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Abstract 

Schizophrenia is a serious mental illness that manifests itself with inconsistent, 

complex, and challenging to diagnose clinical symptoms. This study aimed to combine 

neurophysiological (electroencephalography or EEG), behavioural, and cognitive tests 

in one diagnostic protocol to probe the heterogeneous aspects of schizophrenia. 

Four experiments were conducted with 19 healthy control subjects and 6 

schizophrenia spectrum disorder patients (3 schizophrenia, 3 schizoaffective disorder). 

In the auditory odd-ball task, patients showed diminished mismatch negativity 

(MMN) to all the 5 deviant types. Schizophrenia patients had a longer location MMN 

peak latency compared to both control subjects and schizoaffective disorder patients. 

The computerized Stroop task did not elicit traditional Stroop effect. However, this 

task in patients showed high error rates and response latencies. The significant 

difference in the EEG response to the congruent and incongruent stimuli was absent 

in patients. The schizophrenia and schizoaffective disorder patients also showed a 

difference in task-specific neural mechanisms. Cambridge Neurophysiological Test 

Automated Battery (CANTAB) tests revealed significant deficits in motor response, 

visuo-spatial association, spatial working memory, and verbal recognition memory in 

patients. In the facial emotion recognition task, patients had significantly higher error 

rates and response latencies. Schizophrenia patients showed the highest error rate for 

angry and sad stimuli. The patients showed a deficit in the early face processing EEG 

response at the occipito-temporal electrode, and an elevated frontal EEG response 

relative to the healthy subjects. 

This was an explorative study that conducted a diverse set of experiments with 

same group of healthy subjects and patients. It uncovered significant differences 

between the control and patient groups, and between the schizophrenia and 

schizoaffective disorder patients. These results exhibited a proof-of-concept for the 

importance of a combined protocol which could potentially lead to a discovery of 

biomarkers for diagnosis using a larger, diverse group of schizophrenia spectrum 

disorder patients. 
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1.1 Mental Health 

We, as human beings, are a species set apart from the rest of the animal kingdom 

for our unique abilities to think, reason, understand, create, plan, execute, emote, and 

express ourselves. Mental health and well-being are essential to develop these unique 

abilities to interact with each other and live a productive life.  

Mental health problems cause loss of healthy years of life due to illness; striking 

as one of the major causes of the burden of disease worldwide. In the UK, 1 in 4 adults 

experience mental health issues every year, while 1 in 6 adults are suffering at any one 

point (Baker, 2021; MHFA England, 2019; Public Health Scotland, 2021). Based on 

a 2011 estimate, mental health issues in the UK were estimated to contribute to almost 

double (28%) the burden of disease, compared to approximately 16% each for 

cardiovascular diseases and cancer (Department of Health and Social Care, UK, 2011). 

The total expenditure, in terms of both social and economic costs of mental health in 

Scotland was found to be £10.7 billion for the year 2009/10 (Fundamental Facts About 

Mental Health 2015, 2015). More recent statistics from England show that these costs 

have risen from £105.2 billion in 2010 to £119 billion in 2019 (O’Shea & Bell, 2020). 

From a worldwide perspective, in the years between 2011 and 2030, mental disorders 

are estimated to result in a $16.3 trillion total loss of economic output. This economic 

output loss is close to the estimated loss due to cardiovascular diseases ($15.6 trillion), 

and far exceeds that of respiratory diseases, diabetes, and cancer ($14.8 trillion, 

combined) (Trautmann et al., 2016).  

The estimation of numbers presented above precedes the ongoing COVID-19 

pandemic, which has also resulted in adverse effects on the mental health of the general 

population. Recent reports have shown that in June 2020, 19% of surveyed adults in 

the UK experienced symptoms of depression, up from 10% before March 2020 (A. 

Abbott, 2021). However, due to the lockdown and the increased burden on healthcare 

services, fewer than expected mental illness and self-harm cases were recorded by 

primary care after March 2020 (Carr et al., 2021). This could soon lead to more severe 

cases and result in a larger burden of disease, than what was previously projected. 
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1.2 Schizophrenia- Prevalence and Causes 

Schizophrenia is one of the most significant public health problems across the 

globe.  It is a debilitating mental illness that affects 0.5% to 1% of the general 

population across the world (Weinberger & Harrison, 2010). According to the World 

Health Organisation (WHO), schizophrenia is considered as one of the important 

contributors to the burden of disease worldwide. It is a serious and chronic mental 

illness that affects a person’s thoughts, feelings, and behaviour. It is not, as it is often 

wrongly perceived, a “split personality” disorder (“Schizophrenia” Schiz: split, Phren: 

mind). The media usually uses the word - unfairly - to describe violence and 

disturbance. Due to this and like most mental illnesses, it is often accompanied with 

social and self-stigmatization. 

The textbook definition of the disease might sound simple and straightforward 

however, the manifestation of schizophrenia in individuals is highly complex. 

Epidemiological accounts have previously shown similar prevalence of schizophrenia 

across cultures and races across the world, however more recent evidence points to 

Black and Hispanic ethnicities diagnosed at a higher rate (C. I. Cohen & Marino, 2013; 

Halvorsrud et al., 2019; Olbert et al., 2018; Schwartz & Blankenship, 2014). 

According to two meta-analyses, men have 1.4 times higher risk of developing 

schizophrenia over their lifetime than women citing a higher incidence ratio in men 

than women (Aleman et al., 2003; J. E. McGrath & Tschan, 2004; Tandon et al., 

2008).. This serious illness leads approximately 10% of its patients to suicide, which 

is also the largest contributor to reduced life expectancy in the patients of 

schizophrenia (Sher & Kahn, 2019). As this disease causes a lifelong disability in its 

patients, a significant cost is incurred by the NHS for their treatment plans and loss in 

working days.  

Individuals often experience positive symptoms like auditory and visual 

hallucinations that threaten them or criticise their actions. This leads to patients 

developing strange beliefs and delusions. The disease also causes negative symptoms 

(affective flattening, asociality, etc.) and cognitive deficits that can be distressing to 

relatives or caregivers. A more comprehensive list of symptoms along with the 

pathophysiology has been explained in the Chapter 2.  
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The combination of stigma and the complexity of the disease makes it difficult 

to diagnose in the early stages. This further leads to the patients leading a degraded 

quality of life for a prolonged period. It has been systematically shown (Picchioni & 

Murray, 2007) that an early diagnosis and treatment can alleviate the outcomes of the 

disease. 

Similar to the complexity of how the disease manifests, the causes of 

schizophrenia are also not well understood; they are varied and complex. The disease 

certainly has underlying genetic causes as the risk goes up from 1 in a 100 to 1 in 10 

if a person has a parent with schizophrenia. This number goes up to 1 in 8 if a non-

identical twin has the disease and 1 in 2 if the twin is identical (Timms, 2015). Several 

environmental factors at different stages of life also increase the risk. Patients are more 

likely have experienced complications during pregnancy, premature birth, low birth 

weight etc. (Picchioni & Murray, 2007). In their book Schizophrenia, Weinberger and 

Harrison highlight that in an adult, stressors like social isolation, urban environment 

or significant incidents like car accidents have been shown to precede worsening of 

symptoms. Also, drug and alcohol abuse are also theorized as a possible cause of 

schizophrenia in some patients (J. J. McGrath & Murray, 2010). Early and prolonged 

use of cannabis has also been proven to significantly increase the risk (Marder & 

Cannon, 2019; Nasrallah et al., 2011; Timms, 2015). 

1.3 Current Diagnosis 

The current classification of the neuropsychiatric disorder schizophrenia is not 

based on a single symptom alone but a cluster of symptoms that include positive 

symptoms, negative symptoms, and cognitive impairment. The inconsistency of such 

complex clinical features between patients of schizophrenia makes a diagnosis based 

upon clinical symptoms extremely challenging. The tools which are currently used to 

help aid diagnosis in schizophrenia are usually based on series of interviews to assess 

different criteria in the patients. Positive and Negative Symptoms Scale (PANSS) is 

one of such tools that assigns a severity rating for various positive (PANSSP), negative 

(PANSSN), and general (PANSSG) symptoms like motor retardation, postural 

impairment, poor attention, lack of judgment, anxiety, disorientation, etc (Kay et al., 

1987). However, such tools have been shown to have several drawbacks. Specifically, 

the negative subscale PANSSN has been shown to have test-retest reliability ((Kring 
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et al., 2013). The scale has also been criticised as being too complex and leading to 

biased results when reporting the effectiveness of medications (Kumari et al., 2017). 

PANSS scale has also been shown to have hidden internal structure (Lefort-Besnard 

et al., 2018) and better represented by 4 to 7 factors (Lim et al., 2021) compared to the 

proposed three (PANNSP, PANSSN, PANSSG). The 5-factor representation with 

positive, negative, disorganized, excited, and depressed factors has had the most 

consensus across studies (Lim et al., 2021; Wallwork et al., 2012) but also further 

increases the complexity of the scale. Newer assessment scales like Clinical 

Assessment Interview for Negative Symptoms (CAINS) (Kring et al., 2013) and Brief 

Negative Symptom Scale (BNSS) (Kirkpatrick et al., 2011) which are concise and 

reliable have been proposed. However, they only assess the negative symptoms and 

still rely on subjective assessment by a clinician. They do not objectively measure the 

changes in brain function. This inadequacy of the present assessment tools in mental 

health diagnostics to objectively quantify various criteria during the disease diagnosis 

has led us to design a diagnostic protocol.  A first of its kind, this diagnostic protocol 

uses a range of neurophysiological and behavioural measures that combine perceptual 

and cognitive testing that can serve as an early signature or biomarker for 

schizophrenia. Electroencephalography (EEG) is a non-invasive and radiation free 

method of recording brain activity from the scalp.  Literature suggests that using EEG 

as a neuroimaging modality provides the basis from which sensitive biomarkers can 

be developed (Light et al., 2012). As a functional brain imaging technology, EEG is 

well tolerated and can be deployed in standard clinical or community settings (Barros 

et al., 2021; M. X. Cohen, 2014; Farnsworth, 2019; Ledwidge et al., 2018; H. S. Lee 

& Kim, 2022). EEG measurements do not require patients to be isolated for prolonged 

periods in a challenging environment like that of a Magnetic Resonance Imaging 

(MRI) scanner, thus, reducing the amount of paranoia and anxiety faced by them in an 

enclosed space.  

In the process of developing this experimental protocol for diagnosing 

schizophrenia, a variety of task conditions that uniquely probe perceptual, cognitive, 

and emotional deficits were employed. Chapter 3 gives insight into the study design 

and general methodology applied across all the experiments. The details about the 

specific tasks and the analyses related to them are outlined in their respective chapters. 
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The series of tests carried out within the protocol has generated a rich set of data that 

allows us to define a subject’s overall state. These set of measurements establish an 

unbiased and objective link between the neurophysiology, behaviour, and disease state 

of the patients and differentiates them from healthy individuals and could be used as 

potential biomarkers. 

1.4 Rationale and Aims of Study 

Early diagnosis of schizophrenia and early intervention in high-risk or first-

episode populations is crucial for improving the clinical outcome by mitigating the 

cognitive deficits and thus improving the quality of life of patients (Insel, 2010; D. Lee 

et al., 2021; Lin & Lane, 2019; Linszen et al., 1998). However, early diagnosis of 

schizophrenia has been a challenge and there is lack of appropriate biomarkers to study 

associated brain abnormalities (Nasrallah et al., 2011; M. J. Owen et al., 2016).  

Starting from the underlying cause of the disease to the different ways it affects 

the patients, schizophrenia is almost like a different disease in each of its victims. The 

literature to date suggests that biomarkers based on single neurophysiological test may 

be inadequate to fully capture and categorize the onset and progression of 

schizophrenia due to the heterogeneous nature of the disease (Rodrigues-Amorim et 

al., 2017; Weickert et al., 2013). The overall aim of this explorative study was to 

combine neurophysiological, behavioural, and cognitive aspects into one diagnostic 

protocol. The diverse observations generated from our protocol encompass the 

heterogeneity of the disease which is not available through a single test. 

For decades now, neurophysiological methods have been widely studied and 

used in the research of schizophrenia. These methods have many advantages that have 

led to them being researched for potentially useful biomarkers in developing new drug 

therapies and improving the overall functional outcome in patients. Some of them can 

be adapted into passive paradigms where a subject does not have to engage him/herself 

in a task or pay any attention.  

According to various studies, the higher-order cognitive deficits and 

psychosocial behaviour in patients of schizophrenia have shown a correlation to the 

dysfunction in the neural activity at the pre-attentive and early attentive levels of 

information processing (Braff & Light, 2004). 70% of the patients with schizophrenia 

have reported auditory hallucinations (AH). It is believed that in patients of 
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schizophrenia, abnormalities in brain regions associated with memory integration 

could possibly generate hallucinations (Waters et al., 2012). Chapter 4 explores this 

area by using an auditory oddball paradigm. This paradigm involved the subjects 

passively listening to a series of tones as they watched a pre-selected silent movie. 

This is advantageous in testing on younger patients and in the patients, who are 

difficult to engage in behavioural studies.  

Event-Related Potentials (ERPs) are the various positive or negative potentials 

that are related to specific events or stimuli obtained from the time-locked activity of 

the brain after the raw EEG data is processed (Roach & Mathalon, 2008). Mismatch 

negativity (MMN), is an early auditory ERP (AERP) that has been determined as an 

index of an automatic, pre-attentive alerting mechanism, which stimulates an 

individual to respond to unexpected environmental events (Gené-Cos et al., 1999). 

MMN abnormalities are specific to schizophrenia, as no reliable MMN findings have 

been observed in other major psychiatric disorders (Fisher et al., 2011). The high 

temporal resolution of the data thus obtained is useful in tracing the flow of 

information from the regions of auditory cortex to the association areas where the 

auditory data is interpreted and processed. This helps in determining any impairment 

in auditory information processing at an earlier stage of the disease (Javitt et al., 2008). 

The treatment regimes in schizophrenia mostly targets the improvement of 

positive symptoms in patients as these symptoms tend to relapse and remit. In a few 

cases patients tend to have some long-term residual psychotic symptoms (M. J. Owen 

et al., 2016). However, the medication is believed to have limited efficacy on the 

negative symptoms which are currently believed to be fundamental to the pathology 

of schizophrenia (Tandon et al., 2008). These negative symptoms are associated with 

deficits in motivation, affect, cognitive functioning, verbal and non-verbal 

communication and social behaviour; having a direct impact on the functional outcome 

of a patient (Bobes et al., 2010). As cognitive deficits are now considered as a core 

feature of schizophrenia, experiments that investigate them were included in the 

protocol. These cognitive deficits are not only present during the first episode of 

psychosis but are also found to be persistent over the period of illness regardless of the 

changes in symptomatic states. The emphasis has now been shifted from just treating 
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the positive symptoms to an overall approach where full range of symptoms including 

the cognitive deficits are being treated to improve the patient’s quality of life.  

Chapter 5 outlines the second task, a computerized Stroop task, which is a 

traditional neuropsychological test to assess cognitive deficits usually indicating the 

abnormality relating to the deficits in the working memory (Ghose & Tamminga, 

2008), which is the small amount of information that is retained in the brain and 

quickly available while performing cognitive tasks (Cowan, 2014). Stroop task reflects 

selective attention, functioning of an executive system, and the ability to inhibit 

habitual response and to maintain the instruction set. The task required the subject to 

quickly change perceptual set when viewing matching and non- matching names of 

colours (Nehemkis & Lewinsohn, 1972). For example, the names of colours written 

either in the same colour or in a different colour (RED/RED or BLUE/BLUE). 

Chapter 6 gives a detailed description of the third task which uses CANTAB 

(Cambridge Neuropsychological Test Automated Battery), a touch screen tablet with 

standardized cognitive tests which provides an effective measure of cognitive 

assessment. The CANTAB tests battery was used to assess executive functioning 

(mental processes that are required to perform a task with concentration (Diamond, 

2013)), working memory, spatial recognition memory (mental process that helps one 

remember locations and relative positions of objects (Jacobs, 2003)), episodic memory 

(memory that helps one recall and mentally reexperience events from their past (Pause 

et al., 2013)), verbal memory (memory of information presented verbally, like word 

lists (Tatsumi & Watanabe, 2009)), and reaction time (time taken to process and react 

to a stimuli).  

Patients of schizophrenia show impairments in recognition and discrimination 

of different facial emotions (Turetsky et al., 2007). Expressing emotions through ones’ 

face is a widely studied component of non-verbal communication of emotions (Kring 

& Moran, 2008). A meta-analysis of 26 studies also revealed that emotional deficits 

also form an integral feature of the illness. According to some theorists, patients have 

an innate and reduced capacity to experience hedonic emotion while their responses to 

adverse emotions are intensified (A. S. Cohen & Minor, 2010). 

Chapter 7 focuses on fourth and the final task which engaged the participants 

to recognize and categorize between basic emotions such as happiness, sadness, anger, 
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and neutral emotion from a series of schematic faces. The aim through this task was to 

probe into underlying inability in patients to recognize and categorize facial emotions 

that could be measured using EEG. The experimental design incorporated schematic 

faces instead of real human faces to avoid any adverse reactions from the patients. 

By combining neurophysiological tasks, cognitive tasks, CANTAB standardized 

cognitive tests, and emotion recognition tasks with EEG, this study enabled us to 

quantify a wide range of deficits that are observed in schizophrenia. We anticipate that 

this study protocol is a step forward towards providing a basis to a full trial, which will 

further provide specificity and sensitivity that has been missing from schizophrenia 

biomarkers to date.



 

CHAPTER 2. LITERATURE REVIEW
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2.1 Symptomology  

The definition and concept of schizophrenia has changed over the past century 

making it a far more complex disease to define. “Dementia Praecox” was an early 19th 

century Kraepelinian concept (1856-1926) that described schizophrenia as an illness 

of early onset and progressive deterioration focusing mainly on abnormalities in 

cognition and emotion (Kraepelin, 1919). Around the same time, Eugene Bleuler 

(1857-1939) theorised that fragmented thinking was a core feature of this disease and 

coined the term schizophrenia meaning ‘splitting or fragmented mind’ (Bleuler, 1911). 

He conceptualised the division of the symptoms in two major categories: fundamental 

symptoms (occurring only in the patients of schizophrenia) and accessory symptoms 

(seen across in other mental disorders too). However, he focused on ‘negative 

symptoms’ as its core feature highlighting its chronic disability and deteriorating effect 

on the patient. It was not until many years later that psychiatrist Kurt Schneider 

focused on including the psychotic symptoms such as delusions and hallucinations as 

core features of the disease referring to them as Schneiderian first rank symptoms, 

almost ignoring the negative symptoms and cognitive features of the disease 

(Nasrallah et al., 2011; Weinberger & Harrison, 2010).  

World Health Organisation’s International Classification of Disease Criteria 

11th revision (ICD-11) and American Diagnostic and Statistical Manual of Mental 

Disorders 5th edition (DSM-5) are extensively used to understand and diagnose mental 

disorders (Padmanabhan & Keshavan, 2014). In the past 50 years, DSM-I to DSM-IV 

and ICD-6 to ICD-10 have included Bleuler’s negative symptoms, the concept of 

chronicity from Kraepelin and Schneiderian first rank symptoms to define 

schizophrenia giving emphasis to one or all three concepts in varying degrees from 

time to time. Since 1980’s, the introduction of DSM-III greatly enhanced the reliability 

of diagnosis in schizophrenia by broadly classifying the symptoms into “Positive” and 

“Negative” symptoms. However, the current DSM-5 and ICD-11 incorporates the 

distinct stages of the illness eliminating many discrepancies that existed in its previous 

versions, and thus marking a substantial evolution in the conceptualisation of 

schizophrenia (Padmanabhan & Keshavan, 2014). 

The first signs of schizophrenia can seem confusing or even shocking. Drastic 

changes in one’s behaviour can be very difficult to cope for the family members who 



12 

 

often remember how involved and vivacious the person was before the illness began. 

Other subtle changes like isolation, withdrawal, unusual thoughts, speech, or 

behaviour tend to occur before or while other psychotic changes are being exhibited. 

Most patients display delusions and hallucinations. However, the degree of 

impairment in thought processing varies from patient to patient. Deviating from the 

traditional definitions of the words, “positive” symptoms are the ones that the disorder 

adds, and “negative” symptoms are what the disorder takes away. According to DSM-

5, there is a spectrum of schizophrenia and psychotic disorders which are all specified 

by varying degrees of presentation of the symptoms below (American Psychiatric 

Association, 2013b). 

2.1.1 POSITIVE SYMPTOMS 

Positive symptoms are unusual experiences which are more easily identifiable. 

In patients with schizophrenia, they can be very intense and distressing. It is also worth 

noting that positive symptoms are often the ones that are diminished well with 

treatment (Lieber, 2018). Following is a comprehensive list of such symptoms 

(American Psychiatric Association, 2013b). 

2.1.1.1 DELUSIONS 

A fixed set of personal beliefs that is not subject to reason or cannot be altered 

with presentation of contradictory evidence. Delusions can take up different themes 

such as: 

a. Persecution: A person with persecutory delusions may believe they are being 

harmed, harassed, or conspired against by an individual or an organization 

(Spearing, 2002). 

b. Referential: This is where the person thinks that certain gestures or comments 

even environmental cues are directed towards them. A bizarre example of this 

could be that the person is being controlled by a neighbour with magnetic 

waves (Spearing, 2002). 

c. Grandiose: This would include a feeling that one has exceptional abilities, 

wealth or is an important figure or a celebrity.
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2.1.1.2 HALLUCINATIONS 

An experience of perception without the presence of an external stimuli. These 

perceptions are vivid and not under voluntary control.  Though in patients with 

schizophrenia they can occur in any sensory form, auditory hallucinations are the most 

common. These “voices” can either be familiar or unfamiliar and are perceived as 

different from one’s thoughts. They can describe what the person is doing, warn them 

of an impending disaster, or pass derogatory comments. A patient is most likely to 

experience hallucination of certain kind during their first psychotic episode during 

which it is estimated that 50% of the patient population might experience an auditory 

hallucination, while a very low percentage of patients may have a visual (15%) and 

tactile hallucinations (5%)  (Arango & Carpenter, 2010).  

2.1.1.3 DISORGANIZED THINKING OR SPEECH 

An effect on the person’s ability to “think straight”. Individuals might have 

unrelated thoughts coming to them in rapid successions, making them jump from one 

topic to another. They might answer questions with completely unrelated/tangential 

answers. The patient is therefore ineffective in communicating. In some cases, the 

disorder is so severe that speech becomes incomprehensible. This symptom, also 

known as, formal thought disorder is often inferred from the person’s speech. It is 

especially difficult to diagnose when the person is from a different linguistic 

background. 

2.1.1.4 GROSSLY DISORGANIZED OR CATATONIC BEHAVIOUR 

Agitated body movements or childlike “silliness”. Patients may have difficulty 

performing goal directed motor behaviour thus making it challenging to perform daily 

living activity. Catatonic behaviour is a severe decrease in reacting to the environment. 

Patients may sit still for hours or assume a rigid posture with a complete absence of 

response to verbal or motor responses. It can also include the opposite where the 

person displays excessive movements for no apparent reason.  

2.1.2 NEGATIVE SYMPTOMS 

Negative symptoms account for a considerable portion of morbidity associated 

with schizophrenia than in any other psychotic disorders. Several of these can be 
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interpreted as person’s laziness (Timms, 2015). This can especially make the patients 

and their family’s lives even more difficult. These symptoms also respond poorly to 

medication and therefore, even though they are less dramatic, they can be more 

disabling (American Psychiatric Association, 2013b). These symptoms are present 

much before the onset of positive symptoms and exist through the outbreak of the 

psychotic episodes but are masked by the positive symptoms. These negative 

symptoms  continue to persist in varying degrees despite the reduction in positive 

symptoms (Arango & Carpenter, 2010). 

a. Diminished Emotional Expression: A demonstration of “blunt” or “flat” affect. 

This includes a reduction in expressiveness of the face, lack of eye contact and 

reduces hand and head movement. Patients may also speak in a monotonous 

voice. 

b. Avolition: Lack of motivation to start a purposeful activity manifesting as 

person sitting for long periods of time and being disinterested in work or social 

activity. 

c. Alogia: A diminished speech output 

d. Anhedonia: Curbed ability to experience enjoyment in life or remember 

experiencing pleasure previously. 

e. Asociality: Lack of interest in social interaction. 

2.1.3 COGNITIVE DEFICITS 

Patients with schizophrenia tend to experience several cognitive deficits much 

before the onset of any kind of symptomology. These deficits further diminish their 

quality of life. In some patients they can be subtle while being severe in others. These 

can include: 

a. Poor “executive function”, that is the ability to understand and use information 

in decision-making process. 

b. Trouble focusing or paying attention 

c. Problems with working memory and remembering things 

d. Anosognosia or “lack of insight”. This is the unawareness of the patient that he 

or she has schizophrenia. 
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2.2 Schizophrenia Spectrum and Other Psychotic Disorders  

Prior to DSM-5, schizophrenia was categorised into distinct subtypes namely 

paranoid, disorganised, catatonic, simple, and undifferentiated. However, this 

categorisation was not reliable to cover the vast heterogeneity of the disease and has 

been found to have low validity (Mattila et al., 2015). Hence, the current DSM-5 and 

ICD-11 have eliminated these subtypes to improve the clinical definition of 

schizophrenia (Padmanabhan & Keshavan, 2014). Even in a number of Asian 

countries, many patients feel stigmatised being referred to as a patient of 

“schizophrenia” as the term does not describe what their disease accurately represents. 

This has led to elimination of the classification of the disease schizophrenia in these 

countries. For instance, in Japan the disease has been reclassified as “integration 

disorder” and similarly in Korea, the term “attunement disorder” is used (Balter, 2017; 

J. W. Cho et al., 2018; Lasalvia et al., 2015; Y. S. Lee et al., 2014; Sartorius et al., 

2014; Yamaguchi et al., 2017). 

Under the schizophrenia spectrum of disorders, the DSM-5 and ICD-11 list few 

specific clinical diagnoses based on how the previously described symptoms manifest 

in its patients. DSM-5 and ICD-11 in their current status share significant similarity 

between the names and diagnostic criteria of various clinical diagnoses than what was 

found between previous versions. However, there are still some differences between 

the two (First et al., 2021). Table 2.1 provides a high-level outline and comparison of 

diagnostic criteria between DSM-5 and ICD-11 mainly for the schizophrenia spectrum 

of disorders. The patients recruited in this study were previously diagnosed with either 

schizophrenia or schizoaffective disorders. The table also includes two bipolar 

disorders as one of the schizoaffective disorder patients was also categorised to likely 

have bipolar spectrum disorder (BSD). The first column of the table has the closest 

matching diagnoses between DSM-5 and ICD-11 followed by the diagnostic criteria 

for each. All the details in table were taken directly from the DSM-5 manual 

(American Psychiatric Association, 2013a), ICD-11 website (World Health 

Organization (WHO), 2022), and two other articles related to them (First et al., 2021; 

Substance Abuse and Mental Health Services Administration, 2016).  
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Table 2.1 Comparison of diagnostic criteria of mental disorders between DSM-5 

and ICD-11 

Closest Matching 

Clinical Diagnoses 
DSM-5 Criteria ICD-11 Criteria 

DSM-5: Schizophrenia 

ICD-11: Schizophrenia 

Continuous signs of at 

least one of the following 

present for at least 6 

months: 

- delusions 

- hallucinations 

- disorganized speech 

with following present for 

significant portion of 1 

month period: 

- catatonic behaviour 

and/or 

- negative symptoms 

At least two of following 

symptoms present most 

of the time for 1 month or 

more: 

- persistent delusions 

- persistent 

hallucinations 

- disorganized thinking 

- experiences of 

influence 

- negative symptoms 

- grossly disorganized 

behaviour 

- psychomotor 

disturbances 

DSM-5: 

Schizophreniform 

disorder 

ICD-11: Not included 

Same as schizophrenia 

but lasting 1-6 months 

Not Applicable 

DSM-5: Schizoaffective 

disorder 

ICD-11: Schizoaffective 

disorder 

Same as schizophrenia 

along with a major 

depressive or manic 

mood episode 

Meeting diagnostic 

requirements of 

schizophrenia with 

moderate or severe 

depressive and/or manic 

episode 

DSM-5: Delusional 

disorder 

ICD-11: Delusional 

disorder 

Presence of delusions for 

at least 1 month but never 

meeting the other 

necessary criteria for 

schizophrenia. 

Presence of delusions for 

at least 3 months and 

often longer with absence 

of other symptoms of 

schizophrenia 

DSM-5: Brief psychotic 

disorder 

ICD-11: Acute and 

Transient Psychotic 

Disorder 

Sudden (within 2 weeks) 

onset of at least one of: 

- delusions, 

- hallucinations, 

- disorganized speech 

and a return to previous 

level of functioning in 

less than 1 month. 

Acute onset of psychotic 

symptoms including: 

- delusions, 

- hallucinations, 

disorganized thinking, 

- experiences of 

influence 

within 2 weeks with rapid 

change in nature and 

intensity and lasting up to 

3 months 
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DSM-5: Schizotypal 

disorder 

ICD-11: Schizotypal 

disorder 

Pattern of social and 

interpersonal deficits that 

do not occur during 

course of schizophrenia. 

Symptoms include: 

- odd beliefs 

- unusual perceptual 

experiences 

- eccentric behaviour 

- suspicious or paranoid 

ideation 

Pattern of unusual speech, 

perceptions, beliefs that 

do not meet intensity or 

duration of schizophrenia, 

schizoaffective disorder, 

or delusional disorder. 

Symptoms include: 

- unusual beliefs 

- unusual perceptual 

distortions 

- eccentric behaviour 

- suspicious or paranoid 

ideation 

DSM-5: Psychotic 

Disorder due to another 

medical condition 

ICD-11: Secondary 

Psychotic Syndrome 

- prominent 

hallucinations or 

delusions 

- direct consequence of 

another medical 

condition 

- not better explained 

by another mental 

disorder 

- prominent 

hallucinations and/or 

delusions 

- direct consequence of 

another medical 

condition 

- not better accounted 

by another mental 

disorder 

 

DSM-5: Bipolar I 

Disorder 

ICD-11: Bipolar Type I 

Disorder 

- at least one manic 

episode which may be 

preceded or followed 

by hypomanic or 

major depressive 

episodes 

- manic or major 

depressive episodes 

not better explained 

by schizophrenia 

spectrum of disorders 

- at least one manic or 

mixed episode 

- typically recurrent 

depressive and manic 

or mixed episodes 

- some episodes may be 

hypomanic but at 

least one manic or 

mixed episode is must 

DSM-5: Bipolar II 

Disorder 

ICD-11: Bipolar Type II 

Disorder 

- at least one 

hypomanic episode 

and at least one major 

depressive episodes 

- manic episode has 

never occurred 

- episodes not better 

explained by 

schizophrenia 

spectrum of disorders 

- at least one 

hypomanic episode 

and at least one 

depressive episode 

- typically recurrent 

depressive and 

hypomanic episodes 

- no history of manic or 

mixed episodes 
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A simplified schematic representation of schizophrenia progression is shown in 

figure 2.1 reproduced from (Yasui-Furukori, 2012). It is now recognized that 

schizophrenia is a disease that slowly manifests itself from infancy and continues 

through the lifetime of an individual (Nasrallah et al., 2011). The premorbid phase, 

where in one begins to experience a generic dysfunction in cognition, motor function 

and social interactions is observed in early childhood. This is followed by a 

‘prodromal’ phase in the young adults (early to mid-teen years) where they begin to 

isolate themselves from others with a rise in certain positive and negative symptoms 

(Marder & Cannon, 2019; Nasrallah et al., 2011; Padmanabhan & Keshavan, 2014). 

A decline in their cognitive ability and functionality can also be observed during this 

phase. The first episode of psychosis (e.g. auditory hallucinations, delusions etc.) 

marks the onset of the disease. A patient may experience varying periods and instances 

of psychosis in their early course of illness. However, most of the patients tend to have 

a more stable ‘plateau phase’ usually represented by less pronounced psychotic 

symptoms. A varying degree of severity of the negative and cognitive deficits can also 

be observed in their lifetime depending upon how the symptom severity were managed 

and treated. All these symptoms significantly attenuate the quality of life by 

diminishing social functioning in the patients (Padmanabhan & Keshavan, 2014). 

 

 

Figure 2.1 A schematic representation of schizophrenia progression. Reproduced 

from Yasui-Furukori, 2012. 
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2.3 Etiology 

With a steady prevalence of 1% worldwide, schizophrenia is now ranked among 

the world’s top ten causes of long-term disability. In recent years, schizophrenia has 

been shown to be highly heritable disease with genetic factors contributing 80-85%  

(Birnbaum & Weinberger, 2017; Janoutová et al., 2016; Marder & Cannon, 2019; M. 

J. Owen et al., 2016; Tandon et al., 2008). Earlier it was believed that the disease 

affected both males and females equally across the globe however, more recent meta-

analysis show that males are at 1.4 times the risk of developing schizophrenia 

compared to females (Aleman et al., 2003; J. E. McGrath & Tschan, 2004; Tandon et 

al., 2008). Also, in males, the onset is generally early ( between 17-25 years) and later 

in the female populations (20-30 years) (Nasrallah et al., 2011).  

In a recent genome-wide association study (GWAS) on schizophrenia recruiting 

37,000 schizophrenia patients in comparison to 113,000 healthy controls found 108 

genes that were linked to the disease making it a polygenic disorder. Some variants of 

these genes were found to be correlated to signalling pathways of neurotransmitters 

and a few others were involved with the immune system (Birnbaum & Weinberger, 

2017; Ripke et al., 2014; Stilo & Murray, 2019). Although, genetic predisposition may 

increase the risk of an individual developing schizophrenia, interaction with adverse 

environmental and social factors makes them more susceptible to it (Balter, 2017; 

Löhrs & Hasan, 2019; Misiak et al., 2018; Nimgaonkar et al., 2017; Stilo & Murray, 

2019). These environmental factors may include childhood trauma, social adversity, 

cannabis use during adolescence, discrimination, etc (Löhrs & Hasan, 2019; Marder 

& Cannon, 2019; Nasrallah et al., 2011; Nimgaonkar et al., 2017; M. J. Owen et al., 

2016; Patel et al., 2014; Stilo & Murray, 2019; Tsuang, 2000).  

2.4 Pathophysiology 

The pathophysiology of schizophrenia, like the manifestation of disease itself, is 

complex and not very well understood. There have been several theories relating to 

abnormalities within various neurotransmitter systems including dopamine (Howes et 

al., 2017; Howes & Kapur, 2009; Maia & Frank, 2017; McCutcheon et al., 2019), 

glutamate (Egerton et al., 2020; Goff & Coyle, 2001; Olney & Farber, 1995; Uno & 

Coyle, 2019), and serotonin (Aghajanian & Marek, 2000; Eggers, 2013; Patel et al., 
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2014; Stahl, 2018). These are a result of genetic factors and their interplay with 

environmental conditions as mentioned above. 

The most popular theory is related to a dysfunction in dopamine receptors and 

dopaminergic pathways. Though this largely explains the positive symptoms like 

hallucinations and delusion, it does not account for the myriad of deficits observed in 

schizophrenia (Egerton et al., 2020; M. J. Owen et al., 2016; Uno & Coyle, 2019). The 

negative and cognitive symptoms of schizophrenia are likely a result of abnormality 

in glutamate, the primary excitatory neurotransmitter, and its binding with the N-

methyl-D-aspartate (NMDA) (Egerton et al., 2020; Uno & Coyle, 2019). The inter-

neurons in the cerebral cortex and hippocampus which are sensitive to NMDA 

receptors produce gamma oscillations necessary for cognitive functioning (M. J. Owen 

et al., 2016; Uno & Coyle, 2019). Also, presence of NMDA antagonists has been 

shown to produce schizophrenia like negative and cognitive symptoms (Uno & Coyle, 

2019). The finding that hallucinogens like Lysergic acid diethylamide (LSD) 

heightened the effect of serotonin led researchers to hypothesize the involvement of 

serotonin in schizophrenia (Aghajanian & Marek, 2000). Further evidence of 

medications that block both dopamine and serotonin receptors, improved both positive 

and negative symptoms in the patients, thus strengthening the serotonin hypothesis 

(Kantrowitz, 2020; Meltzer et al., 2003; Patel et al., 2014). 

Physical changes in the brain have also been observed in schizophrenia. A 

decreased neuronal size (Arnold et al., 1995; Chana et al., 2003; Harrison, 2000; 

Roeske et al., 2021) along with some evidence of increased neuronal density has been 

observed (Chana et al., 2003; Harrison, 2000). The GABAergic inter-neurons also 

exhibit decreased functionality (Nakazawa et al., 2012; Nasrallah et al., 2011). An 

abnormality in the functioning of glial cells (responsible for neuronal maintenance and 

myelin sheath creation) is also observed in schizophrenia (Bernstein et al., 2015; Dietz 

et al., 2020; L. E. Duncan et al., 2014; Laskaris et al., 2016; M. J. Owen et al., 2016). 

Along with these, imaging modalities have reported reduced grey matter volumes 

notably in prefrontal and temporal cortices (DeLisi et al., 2006; Dietsche et al., 2017; 

Olabi et al., 2011) and decrease in frontal, parietal, and temporal white matter (DeLisi 

et al., 2006; Olabi et al., 2011). There has also been compelling evidence of 
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enlargement of lateral ventricles and frontal, parietal, and temporal white matter 

(DeLisi et al., 2006; Olabi et al., 2011; Svancer & Spaniel, 2021). 

2.5 Diagnosis and Treatment in Schizophrenia 

Despite decades of extensive research, the pathophysiology and etiology of the 

disease remain obscure. The absence of a single diagnostic feature for this disease and 

its highly heterogeneous nature, makes early recognition and intervention one of the 

biggest challenges in the field (Harris et al., 2013). Currently, the clinical diagnosis is 

made based on patient’s history and their state of mental well-being. The ‘prodromal’ 

phase, also known as an ultra-high-risk phase, of schizophrenia can last for several 

years before the first psychotic episode. This commonly occurs in young adults who 

can experience negative symptoms and declined cognitive ability. In some cases, 

however, sudden onset has also been observed in previously healthy individuals 

(Nasrallah et al., 2011; M. J. Owen et al., 2016).  

As has been mentioned earlier, the DSM-5 and ICD-11 have outlined complex 

diagnostic criteria to be used by physicians. However, it can be observed that even 

within the schizophrenia spectrum of diseases there are several possible diagnoses with 

subtle differences between them. There are several scales of assessment which use 

structured clinical interviews to evaluate disturbances in their thought processing, 

language, attention, and perception. These include Global assessment of Functioning 

Scale (GAF), Scale of Assessment of Negative (SANS) (Andreasen, 1989) or Positive 

(SAPS) symptoms (Andreasen, 1984), Positive and Negative Symptom Scale 

(PANSS) (Kay et al., 1987), etc. Each scale assigns a point rating to the individual to 

determine the severity of a subset of symptoms or the overall disease state. Each of 

these scales have their drawbacks. The GAF scale was included in the DSM-III and 

DSM-IV but dropped from DSM-5 due to lack of clarity and inter-rater reliability, 

which focuses on variability among raters on the same target (Grootenboer et al., 2012; 

Substance Abuse and Mental Health Services Administration, 2016). The SAPS and 

SANS scale has been shown to have poor inter-rater reliability (Norman et al., 1996) 

and have been criticized for dividing the symptoms of schizophrenia as only positive 

and negative (Kumari et al., 2017). The SANS scale has also been shown to have low 

test-retest reliability (Kring et al., 2013). The PANNS scale has been shown to have 

hidden internal structures (Lefort-Besnard et al., 2018) that could be better represented 
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as a five-factor model (Lim et al., 2021; Wallwork et al., 2012) instead to the three 

subscales proposed by Kay et al. Also like the SANS scale, the negative subscale of 

PANSS has shown low test-retest reliability (Kring et al., 2013). Despite these 

shortcomings, physicians heavily rely upon the results of these interviews to diagnose 

an individual instead of objective measurements of neural activity (H. S. Lee & Kim, 

2022). It should be noted however, that the presence of several pathophysiological 

abnormalities outlined in previous section do not qualify as a definitive diagnostic 

marker (Nasrallah et al., 2011). Currently, there are no objective clinical tests or 

biomarkers used for diagnosis (M. J. Owen et al., 2016) in a clinical setting. 

The first ever pharmacological treatment for psychotic symptoms, 

chlorpromazine, was serendipitously discovered in 1952. It marked the beginning of 

first generation or typical antipsychotic medications. These medications are effective 

in mitigating positive symptoms like hallucinations and delusions but are usually 

ineffective in treating the more chronic symptoms such as cognitive deficits and social 

withdrawal. They are also accompanied with a deluge of side effects like exacerbated 

negative symptoms, movement disorders, weight gain, restlessness etc (Marder & 

Cannon, 2019; Nasrallah et al., 2011; M. J. Owen et al., 2016; Patel et al., 2014). 

Several of these side effects are a consequence of excessive dopamine blockade 

(Marder & Cannon, 2019). The second generation or atypical medications work by 

blocking both dopamine and serotonin receptors (M. J. Owen et al., 2016) and were 

first discovered in 1990s. These medications have been observed to have fewer 

Parkinsonian type movement related side effects, however, carry a higher risk of 

cardiometabolic side effects. The strongest of this atypical medication is clozapine. 

However, it is prescribed only in the cases when other atypical antipsychotics prove 

ineffective. This is due to the additional risk of agranulocytosis and neutropenia (white 

blood cell disorders) observed with the administration of clozapine (M. J. Owen et al., 

2016). There has been an effort to shift towards glutamate modulating antipsychotic 

treatments as this might be helpful is mitigating a broader range of deficits including 

negative and cognitive. These treatments would work by enhancing the activity of 

NMDA by increasing glycine levels near glutamate receptor site. However, these 

strategies have not been approved anywhere yet (Nasrallah et al., 2011). 
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The use of antipsychotics is crucial and primary approach of treatment for 

schizophrenia. However, in many developed countries it is also accompanied with 

psychotherapeutic treatments at individual and family or group level. Due to the side 

effects, paranoia, grandiosity, etc. patients are less likely to stay adherent to the 

medication. This increases the risk of relapse and psychotic episodes. Access to 

psychotherapy can greatly reduce the chance of non-adherence by keeping patients 

informed on their illness and importance of taking medication (Patel et al., 2014). In 

the UK, the National Institute of Health and Care Excellence (NICE) guidelines 

(NICE, 2016) require patients to be offered with cognitive behavioural therapy (CBT) 

to help them alter their behaviour that might be disease induced (M. J. Owen et al., 

2016). In addition, psychotherapeutic approaches also encourage the patient’s family 

to be involved. This has been seen to improve patient’s social wellbeing and reduce 

the risk of rehospitalization (Marder & Cannon, 2019; M. J. Owen et al., 2016; Patel 

et al., 2014).   

2.6 Electrophysiology 

Electroencephalography (EEG) is the method of recording electrical activity of 

the brain using electrodes placed on the scalp. The signals recorded using such 

electrodes represent the synchronous activity from a large ensemble of neurons that 

are aligned in their spatial orientation. Being a non-invasive technique, EEG signals 

have been extensively used in studying the physiological response of the brain while 

performing a cognitive task. However, EEG signals show a high degree of variability 

between trials with same trial parameters. To mitigate this variability and study the 

EEG task response, researchers have used the Event-Related Potentials (ERPs) 

technique. 

ERPs are the various positive or negative fluctuations that result from averaging  

large repeats of time-locked EEG activity. The EEG activity is obtained by exposing 

the subjects to the same stimulus for tens, or even hundreds of trials. This activity is 

then time-locked to either the stimulus or response to create short epochs that are 

averaged in time relative to the time of the event. The process of averaging reduces the 

signal variability across trials that might arise from surrounding noise or normal 

functioning of the brain and by doing so, it reveals the components of brain activity 

that correspond to the sensory and cognitive processes representative of the event or 
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task. These components are otherwise embedded in inherently noisy EEG signals from 

single trials (Roach & Mathalon, 2008). It is to be noted that ERP response still shows 

intra-subject variability when multiple repeated experiments are performed. This 

variability has been speculated to be caused due to state of the subject, for instance the 

hours of sleep, caffeine intake etc. As can be expected, ERP signals also show inter-

subject variability (higher than intra-subject) which could result from differences in 

individual brain structure and processes (Luck, 2014c). For these reasons, researchers 

present grand averaged ERP results from a group of subjects as opposed to results from 

individual subjects in most cases. These averages provide an insight into the 

population response which can then be compared between different groups. 

Patients diagnosed within the schizophrenia spectrum of disorders have shown 

deficits in their EEG response under different types of experimental conditions. In an 

auditory oddball task, a pre-attentive, involuntary, auditory mismatch negativity 

(MMN) response is observed on fronto-central electrodes in healthy subjects. The 

MMN response in schizophrenia spectrum patients is diminished (Light & Braff, 

2005). If the subjects are instructed to attend to the stimuli, a deficit in P300 responses 

is also observed in schizophrenia patients when compared to healthy subjects (Light 

et al., 2015). In a Stroop task, which is used to test the cognitive and working memory 

deficits, schizophrenia patients have been previously shown to have comparable 

response of the congruent and incongruent trials, which is not the case with healthy 

subjects (Kim et al., 2012; Markela-Lerenc et al., 2009). In schizophrenia patients, 

difficulties in recognizing and categorizing facial emotions are also observed. This 

deficit is reflected in the early face-processing component (Earls et al., 2016) as well 

as later cognitive processing components of EEG response (McCleery et al., 2015). 

While each of these deficits have been observed in schizophrenia patients in separate 

studies, there is a lack of published research there has attempted to study all these 

electrophysiological deficits in the same patient group. This is one of the primary 

research goals of this thesis. The associated literature on each type of deficit in 

reviewed in detail in the respective chapters of the thesis.  

2.7 Biomarker 

In clinical research, a “biological marker” or a biomarker is a term designated to 

an objective measure of medical state observed from outside. This measure should also 
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be reliably reproducible to be categorised as a biomarker. There is a distinction 

between an objective measure of state and the symptom as later is subjective 

experience of an individual. A biomarker may either be a functional or physiological 

measure that is a predictor of the disease state (Strimbu & Tavel, 2010). 

In the context of schizophrenia spectrum of disorders, this chapter has described 

several functional and physiological measurements that can be objectively recorded 

from patients. This includes the various neurotransmitter and pathway abnormalities, 

grey and white matter volume reductions, etc. However, as has been mentioned earlier, 

none of these measurements are reliable predictors of the disease states. Also, changes 

in pathways or brain volume are single snapshot of the state that cannot be easily 

obtained from the patients. For example, measurement of grey matter volume can be 

determined using an MRI which would require patients suffering from paranoia and 

anxiety issues to be isolated for prolonged periods in the challenging environment of 

a scanner. Using EEG as the neuroimaging modality, on other hand, is relatively 

affordable (both in deployment and maintenance) , portable, and requires less expertise 

to operate (Barros et al., 2021; M. X. Cohen, 2014; Farnsworth, 2019; Ledwidge et al., 

2018; H. S. Lee & Kim, 2022) in a research laboratory or clinical setting. It also has 

an added advantage of high time resolution in measuring a response to stimuli. 

In this thesis, multiple experiments were conducted with the same set of patients 

spanning neurophysiological, cognitive, and social aspects of the deficits observed in 

the schizophrenia spectrum. EEG recordings from these experiments to extract several 

neurophysiological measurements that define the state of each subject. These along 

with a set of behavioural response measures can be used to create an objective 

representation of an individual’s disease state and could be potential new candidates 

for diagnostic biomarkers. These biomarkers can further be prospectively used to 

distinguish each subject from one another during diagnosis. 
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3.1 Study design 

This was a pilot pathway study approved by the West of Scotland Research 

Ethics Service (REC reference: 15/WS/0083, REC approval date: 01 June 2015, IRAS 

project ID: 103549, see Appendix A). The research team consisted of the Chief 

Investigator (CI) for the study - Professor Robert Hunter, Consultant Psychiatrist 

Clinical Director PsyRING at University of Glasgow/Associate Director R&D NHS 

Greater Glasgow and Clyde, the Research Student (RS) Sibani Priyadarshini Mohanty 

from the Neurophysiology lab of Biomedical Engineering Department, University of 

Strathclyde, and two senior Research Nurses (RN) Catherine Deith and Paul Scouller 

from Glasgow Clinical Research Facility. This research was jointly funded by EPSRC 

and NHS Endowments Department and Patient Affairs Department, Gartnavel Royal 

Hospital, Glasgow. 

3.1.1 STUDY POPULATION 

In this study two groups of individuals were recruited, one that consisted of a 

healthy control group (n=19 healthy subjects) and the other that comprised of 

schizophrenia spectrum patients (n=6). All the patients who were recruited in the study 

satisfied the DSM-5 (American Psychiatric Association, 2013a) criteria for 

schizophrenia spectrum disorders and were on stable medication for a period of a 

month before they participated in the study.  

3.1.2 INCLUSION AND EXCLUSION CRITERIA 

The control group consisted of healthy volunteers with the below listed inclusion 

and exclusion criteria: 

Control group inclusion criteria: 

• Both male and female (non-pregnant), age group 18-55 years 

• Normal hearing 

• Normal or corrected vision 

• Normal Upper limb function 

• English as their first language 
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Control group exclusion criteria: 

• Any evidence of existing mental, psychiatric or neurological conditions 

either in the subject or their first degree relatives 

• Any evidence of neurophysiological damage 

• Any implantable devices that might interfere with the EEG equipment 

colour blindness 

• Any history of drug/alcohol abuse 

• Use of medication that might interfere with normal neurophysiological 

processes 

All participants in the control group were asked to fill out a screening 

questionnaire to determine if they met the inclusion criteria as mentioned above, and 

care was taken to exclude anyone who did not satisfy them or fell under any of the 

above-mentioned exclusion criteria. 

The patient group consisted of participants that satisfied the DSM-5 criteria for 

schizophrenia spectrum of disorders. Further inclusion and exclusion criteria listed 

below were used. 

Patient group inclusion criteria: 

• DSM-5 criteria for schizophrenia 

• Written informed consent 

• Male or female (non-pregnant) age group 18-65 years 

• Patients on atypical antipsychotic medication without any change in 

medication over a period of one month before the test sessions 

• Normal hearing 

• Normal or corrected vision 

• Normal upper limb function  

• English as their first language 

Patient group exclusion criteria: 

• Any other neurological disorder or significant medical condition, apart 

from schizophrenia 

• Any implantable device 
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• Hearing deficits 

• Vision deficits such as colour blindness 

• Motor deficits 

• Pregnant woman 

• Patients who cannot communicate in English 

We were able to recruit 6 male patients within the study time frame. 

3.1.3 IDENTIFICATION OF PARTICIPANTS AND CONSENT 

The RS recruited the control group participants by advertising the study among 

the staff and students of the University of Strathclyde. Before the study began, each 

control group participant was provided with a brief information regarding the study 

along with a screening questionnaire. This questionnaire was based on the 

inclusion/exclusion criteria of the study listed in section 3.1.2. If they met all the 

criteria, the participants were recruited to the study and given their study identification 

number. Participants were then provided with the information sheet 24 hours before 

the study. These participants are referred to as healthy control group/subjects or 

simply, control group/subjects in the rest of the thesis. Both, the screening and medical 

questionnaire are added in Appendix B. 

The study was conducted over two sessions of testing for both control subjects 

and patients. Control participants were asked to fill out a short medical questionnaire 

on the day of their first session. The sessions for control participants were scheduled 

for 2 hours per session and they were assured that no clinical judgement was to be 

made based on any results obtained from the study.  Participants were encouraged to 

ask any additional questions regarding any of the experiments during both the sessions. 

A few curious participants were also provided with the results of their CANTAB test, 

which gave them a normalized rating of their performance for certain tests relative to 

the general population. A study flow chart summarising the process of identification 

and recruitment of control subjects is shown in figure 3.1.  

For the patient group, potential participants were identified by CI or RN in 

consultation with clinicians within the network of Community Mental Health Team 

(CMHT), Riverside, Riverview, Partick and Dumbarton areas of Glasgow and from 

Kelvin House, Gartnavel Royal Hospital, Glasgow. Once the patients were identified, 
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the study was briefly explained to each patient and a minimum of 24 hours was 

provided to consider the study and give their consent. The patients who satisfied the 

inclusion criteria were then approached by the research nurse in the presence of the 

clinician to discuss the study. Further, based on their interest in the study, written 

consent was obtained after all their queries and concerns with respect to the study had 

Study was advertised throughout the University 

though emails and posters 

Participant information sheet was 

provided to the potential participant 

Interested participant contacted 

the researcher 

Did participant 

want to take 

part in study? 

Participant was not 

contacted further 

Participant was provided with 

screening questionnaire 

No 

 

Yes 

• Participants were included in the study and given a full briefing 

about the experiments followed by the opportunity for 

participants to ask any questions. 

• Unique Study identification number was given to the 

participants. 

• Participants were given minimum of 24 hours to consent. 

• Appointment for session 1 and 2 were fixed. 

Did participant 

satisfy the 

inclusion criteria? 

No 

Yes 

Participant was not 

included in the study 

1 
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been appropriately answered. A study flow chart summarising the process of 

identification and recruitment of patients is shown in figure 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

1st test session: 

• Participants signed informed consent form 

• Participants filled up general questionnaire 

• MMN and Computerised Stroop Task 

• EEG data is collected and stored  securely 

2nd test session: 

• CANTAB and Emotional Response Task 

• EEG data is collected and stored  securely 

Signal processing and data analysis 

performed on behavioural EEG data 

 

• Analysed data was stored securely for 

further comparison with patient data 

• Participants were provided with the results 

of their CANTAB test, which gives a 

normalised rating relative to the general 

population 

 

1 

Figure 3.1 Study flow chart for healthy control group. 



 

32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Did patient 

satisfy 

inclusion 

criteria? 
Patient not included 

in the study. 

Research Nurse: 

• Approached the patient about the study. 

• Provided the information sheet to the patient and 

briefly explained the study was to them. 

• Offered another meeting to the patient if 

appropriate to ask any questions about the study. 

• Gave a minimum of 24 hours to the patient to 

consider participation prior to being invited to 

consent. 

No 

 

Yes 

Did patient 

agree to 

consent for 

the study? 

Patient not included 

in the study. 

Research Nurse or CI obtained the informed 

signed consent from patient 

N

Y

Research Nurse or CI arranged an appointment 

for session 1 of the study with the patient 

Research nurse or CI conducted PANSS and 

MADRS assessment prior to 1st test session and 

reviewed the scores. 

Research nurse or CI (in consultation with the 

patients’ clinician) identified potential 

participants and informed them about the study. 

2 
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Research nurse or CI arranged an 

appointment for session 2 of the study with 

the patient 

Research nurse or CI conducted PANSS and 

MADRS assessment prior to 2nd test session 

and compared the scores to that of scores 

from initial assessments 

2nd test session, Research student: 

• Conducted CANTAB and Emotional 

Recognition Task 

• Collected and securely stored EEG data 

Research student performed signal 

processing and data analysis on behavioural 

and EEG data. 

1st test session, Research student: 

• Conducted MMN and Computerised 

Stroop Task 

• Collected and securely stored EEG data 

2 

Figure 3.2 Study flow chart for patient group. 
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3.1.4 STUDY SCHEDULE 

The study was divided in two sessions of experiments for both the healthy 

control and the patient groups. The experiments for the healthy controls were 

conducted RS at the Neurophysiology lab of Biomedical Engineering Department, 

University of Strathclyde. The data from patients was collected at Kelvin House, 

Gartnavel Royal Hospital, Glasgow. While conducting experiments with patients, the 

RS worked with CI and RN. The various procedures administered to the patients, the 

average time taken, and the personnel administering them are shown the table 3.1. The 

experimental sessions were scheduled after a consent was obtained from the 

participants. The sessions were designed to carry out a specific set of experiments and 

were kept consistent across subjects from both the groups. The study data collected 

from both the healthy controls and patients were analysed by the RS. 

Table 3.1 Procedures administered to patients 

 

Procedure 

Number of 

Times 

Administered 

Average Time 

per 

Administration 

Administered 

by* 

Interview with potential 

participants to provide 

information and request their 

consent to participate 

1 30 mins CI or RN 

Psychiatric Interview: Positive 

and Negative Symptom Scale 

(PANSS) for Schizophrenia 
2 30 mins CI or RN 

Psychiatric Interview: 

Montgomery Åsberg 

Depression Rating Scale 

(MADRS) for depression 

2 30 mins CI or RN 

Session 1 experiments: MMN 

and Stroop task 1 60 mins 
CI or RN with 

RS 

Session 2 experiments: 

CANTAB, Emotion 

Recognition task 
1 60 mins 

CI or RN with 

RS 

*CI: Chief Investigator, RN: Research Nurse, RS: Research Student 
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Session 1 consisted of two experiments, the Mismatch Negativity (MMN) 

experiment with the auditory oddball task, and the computerized Stroop task. Both 

these experiments required the use of EEG recordings. Session 2 also consisted of 2 

experiments, the CANTAB test, and the Emotion Recognition (ER) task. As 

previously mentioned, for control subjects, session 1 began with a medical 

questionnaire before the experiments were carried out. For patients, both the sessions 

began with the assessments of their symptom severity using the Positive and Negative 

Symptom Scale (PANSS) (Kay et al., 1987) and level of depression using the 

Montgomery–Åsberg Depression Rating Scale (MADRS) (Montgomery & Asberg, 

1979) by the clinical research nurse. PANSS consisted of three sub-scales namely, 

Positive (PANSSP), Negative (PANSSN), and General Psychopathology (PANSSG). 

The PANSSP subscale assigns a total score between 7 and 49 and scores the severity 

of the patient’s positive symptoms such as, hallucinations, delusion, etc. The PANSSN 

scale scores the patient’s negative symptoms like social/emotional withdrawal, blunted 

affect, etc. This scale ranges from 7 to 49 as well. The PANSSG scale rates the patient 

based on measures like depression, anxiety, tension, etc and has a minimum and 

maximum score of 16 and 112, respectively. MADRS has a minimum score of 0 and 

maximum score of 60 depending on the severity of depression in the patient. Higher 

scores in both PANSS and MADRS imply increased psychopathology. All the 

questionnaires related to the healthy controls and patients are provided in Appendix B, 

along with the scoring criteria for PANSS and MADRS are provided in Appendix C. 

Subjects were given appropriate breaks during the sessions that were accounted 

into the schedule beforehand. Special care was taken with patients by the clinical staff 

accessible during the sessions when needed.  

3.1.5 PARTICIPANT DEMOGRAPHIC DATA 

Demographic details of all the control subjects and patients are provided in tables 

3.2 and 3.3, respectively. Table 3.2 shows the data collected from the healthy control 

subjects along with the experiments and analysis each subject was included in. 

Subjects were excluded from a certain experiment if the data was found to be corrupted 

due to any unforeseen technical problems with recording of the data and/or its storage. 

Those control subjects included in any experiment are represented with a ‘Y’ and those 

excluded with a ‘N’. The specific details are provided in appropriate chapters for each 
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experiment. The last row in the table 3.2 shows the statistics from each column. These 

are the mean and standard deviations for age, gender distribution of participants (M 

for male, F for Female), and the total number of control subjects included in each 

experiment or type of data. In table 3.3 the patient codes (P1 to P6) were assigned by 

the date of their first session. The table shows the age, clinical diagnosis, and the 

PANSS and MADRS scores recorded during each of the two sessions from the 

patients. 

Table 3.2 Healthy control demographic data and experiment inclusion 

Subject 

Codes 
Age Gender 

Experiments 

MMN Stroop CANTAB ER 

C1 24 M N Y N Y 

C2 24 F Y Y Y Y 

C3 25 F Y Y Y Y 

C4 30 M Y Y Y Y 

C5 23 F Y Y Y Y 

C6 31 F Y Y Y Y 

C7 31 M Y N Y Y 

C8 24 F Y Y N Y 

C9 26 M Y Y Y N 

C10 28 F Y Y Y Y 

C11 55 M Y Y Y Y 

C12 26 F Y Y Y Y 

C13 24 F Y Y Y Y 

C14 48 M N Y Y Y 

C15 37 M Y Y Y Y 

C16 39 M Y Y Y Y 

C17 32 M Y Y Y Y 

C18 26 M Y Y Y Y 

C19 25 F Y Y Y Y 

Stats 

Mean ± 

Std: 30.4 

± 8.5 

Count: 

10Male, 

9Female 

Count: 17 Count: 18 Count: 17 Count: 18 
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Table 3.3 Patient demographic data 

3.2 Methods 

3.2.1 EEG RECORDING 

EEG recordings were acquired continuously using Neuroscan 4.5 Acquire 

software (Compumedics) and SynAmps2 amplifiers from specific scalp locations 

according to the international 10/20 system. A 64-channel electrode array EA64 cap 

(Advanced Medical Equipment Ltd) was used comprising sintered Ag/AgCl metal 

electrodes with soft neoprene electrode gel reservoir, snapped onto an expandable and 

breathable Lycra material with shielded cables (fig 3.3).  This cap was chosen because 

Patient P1 P2 P3 P4 P5 P6 

Gender M M M M M M 

Age 35 26 57 64 59 47 

Clinical Diagnosis* SA SA SA/BSD S S S 

Session 1       

PANSS       

  Positive 27 8 7 7 16 9 

  Negative 10 14 7 23 21 7 

  General 34 21 16 19 50 18 

MADRS 9 7 4 2 18 5 

Session 2       

PANSS       

 Positive 28 8 7 7 18 26 

 Negative 27 9 10 12 20 23 

 General 38 19 17 17 49 59 

MADRS 3 4 2 0 22 26 

* S: Schizophrenia, SA: Schizoaffective Disorder, BSD: Bipolar Spectrum Disorder  

Figure 3.3 A model wearing Electrode Arrays EA-64 cap (Advanced Medical 

Equipment Ltd, 2019) 
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it reduced the setup time for recording in the clinical setting and eliminated the chances 

of individual electrodes detaching off during an experiment. Another reason to use this 

cap was to avoid any delusional ideas that could arise in our group of schizophrenia 

patients, possibly causing additional distress to their state of being. 

In healthy control subjects all 64 electrodes were used for recording. In patients, 

the number of electrodes was reduced to 37 (FP1, FP2, F7, F3, Fz, F4, F8, FT7, FC3, 

FCz, FC4, FT8, T7, C3, Cz, C4, T8, TP7, CP3, CPz, CP4, TP8, P7, P3, Pz, P4, P8, 

PO5, PO3, POz, PO4, PO6, O1, Oz, O2, M1, M2) to decrease the time taken for the 

setup. In both cases, two bipolar channel electrodes were used to monitor eye 

movements and blink artefacts: left vertical electro-oculogram (VEOG) and horizontal 

electro-oculogram (HEOG). The skin under these electrodes was cleaned using 

Figure 3.4 EEG electrode configuration on a head schematic. Electrodes are shown 

as circles and their labels are on to their right. All electrodes (64) were used in 

recording for the healthy control subjects and the white electrodes (37) were used for 

the patient group. The bipolar channels HEOG and VEOG were used across both the 

groups for recording the eye movements. 
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abrasive gel (Nuprep ECG and EEG abrasive and prepping gel). The EOG electrodes 

were then attached to the skin using double sided adhesive O-rings (manufactured by 

EasyCap). To maintain the impedance below 5 kΩ in the scalp electrodes, the above-

mentioned abrasive gel was first inserted into each electrode followed with a 

conductive gel (Electro-Gel, Brain Vision UK), using a syringe (BD 10 ml Syringe, 

Luer-LokTM Tip) with a blunt nosed needle (SRS needles). The cap also had a vertex 

reference electrode at the top of the head and a ground electrode at the top of forehead. 

All the recorded EEG data was referenced to vertex electrode and stored for post-hoc 

processing at a sampling rate of 2000Hz on hard drive in Neuroscan’s cnt file format. 

The configuration of EEG electrodes is shown on a head schematic (viewed from the 

top) in figure 3.4. The mastoid electrodes (M1 and M2) were placed behind the ear. 

The processing and analysis of EEG data involved a series of steps that was 

generally followed for each EEG experiment in this thesis. An overview of these steps 

in shown as a flow chart in figure 3.5. The pre-processing steps applied to the raw 

continuous EEG data are shown in green. These steps are explained in detail in section 

3.2.2. Following the pre-processing steps, the continuous data was converted into 

stimulus locked epochs. The steps involved in this process are shown in green in the 

figure and explained in section 3.2.3. The epoched data was then cleaned by removing 

artefacts and rejecting some of the epochs with residual artefacts. The steps followed 

Figure 3.5 Flowchart depicting general steps in EEG processing and analysis. 

Raw EEG data recorded during experiments is shown in the top-left box in grey. 

Following steps are shown in green for pre-processing, orange for converting 

continuous data to stimulus locked epochs, purple for cleaning the data by suppressing 

artefacts and rejecting epochs, and blue for analysis by task condition and subject 

group. 
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for this are shown in purple in the figure, with the techniques described in section 

3.2.4. After this step, the data was analysed based on its task conditions and/or group 

of subjects in each experiment. The general steps in this process are shown in blue in 

the figure and the details of analysis common across each experiment are presented in 

sections 3.2.5 to 3.2.8. 

3.2.2 EEG PRE-PROCESSING 

The stored EEG signals were subjected to a several steps of pre-processing and 

cleaning before any analysis could be performed on them. Most of the pre-processing 

steps were common across the different experiments and have been outlined in this 

section. The widely used MATLAB toolbox EEGLAB (Delorme & Makeig, 2004) 

was chosen for carrying out pre-processing, cleaning, and analysis of the collected 

EEG data. The toolbox provided a flexible graphical user interface to easily visualize 

the processing or analysis that was being carried out. This was helpful in determining 

the best set of methods that could be used on the data. Once the steps were decided, 

scripting functionality in MATLAB using the toolbox was then used for carrying out 

pre-processing and analysis in batches efficiently. The EEGLAB version 14.1.2 was 

used for all the analyses. 

The effects of first few steps of processing the EEG data, from three midline 

electrodes, namely Fz, Cz and Pz, are shown in figure 3.6. The figure 3.6a shows the 

raw EEG signal. This signal, as mentioned earlier, was sampled at 2000Hz, and was 

recorded relative to the vertex reference electrode on the EEG cap. As only two 

seconds of the EEG data is shown in the figure, the plot does not show the drift in the 

EEG signal that usually occurs over the entire length of the recording. In the top row 

plot, a relative difference in the signal amplitude between the three electrodes is 

observed. This occurred due to the close proximity of the reference electrode to Cz 

and Pz electrodes when compared to the electrode Fz.  
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The first pre-processing step was re-referencing the raw EEG data. This is the 

process of changing the reference from what it originally was, to using either one or 

more recording electrodes as the new reference to the raw EEG data. For example, in 

the auditory oddball experiment (Chapter 4), following the widely used convention in 

the literature, the EEG signals were re-referenced to the average of the left and right 

mastoid electrodes. In other experiments, a common average reference (CAR) was 

used which, as the name suggests, is the average of the activity across all the EEG 

electrodes used during the recording. Different types of referencing methods can lead 

to significant differences in the resulting signal. The reason for using CAR with the 

EEG data (except auditory oddball experiment) was, that it does not bias the resulting 

signal in anyway. It was also the most common referencing method used in the EEG 

studies that were reviewed. The other advantage of re-referencing the signal was that 

by using either the linked mastoid reference or CAR, the signal power on the Cz and 

Pz electrodes was improved. This can be seen in figure 3.6b. This plot was made 

following the re-referencing and resampling of the EEG data. The resampling step is 

Figure 3.6 EEG initial pre-processing steps. a. Raw EEG data recorded during the 

experiment, b. EEG signal after re-referencing to average of left and right mastoid, 

followed by resampling to 250Hz, c. EEG signal after applying low-pass filter at 45Hz 

cut-off and high-pass filter at 0.05Hz cut-off. All plots show 2 seconds of signals from 

three midline electrodes Fz, Cz, and Pz. 
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the process of reducing the sample rate of the data to reduce its overall size, making it 

feasible for further analysis. A sampling rate of 250 Hz was used as frequency range 

above 50 Hz was not studied in this thesis. This comfortably satisfied the Nyquist 

theorem which states that in order to adequately reproduce a signal it should be 

periodically sampled at least at a rate that is 2 times the highest frequency we wish to 

record. This also resulted in comparatively smaller size of EEG data that was used for 

further pre-processing steps. 

After re-referencing and resampling the raw EEG data, a high-pass and a low-

pass filters were applied to it. As mentioned earlier, the recorded EEG data often has 

very low frequency (<0.01Hz), but also high amplitude drifts. These are usually caused 

by the changes the in the skin potentials or sweating resulting in changes in electrode 

recordings over the time course of the experiment (Luck, 2014b). The high-pass filter 

was used with the 6dB cut-off frequency equal to 0.05 Hz to attenuate these low 

frequency changes in the EEG signal, which are not a representation of the neural 

activity. Using the high-pass filter also helps in mitigating the distortions that could be 

caused while computing the average trial responses. The low-pass filter cut-off was 

set at 45Hz. The 45Hz cut-off provided a good balance between the range of EEG 

frequencies to be investigated in the experiments and the line noise at 50 Hz and its 

subsequent harmonics. The electromyographic (EMG) activity that occurs at higher 

frequencies (>100 Hz) was also suppressed to a large extent using the low-pass filter. 

EEG data was filtered using the Hamming windowed sinc FIR filter. The filtered EEG 

signal is shown in figure 3.6c. Comparing with the figure 3.6b, a clear decrease in the 

high-frequency noise components in each of the electrodes is seen. The low frequency 

suppression is not visible in this plot as it shows only two seconds of EEG activity. In 

addition to using the high and low-pass filters, an EEGLAB plugin CleanLine was also 

used to further reduce the sinusoidal noise caused by the line frequency harmonics 

(Mullen, 2012). This plugin uses an adaptive approximation and removal of the line 

noise. Though it was a part of the pre-processing pipeline, no changes were observed 

while visually comparing the data from before and after the application of the function. 

This was likely because most of the line noise was already suppressed from the data 

due to the application of the low-pass filter. 
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Following these pre-processing steps, independent component analysis (ICA) 

was performed on the EEG data. The EEG activity recorded from the channel array 

placed on the scalp results from mixture of several sources in the brain. At each 

electrode, a weighted sum of these sources is observed, with the weights defined by 

the relative location and strength of the individual neural generators. ICA is a 

technique that can be used to unmix the observable EEG activity into the underlying 

sources (Hyvärinen & Oja, 2000). The ICA decomposition of the recorded EEG data 

was computed mainly to suppress the components contributing to the noise in the 

recordings. This technique proved helpful in removing noise from the data that could 

not be effectively eliminated by using the previously discussed pre-processing steps 

alone. The details of identifying and suppressing these noise components are provided 

in the section 3.2.4. 

3.2.3 EPOCH EXTRACTION 

The pre-processing steps in the previous subsection were carried out on the 

continuous EEG data. Each experiment in this thesis is comprised of hundreds of trials 

for varying stimulus condition. To study the dynamics of EEG activity as a response 

to the different task conditions, in any experiment the continuous data was first 

transformed into individual epochs of data associated with each trial. An epoch is a 

short time-chunk of EEG data locked to the event of interest. For example, in the 

auditory oddball experiment, subjects were presented with an auditory tone stimulus 

once every second. The epoch in this case was defined as the segment of EEG data 

that began 200ms before the stimulus and ended 800ms after the stimulus.  

Though the post-stimulus EEG activity is of prime interest, each epoch started 

before the stimulus onset event to establish a baseline period. It was assumed that the 

activity in the baseline period was unaffected by the current or the previous stimulus. 

The EEG activity in each epoch was “corrected” using the average activity in the 

baseline period. This involved subtracting the baseline average from the whole trial 

activity, with the rationale that it transforms all the trials to the same average relative 

voltage level. It can be deduced that longer baseline period would lead to a better 

estimation of the baseline average. However, this period was restricted by the inter-

stimulus interval and assuming that the activity was not affected by the previous 

stimulus. A high-pass filter in the pre-processing pipeline was used to mitigate the 
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drifts in the EEG signal over time. Baseline correction was another step that helped in 

doing the same. By eliminating the absolute differences between same task conditions 

separated by long durations within the experiment, it was ensured that the average trial 

response was a representation of only the evoked activity and did not include 

fluctuations caused by the changes in skin hydration, static charges, etc (Luck, 2014b).  

A justification for the baseline correction is best illustrated in figure 3.7 which 

was adapted from Steven Luck’s book (Luck, 2014b). The figure shows how the EEG 

activity on a single electrode can drastically vary between trials of same condition 

(marked by ‘X’s and ‘O’s). The rectangular boxes represent the epoch boundaries with 

the dotted line representing the stimulus onset time. It is clear from the figure that 

averaging EEG activity from all the ‘X’ trials and all the ‘O’ trials would result in 

highly variable and inaccurate representations of average EEG dynamics if the 

baseline correction is not applied. The drift in the EEG data in this figure is further 

exaggerated by not incorporating the high-pass filter.  

Following the epoch extraction, data for individual subjects was stored for 

further processing. This was a necessary intermediate step to enable artefact rejection 

and deletion of noisy epochs through visual inspection of EEG data and/or ICA 

component suppression. These steps are outlined in the following sub-section. 

 

Figure 3.7 Epoch extraction and the need for baseline correction. Boxes in the plot 

represent the epoch boundaries with dotted lines separating pre and post stimulus 

periods. X’s and O’s mark the same trial conditions. The EEG signal is seen to have a 

significant voltage offset and downward drift. Reproduced from (Luck, 2014b) 
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3.2.4 ARTEFACT REJECTION 

After the pre-processing pipeline and the extraction of epochs from the 

continuous data, it was necessary to reject the trials that had noise associated with 

them. This was an important step in EEG analysis to ensure that average evoked 

response was minimally affected by the various artefacts that might occur during the 

experiment. In the experiments described in this thesis, the EEG activity for the tasks 

were recorded continuously for intervals ranging between 10 and 25mins. During this 

time, the subjects blinked, adjusted themselves to get comfortable, moved their head, 

had random micro-twitches in their scalp muscles, etc. All these caused different types 

of artefacts that were picked up by the electrodes. Artefact rejection is a set of steps 

that were followed to minimize the effect of these unwanted signals on the analysis. 

The EEGLAB toolbox contains a graphical user interface (GUI), that can be used 

for both analysis and visualization of the data. In the first pass of artefact rejection the 

interface provided by the toolbox was used to visually inspect and mark the noisy 

epochs for rejection. This involved manually scrolling through several minutes of EEG 

epoch data to look for signs of eye blinks, movement artefacts, swallows and tongue 

movements, signal discontinuities etc. As humans blink on an average 15 blinks per 

minute while looking at a computer screen (Chu et al., 2014), blink and other eye 

movement artefacts were present in every subject, through the duration of the 

experiment. In some cases, these signals were only observed on the EOG electrodes, 

however, on several occasions they were also picked up on other scalp electrodes. 

There were also instances of large EMG activity, signal discontinuities, etc. but these 

were rare and lasted only for a few epochs randomly occurring during the experiment. 

In this first pass of artefact rejection through visual inspection, all such noisy epochs 

were marked for rejection. 

After visually inspecting the epochs for above listed noises, the numbers of 

epochs that were to be rejected and retained were analysed. On average, across 

multiple experiments, more than 50% percent of the epochs were clean and retained 

(mean 56.27%). However, in approximately 15% of the cases, less than 20% of the 

trials were retained. On further inspection, it was found that the low retention rate 

occurred in cases where the eye related artefacts were large, more frequent, and 
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occurred through the experiment period. To reduce the number of rejected epochs, ICA 

artefact suppression was also used. 

Independent component analysis or ICA, unmixes the recorded multi-channel 

EEG activity and outputs the same number of independent components. These 

components are, theoretically, a representation of the various sources generating the 

activity recorded on the scalp electrodes. As the ICA components are a linear 

combination of the electrode activity, the decomposition of the EEG signals gives a 

matrix transformation that can be used to transform one activity into the other. 

Similarly, once the noisy components are identified, their weights in the 

transformation matrix can be set to zero to suppress the noise from the EEG data. 

The identification of the noisy ICA components is not a trivial task and needs 

careful inspection of each component to determine its likely origins. The EEGLAB 

GUI has tools to visualize component scalp maps, frequency spectrums, event related 

activation, etc. To keep the artefactual component identification as objective as 

possible, an additional EEGLAB plugin called SASICA (version 1.3.4) was used 

(Chaumon et al., 2015). This plugin computes several measures to define the 

components. Some of these measures were designed by the creators of the plugin, 

while others were adapted from previously used automatic ICA rejection algorithms, 

ADJUST (Mognon et al., 2011) and FASTER (Nolan et al., 2010).     

The GUI interface of the SASICA plugin allowed to select several options to 

compute specific measures defined within the plugin. Apart from specifying the EOG 

electrodes in our recordings, the default parameters were used. A typical output of the 

computed measures from plugin, for a single ICA component, is shown in the figure 

3.8a. On the top-left we see the scalp activation map of this component. This 

component has a high concentrated activity close to the right eye of the subject. The 

image plot on the top right of figure 3.8a shows the activity of the component during 

the epoch-trial period. We see that this component was active randomly within the trial 

period. This is an indication that this component does not show an event related 

activation. The following row in this plot shows the frequency spectrum of the 

component. This is followed by rows of different parameters computed; for example, 

the correlation with the vertical (CorrV) and horizontal (CorrH) EOG activity 

computed by SASICA, correlation with the EOG electrodes computed by the FASTER 
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algorithms (EOGCorr), etc. These measures are also associated with the adaptive 

thresholds shown on the y-axis of each plot. Based on all the computed measures and 

the various plots shown by SASICA plugin, this component can be confidently marked 

as a blink artefact. The specific details of each measure and method of computation 

have been defined in the paper by Chaumon et. al. (Chaumon et al., 2015). 

The guidelines provided by the Chaumon et. al. paper were used to inspect each 

component and determine if it should be marked for rejection. It should be noted that 

ICA decomposition of EEG signals is not perfect, and components that are a mixture 

of noise and neural activity are also seen. The goal of ICA artefact rejection was to 

eliminate a minimum number of components that were clearly capturing only the noise 

in the signal. Typically, only 2-3 components from each subject were rejected. In 

almost all subjects, across all the EEG experiments, the eye blink artefact was present. 

This artefact was strong enough to be completely picked up by one or two ICA 

components. Apart from these, depending on the subject, components that were 

representative of artefacts like muscle activity, heartbeat, or just random noise, were 

also rejected.  

Figure 3.8 Artefact rejection by suppression of noisy ICA components. a. Output 

of SASICA EEGLAB plugin for a single ICA component, b. An epoch of EEG activity 

at midline electrodes with all ICA components, c. Recorded EOG activity during the 

same epoch, d. The epoch activity after ICA component (shown in a) capturing the 

blink artefact was removed.  
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An example of artefact rejection on the EEG activity is shown in figure 3.8b-

3.6d. This shows the activity at three midline electrodes from a single epoch. The plot 

in figure 3.8b shows the activity before artefact removal. The plot in figure 3.8c shows 

the EOG electrode activity in the same epoch. The plot in figure 3.8d shows the activity 

from the same epoch as 3.8b, but after removal of the blink artefact ICA component 

shown in figure 3.8a. In this case, it is observed that Fz and Cz electrodes were 

extremely sensitive to the eye blinks, leading to high magnitudes of activity on these 

electrodes. This artefact was greatly suppressed after the blink related component was 

removed. 

The ICA based artefact rejection was able to eliminate several different types of 

artefacts by suppressing the noisy ICA components. However, there were components 

that were likely a mixture of noise and neural signal. These components were retained 

to preserve the neural activity present in them. Due to the presence of such 

components, some artefacts could not be eliminated by using ICA artefact rejection 

alone. This was particularly true in cases where there were large movement artefacts 

or discontinuities during the recording that exist for a few epochs or seconds. It was 

noticed in the ICA space that, these were present on one or several, otherwise “clean” 

components. For this reason, after completing ICA based artefact rejection from all the 

subjects and experiments, the cleaned epoched EEG data was again visually inspected. 

All the epochs that still had artefacts in them were rejected in this step. As before, the 

numbers of rejected and retained trials were analysed. The percentage of accepted 

trials retained was computed in all subjects across different experiments. Figure 3.9 

shows  the kernel density estimation of these retained trial percentages with and 

without using ICA based artefact rejection. The vertical lines represent the means of 

the distribution without using ICA rejection (56.27%) and with using ICA rejection 

(82.58%). The figure shows that percentage of retained trials was higher when ICA 

based artefact rejection was used. The mean percentage of trials increased almost by 

30% and in most cases more than 80% of the trials were preserved. 
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After the artefact rejection was completed, the data for each subject in each 

experiment was split by the task condition. The trials marked for rejection (based on 

visual inspection after ICA artefact rejection), and any incorrect trials during the 

experiment were then dropped. This data was again stored as clean dataset files for 

group level analysis. This analysis was done using the EEGLAB structure called 

STUDY. This is elaborated in the following section. 

3.2.5 MULTI-SUBJECT ANALYSIS 

All the previously described steps, from the recording of EEG data to the artefact 

rejection were applied to data from individual subjects. To make comparisons between 

the group of healthy controls and the patients recruited for the experiments, analysis 

and inference needed to be carried out on collective response of a group. Even if a 

single subject’s response within the group was to be observed, it was important to 

setup an environment that could apply the same set of steps to each dataset. EEGLAB 

provides with a data structure called STUDY which was used in conducting such type 

of analysis. 

Figure 3.9 Distribution of percentage of trials retained with and without ICA 

artefact rejection. The vertical lines represent the mean of each distribution.    



 

50 

 

For each experiment, a STUDY structure was created for each group of subjects, 

the healthy controls, the patients, and the two groups of patients segregated by clinical 

diagnosis (schizophrenia and schizoaffective disorder). To create the structure, the 

clean dataset files were used by specifying the subject and the task condition data 

stored in the file. Once all the clean datasets were added to the data structure, several 

EEGLAB STUDY designs were used to compare between different combinations of 

task conditions. For example, in the auditory oddball experimental paradigm, the 

standard tone stimulus trials were compared with the five types of deviant stimuli using 

five STUDY designs. For each design, the event related potential (ERP) and the event 

related spectral perturbation (ERSP) measures (described in the following sections), 

were also precomputed. By precomputing and storing these measures at this stage, 

different plots of interest and statistics could easily be computed later. In the STUDY 

data structure, these measures for every subject can either be stored as an average, or 

as individual trials. The individual trial data was stored only in the patient group 

STUDY designs. This was done to allow statistical analysis on individual patients as 

well as the patient group. In all the other cases only the average measures for each 

subject were stored. 

The EEGLAB toolbox provides with different types of statistical tests that can 

be carried out on the STUDY data structure and design. The tests used in the analysis 

for this thesis are described in section 3.2.8 below. The toolbox also provides with 

some visualization and plotting functionality. Few elements of these functionality were 

adapted, and changes were made to generate more informative figures. 

3.2.6 EVEN RELATED POTENTIAL ANALYSIS 

The event related potential or ERP is defined as the average or stereotypical EEG 

response to the occurrence of an event (Luck, 2014a). In the experiments described in 

this thesis, ERP was calculated with respect to the onset time of each stimulus 

condition. In the precomputation step of STUDY structure and design creation, the 

ERP response for each task condition was calculated and stored for each subject. The 

grand averaged ERP were also computed for different groups of subjects while 

studying an average group response or making comparisons between different groups. 

These responses were computed by the taking the mean of the average responses of 

subjects within the group. 
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3.2.7 TIME-FREQUENCY ANALYSIS OR ERSP 

The ERP response provides the time domain response of the EEG activity to a 

given stimulus. However, the EEG signal is comprised of a wide frequency band of 

neural activity which is averaged out in the ERP response. The event related spectral     

perturbation or ERSP is the average change of the frequency spectrum of the EEG 

signal as a function of time (Makeig, 1993). Like the ERP, the ERSP is calculated 

relative to the stimulus onset event. Thus, the ERSP provides a more granular, time 

and frequency domain view of the dynamics of the neural response. The mathematical 

definition of ERSP, as stated by Delorme and Makeig (Delorme & Makeig, 2004), is: 

𝐸𝑅𝑆𝑃(𝑓, 𝑡) =
1

𝑛
∑|𝐹𝑘(𝑓, 𝑡)|2

𝑛

𝑘=1

 

In the above equation 𝑓 is the frequency, 𝑡 the time relative to the stimulus onset, 

𝑛 the number of trials and 𝐹𝑘(𝑓, 𝑡) is the spectral estimate of the power at the given 

time-frequency point. The ERSP values were computed for 100 frequencies 

logarithmically distributed between 2Hz and 50Hz keeping with the limitation 

associated with the sampling rate for EEG acquisition and filter settings (see section 

3.2.2). EEGLAB provides with several options for estimating the frequency spectrum 

(𝐹𝑘(𝑓, 𝑡)), but the best compromise between time and frequency resolution was 

obtained using a standard FFT estimation with a 250ms time window. 

Similar to the ERP response precomputation, a precomputed ERSP response for 

each subject was stored for each task condition. The grand averaged ERSP response 

of a group, for a given stimulus condition, was calculated by taking the mean of the 

stored precomputed values of subjects within that group. 

3.2.8 STATISTICAL TESTING 

Suitable statistical tests were used to determine the significance of the various 

results obtained from analysis of collected data from the various experiments. All the 

tests were performed using the standardized functions present in MATLAB or 

specifically defined in the EEGLAB toolbox. The behavioural measures computed 

from the various tasks performed by subjects were tested for statistical significance 

using t-tests. Paired statistics were used in the cases where comparison was made 
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within the group between responses to two different stimuli. Unpaired t-test was used 

to make between group comparisons. 

The ERP and ERSP responses to various stimuli were compared for statistical 

differences with each other. Unlike the scalar values of behavioural responses, the 

EEG measures are one- or two-dimensional vectors. For this reason, univariate 

comparisons were made at every point in either the time (ERP) or time-frequency 

(ERSP) space. As this was a multiple comparisons problem, a p-value for statistical 

significance could not be used without applying a correction method. EEGLAB has 

implementations of several parametric and non-parametric tests and provides standard 

options for multiple comparisons analysis like the Bonferroni correction or false 

discovery rate (FDR).  

Bonferroni correction method is widely used in statistics however, it is not 

suitable for comparing time domain or time-frequency domain data. To account for 

multiple comparisons, Bonferroni correction scales the p-value threshold (typically 

0.05) by the number of univariate tests carried out. This number ranges from a few 

hundred in the case of ERP analysis, to a few 10s of thousands for ERSP analysis. This 

would result in an extremely strict significance criteria which is very unlikely to be 

met by any statistical effects present in the data. Another problem with using 

Bonferroni correction with EEG data is that it treats each point in the data 

independently. As ERP is a temporal signal, it is highly dependent on preceding time 

points. This also applies to the time-frequency space of ERSP data in both the 

dimensions, with an additional dependence introduced in time by the moving window 

estimation of the spectrum. Lastly, the Bonferroni correction factor is directly 

controlled by the number of tests and not the information content. Thus, the number 

of tests can be easily reduced by changing the sampling rate or the frequency bins, 

resulting in higher corrected p-value without any change in the actual effects observed 

in the data. 

Cluster-based permutation tests, implemented in the Fieldtrip plugin 

(Oostenveld et al., 2010) of EEGLAB, were used to solve the multiple comparisons 

problem, and to determine statistically significant regions in the ERP and ERSP 

responses. The cluster-based permutation tests were first proposed by Maris and 

Oostenveld in 2007 (Maris & Oostenveld, 2007). The test worked by first computing 
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a univariate t-statistic between the responses of the two stimuli being compared (say, 

Stimulus1 and Stimulus2) and thresholding it to a desired significance value (e.g., 

p=0.05). All the values that satisfied this threshold were combined into clusters based 

on their connectivity, either in the time domain (ERP) or time-frequency space 

(ERSP). The cluster-level statistic was calculated by taking the sum of the t-statistics 

in each cluster. To determine the significance of each of the clusters thus obtained, the 

Fieldtrip plugin employed a Monte Carlo sampling method. At every iteration, a set 

number of samples were drawn from the whole dataset and randomly assigned to either 

of the two groups (Stimulus1 or Stimulus2). On this newly created sample distribution, 

the t-statistics and the corresponding cluster-level statistics were computed. These 

iterations were carried out many times to determine the distribution of cluster statistics 

from a randomly generated dataset (more iterations resulted in higher accuracy). The 

originally obtained clusters, from the real distribution of responses, were then said to 

be significant at p=0.05 if they lied outside the 95th percentile range of the random 

cluster-level statistic distribution (Maris & Oostenveld, 2007). 

The significant clusters obtained from such an analysis can be used to identify 

the regions in the data where the effect was most prominent. It should be noted that 

though the cluster of data denoted significantly different activity within its boundaries, 

it did not imply that each point within the cluster individually met the significance 

criteria. For this reason, making any claims about individual time points or time-

frequency point, except that they lie within a significant cluster, would be inaccurate 

(Sassenhagen & Draschkow, 2019). In figures in the following chapters of this thesis, 

the significant clusters are represented either by marking the time-region in ERP 

analysis or by drawing contours representing cluster boundaries in the difference 

ERSP plots. 

Measures like peak and latency from the ERP data of individual subjects were 

also computed. These measures were governed by multiple factors like the stimulus 

condition, group the subject belonged to, and the location of the electrode. Mixed 

factor analysis of variance (ANOVA) was used for statistical comparisons of these 

measures. The standard functions available in MATLAB’s Statistics and Machine 

Learning Toolbox were used for this purpose.
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4.1 Event Related Potentials 

An event related potential (ERP) is the EEG activity time-locked to a certain 

event like the onset of a stimulus and averaged over multiple trials. This chapter studies 

the ERP signals in response to an auditory oddball task. The auditory ERP (AERP) has 

several positive and negative components that are observable starting from a few 

milliseconds after the stimulus (fig 4.1a). The early AERP (<10ms) is composed of 

positive deflections called Wave I-VI (in roman numerals) which represent the 

response dynamics of the auditory brainstem (Hillyard & Kutas, 1983). Wave V can 

be recorded to show that the brain is receiving auditory input and can be used to test 

hearing without the need of a subjective response (Picton, 2006). Following the 

brainstem response, the AERP components are named based on their polarity (P for 

positive, N for negative), in an alphabetical sequence. The Pa, Na, Nb, etc, deflections 

occur within the 100ms of stimulus presentation. These components encode the 

parameters of the stimulus and are therefore called exogenous or stimulus driven 

components (Hillyard & Kutas, 1983). 

The later components of the AERP are again named after their polarity but now 

followed by a number representing the approximate time of their occurrence. These 

longer latency components are modulated by the cognitive requirements of the task 

performed and are therefore called endogenous or context-driven components 

(Hillyard & Kutas, 1983).  The most studied of these are the N1 or N100 and the P3 

or P300. The N1 component peaks at a latency of 100ms and is observed every time 

an auditory stimulus is presented. The P3 component is elicited when the subjects 

attend to the changes in the auditory stimulus and peaks around 300ms. However, the 

experiments presented in this chapter study a different component of AERP called the 

Mismatch Negativity or MMN. This is a component of ERP that has been shown to 

occur when a series of repetitive standard tones is interrupted by an infrequent deviant 

tone, an “oddball”, differing in a parameter from the standard, like its frequency, 

intensity, etc. An ideal MMN response to a deviant tone is shown in figure 4.1b, using 

a figure adapted from (Brattico, 2006). It is observed to be elicited as a large negativity 

in the difference waveform calculated by subtracting the standard AERP from the 

deviant AERP. MMN is elicited automatically without the need of subject to pay 
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attention, unlike P3. Also, unlike N1, the MMN component has a longer latency and 

is observed only when there is a change in the stimulus parameter (Picton, 2006). To 

prevent other attention-dependant ERP components that might overlap or elicit with 

the MMN, experimenters usually have the participants attend to another stimulus. This 

involves either watching a familiar (muted) video or reading a book through the 

duration of the experiment (Michie et al., 2000; Michie, 2001). 

  

Figure 4.1 Auditory ERP signal and schematic of MMN. a. AERP recorded at the 

vertex electrode is shown at three levels of zoom from shorter (upper left) to longer 

(lower right) time window. Adapted from Picton, 2006. b. AERP evoked at a frontal 

electrode as a response to a standard tone (blue) and deviant (red). The difference 

waveform (black) was generated by subtracting the standard AERP from the deviant 

AERP. MMN is seen as a large negativity to the deviant tone. Adapted from Brattico, 

2006.   
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4.2 Mismatch Negativity 

Mismatch negativity was documented by Risto Näätänen and his colleagues and 

presented in an article in 1978 (Näätänen et al., 1978). In a set of experiments carried 

out in 1975, Näätänen et. al. presented subjects with standard auditory tones of 1000Hz 

frequency and 70dB intensity in a single, randomly selected, ear at each trial. Subjects 

were also presented with a rare target tone which differed either in intensity in one 

experiment or in frequency in another experiment. The subjects were instructed to 

attend (count) to these target tones in only one of the ears.  

The experimenters observed that the target tones resulted in a negative deviation 

in the ERP signals recorded from the top of the head (Cz) and from the temporal 

electrodes (T3 and T4). More specifically, the negative deviation was present at a 

latency of approximately 100-300ms after stimulus for both attended and unattended 

trials. They also noticed a positive deviation around 300ms, but only for the attended 

trials. Näätänen et. al. concluded that the negative deviation was an automatic response 

to the change in the stimulus and coined the term Mismatch Negativity (Näätänen et 

al., 1978). MMN is typically seen as a negative displacement at the fronto-central and 

the central electrodes with respect to a mastoid or a nose reference electrode. However, 

a reversed polarity (positive deviation) MMN is generally observed at the mastoids 

when a nose reference is used (Näätänen et al., 2007) 

Since its first discovery in 1978, MMN has been extensively studied in both 

healthy control and patient populations with varying pathologies. The following sub-

sections summarize different aspects of research on MMN. Section 4.2.1 describes the 

types of auditory deviant stimuli that have been observed to generate an MMN 

response. It also discusses how this response varies with changing deviant parameters. 

Sections 4.2.2 and 4.2.3 describe the current understanding of the neural basis of MMN 

and the mechanisms that have been proposed to explain it. Section 4.2.4 discusses how 

MMN is affected in different neuropathologies, with an emphasis on schizophrenia.  

4.2.1 CHARACTERISTICS OF MMN 

 MMN can be reliably recorded when a stimulus parameter is varied in an 

auditory oddball task. Various types of changes to the stimuli like, frequency, intensity, 
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duration, location, phonetic structure, partial omission, etc have been reported to elicit 

this negative deviation. 

MMN response to frequency change was first reported with the discovery of 

MMN in the 1978 paper by Näätänen et. al. (Näätänen et al., 1978). Sams et. al. further 

studied the frequency MMN by varying the deviant frequency in each block relative 

to the standard tone (Sams et al., 1985). They used a 1000Hz standard tone and used 

deviants of 1002, 1004, 1008, 1016, and 1032 Hz. Their observations showed that 

MMN was elicited at deviant frequencies of 1008Hz and above. The MMN amplitude 

was small at 1008 Hz and nearly the same at higher frequencies. Other studies have 

shown that the latency of frequency MMN decreased as the deviant frequency is 

further increased. Researchers have since concluded that because the MMN amplitude 

is saturated at lower frequency deviations, latency is a more reliable measure of 

frequency deviation (Näätänen, 1992). 

Changes to standard stimulus intensities leading to an MMN response were 

meticulously studied in the early 1990s. Näätänen et. al. varied the stimulus intensity 

above and below the standard tone, and MMN was calculated at the central (Cz), 

frontal (Fz, FPz), and parietal (Pz) electrodes (Näätänen, 1992). Deviant intensities 

both below and above the standard were observed to produce an MMN response. Like 

the frequency MMN, the amplitude and latency of MMN were modulated by the 

difference in the intensities. A larger difference in intensities of the deviant and 

standard tones led to a larger amplitude and a shorter latency. The amplitude, however, 

did not show an early saturation that was observed with frequency MMN. The latency 

of MMN at larger differences (intensities both above and below standard tone) was 

closer to 100ms and led to an overlap between the MMN and N1 response. An 

interesting difference between the deviants was that higher intensity (compared to 

standard tone) deviants also elicited a P3a wave, while the lower intensity deviants did 

not (Näätänen, 1992; Näätänen et al., 2007). 

An infrequent presentation of deviant, longer or shorter in duration, compared to 

the standard stimuli, also elicits an MMN response (Kaukoranta et al., 1989; Näätänen 

et al., 1989). Studies from 1989 showed that decrement deviants that were half the 

duration of the standards, between 25ms to 200ms, showed a clear MMN response. 

Similarly, blocks with duration increment deviants of 100ms and 200ms, with standard 
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tones of half their corresponding durations, also elicited an MMN response. More 

complex temporal changes in the stimulus, like, changes in inter-stimulus interval (ISI) 

(Näätänen, 1992), rise time, an omission of second tone in a paired stimulus (Näätänen 

et al., 2007), and a silent gap in the middle of a stimulus have also shown MMN 

elicitation (Bertoli et al., 2001; Desjardins et al., 1999; Pihko, 1997).   

Another study demonstrated that MMN was elicited when the location of the 

speakers producing the sound was changed from straight ahead to an angle of either 

10, 45 or 90 degrees. MMN was also seen when the location change was only 

perceived (versus real) by varying the intra-aural phase or intensities using an 

earphone. This study showed a gradual increase in the MMN amplitude with the 

increase in perceived angle change. However, even a small (10 degrees) change in the 

physical location of the speakers elicited a large MMN response. The authors reasoned 

that this could be due to more discernible cues of change in location in the latter case 

(Näätänen, 1992). 

The change in MMN amplitude and latency has been previously discussed to 

vary with the increase in magnitude of stimulus deviation. These amplitude and latency 

effects have been seen in various types of stimulus changes like intensity, frequency, 

location, etc. The MMN amplitude has been further shown to increase with a decrease 

in the probability of the deviant stimuli. Sequential analysis of the experimental data 

revealed that local stimulus probabilities, and the sequence of stimuli, also affect the 

MMN. For example, increase in the number of standards preceding a deviant increases 

the MMN amplitude. When two deviants occur one after the other, MMN generated 

by the second deviant is smaller in amplitude than the first. However, the MMN 

generated by the second deviant does not attenuate when the two consecutive deviants 

differ from each other in their attribute when compared to the standard. The standard 

signal has also been shown to elicit a small negativity when preceded by a deviant 

(Näätänen, 1992; Näätänen et al., 2007). 

Researchers have also studied the effect of ISI on the MMN response. As 

mentioned briefly before, an infrequent reduction in the ISI leads to a small but 

significant MMN. Studies with varying ISI have revealed that MMN amplitude due to 

a deviant gradually decreases with increasing ISI. Though the results from different 

studies are conflicting, MMN was not elicited with longer ISI of 4 or 8 secs. On the 
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other end, MMN elicitation has been observed with ISI as low as 60ms (Näätänen, 

1992). 

The above-described studies have shown that the MMN response is dependent 

on the parameters of the deviant stimulus. The MMN amplitude and latency is seen to 

vary when the same type of deviant stimuli is modulated. This has led researchers to 

employ various methodologies in deciphering the areas of brain contributing to the 

generation of MMN. There have also been predominantly two theories to explain the 

mechanism of the MMN phenomenon and consequently several studies to test each 

one of them. The following sub-sections discuss the generation and the theories of 

mechanisms of MMN. 

4.2.2 GENERATION AND ORIGINS OF MMN 

Primarily, MMN has been shown to be a result of activity from two regions of 

the brain: a. bilateral process in the supratemporal regions which encompass the 

primary auditory cortex, and b. largely unilateral process from the right frontal cortex 

(Näätänen et al., 2007, 2012; Winterer & McCarley, 2010). One of the first evidence 

of multiple mechanisms adding to the generation of MMN was the polarity reversal at 

the mastoid electrodes referenced to the nose (Näätänen, 1992; Näätänen et al., 2007). 

There have also been some evidence of subcortical areas like hippocampus and 

thalamus responsible for contributing to certain subcomponents of the MMN response 

(Alho, 1995; Csépe, 1995; Näätänen et al., 2007; Winterer & McCarley, 2010). 

Kimmo Alho (Alho, 1995) and Valeria Csépe (Csépe, 1995) in 1995 

simultaneously reviewed several earlier studies of origin and generation of MMN. 

Alho’s review focused on findings of different methodologies and modalities that 

researchers had used to determine brain regions contributing to MMN. Csépe, on the 

other hand was more interested in animal analogues, development, and clinical 

importance of MMN. Scalp EEG distributions along with current density analysis have 

shown that MMN responses to different stimulus parameters like frequency, intensity, 

and duration, fit different dipoles. Though all these are located in the auditory cortex, 

they differ in orientation and location within the region. These recordings have also 

located generators in the right frontal cortex, which has been theorized to cause 

involuntary switching of attention to the change in auditory stimulus (Alho, 1995; 

Näätänen et al., 2007). More recently, independent component analysis (ICA) of scalp 
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recordings has shown similar results with components clustered in auditory and right 

frontal cortices (Rissling et al., 2014). Source localization has also been performed on 

Magnetoencephalographic (MEG) recordings to provide a unique view of the MMN 

and its generators. MEG is blind to the radial sources in the frontal cortex and thus, it 

can be uniquely used to study the generation on MMN in auditory cortex and in 

detecting processing deficits in various pathologies (Näätänen et al., 2012). 

Non-human primate studies to determine the origin of MMN, have been related 

to the activity of the glutamatergic N-methyl-D-aspartate (NMDA) receptor system 

(Alho, 1995; Javitt et al., 1996; Näätänen et al., 2007). Javitt et. al. showed that the 

presence of an NMDA antagonist MK-801 led to an elimination of MMN like response 

to frequency and intensity deviants, while keeping the initial obligatory responses to 

auditory stimuli intact (Javitt et al., 1996). However, some studies have also suggested 

that NMDA antagonist suppression is non-specific (Farley et al., 2010). Other animal 

studies have shown the involvement of hippocampus (cats) and thalamus (guinea pig) 

in MMN generation (Alho, 1995; Csépe, 1995). Human patients with lesions to 

thalamus have shown reduced MMN response. However, intercranial recording from 

human thalamus, hippocampus, basal ganglia, and amygdala do not show an MMN 

response. The reduced MMN due to lesions to thalamic nuclei, thus points to a 

necessity of sustained input from subcortical regions to the auditory cortex for 

processes responsible for MMN generation (Alho, 1995). Lastly, even minor ethanol 

intoxication leading to diminished attention, has been shown to diminish the MMN at 

the frontal electrodes that record contributions from both the primary generators. The 

polarity-reversed component recorded from mastoid, representing the auditory cortex 

generator, remains unaffected in this case (Näätänen et al., 2012). 

4.2.3 MECHANISMS OF MMN 

The research effort in studying mismatch negativity has been extensive over the 

past few decades. It has been, and is currently, being used in several areas of clinical 

research. However, the mechanisms and meaning of MMN are not well understood. 

Two prominent schools of thought have gained popularity and remain a point of debate 

in the MMN research community: a. neural adaptation hypothesis, and b. sensory 

memory hypothesis. These two theories of MMN generation have been hypothesised 
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since the discovery of MMN (Näätänen, 1992) and have, in a manner, divided the 

research community into two groups. 

The neural adaptation hypothesis states that, MMN is a lower level phenomenon 

which represents the activities of different groups of neurons that encode the properties 

of the stimulus (Fishman, 2014; May & Tiitinen, 2010). As has been stated before, 

MMN is a difference signal between the average response to an intermittent deviant 

stimulus and the average response to a standard, more probable, stimulus. According 

to the neural adaptation hypothesis, the repeated presentation of standard stimulus 

leads to an adaptation, or attenuation of response, of the neural afferents encoding its 

properties. It states that the population encoding the parameters of the standard 

stimulus suffers from refractoriness as it is presented continuously (May & Tiitinen, 

2010). At this point, when a deviant stimulus with a distinct parameter like change in 

frequency is presented, the “new” population encoding these parameters is activated, 

resulting in a production of a large response. This leads to the difference observed in 

the average responses quantified as mismatch negativity or MMN. It is to be noted 

that, according to this hypothesis, MMN is not a distinct phenomenon but rather, a 

latency and amplitude modulation of the “obligatory” auditory N1 response (May & 

Tiitinen, 2010).  

The sensory memory hypothesis regards MMN as a higher-level response that 

represents the output of a comparison process. It states that, the series of standard 

stimuli form an echoic memory trace that encodes the regularity of features in them 

(Fishman, 2014; Näätänen et al., 2007). When a deviant stimulus is presented, its 

features are compared to this trace, and MMN is a result of a mismatch between the 

two. A similar interpretation of this hypothesis is termed as the predictive coding 

model (Garrido et al., 2009). From the perspective of predictive coding, brain creates 

a model of the environment by continuously integrating inputs received. The change 

in stimulus from a series of standards to a deviant, results in a prediction error in the 

model. This is the effect of the “encoded” environment of the standards being different 

from the “observed” environment of the deviant. The MMN is hypothesized as the 

representation of this error signal, that can further be used to update the model. 

Extensive research has been performed in collecting evidence in favour of each 

of the two prominent theories of mechanism of MMN generation. Two prominent 
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review articles by Patrick May and Hannu Tiitinen (May & Tiitinen, 2010), and by 

Yonatan Fishman (Fishman, 2014) have summarised the findings of several of these 

studies. The article by May and Tiitinen is an attempt to bolster the lesser accepted, 

neural adaptation hypothesis. Fishman on the other hand, provides an unbiased and 

overall review of evidence both, in favour, and against the two hypotheses. He 

concludes that the neural adaptation hypothesis is, at least, in-part a result of latency 

and amplitude modulation of the obligatory response, and that it is still unclear if it 

also represents a higher-level process of memory trace mismatch or predictive coding 

error. 

4.2.4 MMN IN SCHIZOPHRENIA AND OTHER CLINICAL CONDITIONS 

Changes in MMN have been reported in several neurological, neuropsychiatric, 

and neurocognitive disorders. MMN can be used to index different kinds of 

information like auditory processing (discrimination, abnormal perception, etc.), 

attention switching, loss of grey matter, progression and prognosis of clinical 

condition, genetic inclination towards a disorder, etc. Due to this reason, MMN has 

been extensively used in clinical research; an extensive review can be found in 

(Näätänen et al., 2012). This section provides some details on MMN research and its 

importance, specifically in the field of schizophrenia. 

Studies with schizophrenia patients have consistently replicated a reduction in 

MMN amplitude. Light and Braff compared 25 schizophrenia patients who met DSM-

IV criteria with age, sex, and education matched controls showing a significantly 

reduced duration MMN amplitude in patients (Light & Braff, 2005). A meta-analysis 

of 32 studies involving schizophrenia patients found that the neuropathological 

changes underlying MMN caused a significant effect on temporal processing. The 

study reported that duration deviant MMN deficits were significantly larger than 

frequency deviant MMN deficits (C. C. Duncan et al., 2009). This finding provided 

further  confirmation to similar observations by an earlier 2000 study (Michie et al., 

2000). This study found that the duration MMN amplitude was significant smaller than 

that of the frequency MMN for schizophrenia patients, but not for control subjects. 

Duration MMN deficits have also been observed in first degree biological relatives of 

schizophrenia patients (Michie et al., 2002). As has been described previously, in 

healthy subjects, larger differences in deviant and standard magnitudes, and lower 
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probabilities of deviants yield MMN with larger amplitudes and shorter latencies. 

However, according to a recent meta-analysis by Erickson et. al., MMN does not seem 

to be related to deviant characteristics in patients with schizophrenia (Erickson et al., 

2016). 

Length of illness has also been shown to alter the deficit in MMN response. A 

study by Todd et. al. showed that, early-stage schizophrenia patients (mean illness 2.6 

years) exhibit MMN deficit to duration deviants but not to frequency deviants. Late 

stage patients (mean illness 18.9 years)  however showed MMN deficits in both 

duration and frequency deviants (Todd et al., 2008). This study could have had a 

secondary effect of severity of illness between the patients along with the length of 

illness (Winterer & McCarley, 2010). The secondary effect issue was addressed by 

Salisbury et. al. by studying 3 groups of subjects (healthy controls, schizophrenia, and 

bipolar disorder) from their first hospitalization for psychosis to an average of 1.5 years 

into illness. Their results clearly show that only the frequency MMN in schizophrenia 

patients showed a significant decrease from initial hospitalization to 1.5 years of illness 

(Salisbury et al., 2007). The previously mentioned meta-analysis by Erickson et. al. 

(Erickson et al., 2016) also studied the effect of length of illness on 47 schizophrenia 

patients from several different studies and found a small positive relationship which 

was not significant. This meta-analysis included patient categories of first episode, 

chronic, and a broader category all of patients not separated by the included studies. 

Based on this patient distribution, and findings of previous studies (Salisbury et al., 

2007; D. Umbricht & Krljes, 2005), it was speculated that MMN deficits in 

schizophrenia patients do worsen over the first few years of illness, but remain stable 

thereafter (Erickson et al., 2016). 

The study by Salisbury et. al. also performed Magnetic Resonance Imaging 

(MRI) of the three groups of subjects. The volumetric measurements from the imaging 

data revealed a negative correlation between MMN amplitude and left hemisphere 

Heschl’s gyrus grey matter volume in schizophrenia patients, even at first 

hospitalization. Heschl’s gyrus contains the primary auditory cortex and some of the 

secondary auditory cortex. The longitudinal measures of MMN amplitude and 

Heschl’s gyrus volume also showed a positive correlation in schizophrenia patients 

alone (Salisbury et al., 2007). The finding suggests the possibility of a pathological 
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process causing a reduction in grey matter volume of Heschl’s gyrus which is 

sufficiently advanced to produce MMN deficits only at a later stage (Winterer & 

McCarley, 2010). 

Studies have also reported reduction in pre-frontal and frontal cortex in 

schizophrenia patients (Benoit et al., 2012; Harms et al., 2010; Rasser et al., 2011). 

The pre-frontal cortex (PFC) co-ordinates information relayed from the association 

areas over the entire cortex. Association areas are the regions in the cortex which 

interpret information or coordinate a motor response. PFC performs abstract 

intellectual functions, interprets ongoing circumstances, and predicts future 

consequences. Feelings such as anxiety, tension, and frustration are evoked in the PFC. 

In an MMN source analysis study, altered electromagnetic activity in the PFC of 

schizophrenia patients was found. Reductions in the amplitude of MMN could be 

linked to mechanisms in the PFC, like its contribution to switching involuntary 

attention (Baldeweg et al., 2002) and in controlling the direction of attention (Näätänen 

et al., 2007). Moreover, deficits in verbal memory and attentional switching are 

correlated to reduction in temporal and frontal MMN (Hermens et al., 2010). 

Schizophrenia patients do not have an effective attention switching ability. As social 

interactions require dynamically switching attention, the lack of this ability in 

schizophrenia patients may be a contributing to their social withdrawal (C. C. Duncan 

et al., 2009). In schizophrenia patients, there is also a reduction in MMN amplitude 

due to frequency deviant which is related to the grey matter reduction in the bilateral 

Heschl’s gyrus, as well as, motor and executive regions of the frontal cortex (Rasser 

et al., 2011). Thus, from the above findings, the temporal lobe changes are likely 

associated with pre-perceptual change detection, while the PFC and frontal lobe 

changes are responsible for deficiency in involuntary attention switching and higher-

order cognitive processes. 

4.3 Aims of Study  

To establish a significant contribution of MMN to the research and treatment of 

schizophrenia, it is essential to be able to predict the functional outcome of patients, 

and provide an endophenotype for genetic studies (C. C. Duncan et al., 2009). MMN 

has been shown to predict the likelihood of conversion to psychosis in clinically high-
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risk individuals. Individuals that did convert to first-episode psychosis, had 

significantly smaller MMN amplitude at baseline, compared to the ones that did not 

(Bodatsch et al., 2011). MMN has been shown to have a stable relationship with 

psychosocial and cognitive assessment of both patients and healthy controls (Light & 

Braff, 2005; Light & Näätänen, 2013). MMN has also been demonstrated as one of the 

most reliable neural endophenotype (Light et al., 2012), as well as, a feasible 

biomarker for multi-site clinical studies (Light et al., 2015) of schizophrenia amongst 

other measures like P3a, N100, etc. For these reasons, it is one of the most useful 

targets for developing drugs and possibly even precision medicine to improve the 

cognitive and functional deficits in schizophrenia (Light & Näätänen, 2013). 

Following were the aims of this study: 

1. To use an auditory oddball task with multiple deviant tone types that 

elicited a MMN response in both healthy control subjects and patients 

diagnosed with the schizophrenia spectrum of disorders. 

2. To compute the ERP, MMN, and ERSP responses to each deviant tone 

and study the similarities and differences across each deviant tone. 

Previous research discussed in section 4.2.1 has shown that MMN 

response exhibits different characteristics depending on the type of 

deviant tone. We hypothesized that this experiment would let us 

explicitly visualize these differences in both the time and frequency 

domain of EEG data, and in the EEG measures such as MMN peak 

amplitude and peak latency. 

3. To visualize and calculate statistical differences between the response 

from healthy control group and patient groups. We hypothesized that 

MMN elicited by patient group would be significantly diminished when 

compared to the healthy control group. 

4. To compute the correlations between the EEG measures and patient 

symptom severity. We hypothesized to see a positive correlation between 

the MMN deficit, and the severity of patient symptoms as recorded by 

the PANNS and MADRS scales. 
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4.4 Experimental Methods  

4.4.1 ODDBALL TASK DESCRIPTION 

The task used to elicit and study MMN in subjects is called an auditory oddball 

task. This task involved subjects listening to a series of tones using foam ear inserts 

(Advanced Medical Equipment Ltd.), while they watched a pre-selected muted video 

clip. The tones played comprised a standard tone which occurred with a probability of 

50% and 5 different deviant tones at 10% probability each. The subjects were also 

instructed to not pay attention to the tones, to produce a cleaner MMN response, free 

from ERP response patterns resulting from attention related processing in the brain. 

This was a passive task without any response from the participants. 

In the experimental setup for this chapter, the Stim2 Gentask software 

(Neuroscan Inc.) was used to generate the stimuli and the triggers were interfaced with 

NeuroScan 4.5 Acquire software using the Stim2 hardware. The sequence of tones was 

closely based on an optimal paradigm proposed by Näätänen and colleagues in their 

2004 paper (Näätänen et al., 2004). This paradigm was designed to shorten the time of 

the auditory oddball task while eliciting similar MMN amplitude response. Instead of 

presenting multiple time sequences for each type of deviant tone, like it was done in 

standard auditory oddball tasks, the method proposed in the 2004 paper used only one 

time-sequence with multiple types of deviants. Each tone was presented with an inter-

stimulus interval (ISI) of 1000ms. The experiment started with a series of 10 standard 

tones followed by an alternating pattern of one standard and one of the deviant tones. 

The five different deviant tones presented were duration, frequency, intensity, 

Figure 4.2 Timing diagram schematic of the auditory oddball task. S: Standard 

tones, Dn: Deviant tones. The experiment begins with 10 standard tones after which 

one of the deviants (randomly chosen) and standard tones are presented in an 

alternating pattern. Same deviant does not occur consequently.  
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location, and gap. These deviant tones followed a pseudo-random sequence with no 

two consecutive deviant tones of the same type. In all, 1510 stimuli were presented 

with 760 standard tones and approximately 150 of each deviant tone. The experiment 

took approximately 25 minutes to complete. The timing diagram of the task is 

presented in figure 4.2 and the details of the optimal paradigm used are outline in table 

4.1.  

Table 4.1 Optimal MMN experimental paradigm (adapted Näätänen et. al. 2004). 

Parameter Comment 

Optimal Paradigm One frequent standard, five rare deviant tones 

Standard 
Harmonic stimulus comprising 3 sinusoidal partials of 500, 

1000, and 1500Hz, with intensity of second and third partials 

3dB and 6dB lower than the first partial. 

Duration 75ms, 5ms rise/fall 

Intensity 80dB SPL 

Interstimulus  

interval 
1000ms (fixed) 

Location Midline (binaural) 

Deviants  

Duration 25ms, 5ms rise/fall 

Frequency 
Half of frequency deviants are 10% higher partials; half are 

10% lower partials. 

Intensity 
Half of intensity deviants are 10dB higher, half are 10dB 

lower. 

Location 

Half of location deviants are perceived as having a spatial 

location 90° to the right and half 90° to the left of the midline 

by introducing an interaural time difference of 800µs. 

Gap 
Silent gap of 7ms (including 1ms rise/fall) in the middle of a 

75ms stimulus. 

Probabilities 
.50 (standard), .10 (each of the deviants), one standard 

between each deviant 
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4.4.2 SUBJECTS 

All the recruited healthy control subjects (n = 19) performed the auditory oddball 

task. However, 2 subjects were excluded from the analysis due to noise and corrupted 

data. Therefore, data from 17 healthy control subjects was analysed and is presented 

for this experiment. All the recruited patients performed the auditory oddball task. 

Each patient was included in the analysis for this experiment and results are presented 

for individual patients as well as three groups of patients. The groups of patients 

include schizophrenia patients (P4, P5, P6), schizoaffective disorder patients (P1, P2, 

P3), and all patients grouped together. 

4.4.3 EEG MEASUREMENT 

The standard EEG recording, and processing steps described in Section 3.2 of 

Chapter 3 were used in this experiment. The epoch for individual trials in the oddball 

task was defined as -200ms to +800ms relative to stimulus onset with the average 

amplitude of the 200ms pre-stimulus used for baseline correction. A mean of 86% of 

trials were retained in the healthy control group after artefact rejection and cleaning of 

the EEG data. In the patient group, more than 85% of the trials were retained from 

each patient except patient P1. Patient P1’s signals were very noisy even after artefact 

rejection and approximately only 36% of trials were preserved in this case. 

After each subject’s EEG data was pre-processed and cleaned, it was used for 

ERP and ERSP analysis. ERP and ERSP responses were computed for the standard 

tone and each of the 5 deviant tones. MMN for each deviant tone was computed as the 

difference between the deviant tone ERP and the standard tone ERP. Similarly, a 

difference ERSP was computed as the difference between the deviant tone ERSP and 

the standard tone ERSP. Based on the literature review, maximum MMN effect is 

observed on the fronto-central EEG electrodes. Hence, the ERP and ERSP responses 

at electrodes Fz and Cz are reported in this chapter. 

Three EEG measures, namely MMN peak amplitude, MMN peak latency, and 

average MMN amplitude, were computed for each individual subject, and all the 

subject groups (healthy controls, schizophrenia patients, schizoaffective disorder 

patients, all patients). These measures were calculated using their definition in the 

2004 paper by Näätänen and colleagues (Näätänen et al., 2004). The MMN peak 
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amplitude was defined as the largest negative peak in the 90-250ms post-stimulus 

period and the MMN peak latency was defined as the latency measured for this peak. 

The average MMN amplitude was defined as the mean voltage of the 40ms period 

centered at the MMN peak latency. Other researchers have used shorter periods (135-

205ms) for MMN peak and latency computation (Hermens et al., 2010; Light et al., 

2007). However, these studies used only a single deviant type and therefore had 

smaller variability in the MMN response. The 90-250ms duration considers all the 5 

deviant types used in the experiment described in this chapter, similar to (Näätänen et 

al., 2004). The computation of EEG measures was expanded to 5 midline electrodes 

including the two electrodes Fz and Cz at which ERP and ERSP responses were 

visualised, and electrodes FCz, CPz, and Pz. These measures were used to visualize 

the variation across midline electrodes and subject groups and for statistical analysis. 

4.4.4 SATISTICAL ANALYSIS 

Non-parametric permutation tests and cluster-based multiple comparisons 

correction were used to analyse the statistical significance of the differences between 

the responses to standard and deviant tones, in both ERP and ERSP analysis. When 

presenting the group results, these tests were paired statistical tests as the same subjects 

within each group were presented with both standard and deviant tones. However, 

when presenting the results for individual patients, unpaired statistical measures were 

used as the standard and deviant tone trials presented to each patient were not paired 

with one another. 

A mixed factor 3x5x5 ANOVA was carried out for the MMN peak amplitude, 

MMN peak latency, and average MMN amplitude measures. Group of the subject 

(healthy control, schizophrenia, and schizoaffective) was used as the between-subject 

factor and electrode locations (Fz, FCz, Cz, CPz, and Pz) and deviant type (duration, 

Frequency, Intensity, Location, and Gap) were used as the within-subject factors. With 

a total of 23 subjects (17 healthy controls, 3 schizophrenia, and 3 schizoaffective) the 

analysis was performed on 575 (23*5*5) data points in each case. 
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4.5 Results and Comparisons 

The results from the oddball task are presented in seven subsections. The first 

five subsections present the results for the five individual deviant tones. The sixth 

subsection presents the results from the three measures computed from the five deviant 

tones including their visualization and statistical analysis. The final subsection 

presents the correlations between the computed measures and patient demographic 

data. 

Each of the first five subsections is divided further in three sub-subsections one 

each for ERP analysis, ERSP analysis, and summarized key findings. Both the ERP 

and ERSP sub-subsections follow the same specific order of results. First, results from 

the group of healthy control subjects are presented. This is followed by individual 

patient results. After this, results from the two groups of patients (schizophrenia, 

schizoaffective disorder) along with a grand average of all patients are shown. In all 

the ERP analysis figures, standard tone ERP is shown in black, deviant tone response 

is shown in grey, and MMN response is shown in yellow. The black bars at the bottom 

of each plot represent the clusters of period that showed significant difference (p<0.05) 

between the standard and the deviant ERP. For the group ERSP analysis figures, 

response to the standard tone is plotted in the right column, response to the deviant 

tone is plotted in the middle column, and difference ERSP is plotted in the left column. 

The clusters of significant differences between responses to the standard and deviant 

tones are shown using black contours overlaid on the difference ERSP plots. ERSP 

results are presented in the same sequence as the ERP results. For the ERSP analysis 

figures of individual patients only the difference ERSP plots are shown. 

4.5.1 DURATION DEVIANT MMN 

4.5.1.1 EVENT RELATED POTENTIAL ANALYSIS – DURATION DEVIANT 

The duration deviant tone was shorter in time compared to the standard tones 

(table 4.1). Figure 4.3 shows the grand averaged ERP response to the duration deviant 

tone, the standard tone, and the computed duration deviant MMN. The figure shows 

that compared to standard ERP, the N100 component of the ERP response to the 

duration deviant is larger in amplitude and has a longer duration. As a result, a 

significant difference and a MMN response with a peak before 200ms is generated. 
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There is a secondary, but significant, negativity at a later interval. This negativity is 

likely a result of the N200 component of ERP, which is believed to be an indicator of 

initial discrimination between stimuli when subjects are actively attending to the tone 

(D. S. G. Umbricht et al., 2006; Winterer & McCarley, 2010). Though such a response 

is not expected in a passive auditory oddball experiment, a similar response was 

observed for most deviant types in the paper that proposed the optimal paradigm 

adapted in this experiment (Näätänen et al., 2004). We also see that the negative peak 

of MMN decreases from Fz to Cz electrodes and has a longer latency at Cz. This is 

reflected in the duration MMN peak amplitude and peak latency measures reported in 

table 4.2. 

The standard and duration deviant ERP responses and corresponding duration 

MMN from individual subjects in the patient group are shown in figure 4.4 for 

Figure 4.3 Grand average standard ERP, duration deviant ERP, and duration 

MMN in control group (n = 17). Vertical and horizontal black lines represent trial 

onset and baseline, respectively. Black bars at the bottom represent periods of 

significant difference. a. Electrode Fz, b. Electrode Cz.  



 

 

73 

electrode Fz and figure 4.5 for electrode Cz. From these figures, we see that the ERP 

responses for both the standard tone and duration deviant tone are smaller in amplitude 

across each subject. We also see that only a few of the plots show any significant 

differences between the two responses. Resulting from the diminished ERP amplitude 

in both standard and duration deviant, and the similarity between them, the MMN 

response in each patient is diminished. For example, the ERP response from patients 

P2 and P4 is only marginally different from the baseline activity. It should also be 

noted that unlike the ERP for duration deviant in control subjects, the N100 

component, when present in patients, closely follows, and in many cases is smaller 

than the N100 component of the standard tone. As a result, we see a positivity in the 

MMN response earlier in the trial, followed by the negative peak later. This peak in 

the MMN amplitude is a  result of the difference in the ERP responses after the N100 

component. Therefore, the duration MMN peak latency is delayed in the patient group. 

Figure 4.4 Average standard ERP, duration deviant ERP, and duration MMN at 

Fz electrode in individual patients. The six patient (P1 to P6) responses are plotted 

on 3x2 grid from a to f. Vertical and horizontal black lines in each plot represent trial 

onset and baseline, respectively. Black bars at the bottom of each plot represent periods 

of significant difference. 
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The duration MMN peak amplitudes and latencies for individual patients are recorded 

in table 4.2.  

The ERP results from the groups of patients based on their clinical diagnosis are 

presented in figure 4.6 for electrode Fz and figure 4.7 for electrode Cz. Both these 

figures also show control group response for the respective electrodes taken from 

figure 4.3. This is followed by grand average ERP responses from schizophrenia 

patients, schizoaffective disorder patients, and all patients combined.  From these 

figures, we see that the difference between duration deviant and standard response is 

significant only for a small period at electrode Cz in schizophrenia and schizoaffective 

disorder patients. Similar to individual patient plots, all the ERP responses and the 

computed MMN are diminished compared to control subjects. Unlike the control 

group, the MMN response shows initial positivity and later negativity in both the 

patient groups. In the grand averaged response from all patients grouped together (fig 

Figure 4.5 Average standard ERP, duration deviant ERP, and duration MMN at 

Cz electrode in individual patients. The six patient (P1 to P6) responses are plotted 

on 3x2 grid from a to f. Vertical and horizontal black lines in each plot represent trial 

onset and baseline, respectively. Black bars at the bottom of each plot represent periods 

of significant difference. 
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4.6d, 4,7d) there are significant differences at both Fz and Cz electrodes, and the MMN 

peak amplitudes are observed within the period of this significant difference. The 

duration MMN peak amplitude and peak latency for all the patient groups are 

presented in table 4.2. Compared to the healthy control group, the duration MMN peak 

amplitude is smaller, and the peak latency is longer in each of the patient groups. 

Table 4.2 MMN peak amplitude and latency measures for duration deviant. 

 Peak Amplitude (µVolts) Peak Latency (ms) 

 Fz Cz Fz Cz 

Control Subjects (n = 17) 

Grand Average -4.35 -2.35 116 152 

Patients 

P1 -2.65 -2.06 184 184 

P2 -1.98 -2.26 184 196 

P3 -2.73 -3.67 232 244 

P4 -1.46 -1.75 188 180 

P5 -2.66 -2.07 176 196 

P6 -2.35 -3.15 156 156 

Schizophrenia Patients 

(n = 3) 

Grand Average -1.93 -2.01 188 184 

Schizoaffective Disorder 

Patients (n = 3) 

Grand Average -1.73 -1.92 184 192 

All Patients (n = 6) 

Grand Average -1.82 -1.92 184 188 
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Figure 4.6 Grand average standard ERP, duration deviant ERP, and duration 

MMN at electrode Fz in subject groups. Vertical and horizontal black lines represent 

trial onset and baseline, respectively. Black bars at the bottom represent periods of 

significant difference. a. Control subject response from Figure 4.3a (n = 17), b. 

Schizophrenia patients (n = 3), c. Schizoaffective disorder patients (n = 3), d. All 

patients (n = 6). 
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Figure 4.7 Grand average standard ERP, duration deviant ERP, and duration 

MMN at electrode Cz in subject groups. Vertical and horizontal black lines 

represent trial onset and baseline, respectively. Black bars at the bottom represent 

periods of significant difference. a. Control subject response from Figure 4.3b (n = 

17), b. Schizophrenia patients (n = 3), c. Schizoaffective disorder patients (n = 3), d. 

All patients (n = 6). 
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4.5.1.2 TIME-FREQUENCY ANALYSIS – DURATION DEVIANT 

The healthy control group ERSP responses to the standard and duration deviant 

tones, and the difference ERSP are shown in figure 4.8. The figure shows an initial 

synchronisation (i.e. an increase in power, represented by blue) of lower frequencies 

up to approximately 16Hz in both the standard and deviant response. The duration 

deviant ERSP response has a relatively stronger synchronisation (darker blue) around 

100ms time point, with a peak in the 4-8Hz region. This response closely matches the 

duration MMN peak latency seen in figure 4.3. The responses at both the Fz and Cz 

electrodes show similar pattern with the synchronisation at Fz being stronger. The 

synchronisation of the lower frequencies gradually decreases to the baseline level 

200ms post-stimulus. The right column in the figure with the plot of the difference 

Figure 4.8 Grand average standard ERSP, duration deviant ERSP, and 

difference ERSP in control group (n = 17). a. Electrode Fz, b. Electrode Cz. Each 

row represents three plots (left to right): standard ERSP, duration deviant ERSP, 

difference ERSP. There are no significant difference regions (p<0.05). 



 

 

79 

ERSP shows that the lower frequencies are more synchronised during the duration 

deviant trials. We also see a desynchronisation (i.e. decrease in power, represented by 

red) of higher frequency in the range around 16Hz. The permutation statistical test 

along with the cluster-based multiple comparisons correction did not show any 

significant differences between the standard and deviant tone response at either Fz or 

Cz electrodes. 

The average difference ERSP responses from individual patients are shown in 

the figures 4.9 and 4.10 for electrodes Fz and Cz, respectively. From these plots, we 

see that most of the patients do not show a pattern of synchronisation and 

desynchronisation as observed in the averaged difference ERSP plots (fig 4.8) from 

the control subjects. Patients P1, P3, and P5 show a strong desynchronisation at lower 

frequencies during the duration deviant relative to the standard tone. Some similarity 

Figure 4.9  Average difference ERSP between duration deviant and standard tone 

at Fz electrode in individual patients. The six patient (P1 to P6) response differences 

are plotted on 2x3 grid from a to f. In each plot, areas of significant difference at p<0.05 

(if present) are presented by black contours. 
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is observed between the plots from patient P2 and the control subjects, but a 

desynchronisation of lower frequencies is observed later in the trial. However, in 

patient P6, following an initial desynchronisation, a strong synchronisation of the 

lower frequency bands is observed later in the trial. In some plots, we see clusters of 

regions where standard and duration deviant ERSP are significantly different from 

each other (overlaid black contours). In the figures 4.9 and 4.10, we also see that the 

responses at electrodes Fz and Cz from each subject exhibit similar patterns. 

The difference ERSP plots for individual patients show considerable variability 

both within and between subjects. To get a better understanding of the patient group 

responses 

Figure 4.10 Average difference ERSP between duration deviant and standard 

tone at Cz electrode in individual patients. The six patient (P1 to P6) response 

differences are plotted on 2x3 grid from a to f. In each plot, areas of significant 

difference at p<0.05 (if present) are presented by black contours. 
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Figure 4.11 Grand average standard ERSP, duration deviant ERSP, and 

difference ERSP at electrode Fz in subject groups. a. Control subject response from 

Figure 4.8a (n = 17), b. Schizophrenia patients (n = 3), c. Schizoaffective disorder 

patients (n = 3), d. All patients (n = 6). Each row has three plots (left to right): 

congruent ERSP, incongruent ERSP, difference ERSP. In the difference plots on the 

right, areas of significant difference at p<0.05 are presented by black contours. 
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to the duration deviant, the average ERSP response at electrode Fz and electrode Cz 

are shown in figure 4.11 and figure 4.12, respectively. Both these figures show ERSP 

responses from control subjects, followed by schizophrenia patients, schizoaffective 

disorder patients, and all patients grouped together. All the plots use the same range of 

colour scale as seen in figure 4.8. The ERSP response to standard and duration deviant 

tones are plotted with ±2.5dB range and the average difference ERSP is plotted with 

±1.2dB range. 

In schizophrenia patients (figs 4.11b and 4.12b), the ERSP response to the 

standard tone is similar to that of the control group but comparatively smaller in 

magnitude. The duration deviant on the other hand results in small changes in the time-

frequency signals and is close to the baseline. This is in contrast to the control group 

where the duration deviant tone elicited a stronger initial synchronisation in the low 

frequency region compared to that of the standard tone. Due to a relatively lower 

magnitude of response to the duration deviant, we see a desynchronisation of lower 

frequencies that peaks around a latency of 200ms as seen in difference ERSP of 

schizophrenia patient group. 

A different pattern is observed in the patients diagnosed with schizoaffective 

disorder (figs 4.11c, 4,12c). In this case, the response to the standard tone looks similar 

to that of the control group, however the range is even lower than schizophrenia 

patients. Due to this, the response looks barely different from the baseline period 

before the trial onset. In the duration deviant ERSP however, we see that the lower 

frequency region is desynchronised in schizoaffective disorder patients. This also 

results in a difference plot that has a strong desynchronisation. It is also interesting to 

note that the peak of the desynchronisation in the difference plot is observed at latency 

longer than 300ms. 

In the grand averaged ERSP response from the whole patient group (figs 4.11d, 

4.12d) we see that, patients have a lower overall response magnitude (synchronisation 

or desynchronisation) to both the standard tone and duration deviant tone. We also see 

that the response to the duration deviant is small and is close to the pre-stimulus 

baseline period. 
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Figure 4.12 Grand average standard ERSP, duration deviant ERSP, and 

difference ERSP at electrode Cz in subject groups. a. Control subject response from 

Figure 4.8b (n = 17), b. Schizophrenia patients (n = 3), c. Schizoaffective disorder 

patients (n = 3), d. All patients (n = 6). Each row has three plots (left to right): 

congruent ERSP, incongruent ERSP, difference ERSP. In the difference plots on the 

right, areas of significant difference at p<0.05 (if present) are presented by black 

contours. 
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4.5.1.3 KEY FINDINGS – DURATION DEVIANT 

1. The control subject group showed a large and significant duration deviant MMN 

response at both electrode Fz and Cz. 

2. The patient groups showed a diminished duration deviant MMN response which 

was significant only for a short duration at electrode Cz. 

3. The duration deviant ERSP response in control subject group showed stronger 

synchronization compared to standard tone ERSP response around 100ms post-

stimulus however, the difference was not significant at either Fz or Cz electrodes. 

4. The ERSP responses to both standard tone and duration deviant were diminished 

in patient groups and did not show the synchronization pattern observed in control 

subjects.  

4.5.2 FREQUENCY DEVIANT MMN 

The frequency deviant in the auditory oddball task was created by using 

sinusoidal partials that differed in their frequencies, when compared to the standard 

tone partials. Expanding on the description given in table 4.1, half of the frequency 

deviants had 10% decrease in the partial sinusoidal frequency (450Hz, 900Hz, 

1350Hz) and the other half had a 10% increase in the partial’s frequencies (550Hz, 

1100Hz, 1650Hz). 

4.5.2.1 EVENT RELATED POTENTIAL ANALYSIS – FREUQENCY DEVIANT 

The grand average ERP response from the healthy control group to frequency 

deviant stimuli is shown in figure 4.13. This figure also shows the standard tone 

response for comparison and the frequency MMN response computed by taking the 

difference between the frequency deviant and the standard tone. 

 The ERP response to the frequency deviant shows a larger N100 component 

compared to that of the standard tone. This component is also boarder in duration . As 

a result, we see the MMN response starting to increase around 100ms and peak after 

the N100 component. The peak of the MMN is seen around the time of the positive 

peak in the standard tone ERP. Both the Fz and Cz electrodes show a similar MMN 

response, with a larger peak on the frontal electrode. The values of frequency MMN 

peak amplitudes and peak latencies are outlined in table 4.2. Similar to the duration 

deviant response, the black bar at the bottom of each plot in figure 4.13 represent 
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statistically significant differences between the responses to the frequency deviant and 

standard tones during the 100-200ms post-stimulus period,. The secondary significant 

negativity is present in this case too. 

The frequency deviant ERP response and MMN from individual patients, is 

shown in figure 4.14 for electrode Fz and in figure 4.15 for electrode Cz. We see from 

these plots that for most of the patients, the MMN response shows small fluctuations 

that are barely distinguishable from that of the pre-stimulus baseline period. Only 

patient P6 at electrode Cz showed a significant difference between the standard tone 

and frequency deviant in the region where the peak of the MMN is expected. The 

frequency MMN peak amplitude and peak latency values for individual patients are 

shown in table 4.3. We see from this table that on average compared to control 

Figure 4.13 Grand average standard ERP, frequency deviant ERP, and 

frequency MMN in control group (n = 17). Vertical and horizontal black lines 

represent trial onset and baseline, respectively. Black bars at the bottom represent 

periods of significant difference. a. Electrode Fz, b. Electrode Cz. 



 

 

86 

subjects, each patient showed a decreased MMN peak amplitude which occurred at a 

longer peak latency. The relatively shorter latency in patient P3 (92ms at Cz) resulted 

from not having a clearly defined MMN peak. 

Individual patients showed considerable variability between each other and do 

not represent the group response to the frequency deviant tone. The grand average ERP 

responses from the schizophrenia and schizoaffective disorder patient groups, to 

frequency deviant and the frequency MMN, are shown in figures 4.16 for electrode Fz 

and 4.17 for electrode Cz. In both these figures the ERP response from control subjects 

from figure 4.13 is presented at the top. This is followed by the ERP response from 

the two clinically diagnosed groups of patients and then by the ERP response from all 

patients grouped together. 

In schizophrenia patients (fig 4.16b, 4.17b) we see the frequency deviant N100 

component peak is a little higher than the standard tone ERP response. However, this 

Figure 4.14 Average standard ERP, frequency deviant ERP, and frequency 

MMN at Fz electrode in individual patients. The six patient (P1 to P6) responses 

are plotted on 3x2 grid from a to f. Vertical and horizontal black lines in each plot 

represent trial onset and baseline, respectively. Black bars at the bottom of each plot, 

when present, represent periods of significant difference. 



 

 

87 

ERP response has a smaller positivity leading to the peak of the MMN in the time 

region following the N100 component. As can be inferred from the individual patient 

plots, there is an overall reduction in the ERP response, and thus the MMN. In patients 

with schizoaffective disorder, the ERP response to the frequency deviant (fig 4.16c, 

4.17c) closely follows the standard tone response, until a little after the N100 peak. 

The deviant ERP, unlike the standard tone response, stays negative for most of the trial 

period and shows positivity only for a short period. As a result, the MMN peak in 

schizoaffective disorder group is little higher than the schizophrenia group, but still 

lower than the control group. In both the patient groups we do not see significant 

differences between the two ERP signals. In the grand averaged response from all the 

patients (fig 4.16d, 4,17d) we see a significant difference at electrode Fz, however, the 

MMN peak amplitude is still smaller than the control subject group. Like in the 

individual patient case, the MMN peak amplitudes and peak latencies for patient 

groups are presented in table 4.3. 

Figure 4.15 Average standard ERP, frequency deviant ERP, and frequency 

MMN at Cz electrode in individual patients. The six patient (P1to P6) responses are 

plotted on 3x2 grid from a to f. Vertical and horizontal black lines in each plot represent 

trial onset and baseline, respectively. Black bars at the bottom of each plot, when 

present, represent periods of significant difference. 
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Table 4.3 MMN peak amplitude and latency measure for frequency deviant. 

 Peak Amplitude (µVolts) Peak Latency (ms) 

 Fz Cz Fz Cz 

Control Subjects(n = 17) 

Grand Average -4.89 -3.34 164 164 

Patients 

P1 -4.48 -3.37 176 180 

P2 -3.65 -3.43 196 196 

P3 -1.49 -1.72 192 92 

P4 -1.04 -1.42 196 216 

P5 -2.52 -1.90 216 108 

P6 -3.40 -3.54 196 200 

Schizophrenia Patients 

(n = 3) 

Grand Average -1.88 -1.83 200 208 

Schizoaffective Disorder 

Patients (n = 3) 

Grand Average -2.38 -2.23 192 196 

All Patients (n = 6) 

Grand Average -2.10 -1.94 196 196 
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Figure 4.16 Grand average standard ERP, frequency deviant ERP, and 

frequency MMN at electrode Fz in subject groups. Vertical and horizontal black 

lines represent trial onset and baseline, respectively. Black bars at the bottom represent 

periods of significant difference. a. Control subject response from Figure 4.13a (n = 

17), b. Schizophrenia patients  (n = 3), c. Schizoaffective disorder patients  (n = 3), d. 

All patients  (n = 6). 
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Figure 4.17 Grand average standard ERP, frequency deviant ERP, and 

frequency MMN at electrode Cz in subject groups. Vertical and horizontal black 

lines represent trial onset and baseline, respectively. Black bars at the bottom represent 

periods of significant difference. a. Control subject response from Figure 4.13b (n = 

17), b. Schizophrenia patients (n = 3), c. Schizoaffective disorder patients (n = 3), d. 

All patients (n = 6). 
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4.5.2.2 TIME-FREQUENCY ANALYSIS – FREUQENCY DEVIANT 

The ERSP plots for electrodes Fz and Cz from control subjects are shown in 

figure 4.18. Compared to the standard tone ERSP we see a strong synchronisation of 

the lower frequencies from 2Hz to 16Hz. This synchronisation peaks approximately 

100ms after trial onset. We also see a smaller secondary synchronisation around 200ms 

latency. The power during the frequency deviant response is significantly higher than 

the standard tone response only at electrode Fz. The region of significant difference 

after multiple comparisons correction (p<0.05) is marked by the black contours 

overlaid on the difference ERSP plot in the right column. A significant difference is 

observed during the primary peak of synchronisation. Other regions in the time 

frequency plot show little to no difference between the two stimuli. 

Figure 4.18 Grand average standard ERSP, frequency deviant ERSP, difference 

ERSP in control group (n = 17). a. Electrode Fz, b. Electrode Cz. Each row has three 

plots (left to right): standard ERSP, frequency deviant ERSP, difference ERSP. The 

significantly different region (p<0.05) is marked by black contours in the right column. 
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The average difference ERSP responses from individual patients for the 

frequency deviant, are shown in figure 4.19 for electrode Fz, and figure 4.20 for 

electrode Cz. For electrode Fz, we see that patients P1, P2, and P5 show some regions 

of initial synchronisation of lower frequencies from 2Hz to 16Hz, as seen in the 

difference plot for control subjects in figure 4.18a. However, the synchronisation is 

not consistent across the whole region till 200ms post-stimulus. Also, patients P2 and 

P5 respectively have a significant region of synchronisation and desynchronisation 

towards the end of the trial period. This type of late effect was not observed in control 

subjects and is not expected in response to a frequency deviant during an auditory 

oddball task. Patients P3, P4 and P6 show large areas of desynchronisation that are 

distributed across the time-frequency region. For electrode Cz, from the difference 

ERSP shown in figure 4.20, we again observe variability across individual patients. In 

this case, patients P1 and P3 show synchronisation of low-frequency bands while 

others show no clear pattern. Overall, for both the electrodes, we see more 

Figure 4.19 Average difference ERSP between frequency deviant and standard 

tone at Fz electrode in individual patients. The six patient (P1 to P6) response 

differences are plotted on 2x3 grid from a to f. In each plot, areas of significant 

difference at p<0.05 (if present) are presented by black contours. 
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desynchronisation in activity than synchronisation, during the deviant trials. The 

desynchronisation is also stronger than the average synchronisation in each case. This 

again is different from the control group where a more synchronised low-frequency 

response was observed during the deviant trials. 

The individual patient difference ERSP plots are highly variable, and there is no 

clear pattern within the schizophrenia and schizoaffective disorder patient groups. The 

group average ERSP plots are shown in figures 4.21 and 4.22 for electrodes Fz and 

Cz, respectively. In these plots, the ERSP response of control subjects taken from 

figure 4.18 is shown at the top. The figures also show group averaged ERSP from 

schizophrenia patients, schizoaffective disorder patients, and all patients grouped 

together.  

Figures 4.21b and 4.22b show that on average, schizophrenia patients (P4, P5, 

and P6) have a smaller change from the pre-stimulus baseline period during any type 

of stimulus. This is expected as a similar pattern was observed in the ERP response. 

Figure 4.20 Average difference ERSP between frequency deviant and standard 

tone at Cz electrode in individual patients. The six patient (P1 to P6) response 

differences are plotted on 2x3 grid from a to f. In each plot, areas of significant 

difference at p<0.05 (if present) are presented by black contours. 
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Similar to the control subjects, we see a synchronisation before 200ms in the lower 

frequency signals up to 16Hz. However, later in the frequency deviant trials, 300ms 

post-stimulus at Fz and 400ms post-stimulus at Cz, we see an overall 

desynchronisation of the frequency spectrum, which was not observed in controls. The 

difference ERSP further shows us that, compared to the standard tone, response during 

the frequency deviant exhibited lower synchronisation of the frequencies below 8Hz. 

We also see regions of desynchronisation in higher 16Hz to 32Hz range. None of the 

differences in this group were significant, and unlike the control subjects, 

desynchronisation was stronger than the synchronisation. 

In schizoaffective disorder patients (figs 4.21c, 4.22c) we see a relatively 

stronger and consistent synchronisation of lower frequencies in the deviant trials. This 

stronger synchronisation compared to the standard tone ERSP is seen in the difference 

plots, with peaks at approximately 8Hz. However, these peaks are observed around 

400ms post-stimulus and none of them satisfy the significance criteria. This 400ms 

latency is much longer than the typically observed MMN peak latency, which occurs 

between 100ms and 200ms. The grand average response from all the patients to the 

frequency deviant (fig 4.21d, 4.22d) shows a relative synchronisation of low 

frequencies from 2Hz to 16Hz, and desynchronisation of higher frequencies. No 

significant differences are seen in this case either. 

4.5.2.3 KEY FINDINGS – FREQUENCY DEVIANT 

1. The frequency deviant MMN response in control subject group resulted from a 

larger and broader N100 component in the ERP response to the frequency deviant 

compared to standard tone.  

2. The frequency deviant MMN response in patient groups was diminished and 

significant differences between the frequency deviant ERP and standard tone ERP 

was observed only in all patient group at electrode Fz. 

3. The frequency deviant ERSP response in control subject group showed stronger 

synchronization compared to standard tone ERSP response before 200ms post-

stimulus. This increase in synchronization to the frequency deviant tone was 

significant at electrode Fz. 

4. The ERSP responses to frequency deviant was diminished in patient groups and 

did not show any significant difference from the standard tone ERSP. 
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Figure 4.21 Grand average standard ERSP, frequency deviant ERSP, and 

difference ERSP at electrode Fz in subject groups.  a. Control subject response from 

Figure 4.18a (n = 17),b. Schizophrenia patients (n = 3), c. Schizoaffective disorder 

patients (n = 3), d. All patients (n = 6). Each row has three plots (left to right): 

congruent ERSP, incongruent ERSP, difference ERSP. In the difference plots on the 

right, areas of significant difference at p<0.05 (if present) are presented by black 

contours. 
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Figure 4.22 Grand average standard ERSP, frequency deviant ERSP, and 

difference ERSP at electrode Cz in subject groups. a. Control subject response from 

Figure 4.18a (n = 17), b. Schizophrenia patients (n = 3), c. Schizoaffective disorder 

patients (n = 3), d. All patients. (n = 6) Each row has three plots (left to right): 

congruent ERSP, incongruent ERSP, difference ERSP.  
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4.5.3 INTENSITY DEVIANT MMN 

The intensity deviant tone used in the auditory oddball experiment was either 

10dB below or above the standard tone intensity. Both higher and lower intensity 

deviants were presented with 50% probability each. In this section, the MMN response 

generated by this tone is studied in both healthy controls and patients. 

4.5.3.1 EVENT RELATED POTENTIAL ANALYSIS – INTENSITY DEVIANT  

Figure 4.23 compares the ERP response to the intensity deviant with the standard 

tone and plots the intensity MMN in the control group. This figure shows responses at 

both Fz and Cz electrode. The ERP response to the intensity deviant shows a 

significant deviation from the standard tone. We see from the figure 4.23 that at both 

the Fz and Cz electrodes, the peak of the N100 component is a little larger in the 

Figure 4.23 Grand average standard ERP, intensity deviant ERP, and intensity 

MMN in control group (n = 17). Vertical and horizontal black lines represent trial 

onset and baseline, respectively. Black bars at the bottom represent periods of 

significant difference. a. Electrode Fz, b. Electrode Cz. 
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intensity deviant response. However, the MMN peak due to this deviant is a result of 

the difference between the ERP responses after the N100 peak. The ERP response for 

the intensity deviant in the control group does not have a significant positivity 

throughout the trial period. Therefore, we see that the MMN peak occurs in the period 

where the standard tone response is at the peak of its positive amplitude. During this 

period, we see that both the electrodes meet the significance criteria, marked by the 

black bars at the bottom. Electrode Fz also shows significant difference between the 

two tones later in the trial period. This is a result of the secondary negativity observed 

during the intensity deviant, but not during the standard tone. A similar MMN response 

from frontal electrode was shown in the paper by Näätänen and colleagues in 2004 

(Näätänen et al., 2004). Like the previous two deviant tones, we also see a decrease in 

the MMN peak from Fz to Cz electrode. The MMN peak latencies at both the 

electrodes are the same. The values for the intensity deviant MMN peak amplitudes 

and peak latencies are shown in table 4.4. 

Figure 4.24  Average standard ERP, intensity deviant ERP, and intensity MMN 

at Fz electrode in individual patients. The six patient (P1 to P6) responses are plotted 

on 3x2 grid from a to f. Vertical and horizontal black lines in each plot represent trial 

onset and baseline, respectively. Black bars at the bottom of each plot, when present, 

represent periods of significant difference. 
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Figures 4.24 and 4.25 respectively show the intensity deviant responses at 

electrodes Fz and Cz from individual patients. Like the ERP response to standard tone, 

intensity deviant response is diminished in the patient group. Except for one patient 

P4, we do not see significant differences between the responses in any other patients. 

In patient P1, though the ERP signals from both tone types are relatively large, they 

closely follow each other resulting in a small MMN response. In patient P2 the small 

N100 ERP response due to intensity deviant, is larger than that of the standard tone, 

resulting in an earlier peak of the intensity MMN (<100ms latency, table 4.4). In 

patients P3 and P6 the ERP signals show a similar pattern to the control subjects. In 

these patients, the largest difference between the ERP signals comes due to the smaller 

positivity after N100 peak during the intensity deviant. Patient P4 shows a constantly 

negative intensity deviant ERP. This leads to an MMN response that is significant at a 

later period at electrode Fz and starting from about 200ms at electrode Cz. In patient 

P5, the ERP signals are relatively large but are similar in their time course. In this case, 

Figure 4.25 Average standard ERP, intensity deviant ERP, and intensity MMN 

at Cz electrode in individual patients. The six patient (P1 to P6) responses are plotted 

on 3x2 grid from a to f.  Vertical and horizontal black lines in each plot represent trial 

onset and baseline, respectively. Black bars at the bottom of each plot, when present, 

represent periods of significant difference. 
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the MMN response is barely present as a random fluctuation around the baseline. From 

the intensity MMN peak amplitude and latency data in table 4.4, we see that all patients 

have a smaller intensity MMN peak amplitude compared to control subjects. 

Table 4.4 MMN peak amplitude and latency measures for intensity deviant. 

The response variability in individual patients is large. To get a broader 

understanding on these patients, the grand average responses were computed from 

patient groups with distinct clinical diagnosis. The grand average ERP from the 

schizophrenia patients (P4, P5, and P6), schizoaffective disorder patients (P1, P2, and 

P3), and all patients grouped together are shown in figure 4.26 for electrode Fz and 

figure 4.27 for electrode Cz. These figures also show grand average ERP response 

from control subjects (figs 4.26a, 4.27a) taken from figure 4.23. Schizophrenia patients 

(figs 4.26b, 4.27b)  show a similar ERP response and MMN profile as that of control 

subjects. The overall response is smaller compared to the control subjects, but we see 

a small increase in the N100  peak followed by a small or no positivity during the 

intensity deviant.  

 Peak Amplitude (µVolts) Peak Latency (ms) 

 Fz Cz Fz Cz 

Control Subjects (n = 17) 

Grand Average -4.85 -3.19 176 176 

Patients 

P1 -2.62 -2.82 248 248 

P2 -2.34 -2.55   92   92 

P3 -2.04 -2.65 172 196 

P4 -2.46 -3.13 220 224 

P5 -1.85 -1.60 172 188 

P6 -3.01 -2.72 196 196 

Schizophrenia Patients 

(n = 3) 

Grand Average -1.85 -2.16 192 196 

Schizoaffective Disorder 

Patients (n = 3) 

Grand Average -1.50 -1.34 244 92 

All Patients ( n = 6) 

Grand Average -1.38 -1.33 248 196 
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Figure 4.26 Grand average standard ERP, intensity deviant ERP, and intensity 

MMN at electrode Fz in subject groups. Vertical and horizontal black lines represent 

trial onset and baseline, respectively. Black bars at the bottom represent periods of 

significant difference. a. Control subject response from Figure 4.23a (n = 17), b. 

Schizophrenia patients (n = 3), c. Schizoaffective disorder patients (n = 3), d. All 

patients (n = 6). 
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Figure 4.27 Grand average standard ERP, intensity deviant ERP, and intensity 

MMN at electrode Cz in subject groups. Vertical and horizontal black lines 

represent trial onset and baseline, respectively. Black bars at the bottom represent 

periods of significant difference. a. Control subject response from Figure 4.23b (n = 

17), b. Schizophrenia patients (n = 3), c. Schizoaffective disorder patients (n = 3), d. 

All patients (n = 6). 
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Besides the smaller amplitude we also see a longer MMN peak latency in 

schizophrenia patients. Only small periods of significant differences are observed on 

either electrode; marked on the plots with black bars. The ERP response from the 

schizoaffective disorder patients (figs 4.26c, 4.27c) shows a different pattern with a 

broader N100 component during the intensity deviant. The positivity after N100 

component in this group closely follows the standard tone response. The MMN peak 

occurs due to the later negativity of the intensity deviant ERP at Fz. However, the 

MMN peak at Cz is observed at a shorter latency due to the earlier intensity deviant 

N100 response. The grand average response from the whole patient group (figs 4.26d, 

4.27d) shows a MMN response that is relatively constant between the 90ms to 250ms 

interval. The peaks are observed at a longer latency compared to control subjects. The 

details of intensity MMN peak amplitudes and latencies for each patient group are 

provided in table 4.4. 

4.5.3.2 TIME-FREQUENCY ANALYSIS – INTENSITY DEVIANT 

The results of the ERSP analysis for the control subject group are shown in figure 

4.28. From this figure we see that for both Fz and Cz electrodes the ERSP response 

for the intensity deviant is similar to that of the standard tone. This is further confirmed 

in the difference plot that shows a relatively weak desynchronisation and 

synchronisation of various frequencies. The power range of this plot is smallest of all 

the 5 deviant types that were used in this experiment. Also, the lack of contours on this 

difference plot states that none of the time-frequency regions satisfied the significance 

criteria of p<0.05, after multiple comparisons correction was applied. However, 

looking at the changes for both the electrodes, we can see similar patterns exhibited in 

the difference plots. In the lower frequencies from 2Hz to 12Hz, we see an initial 

synchronisation from the beginning of the trial. This gradually transitions into a 

desynchronisation that peaks little before 200ms in the lowest frequency bin. There is 

also a characteristic short time desynchronisation and synchronisation in the lowest 

frequency bins of 2-3Hz at approximately 100ms, which happens before the larger 

desynchronisation is observed. Outside this region, that is beyond 200ms for all 

frequencies, and above 12Hz before 200ms, we see only small relative changes in the 
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difference plot. There is a desynchronisation of frequencies between 8Hz and 24Hz 

and a weak synchronisation at other regions. 

Though no significant differences were observed between the ERSP plots in the 

control group, the ERSP response from patients was still investigated. The average 

responses from individual patients are plotted in figures 4.29 and 4.30 for electrodes 

Fz and Cz, respectively. In these figures only the difference ERSP is shown for each 

patient, corresponding to the right column in figure 4.28 for control subjects.  

In patient P1 the lower frequency bins at electrode Fz show a pattern that 

switches between desynchronisation and synchronisation until 200ms. This pattern is 

opposite to what is seen in control subjects. We also see a strong synchronisation of 

Figure 4.28 Grand average standard ERSP, intensity deviant ERSP, difference 

ERSP in control group (n = 17). a. Electrode Fz, b. Electrode Cz. Each row has three 

plots (left to right): standard ERSP, intensity deviant ERSP, difference ERSP. There 

are no significant difference regions (p<0.05). 
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frequencies from 2Hz to 8Hz around 400ms, that is significant at electrode Cz. Patient 

P2 mostly showed a broadband synchronisation of all the frequency bins through the 

trial period with small regions of desynchronisation. The desynchronisation region 

includes the frequencies 2Hz to 16Hz in the beginning of the trial at electrode Fz. This 

is similar to the pattern observed from patient P1 at Fz, however the scales of the two 

plots are different. The ERSP response from patient P3 maybe considered the most 

similar to the control group. Here, we see an initial synchronisation followed by a 

desynchronisation of the lower frequency range. While the desynchronisation in this 

case lasts for a longer period and is observed at both the electrodes, the synchronisation 

is only observed at Fz, with initial Cz response close to the baseline. Patient P4 shows 

a large desynchronisation of frequencies 2Hz to approximately 12Hz throughout the 

trial period at both electrodes. Two clusters of significant differences at electrode Fz 

are also observed. One of these clusters is around 200ms latency where the peak of the 

MMN was observed for patient P4. In patient P5 we see a desynchronisation of 2Hz 

Figure 4.29 Average difference ERSP between intensity deviant and standard 

tone at Fz electrode in individual patients. The six patient (P1 to P6) response 

differences are plotted on 2x3 grid from a to f. In each plot, areas of significant 

difference at p<0.05 (if present) are presented by black contours. 
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to 12Hz frequencies until 200ms at both the electrodes. Patient P6 shows a pattern that 

is opposite of patient P4 with a synchronisation of 2Hz to 12Hz frequencies throughout 

the trial period. This synchronisation is significant at both the electrodes Fz and Cz. 

Overall, the figures 4.29 and 4.30 demonstrate that there was considerable variability 

across the individual patients. 

To better understand the group dynamics of response to intensity deviant, the 

grand average ERSP responses from the patients diagnosed with schizophrenia, 

schizoaffective disorder, and all patients grouped together were examined. The figures 

4.31 and 4.32 show these plots for electrodes Fz and Cz, respectively. The ERSP 

response from control subjects in also shown in these figures (figs 4.31a, 4.32a) to 

easily visualize the differences in group responses. The standard tone and intensity 

Figure 4.30 Average difference ERSP between intensity deviant and standard 

tone at Cz electrode in individual patients. The six patient (P1 to P6) response 

differences are plotted on 2x3 grid from a to f. In each plot, areas of significant 

difference at p<0.05 (if present) are presented by black contours. 
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Figure 4.31 Grand average standard ERSP, intensity deviant ERSP, and 

difference ERSP at electrode Fz in subject groups. a. Control subject response from 

Figure 4.28a (n = 17), b. Schizophrenia patients (n = 3), c. Schizoaffective disorder 

patients (n = 3), d. All patients (n = 6). Each row has three plots (left to right): 

congruent ERSP, incongruent ERSP, difference ERSP. In the difference plots on the 

right, areas of significant difference at p<0.05 (if present) are presented by black 

contours. 
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Figure 4.32 Grand average standard ERSP, intensity deviant ERSP, and 

difference ERSP at electrode Cz in subject groups. a. Control subject response from 

Figure 4.28b (n = 17), b. Schizophrenia patients (n = 3), c. Schizoaffective disorder 

patients (n = 3), d. All patients (n = 6). Each row has three plots (left to right): 

congruent ERSP, incongruent ERSP, difference ERSP.  
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deviant ERSP response plots all use the same colour-scale of ±2dB while the 

difference ERSP plots all use the colour-scale ±1dB. In schizophrenia patients (P4, P5, 

and P6) we see that the grand average ERSP (figs 4.31b, 4.32b) for intensity deviant   

show smaller changes from baseline compared to the control group. The difference 

ERSP show a pattern that does show similarity to control group with an initial 

synchronisation of frequencies below 12Hz that transitions into desynchronisation. 

The healthy controls and schizophrenia patients do not share any further similarity. 

In schizoaffective disorder patients (P1, P2, and P3) the ERSP response (figs 

4.31c, 4.32c) to the deviant again show smaller changes from the pre-stimulus baseline 

period compared to the control subjects. The difference ERSP do not show any 

similarity with the control subjects in this group. We see a strong synchronisation of 

lower frequencies, especially at electrode Cz, that was not see in control subjects. The 

results from the whole patient group (figs 4.31d, 4.32d) show that the grand average 

ERSP response were close to the pre-stimulus baseline activity. The difference ERSP 

has some similarity to the control group, but it is not very clearly seen. Except for a 

small region in schizoaffective disorder patients at electrode Fz, no regions of 

significant differences were seen in these group plots. This is expected as no significant 

difference between ERSP responses of standard and intensity deviant tones were 

observed in the control subject group as well. 

4.5.3.3 KEY FINDINGS – INTENSITY DEVIANT 

1. The intensity deviant MMN response had a longer peak latency of 176ms  in 

control subject group. This resulted from significant differences between in ERP 

response to the intensity deviant and standard tone after the N100 component.  

2. The intensity deviant MMN response in patient groups was diminished with longer 

peak latencies of greater than 190ms in all cases except for schizoaffective disorder 

patients at electrode Cz. 

3. The intensity deviant ERSP response in control subject group was similar to 

standard tone ERSP response and there were no significant differences between 

the two. 

4. The ERSP responses to intensity deviant was diminished in patient groups and did 

not show any significant difference from the standard tone ERSP as well. 
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4.5.4 LOCATION DEVIANT MMN 

The location deviant tone was created by introducing a time difference of 800µs 

between the left and right channel of the headphones. This resulted in a perceived 

change in the location of the tone coming from either 90º to the right or left of the 

standard tone. On average, half the tones were placed on the right, and other half on 

the left of the standard tone location. These details have also been outlined in table 4.1.  

4.5.4.1 EVENT RELATED POTENTIAL ANALYSIS – LOCATION DEVIANT 

The ERP response and the MMN response generated due to the location deviant 

in healthy controls group are shown in figure 4.33. The control group elicited the 

largest N100 peak in the location deviant ERP, compared to any other tone type. We 

see from the figure that, the N100 component is broader compared to the standard tone. 

Figure 4.33 Grand average standard ERP, location deviant ERP, and location 

MMN in control subject group (n = 17). Vertical and horizontal black lines represent 

trial onset and baseline, respectively. Black bars at the bottom represent periods of 

significant difference. a. Electrode Fz, b. Electrode Cz. 
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Following the N100 peak, the ERP response has a significant, but smaller positivity. 

These dynamics of the time series lead to a large location MMN with peak latency of 

144ms, at both the Fz and Cz electrodes. The black bars at the bottom of each plot 

indicate that this peak occurs within the time window of significant differences  

between the ERP response to the two tone-types. As has been seen in previous deviant 

types, there is a sharp decrease in the MMN peak amplitude as we move from the 

frontal to central electrode location. Similar to other deviant MMNs, a secondary 

significant negativity which occurs at a longer latency is also observed.  

The ERP responses and location MMN of individuals from the patient group are  

shown in figure 4.34 for electrode Fz, and figure 4.35 for electrode Cz. For the location 

deviant we see some relatively large MMN response from a few patients. In these 

cases, the location deviant ERP is significantly large when compared with the standard 

tone ERP. A large N100 component is elicited by the location deviant in patient P1 at 

both the Fz and Cz electrodes. This component is similar to that seen in control  

Figure 4.34 Average standard ERP,  location deviant ERP, and location MMN  at 

Fz electrode in individual patients. The six patient (P1 to P6) responses are plotted 

on 3x2 grid from a to f. Vertical and horizontal black lines in each plot represent trial 

onset and baseline, respectively. Black bars at the bottom of each plot, when present, 

represent periods of significant difference. 



 

 

112 

subjects, with a wider profile and a peak larger than standard tone response. However, 

the difference between the ERP responses did not satisfy the significance criteria in 

this case. This could be due to the relatively small number of trials (Standard tone: 

273, location deviant: 68) that were used for calculating the average responses in 

patient P1. A similar response is observed in patient P2 that is also significantly 

different from the standard tone ERP. This patient even shows a significant secondary 

negativity in the MMN response, as seen in the control subjects. In patients P3, P5, 

and P6 the N100 component of the location deviant ERP closely follows the standard 

tone response. The peak of the location MMN in these subjects is observed due to the 

difference between the positive component of the ERP following the N100 wave. In 

patient P3 the MMN peak is close to the baseline (zero) in the 90ms to 250ms region. 

We do see a significant difference for a short duration at electrode Cz for this patient, 

but it occurs at a longer latency than is expected for the peak MMN. In patient P4, the 

negative peak of ERP for the location deviant occurs at a longer latency than in the  

Figure 4.35 Average standard ERP,  location deviant ERP, and location MMN  at 

Cz electrode in individual patients. The six patient (P1 to P6) responses are plotted 

on 3x2 grid from a to f. Vertical and horizontal black lines in each plot represent trial 

onset and baseline, respectively. Black bars at the bottom of each plot, when present, 

represent periods of significant difference. 
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standard ERP response. This resulted in a significant difference between the signals, 

and location MMN peak at a latency little longer than what was observed in control 

subjects. 

Table 4.5 MMN peak amplitude and latency measures for location deviant. 

The grand averaged group ERP response from patients with different clinical 

diagnosis is shown in figures 4.36 for electrode Fz and 4.37 for electrode Cz. To help 

visualize the differences in group responses, each of these two figures also include the 

grand average ERP response from the control subjects taken from figure 4.33. We see 

that in schizophrenia patients (figs 4.36b, 4.37b), the N100 component of the response 

to the location deviant closely follows the standard tone response. The location MMN 

peak is observed due to the differences during the period following the N100 peak. 

This resulted in a smaller MMN peak that occurs at longer latency compared to the 

control subjects. In schizoaffective disorder patients (figs 4.36c, 4.37c), a different 

pattern is observed due to the large N100 peaks in response to the location deviant. As 

seen in the individual patient plots (fig 4.34 and 4.35), patients P1 and P2 show a 

similar response which translates into this pattern observed in the schizoaffective 

group. Due to this, the location MMN peak in this group is larger than the 

 Peak Amplitude (µVolts) Peak Latency (ms) 

 Fz Cz Fz Cz 

Control Subjects (n = 17) 

Grand Average -5.08 -3.14 144 144 

Patients 

P1 -4.64 -4.65 120 116 

P2 -3.88 -3.84   96   96 

P3 -0.96 -1.66 244 240 

P4 -2.93 -2.71 180 180 

P5 -3.25 -2.58 220 220 

P6 -1.91 -2.61 184 184 

Schizophrenia Patients 

(n = 3) 

Grand Average -2.13 -1.90 212 212 

Schizoaffective Disorder 

Patients (n = 3) 

Grand Average -2.58 -2.73 120 100 

All Patients (n = 6) 

Grand Average -1.90 -2.01 212 212 
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Figure 4.36 Grand average standard ERP, location deviant ERP, and location 

MMN at electrode Fz in subject groups. Vertical and horizontal black lines represent 

trial onset and baseline, respectively. Black bars at the bottom represent periods of 

significant difference. a. Control subject response from Figure 4.33a (n = 17), b. 

Schizophrenia patients (n = 3), c. Schizoaffective disorder patients (n = 3), d. All 

patients (n = 6). 
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Figure 4.37 Grand average standard ERP, location deviant ERP, and location 

MMN at electrode Cz in subject groups. Vertical and horizontal black lines 

represent trial onset and baseline, respectively. Black bars at the bottom represent 

periods of significant difference. a. Control subject response from Figure 4.33b (n = 

17), b. Schizophrenia patients (n = 3), c. Schizoaffective disorder patients (n = 3), d. 

All patients (n = 6). 
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schizophrenia patients and occurs at a shorter latency compared to the control subjects. 

Neither of the groups showed any time periods with significant differences. 

The grand average ERP response from the all the patients (figs 4.36d, 4.37d), as 

expected, is an average of the two groups segregated by the clinical diagnosis. The 

MMN response shows a longer period of negativity that lasts for approximately 

200ms. This negativity spans from a few milliseconds before the N100 peak to the 

time when the positivity of the standard tone ERP returns to baseline. At both Fz and 

Cz electrodes we see a window of significant negativity with the peak of the MMN 

occurring within this window. The values of the location MMN peak amplitudes and 

peak latencies are shown in table 4.5. 

4.5.4.2 TIME-FREQUENCY ANALYSIS – LOCATION DEVIANT 

The time-frequency or ERSP response to the location deviant in control subjects 

is shown, and compared with the standard tone response, in figure 4.38. Both the 

standard and location deviant ERSP responses are plotted with a colour scale of ±3dB, 

which was used to visualize all grand average ERSP responses shown in this section. 

The right column plots the difference ERSP with the colour scale of ±1.5dB. From this 

figure we see that there is a strong synchronisation of the lower frequencies starting 

from 2Hz and extending to almost 16Hz during the first 200ms of the location deviant 

trials. The peak of this synchronisation occurs at approximately 100ms latency, 

directly corresponding to the N100 peak observed in the ERP analysis (fig 4.33). There 

is also a secondary peak at approximately 200ms which spans 2Hz to 8Hz frequencies. 

This effect is stronger on the frontal Fz electrode compared to the central Cz electrode. 

The difference plot shows that for location deviant, this synchronisation is significantly 

stronger than the synchronisation in the standard tone response. The plot also shows 

that the significance criteria is met for a wider range of frequencies on the frontal 

electrode compared to the central electrode.  

The ERSP response to the location deviant in individual patients is examined in 

the following figures. Figure 4.39 shows the ERSP difference plot for each patient for 

electrode Fz and figure 4.40 for electrode Cz. The plots for individual patients look 

quite different from each other and from the average control group. In control subjects 

there are no regions in the time-frequency difference plots that show a strong 

desynchronisation through the trial period. This is unlike what we see from the 
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individual patient ERSPs in previous sections, where every patient exhibits regions of 

strong desynchronisation in time range and frequency spectrum.  

Similar to the control subjects, patient P1 shows an initial synchronisation of 

frequencies lower than 24Hz. However, this synchronisation lasts less than 200ms. In 

the later time bins, we also see a desynchronisation of frequencies centred 

approximately at 8Hz, with a stronger effect observed at electrode Fz. Patient P2 is the 

only patient to show any significant difference between the standard tone response and 

the location deviant response, though at a latency much longer than expected for 

location MMN. This patient also shows short periods of low frequency 

Figure 4.38  Grand average standard ERSP, location deviant ERSP, and 

difference ERSP in control subject group (n = 17). a. Electrode Fz, b. Electrode Cz. 

Each row has three plots (left to right): standard ERSP, location deviant ERSP, 

difference ERSP. The significantly different region (p<0.05) is marked by black 

contours in the right column. 
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desynchronisation that range from 2Hz to 8Hz, unlike the control group. Like patient 

P1, patient P3 also shows shorter latency synchronisation of low frequencies. This 

synchronisation lasts longer at electrode Cz and is followed by desynchronisation of 

these bands at both the electrodes. In patient P4 the response is more variable between 

the frontal and central electrodes. At electrode Fz we see an initial desynchronisation 

of frequencies below 16Hz, which then transitions to an average synchronisation of 

the time-frequency plot, with a few small regions of desynchronisation. At electrode 

Cz we do not see the initial desynchronisation, but only synchronisation across most 

of the time-frequency plots. Patient P5’s difference ERSP response shows an average 

desynchronisation of the whole time-frequency plot, except for some small regions of 

synchronisation. This effect is observed at both the frontal and central electrodes and 

is opposite to control group. The difference ERSP response from patient P6 also shows 

variability between electrodes, as seen in patient P4. At electrode Fz there is 

Figure 4.39 Average difference ERSP between location deviant and standard tone 

at Fz electrode in individual patients. The six patient (P1 to P6) response differences 

are plotted on 2x3 grid from a to f. In each plot, areas of significant difference at p<0.05 

(if present) are presented by black contours. 
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desynchronisation of frequencies below 16Hz from the beginning of the trial to 200ms 

post-stimulus, which transitions into synchronisation for approximately another 

200ms, and then desynchronisation again lasting till 600ms post-stimulus. On the 

central Cz electrode however, we see an average synchronisation of these frequencies, 

and a few short time windows during which frequencies close to 2Hz are 

desynchronised.  

We have seen from figures 4.39 and 4.40 that the ERSP responses from 

individual patients vary significantly. In the proceeding figures the patients are 

grouped based on their clinical diagnosis and their responses are investigated. Figures 

4.41 and 4.42 show group averaged ERSP responses at electrodes Fz and Cz, 

respectively. The ERSP responses from control subjects are taken from figure 4.38 and 

included in these figures. The colour-scales used in these plots are also same as the 

ones used in figure 4.38 (±3dB for standard and location deviant ERSP and ±1.5dB 

Figure 4.40 Average difference ERSP between location deviant and standard tone 

at Cz electrode in individual patients. The six patient (P1 to P6) response differences 

are plotted on 2x3 grid from a to f. In each plot, areas of significant difference at p<0.05 

(if present) are presented by black contours. 
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Figure 4.41 Grand average standard ERSP, location deviant ERSP, and 

difference ERSP at electrode Fz in subject groups. a. Control subject response from 

Figure 4.38a (n = 17), b. Schizophrenia patients (n = 3), c. Schizoaffective disorder 

patients (n = 3), d. All patients (n = 6). Each row has three plots (left to right): 

congruent ERSP, incongruent ERSP, difference ERSP. In the difference plots on the 

right, areas of significant difference at p<0.05 (if present) are presented by black 

contours. 
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Figure 4.42 Grand average standard ERSP, location deviant ERSP, and 

difference ERSP at electrode Cz in subject groups. a. Control subject response from 

Figure 4.38b (n = 17), b. Schizophrenia patients (n = 3), c. Schizoaffective disorder 

patients (n = 3), d. All patients (n = 6). Each row has three plots (left to right): 

congruent ERSP, incongruent ERSP, difference ERSP. In the difference plots on the 

right, areas of significant difference at p<0.05 (if present) are presented by black 

contours. 
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for difference ERSP). We have seen from previous ERSP plots for both the groups of 

patients that, the relative increase/decrease in power across the time-frequency plot is 

smaller in patients when compared to the control group. This applies to average 

response to the standard tone as well as the deviant tones. Location deviant ERSP 

response also shows this pattern in both the patient groups. 

In schizophrenia patients (figs 4.41b, 4.42b) we see a weak synchronisation of 

frequencies below 16Hz during the location deviant stimulus and a desynchronisation 

of these frequencies at latencies greater than 400ms. The difference plot demonstrates 

that the initial synchronisation seen in the location deviant ERSP is weaker than that 

of standard tone response. This leads to a relatively desynchronised response in the 

difference plot. This desynchronisation also meets significance criteria during a short 

time window close to 200ms at electrode Fz. This is in contrast with what was seen in 

the control group. The schizoaffective disorder patients (figs 4.41c, 4.42c) show a 

stronger initial synchronisation of frequency signals below 16Hz during the location 

deviant trials. This synchronisation is marginally stronger at electrode Cz. However, 

unlike the control group, this synchronisation lasts for a shorter duration and does not 

meet the significance criteria. We also see desynchronisation of these frequencies at 

longer latencies, particularly at electrode Fz. 

The grand averaged response from all the patients (figs 4.41d, 4.42d) for location 

deviant does show a synchronisation of frequencies below 16Hz that is relatively 

stronger than the standard tone response. As expected, this is also observed for a 

shorter duration compared to the control group and does not meet the significance 

criteria of p<0.05 after multiple comparisons correction. 

4.5.4.3 KEY FINDINGS – LOCATION DEVIANT 

1. The location deviant ERP had the largest N100 component which also resulted in 

a large significant MMN response in control subject group.  

2. The location deviant MMN response in patient groups was diminished  and 

significant differences between the location deviant ERP and standard tone ERP 

were observed only for a short duration at electrodes Fz and Cz. 

3. The location deviant ERSP response in control subject group had significantly 

stronger synchronization of 2-16Hz frequencies from the beginning of the trial to 

approximately 300ms post-stimulus at both electrodes Fz and Cz. 
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4. The ERSP responses to location deviant was diminished in patient groups and only 

a small cluster of significant difference with the standard tone ERSP response was 

observed in schizophrenia patients at electrode Fz. 

4.5.5 GAP DEVIANT MMN 

4.5.5.1 EVENT RELATED POTENTIAL ANALYSIS – GAP DEVIANT 

The gap deviant tone was created by introducing a 7ms silence in the middle of 

the 75ms standard tone signal. The grand average ERP response from the control 

subject group to this deviant tone is shown in figure 4.43. This figure also shows the 

standard tone response, and the gap MMN response calculated from subtracting the 

standard response from the gap deviant response. 

Figure 4.43  Grand average standard ERP, gap deviant ERP, and gap MMN in 

control subject group (n = 17). Vertical and horizontal black lines represent trial 

onset and baseline, respectively. Black bars at the bottom represent periods of 

significant difference. a. Electrode Fz, b. Electrode Cz. 
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The gap deviant elicits an ERP response with a relatively higher N100 peak 

compared to other deviants, and a broader time-course. Following the N100 negativity, 

we see a positivity in the ERP signal that is larger than the positivity exhibited by the 

ERP response to the standard tone stimulus. This is unlike what is observed for any 

other deviant type where, the positive response is either smaller than standard tone 

ERP or is even absent (fig 4.23a., intensity deviant, Fz electrode). Due to this larger 

negativity in the ERP response, the resulting MMN response has a positive peak close 

to 200ms along with the usual negative peak earlier in the signal time-course. From 

the black bars at the bottom of each plot in figure 4.43, we see that the MMN amplitude 

is significantly different from the baseline during multiple periods of the trial. At 

electrode Fz we see a primary significant negativity that peaks at 136ms. There is also 

a secondary significant negativity observed at a latency longer than 400ms. At 

electrode Cz we observe that along with the primary negativity, the positivity around 

Figure 4.44 Average standard ERP, gap deviant ERP, and gap MMN at Fz 

electrode in individual patients. The six patient (P1 to P6) responses are plotted on 

3x2 grid from a to f. Vertical and horizontal black lines in each plot represent trial 

onset and baseline, respectively. Black bars at the bottom of each plot, when present, 

represent periods of significant difference. 
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200ms latency is also significantly different from the baseline. The gap MMN peak 

amplitudes and peak latencies for each electrode are tabulated in table 4.6. 

The average ERP response and gap MMN were computed to study the individual 

patient responses to the gap deviant tone. Figures 4.44 and 4.45 provide these 

responses at electrodes Fz and Cz, respectively. Similar to the previous deviant stimuli, 

there is a considerable variability in the response to gap deviant across the patient 

group. In none of the patients we see an increase in the positivity of the deviant ERP 

response compared to the standard response, like seen in the control group. 

In patient P1, we see a marginally higher N100 peak in response to the gap 

deviant stimuli. This peak is more prominent at electrode Fz than at Cz. The MMN 

peak in this case, however, is observed after the N100 peak, when the standard tone 

response exhibits positivity. The gap deviant ERP in patient P1 also shows a positivity 

at longer latencies of the trial, unlike other deviant responses. In patient P2, we see a 

small positivity in the gap deviant ERP when the standard tone ERP is in the N100 

Figure 4.45 Average standard ERP, gap deviant ERP, and gap MMN at Cz 

electrode in individual patients. The six patient (P1 to P6) responses are plotted on 

3x2 grid from a to f. Vertical and horizontal black lines in each plot represent trial 

onset and baseline, respectively. Black bars at the bottom of each plot, when present, 

represent periods of significant difference. 
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wave period. The MMN peak in this patient is seen because of a later negativity in gap 

deviant ERP response. In patient P3, the gap deviant ERP closely follows the standard 

tone ERP with the difference occurring after the N100 response. We observe the peak 

of the MMN in this patient during the period close to 200ms. In patient P4, like the 

standard ERP response, the gap deviant ERP response is also diminished. These two 

ERP are close to each other in amplitude, leading to an MMN response which shows 

small random fluctuation around the baseline. In patient P5, the gap deviant ERP has 

larger N100 peak at the frontal electrode. This results in the MMN peak at electrode 

Fz to occur at 120ms latency. At Cz electrode, both the standard and gap deviant ERP 

N100 peaks are closer to each other, however the MMN peak in the 90 to 250ms period 

is still observed at the same latency. Patients P6 is the only patient in the group that 

meets the significance criteria for difference between the gap deviant and standard tone 

ERP responses. The significant period occurs after the peak in N100 component and 

due to the difference in the positivity of the ERP signals. The peak of the MMN 

responses, at both the electrodes, are also observed during this period of the trial. The 

values of gap MMN peak amplitudes and peak latencies for individual patients at both 

the electrodes are shown in table 4.6. 

The ERP responses were further analysed from the groups of patients in the study 

based on their clinical diagnosis. The grand average ERP responses from 

schizophrenia, schizoaffective disorder, and all patient groups are plotted in figures 

4.46 for electrode Fz and 4.47 for electrode Cz. The figures also include the ERP 

responses from control group. From these figures we see that similar average pattern 

of ERP responses to the gap deviant stimuli are exhibited by both the patient groups. 

The peak  of the N100 component is a little higher than that in the standard tone 

response at electrode Fz. At both the frontal and central electrodes, the peak of the 

MMN is observed after the N100 peak. This is a result of the difference between the 

time course of the ERPs, and the smaller positivity during the gap deviant response. 
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Table 4.6 MMN peak amplitude and latency measures for gap deviant 

 The values of the gap MMN peak amplitudes and peak latencies shown in table 

4.6 clearly demonstrate the variability across individual patients. We also see that for 

grand averages of the 2 clinically different patient groups, the values do not differ 

much from each other, or when all patients are grouped together. It is also evident from 

the plots that MMN response in patients is diminished when compared to the control 

group. This is also reflected in the smaller MMN peak amplitudes shown in table 4.6, 

in almost all individual patients, and the patient groups. The table also shows that the 

peak latency in patient groups is longer compared to the control group. 

 Peak Amplitude (µVolts) Peak Latency (ms) 

 Fz Cz Fz Cz 

Control Subjects (n = 17) 

Grand Average -4.49 -2.70 136 136 

Patients 

P1 -4.70 -4.44 168 164 

P2 -0.96 -0.96 180 184 

P3 -1.67 -2.18 204 200 

P4 -0.66 -0.24 124 172 

P5 -3.56 -1.03 120 120 

P6 -2.95 -2.90 192 184 

Schizophrenia Patients 

(n = 3) 

Grand Average -1.73 -1.22 152 176 

Schizoaffective Disorder 

Patients (n = 3) 

Grand Average -1.95 -1.77 168 168 

All Patients (n = 6) 

Grand Average -1.72 -1.43 168 168 
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Figure 4.46 Grand average standard ERP, gap deviant ERP, and gap MMN at 

electrode Fz in subject groups. Vertical and horizontal black lines represent trial 

onset and baseline, respectively. Black bars at the bottom represent periods of 

significant difference. a. Control subject response from Figure 4.43a (n = 17), b. 

Schizophrenia patients (n = 3), c. Schizoaffective disorder patients (n = 3), d. All 

patients (n = 6). 
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Figure 4.47 Grand average standard ERP, gap deviant ERP, and gap MMN at 

electrode Cz in subject groups. Vertical and horizontal black lines represent trial 

onset and baseline, respectively. Black bars at the bottom represent periods of 

significant difference. a. Control subject response from Figure 4.43b (n = 17), b. 

Schizophrenia patients (n = 3), c. Schizoaffective disorder patients (n = 3), d. All 

patients (n = 6). 
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4.5.5.2 TIME-FREQUENCY ANALYSIS – GAP DEVIANT 

Figure 4.48 shows the control group ERSP response from standard tone stimulus 

(left), gap deviant stimulus (middle), and the difference between the two (right), for 

both Fz and Cz electrode. The standard and gap deviant responses are plotted using a 

colour scale of approximately ±3dB and the difference ERSP is made with ±1.5 dB 

scale. These scales are chosen to accommodate the plots from all the groups, including 

control subjects and patients. Comparing the standard and gap deviant ERSP response 

from both the electrodes we see that the synchronisation of frequencies below 16Hz is 

relatively stronger for the gap deviant. In the deviant plot, we observe two peaks at the 

lower end of the spectrum at approximately 100ms and 200ms. These peaks closely 

line-up with the negative (N100) and positive peaks in the gap deviant ERP shown in 

Figure 4.48  Grand average standard ERSP, gap deviant ERSP, and difference 

ERSP in control subject group (n = 17). a. Electrode Fz, b. Electrode Cz. Each row 

has three plots (left to right): standard ERSP, gap deviant ERSP, difference ERSP. The 

significantly different region (p<0.05) is marked by black contours in the right column. 
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figure 4.43. We also see in the gap deviant ERSP, specifically at electrode Fz, that the 

second peak around 200ms is higher than the first peak. This is unlike what is seen in 

the standard tone ERSP and other deviant plots where the earlier peak is higher. This 

can be clearly seen for the standard tone response in figure 4.28, where different 

colour-scale limits are used. The difference ERSP plots further show us that the 

synchronisation of the 2-16Hz frequency for the gap deviant is significantly stronger 

than that of the standard tone. The plot shows that at the beginning of the trial, 

frequencies below 6Hz on the frontal electrode and below 4Hz of the central electrode 

are significantly synchronised. As the latency increases, we see the range of 

synchronised frequencies also increasing, reaching approximately 16Hz on the frontal 

Fz electrode and 8Hz of the central Cz electrode. In this plot we also observe that the 

peak at 200ms is higher than the lower latency peak. This peak is in the period during 

the positivity of the MMN response observed in figure 4.43. The other regions of the 

Figure 4.49 Average difference ERSP between gap deviant and standard tone at 

Fz electrode in individual patients. The six patient (P1 to P6) response differences 

are plotted on 2x3 grid from a to f. In each plot, areas of significant difference at p<0.05 

(if present) are presented by black contours. 
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ERSP plots show weaker synchronisation and desynchronisation that do not pass the 

significance criteria of p<0.05 after multiple comparisons correction.  

The difference ERSP response from individual patients is shown in figures 4.49 

for electrode Fz and 4.50 for electrode Cz. As we have previously seen for other 

deviant stimuli, there is a substantial variability between patients. In patient P1, we 

predominately see a desynchronisation of low-frequency signal approximately below 

12Hz. At electrode Fz this relative desynchronisation during the gap deviant response 

is also significant in 100-300ms range. In patient P2, the pattern of response is 

relatively close to that of the control subjects. A significant synchronisation of 

frequencies below 8Hz is observed at electrode Fz with the peak observed in the 4Hz 

to 8Hz frequency range. We do see a relative synchronisation of this band at electrode 

Cz too, but it does not satisfy the significance criteria. In this case significant difference 

is seen at the end of the trial centred around 8Hz. In patient P3, we see early 

synchronisation of lower frequencies until 200ms post-stimulus period at electrode Fz. 

Figure 4.50 Average difference ERSP between gap deviant and standard tone at 

Cz electrode in individual patients. The six patient (P1 to P6) response differences 

are plotted on 2x3 grid from a to f. In each plot, areas of significant difference at p<0.05 

(if present) are presented by black contours. 
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At electrode Cz however, we see a strong desynchronisation during this time which is 

centred at approximately 8Hz. In patient P4, like P1, the difference plot again shows 

an overall  desynchronisation of the frequencies below 16Hz. At electrode Fz this 

occurs for the first 200ms and does not satisfy the significance criteria. It is followed 

by synchronisation for about 200ms. At electrode Cz the desynchronisation of these 

frequencies is much more prominent and is also significantly smaller than the standard 

tone response for most of the trial period. Patient P5 exhibits synchronisation of lower 

frequencies from a few milliseconds after trial onset to about 200ms at both electrode 

Fz and Cz. This synchronisation is followed by desynchronisation which is stronger at 

electrode Fz. None of the changes seen in the two difference plots meets the 

significance criteria. In patient P6, we see a region of significant desynchronisation at 

electrode Fz. This region occurs at a latency that also showed significant MMN 

response as seen in figures 4.47 and 4.48. At electrode Cz we do not see a significant 

difference. However, we see a similar pattern of desynchronisation as observed at Fz 

that lasts until 200ms post-stimulus. 

To study the grand averaged response from the schizophrenia and 

schizoaffective disorder patient groups, and all patients grouped together, their ERSP 

responses to the gap deviant are plotted in figure 4.51 for electrode Fz, and figure 4.52 

for electrode Cz. These figures also include the responses at these electrodes from 

control group shown in figure 4.43 and use the same colour scales for the patient 

groups. 

In schizophrenia patients, we have seen earlier that the response to the standard 

tone is diminished across the whole time-frequency plot. From the middle columns of 

figures 4.51b and 4.52b, we see that this holds true for the gap deviant ERSP as well. 

Similar to the control subjects (figs 4.51a, 4.52a), the gap deviant ERSP in 

schizophrenia patients also exhibit synchronisation of lower frequency signals with 

two peaks around 100ms and 200ms respectively. However, unlike the control 

subjects, the frequency range of this synchronisation is smaller and extends only from 

2Hz to 8Hz. We can tell from the difference plot that, relative to the standard tone 

response, the synchronisation in gap deviant response is smaller, hence leading to a 

negative value in the difference plots. We also see that electrode Cz exhibits a larger 
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Figure 4.51 Grand average standard ERSP, gap deviant ERSP, and difference 

ERSP at electrode Fz in subject groups. a. Control subject response from Figure 

4.48a (n = 17), b. Schizophrenia patients (n = 3), c. Schizoaffective disorder patients 

(n = 3), d. All patients (n = 6). Each row has three plots (left to right): congruent ERSP, 

incongruent ERSP, difference ERSP. In the difference plots on the right, areas of 

significant difference at p<0.05 (if present) are presented by black contours. 
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Figure 4.52 Grand average standard ERSP, gap deviant ERSP, and difference 

ERSP at electrode Cz in subject groups. a. Control subject response from Figure 

4.48b (n = 17), b. Schizophrenia patients (n = 3), c. Schizoaffective disorder patients 

(n = 3), d. All patients (n = 6). Each row has three plots (left to right): congruent ERSP, 

incongruent ERSP, difference ERSP. In the difference plots on the right, areas of 

significant difference at p<0.05 (if present) are presented by black contours. 
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decrease from standard to gap deviant tone response, when compared to the Fz 

electrode. None of the regions in these plots satisfied the significant difference criteria. 

In schizoaffective disorder we again see a diminished response to the gap deviant 

stimulus (figs 4.51c, 4.52c). However, in these patients there is an initial phase of 

synchronisation in the gap deviant response that is larger than the standard tone 

response. We also see that this initial synchronisation period is exhibited by wider 

frequency spectrum extending from 2Hz to about 32Hz. The relative synchronisation 

is stronger at electrode Fz compared to Cz. This initial period of synchronisation is 

like what is exhibited in control subject group but lasts for a shorter period. It is 

followed by a relatively stronger desynchronisation of the 2Hz to 16Hz frequency 

spectrum for almost the whole remaining trial. In this case too, none of the regions of 

the plot satisfy the criteria of significance. 

The grand averaged results from all the patients grouped together (figs 4.51d, 

4.52d) show that the electrode Fz shows an initial period of relative synchronisation. 

This period is shorter than what is exhibited by control subjects and is followed by 

stronger desynchronisation, which is not seen in control subjects. At electrode Cz, we 

see that through the whole trial, the gap deviant response for frequencies below 16Hz 

is smaller than the standard tone response. Similar to the observations from the two 

patient groups, and unlike control subjects, none of the regions in the patient group 

ERSP plots are significantly different between the two types of stimuli. 

4.5.5.3 KEY FINDINGS – GAP DEVIANT 

1. The significant gap deviant MMN response was observed in control subject group 

and was the only MMN with a prominent positive peak around 200ms at both 

electrodes Fz and Cz.  

2. The gap deviant MMN response in patient groups was diminished and no 

significant differences were observed between the gap deviant ERP and standard 

tone ERP responses at electrodes Fz or Cz. 

3. The gap deviant ERSP response in control subject group had a strong 

synchronization of lower frequencies with two prominent 2Hz peaks at 100ms and 

200ms post stimulus. This synchronization was also significantly stronger that the 

standard tone ERSP response from beginning of the trial to approximately 300ms 

post-stimulus. 
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4. The ERSP responses to gap deviant was diminished in patient groups and no 

significant differences were found relative to the standard tone ERSP response. 

4.5.6 STATISTICAL ANALYSIS OF EEG MEASURES 

The results presented in sections 4.5.1 to 4.5.5  show that the MMN response for 

each deviant type in patients is diminished when compared to the control group. This 

is further illustrated by figure 4.53 showing MMN elicited by the five deviant types in 

both healthy control and patient groups. A variability in the MMN peak latency  

between control and patient groups is also observed in tables 4.2 to 4.6. In the previous 

sections, each deviant type is analysed individually. In this section, an overall picture 

of the differences seen in patient group is constructed by considering all the deviant 

types together, and through visualization and statistical analysis of EEG measures. 

The MMN peak amplitude and peak latency measures computed from grand 

average of heathy control subjects and patients grouped by their clinical diagnosis are 

presented in figure 4.54. These results are graphically presented to effectively compare 

the subject groups, deviant types, and responses at the midline electrodes. Figure 4.54a 

to 4.54e represent the duration, frequency, intensity, location, and gap deviants, 

respectively. In each plot within the figure, the x-axis represents the five electrodes Fz, 

FCz, Cz, CPz, and Pz, in sequence from the frontal scalp region to the parietal region. 

In each figure, the left side plots the MMN peak amplitude. On the right side the MMN 

peak latencies are plotted. Each plot has three lines for control group, schizophrenia 

patient group, and schizoaffective disorder patient group. It should be noted that all 

the values plotted in these figures are measures computed from the grand averaged 

signal. They are computed, for each group, from MMN response obtained by taking 

Figure 4.53 Grand Average MMN at electrode Fz elicited by the five deviant 

tones. a. Healthy control subject group, b. All patients group.   
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Figure 4.54 Grand average MMN measures across midline electrodes in control 

and patient groups for all deviant types. a. Duration deviant, b. Frequency deviant, 

c. Intensity deviant, d. Location deviant, e. Gap deviant. Left column: MMN peak 

amplitudes, Right column: MMN peak latencies. Solid lines and circle markers 

represent healthy controls. Dotted lines are used for patients with square markers for 

schizophrenia and diamond markers for schizoaffective disorder, respectively. The 

peak latency plots have a non-zero y-axis as the purpose of them is to visualize the 

patterns in the data. 
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the difference between the grand average ERPs of the deviant and the standard tone. 

Therefore, each point is a single value and not an average of values obtained from 

individual subjects in the group. For this reason, there are no statistical comparisons 

to be computed for the measures shown in this figure. 

From the plots on the left side of figure 4.54, we see that in control subjects there 

a is gradual decrease in the MMN peak, going from the frontal region of the scalp to 

the parietal region. This decrease in observed in all the deviant types (fig 4.54a to fig 

4.54e). On the other hand, the patient groups do not show any such pattern. In this case 

a diminished MMN is observed  on the frontal electrodes and it does not change much 

across the midline electrodes. We do see some small differences between the patient 

groups across the deviant types. For example, the MMN peak amplitudes are higher in 

schizoaffective disorder patient group for frequency, location, and gap deviant, when 

compared to the schizophrenia patient group. For the intensity deviant, the amplitudes 

are higher in schizophrenia patient group compared to the schizoaffective disorder 

patient group.  

The plots on the right side of figure 4.54 show the variation of MMN peak 

latencies. The peak latencies do not show any specific pattern in control group across 

the midline electrodes from Fz to Pz. The only variations we see are in the duration 

deviant where the peak latency increases at electrode Cz (staying constant after that) 

and in the location deviant where there is a small decrease at electrode Pz. This 

increase in peak latency during duration deviant can be explained from plot of duration 

deviant ERPs and duration MMN response in figure 4.3. We see a double peak at 

electrode Cz with the latter peak higher than the earlier. It is also interesting to note 

that the initial smaller peak at electrode Cz occurs close to the MMN peak latency at 

electrode Fz. The MMN peak latencies across the midline electrodes are relatively 

constant for the patient groups as well. However, we see longer peak latency in 

schizophrenia patients in intensity and location deviants, compared to control subjects. 

Even more interesting observation is that schizoaffective disorder patients have shorter 

intensity and location MMN peak latencies compared to the control group. In the other 

three deviant types, we see an increase of peak latencies in both the patient groups. 

The figure 4.54 shows how the grand average responses in the patient groups 

differ from that of the control subjects. These grand average responses give a big 
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picture of the different group, however, to determine the statistical differences between 

the groups, measures that were computed from average responses from individual 

subjects were used.  The results of the mixed factor 3x5x5 ANOVA for the average 

MMN amplitude, MMN peak amplitude, and MMN peak latencies are presented 

below. 

For the average MMN amplitude, a significant main effect was observed in all 

the three group (F(2, 532) = 46.08, p < 0.0001), electrode location (F(4, 532) = 9.66, 

p < 0.0001), and deviant type (F(4, 532) = 2.95, p = 0.0198) variables. There was also 

a significant interaction between the group and electrode location variables (F(8, 532) 

= 5.47, p < 0.0001). Multiple comparisons analysis revealed that the average MMN 

amplitude was significantly larger in control subjects when compared to both 

schizophrenia patients (p < 0.0001) and schizoaffective disorder patients (p < 0.0001). 

There was no significant difference between the two patient groups. For the electrode 

locations, average MMN amplitude at both electrode Fz and FCz was significantly 

larger than the amplitude at electrode CPz (Fz: p = 0.0282, FCz: p = 0,0410) and Pz 

(both Fz and FCz: p < 0.0001). The average amplitude at Cz was also larger than at 

electrode Pz (p = 0.0088). Location deviant elicited a larger average MMN amplitude 

than the gap deviant (p = 0.0078). 

The results from the analysis of MMN peak amplitudes showed a significant 

main effect only in the group (F(2, 532) = 46.85, p < 0.0001) and the electrode location 

(F(4, 532) = 9.21, p < 0.0001) variables. Similar to the average MMN amplitude, there 

was also a significant interaction between the group and electrode location variables 

for MMN peak amplitude (F(8, 532) = 5.49, p < 0.0001). Multiple comparisons  

analysis revealed that, the MMN peak amplitude was significantly larger in control 

subjects compared to schizophrenia patients (p < 0.0001) and schizoaffective disorder 

patients (p < 0.0001). There were no significant differences between the two patient 

groups. For the electrode locations, MMN peak amplitude at CPz was significantly 

lower than the peak at Fz (p = 0.0287) and FCz (p = 0.0391). The peak at electrode Pz 

was significantly lower than the peak at electrodes Fz (p < 0.0001), FCz (p < 0.0001), 

and Cz (p = 0.0141).  

The interaction effect between the group and electrode locations, was similar for 

both MMN peak amplitude and average MMN amplitude. This interaction is best 
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understood from the plot for MMN peak amplitude interaction in figure 4.55a. Each 

point in the plot is the mean of the MMN peak amplitude, with the standard error of 

mean represented by the error bars. The points are jittered in x dimension for the ease 

Figure 4.55 Interacting factors observed from ANOVA analysis of MMN 

measures. a. Interaction plot between subject groups and electrode locations in 

determining MMN peak amplitudes. b. Interaction plot between subject groups and 

deviant in determining MMN peak latency. The asterisk (*) represents significant 

differences (p<0.05) between adjacent groups and are coloured by the corresponding 

factors in the plot legends. Points are jittered in x dimension for the ease of 

visualization. The plots have non-zero y-axis as we mainly focus on the patterns in 

values of data presented.  
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of visualization of each value. The plot shows that though significant main effects were 

seen in both group and electrode locations, the variation of MMN peak amplitude 

cannot be determined by either factor individually. The asterisks on the plot represent 

the results of the multiple comparisons test. The MMN peak amplitude was 

significantly larger in control subjects compared to schizophrenia patients at electrodes 

Fz (p < .0001), FCz (p < 0.0001), and Cz (p < 0.0386). Not shown in the plot, this 

pattern was observed between control subjects and schizoaffective disorder patients 

too, but only for electrodes Fz (p < 0.0001) and FCz (p = 0.0005). The plot also shows 

that for the CPz and Pz electrodes, while there were small changes between the control 

and patient groups, the differences were not significant. 

The ANOVA analysis of the MMN peak latencies revealed a significant main 

effect in the group (F(2, 532) = 38.12, p < 0.0001) and deviant type (F(4, 532) = 4.89,  

p = 0.0007) variables. A multiple comparisons analysis of the results showed that peak 

latencies were significantly longer in both schizophrenia patients (p < 0.0001) and 

schizoaffective disorder patients (p < 0.0001) compared to control subjects. There was 

no significant difference between the two patient groups. There was also a significant 

interaction between the deviant type and subject group variables (F(8, 532) = 4.45, p 

< 0.0001). The interaction plot between them is shown in figure 4.55b. Each point in 

the plot is the mean of the MMN peak latencies, with the standard error of mean 

represented by the error bars. The points are jittered in x dimension for the ease of 

visualization of each value. The plot shows that the peak latency changes between the 

subject groups are dependent on the type of deviant. The asterisks in the plot represent 

significantly longer peak latency in schizophrenia patients for location deviant 

compared to both healthy controls (p < 0.0001) and schizoaffective disorder patients 

(p = 0.0067). In duration and gap deviants, the latency is longer in patient groups 

compared to healthy controls. However, only schizoaffective patients showed 

significantly longer peak latency when compared to control subjects (duration: p < 

0.0001, gap: p = 0.0021). Though schizoaffective patients had a longer peak latency 

compared to the schizophrenia patients in these two deviants, the increase was not 

significant. 
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4.5.7 CORRELATIONS WITH DEMOGRAPHIC DATA 

All the patients in the study were scored using two questionnaires on the day of 

the auditory oddball experiment; a. Positive and Negative Syndrome Scale (PANSS) 

which measure the symptom severity in schizophrenia patient (Kay et al., 1987), and 

b. Montgomery–Åsberg Depression Rating Scale (MADRS) (Montgomery & Asberg, 

1979) used to rate the severity of the depression in patients. The scores obtained from 

these two scales were compared with the MMN peak amplitude and peak latency 

measurements of MMN for each deviant types. As seen from figure 4.54 the MMN 

Figure 4.56 Correlations between MMN measures at electrode Fz and symptom 

severity scores in patients. Left column: correlations with absolute MMN peak 

amplitudes, right column: correlations with MMN peak latency. Top raw: 

schizophrenia patients, bottom row: schizoaffective disorder patients. Asterisk (*) 

represent p<0.05. The vertical and horizontal axis labels are shared by the plots in the 

rows and columns, respectively. 
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response is most prominent on the frontal midline electrodes. Therefore, the measures 

at electrode Fz in patient group were used to calculate the correlations. 

Figure 4.56 shows the correlations between these scales and the absolute MMN 

peak amplitude (left columns) and peak latency (right column) for both the 

schizophrenia (top row) and schizoaffective disorder (bottom row) patients. The 

significant correlations are marked with an asterisk. As seen from the plots, though 

there are some positive and negative correlations, most of them are not significant. The 

correlations between the MMN peak amplitude and the various measurements from  

PANSS and MADRS mostly show a positive value. Only in a few cases, like intensity 

deviant MMN in schizophrenia patients, the correlations show an expected negative 

value; meaning the severity of the symptoms leads to a reduction in the MMN 

amplitude. Previous studies have shown significant correlations with the MMN peak 

amplitude and cognitive functioning scores assigned to patients using different types 

of measures (Kärgel et al., 2014; Light & Braff, 2005; Rissling et al., 2014). When 

comparing the MMN peak latency, we see an increased peak latency in schizophrenia 

patients with more severe symptoms (positive correlation) in frequency and location 

deviants. This agrees with the previous findings, but only one correlation (frequency 

MMN peak latency and PANSSG) is significant (Kathmann et al., 1995; Näätänen et 

al., 2012). This pattern is reversed in patients diagnosed schizoaffective disorder. This 

is an interesting observation because schizoaffective disorder patients are often 

grouped with schizophrenia patient in studies involving subjects diagnosed within the 

schizophrenia spectrum of disorders. 

The correlations of MMN measures with the age of patients are also shown in 

the first column of each plot of figure 4.56. Though none of the correlations with the 

patient age are significant, in most cases we do see a negative correlation with the 

MMN peak amplitudes and a positive correlation with the MMN peak latency. The 

negative correlation with the age of the patients is expected as MMN amplitude has 

been documented to reduce with age (Näätänen et al., 2012). The MMN peak 

amplitude and peak latency correlations with age of healthy control subjects was also 

calculated. Negative correlations were found between MMN peak amplitudes for each 

deviant type and age but none of them were significant. The correlations between 

MMN peak latencies were positive for frequency, intensity, and location deviants, 
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consistent with previously observed results (Näätänen et al., 2012). Only the 

correlation with location deviant was relatively high and significant (r=0.545, 

p=0.0238). 

4.6 Discussion and Conclusion 

This chapter investigated the EEG response to an auditory oddball task in both 

healthy controls and patients diagnosed within the schizophrenia spectrum of 

disorders; as determined by Diagnostic and Statistical Manual of Mental Disorders, 

fifth edition (DSM-5) (American Psychiatric Association, 2013a). The experimental 

paradigm was adapted from a 2004 article by Näätänen et.al. (Näätänen et al., 2004). 

This paradigm incorporated five different types of deviant tones in a single sequence 

of auditory tones. The usage of this experimental paradigm (table 4.1), along with the 

EEG recording setup, enabled a reliable recording of the neural response to the 

auditory tones from the whole scalp. The recorded data was analysed using an event 

related potential analysis and a time-frequency analysis. The former provided with a 

broad-spectrum time course of the stimulus locked EEG signals and corresponding 

MMN response calculated for each deviant. The latter, time-frequency response, gave 

a granular insight into the contribution of each frequency bin between 2Hz and 50Hz.    

The ERP analysis showed a clear MMN response for each deviant type in the 

control subject group. However, the average ERP plots of individual patients showed 

that most of them did not elicit significant MMN responses to the deviant stimuli. The 

grand-averaged ERP analysis of the schizophrenia and schizoaffective patient groups 

also showed an overall reduction in the MMN amplitude in each deviant type. These 

findings agreed with the literature and have also been reported in recent studies like 

the one by Hirt et al (Hirt et al., 2019). While the significant regions of MMN responses 

were highlighted in figures from sections 4.5.1 to 4.5.5, the differences between the 

control and patient groups were studied in section 4.5.6. The statistical results in this 

section were aligned with the previous observations in patients categorized within the 

schizophrenia spectrum. Hirt et. al. showed a significant decrease in duration and 

frequency MMN amplitude in early-stage and chronic schizophrenia patients 

compared to healthy control subjects (Hirt et al., 2019). The statistical analysis results 

from their study agreed with the ANOVA results in section 4.5.6 that demonstrated a 
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significant decrease in MMN peak amplitude in patients when compared to control 

subjects at frontal electrodes. These ANOVA results took the findings a step further 

and showed that MMN responses exhibited differences even between the patient 

groups (fig 4.55). In most of the studies employing patients with schizophrenia 

spectrum disorder, patients diagnosed with specific type of disorder within the 

spectrum were grouped together (Hermens et al., 2010; Michie et al., 2002; D. 

Umbricht et al., 2003). In the Hirt et al. study patients were a diagnosed with the 

schizophrenia spectrum of disorders meeting different ICD-10 codes for paranoid-

hallucinatory, acute psychotic, schizoaffective disorder, etc (Hirt et al., 2019). It is also 

evident from the literature on MMN that, fewer studies like the one from Hermens and 

colleagues (Hermens et al., 2010) reported findings about the variations in peak 

latencies. The results from the preceding section demonstrated that both MMN peak 

amplitude and peak latency were affected in patients with schizophrenia and 

schizoaffective disorder. It was also seen from figure 4.55b that peak latency variations 

in the patient groups were dependent on the deviant type. A significantly longer 

location MMN peak latency was seen in schizophrenia patients compared to both 

control and schizoaffective disorder groups. Also, only schizoaffective disorder 

patients showed a significantly longer duration and gap MMN peak latency when 

compared to control subjects. These findings were promising with respect to the 

hypothesis that auditory oddball experiments with multiple deviant types provide more 

specific information about the clinical diagnosis of the patients. The results of the 

statistical analysis demonstrated that extracted measures like mean and peak 

amplitude, and latency, can be reliably used as measures of comparison between 

healthy controls and patient groups. Further investigation with larger patient groups 

could lead to the discovery of more robust and specific measures within each group. 

These could eventually be used as biomarkers for preliminary screening of people 

showing symptoms of psychosis. 

In the results obtained from time-frequency analysis of each deviant type, as a 

general trend in control subjects, a significant synchronisation of lower frequencies 

(2Hz to 16Hz) was seen in response to the deviant stimuli. This synchronisation in the 

range of theta/alpha band frequencies was significant for frequency, location, and gap 

deviant stimuli. In the case of duration deviant, the synchronisation was not significant, 
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and for the intensity deviant stimuli the earlier (<100ms) synchronisation was followed 

by a desynchronisation. In all the cases, the difference between deviant and standard 

stimuli were observed in the initial 200-300ms post-stimulus. These findings from the 

healthy control subjects were consistent with previously reported time-frequency 

response findings (Javitt et al., 2018; Ko et al., 2012; M. Lee et al., 2017). In the patient 

group, like the ERP response, the ERSP response to the deviants was smaller, resulting 

in differences that were insignificant with respect to the standard stimuli. This has been 

recently reported by other researchers too (Javitt et al., 2018; Ko et al., 2012; M. Lee 

et al., 2017). The results obtained from the experiment in this chapter incorporated gap 

and location deviant types, which have not been extensively studied previously, 

particularly using the ERSP analysis. Also, differences have been reported between 

the time-frequency response from schizophrenia and schizoaffective disorder patients, 

something that has not been thoroughly studied previously but larger number of 

patients is needed to confirm this. 

The major limitation of the experiment presented here is the small group of 

recruited patients. This was further exacerbated by the diagnostic difference between 

patients. This also likely resulted in non-significant and unexpected correlations 

between the MMN measures and clinical rating of patients (fig 4.56). Another 

limitation of this experiment was that source localization was not used to determine 

the generators of the observed EEG activity in response to the auditory oddball task. 

One of the reasons for this was the smaller number of EEG recording electrodes in the 

patient group which would have resulted in incorrect or blurry localizations (Michel 

& Brunet, 2019). This is further elaborated in Chapter 9, section 9.1.3. The use of 

source localization would have been helpful in comparing our observations to the 

previously published research (Alho, 1995; Csépe, 1995; Näätänen et al., 2007, 2012; 

Rissling et al., 2014) on neural processes involved in the generation of MMN. Despite 

these drawbacks, with multiple other significant findings from this single auditory 

oddball experiment, it can be confidently said that the experimental paradigm can 

serve as a powerful tool in the diagnostic protocol. As has been mentioned earlier, the 

literature survey indicated a pattern of grouping patients that fall within the 

schizophrenia spectrum. The experimental findings in this chapter, however, showed 

that, while there were similarities within the group, there were also differences 
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between patients diagnosed with different pathologies. Therefore, we postulate that a 

deeper dive with larger patient groups, with specific clinical diagnosis, is necessary. 

The various measures computed from the EEG response are promising 

candidates for biomarkers that could be significant in diagnosis of patients. These and 

other similar measures extracted from the experimental paradigm can be used to create 

a high-dimensional landscape of individual subjects. Creating such a data rich, high-

dimensional picture with larger size groups of healthy controls and patients could 

likely be used as a preliminary diagnostic tool to categorize a new test subject based 

on where they are “located” in this landscape. These ideas are further explored in 

Chapters 8 and 9.
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5.1 Introduction 

James M. Cattell first observed in 1886 that it took longer for subjects to name 

the colour of an object than to read the colour names (Cattell, 1886). This was one of 

the first observations that led J. Riddley Stroop to create one of most widely known 

experiments in Psychology, by his name; the Stroop effect (Stroop, 1935). In its 

simplest form, Stroop effect is the delay in response observed when conflicting stimuli 

are present. For example, people take significantly longer to name the colour of ink a 

colour word is written in when the two do not match (the word “RED” written in blue 

ink) when compared to a case where the two matches (“GREEN” written in green ink). 

5.1.1 TYPES OF STROOP TASKS 

Over the past century, researchers have extensively studied the Stroop effect 

with experimental designs using different types of stimuli. However, each of these 

experiments shares certain characteristics that make them a version of the same task. 

These characteristics include subjects presented with stimuli with two dimensions or 

aspects and asked to respond to only one of them. In different conditions within the 

task, the two dimensions of stimuli could either be in harmony with each (congruent) 

or contradicting each other (incongruent). Most of the experiments also incorporate a 

third control condition where one of the stimuli is irrelevant and does not either 

contradict or agree with the other. 

The most common type of Stroop task, which was also used by J. Riddley Stroop 

in his study, is the colour-word task. As described briefly, this task uses a colour word 

written in either same or different colour as its meaning. In his experiment, Stroop 

used a sheet of paper with hundred words either written in black (control case) or in a 

colour different from its meaning (incongruent). Stroop carried out several different 

experiments and found out that it took longer for subjects to finish reading the 

incongruent colour-word stimuli (Stroop, 1935). Over the years, as progress has been 

made in experimental design, and technology has been incorporated in the carrying 

out psychological experiments, researchers have moved to precise measurements of 

response to single stimuli. Other types of Stroop tasks have included colour-object 

task, counting Stroop task, emotional Stroop task, etc. The colour-object task is like 

the colour-word task with the replacement of words with objects that typically have a 
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specific colour (e.g. red apple). This task has been useful in testing subjects like pre-

school children (Cramer, 1967) who haven’t learned how to read yet but, have 

developed object-colour associations. The counting Stroop task uses number words 

printed a different number of times (e.g. “three” printed thrice for congruent and twice 

or incongruent) and was designed to study subjects in an MRI (Bush et al., 1998). 

Emotional Stroop task uses words associated with neutral (table, desk, etc), positive 

(holidays, success, etc), and negative (slaughter, failure, etc) emotions presented in 

different ink colours. The subjects are instructed to identify the colour of the word. 

This task has been used to test patients with different psychopathologies (Williams et 

al., 1996) like depression, schizophrenia (Demily et al., 2010), etc to assess if the 

emotion words caused interference compared to neutral words. 

5.1.2 OBSERVATIONS AND PSYCHOLOGY OF THE STROOP TASK  

The different types of Stroop task described above do not only share specific 

characteristics in their design but also in the behavioural responses observed in 

subjects. As stated earlier, Stroop observed that subjects took significantly longer to 

read colour-names written in conflicting ink colours when compared to colour-names 

written in black. He called this the “Effect of Interfering Colour Stimuli” and is now 

widely recognized as interference in the psychology literature. This effect is shared by 

all the different types of Stroop tasks where one dimension of the stimuli interferes 

with processing and thus results in longer response times. Comalli et. al. showed that 

varying degrees of interference was observed in subject age groups ranging from 7 to 

80 years (Comalli Jr et al., 1962). Phebe Cramer showed this effect in preschool 

children in a colour-object task as they had not learned to read words yet (Cramer, 

1967). The interference of conflicting stimuli is also observed in counting Stroop task, 

where counting the number of conflicting number words takes longer when compared 

to counting neutral words (Bush et al., 1998). 

These tasks not only present with the primary effect of interference but also have 

other effects that are consistently seen across different types. The experimenters that 

have used congruent stimulus dimensions have observed an enhancement (opposite of 

interference) when compared to neutral or control stimulus. Different studies have also 

seen practice effects in subjects that result in decreased interference (Bush et al., 1998; 

Stroop, 1935). Another interesting observation from several different studies has 
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indicated that certain dimensions of stimulus are more dominant compared to others. 

For example, it has been observed that humans are more inclined towards reading a 

word than towards processing the colour of the ink the word is written in. In other 

words, there is a certain degree of automaticity in paying attention to certain aspects 

of stimuli. Comalli et. al. observed that across the whole age range of 7 to 80 years, 

subjects were faster in reading a colour word written in black than in naming the colour 

of a rectangular patch (Comalli Jr et al., 1962). In her 1967 paper, Cramer observed 

that preschool kids showed no significant difference in naming the form of the object 

irrespective of it being in its native (e.g. red apple) or non-native (e.g. blue apple) 

colour. However, the difference between naming the colour of a rectangular patch and 

naming the colour of an object in its non-native colour was significant (Cramer, 1967). 

This observation, like in the colour-word task, implied the dominance of the form of 

the object when compared to its colour. 

The human mind is continuously making decisions as it interacts with its 

environment. We react to various stimuli presented to us through our sensory organs 

throughout our day-to-day life. The decisions we take can be as simple as choosing 

between coffee and tea, and as complex as deciding between what's right and wrong 

when conflicting opinions are presented. The brain is processing all the information 

presented to it and has only a certain amount of capacity. The processing system is 

also sequential in nature and thus has an additional task of prioritizing between 

different sources. Hence, when multiple sources of information are presented to it, the 

mind can often get overwhelmed, leading to a bottleneck situation (Sahinoglu & 

Dogan, 2016). This especially becomes difficult when different sensory sources are 

presenting contradicting information. In such a situation, we tend to process and 

respond quicker to processes that we are more familiar with (automatic processing) 

than the ones that do not occur in our daily life (Sahinoglu & Dogan, 2016). For 

example, humans are used to reading words and are almost never presented with the 

task of naming the colour of the ink they are written in. This complexity of human’s 

reaction to multi-dimensional stimuli is simplified by the easy to administer Stroop 

task. It helps in assessing how different psychopathologies affect information 

processing and conflict resolution systems in the human brain. For this reason, it has 

become a powerful research tool. 
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5.1.3 NEUROPHYSIOLOGY OF THE STROOP TASK 

The previous sections have discussed the different types of laboratory tasks that 

invoke the Stroop effect in humans. Studies that examine the psychological aspect of 

the effect and theorize how the brain works to produce it were also discussed. This 

section dives deeper into decades of research on Stroop effect with an emphasis on 

experiments that study both the behavioural and neurological aspects. A Google 

Scholar search of articles citing the 1935 Stroop paper shows that there are a few 

thousand papers that have documented the neurophysiology of this task. It is also found 

that different neuroimaging techniques like EEG, PET and fMRI have been used by 

researchers. This section briefly describes a few of these papers with an emphasis on 

studies using EEG. 

Duncan-Johnson and Kopell conducted one of the first studies to understand how 

the brain processes the stimulus during a Stroop task (Duncan-Johnson & Kopell, 

1981). It was previously established that the EEG P300 wave marks the time it takes 

to evaluate a stimulus. The theory was that comparing the P300 latency and response 

time (RT) of different task conditions within the Stroop task would provide an insight 

into the interference effect. This study found that the P300 latency recorded at Pz 

electrode did not significantly change between congruent, neutral, and incongruent 

trials. However, as it was repeatedly observed, the subjects showed significant 

differences in RT. This was the first observation that led to the conclusion that the 

interference effect in the Stroop task occurred due to conflicting responses and not due 

to stimulus evaluation. In another study by Ilan and Polich, this observation was 

confirmed using key-press responses; as opposed to vocalization in the previous one 

(Ilan & Polich, 1999). The results from these two studies concurrently showed that the 

latency of P300 response during the Stroop task is independent of the type of stimulus. 

The Ilan and Polich study also included recordings from Fz and Cz electrodes along 

with Pz. It showed that the amplitude of the P300 wave and the difference in 

congruency related activation increased going from the Fz to Cz to the Pz electrode.  

In the 1990s several different studies were conducted by various research groups 

using neuroimaging techniques like PET and fMRI. These techniques provided an 

opportunity to study the involvement of regions of the brain that were difficult to 

observe using EEG electrodes. Pardo et. al. used PET recordings of healthy subjects 
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while performing the colour-word Stroop task with incongruent and congruent trials 

(Pardo et al., 1990). They looked at the difference in the activation between the two 

types of trials and found that anterior cingulate cortex (ACC) showed the most 

significant increase in activation from congruent to incongruent trials. This was further 

confirmed by the previously mentioned study that introduced the counting Stroop task 

(Bush et al., 1998). Bush et. al. also showed that practice effects observed in the 

behavioural results were mimicked in the fMRI activation changes of the ACC. 

West and Bell compared the Stroop effect between younger and older healthy 

subject groups (West & Bell, 1997) using EEG recordings. They found that the older 

subjects exhibited significantly greater interference effect when compared to the 

younger. These differences were also seen in EEG signals with significant differences 

in activation of frontal medial, frontal lateral and parietal regions. Stroop task demands 

the involvement of anterior attention system including the prefrontal cortex, which had 

been previously shown to decline with age. The researchers thus concluded that a 

decline in performance was consistent with age-related changes in the brain. 

Schack et. al. used coherence between pairs of electrodes to understand the 

changes in neural activity during congruent and incongruent Stroop trials (Schack et 

al., 1999). They found that 13-20 Hz band was most significant in discriminating 

between the two trials conditions. The incongruent trials exhibited higher coherence 

values on the left hemisphere in and between the frontal and parietal areas, when 

compared to congruent. They also found that time of maximal coherence was a 

predictor of reaction times. The correlations between the two were significant for all 

the 4 fronto-parietal combinations in the incongruent case. Whereas, in the congruent 

case, significant correlations were restricted to right hemisphere fronto-parietal pair of 

electrodes. 

Some of the more recent studies with EEG recordings have tried to understand 

how the brain detects, resolves, and adapts to different conflicting stimuli. A 2009 

study by Badzakova-Trajkov et.al. used global field power from all the recorded 

electrodes and LORETA source localization to study the difference between the 

congruent, incongruent, and control conditions (Badzakova-Trajkov et al., 2009). 

They found that the difference between control and both congruency conditions 

exhibited similar properties. The peak in the difference waveform was seen in an 
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earlier time window between 260ms and 430ms and the source was in the middle 

cingulate. However, in the case of incongruent versus congruent the peak difference 

waveform was found between 370ms and 480ms with the source mainly located in the 

anterior cingulate. The researchers attributed the former to allocation of attention and 

the later to conflict identification and resolution. 

Another interesting study from 2011 used a modified version of the Stroop task 

that manipulated the onset time of the two stimuli (colour and word) (Coderre et al., 

2011). There were three types of trials presented; one where both stimuli were 

presented simultaneously, another where colour was presented 400ms before the word 

and a third one with word presented before the colour. This was done to study which 

of the different components of the event related to EEG potentials (ERP) were 

responsible for conflict detection and which for conflict resolution. They concluded 

that an early negative ERP component (N450) present around 350-450ms was 

responsible only for conflict detection. They also concluded, though with some 

speculation, that a late positive component (LPC) helped with the resolution of the 

conflicting stimuli. 

The various EEG studies of Stroop effect with healthy subjects have given an 

insight into how the brain responds to conflicting stimuli. The common theme 

emerging from these studies is the predominant use of the word-colour Stroop 

paradigm. The locations of the recorded electrodes by different authors are also 

common and is concentrated at Fz, Cz and Pz electrode regions. Finally, source 

localization has strongly concluded that anterior cingulate cortex is the primary area 

of the brain involved in performing the Stroop task (Badzakova-Trajkov et al., 2009). 

5.1.4 STROOP EFFECT IN SCHIZOPHRENIA RESEARCH 

Patients with schizophrenia often display cognitive deficits. They have been 

shown to face difficulty in maintaining and executing a set of instructions. Patients 

also suffer from attention deficits, abnormal language performance, and inability to 

suppress irrelevant stimulus (Keefe & Harvey, 2012). For these reasons, Stroop task 

has been extensively used to study the psychological and neurophysiological aspects 

of schizophrenia. This section describes some of these studies. 

Henik and Salo reviewed around 50 years of schizophrenia research using the 

Stroop task (Henik & Salo, 2004). Though they limited themselves mainly to 
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behavioural and psychological studies, their 2004 article gives a deep insight into this 

pathology and its effect on the performance in the task. Schizophrenia patients seem 

to exhibit longer interference times with the card version of the task. This version 

however has become obsolete as computerized single-trial versions of Stroop task can 

measure responses more accurately, especially when accompanied with 

neurophysiological measures. The differences in symptomology of patients can also 

affect their performance in the task. Hepp et. al. showed that chronic, acute, and 

schizoaffective patients showed significantly larger interference than patients with 

recurrent episodes (Hepp et al., 1996). However, Henik and Solo observed 

inconsistencies in the interference patterns exhibited by schizophrenia patients across 

studies. They postulate that the inconsistent results across studies are mainly due to 

the version of task used (card vs. single-trial) and other differences in methodology. 

Another trend that Henik and Salo observed is that the inter-trial interval had a 

significant effect on the performance of the patients when compared to healthy 

subjects. It was noted that longer inter-trial intervals led to higher error rates in 

schizophrenia patients. This was attributed to the inability of these patients to maintain 

attention for an extended period (Henik & Salo, 2004). 

Markela-Lerenc et. al. published one of the first studies that used EEG signals 

to study the schizophrenia patients during a Stroop task (Markela-Lerenc et al., 2009). 

They employed 15 patients and 15 age/sex matched control subjects to study the ERP 

signals while performing two blocks of computerized version of the colour-word 

Stroop task. They used congruent, incongruent, and neutral conditions. They used EEG 

signals from four midline electrodes and pooled a set of three electrodes for each of 

the right frontal, left frontal, right parietal, and left parietal regions. The grand average 

ERP signals of control subjects from all these electrode locations showed significant 

differences between congruency conditions. The frontal regions showed greater 

negativity (N450) in the 350-450ms time window in the incongruent trials. In the 

parietal regions, this translated to greater sustained positivity in 600-1000ms time 

window. The patient group did not show these differences in the first block of trials. 

However, in the second block, patients showed similar ERP time courses in the parietal 

region. Moreover, the incongruent-congruent difference was negatively correlated 

with error rate in patients. This denotes that this difference in ERP activity is crucial 
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for conflict resolution during the task. The group also looked at the spatial difference 

of the ERP signal at 400ms and found it to be significantly lower in the patients. 

Kim et. al. conducted a similar study with female Korean college students that 

exhibited schizotypal traits (Kim et al., 2012). This study also used a computerized 

colour-word Stroop task, but with Korean words. The researchers conducted ERP 

analysis with the Fz and Pz electrodes. They found that control subjects showed a 

significant frontal negativity (FN or N450) difference in the 300-400ms time window 

between incongruent and congruent trials. This FN was not observed in subjects with 

schizotypal traits. However, like the previous study, both the groups showed 

significant differences between the two task conditions with the sustained positivity 

on the Pz electrode. The researchers conducted a source localization analysis using the 

LORETA algorithm. The current density in the left cingulate gyrus and medial frontal 

gyrus was found to be significantly lower in schizotypal trait subjects. They also 

observed with regression analysis that schizotypal-trait subjects showed a significant 

correlation between left cingulate activation and accuracy of the incongruent trials. 

These results are consistent with the Markela-Lerenc study (Markela-Lerenc et al., 

2009) and also with imaging studies (Bush et al., 1998; Pardo et al., 1990) that have 

showed involvement of anterior cingulate cortex and prefrontal cortex in performing 

Stroop like tasks. 

In one of most recent studies Popov et. al. used brain oscillatory dynamics 

techniques to study the differences between controls subjects and schizophrenia 

patients (Popov et al., 2018). They analysed behavioural data during a computerized 

Stroop task with 4-7 Hz (theta) and 10-30Hz (alpha/beta) EEG oscillations. As 

expected, they observed an overall higher response time in patients. However, they did 

not observe a larger Stroop effect on patients. With the theta oscillation they observed 

that patients produced less enhancement compared to control subjects during 

incongruent trials in the dorsal anterior cingulate gyrus (dACC) and the superior 

frontal gyrus. They also observed that the central alpha/beta suppression closely 

tracked the reaction time (RT) with higher suppression signifying longer RT. This 

effect was consistent in both patient and control groups. They also looked at theta 

phase coherence between dACC and sensorimotor regions to quantify the 

communication between the two regions. Schizophrenia patients were observed to 
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show poor coherence during incongruent trials. The authors concluded that poor 

communication between the two areas lead to impaired motor preparation and hence 

poorer performance by the patient population. 

5.2 Aims of Study  

The above sections have highlighted the important aspects for Stroop task along 

with expected behavioural results in both healthy subjects and schizophrenia patients. 

The neurophysiological findings studies involving Stroop task have also been outlined. 

The study described in this chapter used this knowledge to design a Stroop task 

experiment. Along with behavioural results and observations from EEG analysis, a set 

of outcomes that can be used to diagnose subjects in a clinical setting, are also 

presented. Following were the aims of this study: 

1. To use a computerized Stroop task to observe behavioural response along 

with simultaneous EEG recordings in both healthy control subjects and 

patients diagnosed with the schizophrenia spectrum of disorders. 

2. To compute behavioural response measures and determine if Stroop 

effect was observed using the task design used in this study. 

3. To compute the ERP and ERSP responses to each trial condition and 

study the similarities and differences between them. Based on previous 

research described in section 5.1.3, we hypothesized to see significant 

differences between the congruent and incongruent task conditions. 

These differences were predicted to be observable in both the time and 

frequency domain of EEG data. 

4. To visualize and calculate statistical differences between the response 

from healthy control group and patient groups. We hypothesized that 

unlike healthy control subjects, the patient group would show smaller or 

insignificant differences between the congruent and incongruent task 

conditions. 

5. To compute the correlations of patient symptom severity with 

behavioural performance and EEG measures like P300 peak amplitude 

and peak latency. We hypothesized that patients with more severe 

symptoms were likely to show larger deficits in behavioural performance 
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and smaller differences between the congruent and incongruent task 

conditions. 

5.3 Experimental Methods 

5.3.1 TASK DESCRIPTION 

A computerized version of the Stroop task was used in this study. The Stim2 

software (NeuroScan Inc.) was used to generate the stimuli and the triggers were 

interfaced with NeuroScan 4.5 Acquire software using the Stim2 hardware. The task 

consisted of two types of stimuli. The congruent trials were four colour words namely 

green, blue, red, and yellow written in the same colour ink as the meaning of the word. 

The incongruent trials were the words written in a different colour ink as their 

meaning; for example, the word “blue” written in the colour yellow. Subjects were 

instructed to press the “Match” button for congruent and “No Match” button for the 

incongruent trials using a response pad (Compumedics NeuroScan Switch and 

Response Pad). A “Match”/“No Match” response was chosen to make the task easier 

for the patient group, instead of a traditional Stroop task response where subjects were 

asked to indicate the colour of ink the colour-word is written in. Before beginning the 

test phase of the task, subjects were given a practice phase of 24 trials.  

Figure 5.1 shows the timing diagram of the computerized Stroop task. Every trial 

began with a word presented for a set time referred to as the “Stimulus Duration” (SD). 

From the beginning of the trial the subjects had a window of time to respond; the 

“Response Window” (RW). If the subject pressed a button within this window, the 

time elapsed from the onset of stimulus to the button press was recorded as the 

Figure 5.1 Timing diagram for Stroop task. Intertrial interval: 1500ms. Stimulus 

Duration for Controls: 150ms, Patients: 200ms. Response Window for Controls: 

1000ms, Patients: 1200ms. 
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“Latency” (LT). The trial was recorded as either correct or incorrect depending on the 

response. If, however, the subject did not press any button within the RW, the trial was 

recorded as “no response” and LT was recorded as equal to RW. The subjects were 

not given any feedback if the trial was correct, incorrect, or no response. After the 

“Inter Trial Interval” (ITI), a new word was presented.  

All the subjects performed the task in blocks of trials with approximately 25% 

congruent and 75% incongruent trials generated using a pseudo-random generator. The 

seed used for the generator was not always the same value, leading to small differences 

in the exact number of congruent and incongruent trials presented to each subject. For 

the control subjects, the task was carried out in 2 blocks of 400 trials each. This took 

approximately 10 minutes per block. The SD was set at 150ms and the RW at 1000ms. 

When the first patient (P1) was presented with this setting, the subject had considerable 

difficulty in performing the task. For that reason, the task parameters were modified 

for patients which were approved as minor amendment by the West of Scotland 

Research Ethics Service. The ITI was kept the same at 1500ms but, the SD was 

increased to 200ms and RW was increased to 1200ms. The trials were presented in 4 

blocks of 200 trials each. This took 5 minutes per block. This task was carried out on 

the same day as, and following the, MMN task in both the patients and control subjects. 

The change in task parameters between the healthy control and patient groups 

raised a major concern regarding making direct comparisons between them. Therefore 

in this chapter we present the performances and EEG analysis of control and patient 

groups separately, unlike the previous and following experiments. 

5.3.2 SUBJECTS 

All the recruited healthy control subjects (n = 19) performed the auditory oddball 

task. However, 1 subject was excluded from the analysis due to noise and corrupted 

data. Therefore, data collected from 18 healthy control subjects were used for analysis. 

All the recruited patients performed the Stroop task, however, for the reasons 

mentioned in the last section modifications were made to the task parameters after 

recording from patient P1. The results are presented for individual patients as well as 

three groups of patients including schizophrenia patients (P4, P5, P6), schizoaffective 

disorder patients (P1, P2, P3), and all patients grouped together. 
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5.3.3 BEHAVIOURAL ANALYSIS 

The behavioural performance in the Stroop task was quantified by the percent 

correct of and the response latency to both the congruent and incongruent stimuli. The 

percent change in the response latency between the congruent and incongruent trial 

response was also analysed. Several studies that use the Stroop task, also incorporate 

a “neutral” set of trials where the colour words are written in black ink. The latencies 

in these trials can be used to study the “enhancement” (decreased latency) in congruent 

trials and “interference” (increased latency) in the incongruent trials. Due to the 

restrictions imposed by the Stim2 software, “neutral” trials were not incorporated in 

this experiment. Therefore, to study the interference caused by the irrelevant stimuli 

in the incongruent condition, the latencies obtained in the congruent trials were used 

as a surrogate to the “neutral” trials. The percentage increase in the incongruent 

latencies with respect to the congruent latencies is calculated using the simple formula: 

5.3.4 EEG MEASUREMENT 

The standard EEG recording and pre-processing pipeline described in Chapter 3 

was used during this experiment, except for a common average reference (CAR) 

compared to the mastoid reference used during the auditory odd ball task. The epoch 

was defined as -200ms to +1300ms relative to stimulus onset and the average 

amplitude in the 200ms pre-stimulus window was used for baseline correction. After 

the artefact rejection, cleaning of EEG data, and dropping the trials with incorrect 

responses, an average of 85% trials were retained in healthy control subjects. In 

patients this number was approximately 50% with a significant percentage of trials 

getting dropped due to incorrect response. This is elaborated further in the section 5.4. 

The EEG pre-processing and cleaning was followed by the ERP and ERSP 

analysis of the congruent and incongruent trial response. Based on the commonly 

studied electrodes in the literature on Stroop task with EEG recording, these analyses 

were carried out and visualized at the midline electrodes Fz, Cz, and Pz. 

The EEG measures P300 peak amplitude and peak latency were computed for 

the ERP response to the congruent trials, incongruent trials, and the difference between 

 % 𝐶ℎ𝑎𝑛𝑔𝑒 = 100 ∗  (𝐿𝑎𝑡𝑖𝑛𝑐𝑜𝑛𝑔 − 𝐿𝑎𝑡𝑐𝑜𝑛𝑔)/𝐿𝑎𝑡𝑐𝑜𝑛𝑔 (5.1) 
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the two ERPs (incongruent – congruent). The time-period defined for the calculations 

of the peak and latencies varies across research studies. The studies that use the P300 

terminology, also use either a broad window (280-600ms) across the midline 

electrodes (Ilan & Polich, 1999) or only focus on the Pz electrode (Duncan-Johnson & 

Kopell, 1981). In other studies where the N450 terminology is used, different smaller 

window sizes are used to average the response at each electrode. The time-periods are 

earlier for frontal electrodes  (350-450ms) and later for central electrodes (450-550ms) 

(Markela-Lerenc et al., 2009). These studies also define a late positive component 

(LPC) or a sustained potential at the parietal electrodes in the 600-900ms range, where 

the incongruent ERP response amplitude is higher than the congruent EPR response 

(Coderre et al., 2011; Kim et al., 2012; Markela-Lerenc et al., 2009). From the 

observation in our data and considering the methodology followed by previous studies, 

the post-stimulus time-period of 300-600ms was chosen to calculate the P300 peak 

amplitude and peak latency. 

5.3.5 STATISTICAL ANALYSIS 

The statistical differences between the behavioural response to congruent and 

incongruent trials of the Stroop task were determined using t-tests. The statistical 

differences between the EEG responses to the congruent and incongruent trial 

conditions were determined using the non-parametric permutation tests and cluster-

based multiple comparisons correction. These tests were carried out to compare both 

the ERP and ERSP responses. Both these statistical analysis were done separately for 

the healthy control and patient groups. As mentioned earlier, due to the differences 

between the task parameters in control and patient groups, no direct statistical 

comparisons were carried out between them. 

5.4 Results and Comparisons 

5.4.1 BEHAVIOURAL RESULTS 

This section describes the behavioural performance outcomes of Stroop task in 

both control subjects and patients. Decades of literature on Stroop task, shows that the 

Stroop effect is expected to be observed in both the control subjects and patients.  
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Table 5.1 Patient performance in Stroop task. 

Table 5.1 outlines the different measures that were gathered from the patients 

recruited for the study. The columns in the table represent individual patients P1 to P6. 

The coloured dots show the colours assigned to each subject and used throughout the 

different figures in this section. The first few rows give the PANSS (Kay et al., 1987) 

and MADRS (Montgomery & Asberg, 1979) scores of each patient on the day of 

Stroop task. Following this, the number of blocks performed by each patient are listed. 

We see from the table that patients P2, P4, P5, and P6 completed 4 blocks of 200 trials 

each, P1 completed 2 blocks, and P3 completed 3 blocks. As mentioned previously, 

Patient P1 P2 P3 P4 P5 P6 

Colour       

Gender M M M M M M 

Age 35 26 57 64 59 47 

Clinical Diagnosis* SA SA SA/BSD S S S 

PANSS             

  Positive 27 8 7 7 16 9 

  Negative 10 14 7 23 21 7 

  General 34 21 16 19 50 18 

MADRS 9 7 4 2 18 5 

Blocks (200 trials each) 2 4 3 4 4 4 

Response Latency:  

  
Congruent (ms) 469.68 751.21 741.91 820.19 585.00 846.43 

  
Incongruent (ms) 516.18 661.76 646.31 670.27 533.47 826.36 

  
Percent Increase (%) 9.90 -11.91 -12.89 -18.28 -8.81 -2.37 

Percent Correct: 

  
Congruent 23.2 76.5 20.5 56.4 8.3 60.3 

  
Incongruent 21.7 96.8 68.0 76.5 38.4 67.5 

  
All 22.1 91.6 55.8 71.4 30.8 65.6 

* S: Schizophrenia, SA: Schizoaffective Disorder, BSD: Bipolar Spectrum Disorder 
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patient P1 was presented with the same task parameters as the control subjects. The 

difficulty in performing the task is seen from the various measures presented in the 

table. Trials from all the blocks were combined before calculating various task 

outcomes. The table provides the mean congruent response latencies, incongruent 

response latencies, percent increase in response latency, and percentage of correct 

congruent, incongruent, and all trials. 

Figure 5.2 shows the percent correct performance measure in Stroop task for 

healthy control subjects and patients. The plot is constructed using the overall 

percentage correct after combining all blocks of trials performed by each subject. All 

the healthy control subjects are marked using green dots distributed around the centre 

of their x-label to visualize overlapping values. The individual patients are represented 

by their assigned colours.  Even though the task was altered to be easier for patients 

(except P1 in orange), the figure clearly shows that patients had extreme difficulty in 

performing the task. All the control subjects were able to perform the task at greater 

than 90% accuracy while only one patient accuracy was above 90%. 

Figure 5.3 shows the differences between the response latencies to congruent 

and incongruent trials. The goal of the plots is to observe the Stroop effect in both 

Figure 5.2 Total percent correct in Stroop task. Scatter plot showing the total 

percentage of correct trials in control subjects (n=18) and patients (n=6). Non-zero y-axis 

is used to clearly visualize the spread of percentage of correct trials. 
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control subjects (fig 5.3a.) and patients (fig 5.3b.). In both the plots the mean congruent 

and incongruent response latencies for every subject are paired and connected with a 

line. In figure 5.3a., green colour is used for the subjects which showed an increase in 

response latency and red colour is used for those that showed a decrease. We see that 

only 5 out of the 18 subjects show the increase in response latency from congruent to 

incongruent trials. Patient-assigned colours are used for the figure 5.3b. Even in the 

patient group, only one patient (P1) shows an increase in response latency going from 

congruent to incongruent trials.  

The y-axes of the two plots in figure 5.3 show that patients are overall much 

slower than control subjects in performing the Stroop task (also shown in table 5.2 

below). To quantify the Stroop effect by studying the differences in the response 

latencies of congruent and incongruent trials, a paired t-test was performed within the 

control and patient groups. This test was ideal for this purpose as each point in the 

congruent set had a corresponding point in the incongruent set. In figure 5.3, the details 

of paired t-test output for each group are shown on top of each plot. The t-statistic 

Figure 5.3 Comparison of congruent and incongruent response latencies in 

Stroop task. a. Healthy control subjects (n = 18). Individual subjects are connected 

by lines; green: increase, red: decrease, in response latency. b. Patients (n = 6). 

Individual patients connected by lines of colour assigned to them. t-stat: paired t-test 

statistic, p: significance level of difference between paired values not zero. The non-

zero y-axis is used to clearly visualize the spread of latencies. 
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gives a measure of the deviation between the pairs of samples compared to a zero-

mean distribution. The p-value represents the significance level of the difference 

between the pairs being distinct from zero. Based on the p-values seen in the figure we 

can say that the control subjects had a significantly smaller mean response latency to 

the incongruent trials compared to the congruent trials. The effect was not significant 

in the patient group. In the patient group, 5 out of 6 patients showed a decrease in 

latency during incongruent trials. Measuring the statistical differences within the 

schizophrenia patient group (P4, P5, and P6) and the schizoaffective patient group (P1, 

P2, and P3) also did not show any significant differences. 

Table 5.2 Group performance averages in Stroop task. 

Table 5.2 shows the mean performance measures across groups of subjects. The 

measures are provided for the healthy control subjects, schizophrenia patients, 

schizoaffective disorder patients, and all patients grouped together. In all the groups 

we see a decrease in mean response latency from congruent trials to incongruent trials. 

All the groups are also observed to have higher percentage of correct incongruent trials 

when compared to the congruent condition. These effects are in contrast with what is 

traditionally seen in a Stroop task. As discussed in section 5.1, Stroop effect is always 

observed when conflicting stimuli are presented (Bush et al., 1998; Comalli Jr et al., 

1962; Cramer, 1967; Demily et al., 2010; Williams et al., 1996). Also, certain 

dimensions of stimuli are easier (reading the colour word) to process than others 

(correctly responding to the colour of ink) (Comalli Jr et al., 1962; Cramer, 1967; 

Sahinoglu & Dogan, 2016). However, there has been previous research which has 

shown that under certain experimental conditions, congruent trials can have a higher 

average response latency when compared to incongruent trials (Logan & Zbrodoff, 

 Response Latency (ms) Percent Correct (%) 

 Congruent Incongruent Congruent Incongruent All 

Healthy Control 

Subjects (n = 18) 
545.51 527.17 88.5 97.9 95.5 

Schizophrenia 

Patients (n = 3) 
750.54 676.70 41.7 60.8 55.9 

Schizoaffective 

Disorder Patients  

(n = 3) 

654.27 608.09 40.0 62.2 56.5 

All Patients  (n = 6) 702.40 642.39 40.9 61.5 56.2 
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1979). Two factors likely caused this behavioural response in our Stroop task (for both 

healthy control and patient groups): a. higher percentage of incongruent trials 

(approximately 75%), b. Using a “Match”/“No Match” response instead of indicating 

the colour of the ink. These factors and other likely causes for the behavioural 

observations are discussed in detail in sections 5.5.1. 

The distribution of percent change in the response latency from congruent to 

incongruent trials for control and patient groups is shown in figure 5.4. On the left side 

is the distribution of percent change in the control subjects and on the right side is the 

distribution in patients. The plot shows that the percent change in response latencies is 

negative in most subjects, meaning a decreased response latency was seen in 

incongruent trials. The figure also shows a large variability in the patient group. This 

is further investigated by analysing the EEG data collected during the Stroop task. 

The observations from figure 5.4 further show that in this experiment instead of 

observing an increase in the incongruent mean response latency, we saw a decrease. 

Only 5 control subject, and 1 patient showed an increase in incongruent mean response 

Figure 5.4 Percent change in latencies from congruent to incongruent trials in 

Stroop task performed by healthy control (n = 18) and patient (n = 6) groups.  
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latency. Also, the decrease in incongruent response latency was relatively higher than 

the increase observed in few subjects. Patients in the experiments showed this effect 

to a larger extent. The data collected during the experiment was studied carefully to 

find any mistakes that could have occurred in specifying the task conditions during 

analysis. No such mistakes were found.  

5.4.2 EVENT RELATED POTENTIAL ANALYSIS 

The grand averaged ERP responses calculated from control subjects are 

presented in figure 5.5. The individual plots represent ERP responses at Fz, Cz, and 

Pz (fig 5.5a to fig 5.5c). The congruent trial response is plotted in blue, while the 

incongruent  is in red. The black vertical line in each plot marks the trial onset and 

separates the pre-stimulus baseline and post-stimulus response. To represent the period 

of significant difference between the congruent and incongruent response, a black bar 

at the bottom  of plot is used. The significance level was set at p<0.05 after accounting 

for multiple comparisons using permutation cluster-based correction method. 

In each of the ERP waveforms we see the N100, P200, and N200 components 

(marked in fig 5.5a) elicited at the beginning after stimulus onset (N100-P200-N200 

complex). These components are typically observed at frontocentral electrodes in any 

EEG experiment where an auditory or visual stimulus is presented (Luck, 1995; 

Woodman, 2010). The N100 component is observed to peak between 90 and 200ms, 

followed by the larger P200 peak in the 100-250ms period, and the N200 component 

peaking at approximately 200ms (Sur & Sinha, 2009). These are exogenous 

components that are obligatory and are triggered by the presence of a stimulus. They 

are also seen in most individual patient responses and patient group responses shown 

later in figures 5.6 to 5.10. We see that these components are independent of stimulus 

condition at each of the three midline electrodes. They are followed by the endogenous 

components that are task dependent and represent the underlying neural processes 

(Luck, 2012).   

As expected with a Stroop task, a large positive ERP component is elicited after 

the N100-P200-N200 complex in both congruent and incongruent conditions, with 

congruent stimulus resulting in a higher amplitude response. This response is referred 

as either the P300 (Duncan-Johnson & Kopell, 1981; Ilan & Polich, 1999) or N450 

(Coderre et al., 2011; Kim et al., 2012; Markela-Lerenc et al., 2009) component in the 
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studies that were reviewed in section 5.1.3 and 5.1.4. The P300 (marked in fig 5.5a) 

naming convention is used through this chapter as the elicited response is positive on 

all the midline electrodes.  

Figure 5.5 Grand average ERP response to Stroop Task conditions in control 

subject group (n = 18). Vertical and horizontal black lines represent trial onset and 

baseline, respectively. Black bars at the bottom represent periods of significant 

difference. a. Electrode Fz with the N100, P200, N200, and P300 components 

marked. b. Electrode Cz, c. Electrode Pz.  
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To quantify the differences in the task conditions more precisely, the P300 peak 

amplitude and peak latency were calculated as described in section 5.3.4. From the 

observation in figure 5.5, the ERP at Pz is observed to peak earlier than 600ms with 

larger congruent ERP amplitude and no difference between the incongruent and 

congruent condition beyond 800ms. At electrode Fz there is a second time-window of 

significant difference, however this difference was only weakly significant at p=0.025. 

The P300 peak amplitude and peak latency measures are presented in table  5.3. 

The data in table 5.3 shows that most of the peaks lie within the window where 

the difference between the task conditions was significant. Compared to the mean 

response latency of the congruent (545.51ms) and incongruent (527.17ms) trials, the 

peak P300 response occurred earlier. It should be noted that the absolute value of the 

peak amplitude of the difference waveform consistently increases going from frontal 

to parietal midline electrodes (Fz to Pz). This shows that parietal Pz electrode was the 

most informative in distinguishing between the two trial types. The same pattern is 

also observed in the peak latency. 

Table 5.3 Stroop P300 response measures for control subject group (n = 18). 

The ERP responses in patients were first computed individually as any diagnosis 

protocol would need to be applied to one patient at a time. Table 5.4 outlines the details 

of attempted trials and the trials finally averaged during EEG analysis after cleaning 

the data and dropping trials with incorrect response. Comparing the percentage of trials 

used for EEG analysis in this table to the percentage of correct trials in table 5.1, we 

see that small number of trials available for EEG analysis was primarily due to the 

poor performance of patients in the Stroop task. Based on the ERP book by Steven J. 

Luck (Luck, 2014b), the number of trials available to average for the congruent 

condition in patients P1, P3, and P5 is too small. The small number of trials result in a 

 Peak Amplitude (µVolts) Peak Latency (ms) 

 Cong Incong Diff Cong Incong Diff 

Fz 3.91 2.28 -2.41 432 348 472 

Cz 6.64 4.11 -2.68 520 484 520 

Pz 4.76 2.88 -2.95 520 352 540 

Cong: Congruent, Incong: Incongruent, Diff: Difference 
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noisy estimate of the average waveform biasing the amplitudes to either higher or 

lower than an estimate derived from more number of trials. This also affects the 

estimation of peak amplitude and peak latency in individual subjects. Despite these 

issues we have presented the results from each patient in the following figures.     

Table 5.4 Number of Stroop trials in EEG analysis for individual patients. 

The ERP waveforms for each patient are shown in figures 5.6, 5.7, and 5.8 for 

electrodes Fz, Cz, and Pz, respectively. Unpaired permutation statistics followed by 

the cluster-based multiple comparisons correction was used to compute the statistical 

difference between the task conditions for individual patients. This was different from 

computing the statistics for the group of control subjects, where paired average 

responses from each subject were available. The P300 peak amplitudes and latencies 

from individual patients are shown in Table 5.5. 

As outlined before, patient P1 started with the same time parameters as the 

control subjects and had difficulty in doing the experiment. This patient thus had very 

few correct trials and was also the only one with an increase in the latency from 

congruent to incongruent trials. The difficulty in correctly responding to the task is 

also reflected in the ERP response from the patient. Both the stimulus conditions show 

nearly identical responses from all the electrodes. However, we do still see a 

significant N100-P200-N200 complex after stimulus onset at electrodes Fz and Cz (fig 

5.6a, 5.7a), similar to the average ERP responses in control subjects. 

Patient P2 was one of the best performing patients with 91.6% correct trials 

overall. We see significant differences between the congruent and incongruent trials 

across all the electrodes in this patient. However, at the frontal electrode Fz (fig 5.6b) 

  P1 P2 P3 P4 P5 P6 

Total Trials 

Attempted 

Congruent 164 204 156 204 204 204 

Incongruent 456 596 444 596 596 596 

Correct and 

Cleaned 

Trials 

Congruent 29 155 27 113 17 122 

Incongruent 90 562 279 432 229 401 

Percentage 
Congruent 17.7 76.0 17.3 55.4 8.3 59.8 

Incongruent 19.7 94.3 62.8 72.5 38.4 67.3 
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the ERP response is negative in both conditions, with congruent ERP showing larger 

negative amplitude. Figures 5.7b and 5.8b show that at electrodes Cz and Pz the 

congruent response amplitude is larger than that of the incongruent response. The 

mean trial response latency for patient P2 was 661.76ms for incongruent and 751.21ms 

for congruent trials, which is greater than the peak latency at both Cz and Pz electrode 

(shown in table 5.5). We also see an increase in the absolute peak of the difference 

from Cz to Pz. 

In Patient P3, there were not many trials in the congruent condition (27, from 

table 5.4) and that could be one of the reasons we do not see significant differences at 

electrodes Fz and Pz. However, we see a significantly large P300 response during the 

congruent trials at electrode Cz, which points to the internal mechanisms controlling 

the frontal and parietal activation being affected. 

Patient P4, like P2, had a large number of correct and clean trials and shows 

significant differences between task conditions across all three electrodes. At Fz and 

Figure 5.6 Average ERP response to Stroop task conditions at Fz electrode in 

individual patients. The six patient (P1 to P6) responses are plotted on 3x2 grid from 

a to f. Vertical and horizontal black lines in each plot represent trial onset and baseline, 

respectively. Black bars at the bottom represent periods of significant difference. 
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Cz electrodes, we see a larger P300 response in the incongruent condition compared 

to congruent condition. The difference is much larger at Fz compared to Cz. At the Pz 

electrode the ERP response is negative almost throughout the trial period for both 

stimuli. 

Patient P5 had very few trials in the congruent condition and shows significant 

difference for a short duration only at the Cz electrode. However, the significance 

window is after the mean trial response latency of 585.00ms and 533.47ms for both 

congruent and incongruent trials, respectively. 

Patient P6 performed relatively well in the task and more than 50% correct and 

cleaned trials were available for both congruent and incongruent conditions. The 

patient shows a P300 response in both task conditions at electrodes Fz and Cz. 

However, the congruent P300 response was larger than the incongruent P300 response 

only at  electrode Fz, and the significance window was relatively short. It should be 

Figure 5.7 Average ERP response to Stroop task conditions at Cz electrode in 

individual patients. The six patient (P1 to P6) responses are plotted on 3x2 grid from 

a to f. Vertical and horizontal black lines in each plot represent trial onset and baseline, 

respectively. Black bars at the bottom represent periods of significant difference. 



 

174 

 

noted that the significance window was observed about 200ms before the mean trial 

response latency in patient P6.  

The ERP response from individual patients is useful, however, the group 

averaged ERP response were also computed from the two patient groups based on their 

clinical diagnosis, schizophrenia and schizoaffective disorder. A group averaged ERP 

response was also computed using all the 6 patients. The patient group averaged ERP 

responses are shown in figure 5.9 for electrode Fz, figure 5.10 for electrode Cz, and 

figure 5.11 for electrode Pz. 

Figure 5.8 Average ERP response to Stroop task conditions at Pz electrode in 

individual patients. The six patient (P1 to P6) responses are plotted on 3x2 grid from 

a to f. Vertical and horizontal black lines in each plot represent trial onset and baseline, 

respectively. Black bars at the bottom represent periods of significant difference. 
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Table 5.5 Stroop P300 response measures for individual patients and patient 

groups. 

From the figures 5.9, 5.10, and 5.11 we see that none of the conditions or 

electrodes showed  significant differences in the patient groups. We do see that in 

schizophrenia patients, there is a P300 response at both frontal (Fz, fig 5.9a) and 

central (Cz, fig 5.10a) electrodes, but is missing at the parietal electrode (Pz, fig 5.11a). 

Even though the difference is not significant, we do see that at both Fz and Cz, the 

  Peak (µVolts) Peak Latency (ms) 

  Cong Incong Diff Cong Incong Diff 

P1 

Fz 2.79 3.73 -2.15 324 348 508 

Cz 2.33 4.42 -0.85 328 344 504 

Pz 3.70 3.99 -1.65 432 336 436 

P2 

Fz -1.93 -2.70 -1.32 388 384 416 

Cz 1.54 0.78 -1.70 380 316 592 

Pz 6.09 6.12 -2.62 368 344 596 

P3 

Fz 4.32 1.71 -3.48 376 396 464 

Cz 8.64 3.73 -5.38 464 420 468 

Pz 6.94 6.26 -1.68 456 440 380 

P4 

Fz 9.97 9.65 -0.66 424 440 332 

Cz 3.75 4.00 0.20 340 336 472 

Pz -0.81 -0.36 -0.63 312 328 596 

P5 

Fz 4.63 1.66 -3.02 396 408 396 

Cz 6.90 5.99 -1.00 400 404 396 

Pz 5.99 4.61 -1.64 536 496 532 

P6 

Fz 6.39 5.25 -3.01 452 380 560 

Cz 3.48 4.28 -1.09 380 360 584 

Pz 0.79 1.69 -0.07 388 352 584 

Schizophrenia 

patients (n = 3) 

Fz 6.00 5.14 -0.87 436 408 436 

Cz 4.16 4.39 0.11 388 364 532 

Pz 1.32 1.41 -0.44 548 356 580 

Schizoaffective 

disorder 

patients (n = 3) 

Fz 1.33 0.32 -1.82 368 372 504 

Cz 3.50 2.52 -1.98 372 344 500 

Pz 4.71 4.73 -1.14 380 336 468 

All patients  

(n = 3) 

Fz 3.41 2.62 -0.98 392 380 436 

Cz 3.79 3.32 -0.78 388 364 468 

Pz 2.85 2.99 -0.72 384 340 464 

Cong: Congruent, Incong: Incongruent, Diff: Difference 
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average ERP response in incongruent condition is larger than that of the congruent 

condition. The schizoaffective patients show a different pattern. In the frontal region 

(Fz, fig 5.9b) there is an overall suppression of ERP relative to the baseline. The 

average P300 response increases as we go from the frontal to parietal electrodes (fig 

5.9b, 5.10b, 5.11b). We do not see any significant differences in this patient group 

Figure 5.9 Grand average ERP response to Stroop task conditions at electrode Fz 

in patient groups. Vertical and horizontal black lines represent trial onset and 

baseline, respectively. Black bars at the bottom represent periods of significant 

difference. a. Schizophrenia patients (n = 3), b. Schizoaffective disorder patients (n = 

3), c. All patients (n = 6). 



 

177 

 

either. The congruent P300 is larger than incongruent at both Cz and Pz electrodes. 

Interestingly, at both these electrodes, the ERP response to incongruent stimuli is 

however larger than congruent response after approximately 800ms. This is similar to 

the LPC response observed in some papers (Coderre et al., 2011; Markela-Lerenc et 

al., 2009). It should be noted that the difference between the ERP responses to the two 

Figure 5.10 Grand average ERP response to Stroop task conditions at electrode 

Cz in patient groups. Vertical and horizontal black lines represent trial onset and 

baseline, respectively. Black bars at the bottom represent periods of significant 

difference. a. Schizophrenia patients (n = 3), b. Schizoaffective disorder patients (n = 

3), c. All patients (n = 6). 
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task conditions is not significant. The grand averaged ERP from the whole patient 

group is shown in figures 5.9c, 5.10c, and 5.11c. As expected from the patient group 

responses, no significant differences are observed between the task conditions except 

for a small window at electrode Fz (fig 5.9c) towards the end of the trial. The  P300 

peak amplitudes and peak latencies computed from the grand averaged ERP  responses 

Figure 5.11 Grand average ERP response to Stroop task conditions at electrode 

Pz in patient groups. Vertical and horizontal black lines represent trial onset and 

baseline, respectively. Black bars at the bottom represent periods of significant 

difference. a. Schizophrenia patients (n = 3), b. Schizoaffective disorder patients (n = 

3), c. All patients (n = 6). 
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to congruent and incongruent conditions, and the difference waveform for each patient 

group is also recorded in table 5.5. 

5.4.3 TIME-FREQUENCY ANALYSIS 

Figure 5.12 shows the grand average ERSP responses at electrodes Fz, Cz, and 

Pz in control subjects. For each electrode there is a response for the congruent trials, 

incongruent trials, and a difference of the two (incongruent – congruent). The 

difference responses on the right are also overlaid with the output of the permutation 

statistics with cluster-based correction. The region inside the black line boundaries was 

significantly different between congruent and incongruent trials at p<=0.05. 

The plots show that, relative to baseline, there is an initial broadband 

synchronisation for 100-200ms. After this initial period, the frequencies below 8Hz 

(delta/theta band) continue to be synchronised, but the frequencies above 8Hz are 

desynchronised. Both the synchronisation and desynchronisation are relatively 

stronger in the congruent trials compared to the incongruent. Across all the three 

electrodes we see that the desynchronisation in frequency range of 8-24Hz peaks 

(alpha/beta band) around 500ms. These desynchronisation patterns reflect event 

related movement preparation and execution (button press in Stroop task) and have 

been extensively studied in motor neuroscience literature (Kilavik et al., 2013; 

Nakayashiki et al., 2014; Pfurtscheller & Lopes da Silva, 1999; Tan et al., 2013).  From 

the difference plot of each electrode, we see a significant sustained relative 

synchronisation starting at frequencies above 8Hz and continuing to lower frequencies 

in the second half of the trial period. The synchronisation of lower frequencies in 

incongruent trials relative to congruent trials is significantly weaker only in the frontal 

region at electrode Fz and is seen as negative (red) values in the difference plots. 

As each of the plots in figure 5.12 show a clean pattern of synchronisation and 

desynchronisation, the peaks and troughs were calculated for these ERSP responses. 

The latency and frequency of these measures were also determined. This set of 

measures from figure 5.12 are like the analysis of ERP plots (shown in table 5.3) and 

are recorded in table 5.6. For each electrode, the maxima (peak) and minima (trough) 

of the power distribution is recorded. 
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The table shows that the peaks in spectral power occur at lower end of the 

spectrum in both task conditions. Another point to be noted is that the latency of these 

peaks is found to be earlier than that of the mean trial response latencies in control 

Figure 5.12 Grand average ERSP response to Stroop Task conditions in control 

subject group (n = 18). a. Electrode Fz, b. Electrode Cz, c. Electrode Pz. Each row 

has three plots (left to right): congruent ERSP, incongruent ERSP, difference ERSP. 

The black contours in the right column represent areas of significant difference at 

p<0.05. 
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subjects (545.51ms for congruent and 527.17ms for incongruent). However, for the  

incongruent trials and at electrode Pz, the lower frequency is approximately at baseline 

level before 500ms post-stimulus. It should also be noted that the peak power decreases  

from frontal to parietal electrodes in both task conditions. The valley or the trough 

regions (red) of the images show a clearer pattern. The absolute power decrease 

(desynchronisation) from baseline is lower in the frontal regions and gradually 

increases towards the parietal electrode. The minima occur at higher frequency in the 

range of 11-20Hz. From the difference ERSP plot, the initial desynchronisation in 

incongruent trials when compared to congruent trials, has a minimum at lower 

frequency close to 2Hz. On the other hand, the relative sustained synchronisation in 

the incongruent trials (compared to congruent trials) is observed to occur after 600ms 

post-stimulus and peaks at approximately 12Hz. 

Table 5.6 Stroop ERSP measures from control subject group. 

The time-frequency analysis and the ERSP response from individual patients is 

presented in the figures 5.13, 5.14, and 5.15 for electrodes Fz, Cz, and Pz, respectively. 

However, unlike figure 5.12, only the difference plots are shown for each patient. Also, 

like the ERP analysis in single patient subjects, unpaired permutation statistics with 

cluster-based multiple comparisons correction were used to generate the ERSP plots. 

The results of the statistical tests are overlaid on each figure with the black lines 

 
Power (dB) 

Latency  

(ms) 
Frequency (Hz) 

 Cong Incong Diff Cong Incong Diff Cong Incong Diff 

Peak 

Fz 3.63 3.17 1.44 472 232 660 2.00 2.00 12.76 

Cz 3.07 2.91 2.07 472 220 684 2.00 2.00 11.96 

Pz 1.92 2.27 2.49 104 776 644 2.00 16.02 11.96 

Trough 

Fz -2.02 -1.95 -1.02 348 380 464 20.12 14.07 2.00 

Cz -2.90 -2.28 -1.25 448 396 416 19.47 19.47 2.95 

Pz -3.31 -2.28 -0.75 508 404 496 11.58 11.58 2.00 

Cong: Congruent, Incong: Incongruent, Diff: Difference 
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marking the boundaries of the regions that were significantly different in congruent 

and incongruent trials. 

The individual patient figures show a considerable variability. We also see that 

the ERSP plots show significant differences even in the cases where ERP signals did 

not show any significant differences (e.g. patient P1). Largely, patients exhibit a 

pattern of synchronisation across the spectrum throughout the trial period at the three 

electrodes. The synchronisation is more prominent in later period of the trial and is 

widespread in both time and frequency. Most patients show a significant 

synchronisation effect. The desynchronisation of lower frequency is observed only in 

a few plots, like patient P6 at electrode Fz and Cz. In each plot we see several peaks 

and valleys in the time-frequency space. This could be attributed to variability within 

each patient and to the fact that these plots are from a single subject and not a group. 

Figure 5.13 Average ERSP response difference between Stroop task conditions at 

Fz electrode in individual patients. The six patient (P1 to P6) response differences 

are plotted on 2x3 grid from a to f. In each plot, areas of significant difference at p<0.05 

(if present) are presented by black contours. 
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 The grand average group ERSP from schizophrenia and schizoaffective disorder 

patient groups are presented in figure 5.16 for electrode Fz, figure 5.17 for electrode 

Cz, and figure 5.18 for electrode Pz. Each of these figures also show the grand average 

ERSP response from all patients grouped together. From these figures some patterns 

can be observed. Schizophrenia patients (fig 5.16a, 5.17a, 5.18a) show a wider spectral 

desynchronisation of frequencies in the 4-24Hz range, sometimes going as high as 

32Hz. The time-frequency region of synchronisation (blue) in schizophrenia patients 

is small with weak synchronisation compared relative to the per-stimulus baseline. On 

the contrary the desynchronisation of the higher frequencies is relatively stronger in 

schizophrenia group. We see multiple valleys or troughs even in the group ERSP of 

schizophrenia patients. The large variation in the trial response latencies of patients 

could account for the time latency of these troughs. However, we also see multiple 

frequencies in the plots that are desynchronised. This most likely indicates to 

Figure 5.14 Average ERSP response difference between Stroop task conditions at 

Cz electrode in individual patients. The six patient (P1 to P6) response differences 

are plotted on 2x3 grid from a to f. In each plot, areas of significant difference at p<0.05 

(if present) are presented by black contours. 
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difference in neural mechanisms of the individual subjects during the trial periods. It 

should be noted that the significant differences between the congruent and incongruent 

trials were found only in a small region at electrode Fz (fig 5.16b). 

The ERSP response from schizoaffective disorder patients (fig 5.16b, 5.17b, 

5.18b) shows larger absolute changes in the spectral power over the trial period relative 

to the baseline period. This can be clearly seen from the wider colour scales in panel 

b of figures 5.16, 5.17, and 5.18. We see that the activity desynchronisation is strongest 

in 8-16Hz region. Similar to schizophrenia patients, the desynchronisation is 

widespread in both frequency and time dimension. This is likely due to the variation 

within  the schizoaffective disorder patients. The desynchronisation of 8-16Hz band is 

strongest at channel Cz (fig 5.17b) and the differences between congruent and 

incongruent trials are significant at the Fz and Cz electrodes (fig 5.16b and 5.17b, right 

Figure 5.15 Average ERSP response difference between Stroop task conditions at 

Pz electrode in individual patients. The six patient (P1 to P6) response differences 

are plotted on 2x3 grid from a to f. In each plot, areas of significant difference at p<0.05 

(if present) are presented by black contours. 
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Figure 5.16 Grand average ERSP response to Stroop task conditions at electrode 

Fz in patient groups. a. Schizophrenia patients (n = 3), b. Schizoaffective disorder 

patients (n = 3), c. All patients (n = 6). Each row has three plots (left to right): 

congruent ERSP, incongruent ERSP, difference ERSP. In the difference plots on the 

right, areas of significant difference at p<0.05 (if present) are presented by black 

contours. 
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Figure 5.17 Grand average ERSP response to Stroop task conditions at electrode 

Cz in patient groups. a. Schizophrenia patients (n = 3), b. Schizoaffective disorder 

patients (n = 3), c. All patients (n = 6). Each row has three plots (left to right): 

congruent ERSP, incongruent ERSP, difference ERSP. In the difference plots on the 

right, areas of significant difference at p<0.05 (if present) are presented by black 

contours. 
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columns). Like the schizophrenia patients, we again see a lack of synchronisation in 

frequencies less than 8Hz and most of the response is a desynchronisation of higher 

frequency activity. Lastly, the grand averaged ERSP from the whole patient group is 

Figure 5.18 Grand average ERSP response to Stroop task conditions at electrode 

Pz in patient groups. a. Schizophrenia patients (n = 3), b. Schizoaffective disorder 

patients (n = 3), c. All patients (n = 6). Each row has three plots (left to right): 

congruent ERSP, incongruent ERSP, difference ERSP. In the difference plots on the 

right, areas of significant difference at p<0.05 (if present) are presented by black 

contours. 

 



 

188 

 

presented in figures 5.16c, 5.17c, and 5.18c. In these plots too, we see that the lower 

frequency signals do not change much from the pre-stimulus baseline or between task 

conditions at any of the electrodes. The comparatively higher frequency signals in the 

range of 8-16Hz show an overall desynchronisation during each task condition with a 

significantly stronger desynchronisation of this activity in congruent trials. 

5.4.4 ANANLYSIS OF EEG MEASURES 

The grand average ERP signals from control subjects and the patients were 

presented in figures 5.5, 5.9, 5.10, and 5.11. The features extracted from these ERP 

responses, namely the P300 peak amplitude and peak latency, at the three midline 

electrodes were also tabulated. The changes in these values across the midline 

electrodes are plotted for visual inspection in figure 5.19. Here, two more intermediate 

electrodes FCz and CPz, are also included. The figure shows measures from congruent 

trials (5.19a.), incongruent trials (5.19b.), and the difference (incongruent – congruent) 

waveform (5. 19c.). In each of these, the plot on the left shows the P300 peak 

amplitudes and the plot on the right shows the P300 peak latencies. The purpose of 

these plots is to visualize the patterns of EEG measures in the control and patient 

groups. While the change in task parameters between control and patient groups 

prevents us making direct comparisons between them, these plots help with visualizing 

the differences within the patient groups. 

From the plots we observe that in control subjects the congruent peak amplitudes 

are largest at the Cz electrode with a decrease observed both towards frontal and 

parietal directions. The decrease is steeper towards the frontal region. The incongruent 

peak amplitudes have smaller variation over the midline electrodes compared to 

congruent peak amplitudes, however the largest peak amplitude is still seen at 

electrode Cz. The absolute value of difference peak amplitude in control subjects 

increases from frontal (Fz) to parietal (Pz) region. It should be noted that the peaks in 

this plot (fig 5. 19c) were calculated from the waveform obtained by subtracting the 

congruent grand averaged ERP from the incongruent grand averaged ERP. For this 

reason, the values of peak amplitudes are negative, and are different from the value 

incongruent peak amplitude – congruent peak amplitude. 

In both the congruent and incongruent trials, we see a decrease in peak 

amplitudes across the midline electrodes in schizophrenia patients and an increase in 
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peak amplitudes in schizoaffective disorder patients. The difference peak amplitudes 

indicate that, except at electrode Pz, schizoaffective disorder patients show relatively 

consistent peak amplitudes across the midline electrodes. In the schizophrenia patient 

group, the difference peak amplitudes are much smaller than the schizoaffective 

disorder patients. The peak amplitudes on three midline electrodes FCz, Cz, and CPz 

are remarkably close to zero, meaning both the congruent and incongruent P300 

responses were almost identical in the 300-600ms post-stimulus period. 

The P300 peak latencies plotted on the right side of figure 5. 20, except in few 

cases, do not vary a lot across the midline electrodes. The congruent peak latencies in 

control subjects are lower in the frontal region when compared to the parietal 

Figure 5.19 Grand average ERP measures across midline electrodes in control 

and patient groups during Stroop task. a. Congruent ERP, b. Incongruent ERP, c. 

Difference (incongruent – congruent) ERP. Left column: Peak amplitudes, Right 

column: Peak latencies. Solid lines and circle markers represent healthy controls (n = 

18). Dotted lines are used for patients with square markers for schizophrenia (n = 3) 

and diamond markers for schizoaffective disorder (n = 3). Non-zero axis is used to 

better visualize the patterns in the values of peak latencies. 
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electrodes. In the incongruent condition the control subjects show a decrease in peak 

latencies from FCz to Pz electrode, with Fz electrode showing the shortest peak 

latency. The  difference peak latency across the midline electrodes is observed to show 

a small increase from Fz to Pz electrodes, as seen in the congruent condition. In 

schizophrenia patients, the peak latency values for both congruent and incongruent 

response are consistent across the midline electrodes except for the congruent trials at 

Pz electrodes. This can be explained by observing the ERP response at Pz from figure 

5.11, which does not fluctuate much around the baseline, thus leading to a peak latency 

that can occur anywhere during the 300-600ms window. In the difference peak latency 

for schizophrenia patients, we see an increase from electrode FCz to Cz. This can be 

attributed to earlier mentioned fact that in these cases the difference waveform was 

close to baseline. In schizoaffective disorder patients, the peak latency values are stable 

across both the task conditions, difference ERP, and through the midline electrodes. 

5.4.5 CORRELATIONS BETWEEN EEG MEASURES AND BEHAVIOURAL 

MEASURES 

In section 5.4.1 the behavioural performance of each subject in terms of 

percentage of correct trials and mean response latency of trials was computed. 

Similarly the P300 peak amplitude and peak latency for the both the task conditions 

for all the subjects was calculated across the 5 midline electrodes (Fz, FCz, Cz, CPz, 

Pz). The pair-wise combinations of these trial measures and P300 measures were used 

to compute the correlations shown in table 5.7. For example, the first column 

represents the correlations between congruent response latencies and P300 peak 

amplitudes. The correlations are also coloured by their relative values for ease of 

visualization; darker blue colours represent more positive correlations while darker red 

colours represent more negative correlations. Significant correlations have been 

marked with an asterisk (*) symbol. 

In control subjects, we see overall low correlations between various measures, 

none of which were significant. However, we do see expected relationships between 

the various pairs. For example, P300 peak amplitudes in both task conditions are 

negatively correlated with the mean trial response latency, meaning subjects that had 

a larger P300 response were also, on average, quicker at responding to the trial. The 

positive correlation between the P300 peak latency with the average trial response 
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latency can be theorized as subjects taking longer to make a decision and thus needing 

more time to respond to the trial. The correlations with the percentage of correct trials 

are relatively lower in control subjects. Unlike the average trial response latency, there 

is no intuition between how the P300 measures that were calculated from correct trials, 

could be informative of the percentage of correct trials. Also, these correlations are 

even smaller than those seen with the average trial response latency and likely a 

spurious effect. 

Table 5.7 Correlations between behavioural data and ERP response measures 

from Stroop task. 

The correlation values were higher in both the patient groups. One of the reasons 

for this could be the high degree of variability that was seen in these subjects. It should 

be noted that, though the numbers were higher, the expected patterns were observed 

only in few cases. For example, in schizophrenia patients we see an expected negative 

Trial Response Latency Percent Correct 

P300 
Peak 

Amplitude 

Peak 

Latency 

Peak 

Amplitude 

Peak 

Latency 

Cond Cong Incong Cong Incong Cong Incong Cong Incong 

Control subjects (n = 18) 

   Fz -0.15 0.06 0.43 -0.08 0.10 0.05 0.38 0.22 

   FCz -0.12 -0.11 0.23 -0.07 0.00 -0.01 0.01 -0.07 

   Cz -0.32 -0.28 0.17 -0.04 -0.24 -0.01 0.16 0.01 

   CPz -0.38 -0.25 0.05 0.02 -0.24 -0.06 0.16 -0.15 

   Pz -0.19 -0.15 -0.07 -0.31 -0.21 -0.06 0.00 0.20 

Schizophrenia patients (n = 3) 

   Fz 0.69 0.41 0.91 -0.50 0.71 0.94 0.90 0.27 

   FCz -0.30 0.06 0.91 -0.72 -0.28 0.75 0.90 -0.01 

   Cz  -1.00* -0.77 -0.69 -0.61  -1.00* -0.99 -0.71 -0.99 

   CPz -0.98 -0.96 -0.69 -0.59 -0.98 -0.87 -0.71 -0.99 

   Pz -0.95 -0.55 -0.91 -0.77 -0.96 -0.98 -0.92 -1.00 

Schizoaffective disorder patients (n = 3) 

   Fz -0.31 -0.80 0.99 0.94 -0.98 -0.94 0.61 0.81 

   FCz -0.06 -0.76 0.81 0.79 -0.90 -0.92 -0.12 0.58 

   Cz 0.38 -0.72 0.77 0.16 -0.62 -0.89 -0.18 -0.13 

   CPz 0.20 -0.77 0.74 0.26 -0.76 -0.92 -0.22 -0.03 

   Pz 0.96 0.99 -0.28 0.48 0.22 0.90 -0.97 0.20 

Cond: Condition; Cong: Congruent, Incong: Incongruent; *p<0.05 
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correlation between the P300 peak amplitudes and mean trial response latencies at 

almost all electrodes, except Fz. This correlation is also significant at electrode Cz for 

congruent trials. The P300 peak latency and mean trial response latency exhibited an 

expected positive correlation only in the congruent trials at electrodes Fz and FCz. 

There were some strong negative and positive correlations between the P300 measures 

and percent correct in schizophrenia patients which cannot be intuitively explained. 

The correlation numbers in some of cells have an absolute value of 1 due to rounding 

them to two significant digits. Like the schizophrenia patient group, the schizoaffective 

disorder patient group also exhibited some expected correlations between the P300 

measures and trial measures. For example, expected negative correlations were seen 

for incongruent trials between P300 peak amplitude and mean trial response latency 

on all electrodes expect Pz. It was interesting to see that, as we had in figures 5.19, an 

opposite pattern is exhibited in some cases when comparing the two groups of patients. 

For example, the P300 peak latency and mean trial response latencies for both task 

conditions show an expected positive correlation in schizoaffective disorder patients. 

However, except in 2 cases, these correlations are negative in schizophrenia patients. 

Table 5.8 Correlations between percentage change in trial latency and difference 

ERP measures from Stroop task. 

In section 5.4.1 the relative interference in the incongruent trials was calculated 

using the percentage change in response latency (PCL) from congruent trials. We have 

seen from section 5.4.1 that in most of the subjects there was a percent decrease in 

mean trial response latency from congruent to incongruent trial. From tables 5.3 and 

5.5 we have seen that the difference (incongruent – congruent) ERP peak amplitudes, 

 Control Schizophrenia Schizoaffective 

 
DPA 

w/ 

PCL 

DPL 

w/ 

PCL 

DPA 

w/ 

PCL 

DPL 

w/ 

PCL 

DPA 

w/ 

PCL 

DPL 

w/ 

PCL 

      Fz 0.32 0.45 -0.91 0.94 0.17 0.83 

      FCz 0.06 0.41 -0.86 0.93 0.55 -0.06 

      Cz 0.08 0.15 -0.94 0.50 0.67 -0.20 

      CPz 0.03 0.05 -0.79 0.51 0.72 -0.74 

      Pz 0.03 0.09 0.25 -0.28 0.49 -0.23 

DPA: Difference Peak Amplitude; DPL: Difference Peak Latency 

PCL: Percent Change in Response Latency 
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in the 300-600ms post-stimulus period, are also negative in most subjects. This is 

because the congruent ERP amplitude is higher than the incongruent ERP amplitude. 

Correlation analysis was used to determine the relationship between PCL and the 

difference peak amplitude (DPA) and latency (DPL) measures. A negative correlation 

between DPA and PCL is expected as this would signify that larger differences in ERP 

resulted in subjects making faster decisions and responding to both trial at a similar 

relative mean trial response latency. Positive correlation between PCL and DPL are 

expected as this would signify that the time it took to differentiate between the type of 

trial translated into longer differences in trial response latencies between the task 

conditions. The correlations between PCL and difference ERP measures are shown in 

table 5.8. The cells are also coloured for ease of visualization, like in table 5.7. As seen 

in table 5.7, the correlations in control subjects are lower and non-significant and all 

the values were seen to be positive.  

The absolute values of correlations in patient groups are again observed to be 

high. In schizophrenia patients DPA values from all midline electrodes except Pz are 

negatively correlated with PCL. The DPL were positively correlated with PCL at all 

electrodes except Pz. In schizoaffective disorder patients, positive correlations 

between DPA and PCL are observed. The correlations with peak latency are also 

mostly negative except on the frontal Fz electrode. These differences in the patients 

show that schizophrenia patient group mostly showed expected correlation, but the 

schizoaffective patient group did not. It should be noted however, none of the 

correlation in table 5.8 were significant. 

5.4.6 CORRELATION WITH DEMOGRAPHIC DATA 

In figure 5.20 we computed the correlations between the difference ERP 

measures and the various scores assigned to each patient using the PANSS (Kay et al., 

1987) and MADRS (Montgomery & Asberg, 1979) questionnaires along with their 

age. The significant correlation values are marked with an asterisk (*). The difference 

ERP measures were used with the rationale that patients with more severe symptoms 

would not be able to differentiate between the two types of trials and likely have similar 

ERP response. Thus, the absolute values of difference ERP peak amplitudes are 

expected to show negative correlations with age, and with the scores on various scales. 

The schizophrenia patients show the expected results with age and with PANSSN scale 
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on all electrodes except Pz. All the other correlations are positive. In schizoaffective 

disorder patients, we see negative correlations in most cases except with the age 

variable. With the difference ERP peak latency, a positive correlation is expected with 

the hypothesis that patients who took longer to differentiate between congruent and 

incongruent trials are also likely to score higher on the symptom severity scales. In 

schizophrenia patients however all the correlation values are negative. In 

schizoaffective disorder patients, positive correlations are seen with the PANSSN and 

Figure 5.20 Correlations between difference ERP measures from Stroop task 

and symptom severity scores in patients. Left column: correlations with difference 

ERP peak amplitudes, Right column: correlations with difference ERP peak latency. 

Top raw: schizophrenia patients (n = 3), bottom row: schizoaffective disorder 

patients (n = 3). Asterisk (*) represent p<0.05. The vertical and horizontal axis labels 

are shared by the plots in the rows and columns, respectively. 
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MADRS scores at four out of five electrodes. Electrode Fz shows smaller positive 

correlation for all measures except PANNSN values. All other correlation were 

negative. 

The correlations between age and difference ERP measures in control subjects 

were also computed. It was found that all electrodes showed negative correlations 

between difference ERP absolute peak amplitude and age. These values decreased 

moving from the frontal to the parietal electrodes (Fz: -0.46; Pz: -0.09), with none of 

the values being significant. The correlations between difference ERP peak latency 

and age of control subjects were positive at electrodes FCz, and Cz and negative on 

Figure 5.21 Correlations between behavioural performance measures from 

Stroop task and symptom severity scores in patients. Top row: schizophrenia 

patients (n = 3), Bottom row: schizoaffective disorder patients (n = 3). RL: mean trial 

response latency, PC: percent correct. Asterisk (*) represent p<0.05. The horizontal 

axis labels are shared by both plots. 
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the other three electrodes. The correlations were significant at electrode FCz (r = 0.49, 

p = 0.04). 

Correlations between the behavioural measures and the scores assigned to 

patients using the PANNNS and MADRS scales were also computed. These 

correlations are shown in figure 5.21. As before, a negative correlation between the 

severity score and the percentage of correct trials is expected, meaning patients with 

more severe symptoms performed poorly. This also means that positive correlations 

between the severity score and mean trial response latency are expected. In 

schizophrenia patients all the correlations are found to be negative with a few 

correlations meeting the significance criteria of p<0.05. In schizoaffective disorder 

patients age is negatively correlated with both the percent correct measures and 

positively correlated with both the mean trial response latency measures. PANSSN 

scores in this group are all shown to have positive correlations, while almost all other 

correlation measures are negative. The correlations between behavioural performance 

measures and age in control subjects were also computed. A significant positive 

correlation was found between age and percent correct of congruent trials (r = 0.48, p 

= 0.05). 

5.5 Discussion 

The Stroop experiment described in this chapter showed a contradictory result 

to the expected increase in latency with the presence of conflicting stimuli in 

incongruent condition (Stroop effect). The behavioural analysis showed that, on 

average, subjects had a higher response latency to the congruent condition (table 5.2). 

In this section this finding is further explored using previous research. The goal is to 

determine why such an effect was observed and what changes can be made to the 

experimental paradigm to elicit the Stroop effect.  

5.5.1 TASK DESIGN LIMITATIONS 

A computerized Stroop task was used in the experiments presented in this 

chapter. To summarize, subjects were presented with two types of trials, namely: a. 

congruent trials: colour-word matches the ink its written in (e.g. “RED” written in red 

ink), b. incongruent trials: colour-word is conflicting with the ink its written in (e.g. 

“RED” written in blue ink). Traditionally, the subjects are asked to respond to the 
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colour of the ink by choosing one of the four options (red, blue, green, yellow), and 

ignore the meaning of the colour-word. As reading words is a more automatic process 

for humans and interpreting colour of the ink requires employment of selective 

attention (Comalli Jr et al., 1962), it takes longer for subjects to respond to incongruent 

trials where a conflicting information is present.  

The task presented in this chapter used an approximate congruent to incongruent 

ratio of 25:75. Also, subjects were instructed to pay attention to the colour of the ink 

and ignore the colour word. However, instead of using a standard type of response, 

they were asked to respond with either a “MATCH” response for congruent trials, or 

a “NO MATCH” response to incongruent trials. This was done to make the task easier 

for patients. We have seen from section 5.4.1 that the task parameters used in the 

experiment led to an increased mean response latency in congruent trials when 

compared to incongruent trials, an opposite effect than what is traditionally expected. 

Two likely causes for this observation are investigated in this section. 

Firstly, practice effect in task was investigated. In previous literature, the 

interference in Stroop task is seen to reduce as subjects complete more trials (Bush et 

al., 1998). As a result, the response time to the incongruent trials is reduced. A moving 

average of the trial response latency was computed to investigate if the practice effect 

dominated the average results presented in section 5.4.1. If this were the case, we 

would see that subjects initially had larger latencies to incongruent trials but eventually 

were able to respond to them faster than the congruent trials. The practice effect in 

Figure 5.22 Moving average of trial latencies in healthy control subjects 

performing the Stroop task. 
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such a scenario can be strong enough that mean latencies calculated for all trials could 

show a smaller value for incongruent condition compared to the congruent condition. 

The moving average of response latency computed for all control subjects is 

shown in figure 5.22. The x-axis shows the percentage of completed trials and the y-

axis shows a 30-trial moving average of the response latencies. We see from this figure 

that subjects had shorter response latencies to incongruent trials from the beginning of 

the experiment. A practice effect is observed in both task conditions with decreasing 

latencies as more trials are completed. A similar effect was seen in patients. Even in 

the 24-trial practice phase before the experiment began, the average response latency 

in the incongruent trials was smaller than congruent trials. These observations show 

that the observed results were not a consequence of a practice effect. 

Secondly, it is likely that the observed behavioural response to the task was a 

result of a combination of the smaller percentage of congruent trials, and the use of 

“MATCH”/“NO MATCH” response in the experiment. A previous study by Logan 

and Zbrodoff demonstrated how a higher percentage of incongruent condition can lead 

to lower average response latency in incongruent trials when compared to congruent 

trials (Logan & Zbrodoff, 1979). They used a Stroop-like task with words “ABOVE” 

and “BELOW” presented either above or below the fixation point. In the congruent 

condition the words matched with the location, and in the incongruent condition they 

did not. The percentage of incongruent trials within a block of trials was varied 

between 10% and 90%, with the rest of the trials being congruent. They observed that 

reporting the position of the word was the faster/automatic process and did not show 

significant interference. However, reading the word required selective attention and 

showed interference effect only when the incongruent conditions were infrequent. In 

other words, response latencies were smaller for incongruent trials when they were 

more frequent. They observed that the cross-over in average trial response latency 

happened at approximately 40:60 congruent to incongruent trial ratio. That is, when 

the incongruent trials were more than 60% of the total trials in the task, the average 

response latency was higher in congruent trials. This is similar to what was observed 

in the experiment presented in this chapter with approximately 75% of the trials being 

incongruent. 
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Logan and Zbrodoff drew a few conclusions from their observations regarding 

the strategies used by subjects to perform the task. They interpret the observations as 

a result of a weighted combination of automatic processing and selective attention. 

The automatic processing of the stimulus is involuntary and not under the control of 

the subjects. The selective attention towards one of the two dimensions of the stimulus 

is a voluntary process that the subject can weigh differently based on the cues observed 

while performing the task. To minimize response latency, the weight assigned to the 

unreported dimension can be increased if it helps in making the decision. For example, 

when incongruent trials are more frequent, a word appearing below the fixation point 

is more likely to be “ABOVE” and vice-versa. So, the subject can increase the weight 

assigned to position of the word and select “ABOVE” more frequently when it appears 

below the fixation point.  

The interpretations drawn by Logan and Zbrodof are complicated to adapt to a 

task where more combinations of stimuli are present. However, it is possible that in 

the computerized Stroop task presented in this chapter, subjects were able to choose 

“NO MATCH” faster by reading the word first and then making a decision if it 

matched the ink, it was written in. Also, because the incongruent trials were more 

frequent, the subjects were probably ready to respond “NO MATCH” by default. If a 

congruent trial was presented, they had to switch their default response and respond 

using the “MATCH” button. As mentioned before, this type of response was chosen 

to make the task easier for patients. However, if the subjects were required to respond 

to the colour of the ink by choosing one of the four options, they would be forced to 

pay attention to the colour and reading the words would not help much in making the 

decision. In that case, they would not have been able to use the strategy of reading the 

word first to facilitate their response latency. 

Other papers have used Stroop tasks with varying percentages of incongruent 

trials and have always seen interference with conflicting stimuli trials, irrespective of 

their frequency (Lansbergen & Kenemans, 2008; Tillman & Wiens, 2011). All the 

papers reviewed in introduction of this chapter also reported increased latency in the 

incongruent trials. The  Logan and Zbrodof study showed how increased frequency of 

incongruent trials in this experiment could have led to their smaller response latencies. 
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It is likely that the use of “MATCH”/“NO MATCH” response type further facilitated 

the subjects in responding faster to incongruent trials.  

Two changes to the task can likely help in observing the expected Stroop effect. 

Firstly, the relative number of congruent trials should be kept equal or higher than 

incongruent trials. Secondly, subjects should be asked to respond to the colour of the 

ink by choosing one of the four colour options as opposed to responding if the trial is 

congruent (“MATCH”) or incongruent (“NO MATCH”). Though this would make the 

task harder for patients, it is more likely to produce the desired Stroop effect.  

5.5.2 EEG RESPONSE   

The grand averaged ERP analysis showed statistical differences between the 

congruent and incongruent trials on the midline electrodes for the control group (fig 

5.5). Conducting the same analysis on each individual patient did not show statistical 

differences in most cases (fig 5.6, 5.7, and 5.8). This analysis demonstrated that neural 

time course in the patient group for both the congruent and incongruent trials was 

indistinguishable in most cases, thus likely leading to poorer task performance (even 

with task parameters modified to make the task easier). The lack of statistical 

difference between task conditions was also shown in the grand averaged ERPs of the 

two patient groups (figs 5.9, 5.10, 5.11). Visualizing the changes in EEG measures 

P300 peak amplitude and peak latency showed that though both the patient groups had 

difficulty in performing the tasks, the change in performance likely resulted from 

different neural mechanisms. The plot in figure 5.19 showed that the schizophrenia 

patients showed diminished activity on the parietal electrodes while the 

schizoaffective disorder patients showed a diminished activity on the frontal 

electrodes. This could be an indicator of schizophrenia patients having difficulty in 

motor response preparation, while schizoaffective disorder patients being unable to 

reliably process the interfering stimuli.          

The ERSP response to the Stroop task conditions in healthy controls was shown 

in figure 5.12. In this figure we saw an early synchronisation of the delta/theta activity 

(frequencies below ~8Hz) followed by the desynchronisation of alpha/beta frequencies 

(8-24 Hz). These frequency changes were seen during both congruent and incongruent 

trials, with stronger synchronisation and desynchronisation in the former. It was also 

observed that the delta/theta synchronisation was stronger on the frontal electrode 
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while the alpha/beta desynchronisation was stronger on the vertex and parietal midline 

electrodes (Cz and Pz). These EEG oscillatory dynamics have been previously 

investigated in the context of Stroop task (Popov et al., 2018). The delta/theta 

synchronisation is associated with the frontal processing of the different types of 

stimuli, while the alpha/beta desynchronisation is associated with the motor response 

preparation and execution (Kilavik et al., 2013; Nakayashiki et al., 2014; Pfurtscheller 

& Lopes da Silva, 1999; Tan et al., 2013).  

In the ERSP responses from patients, differences were found between the 

schizophrenia patients and schizoaffective disorder patients. In schizophrenia patients 

the delta/theta frequencies showed a weak synchronisation while the alpha/beta 

frequencies showed a strong desynchronisation. In schizoaffective disorder patients 

the delta/theta band synchronisation was negligible, and the alpha/beta 

desynchronisation was stronger than the schizophrenia patient group. As the 

delta/theta band activity represents frontal processing, the absence of activity in this 

band in schizoaffective disorder patients further confirmed the observations from 

figure 5.19.  The previously mentioned Popov et. al. study (Popov et al., 2018) did not 

provide the specific diagnosis of their patient group. However, in their patient group, 

they reported a weaker theta synchronisation and a weaker desynchronisation of the 

alpha/beta band. Though we saw a similar effect with the theta band from patients in 

this study, we did not see the weaker desynchronisation of alpha/beta activity. Another 

behavioural study by Hepp et. al. had seen difference in interference caused due to 

incongruent trials between recurrent schizophrenia patients and schizoaffective 

psychosis patients (Hepp et al., 1996). As the results in this chapter also point towards 

differences between the two patient groups, a further investigation of various 

pathologies within the schizophrenia spectrum of diseases is warranted. 

5.6 Conclusion 

The Stroop experiment in this study had two major limitations. Firstly the task 

design did not elicit the traditionally observed Stroop effect, but an opposite effect 

where response to congruent stimulus was longer in latency than the response to 

incongruent stimulus. In section 5.5.1 we discussed the causes of this phenomenon and 

described how the task design could be modified to elicit a traditional response. 
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Secondly, due to the difficulty faced by the first patient to perform the task, the task 

parameters were altered to make the task easier for that group. Due to the differences 

in task parameters between the control and patient groups we could not make direct 

comparisons between them. Despite these drawbacks we analysed the behaviour and 

EEG response to the task and made statistical comparisons between responses to 

congruent and incongruent conditions within each subject group. Also, comparisons 

of patients diagnosed with schizophrenia and schizoaffective disorder showed 

differences between in both ERP and ERSP responses. For this reason we believe that 

the measures from a Stroop task with appropriate task parameters have the potential in 

probing cognitive deficits in schizophrenia spectrum of disorder patients and should 

be included in a protocol that targets different aspects of the disease pathology.  

  



 

 

CHAPTER 6. STANDARDIZED COGNITIVE TESTING 

WITH CANTAB
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6.1 Introduction 

Cambridge Neuropsychological Test Automated Battery (CANTAB) was 

developed in the 1980s (Barnett et al., 2010, 2015; Levaux et al., 2007). It was created 

with the rationale of incorporating technological innovations (in the 1980s) in 

computerized control and touch sensitive displays, into experimental 

neuropsychology. Use of these technologies had found success in animal studies and 

provided a platform to translate them into human testing (Barnett et al., 2015). In the 

last 30 years, CANTAB has gained tremendous popularity and has been used in 

hundreds of studies worldwide. The CANTAB bibliography currently lists over 2200 

articles with studies in several different types of disorders like psychotic, personality, 

cardiovascular, cancer, genetic, neurological, etc (CANTAB Bibliography, 2021).  

CANTAB is comprised of several different tests for memory, attention, and 

executive function. The initial development of these tests was driven by animal studies 

(non-human primates) of cognitive dysfunction introduced through chemical or 

anatomical lesions to the brain (Barnett et al., 2015; Levaux et al., 2007; Strauss et al., 

2006). Researchers were interested in carrying out similar tests in humans with 

different types of disabilities, while keeping it readily accessible and easy to use. 

However, as advances were made is neurophysiological testing methods, newer tests 

were also incorporated (Levaux et al., 2007). Currently, CANTAB provides with 

several different test batteries which combine a unique set of cognitive tests specific 

for a disorder. It also provides the flexibility of creating test batteries that can be used 

to assess several subjects, which is a common practice in research community. The 

non-verbal nature of most of the tests also introduces an ease of use by overcoming 

the barriers of language and culture (Barnett et al., 2010; Green et al., 2019).  

In the recent years, CANTAB has moved out of research environment and has 

been made available in clinical setting. Adapting to the technological advances and 

ease of access to tablets, CANTAB has been developed into a mobile tablet version 

that can easily be used by primary care providers with basic knowledge of 

psychological testing. The tests have been standardized across large population of 

patients and healthy individuals (Strauss et al., 2006). The interface also provides 

scores for different test outcome relative to the normative data collected from healthy 

population. This feature is extremely helpful for the clinicians. The relation to 
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normative data provides an instant insight into subject’s current psychological state 

without the need of, or bias due to, their medical history. 

Along with all the benefits, CANTAB also comes with some weaknesses. Most 

of the tasks can only be used to test visuo-spatial aspects of cognition. This hinders the 

test of verbal functioning of subjects which is an important aspect of patients with 

schizophrenia and similar pathologies. Verbal interactions are a big part of anyone’s 

daily life, and patients with schizophrenia like disorders suffer from a decreased 

quality of social life. However, the battery has recently added two tests for verbal 

memory: Graded Naming Test (GNT) and Verbal Recognition Memory (VRM). There 

is also a lack of comparison available with standard neurological tests, and some 

studies have shown a marginal correlation between CANTAB tests and traditional 

neurophysiological measures. The test-retest reliability of CANTAB has also been 

under question and needs further testing (Levaux et al., 2007; Smith et al., 2013). 

Despite the drawbacks mentioned above, CANTAB remains a strong cognitive 

testing platform. The aim of the research presented in this thesis was to create hybrid 

protocol that uses different modalities of testing. Schizophrenia is a complex disorder 

and manifests in several different ways in individuals. With the use of a set of easily 

accessible tests (administered through CANTAB), in conjunction with other 

experiments collecting neurophysiological response to specifically selected tasks, the 

severity of subject’s disorder can be quantified by measuring statistical difference 

between patient’s outcome and the healthy control subjects. This chapter describes the 

CANTAB tests that were used in the protocol to compare healthy control subjects and 

schizophrenia spectrum disorder patients. As expected with schizophrenia patients, a 

general decrease in performance was observed across all patients (Rupchev et al., 

2017).  

6.2 Task Descriptions 

All the subjects performed five standardized cognitive tests. This section 

provides the detailed description of each task and the rationale behind using them in 

this experiment. A brief overview of these tests is provided in table 6.1, with the details 

of each test described below.  
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Table 6.1 Brief overview of CANTAB Tasks. 

6.2.1 MOTOR SCREENING TEST (MOT) 

The Motor Screening Test was the first CANTAB test performed by each 

subject. This test was useful in getting the participants familiarized with the 

computerized testing interface. It also provided a baseline measure of sensorimotor 

deficits and comprehension ability of the subject that could limit the outcomes of other 

tests.  

The task consisted of coloured crosses appearing at random locations on the 

screen; as shown in figure 6.1. The participants were instructed to touch the centre of 

the cross with the forefinger of their dominant hand. Thirteen trials were presented to 

each subject with the last ten being assessed. The outcome of the task measured the 

speed of response and accuracy of touching the cross. The task took 2 minutes. 

  

Test Purpose Task description 
Time 

(min) 

Motor 

Screening 

(MOT) 

Visuo-motor 

coordination and 

comprehension 

difficulties 

Touch the centres of crosses 

appearing at random locations 

on the screen 

2 

Reaction 

Time (RTI) 

Speed of response and 

movement 

Simple and 5-choice variant; 

touch the circle where yellow 

dot appeared  

5 

Paired 

Associate 

Learning 

(PAL) 

Episodic visuo-spatial 

memory, learning and 

association abilities 

Associate visual patterns with 

locations on the screen  
8 

Spatial 

Working 

Memory 

(SWM) 

Recognition memory for 

spatial locations 

Self-ordered search task for 

tokens without returning to 

token locations  

4 

Verbal 

Recognition 

Memory 

(VRM) 

Immediate free recall, 

and recognition memory 

for verbal information 

Verbal list learning; free recall 

of presented list and recognition 

of presented words among 

distractors 

10 
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6.2.2 REACTION TIME (RTI) 

The Reaction Time task (RTI) was first introduced by Sahakian et. al. in 1993 

(Sahakian et al., 1993). This task was designed to the asses the speed of response to a 

visual stimulus which can either be predictable or unpredictable. In the latter case, the 

task also provides a measure of processing speed and attention of the participant 

(Barnett et al., 2010).  

In this task, the subjects had to press and hold a button at the bottom of the screen 

to begin each trial. White circles were presented on the top of the screen and a yellow 

dot appeared in centre of one of the circles after a random pre-stimulus duration. The 

subjects were then told to touch the circle where the dot appeared as quickly as 

possible. Subjects were instructed to use the same hand to press the bottom button and 

to touch the screen. In the predictable or the simple RTI variant of the task, only one 

Figure 6.1 The Motor Screening task (MOT). 

Figure 6.2 Five-choice stage of the Reaction Time task. 



 

208 

 

white circle was displayed. In the unpredictable or 5-choice variant of the task (fig 6.2) 

five circles were displayed, and the subject had to touch the circle where the dot 

appeared to get the trial correct.  

Each subject started with 10 non-assessed trials of simple RTI to familiarize and 

give feedback. If 9 or more out of these 10 trials were incorrect, this stage was repeated. 

Following this, the subject performed 30 assessed trials of simple RTI. The subject 

then performed 10 non-assessed trials, this time of 5-choice RTI, with the same 

criterion of stage being repeated if 9 or more out of 10 trials were incorrect. A set of 

30 assessed 5-choice RTI trials was then performed. No feedback was provided during 

the assessed trials. The whole task took about 5 minutes to complete. The outcomes 

produced quantified the subject’s accuracy, reaction time, and movement time in both 

the simple and 5-choice variants of the task. 

6.2.3 PAIRED ASSOCIATES LEARNING (PAL) 

The Paired Associates Learning (PAL) task for CANTAB was first designed and 

presented by Sahakian et. al. in 1988 (Sahakian et al., 1988). This task tests the 

participant’s short term visuo-spatial memory, visual association, and learning abilities 

(Barnett et al., 2010). 

The task consisted of a few filled white boxes (squares) displayed around the 

centre of the screen. Each box was “opened” (unfilled) for approximately 3 seconds in 

a random order and was either empty or consisted of a visual pattern (fig 6.3). The 

patterns were designed in a way that they could not be verbalized with the location on 

Figure 6.3 Paired Associates Learning (PAL) task showing a pattern in an open 

box. 
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the screen. After all the boxes were opened, each of the patterns present in the squares 

were presented randomly (with respect to the order presented in the boxes) in the centre 

of the screen. The subject was asked to choose the box that the pattern was previously 

observed in. If the subject was unable to make the correct selections for all the patterns, 

the boxes were opened again in random order and the whole trial was repeated with all 

the patterns presented randomly at the centre. The trial ended when all the patterns 

were correctly paired with their respective boxes or if the maximum number of 

attempts was reached without the subject correctly pairing the patterns and square 

locations. After the first sequence of “opening” the boxes to show the patterns in them, 

the boxes were opened only for approximately 2 seconds each.  

To familiarize with the task, each subject started with a practice trial with 6 boxes 

and 2 patterns. The difficulty of the task was varied by the number of boxes and 

patterns presented. After the practice trial the subjects started with 6 boxes and 2 

patterns and went on to 3, 4, 5, 6, and 8 patterns. Eight boxes were used in the 8-pattern 

stage. The patterns were not repeated between stages. At each stage, the subject had a 

maximum of 6 attempts to choose all the pattern-square pairs correctly. The whole task 

took about 8 minutes. The outcome from this task quantified the total errors and errors 

made in the 6-pattern stage. 

6.2.4 SPATIAL WORKING MEMORY (SWM) 

The Spatial Working Memory Task (SWM) was first presented by Owen et. al. 

in 1990 (A. M. Owen et al., 1990). This task was designed to test the ability of the 

subject to retain spatial information and manipulate remembered items in the working 

memory. 

Figure 6.4 Spatial Working Memory task (SWM) screen, 8 boxes. 
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The objective of this task was to “search” through a number of coloured boxes 

to find a “blue token”. The goal of the task was to find all the tokens and use them to 

fill up the column on the left (fig 6.4). The test began with a few boxes randomly 

displayed on the screen. The number of boxes was equal to the total number of tokens 

needed to fill the column. At any given time, only one of the boxes contained the token. 

The subjects were instructed to touch each box in any sequence to “open” and find the 

token. Once a token was found, the participant was asked to move it to the column. At 

this point the next token would be hidden and must be found to proceed. The key 

instruction given to the participants was that same box would never be used to hide the 

token more than once. Once all the tokens were found and the column was filled, the 

task ended. 

In this task, the difficulty of the task was varied by using 4, 6, and 8 number of 

boxes/tokens (fig 6.4). For each difficulty level, 2 trials were conducted. The subjects 

were familiarised with the task using a 3-box problem for 3 trials. The whole task took 

about 4-5 minutes. Two scores were computed to assess the performance of the 

participants in the task. The first score was the between search error which was the 

number of times the subject looked for the token in the same box. The other score was 

the measure of strategy. The efficient strategy to perform this task was to use the same 

search sequence to find all the tokens. This efficiency can be approximated by counting 

the number of times the subject started a search sequence with a new box. A higher 

strategy score, that is, many searches beginning with a different box, implies a poorer 

use of strategy and vice-versa. (A. M. Owen et al., 1990; Robbins et al., 1998). This 

score was computed only for the 6 and 8 shape stage. 

6.2.5 VERBAL RECOGNITION MEMORY (VRM) 

The verbal Recognition Memory task (VRM) was designed to assess the 

subject’s memory of verbal information. The assessment was performed under two 

conditions: free recall and recognition in a two-alternative forced choice paradigm.  

The task began with participants being shown a list of 12 words on the screen. 

The words appeared one at a time for 3 seconds, with an interval of 2 second in 

between. The subjects were instructed to say the word out loudly and remember it, 

without any need to remember the sequence of presentation. Once the subject had seen 

all the words, the screen was turned towards the experimenter and the subjects were 
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asked to recall as many words as possible while the experimenter recorded them. 

Following this free recall phase, the subjects were randomly shown the words again, 

one at a time, along with an equal number of distractor words. The subject was asked 

to make a forced choice if they had seen the word on the screen before or not. The 

whole task took about 10 mins. The performance of the participant was assessed based 

on number of words recalled and the number of correct choices made in the recognition 

phase. 

6.3 Results and Comparisons 

The main goal of using CANTAB in this study was to quantify the various 

cognitive deficits present in patients in the schizophrenia spectrum. As described 

above, five different cognitive tests were administered to 17 control subjects and 6 

recruited patients. The CANTAB interface computed some basic statistics for each test 

and produced a comprehensive report with set of outcomes for every subject. Table 

6.2 shows the average outcomes for healthy control subject and patient groups. Table 

6.3 lists different task outcomes for all the 6 patients, individually. It also presents the 

demographic information of the patients, like their age, gender, PANSS (Kay et al., 

1987), and MADRS (Montgomery & Asberg, 1979) scores on the day of CANTAB 

experiments. The coloured dots at the top of the table show the colours assigned to 

each patient. These colours have been used throughout this section to show differences 

within the patient group. In the following subsections, all the outcomes in the table are 

summarised and a comparison with the control group is presented. 
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a. b. 

Figure 6.5 Verbal Recognition Memory task (VRM). a. Presentation Phase, b. 

Recognition Phase. 
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Table 6.2 Average group performances in CANTAB tasks. 

Groups Healthy Controls All Patients 

Motor Screening task: 
 

Median latency (ms): mean (std) 570.41 (93.04) 989.17 (353.32) 
 

Mean error: mean (std) 9.23 (1.65) 11.06 (3.27) 

Reaction Time Task 

Simple:  
Accuracy: median (std) 30 (2.12) 28 (3.06) 

 
Reaction time (ms): mean (std) 289.50 (26.09) 423.43 (143.83) 

 
Movement time (ms): mean (std) 168.43 (38.06) 342.96 (113.63) 

Five-Choice: 
 

Accuracy: median (std) 30 (1.15) 29 (2.65) 
 

Reaction time (ms): mean (std) 305.69 (23.39) 392.37 (83.50) 
 

Movement time (ms): mean (std)  184.94 (41.05) 339.98 (110.25) 

Paired Associates Learning: 
 

Total adjusted errors: median (std) 6 (7.63) 71.50 (44.83) 
 

Total adjusted errors: median (std) 

(6 shapes) 

1 (2.41) 22.50 (10.39) 

 Last Stage Reached:  median (std) 

(number of shapes)  

8 (0) 6.50 (2.04) 

Spatial Working Memory: 
 

Between errors: median (std) 8 (8.75) 28 (14.40) 
 

Strategy: median (std) 16 (4.20) 20 (4.79) 

Verbal Recognition Memory: 
 

Immediate free recall correct: 

median (std) 

10 (1.80) 4 (2.40) 

 Immediate free recall  

novel: median (std) 

0 (0.56) 0 (0.84) 

 
Immediate recognition correct: 

median (std) 

24 (0.62) 20.50 (1.79) 

 Immediate recognition false 

positives: median (std) 

0 (0.56) 1 (1.64) 
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Table 6.3 Performance of patients in CANTAB tasks. 

Patient P1 P2 P3 P4 P5 P6 

Colour       

Gender M M M M M M 

Age 35 26 57 64 59 47 

PANSS       

 Positive 28 8 7 7 18 26 

 Negative 27 9 10 12 20 23 

 General 38 19 17 17 49 59 

MADRS 3 4 2 0 22 26 

Motor Screening task: 
 

Median latency (ms) 1,139.00 611.50 1,561.00 1,089.50 875.00 659.00 
 

Mean error 6.92 10.82 8.09 15.1 11.04 14.39 

Reaction Time Task 

Simple:  
Accuracy 29 30 27 24 23 30 

 
Reaction time: (ms) 

mean (std) 

339.93 

(94.27) 

299.50 

(32.54) 

672.33 

(311.64) 

519.50 

(181.48) 

339.30 

(61.77) 

370.03 

(85.30) 
 

Movement time: (ms) 

mean (std) 

275.76 

(39.25) 

203.53 

(16.22) 

517.48 

(65.95) 

372.58 

(75.82) 

412.26 

(51.45) 

276.17 

(58.51) 

Five-Choice: 
 

Accuracy 29 30 23 30 29 29 
 

Reaction time: (ms) 

mean (std) 

334.48 

(26.65) 

352.10 

(37.41) 

543.74 

(138.67) 

437.93 

(92.57) 

340 

(48.17) 

345.97 

(43.1) 
 

Movement time: (ms) 

mean (std) 

280.07 

(44.39) 

203.90 

(34.57) 

418.91 

(79.80) 

391.13 

(58.48) 

490.52 

(79.04) 

255.38 

(45.02) 

Paired Associates 

Learning:  
Total adjusted errors  43 21 116 123 100 36 

 
Total adjusted errors  

(6 shapes) 

15 15 30 30 30 6 

 Last Stage Reached 

(number of shapes) 

8 8 4 4 5 8 
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6.3.1 MOTOR SCREENING TASK 

Motor screening task (MOT) has been used in several studies to get the subjects 

acquainted with the interface. This task is also helpful in assessing if a subject can 

comprehend and follow instructions. It provides a baseline expectation of how the 

subject is going to perform in the other tasks. 

Figure 6.6 compares the performance of control subjects with patients in MOT. 

Each green dot in the figures represents a single healthy subject; with them overlapping 

on each other when the values are same or close. The red lines represent the trend by 

linking the medians of the data from each group. The asterisks on top of the line mark 

the significance level of the two-sample t-test with one asterisk representing a p-value 

of less than 0.05 and two representing a p-value of less than 0.001. Similar approach 

has been used throughout this section. 

In 6.6a., latency is defined by the time take to reach the cross after it was 

displayed on the screen. We see that patients are significantly slower than control 

subjects when reaching the coloured crosses on the screen. However, we also see from 

figure 6.6b that errors between controls and patients do not differ significantly (0.088). 

The error was calculated as the distance in pixel units between the centre of the cross 

and the point of touch. The lack of significant increase in error in patients, is an 

Spatial Working 

Memory: 

 

 
Between errors 10 0 31 27 38 29 

 
Strategy 15 10 23 21 20 20 

Verbal Recognition Memory:  
 

Immediate Free recall 

correct 

6 9 3 3 3 5 

 Immediate Free recall 

novel 

0 0 1 0 2 0 

 
Immediate Recognition 

correct 

20 24 22 19 20 21 

 Immediate Recognition 

false positives 

3 0 1 1 4 0 
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indication that they are able to understand the basics of using the interface and are able 

to follow instructions.  

6.3.2 REACTION TIME TASK 

The reaction time task (RTI) was designed to quantify the visual processing 

speed and motor function of the subjects. The task had two variants: simple RTI and 

5-choice RTI. The outcomes of the task were grouped by type of subject; control or 

patient and a comparison was performed. For both the variants three different measures 

were computed and are presented in the figures below. 

Figure 6.7 compares the accuracy between controls and patients in both the 

variants of the task. The accuracy score is the number of correct responses by each 

subject. It is observed that the patient group does not significantly differ from the 

control group in both the simple (p=0.222) and 5-choice RTI (p=0.259). This is an 

indicator of intact visual processing and ability to integrate information to accurately 

choose the correct response. In the case of 5-choice RTI, the accuracy also 

demonstrates the attention of the subject as it does not only involve reacting to the 

presentation of the visual stimulus, but also attending to its location. 

 

 

a. b. 
(m

s)
 

Figure 6.6 Comparison of performance between healthy controls and patients in 

Motor Screening Task (MOT). a. Median Latency (ms) in MOT, patients show a 

significant increase (two-sample t-test, p<.001) in latency to touch to the cross. b. Error 

in MOT, patients made more errors compared to the control group but, the difference 

is not significant. Non-zero y-axes are used for better visualization of data. 
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The other measures of performance in RTI are the reaction time and movement 

time. Reaction time is calculated as the mean time taken to release the button after the 

stimulus is presented. Movement time is the mean time taken to move from the button 

a. b. 

(m
s)

 

(m
s)

 

Figure 6.8 Comparison of performance between healthy controls and patients in 

Simple Reaction Time Task (RTI). a. Simple Reaction time (ms) in RTI, patients 

react significantly slower (two-sample t-test, p<.001) than control subjects. b. Simple 

Movement Time (ms), patients are further slower to move when compared to the 

control group, with higher level of significance (two-sample t-test, p<0.0001). Non-

zero y-axes are used for better visualization of data. 

a. b. 

Figure 6.7 Comparison of accuracy between healthy controls and patients in 

Reaction Time Task (RTI). a. Accuracy in Simple RTI. b. Accuracy in 5-Choice RTI. 

Patients show a small decrease in accuracy in both the variants of the task, which is 

not statistically significant. Non-zero y-axes are used for better visualization of data. 
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to the location where the stimulus is presented. Figures 6.8 and 6.9 present these two 

outcomes for simple and 5-choice RTI, respectively. 

 From the results observed in MOT, it is evident that patients are much slower 

in moving to the target and their latency is significantly different from the control 

subjects. Similar outcome is observed in the movement times in both the simple (fig 

6.8b.) and 5-choice RTI (fig 6.9b.).  

The reaction times in the two tasks are shown in figures 6.8a and 6.9a. In this 

instance, we again notice a significant increase in reaction times of patients when 

compared to control subjects. This reaction time entails the time taken by the subject 

to integrate the visual information of stimulus being presented and then making a 

decision to execute an action. The slowing of response in patients shows that this 

integration process of visual processing to motor reaction is diminished in the group. 

This result when combined with the results of figure 6.7, portrays that the patients are 

trading speed for accuracy. That is, to obtain the same level of accuracy, patients took 

much longer to make a decision. 

  

a. b. 

(m
s)

 

(m
s)

 

Figure 6.9 Comparison of performance between healthy controls and patients in 

5-Choice Reaction Time Task (RTI). a. 5-Choice Reaction time (ms) in RTI, patients 

react significantly slower (two-sample t-test, p<.001) than control subjects. b. 5-

Choice Movement Time (ms), patients are further slower to move when compared to 

the control group, with higher level of significance (two-sample t-test, p<0.0001). 

Non-zero y-axes are used for better visualization of data. 



 

218 

 

6.3.3 PAIRED ASSOCIATES LEARNING TASK 

The paired associates learning task (PAL) required the subjects to learn and 

maintain an association between visual patterns and their location. The performance 

in this task has been extensively studied in patients with different pathologies such as 

Alzheimer’s disease, Parkinson’s Disease (Sahakian et al., 1988; Swainson et al., 

2001), and schizophrenia (Kéri et al., 2012). In these studies, the task performance has 

been shown to be a strong indicator of diminished functioning of hippocampal region 

of the medial temporal lobe. 

The comparison of performance between the control and patients is carried out 

using two types of error metrics. The first metric calculated the total errors in the task. 

It is to be noted that not all subjects were able to finish or reach to all the levels of the 

task. This was due to termination caused by failure to complete any stage in the 

maximum number of allowed trials (6). An adjustment to the errors is performed for 

every stage that was not reached. The adjustment error is calculated using the formula: 

The above equation states that for any stage, the adjusted error (𝐸𝑟𝑟𝑎𝑑𝑗) is equal 

to the maximum number of allowed trials (𝑛max _𝑡𝑟𝑖𝑎𝑙𝑠), multiplied by the difference 

between the number of patterns (𝑛𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠) in the stage and the relative number of 

patterns to the number of boxes (𝑛𝑏𝑜𝑥𝑒𝑠). For example, the adjusted error of not 

reaching a stage with 5 patterns, 6 boxes and, 6 maximum trials would be (5 – 5/6) *6 

= 25. This number is less than the total number of errors possible in this stage (5*6 = 

30). So, the total adjusted error metric is equal to the total number of errors in the 

stages that the subject reached added to the adjusted error of all the stages the subject 

did not participate in. This metric is presented in figure 6.10a. We can see that there is 

a highly significant difference in the performance of the control and patients. Though 

there are a few control subjects that are unable to complete the last stage with 8 

patterns, all the controls did reach the final stage. This is not the case with all the 

patients and therefore we see high numbers in that column. 

 𝐸𝑟𝑟𝑎𝑑𝑗 =  (𝑛𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 − 𝑛𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠/𝑛𝑏𝑜𝑥𝑒𝑠) ∗ 𝑛max _𝑡𝑟𝑖𝑎𝑙𝑠 (6.1)  
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The second metric calculated is the adjusted error in stage with 6 shapes and is 

shown in figure 6.10b. In this figure, we again see a highly significant difference 

between control and patients. All the control subjects are able to reach and successfully 

complete this stage. On the other hand, 3 out of the 6 patients are unable to complete 

this stage and had the adjusted error of 30 (= (6- 6/6) *6).  

6.3.4 SPATIAL WORKING MEMORY TASK 

The spatial working memory task was first introduced and studied in patients 

with frontal lobe lesions (A. M. Owen et al., 1990). Since then it has been used in 

several studies with pathologies that cause dysfunction of the frontal lobe (A. M. Owen 

et al., 1996; Robbins et al., 1998). It has also been verified as a marker of risk of 

psychosis (Wood et al., 2003).  

To compare the performance of control and patient subjects in the SWM task, 

two different scores are used (fig 6.11). The “between error” scores are calculated as 

the number of times the subject looked for a token in the same box. Figure 6.11a. 

shows that patients showed a significant increase in the “between error” when 

compared to control subjects (p=0.013). It should also be noted that the control 

a. b. 

Figure 6.10 Comparison of performance between healthy controls and patients 

in Paired Associates Learning Task (PAL). a. Total number of adjusted errors in 

PAL task, patients perform significantly worse (two-sample t-test, p<1e-5) than 

control subjects. b. Adjusted errors in the 6-shape stage of PAL task, patients again 

perform significantly worse (two-sample t-test, p<1e-6) than controls with some 

failing to reach this stage. 
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subjects with the “between error” score greater than 25 are the oldest subjects in the 

control group (ages 48 and 55), indicating the age dependence of SWM task 

performance.  

The second score used to compare the performance is the strategy score of the 

subjects, with higher number representing poorer use of strategy. The minimum 

strategy in this task is 1 for each trial in stages with 6 and 8 boxes, which is 4. The 

maximum strategy score is 1 for each search which adds up to 28. From figure 6.11b. 

we can see that patients are significantly poorer in performing the SWM task when 

compared to the controls; with 4 out of 6 subjects with strategy scores of greater than 

or equal to 20. The gap seen in the control column on figure 6. 11b. divides the group 

almost equally in half with a significant correlation with age (Pearson’s r=0.59, 

p=0.01) (fig 6.14a).  

6.3.5 VERBAL RECOGNITION MEMORY 

The verbal recognition memory task has been a relatively new addition to 

CANTAB as one of the two tasks that are not language independent. Patients with 

schizophrenia have been shown to have extensive verbal memory deficits 

a. b. 

Figure 6.11 Comparison of performance between healthy controls and patients 

in Spatial Working Memory Task (SWM). a. Number of between errors in SWM 

task, typically, patients make more errors with the distributions being different with 

low significance (two-sample t-test, p=0.013). b. Strategy score for SWM task (lower 

scores are better), patients are marginally worse (two-sample t-test, p=0.047) than 

control subjects. Non-zero y-axis is used for better visualization of data. 
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(Chemerinski & Siever, 2010) and this test was used to quantify that cognitive 

impairment. 

In the VRM task, the subject performance is tested in two phases after a list of 

12 words is presented to them, one word at a time. The first phase is of free recall 

immediately after the list presentation. The performance here is measured using the 

total number of words recalled by the subjects. Figure 6.12a. shows that patients 

performed significantly worse than the control subjects. The CANTAB interface also 

accounted for any novel words that the subjects imagined having seen in the presented 

list. In this case (fig 6.12b) the control subjects and patients showed no significant 

differences (p=0.392).  

After the free recall phase subjects are tested under an immediate recognition 

phase shown in figure 6.13. In this phase, subjects had to correctly recognise the 

presented words amongst an equal number of distractors. Figure 6.13a. compares the 

total number of correct choices made by controls and patient group. With 12 words 

presented earlier and equal number of distractors, the maximum number of correct 

choices are 24. Patients are observed to perform significantly worse with most control 

a. b. 

Figure 6.12 Immediate free recall of words in healthy controls and patients in 

Verbal Recognition Memory Task (VRM). a. Number of words recalled in VRM 

task after list presentation, compared to control subjects, patients are able to remember 

significantly less (two-sample t-test, p<1e-4) number of words. Non-zero y-axis is 

used for better visualization of data. b. Number of novel words recalled, very few 

subjects recalled words that are not shown in the initial list. No difference is observed 

between control subjects and patients. 
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subjects getting a perfect score. The number of false positives are calculated as the 

number of words that the subject reported to have seen but were not a part of the 

original list. It is observed that patients made significantly greater number of false 

positive choices. 

6.3.6 INTER-TASK CORRELATIONS 

After observing the outcomes of individual tasks, relationship between task 

performance measurements was analysed for both control subjects and patients. 

Performance of subjects across and within tasks were correlated using Pearson’s 

correlation. Figure 6.14 shows the significant correlations for control subjects (a.) and 

patients (b.). In the case of control subjects, we see significant correlations between 

measures that represent similar cognitive features. For example, we see correlations 

between simple and 5-choice accuracies, reaction times, and movement times. This 

spans across tasks as well in correlations between RTI movement times and MOT 

latencies. The correlation patterns seen in patients are more complex. It is interesting 

to note however, that the SWM measures are correlated with age of both controls and 

a. b. 

Figure 6.13 Immediate recognition of words in healthy controls and patients in 

Verbal Recognition Memory Task (VRM). a. Number of words correctly recognised 

to be seen or unseen, compared to control subjects, patients classified fewer words 

correctly but, the small difference is significant (two-sample t-test, p<1e-4. b. Number 

of words that are classified as seen but were not present in the original list, patients are 

marginally worse (two-sample t-test, p=0.01) than control subjects. Non-zero y-axis is 

used for better visualization of data. 
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patients. As mentioned earlier, the interpretation of SWM measures should therefore 

account for the age factor and treated with caution. 

Figure 6.14 Inter-task correlations from CANTAB tasks. a. Control subjects b. 

Patients. Only significant correlation with p<0.05 are shown with others set equal to 

0. Diagonal lines are equal to 1 as they represent correlation of the measure with itself. 

The square matrix is symmetric around the diagonal. 
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6.3.7 CORRELATIONS WITH DEMOGRAPHIC DATA 

In table 6.3 the scores assigned to patients based on two different questionnaires 

used by clinical research team are provided. The Positive and Negative Syndrome 

Scale (PANSS) (Kay et al., 1987) measure the symptom severity in schizophrenia 

patients. The second questionnaire is the Montgomery–Åsberg Depression Rating 

Scale (Montgomery & Asberg, 1979) used to rate the severity of the patient’s 

depression. These scores were compared with a few outcomes of the different tasks 

that the patients performed. 

Several different outcomes from all the CANTAB tasks were correlated with the 

three PANSS sub scores and MADRS score. Though the figure 6.15 shows a few 

higher  absolute values of correlations, none of them are found to be significant. One 

of the reasons behind this could be the small number of patients in the study. 

6.4 Discussion and Conclusion 

The previous section described performance of patients in individual tasks and 

compared it with the group of control subjects. A general observation from all the tasks 

was that subjects with schizophrenia spectrum disorders showed an overall deficit in 

cognitive processing. This confirmed the observations of several different studies with 

Figure 6.15 Correlations between CANTAB task outcome and PANSS and 

MADRS scores in patients. 
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similar disorder (Levaux et al., 2007). In this study, at least one of outcome measures 

that was calculated on any specific task, showed a significant difference between the 

patient and control groups. This was particularly encouraging to see with only a small 

set of 6 patients. This section discusses the implications of these findings on the 

neurophysiological deficits in our patient group. 

The first two task administered to the subjects (MOT and RTI) tested their 

visual-motor coordination and processing. RTI specifically was designed to segregate 

the time taken to process the visual input (reaction time) and the time taken to move 

to the target (movement time). MOT has been primarily used as a familiarisation task 

by all the studies that make the use of the CANTAB interface. However, very few 

studies have reported the performance of subjects in this task (Saykin et al., 1994; Stip 

et al., 2005). A highly significant increase in patient group latency period in the MOT 

task was observed, while no difference was seen in the error score (fig 6.6). This 

implied that patients with schizophrenia spectrum disorders did not show any deficit 

in movement accuracy, however, they did show slowed motor response. A similar 

pattern was observed in the outcome of the RTI task too (figures 6.7 to 6.9). In 

addition, the response time outcome of RTI pointed at an additional deficit in the 

visual-motor processing in the patient group. This time signified that patients were 

trading speed for accuracy of performance. A similar pattern has been previously 

observed in Alzheimer’s patients with and without medication. (Sahakian et al., 1993). 

It was also of significance that the RTI performance deficits were identified with only 

6 patients. 

The third cognitive task was the paired associates learning (PAL) task. This task 

was first used to study patients with Alzheimer’s (AD) and Parkinson’s disease (PD) 

(Sahakian et al., 1988). Since then, the task has been extensively used to study deficits 

in subjects with neurodegenerative disorders, different types of dementias, and in 

different age groups (Barnett et al., 2015; H Barnett et al., 2005).  The test was also 

successfully used as marker to distinguish mild AD patients from other types of 

dementia and depression (Swainson et al., 2001).  

The above studies have established the use of PAL in assessing cognitive deficits 

observed in different pathologies. However, PAL has also been used in animal and 

human studies to investigate the neurophysiological changes in the brain. To 
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accomplish the task successfully, the subject needed to associate the visual information 

of the pattern with the spatial information of its location. This association has long 

been shown to involve the entorhinal cortex and associated hippocampal regions of the 

brain. Thus, animal studies in primates and mice and human studies using imaging and 

subjects with brain lesions, have confirmed the importance of these brain areas in PAL 

performance. These studies have also shown an involvement of the frontal lobe 

(Barnett et al., 2015). Particularly in case of schizophrenia patients, Kéri et al. showed 

that loss in hippocampal volume led to poor performance in PAL task (Kéri et al., 

2012). One of the important aspects of these findings was that PAL task could be used 

to quantify these deficits in subjects that had not shown any signs of psychosis or were 

in early stages of schizophrenia spectrum (Bartók et al., 2005). Therefore, as in the 

case of AD, PAL task performance is a strong candidate to be considered as an early 

marker of disease manifestation of schizophrenia. 

The fourth task that the subjects performed was spatial working memory 

(SWM). This task demanded the subject to maintain an easily retrievable 

representation of the spatial information. This task was first designed and studied by 

Owen et. al. in subjects with frontal lobe lesions. This early study showed a significant 

deficit in these subjects when compared to controls. The performance was also seen to 

diverge further away as the difficulty of the task was increased (A. M. Owen et al., 

1990). Wood and colleagues have used this task to show that working memory deficits 

were present in young individuals who were at a high risk of developing psychosis. A 

similar observation was presented in a Hungarian study with subjects presenting pre-

psychotic symptoms (Bartók et al., 2005). In another recent study comparing young 

schizophrenia patients with age matched healthy individuals, significant deficit was 

observed in the SWM task (Rupchev et al., 2017). In experiments presented in this 

chapter, unlike other tasks, differences in SWM measures showed lower significance 

of p<0.05 instead of p<0.001. Also, only in SWM task, the performances were found 

to be significantly correlated to the age of both controls (Between errors: r=0.79, p=1e-

4 and Strategy: r=0.59, p=0.01) and patients (Between errors: r=0.89, p=0.01 and 

Strategy: r=0.92, p=0.009). With these observations, and that of the recent studies, it 

is important to be cautious while interpreting the results from SWM. Though the task 
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does have a potential of being a cognitive marker for early diagnosis of schizophrenia, 

the age of the subject would need to be incorporated into the diagnostic process.  

The final task performed by the subjects was the Verbal Recognition Memory 

task (VRM). It has been well established that schizophrenia patients suffer from verbal 

hallucinations and disorganized thoughts (American Psychiatric Association, 2013b). 

Therefore, it is not surprising that patients would have significant difficulty 

remembering a set of words while many other thoughts and voices are likely occluding 

their mind. However, there have not been many studies with VRM, as it is a more 

recent addition to the CANTAB battery. Also, as this task is language dependent, the 

performance of this task can be reliably used as a marker only when the task language 

matches the patient’s native tongue. All the subjects in this chapter’s study were 

selected with the requirement of English as their first language. Thus, the results 

obtained here were not confounded by the language factor. In both the free recall and 

recognition phase of the task, patients were significantly worse than the control 

subjects. In the free recall phase especially, 3 out of 6 patients recalled only 25% (3) 

of the words, while only 3 out of 17 control subjects performed worse than 75%.  

In conclusion, these set of 5 tests along with the cognitive evaluations (PANSS 

and MADRS) presented in table 6.3, can quantitively define the cognitive deficits of 

any schizophrenia patient. It is also important to note that this set of tests were 

specifically selected with the intension of obtaining the most information in the least 

amount of time. To enable this, shortened versions of the tasks that incorporated a wide 

variety of difficulty levels were chosen. The measures thus obtained, encompass a 

wide range of each deficit that is expected to be observed in patients with a risk of 

psychosis. This, therefore, resulted in a comprehensive list that can serve as a measure 

of the subject’s cognitive deficits, as shown in each column of table 6.3. 
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7.1 Introduction 

The complexity of the schizophrenia spectrum of disorders has been well 

demonstrated through the reviewed literature and findings of the previous chapters. 

The previous chapters have demonstrated that the recruited patients exhibit significant 

deficits in the automatic pre-attentive processing (Chapter 4), selective attention 

(Chapter 5), and in several cognitive mechanism like working memory, verbal 

memory, etc (Chapter 6). Patients within this spectrum of disorders also exhibit 

emotional deficits like blunt affect and anhedonia. This directly impacts their social 

well-being and quality of life.  

In this chapter the emotional deficits in the patient group were studied with a 

facial emotion recognition task. The following section reviews the research literature 

on behavioural and neurophysiological aspects of this deficit. This is followed by the 

description of the experimental task, and the behavioural and neurophysiological 

observations made from it. 

7.2 Facial Emotion Recognition 

Facial expression of emotions is the primary form of non-verbal communication 

in everyday life. Paired along with affective prosody, a person can use facial 

expressions to convey different meanings to the recipient while speaking the same 

sequence of words (Becker & Rojas, 2020; Garrido-Vásquez et al., 2018; Meconi et 

al., 2018). This works both ways in a conversation, with the recipient conveying the 

understanding of the context with their facial expressions (Crivelli & Fridlund, 2018; 

Garrido-Vásquez et al., 2018). Recognizing, interpreting, and expressing emotions 

through facial movements, is therefore particularly important aspect of any social 

interaction. All these aspects have been studied in patients within the schizophrenia 

spectrum of disorders (American Psychiatric Association, 2013b; Bonfils et al., 2019; 

World Health Organization (WHO), 2022). This section focuses on facial expression 

recognition research that examines the behavioural responses and their 

neurophysiological basis. 

7.2.1 BEHAVIOURAL FINDINGS 

Early studies of facial expression recognition with schizophrenia patients 

primarily looked at the behavioural deficits. With the development of computerized 
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testing, and better understanding of schizophrenia patients exhibiting emotional 

deficits, study designs improved in the 1990’s and larger curated groups were being 

recruited. These studies used standardized tasks, inclusion/exclusion criteria, etc. to 

better quantify the emotional deficits observed in schizophrenia patients (Kohler et al., 

2010). Mandal and colleagues published one of the first review of experiments 

conducted in this field (Mandal et al., 1998). They reviewed studies that tested both 

the emotion recognition and expression abilities in schizophrenia patients. They 

observed a generalized deficit in facial emotion recognition in schizophrenia patients, 

with little to no evidence of differences between the subtypes. Some studies in the 

review found a global emotion recognition deficit, while other found specific 

decrement in the negative emotion detection with positive emotions being detected 

comparable to healthy control subjects. The review also pointed out that there were 

some variations in the type of stimulus across studies. One of the interesting 

observations was that schizophrenia patients were better able to recognize emotions 

with parts of face (upper, middle, lower) used as stimuli. This was probably one of the 

first indications that impairment in facial expression recognition was linked to face 

processing deficits in these patients. 

Kohler and colleagues were interested in examining the effect of facial emotion 

intensity and studying the error patterns made by schizophrenia patients (Kohler et al., 

2003). They used stimuli with neutral, happy, sad, angry, fear, and disgust emotions. 

These stimuli were previously recorded in a dataset by Gur and colleagues (Gur et al., 

2002) where subjects exhibited all the facial emotions (except neutral) either with low 

or high intensity. Kohler and colleagues found that patients made higher errors in fear, 

disgust, and neutral recognition. High intensity emotions were recognized better but, 

the increase in intensity resulted in a smaller increase in percent correct responses in 

patients when compared to the control subjects. This difference between patients and 

control subjects was most pronounced in fearful emotions. The error pattern in neutral 

emotion recognition was also different in patients compared to that of control subjects. 

The pattern revealed that patients were more prone to perceive neutral emotions as 

disgust and fear, compared to control subjects that attributed neutral emotions as either 

happy or sad. The researchers also reported a significant correlation between 



 

231 

 

performance and negative symptoms score for flattening, alogia, avolition, and 

anhedonia, as assigned by the Scale for Assessment of Negative symptoms (SANS).  

To study the link between emotion recognition and facial processing, Martin and 

colleagues (Martin et al., 2005) orthogonally varied the emotion and identity of the 

face stimulus in Stroop like task (Stroop, 1935). Participants were asked to press one 

button if the identity (or facial emotion) of the two presented stimuli was same and 

another button if it was different. In the identity comparison experiment, the emotions 

were either kept same or varied. In the emotion comparison experiment, the identity 

was kept same or varied. A similar study was conducted by Bediou and colleagues 

where they also reported emotion specific error (Bediou et al., 2005). Both these 

studies found a significant correlation between the performance on identity and 

emotion tasks. Bediou study reported significantly worse performance in patients 

compared to control subjects, while identifying sad and angry emotions but not happy, 

fear, and disgust. Martin and colleagues reported schizophrenia patients were impaired 

in recognizing both identity and emotion, with larger impairment in the later. When 

the identity was varied in the emotion task, some schizophrenia patients even 

performed at chance levels in the Martin study. Bediou and colleagues also reported 

that the emotion matching performance in patients was worse when identity was 

varied. This is similar to performance deficit in Stroop effect observed in 

schizophrenia patients, related to the inability in selectively suppressing interfering 

stimuli (Henik & Salo, 2004) (Chapter 5). Martin study reported that negative 

symptoms were significantly correlated with the performance on emotion matching 

task, specifically when the identity was varied. Bediou study did not see any 

correlations between performance and negative or positive symptom scores.  

To disentangle the facial emotion recognition deficit in schizophrenia patients, 

and the quantify how factors like, task type, hospitalization, medication, etc. effected 

the performance, Kohler and colleagues conducted a meta-analytic review. This 

review examined the findings of eighty-six studies between 1970-2007 (Kohler et al., 

2010). They found that facial emotion perception showed a significant deficit in 

schizophrenia patients when compared to control subjects. The effect size was not 

dependent on the type of task (identification or matching). Impairment in inpatient 

schizophrenia subjects was significantly larger than outpatients. A more recent meta-
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analytic review (Savla et al., 2013) of broader social cognition deficits in schizophrenia 

patients, also found this larger effect in inpatient subjects (62 studies). Kohler review 

also found that the effect size was largest in unmedicated patients. There were few 

(15/86) studies that had patients with both schizophrenia and schizoaffective disorder 

diagnosis. The effect size in these studies were not significantly different from studies 

with only schizophrenia patients. 

7.2.2 NEUROPHYSIOLOGICAL FINDINGS 

The studies investigating neurophysiology of facial emotion recognition, 

particularly in schizophrenia patients, are relatively new. Experimental evidence from 

functional magnetic resonance imaging (fMRI) suggest that schizophrenia patients 

show a reduced activation of areas typically related to emotion processing, such as, 

amygdala, fusiform gyrus, and frontal cortex (Taylor et al., 2012). There has also been 

evidence of possibly compensatory increase of activation of other areas that are 

typically not associated with emotion processing in healthy controls (Taylor et al., 

2012). However, how these differences in cortical and sub-cortical activations 

manifest as electrical activity recorded with EEG, is still an active area of research 

with the first related study published in 2001 (Streit et al., 2001). 

Streit and colleagues used a blurred face categorization task and a facial affect 

recognition task, while recording EEG signals from healthy controls and schizophrenia 

patients. They found that patients were significantly worse at correctly recognizing 

emotions, with the fear recognition most impaired. No significant behavioural 

difference was observed between the two groups in categorizing faces from objects. 

Statistical analysis of EEG peak amplitudes in the 180ms-250ms time window during 

affect recognition task, showed a significant higher amplitude in controls and on 

temporal recording sites. They also found a significant correlation between 

performance and frontal amplitude in this period across the subjects. However, no 

significant relation was found between the amplitudes, clinical ratings, and 

performance in patient group(Streit et al., 2001). 

Hermann and colleagues (Herrmann et al., 2004) investigated the hypothesis 

that, early face-processing deficits in schizophrenia patients leads to poor emotional 

affect recognition. They used a classification task between faces and buildings to 

compare the activation of temporal recordings sites. The post-stimulus period from 
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113ms to 230ms was considered. They found that the negative ERP component N170 

was significantly larger for face stimuli compared to buildings. Schizophrenia patients 

showed a significantly lower amplitude difference between faces and buildings. It was 

also observed that the N170 amplitude was higher on right hemisphere. These results 

were consistent with earlier fMRI and electrophysiological studies showing processing 

of facial features occurs at an early stage of approximately 170ms after stimulus. These 

studies had also reported involvement of fusiform gyrus, which is reduced in volume 

in schizophrenia patients, in N170 generation (Herrmann et al., 2004).     

The findings from the Herrmann study were further investigated by Campanella 

and colleagues for the specificity of N170 deficit, along with its dependence on the 

visual P100 ERP component (Campanella et al., 2006). They also wanted to determine 

relationship between the deficit and symptom severity in patients, scored using 

PANSS (Kay et al., 1987). They used a deviant face-detection task that presented 

neutral faces as a frequent stimulus, with differing identity or facial expressions as the 

deviants. The study found a significant temporal N170 (electrodes T5 and T6) deficit 

in patients with high PANSS score. This reduction in amplitude was present both in 

identity and emotion deviants. The reduction in N170 amplitude was also preceded by 

a significant reduction in P100 amplitude at electrodes O1 and O2. The study also 

investigated the longer latency P300 (electrodes Pz, CP1, and CP2) and N400 

(electrodes T5, Oz, T6) components, and found similar amplitude reduction in 

schizophrenia patients with high PANSS score. The P300 component peak was also 

found to be significantly delayed in patients. The study thus provided a compelling 

evidence of overall face-processing deficit in patients, along with a significant 

correlation of N170 amplitude with the positive symptom sub-scores from the PANSS 

scale. 

To probe the time-course of facial affect recognition and the relationship 

between early and late ERP components, Turetsky and colleagues used a short 100ms 

duration stimulus. This reduced stimulus enabled the researchers to specifically target 

early visual processing and observe its effect on the later ERP components. The stimuli 

were happy, neutral, and sad faces with two levels of intensities. While patients were 

overall worse at the task, their performance towards happy faces was found to be 

correlated with severity of negative symptoms. This study also used the global field 
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power (GFP) (Skrandies, 1990), which is a measure of variability of the potentials 

across the scalp, to identify various components of the ERP response. Four 

components, namely P100, N170, N250m and P300 were uncovered using the GFP, 

during the emotion classification task. The earlier P100 component was observed to 

be modulated by the intensity of the emotions. The N170 component was significantly 

smaller in patients and during neutral stimuli. In patients, positive symptom severity 

was correlated with the N170 amplitude during sad faces. While no significant effects 

were observed for N250 component, P300 exhibited similar trends to that of the N170. 

In patients, variance in the P300 component was captured by N170, thus leading the 

researchers to speculate that the P300 modulation could be a downstream effect 

(Turetsky et al., 2007). 

The N170 response to emotional stimuli has been further studied in more detail 

in the recent years. For example, Akbarfahimi and colleagues studied both the peak 

amplitude and latency of the N170 component, recorded at occipito-temporal sites P7 

(left-hemisphere) and P8 (right-hemisphere). They found significant hemisphere effect 

on amplitude, with right hemisphere exhibiting larger peaks. The left hemisphere 

amplitude was also significantly correlated with positive symptom severity in patients 

defined by the PANSS positive scale. The peak latency was observed to be higher in 

patients and had a significant interaction with facial expression type. In patients, the 

N170 peak latency for fearful expression was higher compared to that of happy and 

neutral faces. An opposite relationship was seen in control subjects (Akbarfahimi et 

al., 2013).  

An interesting study was published by Maher and colleagues in 2016 where they 

investigated the relationship between the ERP signal and fMRI response (Maher et al., 

2016). Even though this study was primarily investigating only the face-processing 

deficiency in schizophrenia patients, it was included in this review. This was warranted 

by the fact that, most of the previously described research has argued that deficit in 

facial expression recognition is directly related to a high-level face-processing deficit 

(Campanella et al., 2006; Herrmann et al., 2004; Turetsky et al., 2007). Maher and 

colleagues used line drawings of faces and trees mixed with scrambled lines as stimuli. 

The subjects had to indicate which side of the screen the object was on. Four different 

contrast values were used for the stimuli (0%, Th%, 2 times Th%, and 100%). The 
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contrast threshold (Th) for individual subjects was determined from an earlier 

experiment as the threshold at which the subjects could detect the object on the screen 

with 80% accuracy. EEG recordings were primarily taken from right hemisphere P8 

electrode, and an average of ERP signal between 120ms and 220ms was used. P7 

electrode recording from left hemisphere was used as the control electrode. Control 

subjects had a significantly larger N170 response to faces compared to trees. This was 

not true in patients. This was also one of the studies that compared schizophrenia and 

schizoaffective patients within its patient group but did not find any significant 

differences. The researchers found significant correlation between the ERP amplitude 

and the fMRI response from the fusiform face area (FFA) at approximately 170ms 

latency in control subjects. This correlation was also missing in patients, thus 

indicating that N170 component observed in patients was generated from other 

sources. This hypothesis was strengthened by the significant correlation of N170 

response with the face detection threshold in control subjects, but not in patients. In 

patients, a weakly significant correlation was observed between the PANSS negative 

score and N170 response (Maher et al., 2016). 

Two recent meta-analytic review on face-processing ERP components provided 

an overall view of EEG deficit in schizophrenia patients. Earls and colleagues 

reviewed twelve studies (328 patients and 330 controls) involving early face-

processing component P100 (Earls et al., 2016). An overall significant decrease in 

P100 amplitude was observed in patients. They also compared the relationship 

between facial affect type and P100 amplitude, finding a significant reduction in 

patients for the happy and neutral stimuli, but not for fearful stimuli. McCleery and 

colleagues analysed twenty-one studies with N170 component (438 patients, 418 

controls) and six (149 patients, 151 controls) with N250 (McCleery et al., 2015). They 

found significant reduction in both component amplitudes in schizophrenia patients, 

when compared to control subjects. For the N170 component, they concluded that the 

deficit was independent of emotional or non-affective stimuli, bolstering the 

hypothesis of higher-level face-processing deficit. They did not draw any specific 

conclusion for N250 component due to the small number of studies analysed. 

The various studies described in this section show that patients within the 

schizophrenia spectrum exhibit both behavioural, and neurophysiological deficits in 
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face processing and facial affect recognition. All the neurophysiological studies 

reported deficits in the early visual component like P100 and N170 (Akbarfahimi et 

al., 2013; Herrmann et al., 2004; Maher et al., 2016; Streit et al., 2001), while fewer 

studies discussed deficits in longer latency components like N250 and P300 

(Campanella et al., 2006; Turetsky et al., 2007). The lack of understanding of longer 

latency ERP components (N250), especially in case of affect recognition, was also 

concluded by McCleery (McCleery et al., 2015).  

7.3 Aims of Study 

This chapter describes the findings from an emotion recognition task conducted 

on healthy controls and patients diagnosed within the schizophrenia spectrum of 

disorders. Behavioural and neurophysiological findings are presented from both, early 

visual and a late cognitive deficit standpoint. Following were the aims of this study: 

1. To use a facial emotion recognition task to observe behavioural response 

along with simultaneous EEG recordings in both healthy control subjects 

and patients diagnosed with the schizophrenia spectrum of disorders. 

2. To compute behavioural response measures and compare the 

performance between healthy control subjects and patients. We 

hypothesized that patients would show performance deficit in 

categorizing facial emotions compared to healthy control subjects. 

3. To compute and compare the ERP response to each emotion type 

between healthy control subjects and patients. We hypothesized to see 

deficits in early facial processing components and cognitive response at 

frontal electrodes in patients compared to healthy control subjects. 

4. To use the observations from the ERP analysis to compute specific EEG 

measures and ERSP response at selected electrodes. 

5. To compute correlations of patient symptom severity with behavioural 

performance and EEG measures. We hypothesized that patients with 

more severe symptoms would exhibit larger deficits in both behavioural 

performance and EEG measures. 
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7.4 Experimental Methods 

7.4.1 TASK DESCRIPTION 

In this experiment, a computerized facial emotion recognition task was used to 

study the behavioural and neurophysiological deficits in the patient group. The 

participants were presented with schematic faces with four different types of 

expressions namely, neutral, happy, angry, and sad. The stimuli were presented using 

the Stim2 Gentask software and the triggers were interfaced with the NeuroScan 4.5 

Acquire module using the Stim2 hardware. Each trial began with the schematic 

appearing on screen for 200ms. Participants had 2500ms to choose their response by 

pressing one of the four buttons on a response pad (Compumedics NeuroScan Switch 

and Response Pad) labelled “O.K” for neutral, and “happy”, “angry”, and “sad”, for 

Figure 7.1 Facial emotion recognition task. a. Timing diagram of task trial. Trials 

began with presentation of stimulus for 200ms. The subjects a maximum of 2500ms 

to respond with a 3000ms inter-trial interval. b. Face schematic selected for stimuli 

based on participant’s selection and rating (1-5). Expression for four chosen stimuli is 

shown below each schematic. The first number in bracket shows how many subjects 

out of 8 chose the schematic followed by the total score from all subjects (max value: 

8 (subjects) * 5 (rating) =40). 
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the corresponding schematic expression. The response window was set to a maximum 

of 2500ms after the stimulus onset, and the intertrial interval was set to 3000ms. The 

timing diagram of the task is shown in figure 7.1a. 

The four face schematics used for stimuli were chosen from eight schematics 

previously shown to eight randomly chosen healthy subjects who were not a part of 

the study (Appendix D). The subjects were asked to categorise each schematic as one 

of the four types, neutral, happy, angry, and sad. The subjects were also asked to rate 

their categorization on a scale of 1-5 with 1 denoting least convincing and 5 being 

most convincing. The face schematics that were selected for each category are shown 

in figure 7.1b. Below each of the chosen stimuli, the expression type followed by 

number of participants that chose the response, and the total score assigned (maximum 

score = number of participants*5 = 8*5 = 40). Schematic representation of faces with 

emotions were chosen instead of faces from datasets of real humans with expressions, 

to avoid any adverse reactions from the patients.  

All subjects performed two blocks of 180 trials each. Each of the four facial 

expressions were randomly presented with an equal likelihood. Each block took 

approximately 10 mins. With a 5 min break between the two blocks, the task took 

about 25 mins in total. The experiment was performed during the second session 

following the cognitive testing through CANTAB. During the experiment, EEG was 

recorded from each subject. The recording setup (described in Chapter 3 and 

previously used in MMN and Stroop experiments) was carried out after the CANTAB 

experiment was completed.    

7.4.2 SUBJECTS 

All 19 healthy control subjects performed the facial emotion recognition task. 

However only one block of data was recorded from one of the control subjects. 

Therefore, this subject was excluded from analysis in this study leaving 18 healthy 

control subjects. All the 6 patients performed the facial emotion recognition task. The 

results from this study are presented for the healthy control group, and the two patient 

groups diagnosed with schizophrenia (P4, P5, P6) and schizoaffective disorder (P1, 

P2, P3).  
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7.4.3 BEHAVIOURAL ANALYSIS  

The behavioural performance of each subject was quantified by the percentage 

of correct responses and mean trial response latency. These measures were calculated 

for each of the four emotion types after combining data from both the blocks of trials 

performed by the subjects. 

7.4.4 EEG MEASUREMENT 

The general steps of EEG pre-processing pipeline have been described in 

Chapter 3. A common average reference (CAR) was used in pre-processing the EEG 

recordings during this study. The trial epoch was defined starting from 500ms pre-

stimulus baseline period to 2500ms post-stimulus. Any offset or small fluctuations 

were removed from each trial by subtracting the average baseline activity from each 

electrode. A baseline period of 500ms (longer than the other two EEG experiments) 

was used due to the longer duration of the trial. Even with a longer baseline period, a 

low frequency swing was observed in the data. This was reduced by using a higher 

high-pass filter cut-off of 0.5Hz in in pre-processing pipeline, compared to 0.05Hz in 

other experiments. The higher filter cut-off frequency was also helpful in producing a 

more stable ICA decomposition (Winkler et al., 2015) which was used for artefact 

rejection and cleaning the data (Chapter 3, Section (3.2.4). After artefact rejection and 

dropping the incorrect trial responses, approximately 95% of all trials were retained in 

healthy control subjects and 82% in patients. 

The artefact suppression was followed by computation of event related potentials 

(ERP) of each electrode. Grand average ERP were computed for each subject group 

(healthy controls, schizophrenia patients, and schizoaffective disorder patients) after 

data from both the blocks performed by each subject was combined. The ERP 

responses to each emotional expression stimuli were compared between healthy 

control group and patient groups. The comparisons were made for all the electrodes 

that were common across the two groups, excluding the two mastoid electrodes (M1 

and M2). 

Based on the observations from the ERP analysis, comparison of ERSP response 

to each facial emotion type was conducted at electrodes FP1 and P8. The comparisons 

were made between the healthy control group and whole patient group as we did not 
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observe significant differences between the ERP response of schizophrenia patient and 

schizoaffective disorder patients. 

Also based on the observations from ERP analysis, EEG measures were 

computed from electrodes P8, FP1, and FP2. P100 and N170 components associated 

with early face processing were observed at the P8 electrode. The peak amplitude and 

latency of these components were computed for statistical analysis. The peak 

amplitude and latency of the P100 component was determined by finding the 

maximum amplitude of a subject’s ERP response at electrode P8 in the 50ms-200ms 

post-stimulus interval. Similarly, the peak amplitude and latency of N170 component 

was determined by finding the minimum amplitude of ERP response at P8 in the 50ms-

250ms post-stimulus interval. At electrodes FP1 and FP2 significant differences 

between healthy control and patient groups were observed in the P300 region lasting 

approximately 200ms. Therefore, the mean amplitude in the 400-600ms post-stimulus 

interval was computed, instead of determining the peak amplitude. 

7.4.5 STATISTICAL ANALYSIS 

A multi-factor analysis of variance (ANOVA) was carried out for both the 

behavioural performance measures (percentage of correct trials and average trial 

response latency) using the group of the subject (control, schizophrenia, or 

schizoaffective) as the between subject factor, and the task condition (neutral, happy, 

angry, or sad) as the within subject factor. This led to a 3x4 design with 96 data-points 

(24 subjects*4 task conditions). ANOVA with all the patients in one group was also 

computed using a 2x4 design with the same 96 data-points. 

Permutation statistics were used to determine the periods of significant 

differences between the ERP responses from control group and two patient groups. A 

cluster-based correction method was used to account for the multiple comparisons 

problem arising due to all the time points of the signal. These statistics were also used 

to  compare the ERSP responses at P8 and FP1 between the control group and the 

whole patient group. 

A multi-factor ANOVA was also used to analyse the EEG measures from the 

P100 and N170 at electrode P8 and the mean amplitude of P300 component at 

electrode FP1 and FP2. Similar to the behavioural analysis, the group of the subjects 

(control, schizophrenia, and schizoaffective disorder) was used as the between subject 
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factor, and the task condition (neutral, happy, angry, and sad) as the within subject 

factor. This led to a 3x4 design with 96 data-points (24 subjects*4 task conditions). A 

2x4 design ANOVA was also conducted with all patients grouped together. 

7.5 Results and Comparisons 

7.5.1 BEHAVIOURAL RESULTS 

The behavioural results from each of these patients are presented in table 7.1. 

The table contains the mean trial response latency and percent correct for each task 

condition. The table also shows the symptom severity of each patient assessed by a 

trained clinical staff, on the day of the experiment. The patients were scored based on 

two questionnaires: Positive and Negative Symptom Scale (PANSS) (Kay et al., 

1987), scoring the positive, negative, and general symptoms of the patient, and 

Montgomery–Åsberg Depression Rating Scale (MADRS) (Montgomery & Asberg, 

1979), rating the severity of depression in patients. 

The behavioural performance results for each group of subjects are graphically 

shown in figure 7.2. Figure 7.2a shows the percentage of correct responses for each 

type of emotion. Each point represents the mean, with the error bars showing the 

standard error of mean. The plot shows that patients had smaller number of correct 

recognitions overall. An interesting pattern emerges within the patient group when 

segregated by their clinal diagnosis. Schizophrenia patients are observed to have a 

much higher error rate compared to schizoaffective disorder patients; whose 

performance is relatively close to the control group. Schizophrenia patients are also 

seen to make the highest number of errors in recognizing angry facial expression. 

The mean trial response latency to the four types of stimuli is plotted in figure 

7.2b, with the standard error of the mean represented by error bars. Control subjects 

are again found to have the best performance in recognizing each type of facial 

expression. This is represented by the shorter response latencies observed in the 

control group compared to the patient groups. The response of schizoaffective patients 

is relatively slower with a large variability within the group. Schizophrenia patients 

are the slowest in their response, with average response latency several 100ms longer 

in most cases. Within each group, latency differences are also seen between task 
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conditions; for example, healthy controls are quickest at responding to neutral stimulus 

and slowest at recognizing the sad stimulus. 

Table 7.1 Patient performance in emotion recognition task. 

 

Patient P1 P2 P3 P4 P5 P6 

Gender M M M M M M 

Age 35 26 57 64 59 47 

Clinical 

Diagnosis* 
SA SA SA/BSD S S S 

PANSS   

  Positive 28 8 7 7 18 26 

  Negative 27 9 10 12 20 23 

  General 38 19 17 17 49 59 

MADRS 3 4 2 0 22 26 

Response Latency 

(ms) 
 

  
Neutral 716.34 465.39 1245.97 888.33 1057.10 865.73 

  
Happy 774.93 565.68 1151.83 1293.08 1151.28 1114.56 

  
Angry 638.78 513.61 1231.55 1221.89 1051.25 1136.67 

 
Sad 837.97 641.14 1460.33 1216.04 1306.90 1038.46 

Percent 

Correct: 

  
Neutral 100.0 100.0 77.2 87.1 96.0 100.0 

  
Happy 98.8 98.8 90.4 77.1 69.9 92.88 

 
Angry 96.8 94.7 80.0 58.9 71.6 54.7 

  
Sad 98.8 97.5 59.3 59.3 71.6 97.5 

* S: Schizophrenia, SA: Schizoaffective Disorder, BSD: Bipolar Spectrum Disorder   
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The 3x4 ANOVA on percentage of correct trials showed a significant main effect 

in both the group (F(2, 84) = 21.74, p << 0.0001) and task condition variables (F(3, 

84) = 4.53, p = 0.0054). There was also a significant interaction between the 2 factors 

(F(6, 84) = 2.93, p = 0.012), which can be already seen in figure 7.2a. Multiple 

comparisons analysis on the group factor showed that, schizophrenia patients got 

significantly smaller number of trials correct compared to both control subjects (p << 

0.0001) and schizoaffective disorder patients (p = 0.002), while there was no 

significant difference between control subjects and schizoaffective disorder patients. 

Comparison on the task condition variable showed a significantly lower number of 

angry (p = 0.0046) and sad (p = 0.0422) trials recognised correctly, compared to 

neutral trials. Analysing both the group and task condition together showed that 

schizophrenia patients were significantly worse at recognising angry expressions 

compared to both control subjects (p << 0.0001) and schizoaffective disorder patients 

(p = 0.0098). Schizophrenia patients were also significantly worse at recognizing sad 

expressions compared to control subjects (p = 0.0341). Similar results were seen from 

2x4 ANOVA for percentage of correct trials for main effects of both group (F(1, 88) 

= 25.9, p << 0.0001) and task conditions (F(3, 88) = 3.57, p = 0.0172). No significant 

interactions were found in this case. Multiple comparison analysis for this design 

Figure 7.2 Performance comparison in emotion recognition task. a. Percentage of 

correct trials for each type of emotion. b. Average trial response latency to each type 

of emotion. Non-zero y-axes are used for better visualization of data. 
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showed that patients performed significantly worse at recognizing angry (p = 0.0009) 

and sad (p = 0.0333) expressions compared to the control group. 

For the mean response latency of correct trials, the 3x4 ANOVA showed a 

significant main effect in both the group (F(2, 84) = 26.64, p << 0.0001) and task 

condition variables (F(3, 84) = 3.84, p = 0.0126). There was no significant interaction 

between the 2 factors. Multiple comparison analysis on the group factor showed that, 

schizophrenia patients were significantly slower in their response compared to both 

control subjects (p << 0.0001) and schizoaffective disorder patients (p = 0.004), while 

there was no significant difference between control subjects and schizoaffective 

disorder patients. Comparison on the task condition variable showed a significantly 

slower response to sad (p = 0.0063) trials compared to neutral trials. Considering both 

the group and task condition together showed that in control subjects response to sad 

expressions was significantly slower (p = 0.0052) compared to neutral trials. 

Schizophrenia patients were significantly slower at responding to happy (p = 0.0016) 

and angry (p = 0.0092) expressions compared to control subjects. Results from 2x4 

ANOVA for average response latency of correct trials similarly showed main effects 

in both group (F(1, 88) = 31.87, p << 0.0001) and task conditions (F(3, 88) = 4.75, p 

= 0.0041). No significant interactions were found in this case either. Multiple 

comparison analysis for this design showed that patient group was significantly slower 

at responding to happy (p = 0.0370) expressions compared to the control group. 

7.5.2 EVENT RELATED POTENTIAL ANALYSIS 

The ERP responses to the four types of facial emotion stimuli are presented in 

figures 7.3 to 7.6. Each figure plots the ERP response of 35 electrodes laid out on a 

grid closely following their relative positions on the scalp. Each plot shows three grand 

average ERP responses, namely: healthy control group (green), schizophrenia patient 

group (orange), and schizoaffective disorder patient group (purple). Responses are 

shown only in the -200ms to 1300ms time window relative to the stimulus onset, as 

the ERPs were relatively stable outside this period. The periods of significant 

difference between the control group and whole patient group are represented by the 

grey patches. The periods of significant difference between control group and 

schizophrenia patient group are presented as orange bars and for the control group and 

schizoaffective disorder patient group using purple bars at the bottom of each plot. 
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The response to the neutral facial emotion stimuli is shown in figure 7.3. 

Surprisingly, the periods of significant differences between the control and patient 

groups are seen at largest number of electrodes for this condition, when compared to 

other task conditions. However, it should be noted from the figure that several frontal, 

temporal, and occipital electrodes show these significant difference periods later in the 

trial. The mean response latencies of all groups to the neutral stimuli were less than 

1000ms (fig 7.2b). Taking this into consideration, we see that except for a few 

Neutral 

Figure 7.3 Grand average ERP response to Neutral emotion stimuli. Each plot 

shows the response of a single electrode from control subjects (green, n=18), 

schizophrenia patients (orange, n=3), and schizoaffective disorder patients (purple, 

n=3). Gray patches represent regions of significant difference between healthy control 

subjects and patients. Significant differences between control and schizophrenia are 

shown by orange bar and between control and schizoaffective disorder are shown by 

purple bar at the bottom of each plot. Electrodes are arranged based on their location 

on the scalp. The axis on the bottom left shows the time and amplitude range of each 

plot.  
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electrodes, the grey patches indicating significant differences in figure 7.3 occur after 

the mean response latency. As patients with schizophrenia spectrum of disorders have 

trouble focusing and paying attention to tasks when compared to healthy control 

subjects (Chapter 2, Section 2.1), it can be speculated that patients were distracted after 

responding to the trial. This could have led to a deviation in the ERP response in 

patients when compared to the control subjects. The earlier differences at the frontal 

FP1 and FP2 electrodes approximately in the 400-600ms post-stimulus period are 

Happy 

Figure 7.4 Grand average ERP response to Happy emotion stimuli. Each plot 

shows the response of a single electrode from control subjects (green, n=18), 

schizophrenia patients (orange, n=3), and schizoaffective disorder patients (purple, 

n=3). Gray patches represent regions of significant difference between healthy control 

subjects and patients. Significant differences between control and schizophrenia are 

shown by orange bar at the bottom of each plot. Electrodes are arranged based on their 

location on the scalp. The axis on the bottom left shows the time and amplitude range 

of each plot. 
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noteworthy and further investigated later in the section. Control group also showed 

large P100 and N170 components on the P8 electrode which is not seen in either of 

the patient groups. 

Figure 7.4 shows the response to the happy facial emotion stimuli. Significant 

difference is seen only at electrodes FP1 and FC4. The difference at electrode FP1 is 

also significant between control and schizophrenia patient groups, but not between 

control and schizoaffective disorder patient groups. Though the average response at 

Angry 

Figure 7.5 Grand average ERP response to Angry emotion stimuli. Each plot 

shows the response of a single electrode from control subjects (green, n=18), 

schizophrenia patients (orange, n=3), and schizoaffective disorder patients (purple, 

n=3). Gray patches represent regions of significant difference between healthy control 

subjects and patients. Significant differences between control and schizophrenia are 

shown by orange bar and between control and schizoaffective disorder are shown by 

purple bar at the bottom of each plot. Electrodes are arranged based on their location 

on the scalp. The axis on the bottom left shows the time and amplitude range of each 

plot. 
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the FP2 electrode has a large difference between the control and patient groups, it did 

not satisfy the significance criteria. The responses at these frontal electrodes deviated 

between the subject groups approximately during the same time window of 400-600ms 

post-stimulus period. In the control group we also observed large P100 and N170 

components at P8 electrode representative of early face processing. These early 

components are diminished in both patient groups. 

Responses to angry facial emotion stimuli are plotted in figure 7.5. A few more 

electrodes show significant difference periods to this stimulus. Specifically, both FP1 

Sad 

Figure 7.6 Grand average ERP response to Sad emotion stimuli. Each plot shows 

the response of a single electrode from control subjects (green, n=18), schizophrenia 

patients (orange, n=3), and schizoaffective disorder patients (purple, n=3). Gray 

patches represent regions of significant difference between healthy control subjects 

and patients. Significant differences between control and schizophrenia are shown by 

orange bar and between control and schizoaffective disorder are shown by purple bar 

at the bottom of each plot. Electrodes are arranged based on their location on the scalp. 

The axis on the bottom left shows the time and amplitude range of each plot. 



 

249 

 

and FP2 electrodes show significant differences in 400-600ms post-stimulus period. 

These significant differences are also present when only control and schizophrenia 

patient groups are compared with each other.  

The response to the sad facial emotion stimuli shown in figure 7.6 are found to 

be significantly different between the subject groups at electrode FP1, along with a 

few mid-line electrodes. The difference at FP1 is largest among the electrodes and is 

approximately during the 400-600ms post-stimulus time window. As with neutral and 

happy stimuli, both angry and sad stimuli elicited a large P100 and N170 component 

at electrode P8 only in the control group. 

Figures 7.3 to 7.6 demonstrate a common pattern across responses to all the 

facial emotion stimuli. Firstly, we observe large P100 and N170 components at 

electrode P8 in controls. These components have been shown to represent the early 

facial processing and are diminished in patients within the schizophrenia spectrum of 

disorders (Earls et al., 2016; McCleery et al., 2015). Secondly, we see difference 

between control and patient groups at electrodes FP1 and FP2 in all the four task 

conditions. The difference in ERP waveforms is large in the P300 region, specifically 

400-600ms time window post-stimulus, and is also significant in most cases. Multi-

factor analysis of variance (ANOVA) was used to establish a simpler and quantifiable 

measure to distinguish between the groups. 

The 3x4 ANOVA on P100 peak amplitude showed a significant main effect only 

in the group variable (F(2, 84) = 22.05, p << 0.0001). No significant main effect was 

observed in the task condition variable, and no interaction effect was observed between 

the two variables. Multiple comparisons analysis of the group variable indicated that 

when compared to control subjects, peak amplitude of P100 component was 

significantly smaller in both schizophrenia (p << 0.0001) and schizoaffective disorder 

(p = 0.0001) patients. The peak amplitudes between the two patient groups did not 

differ significantly. As expected, the 2x4 ANOVA design yielded similar results with 

a significant main effect on the group variable (F(1, 88) = 44.44, p << 0.0001). No 

main or interactions effects were observed in the ANOVA conducted on P100 peak 

latency. However, the average P100 peak latency in patients was shorter than in control 

subjects. 
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The test on N170 peak amplitude produced results similar to that of P100, albeit 

with a smaller effect size. The 3x4 ANOVA showed a significant main effect in the 

group variable (F(2, 84) = 5.57, p = 0.0053). Multiple comparisons analysis of the 

group variable indicated that when compared to control subjects, the absolute peak 

amplitude of N170 component was significantly smaller only in schizophrenia (p = 

0.0192) patients. In schizoaffective disorder patients, the absolute amplitude was 

smaller than control subjects as well. However, it did not meet the significance criteria 

of p < 0.05. There was no significant difference between the two patient groups. The 

2x4 ANOVA design yielded similar results, with a significant main effect on the group 

variable (F(1, 88) = 11.49, p = 0.001).  

The results for the ANOVA on N170 peak latency were different from that of 

the P100 peak latency. The 3x4 ANOVA showed a significant main effect in the group 

variable (F(2, 84) = 11.63, p << 0.0001). No significant main effect was seen in the 

task conditions variable, and no interaction effect was seen between the two variables. 

Multiple comparisons analysis of the group variable indicated that when compared to 

control subjects, N170 peak latency was significantly higher in both schizophrenia (p 

= 0.0017) and schizoaffective disorder (p = 0.0010) patients. There was no significant 

difference between the two patient groups. Similarly, the 2x4 ANOVA showed a 

significant main effect in the group variable (F(1, 88) = 24.13, p << 0.0001) and no 

other main or interaction effects. 

Lastly, the 3x4 ANOVA on the mean P300 amplitude at electrode FP1 also 

showed a significant main effect only in the group variable (F(2, 84) = 17.93, p << 

0.0001). No main effect in the task condition, or an interaction between the task 

condition and subject group was observed. The multiple comparisons analysis of group 

variable showed that the mean P300 amplitude in patients was significantly higher than 

control subjects (schizophrenia: p << 0.0001, schizoaffective disorder: p = 0.0008). 

The 2x4 ANOVA design also showed same results with significant main effect in the 

group variable (F(1, 88) = 35.37, p << 0.0001). These tests were also conducted on the 

average P300 amplitudes at electrode FP2, and similar results were observed. 

7.5.3 TIME-FREQUENCY ANALYSIS 

The ERP analysis of the whole electrode array, followed by the statistical tests, 

produced an understanding of how the time course of the electrical activity on certain 
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electrodes differed between subject groups. The differences in activity were mainly 

observed at the frontal FP1 electrode, and the early face processing related components 

were most prominent on the occipito-temporal P8 electrode. The event related spectral 

perturbation (ERSP) or time-frequency decomposition from these electrodes are 

discussed in this section. 

A grand averaged ERSP was computed for each type of facial emotion stimuli. 

As seen from the ERP analysis, this response was compared between the groups of 

subjects. The statistical tests conducted on the ERP waveforms did not show any 

significant difference between the two patient groups. For this reason, and for the ease 

of visualizing the results, statistical comparison of ERSP was computed between the 

control subject group and the whole patient group. 

The grand averaged ERSP response at the electrodes FP1 and P8 are visualized 

in figures 7.7 and 7.8, respectively. The rows a-d in the figure correspond to the four 

different facial emotion stimuli. In each row, the plot on the left is the response from 

the control group, while the plot in the middle is the response from the patient group. 

The plot on the right is the difference between the two responses (patient – control), 

with the black contour lines representing the areas of significantly different activity. 

The time-frequency plot had 100 logarithmically spaced frequency bins from 2Hz to 

50Hz, and approximately 200 linearly spaced time bins. Like the ERP plots, activity 

between -200ms and 1300ms relative to the trial onset has been shown. 

Figure 7.7 shows the grand average ERSP activity at the electrode FP1. At every 

facial emotion stimulus onset, control subjects show a synchronisation of the 2-8Hz 

delta/theta band power, relative to the baseline period. This synchronisation of 

delta/theta power is observed to be sustained approximately for 1500ms, after which 

it returns to the baseline levels (period after 1300ms not shown in plots). There is also 

a desynchronisation of the frequencies approximately 8-24Hz alpha/beta band range. 

This desynchronisation peaks around 12Hz and 500ms which is likely associated with 

response preparation and execution (button press) and has been previously studied in 

motor neuroscience literature (Kilavik et al., 2013; Nakayashiki et al., 2014; 

Pfurtscheller & Lopes da Silva, 1999; Tan et al., 2013). The activity desynchronisation 

lasts for a few 100ms and is followed by the synchronisation of frequencies up to 24Hz 

while the higher frequencies stay at baseline levels. The ERSP activity in the patient 
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Figure 7.7 ERSP response to various emotion stimuli at electrode FP1 in healthy 

control group (n = 18), patient group (n = 6), and the difference between them. a. 

Neutral, b. Happy, c. Angry, and d. Sad. For each stimulus control ERSP is plotted on 

the left, patient ERSP in middle, and patient – control on the right. The black contours 

in the difference plots on the right represent areas of significant difference at p<0.05. 
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group is different from the control group in a few aspects. Firstly, the sustained 

synchronisation of delta/theta band after trial onset is relatively weaker than control 

group. Secondly, the alpha/beta desynchronisation spread over a broader frequency 

range and for longer duration. The longer duration is likely a result of the large 

response variability in the patient group. The smaller variability in the neutral stimulus 

response latency, is reflected in the smaller duration of the strong desynchronisation 

in the alpha/beta band activity. In other stimuli, the desynchronisation lasts longer and 

even shows multiple peaks. Lastly, the synchronisation of frequencies below 24Hz, is 

not seen. Following the desynchronisation period, the broadband activity returns to the 

baseline levels after approximately 1500ms. From the plots on the right of figure 7.7, 

it is observed that the difference between control and patient groups is statistically 

significant over a broad range of frequencies, later in the trial. This period is when the 

patient group has a sustained activity desynchronisation, while the control group 

exhibits a synchronisation of frequencies below 24Hz. 

Figure 7.8 shows the grand averaged ERSP activity at electrode P8. Control 

subjects show a strong initial synchronisation of the 2-16Hz spectrum. This 

synchronisation is seen in all task conditions, and corresponds well in time with the 

large P100, and N170 face processing components seen in the ERP waveform. This 

increase in power for approximately 200ms is followed by a desynchronisation of the 

frequencies in alpha/beta band and a return to baseline of frequencies below 6Hz. The 

alpha/beta desynchronisation occurs at around the same time window as electrode FP1, 

and likely is representative of neutral dynamics involved in response preparation and 

execution. A weaker wide band sustained synchronisation is seen before all the activity 

returns to baseline after approximately 1500ms (not shown in the figure). In patient 

group, the initial synchronisation of lower spectrum is much weaker than the control 

group, and even weaker than what is seen on the frontal electrodes. This again ties well 

with the significantly diminished P100 and N170 components seen in the ERP plots. 

The desynchronisation of activity in patients is seen to begin around 200ms, and peaks 

at approximately 8Hz frequency and 500ms post stimulus. Unlike the control subjects, 

the desynchronisation in patients is widespread in both time and frequency space, and 

no broadband synchronisation is seen later in the trial. The differences in the ERSP 

response between control and patients are also clear from the difference plot, and the 
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Figure 7.8 ERSP response to various emotion stimuli at electrode P8 in healthy 

control group (n = 18), patient group (n = 6), and the difference between them. a. 

Neutral, b. Happy, c. Angry, and d. Sad. For each stimulus control ERSP is plotted on 

the left, patient ERSP in middle, and patient – control on the right. The black contours 

in the difference plots on the right represent areas of significant difference at p<0.05. 
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contours surrounding the significant regions. There is a large difference in the initial 

delta/theta band synchronisation between control and patient groups. Due to this, a 

significant difference is observed from the beginning of the stimulus onset. This is 

unlike what is observed in the ERSP response at FP1 electrode. 

7.5.4 CORRELATIONS BETWEEN EEG MEASURES AND BEHAVIOURAL 

MEASURES 

In section 7.5.1 the behavioural performance was measured using the percent 

correct and mean trial response latency measures for each task condition and group of 

subjects. In the following section 7.5.2, the ERP waveforms at electrodes FP1 and P8 

were analysed to compute peak and latency of P100 and N170 components at electrode 

P8, and the mean amplitude of P300 component (400-600ms post-stimulus) at FP1. 

Table 7.2 shows the correlation between these two sets of measurements. Each cell in 

the table is also coloured based on its value with darker blue cells representing higher 

positive correlation and darker red cells representing higher negative correlations. 

Some correlations have an absolute value of one, as a result of rounding them to two 

significant digits. Significant correlations have been marked with an asterisk (*) 

symbol. 

The correlations in the control group are relatively low across all combinations 

of measurements. The correlation values in both the patient groups were higher. 

However, it should be noted that with only three subjects in each of the schizophrenia 

and schizoaffective disorder groups, the correlation needs to be almost equal to one to 

be significant. As seen from the papers reviewed earlier in the chapter, the components 

P100 and N170 from the P8 electrode are reliably elicited while looking at human 

facial stimuli. They are also an important part of the neural dynamics of facial emotion 

recognition. With that knowledge, a better performance, that is, higher percentage of 

correct trial (PC) and a shorter average trial response latency (RL), is expected with 

larger component peaks and shorter component latencies. The P300 activity at FP1 

electrode was seen only in the patients. It is likely that if the patients were unable to 

use the face-processing components, which were diminished, they were compensating 

with frontal processing to recognize and categorize the stimuli. With that hypothesis 

an improvement in performance measures is expected with higher mean FP1 P300 

amplitude, specifically in patients. 
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Table 7.2 Correlations between behavioural data and ERP response measures 

from emotion recognition task. 

The P100 peak in control subjects shows the expected positive correlations with 

PC and negative correlation with RL. However, the correlations are low and satisfy 

significance level only with happy emotion RL. In schizophrenia patients there is a 

variability between task conditions. Expected and significant positive correlation with 

PC is observed with happy facial stimuli but is either lower or negative for other trials. 

All the task conditions except angry stimuli show the expected negative correlations 

with RL. In schizoaffective disorder patients, none of the correlation between the P100 

 Percent Correct  Response Latency 

Type§ N H A S N H A S 

Control subjects 

P100 

   Peak 0.18 0.14 0.28 0.16 -0.08 -0.50* -0.29 -0.24 

   Lat 0.01 -0.08 0.00 -0.06 0.30 0.34   0.49* 0.33 

N170 

Peak -0.46 -0.19 -0.20 -0.23 -0.26 -0.16 -0.26 -0.44 

   Lat -0.42 0.03 0.05 0.37 0.05 0.01 -0.01 0.00 

FP1 P300 

  Mean -0.37 -0.03 -0.14 -0.22 0.13 -0.02 0.24 0.15 

Schizophrenia patients 

P100 

   Peak -0.56  1.00* -0.88 0.16 -0.89 -0.44 0.96 -0.73 

   Lat -0.52 0.03 0.53 -0.46 -0.90 0.91 0.20 0.91 

N170 

   Peak 0.27 0.39 0.23 0.96 -0.93  -1.00* -0.84 -0.93 

   Lat 0.39 -0.74 0.95 -0.13 0.96 -0.32 -0.90 0.71 

FP1 P300 

  Mean -0.38 0.80  -1.00* 0.80 -0.96 0.24 0.75  -1.00* 

Schizoaffective disorder patients 

P100 

  Peak 0.55 0.20 -0.40 0.71 -0.78 -0.53 0.13 -0.87 

   Lat 0.93 0.40 0.22 0.62  -1.00* -0.70 -0.48 -0.80 

N170 

  Peak -0.45 -0.32 -0.11 -0.79 0.71 0.63 0.38 0.92 

   Lat 0.00 0.14 0.08 -0.63 -0.31 -0.48 -0.35 0.41 

FP1 P300 

  Mean -0.94 -0.95 -0.94 -0.98  1.00*  1.00* 1.00  1.00* 
§N: Neutral, H: Happy, A: Angry, S: Sad 
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amplitude and behavioural data are significant. However, they exhibit the expected 

trends except with behavioural measures from angry stimuli. 

The P100 peak latency has close to zero correlations with PC and as expected, 

positive values with RL. In schizophrenia patients there are no significant correlation 

with either PC or RL. However, longer RL are seen with higher peak latency in all task 

conditions except the neutral stimuli. In schizoaffective disorder the correlation patters 

are opposite of what is expected and even significant with neutral average response 

latency. 

As the N170 component produces a negative peak at P8 electrode, absolute 

values were used to compute the correlations. In control subjects, the N170 peak 

amplitude does not show the expected correlation trends with PC. However, an 

expected pattern is observed between N170 peak amplitude and RL. In schizophrenia 

patients, a clear pattern of increased PC and shorter RL is seen for larger N170 

amplitudes. The correlations are low in most cases but are significant with happy 

stimuli RL. Schizoaffective disorder patients show exactly opposite and unexpected 

patterns that are not significant. The N170 peak latency has low correlation with all 

measures from the control group. None of the correlation from the patient groups are 

significant and show mixed relationships across task conditions. 

The mean P300 amplitude at FP1 has small correlation with the performance 

measures in control subjects. In the patient groups, some of the correlations are 

significant, but most do not agree with the hypothesis previously mentioned. In 

schizophrenia patients, the desirable pattern is seen with PC of happy and sad stimuli 

and RL of neutral and sad stimuli. In schizoaffective disorder patients the pattern is 

completely opposite of what is hypothesized. 

7.5.5 CORRELATIONS WITH DEMOGRAPHIC DATA 

All the patients were scored by the clinical staff on the day of experiment using 

the Positive and Negative Syndrome Scale (PANSS) (Kay et al., 1987) and 

Montgomery–Åsberg Depression Rating Scale (MADRS) (Montgomery & Asberg, 

1979) questionnaires. The PANSS scale has three different sub scales rating the 

patient’s negative (PANSSN), positive (PANSSP), and general (PANSSG) symptoms. 

The scores of all the patients have already been shown in table 7.1. 
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Figure 7.9 shows the correlations between the ERP measures extracted in the 

section 7.5.2, and the various scores assigned using the PANSS and MADRS scale, 

along with the age of the patients. The rows from top to bottom in the figure represent   

correlation with a. P100 peak, b. P100 latency, c. N170 peak, d. N170 latency, and e. 

P300 mean. In each row, the plot on the left depicts correlation values for 

schizophrenia patients, while the plot on the right is for schizoaffective disorder 

patients. Each image plot has values for pairwise correlations between the four task 

conditions and five demographic measures. The significant correlation values are 

marked with an asterisk (*). 

No significant correlations are seen in either patient groups with the P100 peak 

amplitude (fig 7.9a). However, most correlations are negative which implies that 

patients who are older and with more severe symptoms have smaller P100 peak 

amplitude. In a few cases the P100 peak amplitude exhibit positive correlations. In 

schizophrenia patient, positive correlations are seen between happy stimuli and 

symptom scores. In schizoaffective disorder patients, correlations are positive between 

all task conditions and MADRS score. No significant correlations are observed with 

the P100 peak latency (fig 7.9b) either. Positive values are expected in these plots. 

These signify that older patients and patients with more  severe symptoms also exhibit 

longer P100 peak latency. This is seen only with the age factor of schizophrenia 

patients and MADRS score of schizoaffective disorder patients. 

Like in correlation with behavioural measures, the absolute values of N170 

peaks are used while computing the correlations in figure 7.9c. In schizophrenia 

patients, older age is associated with smaller N170 amplitude, while all the other 

symptom measures show an unexpected positive correlation. The values are also 

significant in the case of happy stimulus. In schizoaffective disorder patients, negative 

correlation values are observed with only the MADRS score. The N170 latency is 

longer in schizophrenia patients that are older and have severe symptoms, but the 

correlations are small, and do not meet the significance criteria. In schizoaffective 

disorder patients, longer N170 latency is mainly seen in patients with higher MADRS 

score. 

The mean P300 amplitude at electrode FP1 is smaller in schizophrenia patients 

with more severe symptoms, except in the sad stimuli case. Also, older schizophrenia 
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Figure 7.9 Correlations between ERP measures from emotion recognition task 

and symptom severity scores in patients. 
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patients have smaller P300 amplitudes. However, all the correlation values are 

relatively small and do not meet the significance criteria. In schizoaffective disorder 

patients, the PANSS scores show small negative correlation and the MADRS scores 

show a larger negative correlation. The age of the schizoaffective disorder patients, 

however, show unexpected positive and significant correlations with mean P300 

amplitudes. 

The correlations between age of the control group, and the various ERP 

components were also measured. Most of the correlations were not significant, but 

weak negative correlations with both P100 and N170 peak amplitudes implied that, 

older control subjects were likely to have smaller peak amplitudes. There were also 

small positive correlations between age and P100 peak latency. N170 peak latency 

correlation with age in control subjects were the only measure showing significant 

correlations. N170 peak latency had a significant positive correlation with age during 

the angry (r = 0.54, p = 0.019) and sad trials (r = 0.66, p = 0.003), while a significant 

negative correlation during the happy (r = -0.59, p = 0.009)  trials. Correlations 

between age and P300 mean amplitude in control subjects were small and non-

significant. 

Lastly, correlations between the behavioural measures and the symptom severity 

measures in patients were also computed. These correlations are plotted in figure 7.10 

with the patient groups in two columns, percent correct measures in the top row, and 

the mean trial response latency measure in the bottom row. The significant correlations 

are marked with an asterisk (*). Both groups of patients show smaller accuracy with 

older age, except in the case of angry stimuli in schizophrenia patients. The 

correlations of percentage of correct trials with the PANSS and MADRS scores are 

positive and not significant. It is expected that patients with more severe symptoms 

would likely be worse at performing the task, but this is not the case. The mean trial 

response latency also show an expected relationship with the age of patients. In all 

cases older patients are slower in their response and correlation are also significant in 

schizoaffective disorder patients. The trial latency does not show the expected 

relationship with the PANSS and MADRS scores. That is, patients with more severe 

symptoms exhibiting shorter average trial response latencies. No significant 
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correlations were found between the performance measures and age of the control 

group. 

7.6 Discussion and Conclusion 

In this chapter a computerized facial emotion recognition task was used to study 

deficits in the patients diagnosed within the schizophrenia spectrum of disorders. To 

limit any exaggerated reactions from patients, schematic faces were used instead of 

real human faces displaying various emotions. The task used only four primary 

emotions—neutral, happy, angry, and sad, which could be easily represented by 

schematic diagrams. Both behavioural and neurophysiological data was collected and 

analysed to study the differences between healthy control group and patients. 

The behavioural analysis revealed that patient had significant deficit in correctly 

recognizing emotions and were also slower in their response. A statistical analysis of 

Figure 7.10 Correlations between behavioural performance measures from 

emotion recognition task and symptom severity scores in patients. Left column: 

schizophrenia patients, right column: schizoaffective disorder patients, top row: 

percentage of correct trials, bottom row: average trial response latency. 
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the data pointed towards larger differences within the patient group, between the two 

clinical diagnoses of schizophrenia and schizoaffective disorder. Schizophrenia 

patients made significantly more errors than both the control, and schizoaffective 

disorder patients. These errors were further pronounced in the angry and sad task 

conditions. The mean trial response latency in schizophrenia group was also much 

longer, compared to both the control subjects and schizoaffective disorder patients. 

There has been variability in literature about how behavioural performance is 

dependent on emotion type. Both the earlier mentioned studies with meta-analysis on 

behaviour response (Kohler et al., 2010; Savla et al., 2013), did not account for the 

task condition as a factor in their analysis. These studies also found that patients with 

different clinical diagnosis within the schizophrenia spectrum, were either lumped 

together in experiments or did not show significant differences in performance. 

Therefore, the findings from this chapter need to be further investigated with larger 

group size. 

The ERP response from this experiment was visualized over the whole grid of 

electrodes on the scalp. The differences between the control and patient groups were 

compared for each task condition. Statistical tests conducted on the ERP waveforms, 

showed significant differences between control and patient groups, on a variable set of 

electrodes for each task condition. It was interesting to see that the frontal FP1 (and to 

certain extent FP2) electrode was always a part of the set. This electrode was especially 

prone to artefacts from eye movement and blinks, due to its proximity. Therefore, 

when it was found that the activity on this electrode was significantly different between 

healthy control and patients, the inspection of EEG signals before and after ICA 

artefact rejection was revisited. This second pass at visually inspecting the time series, 

and studying the changes after artefact suppression, assured that any eye related 

components from all the test subjects were greatly reduced or eliminated. For these 

reasons, the difference observed at electrode FP1 in this experiment were very unlikely 

to be a result of artefact in the EEG data.  

The ERP plots showed large face processing related P100 and N170 components 

at the P8 electrode, specifically in control subjects. The component amplitudes were 

lower for patients in the ERP plots, but the statistical analysis on the time series data 

did not find significant differences in that region. One likely explanation to this could 
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be that the components occurred for a short duration, and the time series signal rapidly 

changed its polarity from large positive to large negative value. Therefore, to further 

determine the statistical differences between healthy subjects and patients, the peak 

amplitude and latency values were extracted for both P100 and N170 components at 

electrode P8. The mean amplitude of the P300 region at electrode FP1 was also 

computed. All these extracted measures were analysed using ANOVA. The results of 

ANOVA showed all measures except P100 latency were significantly different in 

patients. Both P100 and N170 peak amplitudes were significantly smaller in patients, 

compared to the control group. N170 peak latency was significantly longer, and P300 

mean amplitudes were significantly larger in patients. Though there were small 

differences between the schizophrenia and schizoaffective disorder patients, none of 

the measures derived from ERP responses were significantly different between the two 

groups. Except for the FP1 P300 results, which were not found in our search of 

published studies on the topic, the results in this chapter were found to be consistent 

with the findings from earlier research (Earls et al., 2016; McCleery et al., 2015). 

To study the spectral variation in the EEG activity, ERSP analysis was conducted 

at the FP1 and P8 electrodes. Differences in the delta/theta band synchronisation at the 

P8 electrode were found, with healthy controls showing significantly strong 

synchronisation early in the trial compared to patients. To our knowledge there has 

been only one recent study that has reported analysis of time frequency signals during 

a face perception and emotion recognition task (Marosi et al., 2019). The paper by 

Marosi and colleagues reported a significantly weaker theta synchronisation in patients 

from the parieto-occipital region of scalp in the 140-200ms post-stimulus. These 

results agree with the observations in this chapter. Significant differences at FP1 

electrode ERSP were also found in this chapter, which were not found in our search of 

the literature on facial emotion recognition tasks with EEG recordings. 

The correlation analysis conducted across the behavioural, neurophysiological, 

and demographic measures, yielded less than satisfactory results. This was likely a 

result of smaller number of subjects, especially in the patient groups. It should also be 

noted that, several of the papers reviewed earlier in this chapter, did not find concrete 

correlations between similar measures extracted from either behavioural performance 

or EEG data, and symptom severity in patients quantified by clinical assessment scales. 
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The experiment carried out in this chapter was conducted on small healthy 

control and patient groups. Also, face schematic stimuli was used instead of real 

human faces. Even with these factors, statistically significant deficits in patients were 

observed. Moreover, large behavioural differences were also seen between the patient 

groups based on their clinical diagnosis. Addressing the drawbacks in the experiment 

can further tease apart subtle differences between the patients within the schizophrenia 

spectrum of disorders, but diagnosed with different specific clinical categories. Using 

either more realistic face schematic, or real human faces could potentially show more 

precise differences in the EEG activity. The results from this study showcased that a 

facial emotion recognition task could be an important part of an early diagnostic 

protocol for schizophrenia spectrum of disorders. This task provided insights into a set 

of deficits experienced by patients that directly affect their daily social interactions and 

quality of life, quite unlike the other experiments described in this thesis.



 

 

CHAPTER 8. KEY FINDINGS
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The current protocol was studied across healthy control subjects and patients 

diagnosed within the schizophrenia spectrum who can be considered as chronic 

patients. Schizophrenia is a multidimensional disorder that encompasses a multitude 

of symptoms like, positive symptoms (hallucination, delusions, etc.), negative 

symptoms (diminished emotional expressions, lack of motivation, etc.), and cognitive 

deficits (poor working memory, lack of insight, etc.). The protocol studied in this thesis 

aimed at quantifying different deficits in a small and heterogenous patient group. Three 

of the patients included in this study had the clinical diagnosis of schizophrenia, while 

the other three had the diagnosis of schizoaffective disorder. The age of the patients 

also ranged from 26 to 64 years. This chapter summarizes the findings from the 

different experiments that were carried out and describes a basic approach to how 

findings from different experiments can be combined to be more informative than a 

single experiment.  

8.1 Mismatch Negativity 

Chapter 4 described the results and observations from the auditory oddball 

experiment conducted in the healthy control and patient groups. The auditory oddball 

paradigm was based on a widely accepted paradigm proposed in (Näätänen et al., 

2004). This paradigm efficiently used standard tones and five different types of 

auditory oddball or deviant tones (duration, frequency, intensity, location, gap) in a 

single experiment that lasted approximately 25 mins long. The mismatch negativity 

(MMN) signal obtained from the difference of ERP response to standard and deviant 

stimuli during an auditory oddball experiment is a representation of automatic pre-

attentive alerting mechanism observed in healthy subjects. It has been used as an index 

for attention switching capacity, loss of grey matter, etc; more so in patients 

demonstrating psychotic behaviour than other neuropathologies (Näätänen et al., 

2012).   

Using the multiple-deviant paradigm proved advantageous as the analysis of the 

EEG recordings during the task showed differences in the responses to the 5 deviant 

tones. Event-related potentials analysis (ERP) showed that each deviant type produced 

unique responses. As a result, MMNs obtained from comparing the deviant ERPs with 

standard tone ERP were observed to exhibit variable time domain characteristics 
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including average/peak amplitude and peak latency. These ERP measures were 

extracted from each deviant type, from both the healthy control and patient group 

subjects and at multiple recording locations from the midline electrodes (Fz, FCz, Cz, 

CPz, Pz). This generated a large and comprehensive dataset of objective measurements 

from each single experiment. Applying analysis of variance (ANOVA) on these 

measurements, statistical differences were seen based on multiple factors including the 

deviant type, subject group (control, schizophrenia, schizoaffective), and recording 

location. The average MMN amplitudes for all deviant types were found to be largest 

at the frontal electrodes Fz and FCz. Both the schizophrenia and schizoaffective 

disorder patients showed a significant decrease in average MMN amplitude when 

compared to healthy control subjects. For the MMN peak amplitude, an interaction 

was also observed between the subject groups and electrode location. Compared to the 

control subject group, the peak amplitude was significantly reduced in patient groups 

only at the first three midline electrodes (Fz, FCz, and Cz). The MMN peak latencies 

were also found to be significantly longer in both the patient groups, when compared 

to healthy control subjects. The MMN peak latencies showed an interaction between 

the deviant type and subject group factors. The location deviant MMN peak latency 

was found to be significantly longer in schizophrenia group compared to both control 

and schizoaffective disorder group. On the other hand, duration and gap deviant MMN 

peak latencies were significantly longer than control group only in the schizoaffective 

disorder patients. This analysis displayed the importance of recording from multiple 

locations and using multiple deviant types. The analysis also highlighted that there 

were differences, not only between healthy controls and patient groups, but also within 

the patient group. 

The observations of the EEG response to the auditory oddball task were 

furthered by studying the time-frequency decomposition or event related spectral 

perturbation (ERSP) of standard and deviant tones. Visualizing the average control 

group ERSP at the Fz and Cz electrodes showed a synchronisation of the delta/theta 

band (2-16Hz) within the first 200-300ms of stimuli. It also showed that this 

synchronisation was stronger when deviant tones were presented. Though all the 

deviant ERSP responses showed these similarities, they also showed differences in the 

synchronisation patterns and relative timing. When compared to the standard tone 
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ERSP, the intensity deviant ERSP response showed a desynchronisation of delta/theta 

band activity following the initial synchronisation. Similar to the MMN amplitude, the 

relative delta/theta band synchronisation to deviant stimuli were weaker or absent at a 

group level in patients. Also, similar to the MMN response, there were subtle 

differences between the patients diagnosed with schizophrenia and schizoaffective 

disorder. These differences varied across the deviant types and have been detailed in 

Chapter 4. Statistical comparisons were made between the standard and each deviant 

ERSP, but the higher-level features like peaks and latencies were not extracted from 

the ERSP response. The ERSP response was visualized to better understand the 

underlying frequency contribution to the time-domain signal. Extracting higher level 

features would have only diminished the granularity provided by the analysis. 

The MMN peak amplitude and peak latency measures computed at electrode Fz 

were correlated with the patient PANSS (Kay et al., 1987) and MADRS (Montgomery 

& Asberg, 1979) scores. The results from this analysis were not encouraging as we did 

not find many significant correlations or that agreed with the previously reported 

literature. While this analysis would benefit from larger patient population, it also 

likely signified that the MMN response was a result of complex processes and 

interactions in the brain. Thus, it was unlikely to be completely defined with 

correlations computed between high level features extracted from experimental 

measurements and clinical ratings of patients using the PANSS and MADRS 

questionnaires. Each type of analysis provided with different insights about a subject 

and added to a multi-dimensional descriptor that defined their neuropathology. Same 

was applicable to behavioural measures computed from other tasks in this thesis. These 

objective measurements from the subjects defined a set of physiological and 

behavioural response measures that incorporated a more holistic view of an individual. 

New subjects can be studied in the context of their position in the high-dimensional 

distribution created by these measurements, taken from either healthy control subjects 

or patients with known clinical diagnosis. This could provide a suitable starting point 

for physicians diagnosing these subjects within a clinical setting. This idea is further 

explored in section 8.5 and Chapter 9. 

The statistically significant results from the auditory oddball experiment were 

encouraging. The task is especially important in diagnosing patients within the 
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schizophrenia spectrum of disorders as it does not involve active participation of the 

subjects. Having observed statistical differences between patient groups in measures 

computed from EEG response increased the significance of the experiment, and further 

justified its inclusion within a diagnostic test protocol like DeSIPhER. 

8.2 Stroop Task 

Chapter 5 outlined the findings from administering a computerized Stroop task. 

This type of task has long been used in psychology and neuroscience research to study 

the information processing and conflict resolution capabilities. It has also been 

extensively used in studying the decline in these processes caused due to various 

neuropathologies. In this experiment the subjects were presented with two types of 

trial: congruent (colour name written in same colour ink), and incongruent (colour 

name written in a conflicting colour ink). The subjects were instructed to select the 

correct trial type within a set response period. EEG activity was also simultaneously 

recorded while the subjects were performing the task. One of the major drawbacks of 

this experiment was the change in task parameters between healthy control subjects 

and patients which was done to make the task easier to perform for the patients. This 

was done after the experiment was conducted with the first patient P1 and it was 

observed that he had significant difficulty in performing the task (22% accuracy). An 

amendment was made to the protocol and the stimulus duration was increased from 

150ms to 200ms, and the response window was increased from 1000ms to 1200ms for 

rest of the patients. This change prevented us from making any direct comparisons 

between the control and patients groups. The analysis was focused on studying the 

differences between the response to congruent and incongruent task conditions within 

each group. We also grouped the schizophrenia and schizoaffective disorder patients 

separately to examine any differences in their response. 

The first analysis for this experiment was conducted on behavioural 

performances of healthy controls and patients. Upon this analysis, the second major 

drawback of the experiment was encountered. Stroop effect – that is an increase in the 

response time during incongruent trials compared to the congruent trials, was not 

observed in both the groups. Instead, 18 out of the 24 total subjects (18 healthy 

controls, 6 patients) control showed an increased average response latency to the 
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congruent trials. It is likely that the larger number of incongruent trials (approximately 

75%), and the use of “MATCH”/“NO MATCH” response, were the reasons why the 

traditional Stroop effect was not elicited. Section 5.5.1 investigated the behavioural 

results and discussed the changes that could be made to observe the desired results. 

The behavioural analysis of the task showed that despite making the task easier for the 

patient group, patients had significant difficulty in performing the task with only one 

patient with accuracy greater than 90%. All control subjects had an accuracy of greater 

than 90%. 

EEG data was analysed using ERP and ERSP measurements. Statistical tests 

revealed significant differences between congruent and incongruent trials in healthy 

control subjects. In patients these differences were not significant which likely also 

resulted in the decline in behavioural performance of the group. EEG measures P300 

peak amplitude and P300 peal latency were computed from both the control and patient 

groups. The P300 peak amplitude showed a pattern across the five midline electrodes 

(Fz, FCz, Cz, CPz, and Pz) which was opposite between patients diagnosed with 

schizophrenia and schizoaffective disorder. Similar to the MMN findings from 

Chapter 4, this finding pointed towards differences between the patient groups based 

on their clinical diagnosis. Specifically, from the Stroop task, it was demonstrated that 

the poor performance in schizophrenia patients was likely a result of difficulty in motor 

preparation, while in schizoaffective disorder patient a result of lack of frontal 

processing of interfering stimuli.  

The ERSP analysis in healthy control group showed a stronger frontal 

synchronisation of delta/theta band activity, associated with distinguishing the type of 

stimuli, was seen earlier in the trial. This was followed by a larger parietal 

desynchronisation of alpha/beta activity, representing the motor response preparation 

and execution. This pattern of response was observed in both congruent and 

incongruent trials, with congruent trials showing both stronger synchronisation of the 

delta/theta band, and stronger desynchronisation of the alpha/beta band. The two 

patient groups showed differences in their ERSP measures. In schizophrenia patients, 

the delta/theta synchronisation was weak, and alpha/beta desynchronisation was 

strong. In schizoaffective disorder patients, delta/theta synchronisation was absent in 

both task conditions, and alpha/beta desynchronisation was stronger compared to the 
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schizophrenia patients. This further indicated that there may be a lack of frontal 

processing in schizoaffective disorder patients, while the motor preparation and 

execution activity was not affected. In both the patient groups the desynchronisation 

of activity had a wide spread both time and frequency dimensions.  

Correlation analysis was used to establish a relationship between behavioural 

response, EEG activity, and demographic data of healthy controls and patients. 

Significant relationships were found only in a few cases. This was not very 

encouraging and could benefit from data collected from larger groups of both healthy 

control subjects and patients, and a more robust Stroop task design.  

8.3 Cognitive Testing Using CANTAB 

In Chapter 6 the healthy control subjects and patients were subjected to a set of 

behavioural tests designed for cognitive assessment. Patients diagnosed within the 

schizophrenia spectrum suffer from moderate to severe cognitive decline, with 

cognitive impairments even preceding the onset of psychosis (Keefe & Harvey, 2012). 

The computerized Cambridge Neuropsychological Test Automated Battery 

(CANTAB) was used for administering the cognitive tests. Five tests were chosen to 

assess motor coordination (Motor screening or MOT), speed of response (Reaction 

time or RTI), visuo-spatial memory and association (Paired associate learning or  

PAL), spatial working memory (SWM), and verbal memory (Verbal recognition 

memory or VRM). Shortened versions of the tests were chosen to obtain a quantitative 

measurement of these cognitive abilities in a relatively short time. On average the 

experiment took a total of approximately 40 minutes. 

Based on the task, different measures of cognitive performance were computed 

for both the healthy control subjects and patients. Several conclusions were drawn 

using t-test statistical comparisons between the group performances. The MOT and 

RTI task outcomes demonstrated that although the patients were able to grasp the task 

objective, they had a slower response and longer movement durations. In the PAL task, 

the patients made significantly more errors than the control subjects. These 

observations have been previously shown to be indicative of hippocampal loss (Kéri 

et al., 2012), and an early sign of psychosis (Bartók et al., 2005). The spatial working 

memory task quantified how efficiently a subject was able to retain and access the 
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information needed to perform the task. The results from the experiments suggested 

that patients had significantly more difficulty in strategically carrying out the task. The 

spatial working memory performance was also found to be dependent on the age of 

both controls and patient groups. In the VRM task, patients were observed to have 

significantly more difficulty in recalling the words previously presented to them. 

Compared to the healthy control subjects, they were also more likely to pick the wrong 

word when presented with a choice between a previously presented word and a 

distractor. 

Further, correlations across the different task performances were computed to 

determine if they were informative of each other. In both control subjects and patients, 

similar measures like the error and strategy scores in SWM task were significantly 

correlated. In patients, compared to healthy controls a relatively greater number of 

significant relationships between task performances were seen. This was likely due to 

the overall decline in performance on all tasks in the patient group. Tasks chosen in 

the CANTAB experiment were selected to capture different cognitive abilities of the 

subjects. The results from the inter-task correlations further strengthened our 

confidence that performance in any given task could not be reliably inferred from 

another. Correlations were also calculated between task measures and the scores 

assigned by the PANSS and MADRS assessments of patients. No significant 

relationships were found, indicating that the two assessments carried out by clinically 

trained staff contained important information not easily captured by the cognitive tests. 

Unlike the two previous experiments, extensive comparison within the patient group 

based on their differing clinical diagnosis was not reported. This was because no 

statistical differences were observed between the schizophrenia and schizoaffective 

disorder patients, except in the case of mean error in MOT task (two-sample t-test, 

p=0.045).  

8.4 Emotion Recognition Task 

Facial emotion recognition task elaborated in Chapter 7 was the final experiment 

conducted in the pursuit of a comprehensive diagnostic protocol. This experiment was 

included in the protocol to specifically study and quantify the emotional deficits 

exhibited by patients within the schizophrenia spectrum of disorders. In this 
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experiment, subjects had to perform a simple facial emotion recognition task by 

categorizing the facial schematic images presented on the screen as either neutral, 

happy, angry, or sad, by using a button press response. The behavioural responses 

along with the EEG activity during the experiment were recorded for post-hoc 

analysis. 

The behavioural response to the task showed a large deficit in patients when 

compared to the control subjects (fig 7.2). The deficit in schizophrenia patients was 

significantly larger than the deficit in schizoaffective disorder patients. Schizophrenia 

patients had the highest error rates in the angry and sad trials. The average trial 

response latency in schizophrenia patients was also much longer, while the 

schizoaffective disorder patients exhibited response latencies that were closer to that 

of control subjects. It was interesting to see significant behavioural differences 

between the two patient groups, unlike in previous experiments. 

A different approach was taken in the analysis of EEG data collected during this 

experiment, when compared to the auditory odd-ball and Stroop tasks. Those two tasks 

have been widely researched for decades and a standardized set of analysis already 

exists. The study of emotion deficits in schizophrenia spectrum of disorders is 

relatively new, and researchers have been exploring different tasks, types of stimuli, 

analysis methods, etc. in this field. This was evident from research papers reviewed in 

Chapter 7. Due to the novelty of the task employed by the research community, the 

EEG activity from all the electrodes was analysed, unlike the previous two EEG 

experiments. Also, as opposed to looking for differences in responses between task 

conditions, which is critical both in auditory oddball and Stroop tasks, the group level 

differences were targeted for each type of facial emotion stimuli. 

The time-series ERP analysis of all the electrodes on the scalp (fig 7.3 to 7.6) 

led to the finding that frontal electrodes FP1 and FP2 showed statistical differences 

between control subjects and patients for every facial emotion stimulus (neutral, 

happy, angry, or sad). Large facial perception related ERP components, namely: P100 

and N170, were also observed at electrode P8 in control subjects. These components 

were diminished in the patients. Measures were extracted for statistical analysis from 

the facial perception components, and frontal FP1 electrode. Significant results were 

found in all the cases, which reinforced the findings from literature and added a new 
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finding from the activity observed at FP1. Unlike the previous two EEG experiments, 

the measures extracted from the ERP waveforms did not show statistical differences 

between the schizophrenia and schizoaffective disorder patients. 

ERSP analysis was also conducted on the FP1 and P8 electrodes. Due to the lack 

of difference in the ERP response between the schizophrenia and schizoaffective 

disorder patients, all patients were grouped together. Statistical comparisons made 

between healthy control subjects and patients showed significant differences. The 

response at electrode FP1 in patients showed a weaker delta/theta synchronisation 

when compared to the control subjects. Similar patterns were observed in the response 

at P8 electrode with very weak or absent delta/theta synchronisation in patients when 

compared to the control subjects. The absence of delta/theta synchronisation reflected 

the diminished P100 and N170 components in the patient group. At both the FP1 and 

P8 electrodes, patients had a wider time and frequency spread in alpha/beta 

desynchronisation when compared to the control group alpha/beta desynchronisation.  

The attempts at establishing relationships between behavioural measures, EEG 

measures, and subject demographic data, were mostly unsuccessful. This could be 

attributed to factors like smaller patient group (more so when it is split by clinical 

diagnosis), complex relationships between the EEG dynamics and manifestation of 

behaviour, and subjective variability in how the symptom severity scores were 

assigned. However, the results obtained from a small number of subjects for this 

simple facial emotion recognition task, were encouraging. Also, this task gave a 

perspective of the emotional deficits in patients, which was missing from the other 

experiments in the protocol. All these reasons warrant for a study with larger sample 

size, more specifically with patients spanning the spectrum of schizophrenia disorders.  

8.5 Combined Analysis 

In the chapters of this thesis, and as summarized in the previous sections, 

behavioural and/or neurophysiological responses were investigated from individual 

experiments. However, a kitchen-sink analysis of observations from all experiments 

has the potential of being more informative than each individual experiment. While an 

extensive study on combining and analysing the various behavioural and EEG 

measures is out of the scope of this thesis, we used Principal Component Analysis 
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(PCA), a popular dimensionality reduction technique, on measures computed across 

the experiments. PCA can be used to visualize the high-dimensional heterogeneous 

distributions of data collected from different experiments by projecting it in 2 or 3 

dimensions. 

Table 8.1 Experimental measures used as features in PCA analysis. 

Table 8.1 lists all the 51 experimental measures that were used to as input 

features to the PCA algorithm. Only the measures computed from 3 out of the 4 

experiments were used for this analysis as a direct comparison between control and 

Experiment 
Number of 

Features 
List of Features 

Mismatch 

Negativity 
10 

• MMN peak amplitude at Fz from all deviants (5) 

• MMN peak latencies at Fz from all deviants (5) 

CANTAB 13 

• MOT (1) 

− Median latency 

• RTI (6) 

− Simple accuracy score 

− Five-choice accuracy score 

− Mean simple reaction time 

− Mean five-choice reaction time 

− Mean simple movement time 

− Mean five-choice movement time 

• PAL (2) 

− Total adjusted errors 

− Total adjusted errors (6 shapes) 

• SWM (2) 

− Between errors 

− Strategy 

• VRM (2) 

− Immediate Free recall correct 

− Immediate Recognition correct 

Facial 

Emotion 

Recognition 

Task 

28 

• N170 peak amplitudes (4 emotions) 

• N170 peak latencies (4 emotions) 

• P100 peak amplitudes (4 emotions) 

• P100 peak latencies (4 emotions) 

• P300 at FP1 mean amplitude (4 emotions) 

• Behavioural measures: (8) 

− Percent Correct (4 emotions) 

− Response Latency (4 emotions) 

Total 51  
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patient groups could not be made for the computerized Stroop task. We can see from 

the table 3.2 in Chapter 3 that 15 out of the 19 healthy control subjects recruited for 

this study completed the mismatch negativity experiment, CANTAB, and emotion 

recognition tasks successfully. Therefore, data collected from 15 control subjects and 

all 6 recruited patients was used to compute the principal components with the PCA 

technique. 

The reduced 2-dimensional visualization of the 51 features is shown in figure 

8.1. Figure 8.1a shows the plot of cumulative variance of the 21 principal components 

(restricted to 21 by the total number of observations), and figure 8.1b visualizes the 

distribution of all subjects in first and second principal component. The gradual 

increase in the cumulative variance (fig 8.1a) signifies that the data collected by the 

experiments is varied and cannot be captured by a few dimensions. The figure 8.1b 

shows that even with only 56% of the variance accounted by the first two principal 

components, the patient distribution can be easily separated from the control subjects. 

The distribution shows some interesting patterns. The first principal component that 

accounts for approximately 43% of variance in the data splits the subjects in two 

groups with all control subjects on the left side of the x-axis. All the patients except 

Patient P2 are separated from the control subjects on the right side of x-axis. The 

second principal component which accounts for an additional 13% of the variance in 

Figure 8.1 Dimensionality reduction and visualization using PCA computed on 

measures obtained across experiments in the protocol. a. Cumulative variance 

captured by PCA components. b. Subject distribution in two-dimensional space 

created by first and second principal components.    
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the data is observed to capture the differences across the control subjects. This is 

shown by the lighter green (no-fill) circles for individual control subjects spanning the 

y-axis of the plot in figure 8.1b. Patient P2 who was the youngest patient in our group 

is seen at upper end of this component. The three patients with schizophrenia diagnosis 

(P4, P5, and P6), are seen close to one another in the plot. Finally, Patient P3, who is 

seen furthest away from both healthy controls and other patients, was a patient of 

schizoaffective disorder with a likelihood of bipolar syndrome disorder. 

 

The results shown in figure 8.1 provide a preliminary demonstration of how data 

can be combined across the experiments in our protocol. It also shows the benefits of 

conducting experiments that target different aspects of the pathology exhibited by the 

schizophrenia spectrum of disorders.



 

 

CHAPTER 9. LIMITATIONS, FUTURE WORK AND 

CONCLUSION
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This chapter discusses the limitations of the study, while proposing possible 

improvements to the protocol. Further, it is outlined how this protocol could benefit 

from a larger clinical study and be useful for early diagnosis of high-risk patients. The 

chapter is concluded with suggestions of ways in which the multi-dimensional diverse 

data obtained from the experiments, can be efficiently used to aid, and guide the 

physicians in making a diagnosis.  

9.1 Limitations and Suggestions for Future Work 

The experiments conducted for this study were limited by the number of 

clinically diagnosed patients recruited within the scope of the study. Only six patients 

could be recruited within the time frame allotted for the study. Although it was not 

intentional, all the recruited patients were male. The power of the results and analysis 

was further reduced due to smaller sample size created by the difference in clinical 

diagnosis of the patient group. Coincidently, the patient group was split into 50% with 

three patients with the clinical diagnosis of schizophrenia and the other three 

categorized as schizoaffective disorder. Therefore, after the data was collected from 

the patients, it was decided to conduct analysis on the two patient groups based on 

their clinical diagnosis. As mentioned previously, this led to a lower power in the 

results. But it also resulted in finding differences in the EEG activity between the 

patient groups. Data from all the patients as a group on its own was also analysed. 

Another limitation to note was that the scoring for PANSS (Kay et al., 1987) and 

MADRS (Montgomery & Asberg, 1979) were not conducted by a single research 

nurse. Chapter 5 showed that in the Stroop experiment, a traditional Stroop effect was 

not elicited in both healthy controls and patients. This discrepancy was due to the 

design parameters of the task. The changes that would be required to observe the 

desired traditional Stroop effect have been discussed in section 5.4.1.  

Having observed differences between the two clinical groups across multiple 

experiments, it becomes necessary to study larger groups of patients within the 

schizophrenia spectrum. It is also important to explore the whole spectrum of patients 

in the study with specific disorders like schizophrenia, schizotypal, schizoaffective 

disorder, delusional disorder, etc, because each sub-type manifests itself differently in 

its patients. 
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One of the major limitation of the study was that the patient group was not age 

or sex matched with the healthy control group. The effect of difference between the 

groups on the observations from various experiments is discussed in subsection 9.1.1. 

There are few other areas where the study could have been improved. These either 

come in the form of improvements to the methodology, or a deeper investigation into 

different ways of analysing the collected data. This is discussed in the subsections 

9.1.2 to 9.1.4. 

9.1.1 LIMITATIONS DUE TO AGE AND SEX 

The average age of the patient group recruited into the study was comparatively 

higher than the average age of healthy control group. The patient group had an age 

distribution of 48.0 ± 13.6 years (mean ± std) while the healthy control group had an 

age distribution of 30.4 ± 8.5 years. Also, while the distribution of control group had 

females (n=9) along with males (n=10), the patient group comprised only of males 

(n=6). The experiments in this thesis used auditory and visual stimulus while recording 

behavioural and EEG response in subjects. With the inclusion criteria of normal or 

corrected vision and the exclusion criteria of colour blindness in both control and 

patient groups, it can be safely assumed that differences in sight of the two groups 

were insignificant. While only subjects with normal hearing were included in the 

study, there were still age and sex related differences in hearing (Roth et al., 2011; 

Wiley et al., 2008) that were potential confounding factors in the observations made 

from the auditory oddball task. Also, an age-associated cognitive decline (Deary et al., 

2009; Salthouse, 2009) and differences in cognitive functioning between males and 

females (Miller & Halpern, 2014; Weiss et al., 2003) have been reported. This section 

highlights how the age and sex differences between our healthy control and patient 

groups could have biased the observations experiments carried out in this thesis. The 

observations across all experiments were mentioned except for the Stroop task as no 

comparison was made between healthy control and patient groups in that task. 

9.1.1.1 MISMATCH NEGATIVITY 

In the correlation analysis of MMN peak amplitude and peak latency with the 

age of patients and control subjects (Section 4.5.7) we found results consistent with 

the published literature. All the deviant MMN peak amplitudes in control subjects were 
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negatively correlated with their age. This was true for most of the deviant types in 

patients as well. This indicated an age-related decline in MMN peak amplitude which 

was consistent with the literature, albeit only for duration and frequency deviants 

(Cheng et al., 2013; Cooper et al., 2006; Näätänen et al., 2012; Nowak et al., 2016; 

Pekkonen, 2000; Tsolaki et al., 2015). Therefore, age was one of the confounding 

factors in the observation of significantly decreased MMN peak amplitudes in the 

patient groups. A similar argument could be made for the significantly longer MMN 

peak latency in the patient group, as it has also been shown to increase with the age of 

subjects (Cooper et al., 2006; Näätänen et al., 2012; Nowak et al., 2016; Tsolaki et al., 

2015). In this study, we also found a positive correlation between the age of control 

subjects and frequency, intensity, and location MMN peak latencies. There was a 

positive correlation between peak latencies and age of patients in the schizophrenia 

patient group across all the deviants except for the gap MMN; implying that older the 

patient, the later the peak of the MMN due to duration, frequency, intensity, and 

location deviants. In schizoaffective disorder patient group, a positive correlation 

between the age and peak latencies was observed across all the deviants. 

There have been inconsistent reports about the effect of sex on MMN peak 

amplitude and peak latency (Matsubayashi et al., 2008). Kasai et al. showed no effect 

of sex on MMN (Kasai et al., 2002). Brossi et al. found significantly shorter frequency 

MMN latency in females compared to males, and non-significant but larger frequency 

MMN amplitude in females (Bortoleto Brossi et al., 2007). Toufan et. al found 

significantly longer MMN latency due to frequency deviant in females than males. 

Although, larger frequency MMN amplitude were observed in the females than males, 

the results were non-significant (Toufan et al., 2021). Given the inconsistencies in 

these results, it is unclear if the presence of females in our control group was a 

confounding factor. It can be speculated that because females are likely to have larger 

MMN amplitude based on studies by Brossi et al. and Toufan et al., the differences 

between the MMN amplitudes of control and patient groups was exacerbated due to 

absence of female patients. 
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9.1.1.2 COGNITIVE TESTING USING CANTAB 

CANTAB was used to administer standardized cognitive tests to control and 

patients groups. The effect of age and sex on these tasks is discussed here. 

 The results from both the motor screening (MOT) and reaction time (RTI) tasks 

showed that patients were slower in their reaction and movement times when 

compared to control subjects. Though we did not find significant correlations with 

most of these measures and ages of our control or patient groups, older individuals 

consistently show slower reaction times (Berchicci et al., 2013). This is true for both 

simple reaction tasks and choice-reaction tasks (R. A. Abbott et al., 2019; Falkenstein 

et al., 2006). This indicated that age factor played a role in the longer reaction times 

observed in our patient group. The effects of sex were difficult to detect – with some 

studies finding no significant differences between reaction times of males and females 

(R. A. Abbott et al., 2019; Keshavarz & Dehghanizade, 2020) and others finding faster 

reaction times in males (Adam, 1999; Karia et al., 2012). Therefore, it was unlikely 

that the absence of females in the patient group contributed to any significant 

difference in the results. 

The paired associate learning (PAL) task that tested visuo-spatial episodic 

memory showed no significant correlation between the age of either control or patient 

group and the total error. However, Abbott et al. showed a significant effect of the age 

variable in their linear regression model fitting the PAL total error score (R. A. Abbott 

et al., 2019). Other studies on episodic memory have also shown an age related decline 

in middle-aged (48-62) and older (71-83) subjects (Kinugawa et al., 2013; Korkki et 

al., 2020). This suggested that age was a confounding factor because older healthy 

subjects showed larger PAL total error. Differences in episodic memory have also been 

observed in sex-based comparison. Although the study by Abbott et al. did not find 

sex as a significant factor in their correlation model for PAL total error (R. A. Abbott 

et al., 2019), other studies have shown males to have a better visuo-spatial episodic 

memory while females had a better verbal episodic memory. (Herlitz et al., 1997; 

Herlitz & Rehnman, 2008; Pauls et al., 2013). These observations suggested that with 

only male patients in the patient group, the increase in PAL total errors likely was not 

confounded by the sex factor.  
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The spatial working memory (SWM) task that assessed the spatial memory in 

control and patient groups resulted in a significant positive correlation of  SWM 

between error and SWM strategy measures with age. A similar observation was made 

by Abbott et al. with healthy control subjects (R. A. Abbott et al., 2019) and age-

associated decline in spatial memory have been previously demonstrated (Barnes, 

1988; León et al., 2016). This denoted that performance on this task was confounded 

by the age of the subjects. Sex-associated differences in spatial memory across 

multiple studies showed that males are better at spatial memory tasks than females 

(León et al., 2016; Persson et al., 2013; Postma et al., 2004). The study by Abbott et 

al. also found males to be better at the SWM task (R. A. Abbott et al., 2019). Also, the 

observations of better visuo-spatial episodic memory in males compared to females 

from previously cited research (Herlitz et al., 1997; Herlitz & Rehnman, 2008; Pauls 

et al., 2013) further confirmed the sex-associated differences. Therefore, the absence 

of females in the patient group was unlikely to be a confounding factor contributing to 

the higher SWM error and SWM strategy measures in the patient group. 

Lastly, the verbal recognition memory (VRM) task assessed the verbal memory 

based on free recall of presented words and recognition of presented words in presence 

of a distractor. While a significantly poor performance in the patient group compared 

to the control group was observed, no significant correlations of the performance 

measures with the age of subjects were found. However, published literature has 

shown an age-associated decline in verbal memory of healthy subjects (Bleecker et al., 

1988; Kramer et al., 2003; Lamar et al., 2003). Verbal memory has also been shown 

to be better in females compared to males (Bleecker et al., 1988; Lamar et al., 2003; 

Sundermann et al., 2016), with age-sex interactions indicating that younger females 

do not show age-related decline (Kramer et al., 2003). The most recent meta-analysis 

pointed to potential bias in the publications, however it concluded that females have  a 

slight advantage over males in specific types of verbal fluency, recall, and recognition 

(Hirnstein et al., 2022). These observations from published research on verbal memory 

indicated that age and sex were likely significant confounding factors in the results 

obtained from the VRM task. The patient group was all male and the mean age of 

patients was higher than the healthy control group that comprised of both males and 
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females. Therefore, both the age and sex factors played a role in contributing to the 

poorer performance on the VRM task. 

9.1.1.3 EMOTION RECOGNITION TASK 

In Chapter 7 we studied the behavioural response to the emotion recognition 

(ER) task and observed a deficit in patient group in both the percentage of correct trials 

and trial response latency. We also found that our patient group (and more specifically 

the schizophrenia subgroup) were worse at recognizing angry and sad expressions 

compared to the control group. The patients were also observed to be significantly 

slower at recognizing happy expressions compared to control subjects. The correlation 

of the percentage of correct trials and trial response latency measures with age of 

patients showed that older patients had smaller percent of correct trials, and longer trial 

response latencies. Age-related decline in facial emotion recognition has been 

demonstrated in several published studies (Isaacowitz et al., 2007; Khawar et al., 2014; 

Orgeta & Phillips, 2007; Sasson et al., 2010; Sullivan et al., 2007). There is also 

evidence of older healthy subjects having more difficulty in recognising negative 

emotions such as sadness, anger, and fear. Sex-related differences have also been 

observed in emotion recognition. Female subjects have been shown to be more 

accurate (Montagne et al., 2005; Sasson et al., 2010; Saylik et al., 2018; Wingenbach 

et al., 2018) and faster (Saylik et al., 2018; Wingenbach et al., 2018) at emotion 

recognition. There have also been studies with schizophrenia patients showing sex-

related differences (Erol et al., 2013; Weiss et al., 2003). From these previously 

observed age and sex related effects it was highly likely that both age and absence of 

females in the patient group were confounding factors in the behavioural observation 

from the ER task. 

The face processing P100 and N170 components measured at electrode P8 in our 

experiment were significantly larger in amplitudes in control group compared to the 

patient group. The N170 component peak latency in patient group was also observed 

to be significantly longer than the N170 peak latency in control group. There is 

evidence of age (Boutet et al., 2021; Rousselet et al., 2010) and sex (Choi et al., 2015; 

S. A. Lee et al., 2017; Sun et al., 2017) related differences in these early face 

processing components. Larger N170 (Choi et al., 2015) and P100 (S. A. Lee et al., 

2017) peak amplitudes have been observed in females compared to males. Females 
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have been shown to have shorter N170 and P100 peak latencies compared to males 

(Sun et al., 2017). Therefore, similar to the behavioural response in the ER task, it was 

likely that the deficits observed in face processing components recorded from patient 

group were confounded by both their age and absence of females in the group. 

9.1.2 EEG RECORDING SETUP 

In Chapter 3 the recording setup used in the EEG experiments was described. 

Setting up the EEG recording involved putting the cap on, connecting the electrodes, 

and using a conductive gel to reduce the impedance for a cleaner recording. The 

electrodes used in the experiments were passive, meaning the recorded signal had to 

be transmitted to an external amplifier through cables. Generally, wet passive 

electrodes record a relatively good quality of signal, however, they have the following 

drawbacks. The use of conductive gel increases the setup time and is later inconvenient 

for the subjects, as it needs to be washed off. One of the primary reasons only half the 

electrodes were used for recording in patients compared to the healthy subjects, was 

to reduce the setup time. Secondly, as the electrodes are passive, the cables are prone 

to pick up line noise, and other kinds of artefact before the signal even reaches the first 

stage of amplification. 

In the recent years, active electrodes with built-in amplifiers are becoming more 

popular. There are also dry-active electrode setups that do not require any kind of 

conductive material to be applied at the recording site. Several studies have been 

conducted to compare the performance of active electrodes and even dry active 

electrodes, with the more traditional wet passive electrode setup. As newer electrodes 

designs have come forward, the gap between the wet electrodes and dry electrode has 

reduced (Di Flumeri et al., 2019; Mathewson et al., 2017; Radüntz, 2018). The dry 

active electrodes also come with an additional advantage of reduced setup time, and 

no requirement of post-recording clean-up. For these reasons, usage of dry active 

electrode setup in the experiments could have significantly reduced the setup time, 

without a significant sacrifice in signal quality. The minor reduction in signal quality 

could be mitigated with increased number of trials incorporated within the same total 

duration of the experiment. The reduced setup time would also help with reducing the 

anxiety and lack of patience, more likely to be observed in patient groups. This would 
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lead to a more reliable experimental outcome, that is not significantly affected due to 

the longer wait times before the recording can begin. 

9.1.3 EEG SOURCE LOCALIZATION 

The EEG activity recorded from the scalp electrodes is a result of many localized 

regions of neural activity generating the signal. Depending on where in the brain these 

sources reside, and how strongly they are activated, they all contribute to the activity 

observed on the scalp electrodes. In the experiments presented in this thesis, the 

observed scalp activity was analysed for its time-course and time-frequency 

decomposition. Some conclusions on the region of the activity were also drawn based 

on the electrode position and activation patterns. However, as the observed scalp 

activity on any electrode is a combination of many distributed sources (variably 

influencing it), decomposing and localizing the signal into these underlying sources 

can be more insightful.  

There have been several different techniques and algorithms designed to 

accomplish these decompositions. Algorithms like minimum norm (MN), LORETA, 

etc. perform localization directly on the observed EEG activity. These result in smooth 

source activation maps, either on the surface of the brain, or distributed through its 3D 

volume (Michel & He, 2019). Another approach is to first decompose the EEG signals 

using independent component analysis (ICA), followed by fitting dipoles to these 

components (Delorme et al., 2012). These localization algorithms have been shown to 

work better with higher density EEG recordings of 64 electrodes to 256 electrodes. 

Though sources deduced from lower density recordings with <32 electrode arrays can 

still provide valuable insight, they often result in incorrect or blurred localizations 

(Michel & Brunet, 2019). Using approximately 32 electrodes for recording EEG from 

the patient group was one of the reasons source localizations was not pursued in the 

study. Being able to conduct such type of analysis is another reason in the favour of 

using high-density (>64 electrodes), dry active electrode arrays with low setup times.   

9.1.4 MULTI-VARIATE HIGH-DIMENSIONAL DATA ANALYSIS 

Schizophrenia or schizophrenia spectrum disorders manifest in the form of 

diverse and complex symptomology. Patients suffer from positive symptoms like 

delusions and hallucination, negative symptoms like diminished emotional expression 
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and avolition, and cognitive decline. The diversity in the neurophysiology within the 

patient group participating in this study, was also observed in the analyses carried out 

on individual patients. The goal in collecting data from multiple experiments for each 

subject, was to create a holistic picture of the patient’s psychological, 

neurophysiological, and cognitive state. 

Several features were observed and extracted from the different experiments, 

like the performance on various CANTAB tasks, MMN peak amplitudes and peak 

latencies for different deviant types, etc. Multi-variate statistical analysis on subsets of 

these features were also carried out, and significant relationships, that were 

informative of the subjects’ behavioural and neurophysiological state, were found. 

Such analyses can provide the knowledge of feature distributions with respect to a 

group of subjects, for example patients diagnosed with schizophrenia. However, in a 

clinical setting, when a new subject/patient is encountered, and similar tests are 

administered, a prediction needs to be made. This prediction needs to be informative 

to the physician or the clinical staff, giving them an objective measure about where 

this new subject lies in the spectrum of healthy individuals, schizophrenia, 

schizoaffective disorder, etc.  

There are several emerging methodologies in the field of data analytics and 

machine learning that are being adapted in the field of healthcare and medical 

diagnostics (G. Cho et al., 2019; Foster et al., 2014; Miotto et al., 2018; Mohr et al., 

2017; Rahman et al., 2020; Rajkomar et al., 2019; Shatte et al., 2019; Waring et al., 

2020). From the data obtained from different experiments conducted in this thesis, for 

example, a classification model can be created to predict if the subject is healthy, or in 

the schizophrenia spectrum. This model can then be used on any new subject 

undergoing clinical diagnosis due to suspected pathology. Another method of using 

the data would be to apply clustering algorithms like k-means, to differentiate between 

healthy controls and patient groups. Subsequently, a new subject can be studied in this 

high-dimensional space. A diagnosis can then be made based on their nearest 

neighbour among the previously studied subjects. In section 8.5 of Chapter 8 we 

demonstrated a preliminary analysis visualizing these high-dimensional heterogeneous 

distributions projected in 2 dimensions using PCA.  
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The types of data analytic techniques briefly outlined here can only be reliable 

with larger groups of healthy controls and patients. The larger numbers are required to 

populate the high-dimensional feature space. With a long-term clinical collection of 

data from larger group of subjects, an informative database can be created. Such a 

database, on one hand can be used to make reliable and robust diagnosis of any new 

subject. On the other hand, it can also be useful in investigating subtle differences 

between different diagnosis within the schizophrenia spectrum, possibly leading to 

specific diagnosis and individually tailored treatments for each patient. As the database 

increases with time, it can potentially lead to new discoveries in the field that were 

previously impossible due to only a part of the whole being investigated. 

9.2 Conclusion 

The aim of this thesis was to design a protocol with relatively easy tasks that 

investigated the heterogeneity in the schizophrenia spectrum of disorders. This 

heterogeneity manifests itself as a combination of positive, negative, and cognitive 

deficits observed in patients. Encouraging results were seen with a small sample group 

of patients when compared to healthy control subjects, giving an assurance that a step 

in the right direction was taken. The observations from figure 8.1 further reinforced 

our confidence that a protocol with assessments targeting various aspects of the 

pathology captured more information than a single diagnostic test.  

Currently, the clinical diagnosis of schizophrenia is based on interviews 

conducted by a mental healthcare professional, such as a psychiatrist, to make a 

diagnosis based on the set of criteria defined in DSM-5 or ICD-11. These criteria have 

been evolving over the years, have been set by experts in the field, and tested in studies. 

However, these criteria do not have a neurophysiological basis and do not require any 

objective measurements of changes in behaviour or brain function. The major 

challenges to translate such a diagnostic protocol in a clinical setting would be to firstly 

incorporate data measures from a larger and more diversified group of healthy subjects 

and patients. Secondly, standardization of the various steps from collecting the data, 

to an automated analysis, and interpretation of results will be required. This 

standardization and automation would reduce the time and expertise needed to collect 

the data, resulting in minimal overhead in time needed and additional training of the 
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clinical staff. Thirdly, the biggest challenge would be to collaborate with mental 

healthcare professional who are inclined to use such a protocol with objective 

measures to supplement their current method of diagnosis. This would require a larger 

research study that could be furthered into a country-wide clinical study in this 

population of patients. Although, this might sound ambitious, the overall idea to have 

a diagnostic method that can be used for an early intervention for schizophrenia was 

the primary focus of this work. 

The need for standardizing the experimental paradigm, analysis pipeline, and 

guidance for clinical assessment through questionnaires like PANSS and MADRS, is 

to reduce the ambiguity and differences between subjects for diagnostic purpose. 

Further, use of automated data analytics techniques will provide a better understanding 

of how the multi-dimensional measures are distributed among the population of 

healthy subjects and patients with varying degrees of pathology. This protocol would 

be useful with other groups such as, high-risk individuals, individuals in their 

prodromal phase of schizophrenia, patients who have more pronounced positive 

symptoms (e.g. auditory hallucinations), etc., to find defining and definitive 

biomarkers through the various EEG experiments and CANTAB.  This can eventually 

lead to a better understanding of the complex neuropathology of schizophrenia 

spectrum of disorders. A heterogeneous diagnostic protocol as presented in this thesis, 

can be a promising tool for mental healthcare professionals who encourage the use of 

a holistic approach of diagnosis that involves clinical assessment of patient’s history, 

environmental factors, and an objective measurement of behavioural and neurological 

manifestations in schizophrenia. 
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APPENDIX C - PANSS AND MADRS 

Positive And Negative Syndrome Scale (PANSS) Rating Criteria 

GENERAL RATING INSTRUCTIONS 

Data gathered from this assessment procedure are applied to the 
PANSS ratings. Each of the 30 items is accompanied by a specific 
definit ion as well as detailed anchoring criteria for all seven rating 
points. These seven points represent increasing levels of 
psychopathology, as follows:  

1- absent 

2- minimal 

3- mild  

4- moderate 

5- moderate severe 

6-  severe 

7-  extreme  

 
 

In assigning ratings, one first considers whether an item is at all 
present, as judging by its definit ion. If the item is absent, it is scored 
1, whereas if it is present one must determine its severity by 
reference to the particular criteria from the anchoring points. Th e 
highest applicable rating point is always assigned, even if the patient 
meets criteria for lower points as well.  In judging the level of 
severity, the rater must utilise a holistic perspective in deciding 
which anchorin g point best characterises the patient’s functioning 
and rate accordingly, whether or not all elements of the descript ion 
are observed. 

The rating points of 2 to 7 correspond to incremental levels of 
symptom severity:  

• A rating of 2 (minimal) denotes questionable or subtle or 
suspected pathology, or it also may allude to the extreme 
end of the normal   range. 

• A rating of 3 (mild) is indicative of a symptom whose 
presence is clearl y establishe d bu t not pronounced and 
interferes litt le in day-to- day functioning. 

• A rating of 4 (moderate) characterises a symptom which, 
though representing a serious problem, either occurs only 
occasionally or intrudes on daily life only to a moderate 
extent . 

• A rating of 5 (moderate severe) indicates marked 
manifestat ions that distinctly impact on one’ s functioning 
but are not all-consuming and usually can be contained at 
will.  
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• A rating of 6 (severe) represents gross pathology that is 
present very frequently, proves highly disruptive to one’s 
life, and often calls for direct supervision. 

• A rating of 7 (extreme) refers to the most serious level of 
psychopathology, whereby the manifestat ions drastically 
interfere in most or all major life functions, typically 
necessitat ing close supervision and assistance in many 
areas. 

Each item is rated in consultat ion with the definit ions and criteria 
provided in this manual. The ratings are rendered on the PANSS 
rating form overleaf by encircling the appropriate number following 
each dimension.  
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PANSS R A T I N G FORM 

  

 
absent minimal mild moderate 

moderate 
severe 

severe extreme 

         

P1 Delusions 1 2 3 4 5 6 7 

P2 Conceptual 
disorganisation 

1 2 3 4 5 6 7 

P3 Hallucinatory behaviour 1 2 3 4 5 6 7 

P4 Excitement 1 2 3 4 5 6 7 

P5 Grandiosity 1 2 3 4 5 6 7 

P6 Suspiciousness/ 
persecution 

1 2 3 4 5 6 7 

P7 Hostility 1 2 3 4 5 6 7 

         

N1 Blunted affect 1 2 3 4 5 6 7 

N2 Emotional withdrawal 1 2 3 4 5 6 7 

N3 Poor rapport 1 2 3 4 5 6 7 

N4 Passive/apathetic social 
withdrawal 

1 2 3 4 5 6 7 

N5 Difficulty in abstract 
thinking 

1 2 3 4 5 6 7 

N6 Lack of spontaneity & 
flow of conversation 

1 2 3 4 5 6 7 

N7 Stereotyped thinking 1 2 3 4 5 6 7 

         

G1 Somatic concern 1 2 3 4 5 6 7 

G2 Anxiety 1 2 3 4 5 6 7 

G3 Guilt feelings 1 2 3 4 5 6 7 

G4 Tension 1 2 3 4 5 6 7 

G5 Mannerisms & posturing 1 2 3 4 5 6 7 

G6 Depression 1 2 3 4 5 6 7 

G7 Motor retardation 1 2 3 4 5 6 7 

G8 Uncooperativeness 1 2 3 4 5 6 7 

G9 Unusual thought content 1 2 3 4 5 6 7 

G10 Disorientation 1 2 3 4 5 6 7 

G11 Poor attention 1 2 3 4 5 6 7 

G12 Lack of judgment and 
insight 

1 2 3 4 5 6 7 

G13 Disturbance of volition 1 2 3 4 5 6 7 

G14 Poor impulse control 1 2 3 4 5 6 7 

G15 Preoccupation 1 2 3 4 5 6 7 

G16 Active social avoidance 1 2 3 4 5 6 7 
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SCORING INSTRUCTIONS 
 

 

Of the 30 items included in the PANSS, 7 constitute a Positive 

Scale, 7 a Negative Scale, and the remaining 16 a General 

Psychopathology Scale. The scores for these scales are arrived at 

by summation of ratings across component items. Therefore, the 

potential ranges are 7 to 49 for the Positive and Negative Scales, 

and 16 to 112 for the General Psychopathology Scale. In addition 

to these measures, a Composite Scale is scored by subtract ing the 

negative score from the positive score. This yields a bipolar index 

that ranges from –4 2 to +42, which is essentially a difference score 

reflecting the degree of predominance of one syndrome in relation 

to the other.  



 

356 

 

 

POSITIVE SCALE (P) 

 

P1. DELUSIONS - Beliefs which are unfounded, unrealistic and idiosyncratic. 

Basis for rating - Thought content expressed in the interview and its 

influence on social relations and behaviour. 

1 Absent - Definition does not apply 

2 Minimal - Questionable pathology; may be at the upper extreme of normal limits 

3 Mild - Presence of one or two delusions which are vague, uncrystallised and not 
tenaciously held. Delusions do not interfere with thinking, social relations or 
behaviour. 

4 Moderate - Presence of either a kaleidoscopic array of poorly formed, unstable 
delusions or a few well-formed delusions that occasionally interfere with thinking, 
social relations or behaviour. 

5 Moderate Severe - Presence of numerous well-formed delusions that are 
tenaciously held and occasionally interfere with thinking, social relations and 
behaviour. 

6 Severe - Presence of a stable set of delusions which are crystallised, possibly 
systematised, tenaciously held and clearly interfere with thinking, social relations 
and behaviour. 

7 Extreme - Presence of a stable set of delusions which are either highly systematised 
or very numerous, and which dominate major facets of the patient’s life. This frequently 
results in inappropriate and irresponsible action, which may even jeopardise the safety of 
the patient or others. 

P2. CONCEPTUAL DISORGANISATION - Disorganised process of thinking 
characterised by disruption of goal-directed sequencing, e.g. circumstantiality, 
loose associations, tangentiality, gross illogicality or thought block. 

Basis for rating - Cognitive-verbal processes observed during the course of 

interview. 

1 Absent - Definition does not apply 

2 Minimal - Questionable pathology; may be at the upper extreme of normal 
limits 

3 Mild - Thinking is circumstantial, tangential or paralogical. There is some 
difficulty in directing thoughts towards a goal, and some loosening of associations 
may be evidenced under pressure. 

4 Moderate - Able to focus thoughts when communications are brief and structured, 
but becomes loose or irrelevant when dealing with more complex communications or 
when under minimal pressure. 

5 Moderate Severe - Generally has difficulty in organising thoughts, as evidenced 
by frequent irrelevancies, disconnectedness or loosening of associations even 
when not under pressure. 

6 Severe - Thinking is seriously derailed and internally inconsistent, resulting in 
gross irrelevancies and disruption of thought processes, which occur almost 
constantly. 

7 Extreme - Thoughts are disrupted to the point where the patient is incoherent. There 
is marked loosening of associations, which result in total failure of communication, e.g. 
“word salad” or mutism. 
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1 Absent - Definition does not apply 
2 Minimal - Questionable pathology; may be at the upper extreme of normal limits 

3 Mild - Tends to be slightly agitated, hypervigilant or mildly overaroused throughout the 
interview, but without distinct episodes of excitement or marked mood lability. Speech may 
be slightly pressured. 

4 Moderate - Agitation or overarousal is clearly evident throughout the interview, 
affecting speech and general mobility, or episodic outbursts occur sporadically. 

5 Moderate Severe - Significant hyperactivity or frequent outbursts of motor activity 
are observed, making it difficult for the patient to sit still for longer than several minutes 
at any given time. 

6 Severe - Marked excitement dominates the interview, delimits attention, and to 
some  extent affects personal functions such as eating or sleeping. 

7 Extreme - marked excitement seriously interferes in eating and sleeping and 
makes interpersonal interactions virtually impossible. Acceleration of speech and 
motor activity may result in incoherence and exhaustion. 

EXCITEMENT - Hyperactivity as reflected in accelerated motor behaviour, 
heightened responsivity to stimuli, hypervigilance or excessive mood lability. 

Basis for rating - Behavioural manifestations during the course of 

interview as well as reports of behaviour by primary care workers or 

family. 

P4
. 

P3. HALLUCINATORY BEHAVIOUR - Verbal report or behaviour indicating perceptions 
which are not generated by external stimuli. These may occur in the auditory, visual, 
olfactory or somatic realms. 

Basis for rating - Verbal report and physical manifestations during the 

course of interview as well as reports of behaviour by primary care workers 

or family. 

1 Absent - Definition does not apply 

2 Minimal - Questionable pathology; may be at the upper extreme of normal limits 
3 Mild - One or two clearly formed but infrequent hallucinations, or else a number 

of vague abnormal perceptions which do not result in distortions of thinking or 
behaviour. 

4 Moderate - Hallucinations occur frequently but not continuously, and the 
patient’s thinking and behaviour are only affected to a minor extent. 

5 Moderate Severe - Hallucinations occur frequently, may involve more than one 
sensory modality, and tend to distort thinking and/or disrupt behaviour. Patient may 
have a delusional interpretation of these experiences and respond to them emotionally 
and, on occasion, verbally as well. 

6 Severe - Hallucinations are present almost continuously, causing major 
disruption of thinking and behaviour. Patient treats these as real perceptions, 
and functioning is impeded by frequent emotional and verbal responses to them. 

7 Extreme - Patient is almost totally preoccupied with hallucinations, which 
virtually dominate thinking and behaviour. Hallucinations are provided a rigid 
delusional interpretation and provoke verbal and behavioural responses, 
including obedience to command hallucinations. 
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P5. GRANDIOSITY - Exaggerated self-opinion and unrealistic convictions of 
superiority, including delusions of extraordinary abilities, wealth, knowledge, fame, 
power and moral righteousness. 

Basis for rating - Thought content expressed in the interview and its 

influence on behaviour. 

1 Absent - Definition does not apply 

2 Minimal - Questionable pathology; may be at the upper extreme of normal 
limits 

3 Mild - Some expansiveness or boastfulness is evident, but without clear-cut 
grandiose delusions. 

4 Moderate - Feels distinctly and unrealistically superior to others. Some poorly 
formed delusions about special status or abilities may be present but are not 
acted upon. 

5 Moderate Severe - Clear-cut delusions concerning remarkable abilities, status 
or power are expressed and influence attitude but not behaviour. 

6 Severe - Clear-cut delusions of remarkable superiority involving more than one 
parameter (wealth, knowledge, fame, etc) are expressed, notably influence interactions 
and may be acted upon. 

7 Extreme - Thinking, interactions and behaviour are dominated by multiple 
delusions of amazing ability, wealth, knowledge, fame, power and/or moral stature, 
which may take on a bizarre quality. 

P6. SUSPICIOUSNESS/PERSECUTION - Unrealistic or exaggerated ideas of persecution, 
as reflected in guardedness, ad distrustful attitude, suspicious hypervigilance or 
frank delusions that others mean harm. 

Basis for rating – Thought content expressed in the interview and its influence 

on behaviour. 

1 Absent - Definition does not apply 

2 Minimal - Questionable pathology; may be at the upper extreme of normal limits 
3 Mild - Presents a guarded or even openly distrustful attitude, but thoughts, 

interactions and behaviour are minimally affected. 

4 Moderate - Distrustfulness is clearly evident and intrudes on the interview and/or 
behaviour, but there is no evidence of persecutory delusions. Alternatively, there may be 
indication of loosely formed persecutory delusions, but these do not seem to affect the 
patient’s attitude or interpersonal relations. 

5 Moderate Severe - Patient shows marked distrustfulness, leading to major 
disruption of interpersonal relations, or else there are clear-cut persecutory 
delusions that have limited impact on interpersonal relations and behaviour. 

6 Severe - Clear-cut pervasive delusions of persecution which may be systematised 
and significantly interfere in interpersonal relations. 

7 Extreme - A network of systematised persecutory delusions dominates the 
patient’s thinking, social relations and behaviour. 
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NEGATIVE SCALE (N) 

 

N1. BLUNTED AFFECT - Diminished emotional responsiveness as characterised by 
a reduction in facial expression, modulation of feelings and communicative 
gestures. 

Basis for rating - Observation of physical manifestations of affective tone 

and emotional responsiveness during the course of the interview. 

1 Absent - Definition does not apply 

2 Minimal - Questionable pathology; may be at the upper extreme of normal limits 
3 Mild - Changes in facial expression and communicative gestures seem to be 

stilted, forced, artificial or lacking in modulation. 

4 Moderate - Reduced range of facial expression and few expressive gestures 
result in a dull appearance 

5 Moderate Severe - Affect is generally ‘flat’ with only occasional changes in facial 
expression and a paucity of communicative gestures. 

6 Severe - Marked flatness and deficiency of emotions exhibited most of the time. 
There may be unmodulated extreme affective discharges, such as excitement, 
rage or inappropriate uncontrolled laughter. 

7 Extreme – Changes in facial expression and evidence of communicative 
gestures are virtually absent. Patient seems constantly to show a barren or 
‘wooden’ expression. 

P7. HOSTILITY - Verbal and nonverbal expressions of anger and resentment, 
including sarcasm, passive-aggressive behaviour, verbal abuse and 
assualtiveness. 

Basis for rating – Interpersonal behaviour observed during the interview 

and reports by primary care workers or family. 

1 Absent - Definition does not apply 

2 Minimal - Questionable pathology; may be at the upper extreme of normal 
limits 

3 Mild - Indirect or restrained communication of anger, such as sarcasm, 
disrespect, hostile expressions and occasional irritability. 

4 Moderate - Presents an overtly hostile attitude, showing frequent irritability 
and direct expression of anger or resentment. 

5 Moderate Severe - Patient is highly irritable and occasionally verbally abusive or 
threatening. 

6 Severe - Uncooperativeness and verbal abuse or threats notably influence the 
interview and seriously impact upon social relations. Patient may be violent and 
destructive but is not physically assualtive towards others. 

7 Extreme - Marked anger results in extreme uncooperativeness, precluding other 
interactions, or in episode(s) of physical assault towards others. 
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N2. EMOTIONAL WITHDRAWAL - Lack of interest in, involvement with, and 
affective commitment to life’s events. 

Basis for rating - Reports of functioning from primary care workers or 

family and observation of interpersonal behaviour during the course of the 

interview. 

1 Absent - Definition does not apply 
2 Minimal - Questionable pathology; may be at the upper extreme of normal 

limits 

3 Mild - Usually lack initiative and occasionally may show deficient interest in 
surrounding events. 

4 Moderate - Patient is generally distanced emotionally from the milieu and its 
challenges but, with encouragement, can be engaged. 

5 Moderate Severe - Patient is clearly detached emotionally from persons and events 
in the milieu, resisting all efforts at engagement. Patient appears distant, docile and 
purposeless but can be involved in communication at least briefly and tends to 
personal needs, sometimes with assistance. 

6 Severe - Marked deficiency of interest and emotional commitment results in limited 
conversation with others and frequent neglect of personal functions, for which the 
patient requires supervision. 

7 Extreme – Patient is almost totally withdrawn, uncommunicative and neglectful 
of personal needs as a result of profound lack of interest and emotional 
commitment. 

N3. POOR RAPPORT - Lack of interpersonal empathy, openness in conversation and 
sense of closeness, interest or involvement with the interviewer. This is 
evidenced by interpersonal distancing and reduced verbal and nonverbal 
communication. 

Basis for rating - Interpersonal behaviour during the course of the 

interview. 

1 Absent - Definition does not apply 

2 Minimal - Questionable pathology; may be at the upper extreme of normal 
limits 

3 Mild - Conversation is characterised by a stilted, strained or artificial tone. It 
may lack emotional depth or tend to remain on an impersonal, intellectual 
plane. 

4 Moderate - Patient typically is aloof, with interpersonal distance quite evident. 
Patient may answer questions mechanically, act bored, or express disinterest. 

5 Moderate Severe - Disinvolvement is obvious and clearly impedes the 
productivity of the interview. Patient may tend to avoid eye or face contact. 

6 Severe - Patient is highly indifferent, with marked interpersonal distance. Answers are 
perfunctory, and there is little nonverbal evidence of involvement. Eye and face contact 
are frequently avoided. 

7 Extreme - Patient is totally uninvolved with the interviewer. Patient appears to 
be completely indifferent and consistently avoids verbal and nonverbal 
interactions during the interview. 
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N5. DIFFICULTY IN ABSTRACT THINKING - Impairment in the use of the abstract-
symbolic mode of thinking, as evidenced by difficulty in classification, forming 
generalisations and proceeding beyond concrete or egocentric thinking in 
problem-solving tasks. 

Basis for rating - Responses to questions on similarities and proverb 

interpretation, and use of concrete vs. abstract mode during the course of 

the interview. 

1 Absent - Definition does not apply 

2 Minimal - Questionable pathology; may be at the upper extreme of normal limits 

3 Mild - Tends to give literal or personalised interpretations to the more difficult 
proverbs and may have some problems with concepts that are fairly abstract or 
remotely related. 

4 Moderate - Often utilises a concrete mode. Has difficulty with most proverbs 
and some categories. Tends to be distracted by functional aspects and salient 
features. 

5 Moderate Severe - Deals primarily in a concrete mode, exhibiting difficulty with 
most proverbs and many categories. 

6 Severe - Unable to grasp the abstract meaning of any proverbs or figurative 
expressions and can formulate classifications for only the most simple of 
similarities. Thinking is either vacuous or locked into functional aspects, salient 
features and idiosyncratic interpretations. 

7 Extreme - Can use only concrete modes of thinking. Shows no comprehension 
of proverbs, common metaphors or similes, and simple categories. Even salient 
and functional attributes do not serve as a basis for classification. This rating may 
apply to those who cannot interact even minimally with the examiner due to 
marked cognitive impairment. 

N4. PASSIVE/APATHETIC SOCIAL WITHDRAWAL - Diminished interest  and  
initiative  in social interactions due to passivity, apathy, anergy or avolition. This 
leads to reduced interpersonal involvements and neglect of activities of daily 
living. 

Basis for rating – Reports on social behaviour from primary care workers or 

family. 

1 Absent - Definition does not apply 
2 Minimal - Questionable pathology; may be at the upper extreme of normal 

limits 

3 Mild - Shows occasional interest in social activities but poor initiative. Usually 
engages with others only when approached first by them. 

4 Moderate – Passively goes along with most social activities but in a 
disinterested or mechanical way. Tends to recede into the background. 

5 Moderate Severe - Passively participates in only a minority of activities and 
shows virtually no interest or initiative. Generally spends little time with others. 

6 Severe - Tends to be apathetic and isolated, participating very rarely in social 
activities and occasionally neglecting personal needs. Has very few 
spontaneous social contacts. 

7 Extreme – Profoundly apathetic, socially isolated and personally neglectful. 
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N7. STEREOTYPED THINKING - Decreased fluidity, spontaneity and flexibility of 
thinking, as evidenced in rigid, repetitious or barren thought content. 

Basis for rating - Cognitive-verbal processes observed during the interview. 

1 Absent - Definition does not apply 

2 Minimal - Questionable pathology; may be at the upper extreme of normal limits 
3 Mild - Some rigidity shown in attitude or beliefs. Patient may refuse to consider 

alternative positions or have difficulty in shifting from one idea to another. 

4 Moderate - Conversation revolves around a recurrent theme, resulting in 
difficulty in shifting to a new topic. 

5 Moderate Severe - Thinking is rigid and repetitious to the point that, despite 
the interviewer’s efforts, conversation is limited to only two or three dominating 
topics. 

6 Severe – Uncontrolled repetition of demands, statements, ideas or questions 
which severely impairs conversation. 

7 Extreme - Thinking, behaviour and conversation are dominated by constant 
repetition of fixed ideas or limited phrases, leading to gross rigidity, 
inappropriateness and restrictiveness of patient’s communication. 

N6.  LACK OF SPONTANEITY AND FLOW OF CONVERSATION  - Reduction in the 
normal flow  of communication associated with apathy, avolition, defensiveness 
or cognitive deficit. This is manifested by diminished fluidity and productivity of 
the verbal interactional process. 

Basis for rating - Cognitive-verbal processes observed during the course of 

interview. 

1 Absent - Definition does not apply 
2 Minimal - Questionable pathology; may be at the upper extreme of normal limits 

3 Mild – Conversation shows little initiative. Patient’s answers tend to be brief 
and unembellished, requiring direct and leading questions by the interviewer. 

4 Moderate – Conversation lacks free flow and appears uneven or halting. 
Leading questions are frequently needed to elicit adequate responses and 
proceed with conversation. 

5 Moderate Severe - Patient shows a marked lack of spontaneity and openness, 
replying to the interviewer’s questions with only one or two brief sentences. 

6 Severe - Patient’s responses are limited mainly to a few words or short phrases 
intended to avoid or curtail communication. (e.g. “I don’t know”, “I’m not at 
liberty to say”). Conversation is seriously impaired as a result and the interview 
is highly unproductive. 

7 Extreme - Verbal output is restricted to, at most, an occasional utterance, 
making conversation not possible. 
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GENERA L PSYCHOPATHOLOGY SCALE (G) 

 

G2. ANXIETY - Subjective experience of nervousness, worry, apprehension or 
restlessness, ranging from excessive concern about the present or future to 
feelings of panic. 

Basis for rating - Verbal report during the course of interview and 

corresponding physical manifestations. 

1 Absent - Definition does not apply 

2 Minimal - Questionable pathology; may be at the upper extreme of normal limits 

3 Mild - Expresses some worry, overconcern or subjective restlessness, but no 
somatic and behavioural consequences are reported or evidenced. 

4 Moderate - Patient reports distinct symptoms of nervousness, which are 
reflected in mild physical manifestations such as fine hand tremor and excessive 
perspiration. 

5 Moderate Severe - Patient reports serious problems of anxiety which have 
significant physical and behavioural consequences, such as marked tension, poor 
concentration, palpitations or impaired sleep. 

6 Severe - Subjective state of almost constant fear associated with phobias, 
marked restlessness or numerous somatic manifestations. 

7 Extreme - Patient’s life is seriously disrupted by anxiety, which is present almost 
constantly and at times reaches panic proportion or is manifested in actual panic 
attacks. 

G1. SOMATIC CONCERN - Physical complaints or beliefs about bodily illness or 
malfunctions. This may range from a vague sense of ill being to clear-cut delusions 
of catastrophic physical disease. 

Basis for rating - Thought content expressed in the interview. 

1 Absent - Definition does not apply 

2 Minimal - Questionable pathology; may be at the upper extreme of normal limits 
3 Mild - Distinctly concerned about health or bodily malfunction, but there is no 

delusional conviction and overconcern can be allayed by reassurance. 

4 Moderate - Complains about poor health or bodily malfunction, but there is no 
delusional conviction, and overconcern can be allayed by reassurance. 

5 Moderate Severe - Patient expresses numerous or frequent complaints about 
physical illness or bodily malfunction, or else patient reveals one or two clear-
cut delusions  involving these themes but is not preoccupied by them. 

6 Severe - Patient is preoccupied by one or a few clear-cut delusions about 
physical disease or organic malfunction, but affect is not fully immersed in these 
themes, and thoughts can be diverted by the interviewer with some effort. 

7 Extreme – Numerous and frequently reported somatic delusions, or only a few 
somatic delusions of a catastrophic nature, which totally dominate the patient’s 
affect or thinking. 
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G3. GUILT FEELINGS - Sense of remorse or self-blame for real or imagined misdeeds 

in the past. 

Basis for rating - Verbal report of guilt feelings during the course of 

interview and the influence on attitudes and thoughts. 

1 Absent - Definition does not apply 

2 Minimal - Questionable pathology; may be at the upper extreme of normal limits 
3 Mild – Questioning elicits a vague sense of guilt or self-blame for a minor 

incident, but the patient clearly is not overly concerned. 

4 Moderate - Patient expresses distinct concern over his responsibility for a real 
incident in his life but is not pre-occupied with it and attitude and behaviour are 
essentially unaffected. 

5 Moderate Severe - Patient expresses a strong sense of guilt associated with self- 
deprecation or the belief that he deserves punishment. The guilt feelings may 
have a delusional basis, may be volunteered spontaneously, may be a source of 
preoccupation and/or depressed mood, and cannot be allayed readily by the 
interviewer. 

6 Severe - Strong ideas of guilt take on a delusional quality and lead to an attitude of 
hopelessness or worthlessness. The patient believes he should receive harsh 
sanctions as such punishment. 

7 Extreme - Patient’s life is dominated by unshakable delusions of guilt, for which 
he feels deserving of drastic punishment, such as life imprisonment, torture, or 
death. There may be associated suicidal thoughts or attribution of others’ 
problems to one’s own past misdeeds. 

G4. TENSION -Overt physical manifestations of fear, anxiety, and agitation, such as 
stiffness, tremor, profuse sweating and restlessness. 

Basis for rating - Verbal report attesting to anxiety and thereupon the 

severity of physical manifestations of tension observed during the interview. 

1 Absent - Definition does not apply 
2 Minimal - Questionable pathology; may be at the upper extreme of normal limits 

3 Mild - Posture and movements indicate slight apprehensiveness, such as minor 
rigidity, occasional restlessness, shifting of position, or fine rapid hand tremor. 

4 Moderate - A clearly nervous appearance emerges from various manifestations, 
such as fidgety behaviour, obvious hand tremor, excessive perspiration, or 
nervous mannerisms. 

5 Moderate Severe - Pronounced tension is evidenced by numerous manifestations, 
such as nervous shaking, profuse sweating and restlessness, but can conduct in the 
interview is not significantly affected. 

6 Severe - Pronounced tension to the point that interpersonal interactions are disrupted. 
The patient, for example, may be constantly fidgeting, unable to sit still for long, or show 
hyperventilation. 

7 Extreme - Marked tension is manifested by signs of panic or gross motor 
acceleration, such as rapid restless pacing and inability to remain seated for 
longer than a minute, which makes sustained conversation not possible. 
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G6. DEPRESSION - Feelings of sadness, discouragement, helplessness and 

pessimism. 

Basis for rating - Verbal report of depressed mood during the course of 

interview and its observed influence on attitude and behaviour. 

1 Absent - Definition does not apply 

2 Minimal - Questionable pathology; may be at the upper extreme of normal limits 
3 Mild - Expresses some sadness of discouragement only on questioning, but 

there is no evidence of depression in general attitude or demeanor. 

4 Moderate - Distinct feelings of sadness or hopelessness, which may be 
spontaneously divulged, but depressed mood has no major impact on behaviour 
or social functioning and the patient usually can be cheered up. 

5 Moderate Severe - Distinctly depressed mood is associated with obvious 
sadness, pessimism, loss of social interest, psychomotor retardation and some 
interference in appetite and sleep. The patient cannot be easily cheered up. 

6 Severe - Markedly depressed mood is associated with sustained feelings of misery, 
occasional crying, hopelessness and worthlessness. In addition, there is major 
interference in appetite and or sleep as well as in normal motor and social functions, 
with possible signs of self-neglect. 

7 Extreme - Depressive feelings seriously interfere in most major functions. The 
manifestations include frequent crying, pronounced somatic symptoms, 
impaired concentration, psychomotor retardation, social disinterest, self neglect, 
possible depressive or nihilistic delusions and/or possible suicidal thoughts or 
action. 

G5. MANNERISMS AND POSTURING – Unnatural movements or posture as 
characterised be an awkward, stilted, disorganised, or bizarre appearance. 

Basis for rating - Observation of physical manifestations during the course 

of interview as well as reports from primary care workers or family. 

1 Absent - Definition does not apply 
2 Minimal - Questionable pathology; may be at the upper extreme of normal 

limits 

3 Mild - Slight awkwardness in movements or minor rigidity of posture 
4 Moderate – Movements are notably awkward or disjointed, or an unnatural 

posture is maintained for brief periods. 

5 Moderate Severe - Occasional bizarre rituals or contorted posture are 
observed, or an abnormal position is sustained for extended periods. 

6 Severe - Frequent repetition of bizarre rituals, mannerisms or stereotyped 
movements, or a contorted posture is sustained for extended periods. 

7 Extreme - Functioning is seriously impaired by virtually constant involvement in 
ritualistic, manneristic, or stereotyped movements or by an unnatural fixed posture which is 
sustained most of the time. 
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G8. UNCOOPERATIVENESS - Active refusal to comply with the will of significant 
others, including the interviewer, hospital staff or family, which may be 
associated with distrust, defensiveness, stubbornness, negativism, rejection of 
authority, hostility or belligerence. 

Basis for rating - Interpersonal behaviour observed during the course of 

the interview as well as reports by primary care workers or family. 

1 Absent - Definition does not apply 
2 Minimal - Questionable pathology; may be at the upper extreme of normal limits 

3 Mild - Complies with an attitude of resentment, impatience, or sarcasm. May 
inoffensively object to sensitive probing during the interview. 

4 Moderate - Occasional outright refusal to comply with normal social demands, such as making own 
bed, attending 
scheduledprogrammes,etc.Thepatientmayprojectahostile,defensiveornegativeattitudebutusuallycanb
eworkedwith. 

5 Moderate Severe - Patient frequently is incompliant with the demands of his milieu and 
may be characterised by other as an “outcast” or having “a serious attitude problem”. 
Uncooperativeness is reflected in obvious defensiveness or irritability with the interviewer and 
possible unwillingness to address many questions. 

6 Severe - Patient is highly uncooperative, negativistic and possibly also belligerent. 
Refuses to comply with the most social demands and may be unwilling to initiate or 
conclude the full interview. 

7 Extreme - Active resistance seriously impact on virtually all major areas of functioning. Patient may 
refuse to join in any social activities, tend to personal hygiene, converse with family or staff 
andparticipate even briefly in an interview. 

G7. MOTOR RETARDATION – Reduction in motor activity as reflected in slowing 
or lessening or movements and speech, diminished responsiveness of stimuli, 
and reduced body tone. 

Basis for rating - Manifestations during the course of interview as well as 

reports by primary care workers as well as family. 

1 Absent - Definition does not apply 

2 Minimal - Questionable pathology; may be at the upper extreme of normal limits 
3 Mild - Slight but noticeable diminution in rate of movements and speech. 

Patient may be somewhat underproductive in conversation and gestures. 

4 Moderate - Patient is clearly slow in movements, and speech may be 
characterised by poor productivity including long response latency, extended 
pauses or slow pace. 

5 Moderate Severe – A marked reduction in motor activity renders 
communication highly unproductive or delimits functioning in social and 
occupational situations. Patient can usually be found sitting or lying down. 

6 Severe - Movements are extremely slow, resulting in a minimum of activity and 
speech. Essentially the day is spent sitting idly or lying down. 

7 Extreme - Patient is almost completely immobile and virtually unresponsive to 

external stimuli. 
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G9. UNUSUAL THOUGHT CONTENT - Thinking characterised by strange, fantastic or 
bizarre ideas, ranging from those which are remote or atypical to those which are distorted, 
illogical and patently absurd. 

Basis for rating - Thought content expressed during the course of interview. 

1 Absent - Definition does not apply 

2 Minimal - Questionable pathology; may be at the upper extreme of normal 
limits 

3 Mild - Thought content is somewhat peculiar, or idiosyncratic, or familiar ideas are framed in an 
odd context. 

4 Moderate - Ideas are frequently distorted and occasionally seem quite bizarre. 

5 Moderate Severe - Patient expresses many strange and fantastic thoughts, (e.g. Being 
the adopted son of a king, being an escapee from death row), or some which are 
patently absurd (e.g. Having hundreds of children, receiving radio messages from outer 
space from a tooth filling). 

6 Severe - Patient expresses many illogical or absurd ideas or some which have a 
distinctly bizarre quality (e.g. having three heads, being a visitor from another 
planet). 

7 Extreme - Thinking is replete with absurd, bizarre and grotesque ideas. 

G10. DISORIENTATION - Lack of awareness of one’s relationship to the milieu, 
including persons, place and time, which may be due to confusion or 
withdrawal. 

Basis for rating - Responses to interview questions on orientation. 

1 Absent - Definition does not apply 
2 Minimal - Questionable pathology; may be at the upper extreme of normal limits 

3 Mild - General orientation is adequate but there is some difficulty with specifics. For 
example, patient knows his location but not the street address, knows hospital staff names 
but not their functions, knows the month but confuses the day of the week with an 
adjacent day, or errs in the date by more than two days. There may be narrowing of interest 
evidenced by familiarity with the immediate but not extended milieu, such as ability to 
identify staff but not the mayor, governor, or president. 

4 Moderate - Only partial success in recognising persons, places and time. For example, patient 
knows he is in a hospital but not its name, knows the name of the city but not the borough or 
district, knows the name of his primary therapist but not many other direct care workers, knows 
the year or season but not sure of the month. 

5 Moderate Severe - Considerable failure in recognising persons, place and time. 
Patient has only a vague notion of where he is and seems unfamiliar with most people 
in his milieu. He may identify the year correctly or nearly but not know the current 
month, day of week or even the season. 

6 Severe - Marked failure in recognising persons, place and time. For example, patient has no 
knowledge of his whereabouts, confuses the date by more than one year, can name only one or 
two individuals in his current life. 

7 Extreme - Patient appears completely disorientated with regard to persons, 
place and time. There is gross confusion or total ignorance about one’s location, 
the current year and even the most familiar people, such as parents, spouse, 
friends and primary therapist. 
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G12. LACK OF JUDGEMENT AND INSIGHT - Impaired awareness or understanding of one’s 
own psychiatric condition and life situation. This is evidenced by failure to recognise past 
or present psychiatric illness or symptoms, denial of need for psychiatric hospitalisation or 
treatment, decisions characterised by poor anticipation or consequences, and unrealistic 
short-term and long-range planning. 

Basis for rating – Thought content expressed during the interview. 

1 Absent - Definition does not apply 
2 Minimal - Questionable pathology; may be at the upper extreme of normal limits 

3 Mild - Recognises having a psychiatric disorder but clearly underestimates its seriousness, the 
implications for treatment, or the importance of taking measures to avoid relapse. Future planning 
may be poorly conceived. 

4 Moderate - Patient shows only a vague or shallow recognition of illness. There may be 
fluctuations in acknowledgement of being ill or little awareness of major symptoms which 
are present, such as delusions, disorganised thinking, suspiciousness and social withdrawal. 
The patient may rationalise the need for treatment in terms of its relieving lesser symptoms, 
such as anxiety, tension and sleep difficulty. 

5 Moderate Severe - Acknowledges past but not present psychiatric disorder. If challenged, 
the patient may concede the presence of some unrelated or insignificant symptoms, which tend 
to be explained away by gross misinterpretation or delusional thinking. The need for psychiatric 
treatment similarly goes unrecognised. 

6 Severe - Patient denies ever having had a psychiatric disorder. He disavows the presence of 
any psychiatric symptoms in the past or present and, though compliant, denies the need for 
treatment and hospitalisation. 

7 Extreme - Emphatic denial of past and present psychiatric illness. Current hospitalisation 
and treatment are given a delusional interpretation (e.g. as punishment fro misdeeds, as 
persecution by tormentors, etc), and the patient thus refuse to cooperate with therapists, 
medication or other aspects of treatment. 

G11. POOR ATTENTION - Failure in focused alertness manifested by poor concentration, 
distractibility from internal and external stimuli, and difficulty in harnessing, sustaining or 
shifting focus to new stimuli. 

Basis for rating – Manifestations during the course of interview. 

1 Absent - Definition does not apply 
2 Minimal - Questionable pathology; may be at the upper extreme of normal 

limits 

3 Mild - Limited concentration evidenced by occasional vulnerability to 
distraction and faltering attention toward the end of the interview. 

4 Moderate - Conversation is affected by the tendency to be easily distracted, 
difficulty in long sustaining concentration on a given topic, or problems in 
shifting attention to new topics. 

5 Moderate Severe - Conversation is seriously hampered by poor concentration, 
distractibility, and difficulty in shifting focus appropriately.. 

6 Severe - Patient’s attention can be harnessed for only brief moments or with 
great effort, due to marked distraction by internal or external stimuli. 

7 Extreme - Attention is so disrupted that even brief conversation is not possible. 
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G14. POOR IMPULSE CONTROL - Disordered regulation and control of action on inner urges, 
resulting in sudden, unmodulated, arbitrary or misdirected discharge of tension and emotions 
withoutconcern about consequences. 

Basis for rating – Behaviour during the course of interview and reported by 

primary care workers or family. 

1 Absent - Definition does not apply 
2 Minimal - Questionable pathology; may be at the upper extreme of normal limits 

3 Mild - Patient tends to be easily angered and frustrated when facing stress or 
denied gratification but rarely acts on impulse. 

4 Moderate - Patient gets angered and verbally abusive with minimal provocation. May be 
occasionally threatening, destructive, or have one or two episodes involving physical 
confrontation or a minor brawl. 

5 Moderate Severe - Patient exhibits repeated impulsive episodes involving 
verbal abuse, destruction of property, or physical threats. There may be one or 
two episodes involving serious assault, for which the patient requires isolation, 
physical restraint, or p.r.n. sedation. 

6 Severe - Patient frequently is impulsive aggressive, threatening, demanding, and 
destructive, without any apparent consideration of consequences. Shows 
assualtive behaviour and may also be sexually offensive and possibly respond 
behaviourally to hallucinatory commands. 

7 Extreme - Patient exhibits homicidal, sexual assaults, repeated brutality, or self-destructive 
behaviour. Requires constant direct supervision or external constraints because of inability to 
control dangerous impulses. 

G13. DISTURBANCE OF VOLITION – Disturbance in the wilful initiation, sustenance 
and control of one’s thoughts, behaviour, movements and speech. 

Basis for rating - Thought content and behaviour manifested in the course 

of interview. 

1 Absent - Definition does not apply 
2 Minimal - Questionable pathology; may be at the upper extreme of normal limits 

3 Mild - There is evidence of some indecisiveness in conversation and thinking, 
which may impede verbal and cognitive processes to a minor extent. 

4 Moderate - Patient is often ambivalent and shows clear difficulty in reaching 
decisions. Conversation may be marred by alteration in thinking, and in 
consequence, verbal and cognitive functioning are clearly impaired. 

5 Moderate Severe - Disturbance of volition interferes in thinking as well as 
behaviour. Patient shows pronounced indecision that impedes the initiation and 
continuation of social and motor activities, and which also may be evidence in 
halting speech. 

6 Severe - Disturbance of volition interferes in the execution of simple automatic 
motor functions, such as dressing or grooming, and markedly affects speech. 

7 Extreme – Almost complete failure of volition is manifested by gross inhibition of 
movement and speech resulting in immobility and/or mutism. 
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G15. PREOCCUPATION - Absorption with internally generated thoughts and feelings 
and with autistic experiences to the detriment of reality orientation and adaptive 

behaviour. 

Basis for rating - Interpersonal behaviour observed during the course of interview. 

1 Absent - Definition does not apply 

2 Minimal - Questionable pathology; may be at the upper extreme of normal limits 
3 Mild - Excessive involvement with personal needs or problems, such that 

conversation veers back to egocentric themes and there is diminished concerned 
exhibited toward others. 

4 Moderate - Patient occasionally appears self-absorbed, as if daydreaming or 
involved with internal experiences, which interferes with communication to a 
minor extent. 

5 Moderate Severe - Patient often appears to be engaged in autistic experiences, as 
evidenced by behaviours that significantly intrude on social and communicational 
functions, such as the presence of a vacant stare, muttering or talking to oneself, or 
involvement with stereotyped motor patterns. 

6 Severe - Marked preoccupation with autistic experiences, which seriously 
delimits concentration, ability to converse, and orientation to the milieu. The 
patient frequently may be observed smiling, laughing, muttering, talking, or 
shouting to himself. 

7 Extreme - Gross absorption with autistic experiences, which profoundly affects all 
major realms of behaviour. The patient constantly may be responding verbally or 
behaviourally to  hallucinations and show little awareness of other people or the 
external milieu. 

G16. ACTIVE    SOCIAL   AVOIDANCE    - Diminished social involvement 
associated with unwarranted fear, hostility, or distrust. 

Basis for rating - Reports of social functioning primary care workers or 

family. 

1 Absent - Definition does not apply 

2 Minimal - Questionable pathology; may be at the upper extreme of normal 
limits 

3 Mild - Patient seems ill at ease in the presence of others of others and prefers 
to spend time alone, although he participates in social functions when required. 

4 Moderate - Patient begrudgingly attends all or most social activities but may 
needs to be persuaded or may terminate prematurely on account of anxiety, 
suspiciousness, or hostility. 

5 Moderate Severe - Patient fearfully or angrily keeps away from many social 
interactions despite others’ efforts to engage him. Tends to spend unstructured 
time alone. 

6 Severe - Patient participates in very few social activities because of fear, hostility, or distrust. When 
approached, the patient shows a strong tendency to break off interactions, and generally he tends to 
isolate himself from others. 

7 Extreme - Patient cannot be engaged in social activities because of pronounced fears, 
hostility, or persecutory delusions. To the extent possible, he avoids all interactions and 
remains isolated from others. 
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Montgomery–Åsberg Depression Rating Scale (MADRS) Rating Criteria 

The rating should be based on a clinical interview moving from broadly phrased questions about symptoms 

to more detailed ones which allow a precise rating of severity. The rater must decide whether the rating lies 

on the defined scale steps (0, 2, 4, 6) or between them (1,3,5). 

 

It is important to remember that it is only on rare occasions that a depressed patient is encountered who 

cannot be rated on the items in the scale. If definite answers cannot be elicited from the patient all relevant 

clues as well as information from other sources should be used as a basis for the rating in line with 

customary clinical practice. 

 

The scale may be used for any time interval between ratings, be it weekly or otherwise but this must be 

recorded. 
 

 

1. Apparent Sadness 

Representing despondency, gloom and despair, (more than just ordinary transient low spirits) 

reflected in speech, facial expression, and posture. 

 

Rate by depth and inability to brighten up. 

 

0 No sadness. 

1 

2 Looks dispirited but does brighten up 

without difficulty. 

3 

4 Appears sad and unhappy most of the time. 

5 

6 Looks miserable all the time. Extremely 

despondent. 
 

 
 

2. Reported sadness 

Representing reports of depressed mood, regardless of whether it is reflected in appearance or not. 

Includes low spirits, despondency or the feeling of being beyond help and without hope. 

 

Rate according to intensity, duration and the extent to which the mood is reported to be influenced by 

events. 

 

0 Occasional sadness in keeping with the 

circumstances. 

1 

2 Sad or low but brightens up without difficulty. 

3 

4 Pervasive feelings of sadness or gloominess. 

The mood is still influenced by external 

circumstances. 

5 

6 Continuous or unvarying sadness, misery or despondency. 
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3. Inner tension 

Representing feelings of ill-defined discomfort, edginess, inner turmoil, mental tension mounting to either 

panic, dread or anguish. 

 

Rate according to intensity, frequency, duration and the extent of reassurance called for. 

 

0 Placid. Only fleeting inner tension. 

1 

2 Occasional feelings of edginess and ill 

defined discomfort. 

3 

4 Continuous feelings of inner tension or 

intermittent panic which the patient can only 

master with some difficulty. 

5 

6 Unrelenting dread or anguish. Overwhelming panic 
 

 
 

4. Reduced sleep 

Representing the experience of reduced duration or depth of sleep compared to the subject's own normal 

pattern when well. 

 

0 Sleeps as usual. 

1 

2 Slight difficulty dropping off to sleep or slightly reduced, light or fitful sleep. 

3 

4 Sleep reduced or broken by at least two hours. 

5 

6 Less than two or three hours sleep 
 

 
 

5. Reduced appetite 

Representing the feeling of a loss of appetite compared with when well. 

Rate by loss of desire for food or the need to force oneself to eat. 

0 Normal or increased appetite. 

1 

2 Slightly reduced appetite. 

3 

4 No appetite. Food is tasteless. 

5 

6 Needs persuasion to eat at all. 
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6. Concentration Difficulties 

Representing difficulties in collecting one's thoughts mounting to incapacitating lack of concentration. 

Rate according to intensity, frequency, and degree of incapacity produced. 

 

0 No difficulties in concentrating. 

1 

2 Occasional difficulties in collecting one's thoughts. 

3 

4 Difficulties in concentrating and sustaining 

thought which reduces ability to read or hold 

a conversation. 

5 

6 Unable to read or converse without great difficulty. 
 

 
 

7. Lassitude 

Representing a difficulty getting started or slowness initiating and performing everyday activities. 

 

0 Hardly any difficulty in getting started. No sluggishness. 

1 

2 Difficulties in starting activities. 

3 

4 Difficulties in starting simple routine activities 

which are carried out with effort. 

5 

6 Complete lassitude. Unable to do anything without help. 
 

 
 

8. Inability to feel 

Representing the subjective experience of reduced interest in the surroundings, or activities that normally 

give pleasure. The ability to react with adequate emotion to circumstances or people is reduced. 

 

0 Normal interest in the surroundings and in 

other people. 

1 

2 Reduced ability to enjoy usual interests. 

3 

4 Loss of interest in the surroundings. Loss of feelings or friends 

and acquaintances. 

5 

6 The experience of being emotionally paralysed, inability to 

feel anger, grief or pleasure and a complete or 

even painful failure to feel for close relatives and friends. 
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9. Pessimistic thoughts 

Representing thoughts of guilt, inferiority, self-reproach, sinfulness, remorse and ruin. 

 

0 No pessimistic thoughts. 

1 

2 Fluctuating ideas of failure, self-reproach or 

self depreciation. 

3 

4 Persistent self-accusations, or definite but 

still rational ideas of guilt or sin. Increasingly 

pessimistic about the future. 

5 

6 Delusions of ruin, remorse or unredeemable sin. 

Self-accusations which are absurd and unshakable. 
 

 
 

10. Suicidal thoughts 

Representing the feeling that life is not worth living, that a natural death would be welcome, suicidal 

thoughts, and preparations for suicide. 

 

Suicidal attempts should not in themselves influence the rating. 

 

0 Enjoys life or takes it as it comes. 

1 

2 Weary of life. Only fleeting suicidal thoughts. 

3 

4 Probably better off dead. Suicidal thoughts 

are common, and suicide is considered as a 

possible solution, but without specific plans 

or intention. 

5 

6 Explicit plans for suicide when there is an 

opportunity. Active preparation for suicide. 
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APPENDIX D - FACE SCHEMATICS TESTED FOR EMOTION 

RESPONSE  

(Number of participants, Total scores), Maximum total score: 8*5 = 40 

Faces 
Happy Sad Neutral Angry Chosen 

 

 (8, 39)   Sad 

 

 (5, 19) (3, 6)   

 

   (8, 40) Angry 

 

(7, 23)  (1, 3)  Happy 

 

(1, 3)  (7, 23)  Neutral 

 

(5, 20) (3, 9)    

 

   (8, 39)  
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APPENDIX E - MATLAB CODES: MISMATCH NEGATIVITY 

Optimal MMN Stimulus Generation 

clear all 

 

output_filename = 'optimal_MMN_paradigm_1000msITI'; 

 

output_file = [output_filename, '.seq']; 

[fid_out, message] = fopen(deblank(output_file),'wt'); 

 

% Format the header for the output file 

fprintf(fid_out,'Version 4.0.08012003\n'); 

fprintf(fid_out,'Numevents 1510\n'); 

fprintf(fid_out,'label\tmode\tdur\twin\titi\trdB\tldB\tresp\ttype\tfilename\

n'), 

fprintf(fid_out,'-----\t-------\t-------\t-------\t-------\t--------\t------

--\t----\t----\t--------\n'); 

 

%define first 8 columns 

common_columns = {'0','SND','0.00','0.00','1000','80','80','-1'}; 

 

%define file location of standard tone and trigger code 

standard = 'D:\MSc Projects 2012\Sound Files\standard.wav'; 

standard_code = '1'; 

 

%define file location of durantion deviant tone and trigger code 

duration_deviant = 'D:\MSc Projects 2012\Sound Files\duration_deviant.wav'; 

duration_code = '12'; 

 

%define file location of lower frequency deviant tone and trigger code 

lower_frequency_deviant = 'D:\MSc Projects 2012\Sound 

Files\lower_frequency_deviant.wav'; 

lower_frequency_code = '9'; 

 

%define file location of upper frequency deviant tone and trigger code 

upper_frequency_deviant = 'D:\MSc Projects 2012\Sound 

Files\upper_frequency_deviant.wav'; 

upper_frequency_code = '9'; 

 

%define file location of lower intensity deviant tone and trigger code 

lower_intensity_deviant = 'D:\MSc Projects 2012\Sound Files\standard.wav'; 

lower_intensity_code = '4'; 

lower_dB = '70'; 

 

%define file location of upper intensity deviant tone and trigger code 

upper_intensity_deviant = 'D:\MSc Projects 2012\Sound Files\standard.wav'; 

upper_intensity_code = '4'; 

upper_dB = '90'; 

 

%define file location of left location deviant tone and trigger code 
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left_location_deviant = 'D:\MSc Projects 2012\Sound 

Files\left_location_deviant.wav'; 

left_location_code = '5'; 

 

%define file location of right location deviant tone and trigger code 

right_location_deviant = 'D:\MSc Projects 2012\Sound 

Files\right_location_deviant.wav'; 

right_location_code = '5'; 

 

%define file location of gap deviant tone and trigger code 

gap_deviant = 'D:\MSc Projects 2012\Sound Files\gap_deviant.wav'; 

gap_code = '8'; 

 

%first 10 stimuli are standard tones 

for i=1:10 

    

fprintf(fid_out,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n',common_columns{1}

,common_columns{2},common_columns{3},common_columns{4},common_columns{5},com

mon_columns{6},common_columns{7},common_columns{8},standard_code,standard); 

end 

 

%alternate standard tones with randomly selected deviants 

for ii=1:1500 

    check_even = ii/2; 

    if floor(check_even)==check_even                %for even numbered 

trials 

        a=rand;                                     %senerate a random 

number 

                if a<=0.2 

                %write duration deviant line 

                

fprintf(fid_out,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n',common_columns{1}

,common_columns{2},common_columns{3},common_columns{4},common_columns{5},com

mon_columns{6},common_columns{7},common_columns{8},duration_code,duration_de

viant); 

                end 

                if a>0.2 && a<=0.3 

                %write lower frew deviant line 

                

fprintf(fid_out,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n',common_columns{1}

,common_columns{2},common_columns{3},common_columns{4},common_columns{5},com

mon_columns{6},common_columns{7},common_columns{8},lower_frequency_code,lowe

r_frequency_deviant); 

                end 

                if a>0.3 && a<=0.4 

                %write upper freq deviant line 

                

fprintf(fid_out,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n',common_columns{1}

,common_columns{2},common_columns{3},common_columns{4},common_columns{5},com

mon_columns{6},common_columns{7},common_columns{8},upper_frequency_code,uppe

r_frequency_deviant); 

                end 
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                if a>0.4 && a<=0.5 

                %write lower int deviant line 

                

fprintf(fid_out,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n',common_columns{1}

,common_columns{2},common_columns{3},common_columns{4},common_columns{5},low

er_dB,lower_dB,common_columns{8},lower_intensity_code,lower_intensity_devian

t); 

                end 

                if a>0.5 && a<=0.6 

                %write upper int deviant line 

                

fprintf(fid_out,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n',common_columns{1}

,common_columns{2},common_columns{3},common_columns{4},common_columns{5},upp

er_dB,upper_dB,common_columns{8},upper_intensity_code,upper_intensity_devian

t); 

                end 

                if a>0.6 && a<=0.7 

                %write left loc deviant line 

                

fprintf(fid_out,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n',common_columns{1}

,common_columns{2},common_columns{3},common_columns{4},common_columns{5},com

mon_columns{6},common_columns{7},common_columns{8},left_location_code,left_l

ocation_deviant); 

                end 

                if a>0.7 && a<=0.8 

                %write right loc deviant line 

                

fprintf(fid_out,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n',common_columns{1}

,common_columns{2},common_columns{3},common_columns{4},common_columns{5},com

mon_columns{6},common_columns{7},common_columns{8},right_location_code,right

_location_deviant); 

                end 

                if a>0.8 

                %write gap deviant line 

                

fprintf(fid_out,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n',common_columns{1}

,common_columns{2},common_columns{3},common_columns{4},common_columns{5},com

mon_columns{6},common_columns{7},common_columns{8},gap_code,gap_deviant); 

                end 

    elseif floor(check_even)<check_even 

        %write standard 

        

fprintf(fid_out,'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n',common_columns{1}

,common_columns{2},common_columns{3},common_columns{4},common_columns{5},com

mon_columns{6},common_columns{7},common_columns{8},standard_code,standard), 

    end 

end 

 

fclose all 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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EEG Pre-processing and Epoch extraction: Healthy Controls 

data_dir = 'E:\EngD Data\Sibani\Pilot\PILOT\'; 

% data_files = strcat(data_dir, '*MMN*.cnt'); 

dataset_dir = strcat(data_dir, 'datasets\mmn\withICA\'); 

% files = dir(data_files); 

skipped_cnt = {}; 

skipped_epoch = {}; 

 

load mmn_controls.mat 

 

for i = 2:length(subjects) 

    data_files = strcat(data_dir, subjects{i}, '*MMN*.cnt'); 

    files = dir(char(data_files)); 

    if isempty(files) 

        skipped_set = [skipped_set; subjects{i}]; 

        continue; 

    end 

 

    f_name = split(files(1).name, '.'); 

    f_name = f_name{1}; 

 

    disp('Prepocessing:') 

    disp(f_name) 

    disp(' ') 

    disp(' ') 

 

    % Load data 

    cnt_file = strcat(data_dir, files(1).name); 

    try 

        EEG = pop_loadcnt(cnt_file, 'keystroke', 'off'); 

        EEG.setname = f_name; 

    catch 

        disp('Skipping loading:') 

        disp(f_name) 

        disp(' ') 

        disp(' ') 

        skipped_cnt = [skipped_cnt; f_name]; 

        continue 

    end 

 

    % Import channel info 

    EEG = pop_chanedit(EEG, 'lookup', ... 

                       'C:\Users\Sibani 

Mohanty\Documents\MATLAB\eeglab14_1_2b\plugins\dipfit2.3\standard_BESA\standard-10-5-

cap385.elp', ... 

                       'eval','chans = pop_chancenter( chans, [],[]);'); 

 

    % Re-reference data to M1, M2 (33, 43) 

    EEG = pop_reref(EEG, [33 43]); 

 

    % Resample data 

    EEG = pop_resample(EEG, 250); 

 

    % Filter data 

    % High-pass 

    EEG = pop_eegfiltnew(EEG, .1, []); 

    % Low-pass 

    EEG = pop_eegfiltnew(EEG, [], 40); 

 

    % Remove line noise using CleanLine 

    EEG = pop_cleanline(EEG, 'bandwidth', 2,'chanlist', [1:EEG.nbchan], 

'computepower', 0, 'linefreqs', [50 100 150],... 

                        'normSpectrum', 0, 'p', 0.01, 'pad', 2, 'plotfigures', 0, 

'scanforlines', 1, 'sigtype', 'Channels', 'tau', 100,... 

                        'verb', 1, 'winsize', 4, 'winstep', 4); 

    % Run ICA 

    EEG = pop_runica(EEG, 'icatype', 'runica'); 

 

    % Extract Epoch 

    try 

        EEG = pop_epoch(EEG, {1, 12, 9, 4, 5, 8}, [-.2 .8]); 
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    catch 

        disp('Skipping epoching:') 

        disp(f_name) 

        disp(' ') 

        disp(' ') 

        skipped_epoch = [skipped_epoch; f_name]; 

        continue 

    end 

    EEG = pop_rmbase(EEG, [-200, 0]); 

    EEG.setname = [f_name '_Fs250_LP40']; 

    EEG = pop_saveset(EEG, 'filename', [f_name '_Fs250_LP40' '_ds'], 'filepath', 

dataset_dir); 

 

    clear EEG 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

EEG Pre-processing and Epoch extraction: Patients 

data_dir = 'E:\EngD Data\Sibani\Patient Data\'; 

data_files = strcat(data_dir, '*MMN*.cnt'); 

dataset_dir = strcat(data_dir, 'datasets\mmn\withICA'); 

files = dir(data_files); 

skipped_cnt = {}; 

skipped_epoch = {}; 

 

for i = 1:length(files) 

    f_split = split(files(i).name, '_'); 

    f_name = split(files(i).name, '.'); 

    f_name = char(f_name(1)); 

    sub_id = char(f_split(1)); 

    sub_date = char(f_split(2)); 

 

    disp('Prepocessing:') 

    disp(f_name) 

    disp(' ') 

    disp(' ') 

 

    % Load data 

    cnt_file = strcat(data_dir, files(i).name); 

    try 

        EEG = pop_loadcnt(cnt_file, 'keystroke', 'on'); 

        EEG.setname = f_name; 

    catch 

        disp('Skipping loading:') 

        disp(f_name) 

        disp(' ') 

        disp(' ') 

        skipped_cnt = [skipped_cnt; f_name]; 

        continue 

    end 

 

    % Import channel info 

    EEG = pop_chanedit(EEG, 'lookup', ... 

                       'C:\Users\Sibani 

Mohanty\Documents\MATLAB\eeglab14_1_2b\plugins\dipfit2.3\standard_BESA\standard-10-5-

cap385.elp', ... 

                       'eval','chans = pop_chancenter( chans, [],[]);'); 

 

    % Re-reference data to M1, M2 in patients (36, 37) 

    EEG = pop_reref(EEG, [36 37]); 

 

    % Resample data 

    EEG = pop_resample(EEG, 250); 

 

    % Filter data 

    % High-pass 

    EEG = pop_eegfiltnew(EEG, .1, []); 

    % Low-pass 

    EEG = pop_eegfiltnew(EEG, [], 40); 
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    % Remove line noise using CleanLine 

    EEG = pop_cleanline(EEG, 'bandwidth', 2,'chanlist', [1:EEG.nbchan], 

'computepower', 0, 'linefreqs', [50 100 150],... 

                        'normSpectrum', 0, 'p', 0.01, 'pad', 2, 'plotfigures', 0, 

'scanforlines', 1, 'sigtype', 'Channels', 'tau', 100,... 

                        'verb', 1, 'winsize', 4, 'winstep', 4); 

    % Run ICA 

    EEG = pop_runica(EEG, 'icatype', 'runica'); 

 

    % Extract Epoch 

    try 

        EEG = pop_epoch(EEG, {1, 12, 9, 4, 5, 8}, [-.2 .8]); 

    catch 

        disp('Skipping epoching:') 

        disp(f_name) 

        disp(' ') 

        disp(' ') 

        skipped_epoch = [skipped_epoch; f_name]; 

        continue 

    end 

    EEG = pop_rmbase(EEG, [-200, 0]); 

    EEG.setname = [f_name '_Fs250_LP40']; 

    EEG = pop_saveset(EEG, 'filename', [f_name '_Fs250_LP40' '_ds'], 'filepath', 

dataset_dir); 

 

    clear EEG 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Data Splitting by Trial Type: Healthy Controls 

data_dir = 'E:\EngD 

Data\Sibani\Pilot\PILOT\datasets\mmn\withICA\withMarked\withRejectEpochs\';   

%Directory where mmn datasets are saved 

byType_dir = strcat(data_dir, 'byType'); 

% Create the byType folder for datasets by type, if it doesn't exist already. 

if ~exist(byType_dir, 'dir') 

  mkdir(byType_dir); 

end 

 

% Event types and their names to append to file name before saving 

event_type = [1, 12, 9, 4, 5, 8]; 

type_name = {'stand', 'dur', 'freq', 'int', 'loc', 'gap'}; 

 

skipped_set = {}; 

skipped_split = {}; 

% return; 

 

load mmn_controls.mat 

type_total_trials = zeros(6, length(subjects));  % Trials by type (1, :) cong; (2, :) 

incong 

type_accepted_trials = zeros(6, length(subjects)); % Correct Trials by type (1, :) 

cong; (2, :) incong 

 

for i = 1:length(subjects) 

 

    data_files = strcat(data_dir, subjects{i}, '*MMN*.set'); 

    files = dir(char(data_files)); 

    if isempty(files) 

        skipped_set = [skipped_set; subjects{i}]; 

        continue; 

    end 

 

    f_name = split(files(1).name, '.'); 

    f_name = f_name{1}(1:end-3); 

 

    rej_files = strcat(data_dir, 'rej_mats\', f_name, '_rej.mat'); 

    rej_files = dir(char(rej_files)); 

    disp('Splitting:') 
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    disp(f_name) 

    disp(' ') 

    disp(' ') 

 

    % Load dataest 

    try 

        ALLEEG = []; 

        EEG = pop_loadset(files(1).name, files(1).folder); 

 

        type = extractfield(EEG.event, 'type'); 

        [C,ia,ic] = unique(type); 

        a_counts = accumarray(ic,1); 

        type_total_trials(:, i) = a_counts([1,2,6,3,4,5]); 

        disp(['Rejected epochs: ', rej_files(1).name]) 

        load([rej_files(1).folder, '\', rej_files(1).name]) 

        tot_epochs = length(rej.rejmanual); 

        EEG.reject.rejmanual = rej.rejmanual; 

        EEG = pop_rejepoch( EEG, EEG.reject.rejmanual ,0); 

        [ALLEEG, EEG, index] = eeg_store(ALLEEG, EEG); 

%         EEG.setname = f_name; 

    catch 

        disp('Skipping loading:') 

        disp(f_name) 

        disp(' ') 

        disp(' ') 

        skipped_set = [skipped_set; f_name]; 

        continue 

    end 

 

    % Create datasets by types 

 

    for j = 1:length(event_type) 

 

        % Name of the new dataset with event_type and type_name appended 

        set_name = strcat(f_name, '_', num2str(event_type(j)), '_', 

char(type_name(j))); 

 

        % Selecting one event at a time 

        try 

            [EEG_type evnt_ind_test] = pop_selectevent(EEG, 'type', event_type(j)); 

            type_accepted_trials(j, i) = length(EEG_type.epoch); 

            EEG_type.setname = set_name; 

        catch 

            disp('Skipping split:') 

            disp(set_name) 

            disp(' ') 

            disp(' ') 

            skipped_split = [skipped_split; set_name]; 

            continue 

        end 

 

        % Saving the new dataset 

        EEG_type = pop_saveset(EEG_type, 'filename', set_name, 'filepath', 

byType_dir); 

        clear EEG_type 

    end 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Data Splitting by Trial Type: Patients 

data_dir = 'E:\EngD Data\Sibani\Patient 

Data\datasets\mmn\withICA\withMarked\withRejectEpochs\';   %Directory where mmn 

datasets are saved 

data_files = strcat(data_dir, '*MMN*.set'); 

files = dir(data_files); 

 

byType_dir = strcat(data_dir, 'byType'); 

% Create the byType folder for datasets by type, if it doesn't exist already. 

if ~exist(byType_dir, 'dir') 
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  mkdir(byType_dir); 

end 

 

% Event types and their names to append to file name before saving 

event_type = [1, 12, 9, 4, 5, 8]; 

type_name = {'stand', 'dur', 'freq', 'int', 'loc', 'gap'}; 

 

skipped_set = {}; 

skipped_split = {}; 

% return; 

 

type_total_trials = zeros(6, length(files));  % Trials by type (1, :) cong; (2, :) 

incong 

type_accepted_trials = zeros(6, length(files)); % Correct Trials by type (1, :) cong; 

(2, :) incong 

 

for i = 1:length(files) 

 

    f_name = split(files(i).name, '.'); 

    f_name = f_name{1}(1:end-3); 

 

    rej_files = strcat(data_dir, 'rej_mats\', f_name, '_rej.mat'); 

    rej_files = dir(char(rej_files)); 

    disp('Splitting:') 

    disp(f_name) 

    disp(' ') 

    disp(' ') 

 

    % Load dataest 

    try 

        ALLEEG = []; 

        EEG = pop_loadset(files(i).name, files(i).folder); 

 

        % Droping EOG channels 

        drop_chans = [36, 37]; 

        EEG = pop_select(EEG, 'nochannel', drop_chans); 

        % Capitalizing channel labels to avoid conflicts between subjects 

        EEG = capitalize_chan_labels(EEG); 

 

 

        type = extractfield(EEG.event, 'type'); 

        [C,ia,ic] = unique(type); 

        a_counts = accumarray(ic,1); 

        type_total_trials(:, i) = a_counts([1,2,6,3,4,5]); 

        disp(['Rejected epochs: ', rej_files(1).name]) 

        load([rej_files(1).folder, '\', rej_files(1).name]) 

        tot_epochs = length(rej.rejmanual); 

        EEG.reject.rejmanual = rej.rejmanual; 

        EEG = pop_rejepoch( EEG, EEG.reject.rejmanual ,0); 

        [ALLEEG, EEG, index] = eeg_store(ALLEEG, EEG); 

%         EEG.setname = f_name; 

    catch 

        disp('Skipping loading:') 

        disp(f_name) 

        disp(' ') 

        disp(' ') 

        skipped_set = [skipped_set; f_name]; 

        continue 

    end 

 

    % Create datasets by types 

 

    for j = 1:length(event_type) 

 

        % Name of the new dataset with event_type and type_name appended 

        set_name = strcat(f_name, '_', num2str(event_type(j)), '_', 

char(type_name(j))); 

 

        % Selecting one event at a time 

        try 

            [EEG_type evnt_ind_test] = pop_selectevent(EEG, 'type', event_type(j)); 

            type_accepted_trials(j, i) = length(EEG_type.epoch); 

            EEG_type.setname = set_name; 
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        catch 

            disp('Skipping split:') 

            disp(set_name) 

            disp(' ') 

            disp(' ') 

            skipped_split = [skipped_split; set_name]; 

            continue 

        end 

 

        % Saving the new dataset 

        EEG_type = pop_saveset(EEG_type, 'filename', set_name, 'filepath', 

byType_dir); 

        clear EEG_type 

    end 

end 

 

function EEG = capitalize_chan_labels(EEG) 

    for i = 1:length(EEG.chanlocs) 

        EEG.chanlocs(i).labels = upper(EEG.chanlocs(i).labels); 

    end 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

EEGLAB STUDY creation: Healthy Controls 

data_dir = 'E:\EngD 

Data\Sibani\Pilot\PILOT\datasets\mmn\withICA\withMarked\withRejectEpochs\byType\';   

%Directory where mmn datasets are saved 

data_files = strcat(data_dir, '*MMN*.set'); 

files = dir(data_files); 

 

% Event types to compare in the study 

types_toComp = {'stand', 'dur', 'freq', 'int', 'loc', 'gap'}; 

commands = {}; 

 

for i = 1:length(files) 

    f_loc = [files(i).folder, '\', files(i).name]; 

 

    subject = split(files(i).name, '_MMN'); 

    subject = subject{1}; 

 

    condition = split(files(i).name, ["_","."]); 

    condition = condition{end-1}; 

 

    commands = {commands{:} ... 

        {'index' i 'load' f_loc 'subject' subject 'condition' condition}}; 

end 

 

% Create the study 

 

name = 'control_MMN_wICA'; 

[STUDY ALLEEG] = std_editset([], [], 'name', name,... 

        'task', 'Oddball',... 

        'filename', name, ... 

        'filepath', 'E:\EngD Data\Sibani\Studies\MMN\',... 

        'commands', commands); 

 

% Duration deviant, make and compute components 

std_dirpath = 'E:\EngD Data\Sibani\Studies\MMN\controls_wICA'; 

if ~exist(std_dirpath) 

  mkdir(std_dirpath); 

end 

CURRENTSTUDY = 1; EEG = ALLEEG; CURRENTSET = [1:length(EEG)]; 

STUDY = std_makedesign(STUDY, ALLEEG, CURRENTSTUDY, ... 

                       'name', 'control_MMN_standVsdur', ... 

                       'variable1','condition', ... 

                       'values1',{'stand' 'dur'}, ... 

                       'filepath', std_dirpath); 

[STUDY EEG] = pop_savestudy( STUDY, ALLEEG, 'savemode','resave'); 

[STUDY ALLEEG] = std_precomp(STUDY, ALLEEG, 'channels', ... 
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                             'recompute','off', ... 

                             'erp','on',... 

                             'ersp', 'on', 'itc', 'on', ... 

                             'erspparams', {'cycles', [.5 0], 'freqs', [2 50],  

'nfreqs', 100, 'ntimesout', 200}); 

 

% Frequency deviant, make and compute components 

CURRENTSTUDY = 2; EEG = ALLEEG; CURRENTSET = [1:length(EEG)]; 

STUDY = std_makedesign(STUDY, ALLEEG, CURRENTSTUDY, ... 

                       'name', 'control_MMN_standVsfreq', ... 

                       'variable1','condition', ... 

                       'values1',{'stand' 'freq'}, ... 

                       'filepath', std_dirpath); 

[STUDY EEG] = pop_savestudy( STUDY, ALLEEG, 'savemode','resave'); 

[STUDY ALLEEG] = std_precomp(STUDY, ALLEEG, 'channels', ... 

                             'recompute','off', ... 

                             'erp','on',... 

                             'ersp', 'on', 'itc', 'on', ... 

                             'erspparams', {'cycles', [.5 0], 'freqs', [2 50],  

'nfreqs', 100, 'ntimesout', 200}); 

 

% Intensity deviant, make and compute components 

CURRENTSTUDY = 3; EEG = ALLEEG; CURRENTSET = [1:length(EEG)]; 

STUDY = std_makedesign(STUDY, ALLEEG, CURRENTSTUDY, ... 

                       'name', 'control_MMN_standVsint', ... 

                       'variable1','condition', ... 

                       'values1',{'stand' 'int'}, ... 

                       'filepath', std_dirpath); 

[STUDY EEG] = pop_savestudy( STUDY, ALLEEG, 'savemode','resave'); 

[STUDY ALLEEG] = std_precomp(STUDY, ALLEEG, 'channels', ... 

                             'recompute','off', ... 

                             'erp','on',... 

                             'ersp', 'on', 'itc', 'on', ... 

                             'erspparams', {'cycles', [.5 0], 'freqs', [2 50],  

'nfreqs', 100, 'ntimesout', 200}); 

 

% Location deviant, make and compute components 

CURRENTSTUDY = 4; EEG = ALLEEG; CURRENTSET = [1:length(EEG)]; 

STUDY = std_makedesign(STUDY, ALLEEG, CURRENTSTUDY, ... 

                       'name', 'control_MMN_standVsloc', ... 

                       'variable1','condition', ... 

                       'values1',{'stand' 'loc'}, ... 

                       'filepath', std_dirpath); 

[STUDY EEG] = pop_savestudy( STUDY, ALLEEG, 'savemode','resave'); 

[STUDY ALLEEG] = std_precomp(STUDY, ALLEEG, 'channels', ... 

                             'recompute','off', ... 

                             'erp','on',... 

                             'ersp', 'on', 'itc', 'on', ... 

                             'erspparams', {'cycles', [.5 0], 'freqs', [2 50],  

'nfreqs', 100, 'ntimesout', 200}); 

 

% Gap deviant, make and compute components 

CURRENTSTUDY = 5; EEG = ALLEEG; CURRENTSET = [1:length(EEG)]; 

STUDY = std_makedesign(STUDY, ALLEEG, CURRENTSTUDY, ... 

                       'name', 'control_MMN_standVsgap', ... 

                       'variable1','condition', ... 

                       'values1',{'stand' 'gap'}, ... 

                       'filepath', std_dirpath); 

[STUDY EEG] = pop_savestudy( STUDY, ALLEEG, 'savemode','resave'); 

[STUDY ALLEEG] = std_precomp(STUDY, ALLEEG, 'channels', ... 

                             'recompute','off', ... 

                             'erp','on',... 

                             'ersp', 'on', 'itc', 'on', ... 

                             'erspparams', {'cycles', [.5 0], 'freqs', [2 50],  

'nfreqs', 100, 'ntimesout', 200}); 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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EEGLAB STUDY creation: Patients 

data_dir = 'E:\EngD Data\Sibani\Patient 

Data\datasets\mmn\withICA\withMarked\withRejectEpochs\byType\';   %Directory where 

mmn datasets are saved 

data_files = strcat(data_dir, '*MMN*.set'); 

files = dir(data_files); 

 

% Event types to compare in the study 

types_toComp = {'stand', 'dur', 'freq', 'int', 'loc', 'gap'}; 

commands = {}; 

 

for i = 1:length(files) 

    f_loc = [files(i).folder, '\', files(i).name]; 

 

    subject = split(files(i).name, '_MMN'); 

    subject = subject{1}; 

 

    condition = split(files(i).name, ["_","."]); 

    condition = condition{end-1}; 

 

    commands = {commands{:} ... 

        {'index' i 'load' f_loc 'subject' subject 'condition' condition}}; 

end 

 

% Create the study 

name = 'patient_MMN_wICA'; 

[STUDY ALLEEG] = std_editset([], [], 'name', name,... 

        'task', 'Oddball',... 

        'filename', name, ... 

        'filepath', 'E:\EngD Data\Sibani\Studies\MMN\',... 

        'commands', commands); 

 

% Duration deviant, make and compute components 

std_dirpath = 'E:\EngD Data\Sibani\Studies\MMN\patients_wICA'; 

if ~exist(std_dirpath) 

  mkdir(std_dirpath); 

end 

CURRENTSTUDY = 1; EEG = ALLEEG; CURRENTSET = [1:length(EEG)]; 

STUDY = std_makedesign(STUDY, ALLEEG, CURRENTSTUDY, ... 

                       'name', 'patient_MMN_standVsdur', ... 

                       'variable1', 'condition', ... 

                       'values1', {'stand' 'dur'}, ... 

                       'filepath', std_dirpath); 

[STUDY EEG] = pop_savestudy( STUDY, ALLEEG, 'savemode','resave'); 

[STUDY ALLEEG] = std_precomp(STUDY, ALLEEG, 'channels', ... 

                             'recompute','off', 'savetrials', 'on', ... 

                             'erp','on',... 

                             'erpim', 'on', ... 

                             'erpimparams', {'nlines', 50, 'smoothing', 10}, ... 

                             'ersp', 'on', 'itc', 'on', ... 

                             'erspparams', {'cycles', [.5 0], 'freqs', [2 50],  

'nfreqs', 100, 'ntimesout', 200}); 

 

% Frequency deviant, make and compute components 

CURRENTSTUDY = 2; EEG = ALLEEG; CURRENTSET = [1:length(EEG)]; 

STUDY = std_makedesign(STUDY, ALLEEG, CURRENTSTUDY, ... 

                       'name', 'patient_MMN_standVsfreq', ... 

                       'variable1','condition', ... 

                       'values1',{'stand' 'freq'}, ... 

                       'filepath', std_dirpath); 

[STUDY EEG] = pop_savestudy( STUDY, ALLEEG, 'savemode','resave'); 

[STUDY ALLEEG] = std_precomp(STUDY, ALLEEG, 'channels', ... 

                             'recompute','off', 'savetrials', 'on', ... 

                             'erp','on',... 

                             'erpim', 'on', ... 

                             'erpimparams', {'nlines', 46, 'smoothing', 10}, ... 

                             'ersp', 'on', 'itc', 'on', ... 

                             'erspparams', {'cycles', [.5 0], 'freqs', [2 50],  

'nfreqs', 100, 'ntimesout', 200}); 

 

% Intensity deviant, make and compute components 
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CURRENTSTUDY = 3; EEG = ALLEEG; CURRENTSET = [1:length(EEG)]; 

STUDY = std_makedesign(STUDY, ALLEEG, CURRENTSTUDY, ... 

                       'name', 'patient_MMN_standVsint', ... 

                       'variable1','condition', ... 

                       'values1',{'stand' 'int'}, ... 

                       'filepath', std_dirpath); 

[STUDY EEG] = pop_savestudy( STUDY, ALLEEG, 'savemode','resave'); 

[STUDY ALLEEG] = std_precomp(STUDY, ALLEEG, 'channels', ... 

                             'recompute','off', 'savetrials', 'on', ... 

                             'erp','on',... 

                             'erpim', 'on', ... 

                             'erpimparams', {'nlines', 46, 'smoothing', 10}, ... 

                             'ersp', 'on', 'itc', 'on', ... 

                             'erspparams', {'cycles', [.5 0], 'freqs', [2 50],  

'nfreqs', 100, 'ntimesout', 200}); 

 

% Location deviant, make and compute components 

CURRENTSTUDY = 4; EEG = ALLEEG; CURRENTSET = [1:length(EEG)]; 

STUDY = std_makedesign(STUDY, ALLEEG, CURRENTSTUDY, ... 

                       'name', 'patient_MMN_standVsloc', ... 

                       'variable1','condition', ... 

                       'values1',{'stand' 'loc'}, ... 

                       'filepath', std_dirpath); 

[STUDY EEG] = pop_savestudy( STUDY, ALLEEG, 'savemode','resave'); 

[STUDY ALLEEG] = std_precomp(STUDY, ALLEEG, 'channels', ... 

                             'recompute','off', 'savetrials', 'on', ... 

                             'erp','on',... 

                             'erpim', 'on', ... 

                             'erpimparams', {'nlines', 50, 'smoothing', 10}, ... 

                             'ersp', 'on', 'itc', 'on', ... 

                             'erspparams', {'cycles', [.5 0], 'freqs', [2 50],  

'nfreqs', 100, 'ntimesout', 200}); 

 

% Gap deviant, make and compute components 

CURRENTSTUDY = 5; EEG = ALLEEG; CURRENTSET = [1:length(EEG)]; 

STUDY = std_makedesign(STUDY, ALLEEG, CURRENTSTUDY, ... 

                       'name', 'patient_MMN_standVsgap', ... 

                       'variable1','condition', ... 

                       'values1',{'stand' 'gap'}, ... 

                       'filepath', std_dirpath); 

[STUDY EEG] = pop_savestudy( STUDY, ALLEEG, 'savemode','resave'); 

[STUDY ALLEEG] = std_precomp(STUDY, ALLEEG, 'channels', ... 

                             'recompute','off', 'savetrials', 'on', ... 

                             'erp','on',... 

                             'erpim', 'on', ... 

                             'erpimparams', {'nlines', 27, 'smoothing', 10}, ... 

                             'ersp', 'on', 'itc', 'on', ... 

                             'erspparams', {'cycles', [.5 0], 'freqs', [2 50],  

'nfreqs', 100, 'ntimesout', 200}); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

EEG Plots: Healthy Controls 

[STUDY, ALLEEG] = pop_loadstudy('E:\EngD 

Data\Sibani\Studies\MMN\control_MMN_wICA.study'); 

 

chan_names = {}; 

for i = 1:length(ALLEEG(1).chanlocs) 

    chan_names{i} = ALLEEG(1).chanlocs(i).labels; 

end 

 

imp_chan_array = [10, 28]; 

disp('Plots made for channels:') 

disp(chan_names(imp_chan_array)); 

 

scales = [2.5, 2.5, 2, 3.1, 3.2]; 

diff_scales = [1.2, 1.2, 1.0, 1.6, 1.5]; 

for design_num = 1:5 

 

    for i = imp_chan_array 
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        STUDY = std_selectdesign(STUDY, ALLEEG, design_num); 

        disp(STUDY.design(design_num).name) 

        disp('') 

        std_name = STUDY.design(design_num).name; 

        dev_type = split(std_name, 'Vs'); 

        dev_type = dev_type{2}; 

        channels = chan_names(i); 

 

        stat_method = 'montecarlo'; 

        stat_corr = 'cluster'; 

        stat_cluster = '''clusterstatistic'',''maxsum'''; 

        STUDY = pop_statparams(STUDY, 'condstats', 'on', ... 

                               'mode', 'fieldtrip', ... 

                               'fieldtripmethod', stat_method, ... 

                               'fieldtripalpha', 0.05, ... 

                               'fieldtripmcorrect', stat_corr, ... 

                               'fieldtripclusterparam', stat_cluster); 

 

        [STUDY, erpdata, erptimes, pgroup, pcond, pinter] = ... 

            std_erpplot(STUDY, ALLEEG, 'channels', channels, 'noplot', 'on'); 

 

        stand_erp =  mean(erpdata{1}, 2); 

        dev_erp = mean(erpdata{2}, 2); 

        mmn = mean(erpdata{2} - erpdata{1}, 2); 

 

        mmn_plot(stand_erp, dev_erp, mmn, dev_type, ... 

                 erptimes, pcond, .05, 1, fig_title); 

        set_fig_props(); 

 

        STUDY = pop_statparams(STUDY, 'condstats', 'on', ... 

                               'mode', 'fieldtrip', ... 

                               'fieldtripmethod', stat_method, ... 

                               'fieldtripnaccu', 5000, ... 

                               'fieldtripalpha', 0.05, ... 

                               'fieldtripmcorrect', stat_corr, ... 

                               'fieldtripclusterparam', stat_cluster); 

 

        [STUDY, erspdata, ersptimes, erspfreqs, pgroup, pcond, pinter] =  ... 

           std_erspplot(STUDY, ALLEEG, 'channels', channels, 'noplot', 'on'); 

 

        mmn_ersp_plot_scaled(erspdata, ersptimes, erspfreqs, pcond, ... 

                             dev_type, channels, scales(design_num), 

diff_scales(design_num)) 

        set_fig_props(); 

    end 

 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

EEG Plots: Individual Patients 

[STUDY, ALLEEG] = pop_loadstudy('E:\EngD 

Data\Sibani\Studies\MMN\patient_MMN_wICA.study'); 

 

chan_names = {}; 

 

for j = 1:length(ALLEEG(1).chanlocs) 

    chan_names{j} = ALLEEG(1).chanlocs(j).labels; 

end 

 

imp_chan_array = [5, 15]; 

disp('Plots made for channels:') 

disp(chan_names(imp_chan_array)); 

load mmn_patients.mat 

 

for s_ind = 1:6 

    s = subjects{s_ind}; 

    for design_num = 1:5 

        save([fig_dir 'pcond_ersp_mmn_patient'], 'pcond_ersp_mmn_patient') 

        for i = imp_chan_array  %[5, 15, 25]   % 1:length(chan_names) 
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            STUDY = std_selectdesign(STUDY, ALLEEG, design_num); 

            disp(STUDY.design(design_num).name) 

            disp(chan_names(i)) 

            std_name = STUDY.design(design_num).name; 

            dev_type = split(std_name, 'Vs'); 

            dev_type = dev_type{2}; 

            channels = chan_names(i); 

 

            stat_method = 'montecarlo'; 

            stat_corr = 'cluster'; 

            stat_cluster = '''clusterstatistic'',''maxsum'''; 

            STUDY = pop_statparams(STUDY, 'condstats', 'on', ... 

                                   'mode', 'fieldtrip', ... 

                                   'singletrials', 'on', ... 

                                   'fieldtripmethod', stat_method, ... 

                                   'fieldtripalpha', 0.05, ... 

                                   'fieldtripmcorrect', stat_corr, ... 

                                   'fieldtripclusterparam', stat_cluster); 

 

            [STUDY, erpdata, erptimes, pgroup, pcond, pinter] = ... 

                std_erpplot(STUDY, ALLEEG, 'channels', channels, 'noplot', 'on', 

'subject', s); 

 

            stand_erp =  mean(erpdata{1}, 2); 

            dev_erp = mean(erpdata{2}, 2); 

            mmn = dev_erp - stand_erp; 

 

            mmn_plot(stand_erp, dev_erp, mmn, dev_type, ... 

                     erptimes, pcond, .05, 1, fig_title); 

            set_fig_props(); 

 

            STUDY = pop_statparams(STUDY, 'condstats', 'off', ... 

                                   'mode', 'fieldtrip', ... 

                                   'singletrials', 'on', ... 

                                   'fieldtripmethod', stat_method, ... 

                                   'fieldtripalpha', 0.05, ... 

                                   'fieldtripmcorrect', stat_corr, ... 

                                   'fieldtripclusterparam', stat_cluster); 

 

            [STUDY, erspdata, ersptimes, erspfreqs, pgroup, pcond, pinter] =  ... 

               std_erspplot(STUDY, ALLEEG, 'channels', channels, 'noplot', 'on', 

'subject', s); 

 

            erspdata = norm_ersp(erspdata, ersptimes); 

            disp('Finished first go...') 

            [pcond, pgroup, pinter] = std_stat(erspdata, 'condstats', 'on', ... 

                                               'mode', 'fiedtrip', ... 

                                               'fieldtripmethod', stat_method, ... 

                                               'fieldtripalpha', 0.05, ... 

                                               'fieldtripmcorrect', stat_corr, ... 

                                               'fieldtripclusterparam', stat_cluster, 

... 

                                               'paired', {'off', 'off'}); 

 

            mmn_ersp_plot(erspdata, ersptimes, erspfreqs, pcond, dev_type, channels) 

            set_fig_props(); 

 

        end 

 

    end 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

EEG Plots: Patients Groups 

% For schizophrenia patients use this comment others 

[STUDY, ALLEEG] = pop_loadstudy('E:\EngD 

Data\Sibani\Studies\MMN\patient_MMN_wICA_SchizOnly.study'); 

 

% For schizoaffective disorder patients use this comment others 
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% [STUDY, ALLEEG] = pop_loadstudy('E:\EngD 

Data\Sibani\Studies\MMN\patient_MMN_wICA_NonSchizOnly.study'); 

 

% For all patients use this comment others 

% [STUDY, ALLEEG] = pop_loadstudy('E:\EngD 

Data\Sibani\Studies\MMN\patient_MMN_wICA.study'); 

 

chan_names = {}; 

 

for j = 1:length(ALLEEG(1).chanlocs) 

    chan_names{j} = ALLEEG(1).chanlocs(j).labels; 

end 

imp_chan_array = [5, 15]; 

disp('Plots made for channels:') 

disp(chan_names(imp_chan_array)); 

load mmn_patients.mat 

 

scales = [2.5, 2.5, 2, 3.1, 3.2]; 

diff_scales = [1.2, 1.2, 1.0, 1.6, 1.5]; 

for design_num = 1:5 

 

    for i = imp_chan_array  %[5, 15, 25]   % 1:length(chan_names) 

        STUDY = std_selectdesign(STUDY, ALLEEG, design_num); 

        disp(STUDY.design(design_num).name) 

        disp(chan_names(i)) 

        disp(newline) 

        std_name = STUDY.design(design_num).name; 

        dev_type = split(std_name, 'Vs'); 

        dev_type = dev_type{2}; 

        channels = chan_names(i); 

 

        stat_method = 'montecarlo'; 

        stat_corr = 'cluster'; 

        stat_cluster = '''clusterstatistic'',''maxsum'''; 

        STUDY = pop_statparams(STUDY, 'condstats', 'on', ... 

                               'mode', 'fieldtrip', ... 

                               'fieldtripmethod', stat_method, ... 

                               'fieldtripalpha', 0.05, ... 

                               'fieldtripmcorrect', stat_corr, ... 

                               'fieldtripclusterparam', stat_cluster); 

 

        [STUDY, erpdata, erptimes, pgroup, pcond, pinter] = ... 

            std_erpplot(STUDY, ALLEEG, 'channels', channels, 'noplot', 'on'); 

 

        stand_erp =  mean(erpdata{1}, 2); 

        dev_erp = mean(erpdata{2}, 2); 

        mmn = dev_erp - stand_erp; 

        mmn_plot(stand_erp, dev_erp, mmn, dev_type, ... 

                 erptimes, pcond, .05, 1, fig_title); 

        set_fig_props(); 

 

        STUDY = pop_statparams(STUDY, 'condstats', 'on', ... 

                               'mode', 'fieldtrip', ... 

                               'fieldtripmethod', stat_method, ... 

                               'fieldtripalpha', 0.05, ... 

                               'fieldtripmcorrect', stat_corr, ... 

                               'fieldtripclusterparam', stat_cluster); 

 

        [STUDY, erspdata, ersptimes, erspfreqs, pgroup, pcond, pinter] =  ... 

           std_erspplot(STUDY, ALLEEG, 'channels', channels, 'noplot', 'on'); 

 

        mmn_ersp_plot_scaled(erspdata, ersptimes, erspfreqs, pcond, ... 

                         dev_type, channels, scales(design_num), 

diff_scales(design_num)) 

        set_fig_props(); 

    end 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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MMN Peak and Latency Plots 

% Load data 

control_stats = import_mmn_erp_stats('control_mmn.csv'); 

schiz_stats = import_mmn_erp_stats('schizOnly_mmn.csv'); 

nonschiz_stats = import_mmn_erp_stats('nonschiz_mmn.csv'); 

 

% Plot MMN Peaks 

for i=1:5 

    figure('Position', [1 41 1536 748.8000]); 

 

    hold on; 

    colors = brewermap(5, 'Dark2'); 

 

    plot(table2array(control_stats(i, 2:6)), '-o', ... 

                    'color', colors(i,:), 'Linewidth', 3, ... 

                    'MarkerEdgeColor',colors(i,:),... 

                    'MarkerFaceColor',colors(i,:), ... 

                    'MarkerSize', 20); 

 

    plot(table2array(schiz_stats(i, 2:6)), '--s', ... 

                    'color', colors(i,:), 'Linewidth', 3,... 

                    'MarkerEdgeColor',colors(i,:),... 

                    'MarkerFaceColor',colors(i,:), ... 

                    'MarkerSize', 20); 

 

    plot(table2array(nonschiz_stats(i, 2:6)), '--d', ... 

                    'color', colors(i,:), 'Linewidth', 3, ... 

                    'MarkerEdgeColor',colors(i,:),... 

                    'MarkerFaceColor',colors(i,:), ... 

                    'MarkerSize', 20); 

 

    ax = gca; 

    ax.YDir = 'reverse'; 

 

    set(gca, 'Ygrid', 'on') 

    set(gca, 'xlim', [.5, 5.5]); 

    set(gca, 'ylim', [-6, 0]); 

    set(gca, 'XTick', [1,2,3,4,5], 'XTickLabel', str2mat('Fz', 'FCz', 'Cz', 'CPz', 

'Pz')); 

 

    if i==5 

        set( get(gca,'XLabel'), 'String', 'Electrodes'); 

    end 

    set( get(gca,'YLabel'), 'String', 'Amplitude (\muV)'); 

    x_lab = get(gca, 'xlabel'); 

    set(x_lab, 'Units', 'normalized'); 

    set(x_lab, 'Position', [0.5, -0.06, 0]); 

 

    title([char(control_stats.Deviant(i)), ': peaks']); 

 

    set(gca, 'FontSize', 32, 'FontName', 'Garamond', ... 

        'FontWeight', 'Bold', 'LineWidth', 2) 

 

    % Format the labels of different boxes 

    txt = findobj(gca,'Type','text'); 

    set(txt,'VerticalAlignment', 'Middle', ... 

        'FontSize', 32, 'FontName', 'Garamond', 'FontWeight', 'Bold'); 

end 

 

% Plot MMN Latencies 

for i=1:5 

    figure('Position', [1 41 1536 748.8000]); 

 

    hold on; 

    colors = brewermap(5, 'Dark2'); 

 

    plot(table2array(control_stats(i, 7:end)), '-o', ... 

                    'color', colors(i,:), 'Linewidth', 3, ... 

                    'MarkerEdgeColor',colors(i,:),... 

                    'MarkerFaceColor',colors(i,:), ... 

                    'MarkerSize', 20); 
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    plot(table2array(schiz_stats(i, 7:end)), '--s', ... 

                    'color', colors(i,:), 'Linewidth', 3,... 

                    'MarkerEdgeColor',colors(i,:),... 

                    'MarkerFaceColor',colors(i,:), ... 

                    'MarkerSize', 20); 

 

    plot(table2array(nonschiz_stats(i, 7:end)), '--d', ... 

                    'color', colors(i,:), 'Linewidth', 3, ... 

                    'MarkerEdgeColor',colors(i,:),... 

                    'MarkerFaceColor',colors(i,:), ... 

                    'MarkerSize', 20); 

 

    set(gca, 'Ygrid', 'on') 

    set(gca, 'xlim', [.5, 5.5]); 

    set(gca, 'ylim', [50, 350]); 

    set(gca, 'XTick', [1,2,3,4,5], 'XTickLabel', str2mat('Fz', 'FCz', 'Cz', 'CPz', 

'Pz')); 

 

    if i==5 

        set( get(gca,'XLabel'), 'String', 'Electrodes'); 

    end 

    set( get(gca,'YLabel'), 'String', 'Latency (ms)'); 

    x_lab = get(gca, 'xlabel'); 

    set(x_lab, 'Units', 'normalized'); 

    set(x_lab, 'Position', [0.5, -0.06, 0]); 

 

    title([char(control_stats.Deviant(i)), ': latencies']); 

 

    set(gca, 'FontSize', 32, 'FontName', 'Garamond', ... 

        'FontWeight', 'Bold', 'LineWidth', 2) 

 

    % Format the labels of different boxes 

    txt = findobj(gca,'Type','text'); 

    set(txt,'VerticalAlignment', 'Middle', ... 

        'FontSize', 32, 'FontName', 'Garamond', 'FontWeight', 'Bold'); 

    legend({'Control', 'Schizophrenia', 'Schizoaffective'}, ... 

           'FontSize', 42) 

    legend('boxoff') 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

MMN ANOVA Analysis 

control_dir = 'E:\EngD Data\Sibani\Studies\MMN\extracted_data\controls\'; 

schiz_dir = 'E:\EngD Data\Sibani\Studies\MMN\extracted_data\schiz_patients\'; 

nonSchiz_dir = 'E:\EngD Data\Sibani\Studies\MMN\extracted_data\nonSchiz_patients\'; 

all_dir = 'E:\EngD Data\Sibani\Studies\MMN\extracted_data\all_patients\'; 

 

condition_names = {'Duration'; 'Frequency'; 'Intensity'; 'Location'; 'Gap'}; 

conditions = {'standVsdur'; 'standVsfreq'; 'standVsint'; 'standVsloc'; 'standVsgap'}; 

electrodes = {'Fz'; 'FCz'; 'Cz'; 'CPz'; 'Pz'}; 

groups = {'Control'; 'Schizophrenia'; 'Schizoaffective'}; % 'All_patients'}; 

 

% MMN mean/peak amplitude 

mmn_mean = []; 

group_var = {}; 

elec_var = {}; 

cond_var = {}; 

age_var = []; 

 

for g = 1:length(groups) 

    disp(newline) 

    disp(newline) 

    disp(['Processing group: ' groups{g}]) 

    for e = 1:length(electrodes) 

        disp(['Processing electrode: ' electrodes{e}]) 

        for c = 1:length(conditions) 

            disp(newline) 

            disp(['Processing condition: ' conditions{c}]) 
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            if strcmp(groups{g}, 'Control') 

                erp_file = [control_dir, 'control_MMN_', conditions{c}, '_', 

electrodes{e}]; 

            elseif strcmp(groups{g}, 'Schizophrenia') 

                erp_file = [schiz_dir, 'schiz_patient_MMN_', conditions{c}, '_', 

electrodes{e}]; 

            elseif strcmp(groups{g}, 'Schizoaffective') 

                erp_file = [nonSchiz_dir, 'nonSchiz_patient_MMN_', conditions{c}, 

'_', electrodes{e}]; 

            elseif strcmp(groups{g}, 'All_patients') 

                erp_file = [all_dir, 'all_patient_MMN_', conditions{c}, '_', 

electrodes{e}]; 

            end 

 

            disp(['Loading: ', erp_file]) 

            erp_data = load(erp_file); 

            mmn_data = erp_data.erpdata{2} - erp_data.erpdata{1}; 

            erptimes = erp_data.erptimes; 

            time_ind = erptimes>89 & erptimes<251; 

 

            curr_means = min(mmn_data(time_ind, :)); %, 1); 

%   [~, curr_ind] = min(mmn_data(time_ind, :)); 

%             curr_times = erptimes(time_ind); 

%             curr_latencies = curr_times(curr_ind); 

%             curr_means = []; 

%             for i = 1:length(curr_latencies) 

%                 curr_time_logical = erptimes>(curr_latencies(i)-21) & 

erptimes<(curr_latencies(i)+21); 

%                 curr_erp_times = erptimes(curr_time_logical); 

%                 curr_means = [curr_means, mean(mmn_data(curr_time_logical, 

i))]; 

%             end 

            mmn_mean = [mmn_mean, curr_means]; 

 

            curr_groups = repmat(groups(g), length(curr_means), 1); 

            group_var = {group_var{:}, curr_groups{:}}; 

 

            curr_elecs = repmat(electrodes(e), length(curr_means), 1); 

            elec_var = {elec_var{:}, curr_elecs{:}}; 

 

            curr_conds = repmat(conditions(c), length(curr_means), 1); 

            cond_var = {cond_var{:}, curr_conds{:}}; 

        end 

    end 

end 

 

clc 

[p,tbl,stats,terms] = anovan(mmn_mean,{group_var,elec_var,cond_var}, ... 

                             'model','interaction', ... 

                             'varnames',{'Group','Electrodes','Condition'}); 

 

% MMN Peak interactions 

results = multcompare(stats,'Dimension',[1, 2]); 

figure('Position', [1 41 1536 748.8000]); 

hold on; 

colors = brewermap(5, 'Dark2'); 

 

for e = 1:length(electrodes) 

    disp(newline) 

    disp(['Processing electrode: ' electrodes{e}]) 

    cond_mean = []; 

    cond_stderr = []; 

    x_vals = [.91, 1.91, 2.91] + e*.03; 

    text_x_vals = [.85, 1.85, 2.85] + e*.05; 

    for g = 1:length(groups) 

        disp(['Processing group: ' groups{g}]) 

        curr_ind = strcmp(electrodes{e}, elec_var) & strcmp(groups{g}, group_var); 

        curr_data = mmn_mean(curr_ind); 
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        cond_mean = [cond_mean, mean(curr_data)]; 

        cond_stderr = [cond_stderr, std(curr_data)/sqrt(length(curr_data))]; 

 

        result_num = 3*(e-1) + (g-1); 

        result_cond = results(:, 1)==result_num & results(:, 6)<0.05 & ... 

                      results(:, 2)-results(:,1)<2 & mod(results(:,1),3)~=0; 

        if ~isempty(results(result_cond, :)) 

            disp(results(result_cond, :)) 

            text(text_x_vals(g-1)+.5, -5, '*', ... 

                'Color',colors(e,:)) 

        end 

    end 

 

    err = errorbar(x_vals, cond_mean, cond_stderr, '-o', ... 

             'color', colors(e,:), 'Linewidth', 3, ... 

             'MarkerEdgeColor',colors(e,:),... 

             'MarkerFaceColor',colors(e,:), ... 

             'MarkerSize', 10); 

end 

 

ax = gca; 

ax.YDir = 'reverse'; 

set(gca, 'Ygrid', 'on') 

set(gca, 'xlim', [.5, 3.5]); 

set(gca, 'ylim', [-6, -1]); 

set(gca, 'XTick', [1,2,3], 'XTickLabel', {'Control', 'Schizophrenia', 

'Schizoaffective'}); 

 

 

set(get(gca,'XLabel'), 'String', 'Groups'); 

set(get(gca,'YLabel'), 'String', 'Amplitude (\muV)'); 

x_lab = get(gca, 'xlabel'); 

set(gca, 'FontSize', 32, 'FontName', 'Garamond', ... 

    'FontWeight', 'Bold', 'LineWidth', 2) 

 

legend({'Fz'; 'FCz'; 'Cz'; 'CPz'; 'Pz'}, ... % 'All Patients'}, ... 

       'FontSize', 32) 

legend('boxoff') 

legend('Location', 'northwest') 

title('a. Peak Interactions') 

txt = findobj(gca,'Type','text'); 

set(txt,'VerticalAlignment', 'Middle', ... 

    'FontSize', 32, 'FontName', 'Garamond', 'FontWeight', 'Bold'); 

f_name = 'peak_interactions'; 

print(f_name, '-dpng', '-r300', '-painters'); 

close 

 

% MMN peak latencies 

mmn_latencies = []; 

group_var = {}; 

elec_var = {}; 

cond_var = {}; 

 

for g = 1:length(groups) 

    disp(newline) 

    disp(newline) 

    disp(['Processing group: ' groups{g}]) 

    for e = 1:length(electrodes) 

        disp(['Processing electrode: ' electrodes{e}]) 

        for c = 1:length(conditions) 

            disp(newline) 

            disp(['Processing condition: ' conditions{c}]) 

 

            if strcmp(groups{g}, 'Control') 

                erp_file = [control_dir, 'control_MMN_', conditions{c}, '_', 

electrodes{e}]; 

            elseif strcmp(groups{g}, 'Schizophrenia') 

                erp_file = [schiz_dir, 'schiz_patient_MMN_', conditions{c}, '_', 

electrodes{e}]; 

            elseif strcmp(groups{g}, 'Schizoaffective') 

                erp_file = [nonSchiz_dir, 'nonSchiz_patient_MMN_', conditions{c}, 

'_', electrodes{e}]; 

            elseif strcmp(groups{g}, 'All_patients') 
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                erp_file = [all_dir, 'all_patient_MMN_', conditions{c}, '_', 

electrodes{e}]; 

            end 

 

            disp(['Loading: ', erp_file]) 

            erp_data = load(erp_file); 

            mmn_data = erp_data.erpdata{2} - erp_data.erpdata{1}; 

            erptimes = erp_data.erptimes; 

            time_ind = erptimes>89 & erptimes<251; 

 

            [~, curr_ind] = min(mmn_data(time_ind, :)); 

            curr_times = erptimes(time_ind); 

            curr_latencies = curr_times(curr_ind); 

            mmn_latencies = [mmn_latencies, curr_latencies]; 

 

            curr_groups = repmat(groups(g), length(curr_latencies), 1); 

            group_var = {group_var{:}, curr_groups{:}}; 

 

            curr_elecs = repmat(electrodes(e), length(curr_latencies), 1); 

            elec_var = {elec_var{:}, curr_elecs{:}}; 

 

            curr_conds = repmat(conditions(c), length(curr_latencies), 1); 

            cond_var = {cond_var{:}, curr_conds{:}}; 

        end 

    end 

end 

 

clc 

[p,tbl,stats,terms] = anovan(mmn_latencies,{group_var,elec_var,cond_var}, ... 

                             'model','interaction', ... 

                             'varnames',{'Group','Electrodes','Condition'}); 

 

% MMN Latency interactions 

results = multcompare(stats,'Dimension',[1, 3]); 

figure('Position', [1 41 1536 748.8000]); 

hold on; 

colors = brewermap(5, 'Dark2'); 

 

for c = 1:length(conditions) 

    disp(newline) 

    disp(['Processing condition: ' conditions{c}]) 

    cond_mean = []; 

    cond_stderr = []; 

    x_vals = [.91, 1.91, 2.91] + c*.03; 

    text_x_vals = [.85, 1.85, 2.85] + c*.05; 

    for g = 1:length(groups) 

        disp(['Processing group: ' groups{g}]) 

        curr_ind = strcmp(conditions{c}, cond_var) & strcmp(groups{g}, group_var); 

        curr_data = mmn_latencies(curr_ind); 

        cond_mean = [cond_mean, mean(curr_data)]; 

        cond_stderr = [cond_stderr, std(curr_data)/sqrt(length(curr_data))]; 

 

        result_num = 3*(c-1) + (g-1); 

        result_cond = results(:, 1)==result_num & results(:, 6)<0.05 & ... 

                      results(:, 2)-results(:,1)<2 & mod(results(:,1),3)~=0; 

        if ~isempty(results(result_cond, :)) 

            disp(results(result_cond, :)) 

            text(text_x_vals(g-1)+.5, 225, '*', ... 

                'Color',colors(c,:)) 

        end 

    end 

    err = errorbar(x_vals, cond_mean, cond_stderr, '-o', ... 

             'color', colors(c,:), 'Linewidth', 3, ... 

             'MarkerEdgeColor',colors(c,:),... 

             'MarkerFaceColor',colors(c,:), ... 

             'MarkerSize', 10); 

end 

 

set(gca, 'Ygrid', 'on') 

set(gca, 'xlim', [.5, 3.5]); 

set(gca, 'ylim', [100, 250]); 

set(gca, 'XTick', [1,2,3], 'XTickLabel', {'Control', 'Schizophrenia', 

'Schizoaffective'}); 
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set(get(gca,'XLabel'), 'String', 'Groups'); 

set(get(gca,'YLabel'), 'String', 'Latency (ms)'); 

x_lab = get(gca, 'xlabel'); 

set(gca, 'FontSize', 32, 'FontName', 'Garamond', ... 

    'FontWeight', 'Bold', 'LineWidth', 2) 

 

legend({'Duration'; 'Frequency'; 'Intensity'; 'Location'; 'Gap'}, ... % 'All 

Patients'}, ... 

       'FontSize', 32) 

legend('boxoff') 

legend('Location', 'northwest') 

title('b. Latency Interactions') 

txt = findobj(gca,'Type','text'); 

set(txt,'VerticalAlignment', 'Middle', ... 

    'FontSize', 32, 'FontName', 'Garamond', 'FontWeight', 'Bold'); 

f_name = 'latency_interactions'; 

print(f_name, '-dpng', '-r300', '-painters'); 

close 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

MMN Correlations with Demographic data 

% Load Demographic data 

load_patient_demo_data 

 

% Load saved EEG measures 

patient_dur_data = import_mmn_patient_byDeviant('dur_patient_mmn.csv'); 

patient_dur_data = sortrows(patient_dur_data, 'Codes'); 

 

patient_freq_data = import_mmn_patient_byDeviant('freq_patient_mmn.csv'); 

patient_freq_data = sortrows(patient_freq_data, 'Codes'); 

 

patient_int_data = import_mmn_patient_byDeviant('int_patient_mmn.csv'); 

patient_int_data = sortrows(patient_int_data, 'Codes'); 

 

patient_loc_data = import_mmn_patient_byDeviant('loc_patient_mmn.csv'); 

patient_loc_data = sortrows(patient_loc_data, 'Codes'); 

 

patient_gap_data = import_mmn_patient_byDeviant('gap_patient_mmn.csv'); 

patient_gap_data = sortrows(patient_gap_data, 'Codes'); 

 

 

patient_peak_data = [patient_dur_data{:,'PeakFz'}, patient_freq_data{:,'PeakFz'}, ... 

                     patient_int_data{:,'PeakFz'}, patient_loc_data{:,'PeakFz'}, ... 

                     patient_gap_data{:,'PeakFz'}]; 

 

patient_latency_data = [patient_dur_data{:,'LatencyFz'}, 

patient_freq_data{:,'LatencyFz'}, ... 

                        patient_int_data{:,'LatencyFz'}, 

patient_loc_data{:,'LatencyFz'}, ... 

                        patient_gap_data{:,'LatencyFz'}]; 

 

patient_scores = patient_demo_data{:, {'Age', ... 

                                       'PANSSP_session1', 'PANSSN_session1', ... 

                                       'PANSSG_session1', ... 

                                       'MADRS_session1'}}; 

patient_peak_schiz = abs(patient_peak_data(4:end, :)); 

patient_latency_schiz = patient_latency_data(4:end, :); 

patient_scores_schiz = patient_scores(4:end, :); 

 

patient_peak_nonSchiz = abs(patient_peak_data(1:3, :)); 

patient_latency_nonSchiz = patient_latency_data(1:3, :); 

patient_scores_nonSchiz = patient_scores(1:3, :); 

 

% Peak correlation 

% Computing and plotting correlations for Schizophrenia patients 

[task_score_corr, p] = corr(patient_peak_schiz, patient_scores_schiz); 
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c_data = brewermap(100, 'RdBu'); 

c_inv = flipud(c_data); 

 

condition_names = {'Duration'; 'Frequency'; 'Intensity'; 'Location'; 'Gap'}; 

 

score_type = {'Age'; 'PANSSP';... 

              'PANSSN';... 

              'PANSSG'; ... 

              'MADRS'}; 

figure('Position', [1 41 1000 750]); 

imagesc(task_score_corr, [-1 1]) 

colormap(c_inv) 

set(gca,'TickLabelInterpreter','none') 

set(gca, 'XTick', 1:10) 

set(gca, 'XTickLabel', score_type, 'XTickLabelRotation', 45) 

set(gca, 'YTick', 1:5) 

set(gca, 'YTickLabel', condition_names) 

axis square 

hold on; 

[sig_j, sig_i] = find(p<0.05); 

plot(sig_i, sig_j, '*', 'MarkerSize', 10, 'color', [.9, .9, .9]); 

title('Peak Correlations: Schizophrenia') 

colorbar 

set(gca, 'FontSize', 24, 'FontName', 'Garamond', ... 

    'FontWeight', 'Bold', 'LineWidth', 1) 

f_name = 'demo_peak_corrs_schiz.png'; 

print(f_name, '-dpng', '-r300', '-painters'); 

close; 

 

% Computing and plotting correlations for Schizoaffective patients 

[task_score_corr, p] = corr(patient_peak_nonSchiz, patient_scores_nonSchiz); 

 

c_data = brewermap(100, 'RdBu'); 

c_inv = flipud(c_data); 

 

condition_names = {'Duration'; 'Frequency'; 'Intensity'; 'Location'; 'Gap'}; 

 

score_type = {'Age'; 'PANSSP';... 

              'PANSSN';... 

              'PANSSG'; ... 

              'MADRS'}; 

figure('Position', [1 41 1000 750]); 

imagesc(task_score_corr, [-1 1]) 

colormap(c_inv) 

set(gca,'TickLabelInterpreter','none') 

set(gca, 'XTick', 1:10) 

set(gca, 'XTickLabel', score_type, 'XTickLabelRotation', 45) 

set(gca, 'YTick', 1:5) 

set(gca, 'YTickLabel', condition_names) 

axis square 

hold on; 

[sig_j, sig_i] = find(p<0.05); 

plot(sig_i, sig_j, '*', 'MarkerSize', 10, 'color', [.9, .9, .9]); 

title('Peak Correlations: Schizoaffective') 

colorbar 

set(gca, 'FontSize', 24, 'FontName', 'Garamond', ... 

    'FontWeight', 'Bold', 'LineWidth', 1) 

f_name = 'demo_peak_corrs_nonSchiz.png'; 

print(f_name, '-dpng', '-r300', '-painters'); 

close 

 

% Latency correlation 

% Computing and plotting correlations for Schizophrenia patients 

[task_score_corr, p] = corr(patient_latency_schiz, patient_scores_schiz); 

 

c_data = brewermap(100, 'RdBu'); 

c_inv = flipud(c_data); 

 

condition_names = {'Duration'; 'Frequency'; 'Intensity'; 'Location'; 'Gap'}; 

 

score_type = {'Age'; 'PANSSP';... 

              'PANSSN';... 

              'PANSSG'; ... 
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              'MADRS'}; 

figure('Position', [1 41 1000 750]); 

imagesc(task_score_corr, [-1 1]) 

colormap(c_inv) 

set(gca,'TickLabelInterpreter','none') 

set(gca, 'XTick', 1:10) 

set(gca, 'XTickLabel', score_type, 'XTickLabelRotation', 45) 

set(gca, 'YTick', 1:5) 

set(gca, 'YTickLabel', condition_names) 

axis square 

hold on; 

[sig_j, sig_i] = find(p<0.05); 

plot(sig_i, sig_j, '*', 'MarkerSize', 10, 'color', [.9, .9, .9]); 

title('Latency Correlations: Schizophrenia') 

colorbar 

set(gca, 'FontSize', 24, 'FontName', 'Garamond', ... 

    'FontWeight', 'Bold', 'LineWidth', 1) 

f_name = 'demo_latency_corrs_schiz.png'; 

print(f_name, '-dpng', '-r300', '-painters'); 

close; 

 

% Computing and plotting correlations for Schizoaffective patients 

[task_score_corr, p] = corr(patient_latency_nonSchiz, patient_scores_nonSchiz); 

 

c_data = brewermap(100, 'RdBu'); 

c_inv = flipud(c_data); 

 

condition_names = {'Duration'; 'Frequency'; 'Intensity'; 'Location'; 'Gap'}; 

 

score_type = {'Age'; 'PANSSP';... 

              'PANSSN';... 

              'PANSSG'; ... 

              'MADRS'}; 

figure('Position', [1 41 1000 750]); 

imagesc(task_score_corr, [-1 1]) 

colormap(c_inv) 

set(gca,'TickLabelInterpreter','none') 

set(gca, 'XTick', 1:10) 

set(gca, 'XTickLabel', score_type, 'XTickLabelRotation', 45) 

set(gca, 'YTick', 1:5) 

set(gca, 'YTickLabel', condition_names) 

axis square 

hold on; 

[sig_j, sig_i] = find(p<0.05); 

plot(sig_i, sig_j, '*', 'MarkerSize', 10, 'color', [.9, .9, .9]); 

title('Latency Correlations: Schizoaffective') 

colorbar 

set(gca, 'FontSize', 24, 'FontName', 'Garamond', ... 

    'FontWeight', 'Bold', 'LineWidth', 1) 

f_name = 'demo_latency_corrs_nonSchiz.png'; 

print(f_name, '-dpng', '-r300', '-painters'); 

close; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Figure Formatting Function 

function set_fig_props() 

    set(findall(gcf,'-property','FontSize'),'FontSize',24) 

    set(findall(gcf,'-property','FontName'),'FontName','Garamond') 

    set(findall(gcf,'-property','FontWeight'),'FontWeight','Bold') 

    set(findall(gcf,'-property','LineWidth'),'LineWidth',2) 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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ERSP Averaging and Normalization function 

function ersp_norm = norm_ersp(erspdata, ersptimes) 

    P = squeeze(erspdata{1}); 

    base_t = find(ersptimes<0); 

    mbase = mean(P(base_t, :, :), 1); 

    mbase = mean(mbase, 3); 

    P_norm = P./mbase; 

 

    ersp_norm = {}; 

    ersp_norm{1,1} = P_norm; 

 

    P = squeeze(erspdata{2}); 

    base_t = find(ersptimes<0); 

    mbase = mean(P(base_t, :, :), 1); 

    mbase = mean(mbase, 3); 

    P_norm = P./mbase; 

 

    ersp_norm{2,1} = P_norm; 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Plotting function for MMN ERP Plots 

function mmn_plot(stand_erp, dev_erp, mmn, dev_type, ... 

    erptimes, pcond, p_thresh, reverse, fig_title) 

 

    figure('Position', [1 41 1536 748.8000]); 

 

    max_y = max(max(stand_erp), max(dev_erp)); 

    max_y = floor(max_y + 2); 

    min_y = min(min(stand_erp), min(dev_erp)); 

    min_y = ceil(min_y - 2); 

 

    max_y = 7; 

    min_y = -11; 

 

    plot(erptimes, stand_erp, 'linewidth', 1., 'color', [0.3 0.3 0.3]) 

    hold on; plot(erptimes, dev_erp, 'linewidth', 1., 'color', [0.7 0.7 0.7]) 

    plot(erptimes, mmn, 'linewidth', 2) 

    plot(erptimes, zeros(length(erptimes), 1), 'k', 'linewidth', 1) 

 

 

    if ~reverse 

        patch_y = [min_y+.4 min_y+.7]; 

    else 

        patch_y = [max_y-.4 max_y-.7]; 

    end 

 

    patch_c = [0.3 0.3 0.3]; 

    times = erptimes; 

    regions = pcond{1}; 

 

    if sum(regions)>0 

        r_ind = find(regions==1); 

        r_ind_change = find(diff(r_ind)>1); 

        r_ind_change = sort([r_ind_change' r_ind_change'+1]); 

        r_ind_change = [1 r_ind_change length(r_ind)]; 

 

        for i = 1:2:length(r_ind_change)-1 

            tmp_t = [times(r_ind(r_ind_change(i))) ... 

                     times(r_ind(r_ind_change(i+1)))]; 

            tmp_p = patch([tmp_t(1) tmp_t(2) tmp_t(2) tmp_t(1)], ... 

                          [patch_y(1) patch_y(1) patch_y(2) patch_y(2)], ... 

                          patch_c); 

            set(tmp_p, 'edgecolor', patch_c); 

        end 

    end 
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    box off 

    set(gca,'FontSize',36, 'fontname','times') 

    legend('stand', dev_type, 'MMN') 

    legend('boxoff') 

    yticks(min_y+1:2:max_y-1); 

    plot([0, 0], [min_y max_y], 'k', 'linewidth', 0.5) 

    ylim([min_y, max_y]); 

    title(fig_title); 

    set( get(gca,'XLabel'), 'String', 'Latency (ms)'); 

    set( get(gca,'YLabel'), 'String', 'Amplitude (\muV)'); 

    legend('Stand', first_upper(dev_type), 'MMN', 'Location', 'northeast') 

    legend('boxoff') 

    if reverse 

        ax = gca; 

        ax.YDir = 'reverse'; 

    end 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Plotting function for MMN ERSP Plots 

function mmn_ersp_plot_scaled(erspdata, ersptimes, erspfreqs, pcond, dev_type, 

channels, ersp_scale, diff_scale) 

    figure('Position', [1 41 1536 748.8000]); 

    rdbu_map = brewermap(200,'RdBu'); 

    c_val_esrp = [max(max(abs(mean(erspdata{1}, 4)))), ... 

                  max(max(abs(mean(erspdata{2}, 4))))]; 

    c_val_esrp = max(c_val_esrp); 

    disp(['Cal for 1,2 ' num2str(c_val_esrp)]) 

    c_val_esrp = ersp_scale; 

    erspfreqs = log(erspfreqs); 

 

    fticks = [2 4 8 16 24 32 40, 48]; 

 

    p1 = subplot('Position', [.075, .125, .275 .8]); 

    imagesc(ersptimes, erspfreqs, mean(erspdata{1}, 4)); 

    hold on; 

    plot([0 0], [erspfreqs(1) erspfreqs(end)], 'k:', 'linewidth', 1.5); 

    set(gca, 'YDir', 'normal'); 

    set( get(p1,'XLabel'), 'String', 'Latency (ms)'); 

    set( get(p1,'YLabel'), 'String', 'Frequency (Hz)'); 

    set(gca,'ytick',log(fticks)); 

    set(gca,'yticklabel', string(fticks)) 

    colormap(rdbu_map); 

    hcb = colorbar; 

    title(hcb, 'dB') 

    caxis([-c_val_esrp, c_val_esrp]) 

    title(['Standard ERSP: ', cell2mat(join(channels, ', '))]) 

 

    p2 = subplot('Position', [.375, .125, .275 .8]); 

    imagesc(ersptimes, erspfreqs, mean(erspdata{2}, 4)); 

    hold on; 

    plot([0 0], [erspfreqs(1) erspfreqs(end)], 'k:', 'linewidth', 1.5); 

    set(gca, 'YDir', 'normal', 'yticklabels', []); 

    set( get(p2,'XLabel'), 'String', 'Latency (ms)'); 

    set(gca,'ytick',log(fticks)); 

    colormap(rdbu_map); 

    hcb = colorbar; 

    title(hcb, 'dB') 

    caxis([-c_val_esrp, c_val_esrp]) 

    title(['Deviant (' dev_type ') ERSP: ' cell2mat(join(channels, ', '))]) 

 

    p3 = subplot('Position', [.675, .125, .275 .8]); 

    imagesc(ersptimes, erspfreqs, mean(erspdata{2} - erspdata{1}, 4)); 

    hold on; 

    plot([0 0], [erspfreqs(1) erspfreqs(end)], 'k:', 'linewidth', 1.5); 

    set(gca, 'YDir', 'normal', 'yticklabels', []); 

    set( get(p3,'XLabel'), 'String', 'Latency (ms)'); 

    set(gca,'ytick',log(fticks)); 

    colormap(brewermap(200,'RdBu')); 
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    hcb = colorbar; 

    title(hcb, 'dB') 

    c_val = max(max(abs(mean(erspdata{2} - erspdata{1}, 4)))); 

    disp(['Cal for 3 ' num2str(c_val)]) 

    c_val = diff_scale; 

    caxis([-c_val, c_val]) 

    hold on; 

    x = linspace(ersptimes(1), ersptimes(end), length(ersptimes)); 

    y = linspace(erspfreqs(1), erspfreqs(end), length(erspfreqs)); 

    contour(x, y, pcond{1}~=1, 'k') 

    title(['Difference ERSP: ', cell2mat(join(channels, ', '))]) 

 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Plotting function for Single Patient MMN ERSP Plots 

function mmn_ersp_plot(erspdata, ersptimes, erspfreqs, pcond, dev_type, channels, 

fig_title) 

    figure('Position', [1 41 1536 748.8000]); 

    rdbu_map = brewermap(200,'RdBu'); 

 

    P_db{1,1} = 10*log10(mean(erspdata{1}, 3)); 

    P_db{2,1} = 10*log10(mean(erspdata{2}, 3)); 

    c_val_esrp = [max(max(abs(P_db{1}))), ... 

                  max(max(abs(P_db{2})))]; 

    c_val_esrp = max(c_val_esrp); 

 

    erspfreqs = log(erspfreqs); 

 

    fticks = [2 4 8 16 24 32 40, 48]; 

 

    p1 = subplot('Position', [.075, .125, .275 .8]); 

    imagesc(ersptimes, erspfreqs, P_db{1}'); 

    hold on; 

    plot([0 0], [erspfreqs(1) erspfreqs(end)], 'k:', 'linewidth', 1.5); 

    set(gca, 'YDir', 'normal'); 

    set( get(p1,'XLabel'), 'String', 'Latency (ms)'); 

    set( get(p1,'YLabel'), 'String', 'Frequency (Hz)'); 

    set(gca,'FontSize', 24, 'fontname','times') 

    set(gca,'ytick',log(fticks)); 

    set(gca,'yticklabel', string(fticks)) 

    colormap(rdbu_map); 

    hcb = colorbar; 

    title(hcb, 'dB') 

    caxis([-c_val_esrp, c_val_esrp]) 

    title(['Standard ERSP: ', cell2mat(join(channels, ', '))]) 

 

    p2 = subplot('Position', [.375, .125, .275 .8]); 

    imagesc(ersptimes, erspfreqs, P_db{2}'); 

    hold on; 

    plot([0 0], [erspfreqs(1) erspfreqs(end)], 'k:', 'linewidth', 1.5); 

    set(gca, 'YDir', 'normal', 'yticklabels', []); 

    set(gca,'FontSize', 24, 'fontname','times') 

    set( get(p2,'XLabel'), 'String', 'Latency (ms)'); 

    set(gca,'ytick',log(fticks)); 

    colormap(rdbu_map); 

    hcb = colorbar; 

    title(hcb, 'dB') 

    caxis([-c_val_esrp, c_val_esrp]) 

    title(['Deviant (' dev_type ') ERSP: ' cell2mat(join(channels, ', '))]) 

 

    p3 = subplot('Position', [.675, .125, .275 .8]); 

    imagesc(ersptimes, erspfreqs, P_db{2}' - P_db{1}'); 

    hold on; 

    plot([0 0], [erspfreqs(1) erspfreqs(end)], 'k:', 'linewidth', 1.5); 

    set(gca, 'YDir', 'normal', 'yticklabels', []); 

    set(gca,'FontSize', 24, 'fontname','times') 

    set( get(p3,'XLabel'), 'String', 'Latency (ms)'); 

    set(gca,'ytick',log(fticks)); 



 

402 

 

    colormap(brewermap(200,'RdBu')); 

    hcb = colorbar; 

    title(hcb, 'dB') 

    c_val = max(max(abs(P_db{2} - P_db{1}))); 

    caxis([-c_val, c_val]) 

    hold on; 

    x = linspace(ersptimes(1), ersptimes(end), length(ersptimes)); 

    y = linspace(erspfreqs(1), erspfreqs(end), length(erspfreqs)); 

    contour(x, y, pcond{1}'~=1, 'k') 

    title(['Difference ERSP: ', cell2mat(join(channels, ', '))]) 

 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

APPENDIX F - MATLAB CODES: STROOP TASK 

Stroop Task Behavioural Plots 

% Load Data 

load('stroop_control_combined') 

load('stroop_patient_combined') 

strooppatient = strooppatient09032020; 

 

schiz_inds = [3, 5, 6]; 

non_schiz_inds = [2, 1, 4]; 

 

schiz_patients = strooppatient(schiz_inds, :); 

non_schiz_patients = strooppatient(non_schiz_inds, :); 

 

% Comparing percent correct between control and patients 

clc 

values = [stroopcontrol.TotalPercentCorrect; ... 

          strooppatient.TotalPercentCorrect]; 

groups = [1*ones(size(stroopcontrol.TotalPercentCorrect)); ... 

          2*ones(size(strooppatient.TotalPercentCorrect))]; 

label = {'Control', 'Patient'}; 

make_rawplot_colored_stroop(values, groups, label, 'Percent Correct'); 

ylim([15, 105]) 

 

% Patient compare cong and incong latencies 

clc 

label = {'Congruent', 'Incongruent'}; 

compare_within_patients(strooppatient.CongLatency, strooppatient.IncongLatency, 

label, 'Latencies (ms)'); 

[h,p,ci,stats] = ttest(strooppatient.IncongLatency, strooppatient.CongLatency) 

[h,p,ci,stats] = ttest(strooppatient.IncongLatency, strooppatient.CongLatency, 

'tail', 'right') 

ylim([425, 875]); 

yticks([450, 550, 650, 750, 850]); 

 

% Control compare cong and incong latencies 

clc 

label = {'Congruent', 'Incongruent'}; 

compare_within_controls(stroopcontrol.CongLatency, stroopcontrol.IncongLatency, 

label, 'Latencies (ms)'); 

[h,p,ci,stats] = ttest(stroopcontrol.IncongLatency, stroopcontrol.CongLatency) 

[h,p,ci,stats] = ttest(stroopcontrol.IncongLatency, stroopcontrol.CongLatency, 

'tail', 'right') 

ylim([425, 650]); 

yticks([450, 500, 550, 600, 650]); 

 

% Compare percent change in latency between controls and patients 

clc 

control_perc_change = (stroopcontrol.IncongLatency-

stroopcontrol.CongLatency)*100./stroopcontrol.CongLatency; 

patient_perc_change = (strooppatient.IncongLatency-

strooppatient.CongLatency)*100./strooppatient.CongLatency; 

 

values = [control_perc_change; patient_perc_change]; 
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groups = [1*ones(size(control_perc_change)); 2*ones(size(patient_perc_change))]; 

label = {'Control', 'Patients'}; 

make_rawplot_colored_stroop(values, groups, label, 'Percent change (%)'); 

ylim([-12, 27]) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Plotting function to compare Controls and Patients 

function fig_handle = make_rawplot_colored_stroop(values, groups, label, y_label) 

%Make a boxplot for the values with grouping 

%   values:   vector of all the data thats used to create the boxplot 

%   groups:   vector representing how the data is grouped; same number is 

%             assigned to the values in the same group. The data can have 

%             any number of groups 

%   label:    labels that will be shown for each group in the plot. Make 

%             sure the number of labels is same as diffenret number of 

%             groups. 

%   y_label:  label for y-axis. 

 

 

% Get colors for raw data 

c_data = brewermap(20, 'RdYlGn'); 

color_data = brewermap(8, 'Dark2'); 

color_data = color_data([1,2,3,4,6,8], :); 

% Set Figure position and size 

figure('Units' , 'normalized', ... 

       'Position', [0., 0., .9, .9]); 

% figure('Position', [1 41 1536 748.8000]) 

hold on; 

 

unique_groups = unique(groups); 

 

x_controls = groups(groups==1); 

values_controls = values(groups==1); 

 

x_patients = groups(groups==2); 

values_patients = values(groups==2); 

values_patients_5 = values_patients([1,3,4,5,6]); 

 

% Calculating p-values between adjacent groups 

dist1 = values_controls; 

dist2 = values_patients_5; 

% dist2 = values_patients; 

 

[h, p] = ttest2(dist1, dist2); 

[hk, pk] = kstest2(dist1, dist2); 

medians(1) = median(dist1); 

medians(2) = median(dist2); 

 

% put a * mark if p<0.05 

if p < 0.05 

    plot(mean(unique_groups)-0.025, mean(medians)*1.1, ... 

         '*', 'Color', c_data(2, :),... 

         'LineWidth', 2, 'MarkerSize', 10) 

end 

 

% put another * mark if p<0.005 

if p < 0.005 

    plot(mean(unique_groups)+0.025, mean(medians)*1.1, ... 

         '*', 'Color', c_data(2, :),... 

         'LineWidth', 2, 'MarkerSize', 10) 

end 

 

% plot a line between medians of group data 

plot(unique_groups, medians, 'Color', c_data(2, :), 'LineWidth', 2) 

set(gca,'xtick',unique(groups),'xticklabel',label) 

 

disp(['Ttest p = ', num2str(p, '%1.4e\n')]) 

disp(['Ktest p = ', num2str(pk, '%1.4e\n')]) 
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%  Plot and format raw values 

 

% Add noise to x values so that values that are close dont overlap 

x = groups; % + (rand(size(groups)) - .5)/5; 

x_controls = x(groups==1); 

values_controls = values(groups==1); 

% x_controls = x_controls + (rand(size(x_controls)) - .5)/5; 

 

% Seperate overlapping data for controls 

unique_vals = unique(ceil(values_controls)); 

for i=1:length(unique_vals) 

    n = length(values_controls(ceil(values_controls)==unique_vals(i))); 

    if n==1 

        continue; 

    else 

        x_controls(ceil(values_controls)==unique_vals(i)) = 1 + linspace(-.025*n, 

0.025*n, n); 

    end 

end 

 

% Plot the raw values for controls 

plot(x_controls, values_controls, 'o', 'MarkerSize', 10, ... 

     'MarkerEdgeColor', c_data(15, :), ... 

     'MarkerFaceColor', c_data(15, :), 'LineWidth', 1) 

 

hold on; 

 

% Plot raw values for patients with their individual colours 

x_patients = x(groups==2); 

values_patients = values(groups==2); 

 

% Seperate overlapping data 

unique_vals = unique(ceil(values_patients)); 

for i=1:length(unique_vals) 

    n = length(values_patients(ceil(values_patients)==unique_vals(i))); 

    if n==1 

        continue; 

    else 

        x_patients(ceil(values_patients)==unique_vals(i)) = 2 + linspace(-.025*n, 

0.025*n, n); 

    end 

end 

 

 

for i=1:length(x_patients) 

    plot(x_patients(i), values_patients(i), 'o', ... 

         'MarkerSize', 15,'MarkerEdgeColor', color_data(i, :), ... 

         'MarkerFaceColor', color_data(i, :), 'LineWidth', 1) 

end 

 

xlim([unique_groups(1) - 0.5, unique_groups(end) + 0.5]); 

% change fonts for the axis 

set(gca, 'FontSize', 32, 'FontName', 'Garamond', ... 

    'FontWeight', 'Bold', 'LineWidth', 2) 

 

% set labels for x and y axis 

xlabel('Group') 

x_lab = get(gca, 'xlabel'); 

set(x_lab, 'Units', 'normalized'); 

set(x_lab, 'Position', [0.5, -0.07, 0]); 

ylabel(y_label) 

 

box 'off' 

set(gca, 'Ygrid', 'on') 

 

% Format the labels of different boxes 

txt = findobj(gca,'Type','text'); 

set(txt,'VerticalAlignment', 'Middle', ... 

    'FontSize', 32, 'FontName', 'Garamond', 'FontWeight', 'Bold'); 

 

axis('square') 

fig_handle = gcf; 
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end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Plotting function to compare within Healthy Controls 

function fig_handle = compare_within_controls(cong, incong, label, y_label) 

%Make a boxplot for the values with grouping 

%   cong:   vector of all the cong values 

%   incong: vector of all the incong values 

%   label:  text label for x-axis 

%   y_label:  label for y-axis. 

 

 

% Get colors for raw data 

c_data = brewermap(20, 'RdYlGn'); 

% Set Figure position and size 

figure('Units' , 'normalized', ... 

       'Position', [0., 0., .9, .9]); 

hold on; 

 

data = [cong incong]; 

x = [ones(size(cong)) 2*ones(size(incong))]; 

 

data_pos = data(incong-cong>0, :); 

x_pos = x(incong-cong>0, :); 

 

data_neg = data(incong-cong<=0, :); 

x_neg = x(incong-cong<=0, :); 

% Plot the raw values 

 

plot(x_pos', data_pos', 'o-', 'Color',  c_data(15, :), ... 

     'MarkerSize', 10, 'MarkerEdgeColor', c_data(15, :), ... 

     'MarkerFaceColor', c_data(15, :), 'LineWidth', 2) 

hold on; 

 

plot(x_neg', data_neg', 'o-', 'Color',  c_data(2, :), ... 

     'MarkerSize', 10, 'MarkerEdgeColor', c_data(2, :), ... 

     'MarkerFaceColor', c_data(2, :), 'LineWidth', 2) 

 

 

xlim([0.5, 2.5]); 

% change fonts for the axis 

set(gca, 'FontSize', 32, 'FontName', 'Garamond', ... 

    'FontWeight', 'Bold', 'LineWidth', 2) 

 

% set labels for x and y axis 

xlabel('Controls') 

x_lab = get(gca, 'xlabel'); 

set(x_lab, 'Units', 'normalized'); 

set(x_lab, 'Position', [0.5, -0.07, 0]); 

set(gca,'xtick',[1 2],'xticklabel',label) 

ylabel(y_label) 

 

box 'off' 

set(gca, 'Ygrid', 'on') 

 

% Format the labels of different boxes 

txt = findobj(gca,'Type','text'); 

set(txt,'VerticalAlignment', 'Middle', ... 

    'FontSize', 32, 'FontName', 'Garamond', 'FontWeight', 'Bold'); 

 

axis('square') 

fig_handle = gcf; 

 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Plotting function to compare within Patients 

function fig_handle = compare_within_patients(cong, incong, label, y_label) 

%Make a boxplot for the values with grouping 

%   cong:   vector of all the cong values 

%   incong: vector of all the incong values 

%   label:  text label for x-axis 

%   y_label:  label for y-axis. 

 

 

% Get colors for raw data 

c_data = brewermap(20, 'RdYlGn'); 

color_data = brewermap(8, 'Dark2'); 

color_data = color_data([1,2,3,4,6,8], :); 

% Set Figure position and size 

figure('Units' , 'normalized', ... 

       'Position', [0., 0., .9, .9]); 

hold on; 

 

 

% Plot the raw values for cong 

for i=1:length(cong) 

    plot([1 2], [cong(i) incong(i)], 'o-', 'Color',  color_data(i, :), ... 

         'MarkerSize', 15, 'MarkerEdgeColor', color_data(i, :), ... 

         'MarkerFaceColor', color_data(i, :), 'LineWidth', 2) 

    hold on; 

end 

 

xlim([0.5, 2.5]); 

% change fonts for the axis 

set(gca, 'FontSize', 32, 'FontName', 'Garamond', ... 

    'FontWeight', 'Bold', 'LineWidth', 2) 

 

% set labels for x and y axis 

xlabel('Patients') 

x_lab = get(gca, 'xlabel'); 

set(x_lab, 'Units', 'normalized'); 

set(x_lab, 'Position', [0.5, -0.07, 0]); 

set(gca,'xtick',[1 2],'xticklabel',label) 

ylabel(y_label) 

 

box 'off' 

set(gca, 'Ygrid', 'on') 

 

% Format the labels of different boxes 

txt = findobj(gca,'Type','text'); 

set(txt,'VerticalAlignment', 'Middle', ... 

    'FontSize', 32, 'FontName', 'Garamond', 'FontWeight', 'Bold'); 

 

axis('square') 

fig_handle = gcf; 

 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

EEG Pre-processing and Epoch extraction: Healthy Controls 

data_dir = 'E:\EngD Data\Sibani\Pilot\PILOT\'; 

% data_files = strcat(data_dir, '*Stroop*B*.cnt'); 

dataset_dir = strcat(data_dir, 'datasets\stroop\withICA'); 

% files = dir(data_files); 

skipped_cnt = {}; 

skipped_epoch = {}; 

load stroop_controls.mat 

 

for i = 1:length(subjects) 

    disp(' '); 

    disp(' '); 

    disp(['Subject:' subjects{i}]); 
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    data_files = strcat(data_dir, subjects{i}, '*Stroop*B*.cnt'); 

    files = dir(char(data_files)); 

    if isempty(files) 

        skipped_set = [skipped_set; subjects{i}]; 

        continue; 

    end 

 

    % Load data 

    for j = 1:length(files) 

        f_name = split(files(j).name, '.'); 

        f_name = f_name{1}; 

 

        disp('Prepocessing:') 

        disp(f_name) 

        disp(' ') 

        cnt_file = strcat(data_dir, files(j).name); 

        try 

            EEG = pop_loadcnt(cnt_file, 'keystroke', 'on'); 

            EEG.setname = f_name; 

        catch 

            disp('Skipping loading:') 

            disp(f_name) 

            disp(' ') 

            disp(' ') 

            skipped_cnt = [skipped_cnt; f_name]; 

            continue 

        end 

 

        % Import channel info 

        EEG = pop_chanedit(EEG, 'lookup', ... 

                           'C:\Users\Sibani 

Mohanty\Documents\MATLAB\eeglab14_1_2b\plugins\dipfit2.3\standard_BESA\standard-10-5-

cap385.elp', ... 

                           'eval','chans = pop_chancenter( chans, [],[]);'); 

 

        % Re-reference data to common average excluding EOG 

        EEG = pop_reref(EEG, [], 'exclude', [65, 66]); 

 

        % Resample data 

        EEG = pop_resample(EEG, 250); 

 

        % Filter data 

        EEG = pop_eegfiltnew(EEG, .1, []); 

        % Low-pass 

        EEG = pop_eegfiltnew(EEG, [], 40); 

 

        % Remove line noise using CleanLine 

        EEG = pop_cleanline(EEG, 'bandwidth', 2,'chanlist', [1:EEG.nbchan], 

'computepower', 0, 'linefreqs', [50 100 150],... 

                            'normSpectrum', 0, 'p', 0.01, 'pad', 2, 'plotfigures', 0, 

'scanforlines', 1, 'sigtype', 'Channels', 'tau', 100,... 

                            'verb', 1, 'winsize', 4, 'winstep', 4); 

        % Run ICA 

        EEG = pop_runica(EEG, 'icatype', 'runica'); 

 

        % Extract Epoch 

        try 

            EEG = pop_epoch(EEG, {8, 9}, [-.2 1.3]); 

        catch 

            disp('Skipping epoching:') 

            disp(f_name) 

            disp(' ') 

            disp(' ') 

            skipped_epoch = [skipped_epoch; f_name]; 

            continue 

        end 

        EEG = pop_rmbase(EEG, [-200, 0]); 

        EEG.setname = [f_name '_Fs250_LP40']; 

        EEG = pop_saveset(EEG, 'filename', [f_name '_Fs250_LP40' '_ds'], 'filepath', 

dataset_dir); 

 

        clear EEG 

    end 
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end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

EEG Pre-processing and Epoch extraction: Patients 

data_dir = 'E:\EngD Data\Sibani\Patient Data\'; 

data_files = strcat(data_dir, '*Stroop*B*.cnt'); 

dataset_dir = strcat(data_dir, 'datasets\stroop\withICA\'); 

files = dir(data_files); 

skipped_cnt = {}; 

skipped_epoch = {}; 

 

for i = 1:length(files) 

    f_split = split(files(i).name, '_'); 

    f_name = split(files(i).name, '.'); 

    f_name = char(f_name(1)); 

    sub_id = char(f_split(1)); 

    sub_date = char(f_split(2)); 

    sub_block = split(f_split(4), '.'); 

    sub_block = char(sub_block(1)); 

 

    disp('Prepocessing:') 

    disp(f_name) 

 

    % Load data 

    cnt_file = strcat(data_dir, files(i).name); 

    try 

        EEG = pop_loadcnt(cnt_file, 'keystroke', 'on'); 

        EEG.setname = f_name; 

    catch 

        disp('Skipping loading:') 

        disp(f_name) 

        disp(' ') 

        disp(' ') 

        skipped_cnt = [skipped_cnt; f_name]; 

        continue 

    end 

 

    % Import channel info 

    EEG = pop_chanedit(EEG, 'lookup', ... 

                       'C:\Users\Sibani 

Mohanty\Documents\MATLAB\eeglab14_1_2b\plugins\dipfit2.3\standard_BESA\standard-10-5-

cap385.elp', ... 

                       'eval','chans = pop_chancenter( chans, [],[]);'); 

 

    % Re-reference data to Cz in patients (15) 

    EEG = pop_reref(EEG, [], 'exclude', [38, 39]); 

 

    % Resample data 

    EEG = pop_resample(EEG, 250); 

 

    % Filter data 

    EEG = pop_eegfiltnew(EEG, .1, []); 

    % Low-pass 

    EEG = pop_eegfiltnew(EEG, [], 40); 

 

    % Remove line noise using CleanLine 

    EEG = pop_cleanline(EEG, 'bandwidth', 2,'chanlist', [1:EEG.nbchan], 

'computepower', 0, 'linefreqs', [50 100 150],... 

                        'normSpectrum', 0, 'p', 0.01, 'pad', 2, 'plotfigures', 0, 

'scanforlines', 1, 'sigtype', 'Channels', 'tau', 100,... 

                        'verb', 1, 'winsize', 4, 'winstep', 4); 

    % Run ICA 

    EEG = pop_runica(EEG, 'icatype', 'runica'); 

 

    % Extract Epoch 

    try 

        EEG = pop_epoch(EEG, {8, 9}, [-.2 1.3]); 

    catch 

        disp('Skipping epoching:') 
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        disp(f_name) 

        disp(' ') 

        disp(' ') 

        skipped_epoch = [skipped_epoch; f_name]; 

        continue 

    end 

    EEG = pop_rmbase(EEG, [-200, 0]); 

    EEG.setname = [f_name '_Fs250_LP40']; 

    EEG = pop_saveset(EEG, 'filename', [f_name '_Fs250_LP40' '_ds'], 'filepath', 

dataset_dir); 

    clear EEG 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Data Splitting by Trial Type: Healthy Controls 

data_dir = 'E:\EngD 

Data\Sibani\Pilot\PILOT\datasets\stroop\withICA\withMarked\withRejectEpochs\';   

%Directory where Stroop datasets are saved 

byType_dir = strcat(data_dir, 'byType'); 

% Create the byType folder for datasets by type, if it doesn't exist already. 

if ~exist(byType_dir, 'dir') 

  mkdir(byType_dir); 

end 

 

% Event types and their names to append to file name before saving 

event_type = [9, 8]; 

type_name = {'cong', 'incong'}; 

 

resp_type = {'keypad2', 'keypad1'}; 

 

skipped_set = {}; 

skipped_split = {}; 

 

load stroop_controls.mat 

type_total_trials = zeros(2, length(subjects)); 

type_clean_trials = zeros(2, length(subjects));  % Trials by type (1, :) cong; (2, :) 

incong 

type_correct_trials = zeros(2, length(subjects)); % Correct Trials by type (1, :) 

cong; (2, :) incong 

 

for i = 1:length(subjects) 

 

    data_files = strcat(data_dir, subjects{i}, '*Stroop*.set'); 

    files = dir(char(data_files)); 

    if isempty(files) 

        skipped_set = [skipped_set; subjects{i}]; 

        continue; 

    end 

    f_name = split(files(1).name, '_B'); 

    f_name = char(f_name(1)); 

 

    rej_files = strcat(data_dir, 'rej_mats\', subjects{i}, '*Stroop*.mat'); 

    rej_files = dir(char(rej_files)); 

    disp('Splitting:') 

    disp(f_name) 

 

    % Load and concatenate datasets 

    try 

        ALLEEG = []; 

        for j = 1:length(files) 

            % Print file names being concatenated to verify correct file 

            % are being processed for the give subject. Delete any datasets 

            % that are incorrect from folder 

            disp(' ') 

            disp('Loading') 

            disp(['File: ', files(j).name]) 

            disp(['Rejected epochs: ', rej_files(j).name]) 

 

            load([rej_files(j).folder, '\', rej_files(j).name]) 
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            tot_epochs = length(rej.rejmanual); 

            disp(['Total epochs: ', num2str(tot_epochs)]) 

            num_rejected = sum(rej.rejmanual); 

            disp(['Retianed epochs: ', num2str(tot_epochs-num_rejected)]) 

 

            EEG_block = pop_loadset(files(j).name, files(j).folder); 

 

            type = extractfield(EEG_block.event, 'type'); 

            [C,ia,ic] = unique(type); 

            a_counts = accumarray(ic,1); 

            for k = 1:2 

                type_total_trials(k, i) = type_total_trials(k, i) + 

a_counts(contains(C, num2str(event_type(k)))); 

            end 

            EEG_block.reject.rejmanual = rej.rejmanual; 

            EEG_block = pop_rejepoch( EEG_block, EEG_block.reject.rejmanual ,0); 

            [ALLEEG, EEG_block, index] = eeg_store(ALLEEG, EEG_block); 

        end 

        EEG_block = pop_mergeset(ALLEEG, 1:length(files), 0); 

    catch 

        disp('Skipping loading:') 

        disp(f_name) 

        disp(' ') 

        disp(' ') 

        skipped_set = [skipped_set; f_name]; 

        continue 

    end 

 

    % Create datasets by types 

    for k = 1:length(event_type) 

 

        % Name of the new dataset with event_type and type_name appended 

        set_name = strcat(f_name, '_', num2str(event_type(k)), '_', 

char(type_name(k))); 

 

        % Selecting one event at a time 

        try 

            % Selecting all epochs 

            [EEG_type evnt_ind_test] = pop_selectevent(EEG_block, 'type', 

event_type(k)); 

            type_clean_trials(k, i) = length(EEG_type.epoch); 

            % Further keeping epochs with correct response and within max 

            % resp time 

            [EEG_type evnt_ind_test] = pop_selectevent(EEG_type, 'type', 

resp_type(k), 'latency', '0<=1000'); 

            type_correct_trials(k, i) = length(EEG_type.epoch); 

            EEG_type.setname = set_name; 

        catch 

            disp('Skipping split:') 

            disp(set_name) 

            disp(' ') 

            disp(' ') 

            skipped_split = [skipped_split; set_name]; 

            continue 

        end 

 

        % Saving the new dataset 

        EEG_type = pop_saveset(EEG_type, 'filename', set_name, 'filepath', 

byType_dir); 

        clear EEG_type 

    end 

    clear *EEG* 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Data Splitting by Trial Type: Patients 

data_dir = 'E:\EngD Data\Sibani\Patient 

Data\datasets\stroop\withICA\withMarked\withRejectEpochs\';   %Directory where Stroop 

datasets are saved 
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byType_dir = strcat(data_dir, 'byType'); 

% Create the byType folder for datasets by type, if it doesn't exist already. 

if ~exist(byType_dir, 'dir') 

  mkdir(byType_dir); 

end 

 

% Event types and their names to append to file name before saving 

event_type = [9, 8]; 

type_name = {'cong', 'incong'}; 

 

resp_type = {'keypad2', 'keypad1'}; 

 

skipped_set = {}; 

skipped_split = {}; 

 

load stroop_patients.mat 

type_total_trials = zeros(2, length(subjects)); 

type_clean_trials = zeros(2, length(subjects));  % Trials by type (1, :) cong; (2, :) 

incong 

type_correct_trials = zeros(2, length(subjects)); % Correct Trials by type (1, :) 

cong; (2, :) incong 

 

for i = 1:length(subjects) 

 

    data_files = strcat(data_dir, subjects{i}, '*Stroop*.set'); 

    files = dir(char(data_files)); 

    if isempty(files) 

        skipped_set = [skipped_set; subjects{i}]; 

        continue; 

    end 

    f_name = split(files(1).name, '_B'); 

    f_name = char(f_name(1)); 

 

    rej_files = strcat(data_dir, 'rej_mats\', subjects{i}, '*Stroop*.mat'); 

    rej_files = dir(char(rej_files)); 

    disp('Splitting:') 

    disp(f_name) 

 

    % Load and concatenate dataset 

    try 

        ALLEEG = []; 

        for j = 1:length(files) 

            % Print file names being concatenated to verify correct file 

            % are being processed for the give subject. Delete any datasets 

            % that are incorrect from folder 

            disp(' ') 

            disp('Loading') 

            disp(['File: ', files(j).name]) 

            disp(['Rejected epochs: ', rej_files(j).name]) 

 

            load([rej_files(j).folder, '\', rej_files(j).name]) 

            tot_epochs = length(rej.rejmanual); 

            disp(['Total epochs: ', num2str(tot_epochs)]) 

            num_rejected = sum(rej.rejmanual); 

            disp(['Retianed epochs: ', num2str(tot_epochs-num_rejected)]) 

 

            EEG_block = pop_loadset(files(j).name, files(j).folder); 

 

            % Droping EOG channels 

            drop_chans = [38, 39]; 

            disp('Dropping EOG channels: VEOG, HEOG...') 

            EEG_block = pop_select(EEG_block, 'nochannel', drop_chans); 

            % Capitalizing channel labels to avoid conflicts between subjects 

            disp('Capitalizing channel labels...') 

            EEG_block = capitalize_chan_labels(EEG_block); 

 

            type = extractfield(EEG_block.event, 'type'); 

            [C,ia,ic] = unique(type); 

            a_counts = accumarray(ic,1); 

            for k = 1:2 

                type_total_trials(k, i) = type_total_trials(k, i) + 

a_counts(contains(C, num2str(event_type(k)))); 

            end 
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            EEG_block.reject.rejmanual = rej.rejmanual; 

            EEG_block = pop_rejepoch( EEG_block, EEG_block.reject.rejmanual ,0); 

            [ALLEEG, EEG_block, index] = eeg_store(ALLEEG, EEG_block); 

        end 

        EEG = pop_mergeset(ALLEEG, 1:length(files), 0); 

    catch 

        disp('Skipping loading:') 

        disp(f_name) 

        disp(' ') 

        disp(' ') 

        skipped_set = [skipped_set; f_name]; 

        continue 

    end 

 

    % Create datasets by types 

    for k = 1:length(event_type) 

 

        % Name of the new dataset with event_type and type_name appended 

        set_name = strcat(f_name, '_', num2str(event_type(k)), '_', 

char(type_name(k))); 

 

        % Selecting one event at a time 

        try 

            % Selecting all epochs 

            [EEG_type evnt_ind_test] = pop_selectevent(EEG, 'type', event_type(k)); 

            type_clean_trials(k, i) = length(EEG_type.epoch); 

            % Further keeping epochs with correct response and within max 

            % resp time 

            [EEG_type evnt_ind_test] = pop_selectevent(EEG_type, 'type', 

resp_type(k), 'latency', '0<=1200'); 

            type_correct_trials(k, i) = length(EEG_type.epoch); 

            EEG_type.setname = set_name; 

        catch 

            disp('Skipping split:') 

            disp(set_name) 

            disp(' ') 

            disp(' ') 

            skipped_split = [skipped_split; set_name]; 

            continue 

        end 

 

        % Saving the new dataset 

        EEG_type = pop_saveset(EEG_type, 'filename', set_name, 'filepath', 

byType_dir); 

        clear EEG_type 

    end 

    clear *EEG* 

end 

 

function EEG = capitalize_chan_labels(EEG) 

    for i = 1:length(EEG.chanlocs) 

        EEG.chanlocs(i).labels = upper(EEG.chanlocs(i).labels); 

    end 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

EEGLAB STUDY creation: Healthy Controls 

data_dir = 'E:\EngD 

Data\Sibani\Pilot\PILOT\datasets\stroop\withICA\withMarked\withRejectEpochs\byType\';   

%Directory where Stroop datasets are saved 

data_files = strcat(data_dir, '*Stroop*.set'); 

files = dir(data_files); 

 

% Event types and their names to append to file name before saving 

event_type = [9, 8]; 

type_name = {'cong', 'incong'}; 

 

commands = {}; 
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for i = 1:length(files) 

    f_loc = [files(i).folder, '\', files(i).name]; 

 

    subject = split(files(i).name, '_Stroop'); 

    subject = subject{1}; 

 

    condition = split(files(i).name, ["_","."]); 

    condition = condition{end-1}; 

 

    commands = {commands{:} ... 

        {'index' i 'load' f_loc 'subject' subject 'condition' condition}}; 

end 

 

std_dirpath = 'E:\EngD Data\Sibani\Studies\Stroop\controls_wICA'; 

if ~exist(std_dirpath) 

  mkdir(std_dirpath); 

end 

 

name = 'control_Stroop_wICA'; 

[STUDY ALLEEG] = std_editset([], [], 'name', name, ... 

                             'task', 'Stroop', ... 

                             'filename', name, ... 

                             'filepath', 'E:\EngD Data\Sibani\Studies\Stroop\', ... 

                             'commands', commands); 

STUDY = std_makedesign(STUDY, ALLEEG, 1, ... 

                       'name','control_CongVsIncong', ... 

                       'filepath',std_dirpath); 

 

[STUDY EEG] = pop_savestudy( STUDY, ALLEEG, 'savemode','resave'); 

 

[STUDY ALLEEG] = std_precomp(STUDY, ALLEEG, 'channels', ... 

                             'recompute','off', ... 

                             'erp','on',... 

                             'ersp', 'on', 'itc', 'on', ... 

                             'erspparams', {'cycles', [.5 0], 'freqs', [2 50],  

'nfreqs', 100, 'ntimesout', 200}); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

EEGLAB STUDY creation: Patients 

data_dir = 'E:\EngD Data\Sibani\Patient 

Data\datasets\stroop\withICA\withMarked\withRejectEpochs\byType\';   %Directory where 

Stroop datasets are saved 

data_files = strcat(data_dir, '*Stroop*.set'); 

files = dir(data_files); 

 

% Event types and their names to append to file name before saving 

event_type = [9, 8]; 

type_name = {'cong', 'incong'}; 

 

commands = {}; 

 

for i = 1:length(files) 

 

    f_loc = [files(i).folder, '\', files(i).name]; 

 

    subject = split(files(i).name, '_Stroop'); 

    subject = subject{1}; 

 

    condition = split(files(i).name, ["_","."]); 

    condition = condition{end-1}; 

 

    commands = {commands{:} ... 

        {'index' i 'load' f_loc 'subject' subject 'condition' condition}}; 

end 

 

std_dirpath = 'E:\EngD Data\Sibani\Studies\Stroop\patients_wICA'; 

if ~exist(std_dirpath) 

  mkdir(std_dirpath); 

end 
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name = 'patient_Stroop_wICA'; 

[STUDY ALLEEG] = std_editset([], [], 'name', name, ... 

                             'task', 'Stroop', ... 

                             'filename', name, ... 

                             'filepath', 'E:\EngD Data\Sibani\Studies\Stroop\', ... 

                             'commands', commands); 

STUDY = std_makedesign(STUDY, ALLEEG, 1, ... 

                       'name','patient_CongVsIncong', ... 

                       'filepath', std_dirpath); 

 

[STUDY EEG] = pop_savestudy( STUDY, ALLEEG, 'savemode','resave'); 

 

[STUDY ALLEEG] = std_precomp(STUDY, ALLEEG, 'channels', ... 

                             'recompute','on', 'savetrials', 'on', ... 

                             'erp','on',... 

                             'ersp', 'on', 'itc', 'on', ... 

                             'erspparams', {'cycles', [.5 0], 'freqs', [2 50],  

'nfreqs', 100, 'ntimesout', 200}); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

EEG Plots: Healthy Controls 

[STUDY, ALLEEG] = pop_loadstudy('E:\EngD 

Data\Sibani\Studies\Stroop\control_Stroop_wICA.study'); 

 

chan_names = {}; 

for i = 1:length(ALLEEG(1).chanlocs) 

    chan_names{i} = ALLEEG(1).chanlocs(i).labels; 

end 

imp_chans = [10, 28, 48]; 

disp(chan_names(imp_chans)) 

 

for design_num = 1 

    for i = imp_chans 

        STUDY = std_selectdesign(STUDY, ALLEEG, design_num); 

        disp(STUDY.design(design_num).name) 

        disp('') 

        std_name = STUDY.design(design_num).name; 

        channels = chan_names(i); 

 

        stat_method = 'montecarlo'; 

        stat_corr = 'cluster'; 

        stat_cluster = '''clusterstatistic'',''maxsum'''; 

        STUDY = pop_statparams(STUDY, 'condstats', 'on', ... 

                               'mode', 'fieldtrip', ... 

                               'fieldtripmethod', stat_method, ... 

                               'fieldtripalpha', 0.05, ... 

                               'fieldtripmcorrect', stat_corr, ... 

                               'fieldtripclusterparam', stat_cluster); 

 

        [STUDY, erpdata, erptimes, pgroup, pcond, pinter] = ... 

            std_erpplot(STUDY, ALLEEG, 'channels', channels, 'noplot', 'on'); 

        cong_erp =  mean(erpdata{1}, 2); 

        incong_erp = mean(erpdata{2}, 2); 

        fig_title = ['ERP Cong Vs Incong: ', cell2mat(join(channels, ', '))]; 

 

        stroop_plot(cong_erp, incong_erp, ... 

                 erptimes, pcond, .05, 0, fig_title); 

        set_fig_props(); 

 

        STUDY = pop_statparams(STUDY, 'condstats', 'on', ... 

                               'mode', 'fieldtrip', ... 

                               'fieldtripmethod', stat_method, ... 

                               'fieldtripalpha', 0.05, ... 

                               'fieldtripmcorrect', stat_corr, ... 

                               'fieldtripclusterparam', stat_cluster); 

 

        [STUDY, erspdata, ersptimes, erspfreqs, pgroup, pcond, pinter] =  ... 

           std_erspplot(STUDY, ALLEEG, 'channels', channels, 'noplot', 'on'); 
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        stroop_ersp_plot(erspdata, ersptimes, erspfreqs, pcond, channels) 

        set_fig_props(); 

    end 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

EEG Plots: Individual Patients 

[STUDY, ALLEEG] = pop_loadstudy('E:\EngD 

Data\Sibani\Studies\Stroop\patient_Stroop_wICA.study'); 

 

chan_names = {}; 

 

for j = 1:length(ALLEEG(3).chanlocs) 

    chan_names{j} = ALLEEG(3).chanlocs(j).labels; 

end 

imp_chan_array = [5, 15, 25]; 

disp('Plots made for channels:') 

disp(chan_names(imp_chan_array)); 

load stroop_patients.mat 

 

for s_ind = [3,4,5,6,1,2] 

    s = subjects{s_ind}; 

    for design_num = 1 

        for i = imp_chan_array 

            disp('') 

            disp([s ' ' chan_names(i)]) 

            STUDY = std_selectdesign(STUDY, ALLEEG, design_num); 

            disp(STUDY.design(design_num).name) 

            disp('') 

            std_name = STUDY.design(design_num).name; 

            channels = chan_names(i); 

 

            stat_method = 'montecarlo'; 

            stat_corr = 'cluster'; 

            stat_cluster = '''clusterstatistic'',''maxsum'''; 

            STUDY = pop_statparams(STUDY, 'condstats', 'on', ... 

                                   'mode', 'fieldtrip', 'singletrials', 'on', ... 

                                   'fieldtripmethod', stat_method, ... 

                                   'fieldtripalpha', 0.05, ... 

                                   'fieldtripmcorrect', stat_corr, ... 

                                   'fieldtripclusterparam', stat_cluster); 

            [STUDY, erpdata, erptimes, pgroup, pcond, pinter] = ... 

                std_erpplot(STUDY, ALLEEG, 'channels', channels, 'noplot', 'on', 

'subject', s); 

 

            cong_erp =  mean(erpdata{1}, 2); 

            incong_erp = mean(erpdata{2}, 2); 

            fig_title = [s ' ERP Cong Vs Incong: ', cell2mat(join(channels, ', '))]; 

            stroop_plot(cong_erp, incong_erp, ... 

                     erptimes, pcond, .05, 0, fig_title); 

 

            set_fig_props(); 

 

            STUDY = pop_statparams(STUDY, 'condstats', 'off', ... 

                                   'mode', 'fieldtrip','singletrials', 'on', ... 

                                   'fieldtripmethod', stat_method, ... 

                                   'fieldtripalpha', 0.05, ... 

                                   'fieldtripmcorrect', stat_corr, ... 

                                   'fieldtripclusterparam', stat_cluster); 

            [STUDY, erspdata, ersptimes, erspfreqs, pgroup, pcond, pinter] =  ... 

               std_erspplot(STUDY, ALLEEG, 'channels', channels, 'noplot', 'on', 

'subject', s); 

 

            erspdata = norm_ersp(erspdata, ersptimes); 

            [pcond, pgroup, pinter] = std_stat(erspdata, 'condstats', 'on', ... 

                                               'mode', 'fiedtrip', ... 

                                               'fieldtripmethod', stat_method, ... 

                                               'fieldtripalpha', 0.05, ... 
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                                               'fieldtripmcorrect', stat_corr, ... 

                                               'fieldtripclusterparam', stat_cluster, 

... 

                                               'paired', {'off', 'off'}); 

 

            stroop_ersp_plot_patient(erspdata, ersptimes, erspfreqs, pcond, channels) 

            set_fig_props(); 

        end 

    end 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

EEG Plots: Patients Groups 

% For schizophrenia patients use this comment others 

[STUDY, ALLEEG] = pop_loadstudy('E:\EngD 

Data\Sibani\Studies\Stroop\patient_Stroop_wICA_SchizOnly.study'); 

 

% For schizoaffective disorder patients use this comment others 

% [STUDY, ALLEEG] = pop_loadstudy('E:\EngD 

Data\Sibani\Studies\Stroop\patient_Stroop_wICA_NonSchizOnly.study'); 

 

% For all patients use this comment others 

% [STUDY, ALLEEG] = pop_loadstudy('E:\EngD 

Data\Sibani\Studies\Stroop\patient_Stroop_wICA.study'); 

 

chan_names = {}; 

 

for j = 1:length(ALLEEG(1).chanlocs) 

    chan_names{j} = ALLEEG(1).chanlocs(j).labels; 

end 

imp_chan_array = [5, 15, 25]; 

disp('Plots made for channels:') 

disp(chan_names(imp_chan_array)); 

load stroop_patients.mat 

 

for design_num = 1 

 

    for i = imp_chan_array 

        STUDY = std_selectdesign(STUDY, ALLEEG, design_num); 

        disp(STUDY.design(design_num).name) 

        disp('') 

        std_name = STUDY.design(design_num).name; 

        channels = chan_names(i); 

 

        stat_method = 'montecarlo'; 

        stat_corr = 'cluster'; 

        stat_cluster = '''clusterstatistic'',''maxsum'''; 

        STUDY = pop_statparams(STUDY, 'condstats', 'on', ... 

                               'mode', 'fieldtrip', ... 

                               'fieldtripmethod', stat_method, ... 

                               'fieldtripalpha', 0.05, ... 

                               'fieldtripmcorrect', stat_corr, ... 

                               'fieldtripclusterparam', stat_cluster); 

        [STUDY, erpdata, erptimes, pgroup, pcond, pinter] = ... 

            std_erpplot(STUDY, ALLEEG, 'channels', channels, 'noplot', 'on'); 

 

        cong_erp =  mean(erpdata{1}, 2); 

        incong_erp = mean(erpdata{2}, 2); 

        fig_title = ['ERP Cong Vs Incong: ', cell2mat(join(channels, ', '))]; 

        stroop_plot(cong_erp, incong_erp, ... 

                 erptimes, pcond, .05, 0, fig_title); 

        set_fig_props(); 

 

        STUDY = pop_statparams(STUDY, 'condstats', 'on', ... 

                               'mode', 'fieldtrip', ... 

                               'fieldtripmethod', stat_method, ... 

                               'fieldtripalpha', 0.05, ... 

                               'fieldtripnaccu', 5000, ... 

                               'fieldtripmcorrect', stat_corr, ... 
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                               'fieldtripclusterparam', stat_cluster); 

        [STUDY, erspdata, ersptimes, erspfreqs, pgroup, pcond, pinter] =  ... 

           std_erspplot(STUDY, ALLEEG, 'channels', channels, 'noplot', 'on'); 

 

        stroop_ersp_plot(erspdata, ersptimes, erspfreqs, pcond, channels) 

        set_fig_props(); 

    end 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

Plotting function for Stroop ERP Plots 

function stroop_plot(stand_erp, dev_erp, ... 

    erptimes, pcond, p_thresh, reverse, fig_title) 

 

    figure('Position', [1 41 1536 748.8000]); 

 

    max_y = max(max(stand_erp), max(dev_erp)); 

    max_y = floor(max_y + 2); 

    min_y = min(min(stand_erp), min(dev_erp)); 

    min_y = ceil(min_y - 2); 

 

    max_y = 9; 

    min_y = -5; 

 

    plot(erptimes, stand_erp, 'linewidth', 2.) 

    hold on; plot(erptimes, dev_erp, 'linewidth', 2.) 

    plot(erptimes, zeros(length(erptimes), 1), 'k', 'linewidth', 2.) 

 

    if ~reverse 

        patch_y = [min_y+.4 min_y+.7]; 

    else 

        patch_y = [max_y-.4 max_y-.7]; 

    end 

 

    patch_c = [0.3 0.3 0.3]; 

    times = erptimes; 

    regions = pcond{1}; 

 

    if sum(regions)>0 

        r_ind = find(regions==1); 

        r_ind_change = find(diff(r_ind)>1); 

        r_ind_change = sort([r_ind_change' r_ind_change'+1]); 

        r_ind_change = [1 r_ind_change length(r_ind)]; 

 

        for i = 1:2:length(r_ind_change)-1 

            tmp_t = [times(r_ind(r_ind_change(i))) ... 

                     times(r_ind(r_ind_change(i+1)))]; 

            tmp_p = patch([tmp_t(1) tmp_t(2) tmp_t(2) tmp_t(1)], ... 

                          [patch_y(1) patch_y(1) patch_y(2) patch_y(2)], ... 

                          patch_c); 

            set(tmp_p, 'edgecolor', patch_c); 

        end 

    end 

 

    box off 

    set(gca,'FontSize',36 , 'fontname','times') 

    yticks(min_y+1:2:max_y-1); 

    plot([0, 0], [min_y max_y], 'k', 'linewidth', 2.) 

    ylim([min_y, max_y]); 

    xlim([min(erptimes) max(erptimes)]) 

    title(fig_title, 'Interpreter', 'none'); 

    set( get(gca,'XLabel'), 'String', 'Latency (ms)'); 

    set( get(gca,'YLabel'), 'String', 'Amplitude (\muV)'); 

    legend('Congruent', 'Incongruent', 'Location', 'northeast') 

    legend('boxoff') 

    if reverse 

        ax = gca; 
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        ax.YDir = 'reverse'; 

    end 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Plotting function for Stroop ERSP Plots 

function stroop_ersp_plot(erspdata, ersptimes, erspfreqs, pcond, channels) 

    figure('Position', [1 41 1536 748.8000]); 

    rdbu_map = brewermap(200,'RdBu'); 

    c_val_esrp = [max(max(abs(mean(erspdata{1}, 4)))), ... 

                  max(max(abs(mean(erspdata{2}, 4))))]; 

    c_val_esrp = max(c_val_esrp); 

    disp(['Cal for 1,2 ' num2str(c_val_esrp)]) 

    c_val_esrp = 4; 

    erspfreqs = log(erspfreqs); 

    fticks = [2 4 8 16 24 32 40, 48]; 

 

    p1 = subplot('Position', [.075, .125, .275 .8]); 

    imagesc(ersptimes, erspfreqs, mean(erspdata{1}, 4)); 

    hold on; 

    plot([0 0], [erspfreqs(1) erspfreqs(end)], 'k:', 'linewidth', 1.5); 

    set(gca, 'YDir', 'normal'); 

    set( get(p1,'XLabel'), 'String', 'Latency (ms)'); 

    set( get(p1,'YLabel'), 'String', 'Frequency (Hz)'); 

    set(gca,'ytick',log(fticks)); 

    set(gca,'yticklabel', string(fticks)) 

    colormap(rdbu_map); 

    hcb = colorbar; 

    title(hcb, 'dB') 

    caxis([-c_val_esrp, c_val_esrp]) 

    title(['Congruent ERSP: ', cell2mat(join(channels, ', '))]) 

 

    p2 = subplot('Position', [.375, .125, .275 .8]); 

    imagesc(ersptimes, erspfreqs, mean(erspdata{2}, 4)); 

    hold on; 

    plot([0 0], [erspfreqs(1) erspfreqs(end)], 'k:', 'linewidth', 1.5); 

    set(gca, 'YDir', 'normal', 'yticklabels', []); 

    set( get(p2,'XLabel'), 'String', 'Latency (ms)'); 

    set(gca,'ytick',log(fticks)); 

    colormap(rdbu_map); 

    hcb = colorbar; 

    title(hcb, 'dB') 

    caxis([-c_val_esrp, c_val_esrp]) 

    title(['Incongruent ERSP: ' cell2mat(join(channels, ', '))]) 

 

    p3 = subplot('Position', [.675, .125, .275 .8]); 

    imagesc(ersptimes, erspfreqs, mean(erspdata{2} - erspdata{1}, 4)); 

    hold on; 

    plot([0 0], [erspfreqs(1) erspfreqs(end)], 'k:', 'linewidth', 1.5); 

    set(gca, 'YDir', 'normal', 'yticklabels', []); 

    set( get(p3,'XLabel'), 'String', 'Latency (ms)'); 

    set(gca,'ytick',log(fticks)); 

    colormap(brewermap(200,'RdBu')); 

    hcb = colorbar; 

    title(hcb, 'dB') 

    c_val = max(max(abs(mean(erspdata{2} - erspdata{1}, 4)))); 

    disp(['Cal for 3 ' num2str(c_val)]) 

    c_val = 2.8; 

    caxis([-c_val, c_val]) 

    hold on; 

    x = linspace(ersptimes(1), ersptimes(end), length(ersptimes)); 

    y = linspace(erspfreqs(1), erspfreqs(end), length(erspfreqs)); 

    contour(x, y, pcond{1}~=1, 'k') 

    title(['Difference ERSP: ', cell2mat(join(channels, ', '))]) 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Plotting function for Single Patient Stroop ERSP Plots 

function stroop_ersp_plot_patient(erspdata, ersptimes, erspfreqs, pcond, channels) 

    figure('Position', [1 41 1536 748.8000]); 

    rdbu_map = brewermap(200,'RdBu'); 

 

    P_db{1,1} = 10*log10(mean(erspdata{1}, 3)); 

    P_db{2,1} = 10*log10(mean(erspdata{2}, 3)); 

    c_val_esrp = [max(max(abs(P_db{1}))), ... 

                  max(max(abs(P_db{2})))]; 

    c_val_esrp = max(c_val_esrp); 

 

    erspfreqs = log(erspfreqs); 

 

    fticks = [2 4 8 16 24 32 40, 48]; 

 

    p1 = subplot('Position', [.075, .125, .275 .8]); 

    imagesc(ersptimes, erspfreqs, P_db{1}'); 

    hold on; 

    plot([0 0], [erspfreqs(1) erspfreqs(end)], 'k:', 'linewidth', 1.5); 

    set(gca, 'YDir', 'normal'); 

    set( get(p1,'XLabel'), 'String', 'Latency (ms)'); 

    set( get(p1,'YLabel'), 'String', 'Frequency (Hz)'); 

    set(gca,'FontSize',20, 'fontname','times') 

    set(gca,'ytick',log(fticks)); 

    set(gca,'yticklabel', string(fticks)); 

    colormap(rdbu_map); 

    hcb = colorbar; 

    title(hcb, 'dB') 

    caxis([-c_val_esrp, c_val_esrp]) 

    title(['Congruent ERSP: ', cell2mat(join(channels, ', '))]) 

 

    p2 = subplot('Position', [.375, .125, .275 .8]); 

    imagesc(ersptimes, erspfreqs, P_db{2}'); 

    hold on; 

    plot([0 0], [erspfreqs(1) erspfreqs(end)], 'k:', 'linewidth', 1.5); 

    set(gca, 'YDir', 'normal', 'yticklabels', []); 

    set(gca,'FontSize', 24, 'fontname','times') 

    set( get(p2,'XLabel'), 'String', 'Latency (ms)'); 

    set(gca,'ytick',log(fticks)); 

    colormap(rdbu_map); 

    hcb = colorbar; 

    title(hcb, 'dB') 

    caxis([-c_val_esrp, c_val_esrp]) 

    title(['Incongruent ERSP: ' cell2mat(join(channels, ', '))]) 

 

    p3 = subplot('Position', [.675, .125, .275 .8]); 

    imagesc(ersptimes, erspfreqs, P_db{2}' - P_db{1}'); 

    hold on; 

    plot([0 0], [erspfreqs(1) erspfreqs(end)], 'k:', 'linewidth', 1.5); 

    set(gca, 'YDir', 'normal', 'yticklabels', []); 

    set( get(p3,'XLabel'), 'String', 'Latency (ms)'); 

    set(gca,'FontSize', 24, 'fontname','times') 

    set(gca,'ytick',log(fticks)); %(inds(1:2:end))); 

    colormap(brewermap(200,'RdBu')); 

    hcb = colorbar; 

    title(hcb, 'dB') 

    c_val = max(max(abs(P_db{2} - P_db{1}))); 

    caxis([-c_val, c_val]) 

    hold on; 

    x = linspace(ersptimes(1), ersptimes(end), length(ersptimes)); 

    y = linspace(erspfreqs(1), erspfreqs(end), length(erspfreqs)); 

    contour(x, y, pcond{1}'~=1, 'k') 

    title(['Difference ERSP: ', cell2mat(join(channels, ', '))]) 

    set(findall(gcf,'-property','FontSize'),'FontSize',24) 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Stroop Peak and Latency Plots 

control_stats = import_stroop_erp_stats('control_stroop.csv'); 

schiz_stats = import_stroop_erp_stats('schiz_stroop.csv'); 

nonschiz_stats = import_stroop_erp_stats('nonSchiz_stroop.csv'); 

 

% Plot Stroop Peaks 

y_max = [7, 7, 4]; 

for i=1:3 

    figure('Position', [1 41 1536 748.8000]); 

    hold on; 

    colors = brewermap(5, 'Dark2'); 

 

    plot(table2array(control_stats(i, 2:6)), '-o', ... 

                    'color', colors(i,:), 'Linewidth', 3, ... 

                    'MarkerEdgeColor',colors(i,:),... 

                    'MarkerFaceColor',colors(i,:), ... 

                    'MarkerSize', 20); 

 

    plot(table2array(schiz_stats(i, 2:6)), '--s', ... 

                    'color', colors(i,:), 'Linewidth', 3,... 

                    'MarkerEdgeColor',colors(i,:),... 

                    'MarkerFaceColor',colors(i,:), ... 

                    'MarkerSize', 20); 

 

    plot(table2array(nonschiz_stats(i, 2:6)), '--d', ... 

                    'color', colors(i,:), 'Linewidth', 3, ... 

                    'MarkerEdgeColor',colors(i,:),... 

                    'MarkerFaceColor',colors(i,:), ... 

                    'MarkerSize', 20); 

 

    ax = gca; 

    set(gca, 'Ygrid', 'on') 

    set(gca, 'xlim', [.5, 5.5]); 

    set(gca, 'ylim', [-.5, y_max(i)]); 

    set(gca, 'XTick', [1,2,3,4,5], 'XTickLabel', str2mat('Fz', 'FCz', 'Cz', 'CPz', 

'Pz')); 

 

    if i==5 

        set( get(gca,'XLabel'), 'String', 'Electrodes'); 

    end 

    set( get(gca,'YLabel'), 'String', 'Amplitude (\muV)'); 

    x_lab = get(gca, 'xlabel'); 

    set(x_lab, 'Units', 'normalized'); 

    set(x_lab, 'Position', [0.5, -0.06, 0]); 

 

    title([char(control_stats.Type(i)), ': peaks']); 

 

    set(gca, 'FontSize', 32, 'FontName', 'Garamond', ... 

        'FontWeight', 'Bold', 'LineWidth', 2) 

 

    % Format the labels of different boxes 

    txt = findobj(gca,'Type','text'); 

    set(txt,'VerticalAlignment', 'Middle', ... 

        'FontSize', 32, 'FontName', 'Garamond', 'FontWeight', 'Bold'); 

end 

 

% Plot Stroop Latencties 

for i=1:3 

    figure('Position', [1 41 1536 748.8000]); 

    hold on; 

    colors = brewermap(5, 'Dark2'); 

 

    plot(table2array(control_stats(i, 7:end)), '-o', ... 

                    'color', colors(i,:), 'Linewidth', 3, ... 

                    'MarkerEdgeColor',colors(i,:),... 

                    'MarkerFaceColor',colors(i,:), ... 

                    'MarkerSize', 20); 

 

    plot(table2array(schiz_stats(i, 7:end)), '--s', ... 

                    'color', colors(i,:), 'Linewidth', 3,... 

                    'MarkerEdgeColor',colors(i,:),... 
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                    'MarkerFaceColor',colors(i,:), ... 

                    'MarkerSize', 20); 

 

    plot(table2array(nonschiz_stats(i, 7:end)), '--d', ... 

                    'color', colors(i,:), 'Linewidth', 3, ... 

                    'MarkerEdgeColor',colors(i,:),... 

                    'MarkerFaceColor',colors(i,:), ... 

                    'MarkerSize', 20); 

 

    set(gca, 'Ygrid', 'on') 

    set(gca, 'xlim', [.5, 5.5]); 

    set(gca, 'ylim', [175, 1400]); 

    set(gca, 'XTick', [1,2,3,4,5], 'XTickLabel', str2mat('Fz', 'FCz', 'Cz', 'CPz', 

'Pz')); 

 

    if i==5 

        set( get(gca,'XLabel'), 'String', 'Electrodes'); 

    end 

    set( get(gca,'YLabel'), 'String', 'Latency (ms)'); 

    x_lab = get(gca, 'xlabel'); 

    set(x_lab, 'Units', 'normalized'); 

    set(x_lab, 'Position', [0.5, -0.06, 0]); 

 

    title([char(control_stats.Type(i)), ': latencies']); 

 

    set(gca, 'FontSize', 32, 'FontName', 'Garamond', ... 

        'FontWeight', 'Bold', 'LineWidth', 2) 

 

    % Format the labels of different boxes 

    txt = findobj(gca,'Type','text'); 

    set(txt,'VerticalAlignment', 'Middle', ... 

        'FontSize', 32, 'FontName', 'Garamond', 'FontWeight', 'Bold'); 

    legend({'Control', 'Schizophrenia', 'Schizoaffective'}, ... % 'All Patients'}, 

... 

           'FontSize', 42, 'Location','northwest') 

    legend('boxoff') 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Stroop ANOVA Analysis 

control_dir = 'E:\EngD Data\Sibani\Studies\Stroop\extracted_data\controls\'; 

schiz_dir = 'E:\EngD Data\Sibani\Studies\Stroop\extracted_data\schiz_patients\'; 

nonSchiz_dir = 'E:\EngD 

Data\Sibani\Studies\Stroop\extracted_data\nonSchiz_patients\'; 

all_dir = 'E:\EngD Data\Sibani\Studies\Stroop\extracted_data\all_patients\'; 

 

condition_names = {'Congruent'; 'Incongruent'}; 

electrodes = {'Fz'; 'FCz'; 'Cz'; 'CPz'; 'Pz'}; 

groups = {'Control'; 'Schizophrenia'; 'Schizoaffective'}; % 'All_patients'}; 

 

erp_mean = []; 

erp_latencies = []; 

group_var = {}; 

elec_var = {}; 

cond_var = {}; 

age_var = []; 

 

diff_mean = []; 

diff_latencies = []; 

diff_group_var = {}; 

diff_elec_var = {}; 

diff_age_var = []; 

 

for g = 1:length(groups) 

    disp(newline) 

    disp(newline) 

    disp(['Processing group: ' groups{g}]) 

    for e = 1:length(electrodes) 

        disp(['Processing electrode: ' electrodes{e}]) 
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        disp(newline) 

 

        if strcmp(groups{g}, 'Control') 

            erp_file = [control_dir, 'control_CongVsIncong_', electrodes{e}]; 

        elseif strcmp(groups{g}, 'Schizophrenia') 

            erp_file = [schiz_dir, 'schiz_patient_CongVsIncong_', electrodes{e}]; 

        elseif strcmp(groups{g}, 'Schizoaffective') 

            erp_file = [nonSchiz_dir, 'nonSchiz_patient_CongVsIncong_', 

electrodes{e}]; 

        end 

 

        disp(['Loading: ', erp_file]) 

        erp_data = load(erp_file); 

        cong_data = erp_data.erpdata{1}; 

        incong_data = erp_data.erpdata{2}; 

        diff_data = incong_data - cong_data; 

        erptimes = erp_data.erptimes; 

        time_ind = erptimes>300 & erptimes<600; 

 

        % Congruent condition 

        [curr_means, curr_ind] = max(cong_data(time_ind, :)); 

%         curr_means = mean(cong_data(time_ind, :), 1); 

        erp_mean = [erp_mean, curr_means]; 

        curr_times = erptimes(time_ind); 

        curr_latencies = curr_times(curr_ind); 

        erp_latencies = [erp_latencies, curr_latencies]; 

 

        curr_groups = repmat(groups(g), length(curr_means), 1); 

        group_var = {group_var{:}, curr_groups{:}}; 

        curr_elecs = repmat(electrodes(e), length(curr_means), 1); 

        elec_var = {elec_var{:}, curr_elecs{:}}; 

        curr_conds = repmat(condition_names(1), length(curr_means), 1); 

        cond_var = {cond_var{:}, curr_conds{:}}; 

 

        % Incongruent condition 

        [curr_means, curr_ind] = max(incong_data(time_ind, :)); 

%         curr_means = mean(incong_data(time_ind, :), 1); 

        erp_mean = [erp_mean, curr_means]; 

        curr_times = erptimes(time_ind); 

        curr_latencies = curr_times(curr_ind); 

        erp_latencies = [erp_latencies, curr_latencies]; 

 

        curr_groups = repmat(groups(g), length(curr_means), 1); 

        group_var = {group_var{:}, curr_groups{:}}; 

        curr_elecs = repmat(electrodes(e), length(curr_means), 1); 

        elec_var = {elec_var{:}, curr_elecs{:}}; 

        curr_conds = repmat(condition_names(2), length(curr_means), 1); 

        cond_var = {cond_var{:}, curr_conds{:}}; 

% 

%         % Difference condition 

        [curr_means, curr_ind] = max(diff_data(time_ind, :)); 

%         curr_means = mean(diff_data(time_ind, :), 1); 

        diff_mean = [diff_mean, curr_means]; 

        curr_times = erptimes(time_ind); 

        curr_latencies = curr_times(curr_ind); 

        diff_latencies = [diff_latencies, curr_latencies]; 

        curr_groups = repmat(groups(g), length(curr_means), 1); 

        diff_group_var = {diff_group_var{:}, curr_groups{:}}; 

        curr_elecs = repmat(electrodes(e), length(curr_means), 1); 

        diff_elec_var = {diff_elec_var{:}, curr_elecs{:}}; 

    end 

end 

 

% ANOVA of Amplitudes 

clc 

[p,tbl,stats,terms] = anovan(erp_mean,{group_var,elec_var,cond_var}, ... 

                             'model','interaction', ... 

                             'varnames',{'Group','Electrodes','Condition'}); 

% ANOVA of Diff Amplitudes 

clc 

[p,tbl,stats,terms] = anovan(diff_mean,{diff_group_var,diff_elec_var}, ... 

                             'model','interaction', ... 

                             'varnames',{'Group','Electrodes'}); 
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% ANOVA of Latencies 

clc 

[p,tbl,stats,terms] = anovan(erp_latencies,{group_var,elec_var,cond_var}, ... 

                             'model','interaction', ... 

                             'varnames',{'Group','Electrodes','Condition'}); 

% ANOVA of Diff latencies 

clc 

[p,tbl,stats,terms] = anovan(diff_latencies,{diff_group_var,diff_elec_var}, ... 

                             'model','interaction', ... 

                             'varnames',{'Group','Electrodes'}); 

 

% Amplitudes interaction plot 

clc 

[p,tbl,stats,terms] = anovan(erp_mean,{group_var,elec_var,cond_var}, ... 

                             'model','interaction', ... 

                             'varnames',{'Group','Electrodes','Condition'}); 

 

results = multcompare(stats,'Dimension',[1, 2]); 

figure('Position', [1 41 1536 748.8000]); 

hold on; 

colors = brewermap(5, 'Dark2'); 

 

for g = 1:length(groups) 

    disp(newline) 

    disp(['Processing group: ' groups{g}]) 

    cond_mean = []; 

    cond_stderr = []; 

    x_vals = [.90, 1.90, 2.90, 3.90, 4.90] + g*.05; 

    text_x_vals = [.85, 1.85, 2.85, 3.85, 4.85] + g*.05; 

    for e = 1:length(electrodes) 

        disp(['Processing electrode: ' electrodes{e}]) 

        curr_ind = strcmp(electrodes{e}, elec_var) & strcmp(groups{g}, group_var); 

        curr_data = erp_mean(curr_ind); 

        cond_mean = [cond_mean, mean(curr_data)]; 

        cond_stderr = [cond_stderr, std(curr_data)/sqrt(length(curr_data))]; 

 

        result_num = 3*(e-1) + (g-1); 

        result_cond = results(:, 1)==result_num & results(:, 6)<0.05 & ... 

                      results(:, 2)-results(:,1)<2 & mod(results(:,1),3)~=0; 

        if ~isempty(results(result_cond, :)) 

            disp(results(result_cond, :)) 

            text(text_x_vals(e-1)+.5, -5, '*', ... 

                'Color',colors(g,:)) 

        end 

    end 

 

    err = errorbar(x_vals, cond_mean, cond_stderr, '-o', ... 

             'color', colors(g,:), 'Linewidth', 3, ... 

             'MarkerEdgeColor',colors(g,:),... 

             'MarkerFaceColor',colors(g,:), ... 

             'MarkerSize', 10); 

end 

 

ax = gca; 

set(gca, 'Ygrid', 'on') 

set(gca, 'xlim', [.5, 5.5]); 

set(gca, 'ylim', [.5, 8]); 

set(gca, 'XTick', [1,2,3,4,5], 'XTickLabel', electrodes); 

 

set(get(gca,'XLabel'), 'String', 'Electrodes'); 

set(get(gca,'YLabel'), 'String', 'Amplitude (\muV)'); 

x_lab = get(gca, 'xlabel'); 

set(gca, 'FontSize', 32, 'FontName', 'Garamond', ... 

    'FontWeight', 'Bold', 'LineWidth', 2) 

 

h = legend(groups, ... 

       'FontSize', 32); 

legend('boxoff') 

pos = get(h,'Position'); 

posx = 0.6; 

posy = 0.2; 

set(h,'Position',[posx posy pos(3) pos(4)]); 
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title('Peak Interactions') 

txt = findobj(gca,'Type','text'); 

set(txt,'VerticalAlignment', 'Middle', ... 

    'FontSize', 32, 'FontName', 'Garamond', 'FontWeight', 'Bold'); 

f_name = 'peak_interactions'; 

print(f_name, '-dpng', '-r300', '-painters'); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

EEG Measures Correlations with Patient Demographic data 

load_patient_demo_data 

patient_scores = patient_demo_data(:, {'PatientCode', 'Age', ... 

                                       'PANSSP_session1', 'PANSSN_session1', ... 

                                       'PANSSG_session1', ... 

                                       'MADRS_session1'}); 

 

 

patient_scores_schiz = patient_scores(4:end, :); 

% Sorting the rows alphabetically as thats how the data is stored in STUDY 

patient_scores_schiz = sortrows(patient_scores_schiz, 'PatientCode'); 

patient_scores_schiz = patient_scores_schiz{:, 2:end}; 

patient_scores_nonSchiz = patient_scores(1:3, :); 

patient_scores_nonSchiz = sortrows(patient_scores_nonSchiz, 'PatientCode'); 

patient_scores_nonSchiz = patient_scores_nonSchiz{:, 2:end}; 

 

% Schizophrenia patients 

 

schiz_diff_inds = ismember(diff_group_var, {'Schizophrenia'}); 

 

schiz_diff_mean = diff_mean(schiz_diff_inds); 

schiz_diff_latencies = diff_latencies(schiz_diff_inds); 

schiz_diff_elec = diff_elec_var(schiz_diff_inds); 

plot_stroop_demo_corrs(schiz_diff_mean, patient_scores_schiz, ... 

                       'Diff Peak Corrs: Schizophrenia', 

'demo_diff_peak_corrs_Schiz.png') 

plot_stroop_demo_corrs(schiz_diff_latencies, patient_scores_schiz, ... 

                       'Diff Latencies Corrs: Schizophrenia', 

'demo_diff_latencies_corrs_Schiz.png') 

 

% Schizoaffective disorder patients 

 

nonSchiz_diff_inds = ismember(diff_group_var, {'Schizoaffective'}); 

 

nonSchiz_diff_mean = diff_mean(nonSchiz_diff_inds); 

nonSchiz_diff_latencies = diff_latencies(nonSchiz_diff_inds); 

nonSchiz_diff_elec = diff_elec_var(nonSchiz_diff_inds); 

plot_stroop_demo_corrs(nonSchiz_diff_mean, patient_scores_nonSchiz, ... 

                       'Diff Peak Corrs: Schizoaffective', 

'demo_diff_peak_corrs_nonSchiz.png') 

plot_stroop_demo_corrs(nonSchiz_diff_latencies, patient_scores_nonSchiz, ... 

                       'Diff Latencies Corrs: Schizoaffective', 

'demo_diff_latencies_corrs_nonSchiz.png') 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Correlation plotting function 

function plot_stroop_demo_corrs(mat1, mat2, fig_title, f_name) 

mat1 = reshape(mat1, [], 5); 

 

[task_score_corr, p] = corr(mat1, mat2); 

c_data = brewermap(100, 'RdBu'); 

c_inv = flipud(c_data); 

score_type = {'Age'; 'PANSSP';... 

              'PANSSN';... 

              'PANSSG'; ... 
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              'MADRS'}; 

electrodes = {'Fz'; 'FCz'; 'Cz'; 'CPz'; 'Pz'}; 

figure('Position', [1 41 1000 750]); 

imagesc(task_score_corr, [-1 1]) 

colormap(c_inv) 

set(gca,'TickLabelInterpreter','none') 

set(gca, 'XTick', 1:5) 

set(gca, 'XTickLabel', score_type, 'XTickLabelRotation', 45) 

set(gca, 'YTick', 1:5) 

set(gca, 'YTickLabel', electrodes) 

axis square 

hold on; 

[sig_j, sig_i] = find(p<0.05); 

plot(sig_i, sig_j, '*', 'MarkerSize', 10, 'color', [.9, .9, .9]); 

title(fig_title) 

colorbar 

set(gca, 'FontSize', 24, 'FontName', 'Garamond', ... 

    'FontWeight', 'Bold', 'LineWidth', 1) 

print(f_name, '-dpng', '-r300', '-painters'); 

close; 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Behavioural data Correlations with Patient Demographic data 

load_patient_demo_data 

patient_scores = patient_demo_data(:, {'PatientCode', 'Age', ... 

                                       'PANSSP_session1', 'PANSSN_session1', ... 

                                       'PANSSG_session1', ... 

                                       'MADRS_session1'}); 

 

patient_scores_schiz = patient_scores(4:end, :); 

% Sorting the rows alphabetically as thats how the data is stored in STUDY 

patient_scores_schiz = sortrows(patient_scores_schiz, 'PatientCode'); 

patient_scores_schiz = patient_scores_schiz{:, 2:end}; 

patient_scores_nonSchiz = patient_scores(1:3, :); 

patient_scores_nonSchiz = sortrows(patient_scores_nonSchiz, 'PatientCode'); 

patient_scores_nonSchiz = patient_scores_nonSchiz{:, 2:end}; 

 

load('stroop_patient_combined') 

strooppatient = strooppatient09032020; 

 

% Putting schiz and nonSchiz alphabetically as thats how the data is stored in STUDY 

schiz_inds = [3, 5, 6]; 

non_schiz_inds = [2, 1, 4]; 

schiz_patients = strooppatient{schiz_inds, 2:end-2}; 

non_schiz_patients = strooppatient{non_schiz_inds, 2:end-2}; 

 

 

% Schizophrenia patients 

[task_score_corr, p] = corr(schiz_patients, patient_scores_schiz); 

 

c_data = brewermap(100, 'RdBu'); 

c_inv = flipud(c_data); 

 

metric_names = {'CongRL'; 'IncongRL'; 'CongPC'; 'IncongPC'}; 

 

score_type = {'Age'; 'PANSSP';... 

              'PANSSN';... 

              'PANSSG'; ... 

              'MADRS'}; 

figure('Position', [1 41 1000 720]); 

imagesc(task_score_corr, [-1 1]) 

colormap(c_inv) 

set(gca,'TickLabelInterpreter','none') 

set(gca, 'XTick', 1:5) 

set(gca, 'XTickLabel', score_type, 'XTickLabelRotation', 45) 

set(gca, 'YTick', 1:4) 
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set(gca, 'YTickLabel', metric_names) 

hold on; 

[sig_j, sig_i] = find(p<0.05); 

plot(sig_i, sig_j, '*', 'MarkerSize', 10, 'color', [.9, .9, .9]); 

title('Schizophrenia') 

colorbar 

set(gca, 'FontSize', 24, 'FontName', 'Garamond', ... 

    'FontWeight', 'Bold', 'LineWidth', 1) 

f_name = 'behaviour_demo_corrs_schiz.png'; 

print(f_name, '-dpng', '-r300', '-painters'); 

close; 

 

% Schizoaffective disorder patients 

[task_score_corr, p] = corr(non_schiz_patients, patient_scores_nonSchiz); 

 

c_data = brewermap(100, 'RdBu'); 

c_inv = flipud(c_data); 

 

metric_names = {'CongRL'; 'IncongRL'; 'CongPC'; 'IncongPC'}; 

 

score_type = {'Age'; 'PANSSP';... 

              'PANSSN';... 

              'PANSSG'; ... 

              'MADRS'}; 

figure('Position', [1 41 1000 720]); 

imagesc(task_score_corr, [-1 1]) 

colormap(c_inv) 

set(gca,'TickLabelInterpreter','none') 

set(gca, 'XTick', 1:5) 

set(gca, 'XTickLabel', score_type, 'XTickLabelRotation', 45) 

set(gca, 'YTick', 1:4) 

set(gca, 'YTickLabel', metric_names) 

hold on; 

[sig_j, sig_i] = find(p<0.05); 

plot(sig_i, sig_j, '*', 'MarkerSize', 10, 'color', [.9, .9, .9]); 

title('Schizoaffective') 

colorbar 

set(gca, 'FontSize', 24, 'FontName', 'Garamond', ... 

    'FontWeight', 'Bold', 'LineWidth', 1) 

f_name = 'behaviour_demo_corrs_nonSchiz.png'; 

print(f_name, '-dpng', '-r300', '-painters'); 

close; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

APPENDIX G - MATLAB CODES: CANTAB 

Control and Patient comparison plots 

load('cantab_data_thesis') 

 

groups = [1*ones(size(control_data(2,:))), ... 

          2*ones(size(patient_data(2, :)))]; 

patient_diag = patient_subjects(2,:); 

label = {'Control', 'Patients'}; 

mot = [3, 4]; 

rti = [5, 6, 9, 12, 13, 16]; 

pal = [19, 20]; 

swm = [21, 22]; 

vrm = 23:26; 

 

all_metrics = [mot, rti, pal, swm, vrm]; 

for metric = all_metrics  % Select which metrics to plot 

    y_label =  cell2mat(task_rows(metric,4)); 

    fprintf('\n%s\n', y_label) 

    values = [control_data(metric,:), patient_data(metric, :)]; 

    make_rawplot_colored_cantab(values, groups, label, patient_diag, y_label); 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 



 

427 

 

Plotting Function 

function fig_handle = make_rawplot_colored_cantab(values, groups, label, 

patient_diag, y_label) 

%Make a boxplot for the values with grouping 

%   values:   vector of all the data thats used to create the boxplot 

%   groups:   vector representing how the data is grouped; same number is 

%             assigned to the values in the same group. The data can have 

%             any number of groups 

%   label:    labels that will be shown for each group in the plot. Make 

%             sure the number of labels is same as diffenret number of 

%             groups. 

%   y_label:  label for y-axis. 

 

 

% Get colors for raw data 

c_data = brewermap(20, 'RdYlGn'); 

color_data = brewermap(8, 'Dark2'); 

color_data = color_data([1,2,3,4,6,8], :); 

 

% Get patient groups 

nonSchiz_inds = find(contains(patient_diag, 'SA')); 

schiz_inds = setdiff(1:6, nonSchiz_inds); 

 

% Set Figure position and size 

figure('Units' , 'normalized', ... 

       'Position', [0.2, 0.2, .7, .7]); 

hold on; 

 

unique_groups = unique(groups); 

 

% Calculating p-values between adjacent groups 

for i=1:length(unique_groups)-1 

    dist1 = values(groups==unique_groups(i)); 

    dist2 = values(groups==unique_groups(i+1)); 

    dist_schiz = dist2(schiz_inds); 

    dist_nonSchiz = dist2(nonSchiz_inds); 

%     dist_schiz = 

    [h(i), p(i)] = ttest2(dist1, dist2); 

    [hs(i), ps(i)] = ttest2(dist1, dist_schiz); 

    [hsa(i), psa(i)] = ttest2(dist1, dist_nonSchiz); 

    [hp(i), pp(i)] = ttest2(dist_schiz, dist_nonSchiz); 

%     [hk(i), pk(i)] = kstest2(dist1, dist2); 

    medians(i) = median(dist1); 

    medians(i+1) = median(dist2); 

 

    % put a * mark if p<0.05 

    if p(i) < 0.05 

        plot(mean(unique_groups(i:i+1))-0.025, mean(medians(i:i+1))*1.1, ... 

             '*', 'Color', c_data(2, :),... 

             'LineWidth', 2, 'MarkerSize', 10) 

    end 

 

    % put another * mark if p<0.005 

    if p(i) < 0.005 

        plot(mean(unique_groups(i:i+1))+0.025, mean(medians(i:i+1))*1.1, ... 

             '*', 'Color', c_data(2, :),... 

             'LineWidth', 2, 'MarkerSize', 10) 

    end 

 

end 

 

% plot a line between medians of group data 

plot(unique_groups, medians, 'Color', c_data(2, :), 'LineWidth', 2) 

set(gca,'xtick',unique(groups),'xticklabel',label) 

 

disp(['Ttest Control vs Patient p = ', num2str(p(i), '%1.4e\n'), ', <0.05:', 

num2str(p(i)<0.05), ', <0.01:', num2str(p(i)<0.01)]) 

disp(['Ttest Control vs Schiz p  = ', num2str(ps(i), '%1.4e\n'), ', <0.05:', 

num2str(ps(i)<0.05), ', <0.01:', num2str(ps(i)<0.01)]) 

disp(['Ttest Control vs nonSchiz p  = ', num2str(psa(i), '%1.4e\n'), ', <0.05:', 

num2str(psa(i)<0.05), ', <0.01:', num2str(psa(i)<0.01)]) 
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disp(['Ttest Schiz vs nonSchiz p  = ', num2str(pp(i), '%1.4e\n'), ', <0.05:', 

num2str(pp(i)<0.05), ', <0.01:', num2str(pp(i)<0.01)]) 

% disp(['Ktest p = ', num2str(pk(i), '%1.4e\n')]) 

 

% Plot and format raw values 

 

% Add noise to x values so that values that are close dont overlap 

x = groups; % + (rand(size(groups)) - .5)/5; 

x_controls = x(groups==1); 

values_controls = values(groups==1); 

% x_controls = x_controls + (rand(size(x_controls)) - .5)/5; 

 

% Seperate overlapping data for controls 

unique_vals = unique(ceil(values_controls)); 

for i=1:length(unique_vals) 

    n = length(values_controls(ceil(values_controls)==unique_vals(i))); 

    if n==1 

        continue; 

    else 

        x_controls(ceil(values_controls)==unique_vals(i)) = 1 + linspace(-.025*n, 

0.025*n, n); 

    end 

end 

 

% Plot the raw values for controls 

plot(x_controls, values_controls, 'o', 'MarkerSize', 7, ... 

     'MarkerEdgeColor', c_data(15, :), ... 

     'MarkerFaceColor', c_data(15, :), 'LineWidth', 1) 

hold on; 

 

% Plot raw values for patients with their individual colours 

x_patients = x(groups==2); 

values_patients = values(groups==2); 

 

% Seperate overlapping data 

unique_vals = unique(ceil(values_patients)); 

for i=1:length(unique_vals) 

    n = length(values_patients(ceil(values_patients)==unique_vals(i))); 

    if n==1 

        continue; 

    else 

        x_patients(ceil(values_patients)==unique_vals(i)) = 2 + linspace(-.025*n, 

0.025*n, n); 

    end 

end 

 

 

for i=1:length(x_patients) 

    plot(x_patients(i), values_patients(i), 'o', ... 

         'MarkerSize', 10,'MarkerEdgeColor', color_data(i, :), ... 

         'MarkerFaceColor', color_data(i, :), 'LineWidth', 1) 

end 

 

xlim([unique_groups(1) - 0.5, unique_groups(end) + 0.5]); 

% change fonts for the axis 

set(gca, 'FontSize', 14, 'FontName', 'Garamond', ... 

    'FontWeight', 'Bold', 'LineWidth', 2) 

 

% set labels for x and y axis 

xlabel('Group') 

x_lab = get(gca, 'xlabel'); 

set(x_lab, 'Units', 'normalized'); 

set(x_lab, 'Position', [0.5, -0.07, 0]); 

ylabel(y_label) 

 

box 'off' 

set(gca, 'Ygrid', 'on') 

 

% Format the labels of different boxes 

txt = findobj(gca,'Type','text'); 

set(txt,'VerticalAlignment', 'Middle', ... 

    'FontSize', 18, 'FontName', 'Garamond', 'FontWeight', 'Bold'); 
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axis('square') 

fig_handle = gcf; 

 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Task correlation plot 

load('cantab_data_thesis') 

type = 'Pearson'; 

 

% Patients 

[task_score_corr, p] = corr(patient_data', 'type', type); 

 

% Controls 

% [task_score_corr, p] = corr(control_data', 'type', type); 

 

% Select metrics to correlate 

task_inds = [1, 3, 5, 12, 6, 13, 9, 16, 19, 20, 21, 22, 23, 25]; 

 

task_score_corr = task_score_corr(task_inds, task_inds); 

p = p(task_inds, task_inds); 

c_data = brewermap(100, 'RdBu'); 

c_inv = flipud(c_data); 

 

figure('Position', [100, 25, 900, 900]); 

subplot('Position', [.28, .02, .7, .7]) 

imagesc(task_score_corr, [-1 1]) 

hold on; 

 

% Find sginificant correlations 

sig = find(p<0.05); 

sig_more = find(p<0.005); 

sig = setdiff(sig, sig_more); 

[sig_i, sig_j] =  ind2sub(size(task_score_corr), sig); 

[sig_more_i, sig_more_j] =  ind2sub(size(task_score_corr), sig_more); 

 

% Plot 

test = eye(length(task_inds)) - .01; 

test(sig) = task_score_corr(sig); 

test(sig_more) = task_score_corr(sig_more); 

imagesc(test, [-1 1]) 

hold on; 

 

colormap(c_inv) 

 

set(gca, 'YTick', .5:length(task_inds)) 

 

% set(gca, 'YTickLabel', task_rows(task_inds, 4)) 

 

set(gca, 'XTick', .5:length(task_inds)) 

 

hx = get(gca,'XLabel');  % Handle to xlabel 

set(hx,'Units','data'); 

pos = get(hx,'Position'); 

y = pos(3) - .7 ; 

X = 1:length(task_inds); 

set(gca, 'XTickLabel', []) 

% Place the new labels 

for i = 1:length(task_inds) 

  t(i) = text(X(i),y,task_rows(task_inds(i),4)); 

end 

set(t,'Rotation',60,'HorizontalAlignment','left',... 

    'FontSize', 14, 'FontName', 'Garamond', 'FontWeight', 'Bold') 

 

set(gca, 'YTickLabel', []) 

% Place the new labels 

for i = 1:length(task_inds) 

  t(i) = text(y,X(i),task_rows(task_inds(i),4)); 

end 
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set(t,'VerticalAlignment', 'middle', 'HorizontalAlignment','right',... 

    'FontSize', 14, 'FontName', 'Garamond', 'FontWeight', 'Bold') 

 

set(gca, 'TickLength', [0,0]) 

colorbar 

set(gca, 'FontSize', 14, 'FontName', 'Garamond', ... 

    'FontWeight', 'Bold', 'LineWidth', 1) 

axis('square') 

grid('on') 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Demographic data correlation plot 

load('demographic_data_new') 

load('cantab_data_thesis') 

 

age = 1; 

mot = [3, 4]; 

rti = [5, 6, 9, 12, 13, 16]; 

pal = [19, 20]; 

swm = [21, 22]; 

vrm = 23:26; 

all_metrics = [mot, rti, pal, swm, vrm]; 

[task_score_corr, p] = corr(patient_data(all_metrics, :)', patient_scores([1:3, 5], 

:)'); 

 

c_data = brewermap(100, 'RdBu'); 

c_inv = flipud(c_data); 

figure('Position', [100, 25, 1100, 700]); 

imagesc(task_score_corr, [-1 1]) 

colormap(c_inv) 

set(gca, 'XTick', 1:5) 

set(gca, 'XTickLabel', patient_score_type([1:3, 5])) 

set(gca, 'YTick', 1:length(all_metrics)) 

set(gca, 'YTickLabel', task_rows(all_metrics, 4)) 

colorbar 

set(gca, 'FontSize', 18, 'FontName', 'Garamond', ... 

    'LineWidth', 1, 'FontWeight', 'Bold') 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

APPENDIX H - MATLAB CODES: EMOTION RECOGNITION 

Facial Emotion Recognition Task Behavioural Response Plots 

load('ER_control_data.mat') 

load('ER_patient_data.mat') 

 

% Latency Compare plot 

lat_data = [ERcontrol.latency_neutral, ERcontrol.latency_happy, 

ERcontrol.latency_angry, ERcontrol.latency_sad]; 

lat_data_patient = [ERpatient.latency_neutral, ERpatient.latency_happy, 

ERpatient.latency_angry, ERpatient.latency_sad]; 

lat_patient_diag = {'Schizoaffective'; 'Schizoaffective'; 'Schizophrenia'; 

'Schizoaffective'; 'Schizophrenia'; 'Schizophrenia'}; 

lat_data_nonSchiz = lat_data_patient(contains(lat_patient_diag, 'Schizoaffective'), 

:); 

lat_data_schiz = lat_data_patient(contains(lat_patient_diag, 'Schizophrenia'), :); 

 

figure('Position', [1 41 800 748.8000]); 

hold on; 

colors = brewermap(5, 'Dark2'); 

x_vals = [.95,1.95,2.95,3.95]; 

data_mean = mean(lat_data, 1); 

data_stderr = std(lat_data, 1)/sqrt(length(lat_data)); 

err = errorbar(x_vals, data_mean, data_stderr, '-o', ... 
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             'color', colors(1,:), 'Linewidth', 3, ... 

             'MarkerEdgeColor',colors(1,:),... 

             'MarkerFaceColor',colors(1,:), ... 

             'MarkerSize', 10); 

x_vals = [.95,1.95,2.95,3.95] + .05 ; 

data_mean = mean(lat_data_schiz, 1); 

data_stderr = std(lat_data_schiz, 1)/sqrt(length(lat_data_schiz)); 

err = errorbar(x_vals, data_mean, data_stderr, '-o', ... 

             'color', colors(2,:), 'Linewidth', 3, ... 

             'MarkerEdgeColor',colors(2,:),... 

             'MarkerFaceColor',colors(2,:), ... 

             'MarkerSize', 10); 

x_vals = [.95,1.95,2.95,3.95] + 0.1; 

data_mean = mean(lat_data_nonSchiz, 1); 

data_stderr = std(lat_data_nonSchiz, 1)/sqrt(length(lat_data_nonSchiz)); 

err = errorbar(x_vals, data_mean, data_stderr, '-o', ... 

             'color', colors(3,:), 'Linewidth', 3, ... 

             'MarkerEdgeColor',colors(3,:),... 

             'MarkerFaceColor',colors(3,:), ... 

             'MarkerSize', 10); 

label = {'Neutral', 'Happy', 'Angry', 'Sad'}; 

groups = {'Control', 'Schizophrenia', 'Schizoaffective'}; 

ax = gca; 

set(gca, 'Ygrid', 'on') 

set(gca, 'xlim', [.5, 4.5]); 

set(gca, 'ylim', [500, 1300]); 

set(gca, 'XTick', [1,2,3,4], 'XTickLabel', label); 

 

 

set(get(gca,'XLabel'), 'String', 'Emotion'); 

set(get(gca,'YLabel'), 'String', 'Response Latency (ms)'); 

x_lab = get(gca, 'xlabel'); 

set(gca, 'FontSize', 28, 'FontName', 'Garamond', ... 

    'FontWeight', 'Bold', 'LineWidth', 2) 

 

title('b. Response Latency') 

txt = findobj(gca,'Type','text'); 

set(txt,'VerticalAlignment', 'Middle', ... 

    'FontSize', 28, 'FontName', 'Garamond', 'FontWeight', 'Bold'); 

f_name = 'response_latency'; 

print(f_name, '-dpng', '-r300', '-painters'); 

close 

 

% Percent Correct Compare plot 

perc_data = [ERcontrol.perc_corr_neutral, ERcontrol.perc_corr_happy, 

ERcontrol.perc_corr_angry, ERcontrol.perc_corr_sad]; 

perc_data_patient = [ERpatient.perc_corr_neutral, ERpatient.perc_corr_happy, 

ERpatient.perc_corr_angry, ERpatient.perc_corr_sad]; 

perc_patient_diag = {'Schizoaffective'; 'Schizoaffective'; 'Schizophrenia'; 

'Schizoaffective'; 'Schizophrenia'; 'Schizophrenia'}; 

perc_data_nonSchiz = perc_data_patient(contains(perc_patient_diag, 

'Schizoaffective'), :); 

perc_data_schiz = perc_data_patient(contains(perc_patient_diag, 'Schizophrenia'), :); 

 

figure('Position', [1 41 800 748.8000]); 

hold on; 

colors = brewermap(5, 'Dark2'); 

x_vals = [.95,1.95,2.95,3.95]; 

data_mean = mean(perc_data, 1); 

data_stderr = std(perc_data, 1)/sqrt(length(perc_data)); 

err = errorbar(x_vals, data_mean, data_stderr, '-o', ... 

             'color', colors(1,:), 'Linewidth', 3, ... 

             'MarkerEdgeColor',colors(1,:),... 

             'MarkerFaceColor',colors(1,:), ... 

             'MarkerSize', 10); 

x_vals = [.95,1.95,2.95,3.95] + .05 ; 

data_mean = mean(perc_data_schiz, 1); 

data_stderr = std(perc_data_schiz, 1)/sqrt(length(perc_data_schiz)); 

err = errorbar(x_vals, data_mean, data_stderr, '-o', ... 

             'color', colors(2,:), 'Linewidth', 3, ... 

             'MarkerEdgeColor',colors(2,:),... 

             'MarkerFaceColor',colors(2,:), ... 

             'MarkerSize', 10); 
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x_vals = [.95,1.95,2.95,3.95] + 0.1; 

data_mean = mean(perc_data_nonSchiz, 1); 

data_stderr = std(perc_data_nonSchiz, 1)/sqrt(length(perc_data_nonSchiz)); 

err = errorbar(x_vals, data_mean, data_stderr, '-o', ... 

             'color', colors(3,:), 'Linewidth', 3, ... 

             'MarkerEdgeColor',colors(3,:),... 

             'MarkerFaceColor',colors(3,:), ... 

             'MarkerSize', 10); 

label = {'Neutral', 'Happy', 'Angry', 'Sad'}; 

groups = {'Control', 'Schizophrenia', 'Schizoaffective'}; 

ax = gca; 

set(gca, 'Ygrid', 'on') 

set(gca, 'xlim', [.5, 4.5]); 

set(gca, 'ylim', [50, 105]); 

set(gca, 'XTick', [1,2,3,4], 'XTickLabel', label); 

 

 

set(get(gca,'XLabel'), 'String', 'Emotion'); 

set(get(gca,'YLabel'), 'String', 'Percent Correct'); 

x_lab = get(gca, 'xlabel'); 

set(gca, 'FontSize', 28, 'FontName', 'Garamond', ... 

    'FontWeight', 'Bold', 'LineWidth', 2) 

 

h = legend(groups, ... % 'All Patients'}, ... 

       'FontSize', 28); 

legend('boxoff') 

pos = get(h,'Position'); 

posx = 0.15; 

posy = 0.15; 

set(h,'Position',[posx posy pos(3) pos(4)]); 

 

title('a. Percent Correct') 

txt = findobj(gca,'Type','text'); 

set(txt,'VerticalAlignment', 'Middle', ... 

    'FontSize', 28, 'FontName', 'Garamond', 'FontWeight', 'Bold'); 

f_name = 'percent_corect'; 

print(f_name, '-dpng', '-r300', '-painters'); 

close 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Facial Emotion Recognition Task Behavioural ANOVA 

load('ER_control_data.mat') 

load('ER_patient_data.mat') 

 

% Latencies ANOVA test 

lat_data = [ERcontrol.latency_neutral, ERcontrol.latency_happy, 

ERcontrol.latency_angry, ERcontrol.latency_sad]; 

lat_type = {'Neutral', 'Happy', 'Angry', 'Sad'}; 

lat_type = repmat(lat_type, length(lat_data), 1); 

lat_type = reshape(lat_type, 1, []); 

lat_data = reshape(lat_data, 1, []); 

lat_group = repmat({'Control'}, 1, length(lat_type)); 

 

lat_data_patient = [ERpatient.latency_neutral, ERpatient.latency_happy, 

ERpatient.latency_angry, ERpatient.latency_sad]; 

lat_patient_diag = {'Schizoaffective'; 'Schizoaffective'; 'Schizophrenia'; 

'Schizoaffective'; 'Schizophrenia'; 'Schizophrenia'}; 

lat_patient_diag = repmat(lat_patient_diag, 1, size(lat_data_patient,2)); 

lat_type_patient = {'Neutral', 'Happy', 'Angry', 'Sad'}; 

lat_type_patient = repmat(lat_type_patient, length(lat_data_patient), 1); 

lat_type_patient = reshape(lat_type_patient, 1, []); 

lat_data_patient = reshape(lat_data_patient, 1, []); 

lat_patient_diag = reshape(lat_patient_diag, 1, []); 

lat_group_patient = repmat({'Patient'}, 1, length(lat_type_patient)); 

 

 

lat_data = [lat_data, lat_data_patient]; 

lat_type = [lat_type, lat_type_patient]; 

lat_group = [lat_group, lat_group_patient]; 
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% Uncomment to include two types of patients 

% lat_group = [lat_group, lat_patient_diag]; 

 

[p,tbl,stats,terms] = anovan(lat_data,{lat_type,lat_group}, ... 

                             'model','interaction', ... 

                             'varnames',{'Type','Group'}); 

 

% Percent Correct ANOVA test 

perc_data = [ERcontrol.perc_corr_neutral, ERcontrol.perc_corr_happy, 

ERcontrol.perc_corr_angry, ERcontrol.perc_corr_sad]; 

perc_type = {'Neutral', 'Happy', 'Angry', 'Sad'}; 

perc_type = repmat(perc_type, length(perc_data), 1); 

perc_type = reshape(perc_type, 1, []); 

perc_data = reshape(perc_data, 1, []); 

perc_group = repmat({'Control'}, 1, length(perc_type)); 

 

perc_data_patient = [ERpatient.perc_corr_neutral, ERpatient.perc_corr_happy, 

ERpatient.perc_corr_angry, ERpatient.perc_corr_sad]; 

perc_patient_diag = {'Schizoaffective'; 'Schizoaffective'; 'Schizophrenia'; 

'Schizoaffective'; 'Schizophrenia'; 'Schizophrenia'}; 

perc_patient_diag = repmat(perc_patient_diag, 1, size(perc_data_patient,2)); 

perc_type_patient = {'Neutral', 'Happy', 'Angry', 'Sad'}; 

perc_type_patient = repmat(perc_type_patient, length(perc_data_patient), 1); 

perc_type_patient = reshape(perc_type_patient, 1, []); 

perc_data_patient = reshape(perc_data_patient, 1, []); 

perc_patient_diag = reshape(perc_patient_diag, 1, []); 

perc_group_patient = repmat({'Patient'}, 1, length(perc_type_patient)); 

 

perc_data = [perc_data, perc_data_patient]; 

perc_type = [perc_type, perc_type_patient]; 

perc_group = [perc_group, perc_group_patient]; 

% Uncomment to include two types of patients 

% perc_group = [perc_group, perc_patient_diag]; 

 

[p,tbl,stats,terms] = anovan(perc_data,{perc_type,perc_group}, ... 

                             'model','interaction', ... 

                             'varnames',{'Type','Group'}); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

EEG Pre-processing and Epoch extraction: Healthy Controls 

data_dir = 'E:\EngD Data\Sibani\Pilot\PILOT\'; 

data_files = strcat(data_dir, '*ER*B*.cnt'); 

dataset_dir = strcat(data_dir, 'datasets\ER\withICA_1Hz\'); 

files = dir(data_files); 

skipped_cnt = {}; 

skipped_epoch = {}; 

 

for i = 1:length(files) 

    f_split = split(files(i).name, '_'); 

    f_name = split(files(i).name, '.'); 

    f_name = char(f_name(1)); 

    sub_id = char(f_split(1)); 

    sub_date = char(f_split(2)); 

    sub_block = split(f_split(4), '.'); 

    sub_block = char(sub_block(1)); 

 

    disp('Prepocessing:') 

    disp(f_name) 

    disp(' ') 

    disp(' ') 

 

    % Load data 

    cnt_file = strcat(data_dir, files(i).name); 

    try 

        EEG = pop_loadcnt(cnt_file, 'keystroke', 'on'); 

        EEG.setname = f_name; 

    catch 

        disp('Skipping loading:') 

        disp(f_name) 
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        disp(' ') 

        disp(' ') 

        skipped_cnt = [skipped_cnt; f_name]; 

        continue 

    end 

 

    % Import channel info 

    EEG = pop_chanedit(EEG, 'lookup', ... 

                       'C:\Users\Sibani 

Mohanty\Documents\MATLAB\eeglab14_1_2b\plugins\dipfit3.3\standard_BESA\standard-10-5-

cap385.elp', ... 

                       'eval','chans = pop_chancenter( chans, [],[]);'); 

 

    % Re-reference data to common average excluding EOG 

    EEG = pop_reref(EEG, [], 'exclude', [65, 66]); 

 

    % Resample data 

    EEG = pop_resample(EEG, 250); 

 

    % Filter data 

    EEG = pop_eegfiltnew(EEG, 1, []); 

    % Low-pass 

    EEG = pop_eegfiltnew(EEG, [], 40); 

 

    % Remove line noise using CleanLine 

    EEG = pop_cleanline(EEG, 'bandwidth', 2,'chanlist', [1:EEG.nbchan], 

'computepower', 0, 'linefreqs', [50 100 150],... 

                        'normSpectrum', 0, 'p', 0.01, 'pad', 2, 'plotfigures', 0, 

'scanforlines', 1, 'sigtype', 'Channels', 'tau', 100,... 

                        'verb', 1, 'winsize', 4, 'winstep', 4); 

    % Run ICA 

    EEG = pop_runica(EEG, 'icatype', 'runica'); 

 

    % Extract Epoch 

    try 

        EEG = pop_epoch(EEG, {53, 20, 28, 40}, [-.5 2.5]); 

    catch 

        disp('Skipping epoching:') 

        disp(f_name) 

        disp(' ') 

        disp(' ') 

        skipped_epoch = [skipped_epoch; f_name]; 

        continue 

    end 

    EEG = pop_rmbase(EEG, [-500, 0]); 

    EEG.setname = [f_name '_Fs250_LP40_HP1_ICA']; 

    EEG = pop_saveset(EEG, 'filename', [f_name '_Fs250_LP40_HP1' '_ICA'], 'filepath', 

dataset_dir); 

 

    clear EEG 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

EEG Pre-processing and Epoch extraction: Patients 

data_dir = 'E:\EngD Data\Sibani\Patient Data\'; 

data_files = strcat(data_dir, '*ER*B*.cnt'); 

dataset_dir = strcat(data_dir, 'datasets\ER\withICA\'); 

files = dir(data_files); 

skipped_cnt = {}; 

skipped_epoch = {}; 

 

for i = 3:length(files) 

    f_split = split(files(i).name, '_'); 

    f_name = split(files(i).name, '.'); 

    f_name = char(f_name(1)); 

    sub_id = char(f_split(1)); 

    sub_date = char(f_split(2)); 

 

    disp('Prepocessing:') 
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    disp(f_name) 

    disp(' ') 

    disp(' ') 

 

    % Load data 

    cnt_file = strcat(data_dir, files(i).name); 

    try 

        EEG = pop_loadcnt(cnt_file, 'keystroke', 'on'); 

        EEG.setname = f_name; 

    catch 

        disp('Skipping loading:') 

        disp(f_name) 

        disp(' ') 

        disp(' ') 

        skipped_cnt = [skipped_cnt; f_name]; 

        continue 

    end 

 

    % Import channel info 

    EEG = pop_chanedit(EEG, 'lookup', ... 

                       'C:\Users\Sibani 

Mohanty\Documents\MATLAB\eeglab14_1_2b\plugins\dipfit3.3\standard_BESA\standard-10-5-

cap385.elp', ... 

                       'eval','chans = pop_chancenter( chans, [],[]);'); 

 

    % Re-reference data to common average excluding EOG 

    EEG = pop_reref(EEG, [], 'exclude', [38 39]); 

 

    % Resample data 

    EEG = pop_resample(EEG, 250); 

 

    % Filter data 

    % High-pass 

    EEG = pop_eegfiltnew(EEG,1, []); 

    % Low-pass 

    EEG = pop_eegfiltnew(EEG, [], 40); 

 

    % Remove line noise using CleanLine 

    EEG = pop_cleanline(EEG, 'bandwidth', 2,'chanlist', [1:EEG.nbchan], 

'computepower', 0, 'linefreqs', [50 100 150],... 

                        'normSpectrum', 0, 'p', 0.01, 'pad', 2, 'plotfigures', 0, 

'scanforlines', 1, 'sigtype', 'Channels', 'tau', 100,... 

                        'verb', 1, 'winsize', 4, 'winstep', 4); 

    % Run ICA 

    EEG = pop_runica(EEG, 'icatype', 'runica'); 

 

    % Extract Epoch 

    try 

        EEG = pop_epoch(EEG, {53, 20, 28, 40}, [-.5 2.5]); 

    catch 

        disp('Skipping epoching:') 

        disp(f_name) 

        disp(' ') 

        disp(' ') 

        skipped_epoch = [skipped_epoch; f_name]; 

        continue 

    end 

    EEG = pop_rmbase(EEG, [-500, 0]); 

    EEG.setname = [f_name '_Fs250_LP40_HP1']; 

    EEG = pop_saveset(EEG, 'filename', [f_name '_Fs250_LP40_HP1' '_ICA'], 'filepath', 

dataset_dir); 

 

    clear EEG 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Data Splitting by Trial Type: Healthy Controls 

data_dir = 'E:\EngD 

Data\Sibani\Pilot\PILOT\datasets\ER\withICA_1Hz\withMarked\withRejectEpochs\';   

%Directory where ER datasets are saved 

byType_dir = strcat(data_dir, 'byType'); 

% Create the byType folder for datasets by type, if it doesn't exist already. 

if ~exist(byType_dir, 'dir') 

  mkdir(byType_dir); 

end 

 

% Event types and their names to append to file name before saving 

event_type = [53, 20, 28, 40]; 

type_name = {'Neutral', 'Angry', 'Happy', 'Sad'}; 

 

resp_type = {'keypad1', 'keypad2', 'keypad4', 'keypad8'}; 

 

skipped_set = {}; 

skipped_split = {}; 

 

load er_controls.mat 

type_total_trials = zeros(4, length(subjects)); 

type_clean_trials = zeros(4, length(subjects));  % Trials by type (1, :) cong; (2, :) 

incong 

type_correct_trials = zeros(4, length(subjects)); % Correct Trials by type (1, :) 

cong; (2, :) incong 

 

for i = 1:length(subjects) 

 

    data_files = strcat(data_dir, subjects{i}, '*ER*.set'); 

    files = dir(char(data_files)); 

    if isempty(files) 

        disp('Skipping Subject:') 

        disp(subjects{i}) 

        disp(' ') 

        disp(' ') 

        skipped_set = [skipped_set; subjects{i}]; 

        continue; 

    end 

    f_name = split(files(1).name, '_B'); 

    f_name = char(f_name(1)); 

 

    rej_files = strcat(data_dir, 'rej_mats\', subjects{i}, '*ER*.mat'); 

    rej_files = dir(char(rej_files)); 

    disp('Splitting:') 

    disp(f_name) 

 

    % Load and concatenate datasets 

    try 

        ALLEEG = []; 

        for j = 1:length(files) 

            % Print file names being concatenated to verify correct file 

            % are being processed for the give subject. Delete any datasets 

            % that are incorrect from folder 

            disp(' ') 

            disp('Loading') 

            disp(['File: ', files(j).name]) 

            disp(['Rejected epochs: ', rej_files(j).name]) 

 

            load([rej_files(j).folder, '\', rej_files(j).name]) 

            tot_epochs = length(rej.rejmanual); 

            disp(['Total epochs: ', num2str(tot_epochs)]) 

            num_rejected = sum(rej.rejmanual); 

            disp(['Retianed epochs: ', num2str(tot_epochs-num_rejected)]) 

 

            EEG_block = pop_loadset(files(j).name, files(j).folder); 

 

            type = extractfield(EEG_block.event, 'type'); 

            [C,ia,ic] = unique(type); 

            a_counts = accumarray(ic,1); 

            for k = 1:length(event_type) 
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                type_total_trials(k, i) = type_total_trials(k, i) + 

a_counts(contains(C, num2str(event_type(k)))); 

            end 

            EEG_block.reject.rejmanual = rej.rejmanual; 

            EEG_block = pop_rejepoch( EEG_block, EEG_block.reject.rejmanual ,0); 

            [ALLEEG, EEG_block, index] = eeg_store(ALLEEG, EEG_block); 

        end 

        EEG_block = pop_mergeset(ALLEEG, 1:length(files), 0); 

    catch 

        disp('Skipping loading:') 

        disp(f_name) 

        disp(' ') 

        disp(' ') 

        skipped_set = [skipped_set; f_name]; 

        continue 

    end 

 

    % Create datasets by types 

 

    for k = 1:length(event_type) 

 

        % Name of the new dataset with event_type and type_name appended 

        set_name = strcat(f_name, '_', num2str(event_type(k)), '_', 

char(type_name(k))); 

 

        % Selecting one event at a time 

        try 

            % Selecting all epochs 

            [EEG_type evnt_ind_test] = pop_selectevent(EEG_block, 'type', 

event_type(k)); 

            type_clean_trials(k, i) = length(EEG_type.epoch); 

            % Further keeping epochs with correct response and within max resp time 

            [EEG_type evnt_ind_test] = pop_selectevent(EEG_type, 'type', 

resp_type(k), 'latency', '0<=2500'); 

            type_correct_trials(k, i) = length(EEG_type.epoch); 

            EEG_type.setname = set_name; 

        catch 

            disp('Skipping split:') 

            disp(set_name) 

            disp(' ') 

            disp(' ') 

            skipped_split = [skipped_split; set_name]; 

            continue 

        end 

 

        % Saving the new dataset 

        EEG_type = pop_saveset(EEG_type, 'filename', set_name, 'filepath', 

byType_dir); 

        clear EEG_type 

    end 

    clear *EEG* 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Data Splitting by Trial Type: Patients 

data_dir = 'E:\EngD Data\Sibani\Patient 

Data\datasets\ER\withICA_1Hz\withMarked\withRejectEpochs\';   %Directory where ER 

datasets are saved 

byType_dir = strcat(data_dir, 'byType'); 

% Create the byType folder for datasets by type, if it doesn't exist already. 

if ~exist(byType_dir, 'dir') 

  mkdir(byType_dir); 

end 

 

% Event types and their names to append to file name before saving 

event_type = [53, 20, 28, 40]; 

type_name = {'Neutral', 'Angry', 'Happy', 'Sad'}; 

 

resp_type = {'keypad1', 'keypad2', 'keypad4', 'keypad8'}; 
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skipped_set = {}; 

skipped_split = {}; 

 

load stroop_patients.mat 

type_total_trials = zeros(4, length(subjects)); 

type_clean_trials = zeros(4, length(subjects));  % Trials by type (1, :) cong; (2, :) 

incong 

type_correct_trials = zeros(4, length(subjects)); % Correct Trials by type (1, :) 

cong; (2, :) incong 

 

for i = 1:length(subjects) 

 

    data_files = strcat(data_dir, subjects{i}, '*ER*.set'); 

    files = dir(char(data_files)); 

    if isempty(files) 

        skipped_set = [skipped_set; subjects{i}]; 

        continue; 

    end 

    f_name = split(files(1).name, '_B'); 

    f_name = char(f_name(1)); 

 

    rej_files = strcat(data_dir, 'rej_mats\', subjects{i}, '*ER*.mat'); 

    rej_files = dir(char(rej_files)); 

    disp('Splitting:') 

    disp(f_name) 

 

    % Load and concatenate dataset 

    try 

        ALLEEG = []; 

        for j = 1:length(files) 

            % Print file names being concatenated to verify correct file 

            % are being processed for the give subject. Delete any datasets 

            % that are incorrect from folder 

            disp(' ') 

            disp('Loading') 

            disp(['File: ', files(j).name]) 

            disp(['Rejected epochs: ', rej_files(j).name]) 

 

            load([rej_files(j).folder, '\', rej_files(j).name]) 

            tot_epochs = length(rej.rejmanual); 

            disp(['Total epochs: ', num2str(tot_epochs)]) 

            num_rejected = sum(rej.rejmanual); 

            disp(['Retianed epochs: ', num2str(tot_epochs-num_rejected)]) 

 

            EEG_block = pop_loadset(files(j).name, files(j).folder); 

 

            % Droping EOG channels 

            drop_chans = [38, 39]; 

            disp('Dropping EOG channels: VEOG, HEOG...') 

            EEG_block = pop_select(EEG_block, 'nochannel', drop_chans); 

            % Capitalizing channel labels to avoid conflicts between subjects 

            disp('Capitalizing channel labels...') 

            EEG_block = capitalize_chan_labels(EEG_block); 

 

            type = extractfield(EEG_block.event, 'type'); 

            [C,ia,ic] = unique(type); 

            a_counts = accumarray(ic,1); 

            for k = 1:length(event_type) 

                type_total_trials(k, i) = type_total_trials(k, i) + 

a_counts(contains(C, num2str(event_type(k)))); 

            end 

            EEG_block.reject.rejmanual = rej.rejmanual; 

            EEG_block = pop_rejepoch( EEG_block, EEG_block.reject.rejmanual ,0); 

            [ALLEEG, EEG_block, index] = eeg_store(ALLEEG, EEG_block); 

        end 

        EEG = pop_mergeset(ALLEEG, 1:length(files), 0); 

    catch 

        disp('Skipping loading:') 

        disp(f_name) 

        disp(' ') 

        disp(' ') 

        skipped_set = [skipped_set; f_name]; 
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        continue 

    end 

 

    % Create datasets by types 

 

    for k = 1:length(event_type) 

 

        % Name of the new dataset with event_type and type_name appended 

        set_name = strcat(f_name, '_', num2str(event_type(k)), '_', 

char(type_name(k))); 

 

        % Selecting one event at a time 

        try 

            % Selecting all epochs 

            [EEG_type evnt_ind_test] = pop_selectevent(EEG, 'type', event_type(k)); 

            type_clean_trials(k, i) = length(EEG_type.epoch); 

            % Further keeping epochs with correct response and within max resp time 

            [EEG_type evnt_ind_test] = pop_selectevent(EEG_type, 'type', 

resp_type(k), 'latency', '0<=2500'); 

            type_correct_trials(k, i) = length(EEG_type.epoch); 

            EEG_type.setname = set_name; 

        catch 

            disp('Skipping split:') 

            disp(set_name) 

            disp(' ') 

            disp(' ') 

            skipped_split = [skipped_split; set_name]; 

            continue 

        end 

 

        % Saving the new dataset 

        EEG_type = pop_saveset(EEG_type, 'filename', set_name, 'filepath', 

byType_dir); 

        clear EEG_type 

    end 

    clear *EEG* 

end 

 

function EEG = capitalize_chan_labels(EEG) 

    for i = 1:length(EEG.chanlocs) 

        EEG.chanlocs(i).labels = upper(EEG.chanlocs(i).labels); 

    end 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

EEGLAB STUDY creation: Healthy Controls 

data_dir = 'E:\EngD 

Data\Sibani\Pilot\PILOT\datasets\ER\withICA_1Hz\withMarked\withRejectEpochs\byType\';   

%Directory where ER datasets are saved 

data_files = strcat(data_dir, '*ER*.set'); 

files = dir(data_files); 

 

% Event types and their names to append to file name before saving 

event_type = [53, 20, 28, 40]; 

type_name = {'Neutral', 'Angry', 'Happy', 'Sad'}; 

 

commands = {}; 

 

for i = 1:length(files) 

    f_loc = [files(i).folder, '\', files(i).name]; 

 

    subject = split(files(i).name, '_ER'); 

    subject = subject{1}; 

 

    condition = split(files(i).name, ["_","."]); 

    condition = condition{end-1}; 

 

    commands = {commands{:} ... 

        {'index' i 'load' f_loc 'subject' subject 'condition' condition}}; 
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end 

 

std_dirpath = 'E:\EngD Data\Sibani\Studies\ER\controls_wICA'; 

if ~exist(std_dirpath) 

  mkdir(std_dirpath); 

end 

 

name = 'control_ER_wICA'; 

[STUDY ALLEEG] = std_editset([], [], 'name', name, ... 

                             'task', 'ER', ... 

                             'filename', name, ... 

                             'filepath', 'E:\EngD Data\Sibani\Studies\ER\', ... 

                             'commands', commands); 

 

% All 

CURRENTSTUDY = 4; EEG = ALLEEG; CURRENTSET = [1:length(EEG)]; 

STUDY = std_makedesign(STUDY, ALLEEG, CURRENTSTUDY, ... 

                       'name', 'control_ER_All', ... 

                       'variable1','condition', ... 

                       'filepath', std_dirpath); 

[STUDY EEG] = pop_savestudy( STUDY, ALLEEG, 'savemode','resave'); 

[STUDY ALLEEG] = std_precomp(STUDY, ALLEEG, 'channels', ... 

                             'recompute','on', ... 

                             'erp','on',... 

                             'ersp', 'on', 'itc', 'on', ... 

                             'erspparams', {'cycles', [.5 0], 'freqs', [2 50],  

'nfreqs', 100, 'ntimesout', 400}); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

EEGLAB STUDY creation: Patients 

data_dir = 'E:\EngD Data\Sibani\Patient 

Data\datasets\ER\withICA_1Hz\withMarked\withRejectEpochs\byType\';   %Directory where 

Stroop datasets are saved 

data_files = strcat(data_dir, '*ER*.set'); 

files = dir(data_files); 

 

% Event types and their names to append to file name before saving 

event_type = [53, 20, 28, 40]; 

type_name = {'Neutral', 'Angry', 'Happy', 'Sad'}; 

 

commands = {}; 

 

for i = 1:length(files) 

 

    f_loc = [files(i).folder, '\', files(i).name]; 

 

    subject = split(files(i).name, '_ER'); 

    subject = subject{1}; 

 

    condition = split(files(i).name, ["_","."]); 

    condition = condition{end-1}; 

 

    commands = {commands{:} ... 

        {'index' i 'load' f_loc 'subject' subject 'condition' condition}}; 

end 

 

std_dirpath = 'E:\EngD Data\Sibani\Studies\ER\patients_wICA'; 

if ~exist(std_dirpath) 

  mkdir(std_dirpath); 

end 

 

name = 'patient_ER_wICA'; 

[STUDY ALLEEG] = std_editset([], [], 'name', name, ... 

                             'task', 'ER', ... 

                             'filename', name, ... 

                             'filepath', 'E:\EngD Data\Sibani\Studies\ER\', ... 

                             'commands', commands); 

 

% All 
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CURRENTSTUDY = 4; EEG = ALLEEG; CURRENTSET = [1:length(EEG)]; 

STUDY = std_makedesign(STUDY, ALLEEG, CURRENTSTUDY, ... 

                       'name','patient_ER_All', ... 

                       'variable1','condition', ... 

                       'filepath', std_dirpath); 

[STUDY EEG] = pop_savestudy( STUDY, ALLEEG, 'savemode','resave'); 

[STUDY ALLEEG] = std_precomp(STUDY, ALLEEG, 'channels', ... 

                             'recompute','on', 'savetrials', 'on', ... 

                             'erp','on',... 

                             'ersp', 'on', 'itc', 'on', ... 

                             'erspparams', {'cycles', [.5 0], 'freqs', [2 50],  

'nfreqs', 100, 'ntimesout', 400}); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

ERP Analysis and Plot grids for each Emotion Type 

% Load previously formatted and saved data 

load('E:\EngD Data\Sibani\Studies\ER\extracted_data\control_data.mat') 

load('E:\EngD Data\Sibani\Studies\ER\extracted_data\schizOnly_data.mat') 

load('E:\EngD Data\Sibani\Studies\ER\extracted_data\nonSchizOnly_data.mat') 

load('E:\EngD Data\Sibani\Studies\ER\extracted_data\allPatients_data.mat') 

 

[STUDY, ALLEEG] = pop_loadstudy('E:\EngD 

Data\Sibani\Studies\ER\patient_ER_wICA_SchizOnly.study'); 

 

 

stat_method = 'montecarlo'; 

stat_corr = 'cluster'; 

stat_cluster = '''clusterstatistic'',''maxsum'''; 

STUDY = pop_statparams(STUDY, 'groupstats', 'on', ... 

                       'mode', 'fieldtrip', ... 

                       'fieldtripmethod', stat_method, ... 

                       'fieldtripalpha', 0.05, ... 

                       'fieldtripmcorrect', stat_corr, ... 

                       'fieldtripclusterparam', stat_cluster); 

stats = STUDY.etc.statistics; 

stats.paired = {'off'  'off'}; 

 

emotion_types = {'Neutral', 'Happy', 'Angry', 'Sad'}; 

 

for e = emotion_types 

    figure('Position', [1 41 800 748.8000]); 

 

    for i = 1:length(control_er) 

 

        erptimes =  control_er(i).erptimes; 

        control_data = control_er(i).(lower(e{1})); 

        patient_data = patient_er(i).(lower(e{1})); 

        schiz_data = schiz_er(i).(lower(e{1})); 

        nonSchiz_data = nonSchiz_er(i).(lower(e{1})); 

        channel = control_er(i).channel; 

        disp([e{1} ', Channel: ' channel]) 

 

        fig_title = channel; 

 

        erpdata = {control_data patient_data}; % 2 groups, cond 1 

        [pcond pgroup pinter] = std_stat(erpdata, stats); 

        pgroup = pgroup{1}; 

 

        erpdata = {control_data schiz_data}; % 2 groups, cond 1 

        [pcond pgroup_schiz pinter] = std_stat(erpdata, stats); 

        pgroup_schiz = pgroup_schiz{1}; 

 

        erpdata = {control_data nonSchiz_data}; % 2 groups, cond 1 

        [pcond pgroup_nonSchiz pinter] = std_stat(erpdata, stats); 

        pgroup_nonSchiz = pgroup_nonSchiz{1}; 

 

        control_erp = mean(control_data, 2); 

        patient_erp = mean(patient_data, 2); 

        schiz_erp = mean(schiz_data, 2); 
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        nonSchiz_erp = mean(nonSchiz_data, 2); 

 

        time_ind = erptimes>-200 & erptimes<1300; 

        erptimes = erptimes(time_ind); 

 

        control_erp = control_erp(time_ind); 

        patient_erp = patient_erp(time_ind); 

        schiz_erp = schiz_erp(time_ind); 

        nonSchiz_erp = nonSchiz_erp(time_ind); 

% 

        pgroup = pgroup(time_ind); 

        pgroup_schiz = pgroup_schiz(time_ind); 

        pgroup_nonSchiz = pgroup_nonSchiz(time_ind); 

 

 

        x = (control_er(i).chanx + 85)/200; 

        y = (-control_er(i).chany + 85)/200; 

 

        if i==1 

            y = .2; x = .875; 

        elseif i==2 

            y = .6; x = .875; 

        elseif i>2 

            y = mod((i-3),5)*.2; 

            x = 1 - (floor((i-3)/5)*.125 + .25); 

        end 

        if i>32 

            y = y+.2; 

        end 

 

        subplot('Position', [y, x, .175, .1]); 

        er_plot_3(control_erp, schiz_erp, nonSchiz_erp,... 

                  erptimes, 0, fig_title, ... 

                  pgroup_schiz, pgroup_nonSchiz, pgroup) 

    end 

    erp_file_name = [e{1} '_ERP_All']; 

 

    suptitle(e{1}); 

    set_fig_props(); 

    print(erp_file_name, '-dpng', '-r300'); 

    close 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

ERP plotting function 

function er_plot_3(control_erp, schiz_erp, nonSchiz_erp,... 

                   erptimes, reverse, fig_title, ... 

                   pgroup_schiz, pgroup_nonSchiz, pgroup)  %, p_thresh) 

 

    colors = brewermap(5, 'Dark2'); 

 

    min_y = -10; 

    max_y = 10; 

 

    plot(erptimes, control_erp, 'linewidth', 1., 'color', colors(1, :)) 

    hold on; 

    plot(erptimes, schiz_erp, 'linewidth', 1., 'color', colors(2, :)) 

    plot(erptimes, nonSchiz_erp, 'linewidth', 1., 'color', colors(3, :)) 

    plot(erptimes, zeros(length(erptimes), 1), 'k', 'linewidth', .5) 

 

    patch_schiz_y = [min_y+.4 min_y+.7]; 

    patch_nonSchiz_y = [min_y+.9 min_y+1.2]; 

 

    patch_c = [0.3 0.3 0.3]; 

    patch_schiz_c = colors(2, :); 

    patch_nonSchiz_c = colors(3, :); 

    times = erptimes; 

    regions = pgroup; 

    patch_y = [min_y+2 max_y]; 
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    if sum(regions)>0 

        r_ind = find(regions==1); 

        r_ind_change = find(diff(r_ind)>1); 

        r_ind_change = sort([r_ind_change' r_ind_change'+1]); 

        r_ind_change = [1 r_ind_change length(r_ind)]; 

 

        for i = 1:2:length(r_ind_change)-1 

            tmp_t = [times(r_ind(r_ind_change(i))) ... 

                     times(r_ind(r_ind_change(i+1)))]; 

            tmp_p = patch([tmp_t(1) tmp_t(2) tmp_t(2) tmp_t(1)], ... 

                          [patch_y(1) patch_y(1) patch_y(2) patch_y(2)], ... 

                          patch_c); 

            set(tmp_p, 'edgecolor', 'none', 'FaceAlpha', .25); 

        end 

    end 

 

    regions = pgroup_schiz; 

    patch_y = [min_y+.8 min_y+1.1]; 

    if sum(regions)>0 

        r_ind = find(regions==1); 

        r_ind_change = find(diff(r_ind)>1); 

        r_ind_change = sort([r_ind_change' r_ind_change'+1]); 

        r_ind_change = [1 r_ind_change length(r_ind)]; 

 

        for i = 1:2:length(r_ind_change)-1 

            tmp_t = [times(r_ind(r_ind_change(i))) ... 

                     times(r_ind(r_ind_change(i+1)))]; 

            tmp_p = patch([tmp_t(1) tmp_t(2) tmp_t(2) tmp_t(1)], ... 

                          [patch_y(1) patch_y(1) patch_y(2) patch_y(2)], ... 

                          patch_schiz_c); 

            set(tmp_p, 'edgecolor', patch_schiz_c); 

        end 

    end 

 

    regions = pgroup_nonSchiz; 

    patch_y = [min_y+1.2 min_y+1.5]; 

    if sum(regions)>0 

        r_ind = find(regions==1); 

        r_ind_change = find(diff(r_ind)>1); 

        r_ind_change = sort([r_ind_change' r_ind_change'+1]); 

        r_ind_change = [1 r_ind_change length(r_ind)]; 

 

        for i = 1:2:length(r_ind_change)-1 

            tmp_t = [times(r_ind(r_ind_change(i))) ... 

                     times(r_ind(r_ind_change(i+1)))]; 

            tmp_p = patch([tmp_t(1) tmp_t(2) tmp_t(2) tmp_t(1)], ... 

                          [patch_y(1) patch_y(1) patch_y(2) patch_y(2)], ... 

                          patch_nonSchiz_c); 

            set(tmp_p, 'edgecolor', patch_nonSchiz_c); 

        end 

    end 

 

    box off 

    set(gca,'FontSize',14, 'fontname','Garamond') 

    yticks(min_y+1:2:max_y-1); 

    plot([0, 0], [min_y max_y], 'k', 'linewidth', 0.5) 

    ylim([min_y, max_y]); 

    xlim([min_x, max_x]); 

 

    set(gca,'visible','off') 

    t = title(fig_title); 

    set(t,'position',get(t,'position')-[0 1.4 0]) 

    set(findall(gca, 'type', 'text'), 'visible', 'on') 

    if reverse 

        ax = gca; 

        ax.YDir = 'reverse'; 

    end 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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ERSP Analysis and Plots for each Emotion Type 

% Load previously formatted and saved data 

load('E:\EngD Data\Sibani\Studies\ER\extracted_data\control_data_ersp.mat') 

load('E:\EngD Data\Sibani\Studies\ER\extracted_data\schizOnly_data_ersp.mat') 

load('E:\EngD Data\Sibani\Studies\ER\extracted_data\nonSchizOnly_data_ersp.mat') 

load('E:\EngD Data\Sibani\Studies\ER\extracted_data\allPatients_data_ersp.mat') 

 

[STUDY, ALLEEG] = pop_loadstudy('E:\EngD 

Data\Sibani\Studies\ER\patient_ER_wICA_SchizOnly.study'); 

 

 

stat_method = 'montecarlo'; 

stat_corr = 'cluster'; 

stat_cluster = '''clusterstatistic'',''maxsum'''; 

STUDY = pop_statparams(STUDY, 'groupstats', 'on', ... 

                       'mode', 'fieldtrip', ... 

                       'fieldtripmethod', stat_method, ... 

                       'fieldtripalpha', 0.05, ... 

                       'fieldtripmcorrect', stat_corr, ... 

                       'fieldtripclusterparam', stat_cluster); 

stats = STUDY.etc.statistics; 

stats.paired = {'on'  'on'}; 

 

 

emotion_types = {'Neutral', 'Happy', 'Angry', 'Sad'}; 

 

for e = emotion_types 

 

    for i = [1, 27] 

 

        ersptimes =  control_er(i).ersptimes; 

        erspfreqs =  control_er(i).erspfreqs; 

        control_data = control_er(i).(lower(e{1})); 

        patient_data = patient_er(i).(lower(e{1})); 

        schiz_data = schiz_er(i).(lower(e{1})); 

        nonSchiz_data = nonSchiz_er(i).(lower(e{1})); 

        channel = control_er(i).channel; 

        disp([e{1} ', Channel: ' channel]) 

 

        fig_title = [e{1}, ': ', channel]; 

 

        time_ind = ersptimes>-200 & ersptimes<1300; 

        ersptimes = ersptimes(time_ind); 

        control_data = control_data(:, time_ind, :, :); 

        patient_data = patient_data(:, time_ind, :, :); 

 

        erspdata = {control_data patient_data}; % 2 groups, cond 1 

        [pcond pgroup pinter] = std_stat(erspdata, stats); 

        pgroup = pgroup{1}; 

 

        control_ersp = mean(control_data, 4); 

        patient_ersp = mean(patient_data, 4); 

        schiz_ersp = mean(schiz_data, 4); 

        nonSchiz_ersp = mean(nonSchiz_data, 4); 

 

        er_ersp_plot(control_ersp, patient_ersp, ... 

                     ersptimes, erspfreqs, pgroup, e{1}, channel) 

        erp_file_name = [e{1} '_ERSP_' channel]; 

        set_fig_props(); 

        print(erp_file_name, '-dpng', '-r300'); 

        close 

    end 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

ERSP Plotting function 

function er_ersp_plot(control_ersp, patient_ersp, ... 
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                      ersptimes, erspfreqs, pgroup, emotion_type, channels) 

 

    figure('Position', [1 41 1536 650]); 

    rdbu_map = brewermap(200,'RdBu'); 

    c_val_esrp = [max(max(abs(control_ersp))), ... 

                  max(max(abs(patient_ersp)))]; 

    c_val_esrp = max(c_val_esrp); 

 

    erspfreqs = log(erspfreqs); 

 

    fticks = [2 4 8 16 24 32 40, 48]; 

 

    p1 = subplot('Position', [.075, .125, .275 .8]); 

    imagesc(ersptimes, erspfreqs, control_ersp); 

    hold on; 

    plot([0 0], [erspfreqs(1) erspfreqs(end)], 'k:', 'linewidth', 1.5); 

    set(gca, 'YDir', 'normal'); 

    set( get(p1,'XLabel'), 'String', 'Latency (ms)'); 

    set( get(p1,'YLabel'), 'String', 'Frequency (Hz)'); 

    set(gca,'ytick',log(fticks)); 

    set(gca,'yticklabel', string(fticks)) 

    colormap(rdbu_map); 

    hcb = colorbar; 

    title(hcb, 'dB') 

    caxis([-c_val_esrp, c_val_esrp]) 

    title('') 

 

    p2 = subplot('Position', [.375, .125, .275 .8]); 

    imagesc(ersptimes, erspfreqs, patient_ersp); 

    hold on; 

    plot([0 0], [erspfreqs(1) erspfreqs(end)], 'k:', 'linewidth', 1.5); 

    set(gca, 'YDir', 'normal', 'yticklabels', []); 

    set( get(p2,'XLabel'), 'String', 'Latency (ms)'); 

    set(gca,'ytick',log(fticks)); 

    colormap(rdbu_map); 

    hcb = colorbar; 

    title(hcb, 'dB') 

    caxis([-c_val_esrp, c_val_esrp]) 

    title('') 

 

    p3 = subplot('Position', [.675, .125, .275 .8]); 

    imagesc(ersptimes, erspfreqs, patient_ersp - control_ersp); 

    hold on; 

    plot([0 0], [erspfreqs(1) erspfreqs(end)], 'k:', 'linewidth', 1.5); 

    set(gca, 'YDir', 'normal', 'yticklabels', []); 

    set( get(p3,'XLabel'), 'String', 'Latency (ms)'); 

    set(gca,'ytick',log(fticks)); %(inds(1:2:end))); 

    colormap(brewermap(200,'RdBu')); 

    hcb = colorbar; 

    title(hcb, 'dB') 

    c_val = max(max(abs(patient_ersp - control_ersp))); 

    caxis([-c_val, c_val]) 

    hold on; 

    x = linspace(ersptimes(1), ersptimes(end), length(ersptimes)); 

    y = linspace(erspfreqs(1), erspfreqs(end), length(erspfreqs)); 

    contour(x, y, pgroup~=1, 'k') 

    title('') 

 

    suptitle(emotion_type) 

    set(findall(gcf,'-property','FontSize'),'FontSize',24) 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Facial Emotion Response EEG Response ANOVA Analysis 

% Load previously formatted and saved data 

load('E:\EngD Data\Sibani\Studies\ER\extracted_data\control_data.mat') 

load('E:\EngD Data\Sibani\Studies\ER\extracted_data\schizOnly_data.mat') 

load('E:\EngD Data\Sibani\Studies\ER\extracted_data\nonSchizOnly_data.mat') 

load('E:\EngD Data\Sibani\Studies\ER\extracted_data\allPatients_data.mat') 
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% ANOVA for P100 at electrode P8 

emotion_types = {'Neutral', 'Happy', 'Angry', 'Sad'}; 

 

p100_peak = []; 

p100_lat = []; 

 

group_var = []; 

type_var = []; 

 

for e = emotion_types 

 

    for i = 27   % electrode P8 

 

        erptimes =  control_er(i).erptimes; 

        control_data = control_er(i).(lower(e{1})); 

        patient_data = patient_er(i).(lower(e{1})); 

        schiz_data = schiz_er(i).(lower(e{1})); 

        nonSchiz_data = nonSchiz_er(i).(lower(e{1})); 

        channel = control_er(i).channel; 

        disp([e{1} ', Channel: ' channel]) 

 

        time_ind = find(erptimes>50 & erptimes<200); 

        erptimes_sub = erptimes(time_ind); 

 

        control_erp = control_data(time_ind, :); 

        patient_erp = patient_data(time_ind, :); 

        schiz_erp = schiz_data(time_ind, :); 

        nonSchiz_erp = nonSchiz_data(time_ind, :); 

 

        [control_p100_peak, ind] = max(control_erp); 

        p100_peak = [p100_peak, control_p100_peak]; 

        control_p100_lat = erptimes_sub(ind); 

        p100_lat = [p100_lat, control_p100_lat]; 

        group_var = [group_var, repmat({'Control'}, 1, length(control_p100_peak))]; 

 

        % Uncomment for for 2x4 ANOVA design 

%         [patient_p100_peak, ind] = max(patient_erp); 

%         p100_peak = [p100_peak, patient_p100_peak]; 

%         patient_p100_lat = erptimes_sub(ind); 

%         p100_lat = [p100_lat, patient_p100_lat]; 

%         group_var = [group_var, repmat({'Patient'}, 1, length(patient_p100_peak))]; 

% 

        % Uncomment next 2 code chunks for 3x4 ANOVA design 

        [schiz_p100_peak, ind] = max(schiz_erp); 

        p100_peak = [p100_peak, schiz_p100_peak]; 

        schiz_p100_lat = erptimes_sub(ind); 

        p100_lat = [p100_lat, schiz_p100_lat]; 

        group_var = [group_var, repmat({'Schizophrenia'}, 1, 

length(schiz_p100_peak))]; 

 

        [nonSchiz_p100_peak, ind] = max(nonSchiz_erp); 

        p100_peak = [p100_peak, nonSchiz_p100_peak]; 

        nonSchiz_p100_lat = erptimes_sub(ind); 

        p100_lat = [p100_lat, nonSchiz_p100_lat]; 

        group_var = [group_var, repmat({'Schizoaffective'}, 1, 

length(nonSchiz_p100_peak))]; 

    end 

    type_var = [type_var, repmat(e, 1, 24)]; 

end 

 

[p,tbl,stats,terms] = anovan(p100_lat, {type_var, group_var}, ... 

                             'model', 'interaction', ... 

                             'varnames', {'Type','Group'}); 

 

% ANOVA for N170 at electrode P8 

emotion_types = {'Neutral', 'Happy', 'Angry', 'Sad'}; 

 

n170_peak = []; 

n170_lat = []; 

 

group_var = []; 

type_var = []; 
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for e = emotion_types 

 

    for i = 27   % electrode P8 

 

        erptimes =  control_er(i).erptimes; 

        control_data = control_er(i).(lower(e{1})); 

        patient_data = patient_er(i).(lower(e{1})); 

        schiz_data = schiz_er(i).(lower(e{1})); 

        nonSchiz_data = nonSchiz_er(i).(lower(e{1})); 

        channel = control_er(i).channel; 

        disp([e{1} ', Channel: ' channel]) 

 

        time_ind = find(erptimes>50 & erptimes<250); 

        erptimes_sub = erptimes(time_ind); 

 

        control_erp = control_data(time_ind, :); 

        patient_erp = patient_data(time_ind, :); 

        schiz_erp = schiz_data(time_ind, :); 

        nonSchiz_erp = nonSchiz_data(time_ind, :); 

 

        [control_n170_peak, ind] = min(control_erp); 

        n170_peak = [n170_peak, control_n170_peak]; 

        control_n170_lat = erptimes_sub(ind); 

        n170_lat = [n170_lat, control_n170_lat]; 

        group_var = [group_var, repmat({'Control'}, 1, length(control_n170_peak))]; 

 

        % Uncomment for for 2x4 ANOVA design 

%         [patient_n170_peak, ind] = min(patient_erp); 

%         n170_peak = [n170_peak, patient_n170_peak]; 

%         patient_n170_lat = erptimes_sub(ind); 

%         n170_lat = [n170_lat, patient_n170_lat]; 

%         group_var = [group_var, repmat({'Patient'}, 1, length(patient_n170_peak))]; 

 

        % Uncomment next 2 code chunks for 3x4 ANOVA design 

        [schiz_n170_peak, ind] = min(schiz_erp); 

        n170_peak = [n170_peak, schiz_n170_peak]; 

        schiz_n170_lat = erptimes_sub(ind); 

        n170_lat = [n170_lat, schiz_n170_lat]; 

        group_var = [group_var, repmat({'Schizophrenia'}, 1, 

length(schiz_n170_peak))]; 

 

        [nonSchiz_n170_peak, ind] = min(nonSchiz_erp); 

        n170_peak = [n170_peak, nonSchiz_n170_peak]; 

        nonSchiz_n170_lat = erptimes_sub(ind); 

        n170_lat = [n170_lat, nonSchiz_n170_lat]; 

        group_var = [group_var, repmat({'Schizoaffective'}, 1, 

length(nonSchiz_n170_peak))]; 

    end 

    type_var = [type_var, repmat(e, 1, 24)]; 

end 

 

[p,tbl,stats,terms] = anovan(n170_lat, {type_var, group_var}, ... 

                             'model', 'interaction', ... 

                             'varnames', {'Type','Group'}); 

 

 

% ANOVA for P300 mean at electrode FP1 

emotion_types = {'Neutral', 'Happy', 'Angry', 'Sad'}; 

 

p300_mean = []; 

 

group_var = []; 

type_var = []; 

 

for e = emotion_types 

 

    for i = 1  % electrode FP1 

 

        erptimes =  control_er(i).erptimes; 

        control_data = control_er(i).(lower(e{1})); 

        patient_data = patient_er(i).(lower(e{1})); 

        schiz_data = schiz_er(i).(lower(e{1})); 
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        nonSchiz_data = nonSchiz_er(i).(lower(e{1})); 

        channel = control_er(i).channel; 

        disp([e{1} ', Channel: ' channel]) 

 

        time_ind = find(erptimes>=400 & erptimes<=600); 

        erptimes_sub = erptimes(time_ind); 

 

        control_erp = control_data(time_ind, :); 

        patient_erp = patient_data(time_ind, :); 

        schiz_erp = schiz_data(time_ind, :); 

        nonSchiz_erp = nonSchiz_data(time_ind, :); 

 

        control_p300_mean = mean(control_erp, 1); 

        p300_mean = [p300_mean, control_p300_mean]; 

        group_var = [group_var, repmat({'Control'}, 1, length(control_p300_mean))]; 

 

        % Uncomment for for 2x4 ANOVA design 

%         patient_p300_mean = mean(patient_erp, 1); 

%         p300_mean = [p300_mean, patient_p300_mean]; 

%         group_var = [group_var, repmat({'Patient'}, 1, length(patient_p300_mean))]; 

 

        % Uncomment next 2 code chunks for 3x4 ANOVA design 

        schiz_p300_mean = mean(schiz_erp, 1); 

        p300_mean = [p300_mean, schiz_p300_mean]; 

        group_var = [group_var, repmat({'Schizophrenia'}, 1, 

length(schiz_p300_mean))]; 

 

        nonSchiz_p300_mean = mean(nonSchiz_erp, 1); 

        p300_mean = [p300_mean, nonSchiz_p300_mean]; 

        group_var = [group_var, repmat({'Schizoaffective'}, 1, 

length(nonSchiz_p300_mean))]; 

 

    end 

    type_var = [type_var, repmat(e, 1, 24)]; 

end 

 

[p,tbl,stats,terms] = anovan(p300_mean, {type_var, group_var}, ... 

                             'model', 'interaction', ... 

                             'varnames', {'Type','Group'}); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

EEG Measures Correlations with Patient Demographic data 

% Loading Patient demographic data 

clc 

load_patient_demo_data 

patient_scores = patient_demo_data(:, {'PatientCode', 'Age', ... 

                                       'PANSSP_session2', 'PANSSN_session2', ... 

                                       'PANSSG_session2', ... 

                                       'MADRS_session2'}); 

 

 

patient_scores_schiz = patient_scores(4:end, :); 

% Sorting the rows alphabetically as thats how the data is stored in STUDY 

patient_scores_schiz = sortrows(patient_scores_schiz, 'PatientCode'); 

patient_scores_schiz = patient_scores_schiz{:, 2:end}; 

patient_scores_nonSchiz = patient_scores(1:3, :); 

patient_scores_nonSchiz = sortrows(patient_scores_nonSchiz, 'PatientCode'); 

patient_scores_nonSchiz = patient_scores_nonSchiz{:, 2:end}; 

 

% Plotting for Schizophrenia Patients 

fig_title = 'P100 Peak: Schizophrenia'; 

f_name = 'p100_peak_corrs_schiz'; 

schiz_inds = ismember(group_var, {'Schizophrenia'}); 

disp('Doing P100 peak Schizophrenia') 

disp(reshape(type_var(schiz_inds), [], 4)) 

plot_ER_demo_corrs(p100_peak(schiz_inds), patient_scores_schiz, fig_title, f_name) 

 

fig_title = 'P100 Latency: Schizophrenia'; 

f_name = 'p100_latency_corrs_schiz'; 
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schiz_inds = ismember(group_var, {'Schizophrenia'}); 

disp('Doing P100 latency Schizophrenia') 

disp(reshape(type_var(schiz_inds), [], 4)) 

plot_ER_demo_corrs(p100_lat(schiz_inds), patient_scores_schiz, fig_title, f_name) 

 

fig_title = 'N170 Peak: Schizophrenia'; 

f_name = 'n170_peak_corrs_schiz'; 

schiz_inds = ismember(group_var, {'Schizophrenia'}); 

disp('Doing N100 peak Schizophrenia') 

disp(reshape(type_var(schiz_inds), [], 4)) 

plot_ER_demo_corrs(abs(n170_peak(schiz_inds)), patient_scores_schiz, fig_title, 

f_name) 

 

fig_title = 'N170 Latency: Schizophrenia'; 

f_name = 'n170_latency_corrs_schiz'; 

schiz_inds = ismember(group_var, {'Schizophrenia'}); 

disp('Doing N170 latency Schizophrenia') 

disp(reshape(type_var(schiz_inds), [], 4)) 

plot_ER_demo_corrs(n170_lat(schiz_inds), patient_scores_schiz, fig_title, f_name) 

 

fig_title = 'P300 Mean: Schizophrenia'; 

f_name = 'p300_mean_corrs_schiz'; 

schiz_inds = ismember(group_var, {'Schizophrenia'}); 

disp('Doing P300 mean Schizophrenia') 

disp(reshape(type_var(schiz_inds), [], 4)) 

plot_ER_demo_corrs(p300_mean(schiz_inds), patient_scores_schiz, fig_title, f_name) 

 

 

% Plotting for Schizoaffective disorder Patients 

fig_title = 'P100 Peak: Schizoaffective'; 

f_name = 'p100_peak_corrs_nonSchiz'; 

nonSchiz_inds = ismember(group_var, {'Schizoaffective'}); 

disp('Doing P100 peak Schizoaffective') 

disp(reshape(type_var(nonSchiz_inds), [], 4)) 

plot_ER_demo_corrs(p100_peak(nonSchiz_inds), patient_scores_nonSchiz, fig_title, 

f_name) 

 

fig_title = 'P100 Latency: Schizoaffective'; 

f_name = 'p100_latency_corrs_nonSchiz'; 

nonSchiz_inds = ismember(group_var, {'Schizoaffective'}); 

disp('Doing P100 latency Schizoaffective') 

disp(reshape(type_var(nonSchiz_inds), [], 4)) 

plot_ER_demo_corrs(p100_lat(nonSchiz_inds), patient_scores_nonSchiz, fig_title, 

f_name) 

 

fig_title = 'N170 Peak: Schizoaffective'; 

f_name = 'n170_peak_corrs_nonSchiz'; 

nonSchiz_inds = ismember(group_var, {'Schizoaffective'}); 

disp('Doing N100 peak Schizoaffective') 

disp(reshape(type_var(nonSchiz_inds), [], 4)) 

plot_ER_demo_corrs(abs(n170_peak(nonSchiz_inds)), patient_scores_nonSchiz, fig_title, 

f_name) 

 

fig_title = 'N170 Latency: Schizoaffective'; 

f_name = 'n170_latency_corrs_nonSchiz'; 

nonSchiz_inds = ismember(group_var, {'Schizoaffective'}); 

disp('Doing N170 latency Schizoaffective') 

disp(reshape(type_var(nonSchiz_inds), [], 4)) 

plot_ER_demo_corrs(n170_lat(nonSchiz_inds), patient_scores_nonSchiz, fig_title, 

f_name) 

 

fig_title = 'P300 Mean: Schizoaffective'; 

f_name = 'p300_mean_corrs_nonSchiz'; 

nonSchiz_inds = ismember(group_var, {'Schizoaffective'}); 

disp('Doing P300 mean Schizoaffective') 

disp(reshape(type_var(nonSchiz_inds), [], 4)) 

plot_ER_demo_corrs(p300_mean(nonSchiz_inds), patient_scores_nonSchiz, fig_title, 

f_name) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Correlation plotting function 

function plot_ER_demo_corrs(mat1, mat2, fig_title, f_name) 

 

mat1 = reshape(mat1, [], 4); 

 

[task_score_corr, p] = corr(mat1, mat2); 

c_data = brewermap(100, 'RdBu'); 

c_inv = flipud(c_data); 

score_type = {'Age'; 'PANSSP';... 

              'PANSSN';... 

              'PANSSG'; ... 

              'MADRS'}; 

emotions = {'Neutral', 'Happy', 'Angry', 'Sad'}; 

figure('Position', [1 41 1000 750]); 

imagesc(task_score_corr, [-1 1]) 

colormap(c_inv) 

set(gca,'TickLabelInterpreter','none') 

set(gca, 'XTick', 1:5) 

set(gca, 'XTickLabel', score_type, 'XTickLabelRotation', 45) 

set(gca, 'YTick', 1:5) 

set(gca, 'YTickLabel', emotions) 

% axis square 

hold on; 

[sig_j, sig_i] = find(p<0.05); 

plot(sig_i, sig_j, '*', 'MarkerSize', 10, 'color', [.9, .9, .9]); 

title(fig_title) 

colorbar 

set(gca, 'FontSize', 24, 'FontName', 'Garamond', ... 

    'FontWeight', 'Bold', 'LineWidth', 1) 

print(f_name, '-dpng', '-r300', '-painters'); 

close; 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Behavioural data Correlations with Patient Demographic data 

% Load previously formatted and saved data 

load('ER_control_data.mat') 

load('ER_patient_data.mat') 

 

schiz_inds = [3, 5, 6]; 

non_schiz_inds = [2, 1, 4]; 

schiz_patients = ERpatient(schiz_inds, :); 

non_schiz_patients = ERpatient(non_schiz_inds, :); 

 

schiz_patients = dataset2table(schiz_patients); 

non_schiz_patients = dataset2table(non_schiz_patients); 

emotion_types = {'Neutral', 'Happy', 'Angry', 'Sad'}; 

 

% Load Patient Demographic data 

load_patient_demo_data 

patient_scores = patient_demo_data(:, {'PatientCode', 'Age', ... 

                                       'PANSSP_session2', 'PANSSN_session2', ... 

                                       'PANSSG_session2', ... 

                                       'MADRS_session2'}); 

 

patient_scores_schiz = patient_scores(4:end, :); 

% Sorting the rows alphabetically as thats how the data is stored in STUDY 

patient_scores_schiz = sortrows(patient_scores_schiz, 'PatientCode'); 

patient_scores_schiz = patient_scores_schiz{:, 2:end}; 

patient_scores_nonSchiz = patient_scores(1:3, :); 

patient_scores_nonSchiz = sortrows(patient_scores_nonSchiz, 'PatientCode'); 

patient_scores_nonSchiz = patient_scores_nonSchiz{:, 2:end}; 

 

% Correlation Plots for Percent Correct 

% Schizophrenia Patients 

[task_score_corr, p] = corr(schiz_patients{:,2:5}, patient_scores_schiz); 
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c_data = brewermap(100, 'RdBu'); 

c_inv = flipud(c_data); 

score_type = {'Age'; 'PANSSP';... 

              'PANSSN';... 

              'PANSSG'; ... 

              'MADRS'}; 

figure('Position', [1 41 1000 720]); 

imagesc(task_score_corr, [-1 1]) 

colormap(c_inv) 

set(gca,'TickLabelInterpreter','none') 

set(gca, 'XTick', 1:5) 

set(gca, 'XTickLabel', score_type, 'XTickLabelRotation', 45) 

set(gca, 'YTick', 1:4) 

set(gca, 'YTickLabel', emotion_types) 

hold on; 

[sig_j, sig_i] = find(p<0.05); 

plot(sig_i, sig_j, '*', 'MarkerSize', 10, 'color', [.9, .9, .9]); 

title('Percent Correct: Schizophrenia') 

colorbar 

set(gca, 'FontSize', 24, 'FontName', 'Garamond', ... 

    'FontWeight', 'Bold', 'LineWidth', 1) 

f_name = 'percCorr_demo_corrs_schiz.png'; 

print(f_name, '-dpng', '-r300', '-painters'); 

 

% Schizoaffective disorder Patients 

[task_score_corr, p] = corr(non_schiz_patients{:,2:5}, patient_scores_nonSchiz); 

 

c_data = brewermap(100, 'RdBu'); 

c_inv = flipud(c_data); 

score_type = {'Age'; 'PANSSP';... 

              'PANSSN';... 

              'PANSSG'; ... 

              'MADRS'}; 

figure('Position', [1 41 1000 720]); 

imagesc(task_score_corr, [-1 1]) 

colormap(c_inv) 

set(gca,'TickLabelInterpreter','none') 

set(gca, 'XTick', 1:5) 

set(gca, 'XTickLabel', score_type, 'XTickLabelRotation', 45) 

set(gca, 'YTick', 1:4) 

set(gca, 'YTickLabel', emotion_types) 

hold on; 

[sig_j, sig_i] = find(p<0.05); 

plot(sig_i, sig_j, '*', 'MarkerSize', 10, 'color', [.9, .9, .9]); 

title('Percent Correct: Schizoaffective') 

colorbar 

set(gca, 'FontSize', 24, 'FontName', 'Garamond', ... 

    'FontWeight', 'Bold', 'LineWidth', 1) 

f_name = 'percCorr_demo_corrs_nonSchiz.png'; 

print(f_name, '-dpng', '-r300', '-painters'); 

close; 

 

% Correlation Plots for Latency 

% Schizophrenia Patients 

[task_score_corr, p] = corr(schiz_patients{:,6:end-1}, patient_scores_schiz); 

 

c_data = brewermap(100, 'RdBu'); 

c_inv = flipud(c_data); 

score_type = {'Age'; 'PANSSP';... 

              'PANSSN';... 

              'PANSSG'; ... 

              'MADRS'}; 

figure('Position', [1 41 1000 720]); 

imagesc(task_score_corr, [-1 1]) 

colormap(c_inv) 

set(gca,'TickLabelInterpreter','none') 

set(gca, 'XTick', 1:5) 

set(gca, 'XTickLabel', score_type, 'XTickLabelRotation', 45) 

set(gca, 'YTick', 1:4) 

set(gca, 'YTickLabel', emotion_types) 

hold on; 

[sig_j, sig_i] = find(p<0.05); 

plot(sig_i, sig_j, '*', 'MarkerSize', 10, 'color', [.9, .9, .9]); 
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title('Trial Latency: Schizophrenia') 

colorbar 

set(gca, 'FontSize', 24, 'FontName', 'Garamond', ... 

    'FontWeight', 'Bold', 'LineWidth', 1) 

f_name = 'latency_demo_corrs_schiz.png'; 

print(f_name, '-dpng', '-r300', '-painters'); 

 

% Schizoaffective disorder Patients 

[task_score_corr, p] = corr(non_schiz_patients{:,6:end-1}, patient_scores_nonSchiz); 

 

c_data = brewermap(100, 'RdBu'); 

c_inv = flipud(c_data); 

score_type = {'Age'; 'PANSSP';... 

              'PANSSN';... 

              'PANSSG'; ... 

              'MADRS'}; 

figure('Position', [1 41 1000 720]); 

imagesc(task_score_corr, [-1 1]) 

colormap(c_inv) 

set(gca,'TickLabelInterpreter','none') 

set(gca, 'XTick', 1:5) 

set(gca, 'XTickLabel', score_type, 'XTickLabelRotation', 45) 

set(gca, 'YTick', 1:4) 

set(gca, 'YTickLabel', emotion_types) 

hold on; 

[sig_j, sig_i] = find(p<0.05); 

plot(sig_i, sig_j, '*', 'MarkerSize', 10, 'color', [.9, .9, .9]); 

title('Trial Latency: Schizoaffective') 

colorbar 

set(gca, 'FontSize', 24, 'FontName', 'Garamond', ... 

    'FontWeight', 'Bold', 'LineWidth', 1) 

f_name = 'latency_demo_corrs_nonSchiz.png'; 

print(f_name, '-dpng', '-r300', '-painters'); 

close; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

APPENDIX I - MATLAB CODES: PCA ANALYSIS 

% Controls 

% CANTAB 

load('cantab_data_thesis') 

[cantab_subjects, sort_ind] = sort(control_subjects(1, :)'); 

control_data = control_data(:,sort_ind); 

to_remove = [7, 12]; 

disp('Removing from CANTAB') 

disp(cantab_subjects(to_remove)) 

control_data(:, to_remove) = []; 

cantab_subjects(to_remove) = []; 

 

task_inds = [3, 5, 12, 6, 13, 9, 16, 19, 20, 21, 22, 23, 25]; 

cantab_control_age = control_data(1,:); 

cantab_data = control_data(task_inds, :)'; 

 

% MMN 

load('MMN Figs\mmn_controls_metrics.mat') 

load('mmn_controls_ages.mat') 

mmn_control_age = control_age; 

to_remove = [7, 8]; 

disp('Removing from MMN') 

disp(mmn_subjects(to_remove)) 

mmn_subjects(to_remove) = []; 

mmn_control_age(to_remove) = []; 

mmn_mean_control(to_remove, :) = []; 

mmn_latencies_control(to_remove, :) = []; 

cond_var_control(to_remove, :) = []; 

age_var_control(to_remove, :) = []; 
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% ER 

load('er_control_pca_eeg_data.mat') 

to_remove = [1,8,13]; 

disp('Removing from ER') 

disp(er_control_subjects(to_remove)) 

er_control_subjects(to_remove) = []; 

er_control_age(to_remove) = []; 

control_er_data(to_remove, :) = []; 

 

control_data_all = [cantab_data, ... 

                    mmn_mean_control, mmn_latencies_control, ... 

                    control_er_data]; 

 

% Patients 

% CANTAB 

load('cantab_data_thesis') 

task_inds = [3, 5, 12, 6, 13, 9, 16, 19, 20, 21, 22, 23, 25]; 

cantab_data_patient = patient_data(task_inds, :)'; 

cantab_patient_age = patient_data(1,:); 

 

% MMN 

load('MMN Figs\mmn_patient_metrics.mat') 

[sorted_mmn_ages, sort_ind] = sort(age_var_patient(:, 1)); 

age_var_patient = age_var_patient(sort_ind, :); 

cond_var_patient = cond_var_patient(sort_ind, :); 

group_var_patient = group_var_patient(sort_ind, :); 

mmn_mean_patient = mmn_mean_patient(sort_ind, :); 

mmn_latencies_patient = mmn_latencies_patient(sort_ind, :); 

 

% ER 

load('er_patient_pca_eeg_data.mat') 

 

% Patient codes 

patient_codes = {'P2', 'P1', 'P6', 'P3', 'P5', 'P4'}; 

patient_diag = {'Schizoaffective'; 'Schizoaffective'; 'Schizophrenia'; 

'Schizoaffective'; 'Schizophrenia'; 'Schizophrenia'}; 

patient_data_all = [cantab_data_patient, ... 

                    mmn_mean_patient, mmn_latencies_patient, ... 

                    patient_er_data]; 

% 

all_data = [control_data_all; patient_data_all]; 

all_data_mean = mean(all_data, 1); 

all_data_std = std(all_data, 1); 

all_data_zscore = (all_data - all_data_mean)./all_data_std; 

 

% do pca 

[coeff, score, latent] = pca(all_data_zscore, ... 

                             'Centered', 'off'); 

relative_latent = latent/sum(latent); 

 

% 

figure('Units' , 'normalized', ... 

       'Position', [0., 0., .9, .9]); 

plot(cumsum(relative_latent), 'o', 'MarkerSize', 15, ... 

     'MarkerEdgeColor', [.3, .3, .3], ... 

     'MarkerFaceColor', [.7, .7, .7], 'LineWidth', 2) 

xlabel('Principal Components') 

ylabel('Cumulative Variance') 

set(gca, 'FontSize', 32, 'FontName', 'Garamond', ... 

    'FontWeight', 'Bold', 'LineWidth', 2) 

box 'off' 

txt = findobj(gca,'Type','text'); 

set(txt,'VerticalAlignment', 'Middle', ... 

    'FontSize', 32, 'FontName', 'Garamond', 'FontWeight', 'Bold'); 
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axis('square') 

ylim([0, 1.05]) 

xlim([-1, 21]) 

xticks(0:2:20) 

yticks(0:.1:1) 

grid on 

 

% 

c_data = brewermap(20, 'RdYlGn'); 

color_data = brewermap(8, 'Dark2'); 

color_data = color_data([1,2,3,4,6,8], :); 

figure('Units' , 'normalized', ... 

       'Position', [0., 0., .9, .9]); 

 

plot(score(1:end-6, 1), score(1:end-6, 2), 'o', 'MarkerSize', 15, ... 

     'MarkerEdgeColor', c_data(15, :), ... 

     'MarkerFaceColor', 'none', 'LineWidth', 4) 

hold on 

labels = {}; 

for i=[2,1,4,6,5,3] 

    plot(score(end-6+i, 1), score(end-6+i, 2), 'o', ... 

         'MarkerSize', 15,'MarkerEdgeColor', color_data(i, :), ... 

         'MarkerFaceColor', color_data(i, :), 'LineWidth', 1) 

    curr_label = [char(patient_codes(i)), ': ', char(patient_diag(i))]; 

    labels = [labels, curr_label]; 

end 

 

xlabel('Prinicipal Component 1') 

ylabel('Prinicipal Component 2') 

xticks([]) 

yticks([]) 

labels = ['Healthy Controls', labels]; 

legend(labels, 'Location', 'northeastoutside') 

legend boxoff 

set(gca, 'FontSize', 32, 'FontName', 'Garamond', ... 

    'FontWeight', 'Bold', 'LineWidth', 2) 

box 'off' 

txt = findobj(gca,'Type','text'); 

set(txt,'VerticalAlignment', 'Middle', ... 

    'FontSize', 32, 'FontName', 'Garamond', 'FontWeight', 'Bold'); 

axis('square') 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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