Although the computation
time associated with such models is prohibitive at present, the rapid development of
computing hardware and parallel programming techniques may make them feasible

within a few years.

Another extension to the work described here is the modelling of a quantum gas e.q.
Bose-Einstein condensate (BEC) or a Fermi gas. Although these systems are not of
interest for cooling, they offer the possibility to study new regimes of light-matter
interactions, and could be used as an analogue for several condensed matter systems

involving quantum degenerate matter interacting with spatially periodic potentials.

The work described in chapter 6 involving ring cavities and phase-modulated pump-
ing offers the possibility of new methods for slowing and cooling atoms. An ob-
vious area for future studies would be to investigate different types of modulation
e.g. amplitude modulation, combined amplitude/phase modulation, non-sinusoidal
modulation as is performed in so-called “optical ratchets” [71, 72, 73] and deduce

the optimum type of modulation for efficient atomic cooling and slowing.
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APPENDIX A

Numerical Methods for Solving the
Vlasov Model (sec. 2.4)

The Crank-Nicolson scheme is based on the Finite Difference Method for solving
partial differential equations. It is an implicit method which means that to obtain

the “next” value of a function in time a system of algebraic equation must be solved.

This method can be explained using an example of a simple partial differential

equation of the form:

du _ Ou
ot~ ‘o

Eq. (A.1) can be discretized using the Crank-Nicolson scheme such that:

- - , A
Uiil - Ui: I “gﬂ —uj_y
2Ax 2Ax

(A.2)

AL Wt —
— p— —Z ¢ A.
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where the subscript ¢ corresponds to space and j corresponds to time and Az and At
are the space and the time step size respectively, as shown on the stencil presented

in the fig. A.1

t A
AX
-
+1 —H tH t
At
i Jan Jan Jan
NP NP NP
i-1 i i+1

[ ] —unknowns

() - knowns

Figure A.1: The Crank-Nicolson stencil for a 1D problem
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Hence eq. (A.1) can be written as:

1 j+1 j+1 j j 1 +1 '
i [ e | = [ - (A.4)

This scheme can be similarly applied to the Vlasov model (egs (2.50) - (2.51), section

2.4).
afn Lo 7 (= 2 afnfl af_nJrl
no_ _ Z — A.
5 i fn + 2U0|oz] ( 9 5 (A.5)
d - N7 NU N(Ho +ily) [, - _
d_j_‘:(_prmc_%_i 20>O‘_W/ (foa+f) dpa+7

(A.6)

Using the Crank-Nicolson discretisation of eq. (A.5) one obtains:

(LHS): fm)* - gvoraﬁﬁ—;{ f(0 - Dt = -7
o smen]} e

and

(RHS): (1— inwrpiAt)f(n)f + é%@?%{ {f(n - 1)?}1 — f(n— 1)5—1}

- [ = s } (A8)
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where the “new” elements (j + 1) and “old” elements (j) have been separated on
the LHS and the RHS respectively. Obviously in eqs. (A.7 and A.8) the subscript ¢

corresponds to momentum space.

Similarly the field equation, eq. (A.6) can be written as

. < N% NU,\ , N X
&ﬁl—{(—l‘i‘iAc—%—i QO)O/—Z(%-FZ'AO)

« /OO [f(—1)+f(1)}}m+aj.

—00

(A.9)

Equations (A.7, A.8 and A.9) together make a closed set of evolution equations. In
this form eqs. (A.7, A.8 and A.9) can be easily implemented in a numerical code and
solved using one of many available methods for solving linear system of equations,

e.g. LAPACK [71]
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APPENDIX B
List of Publications

This appendix contains publications which have arisen from the work described in

this thesis. These publications are:

e T. Griesser, H. Ritsch, M. Hemmerling and G.R.M. Robb, “ A Viasov approach
to bunching and selfordering of particles in optical resonators ”, Eur. Phys. J.

D 58, 349-368 (2010)

e M. Hemmerling and G.R.M. Robb, “ Slowing atoms using optical cavities
pumped by phase-modulated light 7, Phys. Rev. A 82, 053420 (2010)

153



Bibliography

[1]

2]

3]

4]

[5]

(6]

7]

18]

James Clerk Maxwell. A treatise on electricity and magnetism [microform] /

by James Clerk Mazwell. Clarendon Press, Oxford :, 1873.

R. Frisch. Experimenteller Nachweis des Einsteinschen Strahlungsriickstofses.

Z. Phys. 86, /2, 1933.

G. A. Askar’yan. Vozdiestvie gradienta polya intensivnogo electromagnitnogo
lucha na electroni i atomi. Zh. Eksp. Teor. Fiz. /2, 1567-1570[Sov. Phys. JETP
15, 1088], 1962.

G. A. Letokhov. Narrowing of the Doppler width in a standing light wave.
Pisma Zh. Eksp. Teor. Fiz. 7, 348, 1968.

A. Ashkin. Acceleration and trapping of particles by radiation pressure. Phys.
Rev. Lett., 24(4):156-159, Jan 1970.

T. Hansch and A. Schawlow. Cooling of gases by laser radiation. Optics Com-

munications, 13(1):68-69, January 1975.

P. Ehrenfest. Bemerkung iiber die angendherte Giiltigkeit der klassischen
mechanik innerhalb der quantenmechanik. Zeitschrift fir Physik A Hadrons
and Nuclei, 45:455-457, 1927. 10.1007/BF01329203.

Erich Joos. Ehrenfest theorems. In Daniel Greenberger, Klaus Hentschel, and
Friedel Weinert, editors, Compendium of Quantum Physics, pages 180-182.
Springer Berlin Heidelberg, 20009.

154



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Brian Harald Bransden and Charles Jean Joachain. Physics of Atoms and

Molecules; 2nd ed. Prentice-Hall, Harlow, 2003.

Harold J. Metcalf and Peter van der Straten. Laser Cooling and Trapping.
Springer, November 2001. http://www.worldcat.org/isbn/0387987282.

A. Ashkin. Applications of Laser Radiation Pressure. Science, 210(4474):1081—
1088, 1980.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin,
and J. G. E. Harris. Strong dispersive coupling of a high-finesse cavity to a

micromechanical membrane. Nature, 452(7183):72-75, March 2008.

J.P. Gordon and A. Ashkin. Motion of atoms in a radiation trap. Physical
Review A 21, No.5, (1980).

Steven Chu. Laser Manipulation of Atoms and Particles. Science,

253(5022):861-866, 1991.

A. Ashkin and J. M. Dziedzic. Optical trapping and manipulation of viruses
and bacteria. Science, 235(4795):1517-1520, March 1987.

A Ashkin. Optical trapping and manipulation of neutral particles using lasers.

94(10):4853, 1997.

W D Phillips, P D Lett, S L Rolston, C E Tanner, R N Watts, C I Westbrook,
C Salomon, J Dalibard, A Clairon, and S Guellati. Optical molasses: The

coldest atoms ever. Physica Scripta, 1991(T34):20, 1991.

P.D. Lett, W.D. Phillips, S.L. Rolson, C.E. Tanner, R.N. Watts, and
C.I.Westbrook. Optical molasses. J. Opt. Soc. Am. B/Vol. 6 No. 11, (1989).

D. William Phillips. Nobel lecture: Laser cooling and trapping of neutral atoms.

Rev. Mod. Phys., 70(3):721-741, Jul 1998.

155



[20]

[21]

22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

C. Cohen-Tannoudji. Fundamental Systems in Quantum Optics. Proceedings
of the Les Houches Summer School. Session LIII, edited by J. Dalibard, J.-M.

Raimond, and J. Zinn-Justin (North-Holland, Amsterdam, 1992, pp. 1-164).

J. Dalibard and C. Cohen-Tannoudji. Laser cooling and trapping of neutral

atoms.

C. S. Adams and E. Riis. Laser cooling and trapping of neutral atoms. Progress

in Quantum Electronics, 21(1):1 — 79, 1997.
C. Cohen-Tannoudji and J. Dalibard. Manipulating atoms with photons.

Nir Friedman, Ariel Kaplan, and Nir Davidson. Dark optical traps for cold
atoms. volume 48 of Advances In Atomic, Molecular, and Optical Physics,

pages 99 — 151. Academic Press, 2002.

Gabriel Spalding Kishan Dholakia, Michael MacDonald. Optical tweezers: the

next generation. Physics World, 15:31-35, October 2002.

M. Gangl, P. Horak, and H. Ritsch. Cooling neutral particles in multimode
cavities without spontaneous emission. Journal of Modern Optics, 47:2741—

2753, November 2000.

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe.

Cavity cooling of a single atom. Nature, (6978):50-52, March.

Almut Beige, Peter L. Knight, and Giuseppe Vitiello. Cooling many particles
at once. New Journal of Physics, 7(1):96, 2005.

Steven Chu. Nobel lecture: The manipulation of neutral particles. Rev. Mod.

Phys., 70(3):685-706, Jul 1998.

156



[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

J. Dalibard and C. Cohen-Tannoudji. Dressed-atom approach to atomic motion
in laser light: the dipole force revisited. J. Opt. Soc. Am. B, 2(11):1707-1720,
1985.

Claude Cohen-Tannoudji, Jacques Dupont-Roc, and Gilbert Grynberg.
AtoméImdash;Photon Interactions: Basic Processes and Applications. Wiley-

Interscience, March 1992.

A. Aspect, J. Dalibard, A. Heidmann, C. Salomon, and C. Cohen-Tannoudji.
Cooling atoms with stimulated emission. Phys. Rev. Lett., 57(14):1688-1691,
Oct 1986.

D. J. Wineland, J. Dalibard, and C. Cohen-Tannoudji. Sisyphus cooling of a
bound atom. J. Opt. Soc. Am. B, 9(1):32-42, 1992.

Peter Horak, Gerald Hechenblaikner, Klaus M. Gheri, Herwig Stecher, and
Helmut Ritsch. Cavity-induced atom cooling in the strong coupling regime.

Phys. Rev. Lett., 79(25):4974-4977, Dec 1997.

Gerald Hechenblaikner, Markus Gangl, Peter Horak, and Helmut Ritsch. Cool-
ing an atom in a weakly driven high-Q cavity. Phys. Rev. A, 58(4):3030-3042,
Oct 1998.

Vladan Vuleti¢ and Steven Chu. Laser cooling of atoms, ions, or molecules by

coherent scattering. Phys. Rev. Lett., 84(17):3787-3790, Apr 2000.

Peter Domokos and Helmut Ritsch. Mechanical effects of light in optical res-
onators. J. Opt. Soc. Am. B, 20(5):1098-1130, 2003.

P. Pinkse and G. Rempe. Single atoms moving in a high-finesse cavity. Reprint
of Chapter 13 of Cavity-Enhanced Spectroscopies, Vol. 40, pages: 255-295,
(2002).

157



[39]

[40]

[41]

42]

[43]

[44]

[45]

|46]

[47]

[48]

Peter Domokos and Helmut Ritsch. Collective cooling and self-organization of

atoms in a cavity. Phys. Rev. Lett., 89(25):253003, Dec 2002.

Adam T. Black Hilton W. Chan and Vladan Vuletic. Observation of collective-
emission-induced cooling of atoms in an optical cavity. Physical Review Letters

90, No.6, (2003).

Adam T. Black, James K. Thompson, and Vladan Vuleti¢. Collective light
forces on atoms in resonators. Journal of Physics B: Atomic, Molecular and

Optical Physics, 38(9):5605+, May 2005.

Adam T Black, Hilton W.Chan, Vladan Vuletic. Self-organization of atomic
samples in resonators and collective light forces. World Scientific Publishing

Co. Pte. Ltd, 2003.

Adam T Black. Collective atom-light interactions applied to laser cooling and

quantum communications. PhD dissertation, Umi Number: 3186329, 2005.

Daniel A. Steck. Cesium D line data.

http://steck.us/alkalidata/cesiumnumbers.1.6.pdf.

Markus Gangl and Helmut Ritsch. Collective dynamical cooling of neutral

particles in a high-@Q) optical cavity. Phys. Rev. A, 61(1):011402, Dec 1999.

Peter Horak and Helmut Ritsch. Scaling properties of cavity-enhanced atom

cooling. Phys. Rev. A 64, 033422, (2001).

Peter Domokos, Peter Horak and Helmut Ritsch. Semiclassical theory of cavity-
assisted atom cooling. Journal of Physics B: Atomic, Molecular and Optical

Physics 34, 187-198, (2001).

Weiping Lu and P.F. Barker Yongkai Zhao. Cooling molecules in optical cavi-
ties. Physical Review A 76, 013417, (2007).

158



[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

A. Vukics and P. Domokos. Simultaneus cooling and trapping of atoms by a

single cavity-field mode. Physical Review A 72, 031401, (2005).

Rebecca L. Honeycutt. Stochastic runge-kutta algorithms. I. white noise. Phys.
Rev. A, 45(2):600-603, Jan 1992.

M. Januszewski and M. Kostur. Accelerating numerical solution of stochas-
tic differential equations with CUDA. Computer Physics Communications,

181(1):183 — 188, 2010.

A. A. Vlasov. The vibrational properties of an electron gas. Physics-Uspekhi,
10(6):721-733, 1968.

T. Griesser, H. Ritsch, M. Hemmerling, and G.R.M. Robb. A vlasov approach
to bunching and selfordering of particles in optical resonators. The FEuropean
Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 58:349—
368, 2010.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-
nery. Numerical recipes in Fortran 90 (2nd ed.): the art of parallel scientific

computing. Cambridge University Press, New York, NY, USA, 1996.

H. Ritsch J.K. Asboth, P. Domokos and A. Vukics. Self-organization of atoms
in a cavity field: Threshold, bistability, and scaling laws. Physical Review A
72, 053417, (2005).

Lin Zhang, G J Yang, and L X Xia. Self-organization effects and light amplifi-
cation of collective atomic recoil motion in a harmonic trap. Journal of Optics

B: Quantum and Semiclassical Optics, 7(11):355, 2005.

Peter W. Milloni, Joseph H. Eberly. Lasers. John Wiley and Sons, (1988).

159



[58]

[59]

[60]

[61]

62]

[63]

[64]

[65]

R. Bonifacio and L. De Salvo. Collective atomic recoil laser (carl) optical
gain without inversion by collective atomic recoil and self-bunching of two-
level atoms. Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment, 341(1-3):360
— 362, 1994.

R. Bonifacio, G. R. M. Robb, and B. W. J. McNeil. Propagation, cavity, and
doppler-broadening effects in the collective atomic recoil laser. Phys. Rev. A,

56(1):912-924, Jul 1997.

G. R. M. Robb, R. T. L. Burgess, and W. J. Firth. Enhancement of collective
atomic recoil lasing due to pump phase modulation. Phys. Rev. A, 78(4):041804,
Oct 2008.

M. Cashen, O. Rivoire, V. Romanenko, L. Yatsenko, and H. Metcalf. Strong
optical forces in frequency-modulated light. Phys. Rev. A, 64(6):063411, Nov
2001.

Marcus Gangl and Helmut Ritsch. Cold atoms in a high-Q) ring cavity. Physical
Review A 61, 043405, (1980).

C. Maes, J.K. Asboth and H. Ritsch. Self ordering threshold and superradiant
backscattering to slow a fast gas beam in a ring cavity with counter propagating

pump. Opt. Express, 15:6019-6035, 2007.

R. Roy, P. A. Schulz, and A. Walther. Acousto-optic modulator as an electron-
ically selectable unidirectional device in a ring laser. Opt. Lett., 12(9):672-674,
1987.

T. Johnston and W. Proffitt. Design and performance of a broad-band optical
diode to enforce one-direction traveling-wave operation of a ring laser. Quantum

Electronics, IEEE Journal of, 16(4):483 — 488, apr 1980.

160



[66]

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

G. R. M. Robb, B. W. J. McNeil, R. Bonifacio, and N. Piovella. Dispersive
optical bistability in cold atomic vapours. Optics Communications, 194(1-3):151
~ 165, 2001.

Lucia De Salvo, Roberta Cannerozzi, Rodolfo Bonifacio, Eduardo J. D’Angelo,
and Lorenzo M. Narducci. Collective-variables description of the atomic-recoil

laser. Phys. Rev. A, 52(3):2342-2349, Sep 1995.

M. Abramowitz and 1. A. Stegun. Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables, 9th edition.

R. Graham, M. Schlautmann, and D. L. Shepelyansky. Dynamical localization

in josephson junctions. Phys. Rev. Lett., 67(2):255-258, Jul 1991.

M. Hemmerling and G. R. M. Robb. Slowing atoms using optical cavities
pumped by phase-modulated light. Phys. Rev. A, 82(5):053420, Nov 2010.

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber. Optical
thermal ratchet. Phys. Rev. Lett., 74(9):1504-1507, Feb 1995.

Emil Lundh and Mats Wallin. Ratchet effect for cold atoms in an optical lattice.

Phys. Rev. Lett., 94(11):110603, Mar 2005.

Cécile Robilliard, D. Lucas, and G. Grynberg. Modelling a ratchet with cold
atoms in an optical lattice. Applied Physics A: Materials Science and Process-

ing, 75:213, 2002. 32.80.Pj, 32.60.--i, 87.10.4e, 05.40.+j, 05.60.+w.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, third edition, 1999.

161



[75] H. W. P. Chan. Cavity cooling of cesium atoms. PhD thesis, Stanford University,

2003.

[76] Ovidiu Toader, Sajeev John, and Kurt Busch. Optical trapping, field enhance-

ment and laser cooling inphotonic crystals. Opt. Ezpress, 8(3):217-222, 2001.

[77] Claude N. Cohen-Tannoudji. Nobel lecture: Manipulating atoms with photons.
Rev. Mod. Phys., 70(3):707-719, Jul 1998.

|78] H. J. Metcalf and P. van der Straten. Laser cooling and trapping of atoms. .J.
Opt. Soc. Am. B, 20(5):887-908, 2003.

[79] Curtis C. Bradley and Randal G. Hulet. Laser cooling and atom trapping.
Atomic, Molecular, and Optical Physics, 29B:129-144, 1966.

[80] Harold Metcalf and Peter van der Straten. Cooling and trapping of neutral
atoms. Physics Reports, 244(4-5):203 — 286, 1994.

[81] Sophie Schlunk. AC Electric Trapping of Neutral Atoms. PhD thesis, Stanford

University.

|82] N. P. Bigelow and M. Prentiss. Decreased damping of ultracold atoms in optical
molasses: predictions and a possible solution. Opt. Lett., 15(24):1479-1481,
1990.

[83] R Miller, T E Northup, K M Birnbaum, A Boca, A D Boozer, and H J Kimble.
Trapped atoms in cavity qed: coupling quantized light and matter. Journal of

Physics B: Atomic, Molecular and Optical Physics, 38(9):S551, 2005.

[84] D. van Thourhout and J. Roels. Optomechanical device actuation through the

optical gradient force. Nature Photonics, 4:211-217, April 2010.

162



[85]

[86]

87]

33

[39]

[90]

Craig Savage. Introduction to light forces, atom cooling, and atom trapping. In
Selected papers from the workshop on Lectures in Atom Optics, pages 745-764,
East Melbourne, Victoria, Australia, Australia, 1996. Commonwealth Scientific

and Industrial Research Organization.

A. Ashkin. Atomic-beam deflection by resonance-radiation pressure. Phys. Rev.

Lett., 25(19):1321-1324, Nov 1970.

D. J. Wineland and Wayne M. Itano. Laser cooling of atoms. Phys. Rev. A,
20(4):1521-1540, Oct 1979.

Rudolf Grimm, Matthias Weidemdiller, and Yurii B. Ovchinnikov. Optical

dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys., 42:95-170, Feb 2000.

Stig Stenholm. The semiclassical theory of laser cooling. Rev. Mod. Phys.,
58(3):699-739, Jul 1986.

Vladan Vuleti¢, James K. Thompson, Adam T. Black, and Jonathan Simon.
External-feedback laser cooling of molecular gases. Phys. Rev. A, 75(5):051405,
May 2007.

163



	1 Introduction
	1.1 Light Forces
	1.2 Force on Two-Level Atoms
	1.3 Scattering or Radiation Pressure Force
	1.3.1 Doppler Cooling and Optical Molasses

	1.4 Dipole Force
	1.4.1 AC-Stark Shift
	1.4.2 Sisyphus Cooling

	1.5 Cavity Cooling
	1.5.1 Historical Background
	1.5.2 Cavity Geometries
	1.5.3 Results from the Cavity Cooling Simulations Presented in this Work


	2 Cavity-Pump Configuration
	2.1 Classical Derivation of Single Atom Cooling
	2.2 Cavity Cooling Including Many Particles - Particle Model
	2.2.1 Scalability of the Cavity Pump Configuration

	2.3 Validity of the Classical Model of Cavity Cooling
	2.4 Vlasov Model of the Many Atom-Cavity System
	2.5 Comparison Between the Particle Model and the Vlasov Model (Cavity-Pump Configuration)
	2.6 Numerical Methods for the Particle Model and the Vlasov Model

	3 Atom-Pump Configuration
	3.1 Classical Derivation of Atom-Pump Configuration
	3.2 Particle Model of Atom-Pumped Configuration
	3.3 Vlasov Model
	3.4 Comparison Between the Particle Model and the Vlasov Model (Atom-Pump Configuration)

	4 Semi-Classical Model of Two-Level Atoms in a Cavity
	4.1 Semi-Classical Derivation of Cavity-Pump Configuration
	4.1.1 Internal Degrees of Freedom
	4.1.2 Atomic Centre-of-Mass Dynamics
	4.1.3 Electromagnetic Field Dynamics
	4.1.4 Comparison with the Classical Model

	4.2 Comparison Between the Classical and the Semi-Classical Models (Numerical Simulations)
	4.3 Cooling Atoms with Blue Detuned Light

	5 Semi-Classical Model of Atom-Pump Configuration
	5.1 Derivation of Semi-Classical Model of Atom-Pump Configuration
	5.1.1 Internal Degrees of Freedom
	5.1.2 Atomic Centre-of-Mass Dynamics
	5.1.3 Electromagnetic Field Dynamics
	5.1.4 Comparison with the Classical Model

	5.2 Comparison Between the Classical and the Semi-Classical Models (Numerical Simulations)
	5.3 Cooling Atoms with Blue Detuned Light (Atom-Pump Configuration)

	6 Ring Cavity and Phase Modulated Pump Field
	6.1 Model
	6.2 CARL Instability and Derivation of a Growth Rate (gr)
	6.3 Frequency Modulation Regimes
	6.4 High Modulation Frequency (m gr)
	6.5 Intermediate Modulation Frequency (m gr)
	6.6 Low Modulation Frequency (m gr)
	6.6.1 Slowing a Beam of Cold Atoms
	6.6.2 Slowing a Beam of Atoms with Finite Temperature


	7 Conclusions
	7.1 Summary
	7.2 Future Work

	A Numerical Methods for Solving the Vlasov Model (sec. 2.4)
	B List of Publications
	Bibliography

