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Abstract

This thesis concerns the theoretical modelling and analysis of a two-dimensional

film of a perfectly conducting Newtonian liquid coating a uniformly rotating hor-

izontal cylindrical electrode. The system is enclosed by a concentric outer elec-

trode, with the electric potential difference between the inner and outer electrodes

inducing electrostatic forces at the liquid-gas interface.

The system is investigated for both thin and thick films. A thin-film model,

derived using a classical lubrication approximation, incorporates the effects of ro-

tation, gravity, viscosity, capillarity, and electric stress, whilst a thick-film model,

derived using long-wave scalings and the method of weighted residuals, also in-

cludes the additional effects of viscous dissipation and inertia.

First, as an essential precursor to the electrostatic case, the thin-film model is

studied in the absence of an electric field in the case in which the inner electrode

is stationary. A complete description of the late-time asymptotic behaviour of the

film is derived that reveals three distinct regions of behavior, with the interplay

between gravity and capillarity resulting in a capillary-ripple structure.

Next, the full thin-film model is studied. For a stationary inner electrode, under

conditions of weak electrostatic effects, the qualitative behavior is unchanged from

the situation in which the electric field is absent. For a rotating inner electrode,

a numerical parametric study reveals four distinct behaviors: steady, periodic,

transient, and outer contact (in which the film touches the outer electrode in a

finite time). Linear stability and multiple-timescale analyses are performed and

reveal that electrostatic effects induce instability, leading to outer contact.

Finally, the full thick-film model is investigated, revealing qualitatively similar

behaviour to that in the thin-film case. The spatiotemporal distribution of the

electric potential at the outer electrode is used to control the flow and, in particular,

the interface is successfully controlled towards complex target shapes using optimal

control.
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Chapter 1

Introduction

In Sections 1.1–1.7, we give a review of the current literature and background

theory regarding the subjects which form the basis of the research described in

this thesis. An overview of the contents of this thesis is provided in Section 1.8,

and the peer-reviewed publication and conference presentations that have arisen

from the results derived in it are listed in Section 1.9.

1.1 Free-surface flows

“Free-surface flow” refers to the flow of a fluid in which one or more of the surfaces

bounding the fluid are free to move, and hence whose positions are not known a

priori and must be determined as part of the solution.

Free-surface flows have been the subject of a large number of scientific inves-

tigations [1–5] due to their central importance in a variety of contexts, as well as

being of intrinsic scientific interest in their own right. For example, they are vital

to our understanding of a wealth of natural geophysical and biological processes

such as the flow of lava [6], avalanches [7], and mud [8], in water transport in

plants [9], and the flow of liquid water on earth (for example, the flow of rivers

[10], oceans [11], glacial meltwater [12, 13], tsunamis [14], and waterfalls [15]). For

example, Figure 1.1 (a) shows an example of a free-surface flow, namely, an indoor

waterfall. Free-surface flows are also of fundamental significance in a vast range

of industrial settings such as in nanotechnology [17], chemical process engineer-

ing [18], and in a wealth of contexts in the marine, aerospace, and automotive

industries. For example, liquid can move around in partially-filled cargo tanks

1
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(a) (b)

Figure 1.1: (a) The tallest indoor waterfall in the world, located in Jewel

Changi Airport, Singapore. Image adapted from Pixabay. Pixabay License

https://pixabay.com/service/terms/#license. (b) Experimental sloshing states of

water in a rectangular container shown in (i) planar and (ii) wave breaking mo-

tion. Reproduced from Bäuerlein and Avila [16], with permission from Cambridge

University Press. Copyright 2021.

on ships [19] and in the fuel tanks of cars [20] and aeroplanes [21], a behaviour

referred to as “sloshing”. Sloshing involves complex free-surface flows which must

be understood as part of successful tank design in order to ensure stable vehicle

performance [22]. An experimental example of sloshing is shown in Figure 1.1 (b)

[16]. Another example of industrial free-surface flow arises in the aerospace indus-

try, in which the shape of the free surface of seas and oceans significantly affects

emergency water-landing performance. Thus, precise modelling of various water

conditions is vital for accurate simulations during early aircraft design stages [23,

24].

Free-surface flows are particularly complicated to understand due to the fact

that, as mentioned earlier, the location of the interfaces are not known a priori, and

hence must be determined as part of the solution to the governing equations of the

particular system under investigation. In this thesis, we focus on the free-surface

flow of incompressible Newtonian fluids, which are governed by the incompressible

Navier–Stokes equations [25, 26], namely,

∇ · u = 0, (1.1.1)

ρ
Du

Dt
= −∇p+ µ∇2u+ ρg, (1.1.2)
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where ρ and µ are constants which denote the fluid density and dynamic viscos-

ity, respectively, p and u are functions of space and time (where time is denoted

by t) which denote the fluid pressure and the velocity vector field, respectively,

g denotes acceleration due to gravity, and D/Dt = ∂/∂t + u · ∇ is the material

derivative. Equation (1.1.1) is referred to as the “continuity equation” and rep-

resents the conservation of mass within the fluid, whilst equation (1.1.2) is often

referred to as the “momentum equation” and describes the conservation of momen-

tum within the fluid. The Navier–Stokes equations (1.1.1) and (1.1.2) constitute

a system of challenging nonlinear partial differential equations (PDEs). Due to

their inherent complexity, they are widely recognised as being difficult to solve

directly (indeed, proving the existence and smoothness of their solutions is one of

the seven Millennium Prize Problems formulated by the Clay Mathematics Insti-

tute [27]). Performing Direct Numerical Simulations (DNS) of the Navier–Stokes

equations (1.1.1) and (1.1.2) can have prohibitively high computational costs (of-

ten having wall-clock runtimes of weeks or months), whilst analytical solutions are

only possible in a small number of restricted special cases. However, there are

various mathematical simplifications that can be applied in order to render the

Navier–Stokes equations more amenable to analysis. In this thesis, in the context

of free-surface flows, we focus on the development of “reduced-order models”.

1.2 Reduced-order modelling of free-surface flows

The motivation for constructing high-fidelity reduced-order models is twofold:

firstly, to provide quantitatively accurate descriptions of the dynamics of fluid

systems at a significantly reduced computational cost, and secondly, to facilitate

the interpretation of system dynamics through analytical investigations. A widely

adopted technique for the development of reduced-order models involves leveraging

inherent differences in length scales within the system, whenever they exist. These

differences give rise to one or more small aspect ratios, which can be used to sim-

plify the Navier–Stokes equations by transforming them into an asymptotically-

reduced structure, yielding simplified equations which can be treated as locally

unidirectional. Reduced-order models complement physical experiments and DNS,

allowing for detailed investigations of underlying phenomena.

This thesis focuses on studying the flow of liquids on curved surfaces, particu-

larly cylindrical substrates. However, in order to establish the foundation for the
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Figure 1.2: Geometry of the system considered in Section 1.2, namely, a falling

film on an inclined plane, as considered by Ruyer–Quil and Manneville [29]. Re-

produced from Ruyer–Quil and Manneville [29], with permission from Springer

Nature. Copyright 2000.

modelling techniques used later, we first explore various methods of developing

reduced-order models in a simpler context. Specifically, we discuss the relevant

aspect ratio along with what is commonly referred to as the hierarchy of reduced-

order models in the context of a falling film (i.e., flow driven by gravity in which

liquid flows down the surface of a substrate to form a thin film) on an inclined

plane in Sections 1.2.1–1.2.5 (see Kalliadasis et al. [28] for a comprehensive ex-

planation of the models discussed herein). Throughout this section, we follow the

notation and nondimensionalisation of Ruyer–Quil and Manneville [29]. Accord-

ingly, the geometry considered in this section is shown in Figure 1.2 [29]. The

inclined plane makes an angle β to the horizontal and x, y, and z denote the

streamwise, cross-stream, and spanwise directions, respectively. Throughout this

section, we restrict ourselves to the two-dimensional case in which the solution is

independent of z. This simple system is a paradigm problem for more compli-

cated free-surface flows, and has therefore been widely studied and referenced in

the literature [28, 29], making it an ideal problem for introducing and discussing
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reduced-order models. Moreover, the techniques discussed in this section can be

extended to more complex scenarios, such as three-dimensional flow [29] and flow

over non-planar geometries [30, 31].

1.2.1 Aspect ratio of flow on a planar substrate

In this section, we discuss the relevant aspect ratio of flow on a planar substrate.

Note that for ease of comparison with the aspect ratios of flow on a curved sub-

strate, which are discussed later in Section 1.4.1, throughout this section we (un-

conventionally) phrase our discussion in terms of nondimensional parameters, but

choose not to specify the particular length scale used in the nondimensionalisation

(which could be, for example, a capillary length).

In the case of two-dimensional flow on a planar substrate, there are only two

length scales present within the system: a characteristic dimensionless cross-stream

length scale (typically a characteristic dimensionless film thickness), which we

shall denote here by H, and a characteristic dimensionless streamwise length scale

(typically a characteristic dimensionless wavelength of the film), which we shall

denote here by λ. In contrast to flows on curved substrates (which we discuss

in Section 1.4.1), here, the characteristic radii of curvature of the substrate are

infinite. Hence, the substrate has zero curvature which can therefore be ignored.

There are two situations in which a disparity in length scales within the flow

typically arises, and hence there are two ways to define the aspect ratio. The first

is what we shall refer to hereafter as a “thin-film approximation”, in which the

thickness of the film is assumed to be small (compared to unity). In other words,

λ = O(1), δthin = H ≪ 1, (1.2.1)

where δthin denotes the thin-film aspect ratio. A schematic of the relationship

between the two length scales present for flow on a planar substrate in the thin-

film approximation is shown in Figure 1.3 (a). On the other hand, the second

is what we shall refer to hereafter as a “long-wave approximation”, in which the

length of the variations in the film thickness are assumed to be large (compared

to unity). In other words,

H = O(1), δlong = λ−1 ≪ 1, (1.2.2)
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(a)

(b)

Figure 1.3: Schematic of the relationship between the two length scales H and λ

present for flow on a planar substrate. (a) Thin-film approximation. (b) Long-

wave approximation.

where δlong denotes the long-wave aspect ratio. A schematic of the relationship

between the two length scales present for flow on a planar substrate in the long-

wave approximation is shown in Figure 1.3 (b). Clearly, for a planar substrate

(such as that considered here) these two situations are equivalent, and so the terms

“thin-film” and “long-wave” can be (and are often) used interchangeably. However,

for a non-planar substrate this is no longer the case due to the introduction of

additional length scales, and we need to be careful to distinguish between the two

approximations. We defer further discussion of this key point until Section 1.4.1

in which we discuss the aspect ratios for flow on a cylindrical substrate.

For brevity, throughout the remainder of this section (in which we only discuss

flow on a planar substrate) we exclusively use the terminology “thin-film approxi-

mation” and drop the subscripts on δ and refer to the planar aspect ratio as simply

δ ≪ 1.
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1.2.2 Gradient expansion method

We begin in this section by discussing the simplest form of reduced-order model.

Applying a thin-film approximation to the Navier–Stokes equations (1.1.1) and

(1.1.2) yields a system of PDEs which can be solved order-by-order via a stan-

dard perturbation expansion in powers of δ. In the literature on the hierarchy of

reduced-order models, a standard perturbation expansion of this form is widely

referred to as a “gradient expansion” (a historical artefact originating from early

studies [29]) in order to distinguish between this classical method and the alterna-

tive perturbation methods which are described in Sections 1.2.4 and 1.2.5. Hence,

for consistency with the existing literature, we shall adopt the nebulous term “gra-

dient expansion” throughout this thesis.

The gradient expansion method leads to a single equation which describes how

the dimensionless film thickness, denoted by h = h(x, t), changes in space and

time (where t denotes dimensionless time). Benney [32] was the first to use this

method to describe a falling film on an inclined plane. Hence, the resulting model

has come to be known as the “Benney equation”, namely,

ht +

[
1

3
h3 + δ

(
2

15
h6hx −

B

3
h3hx +

Γ′

3
h3hxxx

)]
x

= 0. (1.2.3)

The parameter Γ′ = σρ1/3/(µ4/3(g sin β)1/3) is a Kapitza number which is a di-

mensionless group combining certain powers of what was termed by Kapitza [33]

as the “kinematic surface tension” (i.e., the constant surface tension coefficient

of the free surface σ divided by the fluid density ρ), the kinematic fluid viscosity

(i.e., the dynamic fluid viscosity µ divided by the fluid density), and acceleration

due to gravity g. Note that, despite the fact that equation (1.2.3) is known as the

Benney equation, in the original equation derived by Benney [32], the surface ten-

sion term did not actually appear in their equation because it arises at third order

in δ. However, subsequent studies have demonstrated the critical importance of

including surface tension effects at first order [4, 5], hence it is common to assume

that the surface tension parameter is large enough such that it enters equation

(1.2.3) at first order in δ. In other words, the original (unscaled) Kapitza number,

denoted by Γ, has been rescaled as Γ′ = δ2Γ in deriving equation (1.2.3), where
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Γ′ = O(1). The dimensionless parameter

B = cot β (1.2.4)

compares the cross-stream and streamwise components of the gravitational force.

In particular, B quantifies the contribution of the hydrostatic pressure gradient,

which vanishes for flow down a vertical wall (i.e., B = 0 when the wall is vertical

such that β = π/2). Following the notation and nondimensionalisation of Ruyer–

Quil and Manneville [29], the Reynolds number is defined as Re = h3N/3, where

hN is the dimensionless thickness of the uniform base state of the flow. This base

state is often referred to as the “Nusselt flat film solution” and corresponds to a

flow with a semi-parabolic velocity profile u = uN as obtained by Nusselt [34, 35],

uN = hNy −
1

2
y2. (1.2.5)

The leading-order term in the square bracket in equation (1.2.3) represents the

convective effect of gravity, whilst the first-order terms represent inertial, gravi-

tational, and capillary effects (namely, the second, third, and fourth terms in the

square bracket, respectively).

The Benney equation (1.2.3) is successful in capturing the critical Reynolds

number for the onset of instability (often referred to as the “instability thresh-

old”) obtained from the linearised Navier–Stokes equations (known as the Orr–

Sommerfeld equations) which shows that solutions are unstable for Recrit ≥ 5B/6

[28]. However, Pumir et al. [36] identified that the Benney equation (1.2.3) has

a significant drawback in that solutions experience spurious unphysical “blowup”

close to the instability threshold, even in the presence of the regularising effects

of surface tension. In particular, the film thickness h becomes infinite in a finite

time, a non-physical behaviour which does not, of course, occur in experiments or

in DNS of the full Navier–Stokes equations [37]. The occurrence of blowup is a

direct consequence of the highly nonlinear inertial term (h6hx)x contained in equa-

tion (1.2.3). Blowup occurs for moderate to large inertial effects; specifically, it

occurs when the Reynolds number exceeds a limiting value which is greater than,

but close to, the instability threshold Recrit. The exact value of the Reynolds

number at which blowup occurs depends on the Kapitza number Γ′ and the incli-

nation angle of the plane β, but typically is of order unity [28, 38]. The blowup
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phenomenon persists even when higher-order terms are included in the gradient

expansion, as this leads to the emergence of increasingly nonlinear terms [39, 40].

The main reason that the Benney equation (1.2.3) struggles to describe non-

linear behaviour for moderate to large Reynolds numbers is due to the fact that

all flow variables are dependent on the film thickness (for example, the flux q is

an explicit function of h, hence the velocity depends on h via q). In Sections 1.2.4

and 1.2.5, we show that introducing more degrees of freedom through averaging

techniques allows us to describe the dynamics of the film sufficiently far from the

instability threshold [29].

1.2.3 Weakly nonlinear method

Weakly nonlinear equations are, in general, more amenable to analysis than fully

nonlinear equations. The weakly nonlinear model for a falling film on an inclined

plane is widely known as the Kuramoto–Sivashinsky equation, which emerged as

a result of Kuramoto’s work on reaction-diffusion systems [41] and Sivashinsky’s

investigations into flame front propagation [42]. Sivashinsky and Michelson [43]

applied weakly nonlinear theory to the Benney equation (1.2.3) in order to derive

an evolution equation for h that is valid in the presence of inertia. They considered

small interfacial perturbations about some uniform steady state y = h̄ by setting

h = h̄ + ξȟ in (1.2.3) where ȟ = ȟ(x, t) and ξ ≪ 1 are the shape and size of the

perturbation, respectively. Additionally, they performed a Galilean transformation

by rescaling the space and time variables x and t respectively as x̌ = x − t and

ť = t in order to transform the equations into a moving frame of reference that

removes the convective gravitational term but has no effect on the dynamics of

the system. This yields the Kuramoto–Sivashinsky equation, namely,

ȟť + ȟȟx̌ + ȟx̌x̌ + ȟx̌x̌x̌x̌ = 0, (1.2.6)

in which the second, third, and fourth terms represent gravitational, inertial,

and capillary effects, respectively. Notably, unlike the Benney equation (1.2.3),

the Kuramoto–Sivashinsky equation (1.2.6) does not exhibit blowup [29]. The

Kuramoto–Sivashinsky equation (1.2.6) is applicable to a wide range of physical

systems, such as interfacial flows [44, 45], and has also been widely used in control

theory [46, 47] (which we discuss in Section 1.7). Previous analytical [48] and

computational [43, 49, 50] studies have shown that solutions to the Kuramoto–
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Sivashinsky equation (1.2.6) display a wealth of complex behaviour including pe-

riodic, quasi-periodic, and chaotic solutions. However, note that equation (1.2.6)

relies on the assumption that the magnitude of the perturbation is small rela-

tive to the steady state h̄, and, as a result, is only valid in this particular situation

(this assumption could be appropriate for a system with, for example, high surface

tension).

1.2.4 Integral boundary layer (IBL) method

Shkadov [51] introduced the integral boundary layer1 (IBL) method in an attempt

to address the blowup that arises in solving the Benney equation (1.2.3). Most at-

tempts to accurately model flows with moderate Reynolds numbers revolve around

relaxing the constraint that the velocity is a function of only the film thickness

(i.e., relaxing the condition that q = q(h)). This is necessitated by the fact that in

this regime, q (and potentially other parameters) evolve independently and can-

not accurately be described as functions of h only [28]. Indeed, it can be seen

from the Navier–Stokes equations (1.1.1) and (1.1.2) that u, for example, evolves

independently. The IBL method combines the assumption of a semi-parabolic ve-

locity profile within the film with the Kármán–Pohlhausen averaging method from

aerodynamic boundary-layer theory [28, 29, 57], which was initially applied to film

flows by Kapitza [33].

The first step of the IBL method is to apply a thin-film approximation to the

Navier–Stokes equations (1.1.1) and (1.1.2) from which a boundary-layer equa-

tion, which we denote by B(u) = 0, for the dimensionless streamwise velocity

u = u(x, y, t) is derived. Note that we do not give an account of the process of de-

riving a boundary-layer equation here as a comprehensive example of this process

will be given in Chapter 2. The velocity u is assumed to always be of the same

locally-parabolic form coinciding with the Nusselt flat film solution (1.2.5). The

boundary-layer equation B(u) = 0 is then integrated across the film thickness and

evaluated subject to appropriate boundary conditions. This methodology yields a

1Note that the term “boundary layer” is used somewhat inaccurately here, as it does not
describe a traditional high Reynolds number viscous boundary layer. Nevertheless, the equation
that we derive shares structural resemblances to the Prandtl equation in boundary-layer theory
[28]. Due to this parallel, the term has gained widespread acceptance in the literature [29, 31,
37, 52–56], leading us to adopt it in this thesis.
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two-equation model for the film thickness h and the dimensionless volume flux,

q = q(x, t) =

∫ h

0

u dy. (1.2.7)

In the case of a falling film on an inclined plane, this process yields

5

2

q

h2
− 5

6
h+ δ

[
5

6
qt + 2

qqx
h

+

(
5B

6
h−

( q
h

)2)
hx −

5Γ′

6
hxxx

]
= 0, (1.2.8)

along with the integral form of the kinematic condition, namely,

ht + qx = 0. (1.2.9)

Equations (1.2.8) and (1.2.9) constitute a closed system governing the evolution

of the film thickness h and the flux q, and is known as “Shkadov’s model” [29,

51]. As explained earlier in Section 1.2.2, to obtain equation (1.2.8), Shkadov

[51] rescaled the original Kapitza number Γ as Γ′ = δ2Γ, where Γ′ = O(1) and

retained terms up to and including first order in δ. The first two terms in (1.2.8)

correspond to streamwise gravitational acceleration and viscosity, respectively, the

third, fourth, and sixth terms are inertial terms, and the fifth and final terms

represent the stabilising effect of gravity and capillarity, respectively. Contrary

to the Benney equation (1.2.3) in which all variables are dependent on h, the

IBL method provides greater freedom to the velocity, allowing it to have its own

evolution via q (which evolves independent of h). The solutions to Shkadov’s

model (1.2.8) and (1.2.9) remain free from blowup, and it has been shown to be

successful in describing nonlinear regimes at moderate Reynolds numbers [28].

However, Shkadov’s model (1.2.8) and (1.2.9) has its limitations: performing a

gradient expansion on q (i.e., expanding q as q = q0+δq1+ . . .) in Shkadov’s model

and solving to first order in δ yields an expression for q that is inconsistent with

the accurate expansion given by the Benney equation (1.2.3). In particular, the

expression is identical to the terms in the square brackets in the Benney equation

(1.2.3) with the exception of a coefficient of 1/9 for the inertial term instead of

the correct coefficient of 2/15. This leads to an inaccurate estimation of the linear

instability threshold, yielding Recrit = B instead of Recrit = 5B/6 [28]. Hence, the

IBL method fails to accurately predict flow behavior near the instability threshold,

which therefore limits the use of Shkadov’s model [28]. This issue arises from the
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assumption of the semi-parabolic velocity profile because first-order corrections

to the velocity profile play a crucial role in precisely predicting the instability

threshold [58]. Some authors have attempted to rectify this disparity by including

higher-order terms [59] or surface tension corrections [60] but were unsuccessful,

with the inaccurate instability threshold being recovered in both cases. Hence,

to overcome this limitation, a more precise treatment of the first-order terms is

necessary [28, 61].

1.2.5 Weighted residual IBL (WRIBL) method

The limitations of the Benney equation (1.2.3) and Shkadov’s model (1.2.8) and

(1.2.9) were overcome by Ruyer–Quil and Manneville [29] who described a weighted

residual IBL (WRIBL) approach. The WRIBL method extends the IBL method

by combining a gradient expansion with a weighted residual technique which uses

polynomials in y as test functions. This results in models that offer an efficient,

yet highly precise, means of describing the flow dynamics.

In the WRIBL method, δ is considered to be an “ordering” parameter: specifi-

cally, it is used to assert the expected relative magnitudes of particular terms and

their derivatives during the calculations rather than having an explicit value of its

own, and hence is set equal to unity in the final model. This approach has been

used and validated extensively by many authors including Ruyer–Quil et al. [29,

52, 62, 63], Kalliadasis et al. [28, 54], Scheid et al. [37], Oron and Heining [53],

Thompson et al. [64, 65], and Wray et al. [31, 56]. As in the IBL method explained

in Section 1.2.4, the first step of the WRIBL method is to derive a boundary-layer

equation. In the case of a two-dimensional falling film on an inclined plane, to

second order in δ this is given by

B(u) =− (uyy + 1) + δ (ut + uux + vuy +Bhx − Γ′hxxx)

− δ2
[
2uxx + (ux|y=h)x

]
+O(δ3) = 0, (1.2.10)

where v can be written in terms of u as v = −
∫ y

0
ux dy from the continuity equation

(1.1.1) [29]. The tangential stress balance at the interface is

(uy)y=h = δ2 [4hxux − vx]y=h , (1.2.11)
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the no-slip and no-penetration conditions are

u|y=0 = v|y=0 = 0, (1.2.12)

and the kinematic condition is

(ht + uhx − v) |y=h = 0. (1.2.13)

The improvement in the performance of the IBL method over the gradient

expansion method rests on the treatment of the leading-order viscous term uyy

in equation (1.2.10). As we shall see, the WRIBL method produces models that

correctly predict the linear stability threshold, do not experience blowup, and cor-

rectly describe the nonlinear dynamics for a broader range of Reynolds numbers

than the Benney equation (1.2.3). It has been shown to be successful in describ-

ing the dynamics of falling films on vertical and inclined planes for intermediate

Reynolds numbers [28], and has subsequently been used by many authors in var-

ious contexts [37, 52, 63, 66, 67], most relevant to the work in this thesis being

the recent work by Wray et al. [31, 56] which will be discussed in detail in Section

1.4.4.

Ruyer–Quil and Manneville [29] formulated three WRIBL models: a two-

equation system that is accurate to O(δ) (referred to as the “first-order WRIBL

model”), a four-equation system that is accurate to O(δ2) (referred to as the “full

second-order WRIBL model”), and a two-equation system which is a hybrid be-

tween the two previous models in terms of complexity and accuracy (referred to

as the “simplified second-order WRIBL model”). We discuss each of these in turn

in Sections 1.2.5.1–1.2.5.3.

1.2.5.1 First-order model

To outline the WRIBL method, we begin by deriving a model that is accurate to

first order. Following the methodology proposed by Ruyer–Quil and Manneville

[29], we seek a solution for u in the form of a series expansion based on a separation

of variables,

u(x, y, t) = a0(x, t)f0(y) + δ
N∑

n=1

a(1)n (x, t)f (1)
n (y) +O(δ2), (1.2.14)
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where the f0 and f
(1)
n (for n = 1, . . . , N) are chosen test functions that form a

complete set of basis functions in the cross-stream coordinate y for the space of

sufficiently smooth functions such that 0 ≤ y ≤ h which satisfy the no-slip and no-

penetration conditions (1.2.12), the tangential stress condition (1.2.11) to leading

order, and the kinematic condition (1.2.13). The “(1)” superscript denotes that

the terms are first order in δ. Specifically, the leading-order solution for u, which

we denote by u0, namely,

u0(y) = hy − 1

2
y2, (1.2.15)

requires choosing f0(y) = u0, where the a0 and a
(1)
n (for n = 1, . . . , N) are ampli-

tudes which are to be determined. Note that when the film is uniform, the velocity

distribution is semi-parabolic and every amplitude a
(1)
n (for n = 1, . . . , N) vanishes

(except for a0). Therefore, the a
(1)
n terms account for the deviation of the veloc-

ity profile from the leading-order semi-parabolic solution (1.2.15) induced by the

deformations of the interface [28]. In principle, the a0 and a
(1)
n (for n = 1, . . . , N)

can be determined by substituting the expansion (1.2.14) into the boundary-layer

equation (1.2.10) and matching powers of y. However, this is, in general, an oner-

ous process, even at first order [29, 55]. Ruyer–Quil and Manneville [29] showed

that this procedure may be simplified significantly by the use of a weighted integral

method. Specifically, we assume that the function space is equipped with an inner

product, defined as

⟨α1, α2⟩ =
∫ h

0

α1α2 dy, (1.2.16)

for some functions α1,2. We use weight functions wj = wj(x, y, t) (for j = 0, . . . , J),

which are to be determined, to define the residuals Rj = Rj(x, t) (for j = 0, . . . , J)

as

Rj = ⟨wj,B(u)⟩ for j = 0, . . . , J, (1.2.17)

where u is given by (1.2.14) and B(u) is given by (1.2.10) (neglecting second order

terms). Setting the residuals (1.2.17) to zero (i.e., setting Rj = 0) yields a system

of J +1 equations for the N +1 amplitudes a0 and a
(1)
n (for n = 1, . . . , N). Hence,

in general, we require J = N [29].

The particular weighted residuals method is determined by the selection of

the weights wj. Common methods include the collocation method, the method

of moments, and the Galerkin method, each using specific weight functions: dirac

delta functions for the collocation method, polynomials in y/h for the method of
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moments, and the test functions directly for the Galerkin method [28]. Increasing

the number of residuals (i.e., increasing the value of J) expedites the convergence

to the solution [28].

Upon truncating the boundary-layer equation (1.2.10) at first order in δ, cal-

culation of the residuals (1.2.17) yields

Rj =

∫ h

0

wj(y) [−(uyy + 1) + δ (ut + uux + vuy +Bhx − Γ′hxxxx)] dy. (1.2.18)

Whilst different weights wj will yield different systems of equations, all will ulti-

mately produce the same coefficients [29]. However, as we shall see, a judicious

choice of the weights can make determination of the velocity substantially simpler.

The key point in determining the optimum choice of weights wj arises from the

following: by (1.2.14), the a
(1)
n terms (for n = 1, . . . , N) are already first order

in δ, and hence can only enter the first-order truncation of equation (1.2.18) via

the leading-order viscous term uyy. Hence, if this term can be written explicitly

without the a
(1)
n (for n = 1, . . . , N), then they will not appear anywhere in the

first-order truncation of equation (1.2.18), and hence the need to determine the

a
(1)
n and f

(1)
n (for n = 1, . . . , N) will have been completely avoided. Calculation of

the weighted average of the leading-order viscous term uyy yields∫ h

0

wj(y)uyy dy = − [wjuy]y=0 − [u(wj)y]y=h +

∫ h

0

u(wj)yy dy, (1.2.19)

where we have used two applications of integration by parts and applied the no-slip

condition (1.2.12) and tangential stress balance (1.2.11). As mentioned earlier, in

general, the number of weights that are required is equal to the number of basis

functions (i.e., J = N) [29]. However, notably, a single weight function, w0, suffices

if we select this specific weight function in a manner that removes the dependence

of the right-hand side of (1.2.19) on the a
(1)
n (for n = 1, . . . , N). In particular, we

choose w0 such that

w0|y=0 = 0, [(w0)y]y=h = 0, (w0)yy = c, (1.2.20)

for some non-zero constant c, which is free to be chosen. The first and second

conditions in (1.2.20) are chosen such that the first and second terms in (1.2.19)

are zero, respectively, and the final condition is chosen such that the final term in
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(1.2.19) reduces to exactly the flux (1.2.7) for c = −1. Solving the system (1.2.20)

with the particular choice c = −1 yields the weight function,

w0 = hy − 1

2
y2, (1.2.21)

which is identical to the leading-order solution f0 (1.2.15). Indeed, as we recall, f0

corresponds to the solution u0 to the leading-order problem for the velocity,

u0|y=0 = 0, [(u0)y]y=h = 0, (u0)yy = −1. (1.2.22)

Therefore, when we take into account the two instances of integration by parts

used to derive (1.2.19), the likeness between the weight w0 and the test function

f0 can be linked to the self-adjoint nature of the linear operator L ≡ ∂yy in the

space of functions satisfying the boundary conditions (1.2.22) [28, 29, 56].

With this choice of w0, this corresponds to the Galerkin weighted residual

method, wherein, as mentioned earlier, the test functions are used as the weight

functions [29, 56, 57]. The Galerkin method is the most efficient WRIBL method,

leading to a minimum amount of algebra [28, 62]. Note that it is not always the

case that the weight functions and test functions coincide: in some geometries,

the operator of the leading-order viscous term is not self-adjoint, resulting in a

disparity between the test functions and the basis functions [29].

In practice, it is more convenient to eliminate a0 (which has no physical signif-

icance) in favour of the flux q (1.2.7) as this is a quantity which can be measured

physically and, in addition, simplifies the resulting equation. Substituting the ex-

pansion for u (1.2.14) into (1.2.7) and truncating to first order yields an expression

for a0 in terms of q, namely,

a0 =
q − δ

∑N
n=1 an

∫ h

0
f
(1)
n dy∫ h

0
f0 dy

. (1.2.23)

Hence, evaluating the zeroth residual R0 = ⟨w0,B(u)⟩ and setting it equal to

zero yields

5

2

q

h2
− 5

6
h+ δ

[
qt +

17

7

qqx
h

+

(
5B

6
h− 9

7

( q
h

)2)
hx −

5Γ′

6
hxxx

]
= 0, (1.2.24)

where a0 has been eliminated in favour of q (1.2.23) [29, 52]. Equation (1.2.24)
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along with the integral form of the kinematic condition (1.2.9) constitute a closed

system governing the evolution of the film thickness h and the flux q, and is known

as the “first-order WRIBL model”. Note that this model resembles Shkadov’s

model (1.2.8) and (1.2.9) but with different numerical coefficients for the inertial

terms. Specifically, the third, fourth, and sixth terms in equation (1.2.24) have

different coefficients than the corresponding terms in equation (1.2.8). Indeed,

Shkadov’s model is a particular case of a simple weighted residuals modelling

approach; if we instead choose w0 = 1 rather than (1.2.21) then evaluation of

R0 = ⟨1,B(u)⟩ recovers Shkadov’s model (1.2.8) and (1.2.9).

The first-order WRIBL model does not exhibit blowup and, upon perform-

ing a gradient expansion on q, recovers the Benney equation (1.2.3), and hence

accurately predicts the linear instability threshold. Notably, as a result of incor-

porating deviations from the semi-parabolic profile into the velocity field, it also

captures nonlinear flow characteristics well [28, 29]. Figure 1.4 shows the results

of Cimpeanu et al. [68] who compared results from the first-order WRIBL model

(1.2.9) and (1.2.24) with those from the Kuramoto–Sivashinsky equation (1.2.6)

(with slightly different coefficients due to differences in scalings), showing that the

WRIBL model yields excellent agreement with DNS.

1.2.5.2 Full second-order model

Ruyer–Quil and Manneville [29] also developed a model that is accurate to sec-

ond order which, in particular, incorporates the second-order viscous terms. The

derivation of this extended model is cumbersome, hence here we only outline the

key points and refer the reader to Ruyer–Quil and Manneville [29] or Kalliadasis

et al. [28] for a comprehensive description.

The first key step is to determine the minimum number of polynomials that

are required to provide an expression for u that is accurate to first order, which

corresponds to the number of independent fields that are needed to ensure consis-

tency at second order (for example, in Section 1.2.5.1, only one extra field, q, was

necessary in addition to h to ensure consistency at first order). Ruyer–Quil and

Manneville [29] showed that only two additional fields are necessary to ensure con-

sistency at second order. We seek a solution for u in the form of a series expansion



Chapter 1: Introduction 18

Figure 1.4: Results of calculations by Cimpeanu et al. [68]. The top panel shows

(left-to-right) the film thickness as obtained from calculations based on the Ku-

ramoto–Sivashinsky equation (1.2.6), the first-order WRIBL model (1.2.9) and

(1.2.24), and DNS. The bottom left-hand panel shows the evolution of the film

thickness and the bottom right-hand panel compares saturated interface shapes,

both for the first-order WRIBL model (1.2.9) and (1.2.24) (orange) and DNS

(blue). Reproduced from Cimpeanu et al. [68], with permission from Springer

Nature. Copyright 2021.
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based on a separation of variables,

u(x, y, t) = a0(x, t)f0(y) + δ

N∑
n=1

a(1)n (x, t)f (1)
n (y) + δ2

M∑
m=1

a(2)m (x, t)f (2)
m (y) +O(δ3),

(1.2.25)

where, analogous to the f
(1)
n and a

(1)
n in Section 1.2.5.1, the f

(2)
m and a

(2)
m (for

m = 1, . . . ,M) are chosen test functions and amplitudes, respectively, which are

to be determined, and the “(1)” and “(2)” superscripts denote that the terms

are first and second order in δ, respectively. In a similar manner to the first-

order case, an optimum choice of weight functions wj can make evaluation of the

residuals (1.2.17) significantly simpler by avoiding the requirement to compute the

f
(2)
m and a

(2)
m (for m = 1, . . . ,M). To obtain an expression for u (1.2.25) that is

accurate to first order, we must determine a0 and some of the a
(1)
n and f

(1)
n (for

n = 1, . . . , N). We omit the algebraic details here and note only that Ruyer–Quil

and Manneville [29] showed that at first order u involves three basis functions,

which we denote here by F0, F1, and F2, and hence can be written as

u = a0(x, t)F0(y) + δ
[
a
(1)
1 F1(y) + a

(1)
2 F2(y)

]
+O(δ2). (1.2.26)

where F0 = f0, F1 is a linear combination of f0 and f
(1)
n for n = 1, 2, and F2 is

a linear combination of f0 and f
(1)
n for n = 1, 2, 3, 4. Since u given by (1.2.26)

involves three basis functions, it therefore requires three weight functions wj for

j = 0, 1, 2. As a result, there are three residuals (1.2.17) to evaluate.

In a similar manner to in the first-order case, the key term term in the calcu-

lation of the residuals is the leading-order viscous term, uyy, since the unknown

amplitudes a
(1)
m form = 3, . . . ,M can only enter into the calculation of the residuals

to O(δ2) via this term. A similar argument to the first-order case given in Sec-

tion 1.2.5.1 yields wj = Fj for j = 0, 1, 2, coinciding, as before, with the Galerkin

method. As before, a0 can be eliminated in favour of q, and an expression for u

can be obtained, namely,

u =
3

h
(q − s1 − s2)

[
y

h
− 1

2

(y
h

)2]
+

45s1
h

P1

(y
h

)
+

210s2
h

P2

(y
h

)
, (1.2.27)

where s1 = s1(x, t) and s2 = s2(x, t) are inertial terms that account for the devi-

ation of the velocity profile from the leading-order semi-parabolic profile (1.2.15),
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and P1(y/h) and P2(y/h) are fourth-order and sixth-order polynomials, respec-

tively [29].

Evaluation of the three residuals R1 = 0, R2 = 0, and R3 = 0, along with

the kinematic condition (1.2.9) yields a coupled system of four partial differential

equations for h, q, s1, and s2. The full model is cumbersome to write down,

and so the reader is referred to equations (11) and (38)–(40) of Ruyer–Quil and

Manneville [29]. Notably, the full second-order WRIBL model includes the effect

of viscous dissipation, which was absent from the first-order WRIBL model (1.2.9)

and (1.2.24) since, as previously explained, the viscous terms arise at second order

in the boundary-layer equation (1.2.10) and the tangential stress balance (1.2.11).

The full second-order WRIBL model does not exhibit blowup and yields excellent

agreement with experiments and DNS [29]. In particular, upon performing a

gradient expansion on q, s1, and s2, it recovers the second-order Benney equation

(see equations (5.13)–(5.14c) of Kalliadasis et al. [28, 29, 39]).

1.2.5.3 Simplified second-order model

The complexity of the full second-order WRIBL model restricts its amenability to

both analytical and numerical analysis. A simplified version, widely referred to

as the “simplified second-order WRIBL model” was derived by Ruyer–Quil and

Manneville [29]. The simplified model neglects second-order inertial effects by

the ad hoc elimination of s1 and s2 in the velocity expansion (1.2.14), whilst still

retaining second-order streamwise viscous effects. Ruyer–Quil and Manneville [62]

noted that, by a linear stability analysis, it can be shown that the relaxation times

of s1 and s2 (i.e., the characteristic times taken by s1 and s2 to return to a state of

equilibrium) are significantly shorter than those of q (which takes longer to settle

down after being disturbed), therefore partly justifying the ad hoc assumption that

s1 and s2 can be neglected. Under this assumption, s1 and s2 may enter into the

calculation at O(δ2) via the terms∫ h

0

u(Fj)yy dy, (1.2.28)

which appear in the evaluation of the residuals (1.2.17) as shown in equation

(1.2.19) where, as before, wj = Fj (for j = 0, . . . , J). Therefore, since (F0)yy =

(f0)yy = −1, s1 and s2 do not appear in the evaluation of R1. Hence, only the
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leading-order term a0f0 of the velocity expansion (1.2.25) (and thus, only the

leading-order basis function w0) is required. Hence, the model involves only two

fields (rather than four), namely, h and q. Therefore, evaluating the zeroth residual

R0 = ⟨w0,B(u)⟩ yields

5

2

q

h2
− 5

6
h+ δ

[
qt +

17

7

qqx
h

+

(
5B

6
h− 9

7

( q
h

)2)
hx −

5Γ′

6
hxxx

]
− δ2

[
4
q(hx)

2

h2
− 9

2

qxhx
h

− 6
qhxx
h

+
9

2
qxx

]
= 0. (1.2.29)

The second-order terms in (1.2.29) arise from the terms 2uxx + (ux|y=h)x in the

boundary-layer equation (1.2.10) and the terms on the right-hand side of the tan-

gental stress balance (1.2.11), and incorporate the effect of viscous dissipation

that is not present in the first-order WRIBL model (1.2.24), but does not include

the second-order inertial effects related to s1 and s2 that are present in the full

second-order WRIBL model.

Equation (1.2.29) along with the kinematic condition (1.2.9) constitute a closed

system governing the evolution of the film thickness h and the flux q. This model

predicts the correct linear stability threshold [29], however, it does lose its second-

order accuracy: specifically, it does not recover the second-order Benney equation

(equations (5.13)–(5.14c) of Kalliadasis et al. [28]) upon performing a gradient

expansion on q. Specifically, the coefficient of one of the inertial terms is 212/525

instead of the correct value 127/315 [37]. Nonetheless, the simplified second-order

WRIBL model is significantly more amenable to both analytical and numerical

investigations in comparison to the full second-order WRIBL model [29], and is

more accurate than the first-order WRIBL model (1.2.9) and (1.2.24) [29, 62].

Hence, many studies make use of the simplified second-order WRIBL model rather

than the full second-order WRIBL model [31, 37, 52, 55, 56, 69]. In this thesis,

we derive a simplified second-order WRIBL model in the context of our problem.

1.3 Analysis of free-surface flows

Reduced-order models are more amenable to analytical and numerical analysis

than the Navier–Stokes equations (1.1.1) and (1.1.2). In this thesis, we employ

linear stability analyses, multiple-timescale analyses, and numerical methods used

in solving nonlinear ordinary differential equations (ODEs) and PDEs. We briefly
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outline the theory of each of these in Sections 1.3.1–1.3.3, respectively, as essential

precursors to both the work in this thesis and to the discussions that follow in the

remainder of this chapter.

1.3.1 Linear stability

In Chapter 4, we perform linear stability analyses which involve analysing the tem-

poral growth rates of perturbations to “base state” solutions (i.e., steady states,

such as a uniform film coating the surface of a substrate in the context of fluid

flows). The perturbations can either grow, decay, or remain constant over time,

indicating linear instability, stability, or neutral stability of the base state, respec-

tively [70].

For example, consider a fluid system described by the nonlinear PDE

∂u

∂t
= F(u), (1.3.1)

where u = u(x, t) denotes the solution vector, x denotes the spatial coordinate

vector, t denotes time, and F denotes a general nonlinear differential operator. We

consider the stability of a known steady state solution of (1.3.1) which we denote

by u0 = u0(x) (i.e., such that F(u0) = 0). To investigate the linear stability of u0,

we introduce a small perturbation ū = ū(x, t) ≪ 1 such that u = u0(x) + ū(x, t)

and substitute this into the governing equation (1.3.1) to yield

∂

∂t
(u0 + ū) =

∂ū

∂t
= F(u0 + ū). (1.3.2)

We linearise the system (1.3.2) by expanding the right-hand side of (1.3.2) as a

Taylor series about u0 up to first-order in ū, yielding

∂ū

∂t
=
∂F

∂u

∣∣∣∣
u=u0

ū ≡ Aū, (1.3.3)

where A is the “stability matrix”, the spectrum of which determines the stability

of the base state u0. To determine the eigenvalues of A, we assume that the

solution for the perturbation ū is of the form ū = ψ(x)e−iωt and substitute this

into (1.3.3) to yield

(A+ iωI)ψ = 0, (1.3.4)



Chapter 1: Introduction 23

where I is the identity matrix of same dimensions as A, ψ(x) are eigenvectors

which represent the spatial structure of the perturbation, and −iω denotes a com-

plex eigenvalue of the spectrum, where ω is the angular frequency. We seek solu-

tions of the form ψ(x) = einx, representing spatially oscillating perturbations with

wavenumber n. Finally, we set det(A + iωI) = 0 in order to obtain a non-trivial

solution for ψ(x), which in turn yields the “dispersion relation” which describes

the relationship between ω and n. Analysing the dispersion relation allows us to

understand the stability properties of the system as the real part of the eigen-

value −iω determines the temporal growth rate of the perturbation. Specifically,

if Re(−iω) = 0 the perturbation remains constant, hence the steady state u0 is lin-

early neutrally stable; if Re(−iω) < 0 the perturbation decays, hence u0 is linearly

stable; and if Re(−iω) > 0 the perturbation grows, hence u0 is linearly unstable.

1.3.2 The method of multiple scales

In Chapter 4, we perform a multiple-timescale analysis using the method of multi-

ple scales. In this section, we provide a brief overview of this method, which finds

extensive applications in, for example, applied mathematics, physics, and engi-

neering (see, for example, Sanchez [71], Nayfeh [72], and references therein). This

method is useful for analysing systems which involve multiple timescales, which

arise in systems in which “slow” and “fast” processes evolve simultaneously.

A multiple-timescale analysis involves constructing a temporally uniformly-

valid asymptotic description of problems whose solutions evolve on more than

one (asymptotically distinct) timescale. Typically, the presence of more than one

timescale is manifested by the presence of secular terms (i.e., terms which grow

with time) in a näıve asymptotic solution that can be eliminated by the introduc-

tion of one of more additional timescales. For example, consider the linear damped

oscillator [72]

utt + u = −2ϵu, (1.3.5)

where u = u(t) and ϵ ≪ 1 is a small parameter. We begin by performing a näıve

expansion on (1.3.5) by assuming that u(t) can be represented by an expansion of

the form

u = u0(t) + ϵu1(t) + ϵ2u2(t) +O(ϵ3), (1.3.6)

where for the expansion to be asymptotically valid we require that ϵn+1un+1(t) is
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smaller than ϵnun(t) (for n = 0, 1, 2, . . .). Substitution of (1.3.6) into (1.3.5) yields

(u0)tt + u0 = 0, (1.3.7)

(u1)tt + u1 = −2(u0)t, (1.3.8)

(u2)tt + u2 = −2(u1)t, (1.3.9)

at leading, first, and second order in ϵ, respectively, which have solutions

u0 = a cos(t+ ϕ), (1.3.10)

u1 = −at cos(t+ ϕ), (1.3.11)

u2 =
a

2

[
t2 cos(t+ ϕ) + t sin(t+ ϕ)

]
, (1.3.12)

respectively. Hence, the solution (1.3.6) is

u = a cos(t+ϕ)−ϵat cos(t+ϕ)+ ϵ2a

2

[
t2 cos(t+ ϕ) + t sin(t+ ϕ)

]
+O(ϵ3), (1.3.13)

which contains secular terms at first and second order. This is due to the solutions

for u1 (1.3.11) and u2 (1.3.12) exhibiting a resonance effect due to the forcing terms

(i.e., the terms on the right-hand side of the ODEs (1.3.8) and (1.3.9)) containing

terms which also arise in the complementary functions of u1 and u2. This reso-

nance leads to the accumulation of energy at one or more resonant frequencies,

causing the amplitude of the solution to grow without bound as time progresses,

hence causing the perturbation expansion to break down. In other words, the näıve

asymptotic solution becomes nonuniform. Specifically, (1.3.13) becomes nonuni-

form when t = O(ϵ−1), at which time the first order ϵu1 term has grown to become

the same size as the leading order u0 term.

The method of multiple scales allows us to obtain uniformly-valid solutions for

systems with multiple timescales, such as the one described above, by eliminating

these secular terms. We introduce “slow” and “fast” timescale variables and treat

these as though they were independent. Specifically, the timescales are defined as

Tn = ϵnt (1.3.14)

for n = 0, . . . , N , where the timescale Tn+1 is slower than Tn. In general, we

assume that the solution for the unknown function u(t; ϵ) can be represented by
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an asymptotic expansion of the form

u(t; ϵ) = u0(T0, T1, T2, . . .) + ϵu1(T0, T1, T2, . . .) + ϵ2u2(T0, T1, T2, . . .) +O(ϵ3),

(1.3.15)

where the number of timescales required depends on various factors such as the

desired order to which the expansion is carried out and the orders at which secular

terms arise in the näıve expansion (1.3.6) (which is often a result of the physical

phenomena that are incorporated into the original model). Substitution of (1.3.15)

into the relevant governing equation (such as (1.3.5) in the example above) and

balancing terms at each order yields a system of N + 1 ODEs which are solved

order-by-order. In order to ensure that the solution (1.3.15) is uniform, the secular

terms that arise at each order in ϵn (for n = 0, . . . , N) are eliminated by setting

their coefficients to zero and solving the resulting system of equations.

The calculations involved in applying the method of multiple scales to the

example discussed above are lengthy, and so the reader is referred to Section 6.1.1

of Nayfeh [72] for details. A complete example of this method will be given in

Section 4.4 in the context of our problem. The reader is also referred to Hinch and

Kelmanson [73] for a sophisticated example in the context of fluid flows.

In summary, the method of multiple scales effectively captures the dynamics of

both “slow” and “fast” processes, and hence accurately describes the nonuniform

solution behavior, whilst avoiding the divergence caused by secular terms in the

standard perturbation expansion.

1.3.3 Numerical methods

Reduced-order models are, in general, challenging to solve analytically, and it

is therefore uncommon to be able to derive explicit expressions for the solution

variables. Hence, a widely-used approach is to solve reduced-order models numeri-

cally in order to complement results from asymptotic analyses. For example, in the

context of the planar falling-film system discussed earlier in Section 1.2, numerical

solutions allow us to explore the dynamics of the system in the nonlinear regime in

addition to enabling qualitative and quantitative comparisons with experimental

findings. As discussed in Appendix A, we use the method of lines to solve various

governing PDEs throughout this thesis and impose periodic boundary conditions

on the system. The method of lines is a technique for solving PDEs by discretising
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them into a system of nonlinear ODEs. In this thesis, for the reasons outlined in

Appendix A, we use the centred finite-difference method for spatial discretisation

in conjunction with either the backwards Euler method or the trapezoidal method

for time integration. In this section, we provide a brief overview of these meth-

ods (see references [74, 75] for further details of the numerical methods discussed

herein).

1.3.3.1 The finite-difference method

The finite-difference method is a numerical technique used to approximate solu-

tions to ODEs and PDEs. Instead of obtaining the exact solution everywhere, the

method obtains an approximation to the solution at a discrete set of grid points

in both the spatial domain and in the time domain.

Consider a PDE of the form

ht = G (h, hx, hxx, . . .) (1.3.16)

on a domain of length L given by 0 < x < L, where h = h(x, t) and G is a function

of h and its derivatives. Equation (1.3.16) is subject to the initial condition

h(x, 0) = h0(x), (1.3.17)

and periodic boundary conditions

∂nh

∂xn

∣∣∣∣
x=0

=
∂nh

∂xn

∣∣∣∣
x=L

(1.3.18)

for n = 0, 1, 2, . . .. To solve this system, the spatial variable x is discretised as

x = xi (for i = 1, . . . ,M) onto a uniform grid with M grid points with step size

∆x = L/(M−1). The time variable is discretised as t = tj (for j = 0, . . . , N) with

step size ∆t = tj − tj−1 (which is not necessarily uniform). In what follows, we

denote the discretised solution corresponding to h evaluated at x = xi and t = tj

by hji = h(xi, tj). Hence, the periodic boundary conditions (1.3.18) are rewritten

as
∂nhj1
∂xn

∣∣∣∣
x=0

=
∂nhjM
∂xn

∣∣∣∣
x=L

(1.3.19)

for n = 0, 1, 2, . . ..
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Derivatives in the PDE (1.3.16) are approximated using discrete difference

approximations. As mentioned previously, in this thesis, we use centred finite-

differences. For example, the first and second derivatives of hji with respect to x

can be approximated by using the centred difference formulae,

(
hji
)
x
≈
hji+1 − hji−1

2∆x
+O((∆x)2),

(
hji
)
xx

≈
hji+1 − 2hji + hji−1

(∆x)2
+O((∆x)2).

(1.3.20)

The centered difference method yields a second-order approximation for the deriva-

tive. This means that the error between the exact derivative and the approximation

decreases quadratically with the grid spacing ∆x. In comparison, one-sided dif-

ference approximations (for example, forward or backward differences) only offer

first-order accuracy, leading to a larger truncation error (i.e., the error between

the numerical solution and the exact solution which is introduced by neglecting

higher-order terms in the Taylor series expansion).

Note that, in many physical systems, certain regions may arise in which the

solution changes rapidly in time or has significant spatial variations. Hence, it is

often advantageous to instead use a nonuniform spatial grid in order to focus the

grid points more densely in these regions, thus providing higher resolution and

accuracy where it is required without wasting computational resources where the

solution changes slowly (see, for example, Sundqvist and Veronis [76], Chakraborty

et al. [66], and Moore et al. [77]).

1.3.3.2 Time-stepping techniques

For time-dependent problems, a time-stepping technique is used to advance the

solution from one time step to the next. Commonly used time-stepping methods

include the backwards Euler method and the trapezoidal method.

The backwards Euler method is an implicit numerical method for solving ODEs

and PDEs that involve a time derivative. It approximates the time derivative at

the current time step tj using the value of the solution at the next time step tj+1.

Specifically, this method discretises the time derivative using a backward difference

approximation, namely, (
hj+1
i

)
t
≈ hj+1

i − hji
∆t

. (1.3.21)

After applying the centred finite-difference formulae (1.3.20), substituting the
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backwards difference approximation (1.3.21) into the PDE (1.3.16) and rearranging

for hj+1
i yields the backwards Euler method, namely,

hj+1
i = hji +∆tG

(
hj+1
i , . . .

)
. (1.3.22)

The backwards Euler method provides first-order accuracy and offers better sta-

bility and accuracy for stiff problems (i.e., problems in which the solutions change

rapidly over certain regions) compared to explicit methods such as the forwards

Euler method.

Similarly, the trapezoidal method is also an implicit time integration method.

Unlike the backwards Euler method, which discretises the time derivative using a

backwards difference approximation, the trapezoidal method arises from approxi-

mating the integral of (1.3.16) over the time interval tj ≤ t ≤ tj+1, i.e.,∫ tj+1

tj

(hi)t dt =

∫ tj+1

tj

G [hi, (hi)x , (hi)xx , . . .] dt, (1.3.23)

by using the trapezoidal rule for numerical integration to yield

hj+1
i − hji =

∆t

2

[
G
(
hji , . . .

)
+G

(
hj+1
i , . . .

)]
. (1.3.24)

Rearranging equation (1.3.24) for hj+1
i yields the trapezoidal method, namely,

hj+1
i = hji +

∆t

2

[
G
(
hji , . . .

)
+G

(
hj+1
i , . . .

)]
. (1.3.25)

The trapezoidal method provides second-order accuracy and offers better stability

and accuracy for stiff problems compared to explicit methods.

Applying the aforementioned discrete approximations converts the time-dependent

PDE (1.3.16) into a system of algebraic equations involving values of the function

at different grid points. This system of equations can then be solved at each time

step using various numerical techniques, such as the Newton–Raphson method

(see Leveque [74] or Iserles [75] for an explanation of this well-known algorithm)

in order to obtain a numerical solution.
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(a) (b)

Figure 1.5: (a) Coated micro-needles fabricated using a dip-coating technique.

Reproduced from Liang et al. [82], with permission from Elsevier. Copyright

2020. (b) Flow-visualisation paint on a race car after testing. Image courtesy of

Formula One Digital Media Limited [84].

1.4 Flow on curved substrates

This thesis concerns a particular category of free-surface flows wherein a fluid

film coats a solid, curved substrate. The potential scope of applications for this

particular type of flow is extensive [78]. For example, these flows play a significant

role in biological contexts such as in coating the cornea of the human eye [79]

and the lining of the lungs of land animals [80]. In addition, they are crucial to a

vast range of industrial settings, such as creating edible films in the food industry

for preservation against contamination and perishability [81], producing coated

micro-needles for transdermal drug delivery in the pharmaceutical industry [82]

(as shown in Figure 1.5 (a)), and in the painting of the bodies of automobiles

[83]. For example, in the automotive and aerospace industries, engineers design

vehicles with curved surfaces to achieve specific aerodynamic characteristics [85].

During vehicle development, engineers paint test models with specific coatings,

enabling them to make airflow patterns visible for analysis, a technique referred

to as flow visualisation. Figure 1.5 (b) shows a race car after testing with flow

visualisation paint, consisting of fluorescent powder mixed with paraffin. As the

paraffin evaporates, it reveals visible airflow patterns, aiding engineers in their

analysis [84]. A wide variety of methods and processes are used in the application

of industrial coatings, such as chemical vapor deposition (in which a solid material

is deposited from a gaseous phase through a chemical reaction with the substrate),
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Figure 1.6: Copper condenser tubes that are uncoated (left) and coated

with graphene (right). Reprinted with permission from MIT News

http://news.mit.edu/ [93].

physical vapor deposition (in which a solid material is vaporised inside a vacuum

chamber, which then condenses onto the substrate), and dip coating (in which an

object is immersed into a pool of coating material and then withdrawn) [86].

The special case in which the substrate is cylindrical has received significant

attention, both due to its relevance in various industrial contexts and as a useful

paradigm for more complex scenarios. For example, it occurs in confectionery pro-

duction [87], in printing methods such as flexographic printing [88], in the coating

of tablets in the pharmaceutical industry [89], in the lubrication and protective

coating of engine components in the automotive industry [90, 91], and in heat

transfer applications, such as condensation within a heat exchanger [92]. An ex-

ample of the last of these is shown in Figure 1.6, which shows an uncoated copper

condenser tube (left) and a graphene-coated tube (right). At 100◦C, the steam

condenses to form a thin film of water that coats the surface of the uncoated tube

(bottom left), whereas the coated tube exhibits desirable dropwise condensation

which has a higher surface area and hence yields enhanced heat transfer rates

(bottom right) [93].

Although the term “coating flow” refers to the general situation in which a

liquid film coats a substrate, in this thesis, we consider only horizontal cylindrical
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substrates. Hence, in order to distinguish between the scenarios in which the

cylinder is rotating and in which it is stationary, throughout this thesis, we use

the term “coating flow” when referring to the situation in which the cylinder is

rotating, and use the term “draining flow” when referring to the situation in which

it is stationary. We discuss the relevant aspect ratios for flow on a cylindrical

substrate in Section 1.4.1. The existing literature surrounding coating flow and

draining flow will be discussed in Sections 1.4.3 and 1.4.4, respectively. Finally,

we briefly discuss flow on other curved geometries in Section 1.4.5. Throughout

these sections, a is the radius of the circular cylinder (where applicable), Ω is the

constant rotation rate of the cylinder (where applicable), g is acceleration due to

gravity, ρ is the fluid density, µ is the fluid viscosity, σ is the constant coefficient of

surface tension, and h0 is the initial uniform film thickness (i.e., the film thickness

at time t = 0).

1.4.1 Aspect ratios of flow on a curved substrate

In this section, we discuss the relevant aspect ratios of flow on a curved substrate.

Note that, as in Section 1.2.1, throughout this section we phrase our discussion

in terms of nondimensional parameters, but choose not to specify the particular

length scale used in the nondimensionalisation (which could again be, for example,

a capillary length).

As discussed earlier in Section 1.2.1, in the case of a planar substrate, there are

only two length scales present within the system, namely, a characteristic dimen-

sionless cross-stream length scale H (which, as before, is typically a characteristic

dimensionless film thickness), and a characteristic dimensionless streamwise length

scale λ (which, as before, is typically a characteristic dimensionless wavelength of

the film). However, in the case of flow on a curved substrate, the two characteristic

radii of curvature of the substrate are not necessarily infinite, and hence there are

two additional length scales present within the system. Therefore, although for a

planar substrate the thin-film and long-wave situations are equivalent (and so the

terms “thin-film” and “long-wave” can be used interchangeably), for a non-planar

substrate this is no longer the case and we must be careful to distinguish between

the two approximations [31, 56].

In this section, we outline the difference between the thin-film and long-wave

approximations on curved substrates. In particular, in what follows, we discuss
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(a) (b)

Figure 1.7: Schematic of the relationship between the three length scales H, λ,

and R present for flow on a cylinder. (a) Thin-film approximation. (b) Long-wave

approximation.

two-dimensional flow on a cylindrical substrate, in which case one of the character-

istic radii of curvature is the dimensionless radius of the cylinder, which we denote

here by R. The other is infinite and therefore can be ignored (similarly to the

radius of curvature in the planar case). The discrepancy between the two approxi-

mations is a key point, and is central to our ability to accurately model the flow of

“thick” films, which are defined as films for which the dimensionless characteristic

film thickness is of the same order as the dimensionless characteristic radius of

curvature of the substrate. Note that the principles discussed in this section can

also be applied to curved substrates that have two finite radii of curvature, such

as a sphere or an ellipsoid.

1.4.1.1 Thin-film approximation

As before, in the case of flow on a curved substrate, the thin-film approximation

assumes that the thickness of the film is small (compared to unity). In other words,

R = O(1), λ = O(1), ϵ = H ≪ 1, (1.4.1)

where ϵ denotes the thin-film aspect ratio on a curved substrate. A schematic of

the relationship between the three length scales present for flow on a cylinder in

the thin-film approximation is shown in Figure 1.7 (a).
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1.4.1.2 Long-wave approximation

The assumption H ≪ 1 used in the thin-film approximation (1.4.1) is quite restric-

tive for all but the thinnest of films. Indeed, it is often the case that reduced-order

models are derived based on the thin-film approximation, but are utilised to de-

scribe a flow in which the thickness of the film can become larger than the thin-film

approximation is designed to handle (for example, localised thickening may occur

in films that are initially uniformly thin). For example, in the context of coating

flow, the results of Peterson et al. [94] showed increasing error for models de-

rived using a thin-film approximation for increasing values of the film thickness

(specifically, they analysed the model derived by Pukhnachev [95], which will be

discussed in Section 1.4.4). In addition, Wray et al. [56] showed that for coating

flow in the absence of inertia and in the limit of zero gravity, the linear growth

rates of the flow described by their thin-film model display poor agreement with

DNS of the Stokes equations for moderately thick films, finding that the agreement

becomes significantly worse as the film thickness increases. This result is shown in

Figure 1.8, which shows the linear growth rate (denoted in their notation by s) as

a function of the unperturbed film radius (denoted in their notation by h̄) for the

azimuthal wavenumbers (a) n = 2, (b) n = 4, and (c) n = 6. In particular, Fig-

ure 1.8 shows that, in general, their thin-film model (solid black) displays strong

disagreement with DNS of the Stokes equations (solid red) for all but the smallest

values of h̄. As a consequence, the majority of studies that consider thick films

have relied on numerical computations of the velocity profiles, height evolution,

and pressure [96].

Wray et al. [56] revealed that it is possible to relax the restriction that the film

thickness is small by instead using a long-wave approximation. In the case of a

curved substrate, the long-wave approximation differs from the thin-film approxi-

mation (1.4.1) owing to the presence of the extra length scale R. In the long-wave

approximation, variations in the film thickness are assumed to be large (compared

to unity). In other words,

R = O(1), H = O(1), ε = λ−1 ≪ 1, (1.4.2)

where ε denotes the long-wave aspect ratio on a curved substrate. A schematic of

the relationship between the three length scales present for flow on a cylinder in

the long-wave approximation is shown in Figure 1.7 (b). Note that the long-wave



Chapter 1: Introduction 34

(a) (b) (c)

Figure 1.8: Plots by Wray et al. [56] of the linear growth rate s as a func-

tion of the unperturbed film radius h̄ for the problem of thick-film coating flow

(in the absence of inertia and in the limit of zero gravity) calculated from their

second-order thick-film WRIBL model (dashed green), thick-film gradient expan-

sion model (dot-dashed blue), thin-film model (solid black), and DNS of the Stokes

equations (solid red) for the azimuthal wavenumbers (a) n = 2, (b) n = 4, and (c)

n = 6. Reprinted from Wray et al. [56] with permission. Copyright 2017 Society

for Industrial and Applied Mathematics. All rights reserved.

approximation assumes that R = O(1) and H = O(1), thus relaxing the assump-

tion that the film thickness must be small and hence permitting the development

of models which are valid for both thin films and thick films.

1.4.2 Long-wave methodology for thick films

Based on the long-wave approximation (1.4.2), Wray et al. [56] formulated what

we shall refer to hereafter as the “long-wave methodology” for modelling thick

films on curved substrates. In essence, the long-wave methodology is the introduc-

tion of appropriate scalings on the relevant parameters in the unscaled governing

equations. Variations in the streamwise direction are assumed to be small (whilst

those in the radial direction are not), for which we introduce the scaling

∂θ 7→ ε∂θ. (1.4.3)

Here, ε is an ordering parameter which, as discussed earlier in Section 1.2.5, asserts

the expected relative magnitudes of particular terms and their derivatives during

the calculations and is hence set equal to unity in the final model [28, 29, 37, 53].
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In systems involving thick films, bulges may develop which have high interfacial

curvature relative to the characteristic radius of curvature R. Hence, in order to

accurately model these bulges, a common approach is to use the full form of the

interfacial curvature rather than neglecting dependencies on higher-order terms

[97]. Although these higher-order terms are typically neglected in a consistent

asymptotic expansion, they have been shown in the literature to aid agreement

with experiments and DNS [31, 56, 98, 99].

As explained by Wray et al. [31, 56], variations in the azimuthal direction

are assumed to be small rather than rescaling θ itself owing to the fact that θ

has a fixed domain length of 2π and therefore cannot be assumed to be “long”.

Consequently, the long-wave methodology explained herein does not constitute a

formal asymptotic approach when applied to a circular cylinder. Indeed, whilst in

systems with an explicit small aspect ratio (such as in the planar case discussed

earlier in Section 1.2.5) the WRIBL method is asymptotically consistent (hence

accurately recovering the Benney equation up to second order upon a suitable

gradient expansion), in other systems this may not always be valid [31, 56]. We

therefore treat ε as an ordering parameter, with the method being essentially data

driven: the orders at which the respective velocity fields are retained are based on

experience, the output of numerical experiments, and post hoc validation.

Reduced-order models derived using the long-wave methodology described herein

have been shown to yield good agreement with DNS, even outside their range of

formal validity (specifically, in the short-wave regime). As shown in Figure 1.8,

Wray et al. [56] found that their reduced-order models derived using a long-wave

approximation yield significantly better agreement with DNS than those derived

using a thin-film approximation for both thin and thick films. Specifically, their

thin-film model (solid black) performs poorly and their thick-film gradient expan-

sion model yields some improvement in accuracy (dotted blue). However, their

second-order thick-film WRIBL model (dashed green) yields excellent agreement

with DNS, even when the film is as thick as the cylinder radius (i.e., for h̄ = 2). In

addition, although the n = 6 mode (shown in Figure 1.8 (c)) is outside the range

of formal validity of the long-wave approximation (since the wavelengths are not

“long”), their second-order thick-film WRIBL model still yields good agreement

with DNS. We defer further discussion of the results of Wray et al. [56] until

Section 1.4.4.
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1.4.3 Draining flow

Draining flow has been investigated extensively by various authors, dating back

to the pioneering work of Nusselt [34, 35] who considered steady draining flow of

a thin film fed by a prescribed flux of liquid delivered at the top of the cylinder.

They showed that the thickness of the film varies as |cos θ|−1/3, where θ is the

azimuthal angle measured anticlockwise around the cylinder from the horizontal.

This result indicates that the film displays left-to-right symmetry as well as top-

to-bottom symmetry, and that the film extends infinitely at top and bottom of

the cylinder, corresponding to θ = π/2 and θ = −π/2 respectively. Whilst this

behaviour violates the thin-film approximation, it can be understood as the film

cascading onto the top of the cylinder and subsequently falling off at the bottom

of the cylinder. This analysis was later generalised to steady flow on a uniformly

rotating cylinder by Duffy and Wilson [100], which we discuss in Section 1.4.4.

Unsteady draining flow has also been investigated by a variety of authors. For

example, Reisfeld and Bankoff [101] theoretically investigated unsteady draining

flow of a thin film, developing a model which incorporates viscosity, gravity, cap-

illarity, thermocapillarity, and intermolecular (van der Waals) forces, and studied

both isothermal and non-isothermal situations. In particular, when the film is

isothermal and van der Waals forces are negligible, they found that steady solu-

tions only exist when the Bond number (defined by Reisfeld and Bankoff [101] as

Bo = ρga3/(havgσ), where havg is the average dimensional film thickness), which

is a measure of the strength of the effect of gravity compared to surface tension, is

zero. They showed that the film thins on the upper part of the cylinder and that

the interface develops a pendant-drop-like shape on the lower part of the cylinder,

as shown in Figure 1.9 (a) which shows snapshots of the isothermal interface profile

for Bo = 102 from dimensionless time (denoted in their notation by τ) τ = 0 to

τ = 4. They also showed that two symmetric regions of local thinning of the film

occur, and that these regions move upwards and eventually coalesce into a single

region at the top of the cylinder as gravity is reduced, as shown in Figure 1.9 (b),

which shows interface shapes at time τ = 4 for various values of Bo.

Evans et al. [102] theoretically investigated the unsteady flow of a thin film on

the outer surface of a rotating horizontal cylinder, developing a three-dimensional

model which incorporates viscosity, gravity, capillarity, and centrifugation. In

the special case of a two-dimensional flow on a stationary cylinder, they showed
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(a) (b)

Figure 1.9: Numerical solutions of the isothermal model of Reisfeld and Bankoff

[101]. Snapshots of the interface with (a) Bo = 102 for various values of τ , and

(b) τ = 4 for various values of Bo. Reproduced from Reisfeld and Bankoff [101],

with permission from Cambridge University Press. Copyright 1992.

numerically that, in agreement with Reisfeld and Bankoff [101], a pendant drop

forms on the lower part of the cylinder. In particular, Evans et al. [102] showed

that this pendant drop approaches a steady state at late times, and obtained

numerical solutions for its steady-state shape. The steady-state interface shapes

are shown for various values of the dimensionless rotation rate (defined by Evans

et al. [102] as W = Ω(a/g)1/2) in Figure 1.10 (a). Specifically, Figure 1.10 (a)

shows steady-state interface shapes for W = 0, 0.002, and 0.004, in which the solid

black line corresponds to the stationary case W = 0. They also showed that the

film thickness h = h(θ, t) (where t denotes dimensionless time) at the top of the

cylinder (located at θ = 0 in their geometric setup) decreases monotonically, but

does not reach zero in a finite time. This is shown in Figure 1.10 (b), which shows

the evolution of the film thickness at the top of the cylinder for various values of

W .

Subsequently, Takagi and Huppert [103] theoretically and experimentally in-

vestigated the instantaneous release of a constant volume of liquid at the top of

a stationary cylinder and a stationary sphere. The unsteady flow of the thin film

with an advancing front that forms is studied. In particular, in both geometries,
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(a) (b)

Figure 1.10: Numerical solutions of the model of Evans et al. [102]. (a) Steady

state interface shapes for dimensionless rotation rates W = 0, 0.002, and 0.004.

(b) Evolution of the film thickness h evaluated at the top of the cylinder θ = 0

for various values of W . Reprinted from Evans et al. [102], with the permission of

AIP Publishing. Copyright 2004.

they developed models which incorporate viscosity, gravity, and capillarity, and

derived asymptotic solutions for the film thickness near the top of the substrate at

late times. They found that at late times the front advances as t1/2 for the cylin-

der and as t1/4 for the sphere, and that in both cases the film near the top of the

substrate thins as t−1/2. They carried out their experimental investigations for the

cylindrical and spherical cases by pouring various liquids onto a perspex cylinder

(the setup of which is shown in Figure 1.11) and a vinyl beach ball, respectively.

Figure 1.11 (a) shows the flow on the cylinder soon after release at dimensional

time T = 0.7 s (note that this is a “late” time within this parameter regime), at

which time the bulk flow is approximately two-dimensional. They observed good

agreement between their theory and the experimental results near the top of the

substrate. However, they found that as the liquid front progressed it would eventu-

ally form rivulets. Subsequently, upon reaching the lower part of the cylinder, the

rivulets would fall from the surface. This behaviour is shown in Figure 1.11 (b),

which shows the flow at dimensional time T = 2.7 s, at which time rivulets have

formed and continue to extend until they drip from the underside of the cylinder.

Cachile et al. [104] theoretically and experimentally investigated unsteady

draining flow of a thin film and developed a model that incorporates viscosity,

gravity, and capillarity. They observed good agreement between theoretical and
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(a) (b)

Figure 1.11: Snapshots of an experiment conducted by Takagi and Huppert [103]

by releasing pure glycerine on a cylinder. Results are shown at dimensional times

(a) T = 0.7 s and (b) T = 2.7 s. The numbers on the cylinder indicate the

perimeter in centimetres from the top of the cylinder. Reproduced from Takagi

and Huppert [103], with permission from Cambridge University Press. Copyright

2010.

experimental results, the latter of which involved completely covering a steel cylin-

der with silicon oil. Specifically, they found that on the upper part of the cylinder

there is a region in which the film thins monotonically in time as the liquid drains

towards the lower part of the cylinder. They also found that a Rayleigh–Taylor-like

instability occurs on the lower part of the cylinder, and determined the wavelength

of the fastest-growing linear mode.

It is important to note that none of the aforementioned studies attempted to

obtain a complete description of the late-time behaviour of the film, but rather,

each focused on specific regions of the flow (such as, for example, the film thickness

near the top of the cylinder or the pendant drop which forms on the lower part of

the cylinder). None of these studies determined how the solutions in the different

regions connect together to give the complete description. A recent study which

did attempt to do this, albeit for flow on a sphere rather than a cylinder, is that

by Qin et al. [105]. However, we defer discussion of this important work until

Section 1.4.5 in which we consider flows on non-cylindrical geometries.
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1.4.4 Coating flow

Following the publication of the influential papers by Moffatt [106] and Pukhnachev2

[95], coating flow (and the closely related problem of “rimming flow”, which de-

scribes the corresponding flow on the inside of a cylinder [109]) has gained recogni-

tion as a paradigm problem in the examination of free-surface flows. Consequently,

the system has garnered significant theoretical and experimental interest. Indeed,

the literature surrounding this well-studied problem is vast. Hence, in this section,

we focus on what we consider to be the key works with regards to the problem

studied in this thesis. For a comprehensive overview of the study of coating flows,

the reader is referred to the review articles by Ruschak [110] and Weinstein and

Ruschak [111], and to the work by Peterson et al. [94].

Most theoretical investigations into coating flow are conducted in the limit in

which the liquid film is thin so that a thin-film approximation can be used (as

described in Section 1.4.1). Early investigations into coating flow were primarily

motivated by the aim of determining the maximum supportable weight of liquid on

the cylinder, often referred to as the “Moffatt–Pukhnachev problem”. Moffatt [106]

theoretically and experimentally investigated steady coating flow and developed

a thin-film model that incorporates the effects of rotation, viscosity, and gravity

(and notably neglects capillarity), namely,

ht +

(
h− 1

3
h3 cos θ

)
θ

= 0, (1.4.4)

where θ is measured anticlockwise from the horizontal at the right-hand side of

the cylinder. The first term inside the bracket in (1.4.4) represents the effect of

rotation, and the second term represents gravitational effects. The model (1.4.4)

admits a steady solution governed by the equation

h− 1

3
h3 cos θ = Q, (1.4.5)

where Q is the constant dimensionless azimuthal volume flux per unit length.

Moffatt [106] sought steady solutions for the film thickness h which coat the entire

surface of the cylinder, known as “full-film solutions”. They derived a condition

for the existence of a steady solution, finding that, for a given rotation rate, the

2Note that this author’s name has been transliterated from Russian and is sometimes also
spelled as “Pukhnachov” [107, 108].
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condition can be expressed in terms of a maximum load and, for a given load, in

terms of a minimum rotation rate. In particular, Moffatt [106] showed that the

steady equation (1.4.5) admits such solutions only if Q remains within the range

0 < Q ≤ Qcrit, where Qcrit = 2/3 is referred to as the “critical” value of the flux.

The solution for h corresponding to Q = Qcrit is denoted by hcrit and is referred to

as the critical solution. The dimensionless maximum load that can be supported

on the cylinder occurs for Q = Qcrit, and is given by Mcrit ≈ 4.44273 which is

referred to as the critical mass. For 0 < Q ≤ Qcrit, Duffy and Wilson [100] showed

that the full-film solution of (1.4.5) can be given explicitly as

h =



2√
| cos θ|

sinh

(
1

3
sinh−1B

)
, for cos θ < 0,

2√
cos θ

cos

(
2π

3
− 1

3
cos−1B

)
, for cos θ > 0,

Q, for cos θ = 0,

(1.4.6)

where

B = −3Q

2
sgn(cos θ)

√
| cos θ|. (1.4.7)

The full-film solution (1.4.6) is shown in Figure 1.12 (a) for several values of Q

in the range 0 < Q ≤ Qcrit. In particular, Figure 1.12 (a) shows that the full-

film solution (1.4.6) displays top-to-bottom symmetry and exhibits a maximum at

θ = 0, where gravity and rotation act in opposition to each other, and a minimum

at θ = π, where gravity and rotation act in harmony. Full-film solutions are

smooth for 0 < Q < Qcrit (often referred to as “subcritical” values of Q), whereas

the solution forms a corner at θ = 0 for Q = Qcrit. Figure 1.12 (b) shows polar plots

of the full-film solution (1.4.6) for two subcritical values of Q and for Q = Qcrit, in

which the corner structure at θ = 0 can be obviously discerned. In practice, the

corner will not be sharp but will be rounded off by higher-order and/or otherwise

neglected physical effects. In particular, in practice one would expect smoothing

of this feature due to the effect of capillarity [95, 96]. Finally, Moffatt [106] also

conducted experiments which showed the existence of a steady state for a certain

range of parameters. By lowering a rotating perspex cylinder into a trough filled

with golden syrup, they found that, as the rotation speed was increased, the film

changed from being approximately uniform at the initial instant to displaying

3Note that this numerical value was originally erroneously given by Moffatt [106] as Mcrit ≈
4.428.
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Figure 1.12: The full-film solution (1.4.7) for (a) Q = n/15 for n = 1, 2, . . . , 10,

shown as a Cartesian plot and (b) Q = 1/15, 1/3, and Qcrit, shown as a polar plot.

The dotted circle in (b) shows the location of the cylinder and the arrows show

the direction of increasing Q (straight arrow) and the direction of rotation (curved

arrow). Note that the film thickness in (b) has been exaggerated for illustrative

purposes.
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periodic fluid rings. At higher speeds, an asymmetrical fluid lobe formed which

rotated slightly slower than the cylinder.

The approach to the critical solution hcrit of Moffatt [106] asQ→ Qcrit was later

investigated theoretically by Tougher et al. [112]. They performed a matching

procedure between an inner solution (which is valid near θ = 0) and an outer

solution (which is valid away from θ = 0) to derive what we shall refer to as the

“composite” critical solution, which we denote here by hcomp, namely,

hcomp = hcrit + ξ

(√
6

2|θ|
− 1

1− h2crit cos θ

)
+

|θ|
6

−
√
ξ +

θ2

6
as ξ → 0+, (1.4.8)

which is valid near Q = Qcrit, where ξ = Qcrit −Q ≪ 1 (which we note is not the

same small parameter as the thin-film aspect ratio ϵ). Using (1.4.8), they obtained

a corresponding expansion for the critical weight Wcrit, namely,

Wcrit ≃ 4.44272 + ξ(−4.99001 + 1.22474 ln ξ) + o(ξ) as ξ → 0+. (1.4.9)

The validity of the critical condition for coating (and rimming) flow given

by Moffatt [106] was investigated experimentally by Preziosi and Joseph [113]

who considered the flow of various oils on different rotating rods using a very

similar experimental apparatus to that used by Moffatt [106]. They concluded

that, provided the maximum thickness of the liquid coating the outside or the

inside of the cylinder is not too large compared to the radius of the cylinder, and

that the Reynolds number is sufficiently small, the critical criterion from Moffatt’s

[106] analysis is mostly accurate.

Pukhnachev [95] proved the existence and uniqueness of steady full-film coating

flow solutions of the Navier–Stokes equations, and subsequently derived a model

similar to that of Moffatt [106] which includes the additional effect of capillarity,

namely,

ht +

[
h− 1

3
Gh3 cos θ +

1

3
Ch3(hθθθ + hθ)

]
θ

= 0, (1.4.10)

where G = ϵ2ρga/(Ωµ) is a dimensionless gravity parameter, C = ϵ3σ/(Ωµa) is an

inverse capillary number, and ϵ≪ 1 is the small thin-film aspect ratio as defined in

Section 1.4.1. Note that when capillarity is neglected in (1.4.10) (i.e., for C = 0),

the model of Moffatt [106] (i.e., equation (1.4.4)) is recovered up to differences in

scalings. Note that, although Moffatt [106] and Pukhnachev [95] focused primarily
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on coating flow, the results arising from their leading-order equations also apply

to rimming flow. Specifically, if we take the (nondimensional) free surface to be

located at r = R+ h(θ) for coating flow, then for the corresponding rimming flow

problem we take r = R− h(θ). Consequently, within the confines of the thin-film

approximation, the two problems are mathematically equivalent at leading order

[114]. However, it is crucial to point out that this equivalence does not persist at

higher orders (see, for example, Lopes et al. [115]).

There have been many extensions to the Moffatt–Pukhnachev problem. As dis-

cussed, in addition to rotation, Moffatt [106] considered only leading-order gravi-

tational and viscous effects, neglecting those of capillarity, the hydrostatic pressure

gradient, and inertia, whilst Pukhnachev [95] was the first to incorporate capillar-

ity as a a leading-order effect. The treatment of these effects in subsequent work

varies. Capillarity is either neglected [116], treated again as a leading-order effect

[73, 101, 107, 108, 117–119], or as a first-order effect [102, 120–122]. The hydro-

static pressure gradient is included in various higher-order models [116, 119–124],

whilst, although commonly neglected, there are certain studies which explore the

impact of inertial effects [121, 124]. In addition, a few authors have relaxed the

strict requirement that the film of liquid be thin [56, 96]. Let us now discuss some

of these extensions.

The seminal work of Hansen and Kelmanson [96] investigated steady coating

flow under the influence of gravity, viscosity, and capillarity without imposing any

restrictions on the thickness of the film. They compared their numerical findings

with the thin-film results presented by Moffatt [106] and found that, regardless of

the thickness of the film, the minima and maxima of the free surface are always

located at θ = π and θ = 0, respectively, in agreement with the result of Moffatt

[106]. Moreover, they found that the critical mass consistently aligned closely

with the predictions made by Moffatt [106]. However, notably, they found that

the critical mass was also consistently slightly higher than Moffatt [106] predicted.

As expected, they found that, with capillarity included, the corner at θ = 0 in the

critical solution hcrit that is shown in Figure 1.12 does not appear. As alluded to in

Section 1.4.3, a combination of the draining flow problem considered by Nusselt [34,

35] and the coating flow problem considered by Moffatt [106] was investigated by

Duffy and Wilson [100], who considered steady two-dimensional flow of a thin layer

of liquid falling onto and off from the outer surface of a rotating cylinder. Using

lubrication theory, they showed that four other solution branches exist in addition
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to those in equation (1.4.6) which are unbounded at the top and bottom of the

cylinder (i.e., at θ = ±π/2) referred to as “curtain” solutions. They also identified

partial-film (i.e., in which parts of the cylinder surface are left uncovered) curtain

solutions, which occur for Q = 0, and the occurrence of jump solutions, which

involve a shock transitioning from a full-film solution branch to a curtain solution

branch. Kelmanson [118] derived a thin-film model which incorporates rotation,

viscosity, and gravity (also notably neglecting capillarity). However, contrary to

Moffatt [106], they retained the first order rotation term, h2/2. They found that

the retention of this term results in a correction to the result for the maximum

supportable load calculated by Moffatt [106] which aligns better with the numerical

results of Hansen and Kelmanson [96]. However, subsequently, Wilson et al. [125]

theoretically investigated further the maximum supportable load problem posed by

Moffatt [106], finding that the agreement with Hansen and Kelmanson [96] instead

deteriorates upon consistently retaining all first-order terms. By including terms

up toO(ϵ4), they revealed a marginally higher true critical mass than the prediction

of Moffatt [106], achieving improved agreement with Hansen and Kelmanson [96],

and found that the corner in the full-film leading-order critical solution hcrit is

smoothed by higher-order effects, even in the absence of capillarity, and confirmed

this numerically.

More recently, the focus of coating flow analyses has moved away from the

challenge of determining the maximum supportable load towards exploring the ex-

istence, stability, and behaviour of solutions for the many variations of the coating

flow system. For example, as discussed in Section 1.4.3, in the special case of a two-

dimensional cylinder Evans et al. [102] theoretically investigated unsteady coating

flow, deriving a model that incorporates rotation, viscosity, gravity, capillarity,

and centrifugation, namely,

(1 + ϵh︸︷︷︸
(a)

)ht +

[
UΩ

(
h+

ϵ

2
h2︸︷︷︸
(b)

)
− cos θ

(
1

3
h3 +

ϵ

2
h4︸︷︷︸
(c)

)
+

ϵ

3Bo
h3 (hθ + hθθθ)

− ϵ

3
h3hθ

(
W 2 − sin θ

) ]
θ

= 0, (1.4.11)

where Bo = ρga2/σ is a Bond number, W = Ω(a/g)1/2 is a dimensionless rotation

rate (as defined earlier) and UΩ = VΩ/(ϵ
2V ) is a dimensionless ratio of the cylinder

velocity VΩ = Ωa to the characteristic velocity V = ρgh20/µ. Evans et al. [102] nu-
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merically solved their model (1.4.11) using a finite-difference method (see Section

1.3.3.1). In order to simplify their numerical calculations, they neglected three

first-order terms in their model, labelled as (a), (b), and (c) in equation (1.4.11),

which arise due to the curvature of the cylinder surface. Upon solving the model

(1.4.11) with these terms neglected, they showed a diverse array of behaviors which

emerged depending on the rotation rate W . They performed a parametric study

in which they varied the rotation rate W , the results of which are shown in Figure

1.10 (a) which, as discussed previously, shows the film thickness h at the top of

the cylinder (which, as we recall from Section 1.4.3, is located at θ = 0 in their

geometric setup) over time for several values of W . They found that a bulge forms

on the lower part of the cylinder, the location of which increases upwards on the

right-hand side of the cylinder as W is increased, as shown in Figure 1.10 (b).

Upon reaching the critical rotation speed, they observed that the solution reaches

a steady state in which the bulge is held on the right-hand side of the cylinder and

the interface displays top-to-bottom symmetry. When the rotation speed exceeds

this critical value, the bulge begins to rotate around the cylinder.

More recently, Lopes et al. [115] theoretically investigated the dynamics of both

coating and rimming flow under the influence of gravity, viscosity, and capillarity

by developing three distinct models. The first is the most commonly used model

which is the “standard lubrication model” (SLM), which assumes that the Bond

number is order unity (the model derived by Pukhnachev [95], for example, is an

SLM). The second is the “extended lubrication model” (ELM) which, unlike the

SLM, assumes that the Bond number is small (the model derived by Evans et

al. [102], for example, is an ELM). The final model is the “variational lubrication

model” (VLM) which was derived by Lopes et al. [115] using a variational approach

(see, for example, Xu et al. [126]). Unlike the classical SLM and ELM, the VLM

retains the full form of the curvature rather than neglecting higher-order terms.

They performed DNS of the full Stokes flow equations and compared their findings

with the results of the three aforementioned models. Lopes et al. [115] found that

the VLM yielded improved agreement compared to the SLM and ELM models

and successfully captured scenarios in which, for particular parameter regimes,

multiple solutions were possible (with some parameter sets displaying up to two

solutions). These instances of multiple solutions were not predicted by the SLM

and ELM models, which they ascribed to the neglect of higher-order curvature

terms.
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The linear stability (see Section 1.3.1) of coating (and rimming) flow in the

presence of additional physical effects, such as capillarity, inertia, and the hy-

drostatic pressure gradient, has been the subject of studies by many authors,

including Hosoi and Mehadevan [120], O’Brien [127, 128], Benilov and O’Brien

[121], and Benilov and Lapin [122]. For leading-order rimming flow (and conse-

quently, for leading-order coating flow), O’Brien [127] established that subcritical

two-dimensional full-film solutions exhibit neutral linear stability. They inferred

that a conclusive investigation of the stability of rimming flow solutions necessi-

tates the incorporation of higher-order terms within the thin-film approximation.

In a companion paper, O’Brien [128] built upon this study by considering the sta-

bility of subcritical rimming flow solutions under the influence of gravity, viscosity,

and capillarity. They retained higher-order terms in the thin-film approximation

and found that the linear stability of the steady state solutions depends on various

parameter values. Specifically, they noted that increasing the rotation rate of the

cylinder or increasing the strength of capillarity could act as stabilising influences,

whereas the absence of both resulted in instability. Benilov and O’Brien [121] in-

vestigated the influence of weak inertia, a weak hydrostatic pressure gradient, and

weak capillarity on the linear stability of normal modes in thin-film rimming flow

by including them as higher-order terms in the lubrication model. Specifically,

their model is

ht +

{
h− 1

3
h3 cos θ + α

[
2

15
h6hθ(cos θ)

2 − 8

315
h7 sin θ cos θ − 2

15
h5 sin θ

]
+
β

3
h3(hθ + hθθθ) +

ϱ

3
h3hθ sin θ

}
θ

= 0, (1.4.12)

where α = Ω2a/g, β = σϱ/(ρga2), and ϱ = [ρΩ/(µga)]1/2. The first two terms in

the curved brackets in (1.4.12) represent rotation and leading-order gravitational

effects, whilst the terms with coefficients of α, β, and ϱ represent inertia, capil-

larity, and the hydrostatic pressure gradient, respectively. Benilov and O’Brien

[121] considered perturbations to a nonuniform base state and found that the dis-

turbances are neutrally stable at leading order, in agreement with the result of

O’Brien [127]. At first order, they found that inertia is a destabilising influence,

capillarity has a weak but noticeable stabilising effect, and the hydrostatic pressure

gradient has no discernible impact on the stability. They found that the destabil-

ising effect of inertia can be offset by increasing the viscosity of the liquid until
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the timescale of the growth becomes sufficiently large so as to effectively stabilise

the solution. We defer giving explicit details of their lengthy calculations until

Section 4.1.2 in which we revisit their calculation in the context of our problem.

For now, we note that they sought series solutions for h and ω (where ω is the

angular frequency as defined in Section 1.3.1) in powers of α ≪ 1, β ≪ 1, and

ϱ≪ 1, from which they obtained their growth rate, denoted by Im(ω), to be

Im(ω) = αIm(ωα) + βIm(ωβ) +O(ϱ2, α2, β2, ϱα, ϱβ, αβ), (1.4.13)

where Im(ωα), and Im(ωβ) are

Im(ωα) = ω2
0

(∫ 2π

0

dθ

C0

)−1
∫ 2π

0

D1

C3
0

dθ, (1.4.14)

Im(ωβ) = ω2
0

(∫ 2π

0

dθ

C0

)−1
∫ 2π

0

{
B1

C3
0

(
1− 1

C2
0

[
ω2
0 + 4C0 (C0)θθ − 11 (C0)

2
θ

])}
dθ,

(1.4.15)

respectively, where C0, B1, D1, and ω0 are given by

C0 = 1− (h(0))2 cos θ, (1.4.16)

B1 = −2h(0)h(1) cos θ + h20(h
(0)
θ + h

(0)
θθθ), (1.4.17)

D1 =
2

15
(h(0))6(cos θ)2, (1.4.18)

ω0 = 2πn

(∫ 2π

0

dθ

C0

)−1

, (1.4.19)

where h(0) = h(0)(θ) and h(1) = h(1)(θ) are the leading-order and first-order solu-

tions for h (see equations (15)–(17) of Benilov and O’Brien [121] for details) and

n is the integer wavenumber of the perturbations. Figure 1.13 shows the growth

rate Im(ω) of the first mode n = 1 plotted over the range 0 ≤ q ≤ qcrit (where

the flux is denoted by q in their notation) for β = 0.1 calculated from the numeri-

cal solution of the governing equation (1.4.12) (solid) and the asymptotic solution

(1.4.13) (dashed) for the special case in which inertia and the hydrostatic pressure

gradient are negligible (i.e., α = ϱ = 0). In particular, Figure 1.13 shows that

Im(ω) < 0 for all q, hence indicating that capillarity has a stabilising influence. In

the general case (i.e., the case in which α, β, and ϱ are all non-zero), Benilov and
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Figure 1.13: The growth rate calculated by Benilov and O’Brien [121] in the case

in which α = ϱ = 0 plotted as a function of q for n = 1 and β = 0.1 calculated

from the governing equation (1.4.12) (solid) and the asymptotic solution Im(ω)

(1.4.13) (dashed) to O(β). Reprinted from Benilov and O’Brien [121], with the

permission of AIP Publishing. Copyright 2005.

O’Brien [121] calculated the growth rate of the first mode in the limit of small q,

which they found to be

Im(ω) ≈ 1

15
αq6 − 3βq7 (1.4.20)

for q ≪ 1. Hence, in the limit of small q, instability exists if and only if

q ≤ α

45β
. (1.4.21)

Figure 1.14 shows regions of stability and instability in the (α/β, ⟨h̄⟩) plane, where
⟨h̄⟩ is the average dimensionless film thickness. In particular, Figure 1.14 shows

that, perhaps counter-intuitively, thinner films are more unstable than thicker

films. We return to this point in detail in Section 4.1.2.

In the same work that was discussed earlier in this section, Evans et al. [102]

also performed a linear stability analysis on their model in the analytically tractable

limit of zero gravity. Note that their equation (1.4.11) has been nondimensionalised

using the characteristic velocity V = ρgh20/µ. However, this is not suitable in the

context of zero gravity in which g = 0. Hence, to consider their governing equation
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Figure 1.14: Results of the linear stability analysis of Benilov and O’Brien [121].

Regions of stability and instability in the (α/β, ⟨η̄⟩) plane calculated from the

governing equation (1.4.12) (solid) and the small-q limit (1.4.20) (dashed). The

shaded region corresponds to q > qcrit. Reprinted from Benilov and O’Brien [121],

with the permission of AIP Publishing. Copyright 2005.



Chapter 1: Introduction 51

Figure 1.15: Growth rates calculated by Evans et al. [102] for the instability due

to centrifugal acceleration for S = 0, 50, and 100 calculated from their analytical

(1.4.23) (crosses) and numerical (circles) results. Reprinted from Evans et al. [102],

with the permission of AIP Publishing. Copyright 2004.

(1.4.11) under zero-gravity conditions, Evans et al. [102] instead considered the

dimensional form of (1.4.11), yielding

ht + Ωhθ −
σ

3µa4
{
h3 [hθ + hθθθ + Shθ]

}
θ
= 0, (1.4.22)

for g = 0, where S = ρΩ2a3/σ is a Weber number, representing the ratio of

centrifugation to capillarity. The linear stability analysis is tractable in this special

case due to the fact that a uniform film is a solution of (1.4.22). Performing a linear

stability analysis, they obtained the linear growth rate

ω = −Ωni+
σh30
3µa4

[
(1 + S)n2 − n4

]
, (1.4.23)

which is shown for S = 0, 50, and 100 in Figure 1.15, calculated from both (1.4.23)

and from numerical solutions of the governing equation (1.4.22) (note that Evans et

al. [102] denoted their wavenumber by k rather than n, however, here we choose to

use n for consistency with the rest of the work presented in this thesis). They found

that when the cylinder is stationary and hence there is no centrifugal acceleration
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(i.e., for S = 0), solutions are neutrally stable for n = 1 and all wavenumbers

n > 1 have negative growth rates and are therefore stable. When the cylinder is

rotated, the flow becomes unstable for wavenumbers below the cutoff wavenumber,

which we denote by nc, given by

nc = ⌊
√
1 + S⌋, (1.4.24)

where ⌊·⌋ represents the largest integer smaller than the argument. The fastest

growing wavenumber, which we denote by nmax, is given by

nmax =

[√
1 + S

2

]
, (1.4.25)

where [·] represents the integer closest to the argument. For example, (1.4.25)

yields nmax ≈ [5.0498] = 5 and nmax ≈ [7.1063] = 7 for S = 50 and S = 100,

respectively. Evans et al. [102] found that in the presence of centrifugal effects,

small perturbations grow due to centrifugation which results in the formation

of bulges of liquid around the circumference the cylinder. As will be discussed in

detail in Section 4.1.1 (in which we carry out a similar calculation for our problem),

the value of (1.4.25) predicts the number of bulges which are expected to arise in

numerical results. Indeed, Figures 1.16 (a) and (b) show interface shapes in the

absence of gravity for S = 50 and S = 100, respectively, in which 5 and 7 bulges

have formed by the respective times.

The complex large-time dynamics of unsteady coating flow has also been an

area of interest in more recent years. Hinch and Kelmanson [73] considered a

model that includes the effects of gravity, viscosity, and capillarity, which is the

same as that of Puhnachev [95] (i.e., equation (1.4.10)) up to differences in scal-

ings. In the case in which gravity and capillary effects are weak, they found that

an initially uniform film evolves on four different timescales. They proposed a

multiple-timescale analysis approach (see Section 1.3.2) via a two-timescale ex-

pansion of the film thickness to explain the structure of the evolution. They found

that as perturbations to the free surface decay, they experience a gravity-induced

phase lag relative to the cylinder due to the interactions between rotation, grav-

ity, and capillarity. The decay of the fundamental mode is shown in Figure 1.17,

which demonstrates how the interplay between gravity and capillarity influences

the evolution of the film at times t = 0 (top row) and t = π (bottom row). Figure
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(a) (b)

Figure 1.16: Interface shapes in the absence of gravity calculated by Evans et al.

[102] for (a) S = 50 at time t = 104 with nmax = 5 and (b) S = 100 at time

t = 2000 with nmax = 7. Reprinted from Evans et al. [102], with the permission

of AIP Publishing. Copyright 2004.

1.17 (a) shows the influence of gravity. At time t = 0, the film is thinner near

θ = 0 and thicker near θ = π due to the fundamental mode disturbance caused by

gravity, which slightly reduces the thickening at θ = 0 and increases the thinning

at θ = π. At time t = π, the behavior is reversed: the film is thicker near θ = 0

and thinner near θ = π, as the fundamental mode disturbance induced by gravity

changes sign. Figure 1.17 (b) shows the influence of capillarity. At time t = 0,

the top and bottom of the film experience positive capillary pressure, causing a

slowing down and thickening of the film in the first and third quadrants, whilst the

sides experience negative pressure, leading to thinning in the second and fourth

quadrants. At time t = π, this behavior is reversed. Figure 1.17 (c) shows the

combined influence of gravity and capillarity. Gravity slows down the film in the

first and fourth quadrants and speeds it up in the second and third, leading to

a net convergence at θ = 0, whilst the opposite happens at θ = π, resulting in

a net divergence. As a result, the film becomes thicker near θ = 0 and thinner

near θ = π. The amplitude of the disturbance gradually decreases over time. The

growth rate of the film thickness (which we denote here by ω) was found to be

ω = − 81α

1 + 144α2
≤ 0, (1.4.26)
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(a) (b) (c)

Figure 1.17: The decay of the fundamental mode. The two rows show the distur-

bance at time t = 0 and t = π, respectively. (a) Gravity acts on the fundamental

mode to create the first harmonic in (b). (b) Capillary pressure gradients act to

create the phase-shifted first harmonic in (c). (c) Gravity acts on the phase-shifted

first harmonic to create a rate of change of amplitude of the fundamental mode.

Reproduced from Hinch and Kelmanson [73], with permission from The Royal So-

ciety. Copyright 2003.
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(a) (b) (c)

Figure 1.18: Drift of the four-term, two-timescale expansion derived by Hinch and

Kelmanson [73] (solid) compared to their numerical results (circles and diamonds)

for γ = 0.0532 and α = 0.0048 at times (a) 0 ≤ t ≤ 10, (b) 90 ≤ t ≤ 100, and

(c) 990 ≤ t ≤ 1000. Reproduced from Hinch and Kelmanson [73], with permission

from The Royal Society. Copyright 2003.

where α = ϵ3σ/(3Ωµa) is an inverse capillary number. Equation (1.4.26) indicates

that the solution decays unconditionally to a steady state at large times for α > 0,

and that for α = 0 the system is neutrally stable. Specifically, the steady state

is approximated by equation (5.1) of Hinch and Kelmanson [73] and is uniform

to leading order in γ ≪ 1 (where γ = ϵ2ρga/(3Ωµ) is a dimensionless gravity

parameter). The drift of the four-term, two-timescale expansion for the film-

thickness is shown in Figure 1.18. Recently, Mitchell et al. [129, 130] generalised

this result to include the effect of a steady two-dimensional irrotational airflow

with circulation, and found the growth rate to be

ω = −81α

(
10F 4

(1 + 36α2) (1 + 1296α2)
+

(1 + 2KF )2

1 + 144α2

)
≤ 0, (1.4.27)

where F and K are dimensionless measures of the speed of the far-field airflow

and the circulation of the airflow, respectively. Equation (1.4.27) shows that in

the presence of the airflow, the solution again decays unconditionally to a steady

state at large times for α > 0 and that for α = 0 the system is neutrally stable.

We discuss the details of the lengthy calculations of Hinch and Kelmanson [73] and

Mitchell et al. [130] in Section 4.4 in which we revisit the analysis in the context

of our problem.

Kelmanson [124] extended the model given by Pukhnachev [95] to include in-
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ertial effects and revisited the work of Hinch and Kelmanson [73]. They identified

a two-timescale asymptotic solution for the evolution of the film thickness (which

is initially uniform) in the regime of weak capillarity, in which the asymptotic

solution found by Hinch and Kelmanson [73] is no longer valid. In addition, they

discovered that including both capillarity and inertia causes the location of the

maximum film thickness to shift away from its location at θ = 0 [106] downwards

towards the lower part of the cylinder. Building on the work of Kelmanson [124],

Groh and Kelmanson [131–133] conducted subsequent studies investigating the

large-time behavior of unsteady coating flow. Firstly, Groh and Kelmanson [131]

proposed a multiple-timescale analysis approach via an m-timescale expansion

of the film thickness, which yielded improved agreement with their numerically

obtained solutions for the film thickness evolution when compared to the two-

timescale expansion. Next, Groh and Kelmanson [132] generalised them-timescale

expansion by removing the requirement that the initial condition is a uniform film,

demonstrating that the multiple-timescale asymptotic approach could yield highly

accurate solutions for the film thickness not only in the cylindrical coating flow

problem, but also in more general free-surface thin-film problems. Finally, Groh

and Kelmanson [133] incorporated inertia into the models derived in their previous

works [131, 132]. They used the multiple-timescale approaches developed therein

to describe the transition from stability to instability dependent on the strength of

inertia, finding that their asymptotic solution exhibited excellent agreement with

their numerical results.

The coating flow (and draining flow) problem has been extended to include

a variety of external physical effects. For example, non-isothermal effects have

been included by various authors including Reisfeld and Bankoff [101] (as men-

tioned in Section 1.4.3), Duffy and Wilson [134], and Leslie et al. [135, 136].

Dewetting effects have been included by, for example, Thiele [137] and Lin et al.

[138], and surfactant effects have been included by, for example, Weidner [139]

and Li and Kumar [140]. As we have just mentioned, recently, Mitchell et al.

[129, 130] extended the work of Moffatt [106] to include a nonuniform pressure

distribution due to an irrotational airflow with circulation which they showed can

lead to behavior which differs from that of Moffatt [106]. Specifically, they found

that when the circulation of the airflow is in the same direction as the rotation of

the cylinder, the maximum supportable load is consistently lower than that found

by Moffatt [106]. Conversely, when the circulation is in the opposite direction to
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the rotation of the cylinder, the maximum fluid mass can surpass that found by

Moffatt [106]. The effect of an external magnetic field was considered by Weidner

[141], who investigated theoretically how a magnetic liquid (i.e., a “ferrofluid”)

coating a conducting stationary cylinder responds to an induced electric current.

They derived a model which incorporates the effects of rotation, gravity, viscos-

ity, capillarity, and magnetic effects, and found that magnetic forces counteract

gravity, thus slowing drainage, delaying drop formation, and potentially leading

to complete cylinder circumference coverage for strong magnetic fields. Notably,

the effect of a radial electric field is one which has not been considered thus far in

the coating flow literature. The observation of this omission from the literature,

in addition to its potential usage as a control mechanism (see Section 1.7), is the

main motivation for the problem considered in this thesis, in which we consider the

effect of an external electric field on coating and draining flow. We defer further

discussion of electrohydrodynamic flows until Section 1.6.

In this thesis, we consider the effect of an electric field on both thin-film and

thick-film coating flow. As discussed in detail in Sections 1.4.1 and 1.4.2, Wray

et al. [56] developed a novel approach which permits the modelling of thick films

on curved substrates. They outlined important differences between the thin-film

and long-wave approximations for flow on curved substrates, based on which they

proposed a long-wave methodology which allows the film thickness to be of the

same order as the radius of curvature of the substrate, in conjunction with the

WRIBL method (see Section 2.3). The long-wave methodology allows us to develop

what we shall refer to hereafter as “thick-film models” (in contrast to “thin-film

models”, which are derived using a thin-film approximation). In the context of

coating flow, Wray et al. [56] derived a second-order thick-film WRIBL model

in the absence of inertia which includes the effects of rotation, viscosity, gravity,

capillarity, and streamwise viscous dissipation, and found that it yields significantly

closer agreement with the results of DNS than their thin-film model (which notably

recovers that of Moffatt [106] (1.4.4) up to differences in scalings). Wray et al. [56]

found that for moderate values of the dimensionless rotation rate (denoted in their

notation by cV ), the thick-film coating flow system reaches a steady state. Figure

1.19 shows the behaviour of their thin-film model (dotted green), their second-

order thick-filmWRIBL model (dashed red), and DNS (solid blue) in a system with

moderate values of cV . In particular, Figure 1.19 focuses on two key parameters:

the maximum value of the interface height (denoted by hmax) and the position of
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(a) (b)

Figure 1.19: (a) Steady state shapes of thick-film coating flow for h̄ = 1, cV = 0.8,

α = 0.5, and Ca = 0.2. (b) The maximum interface height hmax of a steady state

(top) and azimuthal position of the maximum θmax (bottom) for a range of values

of the dimensionless rotation rate cV . Lines represent DNS (solid blue), their

second-order thick-film WRIBL model (dashed red), and their thin-film model

(dotted green). Reprinted from Wray et al. [56] with permission. Copyright 2017

Society for Industrial and Applied Mathematics. All rights reserved.
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this maximum (denoted by θmax). Figure 1.19 (a) shows the steady-state shape

calculated for h̄ = 1, cV = 0.8, α = 0.5, and Ca = 0.2 where, in the notation

of Wray et al. [56], h̄ is the dimensionless unperturbed interface location, α is

the dimensionless cylinder radius, and Ca = µU/σ (where U is a characteristic

velocity) is a capillary number. Their thin-film model cannot accurately model

the free surface of the film and does not preserve mass. On the other hand,

their second-order thick-film WRIBL model agrees closely with the DNS results.

Figure 1.19 (b) shows hmax (top) and θmax (bottom) plotted as functions of cV .

In particular, Wray et al. [56] found that, over the range 0.2 < cV < 1, their

thick-film model yields a maximum error of only 5% and 0.025 radians for hmax

and θmax, respectively, whilst their thin-film model performs less well, yielding

maximum errors of 18% and 0.22 radians for the respective quantities.

Recently, Wray and Cimpeanu [31] extended the work of Wray et al. [56] to

include inertial effects. Their thick-film model is

ε

8
(1− h4 + 4h2 lnh)

[
κ

Ca
+Re(h sin θ)− 2Re

q2

h2 − 1

]
θ

= q +
cV
2
(1− h2)

− ε2
(1− h2)2(1 + h2)hθ

2h3

(
q

h2 − 1

)
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+ ε2
(1− h2)(1 + h4 + 2h2(ln2 h− 1))

4h2

(
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h2 − 1
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θθ
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16
(−1 + 2h2 + 2h6 − h4(3 + 4 lnh))

[(
q

h2 − 1

)
t

+

(
q2

(h2 − 1)2

)
θ

]
,

(1.4.28)

with the kinematic condition (1.2.9), which together constitute a closed system

governing the evolution of the interface height h and the flux q. Here, ε is an order-

ing parameter as defined in Section 1.4.1, Re = ρ(ag)1/2/µ is a Reynolds number,

cV = aΩ(ag)−1/2 is a dimensionless rotation rate, and Ca = µ(ag)1/2/σ is a cap-

illary number. Note that their model is a simplified second-order WRIBL model

in which second-order inertial effects have been neglected (see Section 1.2.5.3). In

the absence of the inertial terms (i.e., for Re = 0), equation (1.4.28) recovers the

model by Wray et al. [56] up to differences in scalings. The term −2Re q2/(h2−1)

in equation (1.4.28) is an important contribution: it represents centrifugation, the

inclusion of which transpires to be vital for accurate modelling. They found that

their model yields excellent agreement with DNS of the Navier–Stokes equations

and, in addition, they investigated regimes which were previously inaccessible to

thin-film models by performing a parametric study of the interfacial behaviour in
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(a) (b)

Figure 1.20: Results of the parametric study in (cR, cV ) parameter space by Wray

and Cimpeanu [31] for (a) We = 0.59 (capillarity is strong compared to inertia)

and (b) We = 18.8 (capillarity is weak compared to inertia). Solid lines represent

the boundaries between flow regimes as predicted by the thick-film model (1.2.9)

and (1.4.28) and symbols correspond to DNS representing flow regimes which

are steady (squares), periodic (circles), and multivalued (diamonds). Reproduced

from Wray and Cimpeanu [31], with permission from Cambridge University Press.

Copyright 2020.

(cR, cV ) parameter space, where cR = h0/a denotes the dimensionless initial radius

of the film at time t = 0. Figure 1.20 shows the results of the parametric study

for two different values of the Weber number We = Re Ca (which represents the

ratio of inertial to capillary effects). Figure 1.20 (a) shows that when capillar-

ity is strong compared to inertia, steady states, periodic states, and multivalued

states can arise, the last of which can include behaviours such as dripping or other

forms of rupture. On the other hand, Figure 1.20 (b) shows that insufficient cap-

illarity prevents steady states from occurring. Figure 1.20 shows that increasing

the film thickness or rotation rate eventually yields multivalued states. Wray and

Cimpeanu [31] explored the steady and periodic states that arise using both their

thick-film model (1.2.9) and (1.4.28) and by using DNS. However, the model is

insufficient to describe multivalued states due to the fact that they have param-

eterised by the azimuthal angle θ. Moreover, the long-wave approximation is no

longer valid in this regime because the interfacial slopes are so large. Hence, these

behaviours must be analysed via DNS of the Navier–Stokes equations. Some rep-

resentative steady, periodic, and multivalued states are shown in Figures 1.21 (a),

(b), and (c), respectively.
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(a)

(b)

(c)

Figure 1.21: Thick-film interfaces calculated by Wray and Cimpeanu [31]. (a)

Steady states: snapshots of the interface shapes for Re = 9, 7, 5, and 3 with

cR = 1.3, 1.4, 1.5, and 1.6 respectively (left-to-right). (b) Periodic states: snap-

shots of the interface shapes for cR = 1.2 for the draining phase (left) and the

inertia-capillary phase (centre), and the streamlines when the base flow v = cV r

is subtracted off, showing the draining behaviour (right). (c) Multivalued states:

evolution of the minimum (grey) and maximum (black) film thickness for cV = 1.9

and cR = 1.5 (left) and the interfacial shape and norm of the velocity field re-

stricted to the liquid phase as extracted at the final time step (right). Represen-

tative streamlines are decorated with arrows indicating the direction of the flow,

with thick lines indicating the points of minimum (grey) and maximum (black)

thickness. Reproduced from Wray and Cimpeanu [31], with permission from Cam-

bridge University Press. Copyright 2020.
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Finally, note that various aspects of the coating flow problem (including the

dynamics and stability thereof) have been extended to three dimensions by various

authors (see, for example, Weidner et al. [142], Lin et al. [143], Evans et al. [102,

123], Benilov [144], and Noakes et al. [145]). However, for the scope of this thesis,

our focus will solely be on the two-dimensional case as an important first step to

understanding the dynamics of our problem.

1.4.5 Flows on other curved substrates

There have been various studies which consider flow on the surface of other sub-

strates, such as those which are either non-cylindrical or non-circular. For example,

flow on topographically patterned cylinders has been studied by authors such as

Sahu and Kumar [146], Li et al. [147], and Parrish [148, 149], whilst flow on ellip-

tical cylinders has been studied by Hunt [150], Li et al. [151], and most recently by

Parrish et al. [149]. Flow on spherical substrates has garnered interest in recent

years and has been studied by various authors such as Takagi and Huppert [103]

(as discussed previously in Section 1.4.3), Lee et al. [152], Balestra et al. [153],

and Kang et al. [154]. As mentioned in Section 1.4.3, one particular study which

is important with regards to the work in this thesis in that by Qin et al. [105] who

theoretically investigated the unsteady flow of a thin film on the outer surface of

a stationary sphere using a special case of the axisymmetric model developed by

Kang et al. [154] in which the sphere is stationary, which incorporates the effects

of viscosity, gravity, and capillarity. Qin et al. [105] derived an asymptotic solu-

tion for the film thickness which shows that its evolution from an initially uniform

film is independent of capillarity at early times. They also performed numerical

simulations of the film thickness, from the results of which they inferred that four

distinct “zones” of behaviour emerge at late times: a “thin-film” zone on the upper

part of the sphere, a quasi-static “pendant-drop” zone on the lower part of the

sphere, and two narrow inner zones that connect them, namely, a “dimple-ring”

zone and a “ridge-ring” zone. Numerical solutions showing the interface evolution

over dimensionless time τ for a fixed Bond number Bo = ρga2/(σh0) are shown

in Figure 1.22. They obtained asymptotic solutions for the film thickness in each

of the zones and sought to match them to those in the neighbouring zones. In

particular, in the thin-film, dimple-ring, and ridge-ring zones they derived and

numerically validated similarity solutions and scaling laws for the film thickness,
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(a) (b)

Figure 1.22: Results of Qin et al. [105] for flow on a sphere showing the interface

evolution for Bo = 24 at times τ = 0, 1, 10, 100, and 1000. (a) Polar plot in which

the film thickness has been exaggerated for illustrative purposes. (b) Semi-log plot

showing the film thickness H as a function of θ. Reproduced from Qin et al. [105],

with permission from Cambridge University Press. Copyright 2020.

whilst in the pendant-drop zone they derived and numerically validated an analyt-

ical solution for the film thickness. We defer further discussion of this key paper

until Chapter 3.

1.5 Capillary-ripple structures

An important feature of some free-surface flows that is relevant to the work con-

tained in this thesis is capillary ripples. Capillary ripples arise in regions in which

a thin film transitions from a near-uniform thin film to a region with larger cur-

vature. They are driven by capillarity and comprise of alternating minima and

maxima (commonly referred to as “dimples” and “ridges”, respectively) with de-

creasing amplitudes and widths, ultimately converging rapidly towards a uniform

thin film.

Capillary ripples have been identified in a wide variety of contexts within free-

surface flows [155]. The pioneering work of Wilson and Jones [156] showed that

an infinite sequence of steady dimples and ridges is necessary to match a thin
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liquid film of uniform thickness flowing down a vertical wall to a quiescent pool

of liquid. Following this, similar structures have been found in a variety of con-

texts including rimming flow [119], levitated drops [157], liquid films or drops on

inclined planes [114, 158, 159], elastic-plated gravity currents [160], and Leiden-

frost levitation of particles [161]. For example, the study by Benilov and Benilov

[159] explored the behavior of drops sliding down inclined planes. Notably, they

observed the emergence of a capillary ripple in the case of larger drops. Figure

1.23 (a) shows a sketch of the asymptotic structure of what the authors termed

the “large-drop solution”. This solution exhibits a distinctive structure: an outer

region representing the main body of the drop is connected to a thin, uniform

“tail” region by means of a capillary ripple which manifests as an infinite sequence

of alternating dimples and ridges. The first dimple and ridge are shown in Zones

1 and 2, respectively, whilst the ellipsis indicates the formally infinite sequence of

dimples and ridges. Figure 1.23 (b) shows the results of numerical calculations by

Hewitt et al. [160] who considered elastic-plated gravity currents, in which a vis-

cous fluid is injected between an elastic sheet and an underlying rigid plane. Their

investigation revealed a series of dimples and ridges forming as the fluid spreads.

The capillary ripples present in their numerical solutions are evident in the upper

inset of Figure 1.23 (b), in which the data is shown on a semi-log scale for clarity.

In Chapter 3, we show that a capillary ripple structure also arises in the context

of draining flow.

1.6 Electrohydrodynamic flows

Electric fields can be utilised to produce electrohydrodynamic instabilities, thereby

offering a means by which to control fluid behaviour. This has led to extensive

scientific investigations [162, 163] owing to its broad range of practical applications.

For example, electrohydrodynamic flows are used in the enhancement of mi-

crofluidic mixing [164–167] and in electrohydrodynamic jet printing (also referred

to as “electrospinning” or “electrospraying”). This advanced additive manufac-

turing technique uses electric fields to create and control jets of charged liquid

droplets or fibres on the microscale and nanoscale [168–170] which enables direct

printing of patterns on flexible substrates, simplifying manufacturing and expand-

ing material choices. As a result, this technology has diverse applications such as

in the manufacturing of flexible circuit boards [171], the production of hydrogels
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(a)

(b)

Figure 1.23: (a) A sketch of the asymptotic structure of the “large-drop solution”

of Benilov and Benilov [159] in which a thick outer region (i.e., the bulk of the drop)

is matched with a thin uniform region by means of a capillary ripple. Reproduced

from Benilov and Benilov [159], with permission from Cambridge University Press.

Copyright 2015. (b) Emergence of capillary ripples in the numerical simulations of

fluid spreading within elastic-plated gravity currents, as investigated by Hewitt et

al. [160]. The lines on the graph represent distinct pressure levels (i.e., isobars),

and the upper inset presents the data on a semi-log scale, whilst the lower inset

shows the region around the first dimple. The dashed red line corresponds to the

authors’ asymptotic predictions for the first three ridges. Reproduced from Hewitt

et al. [160], with permission from Cambridge University Press. Copyright 2014.
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(a) (b)

Figure 1.24: (a) Schematic of the 3D printing of a cylinder. (b) Scanning Electron

Microscope (SEM) micrographs at different magnifications of 3D cylindrical mi-

crostructures manufactured by electrohydrodynamic jet printing. The scale bars

represent 5 µm (left) and 1 µm (right). Reproduced from Liashenko et al. [175],

with permission from Springer Nature. Copyright 2020.

for drug delivery [172], in creating human-like robot eyes [173], and in 3D print-

ing applications, such as in tissue engineering [174]. For example, Figure 1.24 (a)

shows a schematic of a 3D printing process using an electrohydrodynamic jet to

create a polymer cylinder using different inks composed of polyethylene oxide and

silver nanoparticles with an applied voltage between 400 and 3000 V. The resulting

printed structure is shown in Figure 1.24 (b). Typically, the electrohydrodynamic

jet printing process involves the use of a needle to create a jet. However, needle-less

electrospinning techniques have gained popularity due to their higher production

rate [176]. Figure 1.25 (a) displays photographs of needle-less electrospinning us-

ing an applied voltage between 1000 and 2000 V using a cylinder, a disk, and a

ball as fibre generators for a polymer, specifically, polyacrylonitrile (PAN), and

the resulting fibres are shown in Figure 1.25 (b).

Electric fields can generate waves at the interface between two fluids, thereby

leading to increased interfacial area. Hence, electrohydrodynamic flows are useful

in the augmentation of heat and mass transfer rates [177–179]. Falling films are

widely used in industrial processes associated with heat and mass transfer [180]

(for example, in refrigeration [181], petroleum refinement [182], and desalination

[183]). Darabi et al. [184, 185] showed experimentally that electric fields can be

used to enhance evaporation in horizontal tube falling-film evaporators, in which
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(a)

(b)

Figure 1.25: (a) Needle-less electrospinning using different fibre generators. (b)

SEM images of PAN nanofibres electrospun from cylinder (radius 2 mm), disc

(thickness 2 mm) and ball spinnerets, all of which have diameter 80 mm. Repro-

duced from Niu et al. [176], with permission from Informa UK Limited, trading

as Taylor and Francis Group, http://www.tandfonline.com. Copyright 2012.

they succeeded in augmenting the heat transfer from the film by up to four times.

Polymer film patterning (in which microscale and nanoscale structures are in-

troduced onto the surface of a material) has a crucial role in the creation of micro-

processors used in electronic systems such as computers, smartphones, and health-

trackers [186, 187], self-cleaning materials [188], and solar panels [189]. Pattern

formation using electrohydrodynamic instabilities in particular has been studied

extensively by many authors [190–192]. For example, destabilising vertical electric

fields have been used to induce pattern formation in the context of lithographi-

cally induced self-assembly (LISA) and lithographically induced self-construction

(LISC) applications [193–195]. In these methods, a uniform polymer film under-

goes self-assembly, transforming into a periodic array of pillars that connect a lower

substrate and upper electrode in the case of LISA, or into the shape of an upper

topographically structured electrode in the case of LISC. Figures 1.26 (a) and (b)

show schematic representations of the LISA and LISC setups, respectively. Figure

1.26 (a) shows the instability that arises due to the electric field (left) and the

polymer columns that form and span the gap between the two electrodes (right).
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(a)

(b)

Figure 1.26: Schematic representations of a capacitor device set up for (a) LISA

and (b) LISC. Reproduced from Schäffer et al. [194], with permission from Macmil-

lan Magazines Ltd. Copyright 2000.

Figure 1.26 (b) shows that if the top electrode is replaced by a topographically

structured electrode, the instability first occurs where the distance between the

electrodes is smallest (left) which then leads to replication of the upper electrode

pattern (right). Figure 1.27 (a) shows the results of some typical LISA experiments

performed by Schäffer et al. [194] using an applied voltage of 50 V on a uniform

polystyrene film, and Figure 1.27 (b) shows the result of a typical LISC experiment

performed by Li et al. [196] in which an upper electrode patterned with lines of

width 5 µm was mounted facing a polymer film, leading to a replication of the

electrode topography.

This thesis concerns how the dynamics of draining flow and coating flow are

affected, and can be controlled by, an external electric field. Next, in Section 1.6.1,

we outline the model that we use throughout this thesis, which is known as the

“Taylor–Melcher leaky-dielectric model”.

1.6.1 The Taylor–Melcher leaky-dielectric model

To model the electrohydrodynamic flows in this thesis, we use the Taylor–Melcher

leaky-dielectric model. This model was first outlined by Taylor [197] to explain

the steady deformation of a conducting drop, and by Melcher and Taylor [198] in

their subsequent review article on electrohydrodynamic flows. For comprehensive

reviews on the historic and recent advancements in electrohydrodynamic flows,

the reader is referred to Saville [162] and Papageorgiou [163] and the references
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(a) (b)

Figure 1.27: (a) Optical micrographs of polymer patterns resulting from LISA

experiments by Schäffer et al. [194]. The colours arise from the interference of light

and correspond to the local thickness of the polymer structures. Reproduced from

Schäffer et al. [194], with permission from Macmillan Magazines Ltd. Copyright

2000. (b) SEM image of polymer structures resulting from an LISC experiment

performed by Li et al. [196]. Reproduced from Li et al. [196], with permission

from IOP Publishing Ltd. Copyright 2011.
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therein, respectively.

In the leaky-dielectric model, we assume that the characteristic timescale of

electrostatic processes is large compared to that of magnetic processes, hence mag-

netic effects can be neglected in the absence of an external magnetic field. Hence,

an electrostatic approximation of Maxwell’s equations is appropriate [163] (see, for

example, Feynman et al. [199]), namely,

∇× Ei = 0, ∇ · (ϵ0ϵiEi) = qe, (1.6.1)

where Ei denotes the electric field in fluid i, qe = qe(x, t) is the free charge density

(where x is the spatial coordinate vector), ϵi is the relative permittivity of fluid i,

and ϵ0 = 8.85419 × 10−12 F m−1 is the permittivity of free space [200]. The first

equation in (1.6.1) is Faraday’s Law in the absence of magnetic effects, and states

that the electric field is irrotational in the bulk of the fluid. The second equation

in (1.6.1) is Gauss’s Law for electricity, and states that in the bulk of the fluid

the divergence of the electric field is due to local free charge density. The charge

conservation equation is given by [163]

∂qe

∂t
+∇ · (σiEi + qeui) = 0, (1.6.2)

where σiEi + qeui comes from Ohm’s Law, in which σi is the conductivity of fluid

i and ui is the velocity of fluid i. The electrical bulk forces are described by the

Korteweg–Helmholtz force density equation [163],

Fe = qeEi −
1

2
|Ei|2∇(ϵ0ϵi). (1.6.3)

The electric field exerts a force on the fluid through an additional contribution to

the stress tensor, namely, the Maxwell stress tensor M, defined by

M = ϵ0ϵi

(
EiEi −

1

2
|Ei|2I

)
. (1.6.4)

By using (1.6.1) in (1.6.3), Fe can be written in terms of the Maxwell stress tensor

(1.6.4) as

Fe = ∇ ·M. (1.6.5)

Now, under the assumption that the permittivities ϵi and conductivities σi are
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constant, equations (1.6.1) and (1.6.2) combine to yield(
∂

∂t
+ u · ∇

)
qe +

σi
ϵ0ϵi

qe = 0, (1.6.6)

which has solution qe = qe0e
−σi/(ϵ0ϵi)t along characteristic curves (which can be

interpreted as particle trajectories), where qe0 = qe(0), which shows that qe decays

exponentially in time. As the charge relaxation time ϵ0ϵi/σi decreases, the decay

becomes faster and qe approaches zero more quickly. Eventually, all charge will

be depleted from the bulk of the fluid, and will reside only at the interface. As a

consequence, we may take

qe = 0 (1.6.7)

in the bulk of the fluid. Combining (1.6.3), (1.6.5), and (1.6.7) yields

Fe = ∇ ·Me = −1

2
|Ei|2∇ϵ0ϵi. (1.6.8)

Therefore, under the assumption that the permittivity ϵi is constant, the force

density and divergence of the Maxwell stress tensor are both zero in the bulk of

the fluid, i.e.,

Fe = ∇ ·Me = 0. (1.6.9)

Hence, there is only charge present at the interface, meaning that coupling between

hydrodynamics and electrostatics occurs only through the interfacial boundary

conditions, where the role of the Maxwell stresses becomes significant. In addition,

under these conditions, Gauss’s Law (1.6.1) simplifies to

∇ · Ei = 0. (1.6.10)

It can be shown [162, 163] that the tangential components of the electric field are

continuous across the interface, i.e.,

[E · ti]12 = 0, (1.6.11)

where [·]12 represents the jump in the quantity across the interface between fluids

1 and 2, and ti is a tangential vector to the interface. On the other hand, there

is a jump in the normal component of the electric field that is proportional to the
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free charge per unit area at the interface, denoted by Qe = Qe(t), i.e,

[ϵ0ϵiE · n]12 = Qe, (1.6.12)

where n is a normal vector to the interface [163]. Finally, the charge at the interface

is governed by the conservation equation for interfacial charge [163],

∂Qe

∂t
+ u · (∇− n(n · ∇))Qe −Qen · (n · ∇)u = [σiE · n]12 , (1.6.13)

where the second and third terms on the left-hand side represent surface convection

and surface dilation, respectively, and the term on the right-hand side represents

ion conduction through the bulk of the fluid.

In this thesis, we use a special case of the leaky-dielectric model outlined above.

Specifically, we consider the case in which a perfectly conducting fluid is in contact

with a perfect dielectric fluid. We defer discussion of the large simplifications this

makes to the model until Chapter 2. For now, the reader is referred to Case II of

Papageorgiou [163].

Extensive analytical, numerical, and experimental investigations have been

conducted in the field of electrohydrodynamic flows. In what follows, we dis-

cuss some electrohydrodynamic flows on planar and curved substrates in Sections

1.6.2 and 1.6.3, respectively. Note that, in the forthcoming sections, we discuss

only studies that concern the effect of DC electric fields and do not discuss those

which concern AC electric fields. However, the effect of AC electric fields has also

been studied by various authors (see, for example, Roberts and Kumar [201] and

Gambhire and Thaokar [202]).

1.6.2 Flow on planar substrates

Extensive investigations have been carried out on electrohydrodynamic flows on

planar substrates. The dynamics of systems involving leaky-dielectric fluids [203],

highly conductive fluids [204], and cases in which one fluid is a perfect conductor

[205] have all been studied within planar geometries. In this section, we discuss

only two-dimensional flows, but note that studies have also been performed in

three dimensions (see, for example, Verma et al. [206] and Wu et al. [207]).

As discussed earlier, Chou et al. [193] discovered that thin polymer films can

form pillars when subjected to a normal electric field. Since then, there have been
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Figure 1.28: Results of DNS by Papageorgiou [163] showing stabilsation of a

Rayleigh–Taylor instability using a tangential electric field. Solutions are shown

at the final computational time t = 3. The electric field is absent in panel (a) and

is increasing in strength from panels (b) to (e). Reproduced from Papageorgiou

[163], with permission from Annual Reviews. Copyright 2019.

a wealth of studies concerning the stability of electrohydrodynamic flows on planar

substrates. The alignment of an electric field relative to the undisturbed interface

has a substantial effect on the stability; in cases in which it is destabilising, it can

trigger the formation of nonuniform patterns from initially flat liquid films [193,

194], whereas in cases in which it is stabilising, it can serve as a means by which

to suppress, for example, Rayleigh–Taylor or capillary instabilities [163, 208]. For

example, Figure 1.28 shows DNS results of the stabilisation of a Rayleigh–Taylor

instability as the strength of an applied tangential electric field is increased [163,

208].

Linear stability analyses have shown that the presence of even small amounts

of conductivity significantly impacts the dynamics of electrohydrodynamic insta-

bilities. For example, Pease and Russel [209] investigated theoretically the linear

stability of the LISA process and showed that the presence of a very small amount

of conductivity at the interface has a strong destabilising influence, leading to

smaller wavelengths and larger growth rates than the case in which the liquid is

a perfect dielectric. Similarly, Shankar and Sharma [191] considered the situation
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in which both fluids are viscous leaky-dielectric polymer films, and showed that

even a very small amount of conductivity can lead to unstable waves with lengths

that are an order of magnitude smaller than those in perfect dielectric systems.

Li et al. [210] showed that, in the case in which one fluid is a perfect conductor,

a normal electric field is always desabilising. However, in the case in which both

fluids are leaky-dielectrics, it can also be stabilising dependent on the ratios of

the conductivities and permittivities of the fluids. A subsequent study by Uguz

et al. [211] showed that leaky-dielectric systems involving a normal electric field

have wider regions of parameter space that are destabilising in contrast to systems

involving a tangential electric field, which often has a stabilising effect.

The exploration of electrohydrodynamic instabilities within the nonlinear regime

has been facilitated by the use of numerical calculations. For example, Wu and

Chou [212] investigated the LISC and LISA setup in the perfect dielectric case. In

particular, they found that the frequency of the pillars that form depends on the

ratio of capillarity to electrostatic effects. Later, Craster and Matar [203] investi-

gated theoretically a similar system to Shankar and Sharma [191], consisting of two

viscous leaky-dielectric films, and investigated the stability of the interface. They

found that varying the system parameters (namely, the relative permittivities of

the two fluids and the ratios of their conductivities, viscosities, and thicknesses)

affects both the shape and frequency of the pillars that form. In particular, they

found that decreasing the thickness ratio between the two films has a destabilis-

ing effect, resulting in periodic structures with decreasing wavelength. Figure 1.29

shows the steady states of the film thickness h as a function of the streamwise coor-

dinate x for various values of the thickness ratio, denoted in the notation of Craster

and Matar [203] by β. In particular, Figure 1.29 shows that reducing β produces

patterns of ridges with shorter wavelengths and flat tops (top figure), whilst higher

values of β result in ridges with longer wavelengths and rounded tops with larger-

amplitudes (bottom figure). The ridges are separated by droplets near the bottom

electrode, and fewer pillars of greater volume form as β increases. Additionally,

they found that decreasing the viscosity ratio also led to the formation of pillars

whose height is approximately equal to the gap between the electrodes. They also

found that increasing the ratio of the dielectric constants and electric conductivi-

ties resulted in similar pillar structures forming. Ozen et al. [204] considered the

effect of small tangential electric fields on the nonlinear dynamics and rupture of

leaky-dielectric films, finding that rupture is possible but happens asymptotically
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Figure 1.29: Results of numerical calculations by Craster and Matar [203] showing

the effect of varying the ratio β of the thickness of the lower and upper liquid films

on the steady film thickness profiles. Reprinted from Craster and Matar [203],

with the permission of AIP Publishing. Copyright 2005.

at large times. Specifically, they find that the system reaches a quasi-steady state

in which a number of lobes form which are connected by slowly draining trough

regions whose height tends to zero asymptotically in time. Tseluiko and Papa-

georgiou [205] studied theoretically the nonlinear stability of a falling film on an

inclined flat plane under the influence of a normal electric field in the situation

in which the liquid is a perfect conductor. They used analytical and numerical

techniques to find parameter ranges that support nonuniform travelling waves,

time-periodic travelling waves, and complex nonlinear dynamics including chaotic

interfacial oscillations. They found that a sufficiently strong electric field will drive

the system to chaotic oscillations even for Reynolds numbers smaller than the crit-

ical value below which the problem in the absence of an electric field is linearly

stable.

In addition to the stability properties of electrohydrodynamic flows, many au-

thors have also investigated their behaviour and dynamics. For example, Tseluiko

and Pagageorgiou [213] investigated the dynamics of the flow of a liquid film down

a vertical plane under the influence of a normal electric field in the situation in
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which the liquid is a perfect conductor. They performed numerical experiments

which showed that the introduction of a normal electric field leads to distinct

changes in the way the system decays over time. Specifically, they found that the

electric field enhances instabilities, resulting in an increase in the surface area of the

interface, suggesting potential applications in heat or mass transfer enhancement.

Later, Wray et al. [55] studied the two-dimensional and three-dimensional spa-

tiotemporal dynamics of a falling, leaky-dielectric film in the presence of an electric

field. They derived WRIBL models that account for both inertia and second-order

electrostatic effects which they validated against both linear theory and DNS of

the Navier–Stokes equations. Recently, Keith [214] investigated theoretically a

bilayer of liquid and gas contained between two electrodes using both analytical

and numerical techniques. They considered three cases, namely, a perfectly con-

ducting liquid, a highly conductive liquid and gas, and a perfect dielectric liquid

and gas, from which they revealed four characteristic behaviors: “film levelling”

(in which perturbations to the steady state decay), “upper contact” (in which the

interface touches the upper electrode in a finite time), “film thinning” (in which

local minima form where the film progressively thins), and “touchdown” (in which

the interface touches the lower electrode in a finite time). They performed vari-

ous parametric studies which provide insights into these diverse behaviors and the

transitions between them. Figure 1.30 shows the results of one of their parametric

studies performed in (L, d) parameter space (where, in the notation of Keith [214],

L denotes the dimensionless domain length and d denotes the dimensionless dis-

tance between the electrodes) in the case in which the liquid is a perfect conductor.

Notably, Figure 1.30 shows that upper contact occurs for small values of d (i.e.,

when the electrodes are close together, which in turn leads to a stronger electric

field).

In addition to the study by Wray et al. [55], other recent studies that have

used the WRIBL method to study planar flows in the presence of electrostatic

effects include those by Pillai and Narayanan [215, 216] and Tomlin et al. [217].

In particular, Pillai and Narayanan [215, 216] derived WRIBL models governing

the behaviour of perfectly conducting [215] and leaky-dielectric [216] liquid films

when subjected to normal periodic electrostatic forcing. Tomlin et al. [217] derived

a WRIBL model which they used to study the effect of a tangential electric field

on perfect dielectric hanging films (i.e., systems in which liquid hangs from the

underside of a planar substrate), in particular showing that electrostatic effects
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Figure 1.30: Results of the parametric study in (L, d) parameter space by Keith

[214] in the case in which the liquid is a perfect conductor indicating regions in

parameter space corresponding to film levelling (LV), upper contact (UC), and

film thinning (TH) behaviours. Reproduced from Keith [214] with permission.

Copyright 2021.

can suppress dripping. In general, the WRIBL models have been shown to exhibit

strong agreement with linear stability analyses derived from the Navier–Stokes

equations, accurately predicting the instability threshold, in addition to yielding

good qualitative agreement with DNS calculations.

1.6.3 Flow on cylindrical substrates

There have been significantly fewer studies regarding electrohydrodynamic flows

on cylindrical substrates, and none which consider azimuthal variations in the

electric potential [163].

Liquid films falling on the inner or outer surface of a vertical cylinder naturally

experience a Rayleigh–Plateau instability which electric fields have the potential

to control or suppress [163]. For example, Wray et al. [218–220] investigated the

effect of a radial electric field generated by a setup involving concentric cylindrical

electrodes. Their investigation focused on the behavior of a thin film of liquid flow-

ing under the influence of gravity down the outer surface of a vertical cylindrical

electrode. Wray et al. [218] explored the linear stability and nonlinear dynamics
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(a) (b) (c)

Figure 1.31: Results of calculations by Wray et al. [218] showing the dispersion

curves (top) and respective simulations of their governing equations (bottom) for

(a) stability in the presence of a stabilising electric field, (b) instability in the

absence of an electric field, and (c) heightened instability in the presence of a

destabilising electric field. Reproduced from Wray et al. [218], with permission

from Oxford University Press. Copyright 2012.

of a thin leaky-dielectric film under the influence of a normal electric field. Their

governing equation builds upon existing models, incorporating electrostatic effects

from both normal and tangential Maxwell stresses. They showed that the electric

field can either stabilise or destabilise the system, and that it is possible to use the

electric field to drive the flow towards a steady state or to increase the amplitude

of the nonlinear travelling waves. Figure 1.31 depicts the behavior of the system

under different strengths of the tangential Maxwell stress. In Figure 1.31 (a),

a stabilising electric field leads to the gradual decay of the imposed disturbance

over time, indicating linear stability. On the other hand, Figures 1.31 (b) and (c)

show unstable conditions in the absence of an electric field and in the presence

of a destabilising electric field, respectively, resulting in the emergence of nonlin-

ear travelling waves. These waves exhibit interesting features such as wavefront

coalescence and splitting. A destabilising electric field, such as that shown in
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Figure 1.31 (c), amplifies these phenomena, giving rise to higher-amplitude trav-

elling wave structures and a broader spreading of wavefronts compared to Figure

1.31 (b). Later, Wray et al. [219] found that three behaviours can occur depend-

ing on the system parameters: a stable regime in which the interface is uniform,

nonlinear steady-state travelling waves, and complex droplet-like behaviour that

does not reach a steady state. They performed a parametric investigation to de-

termine where in parameter space each of the behaviours occur. Finally, Wray et

al. [220] carried out a linear stability analysis and showed that nonaxisymmetric

modes become more dominant as the electric field strength is increased and that

the interface either remains spatially uniform or exhibits either axisymmetric or

nonaxisymmetric travelling waves dependent on both the strength of the electric

field and the position of the outer electrode. In addition, they showed that the

natural instability caused by the azimuthal curvature in cylindrical flows can be

either enhanced or suppressed by varying the potential at the outer electrode.

It has been shown that the application of a radial electric field in a cylin-

drical tube with a two-fluid core-annular arrangement has a substantial impact

on capillary breakup, leading to the liquid-gas interface making contact with the

tube wall within a finite time [221, 222]. For example, Wang and Papageorgiou

[195] investigated the (axisymmetric) situation in which two viscous fluids are

contained between two concentric electrodes (i.e., the cylindrical analogue of the

LISA/LISC setup). They found that electrostatic effects can lead to finite-time

and infinite-time singularities in the system in which the interface touches the

inner or outer electrode. In particular, they found that for leaky-dielectrics finite-

time contact can occur at either electrode, whilst two-sided contact can occur for

perfect dielectrics. Figure 1.32 shows the results of the parametric study by Wang

and Papageorgiou [195] in (Q,R) parameter space (where, in their notation, Q

denotes the ratio of the fluid permittivities and R denotes the ratio of the fluid

conductivities) for a fixed electric field strength Eb = ϵ2ϕ
2
1/(σd) = 0.3, where ϵ2

is the dimensional permittivity of the outer fluid (i.e., the fluid that is initially in

contact with the outer electrode), ϕ1 is the dimensional voltage potential of the

inner electrode, and d is the dimensional distance between the inner and outer

electrodes. In the absence of an electric field, the interface eventually touches the

nearest wall due to capillary instabilities. Under certain initial circumstances, the

interface can make contact with both the inner and outer walls of the cylindrical

annulus simultaneously, resulting in the formation of pillar-like rings spanning the
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Figure 1.32: Results of the parametric study by Wang and Papageorgiou [195] in

(Q,R) parameter space for Eb = 0.3. Symbols represent finite-time singular solu-

tions touching the outer (+) and inner (×) tube walls and film draining solutions

observed at the inner (circles) and outer (triangles) tube walls. The insets display

the interface for Q = 1 with varying R. Reproduced from Wang and Papageorgiou

[195], with permission from Cambridge University Press. Copyright 2018.

entire annular space. In the presence of an electric field, Figure 1.32 shows that

for small R (i.e., when the outer layer is more conductive than the inner layer), a

rapid spike finite-time singularity solution forms, touching the outer wall, whilst

for large R (i.e., when the inner layer is more conductive than the outer layer), a

solution touches the inner wall.

Note that the discussions throughout this section highlight a particular omis-

sion from the literature, namely, that there have been no studies on the effect of

an electric field on the coating flow system (or indeed, in any horizontal cylindrical

geometry). In this thesis, we endeavour to close this gap by considering coating

and draining flow in the presence of an electric field.

1.7 Control of liquid films

Controlling complex systems poses a significant challenge across a wide range of

fields, such as in the design of airfoils for wind turbines [223], the programming

of autonomous vehicles [224, 225], stabilising the flight of atmospheric reentry
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vehicles [226], and optimising financial resources in fund management [227].

The control of liquid films in particular has received significant attention by

various authors [228, 229], owing to its wealth of industrial applications. Of par-

ticular relevance to the work contained in this thesis is the control of liquid films

coating solid substrates. In such systems, it is often desirable to control the inter-

face to highly corrugated shapes, for example. Indeed, this proved to be valuable

in many of the examples of electrohydrodynamic flows that we discussed earlier

in Section 1.6, such as in the augmentation of heat and mass transfer rates [178,

179], and in pattern formation [188, 189, 193]. On the other hand, it is often

necessary to control the interface towards a flat state in order to achieve specific

functional, aesthetic, or performance-related requirements, such as applying anti-

reflection coatings to glass lenses [230], anti-corrosion coatings to aircraft [231],

and antibacterial coatings to medical devices such as surgical instruments [232].

Control calculations of complex systems can be computationally expensive due

to the intricate computations that are required which are often significantly more

complex than those involved in determining the dynamics of the system. In ad-

dition, this complexity is further exacerbated by the need for a large number of

computations (see Section 1.7.2). Therefore, it is often advantageous to instead

perform such calculations on reduced-order models such as those discussed in Sec-

tion 1.2 as they are, in general, significantly faster to compute, whilst still capturing

the essential dynamics of the system.

Control mechanisms can generally be categorised as either “passive” or “ac-

tive”. Passive control involves using fixed elements or materials and does not rely

on feedback or real-time interventions, but rather on the intrinsic properties of the

materials or structures. Reduced-order models have been generalised to include

effects that can be used as passive control mechanisms, such as the incorporation

of surfactants [233] and the introduction of substrate topography [229]. Passive

control may be effective for certain applications, but it lacks the ability to actively

adapt to changing conditions. Hence, in this thesis, we focus on active control, in

which real-time feedback and active interventions are used to manipulate system

behavior for desired outcomes. There are two forms of active control that we will

focus on: “feedback control” and “optimal control”, which we discuss in Sections

1.7.1 and 1.7.2, respectively.
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1.7.1 Feedback control

Feedback control is a control methodology that involves tracking the state of the

system in real time in order to adjust control actions and guide the system towards

a desired state. This process involves using information about the behaviour of

the system in order to shape and refine the control function. The control function

includes control actuators (i.e., localised sources of control or manipulation that

can exert an external influence on the system dynamics) and algorithms determin-

ing how the actuators should be adjusted based on the feedback information. In

the context of fluid flows, this could involve tracking features such as the interface

shape or the velocity [68].

A specific kind of feedback control, often referred to as “feedback control with

full state observations” (or “full-state feedback control”), assumes that the entire

state of the system is observable and known and hence can provide highly accurate

and effective control. However, this approach requires detailed measurements of all

relevant variables across the entire system, which, in general, will not be feasible in

an experimental setup. In comparison, another kind of feedback control, referred

to as “proportional control” is relatively straightforward to implement and is ap-

plicable when only limited information about the system is available [68]. Often,

proportional control involves pairing point actuators with “observers”. Observers

are systems that monitor the local behaviour of the interface and, using input data

from sensors or measurement devices, generate estimates of the unmeasured states

of the system. The actuator corresponding to each observer applies a force that is

proportional to the difference between the observed state and the desired state.

Feedback control in the context of fluid flows has been considered by various

authors in both theoretical and experimental settings [234–237]. Reduced-order

models have been generalised to include effects that can be used as feedback con-

trol mechanisms, such as wall heating [67, 238] and same-fluid mass injection or

extraction (often referred to as “blowing” and “suction”) [64, 65, 68, 239]. In

addition, some studies have used actuation mechanisms which are left unspecified

[46], which we shall refer to as “abstract” actuation mechanisms.

For example, the stabilisation of the uniform film solution of the Kuramoto–

Sivashinsky equation (1.2.6) (which was discussed earlier in Section 1.2.3) using

feedback controls has been considered by various authors [240–242]. Gomes et

al. [46] applied feedback control to the Kuramoto–Sivashinsky equation (1.2.6) in



Chapter 1: Introduction 83

the presence of electrostatic effects (caused by the application of a normal elec-

tric field) and dispersion using an abstract actuation mechanism. They controlled

the film towards various states, including travelling wave solutions on long do-

mains (where chaotic behaviour is otherwise observed) and stabilised nonuniform

unstable steady states. They proved that any possible solution to the Kuramoto–

Sivashinsky equation can be stabilised using a finite number of point actuated

controls whose strength depends only on the difference between the observed and

desired interface shapes. They found that the number of control actuators de-

pends only on the domain length and, furthermore, that the controls are robust

to uncertainty in the problem parameters, as well as to small changes in the num-

ber of controls used. An example of their results is shown in Figure 1.33, which

shows feedback control of the unstable Kuramoto–Sivashinsky equation (1.2.6) to-

wards a stabilised travelling wave solution in the absence of an electric field but

in the presence of dispersive effects [46]. Recently, Tomlin and Gomes [47] in-

vestigated feedback control strategies for stabilising interface shapes governed by

a multi-dimensional Kuramoto–Sivashinsky equation (i.e., a version of equation

(1.2.6) adapted to include two spatial dimensions) in which the control actuators

are sources of same-fluid blowing and suction at specific locations on the substrate

wall. They considered both proportional control and full-state feedback control.

Through proportional control, they found that by adjusting the strength, number,

and arrangement of the actuators they could stabilise desired states, such as steady

states or travelling wave solutions, in addition to preventing the unbounded growth

of the interface which occurs when the film hangs beneath the substrate. They

also showed that equally spaced actuator arrangements yielded the most favorable

control performance. They compared the outcomes of proportional control with

those of full-state feedback control, finding that the latter was more effective in

stabilising non-trivial interface shapes.

Thompson et al. [64] derived models based on the Benney equation (1.2.3) and

the first-order WRIBL model (1.2.9) and (1.2.24) which incorporated the effects

of same-fluid blowing and suction. In a companion paper, using these models,

Thompson et al. [65] investigated feedback control of the system by using same-

fluid blowing and suction as control mechanisms and controlling based on either full

or partial observations of the interface height. They found that the film behaviour

can be successfully controlled, in particular, showing that this approach enables

the stabilisation of various states, including a uniform film, nonuniform travelling
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Figure 1.33: Results of control calculations by Gomes et al. [46] showing feed-

back control of the unstable Kuramoto–Sivashinsky equation (1.2.6) towards

a stabilised travelling wave solution at times (left-to-right and top-to-bottom)

t = 5, 20, 30, 60, 90, and 200. The dashed black lines represent the desired travelling

wave solution and the solid red lines represent the controlled solution. Reproduced

from Gomes et al. [46], with permission from Oxford University Press on behalf

of the Institute of Mathematics and its Applications. Copyright 2017.
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Figure 1.34: Controlled flow fields calculated from the WRIBL model of Thompson

et al. [65] showing the interface position (solid black) the magnitude of the control

(solid red), and the substrate position (dashed blue). Blowing and suction controls

are applied at time t = 100. Reprinted from Thompson et al. [65], with the

permission of AIP Publishing. Copyright 2016.

waves, and steady states. For example, Figure 1.34 shows the successful control

(using their WRIBL model) of a travelling wave towards a uniform film using

same-fluid blowing and suction, which is turned on at time t = 100. At this time,

the magnitude of the controls is the largest. At later times, the interface is closer

to a uniform state, hence smaller controls are required.

Recently, Samoilova and Nepomnyashchy [238] investigated the use of nonlinear

feedback control in altering the dynamics of the oscillatory Marangoni instability

within a heated thin liquid film on a planar substrate. Their control methodology

involved monitoring temperature fluctuations at the interface and, in response,

altering the local heat flux applied to the solid substrate. They showed that they

were able to mitigate the effects of surface-tension-driven fluid motion and hence

were successful in expanding the range of stability for distinct convective config-

urations. Moreover, they showed that the implementation of nonlinear feedback

control led to the stabilisation of convective patterns, including stabilising standing

waves.

In general, feedback control, although useful in terms of computational cost

and success, responds primarily to the current state of the system and may not



Chapter 1: Introduction 86

fully consider the long-term objectives. A more comprehensive and robust (albeit

more computationally expensive) alternative is offered by optimal control, which

we discuss below.

1.7.2 Optimal control

Optimal control is a control methodology in which the aim is to minimise some

cost functional with respect to the control. Specifically, the cost functional is the

sum of the “deviation measure” (i.e., a measure of the deviation of the observed

system state from the desired system state) and the cost of the control (i.e., a

measure of the energy spent on the controls). The cost functional is constrained

by a system of PDEs which generally constitute the governing equations of the

system (for example, the relevant reduced-order model governing a fluid system

along with its respective boundary conditions). In this section, we discuss some

of the background theory surrounding optimal control in Sections 1.7.2.1– 1.7.2.4

before discussing some of the existing literature concerning the optimal control of

fluid systems in Section 1.7.2.5.

1.7.2.1 The method of Lagrange multipliers

In general, optimisation problems are classified into two main categories: con-

strained problems and unconstrained problems. Unconstrained optimisation prob-

lems focus on minimising or maximising a function without any restrictions. For

example, in the case of minimising some function F = F (x, t) (which depends on

some control variable c = c(x, t)) with respect to the control c, this is expressed as

min
c(x,t)

F (x, t). (1.7.1)

On the other hand, constrained optimisation problems focus on minimising or

maximising a function under specific constraints. For example, in the case of

minimising F with respect to c subject to the constraints gi = 0 (for i = 1, . . . , N),

this is expressed as

min
c(x,t)

F (x, t) subject to gi(yi(x, t)) = 0 for i = 1, . . . , N, (1.7.2)
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where yi (for i = 1, . . . , N) are the solution variables of the governing equations

gi = 0 (for i = 1, . . . , N). Solving constrained optimisation problems is substan-

tially more difficult than solving unconstrained optimisation problems. Hence, in

order to solve the optimisation problem (1.7.2), it is often desirable to recast such

problems into an unconstrained formulation. In order to do this, we use the method

of Lagrange multipliers. This method allows us to incorporate constraints into the

cost function (i.e., the function to be minimised) by introducing the Lagrangian

L(x, t, λ) = F (x, t)−
N∑
i=1

λi(x, t)gi(yi(x, t)), (1.7.3)

where λi (for i = 1, . . . , N) are Lagrange multipliers which enforce the constraints

gi = 0 (for i = 1, . . . , N). Instead of directly minimising F (x, t), we minimise the

Lagrangian L(x, t, λ). Hence, the optimisation problem becomes

min
c(x,t)

L(x, t, λ), (1.7.4)

which is unconstrained and can therefore be solved using unconstrained optimisa-

tion methods.

In this thesis, we use what is sometimes referred to as the “adjoint method”

[228] which has been successfully used by various authors in the context of the

optimal control of fluid flows [229, 243, 244]. We briefly outline the adjoint method

below. Specifically, our implementation of the adjoint method involves the method

of steepest descent and the conjugate gradient method [245, 246] in conjunction

with the golden section search method [247], which we outline in Sections 1.7.2.2–

1.7.2.4. Note that a full account of the adjoint method will be given in the context

of our problem in Chapter 6.

1.7.2.2 The method of steepest descent

To find the minimum of L (1.7.4), we use the method of steepest descent. Specif-

ically, the method of steepest descent is an iterative optimisation technique that

seeks the minimum of a function by taking steps away from some initial choice

of control c0 = c0(x, t) in the direction in which L (1.7.4) decreases most steeply

with respect to the control c (which we shall refer to hereafter as the “descent

direction”) [246]. In particular, the descent direction is given by the negative of
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the gradient of L with respect to c at each iteration, denoted by

gk = −∂Lk

∂ck
, (1.7.5)

at iteration k, where we take derivatives on functional spaces to be Fréchet deriva-

tives [243, 244] (we discuss this point later in Section 6.2.1). However, in order

to compute (1.7.5) at each iteration, we must calculate the values of the solution

variables yi (for i = 1, . . . , N) and the Lagrange multipliers λi (for i = 1, . . . , N),

the latter of which take the role of adjoint variables in this context. Differentiating

the Lagrangian (1.7.3) with respect to the λi yields the governing PDEs gi = 0

(for i = 1, . . . , N), and differentiating the Lagrangian (1.7.3) with respect to the

yi yields equations for the λi, which are referred to in this context as “adjoint

equations”. The updated value of the control c at the next iteration k+1 is given

by

ck+1 = ck + αkgk, (1.7.6)

where ck is the current value of c at iteration k and αk is the current step size

taken in the direction of the gradient (1.7.5) at iteration k. The step size αk can

be determined by a line search. In this thesis, we use a golden section search

method to determine the optimal step size, which we discuss in Section 1.7.2.4.

Finally, the updated gradient at the next iteration k + 1,

gk+1 = −∂Lk+1

∂ck+1

, (1.7.7)

is evaluated and the process is iterated until convergence is achieved within some

specified tolerance (for example, the norm of the gradient being less than some

small value).

The method of steepest descent offers a high degree of simplicity with fast

iterations. In general, the gradient descent method is guaranteed to converge

to the global minimum if the function to be minimised is convex [246] (since

convex functions have the property that all local minima are also global minima).

However, if the function is non-convex (as is often the case in complex optimisation

problems), although the method is still guaranteed to converge to a local minimum,

this is not guaranteed to also be the global minimum.

From the discussions above, we note that active optimal control using the ad-

joint method involves solving the (highly nonlinear) governing PDEs and respective
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adjoint equations many times. Hence, this approach is computationally expensive,

but is nevertheless much more accurate than proportional control and, moreover,

satisfies an optimality constraint.

1.7.2.3 The nonlinear conjugate gradient method

Conjugate gradient methods for solving nonlinear unconstrained optimisation prob-

lems modify the method of steepest descent by modifying the descent direction

based on the descent direction from the previous step. In addition, after the first

step, the step direction is constrained to be “conjugate” (i.e., orthogonal) to the

direction most recently travelled, which leads to improved efficiency. This process

is iterated, each time modifying the descent direction to make it conjugate with

the previous direction. This can be expressed as follows,

dk = gk + βkdk−1, (1.7.8)

where gk is defined by (1.7.5), dk and dk−1 are the current and previous values of

the descent direction d at iterations k and k − 1, respectively, and βk is chosen

to ensure that gk+1 and gk become orthogonal, and can be determined by various

formulae whose behaviour is difficult to anticipate, and the results are essentially

based on experience. This ultimately yields different variations of the conjugate

gradient method. The most commonly used (and often “default”) formula is the

Fletcher–Reeves formula [248],

βFR
k =

gTk+1gk+1

gTk gk
, (1.7.9)

where the superscript T denotes the transpose. The choice of βk can significantly

affect the convergence behavior of the algorithm as it impacts how the method

updates the search direction in each iteration. Indeed, whilst the Fletcher–Reeves

formula (1.7.9) has good convergence properties, it may exhibit slower convergence

for certain types of functions [249].

Widely used alternative variations of βk include the Hestenes–Stiefel method

[250], the Dai–Yuan method [251], and the Polak–Ribière method [245]. In this
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thesis, we often use the Polak–Ribière method, in which βk is given by [252]

βPR
k =

gTk+1(gk+1 − gk)

gTk gk
. (1.7.10)

The Polak–Ribière formula (1.7.10) takes into account the improvement in the gra-

dient direction in the current iteration compared to that in the previous iteration,

which can lead to faster convergence and hence better computational performance

for certain types of functions, especially those with varying curvature. However, it

must be noted that the derivation of the Polak–Ribière formula (1.7.10) is heuristic

in the sense that it is not guaranteed to be convergent in general, hence, there is

no guarantee that it will work well for any particular function [245, 249]. However,

it is often found to work very well in practice.

Finally, the value of the control c is updated and is given by

ck+1 = ck + αkdk, (1.7.11)

where dk is given by (1.7.8) and, as in the steepest descent method described in

Section 1.7.2.2, αk is the current step size. Finally, as before, the updated value

of the gradient (1.7.7) is computed, and the iterative process described above is

repeated until convergence is achieved.

1.7.2.4 The golden section search method

Once a descent direction has been determined, the optimal step size in that direc-

tion must be calculated. There are various algorithms that could be used, such

as the secant method, Brent’s method, or an interval bisection method. As men-

tioned in Section 1.7.2.2, in this thesis, we use a golden section search method to

determine the optimal step size αk.

The golden section search method is an optimisation algorithm introduced by

Kiefer [247] that is designed to find an extremum (i.e., a minimum or maximum

point) of some function f(x) within a given interval, [a, b]. The method is as

follows: let f(x) be a function to be minimised within the interval [a, b], as shown

in Figure 1.35. The first step of the first iteration is to calculate two points within

the interval [a, b], denoted by a1 and b1, defined by [253]

a1 = ca+ (1− c)b, b1 = (1− c)a+ cb, (1.7.12)
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Figure 1.35: A schematic of the first step in the golden section search method in

finding a local minimum x∗.

where c = (−1+
√
5)/2, such that they divide the interval into three sub-intervals

[a, a1], [a1, b1], and [b1, b], where the lengths of each sub-interval, denoted A, C,

and B, respectively, satisfy

A = B, (1.7.13)

C +B

A
= φ, (1.7.14)

where φ = 1/c is the golden ratio, φ ≈ 1.618. Maintaining this ratio means

that the method converges quickly because it ensures that the ratio between the

remaining and discarded intervals is the same in each iteration. Using another

ratio would not guarantee this balance, potentially leading to slower convergence.

In particular, the convergence rate of the golden section search algorithm is φN ,

where N is the number of iterations, and it was shown by Shao et al. [254] that

for N = 15 the search interval will be decreased to less than 0.1% of its original

length. The second step is to evaluate the function at these points (i.e., to evaluate

f(a1) and f(b1)) from which we can determine if a minimum or a maximum lies

between these points and hence update the search. In this case, f(a1) < f(b1),

therefore the minimum must lie to the left-hand side of b1, i.e., in the interval

[a, b1] (note that if f(b1) < f(a1), the minimum would lie to the right-hand side of

a1, i.e., in the interval [a1, b]).

Assuming without loss of generality that we are in the case in which f(a1) <

f(b1), on the second iteration, the first step is again to calculate two new points

a2 and b2 in the new interval [a, b1] to form a new search interval. We know that
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a1 lies in the interval, so we choose b2 = a1 and calculate a2 = ca + (1 − c)b1.

The second step is to evaluate the function at these points. If, for example, we

find that f(a2) > f(b2), then the minimum must lie to the right-hand side of

a2, i.e., in the interval [a2, b1]. Note that since b2 is equal to a1, we have already

computed the value of f(b2) during the previous step. This observation is crucial as

it contributes to the computational efficiency of this method, further highlighting

why it is favorable for use in complex problems. The interval is updated iteratively

in this manner until the interval is smaller than some specified tolerance in which

case the algorithm has converged.

1.7.2.5 Existing studies

The use of optimal control in the context of fluid flows has been investigated by a

number of authors in various contexts [228, 229], including the identification of op-

timal heating strategies to actively suppress evaporative instabilities [255] and the

identification of the optimal substrate shape to control the interface of a thin liquid

film [256]. For example, in the same work that was discussed earlier in Section

1.7.1, Gomes et al. [46] also applied optimal control to the Kuramoto–Sivashinsky

equation (1.2.6) in the presence of dispersion and electrostatic effects. They devel-

oped a cost functional to be minimised in order to optimise the placement of the

control actuators with the aim of stabilising nonuniform unstable steady states.

They proved the existence of optimal distributed controls and presented compu-

tational algorithms to find these controls. In addition, they conducted numerical

simulations in order to validate the effectiveness of their optimal control approach

and showed that the control is robust with respect to changes or uncertainty in the

equation parameters (i.e., the viscosity coefficient, the dispersion coefficient, and

the electric field strength), in the sense that the optimal controls do not change

much as the parameters are varied. Later, Tomlin et al. [257] considered a similar

situation, this time in three dimensions in the absence of dispersion and electro-

static effects, whilst incorporating the effects of same-fluid blowing and suction for

use as control mechanisms. In particular, they considered a more general control

approach in which actuation is not restricted to a finite set of points but is spatially

distributed across the substrate. They investigated optimal control strategies and,

through numerical simulations and analyses, found that that the controls are ef-

fective in suppressing instabilities and chaos, demonstrating potential applications
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for stabilising fluid flows and preventing undesirable phenomena such as dripping.

One of the key papers with regards to the work in this thesis is that by Boujo

and Sellier [243] who investigated the optimal control of the dynamics of a so-

lidifying thin liquid film on a solid flat plane in the context of pancake making.

Whilst the physical system considered in this thesis differs from that studied by

Boujo and Sellier [243], here we nonetheless devote significant attention to their

work due to their comprehensive explanation of applying optimal control to fluid

flow on a solid substrate. In their problem, the motion of the liquid film is in-

fluenced by factors such as temperature-dependent viscosity and changing gravity

forces dependent on the orientation of the surface. Their aim was to optimise

the uniform spreading of the liquid layer during its solidification process by con-

trolling the movement of the underlying surface. They consider two methods for

control: the first undergoes harmonic motion, for which Boujo and Sellier [243]

determined the optimal parameters through the use of Monte Carlo simulations

[258]. However, this approach is very computationally expensive whilst providing

only modest improvement in uniformity over a stationary surface. A more efficient

second approach is used, which treats the problem as an optimal control problem

which consists of minimising a cost functional (denoted by J (t)) which is the sum

of the deviation of the film thickness from uniformity (denoted by U(t)) and the

associated cost of moving the surface (which is scaled by a parameter referred to

as the “control weight”, denoted in the notation of Boujo and Sellier [243] by γ,

which imposes how strongly use of the control should be penalised). The min-

imisation problem is constrained by the governing PDEs and is solved using the

conjugate gradient method. By varying the control weight, Boujo and Sellier [243]

investigated how different balances between uniformity improvement and cost af-

fect the optimisation results. Figure 1.36 shows optimisation results for different

values of γ, showing the effect on J (tf) and U(tf) (where tf is the final time).

Small γ values indicate cheaper controls which, in this case, yield greater unifor-

mity improvement, whilst higher γ values reflect more expensive controls which

yield smaller uniformity improvement. In general, adjoint-based optimisation sig-

nificantly improves uniformity, remaining more effective than uncontrolled cases

up to γ ≈ 10−5. In general, they showed that optimal control can result in an up

to 83% improvement in uniformity compared to the uncontrolled case, finding that

the identified optimal controls mirror intuitive motions used in pancake making.

Figure 1.37 shows the time evolution of the film thickness for γ = 10−8: initially,
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(a) (b)

Figure 1.36: Results of optimal control calculations by Boujo and Sellier [243]

showing (a) the cost functional J (tf) and (b) the corresponding uniformity measure

U(tf) at the final time t = tf plotted as functions of the control weight γ. Reprinted

with permission from Boujo and Sellier [243]. Copyright 2019 by the American

Physical Society.

the liquid is quickly pushed to the outer edge of the disk, thinning at the center;

subsequent rotations distribute the liquid across the disk, enhancing uniformity,

but to a lesser extent due to increased viscosity.

Recently, Wray et al. [244] investigated the optimal control of the Navier–

Stokes equations governing a two-dimensional multi-phase flow involving a thin

liquid film hanging beneath an inclined plane. An electric field is induced within

the gas phase via a parallel electrode configuration, resulting in Maxwell stresses

at the interface, which is used as the control mechanism. They use a model

predictive control (MPC) framework, which consists of finding an updated control

for a system at discrete time points during its evolution. Specifically, they perform

optimal control calculations on their simplified second-order WRIBL model in

order to yield the control inputs, whilst using DNS to re-initialise their WRIBL

model (i.e., DNS is used to provide the measurements for the height h and flux

q for use as the “initial” conditions), thereby enabling dynamic adjustments to

the electric potential function. They showed that this method successfully yields

precise control of fluid interface shapes towards a variety of desired target shapes.

For example, Figure 1.38 shows the successful MPC of the fluid interface calculated

from DNS using their WRIBL model towards (a), (d), (g) a uniform shape, (b),
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Figure 1.37: Results of the study by Boujo and Sellier [243] showing the time

evolution of the film thickness for γ = 10−8 from time t = 0 s to t = 30.03 s.

Arrows represent the direction of the projection of the gravity vector on the surface

plane, indicating the orientation of the substrate. Reprinted with permission from

Boujo and Sellier [243]. Copyright 2019 by the American Physical Society.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.38: Results of calculations by Wray et al. [244] showing MPC of DNS

using their WRIBL model towards (a), (d), (g) a uniform shape, (b), (e), (h) a

“smoothed top-hat” shape, and (c), (f), (i) a “W-like” shape. (a), (b), (c) DNS

interfaces over time. Highlighted in red is time t = 0.4tf where tf is the final time.

(d), (e), (f) DNS interface (solid) and target shape (dashed) at time t = 0.4tf. (g),

(h), (i) Log of the error over time calculated from their WRIBL model (dashed) and

DNS (solid). The symbols indicate control recomputations. The vertical dotted

line shows time t = 0.4tf. Reprinted with permission from Wray et al. [244].

Copyright 2019 by the American Physical Society.

(e), (h) a “smoothed top-hat” shape, and (c), (f), (i) a “W-like” shape. The

success of the control is particularly evident from Figures 1.38 (d)–(f), which show

the DNS interface (solid) and target shape (dashed) at time t = 0.4tf where tf

is the final time (also shown as the solid red lines in Figures 1.38 (a)–(c)). The

symbols in Figures 1.38 (g)–(i) indicate times at which the control was recomputed.

Wray et al. [244] found that controlling the flow towards a flat state required a

small number of recomputations. In particular, they found that only five initial

recomputations are required to bring the interfacial (DNS) height close to a flat

state, and only one more is required later. However, more recomputations are

required for the more complex target shapes as the DNS andWRIBL model diverge
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more rapidly.

The discussions in this section and those in Section 1.7.1 highlight a distinct

omission from the existing literature on the active control of fluid flows that part of

this thesis seeks to address, namely, that there have been no studies on controlling

liquid film flows on a horizontal cylinder using an electric field.

1.8 Overview of thesis

This thesis concerns the mathematical modelling, analysis, and control of elec-

trohydrodynamic flows on a horizontal circular cylinder. The primary objective

of this thesis is twofold: firstly, to model and investigate the dynamics of a two-

dimensional film of a perfectly conducting Newtonian liquid coating a horizontal

circular electrode both in the cases in which the film is thin and in which it is thick,

and secondly, to show that the dynamics of the flow can be successfully controlled

using an electric field.

In Chapter 2, we introduce the system that we will be investigating, in partic-

ular obtaining and nondimensionalising the relevant governing equations and their

respective boundary conditions. We derive two reduced-order models describing

the flow: one that is valid for thin films and one that is valid for thick films. The

thin-film system is analysed in Chapters 3 and 4, and the thick-film system is

analysed in Chapters 5 and 6.

In Chapter 3, we consider thin-film draining flow in the absence of an electric

field. We derive a complete description of the flow, both as an essential precursor

to the thin-film electrostatic case considered in Chapter 4 and as an interesting

(yet previously unsolved) problem in its own right.

In Chapter 4, we consider thin-film coating flow in the presence of an electric

field. Motivated by the aim of understanding how electrostatic effects influence the

dynamics of the well-understood thin-film coating flow system, we perform various

analytical and numerical analyses on the model. In particular, we perform linear

stability analyses on two analytically tractable special cases, a numerical paramet-

ric study, and a multiple-timescale analysis in order to elucidate the large-time

dynamics of the system, as well as investigating the special case of electrostatic

draining flow.

In Chapter 5, we consider thick-film coating flow in the presence of an electric

field. The thick-film model is investigated numerically to reveal the evolution of



Chapter 1: Introduction 98

the film.

In Chapter 6, both feedback and optimal control of thick-film coating flow are

considered. In particular, we show that the electric field can be successfully used

as a mechanism by which to control the film towards complex target shapes.

In Chapter 7, we give our concluding remarks. In particular, we provide a

summary of the analyses and main results within each chapter and discuss possible

avenues for further study.

1.9 Presentations and publications

The results contained in this thesis have been published, or are in preparation for

publication, in appropriate peer-reviewed journals and have been presented by me

at various national and international meetings and conferences.

Aspects of the background theory surrounding the problem considered in this

thesis detailed in Chapter 1 were presented in the form of a poster presentation at

the Carnegie PhD Scholars’ Gathering 2020 held in Dundee, UK.

The results detailed in Chapter 3 have recently been published in Physical

Review Fluids (McKinlay et al. [259]) and were presented orally at the 63rd British

Applied Mathematics Colloquium 2022 held in Loughborough, UK and at the 14th

European Fluid Mechanics Conference 2022 held in Athens, Greece.

The results detailed in the first half of Chapter 2 and those in Chapter 4

are currently being prepared for publication. Early versions of these results were

presented orally at the Joint Meeting of the British Mathematical Colloquium and

the British Applied Mathematics Colloquium 2021 held in Glasgow, UK (virtual

attendance) and at the 14th European Coating Symposium 2021 held in Brussels,

Belgium (virtual attendance). More recent versions of these results were presented

at the 63rd British Applied Mathematics Colloquium 2022 held in Loughborough,

UK and at the 14th European Fluid Mechanics Conference 2022 held in Athens,

Greece.

The results detailed in the second half of Chapter 2 and those in Chapters

5 and 6 are currently also being prepared for publication. Early versions of the

results presented in Chapter 5 were presented orally at the 63rd British Applied

Mathematics Colloquium 2022 held in Loughborough, UK and at the 14th Eu-

ropean Fluid Mechanics Conference 2022 held in Athens, Greece. More recent

versions of these results along with those in Chapter 6 were presented orally at the
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75th Annual Meeting of the American Physical Society Division of Fluid Dynamics

2022 held in Indianapolis, USA.



Chapter 2

Modelling

In this chapter, we begin in Section 2.1 by introducing the system that we will

consider, in particular obtaining and nondimensionalising the relevant governing

equations and their respective boundary conditions. In Section 2.2, we derive

a model that is valid for thin films using a standard lubrication approximation.

Finally, in Section 2.3, we derive a model that is valid for thick films using the long-

wave methodology that was described in Section 1.4.2 together with the WRIBL

method that was described in Section 1.2.5. Specifically, the electrostatic part of

the thick-film model will be derived in Section 2.3.2 and the hydrodynamic part

will be derived in Section 2.3.3.

2.1 Problem formulation

We consider the unsteady, two-dimensional flow of a film of an incompressible

Newtonian liquid of constant density ρ̂, viscosity µ̂, constant absolute permittivity

ϵ̂L, and constant conductivity σ̂L on the outer surface of a circular cylinder of radius

R̂1. The axis of the cylinder is aligned horizontally and gravitational acceleration ĝ

acts vertically downwards. The cylinder is rotating with constant angular velocity

Ω̂. The liquid film is surrounded by an inviscid, hydrodynamically passive gas

(i.e., the density and viscosity of the gas are assumed to be negligible compared to

those of the liquid, thus implying that the hydrodynamic flow equations are only

relevant in the liquid) with constant pressure p̂a, constant absolute permittivity

ϵ̂G, and constant conductivity σ̂G. The constant conductivity of the liquid is

assumed to be to be significantly larger than the constant conductivity of the

100
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Figure 2.1: Geometry of the system considered in this thesis.

gas (i.e., we consider the case in which σ̂L ≫ σ̂G) such that the liquid may be

considered to be a perfect conductor. We use two-dimensional polar coordinates

(r̂, θ) centred on the axis of the cylinder with θ measured anticlockwise from the

horizontal at the right-hand side of the cylinder. The film completely wets the

cylinder, with the film thickness at time t̂ denoted by ĥ = ĥ(θ, t̂), so that the

liquid-gas interface is located at r̂ = ŝ(θ, t̂) = R̂1 + ĥ(θ, t̂) and the film has initial

uniform thickness ĥ|t̂=0 = ĥ0. The interface has constant coefficient of surface

tension σ̂ and curvature κ̂ = κ̂(θ). The liquid has pressure p̂ = p̂(r̂, θ) and velocity

û(r̂, θ) = û(r̂, θ)er̂+ v̂(r̂, θ)eθ, where er̂ and eθ denote the unit vectors in the radial

and azimuthal directions, respectively. The cylinder is an electrode (which we shall

refer to hereafter as the “inner” electrode) held at a constant potential ϕ̂a which is

set to zero without loss of generality, and there is a concentric cylindrical electrode

of radius R̂2 enclosing the system (which we shall refer to hereafter as the “outer”

electrode). We denote the potential at the outer electrode by ϕ̂b = ϕ̂b(θ, t̂) which

is, in general, nonuniform, and its spatiotemporal distribution can be prescribed.

The potential difference between the electrodes induces electrostatic forces at the

liquid-gas interface. The geometry of the system is shown in Figure 2.1.
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2.1.1 Governing equations and boundary conditions

To derive the governing equations, we use a special case of the Taylor–Melcher

leaky-dielectric model [162, 163, 197, 198] (which was described in Section 1.6.1) in

which one region is a perfect conductor and the other is a perfect dielectric. The as-

sumption that the liquid is a perfect conductor is valid for many liquids surrounded

by air, which has a very low dimensional conductivity of σ̂G ≈ 1× 10−13 S m−1 at

25◦C [215]. For example, brine (a concentrated sodium chloride solution in water

with salinity higher than 3.5× 104 mg L−1 total dissolved solids (TDS) [260]) has

a dimensional conductivity of σ̂L = 2.3 × 101 S m−1 [261, 262] at 25◦C, which is

14 orders of magnitude larger than that of air. Similarly, ultra-pure water (i.e.,

water of high purity used in, for example, the semiconductor and pharmaceutical

industries to prevent contamination of products during manufacturing [263]) has a

dimensional conductivity of σ̂L = 5.5× 10−6 S m−1 at 25◦C [215, 263, 264], which

is 7 orders of magnitude larger than that of air.

When considering the liquid to be a perfect conductor, its potential becomes

equal to that of the electrode with which it is in contact. Hence, the liquid has

zero potential everywhere and it follows that the system has non-zero potential in

the gas only. As discussed in Section 1.6.1, the electric field, which we denote by

Ê = Ê(r̂, θ), satisfies [163]

∇× Ê = 0, ∇ · Ê = 0. (2.1.1)

In other words, equation (2.1.1) implies that the electric field has zero curl (i.e., the

electric field is irrotational) and zero divergence. By the first equation in (2.1.1),

the electric field can be expressed in terms of the gradient of the electric potential

function ϕ̂ = ϕ̂(r̂, θ) (which we shall refer to hereafter as simply the “potential”)

such that

Ê = −∇ϕ̂ = −

(
er̂ϕ̂r̂ + eθ

ϕ̂θ

r̂

)
, (2.1.2)

where the negative sign is consistent with the conventions used in the literature

[163, 203]. By the second equation in (2.1.1), the potential ϕ̂ satisfies Laplace’s

equation,

∇2ϕ̂ = ϕ̂r̂r̂ +
1

r̂
ϕ̂r̂ +

1

r̂2
ϕ̂θθ = 0. (2.1.3)

The difference in electrical material properties between the liquid and gas induces
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electric (Maxwell) stresses at the interface. The total stress tensor T̂ = T̂(r̂, θ) is

given by [25, 26, 162],

T̂ = −p̂Î+ τ̂ + M̂, (2.1.4)

where Î is the identity tensor, τ̂ = τ̂ (r̂, θ) is the viscous stress tensor,

τ̂ = µ̂
(
∇û+∇ûT

)
= µ̂

[
2ûr̂

1
r̂
(ûθ − v̂) + v̂r̂

1
r̂
(ûθ − v̂) + v̂r̂

2
r̂
(v̂θ + û)

]
, (2.1.5)

where τ̂ = 0 in the hydrodynamically passive gas, and M̂ = M̂(r̂, θ) is the Maxwell

stress tensor,

M̂ = ϵ̂L,G

(
ÊÊ− 1

2
|Ê|2Î

)
. (2.1.6)

Thus, by combining (2.1.4)–(2.1.6), the total stress tensor T̂ (2.1.4) is given by

T̂ =

−p̂+ 2µ̂ûr̂ +
ϵ̂L,G

2

(
ϕ̂2
r̂ −

ϕ̂2
θ

r̂2

)
µ̂
r̂

(
ûθ − v̂

)
+ µ̂v̂r̂ +

ϵ̂L,Gϕ̂r̂ϕ̂θ

r̂

µ̂
r̂

(
ûθ − v̂

)
+ µ̂v̂r̂ +

ϵ̂L,Gϕ̂r̂ϕ̂θ

r̂
2µ̂
r̂

(
v̂θ + û

)
− p̂+

ϵ̂L,G

2

(
ϕ̂2
θ

r̂2
− ϕ̂2

r̂

)
 . (2.1.7)

As discussed in Section 1.6.1, under the assumptions of the leaky-dielectric

model (i.e., that the characteristic timescale of electrostatic processes is large com-

pared to that of magnetic processes, and the permittivities ϵ̂L,G and conductivities

σ̂L,G are constant) the divergence of the Maxwell stress tensor ∇ · M̂ is identically

zero everywhere in the system except at the liquid-gas interface. Consequently,

the electric potential ϕ̂ does not appear in the Navier–Stokes equations which, as

we recall from Section 1.1, are given by

∇ · û = 0, (2.1.8)

ρ̂
Dû

Dt̂
= −∇p̂+ µ̂∇2û+ ρ̂ĝ. (2.1.9)

Thus, the Navier–Stokes equations (2.1.8) and (2.1.9) govern the liquid pressure

and velocity only. Instead, the coupling between hydrodynamics and electrostat-

ics occurs solely through the interfacial boundary conditions, where the role of the

Maxwell stress becomes significant. The electrostatic governing equation (2.1.3)

(i.e., Laplace’s equation) is complemented by suitable boundary conditions. Specif-



Chapter 2: Modelling 104

ically, we impose continuity of potential at the outer electrode and the interface,

ϕ̂|r̂=R̂2
= ϕ̂b(θ, t̂), ϕ̂|r̂=ŝ = 0, (2.1.10)

respectively, which we shall refer to hereafter as the “electrostatic boundary con-

ditions”. The hydrodynamic governing equations (2.1.8) and (2.1.9) are comple-

mented by the no-slip and impermeability conditions at the surface of the inner

electrode,

v̂|r̂=R̂1
= Ω̂R̂1, û|r̂=R̂1

= 0, (2.1.11)

respectively, along with the kinematic condition at the interface,[
D

Dt̂
(r̂ − ŝ)

] ∣∣∣∣
r̂=ŝ

= 0, (2.1.12)

and the balance of normal and tangential stresses at the interface r̂ = ŝ, given

respectively by [
n̂ · T̂ · n̂

]L
G
= −σ̂κ̂,

[
t̂ · T̂ · n̂

]L
G
= 0, (2.1.13)

where [·]LG represents the jump in the quantity across the liquid-gas interface, the

interfacial curvature κ̂ is given by

κ̂ = ∇ · n̂, (2.1.14)

and n̂ and t̂ are the unit outward-pointing normal and tangent vectors, given

respectively by

n̂ =
(
ŝ2 + ŝ2θ

)−1/2
(ŝer̂ − ŝθeθ) , (2.1.15)

t̂ =
(
ŝ2 + ŝ2θ

)−1/2
(ŝθer̂ + ŝeθ) . (2.1.16)

The electrostatic contributions to the normal and tangential stress balances

(2.1.13), which we denote by EN = EN(θ) and ET = ET (θ), respectively, describe

the jump in value of the Maxwell stress across the interface. Tangential Maxwell

stresses are present only when there is finite conductivity in both regions [162,

163, 197, 198]. Hence, the assumptions that the liquid is a perfect conductor and

the gas is a perfect dielectric leads to ET = 0. Therefore, for the purposes of this

thesis we are concerned only with the normal Maxwell stress, namely,

EN =
[
n̂ · M̂ · n̂

]L
G
. (2.1.17)
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2.1.2 Nondimensionalisation

We nondimensionalise the system according to

û = Ûcharu, r̂ = R̂1r, ŝ = R̂1s, ĥ = R̂1h, ĥ0 = R̂1h0, t̂ =
R̂1

Ûchar

t,

p̂− p̂a =
µ̂Ûchar

R̂1

p, κ̂ =
1

R̂1

κ, ϕ̂ = ϕ̂charϕ, ϵ̂L,G = ϵ̂0ϵl,g, q̂ = R̂1Ûcharq, (2.1.18)

where

Ûchar =
ρ̂ĝR̂2

1

µ̂
(2.1.19)

is a characteristic (drainage) velocity [102], ϵ̂0 = 8.85419 × 10−12 F m−1 is the

permittivity of free space [200], and ϕ̂char is a characteristic potential to be specified

later. Upon applying the scalings (2.1.2), the continuity equation (2.1.8) becomes

(ru)r + vθ = 0, (2.1.20)

and the momentum equation (2.1.9) becomes

Re

(
ut + uur +

v

r
uθ −

v2

r

)
= −pr +

1

r
(rur)r −

u

r2
+

1

r2
uθθ −

2

r2
vθ − sin θ, (2.1.21)

Re

(
vt+uvr+

v

r
vθ−

uv

r

)
= −1

r
pθ+

1

r
(rvr)r−

v

r2
+

1

r2
vθθ+

2

r2
uθ− cos θ, (2.1.22)

where

Re =
ρ̂ÛcharR̂1

µ̂
(2.1.23)

is a Reynolds number, which is the ratio of inertial forces to viscous forces. The

dimensionless initial condition is

h|t=0 = h0 =
ĥ0

R̂1

, (2.1.24)

and the no-slip and impermeability conditions (2.1.11) become

v|r=1 = ω, u|r=1 = 0, (2.1.25)
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where

ω =
Ω̂R̂1

Ûchar

(2.1.26)

is a dimensionless expression for the azimuthal rotation rate and r = 1 is a di-

mensionless expression for the radius of the inner electrode, respectively. At the

interface r = s(θ, t) = 1 + h(θ, t), the normal and tangential stress conditions

(2.1.13) become

(
p− κ

Ca

) (
s2 + s2θ

)
= 2

[
s2ur + sθ(v − uθ − svr) +

s2θ
s
(vθ + u)

]
−ẼbE

N , (2.1.27)

2sθ

[
ur −

1

s
(u+ vθ)

]
+

(
1− s2θ

s2

)
(svr − v + uθ) = 0, (2.1.28)

respectively, where EN (2.1.17) is given by

EN =
1

2

(
s2 − s2θ

)(
ϕ2
r −

ϕ2
θ

s2

)
− 2sθϕrϕθ. (2.1.29)

Furthermore,

Ca =
µ̂Ûchar

σ̂
(2.1.30)

is a capillary number, which is the ratio of viscous forces to capillarity, and

Ẽb =
ϵ̂Gϕ̂

2
char

µ̂ÛcharR̂1

(2.1.31)

is a dimensionless measure of the magnitude of the applied electric potential dif-

ference (referred to hereafter as simply the “electric potential difference”), and κ

(2.1.14) is given by

κ =
s2 + 2s2θ − ssθθ

(s2 + s2θ)
3/2

. (2.1.32)

The kinematic condition (2.1.12) becomes

(
st +

sθ
s
v − u

) ∣∣∣∣
r=s

= 0, (2.1.33)

which may be written in the form

1

2

(
s2
)
t
+ qθ = 0, (2.1.34)
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where

q =

∫ s

1

v (θ, r) dr (2.1.35)

is the dimensionless azimuthal volume flux per unit length (referred to hereafter as

simply the “flux”). Laplace’s equation (2.1.3) remains unchanged (dropping the

hat decoration) and the electrostatic boundary conditions (2.1.10) become

ϕ|r=d = ϕd(θ, t), ϕ|r=s = 0, (2.1.36)

respectively, where

d =
R̂2

R̂1

, ϕd =
ϕ̂b

ϕ̂char

, (2.1.37)

are dimensionless expressions for the radius of the outer electrode and the potential

at the outer electrode, respectively.

2.2 Thin-film modelling

In this section, we derive an equation governing the flow of the liquid layer de-

scribed in the previous section in the case in which it is thin using the classical

thin-film approximation. Specifically, as described in Section 1.4.1.1, we assume

that the film thickness is small and introduce the thin-film aspect ratio ϵ = h0 ≪ 1,

where h0 is given by (2.1.24). We introduce the standard thin-film scalings [95,

101, 102]

r = 1 + ϵR̃, h = ϵH̃, d = 1 + ϵD̃, t = ϵ−2T̃ , p = P̃ ,

u = ϵ3Ũ , v = ϵ2Ṽ , q = ϵ3Q̃, ϕ = ϵΦ̃, ϕd = ϵΦ̃D̃,
(2.2.1)

where we have introduced an appropriate timescale to capture the thin-film flow

dynamics. Note that, by the rescaling of d with ϵ in (2.2.1), we consider the

distinguished limit in which the gap between the inner and outer electrodes is

thin. In what follows, we carry out a standard “lubrication” modelling procedure

(see, for example, Pukhnachev [95], Reisfeld and Bankoff [101], and Evans et al.

[102]). Specifically, we derive an expression for the azimuthal velocity Ṽ in terms

of the film thickness H̃, from which we evaluate the flux Q̃. Finally, substitution

of Q̃ into the kinematic condition yields the final thin-film governing equation.
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By (2.1.24), the initial condition becomes

H̃|T̃=0 = H̃0 = 1. (2.2.2)

Applying the thin-film scalings (2.2.1), Laplace’s equation (2.1.3) becomes

Φ̃R̃R̃ = 0 (2.2.3)

to leading order in ϵ, and the electrostatic boundary conditions (2.1.36) become

Φ̃|R̃=D̃ = Φ̃D̃, Φ̃|R̃=H̃ = 0. (2.2.4)

We assume that the dimensionless potential at the outer electrode ϕ̂b is constant,

and hence choose ϕ̂char = ϕ̂b, leading to ϕd = 1 in the electrostatic boundary condi-

tions (2.1.36), and hence Φ̃D̃ = 1 in the thin-film electrostatic boundary conditions

(2.2.4). Solving (2.2.3) subject to (2.2.4) yields the leading-order solution for the

electric potential Φ̃, namely,

Φ̃ =
R̃− H̃

D̃ − H̃
. (2.2.5)

The solution (2.2.5) is a linear function of R̃ which varies between 0 ≤ Φ̃ ≤ 1

over the domain H̃ ≤ R̃ ≤ D̃. To leading order in ϵ, the hydrodynamic governing

equations (2.1.20)–(2.1.22) become

ŨR̃ + Ṽθ = 0, (2.2.6)

P̃R̃ = 0, (2.2.7)

ṼR̃R̃ = P̃θ + cos θ, (2.2.8)

respectively. Applying the scalings (2.2.1) to the interfacial curvature (2.1.32) and

retaining terms to first order in ϵ yields

κ̃ = 1− ϵ(H̃ + H̃θθ), (2.2.9)

hence, to first order in ϵ, the normal stress condition (2.1.27) becomes

P̃ |R̃=H̃ =
1

ϵγ̃

[
1− ϵ(H̃ + H̃θθ)

]
− Ẽb

2
Φ̃2

R̃
, (2.2.10)
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where we have set

Ca = ϵγ̃, (2.2.11)

in which γ̃ = O(1) in order to consider the distinguished limit in which Ca = O(ϵ)

such that capillarity appears at leading order in ϵ alongside the electrostatic effects.

Specifically, choosing to work in this distinguished limit ensures that capillarity has

a significant influence on the flow dynamics and hence allows for a more accurate

representation of the interplay between capillarity and the other forces. Evaluating

(2.2.10) with Φ̃ given by (2.2.5) yields

P̃ |R̃=H̃ =
1

ϵγ̃

[
1− ϵ(H̃ + H̃θθ)

]
− Ẽb

2

1

(D̃ − H̃)2
. (2.2.12)

To leading order in ϵ, the tangential stress condition (2.1.28) becomes

ṼR̃|R̃=H̃ = 0. (2.2.13)

The no-slip and impermeability conditions (2.1.25) become

Ṽ |R̃=1 = ω̄, Ũ |R̃=1 = 0, (2.2.14)

where we have set

ω = ϵ2ω̄, (2.2.15)

in which ω̄ = O(1) in order to consider the distinguished limit in which ω = O(ϵ2)

such that rotation appears at leading order in ϵ alongside the electrostatic and

capillary effects. Specifically, choosing to work in this distinguished limit ensures

that rotation speeds are comparable to flow speeds and hence ensures that the

rotation does not dominate the dynamics of the system. Integrating the leading-

order radial component of the momentum equation (2.2.7) subject to the normal

stress condition (2.2.12) yields the solution for the pressure P̃ to first order in ϵ,

namely,

P̃ =
1

ϵγ̃

[
1− ϵ(H̃ + H̃θθ)

]
− Ẽb

2

1

(D̃ − H̃)2
. (2.2.16)

Substituting the first-order solution for the pressure (2.2.16) into the leading-order

azimuthal component of the momentum equation (2.2.8) and integrating twice with

respect to R̃ subject to the no-slip condition (2.2.14) and the leading-order tan-
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gential stress condition (2.2.13) yields the leading-order solution for the azimuthal

velocity Ṽ , namely,

Ṽ = ω̄ +
1

2
(R̃2 − 2R̃H̃)

[
cos θ − 1

γ̃
(H̃ + H̃θθ)θ − Ẽb

H̃θ

(D̃ − H̃)3

]
. (2.2.17)

To leading order in ϵ, the kinematic condition (2.1.34) becomes

H̃T̃ + Q̃θ = 0, (2.2.18)

where, to leading order in ϵ, the flux (2.1.35) is given by

Q̃ =

∫ H̃

0

Ṽ (R̃, θ) dR̃. (2.2.19)

Evaluating the leading-order flux Q̃ (2.2.19) with the leading-order azimuthal ve-

locity Ṽ (2.2.17) and substituting the resulting expression for Q̃ into the leading-

order kinematic condition (2.2.18) yields the governing equation for the thickness

of a thin film on the outer surface of a rotating horizontal circular cylinder in the

presence of an electric field, namely,

H̃T̃ +

[
ω̄H̃ +

H̃3

3

(
− cos θ +

1

γ̃

(
H̃θ + H̃θθθ

)
+ Ẽb

H̃θ

(D̃ − H̃)3

)]
θ

= 0. (2.2.20)

In particular, the flux Q̃ (2.2.19) is

Q̃ = ω̄H̃ +
H̃3

3

(
− cos θ +

1

γ̃

(
H̃θ + H̃θθθ

)
+ Ẽb

H̃θ

(D̃ − H̃)3

)
. (2.2.21)

Equations (2.2.20) and (2.2.21) are the basis of all of the analysis contained within

Chapter 3 and Section 4.3, in which we investigate the special case of a stationary

cylinder, corresponding to ω̄ = 0, in the absence and presence of an electric field,

respectively.

To aid investigation of parameter space, we reduce the number of dimensionless

parameters in the governing equation (2.2.20) and the flux (2.2.21) by one by
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eliminating the dimensionless azimuthal rotation rate ω by imposing the scalings

H̃ = ω̄1/2H, D̃ = ω̄1/2D, Ẽb = ω̄Eb, γ̃ = ω̄1/2γ, T̃ = ω̄−1T, Q̃ = ω̄3/2Q,

(2.2.22)

to yield

HT +

[
H +

H3

3

(
− cos θ +

1

γ
(Hθ +Hθθθ) + Eb

Hθ

(D −H)3

)]
θ

= 0, (2.2.23)

Q = H +
H3

3

(
− cos θ +

1

γ
(Hθ +Hθθθ) + Eb

Hθ

(D −H)3

)
, (2.2.24)

respectively. The system is thus governed by four dimensionless groups, namely,

the initial film thickness H0, the capillary number γ, the electric potential dif-

ference Eb, and the distance between the inner and outer electrodes (referred to

hereafter as simply the “electrode distance”) D, given respectively by

H0 =

(
ρ̂ĝ

µ̂Ω̂R̂1

)1/2

ĥ0, (2.2.25)

γ =

(
ρ̂3ĝ3R̂5

1

µ̂σ̂2Ω̂

)1/2

, (2.2.26)

Eb =
ĥ20ϵ̂Gϕ̂

2
b

µ̂Ω̂R̂4
1

, (2.2.27)

D =

(
R̂2

R̂1

− 1

)(
ρ̂ĝR̂1

µ̂Ω̂

)1/2

. (2.2.28)

Equations (2.2.23) and (2.2.24) are the basis of all of the analysis contained within

Sections 4.1, 4.2, and 4.4, in which we investigate the case where ω̄ and Eb are both

non-zero. Numerical solutions of the governing equations (2.2.20) and (2.2.23) are

obtained using the numerical scheme outlined in Appendix A. Specifically, a uni-

form grid formulation is used to perform the numerical calculations in Sections 4.1,

4.2, and 4.4 and is outlined in Appendix A.1, and a nonuniform grid formulation

is used to perform the numerical calculations in Chapter 3 and in Section 4.3 and

is outlined in Appendix A.2. Note that, hereafter, when we refer to “the cylinder”

we are referring specifically to the inner electrode rather than the outer electrode.
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2.3 Thick-film modelling

In this section, we derive a model that is valid for thick films using the long-wave

methodology described by Wray et al. [31, 56] in conjunction with the WRIBL

method, both of which were described earlier in Sections 1.4.2 and 1.2.5, respec-

tively. In particular, we generalise the thick-film model of Wray and Cimpeanu [31]

(i.e., equation (1.4.28) and the integral form of the kinematic condition (1.2.9)),

which was discussed earlier in Section 1.4.4, to incorporate electrostatic effects.

As explained in Section 1.4.1.2, the fundamental assumption underlying the mod-

elling of thick films is that the thickness of the film is assumed to be of the same

order as the radius of curvature of the substrate. In line with the WRIBL method,

we begin by deriving a boundary-layer equation for the hydrodynamic part of the

problem in Section 2.3.1 before solving the electrostatic and hydrodynamic parts

of the problem in Sections 2.3.2 and 2.3.3, respectively. Note that throughout this

section, we assume that the potential at the outer electrode ϕ̂b varies spatially and

hence define the characteristic potential ϕ̂char = ϕ̄b, where ϕ̄b is the mean potential

at the outer electrode over the domain 0 ≤ θ ≤ 2π measured at time t = 0.

2.3.1 Boundary-layer equation

In this section, we carry out the initial step of the WRIBL method which, as

described in Section 1.2.5, is to derive a boundary-layer equation for the interfacial

radius s and the azimuthal and radial velocities u and v, respectively. As discussed

in Section 1.2.5, we employ the long-wave methodology by making the substitution

[31, 56]

∂θ = ε∂θ̌, (2.3.1)

which represents the assumption that variations in the azimuthal direction are

small, where ε is an ordering parameter which is used to assert the expected relative

magnitudes of particular terms and their derivatives during the calculations rather

than having an explicit value of its own, and hence is set equal to unity in the

final model [28, 29, 31, 37, 52–55, 64, 65]. Furthermore, balancing terms in the

kinematic condition (1.2.13) and the continuity equation (2.1.20) suggests making

the additional substitutions

t = ε−1ť, u = εǔ, (2.3.2)
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respectively.

Under the substitutions (2.3.1) and (2.3.2), the kinematic condition (2.1.34)

and the no-slip and impermeability conditions (2.1.25) remain unchanged, whilst

to O(ε) the radial component of the momentum equation (2.1.21) becomes

pr = Re
v2

r
+ ε

[(
1

r
(rǔ)r

)
r

− 2

r2
vθ̌

]
− sin θ +O(ε2), (2.3.3)

and the azimuthal component (2.1.22) becomes

Re

(
εvť + εǔvr + ε

v

r
vθ̌ + ε

ǔv

r

)
= −ε

r
pθ̌ +

1

r
(rvr)r −

v

r2
+
ε2

r2
vθ̌θ̌ +

2ε2

r2
ǔθ̌ − cos θ.

(2.3.4)

Hence, by (2.3.4), the equation for the pressure (2.3.3) is sufficient for our present

purposes as we only require an expression for p accurate to O(ε) in order to obtain

a boundary-layer equation accurate to O(ε2). The tangential stress condition

(2.1.28) becomes

2εsθ̌

(
εǔr −

ε

s
(ǔ+ vθ̌)

)
+

(
1− ε2

s2
θ̌

s2

)
(svr − v + ε2ǔθ̌) = 0, (2.3.5)

which, using the continuity equation (2.1.20), may be reduced to

v − svr = ε2[ǔθ̌ + 4sθ̌ǔr] +O(ε3). (2.3.6)

The normal stress condition (2.1.27) becomes

(
p− κ

Ca

)
(s2 + ε2s2

θ̌
) = 2

[
εs2ǔr + εsθ̌(v − ε2ǔθ̌ − svr) + ε2

s2
θ̌

s2
(εvθ̌ + εǔ)

]
+ Ẽb

[
2ε2sθ̌ϕrϕθ̌ −

1

2
(s2 − ε2s2

θ̌
)

(
ϕ2
r − ε2

ϕ2
θ̌

s2

)]
, (2.3.7)

which to O(ε) is

p|r=s =
κ

Ca
+ 2εǔr|r=s + ẼbE

N +O(ε2), (2.3.8)

where we have used the tangential stress condition (2.3.6), and EN is the normal



Chapter 2: Modelling 114

Maxwell stress, namely,

EN = 2ε2
sθ̌
s2
ϕrϕθ̌ −

1

2

(
1− ε2

s2
θ̌

s2

)(
ϕ2
r − ε2

ϕ2
θ̌

s2

)
, (2.3.9)

where we have assumed that Ẽb = O(1) (where Ẽb is given by (2.1.31)). Integrating

(2.3.3) with respect to the radial coordinate from r to s subject to the normal stress

condition (2.3.8) yields an expression for the pressure p, namely,

p =
κ

Ca
+ 2εǔr|r=s + ẼbE

N +

∫ s

r

(
2ε

x2
vθ̌ −Re

v2

x

)
dx+ (s− r) sin θ

− ε

r
vθ̌ +

ε

s
vθ̌

∣∣∣∣
r=s

+O(ε2), (2.3.10)

where x is a dummy variable. Substituting (2.3.10) into (2.3.4) yields the boundary-

layer equation, namely,

εRe

(
vť + ǔvr +

v

r
vθ̌ +

ǔv

r

)
=

1

r

∂

∂r
(rvr)−

v

r2
+

2ε2

r2
(vθ̌θ̌ + ǔθ̌)−

ε

r

[
κ

Ca

+ 2εǔr|r=s + s sin θ +
ε

s
vθ̌

∣∣∣∣
r=s

+

∫ s

r

(
2ε

x2
vθ̌ −Re

v2

x

)
dx

]
θ̌

− ε

r
ẼbE

N
θ̌
+O(ε3),

(2.3.11)

which is complemented by the no-slip and impermeability conditions (2.1.25), the

kinematic condition (2.1.34), and the tangential stress condition at the interface

(2.3.6).

We are now in a position to solve equations (2.1.25), (2.3.11), and (2.3.6) using

the method of weighted residuals. Ahead of this, we first consider the electrostatic

part of the problem in Section 2.3.2 in order to determine appropriate candidate

models for the electric potential ϕ required to calculate the normal Maxwell stress

EN (2.3.9) for use in the boundary-layer equation (2.3.11). With candidate models

derived, we solve the hydrodynamic part of the problem in Section 2.3.3.
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2.3.2 Electrostatic modelling

In this section, we derive models governing the electrostatic part of the problem.

Under the substitutions (2.3.1) and (2.3.2), Laplace’s equation (2.1.3) becomes

ϕrr +
1

r
ϕr +

ε2

r2
ϕθ̌θ̌ = 0, (2.3.12)

which is subject to the boundary conditions (2.1.36), which remain unchanged. To

O(ε), equation (2.3.12) becomes

ϕrr +
1

r
ϕr = 0, (2.3.13)

which, when solved subject to (2.1.36), yields the leading-order solution for the

electric potential ϕ, namely,

ϕ = ϕd − ϕd
ln(r/d)

ln(s/d)︸ ︷︷ ︸
(a)

= ϕd
ln(r/s)

ln(d/s)︸ ︷︷ ︸
(b)

, (2.3.14)

which, notably, can be written in terms of either (a) ln(r/d) or (b) ln(r/s). To

leading order, the normal Maxwell stress (2.3.9) is

EN = −1

2
(ϕr|r=s)

2 +O(ε2), (2.3.15)

which, upon substitution of (2.3.14) into (2.3.15), becomes

EN = − ϕ2
d

2s2 ln2(d/s)
+O(ε2). (2.3.16)

Note that the natural approach to solve the problem defined by (2.3.13) sub-

ject to (2.1.36) would be to perform a gradient expansion in powers of ε and solve

order-by-order. However, various authors have shown that when disturbances

vary towards the short-wave regime (as is often the case in applications involving

electrostatic control, for example, which shall be discussed later in Section 5.1),

WRIBL-type expansions yield significant improvements in accuracy when com-

pared to classical gradient expansions [29, 56, 244]. Therefore, here we choose to

adopt a WRIBL-type approach and proceed by seeking a solution for ϕ in the form

of a series expansion based on a separation of variables (see Section 1.2.5).
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In Sections 2.3.2.1–2.3.2.3, we derive three candidate models for the electric

potential ϕ which are accurate to O(ε2). Two of the models will be obtained by

projecting the solution for ϕ onto appropriate sets of basis functions. The first

of these will be derived in Section 2.3.2.1, in which we derive what we shall refer

to hereafter as the “electrode model” (since this model will satisfy the continuity

of potential at the outer electrode (2.1.36) exactly). The second of these will be

derived in Section 2.3.2.2, in which we derive what we shall refer to hereafter as

the “interface model” (since this model will satisfy the continuity of potential at

the interface (2.1.36) exactly). Finally, in Section 2.3.2.3, we perform a gradient

expansion on both the electrode and interface models to yield a single simplified

model which we shall refer to hereafter as the “thick-film gradient model”.

2.3.2.1 Electrode model

In this section, we derive a model motivated by the leading-order solution (2.3.14) (a).

In particular, this suggests projecting onto basis functions of the form (r−d)m ln(r/d)n

so that the continuity of potential at the outer electrode (2.1.36) can be satisfied

exactly. Specifically, this suggests using the form

ϕ = f0 + f1 ln
(r
d

)
+ ε2

N∑
m

N∑
n

fm,n(θ)(r − d)m ln
(r
d

)n
︸ ︷︷ ︸

Ψouter

+O(ε4), (2.3.17)

where fm,n (for n = 0, . . . , N and m = 0, . . . ,M) are functions to be determined.

Note that, due to the fact that the electrostatic governing equation (2.3.12) and

the boundary conditions (2.1.36) contain only even powers of ε, coefficients of odd

powers of ε in the expansion (2.3.21) would turn out to be zero, and are thus

omitted. It is anticipated that all but finitely many of the fm,n will turn out to

be zero. Whilst it is not, in general, necessary to determine a minimal set of basis

polynomials a priori, here we do so in order to reduce the subsequent algebra. To

that end, substitution of (2.3.17) into Laplace’s equation (2.3.12) yields

1

r

(
r
∂Ψouter

∂r

)
r

+

[
f0
r2

+
f1
r2

ln
(r
d

)]
θ̌θ̌

= 0 (2.3.18)
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at O(ε2). Hence, we must consider what function Ψouter is required to balance the

terms in equation (2.3.18). Therefore, we set

1

r

(
r
∂Ψouter

∂r

)
r

=
fm
r2

+
fn
r2

ln
(r
d

)
, (2.3.19)

and solve for Ψouter to yield

Ψouter =
1

2

[
fm ln2

(r
d

)
+
fn
3
ln3
(r
d

)]
. (2.3.20)

Therefore, by (2.3.20), the form of the non-zero O(ε2) terms in the projection

(2.3.17) is a polynomial in ln2(r/d) and ln3(r/d). Thus, we posit the projection

ϕ = f0 + f1 ln
(r
d

)
+ ε2

[
f2 ln

2
(r
d

)
+ f3 ln

3
(r
d

)]
+O(ε4). (2.3.21)

As mentioned previously, choosing to project onto a polynomial in powers of

ln(r/d) means that the boundary condition at the outer electrode (2.1.36) is sat-

isfied exactly. Specifically, imposing continuity of potential at the outer electrode

on the projection form of ϕ (2.3.21) yields

f0 = ϕd(θ, ť). (2.3.22)

Evaluating the relevant partial derivatives of (2.3.21) yields

ϕr =
1

r
f1 + ε2

[
2

r
ln
(r
d

)
f2 +

3

r
ln2
(r
d

)
f3

]
+O(ε4), (2.3.23)

ϕrr = − 1

r2
f1 + ε2

{
2

r2

[
1− ln

(r
d

)]
f2 +

3

r2

[
2 ln

(r
d

)
− ln2

(r
d

)]
f3

}
+O(ε4),

(2.3.24)

ϕθ̌θ̌ = f0θ̌θ̌ + f1θ̌θ̌ ln
(r
d

)
+ ε2

[
f2θ̌θ̌ ln

2
(r
d

)
+ f3θ̌θ̌ ln

3
(r
d

)]
+O(ε4). (2.3.25)

Substituting (2.3.23)–(2.3.25) into Laplace’s equation (2.3.12) gives

2f2 + f0θ̌θ̌ + 6 ln
(r
d

)
f3 + ln

(r
d

)
f1θ̌θ̌ +O(ε4) = 0. (2.3.26)

Equating powers of ln(r/d) in (2.3.26) yields

f2 = −1

2
f0θ̌θ̌, f3 = −1

6
f1θ̌θ̌, (2.3.27)
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and hence, by (2.3.22), f2 is

f2 = −1

2
ϕdθ̌θ̌. (2.3.28)

Substituting f2 and f3 into (2.3.21) gives

ϕ = ϕd(θ, ť) + f1 ln
(r
d

)
+ ε2

[
−1

2
ϕdθ̌θ̌ ln

2
(r
d

)
− 1

6
f1θ̌θ̌ ln

3
(r
d

)]
+O(ε4), (2.3.29)

where the unknown function f1 can be determined by imposing the continuity of

potential at the interface (2.1.36) on (2.3.29), giving

ϕd(θ, ť) + f1 ln
(s
d

)
+ ε2

[
−1

2
ϕdθ̌θ̌ ln

2
(s
d

)
− 1

6
f1θ̌θ̌ ln

3
(s
d

)]
+O(ε4) = 0. (2.3.30)

Together (2.3.29) and (2.3.30) constitute the electrode model. In Chapter 5, we

compare the performance of the electrode model against numerical solutions of

Laplace’s equation (2.1.3) and the two other candidate models, namely, the inter-

face model and the thick-film gradient model, which we derive next in Sections

2.3.2.2 and 2.3.2.3, respectively.

2.3.2.2 Interface model

In this section, we derive a model motivated by the leading-order solution (2.3.14) (b).

In particular, this suggests projecting onto basis functions of the form (r−s)m ln(r/s)n

so that the continuity of potential at the interface (2.1.36) can be satisfied exactly.

Specifically, this suggests using the form

ϕ = g0 + g1 ln
(r
d

)
+ ε2

N∑
m

N∑
n

gm,n(θ)(r − s)m ln
(r
s

)n
+O(ε4), (2.3.31)

where gm,n (for n = 0, . . . , N and m = 0, . . . ,M) are functions to be determined.

An analogous argument to that described earlier in Section 2.3.2.1 can be given

to yield the appropriate projection as being

ϕ = g0 + g1 ln
(r
s

)
+ ε2

[
g2 ln

2
(r
s

)
+ g3 ln

3
(r
s

)]
+O(ε4). (2.3.32)

Choosing to project onto a polynomial in powers of ln(r/s) means that the bound-

ary condition at the interface (2.1.36) is satisfied exactly. Specifically, imposing
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continuity of potential at the interface on the projection form of ϕ (2.3.32) yields

g0 = 0. (2.3.33)

Evaluating the relevant partial derivatives of (2.3.32) yields

ϕr =
1

r
g1 + ε2

[
2

r
ln
(r
s

)
g2 +

3

r
ln2
(r
s

)
g3

]
+O(ε4), (2.3.34)

ϕrr = − 1

r2
g1 + ε2

{
2

r2

[
1− ln

(r
s

)]
g2 +

3

r2

[
2 ln

(r
s

)
− ln2

(r
s

)]
g3

}
+O(ε4),

(2.3.35)

ϕθ̌θ̌ = g0θ̌θ̌ + g1θ̌θ̌ ln
(r
s

)
− 2g1θ̌

sθ̌
s
− g1

(sθ̌
s

)
θ̌
+O(ε2). (2.3.36)

Substituting (2.3.34)–(2.3.36) into Laplace’s equation (2.3.12) gives

2g2 + g0θ̌θ̌ − 2g1θ̌
sθ̌
s
− g1

(sθ̌
s

)
θ̌
+ 6 ln

(r
s

)
g3 + ln

(r
s

)
g1θ̌θ̌ +O(ε4) = 0. (2.3.37)

Equating powers of ln(r/s) in (2.3.37) yields

g2 = g1θ̌
sθ̌
s
+

1

2
g1

(sθ̌
s

)
θ̌
− 1

2
g0θ̌θ̌, g3 = −1

6
g1θ̌θ̌, (2.3.38)

and hence, by (2.3.33), g2 is

g2 = g1θ̌
sθ̌
s
+

1

2
g1

(sθ̌
s

)
θ̌
. (2.3.39)

Substituting g2 and g3 into (2.3.32) gives

ϕ = g1

(
1 + ε2

s2
θ̌

s2

)
ln
(r
s

)
− ε2

6

[
g1 ln

3
(r
s

)]
θ̌θ̌
+O(ε4), (2.3.40)

where the unknown function g1 can be determined by imposing continuity of po-

tential at the outer electrode (2.1.36), giving

g1

(
1 + ε2

s2
θ̌

s2

)
ln

(
d

s

)
− ε2

6

[
g1 ln

3

(
d

s

)]
θ̌θ̌

+O(ε4) = ϕd(θ, ť). (2.3.41)
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The system (2.3.40) and (2.3.41) can be simplified by using the substitution

g = g1

(
1 + ε2

s2
θ̌

s2

)
, (2.3.42)

yielding

ϕ = g ln
(r
s

)
− ε2

6

[
g ln3

(r
s

)]
θ̌θ̌
+O(ε4), (2.3.43)

g ln

(
d

s

)
− ε2

6

[
g ln3

(
d

s

)]
θ̌θ̌

= ϕd(θ, ť) +O(ε4). (2.3.44)

Together (2.3.43) and (2.3.44) constitute the interface model.

2.3.2.3 Thick-film gradient model

In this section, we perform a classical gradient expansion on both the electrode

model (given by (2.3.29) and (2.3.30)) and the interface model (given by (2.3.43)

and (2.3.44)). This procedure helps us simplify the models by eliminating f1 and g

from the electrode and interface models, respectively, yielding explicit expressions

for ϕ in terms of ϕd. In particular, we show that the two models actually coincide.

We proceed by expanding f1 and g as

f1 = F0 + ε2F2 +O(ε4), g = G0 + ε2G2 +O(ε4). (2.3.45)

Note that, for the same reason as explained at the beginning of Section 2.3.2.1, we

have omitted terms of odd powers of ε from (2.3.45). Substituting (2.3.45) into

(2.3.30) and (2.3.44) yields

F0 = G0 = − ϕd

ln (s/d)
(2.3.46)

at O(1), and using (2.3.46) yields

F2 =
1

6
ln
(s
d

)[
3ϕdθ̌θ̌ − ln

(s
d

)( ϕd

ln(s/d)

)
θ̌θ̌

]
, G2 =

1

6 ln(d/s)

[
ln2

(
d

s

)
ϕd

]
θ̌θ̌

(2.3.47)
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at O(ε2). Substituting (2.3.45) with (2.3.46) and (2.3.47) into (2.3.29) and (2.3.43)

produces the same model, namely,

ϕ =
ln(r/s)

ln(d/s)
ϕd +

ε2

6

[
ln(r/s)

ln(d/s)

(
ln2

(
d

s

)
ϕd

)
θ̌θ̌

−
(
ln3(r/s)

ln(d/s)
ϕd

)
θ̌θ̌

]
+O(ε4),

(2.3.48)

which constitutes the thick-film gradient model. Analogous thin-film electrostatic

models can be derived as limits of the thick-film electrostatic models derived in

this section. Specifically, the thin-film gradient model, accompanied by thin-film

electrode and interface models, are given in Appendix B.

Note that two additional candidate thick-film electrostatic models can be de-

rived by instead using a weighted residual approach. These models are given in

Appendix C, the derivation of which follows a method which is analogous to that

used next in Section 2.3.3 to model the hydrodynamic part of the problem.

2.3.3 Hydrodynamic modelling

In this section, we model the hydrodynamic part of the problem. In particular, we

use the boundary-layer equation (2.3.11) to develop a reduced-order model using

the method of weighted residuals [29, 31, 55, 56]. We begin by deriving the leading-

order solution for the azimuthal velocity v, which is determined by expanding v

in powers of ε and solving order-by-order. At leading order, the dynamics of the

flow are driven purely by the rotation induced by the substrate, rather than by

gravity, pressure gradients, or electrostatic effects, all of which enter the solution

at first order. In particular, by (2.3.6) and (2.3.11), the leading-order problem for

the velocity v is

1

r

(
1

r

∂

∂r
(rv)

)
= 0, v|r=1 = ω, (v − svr)|r=s = 0, (2.3.49)

which has the solution

v = ωr, (2.3.50)

corresponding to solid body rotation.

To obtain the solution for v to higher orders, we proceed by projecting v onto

an appropriate set of basis functions fn = fn(r) (for n = 0, . . . , N) which have

coefficients an = an(θ, ť) (for n = 0, . . . , N) which account for the deviation of the

velocity profile from solid body rotation for n = 1, . . . , N [31]. In other words, we
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consider an expansion of the form

v(r, θ, ť) = a0(θ, ť)f0(r) + ε

N∑
n=1

an(θ, ť)fn(r) +O(ε2), (2.3.51)

where the leading-order solution (2.3.50) requires choosing f0 = r. In principle, the

an can be determined by substituting the expansion (2.3.51) into the boundary-

layer equation (2.3.11) and considering the terms at O(ε) (indeed, this procedure

is pursued by, for example, Ruyer–Quil and Manneville [29] and Oron and Heining

[53]). However, this is, in general, an onerous process. As discussed in Section

1.2.5, Ruyer–Quil and Manneville [29] demonstrated that this procedure may be

simplified significantly by the use of a weighted integral method in which we pro-

ceed by taking the inner product, defined by

⟨y1, y2⟩ =
∫ s

1

ry1y2 dr (2.3.52)

[31, 56] for some functions y1 = y1(r) and y2 = y2(r), of the boundary-layer

equation (2.3.11) (with v substituted by (2.3.51)) with a suitable weight function

w = w(r, θ, ť), where w is the solution to the adjoint of the leading-order problem

(2.3.49) (see Section 1.2.5.1). In what follows, we show that this particular choice

of the weight w minimises the amount of algebra that is required to formulate the

final model by removing the need to explicitly calculate the coefficients an and

basis functions fn, such that only the determination of a single equation for a0

is required. As discussed earlier, in practice, it is more convenient to eliminate

a0 (which has no physical significance) in favour of the flux q (2.1.35) as this is a

quantity which can be measured physically and, in addition, simplifies the resulting

equation.

Integrating the expansion for v (2.3.51) across the film thickness and truncating

at O(ε) yields

q = a0

∫ s

1

r dr + ε
N∑

n=1

an

∫ s

1

fn dr, (2.3.53)

where q is defined by (2.1.35). Equation (2.3.53) can be solved to find the leading-

order coefficient a0 in terms of q as

a0 =
q − ε

∑N
n=1 an

∫ s

1
fn dr∫ s

1
r dr

. (2.3.54)
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Substituting (2.3.54) into (2.3.51) yields

v =
q − ε

∑N
n=1 an(θ, ť)

∫ s

1
fn(r) dr∫ s

1
r dr

r + ε

N∑
n=1

an(θ, ť)fn(r)

=
qr∫ s

1
r dr

+O(ε)

=
2q

s2 − 1
r +O(ε).

(2.3.55)

In what follows, we write ǔ in terms of v using the continuity equation (2.1.20).

Specifically, integrating (2.1.20) with respect to the radial coordinate from 1 to r

yields

ǔ =

(
q

s2 − 1

)
θ̌

(
1− r2

r

)
+O(ε). (2.3.56)

Taking the inner product of the boundary-layer equation (2.3.11) with the weight

w yields

εRe

∫ s

1

(
vť + ǔvr +

v

r
vθ̌ +

ǔv

r

)
wr dr

=

∫ s

1

(
1

r
(rv)r

)
r

wr dr + 2ε2
∫ s

1

(
1

r2
vθ̌θ̌ +

1

r2
ǔθ̌

)
wr dr − ε

∫ s

1

[
κ

Ca
+ 2εǔr

∣∣∣∣
r=s

+ s sin θ +
ε

s
vθ̌

∣∣∣∣
r=s

+

∫ s

r

(
2ε

x2
vθ̌ −Re

v2

x

)
dx

]
θ̌

w dr − ε

∫ h

1

ẼbE
N
θ̌
w dr +O(ε3),

(2.3.57)

where v is given by (2.3.55) and ǔ is given by (2.3.56). Terms involving the an for

n = 1, . . . , N can only enter (2.3.57) at O(ε) via the leading-order viscous term

(i.e., the first term on the right-hand side of (2.3.57)). Hence, if this viscous term

can be computed explicitly without the an then they will not appear anywhere

in the problem, and hence the need to determine the an and fn will have been

completely avoided. In order to find a suitable weight function w for this purpose,

we proceed by following the calculation described byWray et al. [56]. In particular,

we evaluate the inner product of the leading-order viscous term with the weight w
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to yield∫ s

1

(
1

r
(rv)r

)
r

wr dr = [w (rv)r − v (rw)r] |r=s + [v (rw)r − w (rv)r] |r=1

+

∫ s

1

(
1

r
(rw)r

)
r

vr dr, (2.3.58)

where we have used two applications of integration by parts. Note that the first

term on the right-hand side of (2.3.58) can be written as

[w (rv)r − v (rw)r] |r=s = [w (rvr − v)] |r=s − [v (rwr − w)] |r=s. (2.3.59)

By the second-order tangential stress condition (2.3.6), the first term on the right-

hand side of (2.3.59) is zero to leading order. Hence, to leading order, (2.3.58)

with (2.3.59) yields∫ s

1

(
1

r
(rv)r

)
r

wr dr =− ω [(rwr − w)] |r=s + ω [(rw)r] |r=1 − [w (rv)r] |r=1

+

∫ s

1

(
1

r
(rw)r

)
r

vr dr, (2.3.60)

where we have used the no-slip condition (2.3.49). To remove the dependence of

the right-hand side of (2.3.60) on the an, we choose w such that(
1

r
(rw)r

)
r

r = 1, (2.3.61)

w|r=1 = 0, (2.3.62)

[rwr − w] |r=s = 0, (2.3.63)

where the first condition (2.3.61) is chosen such that the final term on the right-

hand side of (2.3.60) reduces to exactly q, the second condition (2.3.62) is chosen

such that the third term on the right-hand side of (2.3.60) is zero, and the third

condition (2.3.63) is chosen such that the first term on the right-hand side of

(2.3.60) is zero. Note that, as discussed previously, (2.3.61)–(2.3.63) is the adjoint

of the leading-order problem (2.3.49). Solving (2.3.61) subject to (2.3.62) and

(2.3.63) yields the weight function

w =
r

2
ln r +

s2

4r
(1− r2), (2.3.64)
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which is specific to the cylindrical geometry and hence is identical to equation

(3.16) of Wray et al. [56] and equation (3.9) of Wray and Cimpeanu [31] up to

differences in scalings.

Finally, evaluating (2.3.57) with the particular choice of weight function (2.3.64)

yields the thick-film WRIBL governing equation (which we shall refer to hereafter

as simply the “WRIBL equation”). In particular, evaluation of the leading-order

viscous term (2.3.58) with the weight function (2.3.64) yields∫ s

1

(
1

r
(rv)r

)
r

wr dr = [w (rvr − v)] |r=s + ω [(rw)r] |r=1 + q

= −ε2 [rwr (ǔθ̌ + 4sθ̌ǔr)] |r=s +
ω

2

(
1− s2

)
+ q, (2.3.65)

to second order, where we have used the second-order tangential stress condition

(2.3.6) along with the final condition (2.3.63) to obtain the first term on the second

line (which we do not give in its expanded form for brevity). Hence, the WRIBL

equation is given by

ε

8
(1− s4 + 4s2 ln s)

 κ

Ca︸︷︷︸
(a)

+s sin θ︸ ︷︷ ︸
(b)

+ẼbE
N︸ ︷︷ ︸

(c)

−2Re
q2

s2 − 1︸ ︷︷ ︸
(d)


θ̌

= q+
ω

2
(1− s2)︸ ︷︷ ︸
(e)

−ε2 (1− s2)2(1 + s2)sθ̌
2s3

(
q

s2 − 1

)
θ̌

+ ε2
(1− s2)(1 + s4 + 2s2(ln2 s− 1))

4s2

(
q

s2 − 1

)
θ̌θ̌︸ ︷︷ ︸

(f)

+ε
Re

16
(−1 + 2s2 + 2s6 − s4(3 + 4 ln s))

[(
q

s2 − 1

)
ť

+

(
q2

(s2 − 1)2

)
θ̌

]
︸ ︷︷ ︸

(g)

, (2.3.66)

where EN is defined by (2.3.15). The terms in (2.3.66) represent (a) capillarity,

(b) gravity, (c) Maxwell stress, (d) centrifugation, (e) rotation, (f) streamwise vis-

cous dissipation, and (g) inertia. Equation (2.3.66) is coupled with the kinematic

condition (2.1.34) and a suitable model for the electric potential ϕ to yield what

we shall refer to hereafter as the “WRIBL model”. Here, we choose to use one

of the three candidate models for ϕ that we derived in Section 2.3.2, namely, the

electrode model (2.3.29) and (2.3.30), the interface model (2.3.43) and (2.3.44),

or the thick-film gradient model (2.3.48). The WRIBL model is governed by six

dimensionless groups, namely, the initial film thickness h0, the rotation rate ω, the
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capillary number Ca, the Reynolds number Re, the electric potential difference

Ẽb, and the radius of the outer electrode d, given respectively by

h0 =
ĥ0

R̂1

, ω =
Ω̂R̂1

Ûchar

=
Ω̂µ̂

ρ̂ĝR̂1

, Ca =
µ̂Ûchar

σ̂
=
ρ̂ĝR̂2

1

σ̂
,

Re =
ρ̂ÛcharR̂1

µ̂
=
ρ̂2ĝR̂3

1

µ̂2
, Ẽb =

ϵ̂Gϕ̂
2
char

µ̂ÛcharR̂1

=
ϵ̂Gϕ̂

2
char

ρ̂ĝR̂3
1

, d =
R̂2

R̂1

,

(2.3.67)

where Ûchar is the characteristic drainage velocity (2.1.19).

The WRIBL model constitutes a closed system governing the evolution of the

interface s, the flux q, and the electric potential ϕ. As mentioned previously,

we compare the three candidate electrostatic models numerically in Chapter 5 in

order to determine which model yields the greatest accuracy when compared to

the numerical solution of Laplace’s equation (2.1.3), and hence to decide which is

most suited for use in the WRIBL model in practice.

The electric field contributes a normal stress at the interface which structurally

enters the WRIBL equation (2.3.66) in the same manner as capillarity, gravity, and

centrifugation. Upon setting Ẽb = 0, in the absence of an electric field the WRIBL

equation (2.3.66) recovers equation (1.4.28) of Wray and Cimpeanu [31] up to

differences in scalings. Specifically, Wray and Cimpeanu [31] use the different

characteristic velocity scaling Ûchar = (R̂1ĝ)
1/2 and the different pressure scale

ρ̂Û2
char, which together result in the gravity term in their equation (1.4.28) having

a Reynolds number Re as a coefficient, unlike the corresponding gravitational term

(b) in (2.3.66) which does not.

As discussed previously, ε is an ordering parameter and hence is set equal

to unity in the final model. However, here we have chosen to retain it when

displaying the WRIBL model for clarity regarding the positions of the ε. Note

that the WRIBL model is formally a simplified second-order model: the WRIBL

equation (2.3.66) contains second-order viscous terms, but only first-order inertial

terms. This is because, as discussed earlier in Section 1.2.5, the complexity of full

second-order WRIBL models often restricts their amenability to both analytical

and numerical analysis, hence here we discard the second-order inertial terms for

simplicity [29, 37]. Formally, this places a restriction on the range of validity of

the Reynolds number Re, as this implies that Re should be small. However, Wray

et al. [31, 56] showed that in practice, in the absence of an electric field, the model
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still gives excellent agreement with DNS even for Re of order unity.

The thin-film governing equation (2.2.23) can be recovered as a special case

of the WRIBL model (2.1.34) and (2.3.66) (along with a suitable model for the

electric potential ϕ). To demonstrate this, in Section 2.3.3.1, we perform a gradient

expansion on (2.3.66) to yield what we shall refer to hereafter as the “thick-film

gradient model”. In Section 2.3.3.2, we apply the thin-film scalings (2.2.1) to the

thick-film gradient model, which in turn recovers the thin-film model (2.2.23) to

leading order.

2.3.3.1 Thick-film gradient model

In this section, we perform a gradient expansion on q in the WRIBL model (2.1.34)

and (2.3.66) (along with a suitable model for the electric potential ϕ). In particular,

we expand q in powers of ε as

q = q0 + εq1 +O(ε2), (2.3.68)

where ε is the same ordering parameter defined at the beginning of Section 2.3.

Substituting (2.3.68) into the WRIBL equation (2.3.66) yields

q0 =
ω

2
(s2 − 1) (2.3.69)

at O(1), and using (2.3.69) yields

q1 =
1

8
(1− s4 + 4s2 ln s)

[
κ

Ca
+ s sin θ + ẼbE

N −Re ω2 (s
2 − 1)

2

]
θ̌

(2.3.70)

at O(ε). Substituting (2.3.68) with (2.3.69) and (2.3.70) into the kinematic con-

dition (2.1.34) yields the thick-film gradient model, namely,

(s2)ť =

{
ω(1− s2) +

ε

4
(1− s4 + 4s2 ln s) (2.3.71)

×
[
Re ω2 (s

2 − 1)

2
− ẼbE

N − κ

Ca
− s sin θ

]
θ̌

}
θ̌

+O(ε2).

2.3.3.2 Thin-film gradient model

In this section, we derive the thin-film limit of the thick-film gradient model

(2.3.71) and subsequently show that the thin-film governing equation (2.2.23) can
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be recovered as a special case of the WRIBL model. We proceed by undoing the

long-wave scalings (2.3.1) and (2.3.2) in the thick-film gradient model (2.3.71) and

applying the thin-film scalings (2.2.1) to (2.3.71) (where ϵ = h0 ≪ 1 is the same

small aspect ratio defined at the beginning of Section 2.2) to yield what we shall

refer to hereafter as the “thin-film gradient model”, namely,

ϵ2(1 + ϵH̃)H̃T̃ = −
{
ω

(
H̃ +

1

2
ϵH̃2

)
− ϵ2

3
H̃3

[
cos θ + ẼbẼ

N
θ

]
+ ϵ3

[
1

3Ca
H̃3(H̃θ + H̃θθθ) +

1

3
ω2ReH̃3H̃θ −

1

3
H̃3H̃θ sin θ

− 1

2
H̃4 cos θ − 1

6
H̃4ẼbẼ

N
θ

]}
θ

+O(ϵ4), (2.3.72)

where ẼN is the leading order thin-film normal Maxwell stress, which is found

by undoing the long-wave scalings (2.3.1) and (2.3.2) in (2.3.9) and applying the

thin-film scalings (2.2.1), yielding

ẼN = −1

2
Φ̃2

R̃
+O(ϵ), (2.3.73)

where Φ̃ is the leading-order solution (2.2.5) to the leading-order thin-film Laplace

equation, which was derived in Section 2.2.

The thin-film governing equation (2.2.23) can be recovered from the thin-film

gradient model (2.3.72) to leading-order under the the rescalings (2.2.11) and

(2.2.15) on ω and Ca which are required in order to ensure that electrostatic

effects, rotation, and capillarity appear at the same order. Specifically, to second

order, the thin-film gradient model (2.3.72) is

ϵ2H̃T̃ = −
{
ϵ2ω̄H̃ − ϵ2

3
H̃3

[
cos θ + ẼbẼ

N
θ

]
+
ϵ2

3γ̃
H̃3(H̃θ + H̃θθθ)

}
θ

, (2.3.74)

which may be written as

H̃T̃ +

[
ω̄H̃ +

H̃3

3

(
− cos θ +

1

γ̃

(
H̃θ + H̃θθθ

)
+ Ẽb

H̃θ

(D̃ − H̃)3

)]
θ

= 0. (2.3.75)

Equation (2.3.75) is identical to equation (2.2.23), showing that the thin-film gov-

erning equation can be derived as a special case of the WRIBL model.
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2.4 Concluding remarks

In this chapter, we have introduced and modelled the system that we will investi-

gate, namely, the flow of a perfectly conducting liquid coating a horizontal circular

cylinder in the presence of an electric field.

In Section 2.1, we formulated the system (shown in Figure 2.1), describing the

relevant governing equations and boundary conditions. In Section 2.2, we derived a

model valid for thin films, namely, equation (2.2.20), using the classical lubrication

approximation. In Section 2.3, we derived a model valid for thick films (referred

to as the “WRIBL model”) by applying the long-wave methodology [31, 56] in

conjunction with the WRIBL method [29].

The electrostatic part of the thick-film problem was solved in Section 2.3.2, in

which we derived three candidate models for the electric potential ϕ, namely, the

electrode model (2.3.29) and (2.3.30), the interface model (2.3.43) and (2.3.44),

and the thick-film gradient model (2.3.48). The electrode and interface models

were obtained by projecting the solution for ϕ onto a polynomial in powers of

ln(r/d) and ln(r/s), respectively, and the thick-film gradient model was obtained

by performing a gradient expansion on these (with both resulting in the same

model). The electrostatic models will be compared numerically in Chapter 5.

Subsequently, we solved the hydrodynamic part of the thick-film problem in

Section 2.3.3, in which we derived the thick-film WRIBL model which incorporates

the effects of capillarity, gravity, Maxwell stress, centrifugation, rotation, viscosity,

and inertia. In particular, we derived the WRIBL equation (2.3.66) which is

coupled with the kinematic condition (2.1.33) and a suitable model for the electric

potential ϕ. We also derived two special cases of the WRIBL model, namely, the

thick-film gradient model (2.3.71) and the thin-film gradient model (2.3.72), and

showed that the thin-film model (2.2.20) can be recovered as a special case of the

WRIBL model.

The thin-film model (2.2.20) will be investigated in Chapters 3 and 4, and the

WRIBL model will be investigated in Chapters 5 and 6, with particular focus on

its applications in electrostatic control.



Chapter 3

Thin-film draining flow in the

absence of an electric field

Before investigating the influence that electrostatic effects have on the thin-film

system that was described in Section 2.2, we must first undertake a comprehensive

analysis of the case in the absence of an electric field.

The case in which the cylinder is rotating (i.e., coating flow) has been afforded

considerable attention in the literature, and thus the reader is referred to the

discussions in Section 1.4.4 for the full details of this problem.

As discussed in Section 1.4.3, the case in which the cylinder is stationary has

been studied previously by many authors including Nusselt [34, 35], Reisfeld and

Bankoff [101], Evans et al. [102], Takagi and Huppert [103], and Cachile et al.

[104]. However, none of these studies attempted to obtain a complete description

of the late-time behaviour of the film: each focused only on a specific feature (such

as the draining near the top of the substrate, or the pendant drop formed near the

bottom), and did not attempt to resolve how the different regions connected to

one another. It is therefore for this reason that in this chapter we revisit the case

in which the cylinder is stationary in the absence of an electric field as an essential

precursor to the problem in the presence of an electric field.

In this chapter, we investigate the stationary case using an analogous method

to that of Qin et al. [105] who, as discussed in Section 1.4.5, recently attempted to

derive a complete description of the late-time behaviour of the flow of a thin film

on the outer surface of a stationary sphere. We defer further discussion of this key

paper until Section 3.3.

130
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In Section 3.1, we formulate a special case of the thin-film governing equation

(2.2.20) that was derived in Section 2.2 in the case of a stationary cylinder in the

absence of an electric field. In Section 3.2, we obtain the asymptotic solution for

the film thickness at early times, and in Sections 3.3–3.6, we obtain the leading-

order asymptotic solution for the film thickness at late times. In Section 3.7, we

draw our conclusions. We consider the case of a stationary cylinder in the presence

of an electric field in Chapter 4.

3.1 Problem formulation

To consider the case in which the inner cylinder is stationary in the absence of an

electric field, we begin by setting ω̄ = Ẽb = 0 in the unrescaled governing equation

(2.2.20) and the unrescaled flux (2.2.21), yielding

H̃T̃ +

[
−1

3
H̃3 cos θ +

1

3γ̃
H̃3
(
H̃ + H̃θθ

)
θ

]
θ

= 0, (3.1.1)

Q̃ = −1

3
H̃3 cos θ +

1

3γ̃
H̃3
(
H̃ + H̃θθ

)
θ
, (3.1.2)

respectively, where

γ̃ =
ρ̂ĝR̂3

1

ĥ0σ̂
, (3.1.3)

by (2.2.11). The governing equation (3.1.1) is subject to the initial condition

(2.2.2). In the absence of symmetry-breaking effects, throughout this chapter we

assume that the flow has left-to-right symmetry and so we restrict our attention to

the left-hand side of the cylinder and hence work in the domain π/2 ≤ θ ≤ 3π/2.

Note that whilst the governing equation (3.1.1) would normally be solved subject

to periodic conditions, we instead exploit the symmetry of the system, which in

particular, corresponds to imposing the symmetry conditions

H̃θ = H̃θθθ = 0 at θ =
π

2
and

3π

2
. (3.1.4)

Note that throughout this chapter we drop the tilde decoration in (2.2.2), (3.1.1),

(3.1.2), and (3.1.4) hereafter for brevity. The geometry of the dimensionless system

considered in this chapter is shown in Figure 3.1. Figure 3.1 also shows the three

regions of qualitatively different behaviour that emerge at late times, which will
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Figure 3.1: Geometry of the dimensionless system considered in Chapter 3.

be analysed in detail in Section 3.3.

Throughout this chapter, numerical solutions of (3.1.1) are obtained up to the

longest final times of up to T = O(1011) using the numerical scheme described in

Appendix A.2.

3.2 Early-time draining

In this section, we describe the draining of the initially uniform film at early times.

As in the corresponding problem of flow on a spherical substrate studied by Qin

et al. [105], the asymptotic solution for the film thickness H = H(θ, T ) at early

times is found by expanding it in powers of T ≪ 1 as

H = 1 + TH1(θ) + T 2H2(θ) +O(T 3). (3.2.1)

Substitution of (3.2.1) into the governing equation (3.1.1) and solving order-by-

order yields

H = 1− T

3
sin θ − T 2

6
cos(2θ) +O(T 3). (3.2.2)
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Figure 3.2: (a) Film thickness for γ = γπ given by (3.2.3) at time T = 10−2.

The dashed line shows the early-time asymptotic solution (3.2.2) and the solid

line shows the numerical solution of (3.1.1). Note that the two curves are almost

indistinguishable from one another at this early time. (b) The evolution of the

film thickness at the top of the cylinder for γ = γπ given by (3.2.3) until time

T = 102. The solid line shows the numerical solution of (3.1.1), the dashed line

shows the early-time asymptotic solution (3.2.2), and the dotted line shows the

late-time asymptotic solution (3.4.8).

The absence of γ from (3.2.2) shows that, as expected given its small deviation from

uniformity, at early times the evolution of the film is independent of capillarity

up to, and including, at least O(T 2) ≪ 1. Figure 3.2 (a) shows the film thickness

at time T = 10−2. Note that the value of γ has only a very weak effect on the

numerical solution shown in Figure 3.2 (a). However, the value of γ will become

important in the late-time dynamics discussed in Section 3.3, and so the particular

value used here, namely,

γ = γπ =
8π

π2 − 8
≃ 13.4428, (3.2.3)

was chosen for consistency with that used subsequently. In particular, Figure

3.2 (a) shows that the asymptotic solution (3.2.2) is in excellent agreement with

the numerical solution of the governing equation (3.1.1) at this early time. Figure

3.2 (b) shows the evolution of the film thickness at the top of the cylinder (i.e.,

at θ = π/2) for γ = γπ given by (3.2.3) until time T = 102, and confirms that

the early-time asymptotic solution (3.2.2) (shown with the dashed line) is valid

at the top of the cylinder at early times. For completeness, Figure 3.2 (b) also
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includes the corresponding late-time asymptotic solution (3.4.8) (shown as with

the dotted line) which will be derived in Section 3.4, and confirms that it is valid

at late times.

3.3 Late-time draining

As mentioned previously, and as sketched in Figure 3.1, three regions of qualita-

tively different behaviour emerge at late times. As in the corresponding problem

of flow on a spherical substrate studied by Qin et al. [105], different balances

of forces determine the dominant behaviour in each region, leading to different

simplifications of the governing equation (3.1.1). Therefore, the overall evolution

of the film at late times can be investigated by analysing each region separately

and performing the appropriate asymptotic matching between them. On the up-

per part of the cylinder, gravity dominates capillarity, resulting in a draining flow

which causes the film to thin, corresponding to the thin-film zone of Qin et al.

[105] in the spherical case. We shall refer to this region hereafter as the “draining

region” and it will be discussed in Section 3.4. On the other hand, on the lower

part of the cylinder, gravity and capillarity balance, resulting in the formation

of a quasi-static pendant drop, corresponding to the pendant-drop zone of Qin

et al. [105] in the spherical case. We shall refer to this region hereafter as the

“pendant-drop region” and it will be discussed in Section 3.5.

The draining and pendant-drop regions do not match directly with each other,

but do so via a narrow intermediate region. We shall refer to this region hereafter

as the “inner region”. We will show that this inner region consists of an infinite

sequence of alternating “dimples” (i.e., narrow regions in which the film thickness

has a local minimum) and “ridges” (i.e., narrow regions in which the film thick-

ness has a local maximum). The inner region, and, in particular, the qualitative

difference between the structure of the inner region and that described by Qin et

al. [105] in the spherical case, will be discussed in Section 3.6.

Figure 3.3 shows snapshots of the interface for γ = γπ given by (3.2.3) at

various times. In Section 3.5 it will be shown that this value of γ leads to θI = π

(i.e., the inner region is located at the waist of the cylinder), and this is confirmed

by the results shown in Figure 3.3. Figure 3.4 shows snapshots of the interface

for various values of γ at time T = 104. In particular, Figure 3.4 shows that

the effect of varying γ is mainly to change the location of the inner region θI and,
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Figure 3.3: Snapshots of the interface for γ = γπ given by (3.2.3) at times T = 0,

100, 101, 102, 103, and 104. The arrows indicate the direction of increasing time.

(a) Polar plot in which the film thickness has been exaggerated for illustrative

purposes by using the artificial value ϵ = 1. (b) Semi-log plot showing the film

thickness H as a function of θ.

γ

γ

π

2

3 π

4

π 5 π

4

3 π

2

0.001

0.010

0.100

1

10

θ

H

(a) (b)

Figure 3.4: Snapshots of the interface for γ = 10−1, 100, 101, 102, and 103 at time

T = 104. The arrows indicate the direction of increasing γ. (a) Polar plot in

which the film thickness has been exaggerated for illustrative purposes by using

the artificial value ϵ = 1. (b) Semi-log plot showing the film thickness H as a

function of θ.
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Figure 3.5: The film thickness H for γ = γπ given by (3.2.3) at time T = 1010.

(a) Solution for π/2 ≤ θ ≤ 13π/10. The rectangle indicates the location of the

enlargement shown in (b). (b) Enlargement of (a) near θ = θI = π.

correspondingly, the widths of the draining and pendant-drop regions. Specifically,

decreasing the value of γ, corresponding to weakening gravity, results in a narrower

draining region and a wider pendant-drop region, consistent with the numerical

results of Reisfeld and Bankoff [101] discussed in Section 1.4.3. Figure 3.5 shows

the film thickness H for γ = γπ given by (3.2.3) at time T = 1010. In particular,

whilst only the first dimple and ridge are immediately apparent in Figures 3.3,

3.4 and 3.5 (a), the second and third dimple and ridge are discernible in the

enlargement of Figure 3.5 (a) near θ = θI = π shown in Figure 3.5 (b).

3.4 Draining region

In this section, we investigate the draining region. The results of our numerical

calculations indicate that at late times the film becomes thin in the draining region.

Therefore, we seek a late-time asymptotic solution in which H ≪ 1, and hence at

leading order the governing equation (3.1.1) becomes simply

HT +

(
−1

3
H3 cos θ

)
θ

= 0. (3.4.1)

We seek a separable solution to (3.4.1) of the form

H (θ, T ) = η (θ)T n, (3.4.2)
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and substitution of (3.4.2) into (3.4.1) yields

nT n−1η +

(
−1

3
T 3nη3 cos θ

)
θ

. (3.4.3)

Balancing powers of n in (3.4.3) yields n = −1/2, and hence (3.4.1) has a solution

of the form

H(θ, T ) = η(θ)T−1/2, (3.4.4)

where the function η = η(θ) satisfies the first-order ODE

(
η3 cos θ

)
θ
+

3

2
η = 0. (3.4.5)

Solving (3.4.5) subject to the symmetry conditions (3.1.4) yields

η(θ) =



(
3

2
φ(θ)

)1/2

for
π

2
≤ θ ≤ π,( √

π Γ
(
1
3

)
| cos θ|2/3 Γ

(
5
6

) − 3

2
φ(θ)

)1/2

for π ≤ θ ≤ 3π

2
,

(3.4.6)

where φ(θ) is the hypergeometric function

φ(θ) = 2F1

(
1

3
,
1

2
;
4

3
; (cos θ)2

)
. (3.4.7)

Equation (3.4.4) shows that the film in the draining region thins as T−1/2, con-

sistent with the result of Takagi and Huppert [103] for a film with an advancing

front discussed in Section 1.4.3, and that H is a monotonically increasing function

of θ. In particular, this means that at any instant in time the leading-order film

thickness in this region increases from a minimum value of

H|θ=π/2 =

√
3

2
T−1/2. (3.4.8)

at the top of the cylinder to a maximum value at θ = θI . As mentioned in Section

3.2, Figure 3.2 (b) shows the evolution of the film thickness at the top of the

cylinder until time T = 102, and also confirms that (3.4.8) (shown with the dotted

line) is indeed valid at the top of the cylinder at late times. Expanding (3.4.4)

about θ = π/2 shows that H is locally parabolic near the top of the cylinder,
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Figure 3.6: Log-log plot of H in the draining region, evaluated at the top of the

cylinder for γ = γπ given by (3.2.3) as a function of T , and the corresponding

late-time asymptotic scaling T−1/2.

specifically

H =

[√
3

2
+

1

16

√
3

2

(
θ − π

2

)2
+O

((
θ − π

2

)4)]
T−1/2 as θ → π

2
. (3.4.9)

Substituting the solution for H in the draining region (3.4.4) into the flux

(3.1.2) shows that the contributions to the flux due to gravity and capillarity are

Qgrav = −1

3
H3 cos θ = O(T−3/2) ≪ 1, (3.4.10)

Qcap =
1

3γ
H3 (H +Hθθ)θ = O(T−2) ≪ 1, (3.4.11)

respectively. In particular, (3.4.10) and (3.4.11) show that Qcap ≪ Qgrav ≪ 1 at

late times, confirming the validity of neglecting capillarity in the draining region.

Figure 3.6 shows a log-log plot of H in the draining region, evaluated at the

top of the cylinder obtained from the numerical solution of (3.1.1) for γ = γπ given

by (3.2.3) as a function of T , and compares it with the corresponding late-time

asymptotic scaling T−1/2 obtained from (3.4.4). In particular, Figure 3.6 confirms

that the interface has the predicted asymptotic behaviour at sufficiently late times.

This conclusion is confirmed by the numerical values shown in Table 3.1, which

shows that the asymptotic scaling is in excellent agreement with the slope of the
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Asymptotic scaling Numerical result
H −0.5 −0.5021

Table 3.1: The late-time asymptotic scaling for H in the draining region, evaluated

at the top of the cylinder, and the slope of the corresponding line of best fit to the

numerical results for T ≥ 109/4 shown in Figure 3.6.
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Figure 3.7: Snapshots of the scaled film thickness η = HT 1/2 for γ = γπ given by

(3.2.3) at times T = 103, 104, 105, and 106. The arrow indicates the direction of

increasing time. The dotted line shows the leading-order asymptotic solution in

the draining region at late times (3.4.4) and the dashed line shows the asymptotic

solution valid near the top of the cylinder (3.4.9).

corresponding line of best fit to the numerical results for T ≥ 109/4 shown in Figure

3.6, which was calculated using the nonlinear curve fitting routine FindFit[] in

Mathematica [265]. Note that Q ≡ 0 at the top of the cylinder. Specifically,

Qgrav ≡ 0 (since cos(π/2) = 0) and Qcap ≡ 0 (as a consequence of the symmetry

conditions (3.1.4)), and so all fluxes are omitted from both Figure 3.6 and Table

3.1.

Figure 3.7 shows snapshots of the scaled interface η = HT 1/2 for γ = γπ given

by (3.2.3) at various times together with the leading-order asymptotic solution in

the draining region (3.4.4), confirming that the interface does indeed approach the

asymptotic solution at late times.

To perform the asymptotic matching with the inner region, it will be useful

to determine the azimuthal volume flux out of the draining region, denoted by
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Qdrain = Q(θI, T ) = Qdrain(T ). Integrating the governing equation (3.1.1) across

the draining region gives an expression for Qdrain, namely

Qdrain = −
∫ θI

π/2

HT dθ, (3.4.12)

where H is given by (3.4.4), and hence

Qdrain =
1

2
T−3/2

∫ θI

π/2

η(θ) dθ, (3.4.13)

showing that the flux out of the draining region decreases as T−3/2 at late times.

3.5 Pendant-drop region

In this section, we investigate the pendant-drop region. The results of our nu-

merical calculations indicate that at late times the pendant-drop region shown in

Figures 3.3 (a) and 3.4 (a) is quasi-static so that H = H(θ) is independent of T .

Hence, at leading order the governing equation (3.1.1) becomes

(H +Hθθ)θ = γ cos θ. (3.5.1)

Equation (3.5.1) is a third-order ODE for the film thickness H which requires three

boundary conditions. At the edge of the pendant-drop region, the interface ap-

proaches the surface of the cylinder tangentially, i.e., H satisfies the two boundary

conditions

H|θ=θI = 0, (3.5.2)

Hθ|θ=θI = 0, (3.5.3)

which together represent the assumption that at the boundary of the pendant

drop there is an apparent contact line which is constrained by the requirement of

a vanishing apparent contact angle due to the connection with a thin film (which

has zero thickness to leading order). The third boundary condition is the symmetry

condition at the bottom of the cylinder (3.1.4).

Solving (3.5.1) subject to (3.5.2), (3.5.3) and (3.1.4) yields the solution for H
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in the pendant-drop region, namely

H =
γ

4
[(3π − 2θ) cos θ − (3π − 2θI) cos θI + (sin θ − sin θI) (2 + (3π − 2θI) tan θI)] ,

(3.5.4)

which is valid for θI ≤ θ ≤ 3π/2.

The solution (3.5.4) contains an unknown constant, namely, the azimuthal

location of the inner region θI (as shown in Figure 3.1), which can be determined

by imposing global conservation of mass. To leading order, all of the liquid initially

on the cylinder is contained within the pendant-drop region, so that∫ 3π/2

θI

H dθ =

∫ 3π/2

π/2

H(0) dθ = π. (3.5.5)

Substituting the asymptotic solution for H given by (3.5.4) into the global mass

conservation condition (3.5.5) and evaluating the integral yields an implicit equa-

tion for θI in terms of γ, namely

γ =
8π cos θI

4 (1 + cos(2θI))− (3π − 2θI) (3π − 2θI + sin(2θI))
. (3.5.6)

Note that, unlike the corresponding equation in the spherical case obtained by Qin

et al. [105], it is not possible to invert (3.5.6) to obtain an explicit expression for

θI in terms of γ. In particular, as mentioned in Section 3.3, (3.5.6) predicts that

the inner region is located at θI = π (i.e., the inner region is located at the waist

of the cylinder) when γ = γπ is given by (3.2.3).

Figure 3.8 shows snapshots of the film thickness for γ = γπ given by (3.2.3) at

various times together with the leading-order asymptotic solution in the pendant-

drop region (3.5.4), confirming that the interface does indeed approach the asymp-

totic solution at late times. In particular, Figure 3.8 shows that the leading-order

film thickness in this region increases from zero at θI = π to a maximum value of

H

(
3π

2

)
= −γ

4
[(3π − 2θI) cos θI + {2 + (3π − 2θI) tan θI} (1 + sin θI)]

=
2π(π − 2)

π2 − 8
≃ 3.8366 (3.5.7)

at the bottom on the cylinder.

Figure 3.9 shows the relationship between γ and θI. Specifically, Figure 3.9
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Figure 3.8: Snapshots of the film thickness for γ = γπ given by (3.2.3) at times

T = 0, 100, 101, 102, 103, and 104. The arrow indicates the direction of increasing

time. The (barely visible) dashed line shows the leading-order asymptotic solution

in the pendant-drop region (3.5.4).

π

2

3 π

4

π 5 π

4

3 π

2

10
1

10
0

10
1

10
2

10
3

θI

γ
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totic expression (3.5.6), and the circles show the position of the inner region cal-

culated from numerical solutions of the governing equation (3.1.1) for γ = 10−1,

100, 101, 102, and 103 at time T = 104.
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shows that the asymptotic expression (3.5.6) is in very good agreement with the

position of the inner region. Note that, to leading order, the position of the

inner region is equivalent to the position of the minimum of dimple 1, which was

located numerically in Mathematica [265] using the built-in function FindPeaks[].

Specifically, the position and height of the most dominant trough in the numerical

solution of the governing equation (3.1.1) was calculated for five values of γ at

time T = 104. In particular, Figure 3.9 shows that θI is a monotonically increasing

function of γ, confirming that weakening gravity results in a narrower draining

region and a wider pendant-drop region, consistent with the results shown in Figure

3.4.

Substituting (3.5.6) into (3.5.4) and taking the limit θ → θ+I yields the local

behaviour of the interface in the pendant-drop region as it approaches the inner

region, namely

H =
π [2θI − 3π + sin(2θI)]

4 (1 + cos(2θI))− (3π − 2θI) (3π − 2θI + sin(2θI))
(θ − θI)

2

+O
(
(θ − θI)

3
)

as θ → θ+I .

(3.5.8)

This result will be used in Section 3.6.1 when performing the asymptotic matching

of the solution in the pendant-drop region to that in dimple 1.

3.6 Inner region

In this section, we investigate the inner region located at θ = θI which matches the

draining and pendant-drop regions. Figure 3.10 shows a sketch of the asymptotic

structure of the inner region, which, as mentioned above, consists of an infinite

sequence of alternating dimples and ridges. This capillary-ripple structure (see

Section 1.5) is qualitatively different from that of one dimple-ring zone and one

ridge-ring zone described by Qin et al. [105] in the spherical case. In fact, we

anticipate that a corresponding infinite sequence of alternating dimple-ring zones

and ridge-ring zones (with, in particular, the same asymptotic scalings as those

described subsequently in this chapter) also occurs in the spherical case. The

flaw in the analysis of Qin et al. [105] is that the flux out of their thin-film zone

is not, in fact, of the same order as the fluxes due to gravity and capillarity in

their ridge-ring zone. This mismatch is not apparent in their numerical results
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Figure 3.10: A sketch of the asymptotic structure of the inner region.

because they never computed beyond a final time of T = O(105) (compared to

a final time of T = O(1011) used in this section), and (extrapolating from the

behaviour of the present solution described in Section 3.6.3), the other dimple-

ring and ridge-ring zones presumably only become apparent at larger values of

T . However, as discussed in Section 1.5, capillary-ripple structures similar to that

described here have been found in other situations, most famously by Jones and

Wilson [156], who, as discussed earlier, showed that an infinite sequence of steady

dimples and ridges is necessary to match a thin liquid film of uniform thickness

flowing down a vertical wall to a quiescent pool of liquid. As discussed in Section

1.5, following this pioneering work, similar structures have been found in rimming

flow [119], levitated drops [157], liquid films or drops on inclined planes [114, 158,

159], elastic-plated gravity currents [160], and Leidenfrost levitation of particles

[161].

We will determine the asymptotic solutions for H in dimple 1 and ridge 1

in Sections 3.6.1 and 3.6.2, respectively. We will then generalise this analysis to

determine the asymptotic solutions forH in dimple n and ridge n for n = 2, 3, 4, . . .

in Section 3.6.3.

3.6.1 Dimple 1

The results of our numerical calculations indicate that, as Figure 3.5 illustrates,

dimple 1 is narrow and thin (specifically, thinner than the draining region). Moti-

vated by these numerical results, we seek a leading-order asymptotic solution for
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H in the self-similar form

H =
ψ1(ξ1)

Tα1
, θ − θI =

ξ1
T β1

, (3.6.1)

where the exponents α1 > 1/2 and β1 > 0 are positive constants which we shall

determine.

In order to proceed, the solution in dimple 1 must be matched to the (known)

solution in the pendant drop region in the downstream direction, and to the flux in

the draining region (rather than the solution in ridge 1) in the upstream direction.

This is because dimple 1 matches with ridge 1 in the upstream direction, whose

solution cannot be determined until the solution in dimple 1 is known, therefore

the fluxes must be matched rather than the film thickness.

In particular, equating the flux out of the draining region given by (3.4.13)

with the flux in dimple 1 (obtained from substituting (3.6.1) into (3.1.2)) yields

T−3/2K = −1

3
ψ3
1T

−3α1 cos θI +
1

3γ
ψ3
1

[
T−4α1+β1ψ1ξ1 + T−4α1+3β1ψ1ξ1ξ1ξ1

]
, (3.6.2)

where

K =
3γ

2

∫ θI

π/2

η(θ) dθ > 0 (3.6.3)

is a positive constant.

Considering the possible leading-order balances in (3.6.2) yields three possible

equations relating α1 and β1, namely

−3

2
= −4α1 + 3β1, −3α1 = −4α1 + 3β1, and − 3

2
= −3α1. (3.6.4)

The third of these equations may be immediately discarded on the basis that it

yields α1 = 1/2, corresponding to the scaling of the film thickness in the draining

region, and thus contradicting the assumption that dimple 1 is thinner than the

draining region.

Another equation relating α1 and β1 arises from the asymptotic matching of

dimple 1 with the pendant-drop region. Approaching dimple 1 from the pendant-

drop region corresponds to taking the limit θ → θ+I , and approaching the pendant-

drop region from dimple 1 corresponds to taking the limit ξ1 → +∞. Thus,

matching the solution for the film thickness in dimple 1 with that in the pendant-
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drop region requires that

T−α1+2β1ψ1ξ1ξ1|ξ1→+∞ = Hθθ|θ→θ+I
, (3.6.5)

where H is given by (3.5.8). Equating the exponents of T in (3.6.5) yields

−α1 + 2β1 = 0. (3.6.6)

This allows us to discard the first equation in (3.6.4), as it yields α1 = β1 = 0,

corresponding to the scaling of the film thickness in the pendant-drop region.

Therefore, the only relevant equation in (3.6.4) is −3/2 = −4α1 + 3β1, yielding

α1 =
3

5
, β1 =

3

10
, (3.6.7)

and hence the solution for H (3.6.1) becomes

H =
ψ1(ξ1)

T 3/5
, θ − θI =

ξ1
T 3/10

, (3.6.8)

where the function ψ1 = ψ1(ξ1) satisfies

ψ3
1ψ1ξ1ξ1ξ1 = K. (3.6.9)

In particular, equation (3.6.8) shows that dimple 1 has the same asymptotic scal-

ings as the dimple-ring zone in the spherical case found by Qin et al. [105]. Note

that equation (3.6.9) (sometimes referred to as “the current equation”) arises in a

variety of other draining and coating flows (see, for example, Lamstaes and Eggers

[266] and van Limbeek et al. [267]).

Substituting the solution for H (3.6.8) into the flux (3.1.2) shows that

Qgrav = −1

3
H3 cos θ = O(T−9/5) ≪ 1, (3.6.10)

Qcap =
1

3γ
H3 (H +Hθθ)θ = O(T−3/2) ≪ 1. (3.6.11)

In particular, (3.6.10) and (3.6.11) show that Qgrav ≪ Qcap ≪ 1 in dimple 1,

confirming the consistency of neglecting gravity in dimple 1.

Figure 3.11 shows a log-log plot of H, Qgrav, Qcap, and Q evaluated at the

minimum of dimple 1 obtained from numerical solutions of (3.1.1) for γ = γπ
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Figure 3.11: Log-log plot of H (diamonds), Qgrav (triangles), Qcap (circles), and

Q (squares) evaluated at the minimum of dimple 1 for γ = γπ given by (3.2.3) as

functions of T , and the corresponding late-time asymptotic scalings T−3/5, T−9/5,

T−3/2, and T−3/2. Note that the circles and the squares almost lie on top of each

other.

Asymptotic scaling Numerical result
H −0.6 −0.5974
Qgrav −1.8 −1.7773
Qcap −1.5 −1.4877
Q −1.5 −1.4953

Table 3.2: The late-time asymptotic scalings for H, Qgrav, Qcap, and Q in dimple

1, and the slopes of the lines of best fit to the numerical results for T ≥ 109/4

shown in Figure 3.11.

given by (3.2.3) as function of T , and compares them with the corresponding late-

time asymptotic scalings T−3/5, T−9/5, T−3/2, and T−3/2 obtained from (3.6.8),

(3.6.10), and (3.6.11). In particular, Figure 3.11 and Table 3.2 confirm that the

interface has the predicted asymptotic behaviour at sufficiently late times.

The shape of the interface of dimple 1 is determined by solving (3.6.9) for

ψ1 subject to appropriate far-field and boundary conditions. As given by (3.6.5),

the first condition arises from matching the solution in dimple 1 with that in the

pendant-drop region, i.e.,

ψ1ξ1ξ1|ξ1→+∞ = L0 :=
2π (2θI − 3π + sin(2θI))

4(1 + cos(2θI))− (3π − 2θI)(3π − 2θI + sin(2θI))
. (3.6.12)
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The second condition arises from matching dimple 1 with ridge 1, i.e.,

ψ1ξ1ξ1|ξ1→−∞ = 0. (3.6.13)

Note that (3.6.12) and (3.6.13) mean that the leading-order film thickness in ridge

1 grows quadratically in the limit ξ1 → +∞ but linearly in the limit ξ1 → −∞.

The third condition fixes the location of the minimum of ψ1 at ξ1 = 0, i.e.,

ψ1ξ1|ξ1=0 = 0. (3.6.14)

The constants K and L0 can be scaled out of the problem (3.6.9) and (3.6.12)–

(3.6.14) by setting

ψ1 = c1ψ̃, ξ1 = c2ξ̃. (3.6.15)

Substituting (3.6.15) into (3.6.9) and (3.6.12)–(3.6.14) yields

ψ̃3ψ̃ξ̃ξ̃ξ̃ =
c32
c41
K, (3.6.16)

ψ̃ξ̃|ξ̃=0 = 0, (3.6.17)

ψ̃ξ̃ξ̃|ξ̃→+∞ =
c22
c1
L0, (3.6.18)

ψ̃ξ̃ξ̃|ξ̃→−∞ = 0, (3.6.19)

respectively. Solving c41/c
3
2 = K and c1/c

2
2 = L0 gives

ψ1 = K2/5L
−3/5
0 ψ̃, ξ1 = K1/5L

−4/5
0 ξ̃. (3.6.20)

Substitution of (3.6.20) into (3.6.9) and (3.6.12)–(3.6.14) yields the rescaled (parameter-

free) problem

ψ̃3ψ̃ξ̃ξ̃ξ̃ = 1, (3.6.21)

ψ̃ξ̃ξ̃|ξ̃→+∞ = 1, (3.6.22)

ψ̃ξ̃ξ̃|ξ̃→−∞ = 0, (3.6.23)

ψ̃ξ̃|ξ̃=0 = 0. (3.6.24)

Figure 3.12 (a) shows the numerical solution of the rescaled problem (3.6.21)–
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Figure 3.12: (a) Solution of the rescaled problem (3.6.21)–(3.6.24) expressed in

rescaled variables ξ̃ and ψ̃. (b) Snapshots of the film thickness for γ = γπ given

by (3.2.3) at times T = 102, 103, 104, 105, and 106 expressed in scaled variables

ξ1 and ψ1. The arrow indicates the direction of increasing time. The dashed line

shows the leading-order asymptotic solution in dimple 1 (3.6.8).

(3.6.24) expressed in rescaled variables ξ̃ and ψ̃, and Figure 3.12 (b) shows snap-

shots of the film thickness for γ = γπ given by (3.2.3) at various times together

with the leading-order asymptotic solution in dimple 1 (3.6.8) expressed in scaled

variables ξ1 and ψ1, confirming that the interface does indeed approach the asymp-

totic solution at late times. In particular, the limiting value of the slope of the

interface in the rescaled problem as ξ̃ → −∞ is found to be

ψ̃|ξ̃→−∞ = −m̃, (3.6.25)

where

m̃ = 0.9626 (3.6.26)

is found in solving the rescaled problem (3.6.21)–(3.6.24) numerically via a shooting

method (see, for example, Edun et al. [268] or Meade et al. [269] for details). This

result will be used in Section 3.6.2 when performing the asymptotic matching

between dimple 1 and ridge 1, and again in Section 3.6.3 when performing the

asymptotic matching between dimple n and ridge n.
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3.6.2 Ridge 1

The results of our numerical calculations indicate that, as Figure 3.5 also illus-

trates, ridge 1 is narrow (but wider than dimple 1) and thin (but thicker than the

draining region). Motivated by these numerical results, we seek a leading-order

asymptotic solution for H in the self-similar form

H =
ϕ1(ζ1)

T δ1
, θ − θI =

ζ1
T λ1

, (3.6.27)

where the exponents 0 < δ1 < 1/2 and 0 < λ1 < β1 are positive constants which

we shall determine.

Equating the flux out of the draining region given by (3.4.13) with the flux in

ridge 1 (obtained from substituting (3.6.27) into (3.1.2)) yields

T−3/2K = −1

3
ϕ3
1T

−3δ1 cos θI +
1

3γ
ϕ3
1

[
T−4δ1+λ1ϕ1ζ1 + T−4δ1+3λ1ϕ1ζ1ζ1ζ1

]
, (3.6.28)

where the constant K is again given by (3.6.3).

Analogously to the corresponding analysis of dimple 1 described in Section

3.6.1, considering the possible leading-order balances in (3.6.28) yields three pos-

sible equations relating δ1 and λ1, namely

−3

2
= −4δ1 + 3λ1, −3δ1 = −4δ1 + 3λ1, and − 3

2
= −3δ1. (3.6.29)

As before, the third of these may be discarded immediately on the basis that it

yields δ1 = 1/2, corresponding to the scaling of the film thickness of the draining

region, thus contradicting the assumption that ridge 1 is thicker than the draining

region.

Imposing asymptotic matching of ridge 1 with dimple 1 yields

T−δ1+λ1ϕ1ζ1 |ζ1→+∞ = T−3/10ψ1ξ1 |ξ1→−∞. (3.6.30)

Equating exponents of T in (3.6.30) yields

−δ1 + λ1 = − 3

10
, (3.6.31)

which allows us to discard the first equation in (3.6.29) as it yields δ1 = 3/5 and

λ1 = 3/10, corresponding to the scaling of the thickness in dimple 1, contradicting
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the assumption that ridge 1 is wider than dimple 1. Therefore, the only relevant

equation in (3.6.29) is −3δ1 = −4δ1 + 3λ1. It follows that δ1 and λ1 are given by

δ1 =
9

20
, λ1 =

3

20
, (3.6.32)

respectively, and hence the solution for H given by (3.6.27) becomes

H =
ϕ1(ζ1)

T 9/20
, θ − θI =

ζ1
T 3/20

. (3.6.33)

In particular, (3.6.33) shows that ridge 1 has the same asymptotic scalings as the

ridge-ring zone in the spherical case found by Qin et al. [105].

By (3.6.33), (3.6.28) becomes

T−3/2K = T−27/20

(
−ϕ

3
1

3
cos θI + γ−1ϕ

3
1

3
ϕ1ζ1ζ1ζ1

)
, (3.6.34)

and balancing (3.6.34) with the flux out of the draining region Qdrain (3.4.13) yields

−ϕ
3
1

3
cos θI + γ−1ϕ

3
1

3
ϕ1ζ1ζ1ζ1 =

1

2
T−3/20

∫ θI

π/2

η(θ) dθ. (3.6.35)

The right-hand side of (3.6.35) is negligible in the limit T → ∞. Thus, to find the

shape of ridge 1 at late times we must solve

ϕ1ζ1ζ1ζ1 = γ cos θI. (3.6.36)

Substituting the solution for H given by (3.6.33) into the flux (3.1.2) shows that

Qgrav = −1

3
H3 cos θ = O(T−27/20) ≪ 1, (3.6.37)

Qcap =
1

3γ
H3 (H +Hθθ)θ = O(T−27/20) ≪ 1, (3.6.38)

confirming that Qgrav ∼ Qcap ≪ 1 in ridge 1, i.e., that gravity and capillarity are

comparable in ridge 1.

Figure 3.13 shows a log-log plot of H, Qgrav, Qcap, and Q evaluated at the

maximum of ridge 1 obtained from numerical solutions of (3.1.1) for γ = γπ given

by (3.2.3) as a function of T , and compares them with the corresponding late-time

asymptotic scalings T−9/20, T−27/20, T−27/20, and T−3/2 obtained from (3.6.33),
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Figure 3.13: Log-log plot of H (diamonds), Qgrav (triangles), Qcap (circles), and

Q (squares) evaluated at the maximum of ridge 1 for γ = γπ given by (3.2.3)

as functions of T , and the corresponding late-time asymptotic scalings T−9/20,

T−27/20, T−27/20, and T−3/2. Note that the triangles, circles and the squares almost

lie on top of each other.

Asymptotic scaling Numerical result
H −0.45 −0.4736
Qgrav −1.35 −1.4179
Qcap −1.35 −1.3658
Q −1.50 −1.4828

Table 3.3: Late-time asymptotic scalings for H, Qgrav, Qcap, and Q in ridge 1, and

the slopes of the lines of best fit to the numerical results for T ≥ 109/4 shown in

Figure 3.13.

(3.6.37), and (3.6.38). In particular, Figure 3.13 and Table 3.3 confirm that the

interface has the predicted asymptotic behaviour at sufficiently late times.

Since the O(T−3/20) ≪ 1 width of ridge 1 is asymptotically larger than both the

O(T−3/10) ≪ 1 width of dimple 1 and the width of dimple 2 (which we determine in

Section 3.6.3), the shape of the interface of ridge 1 is determined by solving (3.6.36)

for ϕ1 subject to appropriate boundary conditions on a finite (rather than an

infinite) domain. Specifically, we solve (3.6.36) in the finite domain ζ1,0 ≤ ζ1 ≤ ζ1,1,

where the values of ζ1,0 and ζ1,1 are determined as part of the solution. The first

boundary condition arises from matching the solution in ridge 1 with that in dimple
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1 at ζ1 = ζ1,1, i.e.,

ϕ1|ζ1=ζ1,1 = 0 and ϕ1ζ1|ζ1=ζ1,1 = −m1, (3.6.39)

where m1 is defined by

m1 = ψ1ξ1|ξ1→−∞, (3.6.40)

where by (3.6.20), (3.6.40) becomes

m1 =
c1,1
c1,2

ψ̃ξ̃|ξ̃→−∞ = K1/5L
1/5
0 m̃, (3.6.41)

and the numerical value of m̃ is given by (3.6.26). The second boundary condition

on (3.6.36) arises from matching the solution in ridge 1 with that in dimple 2 at

ζ1 = ζ1,0, i.e.,

ϕ1|ζ1=ζ1,0 = 0 and ϕ1ζ1|ζ1=ζ1,0 = 0. (3.6.42)

The final boundary condition fixes the location of the minimum of ϕ1 at ζ1 = 0,

i.e.,

ϕ1ζ1 |ζ1=0 = 0. (3.6.43)

Solving (3.6.36) subject to (3.6.39)–(3.6.43) yields the solution for the interface

of ridge 1, namely

ϕ1 =

8
√
6
(
K1/5L

1/5
0 m̃

)3/2
− 9γ| cos θI|ζ21

[√
6
(
K1/5L

1/5
0 m̃

)1/2
+ (γ| cos θI|)1/2ζ1

]
54(γ| cos θI|)1/2

,

(3.6.44)

where ζ1,0 and ζ1,1 are given by

ζ1,0 = −

(
8K1/5L

1/5
0 m̃

3γ| cos θI|

)1/2

and ζ1,1 =

(
2K1/5L

1/5
0 m̃

3γ| cos θI|

)1/2

, (3.6.45)

respectively, γ and θI are related by (3.5.6), and L0 is given by (3.6.12). For

example, the solution in ridge 1 for γ = γπ given by (3.2.3) is

ϕ1 = 0.5776− 2.6949ζ21 − 2.2405ζ31 . (3.6.46)

Figure 3.14 shows snapshots of the film thickness for γ = γπ given by (3.2.3)

at various times together with the leading-order asymptotic solution in ridge 1
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Figure 3.14: Snapshots of the film thickness for γ = γπ given by (3.2.3) at times

T = 105 + 10n/2 for n = 10, 11, . . . , 21 expressed in scaled variables ζ1 and ϕ1.

The arrow indicates the direction of increasing time. The dashed line shows the

leading-order asymptotic solution in ridge 1 (3.6.46).

(3.6.46) expressed in scaled variables ζ1 and ϕ1, confirming that the interface does

indeed approach the asymptotic solution at late times. Figure 3.14 also reveals that

the convergence to the leading-order asymptotic solution in ridge 1 is significantly

slower than the corresponding convergence in dimple 1 shown in Figure 3.12 (b):

we return to this point in Section 3.6.3.

3.6.3 Dimple n and ridge n

As discussed previously, the inner region has a capillary-ripple structure consisting

of an infinite sequence of dimples and ridges, and Figure 3.15 shows sketches of

the leading-order asymptotic solutions in dimple n and ridge n for n = 2, 3, 4, . . ..

Fortunately, the asymptotic solutions for H in all of the dimples and ridges can

be obtained by generalising the analysis for dimple 1 and ridge 1 described in Sec-

tions 3.6.1 and 3.6.2, respectively. Specifically, we seek leading-order asymptotic

solutions for H in dimple n in the self-similar form

H =
ψn(ξn)

Tαn
, θ − θI =

ξn
T βn

, (3.6.47)
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(a) (b)

Figure 3.15: Sketches of the leading-order asymptotic solutions in (a) dimple n

and (b) ridge n for n = 2, 3, 4, . . ..

and for H in ridge n in the self-similar form

H =
ϕn(ζn)

T δn
, θ − θI =

ζn
T λn

, (3.6.48)

where the exponents αn > 1/2, βn > 0, 0 < δn < 1/2, and 0 < λn < min(βn, βn+1)

are positive constants for which we will determine the general forms.

Equating the flux out of the draining region given by (3.4.13) with the flux in

dimple n (obtained from substituting (3.6.47) into (3.1.2)) yields

T−3/2K = −1

3
ψ3
nT

−3αn cos θI +
1

3γ
ψ3
n

[
T−4αn+βnψnξn + T−4αn+3βnψnξnξnξn

]
,

(3.6.49)

from which the relevant equation relating αn and βn is

−3

2
= −4αn + 3βn, (3.6.50)

as per the analysis in Section 3.6.1. Matching dimple n with ridge n− 1 requires

T 2βn−αnϕnξnξn|ξn→−∞ = T 2λn−1−δn−1ϕn−1ζn−1ζn−1|ζn−1→+∞. (3.6.51)

Equating exponents of T in (3.6.51), yields the second equation relating αn and

βn, namely,

−αn + 2βn = −δn−1 + 2λn−1. (3.6.52)
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Solving (3.6.50) and (3.6.52) yields

αn =
3

5
+

1

5
(−3δn−1 + 6λn−1) , βn =

3

10
+

1

5
(−4δn−1 + 8λn−1) . (3.6.53)

On the other hand, equating the flux out of the draining region given by (3.4.13)

with the flux in ridge n (obtained from substituting (3.6.48) into (3.1.2)) yields

T−3/2K = −1

3
ϕ3
1T

−3δn cos θI+
1

3γ
ϕ3
n

[
T−4δn+λnϕnζn + T−4δn+3λnϕnζnζnζn

]
, (3.6.54)

from which the relevant equation relating δn and λn is

δn − 3λn = 0, (3.6.55)

as per the analysis in Section 3.6.2. Matching ridge n with dimple n requires

T 2βn−αnϕnξnξn|ξn→−∞ = T 2λn−1−δn−1ϕn−1ζn−1ζn−1|ζn−1→+∞. (3.6.56)

Equating exponents of T in (3.6.56) yields the second equation relating δn and λn,

namely,

−δn + λn = −αn + βn. (3.6.57)

Solving (3.6.55) and (3.6.57) yields

δn =
1

2
(αn − βn) , λn =

3

2
(αn − βn) . (3.6.58)

By (3.6.7), (3.6.32), (3.6.53) and (3.6.58), the first five terms in the sequence

of αn βn, δn, and λn are, respectively,

αn =
3

5
,

51

100
,

501

1000
,

5001

10000
,

50001

100000
, . . .

βn =
3

10
,

9

50
,

21

125
,

417

2500
,

4167

25000
, . . .

δn =
9

20
,

99

200
,

999

2000
,

9999

20000
,

99999

200000
, . . .

λn =
3

20
,

33

200
,

333

2000
,

3333

20000
,

33333

200000
, . . .

(3.6.59)
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To obtain the general form of αn, we seek a recurrence relation of the form

αn =

α1 n = 1,

aαn−1 + b n > 1,
(3.6.60)

where a and b are constants to be determined and α1 = 3/5 by (3.6.7). By (3.6.59)

and (3.6.60), setting n = 2 and n = 3 yields, respectively,

51

100
=

3

5
a+ b,

501

1000
=

51

100
a+ b. (3.6.61)

Solving (3.6.61) for a and b and substituting the solutions into (3.6.60) yields the

recurrence relation

αn =


3

5
n = 1,

9

20
+
αn−1

10
n > 1.

(3.6.62)

Equation (3.6.62) is a nonhomogeneous, linear recurrence relation, for which the

general solution αGS
n has the form

αGS
n = crn, (3.6.63)

where r and c are constants to be determined. Substituting (3.6.63) into the

homogeneous part of (3.6.62) and solving for r yields r = 1/10, thus the general

solution is αGS
n = c10−n. The nonhomogeneous part of (3.6.62) is a constant, and

so the particular solution αPS
n has the form

αPS
n = d, (3.6.64)

where d is a constant to be determined. Substituting (3.6.64) into (3.6.62) yields

d = 1/2, thus

αn = αGS
n + αPS

n = c10−n +
1

2
. (3.6.65)

Setting n = 1 in (3.6.65) and using α1 = 3/5 yields c = 1, therefore the general

form of αn is

αn =
1

2
(1 + 2× 10−n). (3.6.66)

Following through with analogous processes for βn, δn, and λn yields the recurrence
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relations

βn =


3

10
n = 1,

3

20
+
βn−1

10
n > 1,

(3.6.67)

δn =


9

20
n = 1,

9

20
+
δn−1

10
n > 1,

(3.6.68)

λn =


3

20
n = 1,

3

20
+
λn−1

10
n > 1,

(3.6.69)

respectively, from which the general forms of βn, δn, and λn are found to be

βn =
1

6

(
1 + 8× 10−n

)
, (3.6.70)

δn =
1

2

(
1− 10−n

)
, (3.6.71)

λn =
1

6

(
1− 10−n

)
. (3.6.72)

Thus, the solution for H in dimple n (3.6.47) becomes

H =
ψn(ξn)

T (1+2×10−n)/2
, θ − θI =

ξn
T (1+8×10−n)/6

, (3.6.73)

and the solution for H in ridge n (3.6.48) becomes

H =
ϕn(ζn)

T (1−10−n)/2
, θ − θI =

ζn
T (1−10−n)/6

. (3.6.74)

Note that setting n = 1 in (3.6.66) and (3.6.70)–(3.6.74) recovers the correspond-

ing results for dimple 1 and ridge 1 obtained in Sections 3.6.1 and 3.6.2, re-

spectively. Furthermore, we note that αn → 1/2+ and δn → 1/2− in the limit

n → ∞, confirming that an infinite sequence of dimples and ridges is required

to achieve matching with the draining region. Moreover, as n increases these

exponents approach their common asymptotic value rather quickly, as shown in

Figure 3.16 which shows the progression of αn (3.6.66), βn (3.6.70), δn (3.6.71),
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Figure 3.16: The exponents αn (3.6.66) (circles), βn (3.6.70) (squares), δn (3.6.71)

(diamonds), and λn (3.6.72) (triangles) for n = 1, 2, 3, 4, and 5, where the symbols

represent integer values of n. The horizontal lines show the asymptotic values of

the limits as n → ∞. The dashed line shows the value 1/2 and the dotted line

shows the value 1/6.

and λn (3.6.72) for n = 1, 2, 3, 4, and 5. This explains why only the first three

dimples and ridges are discernible in Figure 3.5 (b). This is also the reason why

the O(T−51/100)/O(T−9/20) = O(T−3/50) ≪ 1 convergence to the leading-order

asymptotic solution in ridge 1 shown in Figure 3.14 is significantly slower than

the corresponding O(T−9/20)/O(T−3/5) = O(T−3/20) ≪ 1 convergence in dimple 1

shown in Figure 3.12 (b). In addition, note that the values of the exponents given

in (3.6.66) and (3.6.70)–(3.6.72) mean that all of the dimples are narrower than

all of the ridges (specifically, the width of dimple n is O(T−βn) ≪ 1 and the width

of ridge n is O(T−λn) ≪ 1, where βn > 1/6 and λn < 1/6).

We can generalise the analysis described in Sections 3.6.1 and 3.6.2 for dimple

n and ridge n, respectively. In dimple n, the function ψn = ψn(ξn) satisfies

ψ3
nψnξnξnξn = K, (3.6.75)

where K is again given by (3.6.3), subject to

ψnξnξn|ξn→+∞ = Ln−1 := ϕn−1ζn−1ζn−1 |ζn−1→ζ+n−1,0
, (3.6.76)
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ψnξnξn|ξn→−∞ = 0, (3.6.77)

ψnξn|ξn=0 = 0, (3.6.78)

where the first condition (3.6.76) arises from matching dimple n to the pendant-

drop region for n = 1 or to ridge n − 1 for n > 1, the second condition (3.6.77)

arises from matching dimple n with ridge n, and the third condition (3.6.78) fixes

the maximum of ψn at ξn = 0.

In ridge n, the function ϕn = ϕn(ζn) satisfies

ϕnζnζnζn = γ cos θI (3.6.79)

on the finite domain ζn ∈ [ζn,0, ζn,1] subject to

ϕn|ζn=ζn,1 = 0 and ϕnζn|ζn=ζn,1 = −mn, (3.6.80)

ϕn|ζn=ζn,0 = 0 and ϕnζn|ζn=ζn,0 = 0, (3.6.81)

ϕnζn |ζn=0 = 0, (3.6.82)

where the first condition (3.6.80) arises in matching ridge n to dimple n linearly

by asserting that the gradient at ζn = ζn,1 matches that of the solution in dimple

n, the second condition (3.6.81) arises in matching ridge n with dimple n + 1 by

asserting that the solution in ridge n approaches ζn = ζn,0 tangentially, and the

third condition (3.6.82) fixes the location of the minimum of ϕn at ζn = 0.

As before, the constants K and Ln−1 can be scaled out of the problem (3.6.75)–

(3.6.78) by setting

ψn = K2/5L
−3/5
n−1 ψ̃, ξn = K1/5L

−4/5
n−1 ξ̃, (3.6.83)

to exactly recover the rescaled problem (3.6.21)–(3.6.24) obtained in Section 3.6.2,

and so mn is given by

mn = K1/5L
1/5
n−1m̃, (3.6.84)

where the numerical value of m̃ is again given by (3.6.26).

Solving (3.6.79) subject to (3.6.80)–(3.6.82) yields the solution for the interface
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of ridge n, namely

ϕn =

8
√
6
(
K1/5L

1/5
n−1m̃

)3/2
− 9γ| cos θI|ζ2n

[√
6
(
K1/5L

1/5
n−1m̃

)1/2
+ (γ| cos θI|)1/2ζn

]
54(γ| cos θI|)1/2

,

(3.6.85)

where ζn,0 and ζn,1 are given by

ζn,0 = −

(
8K1/5L

1/5
n−1m̃

3γ| cos θI|

)1/2

, ζn,1 =

(
2K1/5L

1/5
n−1m̃

3γ| cos θI|

)1/2

, (3.6.86)

respectively, γ and θI are again related by (3.5.6), and Ln−1 is given by (3.6.76).

Using (3.6.76), we can obtain Ln terms of Ln−1, and hence inductively in terms

of L0. Differentiating (3.6.85) twice with respect to ζn and evaluating at ζn = ζn,0

(3.6.86) yields

Ln =

√
2

3

(
K1/5L

1/5
n−1m̃γ| cos θI|

)1/2
, (3.6.87)

which can be written in terms of L0 (3.6.12) as

Ln =

(
2

3
m̃γ| cos θI|

)x/2

KyL10−n

0 , (3.6.88)

where the exponents x and y are given by

x =
n∑

i=1

1

10i−1
=

10

9

(
1− 10−n

)
, y =

n∑
i=1

1

10i
=

1

9

(
1− 10−n

)
, (3.6.89)

respectively.

The problem for ψn (which has to be solved numerically) and the solution for

ϕn (given by (3.6.85) and (3.6.86)) are now given in terms of known constants,

namely, K (3.6.3), L0 (3.6.12), and m̃ (3.6.26), and so the leading-order shape of

the interface can now be obtained throughout the inner region.

3.7 Concluding remarks

In this chapter, we have investigated the dynamics of a thin film on the outer sur-

face of a horizontal circular cylinder in the case in which the cylinder is stationary

in the absence of an electric field.
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In Section 3.2, we showed that at early times, capillarity is negligible and the

film thickness deviates from uniformity only slightly due to gravity

In Section 3.3, we showed that at late times, three regions of qualitatively

different behaviour emerge, namely, a draining region on the upper part of the

cylinder and a pendant-drop region on the lower part of the cylinder joined by a

narrow inner region, as sketched in Figure 3.1.

The draining region was analysed in Section 3.4, in which gravity dominates

capillarity, the flux decreases as T−3/2 ≪ 1, and the film thins as T−1/2 ≪ 1. The

thickness of the film in the draining region is given by (3.4.7), which shows that at

any instant in time the leading-order film thickness in this region increases from a

minimum value given by (3.4.8) at the top of the cylinder to a maximum value at

θ = θI.

The pendant-drop region was analysed in Section 3.5 in which it was shown that

there is a quasi-static balance between gravity and capillarity (where, to leading

order, the pendant drop contains all of the liquid initially on the cylinder). The

thickness of the film in the pendant-drop region is given by (3.5.4), which shows

that the leading-order film thickness in this region increases from zero at θI = π

to a maximum value given by (3.5.7) at the bottom of the cylinder.

The solutions in the draining and pendant-drop regions match via the inner

region which was analysed in Section 3.6, in which we showed that the location

of the inner region θI is given implicitly by (3.5.6). In particular, (3.5.6) shows

that weakening the effect of gravity results in a narrower draining region and a

wider pendant-drop region. Within the inner region the film has a capillary-ripple

structure consisting of an infinite sequence of alternating dimples and ridges, as

sketched in Figure 3.15. Gravity is negligible in the dimples, which are all thinner

than the film in the draining region (specifically, the thickness of dimple n is

O(T−αn) ≪ 1, where αn > 1/2). On the other hand, gravity and capillarity are

comparable in the ridges, which are all thicker than the film in the draining region

(specifically, the thickness of ridge n is O(T−δn) ≪ 1, where δn < 1/2). The

dimples and the ridges are all asymmetric: specifically, the leading-order thickness

of the dimples grows quadratically in the downstream direction but linearly in the

upstream direction, whereas the leading-order thickness of the ridges goes to zero

linearly in the downstream direction but quadratically in the upstream direction.

Matching between the inner and the draining region is achieved in the limit n→ ∞,

in which the exponents αn and δn both approach their common asymptotic value of
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1/2. The asymptotic solutions in the draining and pendant-drop regions, as well as

those in dimple 1 and ridge 1 in the inner region, were verified by comparison with

numerical solutions of the governing thin-film equation. As T increases the regions

that have the largest deviation from the O(T−1/2) thickness of the draining region

(namely, dimple 1 followed by ridge 1) are the first to become discernible, with

the other dimples and ridges subsequently becoming apparent in turn. However,

since the exponents αn and δn both approach 1/2 rather quickly as n increases

(specifically, αn and βn both only differ from 1/2 by O(10−n)), the other dimples

and ridges only become apparent for rather large values of T , i.e., only the first

few dimples and ridges are likely to be discernible for large but finite times. This

is presumably the reason why the corresponding infinite sequence of dimples and

ridges was overlooked by Qin et al. [105] in their study of the corresponding

problem on a spherical substrate.

Whilst several aspects of the structure of the late-time solution described in

this chapter have been described by previous authors, such as the formation of a

pendant drop on the lower part of the cylinder discussed by Reisfeld and Bankoff

[101] and Evans et al. [102] and the thinning of the film on the upper part of the

cylinder analysed by Takagi and Huppert [103], the work presented in this chapter

is the first to provide a complete description of it. In particular, the work presented

herein is the first to describe the surprisingly complicated capillary-ripple structure

of the inner region which joins the draining and pendant-drop regions.

Note that the late times for which the present analysis is relevant may, in prac-

tice, correspond to only minutes or hours. For example, using the representative di-

mensional parameter values R̂1 = 0.1m, ρ̂ = 103 kgm−3, and µ̂ = 10−3 kgm−1 s−1,

together with ϵ = 0.1, yields a characteristic timescale of R̂1/(ϵ
2Ûchar) = µ̂/(ϵ2ρ̂ĝR̂1) =

O(10−4) s. Hence T = O(106), for which the present late-time asymptotic solution

already provides a good description of the flow, corresponds to about two minutes.

Of course, as the film thins disjoining pressure effects, which are not included in

the present analysis, will eventually become important. Specifically, for the rep-

resentative parameter values used previously together with σ̂ = 10−1Nm−1 and

Hamaker constant Â = 10−20 J, disjoining pressure due to van der Waals forces

(see, for example, Reisfeld and Bankoff [101]) becomes comparable to the pressure

due to capillarity in dimple 1 (where the film is thinnest and H = O(T−3/5)) when

T = O(108), corresponding to about three hours. Hence, whilst the longest final

times of up to T = O(1011) required to validate the present asymptotic solution
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correspond to around four months and are therefore almost certainly unphysi-

cal, there is likely to be a considerable period of time during which the present

asymptotic solution provides a good description of the flow.

Finally, we note that the two-dimensional model described in this chapter can,

of course, be readily extended to three dimensions, and we anticipate that the

corresponding analysis of this problem would have many of the same features with

that described in this chapter. However, the two-dimensional problem is an inter-

esting problem in its own right and an essential first step towards understanding

the three-dimensional problem and can be realised physically by preventing the

occurrence of a three-dimensional instability in the axial direction by, for example,

using a sufficiently short cylinder and/or imposing an axial electric field (see, for

example, González et al. [270]).



Chapter 4

Thin-film coating flow in the

presence of an electric field

In Chapter 3, we studied the thin-film system that was outlined in Section 2.2 in

the absence of both rotation and electrostatic effects. It might be anticipated that

the logical next step to understanding the dynamics of the system would be to

introduce rotation prior to including electrostatic effects. However, as discussed

in detail in Section 1.4.4, this system has already been extensively studied in

the literature. Hence, in this chapter, we introduce rotation and electrostatic

effects into the system simultaneously (although we return to the stationary case

in Section 4.3). The geometry of the dimensionless system considered in this

chapter is shown in Figure 4.1.

Firstly, we begin by considering the linear stability of steady states for the

film thickness H in two analytically tractable special cases in Section 4.1. In

Section 4.2, we conduct a numerical parametric study in (γ,Eb) parameter space

in order to determine the full range of qualitatively different behaviours exhibited

by the system and identify where in parameter space each of these behaviours

occur, in addition to investigating each behaviour numerically. In Section 4.3, we

consider the special case in which the cylinder is stationary, and in Section 4.4, we

investigate the large-time dynamics of the system by means of a multiple-timescale

analysis. Finally, we draw our conclusions in Section 4.5.

165
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Figure 4.1: Geometry of the dimensionless system considered in Chapter 4.

4.1 Linear stability

In this section, we perform linear stability analyses of two analytically tractable

special cases of the governing equation (2.2.23). We consider the stability of steady

states with the aim of elucidating the mechanisms by which the flow is stabilised

and destabilised. The linear stability of the coating flow problem in the absence of

an electric field has been studied previously by many other authors, as discussed

in Section 1.4.4. Hence, in this section we are interested primarily in the way in

which electrostatic effects affect the stability of the flow.

Note that a full linear stability analysis of the general case would require a

numerical approach due to the fact that, even for steady-state solutions, the gov-

erning equation (2.2.23) must, in general, be solved numerically. Hence, in this

section, in order to proceed analytically we consider two analytically tractable spe-

cial cases. The first is the case of zero gravity which is analysed in Section 4.1.1,

which is analytically tractable owing to the fact that a uniform film is a solution of

the governing equation (2.2.23) in the absence of the gravitational term −H3 cos θ.

The second is the case in which both capillarity and electrostatic effects are weak

which is analysed in Section 4.1.2. In this case, capillarity and electrostatic effects

can be accounted for asymptotically, hence the problem is analytically tractable
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owing to the fact that the leading-order solution is the known steady solution of

Moffatt [106]. The linear stability of the steady state can then be analysed by fol-

lowing the method presented by Benilov and O’Brien [121], which was discussed

in Section 1.4.4.

Note that throughout this section the symbol ω is chosen to represent the

complex growth rate of small perturbations, and is not the dimensionless expression

for the azimuthal rotation rate (2.1.26). This choice was made for consistency

with the notation used by Benilov and O’Brien [121], but should not create any

confusion since the rotation rate does not appear in the final governing equation

(2.2.23) due to our choice of rescalings (2.2.22).

4.1.1 Zero-gravity case

In this section, we consider the case of zero gravity. In regimes in which electro-

static effects and capillarity are both strong, or when working in a microgravity

environment, gravitational effects are dominated by electrostatic and capillary ef-

fects, thus gravitational effects may be neglected. Since ĝ is used in the definition

of Ûchar (2.1.19), this means that in the absence of gravity it is no longer appropri-

ate to use the characteristic drainage velocity, and hence Ûchar must be redefined.

In particular, we instead use the capillary velocity scale [56, 146, 151]

Ûchar =
σ̂

µ̂
, (4.1.1)

leading to Ca = 1. Hence, when ĝ = 0, (2.2.23) yields

HT +

[
H +

H3

3

(
1

γ
(Hθ +Hθθθ) + Eb

Hθ

(D −H)3

)]
θ

= 0, (4.1.2)

where H0 (2.2.25), γ (2.2.26), and D (2.2.28) are redefined as

γ =

(
σ̂

µR̂1Ω̂

)1/2

, H0 = γ
ĥ0

R̂1

, D = γ

(
R̂2

R̂1

− 1

)
, (4.1.3)

respectively, and Eb (2.2.27) remains unchanged. Note that γ still appears in

(4.1.2) despite the fact that Ca = 1 due to the earlier rescalings (2.2.22). A uniform

film H = H̄, where H̄ is a constant, is now a solution of the governing equation

(4.1.2). We investigate the linear stability of this steady state by introducing a
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small perturbation Ĥ by setting

H = H̄ + ξĤ(θ, T ), (4.1.4)

where ξ ≪ 1. We seek solutions of the form

Ĥ(θ, T ) = ψ(θ)e−iωT , (4.1.5)

where ω = ω(n) is the complex growth rate and ψ(θ) = einθ (corresponding to de-

composition into normal modes) in which n is the wavenumber of the perturbation

(which must be an integer due to the spatial periodicity of H). Substitution of

(4.1.4) with (4.1.5) into the governing equation (4.1.2) and linearising with respect

to ξ yields the dispersion relation,

ω(n) = n+
n2

3
H̄3

(
Eb

(D − H̄)3
− 1

γ
(n2 − 1)

)
i. (4.1.6)

The imaginary component of (4.1.6) is the linear growth rate of the perturbations,

namely,

Im(ω) =
n2

3
H̄3

(
Eb

(D − H̄)3
− 1

γ
(n2 − 1)

)
. (4.1.7)

The steady state H̄ is linearly unstable when Im(ω) > 0. Note that by (4.1.7), H̄

is neutrally stable for n = 0. The cutoff wavenumber (i.e., the critical value of the

wavenumber below which perturbations will grow, leading to instability), which

we shall denote by nc, is the value of n for which Im(ω) = 0, namely,

nc =

⌊(
1 +

γEb

(D − H̄)3

)1/2
⌋
, (4.1.8)

where ⌊·⌋ represents the largest integer smaller than the argument. Perturbations

with wavenumbers greater than nc become damped due to the effect of capillarity

and are hence stable, whereas perturbations with wavenumbers smaller than nc

grow in amplitude under the action of electrostatic effects and are hence unstable.

The fastest growing wavenumber (i.e., the wavenumber at which small perturba-

tions experience the largest amplification early in the evolution of the system),
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which we shall denote by nmax, is the value of n for which [Im(ω)]n = 0, namely,

nmax =

[
1√
2

(
1 +

γEb

(D − H̄)3

)1/2
]
, (4.1.9)

where [·] represents the integer closest to the argument. Substitution of (4.1.9)

into (4.1.7) yields the most unstable growth rate, namely,

Im (ωmax) =
H̄3

3

[
1√
2

(
1 +

γEb

(D − H̄)3

)1/2
]2(

Eb

(D − H̄)3
− 1

γ
(n2

max − 1)

)
.

(4.1.10)

By (4.1.8) and (4.1.9), it is clear that increasing the electric potential difference

Eb has a destabilising influence. Specifically, increasing the value of Eb results in

both an increase in the cutoff wavenumber (resulting in a wider range of unstable

wavenumbers) and an increase in the fastest growing wavenumber. This is demon-

strated in Figure 4.2, which shows the growth rate Im(ω) (4.1.7) calculated for

various values of Eb with H̄ = H0 = 0.2 and γ = 30, which correspond to the

following dimensional quantities to three significant figures,

R̂1 = 1.00× 10−2 m, ĥ0 = 6.67× 10−5 m, σ̂ = 1.80× 10−1 kg s−2,

µ̂ = 8.00× 10−3 kg m−1s−1, ρ̂ = 1.00× 103 kg m−3, Ω̂ = 2.5 rad s−1,

(4.1.11)

for (a), (b) D = 2 and (c), (d) D = 3, which correspond to the outer electrode hav-

ing dimensional radius R̂2 = 1.10× 10−2 m and R̂2 = 1.07× 10−2 m, respectively.

Specifically, Figure 4.2 shows the growth rate calculated for Eb = 0, 10, 20, 30, 40,

and 50, which corresponds to varying the dimensional potential at the outer elec-

trode over the range

0 V ≤ ϕ̂b ≤ 1.5 V. (4.1.12)

Note that the upper limit of ϕ̂b = 1.5 V in (4.1.12) was chosen based on the results

of the parametric study that will be discussed next in Section 4.2. Specifically,

during our preliminary numerical investigations, we found that choosing ϕ̂b values

greater than approximately 1.5 V does not allow the most interesting behaviours to

arise for a (relatively small) dimensionless electrode distance ofD = 3. Specifically,

a phenomena termed as “outer contact”, occurs early in time for larger values of
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Figure 4.2: The growth rate Im(ω) (4.1.7) calculated for (a), (b) D = 2 and (c),

(d) D = 3 with H̄ = 0.2, γ = 30, and Eb = 0, 10, 20, 30, 40, and 50 over the range

of wavenumbers (a), (c) 0 ≤ n ≤ 16 and (b), (d) 0 ≤ n ≤ 8. The arrow indicates

the direction of increasing Eb and the filled circles correspond to integer values of

n.
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ϕ̂b, which we shall discuss both later in this section and in further detail in Section

4.2.5. Additionally, 1.5 V is a reasonable and physically justifiable choice, yielding

ϕ̂b/(R̂2 − R̂1) ≈ 1.5× 103 V m−1, which is below the dielectric limit of air (which

is approximately 3 × 106 V m−1 [271]). In addition, note that the dimensional

quantities (4.1.1) are based on a water-glycerine mix [102, 272], however, we have

chosen to use a higher coefficient of surface tension than the true physical value

of a water-glycerine mix (which is 5.9× 10−2 kg s−2 [102, 272]) in order to see the

more complex behaviours that can arise.

Figure 4.2 shows that increasing the value of D (corresponding to moving the

outer electrode further from the interface) decreases the destabilising effect of the

electric field, reflected in the smaller range of unstable wavenumbers and lower

growth rates in Figure 4.2 (c) compared to those in Figure 4.2 (a). It is clear from

Figures 4.2 (b) and (d), which show a closer view near Im(ω) = 0, that solutions

for Eb = 0 are neutrally stable for n = 0 and n = 1 and stable for n > 1 (in

agreement with the result of Evans et al. [102] who, as discussed in Section 1.4.4,

showed that the system is stable in the presence of capillarity in the absence of

electrostatic effects and centrifugation).

Note that in the absence of an electric field, the evolution is periodic for the

parameter values H0 = 0.2 and γ = 30. However, the interface ultimately remains

close to circular. This can be seen from Figure 4.3, which shows the numerical solu-

tion of the full governing equation (2.2.23) (i.e., with gravitational effects included)

for Eb = 0. In particular, Figure 4.3 shows (a) the spatiotemporal evolution of the

film thickness H, (b) the interfacial shape at the time T = 44.6 (by which time

the system has reached a periodic state), and (c) the evolution of the maximum

(black line) and minimum (solid line) film thicknesses over time, which we denote

by Hmax = Hmax(θ) and Hmin = Hmin(θ), respectively.

The perturbation with the fastest-growing wavenumber (4.1.9) experiences the

most rapid growth and is therefore the disturbance that is most likely to be ob-

servable in numerical and experimental results before nonlinear effects become

significant. Whilst linear stability results provide valuable insights into only the

initial stages of interface growth and development, they maintain significance in

the nonlinear evolution due to the influence of dominant modes (in this case, the

fastest-growing wavenumber (4.1.9)) persisting into the nonlinear regime. With

this in mind, we now compare the results of our linear stability analysis with nu-

merical solutions of the full governing equation (2.2.23). We use the parameter
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Figure 4.3: The numerical solution for the film thickness H calculated from the

full governing equation (2.2.23) for H0 = 0.2 and γ = 30 with Eb = 0. (a)

The spatiotemporal evolution of H over the time interval 0 ≤ T ≤ 44.6. (b)

The interfacial shape at time T = 44.6. (Note that the film thickness has been

exaggerated for illustrative purposes by using the artificial value ϵ = 1). (c) The

evolution of the maximum and minimum values of the film thickness Hmax (black)

and Hmin (grey), respectively, over the time interval 0 ≤ T ≤ 44.6.

values H0 = 0.2 and γ = 30 with Eb = 10, 30, and 50. The results of these

numerical calculations are shown in Figures 4.4 and 4.5 for D = 2 and D = 3,

respectively. Our results indicate that as the film evolves, the destabilising elec-

trostatic effects result in a growth in amplitude of initially small perturbations,

ultimately leading to the formation of bulges of liquid separated by a thin film,

which are approximately evenly spaced around the circumference of the cylinder.

This behaviour can be seen in Figures 4.4 and 4.5 (a)–(c), which show the spa-

tiotemporal evolution of the film thickness. This behaviour is qualitatively similar

to that described by Evans et al. [102] who, as discussed in Section 1.4.4, found

that for the zero-gravity case in the absence of an electric field but in the presence

of centrifugal effects, small perturbations grow due to centrifugation which results

in the formation of bulges of liquid around the cylinder. It follows that, physically,

the value of the fastest growing wavenumber nmax (4.1.9) corresponds to the num-

ber of bulges that are most likely to be observable in the numerical calculations.

The electric field exerts a normal Maxwell stress on the interface which results

in the film being “pulled” towards the outer electrode. Our results indicate that

when the electric potential difference is large or capillarity is weak, the interface

can evolve to touch the outer electrode in a finite time; we shall refer to this be-

haviour hereafter as “outer contact”, of which we defer a detailed discussion until
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Figure 4.4: The numerical solution for the film thickness H calculated from the

full governing equation (2.2.23) for D = 2 with (a), (d), (g) Eb = 10, (b), (e),

(h) Eb = 30, and (c), (f), (i) Eb = 50. (a)–(c) The spatiotemporal evolution of

H over the time interval 0 ≤ T ≤ Tc where Tc = 426.782, 310.878, and 26.3979,

respectively. (d)–(f) The film thickness H and (g)–(i) the interfacial shape shown

at times T = 328.4, 310, and 25 for Eb = 10, 30, and 50, respectively. (Note

that the film thickness has been exaggerated for illustrative purposes by using the

artificial value ϵ = 1).
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Figure 4.5: The numerical solution for the film thickness H calculated from the

full governing equation (2.2.23) for D = 3 with (a), (d), (g) Eb = 10, (b), (e), (h)

Eb = 30, and (c), (f), (i) Eb = 50. (a)–(c) The spatiotemporal evolution of H over

the time interval (a) 0 ≤ T ≤ 20000, (b) 0 ≤ T ≤ Tc where Tc = 1550.93, and

(c) 0 ≤ T ≤ Tc where Tc = 2789.31. (d)–(f) The film thickness H and (g)–(i) the

interfacial shape shown at times T = 3671, 851.1, and 2289.5, respectively. (Note

that the film thickness has been exaggerated for illustrative purposes by using the

artificial value ϵ = 1).



Chapter 4: Thin-film coating flow with an electric field 175

Section 4.2.5. Hereafter, we denote the time at which outer contact occurs as Tc.

Note that it is extremely difficult to calculate Tc exactly. Hence, in the numerical

results presented throughout this thesis, Tc is in fact the final time at which the

code converges before outer contact, rather than the exact time at which it occurs.

Note that all of the qualitatively different behaviours that the system exhibits will

be examined and discussed in detail in Section 4.2.

By (4.1.9), the linear stability analysis predicts that the fastest growing wavenum-

bers for D = 2 with Eb = 10, 30, and 50 are nmax ≈ [5.12056] = 5, nmax ≈
[8.81252] = 9, and nmax ≈ [11.3623] = 11, respectively. Figures 4.4 (d) and (g), (e)

and (h), and (f) and (i) show that 5, 8, and 11 distinct bulges of liquid have formed

around the cylinder in the numerical solution by the late times T = 328.4, 310,

and 25 for Eb = 10, 30, and 50, respectively, all of which eventually coalesce as the

system evolves towards outer contact behaviour by times Tc = 426.782, 310.878,

and 26.3979, respectively. For D = 3, the linear stability analysis predicts that

the fastest growing wavenumbers for Eb = 10, 30, and 50 are nmax ≈ [2.70797] = 3,

nmax ≈ [4.58250] = 5, and nmax ≈ [5.88774] = 6, respectively. Figures 4.5 (d) and

(g), (e) and (h), and (f) and (i) show that 2, 4, and 5 distinct bulges have formed

around the cylinder in the numerical solution by the late times T = 3671, 851.1,

and 2289.5 for Eb = 10, 30, and 50, respectively. For Eb = 10, the two bulges

coalesce and the system eventually evolves towards a periodic state (of which we

defer a detailed discussion until Section 4.2.4), whereas for Eb = 30 and Eb = 50,

the bulges coalesce as the system evolves towards outer contact behaviour by times

Tc = 1550.93 and Tc = 2789.31, respectively. Thus, we conclude that the linear

theory in the zero-gravity case yields an accurate prediction of the behaviour of the

complete system (i.e., in the presence of gravity) at later times in the evolution.

4.1.2 Weak capillarity and weak electrostatic effects

In this section, we examine the linear stability of the nonuniform steady state

H(θ, T ) = H̄(θ) (which, as we will show, is the known solution to the steady

equation (1.4.5) analysed by Moffatt [106]) of the governing equation (2.2.23) in

the case in which both capillarity and electrostatic effects are weak. We proceed

by following the method of Benilov and O’Brien [121] who, as discussed in Section

1.4.4, investigated how the stability of normal modes in thin-film rimming flow is

affected by weak inertia, hydrostatic pressure gradient, and capillarity, which arise
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as higher-order terms in the lubrication model. They found that inertia always

destabilises the system, the effect of capillarity is weak but stabilising, and that

the hydrostatic pressure gradient has no effect on the stability. The aim of this

section is to examine how the inclusion of weak electrostatic effects impacts the

stability of the nonuniform steady state H̄(θ), whilst also considering the influence

of weak capillarity.

We investigate the linear stability of the steady state H̄(θ) by introducing a

small perturbation by setting

H(θ, T ) = H̄(θ) + ξH̃(θ, T ), (4.1.13)

where ξ ≪ 1. Substituting (4.1.13) into (2.2.24) and linearising with respect to ξ

yields

H̃T +

[
A(θ)H̃θ +B(θ)

(
H̃θ + H̃θθθ

)
+ C(θ)H̃

]
θ

= 0, (4.1.14)

where A(θ), B(θ), and C(θ) are

A(θ) =
Eb

3

(
H̄

D − H̄

)3

, (4.1.15)

B(θ) =
1

3γ
H̄3, (4.1.16)

C(θ) = 1− cos θH̄2 +
1

γ
H̄2(H̄θ + H̄θθθ) +DEb

H̄2

(D − H̄)4
H̄θ, (4.1.17)

respectively. We proceed by seeking solutions of the form

H̃(θ, T ) = ψ(θ)e−iωT , (4.1.18)

where ω = ω(n) is the complex growth rate of the perturbations. It follows that

steady solutions H̄(θ) are neutrally stable for Im(ω) = 0, stable for Im(ω) < 0,

and unstable for Im(ω) > 0. Substitution of (4.1.18) into (4.1.14) yields[
A(θ)ψθ +B(θ)(ψθ + ψθθθ) + C(θ)ψ

]
θ

− iωψ = 0. (4.1.19)

Equation (4.1.19), together with the periodicity condition

ψ(θ + 2π) = ψ(θ), (4.1.20)
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together constitute an eigenvalue problem involving the eigenfunction ψ(θ) and

eigenvalue ω.

In order to proceed analytically, we work in the distinguished limit in which

both capillarity and electrostatic effects are weak by setting

Eb = γ−1Êb, (4.1.21)

where γ−1 ≪ 1 and Êb = O(1), which will allow us to examine a nonuniform

steady state H̄(θ) which can be expressed in an analytical form. The steady state

H̄(θ) in this special case can now be determined. Expanding H̄ in powers of γ−1

yields

H̄(θ) = H̄0 + γ−1H̄1 +O(γ−2), (4.1.22)

where H̄0 = H̄0(θ) satisfies

H̄0 −
1

3
H̄3

0 cos θ = Q. (4.1.23)

As discussed in Section 1.4.4, equation (4.1.23) was analysed by Moffatt [106]

who showed that the system admits full-film solutions only if Q remains within

the range 0 < Q ≤ Qcrit where Qcrit = 2/3. Subsequently, the solution H̄0 was

shown to be neutrally stable by O’Brien [127]. As discussed previously, full-film

solutions H̄0 (as derived by Duffy and Wilson [100]) are shown in Figure 1.12 for

two subcritical values of Q and for the critical flux Q = Qcrit. In this section, we

shall denote the critical solution by H̄0crit. Note that throughout this analysis we

only require the steady solution H̄ to leading order in γ−1, but that higher-order

terms of the expansion (4.1.22) can be calculated in the usual way by solving

order-by-order. For example, at first order, substitution of (4.1.22) into the flux

equation (2.2.24) and solving for H̄1 yields

H̄1 = −1

3

H̄3
0

(1− H̄2
0 cos θ)

[
H̄0θ + H̄0θθθ + Êb

H̄0θ

(D − H̄0)3

]
. (4.1.24)

The aim of this section is to determine the linear growth rate of the perturba-

tions, denoted by ω. To achieve this, we utilise the method presented by Benilov

and O’Brien [121]. Specifically, we begin by expanding the eigenfunction ψ and

eigenvalue ω in (4.1.14) as a series in powers of γ−1. Next, we solve the resulting

ODE at leading order to obtain the leading-order solutions for ψ and ω. As demon-
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strated by Benilov and O’Brien [121], this analysis reveals that the disturbance

is neutrally stable at leading order. At first order, capillarity and electrostatic

effects become significant. Therefore, we must consider the first-order problem to

understand their impact on the stability. To proceed, we solve the ODE arising

at first order to find the first-order solution for ω. Note that the method crucially

facilitates the analytical tractability of computing the first-order solution for ω

by removing the requirement to compute the first-order solution for ψ (which is

a difficult calculation) by instead calculating its adjoint (which is a significantly

simpler calculation) [121]. Finally, we examine the imaginary component of ω to

determine the linear growth rate at first order in γ−1, enabling us to understand

how capillarity and electrostatic effects influence the stability.

Substituting (4.1.22) with (4.1.23) and (4.1.24) into (4.1.15)–(4.1.17) yields

A(θ) = γ−1A1 +O(γ−2), (4.1.25)

B(θ) = γ−1B1 +O(γ−2), (4.1.26)

C(θ) = C0 + γ−1C1 +O(γ−2), (4.1.27)

where A1(θ), B1(θ), C0(θ), and C1(θ) are

A1 =
Êb

3

(
H̄0

D − H̄0

)3

, (4.1.28)

B1 =
1

3
H̄3

0 , (4.1.29)

C0 = 1− H̄2
0 cos θ, (4.1.30)

C1 = −2H̄0H̄1 cos θ + H̄2
0

[
H̄0θ + H̄0θθθ +DÊb

H̄0θ

(D − H̄0)4

]
, (4.1.31)

respectively. Thus, substituting (4.1.25)–(4.1.27) into (4.1.19) yields

{
C0ψ + γ−1 [C1ψ + A1ψθ +B1(ψθ + ψθθθ)]

}
θ
− iωψ +O(γ−2) = 0. (4.1.32)

We seek a solution of (4.1.32) by expanding the eigenfunction ψ and eigenvalue ω,

respectively, as

ψ(θ) = ψ0(θ) + γ−1ψ1(θ) +O(γ−2), (4.1.33)

ω = ω0 + γ−1ω1 +O(γ−2). (4.1.34)
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To leading order, substituting (4.1.33) and (4.1.34) into (4.1.32) yields the first-

order ODE for ψ0, namely,

[C0ψ0]θ − iω0ψ0 = 0, (4.1.35)

which has the exact solution

ψ0 =
1

C0(θ)
exp

[
iω0

∫ θ

0

dθ

C0(θ)

]
. (4.1.36)

For ψ0 to be periodic in θ with period 2π we require

ω0 =
2πn∫ 2π

0

dθ

C0(θ)

, (4.1.37)

where n is the integer mode number. By (4.1.18), the stability of H̄ is determined

from the imaginary part of ω. By (4.1.37), Im(ω) = 0 to leading order, cor-

responding to the neutral stability of the leading-order solution given by Moffatt

[106, 127]. Hence, as alluded to previously, we must go to first order to understand

how capillarity and electrostatic effects affect the stability.

At first order, substitution of (4.1.33) and (4.1.34) into (4.1.32) yields the ODE

for ψ1, namely,

[C0ψ1]θ − iω0ψ1 = iω1ψ0 − [C1ψ0 + A1ψ0θ +B1(ψ0θ + ψ0θθθ)]θ . (4.1.38)

As explained by Benilov and O’Brien [121], equation (4.1.38) has a periodic solu-

tion for ψ1 if and only if its right-hand side is orthogonal to the adjoint solution

ψ+
1 = ψ+

1 (θ). We proceed as in [121] by multiplying (4.1.38) by ψ+
1 and integrating

over the domain 0 ≤ θ ≤ 2π, yielding∫ 2π

0

ψ+
1

{
[C0ψ1]θ − iω0ψ1

}
dθ

=

∫ 2π

0

ψ+
1

{
iω1ψ0 −

[
C1ψ0 + A1ψ0θ +B1(ψ0θ + ψ0θθθ)

]
θ

}
dθ.

(4.1.39)
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Considering the left-hand side of (4.1.39), we have∫ 2π

0

ψ+
1

{
[C0ψ1]θ − iω0ψ1

}
dθ =

∫ 2π

0

ψ+
1 [C0ψ1]θ dθ −

∫ 2π

0

iω0ψ1ψ
+
1 dθ

= [C0ψ1ψ
+
1 ]

2π
0 −

∫ 2π

0

ψ1{iω0ψ
+
1 + C0(ψ

+
1 )θ} dθ,

(4.1.40)

where the second line is obtained by performing integration by parts on the first

term on the right-hand side of the first line. Since ψ1 is assumed to be 2π-periodic

by the periodicity condition (4.1.20), we find that [C0ψ1ψ
+
1 ]

2π
0 = 0. Hence, for the

right-hand side of (4.1.39) to be equal to zero (and, consequently, for the right-

hand side of (4.1.38) to be orthogonal to the adjoint solution ψ+
1 ), we require that

the integrand on the second line is equal to zero. Setting iω0ψ
+
1 + C0(ψ

+
1 )θ = 0

and solving for ψ+
1 yields the adjoint solution,

ψ+
1 = exp

[
− iω0

∫ θ

0

dθ

C0(θ)

]
, (4.1.41)

which is 2π-periodic by (4.1.37). It follows that the right-hand side of (4.1.39) is

equal to zero, i.e.,∫ 2π

0

ψ+
1

{
iω1ψ0 −

[
C1ψ0 + A1ψ0θ +B1(ψ0θ + ψ0θθθ)

]
θ

}
dθ = 0, (4.1.42)

where ψ+
1 is given by (4.1.41) and ψ0 is given by (4.1.36). The benefit of this

method is now clear: it allows us to eliminate the unknown function ψ1 from the

problem, thus leaving us in a position to be able to obtain ω1 in terms of the known

functions ψ0 (4.1.36) and ψ+
1 (4.1.41). Equation (4.1.42) can be written as

iω1

∫ 2π

0

ψ+
1 ψ0 dθ︸ ︷︷ ︸

I1

−
∫ 2π

0

ψ+
1

[
C1ψ0 + A1ψ0θ +B1(ψ0θ + ψ0θθθ)

]
θ

dθ︸ ︷︷ ︸
I2

= 0, (4.1.43)

where the first integral I1 can be expressed as

I1 = iω1

∫ 2π

0

dθ

C0

, (4.1.44)
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and the second integral I2 can be expressed (via an application of integration by

parts) as

I2 =

[
ψ+
1

{
C1ψ0 + A1ψ0θ +B1(ψ0θ + ψ0θθθ)

}]2π
0

(4.1.45)

−
∫ 2π

0

[
C1ψ0(ψ

+
1 )θ + A1ψ0θ(ψ

+
1 )θ +B1(ψ0θ(ψ

+
1 )θ + ψ0θθθ(ψ

+
1 )θ)

]
dθ

= −
∫ 2π

0

[
C1ψ0(ψ

+
1 )θ + A1ψ0θ(ψ

+
1 )θ +B1(ψ0θ(ψ

+
1 )θ + ψ0θθθ(ψ

+
1 )θ)

]
dθ,

where the terms on the first line are identically zero by periodicity of the adjoint

solution ψ+
1 . The final expression for I2 is thus given by

I2 =−
∫ 2π

0

iω0

C0

{
C1

C0

+

[ (
C−1

0

)
θ
− iω0

C2
0

]
A1 +

[ (
C−1

0

)
θθθ

− 4iω0

C0

(
C−1

0

)
θθ

− 3iω0

(
C−1

0

)2
θ
− 6ω2

0

C2
0

(
C−1

0

)
θ
+
iω3

0

C4
0

+
(
C−1

0

)
θ
− iω0

C2
0

]
B1

}
dθ.

(4.1.46)

It follows from (4.1.44) and (4.1.46) that

0 = I1 − I2 (4.1.47)

= iω1

∫ 2π

0

dθ

C0

+

∫ 2π

0

{
B1

[ (
C−1

0

)
θθθ

− 4iω0

C0

(
C−1

0

)
θθ
− 3iω0

(
C−1

0

)2
θ

− 6ω2
0

C2
0

(
C−1

0

)
θ
+
iω3

0

C4
0

+
(
C−1

0

)
θ
− iω0

C2
0

]
+
C1

C0

+ A1

[ (
C−1

0

)
θ
− iω0

C2
0

]}
iω0

C0

dθ.

Solving (4.1.47) for ω1 and taking the imaginary part yields

Im(ω1) =

(∫ 2π

0

dθ

C0

)−1

(4.1.48)

×
[
ω2
0

∫ 2π

0

{
B1

C3
0

(
1− 1

C2
0

[
ω2
0 + 4C0 (C0)θθ − 11 (C0)

2
θ

])
+
A1

C3
0

}
dθ

]
.

Equation (4.1.48) is the main result of this section. Note that since Im (ω0) = 0,

the steady state H̄(θ) is unstable for Im(ω1) > 0. Electrostatic effects only enter

the stability calculation via A1 (4.1.28). Note that an electrostatic term also arises

in the expression for C1 (4.1.31), however, since this only appears in the real part

of ω1, it does not contribute to the stability. We can recover equation (24) of
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Benilov and O’Brien [121] from (4.1.48) by setting Êb = 0, such that A1 = 0.

Benilov and O’Brien [121] showed that in the absence of an electric field, Im(ω) is

negative for all Q, showing that capillarity is always a stabilising influence1.

Throughout this section, the terms in (4.1.48) were calculated numerically using

the symbolic computational system Mathematica [265]. Firstly, values of the solu-

tion of the leading-order steady problem (4.1.23) H̄0 were calculated over the range

0 ≤ θ ≤ 2π. The computed values were then utilised to construct an interpola-

tion using the built-in function Interpolation[] by applying a third-order spline

method. Using this, the integrals in (4.1.48) were calculated numerically using the

built-in function NIntegrate[]. Values of these integrals were calculated over the

range 0 ≤ Q ≤ Qcrit and were then interpolated again using Interpolation[] by

applying a fifth-order spline method. Figure 4.6 shows Im(ω) (4.1.53) with D = 2

and γ−1 = 0.1 plotted as a function of Q over the range 0 ≤ Q ≤ Qcrit for the first

five modes for Êb = 2, 4, 6, and 8 (corresponding to Eb = 0.2, 0.4, 0.6, and 0.8).

In particular, Figure 4.6 shows that increasing the electric potential difference in-

creases the value of Im(ω) and the range of unstable wavenumbers, and thus has

a destabilising effect on the system.

To make clear how capillarity and electrostatic effects affect the growth rate,

we may decompose (4.1.48) into the form

Im(ω1) = n2F1 + n4F2 + n2ÊbF3, (4.1.49)

where F1 = F1(Q) and F2 = F2(Q) are

F1 = 4π2

(∫ 2π

0

dθ

C0

)−3 ∫ 2π

0

[
B1

C3
0

− 4
B1

C4
0

C0θθ + 11
B1

C5
0

(C0θ)
2

]
dθ (4.1.50)

=
4π2

3

(∫ 2π

0

dθ

1− H̄2
0 cos θ

)−3 ∫ 2π

0

[(
H̄0

1− H̄2
0 cos θ

)3

− 4
H̄3

0

(1− H̄2
0 cos θ)

4

[
1− H̄2

0 cos θ
]
θθ
+ 11

H̄3
0

(1− H̄2
0 cos θ)

5

([
1− H̄2

0 cos θ
]
θ

)2 ]
dθ,

1Benilov and O’Brien [121] investigated disturbances of the form η′(θ, t) = ϕ(θ)eiωt and
concluded that steady-state flows are unstable when their equation (24) yields a positive value.
However, upon careful examination, this leads us to believe that their expression for the distur-
bance η′(θ, t) may contain a typographical error, specifically, an omission of a negative sign in
the exponent.
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Figure 4.6: Im(ω) (4.1.53) over the range 0 ≤ Q ≤ Qcrit for the first five modes

for D = 2 and γ−1 = 0.1 with (a) Êb = 2, (b) Êb = 4, (c) Êb = 6, and (d) Êb = 8.

The arrow indicates the direction of increasing n for n = 1, 2, 3, 4, and 5.
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F2 = −16π4

(∫ 2π

0

dθ

C0

)−3 ∫ 2π

0

B1

C5
0

(∫ 2π

0

dθ

C0

)−2

(4.1.51)

= −16π4

3

(∫ 2π

0

dθ

1− H̄2
0 cos θ

)−5 ∫ 2π

0

H̄3
0

(1− H̄2
0 cos θ)

5
dθ,

respectively, and together represent the effect of capillarity (which, as discussed

previously, was shown by Benilov and O’Brien [121] to be a stabilising influence).

Note that F1 (4.1.50) and F2 (4.1.51) are independent of both Êb and D. The final

term F3 = F3(Q) is

F3 =
4π2

3

(∫ 2π

0

dθ

1− H̄2
0 cos θ

)−3 ∫ 2π

0

[
H̄0

(D − H̄0)(1− H̄2
0 cos θ)

]3
dθ, (4.1.52)

and represents the electrostatic effects (which we shall often refer to hereafter as

the “electrostatic term” for clarity in later discussions). Note that F3 (4.1.52) is

independent of Êb but is dependent on D. Since Im(ω0) = 0 by (4.1.37), it follows

from (4.1.49) that to O(γ−1) the growth rate is

Im(ω) = γ−1n2[F1 + n2F2 + ÊbF3] +O(γ−2). (4.1.53)

For n = 0 the system is neutrally stable to O(γ−1). From (4.1.53), we obtain the

instability criterion, namely, that for mode n steady solutions H̄ are unstable if

Êb > −
(
F1 + n2F2

F3

)
. (4.1.54)

The components of the growth rate, F1 (4.1.50), F2 (4.1.51), and F3 (4.1.52),

depend on the flux Q via the solution H̄0 of the leading-order steady problem

(4.1.23). Figure 4.7 shows F1 (4.1.50), F2 (4.1.51), and F3 (4.1.52) plotted as

functions of Q over the range 0 ≤ Q ≤ Qcrit for γ
−1 = 0.1 with (a) D = 2 and (b)

D = 4. The electrostatic term F3 is always positive (and monotonically increasing),

indicating that electrostatic effects have a destabilising influence, which becomes

stronger for increasing Q. One of the two capillary terms, F2, is always negative

(and monotonically decreasing), indicating that this term has an overall stabilising

influence. Figure 4.7 also shows that the other capillary term, F1, changes sign

and is thus either stabilising or destabilising depending on the value of Q. To
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Figure 4.7: Individual contributions to the growth rate (4.1.53) over the range

0 ≤ Q ≤ Qcrit: F1 (4.1.50) (dotted line), F2 (4.1.51) (dashed line), and F3 (4.1.52)

for D = 2 (dot-dashed line) and D = 4 (solid line).

see which term is causing the change in signs, we decompose F1 into three terms,

namely, F11, F12, and F13, which can be written as

F1(Q) =
4π2

3

(∫ 2π

0

dθ

1− H̄2
0 cos θ

)−3 ∫ 2π

0

(
H̄0

1− H̄2
0 cos θ

)3

dθ︸ ︷︷ ︸
F11

−16π2

3

(∫ 2π

0

dθ

1− H̄2
0 cos θ

)−3 ∫ 2π

0

H̄3
0

(1− H̄2
0 cos θ)

4

[
1− H̄2

0 cos θ
]
θθ

dθ︸ ︷︷ ︸
F12

+
44π2

3

(∫ 2π

0

dθ

1− H̄2
0 cos θ

)−3 ∫ 2π

0

H̄3
0

(1− H̄2
0 cos θ)

5

([
1− H̄2

0 cos θ
]
θ

)2

dθ︸ ︷︷ ︸
F13

.

(4.1.55)

Figure 4.8 shows the three terms F11, F12, and F13 given by (4.1.55) plotted as

functions of Q over the range 0 ≤ Q ≤ Qcrit. In particular, Figure 4.8 shows

that F12 is always negative (and monotonically decreasing) and is thus stabilising,

whereas the other two terms, F11 and F13, are always positive (and monotonically

increasing) and are thus destabilising.

Note that, as indicated by Benilov and O’Brien [121], the growth rate Im(ω)
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Figure 4.8: Individual contributions to F1 (4.1.50) given by (4.1.55) over the range

0 ≤ Q ≤ Qcrit: F11 (dotted line), F12 (solid line), and F13 (dashed line).

(4.1.53) depends on the mode number n only through the ω0 (4.1.37) in the nu-

merator of Im(ω1) (4.1.48), which grows with n. It follows that higher modes

(i.e, n ≥ 2) grow only if the first mode (i.e., n = 1) grows. Hence, the flow is

unstable if and only if the stability criterion (4.1.54) is satisfied for the first mode.

We investigate what happens to the stability of the first mode when we vary the

electric potential difference Êb. Figure 4.9 shows plots of the growth rate of the

first mode calculated from (4.1.53) over the range 0 ≤ Q ≤ Qcrit for γ−1 = 0.1

and Êb = 0, 2, 4, 6, and 8 (corresponding to Eb = 0, 0.2, 0.4, 0.6, and 0.8) with (a)

D = 2 and (b) D = 4. Figure 4.9 shows that smaller electric potential differences

(i.e., smaller values of Êb) lead to a wider range of Q values that correspond to a

stable system. As Êb is increased, Im(ω) is increasingly more positive over a wider

range of Q values, corresponding to the system being increasingly more unstable.

The outer electrode is closer to the film in Figure 4.9 (a) than in Figure 4.9 (b),

leading to a stronger electric field and thus producing a more unstable system.

Larger values of Êb are required to induce instability for larger D. This makes

sense physically, as we would expect that a stronger electric field is required to

induce the same destabilising effect when the outer electrode is further away from

the interface.

Figure 4.10 shows regions of instability (shown as the shaded regions) for the

first mode in (Êb, Q) parameter space calculated for γ−1 = 0.1 with (a) D = 2

and (b) D = 4. Specifically, Figure 4.10 reveals that, as observed by Benilov and
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Figure 4.9: Im(ω) (4.1.53) over the range 0 ≤ Q ≤ Qcrit for the first mode (i.e.,

n = 1) with γ−1 = 0.1, Êb = 0, 2, 4, 6, and 8 and (a) D = 2 and (b) D = 4. The

arrow indicates the direction of increasing Êb.
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O’Brien [121] (as mentioned earlier in Section 1.4.4), thicker films (i.e., flows with

larger Q) are more stable than thinner films. As seen above, larger values of Êb

are required to induce instability in Figure 4.10 (b) (in which D = 4) compared

to in Figure 4.10 (a) (in which D = 2).

Ultimately, the preceding analysis of the growth rate (4.1.53) reveals two im-

portant features of the stability: firstly, the steady state H̄(θ) is more stable when

the outer electrode is further from the interface (i.e., for larger values of D), and

secondly, the steady state is (perhaps counter-intuitively) more stable for thicker

films. To investigate these behaviours in more detail, we consider the limiting cases

in which D is large in Section 4.1.2.1, in which Q is small in Section 4.1.2.2, and

finally, in Section 4.1.2.3, we consider the case in which Q approaches the critical

value Qcrit.

4.1.2.1 Limiting case: D → ∞

In this section, we consider the limiting case of large D. Large values of D corre-

spond to the outer electrode being located far from the interface, which, as shown

in Figures 4.9 and 4.10, requires a stronger electric field to induce instability.

However, note that, strictly speaking, the investigation of this limit breaks the

asymptotic assumption under which the thin-film governing equation (2.2.23) was

derived (i.e., that the gap between the electrodes is also thin). Thus, the analysis

in this section should be treated as a statement regarding the equation for the

growth rate (4.1.53) itself, rather than one regarding the original physical system.

Taking the limit D → ∞ in the electrostatic term F3 (4.1.52), yields

F3 =
4π2

3

(∫ 2π

0

dθ

1− H̄2
0 cos θ

)−3
∫ 2π

0

[
H̄0

(D − H̄0)(1− H̄2
0 cos θ)

]3
dθ

=
4π2

3

(∫ 2π

0

dθ

1− H̄2
0 cos θ

)−3
∫ 2π

0

[
H̄0

D(1− H̄2
0 cos θ)

]3(
1− H̄0

D

)−3

dθ

=
4π2

3

(∫ 2π

0

dθ

1− H̄2
0 cos θ

)3
∫ 2π

0

1

D3

[
H̄0

1− H̄2
0 cos θ

]3
dθ +O(D−4)

=
F11

D3
+O(D−4), (4.1.56)
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where F11 is given by (4.1.55). Thus, in the limit of large D, Im(ω) is

Im(ω) = γ−1

{
n2

[
F11(Q)

(
1 +

Êb

D3

)
+ F12(Q) + F13(Q)

]
+ n4F2(Q)

}
+O(D−4, γ−2).

(4.1.57)

In order to retain electrostatic effects at leading order in D−1 ≪ 1, we choose to

work in the distinguished limit in which the electric potential difference is large

by setting

Êb = D3Ēb, (4.1.58)

where Ēb = O(1). Then, in the limit of large D, Im(ω) becomes

Im(ω) = γ−1
{
n2
[
F11(Q)

(
1 + Ēb

)
+ F12(Q) + F13(Q)

]
+ n4F2(Q)

}
+O(D−1, γ−2),

(4.1.59)

where F11, F12, and F13 are given by (4.1.55). In this limiting case, the growth

rate is dominated by the (overall stabilising) capillary terms F1 (4.1.50) and F2

(4.1.51). Electrostatic effects enhance the effect of F11, which, as seen above, is

one of the destabilising components of the capillary term F1.

4.1.2.2 Limiting case: Q→ 0

In this section, we consider the limiting case of small Q. This choice is motivated

by our previous observation that the steady state is more unstable for thinner

films, and hence it is instructive to investigate our results in the limit Q → 0. In

the limit Q → 0, the equation for the leading-order steady solution H̄0 (4.1.23)

can be solved by expanding H̄0 as

H̄0 = H̄00 +QH̄01 + . . .+Q7H̄07 +O(Q8), (4.1.60)

where Q≪ 1, and solving order-by-order to yield [112, 121]

H̄0 = Q+
1

3
Q3 cos θ +

1

3
Q5 (cos θ)2 +

4

9
Q7 (cos θ)3 +O(Q9). (4.1.61)

Note that equation (4.1.61) shows that in the small-Q limit, H̄0 = Q to leading

order in Q. The formula for the growth rate (4.1.53) can thus be simplified in the
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small-Q limit by substituting (4.1.61) into (4.1.50)–(4.1.52) to yield

F1 =
1

3
Q3 − 5

10
Q7 +O(Q11), (4.1.62)

F2 = −1

3
Q3 − 49

18
Q7 +O(Q11), (4.1.63)

F3 =
1

3D3
Q3 +

1

D4
Q4 +

2

D5
Q5 +

10

3D6
Q6 +

(
5

D7
+

11

9D3

)
Q7 +O(Q8). (4.1.64)

Thus, in the limit of small Q, the growth rate Im(ω) is

Im(ω) = γ−1

{(
n2

3
+
Êbn

2

3D3
− n4

3

)
Q3 +

Êbn
2

D4
Q4 +

2Êbn
2

D5
Q5 +

10Êbn
2

3D6
Q6

+

(
5Êbn

2

D7
+

11Êbn
2

9D3
− 5

18
n2

)
Q7

}
+O(γ−2, Q8). (4.1.65)

Upon setting Êb = 0, equation (4.1.65) recovers the small-Q solution for Im(ω1)

of Benilov and O’Brien [121] (i.e., their equation (30)), namely,

Im(ω1) = −1

3
n2
(
n2 − 1

)
Q3 − 1

18
n2
(
49n2 + 5

)
Q7 +O(Q8). (4.1.66)

Benilov and O’Brien [121] found that in the absence of an electric field the growth

rate of the first mode is O(Q7), which is much smaller than the growth rates

of higher modes which are O(Q3). Thus, in the absence of an electric field, the

first mode is always the first to become unstable. However, when Êb is non-zero,

electrostatic terms appear at all orders starting from O(Q3), as shown in (4.1.65).

Thus, when electrostatic effects are present, the growth rate of both the first mode

and all higher modes is O(Q3), a significant difference from the case in the absence

of an electric field. In the limit of small Q, the instability criterion (4.1.54) can be

simplified. Setting n = 1 in (4.1.65) yields

Im(ω) = γ−1

{
Êb

3D3
Q3 +

Êb

D4
Q4 +

2Êb

D5
Q5 +

10Êb

3D6
Q6 +

(
5Êb

D7
+

11Êb

9D3
+

5

18

)
Q7

}
.

(4.1.67)

Thus, to O(γ−1) the first mode is unstable for

Êb > 0. (4.1.68)
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In other words, in the limit of small Q, the flow is unstable for all non-zero values

of Êb, which is in agreement with the results shown in Figure 4.10. As discussed

by Benilov and O’Brien [121], investigation of the small-Q limit also reveals why

thicker films (i.e., flows with larger Q) are more stable than thinner films. The

contribution of capillarity to the growth rate of the first mode (4.1.67) is propor-

tional to Q7, whereas the contribution of electrostatic effects is proportional to Q3.

Therefore, the stabilising effect of capillarity has a stronger dependence on Q (and

hence the film thickness) than electrostatic effects, which explains the stabilisation

of the flow for large Q.

4.1.2.3 Limiting case: Q→ Qcrit

In this section, we consider the limiting case in which Q approaches the critical

value Qcrit. Once again, we are motivated by the observation that the steady state

is more unstable for thinner films. Therefore, it is of interest to investigate the

behaviours of F1 (4.1.50), F2 (4.1.51), and F3 (4.1.52) in the limit Q→ Qcrit to gain

insight into the dominant behaviour close to the critical value Qcrit. We proceed by

setting Q = Qcrit−λ and evaluating (4.1.50)–(4.1.52) over the range 0 < λ ≤ Qcrit

to understand the behaviour of the system as Q moves further away from Qcrit. As

a form of validation, we use two different methods to compute (4.1.50)–(4.1.52).

Firstly, as discussed in Section 1.4.4, the solution H̄0 to the leading-order steady

problem (4.1.23) can be calculated near Q = Qcrit by using the composite critical

solution given by Tougher et al. [112], which we denote here by H̄0comp, namely,

H̄0comp = H̄0crit + λ

(√
6

2|θ|
− 1

1− H̄2
0crit cos θ

)
+

|θ|
6

−
√
λ+

θ2

6
as λ→ 0+,

(4.1.69)

where, as explained in Section 1.4.4, H̄0crit is the critical solution for H̄0 when

Q = Qcrit. Figure 4.11 shows the solutions for (a), (b) F1, (c), (d) F2, and (e),

(f) F3 for Q = Qcrit − λ, where Figures 4.11 (b), (d), and (f) show the solutions

on a log-log scale. The solid line shows the solutions calculated using the solution

H̄0 to the leading-order steady problem (4.1.23), and the dashed line shows the

solutions calculated using the composite critical solution H̄0comp (4.1.69), plotted

over the range 0 < λ ≤ Qcrit.

Note that, unlike F2 (4.1.51) and F3 (4.1.52), the solution for F1 (4.1.50) can-

not be calculated numerically using the composite critical solution (4.1.69). This
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Figure 4.11: (a), (b) F1 (4.1.50), (c), (d) F2 (4.1.51), and (e), (f) F3 (4.1.52) for

Q = Qcrit − λ over the range 0 < λ ≤ Qcrit with H̄0 calculated using either the

solution to the leading-order steady problem (4.1.23) (dashed line) or the composite

critical solution of Tougher et al. [112] (solid line). (a), (c), (d) F1, F2, and F3 as

functions of λ. (b), (d), and (f) show the results in (a), (c), and (e) on a log-log

scale. Note that (b) shows the absolute value of F1 due to the fact that F1 changes

signs.
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limitation arises due to the fact that derivatives of the term 1 − H̄0crit cos θ are

nonintegrable. Specifically, when evaluating this term using the composite critical

solution, one needs to take derivatives of a numerical interpolation of H̄0crit, which

belongs to the function space C0. The C0 function space encompasses functions

that are continuous on a given domain and vanish at infinity, but their derivatives

are not necessarily continuous. In the case of the numerical interpolation of H̄0crit,

its derivatives with respect to θ involve delta functions (which exhibit singular

behavior at specific points) and derivatives thereof, resulting in an integral which

is divergent. It is due to this nonintegrability of the derivatives of 1− H̄0crit cos θ

that the solution for F1 cannot be obtained directly using the composite critical

solution (4.1.69), hence precluding its inclusion in Figure 4.11. Instead, F1 was

independently calculated twice using different numerical implementations as an

alternative means of validation. Specifically, two distinct numerical approaches

were employed to compute H̄0 separately, and both methods exhibited excellent

agreement.

Figures 4.11 (b), (d), and (f) show that log(|F1|), log(F2), and log(F3) each

have a linear relationship with log(λ) as log(λ) → 0. Note that the behaviour of

log(|F1|) around λ = 10−1 in Figure 4.11 (b) is a reflection of the fact that F1

changes signs from negative to positive as Q is decreased from Qcrit, as can be seen

from the dotted line in Figure 4.7. The slopes of the corresponding lines of best

fit to the numerical results for log(|F1|), log(F2), and log(F3) for λ ≤ 10−2 were

calculated numerically using the built-in nonlinear curve fitting routine FindFit[]

in Mathematica [265]. These were found to be −1.73658, −1.52376, and −0.76407,

respectively, indicating that the stabilising effect of capillarity dominates as Q →
Qcrit and the solution becomes stable, thus explaining the reason why the growth

rate (4.1.53) changes sign from positive to negative as Q nears the critical value

Qcrit (see, for example, Figure 4.9).

4.2 Parametric study

In this section, we examine the qualitatively different behaviours exhibited by

the system by carrying out a numerical parametric study on the full governing

equation (2.2.23). The parametric study was performed by numerically solving

(2.2.23) for the film thickness H. The behaviour that the system exhibits depends

on the initial uniform film thickness H0 (2.2.25), the capillary number γ (2.2.26),
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the electric potential difference Eb (2.2.27), and the electrode distance D (2.2.28).

The full parameter space is large, and hence to reduce the dimensionality of the

problem the electrode distance was fixed at D = 5 and a numerical investigation

of (γ,Eb) parameter space was performed for 8 different initial film thicknesses H0.

The results of the numerical study revealed that the system exhibits four distinct

behaviours, namely, steady states, periodic states, outer contact, and transient

states. These behaviours are defined in a physical sense for the present system

respectively as follows:

1. Steady-state behaviour: a bulge is held in place;

2. Periodic-state behaviour: a bulge is carried around the cylinder periodically

in time;

3. Outer contact behaviour: the interface touches the outer electrode in a finite

time;

4. Transient-state behaviour: none of the criteria for the other three behaviours

are met.

The four behaviours listed above and the corresponding metrics used in the

code to identify them will be discussed in detail in Sections 4.2.3, 4.2.4, 4.2.5 and

4.2.6, respectively. As explained in Section 4.1.1, we again denote the final time

at which the code converges before outer contact occurs by Tc. Note that when

the outer electrode was positioned too close to the initial uniform interface (for

example, for D = 2) we did not observe any periodic states for the chosen set of

parameter values, and only a small number of steady states for small values of

both γ and Eb. This is because the strength of the electric field increases as the

distance between the interface and the outer electrode decreases, thus leading to

more instances of outer contact occurring within the chosen range of parameter

values. Hence, the fixed value of D = 5 was chosen to ensure that the outer

electrode was positioned far enough away from the initial uniform interface to

allow the richest variety of behaviours.

The dimensional quantities used in the parametric study are given in Section

4.2.1. In Section 4.2.2, we give an overview of the results, followed by a detailed

discussion of the individual behaviours in Sections 4.2.3–4.2.6, each of which begins

with a description of the classification criteria within the code for the behaviour
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Quantity Symbol Value

Inner electrode radius R̂1 0.01 m

Outer electrode radius R̂2 0.0335801 m
Gravity ĝ 9.81 m s−2

Density ρ̂ 1100 kg m−3

Viscosity µ̂ 0.8 kg m−1 s−1

Permittivity of gas region ϵ̂G 1.0006 F m−1

Angular velocity Ω̂ 30 rad s−1

Symbol Definition Value

Ûchar ρ̂ĝR̂2
1/µ̂ 1.34888 m s−1

Re ρ̂ÛcharR̂1/µ̂ 18.547

Table 4.1: Dimensional quantities based on a water-glycerine mix [102, 272] for

D = 5.

at each point in (γ,Eb) parameter space. Points in (γ,Eb) parameter space close

to the transitions between behaviours and at extrema were checked to validate the

classifications. Specifically, the spatiotemporal evolution of the interface shape and

evolution of the maximum and minimum film thicknesses over time were plotted

in order to provide a qualitative check on the behaviour.

4.2.1 Dimensional quantities

The dimensional quantities used in this section are listed in Table 4.1 and are

based on a water-glycerine mix [102, 272]. The dimensionless initial uniform film

thickness H0 is explored over the range

0.1 ≤ H0 ≤ 1.5, (4.2.1)

in increments of 0.2, corresponding to varying the dimensional initial uniform film

thickness ĥ0 over the range

0.47 mm ≤ ĥ0 ≤ 7.07 mm. (4.2.2)

For each choice of H0, the capillary number γ is explored over the range

1 ≤ γ ≤ 50, (4.2.3)
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in increments of 1, corresponding to varying the dimensional surface tension coef-

ficient σ̂ over the range

0.0457633 kg s−2 ≤ σ̂ ≤ 2.28816 kg s−2, (4.2.4)

and the dimensionless electric potential difference Eb is explored over the range

0 ≤ Eb ≤ 50, (4.2.5)

in increments of 1. Since Eb depends on ĥ0 by (2.2.27), the range over which the

dimensional potential at the outer electrode ϕ̂b is explored is different for each

value of H0. For the smallest value of H0 considered in the present study (i.e., for

H0 = 0.1), ϕ̂b is varied over the range

0 V ≤ ϕ̂b ≤ 7.343204 V, (4.2.6)

whereas for the largest value of H0 considered in the present study (i.e., for H0 =

1.5), ϕ̂b is varied over the range

0 V ≤ ϕ̂b ≤ 0.489547 V. (4.2.7)

Note that the chosen upper limit of ϕ̂b = 7.343204 V in (4.2.6) yields ϕ̂b/(R̂2 −
R̂1) ≈ 311 V m−1, which is significantly below the dielectric limit of air (which, as

mentioned previously, is approximately 3× 106 V m−1 [271]).

Finally, the increment sizes for H0, γ, and Eb were chosen such that an accurate

visualisation of parameter space is obtained without taking a prohibitively large

amount of computational time to do so.

4.2.2 Results

In this section, we provide an overview of the results of the parametric study which

are depicted in Figure 4.12, which shows the parameter planes for (a) H0 = 0.1,

(b) H0 = 0.3, (c) H0 = 0.5, (d) H0 = 0.7, (e) H0 = 0.9, (f) H0 = 1.1, (g) H0 = 1.3,

and (h) H0 = 1.5. Steady states, periodic states, outer contact, and transient

states are represented by dark grey squares, light grey circles, grey triangles, and

black diamonds, respectively, and the corresponding regions in parameter space are

indicated by the letters “S”, “P”, “O”, and “T”, respectively. In general, a bulge
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Figure 4.12: Parameter planes for D = 5, 1 ≤ γ ≤ 50, 0 ≤ Eb ≤ 50 and (a)

H0 = 0.1, (b) H0 = 0.3, (c) H0 = 0.5, (d) H0 = 0.7, (e) H0 = 0.9, (f) H0 = 1.1, (g)

H0 = 1.3, and (h) H0 = 1.5. Steady (“S”), periodic (“P”), outer contact (“O”),

and transient (“T”) states are represented by dark grey squares, light grey circles,

grey triangles, and black diamonds, respectively.
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forms as the liquid drains towards the lower part of the cylinder due to gravity and

is supported by capillarity. Rotation drives the bulge in the anticlockwise direction

(i.e., in the direction of rotation), and electrostatic effects pull the interface towards

the outer electrode most strongly where the film is thickest.

4.2.2.1 Overview of parameter space

In this section, we provide an overview of the parameter space, in particular, high-

lighting the regions where each behavior is observed. Within the chosen range of

parameter values, as H0 increases there is a wider array of parameters in (γ,Eb)

space for which outer contact occurs, and the location of the grey triangles (indi-

cating where outer contact occurs in parameter space) moves downwards and to

the left (i.e., outer contact occurs for a wider range of parameter values), as shown

in Figures 4.12 (c)–(h). Physically, this is because as the film thickness increases

whilst the position of the outer electrode remains fixed, the interface will be closer

to the outer electrode. As mentioned previously, the strength of the electric field

increases as the distance between the interface and the outer electrode decreases.

Therefore, we expect the region in parameter space associated with outer contact

to expand as H0 increases. As a result, there is a narrower array of parameters for

which any of the other behaviours occur. In general, smaller values of γ and Eb

more readily admit steady or periodic states, with the locations of the dark grey

squares and the light grey circles (corresponding to steady and periodic states,

respectively) being concentrated in the bottom left-hand corner of the parameter

planes shown in Figures 4.12 (c)–(h).

For very thin films, no steady states or instances of outer contact occur within

the chosen range of parameter values, as shown in Figures 4.12 (a) and (b). In

this case, the most common behaviour is either periodic states or transient states.

Periodic states arise for very thin films due to the fact that the electric field is very

weak when the interface is far from the outer electrode, and hence the dominant

force is that due to rotation. We defer discussion of the transient states until

Section 4.2.6. For thin (but not very thin) films, in general, increasing Eb over the

range 0 ≤ Eb ≤ 50 results in a transition in parameter space from steady states

to periodic states, and then a transition from periodic states to outer contact,

as shown in Figures 4.12 (c) and (d). For very small values of γ, the stabilising

effect of capillarity dominates the behaviour and hence outer contact does not
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occur within the chosen range of parameter values, as shown in the left-hand side

of Figures 4.12 (c) and (d). For slightly larger values of γ, outer contact occurs

only for the largest values of Eb. For large γ, the stabilising effect of capillarity

is weak and hence the destabilising effect of the electric field can dominate the

behaviour. Therefore, outer contact can occur for smaller values of Eb, as shown

in the right-hand side of Figures 4.12 (c) and (d).

The effects of increasing Eb for a fixed value of γ and increasing γ for a fixed

value of Eb for the chosen range of parameter values are shown in Figures 4.13

and 4.14, respectively. In particular, Figure 4.13 shows the evolution of both the

minimum film thickness Hmin and the maximum film thickness Hmax (shown as

the grey and black lines, respectively) along with the spatiotemporal evolution of

the film thickness H for H0 = 0.7 (corresponding to Figure 4.12 (d)) for γ = 10

and Eb = 23, 24, and 44, resulting in the emergence of a steady state, a periodic

state, and outer contact, respectively. Similarly, Figure 4.14 shows the evolution of

Hmin and Hmax and the spatiotemporal evolution of the film thickness for H0 = 0.5

(corresponding to Figure 4.12 (c)) for Eb = 36 and γ = 1, 25, and 50, resulting in

the emergence of a steady state, a periodic state, and outer contact, respectively.

4.2.2.2 Prediction of number of bulges

In this section, we discuss the number of bulges that are expected to arise in our

numerical results within the chosen range of parameter values. In Section 4.1.1,

we established that the number of bulges that are expected to appear at later

times in the evolution can be accurately predicted by the most unstable mode

nmax (4.1.9). Figure 4.15 shows regions in (γ,Eb) parameter space in which the

number of bulges that arise is predicted by (4.1.9) to be greater than 0, 1, 2, 3, and

4 for (a) H0 = 0.5, (b) H0 = 0.7, (c) H0 = 0.9, and (d) H0 = 1.1 (corresponding to

Figures 4.12 (c)–(f), respectively). In particular, Figure 4.15 shows that, within

the chosen range of parameter values, more than 4 bulges are expected to appear

only for the thickest films considered for large values of γ and Eb. This is in

contrast to the results shown in Section 4.1.1 in which we considered the smaller

values D = 2 and D = 3 which yielded much higher values of nmax (see, for

example, Figures 4.4 and 4.5 which showed up to 11 and 5 bulges forming in the

numerical solution, respectively). In the present study, the maximum value of nmax

is nmax ≈ [5.4456] = 5 which occurs for the largest values of H0, γ, and Eb that
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Figure 4.13: (a), (c), (e) The time evolution of the minimum film thickness Hmin

(grey lines) and maximum film thickness Hmax (black lines) for H0 = 0.7, γ = 10,

and (a) Eb = 23 (steady), (c) Eb = 24 (periodic), and (e) Eb = 44 (outer contact),

respectively. (b), (d), (f) Spatiotemporal evolution of the film thickness H with

(b) Eb = 23 for T = [2900, 3000], (d) Eb = 24 for T = [600, 700], and (f) Eb = 44

for T = [0, Tc] where Tc = 31.4064.
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Figure 4.14: (a), (c), (e) The time evolution of the minimum film thickness Hmin

(grey lines) and maximum film thickness Hmax (black lines) for H0 = 0.5, Eb = 36,

and (a) γ = 1 (steady), (c) γ = 25 (periodic), and (e) γ = 50 (outer contact),

respectively. (b), (d), (f) Spatiotemporal evolution of the film thickness H with

(b) γ = 1 for T = [5900, 6000], (d) γ = 25 for T = [250, 350], and (f) γ = 50 for

T = [0, Tc] where Tc = 64.7323.
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Figure 4.15: Regions in (γ,Eb) parameter space in which the number of bulges

that are expected to appear at late times in the evolution is predicted by nmax

(4.1.9) to be greater than 0, 1, 2, 3, and 4 represented by the lightest to darkest

grey regions in ascending order. (a) H0 = 0.5, (b) H0 = 0.7, (c) H0 = 0.9, and (d)

H0 = 1.1.
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we consider, namely, H0 = 1.5, γ = 50, and Eb = 50. However, outer contact

occurs so quickly for these parameter values (at time T = Tc = 0.196685) that in

practice there is not enough time for the bulges to form. We observed at most

four bulges in our numerical investigations, all instances of which arose during the

evolution of the system towards outer contact behaviour. This is to be expected

given that, in general, the regions corresponding to nmax > 3 shown in Figure 4.15

overlap with the regions corresponding to outer contact in Figures 4.12 (c)–(f).

The periodic states that we observed in our investigations had at most two bulges

arise throughout their evolution, and the steady states always contained only one

bulge, which is also to be expected given that, in general, the regions in Figure

4.15 in which nmax < 2 overlap with those in Figure 4.12 which correspond to

steady states. We defer a detailed discussion of these results until Sections 4.2.5,

4.2.4 and 4.2.3, and respectively.

4.2.3 Steady-state behaviour

The numerical solution is classified as a steady state when the values of H at each

gridpoint vary by less than 10−5 over 1 dimensionless time. In states classified

as steady, a bulge is typically held in place on the lower right-hand side of the

cylinder due to a balance of gravitational, rotational, capillary, and electrostatic

forces. Figure 4.12 shows that steady states are typically achieved by a combination

of sufficiently large H0 along with either strong capillarity (i.e., small γ) or weak

electrostatic effects (i.e., small Eb). This observation aligns with physical intuition:

for small H0, the system is mainly dominated by rotation, leading to periodic

states resembling solid body rotation. On the other hand, larger H0 values allow

capillarity to dominate, resulting in steady states, provided that the influence of

electrostatic effects is not strong enough to induce outer contact.

As mentioned in Section 4.2.2, the steady states that we observed in our in-

vestigations always contained only one bulge, as predicted by the linear theory

described in Section 4.1.1 and shown in Figure 4.15, which predicts that one bulge

is most likely to be observable in the numerical solution in parameter regimes

which induce steady states. Figure 4.16 shows the effect of (a), (c) increasing Eb

for a fixed value of γ and (b), (d) increasing γ for a fixed value of Eb on a represen-

tative steady state for H0 = 0.9 (corresponding to Figure 4.12 (e)). In particular,

Figures 4.16 (a) and (c) show the effect of increasing Eb from Eb = 0 to Eb = 10 for
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Figure 4.16: Steady states for H0 = 0.9 and (a), (c) γ = 15 with Eb = 0, 2, 4, 6, 8,

and 10, and (b), (d) Eb = 4 with γ = 1, 10, 20, 30, 40, and 50. (a), (c) The time

evolution of the minimum film thicknesses Hmin (grey lines) and maximum film

thicknesses Hmax (black lines). (c), (d) Steady interface profiles for increasing (c)

Eb and (d) γ. The straight arrows represent the direction of (a) increasing Eb and

(b) increasing γ. The curved arrows represent the direction of rotation. Note that

the film thickness has been exaggerated in (c) and (d) for illustrative purposes by

using the artificial value ϵ = 1.
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the fixed value γ = 15. By (4.1.9) the linear theory predicts that for 0 ≤ Eb ≤ 10,

only one bulge will arise (nmax is calculated to be nmax ≈ [1.26024] = 1 for the

largest value Eb = 10), which agrees with the numerical results shown in Figure

4.16 (c). Similarly, Figures 4.16 (b) and (d) show the effect of increasing γ from

γ = 1 to γ = 50 for the fixed value Eb = 4. For these parameter values, by (4.1.9)

the linear theory predicts that for 1 ≤ γ ≤ 50, only one bulge will arise (nmax is

calculated to be nmax ≈ [1.39676] = 1 for the largest value γ = 50) in agreement

with the numerical results shown in Figure 4.16 (d).

For small (but not very small) values of H0, the system typically reaches a

steady state at late times. The bulge forms on the lower part of the cylinder due to

gravity, is pulled towards the outer electrode by electrostatic effects, and is carried

around the cylinder by the rotation. This behaviour results in the oscillatory

behaviour of Hmax and Hmin which is shown in Figure 4.13 (a) and Figure 4.14 (a)

which, as described previously, show the time evolution of Hmin and Hmax for

two different systems which evolve towards a steady state for the small values

H0 = 0.7 and H0 = 0.5, respectively. The oscillations are damped by viscosity

and eventually a steady state is reached as shown in Figure 4.13 (b) and Figure

4.14 (b), respectively.

For large H0, the system typically reaches a steady state before the bulge

completes a full period of rotation around the cylinder: the bulge forms on the

lower part of the cylinder due to gravity, is driven anticlockwise by the rotation,

pulled towards the outer electrode by electrostatic effects, and ultimately held in

place as the forces balance. This behaviour is shown in Figures 4.16 (a) and (b)

which show that for the large value H0 = 0.9, in most cases, Hmax and Hmin level

out to constant values before any oscillations occur. In some cases, the bulge does

oscillate around the cylinder before the steady state is reached, as shown in Figure

4.16 (b) which shows that for Eb = 4 and γ = 1 there is a slight oscillation in Hmax

and Hmin before the steady state is reached. Our results indicate that this initial

oscillatory behaviour tends to require small values of both γ and Eb in which case

the behaviour is dominated by the rotation and strong capillarity, resulting in small

oscillations in Hmax and Hmin (such as those shown in Figure 4.16 (b)) which are

quickly damped. The location of the bulge in the steady interface profiles shown

in Figures 4.16 (c) and (d) migrates downwards with increasing γ (i.e., weakening

capillarity) or increasing Eb (i.e., strengthening electrostatic effects), respectively.

Correspondingly, increasing either γ or Eb leads to an increase in Hmax (and hence
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Figure 4.17: Surface plot showing how the maximum film thickness Hmax of steady

states varies for H0 = 0.9, 0 ≤ Eb ≤ 10, and 1 ≤ γ ≤ 10.

a decrease in Hmin) as shown in Figures 4.16 (a) and (b). Increasing Eb from

Eb = 0 to Eb = 10 for γ = 15 (as shown in Figure 4.16 (a)) yields an increase in

the maximum film thickness from Hmax = 1.70812 to Hmax = 2.47154. Similarly,

increasing γ from γ = 1 to γ = 50 for Eb = 4 (as shown in Figure 4.16 (b)) yields an

increase in the maximum film thickness from Hmax = 1.21986 to Hmax = 2.94165.

This is also demonstrated by Figure 4.17 which shows a surface plot of Hmax in a

region of (γ,Eb) parameter space in which the behaviour is steady for H0 = 0.9

(located in the bottom left-hand corner of Figure 4.12 (e)). Figure 4.17 shows that

the maximum film thickness increases from Hmax = 1.21626 for γ = 1 and Eb = 0

to Hmax = 1.91085 for γ = 10 and Eb = 10.

4.2.4 Periodic-state behaviour

In our numerical calculations, we track the locations and heights of spatiotemporal

maxima (i.e., values of H(θ, T ) that are locally maximal in both space and time).

The numerical solution is classified as periodic when the code detects that these

maxima approach temporal periodicity. Specifically, an array is stored that records

each instance there is such a maximum, along with its associated thickness and

the time at which it occurred. These parameters are monitored over 10 oscillations

and the algorithm evaluates if the variations in thickness are less than 10−3 and
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whether the time intervals between successive maxima remain constant down to

time step accuracy. If these conditions are met, the numerical solution is classified

as periodic.

In states classified as periodic, a bulge is typically carried around the cylinder

periodically by the rotation. Figures 4.12 (a) and (b) show that for very thin

films, solid body rotation behaviour dominates and periodic states occur. Figures

4.12 (c) and (d) show that for thin (but not very thin) films, a band of periodic

states occurs between steady states and outer contact.

As mentioned in Section 4.2.2, the periodic states that we observed in our in-

vestigations contained at most two bulges throughout their evolution, in agreement

with the linear theory described in Section 4.1.1 and shown in Figure 4.15. When

two bulges arise, they coalesce before the final periodic state is reached, which

always consists of only one bulge. Figure 4.18 shows an example of this behaviour,

in particular, showing snapshots of the interface for H0 = 0.5 (corresponding to

Figure 4.12 (c)), γ = 25, and Eb = 40 during two different stages of the evolution:

(a)–(d) as the system evolves towards the periodic state (during which time two

bulges have formed and are oscillating around the cylinder) and (e)–(h) once the

system has reached its final periodic state (by which point the two bulges have

coalesced). For these parameter values, by (4.1.9) the linear theory predicts that

2 bulges will arise (specifically, nmax is calculated to be nmax ≈ [2.44683] = 2),

which is in agreement with the numerical results.

The effect of increasing Eb for a fixed value of γ on a representative periodic

state for H0 = 0.5 (corresponding to Figure 4.12) (c)) is shown in Figure 4.19.

Specifically, Figure 4.19 shows (a), (b) the evolution of the maximum and minimum

film thicknesses over time and (c), (d) the periodic interface profiles for γ = 10

with (a), (c) Eb = 10 and (b), (d) Eb = 40. Note that Figures 4.19 (b) and

(d) correspond to the same system that is shown in Figure 4.18 and is discussed

above. For Eb = 10, the linear theory predicts that one bulge will arise (specifically,

nmax ≈ [1.36812] = 1), which is in agreement with the numerical results shown

in Figure 4.18 (c). As before, increasing the electric potential difference results

in an increase in Hmax (and, correspondingly, a decrease in Hmin) as the bulge is

pulled closer to the outer electrode by electrostatic effects. Increasing the electric

potential difference from Eb = 10 to Eb = 40 almost triples the maximum film

thickness from Hmax = 0.631839 to Hmax = 1.71866.

Similarly, the effect of increasing γ for a fixed value of Eb is shown in Figure
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.18: Snapshots of the interface for H0 = 0.5, γ = 25, and Eb = 40 at times

(a) T = 60, (b) T = 62, (c) T = 64, and (d) T = 66 and at the later times (e)

T = 300, (f) T = 302, (g) T = 304, and (h) T = 306. The curved arrows represent

the direction of rotation. Note that the film thickness has been exaggerated for

illustrative purposes by using the artificial value ϵ = 1.

4.20. In particular, Figure 4.20 shows that, as we have seen previously, weakening

capillarity has a qualitatively similar effect on the system as increasing Eb, yielding

an increase in the maximum film thickness. For these parameter values, by (4.1.9)

the linear theory predicts that 1 and 2 bulges will arise for γ = 10 and γ = 40,

respectively, in agreement with the numerical results. Specifically, the two-bulge

configuration for γ = 40 is qualitatively similar to that shown in Figure 4.18 and

thus is not displayed for brevity. As before, the bulge is pulled closer to the

outer electrode by electrostatic effects which can have a more prominent effect

on the system when the stabilising effect of capillarity is weak. Increasing the

capillary number from γ = 10 to γ = 40 increases the maximum film thickness

from Hmax = 0.735154 to Hmax = 1.05773. Hence, in general, increasing either γ or

Eb increases in the maximum film thickness as demonstrated in Figure 4.21 which

shows a surface plot of Hmax in a region of (γ,Eb) parameter space in which the

behaviour is periodic for H0 = 0.5 (located roughly in the middle of the periodic

region in Figure 4.12 (c)). Figure 4.21 shows that the maximum film thickness

increases from Hmax = 0.695663 for γ = 10 and Eb = 20 to Hmax = 1.91532 for
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Figure 4.19: Periodic states for H0 = 0.5, γ = 25, and (a), (c) Eb = 10 and (b),

(d) Eb = 40. (a), (b) The time evolution of the minimum film thickness Hmin (grey

lines) and maximum film thicknesses Hmax (black lines). (c), (d) Periodic interface

profiles at times (c) T = 328.6, 329.6, 330.6, 331.6, 332.6, 333.6, and 334.6 and (d)

T = 320.3, 321.3, 322.3, 323.3, 324.3, 325.3, and 326.3. The curved arrows represent

the direction of rotation. Note that the film thickness has been exaggerated in (c)

and (d) for illustrative purposes by using the artificial value ϵ = 1.
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Figure 4.20: Periodic states for H0 = 0.5, Eb = 25, and (a), (c) γ = 10 and (b),

(d) γ = 40. (a), (b) The time evolution of the minimum film thickness Hmin (grey

lines) and maximum film thicknesses Hmax (black lines). (c), (d) Periodic interface

profiles at times (c) T = 342.6, 343.6, 344.6, 345.6, 346.6, 347.6, and 348.6 and (d)

T = 671.8, 672.8, 673.8, 674.8, 675.8, 676.8, and 677.8. The curved arrows represent

the direction of rotation. Note that the film thickness has been exaggerated in (c)

and (d) for illustrative purposes by using the artificial value ϵ = 1.
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Figure 4.21: Surface plot showing how the maximum film thickness Hmax of peri-

odic states varies for H0 = 0.5, 20 ≤ Eb ≤ 40, and 10 ≤ γ ≤ 30.

γ = 30 and Eb = 40.

4.2.5 Outer contact behaviour

Outer contact occurs when the interface touches the outer electrode in a finite

time as illustrated by Figure 4.22 which shows outer contact occurring for the

parameter values H0 = 0.7, γ = 10, and Eb = 44 (corresponding to Figures

4.13 (e) and (f)). Specifically, Figure 4.22 (a) shows the evolution of the film

thickness H over the final 10 time steps on the approach to outer contact, in which

the solid horizontal lines indicate the location of the inner and outer electrodes

and the dashed horizontal line indicates the initial condition H0 = 0.7. Figure

4.22 (b) shows snapshots of the interface over the final 10 time steps. Outer contact

corresponds to a singularity of the governing equation (2.2.23) which occurs when

H = D, thus the final term in (2.2.23) diverges on the approach to outer contact as

Hmax → D−. The interface accelerates as it approaches the outer electrode, which

requires successively smaller time steps in order to ensure that the backwards Euler

iteration converges in the time-stepping procedure (see Section 1.3.3 and Appendix

A for details). Hence, the numerical solution is classified as outer contact behaviour

if the time step ∆T < 10−6 (where ∆T is as defined in Section 1.3.3). Whilst this

alone is sufficient to verify outer contact behaviour as such convergence issues do
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Figure 4.22: Outer contact for the parameter values H0 = 0.7, γ = 10, and

Eb = 44. (a) The evolution of the film thickness H over the final 10 time steps

from T = 31.4059 until Tc = 31.4064. The horizontal lines indicate the location of

the inner and outer electrodes (solid) and the initial condition H0 = 0.7 (dashed).

(b) Snapshots of the interface over the final 10 time steps. Note that the film

thickness and the electrode distance have been exaggerated in (b) for illustrative

purposes by using the artificial value ϵ = 1. The straight arrow indicates the

direction of increasing T and the curved arrow represents the direction of rotation.
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not occur in any other regime, we have also verified that (Hmax−1)/(D−1) > 0.9

at the final time Tc for which the backwards Euler iteration converges. Note

that outer contact behaviour is analogous to the “upper contact” behaviour which

occurs in the case of a perfectly conducting thin film bounded between two parallel

electrodes which was recently described by Keith [214] (see Section 1.6.2 for further

details).

4.2.5.1 Bulge formation

As mentioned in Section 4.2.2, we observed at most 4 bulges in systems which

evolved towards outer contact behaviour, in agreement with the linear theory

described in Section 4.1.1 and shown in Figure 4.15. As discussed briefly in Section

4.2.2, more than 3 bulges are only expected to appear in outer contact states for

large values of γ and Eb. However, in general, these are the parameter values

for which outer contact occurs early in time (often as early as before T = 1 for

large values of H0). Hence, in many instances of outer contact behaviour there is

not enough time in practice for the bulges to form. It is for this reason that at

most 2 bulges arise in most of the outer contact states identified in the present

study in practice. As discussed previously in Section 4.1.1, when more than one

bulge does arise throughout the evolution, they often coalesce on the approach to

outer contact as Hmax → D−. Figure 4.23 shows an example of this behaviour, in

particular, showing snapshots of the interface for H0 = 0.5, γ = 50, and Eb = 50 as

the system evolves towards outer contact. For these parameter values, by (4.1.9)

the linear theory predicts that 4 bulges will arise (specifically, nmax is calculated

to be nmax ≈ [3.7706] = 4). Initially, 1 bulge forms (see Figures 4.23 (a) and (b))

which then separates into 3 bulges by time T = 23.5 (see Figure 4.23 (f)). At late

times, the largest bulge continues to increase in height whilst two smaller bulges

shrink until eventually the bulges coalesce as Hmax → D− and outer contact occurs

at time Tc = 30.9025.

4.2.5.2 Transitions and parameter space analysis

Our results indicate that outer contact behaviour occurs in two different cases in

parameter space: the first occurs through a transition from a region of periodic

states for small (but not very small) H0 (see Figures 4.12 (c) and (d)), and the

second occurs through a transition from a region of steady states for large H0 (see
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Figure 4.23: Snapshots of the interface for H0 = 0.5, γ = 50, and Eb = 50 at times

(a) T = 11.5, (b) T = 14.5, (c) T = 17.5, (d) T = 20.5, (e) T = 23.5, (f) T = 26.5,

(g) T = 29.5, and (h) T = Tc where Tc = 30.9025. The curved arrows represent

the direction of rotation. Note that the film thickness has been exaggerated for

illustrative purposes by using the artificial value ϵ = 1.

Figures 4.12 (e)–(h)).

In instances in which outer contact occurs through a transition from periodic

states, Hmax increases whilst the bulge (or bulges) oscillates around the cylinder.

As we have seen previously, the electric field is strongest where the film is closest

to the outer electrode, hence this behaviour eventually leads to outer contact.

Representative systems demonstrating this behaviour are shown in Figures 4.13 (e)

and (f) and Figures 4.14 (e) and (f) which, as described in Section 4.2.2, show the

time evolution of Hmax and Hmin and the spatiotemporal evolution of H as the

respective systems evolve towards outer contact. In particular, Figures 4.13 (e)

and (f) show that for H0 = 0.7, γ = 10, and Eb = 44 outer contact occurs on

the third oscillation at time Tc = 31.4064. Figure 4.24 shows snapshots of the

interface during the final oscillation on the approach to outer contact for these

parameter values. By (4.1.9), the linear theory predicts that 2 bulges will arise,

whilst Figure 4.24 shows that in practice 1 bulge arises in the numerical solution.

Similarly, Figures 4.14 (e) and (f) show that for H0 = 0.5, γ = 50, and Eb = 36

outer contact occurs on the ninth oscillation at time Tc = 64.7323. Figure 4.25

shows snapshots of the interface during the final oscillation on the approach to
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(a) (b) (c) (d)

Figure 4.24: Snapshots of the interface for H0 = 0.7, γ = 10, and Eb = 44 at times

(a) T = 19.56, (b) T = 23.56, (c) T = 27.56, and (d) Tc where Tc = 31.4064. The

curved arrows represent the direction of rotation. Note that the film thickness has

been exaggerated for illustrative purposes by using the artificial value ϵ = 1.

outer contact for these parameter values. By (4.1.9), the linear theory predicts

that 3 bulges will arise, whilst Figure 4.25 shows that in practice 2 bulges arise

(in particular, see Figures 4.25 (c)–(f)) before coalescing on the approach to outer

contact as Hmax → D− (see Figure 4.25 (h)).

Close to the transition between periodic-state behaviour and outer contact be-

haviour, the oscillations are less regular in the sense that there is not a steady

(albeit oscillatory) increase in Hmax like those shown in Figure 4.16 (e) and Figure

4.14 (e). Rather, the behaviour is more erratic, reflecting a more complex interplay

between rotation, capillarity, and electrostatic effects. The effect of increasing Eb

for a fixed value of γ on a representative outer contact state close to the transi-

tion between periodic-state behaviour and outer contact behaviour for H0 = 0.7

(corresponding to Figure 4.12 (d)) is shown in Figure 4.26. In particular, Figure

4.26 shows (a), (b) the spatiotemporal evolution of the film thickness, (c), (d) the

evolution of Hmax and Hmin over time, and (e), (f) the interface profiles over the

final 10 time steps before outer contact for H0 = 0.7 and γ = 24 with (a), (c), (e)

Eb = 28 and (b), (d), (f) Eb = 38. By (4.1.9) the linear theory predicts that 2

bulges will arise for both Eb = 28 and Eb = 38. In practice, only 1 bulge arises

in the numerical solution in both cases. Near the transition point from the region

of periodic states (i.e., for Eb = 28), the rotational motion attempts to carry the

bulge around the cylinder. However, the movement of the bulge is hindered by the

influence of electrostatic effects, causing it to be temporarily held at the bottom

right-hand side of the cylinder during each rotation. This behavior is depicted in

Figures 4.26 (a) and (c). Specifically, this behavior corresponds to the semi-flat
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Figure 4.25: Snapshots of the interface for H0 = 0.5, γ = 50, and Eb = 36 at

times (a) T = 36.89, (b) T = 40.89, (c) T = 44.89, (d) T = 48.89, (e) T = 52.89,

(f) T = 56.89, (g) T = 60.89, and (h) T = Tc where Tc = 64.7323. The curved

arrows represent the direction of rotation. Note that the film thickness has been

exaggerated for illustrative purposes by using the artificial value ϵ = 1.

regions depicted in Figure 4.26 (c), which persist for an extended duration during

each rotation. The reason behind this behavior lies in the combined influence of

rotation, gravity, and electrostatic effects on the lower part of the cylinder, where

the film thickness is greatest, consequently intensifying the strength of the electric

field. Eventually, when Hmax attains a significant magnitude, the dominance of

electrostatic effects becomes prominent, leading to the occurrence of outer contact

after three rotations at time Tc = 101.591. Figures 4.26 (b) and (d) show the effect

of increasing Eb to Eb = 38, which shows that the bulge does not complete a full

oscillation around the cylinder and outer contact occurs at the much earlier time

Tc = 5.91194. The approach to outer contact described above is shown in Figure

4.27 which shows snapshots of the interface at times T = 2.927, 3.927, 4.927, and

Tc.

The effect of increasing γ for a fixed value of Eb on a representative outer

contact state close to the transition between periodic-state behaviour and outer

contact behaviour for H0 = 0.7 is shown in Figure 4.28. In particular, Figure

4.28 shows (a), (b) the spatiotemporal evolution of the film thickness, (c), (d) the

evolution of Hmax and Hmin over time, and (e), (f) the interface profiles over the

final 10 time steps before outer contact for H0 = 0.7 and Eb = 30 with (a), (c), (e)

γ = 21 and (b), (d), (f) γ = 31. By (4.1.9) the linear theory predicts that 2 bulges
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Figure 4.26: Outer contact for H0 = 0.7, γ = 24, and (a), (c), (e) Eb = 28,

and (b), (d), (f) Eb = 38. (a), (b) Spatiotemporal evolution of the film thickness

H for T = [0, Tc] where (c) Tc = 101.591 and (d) Tc = 5.91194. (c), (d) The

time evolution of the minimum film thickness Hmin (grey lines) and maximum film

thicknesses Hmax (black lines). (e), (f) Interface profiles over the final 10 time

steps before outer contact from time (e) T = 101.590 and (f) T = 5.91151. Note

that the film thickness and the electrode distance have been exaggerated in (e)

and (f) for illustrative purposes by using the artificial value ϵ = 1. The straight

arrows indicate the direction of increasing T and the curved arrows represent the

direction of rotation.
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(a) (b) (c) (d)

Figure 4.27: Snapshots of the interface for H0 = 0.7, γ = 24, and Eb = 38 at times

T = 2.927, 3.927, 4.927, and Tc where Tc = 5.91194. The curved arrows represent

the direction of rotation. Note that the film thickness has been exaggerated for

illustrative purposes by using the artificial value ϵ = 1.

will arise for both γ = 21 and γ = 31, however, in practice, only 1 bulge arises in

the numerical solution in both cases. The effect of increasing γ is qualitatively the

same as that of increasing Eb which was described above. Specifically, for values

of γ close to the transition (see, for example, Figures 4.28 (a) and (c)), the bulge

oscillates around the cylinder before outer contact occurs, whereas for larger values

of γ (see, for example, Figure 4.28 (b) and (d)) the bulge does not complete a full

rotation around the cylinder before outer contact occurs. This is due to the fact

that, as described previously, the destabilising electrostatic effects dominate when

capillarity is weak. As before, it is for this reason that the time at which outer

contact occurs decreases from Tc = 75.9406 for γ = 21 to Tc = 7.13897 for γ = 31.

In instances in which outer contact occurs through a transition from a region

of steady states, the behaviour is qualitatively the same as that described above

for large Eb or large γ as shown in Figures 4.26 (b) and (d), Figures 4.28 (b) and

(d), and in Figure 4.27. Specifically, as described previously, for large H0 the bulge

does not complete a full rotation around the cylinder before outer contact occurs

because electrostatic effects dominate the behaviour so quickly.

In general, as we have seen, increasing either γ or Eb decreases the time at

which outer contact occurs. This is demonstrated in Figure 4.29 which shows a

surface plot of Tc in a region of (γ,Eb) parameter space in which outer contact

behaviour occurs for H0 = 0.5 (located roughly in the top right-hand corner of

the outer contact region in Figure 4.12 (d)). Figure 4.29 shows that the time at

which outer contact occurs decreases from Tc = 1.91532 for γ = 30 and Eb = 40 to

Tc = 0.69566 for γ = 10 and Eb = 20. Note that the surface shown in Figure 4.29 is
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Figure 4.28: Outer contact for H0 = 0.7, Eb = 30, and (a), (c), (e) γ = 21,

and (b), (d), (f) γ = 31. (a), (b) Spatiotemporal evolution of the film thickness

H for T = [0, Tc] where (c) Tc = 75.9406 and (d) Tc = 7.13897. (c), (d) The

time evolution of the minimum film thickness Hmin (grey lines) and maximum film

thicknesses Hmax (black lines). (e), (f) Interface profiles over the final 10 time

steps before outer contact from time (e) T = 75.9404 and (f) T = 7.13894. Note

that the film thickness and the electrode distance have been exaggerated in (e)

and (f) for illustrative purposes by using the artificial value ϵ = 1. The straight

arrows indicate the direction of increasing T and the curved arrows represent the

direction of rotation.
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Figure 4.29: Surface plot showing how Tc varies for H0 = 0.5, 40 ≤ Eb ≤ 50, and

40 ≤ γ ≤ 50.

not smooth, which we suspect is due to the variation in the number of oscillations

that the bulge completes around the cylinder before outer contact occurs.

Note that an analytical investigation of outer contact behaviour could be an

interesting and fruitful avenue for future study. We anticipate such an analysis to

be tractable via the use of similarity solutions as shown recently by Keith [214] for

the corresponding “upper contact” behaviour in the planar case.

4.2.6 Transient-state behaviour

The behaviour is classified as transient if T > 104 and none of the criteria for

the other three behaviours described in the previous three sections has been met,

representing temporary or transitional states that do not exhibit consistent or

recurring patterns. Figure 4.12 shows that transient-state behaviour only occurs

for relatively small values of H0 and that the size of the transient region increases

as H0 decreases. For larger values of H0, the transient states lie primarily on

the transition between two other states. For example, Figure 4.12 (d) shows that

for H0 = 0.7, transient states occur near the transitions between steady states

and periodic states and between periodic states and outer contact states. On the

other hand, for very small values of H0, large regions of transient-state behaviour
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Figure 4.30: The time evolution of the minimum film thickness Hmin (grey lines)

and maximum film thickness Hmax (black lines) of transient states over the time

interval 9800 ≤ T ≤ 9900 for (a) H0 = 0.7 with γ = 7 and Eb = 28, (b) H0 = 0.7

with γ = 37 and Eb = 22, (c) H0 = 0.5 with γ = 40 and Eb = 10, and (d) H0 = 0.3

with γ = 48 and Eb = 19.

which do not lie on a transition between states can also arise. For example, Figure

4.12 (b) shows that for H0 = 0.3, a region of transient states occurs for large values

of γ with moderate values of Eb.

Figure 4.30 shows the evolution of the maximum and minimum film thick-

ness over the time interval 9800 ≤ T ≤ 9900 for a selection of transient states.

Specifically, Figures 4.30 (a) and (b) show transient states for H0 = 0.7 near the

transitions between steady states and periodic states, and between periodic states

and outer contact states, respectively. The behavior illustrated in Figure 4.30 (a)

exhibits very small oscillations, deviating only slightly from steady-state behaviour

(note that only Hmax is visible due to the scale required to discern the oscillations).

Similarly, Figure 4.30 (b) demonstrates small deviations from periodic-state be-

haviour which are not obviously discernible. Figures 4.30 (c) and (d) show transient

states for (c) H0 = 0.5 and (d) H0 = 0.3, respectively, which belong to the large
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transient regions shown in Figures 4.12 (b) and (c), respectively. As before, the

behaviour deviates only slightly from periodic-state behaviour. Whilst this devi-

ation might not be readily apparent in Figure 4.30 (c), it becomes slightly more

discernible when observing Hmax in Figure 4.30 (d).

Time constraints prohibit us from running the code for longer than T = 104

per each run, which has a run-time of approximately 1.37 hours in wall-clock time.

Therefore, calculation of the 1217 transient states shown in Figure 4.12 (a), for

example, to T = 104 required a cumulative run-time of approximately 1667.29

hours in wall-clock time (equivalent to approximately 2.3 months of back-to-back

calculations). It is therefore possible that, in some instances (for example, on

the transition between different behaviours, such as those described above) states

which appear to be transient may actually settle down to one of the other three

behaviour classifications at much later times. For example, those on the transition

between periodic-state behaviour and steady-state behaviour may eventually settle

to a steady state, and those on the transition between periodic-state behavior and

outer contact behaviour may eventually evolve to touch the outer electrode. In

these cases, the states which are classified in this study as transient could actually

be instances of complex, large-time dynamics which are difficult to capture numer-

ically. Hence, it is possible that their presence in Figure 4.12 may represent the

technical limitations of the current numerical approach. Indeed, this observation

is similar to that of Hinch and Kelmanson [73] who, as discussed earlier in Section

1.4.4, found that when the film is very thin, the dynamics of the coating flow sys-

tem (in absence of electrostatic effects) at large times evolve on four different time

scales. In this case, numerical simulations of the Navier–Stokes equations become

very computationally expensive, hence they performed a multiple-timescale anal-

ysis in order to elucidate the large-time dynamics of the system. Motivated by

this observation, we discuss and investigate the large-time dynamics of the system

considered in this chapter in Section 4.4.

4.3 Draining flow

In this section, we consider the special case in which the inner electrode is station-

ary by generalising the analysis presented in Chapter 3 to incorporate electrostatic

effects. We proceed by setting the dimensionless rotation rate ω̄ to zero in the gov-
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erning equation (2.2.20) to yield

H̃T̃ + Q̃θ = 0, (4.3.1)

where Q̃ = Q̃(θ, T̃ ) is defined by

Q̃ = −1

3
H̃3 cos θ +

1

3γ̃
H̃3
(
H̃ + H̃θθ

)
θ
+
Ẽb

3

(
H̃

D̃ − H̃

)3

H̃θ. (4.3.2)

As in Chapter 3, throughout this section, we assume that the flow has left-to-right

symmetry, and so restrict our attention to the left-hand side of the cylinder and

hence work in the domain π/2 ≤ θ ≤ 3π/2. Equation (4.3.1) is again subject

to the initial condition (2.2.2) and the symmetry conditions (3.1.4). Note that

throughout this section we drop the tilde decoration in (2.2.2), (3.1.4), (4.3.1),

and (4.3.2) hereafter for brevity and for consistency with the analysis presented in

Chapter 3.

The geometry of the dimensionless system considered in this section is shown

in Figure 4.31, along with the three distinct regions of qualitatively different be-

haviour which emerge at late times which are qualitatively the same as those

described in Chapter 3. Due to the similarities with the system analysed in Chap-

ter 3, throughout this section we focus our attention on the differences between

the draining problems in the absence and presence of an electric field, respectively,

and will not repeat equations, definitions, and discussions which are the same as

those given in Chapter 3. As before, numerical solutions of the governing equation

(4.3.1) have been obtained up to late times (specifically, up to T = O(1011)) using

the numerical scheme described in Appendix A.2.

Note that incorporating leading-order electrostatic effects into the dynamics in

the pendant-drop region is a challenging problem owing to the fact that electro-

static effects can cause outer contact to occur. In instances of outer contact, it is

not possible to generalise the analytical approach used before in Chapter 3, which

relies on the assumption that the pendant drop is quasi-static at late times. Our

results indicate that when electrostatic effects are weak (i.e., when either Eb is

small or when outer electrode is far from the interface such that the electric field

is weak), the system reaches a quasi-steady state. However, the limit of small Eb

is not analytically tractable due to the fact that an analytical solution cannot be

obtained in the pendant-drop region at first order. Therefore, we instead choose to
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Figure 4.31: Geometry of the dimensionless system considered in Section 4.3.
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consider the limit of large D in the pendant-drop region to ensure that the electric

field is weak (such that outer contact does not occur) as a sensible first step to

understanding the full problem. As we shall see, this choice simplifies the nonlin-

earities that arise in the governing equation in the pendant-drop region and hence

allows us to generalise the approach described in Section 3.5 for the problem in the

absence of an electric field. Note that we do not need to consider the limit of large

D in the draining and inner regions because, as will be shown in Sections 4.3.3

and 4.3.5, respectively, these regions are unaffected by leading-order electrostatic

effects due to the fact that the film is extremely thin in these regions. As a result,

many of the figures presented throughout this section are rather similar to the

corresponding figures in the absence of an electric field given in Chapter 3. Never-

theless, we include these to validate this fact by comparing the asymptotic results

with numerical solutions of the governing equation (4.3.1) for non-zero values of

Eb.

As before, we discuss first the early-time dynamics in Section 4.3.1, before

investigating the late-time dynamics in Section 4.3.2.

4.3.1 Early-time draining

In this section, we describe the draining of the initially uniform film in the presence

of an electric field at early times. As in Section 3.2, substitution of the expansion

(3.2.1) into the governing equation (4.3.1) and solving order-by-order yields

H = 1− 1

3
T sin θ − 1

6
T 2

(
cos(2θ) +

Eb sin θ

3(D − 1)3

)
︸ ︷︷ ︸

H2

+ O(T 3). (4.3.3)

Upon setting Eb = 0, equation (4.3.3) recovers equation (3.2.2). Figure 4.32 shows

the second-order terms in (4.3.3), which we denote by H2 = H2(θ), for D = 4

with Eb = 0 (shown as the solid line) and Eb = 10 (shown as the dashed line).

Electrostatic effects exert normal stress on the film everywhere, however, as we

have seen previously, the electric field is stronger where the film is thicker, and

hence its effect is most pronounced in the pendant-drop region. This is shown in

Figure 4.32, confirming that H2 is largest at the bottom of the cylinder (i.e., at

θ = 3π/2). Figure 4.33 (a) shows the film thickness at time T = 10−2 for Eb = 5,
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Figure 4.32: The second-order terms H2 in the early-time asymptotic solution

(4.3.3) for D = 4 with Eb = 0 (solid line) and Eb = 10 (dashed line).

D = 8 and the specific value

γ = γπ(5, 8) ≃ 12.8785, (4.3.4)

which was chosen for consistency with that used subsequently, where γπ = γπ(Eb, D)

is the value of γ required to have the inner region located at θI = π for partic-

ular choices of Eb and D. This result will be shown and discussed in detail in

Section 4.3.2. Note that the value (4.3.4) is smaller than the corresponding value

γπ = 13.4428 (3.2.3) that was used in Chapter 3 in the absence of an electric field,

a point which we discuss in Section 4.3.4. In particular, Figure 4.33 (a) shows

that the asymptotic solution (4.3.3) is in excellent agreement with the numerical

solution of the governing equation (4.3.1) at this early time. Figure 4.33 (b) shows

the evolution of the film thickness at the top of the cylinder (i.e., at θ = π/2)

plotted against time until T = 102 for Eb = 5, D = 8, and γ = γπ(5, 8) given

by (4.3.4) until time T = 102, and confirms that (4.3.3) is valid at the top of the

cylinder at early times. As in Section 3.2, for completeness, Figure 4.33 (b) also

includes the corresponding late-time asymptotic solution (3.4.8) (shown with the

dotted line) which was derived in Section 3.4, which will be shown in Section 4.3.3

to also be the solution in the draining region in the presence of an electric field.
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Figure 4.33: (a) Film thickness for Eb = 5, D = 8, and γ = γπ(5, 8) given by (4.3.4)

at time T = 10−2. The dashed line shows the early-time asymptotic solution (4.3.3)

and the solid line shows the numerical solution of (4.3.1). Note that the two curves

are almost indistinguishable from one another at this early time. (b) The evolution

of the film thickness at the top of the cylinder for Eb = 5, D = 8, and γ = γπ(5, 8)

given by (4.3.4). The solid line shows the numerical solution of (4.3.1), the dashed

line shows the early-time asymptotic solution (4.3.3), and the dotted line shows

the late-time asymptotic solution (3.4.8).

4.3.2 Late-time draining

At late times, three distinct regions of behaviour emerge which are qualitatively

the same as those in the absence of an electric field that were described in Section

3.3 and as sketched in Figure 4.31, namely, a draining region on the upper part

of the cylinder, a pendant-drop region on the lower part of the cylinder, and a

narrow inner region which joins the other two regions.

Figure 4.34 shows snapshots of the interface for γ = γπ(5, 8) given by (4.3.4)

with Eb = 5 for (a), (b) D = 4 and (c), (d), D = 8. At late times, outer contact

occurs for large values of Eb or small values of D. Figures 4.34 (a) and (b) show

that for D = 4, a quasi-static pendant drop does not form as the destabilising

electrostatic effects dominate the behaviour and lead to outer contact. However,

Figures 4.34 (c) and (d) show that a quasi-static pendant drop forms at late times

for the larger value D = 8.

Similarly to the effect of varying γ as discussed in Section 3.3, the effect of

varying Eb is also mainly to vary the location of θI and, correspondingly, the widths

of the draining and pendant-drop regions. Increasing the value of Eb results in a
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Figure 4.34: Snapshots of the interface for γ = γπ(5, 8) given by (4.3.4) and

Eb = 5 with (a), (b) D = 4 at times T = 0.192 + 0.193n for n = 0, 1, . . . , 10 and

at Tc = 2.30001, and (c), (d) D = 8 at times T = 0, 100, 101, 102, 103, and 104.

The arrows indicate the direction of increasing time. (a), (c) Polar plots in which

the film thickness and the electrode distance have been exaggerated for illustrative

purposes by using the artificial value ϵ = 1. (b), (d) Semi-log plots showing the

film thickness H as a function of θ.
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Figure 4.35: The film thickness H for Eb = 5, D = 8, and γ = γπ(5, 8) given

by (4.3.4) at time T = 1010. (a) Solution for π/2 ≤ θ ≤ 13π/10. The rectangle

indicates the location of the enlargement shown in (b). (b) Enlargement of (a)

near θ = θI = π.

wider draining region and a narrower pendant-drop region as the pendant drop

is pulled towards the outer electrode. However, note that when appropriate Eb

and D values are selected in order to prevent outer contact from occurring for a

particular choice of γ, the visual difference resulting from this adjustment is not

readily discernible when compared to the interface depicted in Figures 4.34 (c) and

(d). Therefore, we have not presented it here for visual comparison. We return to

this point in Section 4.3.4.

Figure 4.35 shows the film thickness H calculated for Eb = 5, D = 8, and

γ = γπ(5, 8) given by (4.3.4) at time T = 1010. As described in Chapter 3, whilst

only the first dimple and ridge are immediately apparent in Figures 4.34 and

4.35 (a), the second and third dimple and ridge are discernible in the enlargement

of Figure 4.35 (a) near θ = θI = π, shown in Figure 4.35 (b).

In Sections 4.3.3–4.3.5, we will show that electrostatic effects only affect the

dynamics at leading order in the pendant-drop region and can be neglected in

the draining region and in the inner region. In particular, it will be shown that

electrostatic effects influence the calculations in the inner region only through

matching dimple 1 with the pendant-drop region. The presence of an electric field

introduces the term

Qelec =
Eb

3

(
H

D −H

)3

Hθ, (4.3.5)

in each region which, analogous to the terms Qgrav and Qcap introduced in Section
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3.3, represents the contribution to the flux Q (4.3.2) due to electrostatic effects.

In Sections 4.3.3 and 4.3.5, respectively, we show that Qelec is of higher order in

the draining and inner regions and so can be neglected. Note that, as mentioned

previously, we will not make any assumptions on the size of D in the draining

and inner regions in order to verify that they are unaffected by leading-order

electrostatic effects. In Section 4.3.4, we derive the asymptotic solution in the

pendant-drop region in which leading-order electrostatic effects are significant. In

particular, in this region we consider the asymptotic limit of large D in which the

electric field is weak: the problem is thus made analytically tractable and can be

approached by generalising the method that was described previously in Section

3.5.

4.3.3 Draining region

In this section, we investigate the draining region in the presence of an electric

field. As in Section 3.4, we seek a late-time asymptotic solution in which H ≪ 1,

in which case, to leading order, the governing equation (4.3.1) becomes the same

as the governing equation in the draining region in the absence of an electric field

(3.4.1). Therefore, the analysis in the draining region in the presence of an electric

field is identical to that in the absence of an electric field given in Section 3.4. The

solution in the draining region in the presence of an electric field is thus (3.4.4)

where η is given by (3.4.6) with (3.4.7).

Figure 4.33 (b) shows the evolution of the film thickness at the top of the

cylinder (i.e., at θ = π/2) plotted against time until T = 102 for Eb = 5, D = 8,

and γ = γπ(5, 8) given by (4.3.4) until time T = 102, and confirms that (3.4.4) is

valid at the top of the cylinder at late times in the presence of electrostatic effects.

Substituting the solution for H in the draining region (3.4.4) into the flux

(4.3.2) shows that the contribution to the flux due to electrostatic effects in the

draining region is

Qelec =
Eb

3

(
H

D −H

)3

Hθ = O(T−2) ≪ 1. (4.3.6)

The contributions to the flux in the draining region due to gravity and capillar-

ity are given in Section 3.4 as (3.4.10) and (3.4.11), respectively. In particular,

(3.4.10), (3.4.11), and (4.3.6) show that Qcap ∼ Qelec ≪ Qgrav at late times, con-
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Figure 4.36: Log-log plot of H in the draining region, evaluated at the top of the

cylinder for Eb = 5, D = 8, and γ = γπ(5, 8) given by (4.3.4) as a function of T ,

and the corresponding late-time asymptotic scaling T−1/2.

Asymptotic scaling Numerical result
H −0.5 −0.4984

Table 4.2: The late-time asymptotic scaling for H in the draining region, evaluated

at the top of the cylinder, and the slope of the corresponding line of best fit to the

numerical result for T ≥ 109/4 shown in Figure 4.36.

firming the consistency of neglecting capillarity and electrostatic effects in the

draining region.

Figure 4.36 shows a log-log plot of H in the draining region, evaluated at the

top of the cylinder, obtained from the numerical solutions of (4.3.1) for Eb = 5,

D = 8, and γ = γπ(5, 8) given by (4.3.4) as a function of T , and compares them

with the corresponding late-time asymptotic scaling T−1/2 obtained from (3.4.4).

In particular, Figure 4.36 confirms that the interface has the predicted asymptotic

behaviour at sufficiently late times. This conclusion is confirmed by the numerical

values shown in Table 4.2, which shows that the asymptotic scaling is in good

agreement with the slope of the corresponding line of best fit to the numerical

results for T ≥ 109/4 shown in Figure 4.36. Note that Q ≡ 0 at the top of the

cylinder. Specifically, Qgrav ≡ 0 (since cos(π/2) = 0) and Qcap = Qelec ≡ 0 (as

a consequence of the symmetry conditions (3.1.4)), and so all fluxes are omitted

from both Figure 4.36 and Table 4.2.
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Figure 4.37: Snapshots of the scaled film thickness η = HT 1/2 for Eb = 5, D = 8,

and γ = γπ(5, 8) given by (4.3.4) at times T = 103, 104, 105, and 106. The arrow

indicates the direction of increasing time. The dotted line shows the leading-order

asymptotic solution in the draining region at late times (3.4.6) and the dashed line

shows the asymptotic solution valid near the top of the cylinder (3.4.9).

Figure 4.37 shows snapshots of the scaled film thickness η = HT 1/2 calculated

at various times for Eb = 5, D = 8, and γ = γπ(5, 8) given by (4.3.4) together

with the self-similar solution in the draining region (3.4.6) (dotted line) and the

asymptotic solution near the top of the cylinder (3.4.9) (dashed line), confirming

that (3.4.6) and (3.4.9) are valid in the draining region at late times.

4.3.4 Pendant-drop region

In this section, we investigate the pendant-drop region in the presence of an electric

field. The results of our numerical calculations indicate that electrostatic effects

are significant at leading order in the pendant-drop region. As mentioned before,

at late times when the outer electrode is far enough from the interface, a quasi-

static pendant drop forms on the lower part of the cylinder, as shown in Figure

4.34 (c).

In order to investigate the behaviour of the model (4.3.1) (which was derived

by assuming that D = O(1)) in the distinguished limit in which D is large, we
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assume that D−1 ≪ 1 such that the governing equation (4.3.1) becomes

(H +Hθθ)θ + γĒbHθ +O(D−1) = γ cos θ, (4.3.7)

where we have set

Eb = D3Ēb, (4.3.8)

where Ēb = O(1) so as to retain electrostatic effects at leading order in D−1. As

discussed previously, the problem is analytically tractable in the limit D−1 ≪ 1 by

generalising the approach described in Section 3.5 for the problem in the absence

of an electric field.

Solving (4.3.7) subject to the symmetry condition at the bottom of the cylinder

(3.1.4) and the boundary conditions (3.5.2) and (3.5.3) yields the leading-order

solution for H in the pendant-drop region in the presence of an electric field in the

limit of large D, namely,

H =Ē−1
b

{
sin θ − sin θI

+ A−1

[
2 cos θI csc

(
1

2
A (3π − 2θI)

)
sin

(
1

2
A (θ − θI)

)
sin

(
1

2
A (θ − 3π + θI)

)]}
,

(4.3.9)

which is valid for θI ≤ θ ≤ 3π/2, where A is defined as

A =
√
1 + γĒb. (4.3.10)

In the limit Ēb → 0, equation (4.3.9) with (4.3.10) recovers equation (3.5.4) in the

absence of an electric field. Note that equation (4.3.9) contains the term Ē−1
b and

hence we cannot directly set Ēb = 0.

Analogous to Section 3.5, substitution of the asymptotic solution for H in

the pendant-drop region (4.3.9) with (4.3.10) into the global mass conservation

condition (3.5.5) and evaluating the integral yields an implicit equation for θI in

terms of γ and Ēb, namely

2Ēbπ + (3π − 2θI) sin θI

+
1

A2
cos θI

[
−2Ēbγ + A (2θI − 3π) cot

(
1

2
A (3π − 2θI)

)]
= 0. (4.3.11)
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Figure 4.38: The linear relationship between γπ(Eb, D) and Eb to leading order in

Ēb with D = 8 for 0 ≤ Eb ≤ 50 (corresponding to 0 ≤ Ēb ≤ 0.0976) calculated

from (4.3.12).

Note that it is not possible to invert equation (4.3.11) to obtain an explicit expres-

sion for γ, Ēb, or θI. Therefore, to make analytical progress, we consider the limit

in which Ēb is small by expanding γ in powers of Ēb ≪ 1 in (4.3.11) as

γ = γ0 + Ēbγ1 +O(Ē2
b ). (4.3.12)

Solving order-by-order, (4.3.11) with (4.3.12) yields

γ0 = − 8π cos θI
(3π − 2θI)(2π − 2θI + sin(2θI))− 8(cos θI)2

, (4.3.13)

γ1 =

[
16π2 cos θI(3 (−8 + (3π − 2θI)

2) cos θI − 8 cos(3θI)

+ (3π − 2θI)(3 + (3π − 2θI)
2 + 3 cos(2θI)) sin θI)

]
(−4 + (3π − 2θI)2 − 4 cos(2θI) + (3π − 2θI) sin(2θI))

3 .

Setting Ēb = 0 in (4.3.12) with (4.3.13) recovers equation (3.5.6). In particular,

(4.3.12) with (4.3.13) predicts that the inner region is located at θI = π when γ =

γπ(5, 8) given by (4.3.4) for Eb = 5 and D = 8 (such that Ēb = Eb/D
3 = 0.0976).

The value (4.3.4) of γπ(Eb, D) is smaller than the corresponding value γπ (3.2.3) in

the absence of an electric field. Figure 4.38 shows the linear relationship between

γπ(Eb, D) and Eb to leading-order in Ēb withD = 8 for 0 ≤ Eb ≤ 50 (corresponding

to 0 ≤ Ēb ≤ 0.0976) calculated from (4.3.12) with (4.3.13). Figure 4.38 shows that
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Figure 4.39: Snapshots of the film thickness for Eb = 5, D = 8, and γ = γπ(5, 8)

given by (4.3.4) at times T = 0, 100, 101, 102, 103, and 104. The arrow indicates the

direction of increasing time and the dashed line shows the leading-order asymptotic

solution in the pendant-drop region (4.3.9).

as the value of Eb is increased, the value of γπ decreases. This reflects the fact that

electrostatic effects work against capillarity to pull the pendant drop towards the

outer electrode, hence stronger capillarity is required to counter the destabilising

effect of the electric field.

Figure 4.39 shows snapshots of the film thickness for Eb = 5, D = 8, and

γ = γπ(5, 8) given by (4.3.4) at various times together with the leading-order

asymptotic solution in the pendant-drop region (4.3.9), confirming that the inter-

face does indeed approach the asymptotic solution at late times. In particular,

Figure 4.39 shows that the leading-order film thickness in this region increases

from zero at θI = π to a maximum value of

H

(
3π

2

)
= −Ē−1

b

{
1 + sin θI + A−1 cos θI tan

(
1

4
A (3π − 2θI)

)}
≃ 3.8351

(4.3.14)

at the bottom of the cylinder, which is very close to the corresponding value

H(3π/2) ≃ 3.8366 (3.5.7) calculated in the absence of an electric field. The values

are expected to be close since in both cases there is the same volume of liquid

initially on the cylinder, and both (4.3.14) and (3.5.7) are calculated using the

values of γ that are required to have the inner region located at θI = π, thus
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Figure 4.40: The interface at time T = 104 for γ = γπ(5, 8) given by (4.3.4) with

Eb = 5 and D = 8 (solid black line), and for γ = γπ given by (3.2.3) with Eb = 0

(dashed red line). The film thickness has been exaggerated for illustrative purposes

by using the artificial value ϵ = 1

resulting in a pendant drop of approximately the same height and width. Figure

4.40 shows the interface both for γ = γπ(5, 8) given by (4.3.4) with Eb = 5 and

D = 8 (solid black line), and for γ = γπ given by (3.2.3) with Eb = 0 (dashed

red line) at time T = 104. In particular, Figure 4.40 shows that the pendant drop

is slightly longer and narrower in the presence of an electric field compared that

in the absence of an electric field due to the electrostatic effects pulling the film

towards the outer electrode.

Figure 4.41 shows the relationship between γ and θI as predicted by (4.3.12)

with (4.3.13) for Eb = 5 and D = 16 (such that Ēb = Eb/D
3 = 0.0012). Note that

the value D = 8 was not used in Figure 4.41 because outer contact occurs for γ

values larger than γ = O(10), hence the final position of the inner region for these

large values of γ cannot be seen unless the outer electrode is far enough away.

Specifically, Figure 4.41 shows that the asymptotic expression (4.3.12) is in very

good agreement with the position of the inner region calculated from numerical

solutions of the governing equation (4.3.1) for five values of γ at time T = 104.



Chapter 4: Thin-film coating flow with an electric field 237

π

2

3 π

4

π 5 π

4

3 π

2

10
1

10
0

10
1

10
2

10
3

θI

γ

Figure 4.41: The relationship between γ and θI for Eb = 5 and D = 16. The

dashed line shows the asymptotic expression (4.3.12) and the circles show the

position of the inner region calculated from numerical solutions of the governing

equation (4.3.1) for γ = 10−1, 100, 101, 102, and 103.

It is worth noting that, as mentioned earlier, when suitable Eb and D values are

selected to prevent outer contact occurring for a particular choice of γ, the visual

distinction resulting from the variation of Eb is not readily apparent. In such

cases, the position of θI will exhibit considerably less variation compared to the

range illustrated in Figure 4.41 for varying γ due to the narrow range of Eb values

that permit a quasi-static pendant drop. Consequently, this particular effect is not

displayed here.

Substituting (4.3.12) with (4.3.13) into (4.3.9) and taking the limit θ → θ+I ,

yields the local behaviour of the interface in the pendant-drop region as it ap-

proaches the inner region, namely,

H|θ→θI = −1

2
Ē−1

b

[
sin θI + cos θI cot

(
1

2
(−3π + 2θI)B

)
B

]
(θ − θI)

2+O
(
(θ − θI)

3) ,
(4.3.15)

where B is defined as

B =
(
1 + γ0Ēb + γ1Ē

2
b

)1/2
. (4.3.16)

Note that (4.3.15) holds for general θI and γ and is not specific to the particular case

in which θI = π. In the limit Ēb → 0, equation (4.3.15) recovers equation (3.5.8).

We will make use of (4.3.15) with (4.3.16) in Section 4.3.5 when performing the
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asymptotic matching of the solution in the pendant-drop region to that in dimple

1. As we shall see in Section 4.3.5, it is only through (4.3.15) that the electric

field influences the calculations in the inner region, which is otherwise unaffected

by electrostatic effects.

4.3.5 Inner region

In this section, we investigate the inner region located at θ = θI in the presence

of an electric field. It transpires that electrostatic effects can be neglected in the

inner region. Hence, the calculations for the asymptotic scalings in dimple n and

ridge n are identical to those given in Section 3.6.3. The solutions in dimple n and

ridge n in the presence of an electric field are thus given by (3.6.73) and (3.6.74),

respectively. We will show that electrostatic effects only enter the calculations in

the inner region through matching dimple 1 to the pendant-drop region.

Substituting the solution for H in dimple 1 (3.6.8) into the flux (4.3.2) shows

that the contribution to the flux due electrostatic effects in dimple 1 is

Qelec =
Eb

3

(
H

D −H

)3

Hθ = O(T−21/10) ≪ 1. (4.3.17)

The contributions to the flux due to gravity and capillarity in dimple 1 are given in

Section 3.6.1 as (3.6.10) and (3.6.11), respectively. In particular, (3.6.10), (3.6.11),

and (4.3.17) show that Qelec ≪ Qgrav ≪ Qcap ≪ 1 at late times, confirming

the consistency of neglecting gravitational and electrostatic effects in dimple 1.

Specifically, since Qelec is smaller than both Qcap and Qgrav, we infer that the

leading-order balance in (3.6.8) is still valid, hence confirming that the asymptotic

scalings in dimple 1 in the absence of an electric field (3.6.8) are also valid in the

presence of an electric field.

Figure 4.42 shows a log-log plot of H, Qgrav, Qcap, and Q evaluated at the

minimum of dimple 1 obtained from the numerical solution of (4.3.1) for Eb = 5,

D = 8, and γ = γπ(5, 8) given by (4.3.4) as functions of T , and compares them with

the corresponding late-time asymptotic scalings T−3/5, T−9/5, T−3/2, and T−3/2

obtained from (3.6.8), (3.6.10), (3.6.11), and (3.4.13), respectively. In particular,

Figure 4.42 and Table 4.3 confirm that the interface has the predicted asymptotic

behaviour at sufficiently late times. Note that Qelec ≡ 0 at the minimum of the

dimples, and so is omitted from both Figure 4.42 and Table 4.3.



Chapter 4: Thin-film coating flow with an electric field 239

◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇

△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△

○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□

3

5

3

2

9

5

101 103 105 107 109 1011

10-16

10-12

10-8

10-4

100

T

H
,
Q
g
ra
v
,
Q
ca
p
,
Q

Figure 4.42: Log-log plot of H (diamonds), Qgrav (triangles), Qcap (circles), and

Q (squares) evaluated at the minimum of dimple 1 for Eb = 5, D = 8, and

γ = γπ(5, 8) given by (4.3.4) as functions of T , and the corresponding asymptotic

scalings T−3/5, T−9/5, T−3/2, and T−3/2. Note that the circles and squares almost

overlay each other.

Asymptotic scaling Numerical result
H −0.6 −0.5940
Qgrav −1.8 −1.7784
Qcap −1.5 −1.4883
Q −1.5 −1.4962

Table 4.3: The late-time asymptotic scalings for H, Qgrav, Qcap, and Q in dimple

1, and the slopes of the lines of best fit to the numerical results for T ≥ 109/4

shown in Figure 4.42.
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Figure 4.43: Log-log plot of H (diamonds), Qgrav (triangles), Qcap (circles), and Q

(squares) evaluated at the maximum of ridge 1 for Eb = 5, D = 8, and γ = γπ(5, 8)

given by (4.3.4) as functions of T , and the corresponding asymptotic scalings

T−9/20, T−27/20, T−27/20, and T−3/2. Note that the triangles, circles, and squares

almost overlay each other.

Substituting the solution for H in ridge 1 (3.6.33) into the flux (4.3.2) shows

that the contribution to the flux due to electrostatic effects in ridge 1 is

Qelec =
Eb

3

(
H

D −H

)3

Hθ = O(T−33/20) ≪ 1. (4.3.18)

The contributions to the flux due to gravity and capillarity in ridge 1 are given in

Section 3.6.2 as (3.6.37) and (3.6.38), respectively. In particular, (3.6.37), (3.6.38),

and (4.3.18) show that Qelec ≪ Qgrav ∼ Qcap ≪ 1 in ridge 1 at late times, confirm-

ing the consistency of neglecting electrostatic effects in ridge 1. As was the case

in dimple 1 described above, since Qelec is smaller than Qcap and Qgrav, we infer

that the leading-order balance in (3.6.33) is still valid, hence confirming that the

asymptotic scalings in ridge 1 in the absence of an electric field (3.6.33) are also

valid in the presence of an electric field.

Figure 4.43 shows a log-log plot of H, Qgrav, Qcap, and Q in ridge 1 obtained

from the numerical solution of (4.3.1) for Eb = 5, D = 8, and γ = γπ(5, 8) given

by (4.3.4) as functions of T , and compares them with the corresponding late-time

asymptotic scalings T−9/20, T−27/20, T−27/20, and T−3/2 obtained from (3.6.33),

(3.6.37), (3.6.38), and (3.4.13), respectively. In particular, Figure 4.43 and Table
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Asymptotic scaling Numerical result
H −0.45 −0.4730
Qgrav −1.35 −1.4165
Qcap −1.35 −1.3620
Q −1.50 −1.4850

Table 4.4: The late-time asymptotic scalings for H, Qgrav, Qcap, and Q in ridge 1

and the slopes of the lines of best fit to the numerical results for T ≥ 109/4 shown

in Figure 4.43.

4.4 confirm that the interface has the predicted asymptotic behaviour at sufficiently

late times. Note that Qelec ≡ 0 at the maximum of the ridges, and so is omitted

from both Figure 4.43 and Table 4.4.

As explained in Section 3.6.3, the problem in dimple n has to be solved numer-

ically and is given by (3.6.21)–(3.6.24) where ψn and ξn are scaled by the constants

K and Ln−1 as (3.6.83) where, as before, K is given by (3.6.3) and Ln−1 is given

by (3.6.76). The solution in ridge n is given by (3.6.85) and (3.6.86) where γ, θI,

and Ēb are related by (4.3.12) with (4.3.13).

As in Section 3.6, Ln can be written in terms of Ln−1 and hence inductively

in terms of L0 as (3.6.88), where the exponents x and y are given by (3.6.89). In

the presence of an electric field, L0 is given by the second derivative of equation

(4.3.15), namely,

L0 = Hθθ|θ→θ+I
= −Ē−1

b

[
sin θI + cos θI cot

(
1

2
(−3π + 2θI)B

)
B

]
, (4.3.19)

where B is given by (4.3.16). As mentioned in Section 4.3.4, it is through (4.3.15),

and hence, through L0 (4.3.19), that electrostatic effects influence the calculations

in the inner region, which otherwise remains unaffected by electrostatic effects.

Figure 4.44 shows snapshots of the film thickness for Eb = 5, D = 8, and

γ = γπ(5, 8) given by (4.3.4) at various times together with the leading-order

asymptotic solution in dimple 1 expressed in the scaled variables ψ1 and ξ1, con-

firming that the interface does indeed approach the asymptotic solution at late

times.

The solution in ridge 1 for Eb = 5, D = 8, and γ = γπ(5, 8) given by (4.3.4) is

ϕ1 = 0.5807− 2.6236ζ21 − 2.1464ζ31 . (4.3.20)
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Figure 4.44: Snapshots of the film thickness for Eb = 5, D = 8, and γ = γπ(5, 8)

given by (4.3.4) at times T = 102, 103, 104, 105, and 106 expressed in scaled variables

ξ1 and ψ1. The arrow indicates the direction of increasing time. The dashed line

shows the leading-order asymptotic solution in dimple 1 (3.6.8).

Upon comparison with the solution in ridge 1 in the absence of an electric field

(3.6.46), equation (4.3.20) is different but the coefficients remain close in value,

owing to the small-D limit under which (4.3.15) was derived. Figure 4.45 shows

snapshots of the film thickness for Eb = 5, D = 8, and γ = γπ(5, 8) given by

(4.3.4) at various times together with the leading-order asymptotic solution in

ridge 1 (4.3.20) expressed in scaled variables ζ1 and ϕ1, confirming that the in-

terface does indeed approach the asymptotic solution at late times. Figure 4.45

also reveals, as discussed previously in Section 3.6.2, that the convergence to the

leading-order asymptotic solution in ridge 1 is significantly slower than the corre-

sponding convergence in dimple 1 shown in Figure 4.44.

4.4 Multiple-timescale analysis of large-time dy-

namics

In this section, we return to the case in which the rotation rate is non-zero in

order to investigate the large-time dynamics of the system. We anticipate the

analysis in this section to be applicable to many of the states that were classified

as transient in the nonlinear parametric study which was analysed in Section 4.2.
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Figure 4.45: Snapshots of the film thickness for Eb = 5, D = 8, and γ = γπ(5, 8)

given by (4.3.4) at times T = 10n/2 for n = 13, 14, . . . , 22. The arrow indicates the

direction of increasing time. The dashed line shows the leading-order asymptotic

solution in ridge 1 (4.3.20).

In particular, as discussed in Section 4.2.6, it is possible that states which were

classified as transient could be instances of complex, large-time dynamics which are

difficult to capture numerically, and hence the forthcoming analysis could provide

an insight into the large-time evolution of such states.

We generalise the asymptotic analysis of Hinch and Kelmanson [73] (which

was discussed in Section 1.4.4) to incorporate electrostatic effects. To proceed, we

follow the same approach as Hinch and Kelmanson [73] and Mitchell et al. [130]

and so, for the purposes of comparing directly with their results, we apply the

usual thin-film scalings (2.2.1) and nondimensionalise according to [73, 130]

Ũ =ÛcharU, R̃ = R̂1R, S̃ = R̂1S, H̃ = R̂1H, H̃0 = R̂1H0,

T̃ =
ϵ2

Ω̂
T, P̃ − P̂a = ρ̂ĝR̂1P, Φ̃ = ϕ̂bΦ, Q̃ = ÛcharR̂1Q,

(4.4.1)

where Ûchar = Ω̂R̂1 is a characteristic velocity based on rotation (which we note is

different from the characteristic velocity based on drainage used in Section 2.1.2).

Hence, the governing equation (2.2.23) becomes

HT +

[
H − βH3 cos θ + αH3 (Hθ +Hθθθ) + δ̌

(
H

D −H

)3

Hθ

]
θ

= 0, (4.4.2)



Chapter 4: Thin-film coating flow with an electric field 244

where α, β, and δ̌ represent an inverse capillary number, dimensionless gravity

parameter, and dimensionless electric potential difference, respectively, namely,

α =
ϵ3σ̂

3µ̂Ω̂R̂1

, β =
ϵ2ρ̂ĝR̂1

3µ̂Ω̂
, δ̌ =

ϵ2ϵ̂Gϕ̂
2
char

3µ̂Ω̂R̂2
1

. (4.4.3)

Note that we have chosen not to denote the dimensionless gravity parameter by

γ (which was the notation used by Hinch and Kelmanson [73] and Mitchell et al.

[130]) as this symbol has already been used to denote a capillary number elsewhere

in this thesis. Hence, to avoid confusion, throughout this section the parameter β

is the same as the parameter γ of Hinch and Kelmanson [73] and Mitchell et al.

[130], whilst the parameter α used in this section is the same as the parameter α

used in the aforementioned studies. Hence, upon setting δ̌ = 0, equation (4.4.2)

recovers equation (2.4) of Hinch and Kelmanson [73] and equation (8) of Mitchell

et al. [130] in the absence of an airflow.

As discussed in Section 1.4.4, Hinch and Kelmanson [73] and Mitchell et al.

[130] analysed the evolution of the flow in the case in which gravitational and

capillary effects are both weak by requiring that α ≪ 1 and β ≪ 1 (specifically,

they worked in the regime β2 ≪ α ≪ β ≪ 1). In this section, we work in

the same regime as Hinch and Kelmanson [73] and Mitchell et al. [130], and

therefore will also require that electrostatic effects are weak to ensure that they do

not overwhelm the dynamics of the system. We proceed by rescaling the electric

potential difference δ̌ with the gravity parameter β ≪ 1 such that

δ̌ = βδ, (4.4.4)

where δ is no larger than O(β−1). We follow Hinch and Kelmanson [73] and

Mitchell et al. [130] and allow α to be as large as O(1) despite the formal restric-

tions stated above, based on the assumption that in the presence of an electric

field the film thickness H is again only weakly dependent on α. To make the sub-

sequent calculations simpler, we move into the co-rotating frame by making the

substitutions

τ = T, ϕ = θ − T, (4.4.5)

such that
∂

∂T
=

∂

∂τ
− ∂

∂ϕ
,

∂

∂θ
=

∂

∂ϕ
. (4.4.6)
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Substituting (4.4.5) and (4.4.4) into (4.4.2) yields the final governing equation

which we analyse throughout this section, namely,

Hτ +

[
−βH3 cos (ϕ+ τ) + αH3 (Hϕ +Hϕϕϕ) + βδ

(
H

D −H

)3

Hϕ

]
ϕ

= 0. (4.4.7)

4.4.1 Näıve expansion

In this section, we show that performing the natural näıve expansion for H

HN(ϕ, τ) =
N∑
i=1

ϵiHi(ϕ, τ), (4.4.8)

where, as before, ϵ = ĥ0/R̂1 ≪ 1, on the governing equation (4.4.7) results in the

emergence of secular terms (i.e., terms which grow linearly in time). Note that,

in this subsection only, we remove the assumptions β2 ≪ α ≪ β ≪ 1 and δ ≪ 1

and instead assume that α = O(1), β = O(1), and δ = O(1) for the purposes of

performing the näıve expansion.

In contrast to Hinch and Kelmanson [73], who found that secularity first arises

at O(ϵ7), in the presence of an electric field secularity first arises at O(ϵ6). Solving

order-by-order subject to the initial conditions H1(ϕ, 0) = 1 and Hi(ϕ, 0) = 0 for

i ≥ 2 yields

∂H1

∂τ
= 0, H1 = 1, (4.4.9)

∂H2

∂τ
= 0, H2 = 0,

∂H3

∂τ
= β sin(ϕ+ τ), H3 = β (cosϕ− cos(ϕ+ τ)) ,

∂H4

∂τ
= 0, H4 = 0,

∂H5

∂τ
= −6β2 cos

(
2ϕ+

3

2
τ

)
sin
(τ
2

)
, H5 = −6β2 cos(2ϕ+ τ) sin2

(τ
2

)
to O(ϵ5), in which we note that there are no secular terms. However, at O(ϵ6) the

equation for H6 is
∂H6

∂τ
=
β2δ

D3
(cosϕ− cos(ϕ+ τ)) , (4.4.10)
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which yields the solution

H6 =
β2δ

D3
(τ cosϕ+ sinϕ− sin(ϕ+ τ)) . (4.4.11)

The solution for H6 (4.4.11) exhibits a resonance effect due to the fact that the

right-hand side of (4.4.10) contains the term cosϕ, which is part of the comple-

mentary function for H6, and thus results in the secular term τ cosϕ arising in

(4.4.11). Thus, the näıve expansion is nonuniform, failing when T = O(ϵ−1). We

calculated the näıve expansion up to O(ϵ17) (which was chosen as this is the order

to which Hinch and Kelmanson [73] calculated their näıve expansion) and found

that secular terms arise in the solutions for all Hi for i = 6, . . . , 17. The solu-

tions for the Hi are omitted here for brevity, which rapidly become too long and

cumbersome with increasing i to be presented here.

4.4.2 The method of multiple scales

In this section, we adopt the approach used by Hinch and Kelmanson [73] and

Mitchell et al. [130] and use the method of multiple scales to remove the secularities

(as discussed earlier in Section 1.3.2). However, in contrast to these analyses [73,

130], it will transpire that three (rather than two) timescales are required to resolve

the secularities that arise when an electric field is present. Hence, we proceed by

proposing an (N + 1)-term, three-timescale expansion for the film thickness H,

namely,

H
(3τ)
N+1 (ϕ, τ) = 1 +

N∑
i=1

βiψi (ϕ, τ0, τ1, τ2) , (4.4.12)

where

τ0 = τ, τ1 = βτ, τ2 = β2τ, (4.4.13)

such that
∂

∂τ
=

∂

∂τ0
+ β

∂

∂τ1
+ β2 ∂

∂τ2
. (4.4.14)

Hence, the governing equation in the co-rotating frame (4.4.7) becomes

Hτ0 + βHτ1 + β2Hτ2

+

[
−βH3 cos (ϕ+ τ0) + αH3 (Hϕ +Hϕϕϕ) + βδ

(
H

D −H

)3

Hθ

]
ϕ

= 0, (4.4.15)
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where H is given by (4.4.12). For brevity, throughout this section we hereafter

adopt the notation

cj,k = cos (jϕ− kτ0) , sj,k = sin (jϕ− kτ0) . (4.4.16)

It will also be of use to define the linear operator L as introduced by Hinch and

Kelmanson [73] (transformed into the co-rotating frame), namely,

L =
∂

∂τ0
+ α

(
∂2

∂ϕ2
+

∂4

∂ϕ4

)
. (4.4.17)

As explained by Hinch and Kelmanson [73], the 2π-periodic solutions ψi(ϕ, τ0, τ1, τ2)

of the homogeneous equation Lψi = 0 are of the form

ψi(ϕ, τ0, τ1, τ2) =
∞∑
n=1

[Ai,n(τ1, τ2)cn,0 +Bi,n(τ1, τ2)sn,0] e
−αn2(n2−1)τ0 , (4.4.18)

where n is the integer mode number and Ai,n(τ1, τ2) and Bi,n(τ1, τ2) are arbitrary

functions of τ1 and τ2. Equation (4.4.18) shows that the first modes c1,0 and s1,0

(i.e., for n = 1) can only decay via Ai,1(τ1, τ2) and Bi,1(τ1, τ2) on the slow timescales

τ1 = βτ0 and τ2 = β2τ0, whilst higher modes (n = 2, 3, 4, . . .) decay exponentially

on the faster timescale ατ0.

The principal aims of this section are twofold: the first is to determine the

growth rate of the first (sometimes referred to as “fundamental” [73]) modes c1,0

and s1,0 (and hence, the growth rate of the film thickness H, since the overall

decay rate is dictated by that of only the first modes [73]) in order to understand

how the presence of an electric field affects the evolution of the film. To do this, it

will be necessary to determine the solutions for ψ1 at O(β) and ψ2 at O(β2) and

the equation for ψ3 at O(β3) in order to identify and remove the secular terms.

Secularities arise at O(β2) and O(β3) and must be removed before the growth rate

at O(β) can be determined. Throughout this process, it shall become clear that the

reason that three timescales are required is because the complementary function

for ψ1 creates secularities at two different orders, namely, at O(β2) by interacting

with the electrostatic term, and at O(β3) by interacting with the gravity term. The

second aim is to determine the third-order three-timescale asymptotic solution for

the film thickness H
(3τ)
4 (ϕ, τ) and to compare this with numerical solutions of the

governing equation (4.4.7), for which we must also determine the solution for ψ3.
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The algebraic manipulations involved in obtaining the following analytical re-

sults are extensive and cumbersome, and hence were performed using Mathematica

[265]. Throughout the present analysis, we verify that in the absence of an electric

field (i.e., for δ = 0) the results obtained reduce to those of Hinch and Kelmanson

[73] and of Mitchell et al. [130] in the absence of an airflow.

4.4.3 Solution for ψ1

At O(β), substitution of (4.4.12) into (4.4.15) yields

Lψ1 = −s1,−1. (4.4.19)

The particular solution of (4.4.19) is ψ1part = c1,−1 and, by (4.4.18), the comple-

mentary function of (4.4.19) is

ψ1comp =
∞∑
n=1

[A1,n(τ1, τ2)cn,0 +B1,n(τ1, τ2)sn,0] e
−αn2(n2−1)τ0 , (4.4.20)

where the initial condition H (ϕ, 0) = 1 requires that A1,n(τ1, τ2) and B1,n(τ1, τ2)

satisfy

A1,1(0, 0) = −1, B1,1(0, 0) = 0 (4.4.21)

for the first mode (i.e., for n = 1), and A1,n(0, 0) = B1,n(0, 0) = 0 for all higher

modes (i.e., for n ≥ 2). As explained by Mitchell et al. [130], the contributions

from the higher modes are only nonnegligible for small times (since they decay

exponentially on the fast timescale ατ0). Therefore, we can replace A1,n(τ1, τ2)

and B1,n(τ1, τ2) with A1,n(0, 0) and B1,n(0, 0) for n ≥ 2, but not for n = 1. Thus,

the complementary function (4.4.20) becomes

ψ1comp = A1,1(τ1, τ2)c1,0 +B1,1(τ1, τ2)s1,0. (4.4.22)

Hence, the general solution ψ1 = ψ1part + ψ1comp of (4.4.19) for ψ1 is

ψ1 (ϕ, τ0, τ1, τ2) = c1,−1 + A1,1(τ1, τ2)c1,0 +B1,1(τ1, τ2)s1,0, (4.4.23)

where A1,1(τ1, τ2) and B1,1(τ1, τ2) satisfy the initial condition (4.4.21). Note that

upon converting back to the fixed frame, the solution for ψ1 given by equation
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(4.4.23) is in agreement with equation (3.3) of Hinch and Kelmanson [73] and

equation (22) of Mitchell et al. [130] in the absence of an airflow.

We will determine A1,1(τ1, τ2) and B1,1(τ1, τ2) as part of the analyses in Sections

4.4.4 and 4.4.5 combined by eliminating the secular terms which arise at O(β2)

and O(β3). Determination of A1,1(τ1, τ2) and B1,1(τ1, τ2) will yield the growth rate

of the first modes, which, as we recall, is the first of the two principal aims of this

section.

4.4.4 Solution for ψ2

At O(β2), substitution of (4.4.12) into (4.4.15) yields

Lψ2 =− 3s2,−2 + 3s2,−1A1,1(τ1, τ2) + 3c2,−1B1,1(τ1, τ2)− c1,0
∂A1,1(τ1, τ2)

∂τ1

− s1,0
∂B1,1

∂τ1
(τ1, τ2) + S0 [c1,−1 + c1,0A1,1(τ1, τ2) + s1,0B1,1(τ1, τ2)] , (4.4.24)

where ψ1 is given by (4.4.23) and the real constant S0 is given by

S0 =
δ

(D − 1)3
≥ 0, (4.4.25)

and arises due to the electrostatic term in (4.4.15). One of the key points of this

section is that, in contrast to the corresponding equations for ψ2 given by Hinch

and Kelmanson [73] and Mitchell et al. [130], equation (4.4.24) contains the terms

c1,0 and s1,0 which arise due to electrostatic effects and will generate secular terms

unless their coefficients are zero. Hence, to eliminate the secularities, we proceed

by setting the coefficients of the c1,0 and s1,0 to zero in (4.4.24) to yield a pair of

separable ODEs for A1,1(τ1, τ2) and B1,1(τ1, τ2), namely,

∂A1,1(τ1, τ2)

∂τ1
= S0A1,1(τ1, τ2), (4.4.26)

∂B1,1(τ1, τ2)

∂τ1
= S0B1,1(τ1, τ2), (4.4.27)

where S0 is defined by (4.4.25). Solving (4.4.26) and (4.4.27) for A1,1(τ1, τ2) and

B1,1(τ1, τ2), respectively, yields

A1,1(τ1, τ2) = a1(τ2)e
S0τ1 , B1,1(τ1, τ2) = b1(τ2)e

S0τ1 . (4.4.28)
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To determine the initial conditions on a1(τ2) and b1(τ2), we set τ = 0 such that τ1

and τ2 are identically zero in (4.4.28) and use the initial conditions on A1,1(τ1, τ2)

and B1,1(τ1, τ2) (4.4.21) to yield

a1 (0) = −1, b1 (0) = 0. (4.4.29)

The particular solution ψ2part of (4.4.24) is thus

ψ2part =
3c2,−2

2 (36α2 + 1)
− 9αs2,−2

36α2 + 1
+

3 [A1,1(τ1, τ2) + 12αB1,1(τ1, τ2)] c2,−1

144α2 + 1

− 3 [12αA1,1(τ1, τ2)−B1,1(τ1, τ2)] s2,−1

144α2 + 1
+ S0s1,−1, (4.4.30)

where A1,1(τ1, τ2) and B1,1(τ1, τ2) are given by (4.4.28). By (4.4.18), the comple-

mentary function ψ2comp of (4.4.24) is

ψ2comp =
∞∑
n=1

[A2,n(τ1, τ2)cn,0 +B2,n(τ1, τ2)sn,0] e
−αn2(n2−1)τ0 . (4.4.31)

The initial condition H (ϕ, 0) = 1 requires that A2,n(τ1, τ2) and B2,n(τ1, τ2) satisfy

A2,1 (0, 0) = 0, B2,1 (0, 0) = −S0 (4.4.32)

for the first mode,

A2,2 (0, 0) = − 3

2 (36α2 + 1)
+

3

144α2 + 1
, B2,2 (0, 0) =

9α

36α2 + 1
− 36α

144α2 + 1
(4.4.33)

for the second mode (in agreement with equation (3.6) of Hinch and Kelmanson

[73]), and A2,n(0, 0) = B2,n(0, 0) = 0 for all higher modes (i.e., for n ≥ 3). Follow-

ing the same reasoning as described in Section 4.4.3, we can replace A2,n(τ1, τ2)

and B2,n(τ1, τ2) with A2,n(0, 0) and B2,n(0, 0) for n ≥ 2. The general solution of

(4.4.24) for ψ2 is therefore

ψ2 (ϕ, τ0, τ1, τ2) =
3c2,−2

2 (36α2 + 1)
− 9αs2,−2

36α2 + 1
+

3 [A1,1(τ1, τ2) + 12αB1,1(τ1, τ2)] c2,−1

144α2 + 1

− 3 [12αA1,1(τ1, τ2)−B1,1(τ1, τ2)] s2,−1

144α2 + 1
+ S0s1,−1 (4.4.34)

+ A2,1(τ1, τ2)c1,0 +B2,1(τ1, τ2)s1,0 + [A2,2c2,0 +B2,2s2,0] e
−12ατ0 ,
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where A1,1(τ1, τ2) and B1,1(τ1, τ2) are given by (4.4.28), A2,2 and B2,2 are given

by (4.4.33), and a1(τ2), b1(τ2), A2,1(τ1, τ2), and B2,1(τ1, τ2) will be determined in

Section 4.4.5. Note that in the absence of an electric field, upon converting back

to the fixed frame equation (4.4.34) is in agreement with the solution for ψ2 given

by equation (3.5) of Hinch and Kelmanson [73] and equations (23) and (24) of

Mitchell et al. [130] in the absence of an airflow.

4.4.5 Solution for ψ3

At O(β3), substitution of (4.4.12) into (4.4.15) yields

Lψ3 = 3

(
c1,−1 − 2α

∂ψ1

∂ϕ

)
∂ψ2

∂ϕ
− 3

(
ψ2
1 + ψ2

) [
s1,−1 + α

(
∂2ψ1

∂ϕ2
+
∂4ψ1

∂ϕ4

)]
− 3ψ1

[
2α
∂ψ1

∂ϕ
− 2

∂ψ1

∂ϕ

(
c1,−1 − α

∂3ψ1

∂ϕ3

)
+ α

(
∂2ψ2

∂ϕ2
+
∂4ψ2

∂ϕ4

)]
− α

[
∂2ψ3

∂ϕ2
+ 3

∂ψ2

∂ϕ

∂3ψ1

∂ϕ3
+ 3

∂ψ1

∂ϕ

∂3ψ2

∂ϕ3
+
∂4ψ3

∂ϕ4

]
− S0

(D − 1)

[
3D

((
∂ψ1

∂ϕ

)2

+ ψ1
∂2ψ1

∂ϕ2

)
+ (D − 1)

∂2ψ2

∂ϕ2

]
− ∂ψ1

∂τ2
− ∂ψ2

∂τ1
, (4.4.35)

where S0 is defined by (4.4.25), ψ1 and ψ2 are given by (4.4.23) and (4.4.34),

respectively, with A1,1(τ1, τ2) and B1,1(τ1, τ2) given by (4.4.28) and A2,2 and B2,2

given by (4.4.33). The expanded form of (4.4.35) contains 143 terms and is thus

omitted for brevity, but notably involves the terms c1,0 and s1,0 which will, as

before, generate secular terms unless their coefficients are zero. Henceforth, we

follow Hinch and Kelmanson [73] and Mitchell et al. [130] in neglecting higher

modes (i.e., n ≥ 2) when we consider higher-order terms in β since they decay

exponentially on the fast timescale ατ0. In addition, due to the fact that τ2 =

β2τ0 is a much slower timescale than τ1 = ατ0, in what follows we may consider

A2,1(τ1, τ2) and B2,1(τ1, τ2) to be functions of τ1 only in order to obtain a solution

for H which is accurate to O(β3).

A particular solution for (4.4.35) cannot be obtained until the functions a1(τ2)

and b1(τ2) in (4.4.28) arising at O(β) and A2,1(τ1) and B2,1(τ1) arising at O(β2),

are determined, which we now do through removing the secularities. We proceed

as before and set the coefficients of the terms c1,0 and s1,0 to zero in (4.4.35) to
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yield

da1(τ2)

dτ2
− S1a1(τ2)− S2b1(τ2) + e−S0τ1

[
−S0A2,1(τ1) +

dA2,1(τ1)

dτ1

]
= 0,

db1(τ2)

dτ2
+ S2a1(τ2)− S1b1(τ2) + e−S0τ1

[
−S0B2,1(τ1) +

dB2,1(τ1)

dτ1

]
= 0,

(4.4.36)

where S1 and S2 are real constants, given by

S1 = − 81α

144α2 + 1
, S2 =

3 (5 + 72α2)

2 (144α2 + 1)
, (4.4.37)

which are in agreement, respectively, with equations (3.10) and (3.11) of Hinch

and Kelmanson [73] and equations (29) and (30) of Mitchell et al. [130] in the

absence of an airflow. From (4.4.36), we obtain two sets of equations: the first set

will allow us to determine A2,1(τ1) and B2,1(τ1) and the second set will allow us to

determine a1(τ2) and b1(τ2). Note that equations (4.4.36) can be written as

da1(τ2)

dτ2
− S1a1(τ2)− S2b1(τ2) = −e−S0τ1

[
−S0A2,1(τ1) +

dA2,1(τ1)

dτ1

]
= X,

db1(τ2)

dτ2
+ S2a1(τ2)− S1b1(τ2) = −e−S0τ1

[
−S0B2,1(τ1) +

dB2,1(τ1)

dτ1

]
= Y,

(4.4.38)

where X and Y are separation constants which depend on neither τ1 nor τ2. There

are not enough constraints on the equations (4.4.36) to solve for A2,1(τ1), B2,1(τ1),

a1(τ2), and b1(τ2) in the usual way; this is a common feature of multiple-timescale

analyses which involve more than two timescales, in which an extra degree of

freedom is introduced by the third timescale, resulting in ambiguities [273]. Hence,

to proceed we assume without loss of generality (see, for example, Section 11.2 and

Problem 11.7 of Bender et al. [273]) that the separation constants X and Y in

(4.4.38) are identically zero. Considering the equations in terms of τ1 in (4.4.38)

yields a pair of separable ODEs for A2,1(τ1) and B2,1(τ1), namely,

∂A2,1 (τ1)

∂τ1
= S0A2,1 (τ1) , (4.4.39)

∂B2,1 (τ1)

∂τ1
= S0B2,1 (τ1) . (4.4.40)
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Solving (4.4.39) and (4.4.40) together subject to the initial conditions onA2,1(τ1, τ2)

and B2,1(τ1, τ2) (4.4.32) yields

A2,1 (τ1) = 0, B2,1 (τ1) = −S0e
S0τ1 . (4.4.41)

Next, considering the equations in terms of τ2 in (4.4.38) yields a pair of ODEs

for a1(τ2) and b1(τ2), namely,

da1(τ2)

dτ2
= S1a1(τ2) + S2b1(τ2), (4.4.42)

db1(τ2)

dτ2
= −S2a1(τ2) + S1b1(τ2), (4.4.43)

which are in agreement, respectively, with equations (3.8) and (3.9) of Hinch and

Kelmanson [73] and equations (27) and (28) of Mitchell et al. [130] in the absence

of an airflow. Solving (4.4.42) and (4.4.43) subject to the initial conditions on

a1(τ2) and b1(τ2) (4.4.29) yields

a1(τ2) = −eS1τ2 cos (S2τ2) , b1(τ2) = eS1τ2 sin (S2τ2) . (4.4.44)

Thus, by (4.4.28) and (4.4.44), A1,1(τ1, τ2) and B1,1(τ1, τ2) are

A1,1(τ1, τ2) = −eS0τ1+S1τ2 cos (S2τ2) , B1,1(τ1, τ2) = eS0τ1+S1τ2 sin (S2τ2) . (4.4.45)

Setting δ = 0 in (4.4.45) recovers equation (3.12) of Hinch and Kelmanson [73]

and equations (31) and (32) of Mitchell et al. [130] in the absence of an airflow.

The expressions for A1,1(τ1, τ2) and B1,1(τ1, τ2) (4.4.45) yield the growth rate of

the first modes, the determination of which was the first of the two principal aims

of this section. We discuss this result in detail in Section 4.4.6.

With A1,1(τ1, τ2) and B1,1(τ1, τ2) determined, the solution of (4.4.35) for ψ3 can

now be found, namely,

ψ3 (ϕ, τ0, τ1, τ2) = ψ3part +
N∑

n=1

[A3,n(τ1, τ2)cn,0 +B3,n(τ1, τ2)sn,0] e
−αn2(n2−1)τ0 ,

(4.4.46)

where ψ3part is the particular solution of ψ3, which is extremely cumbersome (con-

taining 2353 terms in its expanded form) and is thus omitted here for brevity.

The initial condition H(ϕ, 0) = 1 requires that A3,n(τ1, τ2) and B3,n(τ1, τ2) satisfy
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the initial conditions given in Appendix D. Following the same reasoning as in

Sections 4.4.3 and 4.4.4, we may replace A3,n and B3,n in (4.4.46) with A3,n(0, 0)

and B3,n(0, 0) for n ≥ 2. In addition, due to the fact that τ2 = β2τ0 and τ1 = βτ0

are slower timescales than τ0, in order to obtain a solution for H which is accu-

rate to O(β3) we may also consider A3,1(τ1, τ2) and B3,1(τ1, τ2) to be the constants

A3,1(0, 0) and B3,1(0, 0). Hence, we have achieved the second of the two princi-

pal aims of this section, which was to determine the third-order three-timescale

asymptotic solution for the film thickness H
(3τ)
4 (ϕ, τ). We compare H

(3τ)
4 (ϕ, τ)

against numerical solutions of the governing equation (4.4.7) in Section 4.4.7.

4.4.6 Growth rate ω

It follows from (4.4.45) that to O(β3) the growth rate of first modes, which we

denote here by ω, is

ω = S0τ1 + S1τ2, (4.4.47)

where S0 is given by (4.4.25) and S1 is given by (4.4.37). Equation (4.4.47) yields

the main result of this section, namely, that for δ > 0, the growth rate will be

dominated by that of the O(β) term in the asymptotic limit as β → 0, thus to

leading order the growth rate is

ω = S0 > 0, (4.4.48)

which is always positive. Equation (4.4.48) indicates that the solution (4.4.52)

is unconditionally unstable, growing exponentially like exp (S0τ1) and blowing up

at large times. Note that for δ = 0, the growth rate reduces to the O(β2) term,

S1, recovering equation (3.10) of Hinch and Kelmanson [73] and equation (29) of

Mitchell et al. [130] in the absence of an airflow, namely,

ω = S1 = − 81α

144α2 + 1
≤ 0. (4.4.49)

Equation (4.4.49) shows that in the absence of an electric field, the solution decays

to a steady state at large times for α > 0 on the timescale τ2 = β2τ (which is slow

compared to the timescales τ1 = O(β) and τ0 = O(1)), and that for α = 0 the

system is neutrally stable [73, 130].
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4.4.7 Evolution of the film thickness

From (4.4.12), (4.4.23), and (4.4.45), the film thickness H to O(β) is H = 1+βψ1,

i.e.,

H = 1 + β

[
cos (ϕ+ τ0)− eS0τ1+S1τ2 cos (S2τ2) cosϕ+ eS0τ1+S1τ2 sin (S2τ2) sinϕ

]
.

(4.4.50)

Converting (4.4.50) back to the fixed frame yields

H = 1 + β

[
cos θ − eS0T1+S1T2 cos (S2T2) cos (θ − T )

+ eS0T1+S1T2 sin (S2T2) sin (θ − T0)

]
, (4.4.51)

where we define Tn = τn for n = 0, 1, 2, and 3 (since τn = βnτ = βnT by (4.4.13)

and (4.4.5)). Note that (4.4.51) may be written as

H = 1 + β

[
cos θ − eS0T1+S1T2 cos [θ − (T0 − S2T2)]

]
, (4.4.52)

then, to O(ϵβ), the interface has the form r = 1 + ϵ (1 + βψ1), that is,

r = 1 + ϵ+ ϵβ

[
cos θ − eS0T1+S1T2 cos [θ − (T0 − S2T2)]

]
. (4.4.53)

As explained by Hinch and Kelmanson [73] and Mitchell et al. [130], the interface

(4.4.53) is a circle of radius 1 + ϵ, with centre offset from the axis of the rotating

cylinder by the Cartesian displacement

ϵβ (1 + A1,1 cosT0 −B1,1 sinT0, A1,1 sinT0 +B1,1 cosT0) , (4.4.54)

where A1,1 = A1,1 (T1, T2) and B1,1 = B1,1 (T1, T2) are given by (4.4.45). When

both δ = 0 (i.e., in the absence of an electric field) and α > 0, the centre of the

circular interface spirals around the point (ϵβ, 0) and approaches it as T → ∞. On

the other hand, when δ > 0 (i.e., in the presence of an electric field), the centre of

the circular interface spirals away from the point (ϵβ, 0) as T → ∞ as the electric

field destabilises the system. The behaviour of the term exp (S0T1) in (4.4.53)

dictates the behaviour of the system. The electric field destabilises the system on

the slow timescale T1 = βT , resulting in the interface being pulled closer to the
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outer electrode, as we have seen previously.

In the following results, we use the value D = 5 with β = 0.0532 and α =

0.0048, which are chosen to be consistent with the corresponding choices of γ

and α used by Hinch and Kelmanson [73] in order to offer a direct comparison

with their results. Figure 4.46 shows plots of the maximum values of the film

thickness, which we again denote by Hmax, calculated from both the third-order

three-timescale asymptotic solution H
(3τ)
4 (ϕ, τ) (4.4.12) (converted back to the

fixed frame) and numerical solutions of the governing equation (4.4.7) for β =

0.0532, α = 0.0048, and (a), (b) δ = 0, (c), (d) δ = 2, and (e), (f) δ = 4 over

the time interval T = [0, 500]. This time interval was chosen as the asymptotic

solution for the film thickness H (4.4.12) is valid until time T = O(β−2) which,

for the value β = 0.0523, corresponds to T ≈ 350. Figures 4.46 (a) and (b)

show stability of the solution in the absence of an electric field, in agreement

with the results of Hinch and Kelmanson [73] and Mitchell et al. [130]. Figures

4.46 (c) and (d) and Figures 4.46 (e) and (f) show growth of the maximum film

thickness within the asymptotically valid time interval due to electrostatic effects

destabilising the system. Increasing the electric potential difference corresponds to

faster exponential growth of the maximum film thickness. Note that the value of

δ can be at most O(β−1) to remain asymptotically consistent with (4.4.4), which

corresponds to δ ≈ 20 for the value β = 0.0523.

Figure 4.47 demonstrates the convergence of the third-order three-timescale

asymptotic solution H
(3τ)
4 (ϕ, τ) (4.4.12) (converted back to the fixed frame) at

θ = 0 forN = 1, 2, and 3 to the numerical solution of the governing equation (4.4.7)

for β = 0.0532, α = 0.0048, and (a)–(c) δ = 0, (d)–(f) δ = 2, and (g)–(i) δ = 4

over the time intervals (a), (d), (g) T = [0, 10], (b), (e), (f) T = [190, 200], and (c),

(f), (i) T = [490, 500]. Specifically, Figures 4.47 (a), (d), and (g) show that there is

close agreement between H
(3τ)
4 (0, τ) and the numerical results in the time interval

T = [0, 10]. This agreement remains close in the time interval T = [190, 200]

as shown in Figures 4.47 (b), (e), and (h). However, at larger times (i.e., beyond

T = O(β−2) ≈ O(350)), the accuracy of the third-order three-timescale asymptotic

solution is expected to deteriorate, as shown in Figures 4.47 (c), (f), and (i) in

which it is evident by the separation between the solid line and any of the dotted,

dashed, or dot-dashed lines that the asymptotic solution has drifted away from the

numerical solution. Figures 4.47 (f) and (i) also show that increasing the electric

potential difference leads to an increase in the amplitude of the maximum film
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Figure 4.46: Maximum values of the film thickness Hmax for D = 5, β = 0.0532,

and α = 0.0048 over the time interval T = [0, 500], calculated from (a), (c), (e)

the third-order three-timescale asymptotic solution H
(3τ)
4 (ϕ, τ) (4.4.12) (converted

back to the fixed frame) and (b), (d), (f) the numerical solution of the governing

equation (4.4.7) for (a), (b) δ = 0, (c), (d) δ = 2, and (e), (f) δ = 4.
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Figure 4.47: The third-order three-timescale asymptotic solution H
(3τ)
4 (ϕ, τ)

(4.4.12) (converted back to the fixed frame) at θ = 0 at for N = 1, 2, and 3

(dot-dashed, dotted, and dashed lines, respectively) compared with the numeri-

cal solution of the governing equation (4.4.7) (solid line) for D = 5, β = 0.0532,

α = 0.0048, and (a)–(c) δ = 0, (d)–(f) δ = 2, and (g)–(i) δ = 4 over the time

intervals (a), (d), (g) T = [0, 10], (b), (e), (h) T = [190, 200], and (c), (f), (i)

T = [490, 500].
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thickness.

Figure 4.48 shows convergence of the third-order three-timescale asymptotic

solution H
(3τ)
4 (ϕ, τ) (4.4.12) (converted back to the fixed frame) for N = 1, 2, and

3 to the numerical solution of the governing equation (4.4.7) for β = 0.0532, α =

0.0048, and (a)–(c) δ = 0, (d)–(f) δ = 2, and (g)–(i) δ = 4 at times T = 10, 100,

and 500, demonstrating further that increasing the electric potential difference δ

results in an increase in the maximum film thickness.

In summary, the third-order three-timescale asymptotic solution for the film

thickness H
(3τ)
4 (ϕ, τ) agrees well with the numerical solution within the asymptot-

ically valid time interval. Our numerical and asymptotic results confirm that, as

predicted by the growth rate (4.4.48), when δ = O(1) the solution for H to O(β3)

blows up at large times, manifesting physically as the interface being pulled closer

to the outer electrode by the destabilising electrostatic effects.

4.4.8 Limiting case: O(β2) electrostatic effects

The preceding analysis is valid for cases not only in which electrostatic effects are

O(β), but also for those in which particular choices of parameter values are such

that electrostatic effects are O(β2). Hence, to investigate further the interplay

between electrostatic, gravitational, and capillary effects without the impediment

of the overwhelming destabilising effect of the electric field, in this section we use

(4.4.45) to investigate the limit in which δ = O(β) such that the electrostatic term

in the governing equation (4.4.7) is O(β2). Note that, formally, this approach is

asymptotically inconsistent due to the fact that the asymptotic order of S0 changes.

However, we proceed in this manner in order to study the result that would arise

if we had assumed that δ = O(β) from the beginning of this section.

4.4.8.1 Growth rate ω

To determine the growth rate, we proceed by setting δ = βδ̂ such that

S0τ1 =
δ

(D − 1)3
βτ0 =

δ̂

(D − 1)3
β2τ0 := Ŝ0τ2. (4.4.55)
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Figure 4.48: The third-order three-timescale asymptotic solution H
(3τ)
4 (ϕ, τ)

(4.4.12) (converted back to the fixed frame) for N = 1, 2, and 3 (dot-dashed,

dotted, and dashed lines, respectively) compared with the numerical solution of

the governing equation (4.4.7) (solid line) for D = 5, β = 0.0532, α = 0.0048, and

(a)–(c) δ = 0, (d)–(f) δ = 2, and (g)–(i) δ = 4 at times (a), (d), (g) T = 10, (b),

(e), (h) T = 100, and (c), (f), (i) T = 500.
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Thus, in this case, the growth rate (4.4.47) is O(β2) and is given by

ω = Ŝ0 + S1 =
δ̂

(D − 1)3
− 81α

144α2 + 1
, (4.4.56)

from which we find that the solution (4.4.12) for the film thickness H to O(β3) is

stable for

δ̂ <
81α (D − 1)3

144α2 + 1
:= δ̂crit. (4.4.57)

Hence, in the case in which electrostatic effects are O(β2), the flow is conditionally

unstable in the sense that the solution for the film thickness grows for certain values

of the physical parameters. The interplay between electrostatic, gravitational, and

capillary effects is discussed in Section 4.4.8.2, in which we analyse the evolution

of the film in the case in which electrostatic effects are O(β2).

4.4.8.2 Evolution of the film thickness

As discussed in Section 4.4.8, in the case in which electrostatic effects are O(β2),

the electrostatic term in (4.4.52) no longer dominates but instead enters at the

same order as capillarity, also working on the slower timescale T2 = β2T . In this

case, to O(β) the film thickness is

H = 1 + β
[
cos θ − e(Ŝ0+S1)T2 cos [θ − (T0 − S2T2)]

]
, (4.4.58)

and thus, to O(ϵβ) the interface has the form

r = 1 + ϵ+ ϵβ
[
cos θ − e(Ŝ0+S1)T2 cos [θ − (T0 − S2T2)]

]
. (4.4.59)

The term cos [θ − (T0 − S2T2)] shows that the phase of the interface drifts away

from the phase of the solid cylinder by the amount S2T2 on the slower timescale

T2 = β2T . The exp (S1T2) term represents the effect of capillarity, which works

to decay the amplitude of the fundamental modes cos (θ − T0) and sin (θ − T0)

on the very slow timescale T2 = β2T , whilst the exp(Ŝ0T2) term represents elec-

trostatic effects, which work on the same timescale to increase the amplitude of

the fundamental modes. There is a complex interplay between electrostatic and

capillary effects, in which electrostatic effects are able to dominate and destabilise

the system subject to the stability criterion δ̂ > δ̂crit (4.4.57). For example, for the
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parameter values D = 5 and α = 0.0048, solutions for the film thickness H will be

stable for δ̂ < δ̂crit = 24.8009.

In the following results, we again use the value D = 5 with β = 0.0532 and

α = 0.0048. Figure 4.49 shows plots of the maximum values of the film thickness

Hmax calculated from both the third-order three-timescale asymptotic solution

H
(3τ)
4 (ϕ, τ) (4.4.7) (converted back to the fixed frame) in the case in which δ =

βδ̂ and the numerical solution of the governing equation (4.4.7) for β = 0.0532,

α = 0.0048, and (a), (b) δ̂ = 14.8009, (c), (d) δ̂ = δ̂crit = 24.8009, and (e), (f)

δ̂ = 34.8009 over the time interval T = [0, 500]. Note that the values δ̂ = 14.8009,

δ̂ = 24.8009, and δ̂ = 34.8009 were chosen to investigate a stable solution, a

neutrally stable solution, and an unstable solution, respectively. Specifically, the

values δ̂ = 14.8009 and δ̂ = 34.8009 were chosen to be equidistant either side of the

stability threshold, from which they were chosen to be far enough away so as to

show an appreciable difference over the time interval T = [0, 500] when compared

to the neutrally stable case. Figures 4.49 (a) and (b) show that the maximum film

thickness decreases over the asymptotically valid time interval, indicating stability

of the system for δ̂ = 14.8009. Figures 4.49 (c) and (d) show neutral stability of

the system, as predicted from the stability criterion (4.4.57). Figures 4.49 (e) and

(f) show that the maximum film thickness is increasing over the asymptotically

valid time interval, indicating instability of the system for δ̂ = 34.8009 > δ̂crit, as

expected.

Figure 4.50 demonstrates the convergence of the third-order three-timescale

asymptotic solution H
(3τ)
4 (ϕ, τ) (4.4.12) in the case in which δ = βδ̂ (converted

back to the fixed frame) at θ = 0 at for N = 1, 2, and 3 to the numerical solution of

the governing equation (4.4.7) for β = 0.0532, α = 0.0048 and (a), (b) δ̂ = 14.8009,

(c), (d) δ̂ = δ̂crit = 24.8009, and (e), (f) δ̂ = 34.8009 over the time intervals (a),

(d), (g) T = [0, 10], (b), (e), (f) T = [190, 200], and (c), (f), (i) T = [490, 500].

Figures 4.50 (c), (f), and (i) show that the expansion has drifted from the numerical

solution, and that increasing the electric potential difference leads to an increase

in the amplitude of the maximum film thickness.

Figure 4.51 shows convergence of the third-order three-timescale asymptotic

solution H
(3τ)
4 (ϕ, τ) (4.4.12) in the case in which δ = βδ̂ (converted back to the

fixed frame) for N = 1, 2, and 3 to the numerical solution of the governing equation

(4.4.7) for β = 0.0532, α = 0.0048 and (a)–(c) δ̂ = 14.8009, (d)–(f) δ̂ = δ̂crit =

24.8009, and (g)–(i) δ̂ = 34.8009, demonstrating further that increasing the electric
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Figure 4.49: Maximum values of the film thickness Hmax for D = 5, β = 0.0532,

and α = 0.0048, calculated from (a), (c), (e) the third-order three-timescale asymp-

totic solution H
(3τ)
4 (ϕ, τ) (4.4.12) (with δ = βδ̂ and converted back to the fixed

frame) and (b), (d), (f) the numerical solution of the governing equation (4.4.7)

for (a), (b) δ̂ = 14.8009 (stability), (c), (d) δ̂ = δ̂crit = 24.8009 (neutral stability),

and (e), (f) δ̂ = 34.8009 (instability) over the time interval T = [0, 500].
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Figure 4.50: The third-order three-timescale asymptotic solution H
(3τ)
4 (ϕ, τ)

(4.4.12) (converted back to the fixed frame) in the case where δ = βδ̂ such that

the electric field is O(β2), shown at θ = 0 at for N = 1, 2, and 3 (dot-dashed,

dotted, and dashed lines, respectively) compared with the numerical solution of

the governing equation (4.4.7) (solid line) for D = 5, β = 0.0532, α = 0.0048, and

(a), (b) δ̂ = 14.8009 (stable), (c), (d) δ̂ = 24.8009 (neutrally stable), and (e), (f)

δ̂ = 34.8009 (unstable) over the time intervals (a), (d), (g) T = [0, 10], (b), (e),

(h) T = [190, 200], and (c), (f), (i) T = [490, 500].
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potential difference results in an increase in the maximum film thickness.

In summary, when δ = O(β) such that electrostatic effects and capillarity

are both O(β2), the third-order, three-timescale asymptotic solution for the film

thickness H
(3τ)
4 (ϕ, τ) agrees well with the numerical solution within the asymptot-

ically valid time interval. Our numerical and asymptotic results confirm that, as

predicted by the stability criterion (4.4.57), capillarity stabilises the flow, whilst

electrostatic effects destabilise the flow at sufficiently large electric potential differ-

ences. This is evident in the fact that the maximum film thickness Hmax decreases

in time for values of δ̂ below the stability threshold, and increases in time for val-

ues of δ̂ above the stability threshold as the interface is pulled closer to the outer

electrode as seen previously.

4.5 Concluding remarks

In this chapter, we have undertaken a detailed analysis of coating flow on a hori-

zontal circular cylinder in the presence of an electric field.

Firstly, in Section 4.1, we considered the linear stability of steady states in two

analytically tractable special cases: the case of zero gravity in Section 4.1.1, and

the case in which capillarity and electrostatic effects are weak in Section 4.1.2. In

both cases, it was shown that electrostatic effects destabilise the system. In the

case of zero gravity, the stability of uniform steady states was considered. The

dispersion relation was derived, from which the most unstable mode nmax was

found. The linear stability results were compared with numerical solutions of the

full governing equation which indicate that, as the film evolves, the destabilising

electrostatic effects lead to the formation of bulges of liquid around the circumfer-

ence of the cylinder. It was shown that the number of bulges expected to appear in

the nonlinear numerical results can be accurately predicted by nmax. In the case in

which capillarity and electrostatic effects are both weak, it was shown that nonuni-

form steady states are unstable to O(γ−1) for Êb > −(F1+n
2F2)/F3. Electrostatic

effects were shown to cause instability, as increasing Êb contributes to increasing

the growth rate, whilst capillarity was shown to be a stabilising influence. It was

found that steady solutions are more stable in cases involving either thicker films

or when there is a greater distance between the outer electrode and the interface.

In such cases, capillarity is the dominant behaviour and stabilises the flow.

Next, the qualitatively different behaviours that the system exhibits were iden-
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Figure 4.51: The third-order three-timescale asymptotic solution H
(3τ)
4 (ϕ, τ)

(4.4.12) (converted back to the fixed frame) for N = 1, 2, and 3 (dot-dashed,

dotted, and dashed lines, respectively) compared with the numerical solution

of the governing equation (4.4.2) (solid line) for β = 0.0532, α = 0.0048 and

(a)–(c) δ̂ = 14.8009 (stable), (d)–(f) δ̂ = 24.8009 (neutrally stable), and (g)–(i)

δ̂ = 34.8009 (unstable) at times T = 10, 100, and 500.
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tified and analysed in Section 4.2 by means of a numerical parametric study in

(γ,Eb) parameter space. It was found that the system exhibits four distinct be-

haviours: steady states, periodic states, outer contact, and transient states. For

very thin films, only transient and periodic states arise due to the fact that the

effect of the electric field is very weak when the interface is far from the outer

electrode, and hence the dominant force is that due to rotation. For thin (but

not very thin) films, increasing γ or Eb results in a transition in parameter space

from steady states to periodic states and then a transition from periodic states to

outer contact. For the thickest films, the interface is closer to the outer electrode

and hence the electric field is stronger, leading to more instances of outer contact

occurring. Steady-state behaviour was described in Section 4.2.3 and arises for all

but the smallest initial film thicknesses when γ or Eb are small enough. Typically,

one bulge forms and is held in place on the lower right-hand side of the cylinder as

the forces balance, and increasing γ or Eb increases the maximum thickness of the

bulge. Periodic-state behaviour was described in Section 4.2.4 and occurs for thin

and very thin films. At most two bulges form in periodic states, which coalesce as

the system approaches the final periodic state in which a single bulge is typically

carried around the cylinder periodically by the rotation. In general, increasing

either γ or Eb results in an increase in the maximum film thickness. Outer contact

behaviour was described in Section 4.2.5 and occurs when the interface touches

the outer electrode in a finite time. For small H0, outer contact behaviour arises

in parameter space through a transition from periodic states in which typically

up to four bulges form and oscillate around the cylinder whilst the maximum film

thickness increases until eventually the bulges coalesce on the approach to outer

contact. For large H0, outer contact behaviour arises in parameter space through

a transition from a region of steady states. Typically, there is only enough time

for one bulge to form. This bulge does not complete a full rotation around the

cylinder before outer contact occurs due to the increased strength of the electric

field because the interface is closer to the outer electrode. In general, increasing

either γ or Eb decreases the time taken for outer contact to occur. Transient-state

behaviour was described in Section 4.2.6, and occurs for small and very small val-

ues of H0. We hypothesise that, in some instances (for example, on the transition

between different behaviours), states which appear to be transient could actually

be instances of complex, large-time dynamics which are difficult to capture nu-

merically and may settle down to one of the other three behaviour classifications
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at much later times.

The analysis presented in Chapter 3 was generalised in Section 4.3 to include

electrostatic effects. At early times, electrostatic effects are weak, entering the

solution at second order. At late times, it was found that the same three distinct

regions of behaviour arise as in the absence of an electric field, as described in

Chapter 3. Electrostatic effects are only significant in the pendant-drop region due

to the fact that the film is extremely thin at late times in the remaining regions.

In this region, electrostatic effects are strongest (since this is where the film is

thickest) which can lead to outer contact when the outer electrode is positioned

too close to the interface. When the outer electrode is far enough away such that

outer contact does not occur, there is a quasi-static balance between capillarity,

gravity, and electrostatic effects in the pendant-drop region. In this case, the

asymptotic solution for the film thickness to leading order in D−1 was found and

validated against numerical solutions of the governing equation. It was shown that

electrostatic effects influence the calculations in the inner region only through the

matching condition L0 (4.3.19) which is required to match dimple 1 to the pendant-

drop region. The qualitative behaviour and structure of the inner region remains

unchanged when compared to the problem described in Chapter 3. The solutions

in dimple 1 and ridge 1 were found and validated against numerical solutions of

the governing equation for non-zero Eb.

Finally, the large-time dynamics of the system were investigated in Section

4.4, in which we generalised the asymptotic analysis of Hinch and Kelmanson [73]

to incorporate electrostatic effects in the case in which gravity and electrostatic

effects are weak. It was found that three timescales (rather than two) are required

to resolve the secularities that arise. The third-order three-timescale asymptotic

solution H
(3τ)
4 (ϕ, τ) was derived and was shown to yield very close agreement with

the numerical solution within the asymptotically valid time interval. In the case

in which δ = O(1), for δ > 0, the growth rate ω = S0 is always positive, indicating

that the solution for H to O(β3) is unconditionally unstable and blows up like

exp (S0τ1) at late times. In this case, the electric field destabilises the system on

the slow timescale τ1 = βτ , resulting in the interface being pulled closer to the

outer electrode as we have seen previously. In the case in which δ = O(β), electro-

static effects no longer dominate the evolution, instead entering at the same order

as capillarity. Capillarity stabilises the flow [73, 130] whilst electrostatic effects

destabilise the flow at sufficiently large electric potential differences, specifically
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when δ̂ > 81α (D − 1)3 / (144α2 + 1).



Chapter 5

Thick-film coating flow in the

presence of an electric field

In this chapter, we refocus our attention on the WRIBL model for thick-film

coating flow in the presence of an electric field, which was derived earlier in Section

2.3 and consists of the WRIBL equation (2.3.66) and the kinematic condition

(2.1.34) together with either the electrode model (2.3.29) and (2.3.30), the interface

model (2.3.43) and (2.3.44), or the thick-film gradient model (2.3.48). The aims of

this chapter are twofold: firstly, we aim to determine which of the three candidate

electrostatic models offers the greatest accuracy and hence is the most suitable for

use in the WRIBL model. Secondly, with a suitable electrostatic model chosen, we

aim to build upon the recent study by Wray and Cimpeanu [31] (who, as discussed

in Section 1.4.4, investigated the thick-film coating flow system in the absence of

an electric field) to understand how the incorporation of an electric field with a

constant potential influences the dynamics of the system.

Firstly, in Section 5.1, we compare the three candidate electrostatic models

numerically to determine which yields the greatest accuracy when compared to

the numerical solution of Laplace’s equation (2.1.3). Next, in Section 5.2, we

investigate the evolution of the film in order to understand how electrostatic effects

induced by an electric field with a constant potential influence the dynamics of

the system, in particular, investigating flows which are either steady or periodic

in the absence of an electric field in Sections 5.2.1 and 5.2.2, respectively. Finally,

in Section 5.3, we draw our conclusions.

270
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5.1 Comparison of the electrostatic models

In this section, we compare the electrode model (2.3.29) and (2.3.30), the interface

model (2.3.43) and (2.3.44), and the thick-film gradient model (2.3.48) for the

purpose of determining which of these offers the greatest accuracy and hence is

the most suitable for use in the WRIBL model. The quantity that is of interest in

this section is the normal Maxwell stress EN (2.3.9), which, as we recall, is given

by

EN = 2ε2
sθ̌
s2
ϕrϕθ̌ −

1

2

(
1− ε2

s2
θ̌

s2

)(
ϕ2
r − ε2

ϕ2
θ̌

s2

)
,

where, as before, ε is an ordering parameter. As we recall, EN enters the WRIBL

equation (2.3.66) at first order in ε. Hence, in order to obtain a WRIBL model that

is accurate to second order in ε, terms which are second order and higher in (2.3.9)

can be disregarded. Hence, in what follows, it will be appropriate to compare

the performance of the three aforementioned models in calculating EN (2.3.9) to

leading order against the full fourth-order expression for EN (2.3.9) calculated

from the numerical solution of Laplace’s equation (2.1.3) which is solved subject

to the boundary conditions (2.1.36). The solutions for f1 in the electrode model,

g in the interface model, and the numerical solution of Laplace’s equation (2.1.3)

are all obtained in Mathematica [265] using the built-in function NDSolve[] which

implements the finite element method.

Substitution of equation (2.3.43) of the interface model into EN (2.3.9) yields

the following simple form of the normal Maxwell stress,

EN = − g2

2s2
+O(ε4). (5.1.1)

Similarly, substitution of equation (2.3.29) of the electrode model into EN (2.3.9)

yields

EN = − f 2
1

2s2
+O(ε2). (5.1.2)

Note that (5.1.1) is accurate up to third order in ε, whereas (5.1.2) is only accurate

to first order. Thus, we expect that the interface model will perform better than the

electrode model a priori. At leading order, substitution of the thick-film gradient

model (2.3.48) into (2.3.9) recovers the expression for EN calculated from the

leading-order solution to Laplace’s equation (2.3.14), namely, equation (2.3.16)
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which, as we recall, is given by

EN = − ϕ2
d

2s2 ln2(d/s)
.

Note that the electrode model (2.3.29) and (2.3.30) and the interface model

(2.3.43) and (2.3.44) better preserve the elliptic nature of the underlying Laplace

equation [244]. These models accurately represent the behavior of the electric

potential ϕ as it propagates in all directions whilst gradually decreasing in in-

tensity. In contrast, in lubrication models such as the thick-film gradient model

(2.3.48), the electric potential ϕ is solely dependent on the local values of ϕd and

its derivatives. As a result, these models introduce artificial locality, meaning that

the normal Maxwell stress is limited to the region where the potential is applied

and becomes exactly zero beyond that region.

In what follows, we compare the performance of (2.3.16), (5.1.1), and (5.1.2)

using two stringent tests: a sharply varying potential at the outer electrode ϕd (for

constant interfacial radius s) in Section 5.1.1, and a sharply varying interfacial

radius s (for constant potential ϕd) in Section 5.1.2. Note that comparing the

performance of models derived under a long-wave assumption in the short-wave

regime might appear unconventional a priori. However, it is anticipated that

these models can still be applicable outside of the long-wave regime. Previous

investigations in optimal control problems [244] have revealed that whilst the waves

remain long, precise adjustments in the control parameter are often necessary to

achieve the desired behavior, particularly during the initial stages. Therefore,

there is an expectation for favorable agreement in the short-wave regime, which

would be valuable for practical applications.

5.1.1 Sharply varying potential

In this section, we compare the performance of the three electrostatic models in

the case in which the potential at the outer electrode ϕd can vary sharply with θ

whilst the position of the interfacial radius s remains constant. We consider first

a step-function shape for ϕd, before considering functions with sinusoidal shapes

of high frequency for ϕd, which have both been deliberately chosen so as to be

outside the regime of asymptotic applicability of the long-wave approximation in

order to provide a stringent test. Throughout this section, we use the values d = 3
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Figure 5.1: The potential at the outer electrode ϕd (5.1.3) for σ = 1, 2, . . . , 10.

The arrow indicates the direction of increasing σ.

and s = 2.

To consider potentials with a step-function shape we choose ϕd to be of the

form [67]

ϕd =
1

2

[
1 + tanh

{
σ(cos(mθ)− cos(mX)

m sin(mX)

}]
, (5.1.3)

which is appropriate for a periodic domain of length 2π/m, where the parameter

σ controls the “sharpness” of the function (i.e., how steep the gradients are) and

the parameter X controls the width of the region in which the potential is (ap-

proximately) constant. Throughout this section, we consider the function (5.1.3)

with the values m = 1 and X = 2π/3, so that the domain has length 2π and

the potential is approximately constant in a region of width 4π/3, and close to

zero outside of this region. Figure 5.1 shows (5.1.3) for σ = 1, 2, . . . , 10. Figure

5.2 shows the numerical solution of Laplace’s equation (2.1.3) calculated subject

to the boundary conditions (2.1.36) with ϕd given by (5.1.3) with σ = 10 (corre-

sponding to a very sharp potential). Figure 5.3 shows plots of the solutions for (a)

f1 and (b) g calculated from the electrode model (2.3.30) and the interface model

(2.3.44), respectively, with ϕd given by (5.1.3) with σ = 10.

Figure 5.4 shows the leading-order normal Maxwell stress EN calculated from

the electrode model (5.1.2), the interface model (5.1.1), and the thick-film gradient

model (2.3.16) compared with the full expression for EN (2.3.9) calculated from

the numerical solution of Laplace’s equation (2.1.3). In particular, Figure 5.4
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Figure 5.2: Numerical solution of Laplace’s equation (2.1.3) calculated subject to

the boundary conditions (2.1.36) with ϕd given by (5.1.3) with σ = 10.
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Figure 5.3: Solutions for (a) f1 calculated from (2.3.30) and (b) g calculated from

(2.3.44) with ϕd given by (5.1.3) with σ = 10.
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Figure 5.4: The leading-order normal Maxwell stress EN calculated from the elec-

trode model (5.1.2) (dashed line), the interface model (5.1.1) (dotted line), and the

thick-film gradient model (2.3.16) (dot-dashed line) compared with the full expres-

sion for EN (2.3.9) calculated from the numerical solution of Laplace’s equation

(2.1.3) (solid line), calculated with ϕd given by (5.1.3) with σ = 10. (a) Solution

for 0 ≤ θ ≤ 2π. (b) Enlargement of (a) close to θ = 5π/8.

shows that the interface model (2.3.43) and (2.3.44) (shown as the dotted line)

performs best, the thick-film gradient model (2.3.48) (shown as the dot-dashed

line) performs less well, and the electrode model (2.3.29) and (2.3.30) (shown as

the dashed line) performs the poorest.

It is instructive to investigate the performance of the models as the parameter

σ is varied in (5.1.3) to understand how the performance of the models changes

as the wavelength of the potential is varied. We compare the performance of the

models by calculating their integral absolute error, defined by

χ =

∫ 2π

0

|EN
num − EN

model| dθ, (5.1.4)

where EN
num and EN

model represent E
N (2.3.9) calculated from the numerical solution

of Laplace’s equation (2.1.3) and from any of the three electrostatic models whose

solution we wish to compare with, respectively.

We proceed by setting σ = 1, 2, . . . , 10, as shown in Figure 5.1. Figure 5.5 (a)

shows a semi-log plot of χ (5.1.4) calculated for the interface model (5.1.1), the

electrode model (5.1.2), and the thick-film gradient model (2.3.16) compared to the

full expression for EN (2.3.9) calculated from the numerical solution of Laplace’s

equation (2.1.3). In particular, Figure 5.5 (a) shows that the accuracy of each of
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Figure 5.5: Semi-log plots of the integral absolute error χ (5.1.4) of the leading-

order normal Maxwell stress EN calculated numerically from comparing the elec-

trode model (5.1.2) (dashed line), the interface model (5.1.1) (dotted line), and

the thick-film gradient model (2.3.16) (dot-dashed line) with the full expression

for EN (2.3.9) calculated from the numerical solution of Laplace’s equation (2.1.3)

with ϕd given by (a) (5.1.3) for 1 ≤ σ ≤ 10 and (b) (5.1.5) for 1 ≤ n ≤ 10. Filled

circles represent values of (a) σ and (b) n.

the models decreases as σ is increased (i.e., as the variation in ϕd gets sharper), as

expected. Figure 5.5 (a) also shows that the interface model (5.1.1) (shown as the

dotted line) is the most accurate, followed by the thick-film gradient model (2.3.16)

(shown as the dot-dashed line), and that the electrode model (5.1.2) (shown as the

dashed line) performs the poorest.

To consider potentials with sinusoidal shapes of high frequency, we choose ϕd

to be of the form

ϕd = sin (nθ) (5.1.5)

for wavenumbers n = 1, 2, 3, and 4. Figure 5.6 shows the numerical solution of

Laplace’s equation (2.1.3) calculated subject to the boundary conditions (2.1.36)

with ϕd given by (5.1.5) for (a) n = 1, (b) n = 2, (c) n = 3, and (d) n = 4.

Figure 5.7 shows the leading-order normal Maxwell stress EN calculated from

the electrode model (5.1.2), the interface model (5.1.1), and the thick-film gradient

model (2.3.16) compared with the full expression for EN (2.3.9) calculated from

the numerical solution of Laplace’s equation (2.1.3) calculated for ϕd given by

(5.1.5) with (a) n = 1, (b) n = 2, (c) n = 3, and (d) n = 4. In particular, Figure

5.7 shows that the interface model (2.3.43) and (2.3.44) (shown as the dotted line)
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Figure 5.6: Numerical solution of Laplace’s equation (2.1.3) calculated subject to

the boundary conditions (2.1.36) with ϕd given by (5.1.5) with (a) n = 1, (b)

n = 2, (c) n = 3, and (d) n = 4.
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Figure 5.7: The leading-order normal Maxwell stress EN calculated from the elec-

trode model (5.1.2) (dashed line), the interface model (5.1.1) (dotted line), and the

thick-film gradient model (2.3.16) (dot-dashed line) compared with the full expres-

sion for EN (2.3.9) calculated from the numerical solution of Laplace’s equation

(2.1.3) (solid line), calculated with ϕd given by (5.1.5) with (a) n = 1, (b) n = 2,

(c) n = 3, and (d) n = 4.
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performs best, the thick-film gradient model (2.3.48) performs less well (shown as

the dot-dashed line) and the electrode model (2.3.29) and (2.3.30) (shown as the

dashed line) performs the poorest.

Figure 5.5 (b) shows a semi-log plot of χ (5.1.4) calculated for the interface

(5.1.1), electrode (5.1.2), and gradient expansion (2.3.16) models with 1 ≤ n ≤
10 compared to the full expression for EN (2.3.9) calculated from the numerical

solution of Laplace’s equation (2.1.3). In particular, Figure 5.5 (b) shows that the

accuracy of all models decreases as n is increases (i.e., as the wavelengths become

shorter), as expected due to the fact that the models were derived under the long-

wave assumption. Figure 5.5 (b) also shows that the interface model (5.1.1) (shown

as the dotted line) remains the most accurate, followed by the thick-film gradient

model (2.3.16) (shown as the dot-dashed line), and that the electrode model (5.1.2)

(shown as the dashed line) performs the poorest.

In summary, the interface model (2.3.43) and (2.3.44) affords the most accurate

solution for the normal Maxwell stress EN (2.3.9) in situations in which the inter-

facial radius s is constant and the potential ϕd varies spatially, even for functions

of ϕd which vary sharply with θ. As discussed at the beginning of this section,

this is to be expected a priori due to the fact that the expression obtained for the

normal Maxwell stress EN calculated from the interface model (5.1.1) is accurate

up to third order in ε, whereas that calculated from the electrode model (5.1.2) is

only accurate to first order.

5.1.2 Sharply varying interfacial radius

In this section, we compare the performance of the three electrostatic models

in the case in which the interfacial radius s can vary sharply with θ whilst the

potential at the outer electrode ϕd remains constant. We first consider a step-

function shape for s, before considering functions with sinusoidal shapes of high

frequency for s. As in Section 5.1.1, all of the functions for s have been deliberately

chosen so as to be outside of the regime of asymptotic applicability of the long-

wave approximation in order to provide a stringent test. In this section, numerical

solutions of Laplace’s equation (2.1.3) were calculated via remapping the (r, θ)

domain onto a rectangular one to allow for easy discretisation in space, as described

in Appendix E. Throughout this section, we use the values d = 3 and ϕd = 1.
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Figure 5.8: The interfacial radius s (5.1.6) for σ = 1, 2, . . . , 10. The arrow indicates

the direction of increasing σ.

Similarly to before, we first select the interfacial radius s to be of the form [67]

s = 1.5 + 0.2

[
1 + tanh

{
σ(cos(mθ)− cos(mX)

m sin(mX)

}]
, (5.1.6)

where, as in Section 5.1.1, we select m = 1 and X = 2π/3. Figure 5.8 shows

(5.1.6) for σ = 1, 2, . . . , 10. Figure 5.9 shows the numerical solution of Laplace’s

equation (2.1.3) calculated subject to the boundary conditions (2.1.36) remapped

onto a rectangular domain with s given by (5.1.6) for (a) σ = 1 and (b) σ = 5.

Figure 5.10 shows the leading-order normal Maxwell stress EN calculated from the

electrode model (5.1.2), the interface model (5.1.1), and the thick-film gradient

model (2.3.16) compared with the full expression for EN (2.3.9) calculated from

the numerical solution of Laplace’s equation (2.1.3) with s given by (5.1.6) for

(a) σ = 1 and (b) σ = 5. In particular, Figure 5.10 shows that the interface

model (2.3.43) and (2.3.44) (shown as the dotted line) performs best, the thick-

film gradient model (2.3.48) performs less well (shown as the dot-dashed line) and

the electrode model (2.3.29) and (2.3.30) (shown as the dashed line) performs the

poorest. However, note that the overall agreement with the numerical solution

in the case of a sharply varying interfacial radius s is poorer than for a sharply

varying potential ϕd as shown in Section 5.1.1. Figure 5.10 (a) shows that for σ = 1

(i.e., when the gradients of the interfacial radius are gentle) the interface model
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(a) (b)

Figure 5.9: Numerical solution of Laplace’s equation (2.1.3) calculated subject

to the boundary conditions (2.1.36) remapped onto a rectangular domain with s

given by (5.1.6) for (a) σ = 1 and (b) σ = 5.
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Figure 5.10: The leading-order normal Maxwell stress EN calculated from the

electrode model (5.1.2) (dashed line), the interface model (5.1.1) (dotted line),

and the thick-film gradient model (2.3.16) (dot-dashed line) compared with the

full expression for EN (2.3.9) calculated from the numerical solution of Laplace’s

equation (2.1.3) (solid line), with s given by (5.1.6) for (a) σ = 1 and (b) σ = 5.
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Figure 5.11: Semi-log plots of the integral absolute error χ (5.1.4) of the leading-

order normal Maxwell stress EN calculated numerically from comparing the elec-

trode model (5.1.2) (dashed line), the interface model (5.1.1) (dotted line), and

the thick-film gradient model (2.3.16) (dot-dashed line) with the full expression

for EN (2.3.9) calculated from the numerical solution of Laplace’s equation (2.1.3)

with s given by (a) (5.1.6) for 1 ≤ σ ≤ 10 and (b) (5.1.7) for 1 ≤ n ≤ 10. Filled

circles represent values of (a) σ and (b) n.

performs fairly well, whereas Figure 5.10 (b) shows that for σ = 5 the accuracy

of all three models decreases significantly. Figure 5.11 (a) shows a semi-log plot

of χ (5.1.4) calculated for the interface model (5.1.1), the electrode model (5.1.2),

and the thick-film gradient model (2.3.16) compared to the full expression for

EN (2.3.9) calculated from the numerical solution of Laplace’s equation (2.1.3).

In particular, Figure 5.5 (a) shows that, as before, the accuracy of each of the

models decreases as σ is increased, and that the interface model (5.1.1) is the

most accurate, followed by the thick-film gradient model, and that the electrode

model performs the poorest.

Similarly to before, to consider functions with sinusoidal shapes of high fre-

quency, we select the interfacial radius s to be of the form

s = 1.5 + 0.1 cos(nθ) (5.1.7)

for wavenumbers n = 1, 2, 3, and 4. Figure 5.12 shows the numerical solution of

Laplace’s equation (2.1.3) calculated subject to the boundary conditions (2.1.36)

remapped onto a rectangular domain with s given by (5.1.7) for (a) n = 1, (b) n =

2, (c) n = 3, and (d) n = 4. Figure 5.13 shows the leading-order normal Maxwell
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(a) (b)

(c) (d)

Figure 5.12: Numerical solution of Laplace’s equation (2.1.3) calculated subject

to the boundary conditions (2.1.36) remapped onto a rectangular domain with s

given by (5.1.7) with (a) n = 1, (b) n = 2, (c) n = 3, and (d) n = 4.
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Figure 5.13: The leading-order normal Maxwell stress EN calculated from the

electrode model (5.1.2) (dashed line), the interface model (5.1.1) (dotted line),

and the thick-film gradient model (2.3.16) (dot-dashed line) compared with the

full expression for EN (2.3.9) calculated from the numerical solution of Laplace’s

equation (2.1.3) (solid line), calculated with ϕd given by (5.1.5) with (a) n = 1,

(b) n = 2, (c) n = 3, and (d) n = 4.

stress EN calculated from the electrode model (5.1.2), the interface model (5.1.1),

and the thick-film gradient model (2.3.16) compared with the full expression for

EN (2.3.9) calculated from the numerical solution of Laplace’s equation (2.1.3)

with s given by (5.1.7) with (a) n = 1, (b) n = 2, (c) n = 3, and (d) n = 4. Figure

5.11 (b) shows a semi-log plot of χ (5.1.4) calculated for the interface model (5.1.1),

the electrode model (5.1.2), and the thick-film gradient model (2.3.16) compared

to the full expression for EN (2.3.9) calculated from the numerical solution of

Laplace’s equation (2.1.3). Together, Figure 5.13 and Figure 5.11 (b) show that,

as before, the accuracy of all three models decreases significantly as n is increased,

as expected, and that the interface model (5.1.1) is the most accurate, followed by

the thick-film gradient model, with the electrode model performing the poorest. As
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before, the overall agreement with the numerical solution in the case of a sharply

varying interfacial radius s is poorer than for a sharply varying potential ϕd as

shown in Section 5.1.1.

In summary, the interface model (2.3.43) and (2.3.44) affords the most accurate

solution for the normal Maxwell stress EN (2.3.9) in situations in which ϕd is

constant and the interfacial radius s varies spatially, even for functions of s which

vary sharply with θ. As discussed previously, this is to be expected a priori due to

the fact that the expression obtained for the normal Maxwell stress EN calculated

from the interface model (5.1.1) is accurate up to third order in ε, whereas that

calculated from the electrode model (5.1.2) is only accurate to first order. Hence,

we conclude that the interface model is most suitable for use in the WRIBL model.

5.2 Evolution of the film

In this section, we investigate the evolution of the film in order to understand how

electrostatic effects influence the dynamics of the thick-film coating flow system.

In Section 5.1, we showed that the interface model (2.3.43) and (2.3.44) affords the

most accurate solution for the normal Maxwell stress EN (2.3.9) overall. Hence,

hereafter, we exclusively use the interface model in the WRIBL model alongside the

WRIBL equation (2.3.66) and the kinematic condition (2.1.34). Specifically, when

calculating the normal Maxwell stress EN , we use the leading-order expression

calculated from the interface model (5.1.1).

The thick-film coating flow system in the absence of an electric field was studied

recently by Wray and Cimpeanu [31] who, as discussed in Section 1.4.4, discovered

that the system exhibits three different behaviours, namely, steady states, periodic

states, and multivalued states (which potentially includes interfacial rupture). As

discussed earlier in Section 1.4.4, multivaluedness and rupture cannot be modelled

using the WRIBL model due to the fact that we have parameterised by the az-

imuthal angle θ, in addition to the fact that the long-wave approximation is no

longer valid because the interfacial slopes are so large. Hence, these behaviours

must be analysed via DNS of the Navier–Stokes equations (2.1.21) and (2.1.22)

[31]. Thus, for the purposes of the present thesis (in which we do not perform

DNS), the states which are of interest are steady states and periodic states. The

investigation of multivalued states and interfacial rupture in the presence of an

electric field using DNS could be an interesting direction for future study.
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In Chapter 4, we showed that, for a constant potential in the thin-film case,

electrostatic effects destabilise the film. In particular, in Section 4.2, we discussed

the effect that increasing the electric potential difference has on states which are

steady or periodic, and showed that electrostatic effects can result in outer contact

behaviour (which, as we recall, is when the film touches the outer electrode in a

finite time). Our results indicate that in the thick-film case, the system exhibits

behaviours that are qualitatively the same as those observed in the thin-film case.

Hence, in what follows we give only a handful of representative results demonstrat-

ing the effect that the incorporation of an electric field with a constant potential

has on the system in the thick-film case. Specifically, we examine the effect that

the electric field has on systems which are steady in Section 5.2.1 and on those

which are periodic in Section 5.2.2.

In the following results, the values

Re = 3.76, Ca = 0.157, d = 2.5 (5.2.1)

are chosen in order to consider a qualitatively similar region of (Re,Ca) parameter

space as that which was investigated by Wray and Cimpeanu [31]. Specifically, the

value Re = 3.76 was chosen to ensure that inertia is significant but not dominant,

and the value Ca = 0.157 was chosen to ensure that capillarity is strong enough

to allow for steady states to be observed [31]. The outer electrode was chosen to

be located at d = 2.5 so as to ensure that the electric field has a significant effect

on the behaviour of the system, without prematurely inducing outer contact and

hence preventing other behaviors from manifesting. In Sections 5.2.1 and 5.2.2,

we select values of the rotation rate ω and the initial uniform interfacial radius s0

that support steady and periodic states, respectively, and will thereafter vary the

electric potential difference Ẽb in order to investigate the effect that the electric

field has on these configurations.

Throughout this section, solutions to the WRIBL model are obtained using the

numerical scheme outlined in Appendix A.1. The dimensional quantities used in

this section are listed in Table F.1 of Appendix F, and correspond approximately

to some ratio of water-syrup mix [102, 272]. Note that, analogous to the variable

Tc used in Chapter 4, the time at which outer contact occurs is denoted here, and

in Chapter 6, by tc.
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(a) (b) (c)

Figure 5.14: Interface profiles for ω = 0.5, s0 = 1.6, and (a) Ẽb = 0, (b) Ẽb = 0.6,

and (c) Ẽb = 1. (a) Steady state in the absence of an electric field. (b), (c)

Evolution to outer contact at time t = tc where tc = 8.78 and 6.05, respectively.

The interfacial radius is shown at times (b) t = 2.78, 4.78, 6.78, and tc, (c) t =

0.05, 2.05, 4.05, and tc. In ascending order, the times are shown by the dot-dashed,

dotted, dashed, and solid lines, respectively.

5.2.1 Steady states

In the absence of an electric field, Wray and Cimpeanu [31] showed that for a thick

film of initial uniform interfacial radius 1.6 with a low dimensionless rotation rate

of 0.5 for the values (5.2.1) of Ca and Re, their system exhibits a steady state (see

Figure 1.20 (a)). Hence, in this section we choose the same values ω = 0.5 and

s0 = 1.6 in order to analyse the effect that electrostatic effects have on a steady

state. Figure 5.14 (a) shows the final shape of the steady state for Ẽb = 0. The

bulge of liquid is largest on the right-hand side of the cylinder, where rotation and

gravity act in opposition to one another. In this case, capillarity dominates, and

hence the interfacial radius remains nearly circular. In the absence of an electric

field, the system reaches a steady state before time t = 500, as shown in Figure

5.15, which shows the evolution of the maximum interfacial radius smax over the

time interval 1 ≤ t ≤ 1000 for Ẽb = 0, 0.2, 0.4, 0.6, 0.8, and 1. For the chosen set of

parameter values, outer contact occurs for Ẽb values greater than approximately

0.5. Figures 5.14 (b) and (c) show the interface profiles for Ẽb = 0.6 and Ẽb = 1,

respectively, in which the interface touches the outer electrode at times tc = 8.78

and tc = 6.05, respectively (shown as the solid lines). For sufficiently large Ẽb,

electrostatic effects dominate the behaviour of the system, with outer contact
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Figure 5.15: Evolution of the maximum interfacial radius smax on a log-log

scale over the time interval 1 ≤ t ≤ 1000 for ω = 0.5, s0 = 1.6, and

Ẽb = 0, 0.2, 0.4, 0.6, 0.8, and 1. The arrow indicates the direction of increasing

Ẽb.

occurring earlier in time for larger Ẽb. For Ẽb = 0.6, 0.8, and 1, the system is

driven towards outer contact before time t = 10, as shown in Figure 5.15. For

Ẽb = 0.2 and Ẽb = 0.4, Figure 5.15 shows that electrostatic effects result in

a significant increase in smax at earlier times (i.e., before around t = 100), but

overall result in negligible change to the value of smax once the system has reached

a steady state. Moreover, the final steady state shapes for Ẽb = 0.2 and Ẽb = 0.4

are qualitatively the same as the steady state shown for Ẽb = 0 in Figure 5.14 (a),

and are thus not shown. Indeed, it is due to the fact that the interface remains

nearly circular in the absence of an electric field (as shown in Figure 5.14 (a)) that

the effect of the electric field on the final steady state shapes is small, but is most

noticeable at earlier times in which the deviations from circularity are larger. The

present results indicate that, in general, increasing the electric potential difference

leads to outer contact.

5.2.2 Periodic states

In the absence of an electric field, Wray and Cimpeanu [31] showed that for a thick

film of initial uniform interfacial radius 1.3 with a moderate dimensionless rotation

rate of 1 for the values (5.2.1) of Ca and Re, their system exhibits a periodic state

(see Figure 1.20 (a)). Hence, in this section we choose the same values ω = 1

and s0 = 1.3 in order to analyse the effect that electrostatic effects have on a

periodic state. The periodic state that emerges in the absence of an electric field
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is shown in Figure 5.16 (a) at times t = 9997, 9998, 9999, and 10000 (shown as the

dot-dashed, dotted, dashed, and solid lines, respectively). The bulge of liquid is

carried around the cylinder by rotation, initially increasing in size before settling

to a periodic state after around t = 103. This can be understood from the line

furthest to the right-hand side in Figure 5.17, which shows the evolution of the

maximum interfacial radius smax over the time interval 0 ≤ t ≤ 104 for increasing

values of Ẽb. The evolution of the interfacial radius in the absence of an electric

field is shown in Figure 5.18 over the time interval 0 ≤ t ≤ 20, indicating that s is

sinusoidal at time t = 20. Note that we have chosen to consider this particular time

interval in this section to remain consistent with the forthcoming calculations in

Section 6.2, in which we perform optimal control calculations over the time interval

0 ≤ t ≤ tf where tf = 20.

Increasing Ẽb can result in outer contact: Figures 5.16 (b), (c), and (d) show

the interfacial radius for Ẽb = 1, 5, and 10, respectively, for which the interfacial

radius touches the outer electrode at time t = tc where tc = 161.45, 53.14, and

26.83, respectively. The first, second, and third lines closest to the left-hand

side of Figure 5.17 show smax over time for Ẽb = 1, 5, and 10, respectively. In

a qualitatively similar manner to the thin-film case discussed in Section 4.2.4,

the bulge of liquid oscillates around the cylinder and grows in size whilst doing

so, before eventually being pulled towards the outer electrode where the film is

thickest, resulting in outer contact which occurs earlier in time and with fewer

complete periods traversed around the cylinder as Ẽb increases. For the chosen

parameter values, for Ẽb values that are small enough that they do not induce outer

contact, the overall change to the final periodic state is small and is not obviously

discerned when comparing the interface shape directly with the interface shape

for Ẽb = 0 shown in Figure 5.16 (a), and so are not shown here. This difference

can, however, be seen in Figure 5.19, which shows smax over the time interval

950 ≤ t ≤ 1000 for Ẽb = 0 and Ẽb = 0.1, shown respectively as the solid and

dashed lines. For Ẽb = 0.1, the maximum value of smax is 2.09136, compared to

2.05463 in the absence of an electric field.

5.3 Concluding remarks

In this chapter, we have analysed the electrostatic modelling and dynamics of

thick-film coating flow in the presence of an electric field.
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(a) (b)

(c) (d)

Figure 5.16: Interface profiles for ω = 1, s0 = 1.3, and (a) Ẽb = 0, (b) Ẽb = 1,

(c) Ẽb = 5, and (d) Ẽb = 10. (a) Periodic state in the absence of an electric

field shown at times t = 9997, 9998, 9999, and 10000. (b), (c), (d) Evolution to

outer contact at time t = tc where tc = 161.45, 53.14, and 26.83, respectively.

The interfacial radius is shown at times (b) t = 161.15, 161.25, 161.35, and tc, (c)

t = 52.84, 52.94, 53.04, and tc, and (d) t = 26.53, 26.63, 26.73, and tc. In ascending

order, the times are shown by the dot-dashed, dotted, dashed, and solid lines,

respectively.
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Figure 5.17: Evolution of the maximum interfacial radius smax on a log-log scale

over the time interval 1 ≤ t ≤ 104 for ω = 1, s0 = 1.3, and Ẽb = 0, 1, 5, and 10.

The arrow indicates the direction of increasing Ẽb.

(a) (b)

Figure 5.18: Evolution of the interfacial radius for ω = 1, s0 = 1.3, and Ẽb = 0 over

the time intervals (a) 0 ≤ t ≤ 20 shown at times t = 31n/200 for n = 0, 1, . . . , 129

and (b) 19.5 ≤ t ≤ 20 shown at times t = 19.5, 19.505, 19.510, . . . , 20. The thick

black line shows the interfacial radius at the time t = 20.
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Figure 5.19: Evolution of the maximum interfacial radius smax over the time inter-

val 950 ≤ t ≤ 1000 for ω = 1 and s0 = 1.3 with Ẽb = 0 (solid line) and Ẽb = 0.1

(dashed line).

Firstly, in Section 5.1, we compared numerically the three candidate electro-

static models for the potential ϕ that we derived in Section 2.3.2, namely, the

electrode model (2.3.29) and (2.3.30), the interface model (2.3.43) and (2.3.44),

and the thick-film gradient model (2.3.48), and determined that the interface model

affords the most accurate solution for the normal Maxwell stress EN (2.3.9) over-

all. Hence, we concluded that the interface model is most suitable for use in the

WRIBL model alongside the WRIBL equation (2.3.66) and the kinematic con-

dition (2.1.34). In particular, we decided that hereafter we shall exclusively use

the leading-order expression for the normal Maxwell stress calculated from the

interface model (5.1.1) in the WRIBL model.

Once the most suitable choice of electrostatic model was established, the evo-

lution of the film in the presence of an electric field with a constant potential was

analysed in Section 5.2. The analysis in Section 5.2 built upon the recent study

by Wray and Cimpeanu [31] and showed that, in general, an electric field with a

constant potential destabilises the system (as expected in light of the analyses of

the thin-film case given in Chapter 4). States that are qualitatively the same as

those which were shown by Wray and Cimpeanu [31] to be steady or periodic in the

absence of an electric field were analysed in Sections 5.2.1 and 5.2.2, respectively,

and it was shown that, in both cases, increasing the electric potential difference

Ẽb can lead to outer contact. When outer contact does not occur, increasing Ẽb
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results in an increase in the maximum interfacial radius smax, corresponding to an

increase in the maximum height of the liquid bulge that forms.

Note that in Chapter 6, we analyse the optimal control of films which are

periodic in the absence of any control mechanisms using the same parameter values

that were used in Section 5.2.2, namely, the values (5.2.1) of Re and Ca along with

ω = 1 and either s0 = 1.3 exactly or some value of s0 close to 1.3. Therefore, the

analysis presented in Section 5.2.2 is essential to better understand the dynamics

of the flow when it is not under the influence of any control mechanisms.



Chapter 6

Electrostatic control of thick-film

coating flow

As described in Sections 1.6 and 1.7, the control of fluid systems using electric

fields has been afforded significant attention in the literature to date, owing to the

plentiful industrial applications that arise such as those in pattern formation [5,

163, 190, 193–195, 274–276] and in chemical engineering processes [178, 179, 184,

185]. In this chapter, we aim to build upon these existing studies by analysing

both the feedback and optimal electrostatic control of thick-film coating flow. In

particular, the aim of this chapter is to show that it is possible to exert fine control

over the thick-film system using the WRIBL model (2.1.34), (2.3.66), (2.3.43), and

(2.3.44) which was derived in Section 2.3 and analysed in Chapter 5.

We first investigate feedback control of the film in Section 6.1, with the aim

of constructing a potential which controls the interfacial shape towards a uniform

state. Secondly, in Section 6.2, we investigate controlling the film towards specified

target shapes in an optimal sense. Specifically, we develop the optimal control

framework in Section 6.2.1 before conducting an investigation into controlling the

interfacial shape towards several challenging target shapes in Sections 6.2.2–6.2.5.

Finally, we draw our conclusions in Section 6.3.

In this chapter, we drop the check decoration from the WRIBL model (which,

as we recall, arises from the long-wave scalings (2.3.1) and (2.3.2)) hereafter for

brevity. As in Section 5.2, solutions to the WRIBL model are obtained using the

numerical scheme outlined in Appendix A.1, and the dimensional quantities used

in this section are listed in Table F.1 of Appendix F.

294
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6.1 Feedback control

In this section, we apply feedback control to the WRIBL model by which we aim

to produce a uniform interface. In other words, we aim to control the interface

towards the target shape

starg = s0, (6.1.1)

where, as before, s0 is the initial uniform interfacial radius. To achieve this, we

use information regarding the interfacial radius s at every time step in order to

construct a suitable potential ϕd. As discussed in Section 1.7, controlling towards a

uniform interface can be beneficial in many industrial applications of coating flow

in which a flat state is needed in order to achieve specific functional, aesthetic, or

performance-related requirements [230–232].

As we have established in Chapters 4 and 5, when the potential is uniform,

electrostatic effects pull the film towards the outer electrode most strongly where

it is thickest because this is where the electric field is strongest. This action

results in an increase in the maximum interfacial radius smax and, simultaneously,

a decrease in the minimum interfacial radius smin. It is therefore sensible to expect

imposing an electric field on only the thinnest regions of the film to be of benefit

when one desires to achieve a uniform interface: pulling the thinner regions towards

the outer electrode will in turn result in the film thickness shrinking in the thicker

regions due to mass conservation, overall resulting in a more uniform interface. To

this end, we define

ϕd =

0 for s(θ, t) > scutoff,

(scutoff − s(θ, t))2 for s(θ, t) ≤ scutoff,
(6.1.2)

where in our calculations we choose scutoff = starg − 0.001. In other words, the

electric field is “switched on” where the interfacial radius s is more than 0.001

dimensionless units below the target shape (6.1.1). Throughout this section, in

our calculations we use the parameter values (5.2.1) for Ca, Re, and d with

ω = 1, s0 = 1.5, Ẽb = 5000. (6.1.3)

Figure 6.1 shows the evolution of the maximum interfacial radius smax in both

the case in which Ẽb = 0 (which we shall refer to hereafter as the “‘uncontrolled”
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Figure 6.1: Evolution of the maximum interfacial radius smax in the uncontrolled

(grey) and controlled (black) cases for the parameter values (5.2.1) of Ca, Re, and

d with (6.1.3).

case) and in the controlled case, which are represented by the grey and black lines,

respectively. In particular, Figure 6.1 shows that the control mechanism success-

fully results in the maximum interfacial radius smax being reduced. Within the

time interval 0 ≤ t ≤ 100, smax does not exceed the value 2.0392 in the controlled

case, which is significantly lower than the maximum value of 3.9854 attained in the

uncontrolled case. Figure 6.2 shows the interface in the (a) uncontrolled and (b)

controlled cases at times t = 97.7, 98.5, 99.3, and 100, shown as the dot-dashed,

dotted, dashed, and solid lines, respectively. In the uncontrolled case, the bulge of

liquid continues to increase in size as it oscillates around the cylinder, eventually

settling to a periodic state. On the other hand, in the controlled case, the bulge

of liquid remains significantly smaller owing to the feedback control mechanism.

The controlled interface shown in Figure 6.2 (b) is closer to uniform than

the uncontrolled interface shown in Figure 6.2 (a); however, a genuinely uniform

film has not been achieved using the feedback control mechanism (6.1.2). The

performance of the feedback control mechanism could potentially be improved by

tweaking the imposed potential ϕd (6.1.2) or by increasing the potential difference

Ẽb. However, such trial-and-error approaches are not efficient and are unlikely

to yield a significant advantage over the current values of ϕd and Ẽb. Instead,

in Section 6.2, we formulate and implement a more robust control framework

using optimal control theory which will allow us to exert fine control over the
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(a) (b)

Figure 6.2: The interface s calculated for the parameter values (5.2.1) of Ca, Re,

and d with (6.1.3) at times t = 97.7 (dot-dashed line), t = 98.5 (dotted line),

t = 99.3 (dashed line), and t = 100 (solid line) in the (a) uncontrolled and (b)

controlled cases.

WRIBL model. In particular, in Section 6.2.3, we use optimal control to control

the interface towards its initial uniform shape in an optimal sense.

6.2 Optimal control

In this section, we formulate and implement a robust optimal control framework

designed to finely control the interfacial radius towards some specified target shape.

We describe the framework of the optimal control problem at hand in Section

6.2.1 and present our results in Sections 6.2.2–6.2.5. Specifically, we demonstrate

that we can successfully control the interfacial radius towards a uniform shape in

Section 6.2.3, before conducting a parametric study into the success of the control

mechanism when controlling towards a family of sinusoidal shapes in Section 6.2.4.

We then investigate the control of the interface towards a square shape in Section

6.2.5. Finally, in Section 6.2.6, we discuss instances in which the control mechanism

may have an unsuccessful outcome.
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6.2.1 Framework of the optimal control problem

We aim to find a potential ϕd which minimises a measure of the difference be-

tween the interfacial radius s and some target shape, which we denote by starg =

starg(θ, t). We wish to achieve the target shape at minimal control cost (i.e., in

this case, by applying the minimum required voltage to deform the interface). To

proceed, we introduce the cost functional Jt,r (sometimes referred to as the “scalar

objective function” [243]),

Jt,r = Ut,r + Cϕ, (6.2.1)

where the subscripts “t” and “r” in (6.2.1)–(6.2.3) represent “terminal” and “reg-

ulation” control (to be defined shortly), respectively, Cϕ (which we shall refer to

hereafter as the “cost” of the control mechanism) is given by

Cϕ = γϕ

∫ tf

t=0

∫ 2π

θ=0

ϕd(θ, t)
2 dθ dt, (6.2.2)

and Ut,r (which we shall refer to hereafter as the “deviation measure”) is given by

Ut,r = δt

∫ 2π

θ=0

[s(θ, tf)− starg(θ)]
2 dθ + δr

∫ tf

t=0

∫ 2π

θ=0

[s(θ, t)− starg(θ, t)]
2 dθ dt.

(6.2.3)

The control weights δt and δr in (6.2.3) are taken to be (δt, δr) = (1, 0) or (δt, δr) =

(0, 1) depending on whether we are imposing terminal or regulation control, respec-

tively. Specifically, the deviation measure (6.2.3) penalises based on the deviation

of s from the target shape starg: the first term in (6.2.3) penalises based on the

deviation at the final time t = tf only (i.e., terminal control), whereas the second

term in (6.2.3) penalises based on the deviation weighted uniformly across the

entire time interval t = [0, tf] (i.e., regulation control). The final term in (6.2.1)

penalises based on the integral square potential at the outer electrode, where the

control weight γϕ ≥ 0 represents the weighting of the cost of the control (i.e., it

allows us to choose how much the control should be penalised). Small values of

γϕ correspond to “cheap” controls (i.e., large values of ϕd are not penalised as

they have a weak effect on Jt,r), and large values of γϕ correspond to “expensive”

controls (i.e., large values of ϕd are penalised as they have a strong effect on Jt,r).

Note that we have not introduced any constraints on ϕd here due to the fact

that traversing the parameter space is already challenging due to its non-smooth

nature (of which we defer a detailed discussion until Section 6.2.6). However, in
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practice, the constraint ϕd ≤ kϕdmax should be imposed in order to prevent the

electric field from violating the dielectric limit (as done by Wray et al. [244]),

where the constant k < 1 is a “saturation constant” and ϕdmax is the dimensionless

constant potential at the outer electrode that would induce an electric field in the

gas region in the dielectric limit (which, as mentioned previously, is approximately

3× 106 V m−1 [271]).

Whilst we have outlined the present optimal control problem to be readily

applicable to both terminal and regulation control, hereafter, we have chosen to

focus our attention on terminal control only. Terminal control is less restrictive

compared to regulation control as it allows for poorer short-term performance pro-

vided that it yields long-term advantages [243, 277]. Nevertheless, it is important

to recognise that in real-world scenarios, such as in numerous industrial applica-

tions, the target shape is not generally time-independent. Simply achieving the

target shape isn’t sufficient; rather, it must be maintained throughout the entire

industrial process. Hence, regulation control often proves more pragmatic as it

measures the deviation of the interfacial shape from the target shape across the

entire time interval, rather than solely at the final time. However, regulation con-

trol is more difficult to implement and more computationally expensive, and so we

focus on terminal control in this thesis as an important first step to understanding

the optimal control problem at hand.

We proceed by setting (δt, δr) = (1, 0) in (6.2.3), and so the cost functional

(6.2.1) becomes

Jt = Ut + Cϕ, (6.2.4)

where Ut is referred to hereafter as the “terminal deviation measure” and is given

by

Ut =

∫ 2π

θ=0

[s(θ, tf)− starg(θ)]
2 dθ. (6.2.5)

The constrained optimisation problem is then

min
ϕd(θ,t)

Jt subject to (2.1.34), (2.3.44), and (2.3.66), (6.2.6)

subject to the initial condition s|t=0 = s0. As discussed in Section 1.7.2, to solve

the optimisation problem (6.2.6), we compute the direction in which the cost

functional Jt decreases most steeply with respect to the control (i.e., the descent

direction). To achieve this, we need to compute the negative of the gradient of the
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cost functional with respect to the control, i.e.,

−dJt

dϕd

. (6.2.7)

As explained by Boujo and Sellier [243], given the infinite number of degrees of

freedom in the control ϕd, evaluation of the gradient (6.2.7) numerically via a finite-

difference approach would require that the value of Jt is repeatedly evaluated for

each degree of freedom, one at a time. Clearly, this has a prohibitive computational

cost and so, as discussed in Section 1.7.2, it is common in the literature to use an

adjoint-based approach to compute the gradient (6.2.7) efficiently [229, 243, 244].

As discussed in Section 1.7.2, solving constrained optimisation problems such

as (6.2.6) is substantially more difficult than solving unconstrained optimisation

problems. We therefore proceed by converting the constrained problem (6.2.6)

into an unconstrained problem by introducing the Lagrangian,

L =Jt −
∫ tf

t=0

∫ 2π

θ=0

λs
{
1

2

(
s2
)
t
+ qθ

}
dθ dt (6.2.8)

−
∫ tf

t=0

∫ 2π

θ=0

λg
{
g ln

(
d

s

)
− ϵ2

6

[
g ln3

(
d

s

)]
θθ

− ϕd

}
dθ dt

−
∫ tf

t=0

∫ 2π

θ=0

λq
{
q +

ω

2
(1− s2)− ε2

(1− s2)2(1 + s2)sθ
2s3

(
q

s2 − 1

)
θ

+ ε2
(1− s2)(1 + s4 + 2s2(ln2 s− 1))

4s2

(
q

s2 − 1

)
θθ

+ ε
Re

16
(−1 + 2s2 + 2s6 − s4(3 + 4 ln s))

[(
q

s2 − 1

)
t

+

(
q2

(s2 − 1)2

)
θ

]
− ε

8
(1− s4 + 4s2 ln s)

[
κ

Ca
+ s sin θ + ẼbE

N − 2Re
q2

s2 − 1

]
θ

}
dθ dt,

where λs(θ, t), λg(θ, t), and λq(θ, t) are Lagrange multipliers which enforce the

governing equations (2.1.34), (2.3.44), and (2.3.66), respectively. Then, the opti-

misation problem becomes

min
ϕd(θ,t)

L, (6.2.9)

which can be solved using standard unconstrained optimisation techniques.

We take derivatives on functional spaces to be Fréchet derivatives, which we
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denote for a function f(ν) of a scalar or vector quantity ν as

∂f(ν)

∂ν
δν = lim

ε→0

f(ν + εδν − f(ν))

ε
(6.2.10)

for all δν [243]. By the chain rule, the total derivative of the Lagrangian (6.2.8)

with respect to the control ϕd is

dL
dϕd

=
∂L
∂ϕd

+
∂L
∂s

dh

dϕd

+
∂L
∂q

dq

dϕd

+
∂L
∂g

dg

dϕd

+
∂L
∂λs

dλs

dϕd

+
∂L
∂λq

dλq

dϕd

+
∂L
∂λg

dλg

dϕd

, (6.2.11)

which reduces to
dL
dϕd

=
∂L
∂ϕd

, (6.2.12)

when the following conditions are satisfied,

∂L
∂λs

= 0,
∂L
∂λg

= 0,
∂L
∂λq

= 0, (6.2.13)

∂L
∂s

= 0,
∂L
∂g

= 0,
∂L
∂q

= 0. (6.2.14)

The conditions (6.2.13) are simply the governing equations (2.1.34), (2.3.44), and

(2.3.66). Evaluation of the conditions (6.2.14) yields the adjoint equations for the

adjoint variables λs, λg, and λq: two initial-value PDEs for λs and λq, and one

boundary-value PDE for λg. The adjoint equations (6.2.14) are dependent on the

solutions s, q, and g to the governing equations (6.2.13). Their expanded forms

contain 413, 70, and 8 terms, respectively, and are thus omitted here for brevity.

If the conditions (6.2.13) and (6.2.14) are satisfied, then L = Jt and hence the

negative of the gradient of the cost functional with respect to the control (6.2.7)

becomes simply

−dJt

dϕd

= − ∂L
∂ϕd

. (6.2.15)

Evaluating (6.2.15) yields the descent direction,

−dJt

dϕd

= − ∂L
∂ϕd

= −
(
2γϕϕd(θ, t) + λg

)
. (6.2.16)

Evaluation of (6.2.16) requires the solution for λg. This is found by solving the

adjoint equations (6.2.14) which must be integrated backwards in time from t = tf

to t = 0 subject to periodicity conditions on λg and terminal conditions for λs, λq,
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and λg which are found from the constraints

∂L
∂s(θ, tf)

= 0,
∂L

∂q(θ, tf)
= 0,

∂L
∂g(θ, tf)

= 0, (6.2.17)

the evaluation of which yields

λs(θ, tf) = 2γϕ(s(θ, tf)− starg), λq(θ, tf) = 0, λg(θ, tf) = 0. (6.2.18)

We are now in a position to outline the iterative optimal control procedure, a

schematic of which is shown in Figure 6.3 for iteration n. At the first iteration

(i.e., n = 0) we choose an initial guess for ϕd, which we denote by ϕd0 . In Step 1,

given ϕd0 , we solve the governing equations (6.2.13) to obtain the solutions for s,

q, and g. In Step 2, we determine the terminal conditions on s, q, and g for use

in Step 3. In Step 3, given ϕd0 with s, q, and g obtained in Step 1, we solve the

adjoint equations (6.2.14) subject to the terminal conditions obtained in Step 2 to

obtain the solutions for λs, λq, and λg. In Step 4, given λg obtained in Step 3, we

evaluate the gradient (6.2.15) to yield the descent direction. In Step 5, given the

gradient from Step 4, we update the control ϕdn(θ, t) → ϕdn+1(θ, t) using a suitable

gradient-based method. Finally, we return to Step 1 and iterate the procedure

until convergence.

6.2.2 Results

In this section, we give an overview of the calculations that are performed to obtain

the results that will be presented next in Sections 6.2.3–6.2.5.

Throughout this section, in our numerical calculations we use the parameter

values (5.2.1) of Ca, Re, and d with ω = 1 and Ẽb = 10. Numerical solutions of

the governing equations (6.2.13) and the adjoint equations (6.2.14) are obtained

using the numerical scheme described in Appendix A.1. To update the control

in Step 4, either a Polak-Ribière [245] (in Sections 6.2.3 and 6.2.4) or a steepest

descent (in Section 6.2.5) conjugate gradient method is used to determine the

descent direction, and a golden section method [247] is used to perform the line

search to determine the descent distance (see Sections 1.7.2.2–1.7.2.4).

The initial guess ϕd0 is fixed as ϕd0 = 0.02, which was chosen to be small

to ensure that electrostatic effects do not overwhelm the system, and non-zero

in order for the control mechanism to be able to calculate the normalisation on
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Figure 6.3: The iterative optimal control procedure described in Section 6.2.1.
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the first iteration (which involves division by ϕd0). Note that, in theory, it is

possible that the outcome of the control could be improved by a “better” choice of

ϕd0 . However, as it is not possible to know if the control mechanism has converged

towards a global minimum or a local minimum (in which the gradient methods may

remain trapped), trial-and-error choices of ϕd0 are unlikely to yield a significant

advantage. Alternatively, one may use a Monte Carlo method to infer a promising

choice of ϕd0 , as used by Boujo and Sellier [243] (see earlier discussion in Section

1.7.2). However, we have chosen not to adopt this approach because it has a high

computational cost due to that fact that it randomly samples the parameter space.

The iterative optimal control procedure illustrated in Figure 6.3 is performed

until the convergence criterion is reached, namely, that L does not vary by more

than 10−10 across 10 iterations. In our calculations, each iteration is performed

over the time interval 0 ≤ t ≤ tf, where tf = 20. The value tf = 20 was chosen

to be fairly small due to the fact that, as shall be shown throughout this section,

terminal control acts only near the end of the time interval (hence there is no

benefit in running the mechanism for long times), but also large enough such that

the electric field has enough time to act on the system. We use the value γϕ = 10−13

for the control weight, which could be considered small compared to the control

weights used by other authors in other contexts (for example, Boujo and Sellier

[243] considered control weights within the range [10−8, 10−5]). This value was

initially chosen to test the feasibility of our control methodology. However, we

subsequently chose to retain this value after finding that the controls that result

from it are always realisable. In particular, in Sections 6.2.3–6.2.5, we show that

the resulting controls do not come close to the dimensionless potential which would

break the dielectric limit of air for the parameter values used in this section, which

is computed to be

ϕdmax =
(R̂2 − R̂1)

(
3× 106 V m−1

)
ϕ̂char

=
(3× 10−3m)

(
3× 106 V m−1

)
2.8× 10−2 V

≈ 3.2× 105. (6.2.19)

Hence, at present, it is not necessary to increase γϕ. Analysing the effect of varying

the value of the control weight could be an interesting direction for future study.
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Note that when choosing a target shape starg, it is crucial to ensure that the

total liquid volume is preserved. In other words, we should not attempt to control

the interfacial radius towards a target shape which would require a change in the

total mass of the system. With this in mind, in our calculations we have ensured

conservation of the liquid volume by choosing the initial (uniform) interfacial radius

s0 based on the desired target shape. Specifically, conservation of the liquid volume

requires

Vtarg = V |t=0, (6.2.20)

where Vtarg is the volume of the target shape and V |t=0 is the initial liquid volume,

given respectively by

Vtarg =

∫ 2π

0

∫ starg

1

r dr dθ =
1

2

∫ 2π

0

(
s2targ − 1

)
dθ, (6.2.21)

V0 =

∫ 2π

0

∫ s0

1

r dr dθ =
1

2

∫ 2π

0

(
s20 − 1

)
dθ. (6.2.22)

Solving (6.2.21) and (6.2.22) together for s0 yields

s0 =

(
1

2π

∫ 2π

0

s2targ dθ

)1/2

. (6.2.23)

It is straight-forward to see that the liquid volume is automatically conserved for

the uniform target shape starg = s0 (which will be considered in Section 6.2.3).

However, if we choose a nonuniform target shape such as, for example,

starg = 1.3 + 0.02 sin(2θ), (6.2.24)

(which will be considered in Section 6.2.4), then by (6.2.23), we must choose the

initial interfacial radius to be s0 = 1.30008.

Note that all of the figures throughout the remainder of this chapter are from

the final iteration. It will be useful to define the deviation U = U(t) of the

interfacial radius s from the target shape starg at any given time t as

U =
∣∣∣∣s(θ, t)− starg(θ)

∣∣∣∣
2
, (6.2.25)

where || · ||2 denotes the usual L2-norm.
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Jt Ut Ut (Ẽb = 0) Cϕ Iterations

1.19302× 10−8 1.19299× 10−8 3.55705× 10−3 3.35583× 10−13 83

Table 6.1: Results for controlling towards the target shape (6.2.26): the total cost

of the control (6.2.4), the terminal deviation measure Ut (6.2.5), the uncontrolled

terminal deviation measure, the cost of the control mechanism (6.2.2), and the

number of iterations required to determine the optimal control.

6.2.3 Uniform target shape

In this section, we revisit the problem of controlling the interfacial radius towards

its initial uniform shape which was discussed earlier in the context of feedback

control in Section 6.1. Specifically, in this case, we choose

starg = s0, (6.2.26)

where s0 = 1.3. The entries in Table 6.1 contain the total cost of the control (6.2.4),

the terminal deviation measure Ut (6.2.5), the uncontrolled terminal deviation

measure (i.e., for Ẽb = 0), the cost of the control mechanism (6.2.2), and the

number of iterations required to determine the optimal control, respectively. In this

instance, the optimal control procedure successfully converged after 83 iterations,

which had a runtime of approximately 0.55 hours in wall-clock time. The deviation

measure (6.2.5) at the final time t = tf was calculated to be Ut = 1.19299 × 10−8

in the controlled case, which is five orders of magnitude smaller than the terminal

deviation measure in the uncontrolled case, Ut = 3.55705×10−3. The total control

cost required to achieve the target shape was Jt = 1.19302× 10−8.

Figure 6.4 shows the final approach of the interfacial radius towards the target

shape (6.2.26) (shown as the thick red line) at times t = 20 − n/20 (for n =

0, 1, . . . , 20) (shown as the solid black lines). The interfacial radius at the final

time t = tf is shown in Figure 6.5 (a) as the dashed black line, which is in excellent

agreement with the desired target shape (6.2.26), shown as the thick red line. The

electric potential ϕd at the final time t = tf is shown in Figure 6.5 (b), indicating

that ϕd is weakest on the lower part of the cylinder. This is perhaps counter

intuitive, as one might have anticipated the electric field to instead be stronger

where the interfacial radius is least uniform (i.e., in this system, typically near

where the bulge of liquid naturally forms on the lower part of the cylinder). On
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Figure 6.4: The interfacial radius s at times t = 20−n/20 for n = 0, 1, . . . , 20 (solid

black lines) and the target shape (6.2.26) (thick red line). The arrow indicates the

direction of increasing time.
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Figure 6.5: (a) The interfacial radius s at the final time t = tf (dashed black line)

and the target shape (6.2.26) (solid red line). (b) The electric potential ϕd at the

final time t = tf.
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the contrary, as discussed earlier in Section 6.1, a stronger electric field where the

film is thinnest is of benefit, as this pulls these thinner regions towards the outer

electrode, thus shrinking the bulge of liquid as desired due to mass conservation.

Figure 6.6 shows the controlled evolution of s and ϕd over time, where the thick

red line highlights the final time t = tf. Note that Figures 6.6 (a) and (b) show the

same system as in Figure 5.18, which shows that for the same parameter values the

system exhibits a sinusoidal shape by time t = tf in the uncontrolled case. Figures

6.6 (a) and (b) show the evolution of s over the entire time interval and close to the

final time, respectively, revealing that the interface converges towards the target

shape (6.2.26) quickly as t approaches tf. Similarly, Figures 6.6 (c) and (d) show

the evolution of the electric potential ϕd over the entire time interval and close to

the final time t = tf, respectively, showing that terminal control acts during the

latter stages of the time interval. Additionally, Figure 6.6 (c) also shows that the

absolute value of ϕd never exceeds, or even comes close to, ϕdmax (6.2.19).

Figure 6.7 (a) shows the deviation (6.2.25) of the interfacial radius from the

target shape (6.2.26) over time in both the uncontrolled (shown as the dotted

line) and the controlled (shown as the dashed line) cases, along with the average

of the electric potential ϕd at each time step, which we denote by ϕavg, plotted

over time (shown as the dot-dashed line). The small value of the deviation (6.2.25)

at time t = tf in Figure 6.7 (a) confirms that the interface has been successfully

controlled towards the target shape, in particular, showing that the deviation

measure decreases sharply as t approaches tf. This demonstrates a key feature of

the terminal control process: there is less value in reaching the target shape early

in the time interval and holding it there until the final time than there is in keeping

the control weak until t approaches tf. Figure 6.7 (b) shows the evolution of the

maximum interfacial radius smax over time in both the uncontrolled (shown as the

dotted line) and the controlled (shown as the dashed line) cases. The maximum

interfacial radius reaches a final value of smax = 1.33697 in the uncontrolled case by

time t = tf compared to smax = 1.29997 at time t = tf in the controlled case. It can

be seen from Figure 6.7 (a) that ϕavg increases as t approaches tf, and decreases

again before tf is reached. As we shall see throughout the rest of this chapter,

qualitatively similar behaviour occurs in all of our results, and thus requires an

explanation. At present, we are not aware of any similar studies with which to

directly compare our results. Hence, we are not aware of any accepted explanation

for the observed sharp decrease in ϕavg. We hypothesise two possibilities: the first
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(a) (b)

(c) (d)

Figure 6.6: Terminal control of the thick-film WRIBL model towards the target

shape (6.2.26). The solid black lines show the evolution of (a), (b) the interfacial

radius s and (c), (d) the electric potential ϕd for (a), (c) 0 ≤ t ≤ tf shown at

times t = 31n/200 for n = 0, 1, . . . , 129 and (b), (d) 19.5 ≤ t ≤ tf shown at times

t = 19.500, 19.505, . . . , tf. The thick red line highlights the final time t = tf.
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Figure 6.7: (a) Semi-log plot of the deviation (6.2.25) of the uncontrolled interfacial

radius (dotted line) and the controlled interfacial radius (dashed line) from the

target shape (6.2.26) and the average of the electric potential ϕavg (dot-dashed

line) over time. (b) Evolution of the maximum interfacial radius smax in the

uncontrolled (dotted line) and the controlled (6.2.26) (dashed line) cases.

is that the control mechanism first gets the interfacial radius into a form that

is close enough to the target shape that capillarity can then naturally drive the

interfacial radius towards the target shape over the final time steps, hence the

strength of ϕavg can be reduced near t = tf. Note that we anticipate this reasoning

being particularly relevant for control towards the uniform target shape (6.2.26),

as capillarity favours a uniform interfacial radius. The second possibility, which we

consider to be the more likely explanation, is that there is a time lag between the

imposition of a particular control and the effect that it has. This is partially due

to the fact that the interface cannot transition instantaneously, and so transitions

smoothly from the point at which the control at imposed, but also due to the effect

of inertia, which exacerbates this time lag.

It instructive to consider what effect varying the parameters Ca, d, and Ẽb

from the original values Ca = 0.157, d = 2.5, and Ẽb = 10 has on the convergence

of the control mechanism. The entries in Table 6.2 contain the total cost of the

control (6.2.4), the terminal deviation measure Ut (6.2.5), the uncontrolled terminal

deviation measure, the cost of the control mechanism (6.2.2), and the number

of iterations required to determine the optimal control, respectively, for various

values of the parameters Ca, d, and Ẽb. Note that the results for the original

parameter values Ca = 0.157, d = 2.5, and Ẽb = 10 are given in the middle row

for each parameter and are highlighted in bold. Our results show that decreasing
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Value Jt Ut Ut (Ẽb = 0) Cϕ Iterations

Ca

0.03925 1.45504× 10−9 1.45422× 10−9 3.81860× 10−3 8.18592× 10−13 65
0.0785 4.02836× 10−9 4.02779× 10−9 3.51721× 10−3 5.74171× 10−13 85
0.1570 1.19302× 10−8 1.19299× 10−8 3.55705× 10−3 3.35583× 10−13 83
0.3140 6.39463× 10−9 6.39448× 10−9 3.72525× 10−3 1.55297× 10−13 74
0.6280 2.71162× 10−8 2.71160× 10−8 4.06327× 10−3 1.74321× 10−13 174

d

1.5 1.47659× 10−10 1.47648× 10−10 3.55705× 10−3 1.07036× 10−14 22
2 3.28732× 10−9 3.28722× 10−9 3.55705× 10−3 1.00299× 10−13 76
2.5 1.19302× 10−8 1.19299× 10−8 3.55705× 10−3 3.35583× 10−13 83
3 3.00835× 10−8 3.00827× 10−8 3.55705× 10−3 7.51303× 10−13 102
3.5 5.42654× 10−8 5.42640× 10−8 3.55705× 10−3 1.32845× 10−12 126

Ẽb

1 6.20071× 10−8 6.20022× 10−8 3.55705× 10−3 4.97087× 10−12 125
5 2.56403× 10−8 2.56395× 10−8 3.55705× 10−3 8.04266× 10−13 91
10 1.19302× 10−8 1.19299× 10−8 3.55705× 10−3 3.35583× 10−13 83
15 7.25095× 10−9 7.25075× 10−9 3.55705× 10−3 2.00087× 10−13 82
20 4.67908× 10−9 4.67895× 10−9 3.55705× 10−3 1.34609× 10−13 64

Table 6.2: Results for controlling towards the target shape (6.2.26) for various

values of Ca, d, and Ẽb: the total cost of the control (6.2.4), the terminal deviation

measure Ut (6.2.5), the uncontrolled terminal deviation measure, the cost of the

control mechanism (6.2.2), and the number of iterations required to determine the

optimal control. The results for the original parameter values Ca = 0.157, d = 2.5,

and Ẽb = 10 are highlighted in bold.

Ca (corresponding to strengthening capillarity) or decreasing d (corresponding to

moving the outer electrode closer to the interface) both result in more successful

control, as reflected in the general decrease in the terminal deviation measures

shown in Table 6.2. In these instances, the number of iterations required to reach

convergence and the total cost of the control decreases. Capillarity favours the

cylindrical shape and so strengthening it assists the control mechanism. To a

certain point, decreasing d helps the control mechanism, as the proximity of the

outer electrode diminishes the diffusive effect of Laplace’s equation making fine

control of the system easier. However, if d is too small, outer contact can occur,

in which case the algorithm fails at Step 1 and the iterative process is terminated.

Although instances of such failures due to small d do not appear in Table 6.2, they

(along with other instances of unsuccessful control) will be shown in Section 6.2.5

and discussed in detail in Section 6.2.6. Increasing Ẽb (corresponding to increasing

the electric potential difference) yields more successful control, as reflected in the

decrease in the terminal deviation measures shown in Table 6.2. In this case, the

total cost of the control and the number of iterations both decrease for increasing

Ẽb. Table 6.2 indicates that, for the parameters considered, the most successful



Chapter 6: Electrostatic control of thick-film coating flow 312

and computationally efficient control could be attained by choosing Ca = 0.1570,

Ẽb = 10, and d = 1.5, resulting in the lowest terminal deviation measure (Ut =

1.47659×10−10), the lowest cost of the control mechanism (Cϕ = 1.07036×10−14),

and the fewest iterations required for convergence (22).

6.2.4 Parametric study

In this section, we aim to obtain a clearer understanding of the capabilities of

the control mechanism, especially into the short-wave regime. To this end, we

investigate control of the interface towards nonuniform sinusoidal target shapes of

the form

starg = 1.3 +m sin(nθ) (6.2.27)

by conducting an investigation in (m,n) parameter space. Not only is this a

stringent test, but is also of industrial interest as control towards nonuniform

shapes results in an increase in the interfacial area which has numerous applications

in the enhancement of heat and mass transfer rates and in micro-manufacturing

(see Sections 1.6 and 1.7). We consider the amplitude m over the range 0.02 ≤
m ≤ 0.12 with step size 0.02, and the wavelength n over the range 1 ≤ n ≤ 10

with step size 1. The results are given in Table 6.3, wherein hyphens indicate

calculations which were unsuccessful. Unsuccessful calculations can correspond to

a variety of issues, which will be discussed in detail in Section 6.2.6. For now, we

note that in this section it was found that the control mechanism is successful so

long as the target shape does not deviate too far from what the underlying physics

are capable of supporting (i.e., it is difficult to successfully control towards target

shapes with short wavelengths and large amplitudes). For example, Table 6.3

shows that the attempt to control towards the target shape (6.2.27) for m = 0.10

and n = 10 was unsuccessful. Note that, in an attempt to control successfully

towards some of these more difficult target shapes, an alternative reformulation

of the Lagrangian was used as described in Appendix G. Calculations which used

the reformulation are identified by asterisks in Table 6.3.

Figure 6.8 shows the values of the terminal deviation measure given in Table

6.3 plotted over n for each value of m. The control mechanism was most suc-

cessful for the smallest amplitude considered (m = 0.02) and least successful for

the largest amplitude considered (m = 0.12). In general, the terminal deviation

measure increases for all m as the wavelength n increases, as one would expect.
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n Jt Ut Cϕ Iterations

0.02

1 9.34113× 10−8 9.34108× 10−8 5.45361× 10−13 109
2 1.77872× 10−8 1.77868× 10−8 4.29601× 10−13 68
3 1.34795× 10−8 1.34791× 10−8 3.88311× 10−13 89
4 1.42257× 10−8 1.42254× 10−8 3.83567× 10−13 76
5 1.42400× 10−8 1.42396× 10−8 3.86654× 10−13 90
6 1.68849× 10−8 1.68845× 10−8 4.01219× 10−13 143
7 2.07032× 10−8 2.07028× 10−8 4.15929× 10−13 132
8 2.38134× 10−8 2.38129× 10−8 4.44689× 10−13 160
9 4.78229× 10−8 4.78224× 10−8 4.67620× 10−13 92
10 7.88358× 10−8 7.88353× 10−8 4.89232× 10−13 111

0.04

1 3.15947× 10−7 3.15947× 10−7 6.82613× 10−13 72
2 8.15724× 10−8 8.15717× 10−8 6.68179× 10−13 74
3 1.37178× 10−7 1.37177× 10−7 7.09756× 10−13 90
4 8.94006× 10−8 8.94000× 10−8 6.14789× 10−13 60
5 4.04862× 10−8 4.04857× 10−8 4.70868× 10−13 76
6 4.71222× 10−8 4.71217× 10−8 4.58772× 10−13 104
7 5.91715× 10−8 5.91710× 10−8 4.36156× 10−13 143
8 1.19042× 10−7 1.19042× 10−7 5.02048× 10−13 180
9 2.21278× 10−7 2.21277× 10−7 5.62364× 10−13 2878
10 3.85946× 10−7 3.85946× 10−7 6.32153× 10−13 8492

0.06

1 8.87659× 10−7 8.87658× 10−7 7.99855× 10−13 85
2 1.46008× 10−6 1.46008× 10−6 1.42045× 10−12 79
3 1.31177× 10−6 1.31177× 10−6 1.28134× 10−12 64
4 2.15929× 10−6 2.15929× 10−6 1.34388× 10−12 63
5 1.58377× 10−6 1.58377× 10−6 1.21328× 10−12 71
6 2.49147× 10−7 2.49146× 10−7 6.16372× 10−13 76
7 3.73202× 10−7 3.73201× 10−7 5.51196× 10−13 134
8 7.68039× 10−7 7.68039× 10−7 4.87538× 10−13 92
9 1.41831× 10−4 1.41831× 10−4 6.48910× 10−13 31
10 3.67676× 10−3 3.67676× 10−3 8.15632× 10−13 33

0.08

1 2.00446× 10−6 2.00446× 10−6 8.95598× 10−13 74
2 5.21239× 10−6 5.21239× 10−6 1.97452× 10−12 116
3 3.68830× 10−6 3.68829× 10−6 1.72911× 10−12 64
4 4.00660× 10−6 4.00659× 10−6 1.60223× 10−12 55
5 5.74503× 10−6 5.74503× 10−6 1.64981× 10−12 65
6 5.46700× 10−6 5.46700× 10−6 1.54826× 10−12 69
7 1.71350× 10−6 1.71350× 10−6 6.75996× 10−13 82
8 3.86916× 10−6 3.86916× 10−6 6.15693× 10−13 102
9 1.15858× 10−2 1.15858× 10−2 7.84220× 10−13 24
10 3.67850× 10−3 3.67850× 10−3 6.83406× 10−13 19

0.10

1 3.89112× 10−6 3.89112× 10−6 1.01693× 10−12 76
2 7.40558× 10−6 7.40558× 10−6 2.10519× 10−12 181
3 1.88780× 10−2 1.88780× 10−2 1.98450× 10−12 18
4 6.85408× 10−6 6.85408× 10−6 1.90372× 10−12 95
5 8.79466× 10−6 8.79466× 10−6 1.81896× 10−12 125
6 1.76596× 10−5 1.76596× 10−5 2.10087× 10−12 1735
7 6.33742× 10−6 6.33742× 10−6 1.26146× 10−12 105
8∗ 3.67502× 10−5 3.67502× 10−5 2.34995× 10−12 58
9 6.02524× 10−3 6.02524× 10−3 7.89339× 10−13 17
10 − − − −

0.12

1 1.28327× 10−4 1.28327× 10−4 1.17056× 10−12 44
2 1.79064× 10−5 1.79064× 10−5 2.40604× 10−12 79
3∗ 3.24800× 10−2 3.24800× 10−2 2.54683× 10−12 21
4∗ 1.49700× 10−2 1.49700× 10−2 3.59810× 10−12 14
5 − − − −
6 1.48516× 10−5 1.48516× 10−5 2.02872× 10−12 5736
7 2.19513× 10−5 2.19513× 10−5 1.85548× 10−12 422
8 − − − −
9 8.82820× 10−3 8.82820× 10−2 7.53121× 10−13 19
10 1.67698× 10−2 1.67698× 10−2 8.50459× 10−13 17

Table 6.3: Results of the parametric study in (m,n) parameter space in control-

ling towards the target shape (6.2.27): the total cost of the control (6.2.4), the

terminal deviation measure Ut (6.2.5), the cost of the control mechanism (6.2.2),

and the number of iterations required to determine the optimal control. Hyphens

indicate unsuccessful calculations and asterisks indicate calculations which utilised

the alternative form of the Lagrangian in Appendix G.
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Figure 6.8: The terminal deviation measure Ut (6.2.5) for 1 ≤ n ≤ 10 with m =

0.02 (circles), m = 0.04 (squares), m = 0.06 (diamonds), m = 0.08 (triangles),

m = 0.10 (inverse triangles), andm = 0.12 (rectangles). Symbols represent integer

values of n.

In order to gain a clearer understanding of parameter space, we investigate first

the effect of increasing n for a fixed m in Section 6.2.4.1, before considering the

effect of increasing m for a fixed n in Section 6.2.4.2. Although in what follows

we analyse specific examples, note that we found that the trends that will be de-

scribed throughout this section for increasing m and n were consistent with what

we found for other values of m and n.

6.2.4.1 Varying n

In this section, we investigate the effect of varying n for a fixed m on the suc-

cess of the control. We first consider control towards the target shape (6.2.27)

for m = 0.02 (as this was the amplitude value that corresponds to the most suc-

cessful control shown in Table 6.3) for increasing wavenumbers n = 2, 4, 6, and

8. The entries in Table 6.4 contain the wavenumber n, the total cost of the con-

trol (6.2.4), the terminal deviation measure Ut (6.2.5), the uncontrolled terminal

deviation measure, the cost of the control mechanism (6.2.2), and the number of

iterations required to determine the optimal control. As n increases, as does the

number of iterations and the terminal deviation measure, as expected given the

increasingly shorter wavelengths. The terminal deviation measures for all n given

in Table 6.4 are five orders of magnitude smaller than the deviation measures in
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n Jt Ut Ut (Ẽb = 0) Cϕ Iterations

2 1.77872× 10−8 1.77868× 10−8 5.19732× 10−3 4.29601× 10−13 68
4 1.42257× 10−8 1.42254× 10−8 4.82170× 10−3 3.83567× 10−13 76
6 1.68849× 10−8 1.68845× 10−8 4.82333× 10−3 4.01219× 10−13 143
8 2.38134× 10−8 2.38129× 10−8 4.82418× 10−3 4.44689× 10−13 160

Table 6.4: Results for controlling towards the target shape (6.2.27) for m = 0.02

and n = 2, 4, 6, and 8: the total cost of the control (6.2.4), the terminal deviation

measure Ut (6.2.5), the uncontrolled terminal deviation measure, the cost of the

control mechanism (6.2.2), and the number of iterations required to determine the

optimal control.

their corresponding uncontrolled cases. Figure 6.9 shows (a), (c), (e), (g) the in-

terfacial radius s at the final time t = tf (shown as the dashed black line) with the

target shape (6.2.27) (shown as the thick red line) and (b), (d), (f), (h) the electric

potential ϕd at the final time t = tf (shown as the dashed black line) for (a), (b)

n = 2, (c), (d) n = 4, (e), (f) n = 6, and (g), (h) n = 8. At the final time, the

electric potential ϕd approximately mirrors the target shape. In general, a stronger

electric potential is required for larger n, and is strongest in each system where

the maxima in the target shape are located in order to pull the film towards the

outer electrode to the desired amplitude. For the same reason that was described

in Section 6.2.3, ϕd is smaller on the lower part of the cylinder where the liquid

accumulates into a bulge.

Figure 6.10 shows the evolution of (a), (c), (e), (g) the interfacial radius s and

(b), (d), (f), (h) the electric potential ϕd for 19.5 ≤ t ≤ tf for (a), (b) n = 2, (c),

(d) n = 4, (e), (f) n = 6, and (g), (h) n = 8, where the thick red line highlights

the final time t = tf. As established in Section 6.2.3, the control mechanism acts

only near the end of the time interval, therefore it is instructive to observe the

evolution close to t = tf. Hence, throughout the rest of this section, we focus our

attention near t = tf. Figure 6.10 shows that the interface converges towards the

target shape (6.2.27) quickly as t approaches tf. Additionally, Figures 6.10 (b),

(d), (f), and (h) show that the absolute value of ϕd never exceeds, or even comes

close to, ϕdmax (6.2.19).

Figure 6.11 shows the deviation (6.2.25) of the interfacial radius from the target

shape (6.2.27) over time in both the uncontrolled (shown as the dotted line) and

the controlled (shown as the dashed line) cases, along with ϕavg (shown as the dot-
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Figure 6.9: (a), (c), (e), (g) The interfacial radius s (dashed black line) with the

target shape (6.2.27) (solid red line) and (b), (d), (f), (h) the electric potential ϕd

(dot-dashed black line) shown at the final time t = tf for m = 0.02 and (a), (b)

n = 2, (c), (d) n = 4, (e), (f) n = 6, and (g), (h) n = 8.
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(c) (d)

(e) (f)
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Figure 6.10: Terminal control of the thick-film WRIBL model towards the target

shape (6.2.27) shown for 19.5 ≤ t ≤ tf at times t = 19.500, 19.505, . . . , tf. The

solid black lines show the evolution of (a), (c), (e), (g) the interfacial radius s and

(b), (d), (f), (h) the electric potential ϕd for m = 0.02 and (a), (b) n = 2, (c), (d)

n = 4, (e), (f) n = 6, and (g), (h) n = 8. The thick red line highlights the final

time t = tf.
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Figure 6.11: Semi-log plots of the deviation (6.2.25) of the uncontrolled interfacial

radius (dotted line) and the controlled interfacial radius (dashed line) from the

target shape (6.2.27) and the average of the electric potential ϕavg (dot-dashed

line) over time for m = 0.02 and (a) n = 2, (b) n = 4, (c) n = 6, and (d) n = 8.

dashed line) for (a) n = 2, (b) n = 4, (c) n = 6, and (d) n = 8. The small values

of the deviation (6.2.25) at the final time t = tf confirm that the interface has been

successfully controlled towards the respective desired target shapes. Note that the

more erratic nature of the deviation measure for n = 2 seen in Figure 6.11 (a)

is a reflection of the fact that the n = 2 mode is frequently a natural shape for

the interfacial radius to take whilst the liquid oscillates around the cylinder. As n

increases, the average potential ϕavg increases: for n = 2, 4, 6, and 8, the maximum

values of ϕavg over the entire time interval are 0.5633, 1.2029, 2.0044, and 3.0364,

respectively. In particular, Figure 6.11 shows that, as discussed in Section 6.2.3,

ϕavg peaks before the end of the time interval and decreases sharply over the final

time steps.

Figure 6.12 illustrates the successful control of the interface towards the target

shape (6.2.27) (shown as the red line) for m = 0.02 and n = 8 at times (a) t = 0
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(a) (b) (c)

Figure 6.12: Terminal control of the interface s (dashed black line) towards the

target shape (6.2.26) (solid red line) for m = 0.02 and n = 8 shown at times (a)

t = 0 and (b) t = tf. (c) The uncontrolled interface s shown at time t = tf.

and (b) t = tf. Figure 6.12 (c) shows the uncontrolled system at time t = tf, at

which time a bulge of liquid is oscillating around the cylinder. Note that the bulge

is not immediately obvious in Figure 6.12 (c), but can be seen in a qualitatively

similar situation in Figure 5.18 (in which s0 = 1.3, compared to s0 = 1.30008 for

m = 0.02 and n = 8 by (6.2.23)).

As in Section 6.2.3, it is instructive to consider what effect varying the param-

eters Ca, d, and Ẽb have on the success of the control mechanism. We consider

control towards (6.2.27) for m = 0.02 and n = 8, the results for which are shown

in Table 6.5 for various parameter values. Our results show that, as elucidated

in Section 6.2.3, decreasing d results in more successful control, as reflected in

the decrease in the terminal deviation measures shown in Table 6.5. As before,

increasing Ẽb yields more successful control whilst the total control cost of the

control mechanism decreases overall. For this choice of target shape, varying Ca

does not significantly increase nor decrease the terminal deviation measure, owing

to the fact that we are considering a small amplitude (m = 0.02) which results in a

small curvature. Hence, varying the strength of capillarity should not be expected

to have a significant effect on the outcome of the control. As in the case of a uni-

form target shape described in Section 6.2.3, Table 6.5 indicates that for control

towards (6.2.27) with m = 0.02 and n = 8, the most successful and computation-

ally efficient control is afforded by choosing Ca = 0.1570, Ẽb = 10, and d = 1.5,

resulting in the lowest terminal deviation measure (Ut = 5.71670× 10−9), the low-

est total control cost (Jt = 5.71668× 10−9), and the fewest iterations required for
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Value Jt Ut Ut (Ẽb = 0) Cϕ Iterations

Ca

0.03925 4.63569× 10−8 4.63558× 10−8 5.08644× 10−3 1.13583× 10−12 173
0.0785 2.99222× 10−8 2.99215× 10−8 4.78354× 10−3 7.47456× 10−13 103
0.1570 2.38134× 10−8 2.38129× 10−8 4.82418× 10−3 4.44689× 10−13 160
0.3140 8.65348× 10−8 8.65326× 10−9 4.99219× 10−3 2.21438× 10−13 104
0.6280 5.91139× 10−8 5.91137× 10−8 5.33214× 10−3 2.33224× 10−13 2509

d

1.5 5.71670× 10−9 5.71668× 10−9 4.82418× 10−3 1.16942× 10−14 73
2 1.02333× 10−8 1.02332× 10−8 4.82418× 10−3 1.19602× 10−13 178
2.5 2.38134× 10−8 2.38129× 10−8 4.82418× 10−3 4.44689× 10−13 160
3 6.53168× 10−8 6.53156× 10−8 4.82418× 10−3 1.19687× 10−12 108
3.5 9.50412× 10−8 9.50392× 10−8 4.82418× 10−3 1.97266× 10−12 104

Ẽb

1 9.44317× 10−8 9.44256× 10−8 4.82418× 10−3 6.11802× 10−12 221
5 4.57904× 10−8 4.57894× 10−8 4.82418× 10−3 1.00164× 10−12 252
10 2.38134× 10−8 2.38129× 10−8 4.82418× 10−3 4.44689× 10−13 160
15 1.98683× 10−8 1.98680× 10−8 4.82418× 10−3 2.65672× 10−13 278
20 1.28750× 10−8 1.28748× 10−8 4.82418× 10−3 1.86087× 10−13 180

Table 6.5: Results for controlling towards the target shape (6.2.27) for m = 0.02

and n = 8 for various values of Ca, d, and Ẽb: the total cost of the control (6.2.4),

the terminal deviation measure Ut (6.2.5), the uncontrolled terminal deviation

measure, the cost of the control mechanism (6.2.2), and the number of iterations

required to determine the optimal control. The results for the original parameter

values Ca = 0.157, d = 2.5, and Ẽb = 10 are highlighted in bold.

convergence (73).

6.2.4.2 Varying m

In this section, we investigate the effect of varying m for a fixed n on the success

of the control. Table 6.3 shows that n = 8 is one of the highest wavenumbers

which affords successful control for all amplitudes m that we have considered (in

the sense that the control mechanism is successful for all m considered and does

not diverge). Hence, to investigate the effect of increasing the amplitude m, we

fix the wavenumber n as n = 8 and consider amplitudes m = 0.02, 0.04, 0.06, and

0.08. The entries in Table 6.6 contain the amplitude m, the terminal deviation

measure Ut (6.2.5), the uncontrolled terminal deviation measure, the total cost

of the control Jt (6.2.4), and the number of iterations required to determine the

optimal control. Increasing m results in an increase in the terminal deviation

measure as expected, which is at least four orders of magnitude smaller than the

deviation measure in the corresponding uncontrolled cases for all m considered.

Increasing m also results in an increase in the total control cost. Figures 6.13 (a)
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m Jt Ut Ut (Ẽb = 0) Cϕ Iterations

0.02 2.38134× 10−8 2.38129× 10−8 4.82333× 10−3 4.44689× 10−13 160
0.04 1.19042× 10−7 1.19042× 10−7 8.62278× 10−3 5.02048× 10−13 180
0.06 7.68039× 10−7 7.68039× 10−7 1.49572× 10−2 4.87538× 10−13 92
0.08 3.86916× 10−6 3.86916× 10−6 2.38296× 10−2 6.15693× 10−13 102

Table 6.6: Results for controlling towards the target shape (6.2.27) for n = 8 with

m = 0.02, 0.04, 0.06, and 0.08: the total cost of the control (6.2.4), the terminal

deviation measure Ut (6.2.5), the uncontrolled terminal deviation measure, the

cost of the control mechanism (6.2.2), and the number of iterations required to

determine the optimal control.

and (c) show the interfacial radius s (shown as the dashed black line) with the

target shape (6.2.27) (shown as the thick red line), and Figures 6.13 (b), and (d)

show ϕd at the final time t = tf (shown as the dashed black line) for (a), (b)

m = 0.04 and (c), (d) m = 0.08. In particular, Figures 6.13 (b) and (d) show

that control towards target shapes with larger amplitudes requires a larger electric

potential difference.

Figure 6.14 shows the evolution of (a), (b) the interfacial radius s and (c), (d)

the electric potential ϕd for n = 8 and m = 0.08 over the time intervals (a), (c)

19.5 ≤ t ≤ tf and (b), (d) 19.955 ≤ t ≤ tf, where the thick red line highlights

the final time t = tf. Figures 6.14 (b) and (d) show s and ϕd at the final 10 time

steps, respectively. In particular, Figure 6.14 shows that s converges successfully

towards the desired target shape as t approaches tf, and ϕd peaks before the end

of the time interval before subsequently decreasing.

Figure 6.15 shows the deviation (6.2.25) of the interfacial radius from the target

shape (6.2.27) over time in both the uncontrolled (shown as the dotted line) and

the controlled (shown as the dashed line) cases, along with ϕavg (shown as the dot-

dashed line) for n = 8 with (a)m = 0.04 and (b)m = 0.08. The small values of the

deviation (6.2.25) at time t = tf confirm that the interface has been successfully

controlled towards the desired target shapes. In particular, Figure 6.15 shows that

the deviation measures are higher for m = 0.08. Likewise, as m increases, the

maximum value of ϕavg increases from 4.1138 for m = 0.04 to 4.8753 for m = 0.08.

The successful control of the interface towards the target shape (6.2.27) is shown

in Figure 6.16 for n = 8 and (a)–(c) m = 0.04 and (d)–(f) m = 0.08 at times (a),

(d) t = 0 and (b), (e) t = tf. Figures 6.16 (c) and (f) show the uncontrolled system
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Figure 6.13: (a), (c) The interfacial radius s (dashed black line) and the target

shape (6.2.27) (solid red line) and (b), (d) the electric potential ϕd (dot-dashed

black line) shown at the final time t = tf for n = 8 and (a), (b) m = 0.04 and (c),

(d) m = 0.08.

at time t = tf.

6.2.5 Square target shape

In this section, we demonstrate the extent of the capabilities of the control mech-

anism by controlling the interfacial radius towards a square target shape. In par-

ticular, we choose

starg = 1.2 sec

(
1

2
arcsin [sin (2θ)]

)
, (6.2.28)

which represents a square with sides of length 2.4 which do not touch the surface

of the cylinder. In order to increase the likelihood of the control mechanism be-

ing successful, throughout this section in our calculations we use the alternative

reformulation of the Lagrangian described in Appendix G. In addition, we do not

use the Polak-Ribière method to determine the descent direction because in our

numerical investigations we found that it was resulting in many unsuccessful cal-

culations. Instead, we use the method of steepest descent as described in Section

1.7.2.2. There is no clear explanation for the unfavourable outcome when using

the Polak-Ribière method, other than the fact that, as explained in Section 1.7.2.3,

its derivation is heuristic, and hence there is no guarantee that it will be of benefit
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(a) (b)

(c) (d)

Figure 6.14: Terminal control of the thick-film WRIBL model towards the target

shape (6.2.27) for m = 0.08 and n = 8. The solid black lines show the evolution

of (a), (b) the interfacial radius s and (c), (d) the electric potential ϕd for (a), (c)

19.5 ≤ t ≤ tf and (b), (d) 19.955 ≤ t ≤ tf at times t = 19.500, 19.505, . . . , tf. The

thick red line highlights the final time t = tf.
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Figure 6.15: Semi-log plots of the deviation (6.2.25) of the uncontrolled interfacial

radius (dotted line) and the controlled interfacial radius (dashed line) from the

target shape (6.2.27) and the average of the electric potential ϕavg (dot-dashed

line) over time for n = 8 and (a) m = 0.04 and (b) m = 0.08.

(a) (b) (c)

(d) (e) (f)

Figure 6.16: Terminal control of the interface s (dashed black line) towards the

target shape (6.2.27) (solid red line) for n = 8 and (a)–(c) m = 0.04 and (d)–

(f) m = 0.08, shown at times (a), (d) t = 0 and (b), (e) t = tf. (c), (f) The

uncontrolled interface s at time t = tf.
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Jt Ut Ut (Ẽb = 0) Cϕ Iterations

1.71545× 10−3 1.71545× 10−3 1.50986× 10−1 6.54644× 10−13 134

Table 6.7: Results for controlling towards the target shape (6.2.28): the total cost

of the control (6.2.4), the terminal deviation measure Ut (6.2.5), the uncontrolled

terminal deviation measure, the cost of the control mechanism (6.2.2), and the

number of iterations required to determine the optimal control.
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Figure 6.17: (a) The interfacial radius s at the final time t = tf (dashed black

line) and the target shape (6.2.28) (solid red line). (b) The electric potential ϕd

(dot-dashed black line) at the final time t = tf.

in any particular situation [245].

The results are given in Table 6.7. In this instance, the optimal control pro-

cedure converged after 134 iterations, which had a runtime of approximately 1.51

hours in wall-clock time. The total control cost was Jt = 1.71545× 10−3 and the

terminal deviation measure was Ut = 1.71545 × 10−3, an improvement upon the

terminal deviation measure in the uncontrolled case which was Ut = 1.50985×10−1.

The terminal deviation measure is at least three orders of magnitude larger than

the terminal deviation measures for all of the cases considered in Sections 6.2.3

and 6.2.4, owing to the significantly more difficult target shape considered in this

section due to the sharp corners that are required by the square. The interfacial

radius at the final time t = tf is shown in Figure 6.17 (a) as the dashed black line

along with the target shape (6.2.28) which is shown as the thick red line. The

match with the target shape is imperfect, as expected given that corner configura-

tions are not easily supported by capillarity and electrostatic effects. Despite this,

the control is fairly successful, clearly replicating the general form of the square.
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The electric potential ϕd at the final time t = tf is shown in Figure 6.17 (b), which

has sharp peaks corresponding to where the corners are desired.

Figure 6.18 shows the evolution of (a), (b) the interfacial radius s and (c), (d)

the electric potential ϕd over the time intervals (a), (c) 19.5 ≤ t ≤ tf and (b),

(d) 19.955 ≤ t ≤ tf, where the thick red line highlights the final time t = tf.

Additionally, Figures 6.18 (c) and (d) show that the absolute value of ϕd never

exceeds, or even comes close to, ϕdmax (6.2.19). The deviation measures (6.2.25) for

both the uncontrolled (shown as the dotted line) and the controlled (shown as the

dashed line) interfacial radius are shown in Figures 6.19 (a) and (b), respectively.

As before, the terminal control mechanism acts only near the end of the time

interval. This can be seen from Figure 6.19 (b) which shows that the deviation

measure begins a steep decline to its final value after t ≈ 19.8. Similarly, Figures

6.19 (c) and (d) show the average electric potential ϕavg over time, demonstrating

its sharp increase close to t = tf, followed by the sharp decline before the final

time is reached. The system is shown in Figure 6.20 at times (a) t = 0 and

(b) t = tf, compared with the desired target shape (shown as the red line). As

discussed previously, the match is imperfect, as the control mechanism struggles

to reproduce the sharp corners of the square. However, it is still a significant

improvement upon the uncontrolled interfacial radius at time t = tf, as shown in

Figure 6.20 (c) in which the bulge of liquid is rotating around the cylinder.

Table 6.8 contains the results of the control mechanism for various values of Ca,

d, and Ẽb, wherein hyphens indicate instances in which the control mechanism was

unsuccessful. As elucidated in Section 6.2.3, to a certain point, decreasing d helps

the control mechanism as this results in an increase in the strength of the electric

field. However, when d is too small, outer contact can occur (see, for example, the

unsuccessful control for d = 1.5 in Table 6.8). Note that there are other instances

of unsuccessful control in Table 6.8 for which there is not such a clear explanation.

We endeavour to explain these in Section 6.2.6.

6.2.6 Discussion of unsuccessful control calculations

In this section, we discuss some of the possible causes of unsuccessful control

calculations which were identified in Sections 6.2.3–6.2.5

Unsuccessful control can correspond to a variety of issues in which the Newton–

Raphson iteration procedure for the time-stepping (see Appendix A) does not
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(a) (b)

(c) (d)

Figure 6.18: Terminal control of the thick-film WRIBL model towards the target

shape (6.2.28). The solid black lines show the evolution of (a), (b) the interfacial

radius s and (c), (d) the electric potential ϕd for (a), (c) 19.5 ≤ t ≤ tf at times t =

19.500, 19.505, . . . , tf and (b), (d) 19.955 ≤ t ≤ tf at times t = 19.955, 19.660, . . . , tf.

The thick red line highlights the final time t = tf.
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Figure 6.19: (a), (b) The deviation (6.2.25) of the uncontrolled interfacial radius

(dotted line) and the controlled interfacial radius (dashed line) from the target

shape (6.2.28) over time. (c), (d) The average of the electric potential ϕavg (dot-

dashed line) over time. Evolution shown at times (a), (c) 0 ≤ t ≤ tf and (b), (d)

19.5 ≤ t ≤ tf.

(a) (b) (c)

Figure 6.20: Terminal control of the interface s (dashed black line) towards the

target shape (6.2.28) (solid red line) shown at times (a) t = 0 and (b) t = tf. (c)

The uncontrolled interface s at time t = tf.
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Value Jt Ut Ut (Ẽb = 0) Cϕ Iterations

Ca

0.03925 1.89810× 10−2 1.60514× 10−1 1.89810× 10−2 1.43589× 10−12 75
0.0785 6.35178× 10−3 1.53180× 10−1 6.35178× 10−3 1.01627× 10−12 77
0.1570 1.71545× 10−3 1.50986× 10−1 1.71545× 10−3 6.54644× 10−13 134
0.3140 − − − − −
0.6280 4.82623× 10−2 1.67989× 10−1 4.82623× 10−2 2.34934× 10−13 30

d

1.5 − − − − −
2 6.47903× 10−2 1.50986× 10−1 6.47903× 10−2 1.22684× 10−13 43
2.5 1.71545× 10−3 1.50986× 10−1 1.71545× 10−3 6.54644× 10−13 134
3 1.70838× 10−3 1.50986× 10−1 1.70838× 10−3 1.64956× 10−12 297
3.5 3.69771× 10−3 1.50986× 10−1 3.69771× 10−3 3.06797× 10−12 151

Ẽb

1 2.23722× 10−3 1.50986× 10−1 2.23722× 10−3 4.70667× 10−12 116
5 − − − − −
10 1.71545× 10−3 1.50986× 10−1 1.71545× 10−3 6.54644× 10−13 134
15 − − − − −
20 1.67844× 10−3 1.50986× 10−1 1.67844× 10−3 3.90000× 10−13 155

Table 6.8: Results for controlling towards the target shape (6.2.28) for various

values of Ca, d, and Ẽb: the total cost of the control (6.2.4), the terminal deviation

measure Ut (6.2.5), the uncontrolled terminal deviation measure (i.e., for Ẽb = 0),

the cost of the control mechanism (6.2.2), and the number of iterations required

to determine the optimal control. The results for the original parameter values

Ca = 0.157, d = 2.5, and Ẽb = 10 are highlighted in bold.

converge. In our calculations, we have observed two distinct instances of this

occurring: the first case is when the algorithm outlined in Figure 6.3 fails at one of

the steps and is subsequently terminated, and the second case is when the iteration

becomes trapped in a local minimum.

In the latter case, the unsuccessful calculations could be reflective of an initial

guess ϕd0 that is too far from the true solution, or in an unfavorable region of

parameter space, in which the gradient descent calculations remain trapped and

cannot subsequently converge towards the global minimum (or a more suitable

local minimum). On the other hand, the inability to converge towards the target

shape (but still remaining relatively close) could simply be a representation of the

fact that not all target shapes are attainable. It is, of course, to be expected that

the convergence becomes worse for target shapes with sharper interfaces due to the

fact that there are many regularisation mechanisms present in the WRIBL model

(e.g., capillarity) which render it difficult for the control mechanism to produce

sharp interfaces.

In the former case, the rationale is less straightforward. Whilst we cannot, at

this stage, definitively exclude the possibility that these instances of unsuccessful
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control are due to an error in our code, we note that traversing this parameter space

is challenging due to its non-smooth nature (as mentioned previously, certain con-

trols can cause outer contact and consequential failure of the forwards simulation)

and it is possible that solutions exist that the gradient descent method is unable

to find. The gradient descent calculations can end up in a region of parameter

space in which the adjoint calculation is not stable. Notably, the adjoint equations

are linear, and so can have catastrophic instabilities. The optimal control problem

considered in this chapter is a novel problem of a difficulty which has not been

observed in other systems due to their simpler state spaces and governing equa-

tions (see, for example, Boujo and Sellier [243] and Wray et al. [244]). Indeed,

whilst the governing PDEs themselves (a coupled triplet of two initial value and

one boundary value problems) are both extremely stiff (which renders it difficult to

obtain an accurate and stable solution using explicit time-stepping methods) and

highly nonlinear (resulting in their computation being challenging, especially to

solve on the sub-second timescale required), it is actually the unusual complexity

of our state space that proves most problematic. The system exhibits a variety of

modes of failure (including the potential for multivaluedness, outer contact, and

even changes in topology) which result in the state space being not only non-

smooth, but actually not simply-connected. Due to the complexity of the state

space of the problem at hand, it is not, as yet, possible to directly relate individual

instances of termination to the occurrence of any of these individual failure modes

with certainty. In contrast, the parameter regime of Wray et al. [244] was carefully

chosen so as to avoid the worst of these issues. Our algorithm traverses state space

via a standard conjugate gradient method, which had to be modified specially to

cope with the absence of smoothness. For example, this proves problematic in

line searches where the existence of a local minimum is no longer guaranteed. We

are unaware of any comparably complicated state spaces having been explored

previously.

6.3 Concluding remarks

In this chapter, we have shown that the electric field can be utilised as a mechanism

by which to successfully control the thick-film system governed by the WRIBL

model that was derived in Chapter 2 and analysed in Chapter 5. In particular,

the fast computations afforded by the WRIBL model have allowed us to solve
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complex, challenging optimisation problems rapidly, which could have important

consequences for applications in industrial settings.

Feedback control was applied to the system in Section 6.1, in which it was

demonstrated that the electric field can be used to reduce the maximum inter-

facial radius, with the aim of controlling the interfacial shape towards a uniform

state. The control was imposed by employing a potential which dictates that the

electric field is switched on only where the interfacial radius deviates from the

initial interfacial radius by more than a certain tolerance. Our results showed that

the control mechanism significantly reduces the value of the maximum interfacial

radius compared to the uncontrolled case.

Optimal control was applied to the system in Section 6.2, in which we formu-

lated and implemented a robust control framework designed to finely control the

interfacial radius towards some specified target shapes. The framework of the gen-

eral optimal control problem was formulated in Section 6.2.1 and was subsequently

specialised to focus on terminal control. We demonstrated that, in general, the

terminal control mechanism acts only near the end of the time interval, as there

is less value in reaching the target shape early in the time interval than there is in

keeping the controls weak until t approaches tf. One of the key results of this sec-

tion is the fact that the average of the electric potential at the outer electrode ϕavg

decreases sharply near the final time, for which we hypothesised two possibilities.

The first possibility is that near the end of the time interval the control mechanism

has manipulated the interfacial radius into a shape which is close enough to the

target that capillarity can drive the interfacial radius towards the target over the

final time steps. The second possibility, which we consider to be the more likely

explanation, is that there is a time lag between the imposition of a particular con-

trol and the effect that it has, which we believe is partially due to the fact that the

interface cannot transition instantaneously and so transitions smoothly from the

point at which the control is imposed, but also due to the effect of inertia which

exacerbates this time lag.

The iterative optimisation procedure was found to be successful in general in

controlling towards the three different types of target shapes that we considered,

namely, a uniform shape in Section 6.2.3, a family of nonuniform shapes in Section

6.2.4, and a square shape in Section 6.2.5. We demonstrated successful control of

the interface towards its initial uniform radius in Section 6.2.3, yielding a terminal

deviation measure five orders of magnitude smaller than in the uncontrolled case.
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The potential is required to be stronger where the film is thinner, in turn reducing

the maximum height of the bulge of liquid due to mass conservation. A paramet-

ric study in (m,n) parameter space was conducted in Section 6.2.4, in which we

demonstrated that increasing m or n both result in less successful control. Overall,

the control mechanism was shown to be very successful even for wavelengths far

into the challenging short-wave regime. Finally, in Section 6.2.5, we demonstrated

control of the interface towards a square shape. This final section was the most

stringent test of the control mechanism thus far, in which it was shown that the

match with the target shape is imperfect (as expected, given that corner struc-

tures are not easily supported by capillary and electrostatic effects). Nevertheless,

the control was deemed successful as it effectively achieved a shape that can be

described as approximately square, still resulting in an overall decrease in the ter-

minal deviation measure by two orders of magnitude compared to the uncontrolled

case. In general, it was found that weakening capillarity, increasing the electric

potential difference, or moving the outer electrode closer to the interface all result

in more successful control.

Finally, we conclude by reiterating that the optimal control problem at hand is

a novel problem of a difficulty which has not been observed in other systems [243,

244] due to the unusual complexity of our state space. The thick-film coating flow

system in the presence of an electric field exhibits a variety of modes of failure, in-

cluding potentially multivaluedness, outer contact, and changes in topology, all of

which result in the state space being both non-smooth and not simply-connected.

We are unaware of any comparably complicated state spaces having been explored

previously. Further investigation of this complex optimal control problem is an-

ticipated to be an intriguing and potentially fruitful avenue for future study.
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Conclusions and further work

In this chapter, we conclude the work presented in this thesis. In particular, in

Section 7.1, we summarise the main results and conclusions of each chapter, and

in Section 7.2, we outline some possible directions for further study.

7.1 Conclusions

This thesis has considered the reduced-order modelling of electrohydrodynamic

flows on a circular cylinder. Specifically, we have modelled and investigated the

dynamics of a two-dimensional film of a perfectly conducting Newtonian liquid

coating a horizontal circular electrode in the cases both in which the film is thin

and in which it is thick.

We began by formulating and modelling the system in Chapter 2. In the

first half of Chapter 2, we used the classical lubrication approximation to derive

the equation governing the system in the case in which the film is thin, which

incorporates the effects of rotation, gravity, viscosity, capillarity, and Maxwell

stress. We subsequently analysed the dynamics of the thin-film system in Chapters

3 and 4. In the second half of Chapter 2, we used the long-wave methodology in

conjunction with the WRIBL method to derive a model (referred to throughout

this thesis as the WRIBL model) which is valid for the case in which the film is

thick, along with three candidate models for the electric potential. The WRIBL

model incorporates the effects of rotation, gravity, viscosity, capillarity, Maxwell

stress, streamwise viscous dissipation, and inertia (including centrifugation). The

dynamics of the thick-film system, including analysis of the candidate electrostatic

333
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models, were subsequently analysed in Chapters 5 and 6.

As an essential precursor to the thin-film electrostatic case, a complete de-

scription of thin-film draining flow in the absence of an electric field was derived

in Chapter 3. We found that at early times, capillarity is negligible and the film

thickness deviates from uniformity only slightly due to gravity. At late times, three

regions of qualitatively different behaviour emerge, namely, a draining region on

the upper part of the cylinder (in which capillarity is negligible and the film thins

due to gravity) and a pendant-drop region on the lower part of the cylinder (in

which there is a quasi-static balance between gravity and capillarity), joined by

a narrow inner region. We showed that the matching between the draining and

pendant-drop regions occurs via the inner region, in which the film has a capillary-

ripple structure consisting of an infinite sequence of alternating dimples (in which

gravity is negligible) and ridges (in which gravity and capillarity are comparable).

The dimples and ridges become apparent in turn as the draining proceeds, and

only the first few dimples and ridges are likely to be discernible for large but finite

times. However, we have shown that there is likely to be a considerable period of

time during which the present asymptotic solution provides a good description of

the flow.

In Chapter 4, we devoted our attention to analysing the dynamics of thin-film

coating flow in the presence of an electric field. Linear stability analyses were

performed in two analytically tractable special cases, through which it was shown

that electrostatic effects cause instability. We found that, as the film evolves, the

destabilising electrostatic effects lead to the formation of bulges of liquid around

the circumference of the cylinder. A parametric study in (γ,Eb) parameter space

was performed which identified the four distinct behaviours of the system: steady

states, periodic states, outer contact, and transient states. The regions in param-

eter space in which different behaviours occur were identified, and a numerical

investigation of the interfacial dynamics of each behaviour was performed. We

showed that a strong electric field or large electric potential difference can drive

the system towards outer contact, in which the interface touches the outer elec-

trode in a finite time. Draining flow was analysed by means of a generalisation of

the analysis presented in Chapter 3 to include electrostatic effects. At early times,

electrostatic effects are weak, and at late times, the same three distinct regions

of behaviour arise as in the absence of an electric field. Electrostatic effects are

significant only in the pendant-drop region, in which there is a quasi-static bal-
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ance between capillarity, gravity, and electrostatic effects when the electric field is

weak. Finally, the large-time dynamics of the system were investigated in the case

in which gravity and capillarity are both weak by means of a multiple-timescale

analysis. It was found that when electrostatic effects enter the system at the same

order as gravity, the solution is unconditionally unstable. However, when elec-

trostatic effects are further weakened (such that they arise in the growth rate at

the same order as capillarity) electrostatic effects destabilise the system only for

sufficiently large electric potential differences.

In Chapter 5, we analysed the electrostatic modelling and dynamics of thick-

film coating flow in the presence of an electric field. The candidate electrostatic

models were compared numerically, from which we established that the interface

model affords the most accurate solution for the electric potential. The evolution

of the thick film in the presence of an electric field with a constant potential was

studied, from which it was shown that (as in the case in which the film is thin)

electrostatic effects destabilise the system, with a strong electric field or large

electric potential difference driving the interface towards outer contact.

Finally, in Chapter 6, we analysed both the feedback and optimal electrostatic

control of thick-film coating flow. In the former case, we demonstrated that a

particular choice of potential can be used to significantly reduce the maximum

interfacial radius. In the latter case, we formulated and implemented a robust

optimal control framework designed to finely control the interfacial radius towards

some specified target shape. We considered only terminal control, for which we

found the iterative optimisation procedure to be successful in controlling towards

a variety of uniform and nonuniform target shapes, even far into the challenging

short-wave regime. The optimal control problem at hand has an unusually complex

state space, owing to the fact that the present system exhibits a variety of modes of

failure (such as, for example, potential multivaluedness, outer contact, and changes

in topology), all of which yield a state space which is both non-smooth and not

simply-connected. Further investigation into the use of an electric field as a control

mechanism in the present system is vital at this early stage. However, the results

presented in this chapter are highly promising.
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7.2 Further work

The work presented in this thesis suggests many possible avenues for further study,

some of which we now outline and discuss in detail.

Firstly, the models derived in Chapter 2 are all based on the assumption

that the liquid is a perfect conductor, a simplified situation which is particularly

amenable to analytical analysis. The system, and hence, the results obtained in

this thesis, could therefore be made more general by considering both fluids to be

leaky dielectrics. In this case, a non-zero electric field would also be present in

the liquid region, and so one would be required to solve the electrostatic problem

in both fluids due to the fact that the liquid would no longer simply obtain the

potential of the inner electrode. As a result, tangential Maxwell stresses would be

present. Specifically, a non-zero tangential Maxwell stress ET = ET (θ) (analogous

to the normal Maxwell stress used throughout this thesis, EN) would be included

in all of the models derived in Chapter 2 (see, for example, Craster and Matar

[203], Papageorgiou [163], and Keith [214]).

It would be of interest to examine the weighted residual formulation of the

electrostatic models, preliminary calculations of which which are outlined in Ap-

pendix C. Due to time constraints, the performance of the two models derived in

Appendix C has not yet been compared to that of the interface, electrode, and

thick-film gradient models that were derived in Chapter 2, nor to numerical solu-

tions of Laplace’s equation (2.1.3). Further work should seek to carry out these

comparisons in order to determine if the weighted residual electrostatic models

offer greater accuracy in calculating the normal Maxwell stress.

The governing equations derived in Chapter 2 provide the basis for several

obvious extensions. For example, it would be of interest to investigate what ef-

fect an electric field has on the dynamics of coating flow on other geometries,

such as elliptical cylinders [150, 151], and to explore where in parameter space

each behaviour occurs. Moreover, the two-dimensional model described in this

thesis can be readily extended to three dimensions, which is an important step

towards deriving a model which is more suitable for practical applications. This is

particularly relevant for applications in electrostatic control, which, as discussed

previously, undoubtedly has the potential to lend itself to a variety of industrial

processes [178, 179, 184, 185]. Due to its increased complexity, the investigation

of a three-dimensional system would likely have to be carried out numerically,
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and would certainly have a significant computational cost. Nonetheless, all of the

possible behaviours could be determined numerically, and it would be interesting

to carry out a systematic parametric investigation (analogous to that which was

carried out in Chapter 4) of where each behaviour occurs in parameter space in

order to provide insights into the qualitative structure of the parameter space in

comparison to that of the two-dimensional system.

The incorporation of other physical effects into the system could be another

promising step towards making the model more general for use in industrial con-

texts, which often involve a multitude of other physical effects such as, for example,

thermocapillary effects, viscosity stratification, multiphase flows, and chemical re-

actions. Thermocapillary effects have previously been incorporated in a planar

weighted residual context by Ruyer–Quil et al. [278], but it would be non-trivial

to extend these results to the cylindrical geometry considered in this thesis. The

resulting model would be of particular interest because there are a number of

industrially-relevant problems that will be immediately accessible: for example,

many falling-film reactors require careful treatment of thermal effects. In addi-

tion, systems involving dissolved solute are ubiquitous in biochemical systems,

however, the typical modelling (based on the work of Jensen and Grotberg [279])

relies on the assumption that the solute rapidly diffuses in the vertical direction.

Instead, it is well-known that this does not happen in many physical processes,

which actually exhibit significant vertical stratification (see, for example, Maki

and Kumar [280]). It is anticipated that an appropriate application of the method

of weighted residuals would provide an accurate model incorporating this vertical

stratification.

Perhaps the most obvious direction for further work would be to compare the

results of our numerical calculations with those from DNS. Of course, systematic

parametric studies would be impractical as they would have a prohibitive com-

putational cost. However, it would certainly be of great interest to investigate

each individual behaviour further using DNS. In particular, it would be insightful

to analyse how the approach to outer contact compares to that inferred from the

models derived in this thesis. In addition, the investigation of multivalued states

and interfacial rupture in the thick-film case in the presence of an electric field

(both of which cannot currently be modelled using the WRIBL model) using DNS

could be an interesting and insightful direction for further study. It would also

be of particular interest to see to what extent the results presented in Chapter
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3 for draining flow in the absence of an electric field still hold for non-thin films

governed by the full Navier–Stokes equations.

It must be acknowledged that there is an obvious analytical investigation that

we have neglected to carry out in this thesis, which is that of outer contact be-

haviour in the thin-film case. Indeed, in Chapter 4 (and, more generally, through-

out this thesis), we have investigated outer contact behaviour only in a numerical

sense. An analytical investigation of outer contact behaviour would be of interest,

and is almost certainly tractable. It is anticipated that as the maximum film thick-

ness approaches the outer electrode, the interface exhibits self-similar behaviour,

and hence the investigation would be analytically tractable through the use of sim-

ilarity solutions. Indeed, a related calculation was recently performed successfully

by Keith [214] for the analogous “upper contact” behaviour in the planar case.

The results presented in Chapter 6 regarding the optimal electrostatic control

of the system are perhaps those with the greatest scope for further work. The

optimal control framework outlined in Section 6.2.1 was derived to be readily

applicable to both terminal and regulation control; an obvious direction for further

study is to investigate how the results obtained in Sections 6.2.3–6.2.5 differ when

one instead uses regulation control. It is anticipated that such results will bear

qualitative resemblance to those of Wray et al. [244] who, as discussed previously,

considered an analogous optimal control problem in the planar case. In addition,

as discussed previously, in future calculations the constraint ϕd ≤ kϕdmax should

be imposed on the potential in order to prevent the electric field from violating

the dielectric limit [244]. Throughout the optimal control calculations presented in

this thesis, the control weight γϕ was kept constant; it could therefore be of interest

to analyse the effect of varying the value of the control weight on the outcome of

the control (see, for example, Boujo and Sellier [243]). In addition, control to

various other target shapes should be investigated in future studies. In particular,

with industrial applications in mind, the optimal control framework presented in

this thesis could be reformulated to maximise the interfacial area with the aim

of optimising heat and/or mass transfer. It could also be of interest to instead

use the rotation rate of the cylinder as the control mechanism. We anticipate

the reformulation of the optimal control framework in this case to be a relatively

straightforward process, owing to the fact that the dimensionless rotation rate ω

could be allowed to vary temporally without requiring any other changes to the

WRIBL model.
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Finally, at present, we are unaware of any previous physical experiments against

which the theoretical results derived in this thesis can be validated. We therefore

hope that the work presented in this thesis might inspire such experiments in the

future.

In summary, we believe that the results described in this thesis constitute

a valuable contribution to the existing literature on coating flow, electrohydro-

dynamics, and control theory. However, there remains, of course, a plethora of

interesting open questions which further work should endeavour to address.



Appendix A

Numerical schemes

In this appendix, we give the details of the code that was used to obtain numerical

solutions of the thin-film governing equation (2.2.23) in Chapters 3 and 4, the

WRIBL model (2.1.34), (2.3.66), (2.3.43) and (2.3.44) in Chapters 5 and 6, and

the adjoint equations (6.2.14) in Chapter 6.

The code was implemented in C++ and is based on an existing implementation

developed by one of the author’s supervisors (Dr A. W. Wray), by whom previous

iterations of this code have been successfully used to solve other problems (see,

for example, [56] and [31]). It imposes periodic boundary conditions and uses

the method of lines, in which the governing PDEs are discretised into a system

of nonlinear ODEs using a second-order implicit centered-finite-difference method

in space. For time integration, a combination of first-order (backwards Euler)

and second-order (trapezoidal rule) methods was used. The Eigen C++ template

library for linear algebra [281] was used to perform the linear algebra required to

compute the Newton–Raphson iterations for the fully-implicit time-stepping.

In Section A.1, we give details of the uniform grid formulation of the code

which was used in Sections 4.1, 4.2, and 4.4 and in Chapters 5 and 6. In Section

A.2, we give details of the nonuniform grid formulation of the code which was used

in Chapter 3 and in Section 4.3.

A.1 Uniform grid formulation

In this section, we outline the uniform grid formulation of the code that was used

to obtain numerical solutions of the thin-film governing equation in Sections 4.1,

340
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4.2, and 4.4 and the WRIBL model and adjoint equations in Chapters 5 and 6.

When solving the thin-film governing equation (2.2.23), the trapezoidal rule

was used for the time integration. This method was chosen because it offers higher

(second-order) accuracy when compared to the backwards Euler method (which

offers only first-order accuracy) and is hence beneficial when solving the thin-film

governing equation to late times, as is required in this thesis. A uniform grid was

used with 1200 grid points, which was chosen to ensure that the calculations had

converged spatially. The initial time step was set to be 0.001 and an adaptive time-

stepping method was used to speed up the calculations. Specifically, after each

time step (which we denote by ∆T ), if H changed by less than 1% and ∆T < 0.01,

the time step was increased by 50%.

When solving the WRIBL model (2.1.34), (2.3.66), (2.3.43), and (2.3.44) and

when solving the adjoint equations (6.2.14), the backwards Euler method was

used for the time integration. This method was chosen because it offers greater

numerical stability and is simpler to implement when compared to the trapezoidal

rule when solving stiff and complex equations. In addition, we can afford a trade-

off between stability and accuracy as we do not require solutions to the long-wave

equations to be calculated to final times as late as those required when solving the

thin-film model (see, for example, Chapter 6, in which the long-wave equations are

solved until time tf = 20 compared to the final time T = 104 used in the thin-film

parametric study in Section 4.2). A uniform grid was used with 300 grid points,

chosen to ensure that the calculations had converged spatially, and 4000 time steps

of fixed length 5× 10−3.

The spatial convergence of both the thin-film and long-wave versions of the

code was verified. In particular, the number of grid points M was doubled and

it was verified that the numerical results for M grid points differ imperceptibly,

on the presented scale, from those of the simulation using 2M grid points. As

an example, Figure A.1 shows the grid dependence for demonstrative examples of

(a), (b) the thin-film variant of the code and (c), (d) the long-wave variant of the

code. In particular, Figures A.1 (a) and (b) show the numerical solution of the

thin-film governing equation (2.2.23) for the values H0 = 0.9, γ = 15, Eb = 10,

and D = 5 at time T = 40 (by which time the behaviour is classified as steady),

corresponding, in particular, to the steady case shown in Figures 4.16 (a) and (c)

for Eb = 10. Similarly, Figures A.1 (c) and (d) show the numerical solution of

the WRIBL model (2.1.34), (2.3.66), (2.3.43), and (2.3.44) for the values ω = 0.5,
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Ca = 0.157, Ẽb = 0.2, d = 2.5, Re = 3.76, and h0 = 1.6 at time t = 1000 (by

which time a steady state is reached), corresponding, in particular, to the steady

case shown in Figure 5.15 for Ẽb = 0.2. The insets in Figures 5.15 (b) and (d) show

that the numerical results for M and 2M grid points are almost indistinguishable

at the scale of interest in both the thin-film and long-wave variants of the code,

and hence that the code has converged spatially to the desired level of accuracy

for the respective problems.

A.2 Nonuniform grid formulation

In this section, we outline the nonuniform grid formulation of the code that was

used in Chapter 3 and in Section 4.3 to enable computations to be performed

up to late times (specifically, up to T = O(1011)) whilst still resolving the fine

spatial structures that occur. The version of the code described above in which

the trapezoidal rule was used for the time integration was altered to use a standard

nonuniform grid formulation. The grid spacing was reduced smoothly from 5×10−3

in the bulk of the domain to 10−6 within π/18 of the inner region (located at

θ = θI), with a smooth tanh interpolation between the two resolutions, resulting

in 6879 grid points.
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Figure A.1: Numerical solutions of (a) the thin-film governing equation (2.2.23)

for the values H0 = 0.9, γ = 15, Eb = 10, and D = 5 at time T = 40 and (b)

the WRIBL model (2.1.34), (2.3.66), (2.3.43), and (2.3.44) for the values ω = 0.5,

Ca = 0.157, Ẽb = 0.2, d = 2.5, Re = 3.76, and h0 = 1.6 at time t = 1000. The

solid black lines correspond to the numerical solutions calculated using (a), (b)

M = 1200 grid points and (c), (d) M = 300 grid points and the dashed red lines

correspond to the numerical solutions for 2M grid points. The rectangles in (a)

and (c) indicate the location of the enlargements shown in (b) and (d), respectively.
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Thin-film electrostatic models

In this appendix, we derive thin-film versions of the electrostatic models derived in

Section 2.3.2, namely, the electrode model, interface model, and thick-film gradient

model.

We undo the long-wave scalings (2.3.1) and (2.3.2) and apply the thin-film

scalings (2.2.1) to the electrode model (2.3.29) and (2.3.30) and the interface model

(2.3.43) and (2.3.44), yielding the thin-film electrode model, namely,

Φ̃ = Φ̃D + (R̃− D̃)f1 +
ϵ

2
(D̃2 − R̃2)f1 +

ϵ2

6
(R̃− D̃)

{
2(D̃2 + R̃D̃ + R̃2)f1

+ (D̃ − R̃)
[
(R̃− D̃)f1θθ + 3Φ̃Dθθ

]}
+O(ϵ3), (B.0.1)

0 = Φ̃D + (H̃ − D̃)f1 +
ϵ

2
(D̃2 − H̃2)f1 +

ϵ2

6
(H̃ − D̃)

{
2(D̃2 + H̃D̃ + H̃2)f1

+ (D̃ − H̃)
[
(H̃ − D̃)f1θθ + 3Φ̃Dθθ

]}
+O(ϵ3), (B.0.2)
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and the thin-film interface model, namely,

Φ̃ = (R̃− H̃)g − ϵ

2
(R̃2 − H̃2)g

+
ϵ2

6
(R̃− H̃)

{
(R̃− H̃)

[
6H̃θgθ − (R̃− H̃)gθθ

]
(B.0.3)

+ g
[
2(R̃2 + H̃R̃ + H̃2 − 3H̃2

θ ) + 3(R̃− H̃)H̃θθ)
]}

+O(ϵ3),

Φ̃D = (D̃ − H̃)g − ϵ

2
(D̃2 − H̃2)g

+
ϵ2

6
(D̃ − H̃)

{
(D̃ − H̃)

[
6H̃θgθ − (D̃ − H̃)gθθ

]
(B.0.4)

+ g
[
2(D̃2 + H̃D̃ + H̃2 − 3H̃2

θ ) + 3(D̃ − H̃)H̃θθ)
]}

+O(ϵ3).

We proceed as in Section 2.3.3.1 and perform a classical gradient expansion on

both the thin-film electrode model (B.0.1) and (B.0.2) and the thin-film interface

model (B.0.3) and (B.0.4) by expanding f1 and g, respectively, as

f1 =M0 + ϵM1 + ϵ2M2 +O(ϵ3), g = N0 + ϵM1 + ϵ2N2 +O(ϵ3). (B.0.5)

Note that, contrary to the expansions (2.3.45) used in Section 2.3.3.1, here we do

include terms of odd power in ϵ since these do not turn out to be zero under the

thin-film approximation. Substituting (B.0.5) into (B.0.2) and (B.0.4) yields

M0 = N0 =
Φ̃D

(D̃ − H̃)
(B.0.6)

at O(1), and using (B.0.6) yields

M1 = N1 =
(D̃ + H̃)Φ̃D

2(D̃ − H̃)
(B.0.7)
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at O(ϵ). Finally, using (B.0.6) and (B.0.7) yields

M2 =
1

12

(
4H̃θΦ̃Dθ

+ Φ̃D

[
H̃ − D̃ +

4H̃2
θ

D̃ − H̃
+ 2H̃θθ

]
+ 4(H̃ − D̃)Φ̃Dθθ

)
,

N2 =
1

12

(
−8H̃θΦ̃Dθ

+ Φ̃D

[
H̃ − D̃ +

4H̃2
θ

D̃ − H̃
− 4H̃θθ

]
− 2(H̃ − D̃)Φ̃Dθθ

)
(B.0.8)

at O(ϵ2). Substituting (B.0.5) with (B.0.6)–(B.0.8) into (B.0.1) and (B.0.3) pro-

duces the same model, namely,

Φ̃ =

(
R̃− H̃

D̃ − H̃

)
Φ̃D + 3ϵ

(D̃ − R̃)(R̃− H̃)

D̃ − H̃
Φ̃D

+
ϵ2

2

(D̃ − R̃)(R̃− H̃)

(D̃ − H̃)3

{
4(D̃ − H̃)(2D̃ − R̃− H̃)H̃θΦ̃Dθ

+ Φ̃D

[
D̃2(D̃ − 4R̃) + H̃3 + H̃2(4R̃− D̃ + 2H̃θθ) + 2(2D̃ − R̃)(2H̃2

θ + D̃H̃θθ)

− H̃(D̃(D̃ + 8R̃) + 4H̃2
θ + (6D̃ − 2R̃)H̃θθ)

]
− 2(D̃ + R̃− 2H̃)(D̃ − H̃2)Φ̃Dθθ

}
+O(ϵ3). (B.0.9)



Appendix C

Electrostatic modelling using a

weighted residual approach

In this appendix, we derive two candidate electrostatic models using a weighted

residual approach. The method followed in this section is analogous to that which

was used in Section 2.3.3 to model the hydrodynamic problem.

As we recall, the leading-order problem for the potential ϕ is given by (2.1.36)

and (2.3.13), namely,

ϕrr +
1

r
ϕr = 0, ϕ|r=d = ϕd, ϕ|r=s = 0, (C.0.1)

which has the solution (2.3.14), namely,

ϕ = ϕd
ln(r/s)

ln(d/s)
. (C.0.2)

To obtain the solution for ϕ to higher orders, we project the solution for ϕ onto an

appropriate set of basis functions fn(r) (for n = 0, . . . , N), which have coefficients

bn (for n = 0, . . . , N). We seek a solution for ϕ in the form of a series expansion

based on a separation of variables,

ϕ(r, θ, ť) = b0(θ, ť)f0(r) + ε2
N∑

n=2

bn(θ, ť)fn(r) +O(ε4), (C.0.3)

where we note that odd powers of ε are not included in (C.0.3) for the same reason

as was outlined in Section 2.3.2. As explained previously, both in Section 1.2.5

347
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and in Section 2.3.3, the key step in the method of weighted residuals is to take

the inner product (2.3.52) of Laplace’s equation (2.3.12) with a suitable weight

function, which we denote here by welec = welec(r, θ, ť), which will be determined

as part of the solution. In particular, this yields

∫ d

s

r welec

1r (rϕr)r︸ ︷︷ ︸
(a)

+ ε2
1

r2
ϕθ̌θ̌︸ ︷︷ ︸

(b)

 dr = 0, (C.0.4)

where term (b) can be calculated once the weight welec is determined. Evaluating

term (a) in (C.0.4) yields∫ d

s

r welec
1

r
(rϕr)r dr = welecrϕr|r=d︸ ︷︷ ︸

(c)

−welecrϕr|r=s︸ ︷︷ ︸
(d)

−ϕr(welec)r|r=d︸ ︷︷ ︸
(e)

+ ϕr(welec)r|r=s︸ ︷︷ ︸
(f)

+

∫ d

s

rϕ
1

r
[r(welec)r]r dr︸ ︷︷ ︸

(g)

, (C.0.5)

where we have used two applications of integration by parts. By the continuity

of potential at the interface (2.1.36), term (f) is exactly zero. Term (e) can be

calculated once welec is determined. Analogous to the hydrodynamic problem,

in which we choose to base our calculations on the physical quantity q rather

than a0 (see equations (2.3.53)–(2.3.55)), here it will be appropriate to base our

calculations on the quantity

Ψ ≡ ϕr|r=s, (C.0.6)

owing to the fact that the leading order Maxwell stress − (ϕr|r=s)
2 /2 (2.3.15) is

the quantity of interest. To remove the dependence of the term (a) on the bn, we

choose welec such that (
1

r
(rwelec)r

)
r

= 0, (C.0.7)

welec|r=d = 0, (C.0.8)

welec|r=s = 1, (C.0.9)

where the first condition (C.0.7) is chosen such that term (g) is zero, the second

condition (C.0.8) is chosen such that term (c) is zero, and the final condition
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(C.0.9) is chosen such that term (d) reduces to exactly Ψ. Solving (C.0.7) subject

to (C.0.8) and (C.0.9) yields the weight function

welec =
ln(d/r)

ln(d/s)
. (C.0.10)

In order to evaluate term (d) exactly, we write

Ψ ≡ ϕr|r=s =
b1
s
+ ϵ2

N∑
n=2

bn(θ, ť)[(fn)r]r=s +O(ε4), (C.0.11)

hence ϕ (C.0.3) is given by

ϕ = b0 +

[
Ψ− ϵ2

N∑
n=2

bn[(fn)r]r=s

]
s ln r + ε2

N∑
n=2

bn(θ, ť)fn +O(ε4). (C.0.12)

To eliminate the unknown b0, we can choose to impose the continuity of potential

at either the outer electrode or the interface (2.1.36) on (C.0.12) to derive what

we shall refer to hereafter as the “weighted residual electrode model” and the

“weighted residual interface model”, respectively.

C.1 Weighted residual electrode model

In this section, we impose the continuity of potential at the outer electrode ϕ|r=d =

ϕd (2.1.36) on (C.0.12) to yield

b0 = ϕd − s

[
Ψ− ε2

N∑
n=2

bn(fn)r

]
ln d+O(ε2), (C.1.1)

hence, ϕ (C.0.3) is given by

ϕ = ϕd + s

[
Ψ− ε2

N∑
n=2

bn(fn)r

]
ln
(r
d

)
+ ε2

N∑
n=2

bn(θ, ť)fn +O
(
ϵ4
)
. (C.1.2)
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Then, evaluating (C.0.4) with the particular choice of weight function (C.0.10) and

(C.1.2) yields

0 = −welecrϕr|r=s − ϕr[(welec)r]r=d + ε2
∫ d

s

welec

r
ϕθ̌θ̌ dr +O(ε4)

= −sΨ+
ϕd

ln(d/s)
+ ε2

{
1

2
ln

(
d

s

)
[ϕdθ̌θ̌ − ln d (sΨ)θ̌θ̌]

+
1

6
(sΨ)θ̌θ̌ ln

(
d

s

)
ln
(
ds2
)}

+O(ε4),

(C.1.3)

which can be simplified to

ϕd + sΨ ln
(s
d

)
− ε2

{
−1

2
ϕdθ̌θ̌ ln

2
(s
d

)
− 1

3
ln2
(s
d

)
(sΨ)θ̌θ̌

}
+O(ε4) = 0. (C.1.4)

Equation (C.1.4) for Ψ is the weighted residual electrode model.

C.2 Weighted residual interface model

In this section, we impose the continuity of potential at the outer electrode ϕ|r=s =

0 (2.1.36) on (C.0.12 to yield

b0 = −s

[
Ψ− ε2

N∑
n=2

bn(fn)r

]
ln s+O(ϵ2), (C.2.1)

hence, ϕ (C.0.3) is given by

ϕ = s

[
Ψ− ε2

N∑
n=2

bn(fn)r

]
ln
(r
s

)
+ ε2

N∑
n=2

bn(θ, ť)fn +O
(
ϵ4
)
. (C.2.2)

Then, evaluating (C.0.5) with the particular choice of weight function (C.0.10) and

(C.1.2) yields

0 = −welecrϕr|r=s − ϕr[(welec)r]r=d + ε2
∫ d

s

welec

r
ϕθ̌θ̌ dr (C.2.3)

= −sΨ+
ϕd

ln(d/s)
+ ε2

[
(Ψs)θ̌θ̌

1

6
ln

(
d

s

)
ln(ds2)− 1

2
ln

(
d

s

)
(Ψs ln s)θ̌θ̌

]
,
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which can be simplified to

− ϕd + sΨ ln

(
d

s

)
(C.2.4)

+ ε2
{
1

2
ln2

(
d

s

)
[Ψs ln s]θ̌θ̌ −

1

6
ln2

(
d

s

)
ln
(
ds2
)
(Ψs)θ̌θ̌

}
+O(ε4) = 0.

Equation (C.2.4) for Ψ is the weighted residual interface model.



Appendix D

Initial conditions on A3,n(τ1, τ2)

and B3,n(τ1, τ2) in Section 4.4.5

In this appendix, we state the initial conditions on A3,n(τ1, τ2) and B3,n(τ1, τ2)

(defined in equation (4.4.46)) for n = 1, 2, and 3 required for the analysis in

Section 4.4.5.

The initial condition H(ϕ, 0) = 1 requires that A3,n(τ1, τ2) and B3,n(τ1, τ2)

satisfy

A3,1(0, 0) =
9

8
− 27

288α2 + 8
− 9

576α2 + 4
+

δ2

(D − 1)6
, (D.0.1)

B3,1(0, 0) =
27α (576α2 + 7)

20736α4 + 720α2 + 4
, (D.0.2)

for the first mode,

A3,2(0, 0) =
1

4α
(
5184α4 + 180α2 + 1

)2(
D − 1

)4{
12α(1 + 36α2)(D − 1)4

[
− 12(α + 144α3)B2,1(0, 0) + 24α

∂A1,1(0, 0)

∂τ1

− (1− 144α2)
∂B1,1(0, 0)

∂τ1

]
+ δ

[
108α2

{
8D − 9− 12α2

[
23− 29D

+ 288α2(72α2(D − 1) + 6D − 7)

]}
−D

]}
, (D.0.3)
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B3,2(0, 0) =− 1

2(5184α4 + 180α2 + 1)2(D − 1)4{
6(1 + 36α2)(D − 1)4

[
− (1 + 144α2)B2,1(0, 0) + (1− 144α2∂A1,1(0, 0)

∂τ1

+ 24α
∂B1,1(0, 0)

∂τ1

]
+ 3δ

[
8D − 1− 108α2

{
8D − 13

+ 166α2(48α2(D − 1)− 8 + 7D)

}]}
, (D.0.4)

for the second mode,

A3,3(0, 0) =
3

80

(
22

36α2 + 1
− 99

144α2 + 1
− 120

576α2 + 1
+

393

1296α2 + 1
− 96

5184α2 + 1

)
,

(D.0.5)

B3,3(0, 0) =
9α

20

(
− 11

36α2 + 1
+

99

144α2 + 1
+

240

576α2 + 1
− 1179

1296α2 + 1
+

576

5184α2 + 1

)
,

(D.0.6)

for the third mode, and A3,n(0, 0) = B3,n(0, 0) = 0 for all higher modes (i.e., for

n ≥ 4).



Appendix E

Remapping onto a rectangular

domain in Section 5.1.2

In this appendix, we show that using the rescalings

R =
r − s

d− s
, Θ = θ, (E.0.1)

where 0 ≤ R ≤ 1 and 0 ≤ Θ ≤ 2π, allows us to remap the (r, θ) domain onto a

rectangular domain, which allows for easy discretisation in space.

Use of the chain rule yields the first-order derivatives,

∂r =
1

d− s
∂R, ∂θ = ∂Θ + sΘ

(
R− 1

d− s

)
∂R. (E.0.2)

The second-order derivatives are thus given by,

∂rr =
1

(d− s)2
∂RR, (E.0.3)

∂θθ = ∂ΘΘ + 2sΘ∂RΘ + 2s2Θ
R− 1

(d− s)2
∂R + s2Θ

(
R− 1

d− s

)2

∂RR + sΘΘ

(
R− 1

d− s

)
∂R.

(E.0.4)

It follows that reformulating Laplace’s equation (2.1.3) into (R,Θ) coordinates
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yields

0 =

[
(s+R(d− s))2 + s2Θ(R− 1)2

]
ϕRR + 2(R− 1)(d− s)sΘϕRΘ

+ (d− s)2ϕΘΘ +

[
(d− s)((s+R(d− s)) (E.0.5)

+ (R− 1)(2s2Θ + sΘΘ(d− s))

]
ϕR.

Hence, to leading order in ε, the normal Maxwell stress (2.3.9) becomes

EN = −1

2
(ϕr|r=s)

2 = −1

2

(
1

d− s
ϕR

)2

. (E.0.6)



Appendix F

Summary of parameter values

used in Chapters 5 and 6

In this appendix, we give the parameter values used in Chapters 5 and 6. Specifi-

cally, the parameters used in Section 5.2.1, Section 5.2.2, Section 6.1 and Section

6.2.2 are summarised in Table F.1. The dimensional quantities used correspond

approximately to some ratio of water-syrup mix [102, 272]. Note that all values of

ϕ̄b are less than 1 V, a typical voltage used in experiments [203].
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Appendix G

Reformulation of the Lagrangian

(6.2.8)

In this section, we derive a simplified form of the Lagrangian (6.2.8) in an attempt

to better control towards some of the more difficult target shapes in Section 6.2.4

and towards the challenging square target shape in Section 6.2.5.

A simplified version of the curvature κ (2.1.32) is used, obtained by applying

the long-wave scalings (2.3.1) and (2.3.2) to (2.1.32) to yield

κ =
1

s
+

ϵ2

2s3
(
s2θ − 2ssθθ

)
+O(ϵ3). (G.0.1)

In addition, we introduce the parameter m = m(θ, t) where

m =
q

s2 − 1
, (G.0.2)

to further simplify the equation by removing the explicit dependence on the flux q.

Substitution of (G.0.1) and (G.0.2) into the Lagrangian (6.2.8) yields the simplified
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Lagrangian,

L =Jt −
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[91] E. Vural and S. Özer, “Thermal analysis of a piston coated with SiC and

MgOZrO2 thermal barrier materials”, International Journal of Scientific

and Technological Research, 1(7), 43–51, 2015.

https://www.formula1.com/en/latest/article.testing-explained-rob-smedley-%20on-flow-vis.7nU2VePGlVrhIGa8wgCoLE.html
https://www.formula1.com/en/latest/article.testing-explained-rob-smedley-%20on-flow-vis.7nU2VePGlVrhIGa8wgCoLE.html
https://www.formula1.com/en/latest/article.testing-explained-rob-smedley-%20on-flow-vis.7nU2VePGlVrhIGa8wgCoLE.html


368

[92] G. Ribatski and A. M. Jacobi, “Falling-film evaporation on horizontal tubes

– a critical review”, International Journal of Refrigeration, 28(5), 635–653,

2005.

[93] D. L. Chandler, Thin coating on condensers could make power plants more

efficient, https : / / news . mit . edu / 2015 / graphene - coating - more -

efficient-power-plants-0529, Accessed: 2023-25-07.

[94] R. C. Peterson, P. K. Jimack, and M. A. Kelmanson, “On the stability of

viscous free-surface flow supported by a rotating cylinder”, Proceedings of

the Royal Society of London A, 457(2010), 1427–1445, 2001.

[95] V. V. Pukhnachev, “Motion of a liquid film on the surface of a rotating

cylinder in a gravitational field”, Journal of Applied Mechanics and Tech-

nical Physics, 18(3), 344–351, 1977.

[96] E. B. Hansen and M. A. Kelmanson, “Steady, viscous, free-surface flow on

a rotating cylinder”, Journal of Fluid Mechanics, 272, 91–107, 1994.

[97] S. D. R. Wilson, “The drag-out problem in film coating theory”, Journal

of Engineering Mathematics, 16, 209–221, 1982.

[98] P. Rosenau, A. Oron, and J. M. Hyman, “Bounded and unbounded patterns

of the Benney equation”, Physics of Fluids A: Fluid Dynamics, 4(6), 1102–

1104, 1992.

[99] I. L. Kliakhandler, S. H. Davis, and S. G. Dankoff, “Viscous beads on

vertical fibre”, Journal of Fluid Mechanics, 429, 381–390, 2001.

[100] B. R. Duffy and S. K. Wilson, “Thin-film and curtain flows on the outside

of a rotating horizontal cylinder”, Journal of Fluid Mechanics, 394, 29–49,

1999.

[101] B. Reisfeld and S. G. Bankoff, “Non-isothermal flow of a liquid film on a

horizontal cylinder”, Journal of Fluid Mechanics, 236, 167–196, 1992.

[102] P. L. Evans, L. W. Schwartz, and R. V. Roy, “Steady and unsteady so-

lutions for coating flow on a rotating horizontal cylinder: two-dimensional

theoretical and numerical modeling”, Physics of Fluids, 16(8), 2742, 2004.

[103] D. Takagi and H. E. Huppert, “Flow and instability of thin films on a

cylinder and sphere”, Journal of Fluid Mechanics, 647, 221–238, 2010.

https://news.mit.edu/2015/graphene-coating-more-efficient-power-plants-0529
https://news.mit.edu/2015/graphene-coating-more-efficient-power-plants-0529


369

[104] M. Cachile, M. A. Aguirre, M. Lenschen, and A. Calvo, “Flow of a thin

liquid film coating a horizontal stationary cylinder”, Physical Review E,

88(6), 063005, 2013.

[105] J. Qin, Y. Xia, and P. Gao, “Axisymmetric evolution of gravity-driven thin

films on a small sphere”, Journal of Fluid Mechanics, 907, A4, 2021.

[106] H. K. Moffatt, “Behaviour of a viscous film on the outer surface of a rotating
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