..
<3
Universityof &

Strathclyde

Engineering

VIENTOF! NAVAL ARCHITECTURE, OCEAN & MARINE ENGINEERING

Financial Risk Management in Shipping

Investment

A Machine Learning Approach

By

Mark Clintworth, Luxembourg 2020
Presented for the Degree of Doctor of Philosophy

Supervised by:

Dr. Evangelos Boulougouris

Page 1 of 137



7

Universityof &

Strathclyde
Engineering
5| NAVAL ARCHITECTURE, OCEAN & MARINE ENGINEERING

AUTHOR STATEMENT

This thesis is the result of the author’s original research. It has been composed by the author and has not been previously

submitted for examination which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the United Kingdom Copyright Acts as qualified by
University of Strathclyde Regulation 3.50. Due acknowledgement must always be made of the use of any material
contained in, or derived from, this thesis.

Signed:

Mark Clintworth

Date: May 2020

Page 2 of 137



.. %
University of X

Strathclyde

Engineering

NAVAL ARCHITECTURE, OCEAN & MARINE ENGINEERING

Abstract

There has been a plethora of research into company credit risk and financial default prediction from both academics and
financial professionals alike. However, only a limited volume of the literature has focused on international shipping
company financial distress prediction, with previous research concentrating largely on classic linear based modelling
techniques. The gaps, identified in this research, demonstrate the need for increased effort to address the inherent non-
linear nature of shipping operations, as well as the noisy and incomplete composition of shipping company financial
statement data.

Furthermore, the gaps illustrate the need for a workable definition of financial distress, which to date has too often been
classed only by the ultimate state of bankruptcy/insolvency. This definition prohibits the practical application of
methodologies which should be aimed at the timely identification of financial distress, thereby allowing for remedial

measures to be implemented to avoid ultimate financial collapse.

This research contributes to the field by addressing these gaps through i) the creation of a machine learning based financial
distress forecasting methodology and ii) utilising this as the foundation for the development of a software toolkit for
financial distress prediction. This toolkit enables the practical application of the financial risk principles, embedded within
the methodology, to be readily integrated into an enterprise/corporate risk management system. The methodology and
software were tested through the application of a bulk shipping company case study utilising 5000 bulk shipping
company-year accounting observations for the period 2000-2018, in combination with market and macroeconomic data.

The results demonstrate that the methodology improves the capture of distress correlations, that traditional financial
distress models have struggled to achieve. The methodology’s capacity to adequately treat the problem of missing data in

company financial statements was also validated.

Finally, the results also highlight the successful application of the software toolkit for the development of a multi-model,
real time system which can enhance the financial monitoring of shipping companies by acting as a practical “early

warning system” for financial distress.
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1 Introduction

The principle aim of this chapter is to describe the background, motivation, and objectives of this thesis. This chapter is
divided into four sections. The first section provides a background to the issues to be addressed whilst the second describes
the research rationale. The third section outlines the research objectives and section four concludes this chapter by
presenting the structure of this thesis.

1.1 Background

This research was conceived from the need to address the funding challenges facing the global shipping industry. This
was brought about primarily by a combination of ever increasing maritime environmental regulation, an increasing risk-

averse commercial banking sector and an aging fleet.

The international shipping industry is responsible for a clear majority of transportation of world trade. In 2018 the global
trade continued to increase with exports rising by 9.7% from 2017 reaching a record high of US$19.5 trillion according
(UNCTAD, 2019). Simultaneously, growth in global seaborne trade (11 billion tons, 2018) fell to 2,7% from 2017 to
2018 (1970 - 2017 average growth rate of 3%) in comparison to 4,1% the previous year (UNCTAD, 2019).

The financial support necessary to sustain such figures has historically been achieved through debt financing with banks
providing much of the capital funding necessary to support the global fleet. However, the banking system failure, which
was integral to the financial crisis of 2008, had serious negative impacts on the shipping sector and indeed led to the
extraction of the commercial banking sector from all major risk intensive private capital investments. One important
regulatory consequence of this was the imposition of increasingly stringent capital adequacy rules by the Basel
framework? (BIS, 2019) which forced banks to offload the more risky assets from their balance sheets whilst also placing
further restrictions on new investments.

The “overheating” in the global economy pre-crisis was reflected very strongly in the shipping sector with an significantly
inflated freight rate environment coupled with a peak of newbuilding orders at the beginning of 2008 (Grammenos, 2010).

Freight rates collapsed, overcapacity became critical and the inevitable market corrections began with devastating effect.

! The International Chamber of Shipping (ICS) estimate 90% but this figure varies somewhat, and accurate figures are difficult to
verify.

2 This led directly to the adoption of the Basel Internal Rating System for risk management.

Page 13 of 137



University of

Strathclyde

Engineering

DEPARTMENTOF NAVAL ARCHITECTURE, OCEAN & MARINE ENGINEERING

Since the crisis, commercial bank lending has experienced a severe downturn. Throughout the past 11 years the Petrofin
Global Index® has almost continuously declined (see Figure 1) with lending from the top 40 banks to shipping standing
at $300.7bn (Petropoulos, 2019), its lowest level since the crisis. In contrast, the world merchant fleet has increased during
this same period with an estimated 60% increase on 2008 with approximately 1,403m GT with a value of 230,9bn USD
on order (Clarksons, 2019). This has resulted in a significant finance gap and a substantial structural shift in the ship

financing sector.

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

. Global Fleet Growth Index e Petrofin Global Index

Figure 1: The Petrofin Global Index compared to global fleet growth (Petropoulos, 2019)

Shipping finance has witnessed a switch from traditional European banks to non-banking sources (Chinese leasing

companies in particular) and Asian banks. According to Petrofin, Western banks have reduced their shipping portfolio by

3 The Petrofin Index for Global Ship Finance was introduced in 2008 as a measurement of bank funding incorporating the top 40
international shipping banks.
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USD 160bn during the past 11 years and their share of the global ship finance market has shrunk from 83% to 58,7%,

whilst Asian banks have seen a surge in lending of up to 140% since 2010 (Figure 2). In 2018 Chinese leasing to shipping

alone amounted USD 51,3bn compared to USD 47bn in 2017. It is believed that the intervention into the market by

Chinese financiers will continue.
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Figure 2: Global bank shipping portfolios as of end 2018 (Petropoulos, 2019)

However, as mentioned above, attempts to bridge the gap were initially taken up in part by Asian banks until relatively

recently. The slowdown in the Chinese economy has resulted in a toughening of credit conditions leading to a reduction

in bank lending.

The withdrawal of commercial bank lending has seen an increase in sale and leaseback transactions. Leasing provides

long term finance option but often with higher pricing. However, in the current low US$ interest rate environment, it

remains a viable option. As such, it has increased in popularity in the financing of vessels, especially amongst small and

medium sized enterprises (SME) owners which it represents the only available and affordable source of finance.

Investment fund finance and lending for family owned concerns has also increased but this has come with an increase in

risk pricing.
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As regards the equity and bond markets, these have been relatively quiet, with few IPOs (Petropoulos, 2019). Nevertheless,

there has been a steady development of the shipping bond market for medium to large companies.

In summary, ship financing, be it from bank lending, leasing or otherwise, remains in increasing demand, especially given
the regulatory pressure on the industry to improve its environmental impact and meet climate change goals. As mentioned
above, the financing options are becoming more complex with a growing number of funding options through stakeholders
with differing demands. However, these stakeholders have one overriding factor in common, the need to protect their
investments. The damage to the sector following the crisis, coupled with the sell-off of commercial bank shipping loans
and the newly regulated banking industry, has highlighted the need for a more thorough understanding of the risk profile
unique to shipping investments. This demands the development of effective probability of default models geared to the
specific characteristics of shipping companies and which take due account of the macroeconomic and market environment

in which they operate.

1.2 Research rationale

The management and absorption of financial risk is required to meet the needs of both the shipping sector and society’s
goal of a cleaner and more efficient maritime sector by reducing barriers to investment. The main barrier to investment
being the financial risk profile of the sector. As outlined in the previous section, it is becoming increasingly necessary to
model the probability of distress of shipping companies more accurately than has been achieved in the past. Therefore,
the aim of this research is to examine the extent to which machine learning tools can help detect early signs of shipping
company distress and therefore help investors and shipowners alike to manage risk and ultimately reduce the barriers to

investment.

This research explores the use of machine learning (ML) models in gauging their ability to capture the correlation in
financial distress (FD) which may eliminate the need for unobservable temporal effects. Several established ML models
are evaluated together with some more recently established models such as random forest (RF) and extreme gradient
boosting (XGB) alongside some more established generalised linear models. The objective is not simply to compare

model performance but also to assess their individual capacity to generalise on out of sample data.

Secondly, due to the global nature of the shipping industry, diverse national accounting practices and laws render the
identification and collection of complete and consistent financial statements, one of the major challenges in studies such

as this. Therefore, the problem of missing accounting values and how to treat them is a major focus of this research.

Finally, the fact that none of the models can be expected to fully capture correlation in FD, solely through the application

of accounting data, suggests that there are unobserved macro effects that create correlation in distress. Shipping, being a
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high-risk sector, will always be highly sensitive to global macroeconomic shifts and stochastic market events. As such a
clearer understanding of those features, which accurately represent the risk profile of shipping companies, is essential.
This research proposes a distress prediction model that employs not only company level data, but also macroeconomic

and market feature definitions aimed at detecting early stages of distress.
1.3  Objectives

This research has two primary objectives. The first is to design and test a forecasting model which attempts to capture
correlations between company financial information and other macro events in shipping company financial distress. This

model will address:

e issues surrounding the “noisy” nature of company financial data typically associated with shipping companies,
such as information skewness, data imbalance and missing accounting information

o the identification of a set of predictor features which represent a predictor set capable of capturing correlation in
financial distress prediction for this sector

e the non-company specific event affecting shipping company performance through the inclusion of

macroeconomic and market data in the forecasting of distress
The second research objective is to develop the foundation for a machine learning software system which:

e provides a general-purpose tool that is of real practical value

e results in predictions that are as accurate as possible

o takes full advantage of computing architecture, multi-processing, multi-core technologies and cloud computing,
in order to both maximise efficiency and reduce execution times to a practical working level.

e is both scalable and modular in form, supporting the addition of more complex deep learning algorithms which
require enhanced computing power, including support for larger and more complex datasets

e can be readily applied to a broad class of shipping sub-sector FD learning problems

e must be transparent and open to scrutiny by all stakeholders, investors and particularly regulatory bodies if they

are to be accepted as practical tools

Both the model and system software validity and performance will be analysed by applying a suitably representative test
case comprising detailed financial statements covering the period 2000-2018 of dry bulk carrier owners/operator
companies, worldwide, both listed and non-listed. The case study dataset will also include macroeconomic and bulk

commodity data covering the same period.
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In conclusion, the aim of this research is to develop a methodology and software toolkit which enables the early detection
of FD which not only provides investors and other stakeholders with the means of avoiding some of the costs associated
with a bankruptcy filing and subsequent recovery, but also assists shipowners in monitoring their own financial

performance.

1.4  Thesis structure

The main body of this thesis is structured as follows:

Chapter 2 - Literature review: This chapter begins with a review of literature on general corporate financial distress and
in the context of shipping entities. The second section contains a review of the literature of statistical/machine learning
tools for the prediction of financial distress. A third section reviews research into the specific methodologies which form
the constituent modules of the model proposed in this research. Following this critical review, a discussion on the gaps
identified in the literature is presented, which leads on to the formulation of the research questions and hypothesis. The

chapter concludes with description of the proposed contribution of this research and its novelty value within the field.

Chapter 3 - Methodology: This chapter describes the theory behind the development of the model and software
architecture. It begins with a description and review of both data analysis and data pre-processing theory. The chapter
then progresses to describe and review the classification algorithms, both traditional and complex, which form part of the

model. The chapter concludes with discussion and summary.

Chapter 4 - System software and architecture: This chapter describes the high-level technical specification of the proposed

“Shipping Financial Distress Predictor” (SFDP) architecture and modules.

Chapter 5 - Case study — The dry bulk shipping sector: This chapter presents the application of the model and SFDP
system for a case study in the dry bulk shipping sector. It presents and discusses independent feature selection specifically

relevant to bulk shipping companies.

Chapter 6 — Results and discussion: This chapter presents and analyses the results of the case study. It assesses the
performance of data pre-processing modelling and individual classifier predictions and examines the efficiency of the

SFDP system. It concludes with a discussion of the results.

Chapter 7 - Conclusions: This chapter begins with a summary of the research outcomes and compares these of the research
objectives outline in section 1.3 of this chapter. It continues by describing the novelty and contribution of this research

whilst discussing the gaps and the recommended future related research. It concludes with final remarks.
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1.5 Summary

This chapter has outlined the problem for which this research topic was conceived and provides a high-level set of
objectives designed to address the issues concerned. As such, the aim is to contribute to the research field by developing
a practical, efficient and transparent methodology and software toolkit which accounts for both the idiosyncratic nature
of shipping finance but also harnesses proven machine learning algorithms, both traditional and complex, for the first

time in the domain of shipping company financial distress.
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2 Literature review

2.1  Overview

This literature review is guided by the research rationale and objectives outlined in chapter 1. The first section reviews
research efforts into shipping company financial distress prediction and the literature surrounding the application of
machine learning tools for corporate FD prediction. The second section concentrates on the specifics of the SFDP
architecture: the predictor or classification algorithms selected; the handling of incomplete financial accounting data; and
the selection of core independent variables used in modelling distress prediction. The chapter concludes with a summary

and discussion of gaps in the literature.

2.2 Corporate financial distress prediction

2.2.1  Financial distress in shipping companies

The financing of the shipping industry has been traditionally based on bank loans. An important step in bank’s credit
granting process is the application for the loan and its consequent evaluation by the bank. Numerous bankers, consultants
and academics have addressed this matter, presenting financial requirements and attributing values indicating the
soundness and the financial strength of the applicant. A critical priority for bank credit risk departments relates to
providing an optimal framework for assessing the credit rating of borrowers’ as well as loan quality and defining specific
quantitative and qualitative criteria that mirror the borrowers’ ability to comply with the loan contract terms. The
conceptual framework for credit decisions in banking practice has gradually evolved over time. At a simplified level, this
has been founded on the three core Cs of credit, that is, borrower’s ‘character’, ‘capacity’ and ‘capital’; frequently, two
additional Cs have also been included, that is, ‘collateral’ and ‘conditions’ with (Antoniou, A., A. Thanopoulos, 1998;

Grammenos, 2010) applying this to shipping credit scenarios.

Credit risk assessment work has often been performed following the construction of ‘standardized” models, as noted by
(Dimitras, Petropoulos and Constantinidou, 2003). The authors contend, however, that these models, which combine
criteria and provide relative weighting to assist the decision-making process of the bank’s credit committee, are limited.
Their paper presents work on the application of the monotone regression method, UTADIS, and is aimed at the analysis

of both credit allocations and the evaluation of the criteria used for the selection of loan applications in shipping industry.

Innovative creditors, nevertheless, have long sought straightforward, timely and solid methods to evaluate credit

decisions. (Gavalas and Syriopoulos, 2016) proposed an integrated credit rating model based on a series of critical
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qualitative and quantitative criteria for bank loan portfolios. The model is applied to and tested on bank financing
decisions in the shipping sector as a case study. Again, the authors used a UTADIS based approach in order to assess the
relative impact of the selected risk factors on efficient credit rating scoring and loan quality assessment. Based on that, a
credit rating and loan quality scoring model was subsequently developed, considering the prioritized risk exposures and
evaluating their contribution to an integrated credit analysis framework. Furthermore, this approach was implemented in

order to assess the relative impact of the selected risk factors on efficient credit rating scoring and loan quality assessment.

Research into shipping finance distress prediction has been relatively limited to date. These works have tended to focus
largely on financial performance predictor/feature selection. They rely on more conventional methods such as binary
logistic regression techniques (Antoniou, A., A. Thanopoulos, 1998; Grammenos, Nomikos and Papapostolou, 2008;
Kavussanos and Tsouknidis, 2016; Mitroussi et al., 2016; Lozinskaia et al., 2017) and focus on either shipping bond

markets or bank shipping debt.

Finally, all these studies demonstrate limited access to longitudinal corporate financial data which would allow for a more
thorough assessment of predictive capabilities of the tools available. Moreover, their reliance on linear methodologies

limit presented models in their capacity to accurately predict FD in out of sample data.

2.2.2  Machine learning in financial distress prediction modelling

The second strand of this literature review focuses on recent efforts on the application of ML models on FD prediction.
Since Altman and Ohlson’s work, research in the modelling of corporate financial distress and bankruptcy has been
extensive e.g. see (Altman 1977; Shumway 2001; Duffie and Singleton 2003; Hensher and Jones 2007). However, until
relatively recently much of this work relied heavily on more traditional classifiers such as logit, probit or linear
discriminant analysis which are commonly referred to as generalised linear models (GLM). The financial crisis
demonstrated that increased effort was required to develop models with enhanced predictive accuracy, not only for
predicting ultimate failure events, but models which also generate indications of the early stages of financial distress.
Post-crisis, research has highlighted failures in conventional corporate financial distress prediction models e.g. see (Duffie
et al., 2009; Barboza, Kimura and Altman, 2017; Christoffersen, Matin and Mglgaard, 2018). The academic consensus is
that conventional statistical techniques have certain restrictive assumptions including linearity, normal distribution, multi-
collinearity, auto-correlation, sensitivity to outliers and homoscedasticity which do not sufficiently capture the complex
relationships between covariates and FD. These limitations coupled with the need to account for frailty and unobserved
heterogeneity have resulted in a switch of focus by industry and academics alike to the application of more complex

methods e.g. see (Lessmann et al., 2015; Zhang et al., 2017).
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ML methods applied to FD prediction are now well established in the literature, notably (Jones, Johnstone and Wilson,
2015a; Zieba, Tomczak and Tomczak, 2016; Barboza, Kimura and Altman, 2017; Xia et al., 2017). The general
conclusion is that ‘new age’ classifiers outperform traditional (GLMs) models in out of sample generalisation. However,
despite research demonstrating the enhanced generalisation performance of ML classifiers, care must be taken with their
use and the literature makes repeated reference that the following caveats should be kept in mind when evaluating their
exploitation; i) industry standard GLM models based on Altman and Ohlson are still widely used due to their simplicity
and relatively good prediction potential and as such their use should be a serious consideration; ii) data quality is
paramount and complex ML tools will not compensate for poor data quality; iii) transparency is essential in finance.
Investors and regulators demand it and, as much of the literature observe, ML models demonstrate real issues with

transparency*.

Much of the published research has focused on benchmarking (Barboza, Kimura and Altman, 2017) against GLM models
as opposed to reviewing the capacity of ML models to adequately predict FD. This research adds to the literature by
evaluating the capacity of ML models to capture annual fluctuations in FD of shipping companies.

A rapidly increasing focus in the literature is the application of machine learning (ML) modelling (complex models
exhibiting non-linear dependency structures between the covariates and the resulting outcome) in corporate failure
prediction see e.g. (Hernandez Tinoco and Wilson, 2013; Jones, Johnstone and Wilson, 2015b; Christoffersen, Matin and
Mglgaard, 2018). Much of the previous work has benchmarked the performance of ML models on generalised linear
models such as logistic regression (LR). However, it is now widely accepted that generalised linear models result in
significantly narrow® confidence intervals (Cl) of aggregated FD predictions owing to their underlying assumption of

conditionally independent observations.

2.3 SFDP model specification

This section consists of a review of the literature surrounding the architectural composition of the SFDP model. It begins
by addressing the literature concerning the definition of FD, the core concept in developing systems whose prime goal is
the prediction of such events. It continues by reviewing research into ML classification methodologies, both traditional
and complex, used in this research and includes an examination of imputation methodologies for the treatment of missing

data. The imputation methodology review is required to address the problem of missing accounting information in

4 The literature particularly singles out that neural nemworks and “deep learning”, algorithms as lacking transparency.
5 Too narrow confidence intervals indicate the existence of a downward bias risk estimation and that the assumption of conditional
independence in the covariates is not satisfied.
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shipping company financial statements, which is a frequently encountered problem within the sector. The section

concludes with a review of feature (independent variable) selection in FD prediction.
2.3.1  Definition of financial distress

Much of the finance literature define the event as being centred upon the final legal consequence of either the
organisation’s liquidation or bankruptcy. These are clear legal events, which have a definitive date and can be represented
by a dependent variable in a binary classification model variable (Balcaen and Ooghe, 2006). These legal definitions,
however, only represent the worse-case scenario of FD and as such present challenges for FD prediction. The process of
insolvency is, in many cases, significantly lagged (Hernandez Tinoco and Wilson, 2013). The literature estimates a time
gap of up to three years or more between the point at which a company experiences financial distress and the date of a
legal declaration of insolvency (Theodossiou, 1993; Hernandez Tinoco and Wilson, 2013). Furthermore, legislation such
as the U.S. chapter 11 has brought about changes in the way organisations can be provided time for reorganisation of a
company’s business, assets and debts in the event of impending insolvency. There are a number of stages a company can
encounter before closure: (Wruck, 1990) cites FD, insolvency, filing of bankruptcy and administrative receivership. All

of which add to the lag in the final legal declaration.

Within the context of, and prior to, the triggering of the terminal states addressed above, the literature generally follows
two approaches regarding the issue of the definition of FD. The first is an accounting features approach, utilising cross
sectional annual data, and is widely covered in the default prediction literature e.g. see (Altman, 1968; Ohlson, 1980).
This approach utilises historical financial statements which are benchmarked against historical default rates and generally
modelled to produce a probability of bankruptcy outcome. The second, is a mixed accounting/market based approach
which estimates a company’s probability of default based on its distance to default (DD) (Black and Scholes, 1973;
Merton, 1974). The DD model utilises both the expected return on assets and the volatility of those returns in order to
assess the probability of asset values declining below the value of the company’s debt (as a factor of the time to maturity

of a company’s outstanding debt). Based upon this widely accepted foundation®, DD is included as a feature in the

modelling.

However, recent literature has highlighted the failure of such traditional approaches to encapsulate spatial (annual)
fluctuations in FD. Recent publications (Duffie et al. 2009; Nickerson and Griffin 2017; Kwon and Lee 2018; Azizpour,

Giesecke, and Schwenkler 2018) suggest that simply modelling relationships between observable covariates and FD does

& Moody’s Analytics for example.
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not adequately account for latency (unobserved variables) and as such the authors advocate approaches which include

frailty’ or the inclusion of time-varying effects.

2.3.2  Missing accounting values

2.3.21  Overview

The problem of missing data is predominant in financial modelling (Kofman, 2003; Burger, Silverman and Vuuren, 2018)
and is a particular problem with shipping company accounts e.g. see (Sharife, 2010). This is also true of the raw panel
dataset data compiled for the study case using in this research. Missing data leads both to bias as well as loss of information.
This literature identifies three accepted methods of treating the missing data issue. The first method is referred to as the
“complete case” (Nguyen, Carlin and Lee, 2017) or list-wise deletion approach which discards individual observations
(company accounting years) containing missing data to provide only a dataset with complete, observed data. A complete
case analysis of the raw data used as the test case for this study involves the removal of approximately 18% of the sample
space. It should be noted that the results of complete case analysis potentially reduce the available raw dataset to the point

where distortions or bias are introduced.

The second method is referred to as the “omitted variable approach which involves simply removing those covariates
with missing values from the dataset (Servaes, 1996; King et al., 2001). However, this approach has a problem when the

covariates concerned are particularly correlated with the dependent variable.

The third method is data imputation and is part of a growing field of research to address the challenge of missing values
in data. Two primary schools of thought exist for a generalised approach to data imputation. The first methodology,
introduced by (Rubin, 1987), is a model-based approach founded upon the concept of multiple imputation (Ml). The Ml
procedure replaces each missing value with a set of potential values that account for the uncertainty around the correct
value to impute. The generated multiple imputed data sets are then analysed using standard procedures for complete data
and combining the results from these analyses. The second methodology is based on ideas built around the formulation
of the expectation-maximization (EM) model, made popular by (Dempster, Laird and Rubin, 2011). The EM approach is
basically an iterative method to find maximum likelihood or maximum a posteriori estimates of the missing values. The
concept is to handle the missing values as random variables to be removed by integration from the log-likelihood function,
as if they were not sampled. A significant disadvantage of EM is the requirement to explicitly model joint multivariate

distributions which limits its application to variables deemed to be of substantive relevance (Graham, Cumsille and Elek-

" Frailty can be considered a random effect model implemented for” time to event” data. The aim is to account for heterogeneity
induced by unobserved features.
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Fisk, 2003) i.e. the effects need to be large enough to be significant. Furthermore, this approach requires the correct
specification of usually high-dimensional distributions, even of aspects which have never been the focus of empirical
research and for which justification is difficult to realise in practice. For this reason, the Ml approach is the focus of this

research.

MI has become one of the most widely established methods for handling missing data and is receiving increasing attention
in the finance research (Dicesare, 2006; Amel-zadeh et al., 2020). Imputation is fundamentally a further layer of modelling
whereby missing values are estimated from other predictor variables in the dataset. Prior to model training or the
prediction of new samples, missing values are estimated using an imputation methodology. Such is the evolution in the
statistical analysis of missing value problems it has now developed an accepted taxonomy, particularly surrounding the
vital issue of understanding the reasons why values are missing. Central to this is the concept of the missingness
mechanism (Rubin, 1987) which is a system that compartmentalises the missing data problem into three distinct
categories, namely: missing completely at random (MCAR); missing at random (MAR); and missing not at random
(MNAR). Missing data is said to be MCAR if the probability of missingness does not depend on any of the other variables
relevant to the analysis of scientific interest, observed or missing. The missing mechanism is MAR if the probability of
missingness is independent of the relevant unobserved values. The third category MNAR, describes data where the

missingness is dependent on both observed and unobserved values.

The commonly adopted theoretical approach, in practice, is MAR. This approach assumes that the reasons for missing
data in any sample can be explained by the observed data i.e. information present in the training set is used to estimate
the values of other predictors. In company financial statements, the incomplete data is likely to be MAR, with missingness
associated with values of relatively complete variables such as firm size, leverage ratios, location, etc. In these instances,
multiple imputation methods offer the potential of significantly improved estimates with less bias and greater efficiency
(Kofman, 2003).

The approach of “informative missingness” or Missing Not at Random MNAR? (Little and Rubin, 2019) suggests that
significant bias can be introduced through informative missingness. A prime example in the case of shipping company
data is that of “off-shoring” registration in jurisdictions that do not oblige entities to publish complete annual accounts.
For various reasons, some well-known, companies wish their financial situation to remain “confidential”. In this case
there is a clear relationship between the probability of missing values and the related outcome of company financial

performance. There is reason however, to hypothesise that treatment of such data as being MAR, and that shipping

8 Rubin et al. acknowledge that this should be more clearly described as Missing Not at Random.
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companies with similar recorded feature values can adequately simulate missing observations in such entities. However,

care must be taken in treating the imputed values to reflect any departures from the MNAR assumption.

It is important to note the missing values should not be confused with censored data, where entries are missing but
something is known about the individual data. For example, it is not uncommon for companies not to publish accounts in
the period just before failure. For example (T. Shumway, 2001) deem a company as in FD if the firm delists the following
year and “files for any type of bankruptcy within 5 years of delisting”. It is common practice for entities in terminal

decline to avoid publishing new accounts.

Note that imputation adds an extra level of uncertainty. It is the application of a predictive model within another predictive
model. Furthermore, if resampling is utilised to select tuning parameter values or to estimate performance, the imputation
should be incorporated within the resampling. Before performing the final stage of modelling a comprehensive validation

of the imputed data should be performed.
2.3.2.2  Shipping and financial secrecy

The different perceptions concerning the status of certain states considered “flags of convenience” (FOC) are due to the
fact that their secrecy laws focus on the shipping industry (Sharife, 2010). Shipping companies register their ships under
such flags for fiscal and/or regulatory reasons. States providing the statutory environment supporting secrecy to conceal

ship ownership are referred to as FOC havens.

The FOC is often one of a shipping company’s international tax planning strategies. Shipping companies often exploit
variations in domestic tax law and international taxation standards (Kim and Kim, 2018). This provides them with
opportunities to eliminate or significantly reduce taxation and therefore, many multinational corporations use base erosion
and profit shifting (BEPS) (OECD, 2013) to erode the corporate tax base.

Global shipping companies flag ships in foreign countries for many reasons, including avoidance of corporate tax, national
labour regulations and environmental laws. Furthermore, it makes it easier for companies to lower wage costs through
the recruitment of crew from low-wage states. The FOC modus operandi is to require an initial registration fee and annual
renewal subscription, and then require minimum or no financial burden on the operating profits from the company’s
operations. Moreover, FOC states normally do not impose personal income tax on shareholders or crew residing outside
their jurisdiction, nor withholding tax on dividends paid to non-residents. This enables shipping companies to respond

flexibly to the fluctuations in the shipping market by securing a smooth cash flow.
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2.3.2.3 International accounting standards

The period 2000-2019 saw the gradual global uptake of International Financial Reporting Standards (IFRS) for both
public and SME companies. This gradual uptake and multiple changes to the IFRS by the International Accounting
Standards Board (IASB) has contributed to inconsistencies which have resulted in certain accounting information either
being incomplete or simply not reported. One prime example of this is the reporting of leased assets on company balance
sheets prior to the coming into effect of IFRS16 (IFRS Foundation, 2016) in 2019. This was a result of a finding in 2005,
by the US Securities and Exchange Commission (SEC), which alleged that US public companies had approximately
US$1.25 trillion of off-balance sheet leases. Thus, the IASB deemed that a customer (lessee) leasing assets should
recognise and report assets and liabilities arising from those leases. The significance of the missing information problem,
prior to IFRS entry into force, varied by industry and region and between companies. However, with shipping companies
in particular, the effect on reported assets and financial leverage was substantial. The absence of information regarding
vessel leases on the balance sheet meant that investors and analysts were not able to properly compare companies that

borrow to buy assets with those that lease assets, without making adjustments.

From 2019 all vessel leases are recognised on the balance sheet for a lessee, with a right of-use asset and a lease liability
which will result in changes in profit or loss throughout the life of that lease and which also has an impact on key
accounting metrics. According to (Tahtah and Roelofsen, 2016) a result of IFRS16 is that there would be a median debt

increase of 24% and a 20% median increase in EBITDA for the transport and infrastructure industry.
2.3.2.4  Summary — Missing accounting values

The extent of the problem of missing values in shipping financial statements necessitates its proper inclusion in the
development of a viable model for FD prediction in shipping companies. This issue has, to date, not been addressed in

the literature.

Finally, the primary objective of this research is the accuracy of the predictions rather than making valid subject related
or sector informed inferences. Meaning that the goal is not the regeneration of missing values but to maintain the
characteristics of the data distribution and the relationships between features and thereby maintaining the model’s overall

ability to generalise on out of sample data.
2.3.3  Feature selection for financial distress modelling

The emphasis in this section is on observable covariate (feature) selection. This study is particularly concerned with

selecting features, quantitative and qualitative, drawn not purely from company accounts but also from data within the
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environment within which shipping companies exist and which are considered essential indicators of financial health.
Much of the previous work on FD prediction has relied solely on publicly available historical accounting data or on
securities market information. However, more recent research has recognised that accounting data alone are not enough
to explain the relationship between the covariates and FD prediction. (Balcaen and Ooghe, 2006) argue that if too much
emphasis is placed on financial ratios for failure prediction then it is implicitly assumed that all financial distress indicators
are contained within financial statements. In order to address this issue, there are many examples in the literature which
examine combined approaches using accounting, macroeconomic/market, including qualitative data, in order to provide
an enhanced model of financial distress prediction e.g. see (Das et al., 2007; Duffie et al., 2009; Koopman, Lucas and
Schwaab, 2011). (Bonfim, 2009) postulate that when macroeconomic features are considered then this leads to an
improvement in model results. The consensus within the literature is that macroeconomic dynamics represent an
independent contribution in financial distress prediction. As regards shipping this is an issue recognised by (Lyridis,
Manos and Zacharioudakis, 2014) for example. However, care must be taken weighing the effects of macroeconomic
variables. For example, the results (Ali and Daly, 2010) indicate that the same set of macroeconomic variables display
different default rates across the geo-political spectrum. They concluded that GDP, short-term interest rates and total debt
explained default risk for two differing economies, the US and Australia, and concluded that US economy is much more
susceptible to adverse macroeconomic shocks.

Enhanced corporate, social and responsibility (CSR) procedures are more likely to lead to public disclosure of CSR
activities, helping companies develop into more transparent and accountable entities. Improved transparency reduces
informational asymmetries between the company and investors and therefore reduces moral hazard, hence improving a
company’s risk profile. It is also argued that market frictions such as informational asymmetries and agency costs are the
prime drivers of “upward sloping supply curves in capital markets”, argue (Cheng, loannou, 2014). They conclude that
a solid CSR environment reduces the capital supply curve slope. For example, (Weber, Scholz and Michalik, 2010)
augment financial data with CSR features to investigate their effect in predicting company financial performance and
hence improve their credit rating accuracy. They conclude that there is a clear link between company’s CSR adoption and
its credit rating. Elsewhere, (Reverte, 2012) finds a significant negative relationship between CSR disclosure ratings and

the cost of equity capital.

To date, no specific studies investigating agency problems in the context of shipping financial distress have been
discovered. However, there are studies that have examined the general agency problem in a wider economic perspective.
For example (Bergantino and Veenstra, 2002)) investigate principle agent issues relating to charter party contracts whilst
(Rehmatulla and Smith, 2015) examine the issue from a shipping energy efficiency angle whilst also addressing the split

incentives problems. The issue of asymmetric information in shipping cost management is addressed by (Shuyong et al.,
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2009). All of the issues addressed in these papers are relevant to ship finance in that the principle agent components of

information asymmetry problems, adverse selection and moral hazard are present in the financier/shipowner relationship.

2.3.4  Classification algorithms

This section reviews the classification algorithms incorporated into the SFPS system modelling of shipping company FD.

These algorithms include traditional linear based statistical tools as well as the more commonly used complex models.

The use of logistic regression has frequently been selected for benchmarking in many papers examining the use of ML
models for company distress prediction e.g. see (Hernandez Tinoco and Wilson, 2013; Jones, Johnstone and Wilson,
2015b). The consensus is that there is arguably limited value for including it as a modelling tool for the purposes of
benchmarking against the array of complex ML tools available today. Nevertheless, it remains the basis of other linear
models which have been developed to relax the linear regression assumptions of the linear relationship the covariates and
probability (logit of) financial distress. Furthermore, for purposes of modelling transparency the SFDP system
incorporates linear based algorithms, namely: dynamic hazard, linear mixed effects, multivariate adaptive regression
splines (MARS) and a generalised additive models (GAM).

2.3.4.1  Dynamic hazard model

The data distress events are experienced in continuous time, however, only the interval “accounting period” in which the
event occurs is recorded. This use of interval-censoring means that the data can be classed as discrete-time data. The event
may take place at any time within a period but is unknown until the accounts become available. Hence, a discrete hazard
model is employed using time varying panel data see e.g. (Shumway, 2001; Duffie et al., 2009; Christoffersen, Matin and
Mglgaard, 2018; Gupta, Gregoriou and Ebrahimi, 2018). The discrete hazard model is estimated with random effects a (i)

and control for unobserved heterogeneity/shared frailty.

2.34.2 Linear mixed effects model

Generalised linear models are a group of mixed effect regression models used for regression and classification. However,
these models assume that all observations are independent of each other and are hence not appropriate for analysis of
several types of correlated data structures, such as panel data. In the data, companies are observed nested within
accounting periods. For analysis of this multi-level data, random effects should be added into the regression model to
account for the correlation of the data. Random effect models for company distress have been covered extensively in the
literature e.g. see (Duffie et al., 2009; Koopman, Lucas and Schwaab, 2011; Chaudhuri, 2013; Christoffersen, Matin and
Mglgaard, 2018; Kalak and Hudson, 2018).
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2.3.4.3 Multivariate adaptive regression splines (MARS)

MARS (Friedman, 1991) is a one of the family of linear regression models which was developed to deal with non-linearity
between variables. It utilises the ordinary least squares (OLS) method to estimate the coefficient of each covariate.
However, instead of a variable, each term in a MARS model is a basis function (BF) derived from the original
variable. BFs describe the relationship between the predictor variable and the response. MARS then partitions the
predictor values into groups, using recursive splitting, and a separate linear regression line is modelled for each group.
The connections between the separate regression lines are called knots. The knot is the point at which the model extensions

minimize a squared error. Each knot has two spline BFs.

2.3.44  Generalised additive models (GAM)

One of the main assumptions of linear regression models is that they require the covariates to be linearly related to the
probability of FD (or logit thereof). However, GAMs (Hastie and Tibshirani, 1987) relax this assumption by accounting
for the fact that some of the predictors exhibit a continuous, non-linear relationship with FD. Furthermore, non-linear
relationships are observed both below and above specific thresholds with respect to shipping company’s adjusted financial

ratios and as such it is necessary to take account of these non-linear relationships.

Compared with GLMs, GAMs demonstrate superior regularisation capacity thus enabling them to more adequately
address problems of overfitting. They also have an advantage over more complex models of being more interpretable and
as such, GAMs represent an acceptable solution between the interpretable, yet biased, GLMs, and more complex, “black

box” learning algorithms.

Our implementation of company FD prediction utilising GAMs follows along the lines of those documented by e.g. (Berg,
2007; Lohmann and Ohliger, 2017; Christoffersen, Matin and Mglgaard, 2018; Valencia et al., 2019).

2.3.45  Artificial neural network (ANN)

ANNSs have been extensively covered in the FD prediction business and finance literature. (Tka¢ and Verner, 2015) count

412 articles over 20 years and write that much of this research covers FD issues.

ANNs can be described as a non-linear discriminant model. The model is arranged in layers, which for binary
classification consist of at least one input and two output class layers and one hidden layer. Each layer consists of one or
more nodes, and there are weights to connect the nodes in different layers. ANN has several variations in terms of possible

algorithms. The most commonly and widely used back-propagation network is utilised in this study.
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Finally, and this is important in the world of finance, a major limitation of ANNS is transparency and therefore they are

frequently referred to as ‘black box’ algorithms.
2.3.4.6  Support vector machines (SVM)

SVMs (Vapnik, 1999) are a class of modelling techniques which were originally developed in the context of classification
models. They have been extensively examined in the context of FD prediction (Min and Lee, 2005; Shin, Lee and Kim,
2005; Sun and Li, 2012; Zhang, Hu and Zhang, 2015; Kim, Mun and Bae, 2018).

Unlike the more traditional classifiers e.g. LDA, logit and probit, SVM is relatively robust to observations with the
greatest displacement from the hyper-plane i.e. less sensitive to outliers. However, the disadvantage of SVM is that they
are susceptible to many of the same limitations as ANNs, particularly in terms of computational scalability, lack of
interpretability and ability to handle irrelevant inputs and data of mixed type (Tian, Shi and Liu, 2012).

2.3.4.7 Random forest (RF)

RF (Breiman, 2001) is based on decision tree models or generalised classification and regression trees (CART). It has
shown to be relatively robust and is particularly adept at handling outliers and noise in the training set. An RF identifies
the importance of each variable in the classification outcome. Therefore, it provides not only the classification of
observations, but also information about the determinants of separation among groups. The RF technique repeatedly
generates classification functions based on subsets. However, RFs randomly select a subset of characteristics from each
node of the tree, avoiding correlation in the bootstrapped sets. The forest is built for several sub-sets that generate the
same number of classification trees. The preferred class is defined by a majority of votes, thus providing more precise
forecasts and, most importantly, avoiding data overfitting. Our RF fitting model follows (Jones, Johnstone and Wilson,
2015b).

2.3.4.8 Boosting | — Stochastic gradient boosting (GBM)

Boosting algorithms (Schapire, 1990) basically involves the combination of a number of weak classifiers to create an
ensemble classifier with an augmented generalised misclassification error rate. This is commonly referred to as boosting.
However, it was not until (Freund and Schapire, 1995) developed the adaptive boosting (AdaBoost) algorithm that
boosting became an established modelling tool within the machine learning community. Boosting developed further with
the introduction by (Friedman, 2002) of stochastic gradient boosting. The basic principles of which are: given a loss
function e.g. squared error for regression and a weak learner e.g. regression trees, the algorithm seeks out an additive

model that minimizes the loss function.
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In the finance literature, e.g. see (Florez-Lopez and Ramon-Jeronimo, 2015; Zhao et al., 2016; Jones, 2017; Krauss, Do
and Huck, 2017) attempts are made to demonstrate that gradient boosting enhances the performance of conventional
linear models. Moreover, (Jones, 2017) notes that the can function both an exploratory/diagnostic tool and as a “bias
eliminating framework” to rank predictors as well as identifying including important non-linear relationships and
interaction effects. He concludes that a logit model can enhance the analysis and improve predictive and explanatory

performance.

2.3.49 Boosting Il - Extreme gradient boosting (XGB)

XGB (Chen and Guestrin, 2016) is an enhancement of Friedman’s stochastic gradient boosting model. However, it builds
on the qualities of gradient boosting by providing a highly scalable model which incorporates regularisation in order to
limit overfitting and is developed to uniformly handle sparse data. Furthermore, it is generally optimized for parallel
processing i.e. was designed for both speed and performance. The model has drawn attention by being behind many recent

winning entries in large scale big-data competitions such as Kaggle®.

To date, published literature on the application of XGB in FD research is limited (Zigba, Tomczak and Tomczak, 2016;
Chang, Chang and Wu, 2018; Carmona, Climent and Momparler, 2019). This is most likely due to its relatively recent

uptake in the social science research domain.

2.4 Summary, literature gaps and novelty.

This review has presented research into corporate and specifically shipping company FD prediction. The findings have
demonstrated that significant attention has been devoted to the development of corporate distress classification. The
literature demonstrates the clear evolution from linear methods, such as logistic regression such as hazard and linear
mixed methodologies, to the more complex methodologies of GAM and MARS in the domain of general corporate
distress prediction. The review also highlighted the increasing focus on research into the application of more complex
machine learning tools in this domain. However, the review has highlighted several gaps in the literature on the issue of
FD prediction specific to shipping companies. The outcome of this review is that research to date has made insufficient

reference to, or account for, frameworks or theories with respect to:

9 Kaggle is a global community of data scientists which frequently holds competitions to solve real-world machine learning problems.
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the application of machine learning models to shipping FD prediction

the use of sufficiently large, longitudinal, company year financial statement datasets, which are a necessary
foundation for an adequately representative analysis

the reliance on the application of linear modelling in an environment which is proven to be non-linear in nature
the issue of missing values in shipping financial statements

the inclusion of a set of statistical evaluation metrics necessary to adequately evaluate model performance

the inclusion of macro and market features (and externalities)

the development of a scalable, modular single system which provides stake holders with a real time source of

shipping company financial performance metrics

In conclusion, the gaps identified in the literature support the formulation of the following research questions:

1)

2)

3)

Does the inclusion of market and macroeconomic data improve the predictive accuracy of shipping company
financial distress?

Can multiple imputation models improve the FD prediction in the presence of significant amount missing
financial statement values?

Can complex modelling, using modern classification algorithms, capture latent, unobserved variables that more
completely account for correlation in financial distress than previously studies which relied solely on linear

modelling techniques?

In summary, the aim of this research is to develop practical financial forecasting methodology which can: i) capture

correlations in shipping company financial distress from company level, market and macroeconomic predictors data using

modern machine learning techniques; ii) perform effectively in the presence of significant levels of missing values in

company financial statements; and iii) form the foundation for a machine learning financial distress, early detection

system which could improve the financial monitoring of shipping companies by acting as a practical “early warning

system” for financial distress.

Finally, the novelty contributions of this research to the field of shipping company financial distress are as follows:

The company level information gathered for this research is the most extensive shipping company dataset utilised
to date. The 20 year, longitudinal, data collected for bulk shipping company financial statement data increases
the potential for valid inference that, to date, has not been achievable due to the restricted nature of previous
studies which have relied primarily on cross-sectional data.

This is an unprecedented application of a formal methodology addressing the problem of missing values in

shipping company accounts.

Page 33 of 137



University of

Strathclyde

Engineering

l JF NAVAL ARCHITECTURE, OCEAN & MARINE ENGINEERING

For the first time, a set of both linear based and modern machine learning algorithms have been tested

simultaneously on a large set of longitudinal shipping company financial statement, macro-economic and market

data.
The development of a unique software tool kit for the development of shipping company FD prediction and

general risk management applications.
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3 Theoretical framework

3.1 Overview

This chapter begins with a description of the research strategy and design which were formulated to answer the research
questions. The main body of the chapter continues with a description of the analytical framework encompassing the
statistical and mathematical principles applied in modelling of the SFDP model. Figure 3 depicts how the chapter sections
are incorporated into this model. The core of the chapter is divided into four main sections representing principle stages
of statistical modelling. Section 3.3 and 3.4 examine issues surrounding missing values and data pre-processing and
examines the theory behind missing value handling, statistical data transformation, outliers and class imbalance. The
base theories of the classificational algorithms, both traditional and complex, used in this research are presented in section
3.5. Evaluation criteria for classification models is the subject of section 3.6. A summary of the framework is provided in
the last section.

3.2 Research strategy and design

Research strategies, according to (Bryman, 2016) refer to the choice between quantitative, qualitative or a combination
of the two. Quantitative research emphasises quantification in data collection and analysis, whereas qualitative research
emphasises words or observations. This research implements a predominately quantitative strategy but also includes some
qualitative elements. However, the qualitative elements are quantified, through categorisation (factors), for example, in
order to represent principle-agent and corporate control structure issues, see Table 1.

The research design adopted for this study can be described as a combined fixed/flexible, cohort study which is tested
through the application of a suitable case study. The design follows the logical flow and construction of the SFDP model
depicted in Figure 3: The SFDP process. The fixed component comes in the form of non-experimental correlation/cohort!?
study, involving an extensive set of global shipping company accounts, observed over time (20 years). The flexible

component comes in the form of a case study comprising the bulk shipping sub-sector.

10 A cohort study is a type of longitudinal study that samples a group and performs cross-sections at intervals through time. In the case

of this research a panel study where the companies in the panel share a common characteristic i.e. bulk shipping.
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This research design adopted in this study is both confirmatory and exploratory in nature. For research question 1) the
approach is to generate a posteriori hypotheses, first through an analysis of the data and then through the identification
of potential relations between dependent and independent variables. The reason for selecting this strategy is that previous
research indicates the existence of some form of relationship between variables selected in this study, but that there is a
deficiency of understanding of both the direction and depth of this relationship. However, as no specific hypotheses exists,
regarding the predictive ability of our feature set prior to this research, the study is exploratory with respect to the
covariates selected. A further reason for selecting exploratory research is to avoid missing potentially interesting
relationships, aiming to minimize the probability of rejecting a real effect or relation; often referred to as § probability or
the probability of a type Il error.

For research questions 2) and 3) confirmatory research design is deemed more appropriate. Previous research into
financial distress prediction has produced a priori hypotheses stating that:

i methodologies such as multivariate data imputation techniques can be statistically effective in representing
missing data patterns, whilst maintaining the overall integrity of the observed dataset
ii. modern machine learning methodologies can significantly improve the predictive performance of financial

distress in corporations over the more traditional linear based modelling techniques

Since neither of these hypotheses has been applied, to date, on a large longitudinal set of shipping company level, market
and macroeconomic data, a confirmatory research design is therefore adopted for the research questions 2) and 3).
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Figure 3: The SFDP process
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3.3 Miissing value imputation

Following on from the review of missing value literature in 2.3.2, this section describes both the theoretical background

behind MI and the practical techniques used for its implementation in this research.
3.3.1  Missingness mechanism

The foundations of MI are based upon the assumptions of the missing data mechanism utilised when estimating the model
parameters. The performance of missing data methodologies strongly depends on this mechanism for the generation of

the missing values. What follows is a summary of this mechanism.

Lety denote an n X p dataset, Y = (¥4, 5, ..., ¥,)", where y; = (4, ...,yip)T is a random sample from a p-dimensional
multivariate probability distribution P(Y|@) regulated by parameters 8. The rows of Y observations are denoted by
Y;(i = 1,2,..,n) with columns of Y;(j = 1,2,...,n) variables. The n x p missingness indicator matrix is R = (rj]-),
where

1 ify;; is missing
Ty = {0 if y;; is observed

Defining Pr{r;; = 0|y;;} = Pr {y;; observed|y;;} = p;;, then R has a probability distribution P(R|£,Y) which is
regulated by parameters € . Given this, the joint probability of the response variables and the missingness indicator

variables can be expressed as
P(Y,R|6,§) = P(Y|6)P(RIS,Y) 1)

Where P(P|0) is the marginal distribution of the response variablesand P(R|&,Y) represents the conditional distribution
of missingness. With incomplete data, following, Y,,, and Y,,,;; (Little and Rubin, 1987) represent the observed portion

and the missing portion of Y, where Y,,s = {y;;Iri; = 0} and Y, = {y;;Iry; = 1} .

Equation (1) contains two sets of parameters, the parameter of interest, 8 and the nuisance!! parameters, . Inferences on

6 are conducted based on the joint probability model (Eq. 1), which depend on how the probability model for the

1 Nuisance parameters arise when the complexity of reality and data is such that models with multiple parameters are required.
However, inferential interest is confined to a reduced set of parameters.
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missingness is defined i.e. the dependency of missingness on Y. Based on the conditional distribution, (Little and Rubin,

1987) define the missingness mechanism as one of the following:

(1) 1f P(RIE, (Yops, Yimis)) = P(R|€) , the probability that a data point is missing does not depend on any variables, either

observed or unobserved then the missingness mechanism is defined as Missing Completely at Random (MCAR)

) If P(R|E, (Yops, Yimis ) = P(R|é, Y,y ), the probability of missingness depends on only on observed values in the data

set then the missingness mechanism is defined as Missing At Random (MAR).

() If P(R|¢, (Yops, Yimis ) # P(R|E, Y,ps ), the missingness depends on both observed and missing responses and is termed
Missing Not At Random (MNAR).

Missing completely at random (MCAR) is the most restrictive as the missing values do not depend on either observed
values nor missing values. With MCAR, the missing values for a variable are essentially a random sample of the values
for that variable. Hence, the distributions of observed and missing values are the same. In contrast to MCAR, MAR is a
less restrictive assumption because the missing values can depend only on the observed response variables. In this case,
the missing values for a variable are a random sample of the data for that variable but within a sub-group of the observed
values. Again, the distribution of missing values is the same as the distribution of observed values with that sub-group.

MAR is the most widely used in practice.

Following the conclusions for Missing accounting values in section 2.3.2, including the justification therein, this research

follows the MAR missing mechanism approach.
3.3.2  Multiple imputation

Multiple imputation (Rubin, 1987) was developed to solve a problem of survey non-response. Rubin argued that the
problem of missing data should be handled in a principled systematic manner rather than ad hoc. His system has three

fundamental steps:

1) Create m complete datasets, where m > 1 by assigning a value to each missing value m time by extracting m samples
from n appropriate imputation model given observed values. The imputation model must respect the true distributional

relationship between the missing and observed values.

2) The m imputed datasets are analysed by treating each imputed dataset as a real complete dataset. Standard complete

dataset procedures and software can be used directly.
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3) The results from m imputed complete datasets are combined in a simple appropriate way to obtain the so called repeated
imputation inference (Rubin, 1987). Combined estimates variances consist of both within imputation and the between
imputation variances, such that uncertainties in the imputed data are integrated into the final inference. This approach

bypasses the restriction of single imputation, which underestimates the standard errors of the estimates.

The first step, constructing m imputation models to sample from, is the most fundamental part of MI. If a MI model
satisfies certain frequentist properties it is termed proper (Rubin, 1987). Inferences based on relationships from imputed
complete data risk being biased if the imputation model does not preserve the distributional relationships between the
missing values and the observed values. For example, if the model does not include variables from the imputed complete
data for the inference, then correlations between omitted and imputed variables will be biased towards zero. Furthermore,
the between imputation variance typically will be underestimated if the multiple imputations are not based on

conditionally independent samples from the imputation model, given Y, ;.

A Bayesian model provides the theory for making a repeated imputation inference (Rubin, 1987). When multiple
imputations are proper, justification is also provided from a frequentist perspective. Let Q be a value to be estimated, e.g.
an odds ratio or regression coefficient. The observed data posterior distribution of Q is:

E(Qlyobs) = fP(Qlyobs' Ymis)P(Ymisl Yobs)@Ymis 2

or, the observed data-posterior distribution of Q is the completed-data posterior distribution of Q averaged over the
posterior predictive distribution of Yy,,;,.

IfQ = Q(Y) is used to estimate Q, given complete data, and the squared standard error is given by U = U(Y) then the

moment summaries can be obtained from the observed-data posterior distribution:
E(Qlyobs) = E[E(Qlyobs: Ymis)lYobs] ~ A‘Ug(@) ) (3)
V(Qlyobs) = E[V(Qlyobs' Ymis)lYobs] + V[E(Qlyobsr Ymis)lYobs] ~ Avg(fj) + (1 + m_l)V(Q) (4)

Q and U are produced from the imputed complete data, and Avg(Q), Avg(T) and V(Q) are the averages and variance
over repeated imputations. As a finite number of imputations are used to calculate Avg(@) , the inflation factor (1 +

m™1) is used to account for the additional variance (Rubin and Schenker, 1986).

Following the imputation of the missing data, Y;,,;s , through m sets of conditionally independent samples Y® | from the

' “mis

posterior predictive distribution P (Y,,,;s|Yops) » the repeated imputation inference is obtained as follows:
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Calculate the repeated estimates Q) = Q(Y,s, ¥ 2) together with the estimated square standard errors,

0O® = U(Y, s, YO

mis

), from the imputed completed datasets {yobs,y,(,fgs}(t =1,2,...,m). An estimate of Q is then the

average of the repeated estimates,
Q=—f"Q® ®)
The standard error of Q is given by

T={1+mY)B+ U}/? (6)

Where B= ﬁ m.(Q0® —Q)? s the between imputation variance and U =% m . Ut is the within imputation

variance.

Finally, when the data are complete, it is assumed that the hypothesis test and the confidence interval are based on the
standard normal distribution:

(@-QNT~NOD @)
3.3.3  Multivariate missing values

As discussed in section 2.3.2, there are two main approaches for selection and specification of imputation methods joint
methods (JM) and full conditional specification (FCS). The JM approach is considered less flexible than FCS and RP
when treating complex data sets. Most JM implementations assume that the data originate from a multivariate normal
distribution e.g. see (Little, 1988; Honaker and King, 2010; Templ, Kowarik and Filzmoser, 2011). The assumption of
normality is inappropriate in the presence of outliers, skewed data, kurtosis and multimodal distributions as it potentially

leads to flawed results.

FCS necessitates the specification of an imputation model for all incompletely observed variables. It then imputes values
iteratively for each variable. Here, the FCS methodology is applied through the multivariate imputation by chained
equations (MICE) algorithm (Groothuis-oudshoorn, 2011).

For each missing value, a density, f; (Yj|Yj—,9j) , conditional on all other variables is specified, where 6; are the

imputation model parameters. MICE, which is essentially a MCMC methodology, sequentially reviews each variable
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with missing values and draws alternately the imputation parameters and the imputed values. This method is summarized

as follows.
Algorithm 1: MICE (FCS)

1: Fill in missing data Y™ bootstrapping the observed data Y °?$
2:Forj=1,..,p
i. Sample O] * from the posterior distribution of the imputation parameters.
ii. Impute Y;* from the conditional model f;(Y;|Y;-, 6})

3: Repeat step 2 K times to allow the Markov chain to reach its stationary distribution.

The methodology splits high-dimensional imputation models into multiple, single dimensional problems. The choice of

imputation models in this setting can be varied, e.g. parametric, non-parametric or tree based.
3.3.4  Imputation methods

Although the results of the MI have been the subject of much scrutiny, relatively little is known about the comparative
merits of various imputation methodologies that have been produced in recent years. Recent studies comparing available
methodologies suggest the use of more flexible imputation methods, where available. Empirical evidence (Akande, Li
and Reiter, 2017; Murray, 2018) also suggests that simple default methods such as log-linear models or a default FCS

imputation e.g. predictive mean matching (PMM) with linear mean, are not necessarily suitable for practical application.

Flexible non- and semiparametric approaches, such as Bayesian and sequential tree-based methods, have demonstrated
their ability to capture certain unanticipated features of the data (Shah et al., 2014; Karim et al., 2018). Empirically these

methods can outperform existing simple parametric models or PMM using linear models in simulations.

As such the SFDP model incorporates; i) a flexible non-parametric model with PMM and cubic splines; ii) a CART based
RF implementation as imputation methodologies.

3.3.4.1  Additive regression splines

This methodology is based on an alternative to fully parametric methods, called “hot deck” imputation (Chen and Shao,
2000; Harrell, 2015) which consists of replacing the missing value with the response of a “similar” observed variable.
One common implementation of a hot deck method is the k-NN technique. The method is simple, it avoids strong

parametric assumptions, only eligible and observed values are imputed, and it can easily be applied to differing variable
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types. The concept is the identification of k completely observed neighbours, for each missing value Y;; , that are close
with respect to Y;;-. From an identified set of eligible neighbours, one donor is randomly selected and its value Y;; is
taken as an imputation for Y;; . Closeness can be expressed as a distance measure based on the estimated conditional mean

of ¥j1%-,
— |F i i b
d,, = EQepev,) = E(v5™1v, )1, ®)

where Yi}”is denotes instance i of variable ¥; whose value was unobserved, and Y°PS denotes instance i~ of variable Y;
vt J

whose value has been observed (i,i " =1,. n)

Unfortunately, this can be too restrictive as a distance measure based on linear regression models ignores non-linear
effects of Y;- on Y;. In order to address this restriction (Harrell, 2015) developed an algorithm to account for non-linearity.
Bootstrap resamples used for each imputation by fitting a flexible additive model on a sample with replacement from the
original data. The model is used to predict all of the original missing and non-missing values for the target variable for
the current imputation. The methodology uses flexible parametric additive regression spline models in order to predict

target variables. The distance function is formulated as:
4 = Ty (fl(Yi,-—) ~fi(v, ,._)) Bil ©

where fi(:), 1=1, . . ., Lis a cubic spline basis which lead to optimal prediction, according to the coefficient of

determination R?, of a linear transformation of Y; in the following additive model:

¢ +Yd =a+2l = 1Lf; (Y- ), +v (10)
A non-parametric bootstrap is used to obtain the values of ;.
3.3.42 Random forest

An alternative approach to the conditional models discussed above define a new class of non-parametric multiple
imputation methods based on classification and regression trees (CART) or random forests (RF) algorithms (Doove, Van
Buuren and Dusseldorp, 2014). These methods form part of the concept of recursive partitioning, which provides for the
modelling of internal interactions in the data by sequentially partitioning the data set into homogeneous subsets. The

methodology involves growing a RF (Breiman, 2001) of size k by bootstrapping the complete cases and (optionally) sub-
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sampling the variables. An imputed value is generated by sampling from the k trees and then following the RF procedure

to generate a CART imputation.

Assume X = (X;,X2, ..., X;,) to be an X p - dimensional data matrix.

The prediction of missing values using an RF which is trained on the observed parts of the dataset. For an arbitrary

variable X, including missing values at entries i© < {1,...,n} the data can be separated into four parts:

mis —

(s) .

obs’

(s) .

mis?’

1. The observed values of variable X, denoted by y
2. the missing values of variable X, denoted by y

3. the variables other than X, with observations ifjo)s = (1,...,n)\i), denoted by xffgs; and
(s)

(s)
mis mis”

4. the variables other than X, with observations i : denoted by x

is typically not completely observed since the index if)?s

(s)

mis

Note that x &

obs corresponds to the observed values of the variable

X,. Likewise, x, - is typically not completely missing.

To begin, make an initial guess for the missing values in X using mean imputation or another imputation method. Then,
sort the variables X;, s = 1, p according to the amount of missing values starting with the lowest amount. For each
).

variable X, the missing values are imputed by first fitting an RF with response y(fz)s and predictors x

then, predicting
the missing values y,(,fi)s by applying the trained RF to x,(,fl?s The imputation procedure is repeated until a stopping criterion

is met. Algorithm 2 outlines the steps:
Algorithm 2: Impute missing values with random forest.
Require: X an n X p matrix, stopping criterion y

1. make an initial estimate for missing values
2. k «vector of sorted indices of columns in X w.r.t. increasing amount of missing values

3. while not y do

4. X" store previously imputed matrix
5. for siin k do

; .08 ().
6. Fit a random forest: y,, . ~ X,
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7. Predict y) using x) ;

8. XM update imputed matrix, using predicted y&),;
9. end for

10. update 7.

11. end while

12. return the imputed matrix X ?

The stopping criterion y is met as soon as the difference between the newly imputed data matrix and the previous one
increases for the first time with respect to both variable types if present. Here, the difference for the set of continuous
variables N is defined as

. . 2
= Zien () )

imp\? ’
2:jEN(Xneve)
and for the set of categorical variables F as

n
. nor o .
2:]EFZL_1 ximp , yimp

Ap= nen*Toid, (12)

where #NA is the number of missing values in the categorical variables.

After imputing the missing values, the performance is assessed using the normalized root mean squared error for the

continuous variables which is defined by

mean(xtrue_ximp)z

NRMSE=J e i (13)

where x™¢ is the complete data matrix and x™ the imputed data matrix. Mean and var are used as a short notation for

empirical mean and variance computed over the continuous missing values only.
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3.3.5  Multiple imputation evaluation criteria

Multivariate imputation prime objective is to provide statistically valid inferences from incomplete data. The quality of
an imputation model should be evaluated against this objective. There are a range of measures designed to evaluate the

statistical validity of a model. These are:

i. Raw bias (RB) and percent bias (PB) . The raw bias of the estimate Q is defined as the difference between the expected

value of the estimate and truth:
RB = E(Q) — Q.RB (this should tend to zero) (14)
This can be expressed in percent terms:
PB =100 x |(E(Q) — Q)/Q|. (15)
For satisfactory performance an upper limit for PB of 5% is taken (Demirtas, Freels and Yucel, 2008).

ii. Coverage rate (CR) . This is defined as the proportion of confidence intervals (Cl) that contain the true value. The
actual rate should at least equal to the nominal rate otherwise the method is too optimistic and leads to false positives. A
CR below 90%, for a nominal 95% interval, signifies poor quality. A high CR (e.g., 0.99) may indicate a too wide
confidence interval inefficiency in the method which and indicates over conservative inferences. However, over

conservative inferences are generally regarded a lesser evil than too optimistic.

iii. Average width (AW) . An indicator of statistical efficiency CI is the AW of the confidence interval. This should be

as small as possible but not such that the CR falls below the nominal level.

iv. Root mean squared error (RMSE). This metric is a compromise between bias and variance. It evaluates Q on accuracy

and precision:

RMSE = [(E(Q) - @) (16)

Ideally, RB should tend to zero and the coverage should be close to 0.95. Methods termed randomization - valid have
zero bias and proper coverage (Rubin, 1987). If two methods are both randomization - valid, then the method with the

narrower confidence intervals is deemed more efficient.
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A note of caution: although RMSE is widely employed, it is not a suitable metric for the evaluation of multiple imputation
methods. The evaluation of methods based solely based on their ability to recreate the true data is not the aim. On the
contrary, selecting such methods may be harmful as these might increase the rate of false positives. “Imputation is not
prediction” (Van Buuren, 2018).

3.4 Data pre-processing

It has long been accepted that corporate financial statement data clearly demonstrate issues such as skewness, kurtosis
and outliers e.g. (Barnes, 1987). Whilst this may be less of a problem for some advanced ML algorithms such as tree-
based models, other models such as linear regression, k-NNs and principle component analysis (PCA) are particularly
sensitive to such issues. The usual aims of variable transformation in regression are to make the distribution of a covariate,

a response variable, or the residual, less skew, more homoscedastic, and closer to normal.

In this section the theoretical background into the methodologies used for the pre-processing of company financial data

is presented.
3.4.1 Centering and scaling

Real world datasets contain features whose values range significantly in scale and range. This disparity can reduce the
performance of some ML algorithms, particularly those that distinguish observations/feature effectiveness based on a
distance measurement e.g. k-NN’s or those that use numerical gradient information in their solution e.g. ANN and SVM
models. Models that depend on a measure of the variance such as PCA and those that penalize variables based on the size
of their corresponding parameters, like penalized regression, are also affected. However, some algorithms are scale
invariant; for example, tree-based models, which bin inputs before independently splitting on feature values, in order to

avoid these issues.

In order to mitigate the detrimental effect of such variations in data, one of the most common data transformations can be
utilised through the centering (standardizing) and scaling (normalising) of the independent variables. Scaling the data
coerce the predictor values to hold a common standard deviation of one. Simple scaling is achieved through the division

of each value of the predictor variable by its standard deviation:

X=Xmi
Xscaled = R, (17)
Xmax~Xmin

To center a predictor variable, it’s mean is subtracted from all the values. The goal is to center the data around 0 and to

scale with respect to the standard deviation.
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X—p

Xcentered = Y (18)

These operations are aimed at improving the numerical stability of some models.
3.4.2  Data skewness

Many financial models, which attempt to predict the future performance of an asset, assume a normal distribution in
which measures of central tendency are equal. If the data are skewed, this kind of model will always underestimate
skewness risk in its predictions. The more skewed the data, the less accurate this financial model will be and therefore
the greater the need to correct this through transformation. A successfully established form of transformation, which has
been applied in financial modelling, is that based on the model developed by (Box and Cox, 1964). This model is

considered to be a more effective alternative to the logarithmic approach e.g. see (Jones, Johnstone and Wilson, 2015b).

The Box-Cox approach involves a family of transformations; using maximum likelihood estimation in order to determine
the values for the transformation parameter A and thus minimise variance.
x1-1 .
=17 ifA#0
log(x) ifA=0

(19)

However, in the Box-Cox methodology, x represents strictly positive covariate values. In order to overcome this limitation,
(Yeo and Johnson, 2000) proposed a family of distributions that can be used without restrictions on x , whilst retaining

the properties of Box-Cox. These transformations are defined by:

(G + 1A = 13/2 (x > 1 # 0),
_Jlog(x+1) (x=21=0),

YA = 1P 12— (x<d%2), (20)
—log (—x + 1) (x<A=2).

If x is strictly positive, then the Yeo-Johnson transformation is the same as the Box-Cox power transformation of x + 1.
If x is strictly negative, then the Yeo-Johnson transformation is the Box-Cox power transformation of (—x + 1), but with
power 2 — A. With both negative and positive values, the transformation is a mixture of these two, so different powers

are used for positive and negative values.
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3.4.3 Outliers

Financial ratios have long been prevalent explanatory variables used in FD prediction models. However, these features
can exhibit heavily skewed distributions due to of the presence of outliers. This is indeed an issue with a relatively large
set of globally diverse shipping company financial statements. Furthermore, as some models*? are particularly sensitive
to outliers it is therefore necessary to address the issue of outliers as a fundamental part of the data pre-processing stage
(prior to modelling). (Tsai and Cheng, 2012; Nyitrai and Virag, 2019) document the most common approaches to this
challenge as either the omission of observations or features containing outlier values or the winsorization®® of such
extreme values. As regards the omission of data this can result in diminishing the overall signalling effect of the remaining
data thus introducing bias, especially if the data sample size is small. With small sample sizes, apparent outliers might be
a result of a skewed distribution where there is insufficient data for the skewness to be apparent. Also, the outlying data
may be an indication of an idiosyncratic section of the subject field that has only recently been subject of sampling.

Finally, winsorization is considered unsuitable as it potentially suffers from the same drawbacks as simple omission.

Nevertheless, initial tests on the data financial data from the test case dataset indicated that spatial sign (Serneels, De Nolf
and Van Espen, 2006) transformation, used in conjunction with centring and scaling of the sample data produced
improved results over both omission and winsorization approaches. The spatial signed procedure projects the independent
variables onto a multidimensional sphere which, in effect, places the variables at the same distance from the centre of the

sphere. Every sample is divided by its squared norm and is depicted as:

il (21)

* —
U 221 xiZj

X

This is a multi-variate operation, transforming all predictors as a group.

Centering and scaling the data prior to applying this transformation is necessary as the denominator is intended to measure

the squared distance to the center of the predictor’s distribution.

3.4.4 Class imbalance

This section discusses the approach to model tuning in order to increase the sensitivity of the minority class. Class or data
imbalance is a frequent issue in classification modelling and is a condition where a significant majority of the training

observations belong to one class. This is a challenge as classification algorithms are generally trained under the

12 |inear models and to a certain extent ANNs and SVMs
13 Replace outliers with the largest value from those not considered outliers. Usually percentage based.

Page 49 of 137



53
Universityof &

Strathclyde

Engineering

NAVAL ARCHITECTURE, OCEAN & MARINE ENGINEERING

assumption that class ratios in the training data are balanced. However, in real-world datasets this assumption is frequently
violated. This is particularly the case with company default prediction where the training dataset contains thousands of

company/year financial statements and where the majority class is heavily skewed towards the non-distressed entities.

The problem has received considerable attention in the literature (Kang and Cho, 2006; Wang and Japkowicz, 2008; Kim,
Kang and Kim, 2015) as it is a major cause of degradation in the performance of classification algorithms. There are two
main reasons behind this. The first is associated with the objective function of classification models which is the arithmetic
accuracy. This is a ratio of the number of correctly classified observances over the number of total observances. However,
in the presence of severe data imbalance, the data will misrepresent the arithmetic accuracy as the “accuracy” reported is
highly dependent on the classification accuracy of majority class observations. In short, with very imbalanced samples,
most standard classifiers will tend to learn how to predict the majority class. This is particularly the case in company
financial performance assessment as bankruptcy is a relatively rare event®* i.e. the arithmetic accuracy of the generated
classifier will tend to be deceptively high due to the elevated accuracy for the non-bankrupt majority class. The second
cause of degradation is the distortion of decision boundaries caused by imbalanced class distribution. With significant
imbalance the classification boundary of the majority class tends to encroach on the decision boundary of the minority
class. This results in a distortion of the class boundary in favour of majority class leading to a decrease in the accuracy

for minority class.

There are two generally accepted approaches to the resolution of the imbalance issue. Firstly, if there exists a priori
knowledge of a class imbalance, then the approach is to select a training set sample containing equal event rates at the
initial data collection stage. In this case, as opposed to requiring the model deal with the imbalance, the sample frequency
is simply balanced before modelling. However, in these circumstances, the test sample needs to be consistent with the
real-world state and should reflect its natural imbalance so that a true estimate of the out of sample performance is
achieved. Secondly, if an a priori sampling approach is not possible or considered unsuitable, then there are post hoc, in
model training, sampling approaches to address imbalance. These include under-sampling, over-sampling, synthetic
minority over-sampling (SMOTE) and more advanced sampling methods such as cost sensitive and boosting algorithms.
Testing is limited to first three ad hoc sampling methods discussed briefly above. Up-sampling simulates or imputes
additional data points to improve class balance, whilst down-sampling reduces the number of samples to improve class
balance. SMOTE (Chawla et al., 2002), is a data sampling methodology combining both up and down sampling utilising

observations from the sample classes.

14 World Bank and OEDC figures report global long-term average commercial company default rates of around 4 to 6 percent.
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Finally, care should be taken when modifying training samples as resampled estimates can introduce bias. Despite this,

as the results reflect, resampling methods can still be effective at tuning the models.

3.5 Classification algorithms

This section reviews the classification algorithms incorporated into the modelling of shipping company FD in the SFDP
system. These algorithms include traditional linear based statistical tools as well as the more commonly used complex
models. Artificial neural networks (ANN), support vector machines (SVM), random forest (RF), gradient boosting
method (GBM) and extreme gradient boosting (XGB).

The results are then benchmarked against more traditional but nevertheless accepted GLM models used in FD prediction:
a generalised™ hazard model and a mixed effects model; GAM and MARS. The inclusion of these generalised linear
models is to provide a balanced comparison with complex models. Their inclusion is performed in the name of model
transparency as, following the much-quoted Ockham?®’s razor principle, that if two models demonstrate similar predictive

power then the model which is more transparent is preferable.

In this study, ML mechanisms are utilised to distinguish between financially distressed and non-financially distressed
companies based on characteristics such as profitability, liquidity, leverage, size, and growth measures. This section
briefly reviews each of these mechanisms, considering each one’s specific goals, mathematical modelling, and learning
algorithms. The research question surrounds the accurate identification of the category, financially distressed or non-
financially distressed to which each observation belongs. This research tests the following algorithms on both the base

model and full model:

3.5.1 Generalised linear models

The use of logistic regression has frequently been selected for benchmarking in many papers examining the use of ML
models for company distress prediction e.g. see (Hernandez Tinoco and Wilson, 2013; Jones, Johnstone and Wilson,
2015b). The consensus is that there is arguably limited value for including it as a modelling tool for the purposes of
benchmarking against the array of complex ML tools available today. Nevertheless, it remains the basis of other linear
models which have been developed to relax the linear regression assumptions of the linear relationship the covariates and
probability (logit of) financial distress. This research includes the use of some linear based models which have been

demonstrated to perform well against the more complex ML tools. One issue frequently observed in the literature is the

15 We refer to both as generalised linear effects models (GLM)
16 William of Ockham (c. 1287—1347); scholastic philosopher, and theologian.
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use of cross-sectional company, market and macroeconomic data when forecasting for financial distress modelling.
However, this static approach does not adequately account for corporate distress fluctuation over time. As such it
compromises the generalisation capability of linear models thereby rendering them poor competitors in any benchmarking
exercise. The linear modelling described below also examines the capacity of models which do account for time dependent

covariates.

Dynamic hazard model

The discrete hazard model is estimated with random effects « (i) and control for unobserved heterogeneity/shared frailty.

The logit link is specified as:

LaOra®; B
P(Yi,t = 1|Yi,t—1 = O'Xi,t) = — (22)

1+ea(t)+a(t)i B

Where P(Y;, = 1) denotes the probability of an event for company i at time t and «a(t) the baseline hazard rate.
Regression parameters (f) are estimated through the partial likelihood function. As regards the baseline hazard
specification, following (T. Shumway, 2001) the natural logarithm of a company’s annual age is utilised.

Mixed effects model

The model used here is a mixed model including the usual mixed effects for the regressors plus the random effects.

Extending the generalised linear mixed effects model conditional mean, p;; from
E[Yijxi5]
to
E[Yijlvy, xi5]
the form of the generalised linear mixed model predictor is obtained:
Nie = xi; B+ zi; v (23)

Where x is the vector of i predictors over t periods while 8 represents the mixed-effects regression coefficients. The

variables exhibiting random effects are represented by vector z with v; random effects.
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The link function g(.) is used to convert y;; to n;;.

(i) = logit () = log [[Z] = mye. (24)

Hence the conditional probability of a response which includes random effects is
P(Yy = vy, xi, i) = 97 (i) = ¥ (M) (25)
where the inverse link function ¥ (n;,) is the cumulative distribution function ¥(n;;) = [1 + exp (—n;)]7".

Multivariate adaptive regression splines (MARS)

As described earlier, MARS utilises the ordinary least squares (OLS) method to estimate the coefficient of each covariate.
However, instead of a variable, each term in a MARS model is a basis function (BF) derived from the original
variable. BFs describe the relationship between the predictor variable and the response. MARS then partitions the
predictor values into groups, using recursive splitting, and a separate linear regression line is modelled for each group.
The connections between the separate regression lines are called knots. The knot is the point at which the model extensions

minimize a squared error. Each knot has two spline BFs. These are denoted as:

h*(x; ) = [+(x — )]+

h™(xt) = [=(x = )]+

where h(x) is the basis function and t is a univariate knot.

The model is subsequently constructed from N basis functions {h,, (x)N_,}:

Y= B+ Zivzzl Pnhn(x) + € (26)

wheref,, is the coefficient for the n'" BF.
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Generalised additive models (GAM)

One of the main assumptions of linear regression models is that they require the covariates to be linearly related to the
probability of FD (or logit thereof). However, GAMs (Hastie and Tibshirani, 1987) relax this assumption by accounting
for the fact that some of the predictors exhibit a continuous, non-linear relationship with FD. Furthermore, non-linear
relationships are observed both below and above specific thresholds with respect to shipping company’s adjusted financial

ratios and as such it is necessary to take account of these non-linear relationships.

Compared with GLMs, GAMs demonstrate superior regularisation capacity thus enabling them to more adequately
address problems of overfitting. They also have an advantage over more complex models of being more interpretable and
as such, GAMs represent an acceptable solution between the interpretable, yet biased, GLMs, and more complex, “black

box” learning algorithms.

Our implementation of company FD prediction utilising GAMs follows along the lines of those documented by e.g. (Berg,
2007; Lohmann and Ohliger, 2017; Christoffersen, Matin and Mglgaard, 2018; Valencia et al., 2019).

In short, GAM is an additive modelling technique where the predictive variable effects are acquired through smoothing

functions which can be both linear and non-linear. The basic structure is:
JEX)) =a+s1(x) + -+ 5,(xp) (27)

where Y is the dependent variable, E(Y) is the expected value, and g(Y) the link function between the expected value

and the predictor variables x;, . . ., x,,.
The terms s;(x1), . ., s,(x,) represent non-parametric*’ “smoother”, functions.

As the smoother function basis, (thin plate) regression splines are selected, which can be expressed as a linear combination
of a finite set of basis functions which are not dependent upon dependent variable Y. A regression spline of order q is

defined as:

s(x) = XiZ1 Big () = B°B (28)

" In this instance the term non-parametric means that the predictor function shapes are determined by the data as opposed to
parametric functions that are defined by a set of parameters.
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where B is the model matrix of basis function, B, ;(x) , . . ., B, x(x) depict the basis functions and g = [B; : B, :...:
Byp] are the coefficients. The number of basis functions is dependent upon the number of inner knots; a set of ordered,
values of x; and the spline order. So, if m denotes the number of inner knots, the number of basis functions K = p + 1 +

m.
3.5.2  Complex models

Artificial neural network (ANN)

Artificial Neural Network have been extensively covered in the FD prediction business and finance literature?,

They are described as being a non-linear discriminant model. The model is arranged in layers, which for binary
classification consist of at least one input and two output class layers and one hidden layer. Each layer consists of one or
more nodes, and there are weights to connect the nodes in different layers. The method has several variations in terms of
possible algorithms. The most common and widely used back-propagation network is utilised.

For a typical single hidden layer binary neural network classifier, there are inputs (X), one hidden layer (Z) and two output
classes (). Derived features Z,, are created from linear combinations of the inputs, and then the target Yy is modelled as

function of the linear combinations of the Z,,

Zm = 6((aom + C(};lX),m = 1, ,M
Ty = Box + BEZ, k=1,..,K.
fiX) = g(M,k=1,..,K.

Where Z=(Z,Z5,Z3, ..., Zy), and T = (T, T, T3, ..., Tg).

The activation function, (v)is basically represented as o

The output function g, (T) allows a final transformation of the vector of outputs T.

For K-class classification the identity function g, (T) is estimated using the softmax*® function (final ANN layer):

18 (Tk4¢ and Verner, 2015) count 412 articles over 20 years and write that much of this research covers FD issues.

19 The softmax function is often used in the final layer of an ANN classifier. It represents a non-linear variant of multinomial logistic
regression.
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Tk
9 (M= r (29)

1=1¢

Whilst ANNSs are considered capable of treating dynamic non-linear relationships they generally have less capacity in
handling large numbers of irrelevant inputs, data of mixed type, outliers, or missing data. They also have a significant
potential for over-fitting. However, the use of weight decay attenuates the size of the parameter estimates, resulting in
smoother classification boundaries. Model averaging also help limit over-fitting. This is discussed further in the results

discussion section.

Finally, and this is important in the world of finance, a major limitation of ANNS is transparency and they are frequently

referred to as ‘black box’ algorithms.

Support vector machines (SVM)

Support vector achines (Vapnik, 1999) are a class of modelling techniques which were originally developed in the context
of classification models. They have been extensively examined in the context of FD prediction (Min and Lee, 2005; Shin,
Lee and Kim, 2005; Sun and Li, 2012; Zhang, Hu and Zhang, 2015; Kim, Mun and Bae, 2018).

In order to process non-linear decision boundaries, SVMs expand the feature space. This is achieved using various types
of kernels such as linear, non-linear, polynomial, Gaussian kernel, Radial basis function (RBF) and sigmoid etc. This
study utilises the RBF kernel. A hyper-plane divides p-dimensional space into two halves; where a good separation is

achieved by the hyper-plane that has the largest distance to the nearest training data point of any class.

Classification is based on the sign of the test observation. The ideal is completely separable observation sets, as this would
allow SVM to build a model with 100% accuracy. In finance, this is practically impossible as economic variables are
influenced by noise in empirical data and are often biased. For classification problems involving partially separable groups,
the SVM method allows the inclusion of a margin of error. In general, the number of variables is not a constraint on the
optimisation problem. The algorithm associated with the quantitative model establishes a classification mechanism,
calibrating parameters using a training set (i.e. the algorithm learns from the training data). The resulting classification
scheme can then be applied to predict the grouping or classification of new observations. The validation set is usually
evaluated by comparing the classification given by the model with the actual group to which the observation belongs. The

validation and training sets are independent: no observations are common between them.
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The optimisation problem can be summarised as:

Minimise fwTw = C XM, & (30)

Subjectto y; [wT ¢(x;)) +b] =1-¢;

wherei=1,2,...,M,& = 0 are the margins of error related to classification cost C, y; are the classifications in the
training set, and ¢(x) transforms space RM . One advantage of this technique is that ¢(x) does not need to be known, since
a kernel function ( K(x) = K(xi, Xj )) is applied so that K(x) = @(xi) T .¢(x;) . The kernel function is pre-determined in the

algorithm and a solution to the optimisation problem (Egs. (1) and (2)). The traditional kernel functions are:

K(xi,xj) =< XX > (31)
and

K(x;,x) = eCrlxi=x1%) (32)

where v is a positive constant. Eq. (31) is called the ‘linear kernel’ and eq. (32) is the ‘radial basis function’ (RBF). The
linear kernel does not provide strong predictability in non-separable datasets, due to the complexity of the empirical
analysis, but the results are easily interpreted by users. Meanwhile, although the RBF kernel is difficult to analyse, or

even discuss, it provides superior predictions in non-separable cases.

Unlike the more traditional classifiers e.g. LDA, logit and probit, SVM is relatively robust to observations with the
greatest displacement from the hyper-plane i.e. less sensitive to outliers. However, the disadvantage of SVM is that they
are susceptible to many of the same limitations as ANNs, particularly in terms of computational scalability, lack of
interpretability and ability to handle irrelevant inputs and data of mixed type (Tian, Shi and Liu, 2012).

Random forest (RF)

Random forest (Breiman, 2001) is based on decision tree models or generalised classification and regression trees (CART).
It has shown to be relatively robust and is particularly adept at handling outliers and noise in the training set. The
importance of each variable in the classification outcome is identified by a RF. Therefore, it provides not only the
classification of observations, but also information about the determinants of separation among groups. The RF technique
repeatedly generates classification functions based on subsets. However, RFs randomly select a subset of characteristics
from each node of the tree, avoiding correlation in the bootstrapped sets. The forest is built for several sub-sets that

generate the same number of classification trees. The preferred class is defined by a majority of votes, thus providing
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more precise forecasts and, most importantly, avoiding data overfitting. Our RF fitting model follows (Jones, Johnstone
and Wilson, 2015b):

1. Training data divided into B sets. For b=1 to B:
i. A bootstrap sample of Z", size N is drawn from the training data.
ii. An RF tree, T}, is ‘grown’ from the bootstrapped data by process of recursion for each terminal node of
the tree until the min. node size n,,;, is attained:
iii.
e Randomly select m variables from the full p set of predictors.
e  Select the best variable split point from m.

e  Split the node into two child nodes.

2. Produce the ensemble of trees {T,}?
For a discrete outcome variable, let C,, (x) be the class prediction of the b RF tree. Then fff(x): majority vote {Cb (x)}f

Boosting | - Stochastic gradient boosting (GBM)

The basic principle GBM is: given a loss function e.g. squared error for regression and a weak learner e.g. regression
trees, the algorithm seeks out an additive model that minimizes the loss function. The algorithm is typically initialized
with the best guess of the response e.g. the mean of the response in regression. The gradient or residual is calculated, and
a model fitted to the residuals to minimize the loss function. This model is used with the previous model and the process

is repeated for a number of user-specified iterations.

The classification GB modelling takes the following form:

Initialized all predictions to the sample log-odds: f,° = log

- (33)
forj=1..M

Compute the residual (i.e. gradient) z; = y; — p

Randomly sample the training data.

Train a tree model on the random subset using the residuals as the outcome.

Compute the terminal node estimates of the Pearson residuals:
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~i-P)
~p(1-P)

(34)

Update the current model using f; = f; + Afl.”)

When trees are used as the base learner, basic gradient boosting has two tuning parameters: tree depth and number of

iterations. One formulation of stochastic gradient boosting models an event probability by

A 1

Pi = ewl-r@r )

where f(x) is a model prediction in the range of [ - ==, ==]. For example, an initial estimate of the model could be the

sample log odds,

f = log P (36)

1-p’

where p is the sample proportion of one class from the training set.

The algorithm can be tailored by applying a suitable loss function and gradient. This algorithm can be transformed into a
stochastic gradient boosting context by including random sampling at the start of the inner loop. Shrinkage can also be
implemented as a closing step.

In summary, the finance literature, e.g. see (Florez-Lopez and Ramon-Jeronimo, 2015; Zhao et al., 2016; Jones, 2017;
Krauss, Do and Huck, 2017) attempts to demonstrate that that gradient boosting enhances the performance of conventional
linear models. Moreover, (Jones, 2017) notes that the can function both an exploratory/diagnostic tool and as a “bias
eliminating framework™ to rank predictors as well as identifying including important non-linear relationships and
interaction effects. He concludes that a logit model can enhance the analysis and improve predictive and explanatory

performance.

Boosting Il - Extreme gradient boosting (XGB)

Extreme Gradient Boosting (Chen and Guestrin, 2016) is an enhancement of Friedman’s stochastic gradient boosting
model. However, it builds on the qualities of gradient boosting by providing a highly scalable model which incorporates

regularisation in order to limit overfitting and is developed to uniformly handle sparse data. Furthermore, it is generally
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optimized for parallel processing i.e. was designed for both speed and performance. The model has drawn attention by

being behind many recent winning entries in large scale big-data competitions such as Kaggle.

To date, published literature on the application of XGB in FD research is limited (Zigba, Tomczak and Tomczak, 2016;
Chang, Chang and Wu, 2018; Carmona, Climent and Momparler, 2019). This most likely due to its relatively recent

uptake in the social science research domain.

3.6 Classification model evaluation

The classification performance of each model/classification combination is performed using their respective area under
the curve (AUC) of the Receiver Operating Characteristics (ROC). The ROC originated in the 1940’s for use in radar

signal analysis and one of its first recorded uses in ML was (Spackman, 1989).

However, ROC/AUC method has its limitations and as such H measures (Hand, 2009) are also employed in the evaluation
of models. The H measure is a robustness check on the AUC results. This metric addresses the main problem associated
with the AUC, that of the handling of misclassification costs across different classifiers. The AUC does not apply the
same misclassification cost distributions to individual classifiers i.e. it utilises different metrics when evaluating different
classification rules. And as such its use should be limited to the broad comparison of individual classifiers as an AUC

may rank the individual models adequately but perform inadequately in terms of the level of the predicted probabilities.

The log loss function is also used to compare the calibrated probabilities. The log loss function measures the accuracy of
a classification model by penalising false classifications. The basic premise is in minimising the log loss in order to
maximise the accuracy of the classifier. In order to calculate log loss the classifier assigns a probability to each class in

place of assigning the most likely class.

Mathematically log loss is defined as:

Hi= — ~Yier(yilog () + (1 —y;) log (1 - p)) (37)

where Hj; is the model’s log score (loss) of model j in year ¢, ¥; is a dummy equal to 1 if company i financially
distressed, P is the predicted probability of distress of firm i by model j, R is the sample of active companies and n is the

number of companies in R. A perfect score is zero.

The Log Loss metric considers the probabilities underlying model models, and not only the final output of the
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classification. The stronger the probabilities correspond to a lower Log Loss. As log loss is a measure of entropy or
uncertainty, a low log loss means a low entropy. The measure is similar to the Accuracy value derived from the confusion
matrix, but it will favour models that more strongly the distinguish classes and useful for comparing not only model

output but on their individual probabilistic outcome.

3.7 Summary

This chapter provided an overview of the theoretical framework which forms the foundation for the statistical models and
techniques employed in this thesis. The chapter is split into four main sections reflecting the main stages of the SFDP
process flows. The process commences with the data identification, collection, review and preparation stage. In statistical
modelling/machine learning processing, this is probably the most important and resource consuming of all the steps in
the process. The quality and usefulness of the information derived from this stage directly affect the ability of models to
learn. The discussion of data preparation in this chapter was separated into section 3.3 Missing value imputation and
section 3.4 Data pre-processing. The missing value issue would ordinarily be treated as an integral part of the pre-
processing stage. However, the complexity of missing data handling methodologies, as well as the relatively large,
longitudinal dataset and the high percentage of missing values, warrants a distinct discussion in order to highlight the
magnitude of the task faced in correctly managing the problem. Furthermore, pre-processing of data prior to imputation

risks the “lock-in” of any bias which is resident within the original dataset.

The chapter closed with section 3.5 Classification models, explaining the theory behind the FD prediction algorithms
which form at the core of the SFDP, and section 3.6 Classification model which describes the evaluation techniques and
metrics necessary to validate the model.

In conclusion, the chapter described the theoretical background which provides the foundation for the SFDP system

architecture described in chapter 4.
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4  System software and architecture

41 Overview

The Shipping Financial Distress Prediction (SFDP) system architecture and component modules? are described here. The
chapter is split into four main sections, respecting the flow and structure of the theoretical framework described in chapter
3, namely: multiple imputation; data pre-processing; model tuning and training; and model testing and evaluation. The
SFDP system specification overview is presented in Figure 4 outlining the four modules and their respective functional

components.
4.2  Architectural foundation

The SFDP system is based on the principles of the “Reactive Architecture” (Bonér et al., 2014). Also referred to as reactive

systems, the aim is to develop responsive, resilient, elastic, and message driven systems (see Figure 5):

e Responsive systems enable rapid and consistent response times. This is essential when training multiple models,
which may involve a significant time lapse (many hours) when multiple classifier models are involved.

e Resilient systems are responsive following failure of individual components. System failures should be contained
within each component and so isolating components from each other ensure that elements of the system can fail
and recover without compromising the whole system.

e Elastic systems stay responsive under varying workload. They react to variations in the input rate by increasing
or decreasing the resources allocated to service these inputs. They achieve elasticity in a cost-effective way on
commodity hardware and software platforms.

e Message driven systems rely on asynchronous messaging between components providing loose coupling,

isolation and location transparency.

Whilst the message driven aspects are not yet part of the SFDP system, it can be readily included in later releases.

2 The term, “module”, in this instance, refers to a standalone block of code that provides a set of specific and tightly coupled
functionality, which defines and enforces logical boundaries within the said module.
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Figure 4: SFDP system specification overview
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Means

Figure 5: The “Reactive Architecture”

The SFDP system is written in the R(R Core Team, 2000) programming language. R is a widely used and well-established
computer language and environment used for statistical computing and graphics. R provides a range of statistical linear

and non-linear modelling, tests, time-series analysis and graphical techniques. It is also highly extensible and runs on a

wide variety of operating systems such as UNIX, FreeBSD and Linux as well as Windows and MacOS.

The SFDP functionality also takes advantage of many of the statistical, modelling and peripheral support, packages
(Wickham, 2015). These packages are collections of functions and data sets written in R by third party statisticians and

machine learning experts. For a view of how the SFDP system fits into a corporate software architecture see Figure 6.

Enterprise/Corporate system

Application

SFDP functions

R packages

Functional layers — + v

R environment

v

Database management system ]

Operating system e.g. Linux Windows

Figure 6: Corporate functional software architecture
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4.3  SFDP functional composition

The SFDP function suite is composed of five main conceptual modules which implement a set of data import, missing
data handling, pre-processing, classification and evaluation functions. The composition of the system modules and

function is depicted in Figure 7.

SFDP Functional blocks

Data import

Missing data

Pre-processing

Data modelling

Model evaluation

Figure 7: SFDP function block composition
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4.4 Documentation

SFDP's documentation generated using the Roxygen22* package for documentation in R, along with custom extensions.
The documentation pages include embedded code extracts explaining application. The code is dynamically extracted from
test cases in the source code, ensuring that the extracts are automatically updated. The print output and plots from the
extracts are also dynamically generated through custom Roxygen extensions and embedded in the documentation page.
Similarly, additional customisation embeds a table of options, default values, valid types, values, and descriptions in the
model documentation.

45 Summary

The SFDP toolkit is a set of functions that risk assessment teams can use to build financial risk assessment software
applications for shipping company distress prediction, with limited experience of the underlying technology. The toolkit,
constructed using the methodologies described in chapter 3, is extensible and can be used on multiple software platforms.
The main novelty at the core of the system is in its focus on missing data management, which to the authors knowledge,
is the first of its kind.

In order to test and evaluate both the methodologies and the toolkit a test case derived from the bulk shipping market is
presented in chapter 5. The results of this test case are presented in chapter 6.

21 For more information ref: https://cran.r-project.org/web/packages/roxygen2/index.html
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5 Case study: The bulk shipping sector

5.1 Overview

The bulk carrier fleet is an essential element of the global economy. No other single mode of transport has the capacity
to deliver the raw material, neither the nature of, nor quantities, that are required to sustain global economic development.
In 2018, the world fleet totalled approximately 116,857 ships (Equasis, 2019), with bulk carrier vessel accounting for
approximately 12,000 vessels or 10% of the global fleet. The dry bulk market is very diversified and volatile. It comprises
three major sectors: iron ore and steel, coal and food and over 30 other commodities. In the same year, the bulk fleet took
the delivery of 26,7% of the total gross tonnage, more than any other vessel type, followed by oil tankers (25%), container
ships (23,5%) and gas carriers (13%). The three major dry bulk commaodities represented more than 40% of total dry
cargo shipments in 2018 (UNCTAD, 2019). Containerized trade contributed with 24%, minor bulks with 25,8% and the

remaining volumes consisted of dry cargo including break bulks.

The size and diversity of bulk carrier owner/operating companies, coupled with the bulk fleet’s equally diverse vessel
types and cargos, identifies them a valid representative subset of global shipping commercial entities. This, therefore,

qualifies the subsector as an appropriate case study for the SFDP model.
5.2  Empirical context

The case study develops three main ex-ante models for FD prediction comprising three sets of predictive features:
company level predictors, including financial statement ratios; macroeconomic indicators; and bulk shipping market
features. In model 1, the independent variable selection is taken solely from company level predictors. Model 2 adds
macroeconomic indicators to model 1. Model 3 combines bulk carrier market specific indicators with model 1. Finally,

model 4 includes all three sets of features.

The next step is to complete an analysis of missing company level values in the raw dataset. This dataset is then subject
to both case wise deletion and data imputation techniques (see sections 2.3.2 and 3.2) in order to examine corresponding
model performance. This is performed prior to any other pre-processing operations so as to avoid locking in any bias

within the original raw data.

Following the missing value stage, all the data are subject to pre-processing by applying variance stabilizing and skewness
transformation. For the testing of linear based models, however, further data pre-processing is required to account for the

assumptions previously addressed in the literature review (2.2.2). This is essential as it provides for a more balanced,
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level playing field when comparing linear based models with more complex ML algorithms. Hence allowing for a more

thorough evaluation of the full potential of linear based modelling.
5.3 Data sources

The raw dataset used for company level financials is sourced from unconsolidated statements sources from the Orbis
company database (Bureau-Van-Dijk, 2019) and consists of over 5000 global dry bulk shipping company year financial
statements for the period 2000-2018. The shipping specifics are primarily generated from Clarkson’s, Shipping
Intelligence Network (Clarksons, 2019) whilst macroeconomic is data drawn from various data sources: OECD database
(OECD, 2019); the World Bank (World Bank, 2019); IMF (International Monetary Fund, 2018).

Filters are applied at company level in the raw data to exclude financial companies; such entities differ from other
corporates particularly as regards their asset base, accounting standards and regulatory status. Furthermore, in order to
avoid modelling distortions, holding companies are also filtered where they do not demonstrate that their holding entities

prime business drivers are bulk shipping,

There is no filtering on company size as there is a requirement to account for interactions between size and other variables
in the models, thereby allowing for the modelling of companies of different sizes.

5.4 Dependent variable — Outcome and hypotheses

The dependent variable is a binary variable, FD, representing the state (distressed or not distressed) of the company in
any discrete accounting period. The definition of FD in companies follows on from (Pindado, Rodrigues and de la Torre,
2008) and outlines the following primary conditions to be fulfilled in predicting company financials distress. The
hypothesis follows that a company is distressed when any one of the following events occur i) the company’s EBITDA
to expenses ratio is short of its expenses for two consecutive years; ii) the company suffers from negative growth for two
consecutive years; iii) when a formal default event has been triggered; iv) failed to publish accounts for the following
year (Christoffersen, Matin and Mglgaard, 2018). This definition also implies that companies experiencing FD in a single

period can recover; therefore, recurrent events are implicitly modelled.
5.5 Independent feature selection

The independent variable selection in this study was primarily driven by the specific nature of the dry bulk shipping sub-
sector. The information was quantified through the inclusion of company level features (financial and non-financial) as

well as market and macroeconomic characteristics. The sector’s risk framework can be largely described through financial
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features relating to the capital intense and cash flow dependent nature of the industry and through market and
macroeconomic features which reflect a highly cyclical sub-sector with a high sensitivity to; global and regional economic
growth; fuel prices; the balance of supply and demand amongst others. This framework is developed using a feature set
common to corporate risk assessment, which is based on the aforementioned empirical studies, but also includes a set of
predictors through which it attempts to capture dry bulk company idiosyncrasies, including but not restricted to the

following:

e With capital intensive companies such as shipping, close attention should be payed to the level and structure of
debt. This includes the increasingly prevalent use of sale and leaseback as a finance option in the acquisition of
vessels.

e  Price competition is intense and is driven by the commodity nature of the bulk sector. This can lead to a periodic
oversupply of tonnage. Furthermore, peak-to-trough price declines can be significant.

e Technological risk in the form of air and waterborne pollutants is becoming a major issue in the face of increasing
environmental regulation.

e Flag state risk factors play a significant role in determining company FD risk. Therefore, the more an individual
flag state regulation reflects the globally accepted environmental, safety and employment and financial
regulatory standards, the lower the risk.

e  The overall marketability of a company fleet is enhanced by a modern, technically advanced vessel base. This is
an issue with ever increasing environmental regulations which in turn result in an expanding environmentally
sensitive customer base.

e The breadth of the route network affects a shipping line's market position make it more attractive to global
customers as operators with a global route network have a competitive advantage over regional players. The
International shipping market is highly fragmented, with the largest operators having a relatively modest share
of the market. However, companies that operate purely domestically may be protected by cabotage laws aimed
at restricting competition. Having a route network with broad geographic coverage can serve as a natural hedge
against weak demand and help an operator ride out cyclical downturns.

e The diversity of a company’s fleet, in terms of vessels size and type can improve end market and customer
demand. Operators with multiple classes of vessels (tankers, containerships, and bulk commodity ships) and of
various sizes, or those that participate in commercial pools, can carry a broad range of commodities and attract
a more diverse customer base. A diverse customer base of reputable charterers limits counterparty risk and adds
stability to revenues.

e Companies with a high degree of operating efficiency should generate relatively better profit margins during all
market conditions. Cost structure, as a measures of asset utilization and efficiency (revenue or cost per unit of

capacity), and operating profit margins are important efficiency indicators. Emphasis should be placed on
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operating cost structure as it tends to be a more consistent differentiating factor than revenue generation, which
varies with market conditions.

Based on the above, a set of independent variables were selected and tested. Finally, with the context of the above

discussion the predictor variables are separated into three distinct groups:

i. Company level predictors, including financial and non-financial indicators.
ii. Dry bulk market/macroeconomic indicators

iil. Global macroeconomic indicators

The full list of explanatory variables can be found in Table 2.

5,5.1  Company level predictors

5.,5.1.1  Financial predictors

The financial ratio mix selected in this study follows recent standard practice in generic company default prediction
(Hernandez Tinoco and Wilson, 2013; Jones, Johnstone and Wilson, 2016; Barboza, Kimura and Altman, 2017). The
selected indicators are those most widely used by banks and ratings agencies (Standard & Poor’s, 2019). Furthermore,
when selecting this feature set, careful consideration was taken to account for the idiosyncratic nature of financing issues
within the bulk carrier shipping sector e.g. see (Grammenos, Nomikos and Papapostolou, 2008; Lyridis, Manos and
Zacharioudakis, 2014; Kavussanos and Tsouknidis, 2016; Wang, Woo and Mileski, 2016; Lozinskaia et al., 2017;
Standard & Poors, 2019). This resulted in the selection of the following financial statement ratios: i) liquidity and solvency;
ii) earnings and profitability; iii) cash flow; iv) growth/change indicators (ROE); v) leverage and capital structure ratios;

vi) activity ratios and vii) investment in capital expenditure to total assets.
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Table 1: Corporate ownership concentration (based on Bureau van Dijk Independence indicators)

Indicator Sub-level Notes
Companies with six or more shareholders
_ ) 1 and/or companies in whose case the sum of
Low ownership concentration direct ownership is above 75%
Independent companies - those with known Companies with 4 or 5 shareholders and/or
recorded shareholders, each of them having less companies that are the ultlma'ge owners qf
than 25% of direct or total ownership of the 2 another company (given that the information is
company included in a source), even when its
shareholders are not mentioned.
3 Companies with 1 to 3 shareholders
Companies with six or more shareholders
4 and/or companies in whose case the sum of
Medium-low ownership concentration direct ownership is above 75%
Companies with known recorded shareholders Companies with 4 or 5 shareholders and/or
with ownerships below 50%, but with one or companies that are the ultimate owners of
more shareholders with ownership percentages 5 another company (given that the information is
above 25% included in a source), even when its
shareholders are not mentioned.
6 Companies with 1 to 3 shareholders
. ] ] ] 7 Companies with a sum of direct percentage of
Medium- high ownership concentration ownership is 50.01% or higher
Companies with known recorded shareholders _ o
that have a total or calculated ownership above Also assigned to companies in whose case an
50% 9 ultimate owner is mentioned in a source,
although its ownership percentage is known
High ownership concentration 9
Companies with a recorded shareholder that has
a direct ownership above 50%
Unknown concentration 10

Companies with an
ownership concentration

unknown degree of
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Table 2: Bulk carrier case study: Predictive feature set

Category Sub-category Feature Description
Company
Financials ROE Return on equity (ROE)
ROA Return on assets (ROA)
ProfitM Profit margin
GrossM Gross margin
EBITDAM EBITDA margin
EBITM EBITM
NetAssetT Net asset turnover
Current R Current ratio
LiquidityR Liquidity ratio
SolvencyR Solvency ratio
Gearing Gearing (debt/equity)
Non-financials Age Age
Employees Registered full time employees
BvDII Bureau van Dijk Independence indicator
Dry Bulk market 1YTC 1-year TC
3YTC 3-year TC
OrderBook Order book / Total fleet
NBPdex New build price index
SHPdex Second-hand price index
LaidUp Inactive tonnage / Total Fleet
Scrap Scrapping rate
HFOSpot HFO (spot)
MDOSpot MDO (spot)
WSTOre 22 WSTOre (iron)
WSTCc WSTCc (coking coal)
WSTSc WSTSc (steaming coal)
WSTGr WSTGrain
WSTMuinor WSTMinor (minor bulk)
BDI BDI (price)
Macroeconomic (core) GDP Real GDP / real GDP Growth
LTI Interest rate (short term)
STI Interest rate (long term)
Inflation Inflation
debtToGDP Public Debt / GDP
Unemployment Unemployment
Insolvency Company bankruptcy rates
Copper Copper (COMEX)
SteelDex DJUSST (Dow Jones historical iron & steel
price)

22 Features DBM08-11 are World Seaborne Trade figures — Clarksons 2019
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5.,5.1.2 Company level non-financial predictors

Non-financial specific company characteristics are described in this section. Company age, employee numbers, charter

policy, corporate governance predictors are included.

Company age

The period taken to create and establish a shipping company is a critical component in assessing its likelihood of success.
It is hypothesised that a company’s age plays a role in the prediction of FD and that younger?®, less experienced companies,
typically demonstrate more of a tendency to FD than do their more established counterparts (Pompe and Bilderbeek, 2005;
Kavussanos and Tsouknidis, 2016). Furthermore, younger companies have an obvious disadvantage of being less able to

generate a sufficient balance of retained earnings to protect the organisation from financial difficulties.

Employment

This company employee count is a control variable common in company FD models in the literature. It is used as a proxy

for firm size.

Corporate governance

Much research has been conducted in the field of corporate governance structures e.g. see (Daily and Dalton 1994;
Andreou, Louca, and Panayides 2014; Giannakopoulou, Thalassinos, and Theodoros 2016; Lozinskaia et al. 2017;) with

the general consensus being that corporate structures have a concrete part to play in company FD.

It is widely accepted that strong governance structures enhance company operating and financial performance as well as
aid in mitigating agency risk. Furthermore, previous studies also point to a larger board size being more optimal in

maximising efficiency in shipping companies.

23 However, attention must be taken in assigning an appropriate “age” to shipping companies which can be identified as “spinoffs”
of established organisations.
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Corporate ownership concentration indicators (see Table 1) are used as a company level corporate governance proxy in
order to attempt to capture and quantify corporate governance effects. The values reflecting ownership concentration and
range from 1 (low) to 8 (high). Previous studies have also established a link between effective corporate governance and
ownership concentration. Based on this system (Horobet et al., 2019) have reported that companies demonstrating a high
to medium level of ownership concentration display lower performance volatility, compared with companies having lower

degrees of concentration.

However, on a note of caution. In the case of shipping companies, a lack of transparency brought about by an elaborate
system of ship registration; a nebulous beneficial ownership structure; and the frequent use of financial “off-shoring”
renders a complete assessment of individual shipping company corporate governance particularly challenging. Therefore,
only a reasonably approximation can be achieved on this control variable but in a manner which at least “underestimates”

rather than exaggerate its potential predictive effect.

Charter policy

A company policy of incorporating a preference for time-charters for its vessels as opposed to operating them in the spot
markets is inherently more stable and provides for more predictable cash flows (Kavussanos and Tsouknidis, 2016). A
dummy variable ranging from 1 (only time charter) to 0 (only spot market) is employed. This variable is intended to
capture company risk aversion towards the freight market. It also reflects their expectations towards the shipping market

conditions.
5.5.2  Macroeconomic (core)

Previous literature has demonstrated that macroeconomic features do contribute to company financial performance
(Figlewski, Frydman and Liang, 2012; Jones, Johnstone and Wilson, 2015b). Here the hypothesis is that eight broad
macroeconomic indicators relating to the global economic status of the economy and financial market conditions are

related to FD. These features®* are:

e Real GDP/Real GDP growth
e Interest rates (short and long term)

e Inflation rates

24 sources: Figures are acquired global basis. They are cross referenced through the World Bank & OECD. USD based statistics have
been selected as a basis, taking into consideration that the majority of shipping finance is contracted or fixed to this currency.
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e Public debt to GDP

e Unemployment rates

e Insolvency (company bankruptcy rates)
e  Copper prices

e  Steel prices

Real GDP is an inflation adjusted measure of the value of goods and services and is a widely quoted indicator overall
economic growth. The real GDP growth rate is expressed as a percentage that indicates the rate of change in the real GDP

year on year. A strong and growing economy is positively correlated with lower default risks.

Interest rates affect the economy through consumer and business spending, inflation and growth. They also influence
equity and bond prices. High interest rates negatively affect consumer and business spending and make it difficult for
businesses to borrow funds for growth. In turn, high rates have a particularly negative affect on highly leveraged, capital
intense sectors such as shipping which increase the pressure on debt servicing and cash flows. The interest rates are lagged

on a 12-month period to reflect the period taken for the full effects of rate changes to be reflected in the economy.

Inflation is the rate at which the level of prices for goods and services is rising and consumer purchasing power falling.
Itis a heavily cited economic indicator. High or exceptionally low (deflation) inflation is viewed as negative for economic

outlook. High inflation is viewed as symptomatic of weaker economic outlook, leading to increased risk of default.

The debt-to-GDP ratio compares a country's public debt to its GDP. It indicates a country’s ability to pay back its debts
by comparing what a country owes with what it produces. A high ratio of public debt to GDP is a generally considered
sign of broad economic fragility. This indicator is therefore expected to be positively associated with increased default

rates.

Unemployment rates are a strong barometric indicator of economic health with higher rates obviously associated with

business failure rates.

Commercial bankruptcy rates are viewed as a firm indicator of general economic conditions. Peaks in failure rates are
associated with recession, a severe reduction in commercial lending or market crashes. Hence higher failures rates are

associated with poor economic conditions and lead to a higher probability of default.

Finally, copper and steel prices have been included as covariates. Steel is one of the world economy’s fundamental

materials used in construction, transport and a wide array of industrial and domestic appliances. Copper is considered a
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reliable leading indicator of economic strength. It has widespread applications in most sectors of the economy both

domestically and industrially and is used extensively in electronics and power generation and transmission.
5.5.3  Dry bulk market
The following is a short description of the features selected for the market prevailing over the period of interest.

Some of these market indicators can be considered macroeconomic but they are included in the “dry bulk market”
grouping as they are specific to bulk trade/business/commodity interests. Hence, an attempt is made to introduce a clearer

differentiation in the modelling between these features and “core” macroeconomic indicators.

Dry bulk “stocks” (Time charter 1 & 3 year and BDI)

Consistent with (Grammenos, Nomikos and Papapostolou, 2008; Kavussanos and Tsouknidis, 2016) the bulk time-charter
rates are utilised in order to capture the bulk shipping market conditions prevailing during each accounting period captured.
Freight rates directly affect cash-flows necessary to cover operational costs service debt. They also affect asset value

which is an integral financial covenant (loan to value) in shipping finance contracts.

The Baltic Dry Index (BDI) is an index generated through 20 key dry bulk routes, measured on a time charter and voyage
basis. The BDI that is published by the Baltic Exchange and covers Handymax, Panamax, and Capesize dry bulk carriers
transporting a range of commodities including coal, iron ore and grain. The BDI is a widely accepted barometer for the

bulk shipping market.

Fleet level covariates

_The amount of shipping tonnage (dwt) available, on order, inactive (laid-up), and market for demolition all have an effect
on the bulk market (Kavussanos and Tsouknidis, 2016). Here, the following covariates are introduced; i) the new build
shipping order book, captured through the order book/fleet total ratio, which has an effect on future freight rates and
therefore cash flows; ii) the ratios laid up tonnage/fleet total and vessel scrapping/fleet total. The hypothesis here is that

both inactive tonnage and vessel demolition rates indicate diminished freight rates which adversely affect cashflows.

A Newbuilding Price Index (Clarksons, 2019) is also employed. This is formulated by averaging the US$ per dwt values

of new build prices for bulk carriers and used as a percentage year on year change.
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Commodity and fuel prices

The market for bulk carrier transportation is very much derived and dependent upon the demand for core commodities
such as iron ore, coke and agricultural basics. Demand for core commodities can be volatile and sensitive to regional
economic, geopolitical, environmental and climate fluctuation. This volatility has a direct influence on freight rates and
hence the cash flows of shipping companies. Our commodity covariates include the annual pricing of the following:

e lronore

e Coking coal

e Steaming coal
e Crain

e Minor bulk

Depending on ship types and types of operations, marine fuel costs (IFO and MGO) can represent upward of 50% of the
total vessel operating costs (Kavussanos and Visvikis, 2016). Therefore, any study on shipping company financial health
should include marine fuel pricing.

5.6  Summary

This chapter opened with an economic overview of the bulk shipping sector and highlighted the importance of the bulk
sector to the global economy and overall supply chain. The company ownership/operating and financial structure, as well
as the diverse bulk fleet and cargo composition, renders the sub-sector an accurate representation of the commercial
shipping sector. The structure and character of the sub-sector was then addressed in order to establish an appropriate
identification and definition of both the dependent variable and the independent predictor variables, required for bulk

shipping FD prediction.

This chapter concludes by describing the composition of a commercial shipping entity dataset which can act as a reliable
testbench for the SFDP model and toolkit.
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6 Results and discussion

6.1 Overview

This chapter presents and discusses the results from the SFDP bulk shipping case study. The discussion begins with
section 6.2 which briefly outlines the dataset structures used as input into the individual and complete data model tests.
Section 6.3 addresses missing value assessment and management. The section starts by examining the raw data and then
presents and discusses the performance of imputation methodologies, using the missing shipping company financial data.
Section 6.4 examined the effect of each of the predictor variables on the FD dependent variable. The results of the
application of individual classifiers, on each of the three covariate data sets (company, macroeconomic and market, as
described in section 5.5) are presented in section 6.5. This section also covers the pre-processing and parameterisation
(training and cross validation) stages of each classifier prior to presenting the FD prediction results. The results of
classification tests using the final, complete data model are presented in section 6.6. A summary of the chapter is provided

in section 6.7.

6.2 Test data structure

The test plan consists of four high-level data model structures comprising the three covariate datasets plus a complete
model which combines all three datasets. Data model 1 represents company level data (see section 5.5.1); model 2 include
company level feature set plus macroeconomic data see section (see section 5.5.2); model 3 includes model 1 plus bulk

market data (see section 5.5.3) and finally model 4 represents a full model including all these datasets.

Model 1, the company level dataset, is used to perform the analysis of missing values and to test the performance of
missing value management options including complete case treatment and data imputation techniques. It is the only

dataset with missing values.

All four data models are then used to test

i. the performance of the individual classification modules

ii. the contribution of each of the covariate datasets to the prediction of FD
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6.3  Missing value - analysis and management

As discussed extensively in previous chapters, missing value analysis and management is a core component of this
research. This section starts by examining the raw company level dataset in order to review the extent of the missing value

problem (section 6.3.1). This will inform the decision-making process concerning the missing data management.

Following the initial data analysis, a simulated dataset is generated from the bulk carrier dataset with missing values
replaced by values generated through the observed values in the dataset. The outcome of this phase is a view on the
performance of a set of various imputation algorithms. This is described in section 6.3.2. Finally, a subset of the tested

algorithms is selected for integration into the final SFDP system for the case study evaluation.

6.3.1 Data analysis

The structured analysis of any dataset with missing values is necessary to avoid seriously compromising inferences which
may be derived from the observed information contained within that dataset. Potential bias due to missing data depends
on both the missingness mechanism, which was behind the prior loss of data, and the analytical methods applied to treat

the missingness.

The first objective was to analyse the financial statement raw data in order to ascertain the extent of the missingness i.e.
which individual features were affected and to what degree. The analysis summary in Table 3 shows that of 5,368
company financial statements collected, only 1,483 were fully complete, meaning that approximately 72% of financial
statements are only partially complete. However, at the individual financial ratio level, the missingness level is 17.6%
with 10,405 out of 59,048 accounting ratio values not recorded in the dataset. A breakdown of the missing values on an

individual ratio level can be found in Table 4.

The results demonstrate that there is a relatively high level of observed accounting values, 82.4%. This indicates that, if
the MAR assumption is applied, there is sufficient information present in the observed values for multi-variate imputation
to yield beneficial results (in terms of reduced bias and efficiency) when compared with complete case treatment.
Moreover, a complete case treatment option would result in only 27% of the financial statement observation being
available for analysis. This would result in a loss of 32,300 observed financial ratio values which are present within the

3,885 incomplete financial statements, which contain significant levels of potentially exploitable information.
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Table 3: Missing financial statement value analysis

Company financial statements (annual) 5,368
Financial ratios 11

Company accounts

Complete financial statements 1,483 containing 16,313 observed financial ratio values
Incomplete financial statements 3,885 containing 32,330 observed financial ratio values
% complete observations 27.6%
% incomplete observations 72.4%

Financial ratio values

Total ratio values 59,048
Missing ratio values 10,405
Observed ratio values 48,643
Fraction missingness 17.6%

Table 4: Missing value level per accounting ratio

Accounting ratio Missing values % missing
ProfitM 2839 53%
GrossM 1617 30%
EBITM 1586 30%
Gearing 1241 23%
EBITDAM 862 16%
ROA 806 15%
NetAssetT 676 13%
ROE 481 9%
SolvencyR 128 2%
LiquidityR 104 2%
CurrentR 65 1%

Cut-off thresholds for the levels of missing data where not utilised in this analysis. The literature (Jakobsen et al., 2017;
Madley-Dowd et al., 2019) suggests that such thresholds have a limited evidence base to support them. The limited
number of studies which have investigated bias and efficiency, in datasets containing increasing levels of missingness,

produced inconclusive results.
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A matrix plot of the missing data distribution is represented in Figure 8, with grey denoting missing data. This provides

a visual description of the missing data pattern and what proportion of data is missing.

A plot of the pairwise correlation point-biserial correlation coefficients between covariate pairs is shown in Figure 9.
Variables are assigned TRUE or FALSE based on their missing data status and these Boolean vectors are correlated to
the native variables. The resulting correlation matrix has rows with variable names + _is.na - the rows represent the

converted variables, while the columns are the original variables.

Matrix plot of missing data

4000~

L

Observations

2000-

[ | ! ! 1 [ ! [ 1
ROE ROA ProfitM GrossM EBITDAM EE!ITM MetAsseiT CurrentR LiquidityR SolvencyR Gearing
varn.

Figure 8: Matrix plot of missing accounting data
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Figure 9: Raw accounting data - observed v missing (NA) correlation coefficients

6.3.2  Imputation algorithms — Simulated data evaluation

Having analysed the missing data, the next step is to develop a platform for testing the performance of various missing

data methodologies on simulated data. This is achieved through the creation of a dataset which has no missing values,

and which is based on the original data frame. The dimensions of this simulated data, including correlations between

variables, correspond to the original data set.
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Missing values are then replaced in the simulated data using the MCAR, MAR, MNAR and MAP patterns described
earlier. With MCAR NAs are replaced randomly. MNAR, NAs are replaced based on the same covariate values while

with MAR, the NAs are replaced based on all other covariate values. MAP represents a combination of any of the previous

three missing data patterns.
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Figure 10: Missing data algorithm computational time comparison

The computational times of each of the algorithms on the simulated dataset are depicted in Figure 10. As can be seen,

most computational times are comparable on the simulated dataset apart from the random forest algorithm, which take up

to 5 times as long to process the dataset. This is indeed born out in the tests on our real dataset, discussed in section 6.3.3.

The following Figures (11, 12 & 13) show the performance results of each classifier based on the simulated missing data

patterns. As discussed in section 3.3 the data in this case study is generally considered to be MAR (but with elements
which can be considered MCAR or MNAR).
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The results based on the RMSE evaluation are shown in

assessing the discrepancy between real and imputed data. In other words, one cannot base imputation method

evaluations solely on their ability to recreate the true data and that such methods may increase the rate of false
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Figure 11: Imputation algorithms root mean square error (RMSE) performance comparisons — Simulated data set
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Figure 12. It is noted, however, that the RMSE is
insufficient for the evaluation of imputation methods (VVan Buuren, 2018). The claim is that it focuses to heavily on
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The results from the Kolmogorov-Smirnov (KS) tests can be found in

for testing whether two samples are from the same population. The KS value corresponds to the maximum vertical
distance between the empirical distribution functions of the samples. For missing value method evaluation, it is used as a
diagnostic tool to compare the distributions of observed and imputed data. For any variable exhibiting missing data there

is an empirical distribution of observed values. Following imputation there is then a distribution of imputed values for
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Figure 12: Imputation algorithms mean absolute error (MAE) performance comparisons — Simulated data set

those variables exhibiting missing values.

Figure 13. The KS is a non-parametric method
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Figure 13: Imputation algorithms Kolmogorov-Smirnov (KS) performance comparisons — Simulated data set

In summary, performance results from the test on simulated data appear relatively inconclusive for MCAR, MAR and
MNAR patterns in the performance metrics. However, given that the Hmisc (an implementation of additive regression
splines imputation (Harrell, 2015)) results for MAR on a KS scale resulted in a value below .05 qualifies its inclusion as
a candidate for further testing on the real dataset. Random forest imputation performed well on average over all three
tests. Given these results combined with the findings from previous research, Hmisc and random forest imputation where
selected together with k-NN (for calibration) for use as evaluation of imputation management techniques in this case
study.
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6.3.3  Imputation results

Further to the conclusions presented in the previous section, three imputation algorithms: Hmisc (additive regression
splines (Harrell, 2015)), random forest (RF) and k-NN were selected in order to evaluate their performance in a real-
world, practical setting using the bulk carrier company case study data, with the aim of identifying a suitable imputation
methodology which will be used to in the testing of FD prediction using each of the four data model sets.

Each of the three algorithms were evaluated on their ability to obtain statistically valid inferences from the incomplete

financial data set. The effect of imputation on each individual financial covariate is first examined.

The basic testing assumption is the null hypothesis, which states that, the two distributions, observed and imputed are
drawn from the same data sample. As such, the performance metrics utilised are the Welch t-test P and the KS D values.
For example, a 95% significance level indicates that where imputed covariates show a p < .05, the null hypothesis should
be rejected. Also, KS D values should be as close to 0 as possible. These results are presented in the following section
and are visualised using histograms and boxplots depicting the distributions of original and imputed covariate values.
Although the goal is to have the two distributions as similar as possible, differences do not necessarily signal problematic
imputation. Distributions of missing and observed data can differ, with missingness still being attributed to missing at
random. The MAR assumption, by definition, is that differences in distributions are necessarily explainable by other
variables in the data set. However, dramatic differences between the imputed and observed data do indicate problems and,
in a context with many imputed variables, it is helpful to have some screening devices to identify these potential problems.
The empirical density plots used here act as flags for potential problems with the imputed estimates.

Figure shows the distribution histogram overlay of imputed and observed values with rows representing each financial
covariate and columns for imputation algorithms. Similarly, an alternative view on the two distributions is provided in
Error! Reference source not found. which provide a boxplot representation of the dataset covariates. At this stage, nod
ata pre-processing was performed on the pre-imputation dataset as any bias will be “locked into” the data prior to training
and validation.

A visualisation of the hierarchical clustering of the missing data is provided in Figure 16. The bifurcations approaching a
length of O (to the left of the plots) represent closer relationships in terms of missing data - i.e. those variables in one
group are more likely to be missing together compared to the rest. An important aspect of this is that the patterns should

not alter too much pre- and post-imputation.
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Figure 14: a) Overlaid histograms of imputed and original values
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Figure 14: b) Overlaid histograms of imputed and original values
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Finally, Figure 17 shows a plot of the bootstrapped correlation coefficients from the original and imputed data sets. This
was generated through applying 20 iterations in the diagnostics function to obtain bootstrapped correlation coefficients
with 95% confidence intervals. The correlation coefficients are represented by the dots and the red line. The blue line
(intercept O, slope 1) and the red correlation line should be aligned. With k-NN imputation the line is turned clockwise

and has a lower slope than 1 (regression to the mean).

Table 5: Imputation evaluation metrics

HM RF k-NN
Welch t-test P KS test D Welch t-test P KS testD Welch t-test P KS testD
ROE 1.18E-03 1.92E-01 1.79E-08 2.81E-01 2.38E-17 4.07E-01
ROA 6.09E-06 1.73E-01 9.22E-16 2.96E-01 4.91E-16 2.31E-01
ProfitM 1.75E-01 8.16E-02 2.88E-03 1.15E-01 2.11E-21 1.87E-01
GrossM 1.46E-01 4.57E-02 7.80E-05 1.56E-01 9.11E-61 1.85E-01
EBITDAM 5.16E-04 8.62E-02 6.55E-16 2.84E-01 3.09E-22 3.56E-01
EBITM 5.97E-01 5.38E-02 8.22E-05 1.55E-01 3.47E-25 2.27E-01
NetAssetT 9.31E-04 1.14E-01 1.28E-09 4.29E-01 2.60E-01 3.56E-01
CurrentR 4.50E-01 1.66E-01 2.65E-04 2.72E-01 1.25E-36 7.46E-01
LiquidityR 5.96E-01 1.30E-01 3.95E-04 2.36E-01 3.05E-01 2.70E-01
SolvencyR 5.32E-02 1.76E-01 9.52E-07 5.14E-01 8.33E-25 5.43E-01
Gearing 3.47E-19 2.80E-01 4.75E-32 4.18E-01 3.88E-55 3.22E-01

6.3.4  Imputation summary

The Welch’s t-test and KS-D test were used as statistical measurements to evaluate if the imputed data was statistically
close enough to the observed data. The p-values of the Welch’s t-test showed that only Hmisc and RF consistently imputed
values across the covariates such that the null hypothesis of equal means could not be rejected, e.g. for a p-value for a
covariate above 0.05 indicating that the null hypothesis at the 5% level cannot be rejected. For example, the p-value of
the liquidity ratio, “LiquidR”, for imputation method Hmisc is 0.596, which indicates that the null hypothesis should not
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be rejected. However, the low p-value of the variables for ROA and gearing, indicate that further investigation is

warranted.

The KS D values for all three imputed data sets indicate a close approximation to the validation data than dissimilarity,
since all values in Table 5 are closer to 0 than 1. This can be interpreted as an indicator of limited loss of information
from the imputed data from the models. However, Hmisc consistently demonstrates slightly superior performance of the

three.

6.4  Feature set analysis

The section begins by examining the contribution of each of the three covariate sets which form the foundation of the
four models. Figure 18 shows the ranked importance of the four feature sets (models) using the LASSO (Tishbirani,
1996) method. This method places a constraint on the sum of the absolute values of the model parameters by applying a
shrinking or regularization process to penalize the regression variable coefficients, shrinking some of them to zero. During
features selection process the variables that still have a non-zero coefficient after the shrinking process are selected to be

part of the model. The goal of this process is to minimize the prediction error.

All the accounting ratios represent a significant predictive power in Model 1 with the liquidity ratio seemingly being the
least ranked predictor. The inclusion of the macroeconomic data in Model 2 maintains the significance of the accounting
covariates but signals short term interest rates, unemployment and debt to GDP as additional significant macro indicators.
Model 3 introduces bulk market indicators to the accounting data with new build prices index, shipyard orderbook and
laid up fleet indicators having significant effect on the distress prediction. Finally, Model 4 containing all covariates from

the previous three models appears consistent with the previous three models in ranking predictors.
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Figure 18: Variable importance - linear based classification (model 4 predictor set)

The results from the random forest classifier are plotted in Figure 19 for all four data models. Variable importance is the
mean decrease of accuracy over all cross validated predictions, when a given variable is permuted after training, but
before prediction. Covariate importance is the mean decrease of accuracy by each individual cross validated prediction.

It basically represents the number or proportion of observations that are incorrectly classified by removing the covariate
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covariates. A clear interpretation of the absolute values of variable importance is hard to do well.
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Figure 19: Results from tree (RF) model classification on the full data model showing variable importance
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Figure 20: Feature importance and correlations — Model 1

Finally, all linear models where tested on data sets with and without i) highly correlated predictors and ii) covariates

marked as statistically insignificant. No change in performance was registered and all results presented are those derived

from the complete datasets.
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Figure 21: Correlation matrix — Model 4
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6.5 Feature set modelling — results

6.5.1 Performance metrics

As previously discussed, the finance literature extensively covers the subject of comparisons between linear based
algorithms and complex modelling in the domain of company distress prediction (classification). However, the aim in
this research is to not only compare classification algorithms based on predictor set capacity but also to analyse their
individual FD prediction capacity and the effects of augmenting company level financial data with both market and

macroeconomic data.

The assessment of the classification performance of each model/classification combination is performed using their
respective area under the curve (AUC) of the receiver operating characteristics (ROC). For ROC clarification, companies
marked as exhibiting the pre-defined status of “distressed” were assigned a positive value (1) and a zero (0) to companies
not considered so. As this exercise is being approached from an investor/banking perspective heavier costs are placed on
the false negative prediction counts. That is those companies predicted as “normal” by the models when in fact the actual
state is “distressed”. This is reflected in the Type II error metric whereby the lower the value the less prone classifier is
at yielding false negative responses. The sensitivity metric records the levels of correctly predicted “distressed” cases

(true positives).

Finally, the results must reflect the nature of both data imbalance (Japkowicz and Stephen, 2002) and the costs of
misclassification. This imbalance is common in financial statement datasets, especially with bankruptcy as it is a relatively
rare event. Account must be taken for this imbalance otherwise the risk of bias in favour of the predominant class will be
significant. If the dependent variable is heavily biased towards then any predictions on that data will tend toward that
class. This imbalance is present in the case study dataset. In order to address this imbalance the H measures (Hand, 2009)
metric is utilised. This is a robustness check on the AUC results. This metric addresses the main problem associated with
the AUC, that of the handling of misclassification costs across different classifiers. The AUC does not apply the same
misclassification cost distributions to individual classifiers i.e. it utilises different metrics when evaluating different
classification rules. And as such its use should be limited to the broad comparison of individual classifiers as an AUC

may rank the individual models adequately but perform inadequately in terms of the level of the predicted probabilities.

The log loss function is also used to compare the calibrated probabilities. The log loss function measures the accuracy of
a classification model by penalising false classifications. The basic premise is in minimising the log loss to maximise the
accuracy of the classifier. In calculating the log-loss, a classifier assigns a probability to each class in place of assigning

the most likely class.
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Mathematically log loss is defined as:
H; = — %ZiER(yi log () + (1 — ;) log (1 = p)) (38)

where Hj; is the model’s log score (loss) of model j in year ¢, ¥; is a dummy equal to 1 if company i financially
distressed, P is the predicted probability of distress of firm i by model j, R is the sample of active companies and n is the

number of companies in R. A perfect score is zero.

The log loss metric considers the probabilities of the underlying model prediction and not only the final output of the
classification. The stronger the probabilities correspond to a lower log loss. As log loss is a measure of entropy or
uncertainty, a low log loss means a low entropy. The measure is similar to the Accuracy value derived from the confusion
matrix, but it will favour models that more strongly the distinguish classes and useful for comparing not only model
output but on their individual probabilistic outcome.

6.5.2  Model performances

The results discussed below are those produced from classification modelling performed with the random forest imputed
dataset. As will be discussed in section 6.6, the RF imputed dataset consistently produced the highest sensitivity and,
therefore, the lowest type Il error rate of all of the imputation techniques. Although the Hmisc technique produced the
highest overall AUC results of the imputation techniques, they were only marginally higher than RF. However, the prime

goal of FD classification is not only high overall performance but also the avoidance of false negative results.

The four models and nine classifiers are compared using the ROC data produced following predictions made on the hold-
out datasets. In the diagrams below, each classifier test produces a ROC curve (bottom right) and classification density
distributions (top left). The “Density by tag” shows the “Active” company prediction density (pink or 0) compared
“Distressed” company predictions (blue or 1). Ideally, these distributions should be as separated as possible indicating
the classifiers ability to make clear predictions. All model results based on two years to (t-2) distress prediction with a

macro/market data lag of one year to distress and a 95% confidence level.

Before moving onto the data model discussions, it is important to look first at the results from the mixed effect model.
The motivation behind its inclusion in the study is that the model allows for unobservable macro effects which create
correlation in distresses, notwithstanding those related to the observed covariates. The results of running the 2000-2018
(rf imputed), model 1 data set through a mixed effects algorithm, produced fixed effect (observed feature set) estimates
indicating an overall strong effect on FD prediction. However, the various covariate mixes of company, macroeconomic

and market predictors produced estimated standard deviation estimation of the random intercept of between 2.4 and 0.639,
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e.g., for = 0.639, a change of one standard deviation in the random intercept implies a 1.89 (e%®%) times higher odds of
a company being distressed. Therefore, it is assumed that there is a non-negligible random effect, which accounts for an
unobserved correlation in distress. This notion of an unobserved temporal effect is one of the hypotheses driving this

study.
6.5.2.1  Model 1 - Company level covariate set

This section presents the results for each of the nine classification model applications on the company level covariate set
(model 1). The results for the traditional classifiers are shown in Figure 22 and those for complex classifiers found in

Figure 23.

As can be seen from the “Density by Tag” plot, the hazard classifier performs quite poorly on the separation of outcomes.
Furthermore, the ROC curve for this classifier also reports an AUC of 0.61, confirming the distribution result. This
indicates that the hazard classifier is barely able to separate the classes (a value of 0.50 would mean that the algorithm
could not separate the classes at all) on this dataset. The linear mixed effect classifier does demonstrate a reasonable
ability to separate the “Distress” and “Active” outcomes and demonstrates improved predictive power over the hazard

model with and AUC of approximately 0.83.

The results produced by the MARS and GAM classifiers, which have been developed to better accommodate the non-
linear aspects of the data, demonstrate the clear ability of these algorithms to separate the data and perform relatively well,

with AUC values of approximately 0.89 and 0.87 respectively.

The complex classifier results demonstrate an overall improvement on the four linear based classifiers. However,
compared with MARS and GAM, the improvements are not as pronounced as previous reported in the literature. The
tree-based algorithms (RF, GBM and XGB) outperform the ANN and SVM but only marginally. However, the tuning of
the tree-based models was almost set at default and improved results would, more than likely, be achieved through
reviewing the parameterisation. Overall, GBM exhibits the highest AUC with 0.93.

These results should, however, be used with caution. Overall AUC levels are only one indicator of the predictive power
of classification algorithms and do not indicate the over predictive capacity of a classifier, as will be discussed further in

the chapter.
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Figure 22: Model 1 - ROC results for traditional classifiers
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Figure 23: Model 1 - ROC results for complex classifiers
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6.5.2.2 Model 2 - Macroeconomic covariate combined with model 1

This section presents the results for each of the nine classification model applications on the macroeconomic covariate
set combined with the company level covariates (model 2). The results for the traditional classifiers are shown in Figure
24 and Figure 25, for the complex classifiers. The results show little change in the AUC figures compared with those for
model 1. This indicates that the introduction of macroeconomic predictors has little overall effect on FD predictive power
of the classifiers. This is consistent with the results from the feature set analysis (section 6.4) which indicates that only
short term interest rates, inflation and debt to GDP have relatively strong predictive power. However, the combined effect

of these predictors with the company levels predictors is imperceptible in the combined predictive power of model 2.
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Figure 24: Model 2 - ROC results for traditional classifiers
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Figure 25: Model 2 — ROC results for complex classifiers

Page 106 of 137




University of

Strathclyde

Engineering

& NAVAL ARCHITECTURE, OCEAN & MARINE ENGINEERING

6.5.2.3  Model 3 - Bulk market covariate set with model 1

This section presents the results for each of the nine classification model applications on the bulk market covariate set
combined with the company level covariates (model 3). The results for the traditional classifiers are shown in Figure 26
and Figure 27, for the complex classifiers. Again, as with model 2, the introduction of the bulk market predictors has little
demonstrative effect on the ROC results for any of the classifiers. However, there is a positive effect on the sensitivity
and type Il error rates for each of the classifiers. As indicated in section 6.4, the market indicators for freight rates of iron
ore and grain , scrap prices and the new build price index do appears to have a positive effect on the ability of model 3

to improve the false negative reporting rate when market predictors are combined with company level information.
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Figure 26: Model 3 — ROC results for traditional classifiers
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Figure 27: Model 3 - ROC results for complex classifiers
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6.5.24  Model 4 — Complete covariate set

This section presents the results for each of the nine classification model applications on the combined covariate sets
(model 4). The results for the traditional classifiers are shown in Figure 28 and those for the complex classifiers in Figure
29. The results from this model show little difference from that of model 3 which again indicates the strength of the

company levels data combined with some market features in predicting FD in bulk shipping companies.
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Figure 28: Model 4 — ROC results for traditional classifiers
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Figure 29: Model 4 — ROC results for complex classifiers
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An interesting point to note is that the log loss figures for model 4 are largely unaffected by the introduction of both
macroeconomic and market covariates despite their unobserved effectiveness in adding to the overall FD predictive power.
In other words, where the macro and market predictor effectiveness is difficult to observe (or masked by stronger company

predictors), their inclusion is not to the detriment of overall predictive power of the models tested.

In summarising, the tree-based classifiers demonstrate the most effectiveness in shipping company FD prediction.
However, MARS and GAM have demonstrated strong enough predictive capacity to be included as part of any system
for FD prediction due their transparency of operation as well as their predictive capacity. As regards the four model
performances, the information contained in the company level data combined with some of the market predictors mention
above, appears to represent a more parsimonious but effective predictor set, regardless the classifier selection. However,
as indicated in section 6.4, macroeconomic and market indicators do play some demonstrable role in prediction even
though this is largely hidden by the predictive power of the company level data. Care should be taken not to dismiss their

effectiveness; however marginal the results may appear. This should be a subject of further investigation.

6.6 Consolidated results

This section focuses on the effect of applying each of the different missing value treatments (imputation techniques and
a complete case scenario) on the classification results. The results are partitioned into four sets, the first three represent
the results on an imputation method basis whilst the fourth set contains the “complete case” missing data management
results. In this section, the focus is placed only on seven of the best performing classifiers with hazard and mixed effects
extracted from the classifiers sets which are examined here. The results summarised here represent the performance of

the classifiers using the metrics discussed in section 6.5.1.

The results are presented in five tables based primarily of the type of missing data technique used. The multivariate
imputation methodologies are presented in Table 6 for k-NN, Table 7 for Hmisc and Table 8 for RF imputation. The
results for the “complete case” treatment can be found in Table 9. A summary of the aggregated performances of each of

the missing data techniques are found in Table 10. These results are presented for each of the four data models.

With respect to the individual classifiers, their overall performance on ROC metrics and log loss indicate better overall
performance of the more complex models (ANN, SVM, RF, GBM and XBG) compared with the traditional classifiers
(MARS and GAM). The performance difference between the two sets is not as pronounced as described in previous
research findings, however, the performance of the complex models can be improved by further hyperparameter
optimisation (particularly in the case of XGB). Furthermore, a closer examination of the ROC metrics, particularly the
type Il error and H measure results, indicate higher performances from each of the three tree-based models of RF, GBM

and XGB over the linear models, ANN and SVM. This is also true of their corresponding tree-based log loss results.
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As regards overall classifier performance, Figure 30 and Figure 31 indicate the superior performance of the tree-based
classifiers (GBM, XGB and RF), which is consistent with results, published to date, of similar research comparing
classification algorithms in finance. This performance is somewhat reflected in Figure 32 where the distress rate prediction
capacity of each classifier is plotted. However, the interesting point depicted here, is that none of the classifiers failed to
track the events leading up to or immediately following the 2008 crash. It is apparent from these annual plots that the
algorithms found difficulty tracking evolution of FD rates between 2007 and 2011. This indicates that the SFDP

performance seriously degrades in the presence of a sudden “seismic” macroeconomic event.

Figure 30 is also a visual demonstration the apparent absence of evolution of each of the algorithm’s FD performance as
the macroeconomic and then market features are introduced.

Taking the averaged results for each data model across each of the four missing data management methods (see Table 10)
provides a sense of the evolution of the covariate modelling across these methods. The overall AUC show that the Hmisc
method has the highest response of the three MI methods across the four data models. However, this is only marginally
greater overall than the RF MI results. Of the other main ROC indicators, RF MI demonstrates superior performance on
sensitivity, type Il error and H measures. Both RF and Hmisc MI show similar performance levels on log loss results. Of
all of the four techniques, however, the complete case treatment consistently outperforms each of the Ml techniques,
except for log loss results, where the RF M1 scores lowest (therefore ranks highest). Therefore, given the bias or distortions
introduced by the removal of large numbers of incomplete observations (annual accounts), through the allocation of a
“complete case” approach, the RF multi-variate imputed data set may represent a more reliable approach. However,

further investigation would be the first step before deciding against the “complete case” management.

The results of this study suggest that the tree-based classifiers may require minimal data intervention as their predictive
performance appears largely immune to the shape and structure of input variables. Our findings confirm previous research
that these classifiers seem to be robust to outliers and missing values; and appear largely insensitive to the monotone
transformation of input variables. The strong out-of-sample predictive performance of these classifiers, particularly on
the more challenging longitudinal test sample, also appears to confirm previous findings that these models are resilient to
model over-fitting, which typically manifests in weaker out-of-sample predictive accuracy relative to the training sample
(Hastie et al., 2009; Schapire and Freund, 2012). However, as reported by (Christoffersen, Matin and Mglgaard, 2018)
the differences between the results achieved through complex models compared with the linear based models is not as

pronounced as previous studies have suggested e.g. (Jones, Johnstone and Wilson, 2015b).

Finally, using linear classifiers which are flexible enough to model non-linear input-output relationships reveal better
overall predictive performance than generalise linear models. For example, the GAM and MARS classifiers consistently

outperformed mixed effects model and compared relatively favourably with the more complex models.
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Table 6: Classifier performance — All models (K-NN imputation)

Modkel 1

AUC  Sensitivity Specificity Type Il Err HMeasure Log loss
[ o7s [ 2844% | o386l 0549
[ o7l osisk | 2688% [ | 0369 0416
[ oseal ol o080l | 9% | 0429 oars
[ ow [ 2531% | 0402[" | 0.400
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[ o070 [ 120380 | o4s9l 0414

Mocdkl 3

AUC  Sensitivity Specificity Type l Err HMeasure Log loss
o ] 25049 | 03650 0551
] 2656% ] 0401 ] 0411
] 2563% [ | 0382 o450
] 2563% 0| 0306|0424
B oo 1283w | o418 | 0361
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Model 2

AUC  Sensitivity Specificity Type Il Err HMeasure Log loss
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I obosl] 1354% [ lo04s o418

Model 4

AUC  Sensitivity Specificity Type Il Err HMeasure Log loss

Table 7: Classifier performance — All models (Hmisc imputation)

Model 1

AUC  Sensitivity Specificity Type lErr HMeasure Log loss

I o920 o4l osdal | 2063wl | 03180 0549
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0.880 0803 0798 | 19.69% 0434 0.570
0.742 0800 0684 | 20.00% 0158 0990
0.855 0763 0780 | 23.75% 0.389 0455
0872 0.800 0799 | 20.00% 0.356 0443
0.881 0.800 0798 | 20.00% 0399 0.367
0.893 0.766 0825 | 23.44% 0.447 0.364
0.886 0.766 0808 | 23.44% 0399 0415
Model 2

AUC  Sensitivity Specificity Type lErr HMeasure Log loss

I oste [ 1006% ] 0267 0544

I osio [ 1813% ] o308 ] 034

o ] 2004% ] 0302 0403
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AUC  Sensitivity Specificity Type lErr HMeasure Log loss

0.88 0672 0884 32.81% 0289 0574

0772 0678 0.866 32.19% 0317 099
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0875 0.744 0837 25.63% 0366 | 038

0882 0.606 0922 39.38% 0443 | 0243

0912 0684 0.920 31.56% 0449 | 0231

0.903 0625 0.940 37.50% 0427/ | 0337
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Table 8: Classifier performance — All models (Rf imputation)

Model 1

AUC  Sensitivity Specificity Type Il Err H Measure Log loss
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Table 9: Classifier performance — All models (complete case treatment)

Modkel 1

AUC  Sensitivity Specificity Type llerr

HMeasure Log loss

[ osi[ olsoll o0sal | 3400w 04430 Jo4g3

[] 1364w | 0382 Jose2
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Classifier
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GAM
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0.861 0.838 0.712 16.25% 0.356 0.572
0.864 0.769 0.775 23.13% 0.388 0.950
0.874 0.806 0.776 19.38% 0.363 0.475
0.858 0.778 0.784 22.19% 0.389 0.476
0.890 0.831 0.775 16.88% 0.431 0.397
0.906 0.850 0.786 15.00% 0.470 0.407
0.898 0.841 0.772 15.94% 0.439 0.438
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AUC  Sensitivity Specificity Type llerr

HMeasure Log loss
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AUC  Sensitivity Specificity Type llerr

0.900 0.886 0.809
0.887 0.841 0.830
0.883 0.727 0.832
0.878 0.818 0.725
0.925 0.864 0.814
0.938 0.955 0.743
0.926 0.841 0.843

HMeasure Log loss

11.36% 0.356 0.513
15.91% 0.388 0.990
27.21% 0.363 0.522
18.18% 0.389 0.449
13.64% 0.431 0.419

4.55% 0.470 0.451
15.91% 0.439 0.424
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Table 10: Model performance metrics — averaged metrics

AUC Sensitivity Specificity Type Il Err H Measure Log loss
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E oHE ostq il 26200 00 | o040 |
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R o+ H ol 1763% 0 | osssl |
H ol o 20l | osl ]

0.858 0.785 0.785 21.47% 0.369
0.873 0.679 0.887 32.1% 0.366
0.879 0.816 0.768 18.39% 0.405

0.91 0.85 0.80 15.26% 0.41
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Figure 30: Individual classifier comparison ROC curves
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6.7 Summary

A presentation and discussion of the case study test results was presented in this chapter. The chapter began with the
results from the missing value analysis and management. The missing value analysis demonstrated that approximately
18% of the case study dataset contained missing values. It also demonstrated little autocorrelation and multi-collinearity,
indicating the importance of each of the selected covariates in the dataset. This suggested that case wise deletion or the
removal of covariates would introduce bias however, based on the metric selected for the evaluations of the modelling in
this study, the complete case treatment of missing values produced the best overall ROC results compared with the Ml
techniques tested. The results also indicate the value of data imputation, with the random forest methodology
demonstrating the best performance amongst the imputation techniques and producing ROC results close to those of

complete case treatment; and even improving on the log loss performance of complete case.

The contribution of the macroeconomic and market based predictors in the enhancement of FD prediction was
demonstrated as being present but masked by the stronger company level financial covariates. This is most evident with

the tree-based classifiers where the ability to extract information from “parsimonious” predictor sets is strongest.

Finally, the results confirm the general consensus in the literature that the more complex classifiers perform strongest on
corporate FD prediction than linear based classifiers. This is especially evident from the results for the tree-based
classifiers RF, GBM and XGB. However, an import point of interest is the performance of linear based classifiers, MARS
and GAM, which demonstrate performance levels close enough to those of the more complex classifiers to warrant their

inclusion in FD modelling, given their transparent nature.
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7 Conclusions

This final thesis chapter discusses the conclusions resulting from this research. The chapter begins with a review of the
research objectives and discusses how and to what degree these objectives were achieved. The research results have
demonstrated a practical novelty in its contribution to the field of shipping FD prediction and this is described in section
7.2. The research has also precipitated reflections as to how this work can be developed through further research effort

and these are described in section 7.3. The chapter closes with some final remarks in section 7.4.
7.1  Achievements against the objectives

This research had two primary objectives. The first was to design and test a forecasting methodology, the Shipping
Financial Distress Prediction (SFDP) model. The goal was to capture correlations between company financial information
and other macro events in shipping company financial distress. The second objective was to take the SFDP model structure
and construct a machine learning tool kit. This tool kit aims at providing software developers a foundation for the
construction of a financial risk software application which can be readily integrated into a corporate/enterprise wide risk

assessment system.
7.1.1  SFDP model objectives
This first set of research objectives addressed:

e issues surrounding the “noisy” nature of company financial data typically associated with shipping companies,
such as information skewness, data imbalance and missing accounting information

o the identification of a set of predictor features which represent a predictor set capable of capturing correlation in
financial distress prediction for the sector

e the non-company specific event affecting shipping company performance through the inclusion macroeconomic

and market data in the forecasting of distress.

The first and arguably most important confirmation recorded in this section is that, as commonly understood in the
literature, obtaining complete and accurate financial statements from shipping companies on a global basis is somewhat
challenging. Shipping companies by their very nature are founded upon mobile assets which operate on an international
basis and which can change ownership frequently during their economic life. Companies and their vessels are not
necessarily registered in the states of their owners. Some states have different accounting laws and practices with some
positively promoting financial secrecy. Balance sheets, even when available, do not necessarily reflect the true state of

asset valuation and P&L accounts do not necessarily reflect the true costs or revenue attained in any single accounting
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period. As an example, even on a global basis, only in 2018 was international financial regulation changed to force
companies to properly and transparently account for the sale and leaseback of vessels. For any study, whose goal is to
construct a system which can predict financial distress, with a generalisation out of sample rate accurate enough to be
used in practice, must be executed in this context. It must collect a dataset large enough to not only to include as many
shipping entities as possible and over a significantly wide timeframe in order to allow the algorithms to deal with problems

inherent with missing information.

This study assessed the predictive performance of nine binary classifiers on a large sample of international bulk carrier
shipping company financial statement data. This longitudinal data set was gathered for accounting periods from 2000 to
2018 and contains over 5000 company/year observations. Prior to modelling the data were examined in order to assess
how to deal with the problem of missing values. It was discovered that around 72% of the company records contain some
missing covariate values, with a total of circa 18% missing values in the dataset. Modelling was then formulated using
four, reconstructed, versions of the data, three were developed using established imputation techniques and one dataset

formulated by including only those records/observations which contained complete information (“complete case”).

Four models where then formulated and tested on three data models. The first model, involving only company financial
level data, formed a foundation for the construction of the other three models. It is tested whether the market and
macroeconomic variables add information that is not contained in financial statements in order to complement this data
and improve the performance of default prediction models. The results presented in this study indicate that whilst they
contribute to the predictive capacity of financial distress models, the direct impact, of individual macro and market

predictors, is less directly observable than their indirect impact which is captured though company level financial data...

Prior research into the use of company accounts, market and macroeconomic variables used to predict shipping company
FD have been largely restricted to linear regression models and the results obtained from these models have been
contentious, given the inherent limitations of linear models. Furthermore, most of these studies have focused on modelling
using only relatively small, cross-sectional data sets which limits their predictive capacity and have not sufficiently
accounted for frailty. A large, longitudinal data set allows for both improved accuracy of the estimates and provides for
the inclusion of spatial effects in capturing dynamic relations. The models confirm previous findings in the finance
literature of the importance of accounting for the existence of a time-varying frailty variable persisting in the presence of
unobserved heterogeneity. Failure to allow for such unobserved factors leads to downward bias in risk estimates. The
existence of this frailty in bulk shipping company FD risk is demonstrated using a linear mixed model applied to the panel
data. Testing is then executed on the ability of a set of more complex non-linear models on their ability to capture the
effects of frailty in the data. The results indicate that the complex classifiers such as extreme gradient boosting, gradient
boosting and random forests outperformed other classifiers on the panel data samples. However, the performance of two

of the linear based models, MARS and GAM where sufficiently performant to warrant further investigation into their
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inclusion in a system designed for distress prediction. Particularly due to their more transparent methodologies compared
with the more complex models.

7.1.2  SFDP tool kit

The second research objective is to develop the foundation for a machine learning software system which:

e provides a general-purpose tool that is of real practical value

e results in predictions that are as accurate as possible

o takes full advantage of computing architecture, multi-processing, multi-core technologies and cloud computing,
in order to both maximise efficiency and reduce execution times to a practical working level

e is both scalable and modular in form, supporting the addition of more complex deep learning algorithms which
require enhanced computing power, including support for larger and more complex datasets

e can be readily applied to a broad class of shipping sub-sector FD learning problems

e must be transparent and open to scrutiny by all stakeholders, investors and particularly regulatory bodies if they

are to be accepted as practical tools

Both the model and system software were tested on a case study using detailed financial statements covering the period

2000-2018 of dry bulk carrier owners/operator companies, worldwide, both listed and non-listed.

Section 4 described the SFDP system architecture and functionality. The application of this, through the case study in
section 5, demonstrated the practical values of the system. A real dataset was established which composed of shipping
company financial data, over a 20-year period, as well as macro and market data for the same period (lagged). This dataset
formed input to a rudimentary financial risk application which was developed specifically for the demonstration of the
SFDP toolkit functionality. Basing this system on a multi-platform, parallel processing and scalable software suite, R
ensures the SFDP software meets the objective set out.

Furthermore, using the bulk shipping sub-sector as a case study, allowed for a completely representative sub-set of global
shipping and demonstrated that the system can be applied to other shipping sub-sectors with little or no modification to
the base functionality.

Finally, the inclusion of linear mixed models, and more complex linear based algorithms such as MARS and GAM,

provides for transparency required by the potential user community and regulators.
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Contribution to the field

The aims and intended contributions, outlined in section 2.4, defined the goals of the methodology and system software

which were developed as the prime objectives of this research. The application of the case study is primarily aimed at

identifying the degree to which these research objectives have been achieved. In this context, and with reference to the

results discussed in section 6, the contributions to the field which have been realised through this research are as follows:

The successful development of a methodology incorporating a) advanced linear modelling, which have the
capacity to account for non-linear effects and b) advanced tree-based classification machine leaning algorithms,
demonstrated a clear performance advantage over generalised linear models in the domain of FD prediction. The
predictive capacity of the methodology was successfully tested against a large longitudinal, noisy shipping
dataset. Furthermore, it was demonstrated that the inclusion of macro-economic and market data, augmenting
company level data, contribute to the FD predictive capacity of both linear and complex classification algorithms.
However, it must be noted that the contribution of these features was demonstrated as having limited direct
effect. Nevertheless, it is reasonable to believe that macro and market information is already absorbed within the
reported financial information. This was successfully demonstrated through the utilisation of a large longitudinal
company financial dataset which was collected for the case study.

The effective application of a formal a multivariate imputation (MI) methodology which addresses the problem
of missing values in shipping company accounts. This produced results (see section 6.3) which improved, or at
least matched, the predictive capacity of the classifiers incorporated into the methodology, when compared with
case or covariate wide (complete case) deletion. This is an area which has previously received little or no
attention in the research of shipping company accounting data.

The successful development, application and testing of a scalable and flexible software toolkit for shipping
company FD modelling has been demonstrated by the application of the system to an industry specific case study
based on the global bulk shipping sector. The 20-year longitudinal dataset of over 5000 bulk shipping company
year accounts provided for an adequately representable test bed for this research. This is, to the best knowledge
of the author, the first practical realisation of such as system which has been applied to such large company/year
longitudinal dataset. The results have demonstrated the successful implementation of this toolkit/methodology
and how such a system can be readily incorporated into a corporate risk management system. Investors and
shipowners alike can track performance and save the costs associated with severe financial distress through the
implementation of such a system when deployed in a real-time environment, i.e. the system can act as a financial
early warning system for all stakeholders. This is unprecedented in shipping company risk management software

application development.
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7.3  Further research

This research has demonstrated that shipping company FD prediction can be improved through a structured, formal
application of available statistical tools, comprising both traditional and modern complex ML algorithms. The research

has however, also identified the following areas which would benefit from further research:

i Extending the company level predictor set to widen the unobserved predictors not yet captured by currently
identified independent variable set. For example, sustainability and fleet risk profile data

ii. Further extend to classification capacity of the toolkit through the inclusion of deep learning techniques

7.4  Final remarks

In summary, the goal of this research was to develop a practical methodology and software toolkit which enables the early
detection of FD in shipping companies. The aim was to provide investors and other stakeholders with the means of
avoiding some of the costs associated with a bankruptcy filing and subsequent recovery but could also assist shipowners
in monitoring their own financial performance. This has clearly been demonstrated through the application of the bulk
shipping test case. Unfortunately, the research also demonstrated that, given the nature of the available data, even complex
models do not achieve an accuracy level, at present, to be relied upon for use as anything other than an early ‘warning
system’ for financial distress. However, this research has concluded that, with a sufficiently large test set coupled with
heavy and methodologically sound and transparent data pre-processing, viable and practical shipping company FD

warning system is possible.
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Appendix A: Ethics

There are five generally accepted broad principles of ethics when performing research. Within the general context of “do
good” beneficence and “do no harm” (non-malfeasance) a researcher should endeavour to:

i obtain informed consent from potential research participants;
ii. minimise the risk of harm to participants;
iii. protect their anonymity and confidentiality;
iv. refrain from employing deceptive practices; and

V. ensure that participants have the right to withdraw from one’s research (and are aware of their right to do so).

Ethical issues are contained in various stages in research (Bryman 2008) and are closely interrelated with the type of
research conducted. Considerations essential to ethics behaviour (Fielding, Lee and Blank, 2008) can be broken down

into four main areas:

e Lack of informed consent
e Harm to participants
e Invasion of privacy

e Deception

The areas are addressed by the principles in the UK Data Protection Act (1998) and each of the above have been a provided

due consideration throughout this research.

Dealing with sensitive financial and market data is at best a minefield and therefore great care and preparation of security
and confidentiality is necessary. This study, however, has relied predominantly on the collection of secondary data from
publicly accessible database sources. As such, no primary data collection from individuals has been conducted. Care has
also been taken not to divulge the names of individual companies or the involvement of individual financial institutions

(other than as sources of publicly accessible data).
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