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Summary

Physically realising quantum computation is our long term goal. Currently charac-

terising and verifying quantum states is a hard problem. Verification is necessary in

order to understand and control quantum systems. There are also issues in the physi-

cal realisation of these systems, the apparatus used does not match the quantum scale

and so produces errors in the measurements. There are many different candidates for

physically realising quantum computation, we consider measurement based quantum

computation using cluster state systems. We explore the different ways of verifying

these systems in the presence of various experimental imperfections and non-idealities.

We present a scheme to reduce the cross-talk found when verifying the state through

stabilizer operator measurements. The cross-talk comes from physical constraints on

the measurement apparatus. Our scheme reduces the cross-talk to almost 50% of the

original value. We consider square, triangular and hexagonal connectivity lattices.

We also use the Clauser-Horne-Shimony-Holt (CHSH) inequality as a way to verify

atoms trapped in optical lattices through its entanglement. Imperfections arise in this

system through finite entropy in the creation process that leads to vacant lattice sites.

By optimising the conventional measurement settings we improve the tolerance of the

system to incomplete measurement and vacancies. We find violations of the CHSH

inequality for very large vacancy rates. We analyse further errors in the detectors and

calculate the tolerance of the system in these cases.

We study the effects of superselection rules and their connection to the single particle

entanglement question. We review a system presented by Paterek et al. [1] and verify it

again using the CHSH inequality. We introduce errors into the measurement process.

By optimising the measurement settings we increase the tolerance of the system for

four different error models. We also explore how non-ideal state preparation affects the

detectable violations.
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CHAPTER 1

Introduction

1.1 Introduction

Research into the possibility of using a quantum system for computation has become

increasingly popular over the last few decades. The advantage of using a quantum

system compared with a classical one is speed. The concept of superposition allows

operations to be performed in parallel which significantly increases the speed of the

computation. As consumers we are constantly demanding faster performance from

technology, as such, exploring the possibility of quantum computation is a reasonable

route of research.

Verification of these quantum states is extremely important. When we create a

quantum state we need to be able to check it is the correct state. We also need to

ensure that when an operation is performed on a particular state the output state is

what we expected. The verification allows us to fully understand the underlying physics

of the system, without it we could not begin to use quantum states as a resource. Until

we build a quantum computer this verification must be done using direct methods.

However, as the number of qubits, N , in our quantum system increases the number of

parameters needed to characterise the state increases exponentially as 2N [2]. This rules

out methods such as full quantum state tomography for verification as it soon becomes

impossible to write down the state [3]. Verification of quantum states is one of the

main themes of this work, in each case we identify a way to characterise the quantum

state of interest using a linear number of parameters to avoid the issues associated with

quantum state tomography.

There are different ideas of how a quantum computer could be realised [4, 5, 6, 7, 8].

The idea we focus on in this thesis is measurement based quantum computation using
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cluster states [8, 9]. Cluster states are fully entangled many body qubit systems. Projec-

tive single-qubit measurements are performed in a sequence and the results are read-out

by a final single particle measurement. The entanglement of the cluster state is a vital

component in its usefulness for quantum computation. Any errors or imperfections in

the state and measurements could reduce the accuracy of the results [10, 8, 11, 12].

Broadly speaking our theoretical knowledge of how quantum systems perform is

good. We are able to describe the systems mathematically and predict how they will

perform. However, there is a problem when we physically try to realise these systems.

Many body quantum systems, for example a Bose-Einstein Condensate (BEC) require

all the atoms in the system to be at a very low temperature, ideally 0K, this freezes out

any classical fluctuations and all the atoms can occupy the lowest quantum state making

them indistinguishable. Clearly this is not possible in practice as we are performing

the experiment at finite temperatures. By using a BEC where classical fluctuations

still remain for any sort of computation has the possibility of errors in the results

making the system not reliable. If we want to use quantum information as a resource

for computation it is vital that it is robust and reliable.

There are also other issues in putting quantum computation into practice such as

size. Many body quantum systems are made up of many atoms, depending on the

system, for example cluster states. It can be necessary to address individual atoms

using laser beams in order to perform rotations on these individual atoms. Currently

the width of the laser beams that we have available is larger than the atom spacing

meaning when the target atom is addressed the nearest neighbour atoms also feel the

affects of the laser. This again can lead to errors in the results if the system is used

for computation.

In this thesis we accept that our apparatus is not yet to the standard necessary

to produce reliable quantum computation results. We believe that the apparatus will

get there eventually but in the meantime we still want to be able to perform quantum

computation. We concentrate on tweaks and changes we can make to the theoretical

ideal experimental set-up so that we can reduce the impact of the imperfections caused

by the apparatus.

1.2 Thesis outline

The three pieces of work presented here are simple theoretical analyses for optimising

the performance of various protocols that take into account the underlying characteris-

tics of the physical systems. We focus on the idea of cluster state quantum computation.

Using Bose-Einstein condensates (BECs) in optical lattice setups is a promising can-

didate for implementing quantum computation [11]. However, there are a number of

issues that crop up in this model. We explore three different scenarios and present a

scheme for addressing the issue of state verification for each. The solutions generally
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present further issues, we address these and optimise the scheme in order to reduce the

affects the issues have on the measurement results.

Our first piece of work looks at the issue of cross-talk which occurs during the

measurement process [13]. Cross-talk occurs due to the measurement apparatus not

matching the scale of the system being measured. It can cause errors in the measure-

ment results. Until we are able to access measurement apparatus more suited to the

quantum scale we must address this issue. We aim to reduce the impact of the effect

by simple modifications of the measurements themselves.

Our second piece of work looks at incomplete measurement and non-ideal states.

Incomplete measurement occurs again due to the inaccuracy of the apparatus. It leads

to indistinguishability between two states in the system. The non-ideal states occur due

to the finite entropy of the BEC creation process which leads to a non-maximally en-

tangled cluster state [14]. These combined errors cause a reduction in the entanglement

of the state to be used for quantum computation. By characterising the entanglement

using a Bell inequality we aim to show that by optimising the measurement settings

even in highly non-ideal states we can still detect the entanglement in the system.

Our third piece of work considers small margins of error and different error models.

We look at the impact of superselection rules on the allowed coherent operations and

relate this to the question of single particle entanglement [15, 16]. Similar to the second

piece of work we use a Bell inequality to characterise the entanglement of the system

and explore different types of error that occur from the measurement apparatus.
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CHAPTER 2

Quantum theory basics

We begin by introducing the basic quantum theory and notation that will be used

throughout this work. From how to describe a quantum state to tools that are com-

monly used to measure and interpret the results.

2.1 State vector

Every quantum state is described by a state vector. These state vectors reside in the

Hilbert space, H, which is a complex vector space. We use Dirac notation to write

the state vector of a system as a ket, |ψ〉, we call this the state of the system. It is

possible for the system to be in a superposition of states, this means that its state can

be written in terms of two other states as,

|ψ〉 = a0 |ψ0〉+ a1 |ψ1〉 , (2.1)

where a0 and a1 are complex numbers that are associated with the amplitudes of the

system being in one state or the other (Pj = |aj |2 if |ψ0〉 and |ψ1〉 are orthonormal,

definition follows later). A two-state system is commonly called a qubit, it is the

smallest unit of quantum information and lies in a two-dimensional Hilbert space. It

can also be represented using a column vector

|ψ〉 =

(
a0

a1

)
. (2.2)

The conjugate transpose of |ψ〉 is a bra,

〈ψ| = a∗0 〈ψ0|+ a∗1 〈ψ1| =
(
a∗0 a∗1

)
, (2.3)
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where a∗0 and a∗1 are the complex conjugates of a0 and a1. Similar to vectors the inner

product of two states shows the overlap between them, for example, the overlap between

|ψ〉 and |φ〉 is written as 〈φ|ψ〉. If the inner product value is zero then the states are

orthogonal, the same as two vectors with a zero scalar product would be perpendicular.

A state is said to be normalised if the inner product of itself with itself is one,

〈ψ|ψ〉 = 1. (2.4)

When the state is not normalised the inner product is strictly positive,

| 〈ψ|ψ〉| > 0. (2.5)

When a set of states is normalised and orthogonal it is called orthonormal. We can

access the probability amplitudes by looking at the overlap between particular states,

〈ψ0|ψ〉 = a0 = 〈ψ|ψ0〉∗,

〈ψ1|ψ〉 = a1 = 〈ψ|ψ1〉∗,
(2.6)

where {|ψ0〉 , |ψ1〉} is an orthonormal basis.

In the case where |ψ〉 is normalised, then |a0|2 + |a1|2 = 1, where |a0|2 is the

probability of measuring the state to be |ψ0〉 and |a1|2 is the probability of measuring

the state to be in |ψ1〉. A state can be a superposition of many other states,

|ψ〉 =
∑
n

an |ψn〉 . (2.7)

If |ψ〉 is normalised and {|ψn〉} are orthonormal then,∑
n

|an|2 = 1. (2.8)

2.2 Observables

For each measurable parameter or observable there is an associated Hermitian linear

operator, Â. This operator acts upon a state and transforms it into another state

Â |ψ〉 = |φ〉 . (2.9)

The operator can be written as a matrix and is described as Hermitian if Â = Â†,

Â =

(
a00 a01

a10 a11

)
, Â† =

(
a∗00 a∗10

a∗01 a∗11

)
, (2.10)
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where Â† is the Hermitian conjugate of Â defined by

〈ψ| Â† |φ〉 = 〈φ|Â |ψ〉∗ ∀ |ψ〉 , |φ〉 ,

⇒
(
ψ0 ψ1

)(a00 a01

a10 a11

)(
φ0

φ1

)
=
(
φ0 φ1

)(a∗00 a∗10

a∗01 a∗11

)(
ψ0

ψ1

)

=

(
ψ0a00φ0 + ψ0a01φ1

ψ1a10φ0 + ψ1a11φ1

)
=

(
φ0a

∗
00ψ0 + φ0a

∗
01ψ1

φ1a
∗
10ψ0 + φ1a

∗
11ψ1,

) (2.11)

as Â is hermitian the coefficients a00 and a11 are real, a01 = a∗10 and a10 = a∗01 making

Eq. (2.11) true.

2.3 Eigenvalues and Eigenvectors

Eigenvalues are the possible results from an ideal operator measurement. If the operator

Â is Hermitian then the eigenvalue equation is given by,

Â |λn〉 = λn |λn〉 , (2.12)

where |λn〉 are eigenstates and λn are eigenvalues. The conjugate of Eq. (2.12) is shown

with λn replaced with λm

〈λm| Â† = 〈λm| Â = λ∗m 〈λm| . (2.13)

The eigenvalues can be shown to be real and the eigenvectors, corresponding to distinct

λj , orthonormal using the following equations. Taking the overlap of the conjugate,

Eq. (2.13) with |λn〉,
〈λm| Â |λn〉 = λ∗m 〈λm|λn〉, (2.14)

and taking the conjugate of Eq. (2.12) with 〈λm|,

〈λm| Â |λn〉 = λn 〈λm|λn〉, (2.15)

and finally taking Eq. (2.15) from Eq. (2.14),

(λ∗m − λn) 〈λm|λn〉 = 0, (2.16)

if m = n, the two states are the same and the eigenvalues must be real to satisfy

Eq. (2.5). But if the two states are not the same, n 6= m, then the overlap is zero and

the states must be orthogonal. This is summarised using the Kronecker delta, δmn,

〈λm|λn〉 = δmn, (2.17)
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δmn has value 1 when m = n otherwise 0. If the state to be measured is normalised

and written as

|ψ〉 =
∑
n

an |λn〉 , (2.18)

when the measurement of observable A is performed using operator Â the result will be

the eigenvalue λn with probability |an|2. It is possible for two orthonormal states, |λj〉
and |λk〉 to have the same eigenvalue, λj = λk, in this case the state is degenerate and

the probability of getting result λj = |aj |2 + |ak|2. The set of eigenvectors, {|λn〉} is

complete if all the possible states of the system can be written in the form of Eq. (2.18).

2.4 Expectation value

By performing the same measurement using operator Â on many states prepared using

the same process, a mean or expectation value of the result can be found, this is

expressed as

〈ψ| Â |ψ〉 = Ā = 〈Â〉 =
∑
n

λn|an|2. (2.19)

The spread of these results is given by the variance,

σ2 = (∆A)2 = 〈ψ| (Â− 〈Â〉)2 |ψ〉 = 〈ψ| Â2 |ψ〉 − 〈ψ| Â |ψ〉2 . (2.20)

2.5 Commutators

When performing multiple measurements on a particular state, multiple operators are

used. The order that these operators are applied in is very important. Generally

operators do not commute.

ÂB̂ |ψ〉 6= B̂Â |ψ〉 . (2.21)

The commutator or difference of two operators Â and B̂ is given as

[Â, B̂] = ÂB̂ − B̂Â. (2.22)

If the operators do commute the value of the commutator is zero, the order is not

important and they are simultaneously measurable.

2.6 Outer product

The outer product is a useful alternative representation of an operator. |φ1〉 〈φ2| is the

outer product of the two states |φ1〉 and |φ2〉. The Hermitian conjugate of the above

operator is |φ2〉 〈φ1|. The operator can only be described as Hermitian if |φ1〉 = |φ2〉. As

the outer product is an operator it can act upon a state, |ψ〉, producing |φ1〉 〈φ2|ψ〉 =

〈φ2|ψ〉 |φ1〉 as 〈φ2|ψ〉 is the inner product (a complex number) and so can be moved
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to the front of the expression. We can write any observable in the outer product form

in terms of eigenvalues and eigenvectors.

Â =
∑
n

λn |λa〉 〈λn| , (2.23)

where Â is a Hermitian operator and {|λn〉} is the complete set of eigenvectors for that

operator.

The operator that acts upon any state |ψ〉 resulting in |ψ〉 is called the Identity

operator, Î, it is Hermitian and can be written as

Î =
∑
n

|λn〉 〈λn| , (2.24)

where {|λn〉} is any orthonormal basis. To show that this operator does return to the

original state we use Eq. (2.18) as the description of the state and the Kronecker delta,

Î |ψ〉 =
∑
m

|λm〉 〈λm|
∑
n

an |λn〉

=
∑
n

an
∑
m

δmn |λn〉

= |ψ〉 .

(2.25)

2.7 Mixed states

Quantum states that are made up of a single state are called pure states. Not all states

are pure it is possible to have mixed states, statistical mixtures of pure states. These

mixed states are described by density operators

ρ̂ =
∑
n

Pn |ψn〉 〈ψn| . (2.26)

If only one of the probabilities, Pn = 1, or Pn = δmn, then the density operator can be

simplified to a pure state ρ̂ = |ψm〉 〈ψm|.
The mixture of states in the density operator are not necessarily orthogonal. It is

however always possible to write ρ̂ in diagonal form due to its Hermiticity. It is also

true that for any state, |φ〉, the density operator is always positive,

〈φ| ρ̂ |φ〉 =
∑
n

Pn 〈φ|ψn〉 〈ψn|φ〉

=
∑
n

Pn| 〈φ|ψn〉|2 ≥ 0,
(2.27)
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as each term contains a probability term that must be positive or zero. We can write

the density operator in terms of eigenvalues, ρm and eigenvectors, |ρm〉,

ρ̂ =
∑
m

ρm |ρm〉 〈ρm| . (2.28)

The density operator allows us to change the way we write the expectation value

〈Â〉 = Tr(ρ̂Â), (2.29)

where Tr is the trace operation. This operation sums the diagonal elements of the

operator ρ̂Â in any basis that has a complete orthonormal set of states. If {|λm〉} is a

complete orthonormal set of eigenvalues then Eq. (2.29) equals,

Tr(ρ̂Â) =
∑
m

〈λm|

(∑
n

Pn |λn〉 〈λn|

)
Â |λm〉

=
∑
n

Pn 〈ψn| Â
∑
m

|λm〉 〈λm|ψn〉

=
∑
n

Pn 〈ψn| Â |ψn〉 .

(2.30)

The trace operation is cyclic meaning the order can be rotated Tr(ρ̂ÂB̂) = Tr(ÂB̂ρ̂) =

Tr(B̂ρ̂Â). The trace is independent of the basis and used to calculate the expectation

of Â. By setting Â to the identity operator we see the trace is simply the sum of all

the probabilities,

Tr(ρ̂Î) =
∑
m

〈λm|

(∑
n

Pn |λn〉 〈λn|

)
Î |λm〉

=
∑
n

Pn 〈λn| Î
∑
m

|λm〉 〈λm|λn〉

=
∑
n

Pn 〈λn| Î |λn〉

=
∑
n

Pn 〈λn|λn〉

=
∑
n

Pn.

(2.31)
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If we calculate the trace of ρ̂ in the basis of its eigenvectors (Eq. (2.28)), we see the

trace is also the sum of all the eigenvalues,

Tr(ρ̂) =
∑
m

〈ρm|

(∑
n

ρn |ρn〉 〈ρn|

)
|ρm〉

=
∑
n

ρn 〈ρn|
∑
m

|ρm〉 〈ρm| ρn〉

=
∑
n

ρn 〈ρn| ρn〉

=
∑
n

ρn,

(2.32)

making the sum of the eigenvectors 1. By choosing Â to be ρ̂,

Tr(ρ̂2) =
∑
m

〈ρm|

(∑
n

ρn |ρn〉 〈ρn|

)
ρ̂ |ρm〉

=
∑
n

ρn 〈ρn| ρ̂
∑
m

|ρm〉 〈ρm| ρn〉

=
∑
n

ρn 〈ρn| ρ̂ |ρn〉

=
∑
n

ρn 〈ρn| ρ̂ |ρn〉

=
∑
n

ρnρn

=
∑
n

ρ2
n.

(2.33)

We can use this measure as a test of the purity of a state. By interpreting the eigenvalues

as probabilities we see that

Tr(ρ̂2) =
∑
n

ρ2
n ≤

∑
n

∑
m

ρnρm = 1, (2.34)

this can only be 1 if only one value of ρn = 1 and all the others are zero meaning

Tr(ρ̂2) = 1 for pure states and Tr(ρ̂2) ≤ 1 for mixed states.

The ensemble description of a state is not necessarily unique, if we take this state

ρ̂ =
1

2
|0〉 〈0|+ 1

2
|1〉 〈1| , (2.35)

where |0〉 and |1〉 are orthonormal states. This state is the same as

ρ̂ =
1

3
|0〉 〈0|+ 1

3

(|0〉+
√

3 |1〉)
2

(〈0|+
√

3 〈1|)
2

+
1

3

(|0〉 −
√

3 |1〉)
2

(〈0| −
√

3 〈1|)
2

, (2.36)

it is not possible to distinguish between the ensembles by measurement.
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2.8 Reduced density operator

Two separate states that reside in two different state spaces, a and b, can be written

as a composite state using the direct product,

|ψ〉 = |λ〉a ⊗ |φ〉b , (2.37)

where ⊗ denotes the tensor product of the state spaces. For convenience the ⊗ is

usually left out. The state in Eq. (5.1) is separable, this means the state can be written

as a product of two states. There is another class of states called entangled states,

these cannot be written in the form of Eq. (5.1), for example,

|ψ〉 =
∑
n

an |λn〉 ⊗ |φn〉 . (2.38)

When applying operators to composite states (separable and entangled) it is very

important to be clear which state spaces the operator acts upon. If operators Â acts

only on system a then the joint operator on both systems is written as Â ⊗ Î and the

action of the operator only affects the a subsystem.

We can introduce the reduced density operator by calculating the expectation value

of a joint operator,

〈ψ| Â |ψ〉 =
∑
m

∑
n

a∗man 〈φm| ⊗ 〈λm| Â⊗ Î |λn〉 ⊗ |φn〉

=
∑
m

∑
n

a∗man 〈φm|φn〉 〈λm| Â |λn〉

=
∑
n

|an|2 〈λn| Â |λn〉 ,

(2.39)

this is the same result as if we had calculated Tr(ρ̂aÂ), where

ρ̂a =
∑
n

|an|2 |λn〉 〈λn| , (2.40)

this is called the reduced density operator, it only describes the part of the joint state

that is in the a subspace which is spanned by {|λn〉}. By using observables that only

affect one subspace of the entangled state any correlations between the two systems

will not be taken into account. As such, the only result we can gain from these types

of operator measurements would be the reduced density operator of that system. This

means we can write Eq. (2.39) as

〈Â〉 = Tr(Â⊗ Î |ψ〉 〈ψ|)

=
∑
m

∑
n

〈φm| ⊗ 〈λn| (Â⊗ Î |ψ〉 〈ψ|) |λn〉 ⊗ |φm〉

= Tra

[
ÂTrb(|ψ〉 〈ψ|)

]
,

(2.41)
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where Tra(b) is the trace over system a(b) and system a is spanned by basis {|λn〉} and

system b is spanned by {|φm〉}. Trb(|ψ〉 〈ψ|) is the reduced density operator for system

a. If the total density operator is ρ̂ab then the reduced density operator for system a is

ρ̂a =
∑
m

b 〈φm| ρ̂ab |φm〉b

= Trb(ρ̂ab).

(2.42)

2.9 Unitary operators

A unitary operator, Û is a special type of operator,

Û Û † = Û †Û = Î, (2.43)

where Û † = Û−1. A unitary operator preserves the overlap between states. If a

transformed state is |ψ′〉 = Û |ψ〉 then

〈φ′ |ψ′〉 = 〈φ| Û †Û |ψ〉 = 〈φ|ψ〉∀ |φ〉 , |ψ〉 , (2.44)

the inner product remains the same between the two states. A unitary operator can

act on states or operators with equivalent results,

(〈ψ| Û〉)Â(Û |ψ〉) = 〈ψ| (Û †ÂÛ) |ψ〉 . (2.45)

A larger unitary operator can be made up of a sequence of n smaller unitary operators,

Û = Ûn · · · Û2Û1, Û |ψ〉 = Ûn · · · Û2Û1 |ψ〉 , (2.46)

the order of these operators is important as they do not necessarily commute.

2.10 Pauli Operators

Pauli operators are an example of unitary operators on H. The Pauli operators are as

follows,

Î = |0〉 〈0|+ |1〉 〈1| =

(
1 0

0 1

)
,

σ̂x = |0〉 〈1|+ |1〉 〈0| =

(
0 1

1 0

)
,

σ̂y = i(|1〉 〈0| − |0〉 〈1|) =

(
0 −i
i 0

)
,

σ̂z = |0〉 〈0| − |1〉 〈1| =

(
1 0

0 −1

)
,

(2.47)
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where σ2
j = I and σ†j = σj . They form a basis for operators on H⊗2 but do not commute

with each other.

2.11 The Bloch sphere

Qubits are quantum states that have two orthogonal states, for example, |ψ〉 = a0 |0〉+
a1 |1〉. The qubits can be represented as points on the Bloch sphere (Fig. 2.1). The

Bloch sphere is a sphere of unit radius. A point on the surface of the sphere represents

a qubit in a pure state and the points in the interior represent mixed states. Opposite

points describe mutually orthogonal states, for example the point at the top of the

Bloch sphere represents the |0〉 state and at the bottom the |1〉 state. Any qubit state

can be defined by the angles θ and φ on the Bloch sphere,

|ψ〉 = cos

(
θ

2

)
|0〉+ exp(iφ) sin

(
θ

2

)
|1〉 . (2.48)

Figure 2.1: Bloch sphere. The angles θ and φ are used to define a quantum state on
the Bloch sphere.

2.12 Entanglement

A pure state is said to be entangled if it cannot be written as a product of two states

Non-entangled state: |ψ〉 = |λ〉a |φ〉b ,

Entangled state: |ψ〉 =
1√
2

(|0〉a |0〉b + |1〉a |1〉b).
(2.49)

It is not always clear in which basis a state can be written to show it is separable.

When dealing with qubits one way to check if a state is separable is to use the positive
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partial transpose, or PPT, criterion. The positive partial transpose is an performs a

transpose on only one subsystem of a bipartite system, the state ρ = |jk〉AB 〈lm| under

the positive partial transpose would become ρTB = |jm〉AB 〈lk|. If the eigenvectors

of the partial transpose of the state are positive then the state is definitely separable.

For example, if we take the entangled state shown in Eq. (2.49), the positive partial

transpose looks like,

|ψ〉 〈ψ| = 1

2
(|00〉 〈00|+ |00〉 〈11|+ |11〉 〈00|+ |11〉 〈11|),

|ψ〉 〈ψ|PT =
1

2
(|00〉 〈00|+ |01〉 〈10|+ |10〉 〈01|+ |11〉 〈11|),

(2.50)

and the eigenvalues give −1/2, 1/2, 1/2, 1/2 so this state is not separable and so must

be entangled. The Bell states are a set of maximally entangled two-qubit states

|φ+〉 =
1√
2

(|00〉+ |11〉),

|φ−〉 =
1√
2

(|00〉 − |11〉),

|ψ+〉 =
1√
2

(|01〉+ |10〉),

|ψ−〉 =
1√
2

(|01〉 − |10〉).

(2.51)

These will be useful later. We can also have entangled mixed states, these are states

that are not separable and cannot be expressed as a mixture of product states.

2.13 Projective measurements

Simplest form of measurements are von Neumann measurements or projective measure-

ments. We start with an observable that follows the eigenvalue equation

Â |λn〉 = λn |λn〉 . (2.52)

The eigenstates form a complete orthonormal set so we can write the operator in terms

of eigenvalues and vectors,

Â =
∑
n

λn |λn〉 〈λn| . (2.53)

The probability that measurement of A will give λn is,

P (λn) = 〈λn| ρ̂ |λn〉 = Tr(ρ̂ |λn〉 〈λn|), (2.54)

where ρ̂ is the density operator of the system being measured. We introduce the

projector P̂n = |λn〉 〈λn| and can rewrite the probability as,

P (λn) = Tr(ρ̂P̂n), (2.55)
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this makes dealing with degenerate eigenstates easier. Degenerate eigenstates are those

states which have two or more eigenstates that correspond to the same eigenvalue.

For example if there are two orthonormal eigenstates |λ1
n〉 and |λ2

n〉 that correspond to

eigenvalue λn can write the probability as,

P (λn) =

2∑
j=1

Tr(ρ̂ |λjn〉 〈λjn|), (2.56)

the projector here looks like,

P̂n = |λ1
n〉 〈λ1

n|+ |λ2
n〉 〈λ2

n| . (2.57)

The projectors in von Neumann measurements have the following properties: they

are all Hermitian, P̂ †n = P̂n, they are all positive, P̂n ≥ 0 they are complete
∑

n P̂n = Î
and they are all orthonormal P̂iP̂j = P̂iδij . We complete the description of the von

Neumann measurement by describing the state of the system immediately after the

measurement. If a measurement of A gives result λn that is associated with a non-

degenerate eigenstate |λn〉, the post-measurement state is |λn〉. So if a measurement of

A is performed again straight after the measurement produces the same result. But if

the eigenvalue λn is associated with more than one eigenstate, the state of the system

is changed as,

ρ̂→ ρ̂n =
P̂nρ̂P̂n

Tr(P̂nρ̂P̂n)
=
P̂nρ̂P̂n
P (λn)

. (2.58)

These measurements do not take into account extra noise that may occur in the mea-

surement process. The ideal von Neumann measurement to determine if a qubit is in

state |0〉 or |1〉 is a pair of projectors,

P̂0 = |0〉 〈0| ,

P̂1 = |1〉 〈1| .
(2.59)

We can introduce noise using the operators,

π̂0 = (1− p)P̂0 + pP̂1 = (1− p) |0〉 〈0|+ p |1〉 〈1| ,

π̂1 = (1− p)P̂1 + pP̂0 = (1− p) |1〉 〈1|+ p |0〉 〈0| .
(2.60)

These are not projectors as they are do not obey P 2
n = Pn. They are known as

positive operator-values measures (POVMs). As they are not orthonormal the number

of elements in the POVM can be larger or smaller then the dimensionality of the system

that is measured.
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2.14 Measurements in other bases

In many physical systems the natural basis of measurement is the computational basis

{|0〉 , |1〉}. In order to change the basis of measurement from the computation/natural

basis to a different one a rotation is required. This can be performed in two different

ways, passive or active. A passive rotation is where the axes that define the directions

on the Bloch sphere are rotated And an active rotation is where the qubit itself if

rotated,

(a) (b) (c)

Figure 2.2: Passive versus active rotations. The qubit is shown in red. In (a) the
qubit is originally aligned with the Z axes, this the computational basis, indicated
by the white arrow. To change the basis we can perform a passive rotation (b) where
the axes defining the measurement directions are rotated. Or an active rotation, (c),
where the qubit itself is rotated to align with the appropriate measurement axes.

2.15 Quantum circuit

A quantum circuit can be used to describe an experimental set up, here we describe

each of the elements in a circuit. A quantum circuit begins with an input and ends

with a measurement, it is read from left to right. Each horizontal line represents a

wire, this wire does not have to be physical it simply represents a passage of time or a

path along which a qubit such as a photon travels along to get to the next element of

the circuit. All measurements in a quantum circuit are performed in the computational

basis {|0〉 , |1〉}. The operations in the circuit are performed by quantum gates, these

can act on one of more of the channels in the circuit. The single qubit gates we will be

concerned with in this work are,
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σ̂x =

(
0 1
1 0

)
, α |0〉+ β |1〉 → β |0〉+ α |1〉 ,

σ̂z =

(
1 0
0 −1

)
, α |0〉+ β |1〉 → α |0〉 − β |1〉 ,

T̂ =

(
1 0

0 ei
π
4

)
, α |0〉+ β |1〉 → α |0〉+ ei

π
4 β |1〉 ,

Ĥ = 1√
2

(
1 1
1 −1

)
, α |0〉+ β |1〉 → α |0〉+|1〉√

2
+ β |0〉−|1〉√

2
.

Figure 2.3: Examples of quantum gates used in quantum circuits. The Pauli-X gate,
the Pauli-Z gate, the Toffoli gate and the Hadamard gate respectively.

Two-qubit gates are also possible, in these cases the action of the gate is dependent

upon the value of one of the qubits. The example here is the Controlled-Z or C-Z gate,

|00〉 → |00〉
|01〉 → |01〉
|10〉 → |1(−0)〉 = |10〉
|11〉 → |1(−1)〉 = − |11〉

Figure 2.4: The two-qubit C-Z gate. If the top qubit is in the state |0〉 then the gate
does not act upon the second qubit, however if the first qubit is in the |1〉 state then
the sign is flipped on the second qubit as is shown in the figure.

Putting all these examples together produces an example quantum circuit,
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Figure 2.5: Example of a quantum circuit. Two qubits are fed into the circuit. Qubit
one is operated on by the Hadamard gate followed by a C-Z operation between the
two qubits. Finally the qubits are measured in the computation basis with the result
+1 corresponding to the |0〉 state and the −1 result corresponding to the |1〉 state.

These are the fundamental quantum gates required to perform universal quantum

computation. The X, Z and Hadamard gate all lie inside the Clifford group. The

Gottesman-Knill theorem states that a set of highly entangled states may be simulated

using quantum gates in the Clifford group [2]. By the inclusion of the phase gate, T ,

we are able to perform universal quantum computation, any unitary operation can be

created using this set of gates.

2.16 Clauser-Horne-Shimony-Holt Inequality

Here we show the proof that a violation of the Clauser-Horne-Shimony-Holt (CHSH)

inequality is only possible if either the assumption of locality or realism are false. The

proof closely follows the arguments shown in [2].

We set up the experiment where Alice and Bob can receive particles prepared by

Charlie, they can perform one of two measurements on their particles with equal prob-

ability. The result of this measurement will be ±1. There is not prior knowledge of

which measurement will be performed this could be decided using the flip of a coin or

a random number generator. Let us call the two possible measurement choices Alice

has a and a′ each of which will have the result ±1. Bob also has a choice of two mea-

surements, lets call these b and b′. Fig. 2.6 shows a simple set up of the experiment.

We assume these measurements correspond to a physical property of the particle.

Figure 2.6: CHSH experimental setup. Alice can make one of two measurements a or
a′ with results ±1 as can Bob with b or b′.

To ensure there is no information sent between the parties and so one measurement

does not affect the other Alice and Bob perform their measurements simultaneously.
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Looking at the joint measurement outcomes we use the following expression to find the

CHSH inequality

ab+ a′b+ a′b′ − ab′ = (a+ a′)b+ (a′ − a)b′, (2.61)

as we know a, a′ = ±1 meaning one of the two expressions in Eq. (2.61) must be zero

so ab+a′b+a′b′−ab′ = ±2. Now we introduce some probabilities p(A,A′, B,B′) which

denote the probability that the particle was in fact in the state before the measurement

was performed, i.e a = A, a′ = A′, b = B, b′ = B′. Charlie who prepares the state

has control over these values. We can calculate the mean value of Eq. (2.61) using

these probabilities

E(ab+ a′b+ a′b′ − ab′) =
∑

AA′BB′

p(A,A′, B,B′)(AB +A′B′ +AB′ −AB′)

≥
∑

AA′BB′

p(A,A′, B,B′)× 2

= 2.

(2.62)

We can also write this another way

E(ab+ a′b+ a′b′ − ab′) =
∑

AA′BB′

p(A,A′, B,B′)AB +
∑

AA′BB′

p(A,A′, B,B′)A′B+∑
AA′BB′

p(A,A′, B,B′)A′B′ −
∑

AA′BB′

p(A,A′, B,B′)AB′

=E(ab) + E(a′b) + E(a′b′)−E(ab′).

(2.63)

Joining these two expressions together we see

E(ab) + E(a′b) + E(a′b′)−E(ab′) ≥ 2. (2.64)

This is the CHSH inequality.

If Charlie only prepares classical states and sends them to Alice and Bob to measure

then the CHSH inequality holds, however if Charlie sends a quantum state then we see

a violation. For example, if Charlie sends the Bell state

|ψ〉 =
|01〉 − |10〉√

2
(2.65)

and Alice and Bob perform their measurements using this set of axes

19



Figure 2.7: Alice and Bob’s conventional measurement axes.

The expectation values can now be written using quantum mechanical notation, 〈·〉

〈ab〉 =
1√
2

; 〈a′b〉 =
1√
2

; 〈a′b′〉 =
1√
2

; 〈ab′〉 = − 1√
2
, (2.66)

when we put these results into the CHSH inequality we see our violation

〈ab〉+ 〈a′b〉+ 〈a′b′〉 − 〈ab′〉 = 2
√

2. (2.67)

This violation implies that one of the assumptions in the derivation of the CHSH

inequality does not hold. The assumptions we made were that the measurements

correspond to a physical property that exists without the measurement taking place,

this is called realism. We also assumed that Alice’s measurement does not affect Bob’s

measurement this is known as locality. The violation shows that the quantum state

cannot be described using realism or locality. The feature of the quantum state that

causes this violation is entanglement, if a state is entangled then it will violate the

CHSH inequality and so the inequality can be used as an entanglement witness which

is what we will do in this work. It is important to note that the reverse of this statement

is not necessarily true, if a state violated the CHSH inequality it is not always entangled.

20



CHAPTER 3

Cross-talk minimising stabilizer operators

3.1 Introduction

Cluster states are a candidate for measurement-based quantum computation because

they are highly entangled multi-party systems. There has been a large amount of

research into physically realising cluster states [17, 18, 19, 20, 21, 22, 23]. One example

is by trapping single atoms in wells of optical lattices, this set up allows the atoms to

be addressed individually which is required for cluster state computation [13].

When creating any type of state it is also important that we are able to verify it.

In general, this is a hard problem due to the exponential number of parameters needed

to characterise a quantum state. This problem rules out quantum tomography as a re-

source for verification as it is so inefficient for more than a few qubits [3]. Cluster states

are a special class of quantum state that allows simple verification. Each cluster state

is associated with a linear set of stabilizer operators. Stabilizer operators are operators

that can be used to verify a cluster state with a linear number of measurements.

The physical measurement of the stabilizer operators leads to an issue of cross-talk

where adjacent atoms in the lattice may be over or under rotated during measurement

leading to errors in the measurement results. By taking advantage of the fact that

stabilizer operator sets are not unique, we aim to create equivalent sets of stabilizer

operators that have a reduced level of cross-talk.

The chapter is set out as follows, in Sec. 3.2 we introduce the stabilizer operator

formalism in cluster states and in Sec. 3.3 show how equivalent sets of stabilizer op-

erators can be created. By defining a cross-talk measure in Sec. 3.4 we will identify

the number of times cross-talk affects a cluster state. In Sec. 3.5 explore the ideas

of stabilizer operators with no cross-talk in various shaped lattices. In Sec. 3.6 and
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Sec. 3.7 we study stabilizer operators in triangular shaped, triangular connectivity and

hexagonal cluster states respectively.

This work is available as a preprint article at arXiv:1507.04637 [24].

3.2 Background

It is vital that we are able to verify quantum states that are produced. Usually this

is very difficult with many body quantum states as the number of parameters grows

exponentially with the number of particles in the state as 22N where N is the number

of qubits in the density operator. However, cluster states provide a solution to this

difficulty. A linear number of stabilizer operators, in this case strings of Pauli matrices,

can be used to define, and therefore verify a cluster state. Not every quantum state is

a cluster state but a large class are. Cluster states are highly entangled and useful for

measurement-based computation, they also occur in quantum error correction making

them a promising tool for quantum computation. The Gottesman-Knill theorem states

that even though the cluster states are highly entangled it is possible to simulate these

types of states and the set of Clifford group operators on a classical computer using

the Heisenberg representation [2]. The Clifford operators are the Hadamard gate,

the phase gate and the CNOT gate, where the CNOT gate is a controlled Pauli X

gate. However, although it is easy to describe these specific states and operations,

universal measurement-based quantum computation is still difficult. This means that

the difficulties in simulating quantum states is not solely down to the entanglement.

In this section we introduce the concept of cluster state computation, describing

how stabilizer operators can be used to describe the states. To use these stabilizer

operators to verify the state they need to be physically measured, this involves locally

addressing certain particles in the cluster state. Due to physical constraints cross-

talk can be introduced into the system. This cross-talk can affect the results of our

measurements reducing their reliability. We will show how the cross-talk occurs and in

the next section suggest ways of reducing and eliminating it.

3.2.1 Cluster states/graph states

A cluster state is a many body quantum system defined as the simultaneous +1 eigen-

state of a set, S, of commuting stabilizer operators, Ŝa [25]

Ŝa |ψ〉 = + |ψ〉 ,∀Ŝa ∈ S. (3.1)

For cluster states the stabilizer operators themselves are constructed using the following

equation [25]

Ka = σ(a)
x

⊗
b∈ neighbour of a

σ(b)
z , (3.2)
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where σx represents a Pauli X operator and σz a Pauli Z operator (Eq. (3.3)), a is

the initial target qubit and b is all the neighbouring qubits that share an edge with

a. An edge is defined as a connection between two qubits signalling there has been an

entangling operation between them. Cluster states are a type of graph state and so

can be drawn as such. An edge is represented by a line between the two qubits when a

cluster state is drawn in its graphical form. Fig. 3.1 shows a square connectivity cluster

state that has a stabilizer operator applied to the centre target qubit, a.

Figure 3.1: Graphical description of a stabilizer operator applied to a central qubit,
a, in a infinite square connectivity cluster state. Each node represents a qubit, the
letter signifies the type of Pauli operation performed on that qubit and each edge
defines an entangling operation between the joined qubits. The Z Pauli operators
are applied to, b, the neighbouring qubits. The identity operator is applied to all the
qubits not pictured. This labeling format will be used throughout this chapter.

If a cluster state has N qubits we require N linearly independent stabilizer operators

to define it. These stabilizer operators can be used to verify the cluster state. When

measuring all the N linearly independent stabilizer operators that define a particular

cluster state, if all the expectation values are +1, we can be certain that the state

measured is that particular cluster state [8, 25, 26].

Throughout this chapter when applying a stabilizer operator on qubit “a” we refer

to applying the Pauli X operator to qubit a and Z to b, all the neighbours of a. As

cluster states come in all shapes and sizes we will also define the shape and connectivity

of the cluster state to ensure clarity.

As we know from Eq. (3.2) the stabilizer operators consist of X and Z operators.

Measuring the value of the stabilizer operator is measuring the joint expectation value

of the string of Pauli operators. The stabilizer operators all commute so in principle it

should be possible to measure all of them simultaneously on a single state. However,

in practice we construct the stabilizer operators by individual Pauli measurements on

each of the separate qubits in the system, then, by combining these results we produce

an expectation value of the stabilizer operator measurement. For example, if we take

the cluster state shown in Fig. 3.1 and wish to measure the stabilizer operator on

the centre qubit we would simultaneously measure each of the qubits in the pattern

shown, then by multiplying the ±1 results of these measurements together we get the

expectation value of the stabilizer operator. However if we wish to measure more than

one stabilizer at the same time more care must be taken in the measurement pattern
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as this will involve measuring both X and Z operators on each qubit individually and

these individual Pauli measurements do not commute,

X =

(
0 1

1 0

)
, Z =

(
1 0

0 −1

)
,

XZ = −ZX.

(3.3)

Given this experimental limitation one way of measuring the expectation value of all

the stabilizer operators is to perform two slightly different measurements (Fig. 3.2)

on two states prepared in the same way. We measure these patterns many times to

build up good statistical values for the expectation of the measurement. The set of

stabilizer operators that describe a state is not unique, this is the property that we will

exploit later.

(a) (b)

(c) (d) (e)

Figure 3.2: Stabilizer operator Pauli measurement patterns. The two patterns of
physical measurements performed upon the qubits in the lattice are illustrated in (a)
and (b). By multiplying the ±1 results of these individual operator measurements we
can calculate the expectation value of the stabilizer operator applied to any qubit in
the lattice. In (c),(d) and (e) the shaded grey areas show the measurement results
that are multiplied together to calculate the stabilizer operator on the central, edge
and corner qubit respectively.

3.2.2 Fidelity of cluster states

Creating quantum states is a difficult process and many errors in the preparation stages

can affect the state produced. It is important to know how close the state produced is
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to the ideal state. One way to measure this closeness is using the fidelity measure,

F =
√
〈ψ| ρ |ψ〉, (3.4)

where |ψ〉 is the ideal pure state and ρ is the state that has been prepared [2]. Note

some authors define the fidelity as F ′ = F2 [27].

In order to calculate the fidelity using Eq. (3.4) a description of ρ is required, this

could be done through quantum state tomography [3]. However, the more qubits in

the state the more parameters there are and this grows exponentially and becomes too

large with more than a few qubits. The number of parameters is 2N where N is the

number of qubits in the system. To counteract this exponential growth it is possible to

find a lower bound on F by using measurements that are linear in N [26].

The operator to calculate the lower bound of fidelity ŜS is defined as

ŜS =
1

2
[(

N∑
a=1

Ŝa)− (N − 2)I], (3.5)

where ŜS = ±1 meaning −1 ≤ 〈ŜS〉 ≤ +1. Note that when all 〈Ŝa〉 = +1, 〈ŜS〉 = 1.

The expectation of this operator gives a lower bound on the fidelity [26],

F2(ρ, ψ) ≥ 〈ŜS〉ρ. (3.6)

This lower bound is useful as we can be certain that whatever the measurement value

of the lower bound is, the actual fidelity of the state will be the same or better

F2
min ≤ 〈ŜS〉 ≤ F2

actual. This lower bound is a linear function that only needs

N expectation values of {ŜS} to produce a lower bound for F .

3.2.3 Measurement and Cross-talk

To compute the value of the stabilizer operators we need to measure in both the Z and

X bases to recreate the patterns shown in Fig. 3.2. The Z basis is the computational

basis, the natural basis of measurement, which is not a problem [2]. Measuring in the

X basis is more complex, first an active local rotation is applied to the qubit to be

measured, this rotates the internal qubit states by π
2 in the X − Z plane of the Bloch

sphere. Then, when a measurement is made on this qubit in the global Z basis the

result corresponds to a measurement in the local X basis of the atom (Fig. 3.3).
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(a) (b)

Figure 3.3: Active rotation of the Bloch sphere. (a) shows the Bloch sphere in its
natural orientation, the natural axis of measurement is along the Z axis, actively ro-
tating the sphere by applying a π

2 pulse to the atom the sphere is rotated meaning
the axis of natural measurement is now along what was the X axis. The rotation in
this image is just an illustration of types of rotations that could be done, it is not ex-
perimentally correct.

This local active rotation of the atom is where we begin to see a problem. To perform

the active rotation a global microwave pulse is applied to the entire cluster state that

is off-resonant with the energy needed to perform the π
2 rotation. By locally addressing

the individual atoms to be rotated with another off-resonant laser beam that induces

the AC Stark effect, the energy levels within the addressed atom shift into resonance

with the microwave field which applies a π
2 pulse, rotating the state [13]. So when

the whole lattice is measured in the natural basis of Z, effectively an X measurement

is performed on the addressed atoms prior to their rotation. The laser beam that

locally addresses the atoms causes our problem. If we look at the experimental set

up in Ref. [13] we will see why. Here the atoms are confined in an optical lattice

created by counter-propagating laser beams. The addressing laser is a Gaussian beam

with a diameter at full-width half-maximum of ≈ 600nm, the lattice spacing in this

experiment is set at alat = 532nm. When the laser addresses an individual atom it is

not just the addressed atom that feels its energy (Fig. 3.4). This phenomenon is known

as cross-talk. In Ref. [13] an adjacent atom see 10% of the total intensity of the laser,

given the centre of the laser hits the exact centre of the target atom. This 10% can lead

to the nearest neighbour atoms of the target atom to also be rotated by some amount

which will cause error in the measurement results.
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Figure 3.4: Demonstration of how an addressing laser beam can affect nearest neigh-
bour atoms. The width of the beam is larger than the atom spacing and so the near-
est neighbour atoms can be affected by the addressing beam.

Effects of this cross-talk could be ameliorated by compensation pulse sequences,

this is commonly used in NMR [28]. However, it is desirable to reduce or avoid the

overhead incurred by these pulses. Instead, we will be looking at a theoretical way to

mitigate this unwanted cross-talk effect. To do this we will explore the manipulation

of the stabilizer operators in a way to at least decrease the cross-talk and if possible

eradicate it completely.

3.3 Stabilizer operator sets

The set of stabilizer operators that all have expectation value +1 on a particular cluster

state form a multiplicative group. This can be shown using the following properties [29];

• The multiplication is associative, S1(S2S3) = (S1S2)S3,

• The set has an identity element, this is simply the identity operator applied to

all N qubits in the cluster state, SI = I1 . . . IN

• Every element has an inverse, the stabilizer operators are made up of Pauli oper-

ators which are all their own inverse. Applying a stabilizer operator twice leads

to the identity, S1S1 = I1 . . . IN .

This means that the N linearly independent stabilizer operators needed to stabilize

a state is not unique. We can use this fact to create equivalent sets with a reduced

amount of cross-talk.

3.3.1 Equivalent sets of stabilizer operators

When creating equivalent sets of stabilizer operators it is vital that the new set can

reconstruct the canonical set, S, found using Eq. (3.2). {Ŝa′} is an equivalent set of

stabilizer operators if Ŝa is related to Ŝa
′

by a non-singular binary matrix m = (mjk)

with mjk = 0 or 1.
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A new equivalent set of stabilizer operators, S ′, will stabilize the original cluster

state with N stabilizer operators if it follows

Ŝj
′

=
N∏
k=1

(Ŝk)mjk , (3.7)

it is also possible to reconstruct the original canonical set, S, found using Eq. (3.2)

from this equivalent set.

3.3.1.1 Example of equivalent stabilizer sets

Lets look at an example to see this in action

Figure 3.5: A 3× 3 cluster state.

Fig. 3.5 shows a 3 × 3 cluster state with the set canonical stabilizer operators, S
found using Eq. (3.2),

s1 = X1Z2I3Z4I5I6I7I8I9,

s2 = Z1X2Z3I4Z5I6I7I8I9,

s3 = I1Z2X3I4I5Z6I7I8I9,

s4 = Z1I2I3X4Z5I6Z7I8I9,

s5 = I1Z2I3Z4X5Z6I7Z8I9,

s6 = I1I2Z3I4Z5X6I7I8Z9,

s7 = I1I2I3Z4I5I6X7Z8I9,

s8 = I1I2I3I4Z5I6Z7X8Z9,

s9 = I1I2I3I4I5Z6I7Z8X9,

(3.8)
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We define our non-singular matrix as

m =



1 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 1 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1


. (3.9)

Using Eq. (3.7), our new set looks like

s12 = X1Z1Z2X2Z3Z4Z5I6I7I8I9,

s2 = Z1X2Z3I4Z5I6I7I8I9,

s34 = Z1Z2X3X4Z5Z6Z7I8I9,

s4 = Z1I2I3X4Z5I6Z7I8I9,

s56 = I1Z2Z3Z4X5Z5Z6X6I7Z8Z9,

s6 = I1I2Z3I4Z5X6I7I8Z9,

s78 = I1I2I3Z4Z5I6X7Z7Z8X8Z9,

s89 = I1I2I3I4Z5Z6Z7X8Z8Z9X9,

s9 = I1I2I3I4I5Z6I7Z8X9.

(3.10)

See Appendix A.1 for the graphical representation of these stabilizer operators. This

set still stabilizes the cluster state shown in Fig. 3.5 and can be used to reconstruct the

canonical set making it a valid equivalent set.

3.3.2 Construction of cross-talk-free stabilizer operators

The issue of cross-talk arises from having to measure two types of Pauli operator on

adjacent qubits. In order to reduce or eradicate the cross-talk in the stabilizer operator

we have two choices. The first choice is to create stabilizer operators where the X and

Z operators are separated and do not act on adjacent qubits. The second choice is to

create stabilizer operators where there is only one type of operator, meaning there is no

cross-talk (Fig. 3.6). This operator does not necessarily have to be a Z operator as it

is possible to perform a global rotation on all the qubits in the system that avoids the

issue of cross-talk. Both these ideas have the potential to create cross-talk-free (CTF)

stabilizer operators, we will explore if they are realisable.
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(a) (b)

Figure 3.6: Examples of ideal cross-talk free stabilizer operators. (a) shows the case
where the operators are separated. This set up could be physically realised by glob-
ally rotating the entire cluster state to the X position, and singly addressing the two
qubits that need to be rotated back to their original orientation as these qubits are
far enough away from other qubits that require measurement for the cross-talk to not
have an effect. (b) is an example of a homogeneous CTF stabilizer operator where
only one type of stabilizer is present in the cluster state, found using a global rota-
tion of the entire cluster state.

3.3.2.1 Choice 1: Separating X and Z

We can immediately rule out the first idea of separating the X and Z operators be-

cause of the way they are formed using Eq. (3.2). To illustrate this we consider a one

dimensional line of N qubits. We wish the X operator to be as far away as possible

from the Z operator so the stabilizer operator would look like,

X1I2I3 . . . In−2IN−1ZN . (3.11)

To create this pattern we follow these steps

Step 1 X1Z2I3 . . . IN ,

Step 2 X1I2X3Z4I5 . . . IN ,
...

StepNeven X1I2X3 . . . IN−2XN−1ZN ,

StepNodd X1I2X3 . . . IN−1XN .

(3.12)

There are two possible endings depending if N is odd or even. When N is even there

is no way to eliminate the X that appears on the (N − 1)th qubit without performing

a trivial operation that simply moves the XZ pairing elsewhere in the line. When N

is odd all the Z operators are eliminated which is not what we were trying to find, but

is a good example of our next idea, homogeneous CTF stabilizer operators.
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3.3.2.2 Choice 2: Xs or Zs only

As we have just seen in the previous subsection, it is possible to eliminate all the Z

operators from a stabilizer operator. We now see if we can do the same with the

X operators.

When we apply Eq. (3.2) to a cluster state, there can only be one X operator applied

to each qubit over the whole set of stabilizer operators (See Sec. 3.3.1.1 for a list of

stabilizer operators as an example). This means that it cannot be possible to eliminate

the X operators as we can only multiply them with a Z or I operator, neither of which

cancel out the X. This leaves us with the conclusion that non-trivial homogeneous

cross-talk-free (HCTF) stabilizer operators may only be found using X operators.

In the ideal case, we would like a complete set of HCTF stabilizer operators to

define our cluster state, but as any new equivalent set must be able to recreate the

canonical set we also see that this will not be possible, as there are no Z operators in

the HCTF stabilizer operators. If there are no Z operators in our set and we cannot

form them using X and I operators it will not be possible to recreate the canonical set.

This means that in our equivalent set we will have to include some stabilizer operators

that contain cross-talk, but we can be clever with this choice and use the stabilizer

operators with the least amount of cross-talk to complete the set. We define a measure

of cross-talk in a stabilizer operator to aid this choice in Sec. 3.4.

3.4 Minimising cross-talk

As we have seen with a new equivalent set of stabilizer operators we must be able to

recreate the canonical set formed using Eq. (3.2). We will not be able to do this just

using HCTF stabilizer operators and so we must include cross-talk stabilizer operators.

To make the overall cross-talk in the system as low as possible we want to choose the

cross-talk stabilizer operators that have the least amount of cross-talk. To quantify

cross-talk we introduce a cross-talk penalty, PCT .

3.4.1 Cross-talk penalty

The cross-talk penalty, PCT , describes the number of pairs of XZ operators in any

single stabilizer operator, hence the number of times cross-talk will occur in the mea-

surement process,

PCT (Ŝa) = Tr[B†B] =
∑
jk

x2
jz

2
kA

2
jk, (3.13)

where Ajk, xk, zj = 0, 1. The elements in this equation are defined as follows,

B = A ◦ (FXZ), (3.14)
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this is the Hadamard product or entry wise product where Bjk = Ajk(FXZ)jk. A is

the adjacency matrix with Ajk = 1 when qubits j and k share an edge and Ajk =

0 otherwise,

A =
∑
jk

ajkEjk, (3.15)

where Ejk is a basis matrix (Ejk)nm = δjmδkn. FXZ is the outer product of FX and FZ ,

FXZ =
∑
jk

xjzkEjk,

FX =
∑
j

xjEj , FZ =
∑
k

zkEk,
(3.16)

where xj is a vector where the element j = 1 when an X operator is applied to it and 0

otherwise, same with zk but with Z operators. Ej and Ek are both basis vectors with

the jth and kth element as 1 respectively, otherwise 0.

The total cross-talk in a set of stabilizer operators {Ŝa} is characterised as,

P TCT =

N∑
1

PCT (Ŝa). (3.17)

3.4.1.1 Example of a set of reduced cross-talk stabilizer operators

If we take the 3 × 3 cluster state shown in Sec. 3.3.1.1 the canonical set of stabilizer

operators has a cross-talk penalty of P TcCT = 24, (See Appendix A.2 for a graphical

representation of all nine canonical stabilizer operators). Whereas if we use a set with

HCTF stabilizer operators and an intelligent choice of cross-talk stabilizer operators

then we can reduce this number to P TnewCT = 13 (Fig. 3.7). We will show how these

HCTF stabilizer operators are constructed in Sec. 3.5.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 3.7: Reduced cross-talk set of stabilizers found using a combination of HCTF
stabilizer operators and low penalty cross-talk stabilizer operators.

3.4.2 Extending and adapting PCT

This idea can be extended to withstand more complicated definitions of cross-talk

and how it affects the system. For example, if the qubits in a cluster state are con-

nected by an edge but the physical distance between them is greater than the range

of cross-talk then that XZ pairing should not be included in the cross-talk penalty

measure (Fig. 3.8).

(a) (b)

A′ =


0 1 0 0
1 0 0 1
0 0 0 1
0 1 1 0


(c)

Figure 3.8: A graph state of a modified cluster state. (a) shows a modified cluster
state where the edge connecting qubits 2 and 3 is longer than the range of cross-talk
in this system. (b) describes the stabilizer operator on qubit 2, although there are
three XZ pairings there will only be two counted in the cross-talk penalty. This is
highlighted in the modified adjacency matrix in (c).

By adapting the adjacency matrix to reflect the edges in the cluster state that are

not long enough to avoid the cross-talk the PCT measure can be used for cluster states

with many different types of connectivity.
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3.5 Homogenous-cross-talk-free stabilizer operators

Finding shapes in any arbitrary shaped cluster states is a hard problem similar to

tiling problems, which are non local and NP complete [30, 31, 32]. Given this issue,

we only consider a small number of simple shapes where we have identified patterns

and rules in order to find HCTF stabilizer operators. Initially we look at fixed width,

square connectivity cluster states, leading on to fixed width triangular connectivity

cluster states which have similar properties. We begin by looking at what kinds of

shapes and connectivity allow HCTF stabilizer operators to be constructed. Using fixed

width, square connectivity cluster states we specify how many HCTF stabilizers can

be found in general, we progress this to rectangular and L-shaped, square connectivity

cluster states and fixed width triangular connectivity cluster states. We also show

two algorithms that find HCTF stabilizer operators from any initial starting row of a

constant fixed width cluster state for square connectivity and triangular connectivity.

3.5.1 Shapes of cluster states that allow HCTF stabilizer operators

Cluster states can be created in many shapes and sizes, with lots of different connectiv-

ities. It is not possible to create non-trivial HCTF stabilizer operators from all cluster

states. This is due to the number of edges connecting each of the nodes in the clus-

ter state. A node with an odd number of edges cannot be surrounded by stabilizer

operators as this will lead to Z Pauli operators that cannot be eliminated (Fig. 3.9).

(a) (b)

Figure 3.9: Graphical representation of example cluster states where is it not possi-
ble to create non-trivial HCTF stabilizer operators. (a) shows a rectangular shaped,
square connectivity cluster state with extra Z operators where there is an odd num-
ber of edges hitting a qubit. (b) is the same idea but for a fixed width triangular con-
nectivity cluster state.

3.5.2 HCTF stabilizer operators in fixed width cluster states

To begin to see how the patterns of HCTF stabilizer operators appear we will explore

the problem graphically using a step by step intuitive process, then move on to a

analytical description once we understand what is happening. To avoid confusion we

refer to the lines connecting the qubits as edges and the boundary of the cluster state

as the side. We use a trial and error process explicitly manipulating a semi-infinite

lattice to find patterns of HCTF stabilizer operators.
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Let us imagine that we have a semi-infinite square connectivity cluster state and

we have placed a stabilizer operator on the central qubit, graphically this looks like,

Figure 3.10: Semi-infinite square connectivity cluster state with a stabilizer operator
applied to the central qubit.

We are trying to create HCTF stabilizer operators and so must eliminate all the Z

operators. To begin this we apply two more stabilizer operators to cancel the four in

Fig. 3.10, which however, creates four more (Fig. 3.11).

Figure 3.11: Semi-infinite square connectivity cluster state with a further two stabi-
lizer operators applied to eliminate Z operators.

It is obvious that this pattern will continue in the same manner as we eliminate the

extra Z operators at each step. Currently there seems no way to eliminate them. Let

us now consider what happens if we apply a stabilizer operator to a corner qubit in the

cluster state.

3.5.2.1 Corner

We apply a stabilizer operator to a qubit in the corner of our semi-infinite cluster

state (Fig. 3.12).

This looks very like the situation we had when we applied a stabilizer operator

to the centre qubit, except we only have two Z qubits that we need to eliminate, in

which case we can follow the same protocol and apply stabilizer operators in a diagonal

line (Fig. 3.13).
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Figure 3.12: Semi-infinite square connectivity cluster state with stabilizer operators
applied to the corner qubit.

Figure 3.13: Semi-infinite square connectivity cluster state with HCTF stabilizer op-
erator, with diagonal line of stabilizer operators going from corner to corner.

The only way to stop this pattern is to continue to the opposite corner of the cluster

state, this is our first HCTF stabilizer operator (Fig. 3.14).

Figure 3.14: HCTF stabilizer operator. Applying stabilizer operators from one corner
to the other in a diagonal line eliminates all the Z operators.

A second HCTF stabilizer operator can be found by applying the same principles

but in the other corners.

3.5.2.2 Sides

We now look at the case where we start applying stabilizer operators to the side of the

cluster state (Fig. 3.15).
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Figure 3.15: Semi-infinite square connectivity cluster state with a stabilizer operator
applied to an qubit on a side.

We can see that this is actually the same as the corner qubit but going in two

opposite directions (Fig. 3.16).

(a) (b)

Figure 3.16: How the stabilizer operator applied to the side qubit can be thought of
in the same manner as two corners. (a) shows we can think of the pattern as a stabi-
lizer operator applied to a qubit in the right hand corner of the cluster state shaded
in blue. (b) shows the same but for a qubit in the left hand corner.

We follow the same process as previously shown and apply stabilizer operators in

diagonal lines to eliminate the Z operators (Fig. 3.17).

Figure 3.17: Semi-infinite square connectivity cluster state with a stabilizer operator
applied to an atom on the side, and diagonal stabilizer operators applied to eliminate
Z operators, the remaining problem Z operator is highlighted.

Here we find a problem, there is an extra Z operator, but it is still possible to

eliminate this one. We can see from Fig. 3.18 the blue highlighted section is in fact the

same as the original pattern applied to the side qubit, so the whole process can just be

repeated.
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Figure 3.18: Semi-infinite square connectivity cluster state with stabilizer operators
applied to eliminate Z operators, the pattern repeats and the blue highlighted section
can be addressed in the same way as the original side

3.5.2.3 Shape of cluster state

We can infer from this pattern at the boundary of the cluster state that the only shape

this square connectivity cluster state could hold to create HCTF stabilizer operators is

a square (Fig. 3.19).

(a) (b)

Figure 3.19: How the form of X operators dictates the shape of the cluster state.
The only pattern the applied stabilizer operators could make is a square. The bold
blue line shows the line of diagonal X operators, the cluster state itself is represented
by the dashed line.

It would be possible to have an unconventional shaped cluster state such as those

found in Fig. 3.20, but in the following work we will only be considering regular shaped

cluster states.
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(a) (b)

Figure 3.20: Two examples of how a cluster states could be unconventional shapes
but still have stabilizer operators constructed in the way we have described

3.5.3 Canonical set of HCTF stabilizer operators

Now that we know how to create HCTF stabilizer operators starting in the corner or

on the side of the cluster state, here we approach the cluster state row by row. We

suggest the canonical set is found by applying a single stabilizer operator to each of

the qubits in the initial row of the cluster state individually. We begin using a fixed

width, square connectivity cluster state, creating a system to find the canonical set

we look to see if the shape of the cluster state can be extended. We also consider a

fixed width, triangular connectivity cluster state as this shows many similarities to the

square connectivity cluster state.

3.5.3.1 Fixed width, square connectivity cluster states

To show how the canonical HCTF stabilizer operator set is formed we look at an

example of a cluster state that is three qubits wide and begin by placing a stabilizer

operator on the first qubit (Fig. 3.21).

(a) (b) (c) (d)

Figure 3.21: How we generate a canonical stabilizer operator, step by step. (d) shows
that the HCTF stabilizer operator completed in a square cluster state of 3× 3 qubits.

If the cluster state is n qubits wide this gives us n HCTF stabilizer operators, that

are all linearly independent as they do not share any qubits in the initial row. This
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method also reinforces the square cluster state idea we have seen previously. The com-

plete set of HCTF stabilizer operators for a 3× 3 cluster state can be seen in Fig. 3.22.

(a) (b) (c) (d)

Figure 3.22: Canonical set of HCTF stabilizer operators. The first three images
(a),(b) and (c) show the canonical set of HCTF stabilizer operators found by apply-
ing a single qubit to each of the initial starting qubits individually. (d) shows an ex-
ample of a non-linearly independent HCTF stabilizer operator found by multiplying
(a) and (c).

3.5.3.2 Extended square connectivity cluster states

So far we have seen that the HCTF stabilizer operators can be contained within a

square cluster state of n × n qubits, but it is possible to extend the cluster state and

add more stabilizer operators below or to the side of the self contained HCTF stabilizer

operator pattern.

As long as the cluster state is of the form (km + (k − 1)) × (lm + (l − 1)) it is

possible to find HCTF stabilizer operators. Where m describes the number of qubits

in the self contained pattern of the HCTF stabilizer operator to be extended, in the

example above m = 3. k defines how many of these self-contained patterns there are in

rows, each of these patterns are separated by a single row of I operators and each row

is the mirror image of the previous one. l describes how many self-contained patterns

there are in columns, once again the patterns are separated by a single column of I
operators and the columns are mirror images of each other. The cluster state can be

extended further one way than another as long as each column and row conforms to the

equation above (Fig. 3.23). It must be of this form to cancel out unwanted Z operators.
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Figure 3.23: The form of an extended cluster state. A cluster state may be extended
and still have HCTF stabilizer operators as long as it is of the form (km + (k −
1)) × (lm+ (l − 1)).

3.5.3.3 Fixed width, triangular connectivity cluster states

Fixed width, triangular connectivity cluster states have no extra degrees of freedom

and so can be treated a lot like the square connectivity cluster states, in the sense of

starting at the initial row, with a single stabilizer operator on each qubit (Fig. 3.24).

(a) (b) (c) (d)

Figure 3.24: Generation of a HCTF stabilizer operator on a fixed width, triangular
connectivity cluster state. Found by approaching the lattice row by row.

Due to the differences in connectivity of the cluster state, the canonical set of

stabilizer operators look different from that of the squares but we do still find n HCTF

stabilizer operators for a cluster state of width n (Fig. 3.25).
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(a) (b) (c)

Figure 3.25: The canonical set of HCTF stabilizer operators for a fixed width, tri-
angular connectivity cluster state. Found by individually applying a single stabilizer
operator to each of the initial qubits in the first row.

3.5.3.4 Extended triangular connectivity cluster states

In the same way we could extend the square connectivity cluster states this is also

possible with the triangular connectivity lattices. The cluster state must still be of the

form (km+ (k−1))× (lm+ (l−1)) where, as before, m is the number of qubits in each

self contained pattern, k is the number of rows of self contained patterns and l is the

number of columns of self contained patterns. In the case of triangular connectivity

lattices each additional self contained pattern is not a mirror image of the one before

but they still have a row/column of I operators in between the patterns. Again, as

before, the cluster state can be extended further one way than another as long as each

row and column of the self contained pattern conform to the structure above.

Figure 3.26: The form on an extended cluster state. Extension is possible as long as
the cluster state is of the (km+ (k − 1))× (lm+ (l − 1)) form.

3.5.4 Algorithm for finding HCTF stabilizer operators

In this section we present two algorithms for finding HCTF stabilizer operators in fixed

width, square and triangular connectivity cluster states.
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3.5.4.1 Fixed width, square connectivity cluster states

We have found a simple algorithm that, given an initial starting row, can find the

complete HCTF stabilizer operator in a fixed width, square connectivity cluster state.

Data: initial row ar = {00, 01, . . . , 1m, 0m+1},
dummy row ar−1 = {00, . . . , 0m+1}

Result: HCTF Stabilizer Operator
rownumber=3;
while Number of X operators in the current row 6= 0 do

acr+1 = ac−1
r + ac+1

r + acr−1 mod 2;
for c = 2 . . .m;
Print acr+1 from c = 2 . . .m;
Count X operators in the row;
ar+1 = {0, a2

r+1, a
3
r+1, . . . , a

m
r+1, 0};

rownumber=rownumber+1;

end
Algorithm 1: Algorithm to form HCTF stabilizer operators in a fixed width,
square cluster state given an initial first row. acr denotes the qubit in row r, column
c. The number of qubits in the initial row is m, we add additional 0 elements at the
start and end of the initial row and a dummy row that sits above our initial row to
ensure the equation holds. The program finds the configuration of the X operators
in each row of the HCTF stabilizer operator and shows how many rows is necessary
to complete the HCTF.

3.5.4.2 Fixed width, triangular connectivity cluster states

We have also found another simple algorithm for find HCTF stabilizer operators given

an initial row in fixed width, triangular connectivity cluster states.
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Data: initial row = {00, 01, . . . , 1m, 0m+1},
dummy row = {00, . . . , 0m+1}

Result: HCTF Stabilizer Operator
rownumber=3;
while Number of X operators in the current row 6= 0 do

bcr+1 = bc−1
r+1 + bc−1

r + bcr−1 + bc+1
r−1 + bc+1

r mod 2;
for c = 2 . . .m;
Print bcr+1 from c = 2 . . .m;
Count X operators in the row;
br+1 = {0, b2r+1, b

3
r+1, . . . , b

m
r+1, 0};

rownumber=rownumber+1;

end
Algorithm 2: Algorithm to form HCTF stabilizer operators in a fixed width tri-
angular cluster state given an initial row. bcr denotes the qubit in row r, column c.
The number of qubits in the initial row is m, we add additional 0 elements at the
start and end of the initial row and a dummy row that sits above our initial row to
ensure the equation holds. The program finds the configuration of the X operators
in each row of the HCTF stabilizer operator and shows how many rows is necessary
to complete the HCTF.

3.6 Triangle shaped, triangular connectivity cluster states

Finding a deterministic algorithm for cluster states with changing degrees of freedom

is not possible because each time we add a new row onto the cluster state, there is a

choice of how to cancel out the Z operators leading to different paths not all of which

end in a HCTF stabilizer operator (Fig. 3.27).

(a) (b) (c)

Figure 3.27: Changing degrees of freedom. By changing the number of qubits in each
row of the cluster state there is a choice of where to place the stabilizer operators to
eliminate the Z operators from the row before. (a) shows the initial pattern with Z
operators in row two that we wish to eliminate. (b) is one pattern of stabilizer opera-
tors applied to row three that would eliminate the Z operators in row two. However,
the pattern in (c) would also eliminate the Z operators. This choice element does not
allow for a deterministic algorithm to find the HCTF stabilizer operators.

It is interesting to note that at each new row there is a choice of two patterns of

stabilizer operators that are the complement of each other. This means the number of

44



possible patterns increases very quickly with each new row as 2r where r is the row

number (Fig. 3.28).

Figure 3.28: Choice of stabilizer operator placement. In each new row there are two
options of where to place the stabilizer operators to eliminate the Z operators from
the row before. We can see from this figure that the number of possible cluster states
increases very quickly.

As there is no simple deterministic algorithm we looked at a brute force approach

to find HCTF stabilizer operators. We look at triangle shaped, triangular connectivity

cluster states with one qubit all the way up to 45 qubits and notice that there does

seem to be a pattern in the number of linearly independent HCTF stabilizer operators

that can be found for a cluster state with r qubits along a side.

3.6.1 Canonical HCTF stabilizer operators

In a similar way to how we approached fixed width square and triangle connectivity

cluster states we find the canonical set by starting from the outside sides of the cluster

state and work in. The first HCTF has stabilizer operators applied to every qubit

along the side, this dictates the pattern on the inside of the triangle. The second

HCTF stabilizer operator has stabilizer operators applied to all qubits along each side

except the first, r = 1, and the last, r = r. The third HCTF stabilizer operator has

stabilizer operators applied to all qubits along each side except the first and second,

r = 1, r = 2, and the second last and last, r = r − 1 and r = r. This pattern repeats

until the centre of the side is reached (Fig. 3.29).
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(a) (b) (c)

Figure 3.29: The canonical set of HCTF stabilizer operators for a triangle shaped,
triangular connectivity cluster state with r = 5.

This way of forming the canonical set leads to a pattern prediction. For a cluster

state of side length r qubits we predict the number of HCTF stabilizer operators is

b r+1
2 c, i.e. 1, 1, 2, 2, 3, 3.., where bxc denotes a floor function of x which takes x to be

the largest integer that is no larger than x, for example, if x = 4.5, bxc = 4.

If we look at how the set of HCTF stabilizer operators change from an odd r to an

even r we can understand this floor function. To produce the HCTF stabilizer operator

in Fig. 3.30b the first and last qubit along the sides were not acted upon by a stabilizer

operator. When we now increase r and perform the same operation (missing the first,

r = 1, and last qubit, r = r) we get Fig. 3.30d. It is clear that it is not possible to

produce any more HCTF stabilizer operators in the way we have described as r = 4. So

we have the same number of HCTF stabilizer operators in the transition from r = odd

to r = even. However, when we transition to r = odd again, r = 5, we see it is now

possible to find an additional HCTF stabilizer operator (Fig. 3.30g).
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(a) (b)

(c) (d)

(e) (f) (g)

Figure 3.30: The canonical HCTF stabilizer operators for triangle shaped, triangular
connectivity cluster states. (a) and (b) for r = 3. (c) and (d) for r = 4. (e), (f) and
(g) for r = 5. Note the number of HCTF stabilizer operators does not increase from
r = 3 to r = 4.

This section has not been fully explored as there are too many different avenues

and this is left for further research. Perhaps looking at different shaped triangular

connectivity cluster states and approaching the application of the stabilizer operators

differently could provide other solutions.

3.7 Hexagonal connectivity cluster states

In this section we briefly look at how hexagonal connectivity HCTF stabilizers may be

produced. We do not find any definite patterns in this section, but we have found some

rules and points of interest that we feel are important to note. We have considered these

cluster states in terms of layers, this makes the description of the stabilizer operators

simpler (Fig. 3.31).
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Figure 3.31: Hexagonal cluster state layers. The layers of the semi-infinite hexagonal
cluster state are highlighted in purple.

Due to the changing number of qubits in each layer and the connectivity there is

a choice of pattern at the widest points of the cluster state but at the thinnest points

there is no choice (Fig. 3.32). This choice makes it difficult to find a deterministic

algorithm that will find HCTF stabilizer operators.

(a) (b)

Figure 3.32: Choice in a hexagonal cluster state. Both images are taken from the left
hand boundary of a semi-infinite cluster state. (a) shows there is no choice of where
to place the stabilizer operator (shown in orange) in order to cancel the Z operator
from the layer before. However, in (b) we see that there is a choice of where to place
the stabilizer operator in order to cancel out the Z operator from the layer before.

The goal is to create as many HCTF stabilizer operators as possible, when we think

of the cluster state in terms of layers we can see that each layer only depends on the

layer before it. This means we only apply stabilizer operators to every other layer.

Depending if we start on the initial layer, layer 1, or layer 2 this is likely to produce

very different patterns (Fig. 3.33).
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(a)

(b)

Figure 3.33: Showing the options of placing the stabilizer operators on the first or
second layer of the hexagonal lattice. In (a) the stabilizer operators are placed in the
first layer of the hexagonal cluster state. In (b) the stabilizer operators are placed in
the second layer of the hexagonal cluster state, this cancels out all the Z operators in
the first layer.

If we are applying the stabilizer operators to the even layers in the cluster state it

is necessary to apply them to every qubit in the lattice to eradicate all the Z operators

from the layer before. However this restriction does not hold when we apply the stabi-

lizer operators to the odd layers, here there are no restrictions on how many we should

or should not add. Now we have seen that there are different restrictions depending on

where we start in the cluster state we will explore each case individually.

3.7.1 Odd layering

When starting on the odd layer we can see it is not possible to apply stabilizer operators

to all the qubits in layer 1 and all the qubits in layer 3 as this will result in a pattern

where there is an extra Z operator that cannot be removed (Fig. 3.34).

Figure 3.34: This pattern of applied stabilizer operators is not allowed.

We also find that it is necessary for the number of hexagons in the cluster state at

its widest point to be odd, otherwise this leads to an extra Z operator that cannot be

eliminated (Fig. 3.35).
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(a) (b)

Figure 3.35: Showing why there must be an odd number of hexagons in the hexago-
nal cluster state for the pattern to end successfully with no Z operators remaining

If we are applying stabilizer operators to the odd layers we know that the pattern

to make a HCTF stabilizer operator will complete in the same way as if we flipped the

cluster state and applied them to the even layers. This means that it is only necessary

to look at patterns produced by applying stabilizer operators to odd or even layers as

they will be the same because it is possible to move up and down the cluster state in

both directions.

3.7.2 Choice of pattern

Whichever layer we begin applying stabilizer operators to, we must be careful and

consider every possible placing of the stabilizer operators as more than one particular

pattern could eliminate Z operators (Fig. 3.36). It is interesting to note that this choice

does not present itself until we reach layer 6 of the cluster state. Fig. 3.36 shows an

example of a choice, layer 6 in Fig. 3.36a is the complement of Fig. 3.36b. Although we

have the choice here, the initial qubit in the layer defines the rest of the pattern and

its complement.

(a) (b)

Figure 3.36: Two different choices of the placement of the stabilizer operators in layer
6 which both result in eliminating the Z operators in layer 5 for a hexagonal cluster
state.

50



3.7.3 Width of lattice

Through trial and error we have found that to create HCTF stabilizer operators it is

necessary for the cluster state to be of the form 4m− 1 full hexagons or 4m qubits at

the widest point, where m is a positive integer. Patterns not of the form 4m − 1 full

hexagons lead to asymmetric patterns of applied stabilizer operators, these asymmetric

patterns cause excess Z operators that cannot be cancelled out (Fig. 3.37).

(a)

(b)

Figure 3.37: Example of constraints on the form of cluster states. Unless the cluster
state is of the form 4m − 1 hexagons or 4m qubits at its widest point some Z opera-
tors will not cancel.

3.7.4 Observations

Although we have not found a conclusive system or algorithm for finding HCTF sta-

bilizers in hexagonal cluster states, we have found some rules that must be followed in

order to create them. The main difficulty with finding a deterministic algorithm for

HCTF stabilizer operators is the element of choice that is introduced due to the chang-

ing number of qubits in each layer and the difference in connectivity. We found it is not

important if we start on an odd or even layer as these are rotationally equivalent. We

initially noted that the hexagonal cluster state must have an odd number of hexagons

width wise in order to cancel all the excess Z operators. Through further investigation
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we saw it was vital that the cluster state be of the form 4m − 1 full hexagons or 4m

qubits in width at the widest point as any other patterns lead to stray Z operators that

destroy the HCTF stabilizer.

Due to the large number of different shapes possible with hexagonal patterns and

the different ways to draw the hexagons themselves there are too many ideas for us

to cover here. Perhaps looking at hexagonal cluster states in circular formation or

by introducing other shapes between the hexagons such as pentagons like a football

pattern could prove more fruitful. We leave this section open to further research.

3.8 Conclusion

We began this work with the idea of validating a cluster state with the use of stabilizer

operators. By measuring a +1 result for all the stabilizer operators defining the cluster

state we can be certain that the state we have created is the correct one. However

this process of measurement highlights physical problems with the apparatus currently

available that lead to cross-talk, which could produce false results. By addressing the

form of the stabilizer operators and changing them to reduce the cross-talk we reduce

the chance of a false result making the results more reliable.

We considered several different shaped cluster states with different connectivity. We

were able to construct simple algorithms to find sets of linearly independent HCTF sta-

bilizer operators for fixed width cluster states. We have shown it is not possible to only

use HCTF stabilizer operators to define a cluster state. Given this, we also produced

a rating system to help choose the least destructive non-CTF stabilizer operators to

complete the set. This allowed us to significantly reduce the overall cross-talk effect on

the system.

We briefly explored cluster states that were not of fixed width or consistent connec-

tivity such as triangular shaped, triangular connectivity cluster states and hexagonal

connectivity cluster states. The problem with these types of cluster states is by chang-

ing the connectivity and number of qubits in each row/layer the degree of freedom

changes as we progress though the lattice introducing a choice element of where to

place the stabilizer operators to eliminate the Z operators meaning it is not possible

to find a deterministic algorithm. We did however find some patterns and rules about

how HCTF stabilizer operators could be produced.

Using the algorithms to find the HCTF stabilizer operator set and the rating sys-

tem to produce a reduced cross-talk set of stabilizer operators for a fixed width, square

connectivity cluster state is a positive step to finding more reliable results. The reduc-

tion in the cross-talk penalty we found was always one more than half of the original

value. Due to the symmetry that is apparent throughout the patterns and relationships

between the stabilizer operators we believe that there is scope to either prove that this

is the largest reduction or show that we can indeed half the original cross-talk penalty.
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Reducing the cross-talk penalty is a significant result, by simply changing the set

of stabilizer operators used we have reduced the risk of the cross-talk affecting the

nearest neighbour atoms by almost 50%, but it is vital that we consider the cost of

these improvements. We highlight this point using an example of a 3× 3 cluster state.

Before any reduction in the cross-talk a 3 × 3 lattice would require two patterns of

Pauli operators to be measured to reconstruct all the stabilizer operators (Fig. 3.2a,

Fig. 3.2b) where P TCT = 24. These patterns are measured many times in order to

build up statistics for the result. By finding a new improved set of stabilizer operators

that have a reduced cross-talk effect we now require three patterns of measurement

(Fig. 3.38).

(a) (b) (c)

Figure 3.38: New patterns of measurement. The three patterns of measurement now
required to find the reduced cross-talk set of stabilizer operators to define the cluster
state. This new set of stabilizer operators has P TCT = 15. This set is not the only
one we could have chosen, but each set has three patterns and we show this one as an
example.

Again these measurements would need to be performed many times to build up

good statistics of the results. As there are now three measurement patterns we will

incur a time or precision cost. If we were to repeat each measurement pattern the same

number of times as the initial ones, then this will take 150% the original time to perform

the measurements. Or to save time we could reduce the number of repetitions, however

this will also reduce the precision of the result. This balance of time and precision is

an issue that must be addressed by the experimentalist.

In this chapter we have only looked at modifying the stabilizer operators construc-

tion to reduce the cross-talk in the system. Another route to the reduction could be

to physically construct the cluster states in a different way making the qubits that are

connected by a edge, creating a pair of X and Z operators, far enough away that the

cross-talk created by the active rotation would not affect them (Fig. 3.39).

This idea also introduces some other complexities into the problem, the entangling

operations in this case will be much more difficult than a regular square connectivity

cluster states making the shape harder to make.

Through our analysis of this work, we have manually found the set of stabilizer

operators the reduces the cross-talk penalty but is still equivalent to the canonical set.
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(a) (b) (c)

Figure 3.39: Rearranged cluster state. In (a) the qubits that share an edge have been
physically moved to ensure the distance between them is larger than the range of
cross-talk. (b) and (c) show the modified checkerboard patterns needed to recon-
struct the stabilizer operators to define the cluster state. Here P TCT = 16.

This process is time-consuming and it is likely it could be automated. This process if

left for further work.

We can relate this work to that done in the next chapter. However the cluster state

is created, for example using an optical lattice, there is always a possibility of vacancies

in the system. If we take the optical lattice example, a vacancy would be described

as a well without a particle, this particle is lost during the creation and loading of

the optical lattice due to finite temperatures in the cooling process. Vacancies lead to

an incomplete measurement process, one where we cannot tell the difference between

a vacancy and a particular measurement result, |0〉 or |1〉. When we are considering

stabilizer operator measurements on the system with vacancies it is vital we really think

about which measurement result to assign to the vacancy measurement. This choice is

dependent on the number of Pauli operators in the stabilizer operator. To understand

this we use our example of a 3× 3 square connectivity cluster state. The canonical set

of HCTF for this cluster state were shown early in the chapter but are repeated here

for clarity (Fig. 3.40).

(a) (b) (c)

Figure 3.40: The canonical set of HCTF stabilizer operators for a square connectivity
3× 3 cluster state.

Say we have assigned the vacancy result +1 and we measure the HCTF stabilizer

operator shown in Fig. 3.40a and it just so happens that qubits 1, 5 and 9 are missing

due to vacancies in the system. The expectation value result we get is +1 which
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according to Eq. (3.2) means we have the ideal state when in fact we do not. It is

better to assign the vacancy result to −1 and attempt to use as many HCTF stabilizer

operators that contain an odd number of Pauli operators so if there are lots of vacancies

this can be caught by the measurement result. Obviously this is not a fool-proof system

as the pattern of vacancies will be random but in the worst case scenario where there are

vacancies where the qubits requiring X operators are, the result will be −1 highlighting

that the state is not ideal.
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CHAPTER 4

Bell inequality violation, vacancies and incomplete measurements

4.1 Introduction

In this chapter we consider trapping cluster states in optical lattices as a candidate for

measurement-based quantum computation. Errors in the process of loading the lattice

can lead to a non-ideal state. Fluorescence imaging, used to measure the cluster state,

creates an incomplete measurement process. By using entanglement as a verification

tool we will perform an optimisation process to maximise the detectable entanglement

in these non-ideal states. We will also include various other errors in the measurement

process and find limits at which entanglement can not longer be detected.

The chapter is set out as follows, Sec. 4.2 introduces cluster states in optical lat-

tices and briefly describes how they are formed. Sec. 4.3 defines the system we will

use for our investigation. Sec. 4.4 describes how we will measure the entanglement

of the system. In Sec. 4.5 we perform the optimisation processes to maximise the

detectable entanglement. And finally in Sec. 4.6 we introduce further errors into the

measurement process.

This work is available as a preprint article at arXiv:1412.7502 [33].
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4.2 Background

The motivation behind this problem comes from optical lattice experiments, where neu-

tral atoms are trapped in standing waves created by counter-propagating laser beams

[34]. This set-up is a candidate for measurement-based quantum computation and re-

lies on all the atoms in the system being entangled [9]. To set the scene for the issue

of vacancies in the system we will briefly cover how an optical lattice is loaded ready

to be used for quantum computation.

(a) (b) (c)

(d) (e)

Figure 4.1: Process of creating a cluster state for quantum computation using an op-
tical lattice. (a) a gas of bosonic atoms is trapped. (b) the gas is cooled to a suffi-
ciently low temperature that a Bose-Einstein condensate (BEC) forms. (c) meanwhile
an optical lattice is formed. (d) the BEC is then loaded onto the optical lattice. (e)
the BEC becomes a Mott insulator with an equal number of atoms at each site.

Process of creating a cluster state for quantum computation using an optical lattice,

• A gas of bosonic atoms in trapped in a magneto optical trap (MOT) [35].

• The gas is cooled using various techniques such as laser and evaporative cooling

[36, 37, 38]. This causes a phase transition and the gas becomes a Bose-Einstein

condensate (BEC). At this point all the atoms in the system are in the ground

state and act as a single identical quantum state of many atoms which can be

described by a single wavefunction.

• An optical lattice is formed using counter propagating laser beams [34]

• The BEC is then loaded onto this optical lattice. The condensate can be described

as a superfluid if the tunneling or hopping rate, j, of the atoms in the lattice is

far greater than the on-site interactions, u. This means the wavefunction has
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long-range phase coherence [39] and the atoms are able to tunnel from site to

site, making the number of atoms per site undetermined.

• The potential in the lattice is then raised adiabatically changing the balance

between j and u to j << u. This induces a quantum phase transition and fixes

the number of atoms per site, the state is now a Mott Insulator (Fig. 4.1e) [40,

41, 42, 43, 44].

• For cluster state generation the number of atoms per site required is 1, this can be

achieved in two ways. Firstly by defining the filling fraction, ζ = 1, this ensures

there are only enough atoms to have one per site. Secondly, photo-assisted light

collisions can be used in a lattice with filling fraction ζ > 1 to kick-out pairs of

atoms in the wells leaving a single atoms at each site if the initial number was

odd [45, 46, 47, 48].

• Once the optical lattice has a single atom at each site, collisional gates are used

to entangle the atoms in the system. The system is now a cluster state and is

ready for quantum information processing [49]. For details of how the collisional

gates create entanglement see Appendix B.

Due to finite entropy in the BEC or an increase of temperature at the Mott in-

sulator stage some atoms in the system will have more energy than others and will

be able to escape from the wells in the lattice. This leads to non-perfect filling of

the lattice [46]. We call the sites in the lattice that have no atoms vacancies. These

vacancies create problems when we use the collisional gates to create entanglement in

the lattice [49, 50, 51]. The entanglement is created by colliding the internal states of

atoms. If there is a vacancy at a particular site, this collision will not happen so the

atom hitting the vacancy cannot become entangled with the vacancy and so the overall

entanglement of the system will be reduced compared with that of a fully entangled

perfectly filled lattice.

We will be using the CHSH inequality to quantify the entanglement in our system

[52]. We have chosen to only compare the entanglement of an ideal system compared

with the entanglement of a defective one.

As a preliminary investigation we will only consider a one-dimensional two-well

system. By only considering a bipartite system we avoid all the complications associated

with multi-partite entanglement, entanglement with more than two systems [53]. For

example showing that a multipartite system is entangled is not a simple task, using the

PPT criterion for these multipartite systems is not as simple for bipartite states and

becomes an NP hard problem especially for states with small level of entanglement.

The aim of this chapter is to see if having vacancies in the system affects the de-

tectable level of entanglement. This restricted system will illustrate how these vacancies

impact the system, whilst keeping the calculations and measurements relatively simple.

Depending on the results it may then be possible to scale up our method to include
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more sites, increasing the dimensionality of the state. This of course will require much

more complicated measurements and it will be more difficult to show the level of the

entanglement in the system.

4.3 System

Due to the complexities of working with a large 3 dimensional lattices we focus on a one-

dimensional two-well system. The imperfections in the state preparation mean there

is some probability that one or both particles are missing. We ignore the possibility

of two or more particles in a single site. This can be guaranteed by photo-assisted

collisions as mentioned previously. This gives us four possible starting states prior to

the collisional entangling gates (Fig. 4.2). After the entangling operation only the ideal

case, where both sites have a particle, will be entangled as the collisional gates will

have no effect on the other cases. To aid our explanation of the two lattice sites we

introduce two fictitious people, Alice and Bob. Alice controls the first lattice site and

cannot access the second site. Bob controls the second lattice site and cannot access

the first. This is a convention that is used throughout quantum information.

(a) (b) (c) (d)

Figure 4.2: The four possible starting systems. The red dot indicates the presence of
a particle. (a) shows the ideal case, where both Alice and Bob have a particle, this
has probability (1 − p)(1 − q). (b) shows the state when both sites are vacancies,
this occurs with probability p. (c) shows the case where Alice has an atom and Bob a
vacancy with probability (1− p)q 1−r

2 and (d) shows the case when Bob has a particle
and Alice has a vacancy with probability (1− p)q 1+r

2 .

The local state space in each lattice site is spanned by the states {|v〉 , |0〉 , |1〉}
representing a vacancy (no particle), and the logical states 0 and 1 respectively. The

starting states are locally rotated to bring the atoms into the |+〉 = 1√
2
(|0〉+ |1〉) and

are fed into the quantum circuit where the entangling operation is peformed (Fig. 4.3).

We note that the entangling operation used to entangle Alice and Bob’s systems is

locally equivalent to that used in a cluster state set up but not identical. In cluster

states a C-Z gate is used between all the atoms in the state, this creates a maximally

entangled state between all the atoms. In our case we perform a controlled-phase gate
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between the two sites,

C − PHASE =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

 (4.1)

In the ideal case this operation creates 1
4(|00〉+ |01〉−|10〉+ |11〉), then by performing a

Hadamard gate followed by a Z gate on Alice’s subsystem only, we create the maximally

entangled singlet state 1√
2
(|01〉 − |10〉) as required.

Figure 4.3: Quantum circuit for experimental model.
1: Initial starting state, one of the four possible shown in Fig. 4.2. Here we show the
ideal case where |+〉 = |0〉+|1〉√

2
.

2: A C-Z gate between both qubits followed by a Hadamard and Z gate on only Al-
ice’s qubit are performed creating the fully entangled Bell state |ψ−〉 = |01〉−|10〉√

2
.

3: Alice (Bob) choose to measure along axis a(b) or a′(b′) on the Bloch sphere inde-
pendently and at random. These measurements are performed via an active rotation
of the state.
4: Read out of measurement results in fixed basis.

We assume that there is no transfer population between the two sites and that

the gates are ideal. In order to detect the generation of entanglement, Alice and Bob

perform measurements, a or a′, b or b′. As is the case in many physical systems, the

physical measurement basis is fixed but preceding coherent rotations allow an arbitrary

choice of basis of the state [2].

An important feature of our system is an incomplete measurement process meaning

it is not possible to differentiate between a vacancy state and one of the logical states e.g.

|v〉 , |1〉 (Fig. 4.4). This incomplete measurement process arises when using fluorescence

detection to measure the state of the qubits [13]. As the logical states |0〉 and |1〉 are

so close in energy instead of pumping one of the transitions and hoping that the other

is not affected, all the atoms in a particular state, say |1〉, are kicked out of the lattice.

The kicking out process is done using a global microwave pulse to induce the AC stark

effect on the atoms in |1〉. If the initial energy required to excite |1〉 was ω, the global

microwave pulse changes this to ω + δω, then, the entire lattice can be pulsed with

a laser of energy ω + δω to release all the atoms in |1〉 leaving those in |0〉 (and any

vacancies that may have been present). Then by fluorescing the |0〉 transition we can
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find all the atoms that were in the |0〉 state and all those sites that did not fluoresce are

assumed to be the |1〉 state. It is now no longer possible to tell the difference between

an atom originally in the state |1〉 or a vacancy.

(a) (b) (c)

Figure 4.4: Incomplete measurement process. (a) an atom in |0〉 is excited by the ap-
plication of a laser pulse with the correct energy. As the atom relaxes back to the
ground state it releases photons. These photons are collected by a detector, it is pos-
sible to track each photon to the origin site showing which atoms where in |0〉. (b) if
the atom is not in the state being excited, the laser pulse has no effect on the atom
and no photons are emitted. In the physical realisation of this process all the atoms
in state |1〉 would have been kicked out of the lattice to avoid accidental excitation
due to the closeness of the hyperfine energy levels. (c) when a lattice site that is a
vacancy is hit by the laser pulse it also does not release any photons as there is noth-
ing to excite. (b) and (c) produce the same results and it is not possible to differenti-
ate between them.

4.3.1 State description

The four possible states after the entangling operation are as follows

ρ11 = |••〉 〈••| , where |••〉 → 1√
2

(|01〉 − |10〉),

ρ00 = |vv〉 〈vv| , where |vv〉 → |v〉 |v〉 ,

ρ01 = |v•〉 〈v•| , where |v•〉 → |v〉 |+〉 = |v〉 1√
2

(|0〉+ |1〉),

ρ10 = |•v〉 〈•v| , where |•v〉 → |0〉 |v〉 ,

(4.2)

where • and v denote the presence of a particle and a vacancy respectively. We denote

ρ11 as the ideal maximally entangled state where both Alice and Bob have a particle in

their well, ρ00 the non-entangled state where both Alice and Bob do not have particles,

ρ01 the state where Bob has a particle and Alice does not, and finally ρ10 the state

where Alice has a particle and Bob does not. By assigning probabilities to each of

these possible systems we can describe our two-well system with the following mixed
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density operator,

ρ = ρ01+ρ10 + ρ11,

ρAB(p, q, r) = pρ00 + (1− p)ρ

= pρ00 + (1− p)
(
q
(1 + r

2
ρ01 +

1− r
2

ρ10

)
+ (1− q)ρ11

)
,

(4.3)

{p, q} are probabilities and −1 ≤ r ≤ +1 characterises the asymmetry in the vacancy

rates of Alice and Bob. In general we do not initially assume independence of vacancy

rates. We note here that any measurements we perform on our system will destroy it.

This does not matter as we do not plan to use the state for any computation yet, we

perform these measurements to test the creation process and how much entanglement

could be detected in the state.

4.4 Detecting entanglement

There are many different ways to test the entanglement of the system, but many of these

require us to be able to perform full state tomography on the system and reconstruct

a description of the state, for example, concurrence [54, 55]. As we have previously

discussed this becomes impossible the more particles there are in the system.

Entanglement witnesses are another tool we could use to test the entanglement

of the system. Entanglement witnesses are operators corresponding to observables,

Ô. For separable states, σ, the expectation of the operator is non-negative. However

there exists at least a single entangled state for which the expectation value of the

operator is negative. This is possible as the separable states form a convex closed set

and an entanglement witness defines the plane that intersects with that set at a single

point [53] (Fig. 4.5).

Figure 4.5: Entanglement witness. The green sphere represents the closed convex
set of separable states where the expectation value of the entanglement witness is
non-negative. The blue plane represents the entanglement witness operators. This
plane separates the entangled states from the separable ones, touching only at a sin-
gle point (the blue dot), this is the density operator that will give a negative expecta-
tion value of the entanglement witness.
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The problem with using an entanglement witness to detect the entanglement is we

need to know the exact state we are trying to test. We also need to know the exact

entanglement witness to measure as only one of them will intersect the convex set of

separable states at the appropriate point, which leads back to the hard problem of

characterising the state. If we did not know the exact entanglement witness associated

with the state we are trying to test then instead of the blue plane in Fig. 4.5 resting on

a single point in the sphere could cut through the sphere. This complicates the test as

if the expectation value of the entanglement witness is negative then it could still lie in

the sector of sphere above the plane. There is also the problem that if the expectation

value of the entanglement witness is positive then it could lie below the blue plane in

Fig. 4.5 but not in the sphere making it entangled. Using an entanglement witness as

a test of entanglement only really works if the expectation value is negative, when it is

positive then there is the possibility of errors.

Given these difficulties and restrictions we will use a two setting, two outcome

CHSH experiment to test the entanglement of our system as it is a sufficient condition

for a state to be entangled if it violates this inequality. We have chosen this inequality

above the other Bell inequalities as there are minimal assumptions about the form of

the measurements or the processes [52, 56]. The only restriction we have on the types

of measurements are that the results must be ±1. This leaves a huge range of options

for the experiment, for example, in their paper [52], Clauser, Horne, Shimony and Holt

describe the measurement device as a filter then a detector. This detector could be used

for the detection or non-detection of particles making the CHSH inequality associated

with the counting rate. Or the measurement device could look for the emergence or non-

emergence of optical photons from the filter, at the time of the paper it was not possible

to detect single photons as the loss rate was too high. Or the filter on the measurement

device could be a polarisation filter and the measurement results correspond to the

linear polarisation orientation. This huge range of measurement options makes the

CHSH measure very useful. The CHSH inequality is a combination of the expectation

values of measurements that Alice and Bob are allowed to perform on their parts of

the system. Alice has an random, independent choice of two alternative measurements

{a, a′} and Bob has an random, independent choice of two different measurements

{b, b′}. To ensure that one choice of measurement does not affect the other side’s

result, the measurements are performed simultaneously. They each assign ±1 to the

possible outcomes. The CHSH value, S, is formed by

S = 〈ab〉+ 〈ab′〉+ 〈a′b〉 − 〈a′b′〉. (4.4)

Under the assumption of local realism,

|S| ≤ 2, (4.5)
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which is the CHSH inequality. However, quantum mechanics allows

|S| = 2
√

2, (4.6)

for a maximally entangled state of two qubits, see Sec. 2.16 for the proof [2, 57].

In our set up we also have the possibility of there being a vacancy in the system.

If Alice or Bob measure a vacancy they always assign the measurement result −1, this

means they are unable to distinguish between the logical state |1〉 and a vacancy, |v〉.
Our measurement is an incomplete projection where

π+1 = |0〉 〈0| ,

π−1 = |1〉 〈1|+ |v〉 〈v| ,
(4.7)

where π+1 projects on to the subspace |0〉 〈0| and π−1 projects onto the degenerate

subspace |1〉 〈1| + |v〉 〈v|. Using these assignments we can represent the measurement

settings a, a′, b, b′ as if we always have a particle but calculate the outcome probabilities

to include the effect of vacancies. This addresses the detection loophole problem found

in many Bell inequality tests as in our experiment we will always assign a result. We do

not need to wait for coincidences as we use all results and do not post-select [58, 59, 60].

We are aiming to find measurement settings that lead to a violation of local realism, i.e.

a violation of the CHSH inequality, for the largest range of vacancy probability possible.

4.4.1 Bound on the CHSH value

For our system we can find an upper bound on the CHSH value, S, depending on the

vacancy rates by splitting up the components with and without particles, this is what

we will be attempting to saturate by optimising Alice and Bob’s measurement settings.

From the form of the CHSH inequality, the local realism bound of |S| = 2 and the

Tsirelson bound of |S| = 2
√

2 for a maximally entangled state [57], this leads to

|S| ≤ 2α+ 2
√

2(1− α), (4.8)

where 0 ≤ α ≤ 1 is the probability of having a vacancy. Eq. (4.8) will be above 2 if

α 6= 1 making it possible to violate the CHSH inequality, hence detect entanglement.

When α = 0, S is at the maximum 2
√

2. By using a series of optimisations we will see

how closely we can reach this bound. But firstly we explore the analytical expression

for S to see if we can reduce the number of parameters to simplify our calculations.
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4.4.2 Simplification of the CHSH expression

In the ideal case we can write the measurement settings a, a′, b, b′ in terms of projectors

and their complement on a qubit,

π(θ, φ) = |ψ〉 〈ψ| ,

π̄(θ, φ) = |ψ⊥〉 〈ψ⊥|+ |v〉 〈v| ,

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 ,

|ψ⊥〉 = sin
θ

2
|0〉 − eiφ cos

θ

2
|1〉 ,

(4.9)

defining a direction on the Bloch sphere where 0 ≤ θ ≤ π and 0 ≤ φ < 2π [2]. This

is an abuse of notation but throughout this chapter we will treat these measurement

settings in the same way we would when performing a CHSH test on qubits.

The physical measurement is always performed along a fixed axis. The measurement

settings a, a′, b, b′ are implemented using unitary rotations that act upon the |0〉 and |1〉
components but do not affect |v〉 this is due to the difficulty of creating superpositions

of states with different particle numbers. This inability is governed by superselection

rules. We explore the extent of these rules in detail in the next chapter [15, 16]. Each

measurement setting is represented by θ and φ, for example, measurement setting a

has θa and φa. As |v〉 always gives the result −1, the ρ00 component results in the

maximum classical correlation independently of the angle θ and φ, this gives

S = 2p+ (1− p)S′, (4.10)

where p is the probability of ρ00 (|v, v〉AB) occurring, and S′ is the state where there is

at least one particle. In order for S in Eq. (4.10) to violate the CHSH inequality, ie. be

greater than 2, there must be particles in the system (p < 1) and there must be some

entanglement present in the system (|S′| > 2). No matter which measurement settings

Alice and Bob use, the double vacancy component of the system will always give the

result S = 2 as it is a purely classical state. As we are trying to violate the CHSH

inequality and exceed 2 we do not need to include the vacancy-vacancy element in our

calculations as it does not contribute to the violation. For the purpose of optimisation

of the measurement angles we only consider S′.
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4.5 Optimising the CHSH value

Explicitly writing S′ in the form of differences in measurement angles produces,

S′ = q
(

(r − 1) cos θa − (r + 1) cosφb sin θb

)
+

(q − 1)

2

[
cos(θa − θb)(1 + cos(φa − φb)) + cos(θa + θb)(1− cos(φa − φb))

+ cos(θa − θb′)(1 + cos(φa − φb′)) + cos(θa + θb′)(1− cos(φa − φb′))

+ cos(θa′ − θb)(1 + cos(φa′ − φb)) + cos(θa′ + θb)(1− cos(φa′ − φb))

− cos(θa′ − θb′)(1 + cos(φa′ − φb′))− cos(θa′ + θb′)(1− cos(φa′ − φb′))
]
.

(4.11)

We are interested in maximising the value of S′ to do this we need to find θ’s and

φ’s that correspond to the maximum of Eq. (4.11). A local maximum corresponds to

the partial derivative equaling zero [61]. Ensuring that a local maximum is the global

maxima is, in general, a hard problem. It is possible to get trapped in a local maxima

and assume that this is the global maximum (Fig. 4.6).

Figure 4.6: Local maxima. A is the global maximum situated at the boundary. B, C
and D are all local maxima. It is possible to mistake B, C or D as the global max-
ima.

In this particular case, the problem is slightly simplier as we do not need to worry

about the boundary conditions. The measurements, technically the search space, is

compact without boundaries so we do not need to consider the maxima occurring at

the boundaries.

66



To find the maximum of S′ we partially differentiate Eq. (4.11) with respect to

φa, φa′ , φb and φb′ as follows,

∂S′

∂φa
=

1

2
(q − 1)

(
sin(φa − φb)(− cos(θa − θb) + cos(θa + θb))

+ sin(φa − φb′)(− cos(θa − θb′) + cos(θa + θb′))
)
,

(4.12)

∂S′

∂φa′
=

1

2
(q − 1)

(
sin(φa′ − φb)(− cos(θa′ − θb) + cos(θa′ + θb))

+ sin(φa′ − φb′)(cos(θa′ − θb′)− cos(θa′ + θb′))
)
,

(4.13)

∂S′

∂φb
=q(1 + r) sin θbsinφb +

1

2
(q − 1)

(
sin(φa − φb)(cos(θa − θb)− cos(θa + θb))

+ sin(φa′ − φb)(cos(θa′ − θb)− cos(θa′ + θb))
)
,

(4.14)

∂S′

∂φb′
=

1

2
(q − 1)

(
sin(φa − φb′)(cos(θa − θb′)− cos(θa + θb′))

sin(φa′ − φb′)(− cos(θa′ − θb′) + cos(θa′ + θb′))
)
.

(4.15)

At the local maxima ∂S′

∂X = 0, each of the differentials Eq. (4.12)-(4.15) has a sin(φj−φk)
term in each component (highlighted in red). In order to optimise the S we can choose

(φj − φk) = 0, π mod 2π making ∂S′

∂X = 0. This forces φa, φa′ , φb, φb′ = 0, π mod 2π,

for convenience we set φa = φa′ = φb = φb′ = 0 i.e. the X − Z plane, leading to,

S′ =q
(

(r − 1) cos θa − (r + 1) sin θb

)
+ (q − 1)

(
cos(θa − θb) + cos(θa − θb′) + cos(θa′ − θb)− cos(θa′ − θb′)

)
.

(4.16)

This shows that when Alice and Bob share a symmetric singlet state, q = 0, then S′ is

only dependent upon the relative differences of the θ’s and so is rotationally invariant.

But as soon as q > 0 the preferred measurement angles are set by the first term in

Eq. (4.16) as this part does not just consist of differences of angles, cos θa and sin θb

need to also be maximised which has a knock on effect on the second component of

Eq. (4.16). A balance must be struck between the entangled and separable parts, this

is what leads the S′ value to decrease as q gets larger.

4.5.1 Optimsation for equal and independent vacancy rate

Now we have fixed the φ angles we model a system and attempt to improve the crit-

ical limit of vacancy probability that allows a violation of the CHSH inequality. The

optimisations in the chapter are numerical and will be performed using Mathematica,

by varying the angles along which Alice and Bob perform their measurements we aim

to maxmise S. In the model system each site has a equal and independent vacancy
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probability, PAv = PBv = Pv. The density operator can be written as,

ρAB

(
P 2
v ,

2Pv
(1 + Pv)

, 0
)

= P 2
v ρ00 +Pv(1−Pv)ρ01 + (1−Pv)Pvρ10 + (1−Pv)2ρ11, (4.17)

where p = P 2
v , q = 2Pv

(1+Pv) and r = 0. By numerically optimising the measurement

settings in three stages we investigate how closely we can reach the bound in Eq. (4.8)

(Fig. 4.11, black solid line) for the equal and independent vacancy rate.

4.5.1.1 No Optimisation

We begin by using the conventional measurement settings used in the CHSH test for

a singlet state. Here Alice has the choice of measuring along the Z axis of the Bloch

sphere or the X axis, whereas Bob has the choice of measuring along the −Z−X√
2

axis

on the Bloch sphere or the X−Z√
2

axis as shown in Fig. 4.7.

Figure 4.7: Unoptimised measurement settings. The conventional measurement
settings that Alice (red) and Bob (blue) use to find the expectation values for the
CHSH inequality leading to S = 2

√
2 for an ideal singlet state.

These measurement settings produce the red dashed line in Fig. 4.11. The vacancy

probability at which we stop violating the CHSH inequality is P critv1.1 ≈ 0.153, this is our

starting point, we want to try to make this value as large as possible.

4.5.1.2 Step 1: Global rotation around the Y-axis

We now allow Alice and Bob to jointly redefine the +Z direction by rotating their

axes around the Y axis of the Bloch sphere keeping the angles between the settings the

same (Fig. 4.8)
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Figure 4.8: Global optimised measurement settings. Alice and Bob’s measurement
settings when allowed to rotate jointly around the Y axis of the Bloch sphere. The
measurement settings shown are the optimal settings for all Pv, where the conven-
tional settings have been rotated by 5π

8 .

By rotating the conventional measurement settings by 5π
8 the critical value is raised

to P critv1.2 ≈ 0.251 (Fig. 4.11, orange dashed line). The optimal angle of the bi-local

rotations is the same for all Pv. This is because the bi-local rotations optimise the first

term of Eq. (4.16) but do not affect the second, as the first term does not depend on the

q value the optimal rotation is the same for all Pv. These bi-local rotations do not affect

the second term as this part describes the singlet state which is rotationally invariant.

4.5.1.3 Step 2: Bi-local independent rotation about the Y axis

In this step we increase the degrees of freedom and allow Alice and Bob to rotate their

local axes individually, but keeping their own settings relative to one another (Fig. 4.9).
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(a) (b)

Figure 4.9: Bi-local XZ plane optimised measurement settings. Independent mea-
surement setting rotations. (a) shows how Alice and Bob rotate their settings inde-
pendently, keeping their individual settings relative to one another. (b) show how the
optimal measurement settings change as Pv increases from Pv = 0.01→ 0.99

The critical value as been increased again to P critv1.3 ≈ 0.269 (Fig. 4.11, blue dot-

dashed line), the optimal rotations for the measurement settings are now different for

each value of Pv.

4.5.1.4 Step 3: Individual independent rotation around the Bloch sphere

In the final step we allow Alice and Bob to rotate each of their settings individually

around the entire Bloch sphere, Fig. 4.10.
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(a) (b)

Figure 4.10: Independent local optimised measurement settings. Alice and Bob rotate
each setting independently of the other, around the whole Bloch sphere. (a) shows
the degrees of freedom Alice and Bob are allowed to rotate their measurement set-
tings. (b) shows the actual measurement settings Alice and Bob choose and how they
change from Pv = 0.01→ 0.99.

This produces a somewhat surprising result, the critical value P critv1.4 is now arbi-

trarily close to 1 (Fig. 4.11, pink dotted line). Meaning that as long as there are

particles in the system, in principle it is possible to violate the CHSH inequality, show-

ing there is entanglement in the system. These measurement settings are different for

each value of Pv.

We have also already shown that it was sufficient to search for the optimal mea-

surement settings in the X−Z plane of the Bloch sphere. Other sets of optimal angles

do exist in other planes of the Bloch sphere but these sets of angles do not increase

the S value and so we can be sure that we only need to consider the sets of angles in

the X − Z plane.
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4.5.1.5 Comparisons and discussion

Here we show all the optimisations together so a clear comparison can be made, we

note that we have not been able to reach the upper bound on S′ with this method.

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

Vacancy probability, Pv

S

0.92 0.94 0.96 0.98 1.

1.992

1.996

2.

2.004

Figure 4.11: The complete optimisation process. Showing how the optimisation steps
increase the critical value of Pv
Upper bound (Black solid line) The upper bound given by Eq. (4.8).
No optimisation (Red dashed line) Vacancy probability above which entanglement
not detected P critv1.1 ≈ 0.153.
Step 1 (Orange dashed line) P critv1.2 ≈ 0.251. The optimal angle of rotation of the
measurement settings is θ = 5π

8 for all Pv.
Step 2 (Blue dot-dashed line) P critv1.3 ≈ 0.269. The optimal angles of rotation for Alie
and Bob’s pairs of settings is different for each value of Pv.
Step 3 (Magenta dotted line) P critv1.4 < 1. Again the optimal angles of rotation of each
of Alice and Bob’s measurement settings are different for each value of Pv.

To produce the smooth curves we continuously adjust the search parameters as we

vary the vacancy probability. As discussed earlier these optimum settings may describe

a local maximum rather than a global maximum, however we can say that the true

optimum must be at least as good as the results shown here. By simply changing the

measurement settings Alice and Bob use to perform their measurements we are able

to detect entanglement in the system the majority of the time except when p = 1. To

understand why we see this improvement we study how Eq. (4.16) is affected by each

optimisation process.

Step 1: Global rotation around the Y-axis - The optimal angle of rotations

for all Alice and Bob’s measurement settings is the same for all of Pv, which can
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be understood by looking at the expression for S′ in Eq. (4.16). Rotating all the

measurement settings by the same amount will have no effect on the result of the

second expression for S as it only contains terms that are differences in settings. If

all the settings are rotated by the same amount the result will be the same. The first

expression will be affected by the rotation, but, as it is a simple subtraction of two

angles it will have a fixed maximum value that is independent of q. This is why we

have the optimal rotation angle for the whole range of Pv.

Step 2: Bi-local independent rotation about the Y axis - The optimal angles

of rotation stop being the same for all Pv at Step 2. Looking at the second expression in

Eq. (4.16), each of the cos terms is made up of subtracting one of Alice’s measurement

settings from one of Bob’s, these measurement settings are rotated independently of one

another but a is fixed at π
2 from a′ and the same for Bob’s measurement settings. To

maximise S′ there must be a compromise drawn between the first and second term. For

Pv = 0.01, αrot = 1.97, βrot = 1.96 radians (Fig. 4.9) leading to Eq. (4.16) looking like

S′ = q(−0.537) + (1− q)(2.828), (4.18)

as Pv is small, q is small so the second term dominates the equation. But as we increase

q the first term will have more of an effect and so a different balance must be struck

between the two expressions. For Pv = 0.26, αrot = 2.07, βrot = 1.85 radians leading to

S′ = q(−0.395) + (1− q)(2.76), (4.19)

the angles here produce the best combination of the inputs from the two expressions.

Step 3: Individual independent rotation around the Bloch sphere - Again

in Step 3 the optimal measurement settings are different for each Pv looking at the

actual measurement settings for when Pv = 0.01, θa = 2.75, θa′ = 1.18, θb = 5.10 and

θb′ = 0.394 (in the X −Z plane of the Bloch sphere, Fig. 4.10a), this makes Eq. (4.16)

S′ = q(1.85) + (1− q)(2.828), (4.20)

as Pv is small, q is small so the equation is mostly just the second expression but as Pv,

hence q, gets larger the input from each expression changes, Pv = 0.99, θa = 3.14, θa′ =

1.05, θb = 4.71 and θb′ = 0.523 (in the X − Z plane of the Bloch sphere, Fig. 4.10b),

Eq. (4.16) now looks like

S′ = q(2.0) + (1− q)(2.60), (4.21)

where the second expression only contributes a very small amount but is just enough

to tip the S′ value over 2 to show entanglement in the system.

To check that eliminating p does not affect the value of the CHSH inequality we

quickly calculated the optimum measurement settings in both cases (Appendix C.1)

and the same optimum measurement settings were found in both cases.
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4.5.1.6 More general ρ(p, q, r) states

Up until now we have not been able to saturate the bound shown in Eq. (4.8). In

order to saturate this bound we require measurement settings that produce a value of

2 for the non-entangled part of the system in the CHSH inequality and 2
√

2 for the

entangled part. So far we have only been able to find a balance between the entangled

and non-entangled part that jointly violates the CHSH inequality. We now look at

more general states to try to create this situation.

We begin by varying r the parameter that controls the symmetry of the vacancy

rate of the system,

-1.0 -0.5 0.0 0.5 1.0
r

2.0

2.2

2.4

2.6

2.8

S'

q=0.99
q=0.75
q=0.5
q=0.25
q=0.01

Figure 4.12: S′ vs r with fixed q. In each test we fix q then vary r across the range.
The value of r does not provide a very significant change in the value of S′. But we
can see that the value of S′ is largest at the extremes of r. The optimal measurement
settings are different for each value of r.

From Fig. 4.12 we can see that it is better to have an asymmetric system, i.e.

r = ±1 to produce a larger S′, this can be seen by looking at the density operator.

For r = +1,

ρAB(0, q, 1) = qρ01 + (1− q)ρ11. (4.22)

We have already seen that bi-local rotations do not affect the entangled part of the

system, this allows us to choose measurement settings that produce 2 for the separable

part of the state whilst still giving 2
√

2 for the entangled part as the angles for the

entangled part are rotationally invariant and so can just be matched with the settings

that give 2 for the non-entangled part, thus saturating the bound in Eq. (4.8).
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The dip that we see as r → 1 is due to the optimum angles for the entangled and

non-entangled parts no longer matching, hence a compromise must be made between

them leading to a reduced S′ value.

By looking at how the individual measurement settings change with r we see that

the optimum settings for r = −1,+1 are the same for all q as we would expect as this

gives us the upper bound on S′.

4.6 Effects of additional imperfections

In the work so far we have not considered any form of error other than the incomplete

measurement process. In this section we look at two types of additional error, and see

how these affect the detectable entanglement.

4.6.1 Robustness to state knowledge

In most of the optimisation steps we have looked at we must know the true value of p, q

and r in order to calculate the optimal measurement settings. Getting these parameters

wrong could lead to a reduced violation of the CHSH inequality which could become

an issue when close to the boundary. Here we consider the case that our knowledge

of q is incorrect but still assume that ρ11 is pure and ideal. We need only look at the

effects upon S′ as previously explained. We also assume that our knowledge of r = 0 is

correct, we have chosen this r as it produces the smallest optimum of S′. We denote our

incorrect estimate of the true q as q′. When q′ 6= q then the measurement settings that

we choose will not be optimum. To see how much this affects the violation of the CHSH

inequality we first find the optimum measurement settings for five estimate q′ values,

q′ = 0.01, 0.25, 0.5, 0.75, 0.99, these measurement settings are given in Appendix C.2.

By fixing the measurement angles to those for q′ = 0.01 say, we test how the value of S′

is affected over the full range of true q. This is repeated for all five q′ settings (Fig. 4.13).
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Figure 4.13: S’ for estimated q’ measurement settings. Using fixed measurement an-
gles found when q′ = 0.01, 0.25, 0.5, 0.75, 0.99 we test the system over the full range of
q to understand how an incorrect estimation affects the S′ value.

This test produces an interesting result, the measurement settings for the worst

case scenario (q′ = 0.99) provides a violation for the largest range of true q. This

implies that if there is any uncertainty in the true q value then it is better to use the

measurement settings calculated from q′ = 0.99 as this will ensure a violation. Although

there is a reduction in the maximum violation of S′ this is not significant as the aim

of our experiment is to verify the entanglement so any violation is sufficient no matter

how small.

4.6.2 Detector error

We have assumed the detection process is ideal with the incomplete measurement pro-

cess in all the previous work, now we look at two types of error a detector could

encounter, inefficiency and dark count.
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(a) (b) (c)

(d) (e) (f)

Figure 4.14: Fluorescence measurement outcomes. (a), (b) and (c) show the ideal
cases for an atom in |0〉, an atom in |1〉 and a vacancy site respectively. The lattice
is fluoresced with the |0〉 transition energy so the atom in |0〉 is successfully excited
and releases photons that are captured by the detector, the white dots indicating a
detection. Both the atom in |1〉 and the vacancy site do not emit photons and the
detector is not activated. (d), (e) and (f) show the non ideal cases for an atom in |0〉,
an atom in |1〉 and a vacancy site respectively. Here, when the lattice is fluoresced
the atom in |0〉 is excited but the photons are released at an angle where they cannot
be collected by the detector. In the other cases the atom in state |1〉 is not excited
but stray photons, cosmic rays and trapped charge cause the detector to fire, this is
the same for the non-ideal vacancy site.

4.6.2.1 Photons/detector inefficiency

When using fluorescence imaging as a measurement process, there must be efficient

capture of all the scattered photons [62, 63, 64]. If all the photons are not captured

this could lead to a mis-identification of the state with the dark state or a vacancy

(Fig. 4.14). This one-sided measurement error follows the noise model,

P (+1| |0〉) = 1− P (−1| |0〉) = η,

P (−1| |1〉) = P (−1| |v〉) = 1,
(4.23)
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where 0 ≤ (1 − η) ≤ 1 is the probability of incorrectly identifying the |0〉 state as the

|1〉 state, with the ideal case as η = 1 under the equal and independent vacancy rate

described in Sec. 4.5.1. We will assume ρ11 to be pure and ideal.

The violation of the CHSH inequality decreases as η decreases as we would expect.

However, it is always possible to detect entanglement in the system when 0.869 ≤ η ≤ 1

across the entire range of 0 ≤ Pv < 1 (Fig. 4.15 black dotted line). For 2(
√

2 − 1) <

η ≤ 0.869 it is possible to find a violation for some values of Pv, η = 2(
√

2 − 1) is the

limit of violation and it is only possible to detect a violation if Pv = 0 (Fig. 4.15 brown

dot-dashed line).

To attempt to beat this limit and reduce η to as small as possible we also performed

an optimisation on the input state this is explained in detail later in this section.
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Figure 4.15: S’ versus Pv with inefficient detection. By introducing the error η that
describes the probability of an atom in the |0〉 being identified correctly, the S′ value
is lowered for all Pv < 1. The optimal measurement settings are different for each
value of Pv.

It is important to have high detection efficiency in post-selection experiments as this

closes the detection loophole [65, 66, 67, 68, 69]. The detection loophole is the argument

that there could be an underlying hidden variables model that we are unable to detect

that explains the non-local behaviour. For example, in a conventional CHSH inequality

test Alice and Bob only record their results when both of them have a successful click

on their detector, and all the other results are thrown away, i.e. when only one of them

gets a click on their detector or neither of them do. We assume that the results that we

are able to detect via the coincidences are in line with those that we cannot detect, but

if they were not then these hidden results could show a hidden variables model that
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we cannot access. Our set up is a bit different as we have an incomplete measurement

process meaning that each time Alice and Bob do not detect a particle we assign it that

value −1 regardless of the measurement setting so no results are thrown away. Garg

and Mermin found that the detection efficiency in their experiment must be higher than

2(
√

2 − 1), this result matches ours by coincidence as there are various differences in

our assumptions and measurement scenarios [67]. We were actually able to better Garg

and Mermin’s limit by introducing an optimisation on the initial state, Box 1 Fig. 4.3,

Sec. 4.3. We do not use post-selection, all of our results are counted in the experiment

as due to the incomplete measurement process we are unable to differentiate between

a vacancy and a particle in state |1〉. This means that the detection-loophole does

not apply, hence there is no contradiction with the Garg and Mermin result. Instead

of Alice and Bob both starting with the |+〉 state we modified this to be |ψτ 〉A |ψτ 〉B
where |ψτ 〉 = cos τ |0〉+ sin τ |1〉. Using this input state and following the optimisation

process in Step 3, we were able to find states and measurement settings that allowed a

violation of the CHSH inequality for as low as η = 0.68 (Fig. 4.15, pink dotted line).

We also tested how S′ changes with η with an optimised input state and when there is

no possibility of vacancies, Pv = 0 (Fig. 4.16).

0.70 0.75 0.80 0.85 0.90 0.95 1.00

1.8

2.0

2.2

2.4

2.6

2.8

Detector efficiency, h

S
'

Figure 4.16: S versus η with optimised input state, Pv = 0. The limit at which point
the system stops violating the CHSH inequality is η = 0.68.

The optimal measurement settings are no longer in the X − Z plane of the Bloch

sphere and are denoted as [κ, θ, φ], where κ describes the rotation around a specified

plane defined by θ and φ on the Bloch sphere. For Pv = 0 and η = 0.68 these optimal

measurement settings are shown in Fig. 4.17.
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(a) (b) (c) (d)

Figure 4.17: Optimum measurement settings for Pv = 0 and η = 0.68. These
are a rough representation of the optimum measurement settings on the Bloch
sphere where τ ≈ 6.11. (a) has settings a ≈ [4.16, 1.95, 4.14], (b) has settings
a′ ≈ [2.21, 1.38, 0.77], (c) has settings b ≈ [2.83, 1.56, 1.58] and (d) has settings
b′ ≈ [2.46, 1.48, 0.72]. As the settings are no long confined to the X − Z plane they
are harder to represent.

We have not yet fully explored this avenue for optimisation and leave this open for

further work.

4.6.2.2 Error due to dark count

Here we look at the effect of dark counts in the detector, this can lead to the opposite

one-sided error. Dark counts arise from thermal activation of avalanche multiplication

[70] which can be caused by cosmic rays or trapped charge within the detector 1. We

assume η = 1, where the dark state |−1〉 or |v〉 can be misidentified as |0〉. The error

is modeled as,

P (+1| |0〉) = 1− P (−1| |0〉) = 1,

P (−1| |1〉) = P (−1| |v〉) = 1− ε,
(4.24)

where 0 ≤ ε ≤ 1 is the error due to dark count with the ideal case as ε = 0 in the equal

and independent vacancy rate model in Sec. 4.5.1.

The dark count error affects the value of S′ more significantly than the detector

efficiency η. For any ε > 0 the range of Pv that violates the CHSH inequality is

decreased. As we see in Fig. 4.18, ε ≥ 1 − 2(
√

2 − 1) is the limit when we stop being

able to violate the CHSH inequality for any value of Pv. Similar to the previous section

we found how S′ changes with ε with an optimised input state with Pv = 0 (Fig. 4.19).

1The use of cooled detectors [71, 72, 73, 74, 75] should be able to reduce dark counts to negligible
levels and so eliminate the effect of this error channel except for extremely high vacancy rates.
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Figure 4.18: Effect of dark count induced error on S′. ε is the error that the detector
will fire when it should not leading to a false positive result. As soon as this error is
incorporated into the system the maximum value of S′ is decreased as is the range of
Pv that allows a violation of the CHSH inequality.

By optimising the input state as we did for the η error we can increase our dark

count error limit to ε ≤ 0.32 and still obtain a violation when Pv = 0, in this case the

measurement settings do not sit in the X − Z plane of the Bloch sphere and look like

those shown in Fig. 4.20.

The errors η and ε seen in Fig. 4.16 and Fig. 4.19 mirror each other as we expect

them to as they are opposite one sided errors.

4.6.3 Discussion

The effects of additional imperfections reduces the violation of the CHSH inequality.

By optimising the measurement settings Alice and Bob use to calculate the CHSH value

the reduction can be minimised.

In the case of imperfect state knowledge, when there is uncertainty in the q value

to ensure a violation across the largest range of q it is better to use the measurement

settings given for q = 0.99 (Details in Appendix C.2).

We also looked at two one-sided errors that mirror each other, detector inefficiency

and dark count. As the detector inefficiency increases, the maximum violation of the

CHSH inequality decreases as we would expect. By choosing the measurement angles

carefully we are able to withstand a detector efficiency of η ≈ 0.83 this can be decreased

to η ≈ 0.68 if we also optimise the input state of the system from |+〉 to cos τ |0〉 +
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Figure 4.19: S’ versus ε with optimised input state, Pv = 0. The limit at which the
system stops violating the CHSH inequality is ε = 0.32.

sin τ |1〉. The optimum measurement settings no longer lie in the X − Z plane of the

Bloch sphere and so the analysis of the problem is much more complicated and time-

consuming. We found mirrored results with the dark count error, here the maximum

dark count, ε, that still provided a violation of the CHSH inequality was ε ≈ 0.17 which

increased to ε ≈ 0.32 with the optimised input state.

We have shown that even with errors in the system it is possible to detect a violation

of the CHSH inequality to conclude that the system is entangled. In practice there

would also be errors in the preparation and implementation of the measurement process,

in the gate operations and elsewhere in the system which would reduce the detectable

violation. However, having these extra errors may not render the experiment useless,

we are only interested in witnessing entanglement in the system. This means that even

if our results did not show a violation of the CHSH inequality if we knew what the

errors were, it would in principle, be possible to undo the errors on the data and revert

it back to see if the original error-free state was entangled. This of course would destroy

the state but it is a suitable method for characteristion and diagnostics. This process

adds an element of complexity that is not ideal. Further exploration of these errors has

been left for later work.
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(a) (b) (c) (d)

Figure 4.20: Optimum measurement settings for Pv = 0 and ε = 0.32. These
are a rough representation of the optimum measurement settings on the Bloch
sphere where τ ≈ 3.31. (a) has settings a ≈ [3.82, 4.18, 3.73], (b) has settings
a′ ≈ [4.18, 1.62, 1.95], (c) has settings b ≈ [5.95, 4.39, 1.56] and (d) has settings
b′ ≈ [1.45, 3.68, 4.70]. As the settings are no long confined to the X − Z plane they
are harder to represent.

4.7 Conclusion

In this chapter we began by reviewing how measurement-based quantum computation

could be realised using cluster states trapped in optical lattices. By understanding how

these lattices are loaded with the atoms we noted that due to finite entropy it is possible

to have vacant lattice sites. We investigated the effect these vacancies have on the

detectable entanglement in the system. The other important aspect of our system was

the incomplete measurement process. This means we could not differentiate between

an atom that was in |1〉 and a vacancy. This is not ideal but it does close the detection

loop-hole as we do not post-select our measurement results.

We chose the CHSH inequality to verify the entanglement of the state as this re-

quires a minimum number of assumptions about the measurements and operations.

We defined an upper bound on the CHSH value, our aim being to saturate this bound.

The system we used in our setup comprised of a bipartite system where due to the

possibility of the vacancies there were four possible starting states.

We began by defining a system with an equal and independent vacancy rate. Using

the conventional measurement settings used in the CHSH test we found the critical

vacancy rate probability that still allowed a CHSH inequality violation. This was not

very high and so we performed a three step optimisation processes on the measurement

settings in order to increase this critical value as much as possible. In Step 1 we

globally rotated the measurement settings around the Y axis and found for the optimum

settings the rotation angle was the same for all Pv and the critical value of the vacancy

probability increased. Step 2 used bi-local independent rotations around the Y axis

where Alice and Bob’s measurement settings where rotated independently but keeping

their respective set at π
2 to one another. Again this increased the critical value of

the vacancy probability compared with Step 1 and the optimum settings for each Pv

were different. Finally, in Step 3 we independently rotated each of Alice and Bob’s
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measurement settings about the entire Bloch sphere. Again the measurement settings

for each value of Pv were different and we were able to find a vast improvement in the

critical vacancy probability. A violation was detected for all Pv < 1. This means that

as long as there is some probability of atoms in the system, e.g. the system is not

ρ00, then it would be possible to detect a violation in the CHSH inequality and hence

show entanglement.

Although we had found this vast improvement in the critical value of the vacancy

probability we had not yet saturated the upper bound. To address this we considered

more general states, ρ(p, q, r), and found that when the system is completely asymmet-

ric the bound is saturated (Eq. (4.22)). At these extremes the optimum measurement

settings are the same for all q.

So far we assumed that all the measurements and knowledge about the system was

ideal, we found we could violate the CHSH inequality for almost all Pv but as Pv → 1

the violation value became smaller and smaller any error in the system is likely to

reduce the CHSH value so if the violation is only just above 2 then an error may push

this below the boundary. To understand how different types of errors affect the system

we considered three different types.

Firstly, error in the knowledge of q when considering a general system ρ(p, q, r). As

we have previously stated the optimum measurement settings are different for different

values of q. If there is an error in the knowledge of q then incorrect optimum mea-

surement settings could be used which may lead to a failure of violation detection. By

testing how different optimum measurement settings perform over the range of q we

have shown that even if we use the optimum measurement settings found from the worst

system still provides a violation of the CHSH for the whole range of 0.01 ≤ q ≤ 0.99.

This leads to a decrease in the maximum violation, but, a lower violation for a larger

range of q is preferable to a higher violation for a smaller range of q. This is an im-

portant result as it makes our system very robust, even if there is a large error in the

knowledge of q it would be possible to still detect a violation.

Secondly, we considered the error due to detection inefficiency where there is some

probability that not enough photons from an atom in the |0〉 would be collected and

we assume it was actually |1〉. We found two limits on the error, one where a violation

was possible over the whole range of Pv and one where it was possible for Pv = 0. At

this point we also tested a system with an optimised input state, using this state we

were able to better the limits for the detector inefficiency with a non-optimised state.

Finally, we looked at the dark count error, this is effectively the opposite of the

detector inefficiency where an atom in |1〉 or |v〉 is mistaken for a atom in |0〉. We

found the dark count error to affect the maximum CHSH value more significantly than

the detector inefficiency. There is no value of the dark count error that allows for a

violation across whole range of Pv. We find the limit at Pv = 0 to match 1 − η, the

detector error as expected.
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Similar to the previous chapter we have shown that simply by changing the mea-

surement we can vastly reduce the effect physical constraints have on the entanglement

in the system. By optimising the measurement angles used in the CHSH inequality we

have shown that large improvements can be made in the tolerance of the system. In a

system with no errors we have shown that even if the probability of any atoms being in

the system is almost 0 we can still produce a CHSH inequality violation proving that

there is entanglement. This is a powerful result as it shows that the choice of measure-

ment angle is very important, simple changes can maximise the effect of the entangled

part of the system no matter how small it is. However, the more errors we include the

lower the maximum CHSH value will be. If the maximum value is very close to 2, it is

important that we are positive that the violation is from the entanglement in the state

and not just the statistical spread of values.
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CHAPTER 5

Superselection rules, noise and Bell inequalities

5.1 Introduction

In this chapter we consider the single particle entanglement question. There has been a

lot of debate as to whether single particle entanglement actually exists and is meaningful

or if it is solely dependent upon the way we write the state. The problem is directly

related to superselection rules that restrict the types of states and operations that can

be performed on a system. In some cases we can consider the superselection rules to be

a useful resource [15]. However, it has been shown there are ways to allow the restricted

operations to be performed [1, 15, 16]. This is by the introduction of a reference frame,

a separable state shared between the parties before the principal state. Paterek et al.

have defined the minimum reference frame required to violate the CHSH inequality.

We base our work in this chapter on their model [1].

We introduce error into our system in the measurement process. The errors come

directly from the apparatus. As in the previous chapter we wish to show detectable

entanglement for the largest error possible to make the system more robust. Depending

on the placement of the measurement apparatus in the circuit the errors follow different

models. By optimising the measurement settings for each of the error models we aim

to improve the critical error at which entanglement is no longer possible to be at

its maximum.

The chapter is set out as follows, in Sec. 5.2 we review superselection rules and the

effects they have on states and operations. We also review the minimum reference frame

required to violate the CHSH inequality in a system constrained by superselection rules.

In Sec. 5.3 we define the system we will use, taken from [1]. In Sec. 5.4 we describe the

error models and optimise the measurement settings to improve the critical value of

error. We will check the experimental feasibility of the optimum measurement settings
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that we find in Sec. 5.5. In Sec. 5.7 we briefly discuss ideas of how to create the state

and in Sec. 5.6 we consider non-ideal state preparation and how this affects the violation

of the CHSH inequality in a system with ideal measurements. And finally in Sec. 5.8

we investigate if it is possible to swap the reference frame and principle system to make

the state creation process less complex.

In this chapter we are considering a much different system to that which we have

covered so far here we change our notation to match that of the literature, to avoid

confusion in the rest of the chapter we will be performing measurements in the parti-

cle number basis and not considering internal states. Although the following work is

different to previous chapters there is a strong link, we have so far looked at optical

lattices as a probable candidate for quantum computation exploring the imperfections

and errors that occur during its creation, in this chapter we consider another system

that could be realised using an optical lattice and we test its robustness again using

the CHSH inequality.

5.2 Background

The work in this chapter is based upon a simple question: can a single particle be

entangled? This question has lead to many different ideas, and arguments for and

against the notion [76, 77, 78, 79, 80, 81, 82, 78, 83, 84, 85, 86, 87].

Given all these contradictory arguments we consider that the single particle en-

tanglement question is actually part of a larger question that concerns the allowed

coherent operations that can be performed on quantum states. These restrictions on

the coherent operations are called superselection rules. Superselection rules are im-

portant as they affect certain types of quantum behaviour such as a reduction in the

entanglement of a system [88, 89, 90]. A superselection rule of a particular observable

says that it is impossible to prepare a coherent superposition of two eigenstates of a

particular observable with different eigenvalues or different conserved quantities, for

example, charge conservation [91, 92].

Verstraete and Cirac look into the effect of superselection rules on quantum opera-

tions [15]. They look specifically at the particle number superselection rule, this states

that the particle number operator commutes with all observables [93]. This means that

superpositions of states with different numbers of massive particles cannot be created

as this goes against the superselection rule. There are two main points to their paper

that are important in this chapter which we will briefly explain. Firstly, superselection

rules allow us to create states that are separable but non-local. Secondly, superselection

rules allow us to perform perfect data hiding schemes that have previously been proven

to be impossible [94, 95] making them a useful resource.

They start with a set of N particles in a Hilbert space and assume that the parti-

cle number is a superselection observable, meaning that it is not possible to create a
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superposition of two states with different numbers of particles. Any density operator

in this setup can be written as

ρ =

∞∑
N=0

pNρN , (5.1)

where PN is the probability the state is in ρN and ρN is the sector of definite particle

number N . If we expand the Hilbert space now to two parties, Alice and Bob, still

with superselection rules and now with locality rules, Alice and Bob cannot create

superpositions of states with different numbers of particles using local operations and

classical communication (LOCC). This means we can have states that are separable but

non-local. Example 1 of Verstraete and Cirac [] is such a state where ρ1 is compatible

with superselection,

ρ1 =
1

4
(|0〉A 〈0| ⊗ |0〉B 〈0|+ |1〉A 〈1| ⊗ |1〉B 〈1|) +

1

2
(|ψ+〉AB 〈ψ

+|), (5.2)

where |ψ+〉 = 1√
2
(|0〉A |1〉B+|1〉A |0〉B). This can be shown to be separable, ρj |aj〉 〈aj |⊗

|bj〉 〈bj |, by looking at the decomposition, pk = 1
4(k = 1, 2, 3, 4),

|a1,2〉 = |b1,2〉 :=
1√
2

(|0〉 ± |1〉),

|a3,4〉 = |b3,4〉 :=
1√
2

(|0〉 ± i |1〉).
(5.3)

These states are not compatible with superselection rules as they are superpositions

of states with different numbers of particles. Using this example state Verstraete and

Cirac show that they cannot be prepared locally under superselection rules by proving

the following: If ρ can be prepared locally, then,

ρ = N (ρ) :=

∞∑
nA,nB=0

(PAnA ⊗ P
B
nB

)ρ(PAnA ⊗ P
B
nB

), (5.4)

and example 1 can be written as,

N (ρ1) =
1

4

1∑
n,m=0

|n〉A 〈n| ⊗ |m〉B 〈m| 6= ρ1. (5.5)

They have shown the state is separable but also cannot be created using LOCC. They

also show that the states ρ and N (ρ) cannot be distinguished using LOCC. This state-

ment is important as it allows a perfect data hiding protocol to be realised showing

that the superselection rules can actually be used as a resource. The argument is as

follows, Alice and Bob receive a secret bit encoded in state 0 or 1 the state

|±〉 := (|0〉1 |1〉2 ± |1〉1 |0〉2), (5.6)
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prepared by a third party, Charlie. This preparation is allowed as the global number

of particles in both states in the superposition is the same. Alice receives system 1

and Bob system 2. By seeing that N (|+〉 〈+|) = N (|−〉 〈−|) we see that Alice and

Bob cannot get any information about the bit using LOCC operations. To access

the information they must perform joint operations, which in this case is not allowed.

Hence, the secret bit is safe.

Verstraete and Cirac then go on to look at what Alice and Bob would need in order

to be able to access secret information. If Alice and Bob share a reference frame of an

entangled state prior to receiving the secret bit they are able to infer the value of the

hidden bit with probability N
N+1 . Obviously this is not perfect so they then go on to

show that by using the non-local separable states as a reference frame this probability

of gaining the value of the bit is arbitrarily close to 1.

Verstraete and Cirac have shown we can create a different type of state that is not

entangled but still has non-local properties, for example, sausage states [96]. These

states can also be used as a resource and will be useful in our setup in this chapter.

They show that the superselection rules can be used as a resource to hide information.

They introduce the idea of reference frames that allow us to access this hidden infor-

mation that we would otherwise not be able to learn. These reference frames are of

particular interest as they allow us to bypass the restrictions initially imposed by the

superselection rules.

In 1967, Aharonov and Susskind showed that the superpositions that should not

be allowed due to superselection rules can be observed if the two parties share the

appropriate reference frame, where the reference frame can be used to prepare and

measure the system [16]. In their paper, they begin by using an experiment to prepare

a coherent superposition of σs = +1 and σs = −1 which under the rules of angular

momentum superselection should not be possible. They show that when there is a

reference frame between the apparatus of the experiment, i.e. the two magnetic fields

are aligned, this coherent superposition is allowed. They set up a magnetic field in

the x direction and allow the electron to pass through the field, precessing as expected

around the x axis. Due to the setup when the electron leaves the magnetic field it is

orientated with the spin in the y direction. This action puts the electron in a coherent

superposition of σ = ±1. To prove that the electron is in the coherent superposition

Aharonov and Susskind suggest measuring σy. If the electron was incoherent this would

result in probability 1
2 that σy = ±1, but the coherent results would have probability

1 and 0 for σy = +1 and σy = −1 respectively. How this measurement is done is the

key to understanding how reference frames allow these forbidden states, for example

it could be done using a second magnetic field. The electron in the superposition

|σ = +1〉+r exp(iθ) |σ = −1〉 has a phase, θ, where θ defines the direction of polarisation

of the electron. Aharonov and Susskind point out that angles must be measured with

respect to a reference frame, in this case they call that the second magnetic field.

After the electron has passed through the magnetic fields it is in an eigenstate of Lz,
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the component of the angular momentum in the z direction. This means that to an

external observer the orientation of the xy planes is uncertain as is the orientation of

the electron to the xy plane. But Aharonov and Susskind have already stated that the

electron uses the second magnetic field as a reference frame, this is just not accessible

to an external observer. It is only important that the two magnetic fields in the system

share this reference frame and so have an alignment with respect to each other. The

relative phase between the state |σ = ±〉 is always measured with respect to a reference

frame given by one of the magnetic fields, this then gives a reference frame internally

for the xy plane.

Aharonov and Susskind then go on to look at another example but this time with

charge rather than angular momentum. They start by having two single mode cavities

C1 and C2 each of which can have an arbitrary number of negatively charged mesons.

They prepare a state with Q1 in C1 and Q2 in C2 where Qi is the charge in cavity

i. Q1 and Q2 are uncertain but Q1 + Q2 is known, this situation could be realised by

splitting the mesons before they enter the cavities with the appropriate half-reflecting

plate so it is not known how many mesons are in each cavity. Each of the mesons can

be described using the wavefunction ψ1 + exp iφψ2. If there are enough mesons then

the state in the two cavities will have a definite phase of φ1 − φ2 where φi is the phase

conjugate to Qi. This idea is the same as the last experiment.

Once this setup is prepared a proton is sent into C1, when it comes out it will be a

proton or a neutron when measured (Fig. 5.1a). Aharonov and Susskind’s claim is that

relative to the reference frame provided by C1, the nucleon that leaves C1 is a coherent

superposition of zero and plus charge with a definite phase between the proton and

neutron components.

They show this by sending the nucleon through C2 and showing that the emerging

state has interference between proton and neutron. They show this by setting up

many cavities that could be frames of reference. They randomly pick one to define the

zero phase. Using this cavity the superposition of charge states can be prepared and

another cavity can be used to check the interference. If a proton passes through cavity

C1 that has state |Qθ〉 where θ is the phase then the emerging nucleon has probability

cos2(gT
√
q) of being a proton and probability sin2(gT

√
q) of being a neutron, then

when this state is passed through C2 which is in state |q′θ′〉 the relative phase between

the neutron and proton is θ − θ′. If this experiment is repeated lots of times the

probabilities of the particle being in one state or the other can be observed as Ramsey

fringes, where the probability of the nucleon being a proton say, rises and dips between

0 and 1 (Fig. 5.1b). The ramsey fringe pattern confirms the superposition state, if the

state leaving C1 was simply a mixture of a proton and a neutron (1
2(|p〉 〈p| + |n〉 〈n|))

this fringe pattern would not be observed.
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Figure 5.1: Superposition of a proton and neutron. (a) a proton is sent into C1, when
it emerges it is in a superposition of proton and neutron. To check this the superpo-
sition is sent through C2 then when the probabilities of detecting the particle as a
proton is measured, the ramsey fringe pattern is created proving it was in a super-
position. (b) Evolution of a coherent superposition. When a coherent superposition
is allowed to evolve, the probability of detecting the state in |p〉, P (p), rises and falls
following the graph, repeating every t = 2π

ω .

The ramsey fringes show that by using a reference frame we can bypass the problem

of not having coherent superpositions of two eigenstates of the same observable with

different eigenvalues. Using these reference frames they show that we can in fact have

single particle entanglement as the superposition of the two eigenstates with different

particle number is possible. We will now explore what these reference frames look like

and the restrictions on their form. Paterek et al. defines the minimum reference frame

required to violate a Bell inequality [1]. Their principle system is an entangled state of

two and three particles,

|ψ〉 =
1√
2

(|23〉+ |32〉), (5.7)

they show that with the right separable reference frame a Bell inequality can be violated

showing that the principle system was in fact entangled, explanation and proof comes

later in this section. One way we could create this state is by initially starting with
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|32〉 and allow tunneling between the two parties. Making sure the other states (e.g.

|41〉 and |50〉 etc.) are energetically unfavoured the principal entangled system could

be realised. To link back to the question of single particle entanglement, another

way to create the principal system could be to perform coherent operations that obey

superselection rules to transform the state 1√
2
(|01〉 + |10〉) to the principle state this

would prove that the single particle system was in fact entangled.

1√
2

(|01〉+ |10〉)→ 1√
2

(|23〉+ |32〉), (5.8)

For the rest of this chapter we assume we can perform this transformation and review

the results presented in [1] and use them to define our system. The rest of this section

follows the arguments in [1] closely.

5.2.1 General description of system that could be used to violate a

CHSH inequality

Paterek et al. showed that a Bell violation is possible in a system with a principle

state and a reference frame if and only if the reference frame has been prepared jointly

i.e. a violation is not possible when the reference frame has been created via only

local operations that satisfy superselection rules and classical communication (SSR-

LOCC) [1]. This is shown by first proving that using a reference frame that is prepared

using only SSR-LOCC cannot violate a Bell inequality as it is possible to describe

the joint state as separable. Verstraete and Cirac’s results agrees with this [15]. This

restricts Alice and Bob in their choice of reference frame, in order to have the possibility

of detecting a Bell violation they can only use reference frames that cannot be created

by only using SSR-LOCC.

Fig. 5.2 shows the system that Alice and Bob share, a reference frame, ρA′B′ and a

principal system, ρAB. Alice has access to the subsystems A and A′ and Bob has access

to the subsystems B and B′, where they can perform measurements with outcomes ±1.

ρAB is an entangled pure state of N -particles and has the form

|ψ〉AB =
N∑
n=0

cn |n〉A |N − n〉B , (5.9)

where |cn|2 is the probability that Alice has n particles. Particle-number superselection

says that all states and measurements commute with the particle-number operator N̂ .

To measure the system Alice and Bob count the number of particles on each of their

respective sides.

Using the principal system alone Alice and Bob are not able to violate a Bell in-

equality as they can only count the particles in their own subsystems so will always get

an anticorrelated result, e.g. nA, (N − n)B. In order to violate a Bell inequality they
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Figure 5.2: The system. Alice and Bob share a reference state ρA′B′ . Then they re-
ceive the principal system, ρAB. Alice (Bob) perform a measurement on their subsys-
tems A(B), the result of which is ±1.

must introduce a reference frame. The form of the reference frame is slightly compli-

cated. To be able to violate a Bell inequality the reference frame they share must be

separable. The separable condition comes from that fact that if the CHSH inequality is

violated it is important that we are able to say all of the entanglement comes only from

the principle system, we can only be certain of this if the reference frame is separable.

Paterek et al. showed in order to violate the CHSH inequality the reference frame

cannot be formed using SSR-LOCC. Here we follow the argument in their paper. Firstly

they show that using a reference frame prepared only using SSR-LOCC cannot lead to

a violation in the CHSH inequality as the reference frame can be shown to be equivalent

to a general mixed state and as such cannot produce a Bell inequality violation. They

then go on to show that by using a reference frame that cannot be prepared using only

SSR-LOCC leads to a violation. These arguments follow the paper very closely.

5.2.2 Reference frame prepared using SSR-LOCC

Reference frames prepared using SSR-LOCC commute with local particle-number op-

erators as required by the particle superselection rule and are of the form

ρSSR−LOCCA′B′ =
∑
k,l

pkl |k〉A′ 〈k| ⊗ |l〉B′ 〈l| , (5.10)

where k is the number of particles in Alice’s reference frame and l is the number of

particles in Bob’s reference frame. Assuming the reference frame is in a pure state, the

joint state of the principle system (Eq. (5.9)) and the reference frame (Eq. (5.10)) can
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be written as

|ψφ〉AA′BB′ =
∑
n

cn |n, k〉AA′ |N − n, l〉BB′ , (5.11)

grouping subsystems for Alice and Bob together respectively. All the terms in the

superposition in Eq. (5.11) have a different number of particles. Superselection rules

require that we make measurements that project on to states with a definite number of

particles so only one of the expressions in Eq. (5.11) can correspond to any particular

result. This situation is exactly the same as having a mixture of |n, k〉AA′ |N − n, l〉BB′ ,

and performing a measurement with probability |cn|2, here the state is separable and

so any quantum like effects can be described using a local hidden variables model and

will not violate a Bell inequality.

5.2.3 Reference frame prepared not using SSR-LOCC

Now we look at the case where the reference frame is not prepared via SSR-LOCC and

see that this produces a joint state that can violate a Bell inequality. The reference

frames that allow a violation have the general form

ρA′B′ =
∑
N ′

pN ′ρN ′ , (5.12)

where pN ′ is the probability that the reference frame has N ′ particles and ρN ′ is any

arbitrary mixture of pure states of the form |φ〉A′B′ =
∑N ′

i=0 ri |i〉A′ |N ′ − i〉B′ with

N ′ particles. The reference frame cannot be prepared via SSR-LOCC so must have

off-diagonal elements in the particle number basis. These types of state have a non

vanishing expectation of

ν = Re[Tr(R+ ⊗R−ρA′B′)], (5.13)

where R+ =
∑N ′−∆

a=0 |a+ ∆〉 〈a| and R− =
∑N ′

b=∆ |b−∆〉 〈b| for some ∆ ≥ 1. ν can be

shown to be non-vanishing as it is proportional to the average value of
∑N ′−∆

i=0 r∗i+∆ri

over all the pure states |φ〉A′B′ . If the sum
∑N ′−∆

i=0 r∗i+∆ri vanishes then ν will vanish.

But the sum can only vanish if the signs of r∗i+∆ri alternate leading to cancellations in

the terms, when considering pure states that have coherences in the particle number

basis. To get around these cancellations it is possible to choose a larger ∆ to avoid

some of the terms that cause the cancellations. This argument for a non-vanishing ν

also backs up our previous statement that useful reference frames cannot be prepared

using SSR-LOCC as if the state is prepared using SSR-LOCC then it will not contain

any off-diagonal elements, no matter what ∆ is and so ν = 0. Paterek et al. then go on

to show that all reference frames with ν 6= 0 will allow a choice of measurements that

produce a violation of CHSH inequality. To show this they start with an entangled

principle system of the form,

|ψ〉AB =
1√
2

(|2〉A |2 + ∆〉B + |2 + ∆〉A |2〉B). (5.14)

94



The correlation function, the average of Alice and Bob’s local results is,

Eφ(αk, βl) = − cos 2αk cos 2βl + ν sin 2αk sin 2βl, (5.15)

where ν is defined in Eq. (5.13). See Appendix D for details on how the correlation

function is calculated. We can now write the CHSH value as

S ≡ E(α1, β1) + E(α1, β2) + E(α2, β1)− E(α2, β2). (5.16)

See Appendix ?? for proof of the CHSH.

To find when S > 2 we choose α1 = 0, α2 = π
4 and β ≡ β1 = −β2.

S = −2 cos(2β) + 2ν sin(2β). (5.17)

We can think of S in terms of the inner product of two vectors ~w = (−2, 2ν) and an

arbitrary normalised vector ~v = (cos(2β), sin(2β)). The scalar product between two

vectors is given by

~a ·~b = ||a||||b|| cos θ, (5.18)

where ||a(b)|| denotes the length of a(b) and θ is the angle between them [97]. By

changing the value of β we can find an angle at which ~w and ~v are parallel. Making

the scalar product between them

~w · ~v = ||w||, (5.19)

as ~v is a normalised vector and so has length 1. The maximum of S is simply given by

the length of ~w.

Smax =
√

(−2)2 + (2ν)2 = 2
√

1 + ν2, (5.20)

so to lead to a violation of the CHSH inequality

S > 2 ∀ ν 6= 0, (5.21)

proving that any reference state where ν 6= 0, which implies it was not created via

SSR-LOCC, allows a violate of the CHSH inequality.

5.2.4 Errors in the system

The aim of this work is to test the tolerance of a system under superselection rule

restrictions in the presence of errors. Before we define the system we will test, we

describe how Alice and Bob measure their system and how the errors we will include

could occur in the physical experiment.

The measurements Alice and Bob perform on their subsystems could be done in the

same manner as Chapter 4 by applying a timed laser pulse to the subsystem AA′ for
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Alice and BB′ for Bob to perform active rotations. This laser pulse may cause atoms

to tunnel from one of Alice’s subsystem to the other. Alice’s subsystem spans certain

states depending on the number of atoms in the system for example,

One particle {|1, 0〉 , |0, 1〉}AA′ ,

Two particles {|2, 0〉 , |1, 1〉 , |0, 1〉}AA′ .
(5.22)

The measurement applies a fixed measurement basis coherent rotation to measure in

the entangled basis, this is seen as a physical movement of one particle from one site

to the other (Fig. 5.3). In the one particle case this can be defined as

(α |1, 0〉+ β |0, 1〉)AA′ → |1, 0〉AA′ ,

(β∗ |1, 0〉 − α∗ |0, 1〉)AA′ → |0, 1〉AA′ .
(5.23)

(a) (b)

Figure 5.3: How measurement changes the system

These measurements could be done in a variety of ways, for example by lowering

the lattice potential between the two wells will increase the likelihood of the particles

tunneling from one site to the other (Fig. 5.4a). The tunneling process is exponential,

errors could creep into the system easily. A second way we could envisage the measure-

ment being done is using a Raman transition where a higher energy level is used that

is above the well separation (Fig. 5.4). In this case both ω1 and ω2 pumps are switched

on, this excites the atom to the dummy excited state that is detuned from the actual

excited level to ensure the atom does not stay there. Then the atom is pumped by the

ω2 transition down to the ground state in the second well [98].
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(a) (b)

Figure 5.4: Realisation of coherent basis rotations. (a) shows how the barrier be-
tween the two wells can be lowered to encourage the likelihood of tunneling between
the lattice sites. (b) shows how an intermediate energy level can be used to move an
atom from one site to the other where ωa − ωb = ω1 − ω2 and ωa − ω1 = ωb − ω2 = ∆.

The effective operation of either method can be described using the Hamiltonian

H = γ
σx
2
, (5.24)

where σx = |L〉 〈R|+ |R〉 〈L| and γ is the strength of the laser power. This Hamiltonian

leads to a rotation of the effective basis of the measurement after particle counting.

In the experiment we are analysing all the noise comes from the electro-optic mod-

ulators (EOMs) and is not temporally correlated, though we consider (spatial) correla-

tions between settings on the different sides. The EOMs are used during the measure-

ment to regulate the pulse height and length [99, 100, 101]. Depending where they are

placed along the path of the laser beam their effects on Alice and Bob’s measurements

will be different (Fig. 5.5).
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Figure 5.5: Schematic of potential experiment. The first electro-optic modulator
(EOM) in the dashed purple box is responsible for all correlated noise as it will af-
fect Alice and Bob’s results by the same amount. The second two EOMs in the blue
dot-dashed box represent the uncorrelated noise, these two EOMs are independent
and so affect Alice and Bob’s measurements in different ways.

EOMs use the electro-optic effect to modulate the laser beam. The electro-optic

effect is a change the refractive index of a material due to a direct current of low-

frequency electric field. By changing the electric field the EOM feels, different phase

changes can be achieved [102]. EOMs can also be used to change the measurement

basis [101, 103] and control the timing and strength of laser pulses.

The time period for which the EOM is allowed to act will provide a modulation

that is characterised by τ ∝ γt, if there is some error in the time t±δt, the pulse length

will be longer or shorter than expected and the results may not correctly correspond

to the measurement. This type of noise is additive as we add or subtract δt to the

ideal time period. The additive noise could be uncorrelated or correlated depending

on its position in the experiment. If the EOM that is controlling the time period is

in the blue dot-dashed box in Fig. 5.5 then the noise is uncorrelated as the EOMs are

independent and Alice and Bob could receive different pulse lengths [104]. However if

the EOMs controlling the time period are in the purple dashed box in Fig. 5.5 then the

noise will be correlated as both Alice and Bob receive the same pulse.

The strength of the laser pulse is characterised by γ and controlled by the EOM, if

the strength varies from shot to shot the results may not be accurate [105]. The noise

in the strength of the signal is multiplicative as can be seen from Eq. (5.24). Again

depending on the position of the EOM the noise is uncorrelated or correlated this is

the same as above, in Fig. 5.5 the blue dot-dashed box provides uncorrelated noise and

the purple dashed box provides correlated noise.

The joint effects of these two errors can be seen in Fig. 5.6,
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Figure 5.6: Control pulse noise. The results of many runs of the experiment superim-
posed onto each other, the black line shows the ideal time period and signal strength,
the purple areas show the effects of the additive noise from the EOMs in changing
the ideal settings and the green areas show the difference in the signal strength due
to the multiplicative noise from the EOMs.

5.3 Our system

We know from Paterek et al. the form our principle system and reference frame must

take to violate a CHSH inequality and the origin of the types of noise that we will

include in our analysis.

We consider a specific case of the minimal reference frame from [1] where ∆ = 1

and N ′ = 1 and test how the errors affect the CHSH violation. By proper choice

of measurement settings we hope to improve this tolerance similar to the process in

Chapter 4. Our principal system is defined as,

|ψ〉AB =
1√
2

(|2〉A |3〉B + |3〉A |2〉B), (5.25)

and the minimal reference frame,

|φ〉A′B′ = r0 |0〉A′ |1〉B′ + r1 |1〉A′ |0〉B′ , (5.26)

where r1r
∗
0 6= 0, ensuring ν 6= 0 meaning the state was not prepared using SSR-LOCC.

However before we continue, in Sec. 5.2.1 it was made clear that if entanglement is

detected it must be said to come from the principle state and so it is essential that the

reference state is separable. Using the PPT criterion for entanglement, Refs. [106, 107]

show |φ〉A′B′ is entangled for all r1r
∗
0 6= 0 so we need to adapt the reference frame.

We could also perform a twirling operation, T , where the twirling operation removes

all the coherences that are not compatible with the superselection rules, this operation

is explained fully in Sec. 5.5. We now consider a reference frame with at most two

99



particles as seen in [1],

ρ
′
A′B′ =

1

4
(|00〉A′B′ 〈00|+ |11〉A′B′ 〈11|) +

1

4
|φ〉A′B′ 〈φ| , (5.27)

we can test that ρ
′
A′B′ is separable using the PPT criterion which says all eigenvalues

are positive of the partial transpose of the state if and only if ρ is separable [106, 107].

The partial transpose of ρ
′
A′B′ is as follows

ρ
′TB′
A′B′ =

1

4
(|01〉 〈01|+ |00〉 〈11|+ |11〉 〈00|+ |10〉 〈10|) +

1

4
|00〉 〈00|+ 1

4
|11〉 〈11| , (5.28)

this state has eigenvalues 1
2 ,

1
4 ,

1
4 , 0 meaning that it is separable.

The system we use comprises of the reference frame ρ‘
A′B′ , the principal state |ψ〉

and the measurements defined in Appendix D. Alice’s observables look like

|α(−1)〉 = cosα |1, 1〉AA′ + sinα |2, 0〉AA′ → +1,

|ᾱ(−1)〉 = sinα |1, 1〉AA′ − cosα |2, 0〉AA′ → −1,

|α(0)〉 = cosα |3, 0〉AA′ + sinα |2, 1〉AA′ → +1,

|ᾱ(0)〉 = sinα |3, 0〉AA′ − cosα |2, 1〉AA′ → −1,

|α(1)〉 = cosα |3, 1〉AA′ + sinα |4, 0〉AA′ → +1,

|ᾱ(1)〉 = sinα |3, 1〉AA′ − cosα |4, 0〉AA′ → −1,

(5.29)

for Bob’s observables, simply swap α for β and AA′ for BB′. We assign the eigenvalues

±1 to the measurement results as shown above. We find the expectation value of one

of Alice and Bob’s joint measurements to look like

〈αβ〉 = − cos 2α cos 2β +
1

4
sin 2α sin 2β, (5.30)

where ν = 1
4 for ρ

′
A′B′ .

Using the trigonometric identities

cos 2α cos 2β =− 1

2
(cos 2(α− β) + cos 2(α+ β)),

sin 2α sin 2β =
1

2
(cos 2(α− β)− cos 2(α+ β)),

(5.31)

we can express the expectation value of the joint measurement as a difference of mea-

surement settings which will be more useful for analysis later,

〈αβ〉 = −3

8
〈cos 2(α− β)〉 − 5

8
〈cos 2(α+ β)〉, (5.32)
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making the whole CHSH value

S =〈α1β1〉+ 〈α1β2〉+ 〈α2β1〉 − 〈α2β2〉

=− 3

8

(
〈cos 2(α1 − β1)〉+ 〈cos 2(α1 − β2)〉+ 〈cos 2(α2 − β1)〉 − 〈cos 2(α2 − β2)〉

)
− 5

8

(
〈cos 2(α1 + β1)〉+ 〈cos 2(α1 + β2)〉+ 〈cos 2(α2 + β1)〉 − 〈cos 2(α2 + β2)〉

)
.

(5.33)

This is the ideal case with no errors in the measurement settings.

We note here that α and β are not real angles, they represent the pulse areas that

control the tunneling of atoms from site to site. However analogous to the previous

chapter it is useful to consider them as angles in order to visualise the measurement

settings and allow us to present them pictorially and in the context of Bell inequalities.

5.4 Optimum measurement settings with additive and mul-

tiplicative noise

Experimental imperfection (such as explained in Sec. 5.2.4) can lead to a variation in

the actual angles used in the measurement. We model the noise as a random variable,

z, with a Gaussian distribution, N (µ, σ) where µ is the mean of z and σ is the standard

deviation. Details of how the expectation value of a random variable is calculated can

be seen in Appendix E.

We will calculate S for four different noise models, in each of these we will attempt to

increase the tolerance of the system to the noise by changing the measurement settings

Alice and Bob use in three stages. The first stage will use an arbitrary set of fixed

angles found when the system experiences no noise, this will give a rough idea of how

the system performs when we then add noise while modifying our Bell measurements.

In the second stage we will set α1 = 0 and optimise the other three measurement

settings, this reduces the complexity of the problem but we still hope to improve the

tolerance of the system. In the third and final case we optimse over all settings to see

if more improvement in the tolerance can be made. At each stage we will review the

level of noise that is tolerated to still provide a violation of the CHSH inequality.

5.4.1 Uncorrelated additive noise

As explained in Sec. 5.2.4, uncorrelated additive noise can come from variations in the

laser pulse time controlled by the EOM’s in the blue dot-dashed box in Fig. 5.5 during

the measurement. Eq. (5.32) shows the expectation value of a joint measurement

between Alice and Bob, the expressions for the joint measurements follow a normal
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distribution and the noise model can be defined as [108]

2(α+ β) = N (2(µα + 2µβ), 2
√

2σ),

2(α− β) = N (2(µα − µβ), 2
√

2σ),
(5.34)

where µx denotes the mean of random variable x and σ is the standard deviation, we

assume σ = σα1 = σα2 = σβ1 = σβ2 . Using this we can write the full CHSH value as,

S = exp(−4σ2)
[
− 3

8
(cos 2(µα1 − µβ1) + cos 2(µα1 − µβ2)

+ cos 2(µα2 − µβ1)− cos 2(µα2 − µβ2))

− 5

8
(cos 2(µα1 + µβ1) + cos 2(µα1 + µβ2)

+ cos 2(µα2 + µβ1)− cos 2(µα2 + µβ2))
]
.

(5.35)

We begin by using arbitrary fixed optimum angles found when the system has no noise.

5.4.1.1 Fixed angles

As explained in the introduction to this section we use an arbitrary set of angles that

produce the maximum S value, S = 2.0616, when the system has no noise. These

angles are not a unique set, many other sets of angles would produce the same result

when the system has no noise, we pick this set at random. The angles we choose are

shown in Fig. 5.7,

Figure 5.7: Uncorrelated additive noise, arbitrary set of measurement settings, opti-
mised with no noise. α1 = 0.0274, α2 = 5.86, β1 = 4.76 and β2 = 1.30.

σcrit is the largest error that will allow a violation of the CHSH inequality. By using

the angles in Fig. 5.7 over the range of σ we find σcrit1.1 = 0.0870 as shown in Fig. 5.8,

we label the σcrit in each optimisation case to match the heading number for clarity.
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Figure 5.8: Uncorrelated additive noise with fixed angles. Keeping the measurement
angles fixed for all σ, the S value steadily decreases and the critical value, σcrit1.1 =
0.0870.

To attempt to increase the limit, σcrit, at which the system ceases to violate the

CHSH inequality we will optimise the measurement settings that Alice and Bob use.

5.4.1.2 Optimising measurement settings keeping α1 = 0

By fixing α1 = 0 and optimising α2, β1 and β2 we aim to increase σcrit to show that

the system could withstand a larger error and still allow detection of a violation of the

CHSH inequality. We expect the angles for each value of σ to be slightly different but

restrict them all to be positive in keeping with the interpretation of the pulse areas we

use to define them.

However, this optimisation process produces no noticeable increase in the tolerance.

We find σcrit1.2 = σcrit1.1 = 0.0870 to be the limit at which the system is no longer able to

violate the CHSH inequality so the graph perfectly matches that seen in Fig. 5.8. The

measurement settings at the limit, σcrit1.2 = 0.0870, are shown in Fig. 5.9.
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Figure 5.9: Uncorrelated additive noise, optimum measurement settings keeping α1 =
0 when σcrit1.2 = 0.870, α2 = 2.36, β1 = 4.83, β2 = 4.59.

5.4.1.3 Optimising over all angles

We now optimise over all the angles to see if this provides an increase in the tolerance

of the system. But in doing so we find no improvement and the results again match

the graph in Fig. 5.8, σcrit1.3 = σcrit1.2 = σcrit1.1 = 0.0870. Again the measurement settings

are different at the limit, σcrit1.3 = 0.0870, and are shown in Fig. 5.10.

Figure 5.10: Uncorrelated additive noise, optimum measurement settings optimising
over all angles when σcrit1.3 = 0.870, α1 = 4.99, α2 = 4.66, β1 = 6.25, β2 = 1.98.

5.4.1.4 Discussion

We have not been able to find any improvement in the limit of σcrit that produces a

violation of the CHSH inequality as we can see in Fig. 5.11.
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Figure 5.11: Uncorrelated additive noise comparison between the optimisation pro-
cesses. It is clear to see no improvement in the tolerance but we have found different
sets of measurement settings that produce the same results.

For uncorrelated additive noise each set of optimised meaurement settings at each

stage give the same σcrit1.3 = σcrit1.2 = σcrit1.1 = σcrit. We can understand this by studying

the expression for S,

S = exp(−4σ2)
[
− 3

8

(
cos 2(α1 − β1) + cos 2(α1 − β2) + cos 2(α2 − β1)− cos 2(α2 − β2)

)
,

− 5

8

(
cos 2(α1 + β1) + cos 2(α1 + β2) + cos 2(α2 + β1)− cos 2(α2 + β2)

)]
.

(5.36)

The noise affects all the terms in the expression, so once we have found the maxi-

mum value for the expression in the square brackets we cannot do better as all the

measurement settings are suppressed equally by the noise.

In each of the optimisation stages the measurement settings change very slightly as σ

is increased, but we are only considering the measurement settings to three significant

figures, to this accuracy the measurement settings remain the same throughout the

range of σ. This means that it is not important to know what σ is as using any of

the optimum set of measurement settings we have found will produce the same results

regardless of σ.

5.4.2 Correlated additive noise

As explained in Sec. 5.2.4 correlated additive noise can arise from fluctuations in the

length of the laser pulse, this comes from the first EOM in the purple dashed box in
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Fig. 5.5. The expectation value of a joint measurement between Alice and Bob is shown

in Eq. (5.32). The measurement noises here are correlated meaning β can be written

in terms of α, the normal distributions follow

α = N (µα, σα),

β = N (µβ + (α− µα), σβ),
(5.37)

where µx is the mean of the random variable x and σ is the standard deviation. We

are interested in the addition and subtraction of these angles for the expectation value,

they follow,

2(α− β) = N (2(µα − µβ), 2(σα − σβ)),

2(α+ β) = N (2(µα + µβ), 2(σα + σβ)).
(5.38)

We assume perfect noise correlation. This represents an extreme case and the actual

correlation may be less. But this assumption allows us to observe any effects more

clearly, σ = σα = σβ so

2(α− β) = N (2(µα − µβ), 0),

2(α+ β) = N (2(µα + µβ), 4σ).
(5.39)

Using these definitions we construct the whole CHSH value for correlated additive noise

S =〈α1β1〉+ 〈α1β2〉+ 〈α2β1〉 − 〈α2β2〉

=− 3

8

[
cos 2(µα1 − µβ1) + cos 2(µα1 − µβ2)

+ cos 2(µα2 − µβ1)− cos 2(µα2 − µβ2)
]

− 5

8
exp(−8σ2)

[
cos 2(µα1 + µβ1) + cos 2(µα1 + µβ2)

+ cos 2(µα2 + µβ1)− cos 2(µα2 + µβ2)
]
.

(5.40)

Now we have an expression for S we can start to look at the tolerance of the system

5.4.2.1 Fixed angles

We use the same arbitrary set of fixed angles as in the uncorrelated additive section

(Fig. 5.7) because in the case of no noise, σ = 0, the two expressions for S with

uncorrelated and correlated additive noise are the same. Using these fixed angles and

varying σ the greatest error the system can experience whilst still violating the CHSH

inequality is σcrit2.1 = 0.0719 as shown in Fig. 5.12
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Figure 5.12: Correlated additive noise with fixed angles. Keeping the measurement
angles fixed for all σ the S value steadily decreases. The critical value, σcrit1.2 = 0.0719.

In an attempt to improve this tolerance we proceed to the second stage.

5.4.2.2 Optimising angles keeping α1 = 0

As we did in the uncorrelated additive noise process we fix α1 = 0 and optimise α2, β1

and β2 for each value of σ, again we expect the angles to be positive and different

depending on the value of σ.

This optimisation produces a very slight improvement on the tolerance taking it up

to σcrit2.2 = 0.0721 as shown in Fig. 5.13.
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Figure 5.13: Correlated additive noise with α1 = 0 and optimising over the other
angles. Fixing α1 = 0 and optimising the other measurement angles for each value of
σ we find σcrit1.2 = 0.0721 a slight increase from the fixed angles.

The measurement settings at the limit σcrit2.2 = 0.0721 are shown in Fig. 5.14.

Figure 5.14: Correlated additive noise, optimum measurement settings keeping α1 =
0 when σcrit2.2 = 0.0721, α1 = 0, α2 = 2.36, β1 = 4.83, β2 = 4.60

To try to push this tolerance even further we now optimise over all the angles.

5.4.2.3 Optimisation over all angles

Optimising over all angles produces the same graph as we found in the previous sub-

section (Fig. 5.13), where the tolerance is σcrit2.3 = σcrit2.2 = 0.0721. But again the mea-

surement angles at the limit are different and are shown in Fig. 5.15.
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Figure 5.15: Optimum measurement settings optimising over all angles when σcrit2.3 =
0.0721, α1 = 4.91, α2 = 4.65, β1 = 6.27, β2 = 2.10.

5.4.2.4 Discussion

Although we have found a very slight improvement we do not think that it is significant

we will show why later, however, it is important to understand how this improvement

occurs. The graph in Fig. 5.16 indicates a value of σ = 0.0720 that does not produce

a violation in the unoptimised case but in both optimised cases does, to understand

why this difference is possible we look at the expression for S. When σ = 0.0720 using

Eq. (5.40) in the unoptimised case,

S = 0.546 + 1.52 exp(−8σ2), (5.41)

and in both the optimised cases,

S = 0.562 + 1.50 exp(−8σ2). (5.42)

The reason we are able to improve upon the results is due to the noise only acting on

one part of the expressions for S. The optimised cases have found a set of angles that

increase the expression that is not affected by the noise but also decrease the expression

that is suppressed by the noise, thus leading to an improved S value compared to the

unoptimised settings.
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Figure 5.16: Example of a value of σ that produces a violation in the optimised cases
but not when the angles are fixed. The black dot-dashed line shows the arbitrary
fixed angle case (Sec. 5.4.2.1). The purple solid line shows the two optimisation pro-
cesses, fixing α1 = 0 (Sec. 5.4.2.2) and optimising over all angles (Sec. 5.4.2.3), these
produce the same results and so cannot be distinguished from one another.

As we have stated, we do not believe that the difference in the S value in the unop-

timised versus the optimised cases is significant. To test this we use the fully optimised

measurement settings (Sec. 5.4.2.3) when σ = 0.035 as fixed angles and calculate S over

the range of σ and compare these to the S values in the unoptimised case (Fig. 5.17).

We pick these measurement settings because the optimised measurement settings for

each σ change slightly over the range of σ and σ = 0.035 lies roughly in the middle of

the violating range so we take these to be an “average”.
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Figure 5.17: Comparing two sets of fixed angles over the range of σ. The black dot-
dashed line shows the arbitrary fixed angle case (Sec. 5.4.2.1) and the green solid line
is created using the fixed angles found when σ = 0.035 in the fully optimised case
(Sec. 5.4.2.3). The inset shows a highly magnified image of the point at which both
sets of angles cease to violation the CHSH inequality.

As we can see from Fig. 5.17 using the arbitrary fixed angles at σ = 0.071986 the S

value is 2 whereas if when we use an optimised set of fixed angles found when σ = 0.035,

S = 2.00014 which is an improvement but this is only a 0.014% increase and so we do

not consider it to be significant. This means that similar to the uncorrelated additive

case, the actual value of σ in the experiment is not so significant, any of the sets of

fixed optimised angles will give roughly the same S values.

5.4.3 Uncorrelated multiplicative noise

Uncorrelated multiplicative noise could come from variations in the pulse heights from

the secondary EOMs in the blue box in Fig. 5.5. It is uncorrelated as the EOMs are

independent. The measurement settings follow these normal distributions,

α =N (µα, fµα),

β =N (µβ, fµβ),
(5.43)

where f is the multiplicative noise factor. We are interested in the expectation values

of joint measurements Alice and Bob perform on their subsystems (Eq. (5.32)), the
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normal distribution of the additions and subtractions of α and β are as follows

2(α+ β) = N
(

2(µα + µβ), 2f
√

(µα)2 + (µβ)2

)
,

2(α− β) = N
(

2(µα − µβ), 2f
√

(µα)2 + (µβ)2

)
,

(5.44)

making the full CHSH value look like,

S =〈α1β1〉+ 〈α1β2〉+ 〈α2β1〉 − 〈α2β2〉

=− 3

8

[
exp(−2f2(µ2

α1
+ µ2

β1)) cos 2(µα1 − µβ1) + exp(−2f2(µ2
α1

+ µ2
β2)) cos 2(µα1 − µβ2)

+ exp(−2f2(µ2
α2

+ µ2
β1)) cos 2(µα2 − µβ1)− exp(−2f2(µ2

α2
+ µ2

β2)) cos 2(µα2 − µβ2)
]

− 5

8

[
exp(−2f2(µ2

α1
+ µ2

β1)) cos 2(µα1 + µβ1) + exp(−2f2(µ2
α1

+ µ2
β2)) cos 2(µα1 + µβ2)

+ exp(−2f2(µ2
α2

+ µ2
β1)) cos 2(µα2 + µβ1)− exp(−2f2(µ2

α2
+ µ2

β2)) cos 2(µα2 + µβ2)
]
.

(5.45)

We begin by finding fixed angles that maximise this expression with no noise.

5.4.3.1 Fixed angles

The arbitrary set of angles we have chosen that maximise the expression with no noise

are shown in Fig. 5.18.

Figure 5.18: Uncorrelated multiplicative noise, arbitrary set of measurement settings,
optimised with no noise. α1 = 0.0274, α2 = 5.86, β1 = 4.76, β2 = 1.30.

Again these measurement settings are not unique and we have picked these par-

ticular ones at random. Fixing these angles and varying over f the tolerance of the

uncorrelated system is f crit3.1 = 0.0200 as shown in the black dot-dashed line in Fig. 5.21.

We start our optimisation process again by fixing α1 = 0 and varying the other

angles to attempt to increase the tolerance of the system.
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5.4.3.2 Optimising angles keeping α1 = 0

By fixing α1 = 0 and varying the other angles for each value of f we find an improvement

in the critical value of S where the system will still provide a violation of the CHSH

inequality, f crit3.2 = 0.0739 as shown in the red dashed line in Fig. 5.21.

The optimum measurement settings at this limit, f crit3.2 = 0.0739, are shown in Fig. 5.19.

Figure 5.19: Uncorrelated multiplicative noise, optimum measurement settings keep-
ing α1 = 0 when f crit3.2 = 0.0739, α2 = 2.28, β1 = 1.69, β2 = 1.46.

We now perform the final optimisation where we vary all angles over the range of f .

5.4.3.3 Optimising over all angles

By optimising all the angles over the range of f we find the tolerance of the system can

be improved up to f crit3.3 = 0.190 as shown in the blue solid line in Fig. 5.21 which is a

very good improvement.

The optimum measurement settings at this limit, f crit3.3 = 0.190, are shown in Fig. 5.20.

Figure 5.20: Uncorrelated multiplicative noise, optimum measurement settings opti-
mising over all angle when f crit3.3 = 0.190, α1 = 1.28, α2 = 0.0298, β1 = 1.28, β2 =
0.0298.
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Figure 5.21: Uncorrelated multiplicative noise. By optimising the measurement set-
tings large improvements in the tolerance of the system f crit can be made. The black
dot-dashed line represents the fixed angle case where f crit3.1 = 0.200 (Sec. 5.4.3.1).
The red dashed represents the case where α1 = 0 and the other angles are optimised,
f crit3.2 = 0.739 (Sec. 5.4.3.2). The blue solid line shows the fully optimised case where
f crit3.3 = 0.190 (Sec. 5.4.3.3).

See Appendix F for the full range of each of the individual graphs.

5.4.3.4 Discussion

Vast improvements can be made to the tolerance of the system, up to 19%, just by

changing the measurement settings Alice and Bob use.

The expression for S in the uncorrelated multiplicative case is much more compli-

cated than the previous additive cases but we can still understand why we are able

to find these improvements by looking at the construction. Writing S in a slightly

different way we see

S = exp(−2f2(µ2
α1

+ µ2
β1))

[
− 3

8
cos 2(µα1 − µβ1)− 5

8
cos 2(µα1 + µβ1)

]
+ exp(−2f2(µ2

α1
+ µ2

β2))
[
− 3

8
cos 2(µα1 − µβ2)− 5

8
cos 2(µα1 + µβ2)

]
+ exp(−2f2(µ2

α2
+ µ2

β1))
[
− 3

8
cos 2(µα2 − µβ1)− 5

8
cos 2(µα2 + µβ1)

]
+ exp(−2f2(µ2

α2
+ µ2

β2))
[3

8
cos 2(µα2 − µβ2) +

5

8
cos 2(µα2 + µβ2)

]
.

(5.46)
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By choosing the case where f = 0.18 as this produces a violation for the fully optimised

case but not for the other cases (Fig. 5.22) we look at the numerical expressions for S

in the three cases.

0.16 0.17 0.18 0.19 0.20

0.5

1.0

1.5

2.0

f

S

Figure 5.22: Uncorrelated multiplicative noise, example of a value of f that leads to a
violation in the fully optimised case but not in the others. The black dot-dashed line
shows the optimum values of S found using an arbitrary set of angles (Sec. 5.4.3.1).
The red dashed line shows the optimum values of S found when optimising the an-
gles, fixing α1 = 0 (Sec. 5.4.3.2). The blue solid line shows the optimum values of S
found optimising over all the angles (Sec. 5.4.3.3).

Using the optimum measurement angles found when f = 0.180, in the non-optimised case

S = exp(−133f2)
[
0.384

]
+ exp(−81.7f2)

[
0.985

]
+ exp(−104f2)

[
− 0.247

]
+ exp(−52.7f2)

[
− 0.940

]
,

(5.47)

in the partially optimised case

S = exp(−5.29f2)
[
0.994

]
+ exp(−4.21f2)

[
0.972

]
− exp(−15.1f2)

[
− 0.247

]
+ exp(−14.0f2)

[
− 0.324

]
,

(5.48)
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and in the fully optimised case

S =− exp(−6.49f2)
[
− 0.609

]
+ exp(−3.25f2)

[
0.836

]
+ exp(−3.25f2)

[
0.836

]
+ exp(−0.0037f2)

[
0.995

]
.

(5.49)

Each of the four parts of the expression, which represent the four expectation values,

are affected by a different factor of the noise. By changing the measurement angles

a balance can be found producing the maximum value of S. This is why we are able

to increase the tolerance of the system by such a large degree by simply changing

the measurement angles. This change can be seen by looking at the values in the

exponentials, in the unoptimised case the numbers are very large and in each of the

following optimisation processes these are significantly reduced.

It is an unexpected result that when optimising over all angles the optimum mea-

surement angles are the same. One way to test to see if this result is valid is to use these

optimum angles in a standard CHSH inequality test with no errors. If this provides a

violation of the CHSH inequality then we can be sure that the result is correct even if it

is surprising, however if there is no violation then there would appear to be something

strange going on that would require further investigation.

Unfortunately when we performed this test we found that there was no violation

in the standard CHSH inequality test with no errors. There was however a violation

when using these errors in the CHSH inequality defined by the expectation values of

Cosine defined in Appendix ?? suggesting these are not equivalent. Investigation into

these differences in left for further work.

5.4.4 Correlated multiplicative noise

Correlated multiplicative noise can arise from variations in the pulse height of the first

EOM in the purple box in Fig. 5.5, it is correlated as Alice and Bob both feel the same

effect of the noise.

As α and β are correlated we can write β in terms of α

β = µβ + (α− µα)
µβ
µα
, (5.50)

and the additions and subtractions of the measurement settings in Eq. (5.32) follow

the normal distributions

2(α+ β) = 2α(1 +
µβ
µα

) = N (2(µα + µβ), 2f(µα + µβ)),

2(α− β) = 2α(1−
µβ
µα

) = N (2(µα − µβ), 2f(µα − µβ))),
(5.51)
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using these distributions the full CHSH value can be written as

S = 〈α1β1〉+ 〈α1β2〉+ 〈α2β1〉 − 〈α2β2〉

= −3

8

[
exp(−2(f(µα1 − µβ1))2) cos 2(µα1 − µβ1)

+ exp(−2(f(µα1 − µβ2))2) cos 2(µα1 − µβ2)

+ exp(−2(f(µα2 − µβ1))2) cos 2(µα2 − µβ1)

− exp(−2(f(µα2 − µβ2))2) cos 2(µα2 − µβ2)
]

−5

8

[
exp(−2(f(µα1 + µβ1))2) cos 2(µα1 + µβ1)

+ exp(−2(f(µα1 + µβ2))2) cos 2(µα1 + µβ2)

+ exp(−2(f(µα2 + µβ1))2) cos 2(µα2 + µβ1)

− exp(−2(f(µα2 + µβ2))2) cos 2(µα2 + µβ2)
]
.

(5.52)

Using this expression we begin the optimisation process by using arbitrary fixed angles

for the system found when the system has no noise.

5.4.4.1 Fixed angles

The arbritrary set of angles we are using that optimise the system with no noise are

shown in Fig. 5.23.

Figure 5.23: Correlated multiplicative noise, arbitrary set of optimum measurement
settings with no noise. α1 = 6.20, α2 = 4.89, β1 = 5.32, β2 = 1.56.

As before, these angles are not unique and we pick them at random. Using these

fixed angles over the full range of f we find the maximum tolerance of the system is

f crit4.1 = 0.0165 as shown in the black dot-dashed line in Fig. 5.26. This figure is very

low so we move on to the second optimisation process in the hope of increasing it

5.4.4.2 Optimising angles keeping α1 = 0

Here we fix α1 = 0 to reduce the complexity of the problem, expecting the optimum

angles for each value of f to differ. This optimisation does increase the tolerance in the
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system up to f crit4.2 = 0.0720 as seen in the red dashed line in Fig. 5.26, which is a big

increase from using the fixed angles.

The optimum angles at the limit, f crit4.2 = 0.0720, are shown in Fig. 5.24.

Figure 5.24: Correlated multiplicative noise, optimum measurement settings keeping
α1 = 0 when f crit4.2 = 0.0720, α2 = 0.455, β1 = 1.751, β2 = 1.78.

To try to push this tolerance further we optimise over all of the angles.

5.4.4.3 Optimising over all angles

Optimising over all the angles makes a huge impact on the tolerance of the system, we

are able to find angles which push the tolerance up to f crit4.3 = 0.182 as seen in Fig. 5.26.

Here the optimum angles at the limit, f crit4.3 = 0.182, are shown in Fig. 5.25.

Figure 5.25: Correlated multiplicative noise, optimum measurement settings optimis-
ing over all angles when f crit4.3 = 0.182, α1 = 1.52, α2 = 0.000227, β1 = 1.52, β2 =
0.000227.
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Figure 5.26: Correlated multiplicative noise. By optimising the measurement settings
large improvements can be made to the tolerance of the system, f crit. The black dot-
dashed line show the case using arbitrary fixed angles, f crit4.1 = 0.0165 (Sec. 5.4.4.1).
The red dashed line shows the case where α1 = 0 and the other angles are optimised,
f crit4.2 = 0.0720 (Sec. 5.4.4.2). The blue solid line shows the fully optimised case where
f crit4.3 = 0.182 (Sec. 5.4.4.3).

5.4.4.4 Discussion

As opposed to the additive noise case, simply by optimising the angles of measurement

we can improve the tolerance of the system all the way up to 18% which bodes very

well for use in an actual experiment.

To understand why we find this large improvement we look at the expression for S

S =− 3

8

(
cos 2(α1 − β1) + cos 2(α1 − β2) + cos 2(α2 − β1)− cos 2(α2 − β2)

)
− 5

8

(
exp(−2f2(α1 + β1)2) cos 2(α1 + β1) + exp(−2f2(α1 + β2)2) cos 2(α1 + β2)

+ exp(−2f2(α2 + β1)2) cos 2(α2 + β1)− exp(−2f2(α2 + β2)2) cos 2(α2 + β2)
)]
.

(5.53)

We look at how the expression for S changes when f = 0.170 as this produces a violation

in the fully optimised case but not in the other two, Fig. 5.27.
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Figure 5.27: Correlated multiplicative noise, example of a value of f that leads to a
violation in the fully optimised case but not in the others. The black dot-dashed line
shows the optimum values of S found using an arbitrary set of angles (Sec. 5.4.4.1).
The red dashed line shows the optimum values of S found when optimising the an-
gles, fixing α1 = 0 (Sec. 5.4.4.2). The blue solid line shows the optimum values of S
found optimising over all the angles (Sec. 5.4.4.3).

In the unoptimised case

S =0.313 exp(−265f2)− 0.00214 exp(−208f2) + 0.614 exp(−120f2)

+ 0.591 exp(−83.2f2) + 0.371 exp(−43.1f2) + 0.349 exp(−22.2f2)

+ 0.0706 exp(−1.55f2)− 0.245 exp(−0.370f2).

(5.54)

In the partially optimised case

S = −0.339 exp(−8.57f2) + 0.849 exp(−6.84f2) + 0.596 exp(−5.93f2)

− 0.373 exp(−5.30f2) + 0.991 exp(−4.51f2) + 0.314 exp(−3.28f2),
(5.55)

and finally in the fully optimised case

S =− 0.614 exp(−18.6f2) + 0.622 exp(−4.64f2) + 0.622 exp(−4.64f2)

+ 0.373 exp(−4.64f2) + 0.373 exp(−4.64f2) + 0.625.
(5.56)

Once again through the process of optimisation we are able to find measurement angles

that allow a balance to be struck between increasing the part of the expression that is

not affected by noise and decreasing the part of the expression that is suppressed by

the noise. The value in the exponential decreases through the optimisation process.
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As in the previous section the fact the optimum angles are the same is surprising

and possibly not reliable.

5.5 Experimental feasibility

We have seen that the tolerance of the system can be improved with some types of

errors simply by changing the measurement angles Alice and Bob use. To ensure that

this proposal is realistic we look at a reasonable set of errors and calculate the number

of trials needed to reproduce these values.

The maximum value of S for our system with a maximum of one particle in the

reference frame is S = 2.0616. This can be found using the argument in [1]. The

argument is structured as follows.

From Eq. (5.13) we can see that ν is maximal for pure product states, |a′〉 and |b′〉
for Alice and Bob respectively. As Eq. (5.13) only considers the real parts of the state

we only need to worry about the real coefficients of the pure product states which can

be written as

|a′〉 =
N∑
n=0

an |n〉 ,

|b′〉 =
M∑
m=0

bm |m〉 ,

(5.57)

where an, bm ∈ R. For these types of pure states, setting ∆ = 1, we can write the

non-vanishing expectation from Eq. (5.13) as,

ν =fNgM ,

fN ≡ 〈a′|R+ |a′〉 =
N−1∑
n=0

anan+1,

gN ≡ 〈b′|R− |b′〉 =
M−1∑
m=0

bmbm+1,

(5.58)

where N,M represents the number of particles in Alice and Bobs reference frame re-

spectively. To find the maximum of S it is necessary to maximise ν as can be seen

from Eq. (5.20). As fN and gM are of the same form, we need only concentrate on fN .

〈a′|R+ |a′〉 = 〈b′|R− |b′〉 for states with real coefficients, so fN = 1
2 〈a

′| (R+ + R−) |b′〉.
As R+ + R− is Hermitian the maximum of fN is found when |a′〉 is an eigenvector of

R+ +R− with the highest eigenvalue,

max fN = cos

(
π

N + 2

)
,

max gM = cos

(
π

M + 2

)
,

(5.59)
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in our system N = M as there is at most one particle on each side, making

ν = cos2

(
π

N + 2

)
, (5.60)

the maximum value of S from Eq. (5.20) is given by,

S = 2
√

1 + ν2 = 2

√
1 + cos4

(
π

N + 2

)
. (5.61)

A reference frame with at most one particle on each side, N = 1 implies

S = 2

√
1 + cos4

(π
3

)
= 2.0616. (5.62)

As soon as we start to include any type of error this maximum value of S will be

decreased. For the experiment to prove that there is entanglement we need to show

that the violation of the CHSH inequality is not just due to the spread of values. The

mean of the spread must be far enough away from 2 that we be confident it is due to

entanglement, not due to random errors.

To see how many trials it would take to safely say the violation is due to entangle-

ment rather than errors, as an example, we set the instrumental noise to be σS = 0.01,

taking the value of S ≈ 2.04 making the mean four standard deviations away from

the limit 2 which is far enough to show that the true value of S is above 2 at a 95%

confidence level. We know that S = 〈α1β1〉+ 〈α1β2〉+ 〈α2β1〉− 〈α2β2〉, as we want the

overall uncertainty of S to be 0.01, the quadrature sum of these individual uncertainties

must add up to 0.01 assuming independent errors.

Each of the terms will give a ±1 result with some probability. The distribution of

±1 will follow a binomial distribution. In the usual binomial distribution the following

formulas hold [61]

〈X〉 = np,

σ2 = np(1− p),
(5.63)

where X is the number of successes in n trials. In our circumstance these are slightly

different as our possible results are ±1 rather than 0, 1. Our expectation value is the

summation of all possible results divided by the number of results. We get +1, np

times and −1, n(1− p) times

〈αβ〉 =
nαβpαβ − nαβ(1− pαβ)

nαβ
= 2pαβ − 1, (5.64)

moving on to the variance again we need to modify the previous result. We have

increased the range of the results from 0 → 1 to −1 → +1 i.e. doubling it, as the

variance is squared this results in multiplying the previous result by 4 so the variance
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of our system after n trials looks like

σ2
αβ(n) = 4nαβpαβ(1− pαβ), (5.65)

this implies that the average standard deviation is

σαβ =
1
√
nαβ

2
√
pαβ(1− pαβ). (5.66)

The standard deviation, σS , as previously mentioned is the quadrature sum of the

individual variances, we assume n = nα1β1 = nα1β2 = nα2β1 = nα2β2 .

σS =
√
σ2
α1β1

+ σ2
α1β2

+ σ2
α2β1

+ σ2
α2β2

=

√
4

n
(pα1β1(1− pα1β1) + pα1β2(1− pα1β2) + pα2β1(1− pα2β1) + pα2β2(1− pα2β2)),

(5.67)

which implies

n =
4

0.012
(pα1β1(1−pα1β1)+pα1β2(1−pα1β2)+pα2β1(1−pα2β1)+pα2β2(1−pα2β2)), (5.68)

the total number of runs over the whole experiment will be nT = 4n as there are four

sets of measurements that contribute to the S value. We will calculate the number of

runs required for the worst case in both the additive and multiplicative noise models.

If S ≈ 2.04 the measurement settings for this value in the correlated additive noise case

are shown in Fig. 5.28.

Figure 5.28: Optimised measurement settings when σ = 0.04, α1 = 4.91, α2 =
4.64, β1 = 6.27, β2 = 2.11.
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Making

pα1β1 = 0.958,

pα1β2 = 0.674,

pα2β1 = 0.990,

pα2β2 = 0.254.

(5.69)

Using these values, n = 18353 and nT = 73413 assuming it takes approximately 5

seconds per measurement [109] the whole experiment would take almost 102 hours to

complete.

Whereas in the correlated multiplicative case

Figure 5.29: Optimised measurement settings when f = 0.085, α1 = 1.27, α2 =
0.0322, β1 = 1.27, β2 = 0.0322.

making

pα1β1 = 0.214,

pα1β2 = 0.0938,

pα2β1 = 0.906,

pα2β2 = 0.00260,

(5.70)

using these values n = 13632 and nT = 54526 assuming it takes approximately 5

seconds per measurement [109] the whole experiment would take just about 76 hours

to complete.

These time periods are reasonable for an experiment of this kind [110]. However to

be able to get this sort of result requires a very good experiment which is not impossible

but the S value would rely on the actual experimental parameters. As we know the

maximum value for S in our example system is S = 2.06155 which is very close to 2 so

the noise in the system need to be low to allow the violation. If we cannot reach the

low noise levels required then the experiment may not detect any violation and hence

fail to verify the entanglement. In this case we might consider using a larger reference

frame. If we had a reference frame of at most two particles, this state can be found

124



using the operations described in [1] where first we find a separable state with N = 2

using Eq. (5.71) to find the amplitudes of the eigenstates,

an =

√
2

N + 2
sin

(
π(n+ 1)

N + 2

)
, (5.71)

where n = 0, 1, . . . , N . This produces the separable state

|ψsep〉 =

(
1

2
|0〉+

1√
2
|1〉+

1

2
|2〉
)
A

⊗
(

1

2
|0〉+

1√
2
|1〉+

1

2
|2〉
)
B

, (5.72)

This state is separable but it is not compatible with SSR, to make it compatible we

perform a twirling operation on it. Twirling removes all the coherences in the state

that do not comply with SSR. In the particle number SSR twirling would remove the

coherences between states with different numbers of particles. For example, |11〉 〈20|
would not be affected as the two states have the same number of particles, however

|20〉 〈10| would be removed as there is 2 particles in one state and 1 particle in the

other. The formal definition of twirling is written as follows

T (ρ) ≡
∑
n

∏
n

ρ
∏
n

, (5.73)

where
∏
n is a projector on a subspace with a fixed number of particles n [1]. Taking

our separable state ρsep = |ψsep〉 〈ψsep| and performing the twirling operation we get

T (ρsep) =
1

16
|00〉 〈00|+ 1

8
|01〉 〈01|+ 1

8
√

2
|01〉 〈10|+ 1

16
|02〉 〈02|+ 1

8
|02〉 〈11|

+
1

16
|02〉 〈20|+ 1

8
|10〉 〈01|+ 1

8
|10〉 〈10|+ 1

8
|11〉 〈02|+ 1

4
|11〉 〈11|

+
1

8
|11〉 〈20|+ 1

4
√

2
|12〉 〈12|+ 1

4
√

2
|12〉 〈21|+ 1

16
|20〉 〈02|

+
1

8
|20〉 〈11|+ 1

16
|20〉 〈20|+ 1

8
|21〉 〈12|+ 1

8
|21〉 〈21|+ 1

16
|22〉 〈22| .

(5.74)

If we were to use this state in our experiment the maximum S value would be increased

N = 2, S = 2

√
1 + cos4

π

4
= 2.23, (5.75)

using this reference frame means we are no longer at the limit of violation but com-

fortably away from 2 allowing some of the other restrictions on the system to relax.

However, physically creating this state is more difficult.

5.6 Non-ideal state preparation

In all of the work previously we have assumed that the state preparation has been

perfect and consistent. This is unlikely to be the case. In this section we explore
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two cases of imperfection in the state preparation. The first case where the principle

system is not maximally entangled. And the second case where the reference frame is

still separable but not mixed in the same manner.

5.6.1 Principal system not maximally entangled

The principal system when maximally entangled looks like,

|ψ〉 =
1√
2

(|23〉+ |32〉), (5.76)

However, this may not be the case due to errors or imperfections in the creation process.

By writing the state in terms of θ we can see what effect this has on the value of S.

The principle system is now defined by

|ψ′〉 = cos θ |23〉+ sin θ |32〉 , (5.77)

where 0 ≤ θ ≤ π
2 . Assuming that the measurements are perfect and the rest of the state

preparation is perfect we varying only θ, this produces the graph shown in Fig. 5.30.
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Figure 5.30: Non-ideal principal system. Assuming everything is perfect except the
principal system state preparation we see how the S value is affected.

This graph proves that in principle we should always be able to violate the CHSH

inequality except in the cases where this principle system contains no entanglement at

the extremes of θ.

5.6.2 Variations in the reference frame

We now look at the case where the reference frame changes. Initially it is written as

ρref =
1

2
ρφ +

1

2
(|00〉 〈00|+ |11〉 〈11|), (5.78)

where ρφ = 1
2(|01〉 〈01|+ |01〉 〈10|+ |10〉 〈01|+ |10〉 〈10|) we now write this as

ρ′ref = p

(
1 + r

2
|00〉 〈00|+ 1− r

2
|11〉 〈11|

)
+ (1− p)ρφ, (5.79)

where 0 ≤ p ≤ 1,−1 ≤ r ≤ 1 this allows us to vary each element.

It is vital that the reference state remains separable so that if any entanglement is

detected we can be sure that it came from the principle state and not the reference

frame. To ensure that it is separable the eigenvalues of the partial transpose must be

positive [106, 107].
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The partial transpose of the state in the {|00〉 , |01〉 , |10〉 , |11〉} basis looks like
p1+r

2 0 01−p
2

0 1−p
2 0 0

0 0 1−p
2 0

1−p
2 0 0 p1−r

2

 , (5.80)

with eigenvalues

1− p
2

,
1− p

2
,
1

2
(p−

√
1− 2p+ p2 + p2r2),

1

2
(p+

√
1− 2p+ p2 + p2r2), (5.81)

we can create a region plot that shows the area where p and r would allow for positive

eigenvalues, this can be seen in Fig. 5.31
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Figure 5.31: Region of separability of reference frame. The shaded area shows the
values of p and r that allow a separable reference state.
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Now we know the region in which the state is separable we can look at how p and

r individually effect the value of S.

5.6.2.1 Effect of r on S

The expression for the expectation value of two measurements α and β in terms of p, r

looks like

E(α, β, p) = − cos 2α cos 2β − p− 1

2
sin 2α sin 2β, (5.82)

clearly it does not depend on r so we do not need to worry about r, for simplicity we

set it to r = 0 and continue to see the effect of p on S.

5.6.2.2 Effect of p on S

By setting r = 0 and varying p we assume the principal system is the maximum

obtainable and perfectly prepared. We optimise the measurement settings and see a

steady decrease in the value of S as p increases (Fig. 5.32). This is to be expected as

the reference state itself is not entangled and p controls how much of the ρφ state, the

entangled element, there is in the reference frame.
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Figure 5.32: Non-ideal reference frame. By varying p, setting r = 0 and assuming the
principle state preparation is perfect we see the larger the input of p the lower the
violation of the CHSH inequality.
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5.6.3 Varying both θ and p

We have seen how θ and p both affect the value of S separately but it is likely that

these errors causing changes in θ and p will happen simultaneously so we look to see

how this affects the value of S in Fig. 5.33.
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Figure 5.33: Non-ideal principal state and reference frame. We vary θ and p within
the parameters in Fig. 5.31 to ensure the reference frame remains separable. It is still
possible to violate the CHSH inequality up until the extremes of θ and p.

Once again we can always detect a violation of the CHSH inequality except in the

case where p = 1 and the state contains no entanglement.

5.7 Creating the state

Although we have a purely theoretical approach to this problem it is important that

we take into account how one might go about experimentally realising it. We do not

pretend to have a solution to this problem, but suggest possible ideas that could be

used in further research.

5.7.1 Reference frame

For the reference frame, Alice and Bob must share the 1√
2
(|01〉+ |10〉) state this could

be realised by adiabatically bringing two wells together, one that has no particles in it

and one that has one particle. Bringing them together adiabatically means there is no

increase in energy of the system, once they are together and share the same space, they

can then be separated again giving Alice and Bob back their wells, this means they
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will not know if they have a particle or not [49]. This is a very simplified description

of the process.

5.7.2 Principal system

Making the principal system that looks like 1√
2
(|23〉+|32〉) could be realised in a similar

manner to the reference frame but with wells with 2 and 3 particles ensuring the other

states such as |14〉 and |50〉 needed more energy and so would not be populated.

Ideally to address the question of single particle entanglement we would like to

start with a principle system that just shares 1 particle, 1√
2
(|01〉+ |10〉), find coherent

operations to shift the photon number, then by adding 2 particles to both Alice and

Bob’s sides we could create the principal state, 1√
2
(|23〉 + |32〉) that we want. This is

preferable as it is easier to make due to only one particle tunneling between the two sites

we do not have to worry about making certain states unfavourable. The big question is,

can this be done in a coherent manner? If so we can be certain that the single particle

state was entangled. Further research will investigate the resources required.

5.7.3 Charge superselection rule

The issues with creating the state link back to the discussions in the introduction

regarding single particle entanglement. Creating a system where the entanglement of

a single particle can be measured is the ideal goal. In order to realise this we could

think about the problem in terms of charge rather than particle number, this allows us

to have a principal system that is equivalent to the 1√
2
(|01〉+ |10〉) state,

|ψ〉 =
1√
2

(|0,+e〉+ |+e, 0〉), (5.83)

where |0〉 is the state with zero charge and |+e〉 is the state with positive charge. This

state could be easier to physically realise and we can write all the eigenstates as before

but with |j − 2, k − 2〉 for each state due to the charge number having the possibility

of being negative. If we were able to create this state we could repeat the optimisation

processes shown in this chapter to test the entanglement of the system.

5.8 Swapping the reference frame and the principle sys-

tem

Up until now we have been exploring a reference frame and a principle system that we

know will allow for a violation of the CHSH inequality and testing how robust this is

to various errors that could affect it. However, the principal system, 1√
2
(|23〉 + |32〉)

is difficult to physically construct. Ideally we would like the principal system to look

like the reference frame, 1√
2
(|01〉+ |10〉) as this is much easier to realise. We will now

explore how the violation of the CHSH inequality is affected if we swap the principal
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system and the reference system. This swap will only mean we swap the state in A

for the state in A′ and the state in B for the state in B′. Thus making the principle

system look like,

|ψ〉AB =
1√
2

(|01〉+ |10〉), (5.84)

and the reference frame

|φ〉A′B′ =
1

2
(
1

2
(|23〉+ |32〉)(〈23|+ 〈32|)) +

1

4
(|22〉 〈22|+ |33〉 〈33|). (5.85)

As before it is vital that the reference frame is separable to ensure that we can show

that any entanglement in the system is coming purely from the principal system. So

before we go on we must check that the reference frame is separable. Using the positive

partial transpose [106, 107] to show the separability we see the partial transpose as,

ρ
TB′
A′B′ =

1

4
(|23〉 〈23|+ |22〉 〈33|+ |33〉 〈22|+ |32〉 〈32|+ |22〉 〈22|+ |33〉 〈33|), (5.86)

the eigenvalues of the transposed state are 1
2 ,

1
4 ,

1
4 , 0 as they are all positive we can

assume that the state is separable. Now we can check if this state produces a violation.

The eigenstates of the swapped system look like,

|α(−1)〉 = cosα |1, 1〉AA′ + sinα |0, 2〉AA′ ,

|ᾱ(−1)〉 = sinα |1, 1〉AA′ − cosα |0, 2〉AA′ ,

|α(0)〉 = cosα |0, 3〉AA′ + sinα |1, 2〉AA′ ,

|ᾱ(0)〉 = sinα |0, 3〉AA′ − cosα |1, 2〉AA′ ,

|α(1)〉 = cosα |1, 3〉AA′ + sinα |0, 4〉AA′ ,

|ᾱ(1)〉 = sinα |1, 3〉AA′ − cosα |0, 4〉AA′ ,

|β(−1)〉 = cosβ |1, 1〉BB′ + sinβ |0, 2〉BB′ ,

|β̄(−1)〉 = sinβ |1, 1〉BB′ − cosβ |0, 2〉BB′ ,

|β(0)〉 = cosβ |0, 3〉BB′ + sinβ |1, 2〉BB′ ,

|β̄(0)〉 = sinβ |0, 3〉BB′ − cosβ |1, 2〉BB′ ,

|β(1)〉 = cosβ |1, 3〉BB′ + sinβ |0, 4〉BB′ ,

|β̄(1)〉 = sinβ |1, 3〉BB′ − cosβ |0, 4〉BB′ .

(5.87)

However, this set up does not allow a violation of the CHSH inequality, S = 0.5 is

the greatest value possible. As this principal system and reference frame combination

does not allow a violation, we look to find another reference frame that will allow

this violation whilst still being separable, to do this we can play around with adding

combinations of the states |22〉 〈22|, |33〉 〈33|, |23〉 〈23| and |32〉 〈32|. Let us start by
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considering the reference frame,

ρ1
A′B′ =

1

4
(|23〉+ |32〉)(〈23|+ 〈32|) +

1

4
|23〉 〈23|+ 1

4
|32〉 〈32| , (5.88)

checking first that this state is separable

ρ
1TB′
A′B′ =

1

4
(|23〉 〈23|+ |33〉 〈22|+ |22〉 〈33|+ |32〉 〈32|) +

1

4
|23〉 〈23|+ 1

4
|32〉 〈32| , (5.89)

where the eigenstates of this state are 1
2 ,

1
2 ,

1
4 ,−

1
4 , which are not all positive meaning it

is not separable and so not useful for our analysis.

We tried various combinations of each of the additional states with no success, here

is a list of combinations of the states that are not separable

ρ2
A′B′ =

1

4
(|23〉+ |32〉)(〈23|+ 〈32|) +

1

4
|23〉 〈23|+ 1

4
|22〉 〈22| ,

ρ2
A′B′ =

1

4
(|23〉+ |32〉)(〈23|+ 〈32|) +

1

4
|23〉 〈23|+ 1

4
|33〉 〈33| ,

ρ2
A′B′ =

1

4
(|23〉+ |32〉)(〈23|+ 〈32|) +

1

4
|32〉 〈32|+ 1

4
|22〉 〈22| ,

ρ2
A′B′ =

1

4
(|23〉+ |32〉)(〈23|+ 〈32|) +

1

4
|32〉 〈32|+ 1

4
|33〉 〈33| ,

ρ2
A′B′ =

1

4
(|23〉+ |32〉)(〈23|+ 〈32|) +

1

8
|22〉 〈22|+ 1

8
|33〉 〈33|+ 1

8
|23〉 〈23|+ 1

8
|32〉 〈32| .

(5.90)

None of these states provide a violation of the CHSH inequality either. Going back to

the initial state that we tried ρ1
A′B′ = 1

4(|23〉+|32〉)(〈23|+〈32|)+ 1
4 |23〉 〈23|+ 1

4 |32〉 〈32|,
forgetting for a second that it is not a separable state, this does provide a violation of

the CHSH inequality and so perhaps by changing the quantities of each of the elements

of the state it would be possible to make it separable.

ρ1′
A′B′ =

X

2
(|23〉 〈23|+ |23〉 〈32|+ |32〉 〈23|+ |32〉 〈32|) +Y |23〉 〈23|+Z |32〉 〈32| , (5.91)

we want this to be separable so take the partial transpose,

ρ
1′TB′
A′B′ =

X

2
(|23〉 〈23|+ |22〉 〈33|+ |33〉 〈22|+ |32〉 〈32|)+Y |23〉 〈23|+Z |32〉 〈32| , (5.92)

making the eigenvalues −X2 , X2 ,
X
2 + Y, X2 +Z, this shows that there is no way that the

eigenvalues of this state could be positive no matter what mixtures of the individual

elements were used.

We have not been able to find a way of swapping the reference frame and the

principal system to produce a state that violates the CHSH inequality and also has a

separable reference frame. We believe there is more to be found down this channel of

thought but we leave this open for investigation by somebody else.
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5.9 Conclusion

In this work we began by considering whether entanglement of a single particle is

possible. This lead to questions about restrictions on coherent operations due to su-

perselection rules. We saw how superselection rules could be used as a resource and

how reference frames can be used to get around the restrictions that they impose. We

based our work on a system defined by Patereket al. using the minimal reference frame

required in order to violate the CHSH inequality. We aimed to show how errors in

the measurement apparatus affected the detectable entanglement in the system. By

optimising the measurement settings Alice and Bob used to construct the CHSH value

we have shown that in a system with certain types of error the critical value of the

error at which point the CHSH inequality is no longer violated can be vastly improved.

We assumed the measurements were performed by laser pulses controlled by an

EOM. By placing EOMs at different points in the circuit we could have uncorrelated and

correlated errors. The EOMs controlled two elements of the laser beam, the strength

and the time period these errors are multiplicative and additive respectively. Using

the minimal reference frame and ensuring that it was separable so any entanglement

detected could be said to have come from the principal system we tested the system

with the four different types of noise using the CHSH inequality.

Initially we used an arbitrary set of measurement angles to maximise the CHSH

value over the range of the error. We attempted to beat this critical value of error by

a series of optimisations of the measurement settings. We fixed α1 = 0 to reduce the

complexity of the calculations and optimised the measurement settings for each value

of the error. The measurement settings for each value of the error were different. We

then optimised the measurement settings with no restrictions on α1.

For uncorrelated additive error none of the optimisations improved the critical value

of the error, the highest error tolerated was σ = 0.0870. The correlated additive noise

provided a very slightly improvement in the error tolerance from σ = 0.0719→ 0.0721

but by closer inspection of the measurement settings we saw they were identical to our

level of accuracy. The multiplicative error is where the large improvements were seen.

For uncorrelated multiplicative noise the arbitrary angles gave an error tolerance of

f = 0.02 the first optimisation increased this to f = 0.0739 and the second optimisation

increased it to f = 0.190. The correlated multiplicative noise also improved drastically,

the arbitrary angles gave f = 0.0165 improved to f = 0.0720 by the first optimisation

and the to f = 0.182 by the second.

Given these vast improvements in the error tolerance we picked a reasonable set of

errors and tested how long it would take to perform this type of experiment to ensure it

was in line with what could be expected. We saw that in each of the worst cases, where

the error tolerance was the lowest for additive and multiplicative errors, the experiment

would take around 76 and 102 hours respectively.
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We then moved on to look at the impact of errors in the preparation of the state. By

changing the principal system from maximally mixed to an entangled state controlled

by θ and modifying the reference frame but still ensuring its separability we found it

was still possible to always detect entanglement in the system for most values of the

variable parameters.

We briefly discussed ideas of how to create the principal system and the reference

frame with the possibility of using another basis of measurement such as charge as this

allows us to access the superpositions that were previously hard to attain. We also

considered the possibility of swapping the reference frame for the principal system but

found issues with ensuring the separability of the new reference frame.

We found a surprising result in the multiplicative noise scenarios, the optimum

angles for Alice and Bob were found to be the same. Having tested these measurement

angles using a standard CHSH inequality set-up and finding that there is no violation

in this case we are forced to conclude that there may be something no quite right with

our analysis. We leave this for further work.
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CHAPTER 6

Conclusion

Our original aim was to identify situations where physical restraints on the apparatus

that we might us to realise elements of quantum theory could introduce an error causing

our results not to be reliable. As discussed we believe that technology will eventually

develop to be at a quantum scale and standard but until that time we want to be able

to perform experiments. Instead of trying to change the apparatus to fit the theory we

look at the problem from the opposite way around and focus on the changes we can

make to the theory given these physical restraints.

We focused on cluster states as a good candidate for quantum computation and

identified the following errors that arise from the physical constraints of the apparatus,

cross-talk, incomplete measurement, non-ideal states and superselection rules.

The main conclusion to be drawn from this work is that it is possible to perform

a better measurement simply by a simple optimisation. In each case we successfully

reduced the effects of the physical constraints.

We began by considering stabilizer operators in Chapter 3 we predicted that by

modifying the stabilizer operators used to characterise a cluster state we would be

able to reduce or eradicate the level of cross-talk in the measurement process. In this

case the cross-talk arises from the fact the width of the laser beam is larger than the

atom spacing in the cluster state. Although we were able to reduce the cross-talk in the

system we found that we could not eradicate it completely as the sets of HCTF stabilizer

operators were not able to reconstruct the canonical set of stabilizer operators. But by

combining the set of HCTF stabilizer operators with a careful choice of CT-stabilizer

operators the effect of cross-talk can be significantly reduced, almost by half. The fact

we could not find a way to get this reduction down to a half was very frustrating. The

patterns of HCTF stabilizer operators are very symmetrical and we believe there is
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a high probability that we were just unable to find the right pattern to get the 50%

reduction and would encourage further work on this section.

We also defined algorithms to find the set of HCTF stabilizer operators in fixed

width, square and triangle connectivity cluster states. As yet we have not found an

automated way using the HCTF and CT stabilizer operators to find the new equivalent

set, in our work we performed this task manually which is very time consuming and

an automated system would be very helpful. The whole process of finding the reduced

cross-talk set of stabilizer operators is very simple and until measurement apparatus

that match the quantum scale are available our solution provides a large improvement

in the effect of cross-talk on the system.

We then moved on to how a cluster state is formed by cooling a Bose-Einstein

Condensate in Chapter 4 and identified incomplete measurement and non-ideal states

in these systems. We did not attempt to characterise the state using processes such

as full state quantum tomography as, although this would not be such an issue for

the two-party system we examine, there would be no hope of scaling our solution to a

multipartite system due to the exponential numbers of parameters. Instead, we used

a single parameter to examine the impact of incomplete measurement and non-ideal

states, the entanglement.

We began by using the conventional measurement settings in the CHSH inequality

test and found how well the system performed in the presence of the errors caused

by the physical constraints of the system. Using this as a base we optimised the

measurement settings over the error range and found a surprising result. We were

able to show that there is detectable entanglement in the system as long as there are

particles in the system, even if the proportion with the particles is very very small.

This result shows that when there is very small entanglement component we are able

to tune the measurement settings to pick this part out producing the violation in

the Bell inequality, hence detect entanglement. By knowing the errors that affect the

system a simple change in the measurement settings can vastly improve the detectable

entanglement.

Using these optimum measurement settings to vastly improve the detectable entan-

glement is very successful but each of the optimum measurement settings are different

depending on how large the error in the system is, we went on to explore how robust

our discovery was to any uncertainty in the knowledge of the error. We found that even

in the very worst case where we assume our system to have an extremely small propor-

tion of an entangled state the optimum measurement settings still provide detectable

entanglement for all values of the error making our solution completely robust.

In Chapter 5 we also considered the question of single particle entanglement that

has caused great debate. We explain how we believe this to be part of a larger question

about allowed coherent operations. We discuss how superselection rules constrain the

types of coherent operations that are allowed to be performed on our state and describe

how Paterek et al. have shown the minimum reference frame required to get around
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these superselection rules to perform the operations we require. Using the joint system

including a reference frame we focused on the types of errors that can be introduced

from the measurement process due to the apparatus used. Similar to the previous

chapter we optimised the measurement settings in order to increase the tolerance of

the system. Depending on the type of error, we were able to find large improvements in

the tolerance showing that this is a worthwhile process. We did produce an unexpected

result where the measurement angles Alice and Bob use to perform their measurements

are in fact the same. We believe it is worth looking into the definition of the system to

fully understand why this result has occurred. We also looked at non-ideal states and

found that in the case of no error we are still about to detect entanglement even if the

entanglement component approaches zero. We propose that if coherent operations can

be found to transform the 1√
2
(|01〉 + |10〉) to 1√

2
(|23〉 + |32〉) then the ideas presented

here will show that the single particle system is indeed entangled.

All our optimisation processes have produced improvements in the tolerance of the

system to various errors. There are elements throughout the thesis that would benefit

from further investigation. Further work could be done to increase the numbers of

errors considered or to scale up the number of qubits in the system. We suggest that

increasing the number of errors would be the most promising area of research at this

stage as this will give a greater understanding of the impact of these errors on the

tolerance of the system.
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APPENDIX A

Graphical representation of stabilizer operator sets

A.1 Equivalent set of stabilizer operators

In Sec. 3.3.1.1 we calculate an example of an equivalent set of stabilizer operators. Here

we show this set in graphical form.

(a) s12 (b) s2 (c) s34 (d) s4 (e) s56

(f) s6 (g) s78 (h) s89 (i) s9

Figure A.1: An equivalent set of stabilizer operators. Found using the a non-singular
matrix applied to the canonical set of stabilizer operators in Sec. 3.3.1.1. The order
in which the stabilizer operators are applied is very important as the Pauli operators
X and Z do not commute on the individual qubits. The ordering of the stabilizer
operators correspond to their labeling i.e. s12 corresponds to applying stabilizer oper-
ator s1 followed by stabilizer operator s2.
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A.2 Canonical set of stabilizer operators

The canonical set of stabilizer operators for a 3× 3 cluster state (Fig. 3.5) are:

(a) PCT = 2 (b) PCT = 3 (c) PCT = 2 (d) PCT = 3 (e) PCT = 4

(f) PCT = 3 (g) PCT = 2 (h) PCT = 3 (i) PCT = 2

Figure A.2: The nine canonical stabilizer operators found by applying Eq. (3.2) to
each qubit in the cluster state. P TCT = 4.2 + 4.3 + 1.4 = 24.
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APPENDIX B

Entanglement via collisional gates

To understand how the collisional gates create the entanglement we look at an example

of two neighbouring atoms in the lattice [51], both atoms on the jth and (j+ 1)th sites

are in the |0〉 state,

|ψ〉 = |0〉j |0〉j+1 , (B.1)

a π
2 pulse is used on both the atoms to bring them into a superposition of |0〉 and |1〉,

|ψ〉 = (|0〉j + |1〉j)(|0〉j+1 + |1〉j+1)/2, (B.2)

then the internal states of the atoms are split and moved in opposite directions [111],

the |0〉 state moves to the left and the |1〉 state moves to the right making the joint

state look like,

|ψ〉 = (|0〉j |0〉j+1 + |0〉j |1〉j+2 + |1〉j+1 |0〉j+1 + |1〉j+1 |1〉j+2)/2. (B.3)

Here we have left |0〉 in its original position and moved the |1〉 state a full lattice

site, this is the same as moving both half a lattice site in opposite directions. When

both atoms occupy the same lattice site j + 1 there is a phase shift after a time, t

[49, 112, 113],

|ψ〉 = (|0〉j |0〉j+1 + |0〉j |1〉j+2 + exp(−iφ) |1〉j+1 |0〉j+1 + |1〉j+1 |1〉j+2)/2, (B.4)

then the atoms are brought back to their original lattice sites using another π
2 pulse,

|ψ〉 =(1 + exp(−iφ))/2 |1〉j |1〉j+1

+ (1− exp(−iφ))/2(|0〉j (|0〉j+1 − |1〉j+1) + |1〉j (|0〉j+1 + |1〉j+1))/2,
(B.5)
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which is the entangled state (Fig. B.1). The problem arises when there is no atom in

one of the lattice sites as the phase shift will not occur meaning the atom will not be

entangled, reducing the overall entanglement of the system.

Figure B.1: Entangling operation via collisional gates. Atoms shown in green, |0〉
spin-state in red and |1〉 in blue. Coherent superposition of |0〉 and |1〉 created by the
initial π

2 . The spin states are then separated and moved in opposite directions to col-
lide with spin states from different lattice sites. The states are brought back together
and a further π

2 pulse is applied creating the entangled state.
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APPENDIX C

Measurement Angles

C.1 Measurement angles for S versus S ′

In Sec. 4.5 we only consider S′ in our optimisation process due to the “vacancy-vacancy”

(ρ00) element of the system not contributing to the violation of the CHSH inequality.

To double check that this is true and the same optimum measurement settings are

found in both cases we explicitly show the measurement angles for a handful of cases.

q = 0.01

S S′

r = −1 r = 0 r = 1 r = −1 r = 0 r = 1

θa π 2.75 2.36 π 2.75 2.36

θa′ 1.57 1.18 0.785 1.57 1.18 0.785

θb 0.785 1.18 π
2 0.785 1.18 π

2

θb′ 0.785 0.393 0 0.785 0.393 0

q = 0.25

S S′

r = −1 r = 0 r = 1 r = −1 r = 0 r = 1

θa 3.14 2.81 2.36 3.14 2.81 2.36

θa′
π
2 1.16 0.785 π

2 1.16 0.785

θb 0.785 1.24 π
2 0.785 1.24 π

2

θb′ 0.785 0.412 0 0.785 0.412 0

q = 0.5

S S′

r = −1 r = 0 r = 1 r = −1 r = 0 r = 1

θa π 2.89 2.36 π 2.89 2.36

θa′
π
2 1.13 0.785 π

2 1.13 0.785

θb 0.785 1.32 π
2 0.785 1.32 π

2

θb′ 0.785 0.441 0 0.785 0.441 0
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q = 0.75

S S′

r = −1 r = 0 r = 1 r = −1 r = 0 r = 1

θa π 3.01 2.36 π 3.01 2.36

θa′
π
2 1.09 0.785 π

2 1.09 0.785

θb 0.785 1.44 π
2 0.785 1.44 π

2

θb′ 0.785 0.480 0 0.785 0.480 0

q = 0.99

S S′

r = −1 r = 0 r = 1 r = −1 r = 0 r = 1

θa π 3.14 2.36 π 3.14 2.36

θa′
π
2 1.05 0.785 π

2 1.05 0.785

θb 0.785 1.57 π
2 0.785 1.57 π

2

θb′ 0.785 0.522 0 0.785 0.522 0

C.2 Measurement angles for q′ settings

In Sec. 4.6.1 we use the optimum measurement settings for five values of q′ as the

fixed measurement settings when testing the robustness to state knowledge. These

measurement settings are given here for clarity.

q′ = 0.01

θa 2.75

φa 0

θa′ 1.18

φa′ 0

θb 5.10

φb 0

θb′ 0.393

φb′ 0

q′ = 0.25

θa 2.81

φa 0

θa′ 1.16

φa′ 0

θb 5.04

φb 0

θb′ 0.41

φb′ 0

q′ = 0.5

θa 2.89

φa 0

θa′ 1.13

φa′ 0

θb 4.96

φb 0

θb′ 0.44

φb′ 0

q′ = 0.75

θa 3.01

φa 0

θa′ 1.09

φa′ 0

θb 4.84

φb 0

θb′ 0.48

φb′ 0

q′ = 0.99

θa 3.14

φa 0

θa′ 1.05

φa′ 0

θb 4.72

φb 0

θb′ 0.522

φb′ 0

Table C.1: Fixed angles for when q′ = 0.01, q′ = 0.25, q′ = 0.5, q′ = 0.75 and q′ = 0.99.
(All angles in radians)
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(a) (b)

Figure C.1: Fixed angles for q′ measurement settings. As the angles do not change
very much only the first and last settings are shown. (a) shows the fixed measure-
ment settings for q′ = 0.01 and (b) shows the fixed measurement settings for q = 0.99
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APPENDIXD

Correlations formula

The principle system must be of the form

|ψ〉AB =
1√
2

(|2〉A |2 + ∆〉B + |2 + ∆〉A |2〉B), (D.1)

where ∆ ≥ 1, and the reference system must be of the form

|φ〉A′B′ =
N ′∑
i=0

ri |i〉A′ |N ′ − i〉B′ , (D.2)

where r∗i+∆ri 6= 0. This leads to a joint state of

|ψφ〉 =
∑
i

ri√
2

(|2, i〉AA′ |2 + ∆, N ′ − i〉BB′ + |2 + ∆, i〉AA′ |2, N ′ − i〉BB′). (D.3)

The local dichotomic measurements for Alice and Bob that are compatible with

particle-number superselection rule look like

A =

N ′∑
a=−∆

= |α(a)〉 〈α(a)| =
N ′∑

a=−∆

|ᾱ(a)〉 〈ᾱ(a)| ,

B =

N ′∑
b=−∆

= |β(b)〉 〈β(b)| =
N ′∑

b=−∆

|β̄(b)〉 〈β̄(b)| ,

(D.4)

where A describes the measurements Alice can perform on her system defined by the

angle α and B describes the measurements Bob can perform on his system defined by

the angle β. The eigenstates of these measurements are defined as follows;
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for a/b = −∆, . . . ,−1

|α(a)〉 = cosα |1, a+ ∆ + 1〉AA′ + sinα |2, a+ ∆〉AA′ ,

|ᾱ(a)〉 = sinα |1, a+ ∆ + 1〉AA′ − cosα |2, a+ ∆〉AA′ ,

|β(b)〉 = cosβ |1, a+ ∆ + 1〉BB′ + sinβ |2, a+ ∆〉BB′ ,

|β̄(b)〉 = sinβ |1, a+ ∆ + 1〉BB′ − cosβ |2, a+ ∆〉BB′ .

(D.5)

For a/b = 0, . . . , N ′ −∆

|α(a)〉 = cosα |2∆, a〉AA′ + sinα |2, a+ ∆〉AA′ ,

|ᾱ(a)〉 = sinα |2 + ∆, a〉AA′ − cosα |2, a+ ∆〉AA′ ,

|β(b)〉 = cosβ |2 + ∆, a〉BB′ + sinβ |2, a+ ∆〉BB′ ,

|β̄(b)〉 = sinβ |2 + ∆, a〉BB′ − cosβ |2, a+ ∆〉BB′ .

(D.6)

For a/b = N ′ −∆ + 1, . . . , N ′

|α(a)〉 = cosα |2 + ∆, a〉AA′ + sinα |3 + ∆, a− 1〉AA′ ,

|ᾱ(a)〉 = sinα |2 + ∆, a〉AA′ − cosα |3 + ∆, a− 1〉AA′ ,

|β(b)〉 = cosβ |2 + ∆, a〉BB′ + sinβ |3 + ∆, a− 1〉BB′ ,

|β̄(b)〉 = sinβ |2 + ∆, a〉BB′ − cosβ |3 + ∆, a− 1〉BB′ .

(D.7)

Using these eigenstates we can rewrite the state in the eigenstate basis

|ψφ〉 =
∑
i

ri√
2

(
(sinα |αi−∆〉 − cosα |ᾱi−∆〉)(cosβ |βN ′−i〉+ sinβ |β̄N ′−i〉)

+ (cosα |αi〉+ sinα |ᾱi−∆〉)(sinβ |βN ′−i−∆〉 − cosβ |β̄N ′−i−∆〉)
)
.

(D.8)

The probabilities of results can be seen by

Pab ≡| 〈α(a)β(b)|ψφ〉|2 =
1

2
|ra+∆ sinα cosβ + ra cosα sinβ|2δb,N ′−a−∆,

Pab̄ ≡| 〈α(a)β̄(b)|ψφ〉|2 =
1

2
|ra+∆ sinα sinβ − ra cosα cosβ|2δb,N ′−a−∆,

Pāb ≡| 〈ᾱ(a)β(b)|ψφ〉|2 =
1

2
| − ra+∆ cosα cosβra sinα sinβ|2δb,N ′−a−∆,

Pāb̄ ≡| 〈ᾱ(a)β̄(b)|ψφ〉|2 =
1

2
| − ra+∆ cosα sinβ − ra sinα cosβ|2δb,N ′−a−∆.

(D.9)
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APPENDIX E

Expectation value of Cosine

Before we begin our investigation into the different types of noise we first establish how

to calculate the expectation value of a random variable as a function of cos as this will

come in handy later.

Initially we have a random variable θ which has a normal distribution defined as

N (0, σ2), we would like to calculate 〈cos θ〉.
We note that the exponential of iθ can be written as

exp(iθ) = cos θ + i sin θ, (E.1)

and

〈exp(iθ)〉 = exp(−σ
2

2
), (E.2)

by breaking this into real and imaginary parts we see that

〈cos θ〉 = exp(−σ
2

2
),

〈sin θ〉 = 0.

(E.3)

Let us now extend this to the case where the normal distribution is not centred around

0. We now look at a random variable z, where θ = z − µ and z follows the normal

distribution N (µ, σ2). Using the information above and the trigonometric identities

cosα+ β = cosα cosβ − sinα sinβ, (E.4)
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we can write the expectation values of the cos of a random variable that is not centred

around 0

〈cos z〉 = 〈cos θ + µ〉 = 〈cos θ cosµ− sin θ sinµ〉 = cosµ〈cos θ〉 − sinµ〈sin θ〉

= exp(−σ
2

2
) cosµ,

(E.5)

.
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APPENDIX F

Uncorrelated multiplicative noise graphs

Here we show the full graphs for each of the optimisation processes in the uncorrelated

multiplicative noise case, details of the measurement settings can be found in Sec. 5.4.3.

F.0.1 Arbitrary fixed angles

0 0.01 0.0200 0.04 0.06 0.08 0.1

1.0

1.2

1.4

1.6

1.8

2.0

f

S

Figure F.1: Non-correlated multiplicative noise with fixed angles. Keeping the mea-
surement angles fixed for all f the S value steadily decreases. The critical value,
f crit3.1 = 0.200.
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F.0.2 Optimising angles keeping α1 = 0

0. 0.02 0.04 0.06 0.0739 0.1
1.94

1.96

1.98

2.00

2.02

2.04

2.06

f

S

Figure F.2: Non-correlated multiplicative noise setting α1 = 0 and optimising the
other angles. Fixing α1 = 0 and optimising the other measurement angles for each
value of f we find f crit3.2 = 0.739.

F.0.3 Optimising over all angles

.
0. 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.190

2.00

2.01

2.02

2.03

2.04

2.05

2.06

f

S

Figure F.3: Non-correlated multiplicative noise optimising all the angles. We find
f crit3.3 = 0.190
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APPENDIX G

Correlated multiplicative noise graphs

Here we show the full graphs for each of the optimisation processes in the correlated

multiplicative noise case, details of the measurement settings can be found in Sec. 5.4.2.

G.0.4 Fixed angles

0 0.0165 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.0

0.5

1.0

1.5

2.0

f

S

Figure G.1: Correlated mulitplicative noise with fixed angles.
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G.0.5 Optimising angles keeping α1 = 0

0 0.02 0.04 0.0720 0.1 0.12 0.14 0.16 0.18 0.2

1.7

1.8

1.9

2.0

f

S

Figure G.2: Correlated multiplicative noise setting α1 = 0 and optimising the other
angles.

G.0.6 Optimising over all angles

0. 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.182 0.2

1.99

2.00

2.01

2.02

2.03

2.04

2.05

2.06

f

S

Figure G.3: Correlated multiplicative noise with optimisation of all the angles.
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