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Abstract

With the increasing penetration of renewable energy sources, the immense growth in

energy demand and the ageing of existing system infrastructure, future power systems

have started to face reliability and resiliency challenges. To mitigate these issues, the need

for bulk power corridors which enable the effective sharing of the available power capacity,

between countries and from remote renewable energy sources, is rendered imperative.

In this context, the deployment of multi-layer Superconducting Cables (SCs) with High

Temperature Superconducting (HTS) tapes have been considered as a promising solution

towards the modernisation of power systems. As opposed to conventional copper cables,

SCs are characterised by a plethora of technically-attractive features such as compact

structure, higher current-carrying capability, lower losses, higher power transfer at lower

operating voltages and over longer distances, and reduced environmental impact.

The performance of SCs is mainly determined by the structure of the cable and

the electro-magneto-thermal properties of the HTS tapes, accounting for the critical

current, critical temperature and critical magnetic field. Particularly, during steady state

conditions, HTS tapes operate in superconducting mode, providing tangible benefits to

power system operation such as a current-flowing path with approximately zero resistance.

However, under certain transient conditions (e.g., electric faults), when the fault current

flowing through HTS tapes reaches values higher than the critical current, HTS tapes

start to quench. The quenching phenomenon is accompanied by a rapid increase in the

equivalent resistance and temperature of SCs, the generation of Joule heating and the

subsequent reduction in fault current magnitudes. Consequently, the transition of SCs

from superconducting state to resistive state, during transient conditions, introduces

many variables in the fault management of such cable technologies. Therefore, in order

to exploit the technological advantages offered by SC applications, accommodate their

wide-scale deployment within future energy grids, and accelerate their commercialisation,

the detailed evaluation of their transient response and the consequent development of
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reliable fault management solutions are vital prerequisites.

On that front, one of the main objectives of this thesis is to provide a detailed fault

signature characterisation of AC and DC SCs and develop effective and practically feasible

solutions for the fault management of AC and High Voltage Direct Current (HVDC) grids

which incorporate SCs. As the fault management (i.e., fault detection, fault location,

and protection) of SCs has proven to be a multi-variable problem, considering the

complex structure, the unique features of SCs, and the quenching phenomenon, there

is a need for advanced methods with immunity to these factors. In this context, the

utilisation of Artificial Intelligence (AI) methods can be considered a very promising

solution due to their capability to expose hidden patterns and acquire useful insights from

the available data. Specifically, data-driven methods exhibit multifarious characteristics

which allow them to provide innovative solutions for complex problems. Given their

capacity for advanced learning and extensive data analysis, these methods merit thorough

investigation for the fault management of SCs. Their inherent potential to adapt and

uncover patterns in large datasets presents a compelling rationale for their exploration in

enhancing the reliability and performance of superconducting cable systems. Therefore,

this thesis proposes the development of novel, data-driven protection schemes which

incorporate fault detection and classification elements for AC and multi-terminal HVDC

systems with SCs, by exploiting the advantages of the latest trends in AI applications. In

particular this thesis utilises cutting-edge developments and innovations in the field of AI,

such as deep learning algorithms (i.e., CNN), and state-of-the-art techniques such as the

XGBoost model which is a powerful ensemble learning algorithm. The developed schemes

have been validated using simulation-based analysis. The obtained results confirm the

enhanced sensitivity, speed, and discrimination capability of the developed schemes under

various fault conditions and against other transient events, highlighting their superiority

over other proposed methods or existing techniques. Furthermore, the generalisation

capability of AI-assisted schemes has been verified against many adverse factors such as

high values of fault resistance and noisy measurement. To further evaluate the practical

feasibility and assess the time performance of the proposed schemes, real-time Software

In the Loop (SIL) testing has been utilised.

Another very important task for the effective fault management of AC and DC SCs

is the estimation of the accurate fault location. Identifying the precise location of faults

is crucial for SCs, given their complex structure and the challenging repair process.
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As such, this thesis proposes the design of a data-driven fault location scheme for AC

systems with SCs. The developed scheme utilises pattern recognition techniques, such

as image analysis, for feature extraction. It also incorporates AI algorithms in order to

formulate the fault location problem as an AI regression problem. It is demonstrated that

the scheme can accurately estimate the fault location along the SCs length and ensure

increased reliability against a wide range of fault scenarios and noisy measurements.

Further comparative analysis with other data-driven schemes validates the superiority of

the proposed approach.

In the final chapter the thesis summarises the key observations and outlines potential

steps for further research in the field of fault management of superconducting-based

systems.
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Chapter 1

Introduction

1.1 Introduction to the Research

Power systems are experiencing a rapid transition, emanating from the gradual decom-

missioning of large Synchronous Generators (SGs) and the progressive deployment of

Inverter-Connected Generators (ICGs). Traditional power transmission and distribution

grids are evolving towards full decarbonisation in response to European Union (EU) net

zero carbon emission targets. In view of its commitment to the Paris Agreement [1], the

European Commission sets an overall goal, across the EU, for a 32% share of Renewable

Energy Sources (RES) in the power generation mix by 2030, and 75% to 100% by 2050 [2].

Specifically, future energy scenarios predict that Europe will need more than 2, 200 GW

of solely wind and solar power by 2050 [3, 4]. Zero carbon operation targets require

radical change in the way that power systems are designed to operate. A typical example

of this change is the utilisation of remote generating facilities, such as large Wind Farms

(WFs), interconnected through long-transmission lines which will become the norm for

power transmission in the near future.

The accelerated uptake of intermittent RES-based technologies coupled with the

rapid growth of global electricity demand and the ageing of existing system infrastructure

have a great impact on network operation, resiliency, and security of supply. Hence,

towards the decarbonisation of power systems, the physical infrastructure of the grid will

need to evolve from generation to consumption level and consequently new challenges

are emerging. A major challenge that remains to be tackled is how to support the

transition to net zero grids and concurrently ensure security and reliability of the system.

On that front, the industry in collaboration with the research engineering community
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have started to seek innovative technologies which can overcome the aforementioned

restrictions, enable a more efficient interchange of power, and harness the potential of

RES.

Within this context, the development of bulk power corridors for providing electric

power over long distances is a prerequisite to address the congestion challenges in power

systems, enabling the uptake of RES [5]. As energy connectivity can be considered a

key factor for facilitating the potential of power grid decarbonisation, the deployment of

Superconducting Cables (SCs) in future energy grids has started to receive increasing

attention in the energy sector.

SCs are becoming increasingly competitive compared to conventional transmission

lines and cables. This stems from their superior advantages such as the capability to

transfer power over long distances at lower voltage levels [6] and with reduced power

losses [7]. Furthermore, their reduced environmental impact, compact size and high

current-carrying capability [8] have made the SCs a very promising alternative for power

transmission in future net zero grids. SC applications, harnessing the unique features of

the superconducting materials, have been the focus of a plethora of research [9, 10].

The concept of employing SCs to transfer GW of power over long distances with

approximately zero losses has been investigated for decades, resulting in SC technologies

which are considered a feasible solution for real-world power system applications and are

progressively maturing [11]. Specifically, the utilisation of SCs to provide connectivity

between remote RES and centrally located load centres has been conceptualised by

the ”Supergrid” project [12]. In recent years, the key findings derived from many

demonstration and field projects have highlighted the technically-attractive features of

SCs which can accommodate the modernisation of power grids and offer many benefits

over their conventional counterparts. The main advantages of the deployment of SCs are

laid out hereafter:

� For the same voltage level and cross-sectional area, the current-carrying capability

of SCs is three to five times that of conventional copper cables. Therefore, the

installation of SCs can address congestion problems, especially in high power density

areas such as metropolitan meshed networks [13].

� SCs can transfer the equivalent power capacity of conventional cables at lower

voltage levels, while still enabling bulk power transfer at high capacities. Lower

operating voltages result in lower volume and size of electrical equipment at both
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ends of the cable, eliminating the need for associated auxiliary equipment and

preventing capital-intensive grid reinforcement [14].

� When SCs operate in superconducting state they exhibit approximately zero

resistance which originates from their compact size and the perfect diamagnetism

(i.e., Meissner effect [15]). Therefore, SCs provide a current-flowing path with low

electrical losses, reducing the overloaded power burden of the parallel connected

transmission pathways.

� The fault current limiting functionality of SCs, emanating from their design and

the electro-thermal properties of the High Temperature Superconducting (HTS)

tapes, is considered an advantageous feature for the densely populated areas which

are characterised by increasing electrical power installation [16].

Thus far, many initiatives promoting the deployment of AC and DC SCs in AC

transmission systems and High Voltage Direct Current (HVDC) grids, respectively, have

been conducted worldwide. For several years, AC SCs have been more mature and

cost-effective than DC SCs. Initially, AC SC-based demonstration projects were focused

on the deployment of AC SCs with short-length, especially for high-capacity connections

in urban areas to address congestion challenges [13]. As the technology of SCs advances,

the tendency to investigate AC SCs with longer length for the transmission level is

increasing. High power HTS AC transmission or distribution systems for congested urban

areas have reached Technology Readiness Level (TRL) 7 as demonstrated by integrated

pilot projects. The Shingal Project in South Korea represents the first commercial project

of its kind and has advanced to TRL 8. Notably, projects utilising 154 kV in Jeju (South

Korea) and 138 kV in Long Island (US) have been discussed as well [17].

Simultaneously, growing attention is focused towards DC SCs for HVDC links. During

the last few years, extensive efforts have been concentrated on the installation of DC SCs

in HVDC grids for the connection of remote RES or offshore WFs, and the interconnection

of national grids. Existing research assigns a TRL of 5 due to the limited testing on

integrated systems. However, the recent demonstration nb.5 of the FP7 funded Best

Paths project, with capacity of 5− 10 kA at voltages between 200− 320 kV , suggests

that a TRL of a minimum of 6 has been achieved [18]. The unique features of DC SCs

combined with the advantages offered by HVDC transmission systems, in terms of bulk

power transfer, have the potential to revolutionise future power grids and facilitate the
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realisation of RES-dominated systems [19] [20].

The landmark SC-based projects are presented in Table 1.1 and are categorised by

date, cable type, voltage, current level, and length.

Table 1.1: Landmark projects of AC and DC SCs.

Project Year Cable type Voltage (kV) Current (kA) Length (m) Reference

Albany (US) 2006 AC (3Ph) 34.5 0.8 350 [21]
Long Island (US) 2008 AC (3Ph) 138 2.4 600 [22]
New York (US) 2016 AC (3Ph) 10 4 300 [23]

Hannover (Germany) 2010 AC (3Ph) 20 3.2 30 [24]
Yokohama (Japan) 2012 AC (3Ph) 66 1.75 250 [25]

Ampacity (Germany) 2014 AC (3Ph) 10 2.3 1000 [26]
KEPRI (South Korea) 2014 DC 80 3.25 100 [27]
Ishikari (South Korea) 2014 DC - - 500 and 1000 [28]

Best Paths 2019 HVDC 320 10 30 [18]
Shingal (South Korea) 2019 AC (3Ph) 23 1.26 1000 [29]
St. Petersburg (Russia) 2020 DC 20 3.2 - [30]
SuperLink (Germany) 2021 AC (3Ph) 110 3.2 1200 [9]

Although SCs can technically contribute to the mission of system modernisation,

their application in power system apparatuses were not economically possible due to

their large installation cost (e.g., superconducting material, cooling systems) [13]. As

the research progresses, better understanding of superconductivity is acquired and SC

technology is becoming more affordable and reaching market maturity. A milestone in

the integration of SCs in power systems, and the commercial applications of SCs, was

the discovery of second generation (2G) HTS tapes, which present remarkable properties

such as operation in superconducting state at higher temperatures (T ≥ 77 K) (therefore

lower requirements for cooling) and fault current limiting capability [31].

Furthermore, the numerous possibilities that SCs can unlock and the advantages

they offer (i.e., eliminated electrical losses, high current characteristics, etc.) can lead to

significant reduction in the capital and operational costs [14]. On that front, a techno-

economic assessment between conventional HVDC systems and superconducting-based

HVDC grids has been conducted in [32]. The results are demonstrated in Fig. 1.1 and

reveal that SCs can be considered a cost-competitive option for future power grids,

presenting significantly lower lifecycle costs than HVDC systems with conventional

feeders. More specifically, superconducting-based HVDC systems result in lower costs

from electrical losses, due to the physical properties of the superconducting materials, lower

unavailability costs, and lower capital costs (i.e., lower volume of electrical equipment)

compared to conventional HVDC systems. On the other hand, there are costs associated

with the cooling of superconducting-based HVDC grids to cryogenic temperatures,
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however, these cooling costs are not dependent on SC capacity (i.e., 4 GW system and

7 GW system require the same cooling expenditures). Furthermore, Superconducting-

HVDC system exhibits a much higher capacity deployment rate. Although, the installation

rate of DC SCs, as an emerging technology, is slower compared to conventional DC

cables, the substantial power capacity provided by superconducting technology enables a

far greater capacity to the offshore grid with each installation (10 GW versus 2 GW ),

eliminating the number of the required cables.

Figure 1.1: Lifecycle cost comparison between conventional HVDC systems and
Superconducting-based HVDC systems.

It is therefore evident that the deployment of AC and DC SCs are anticipated to

play a key role in the decarbonisation of future power grids. However, even though SCs

offer many advantages compared to their conventional counterparts, their installation

in power systems is accompanied by several challenges. The main factors that hinder

the wide-scale commercialisation of SCs are the technical issues emanating from their

transient performance, their complex structure, and the complexity of their cooling

systems [33]. The response of SCs during transient conditions (i.e., electric faults) is

dominated by the quenching phenomenon and the properties of HTS tapes, which form

the basis of the manufacturing of SCs. Consequently, the fault management of SCs is

crucial to ensure the reliability and safety of such cable technologies and the system as

a whole. In this context, the work presented in this thesis investigates, analyses and

addresses the associated challenges with the integration of SCs in AC and HVDC systems

from a fault management perspective.
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1.2 Research Motivation

As the deployment of SCs has gradually entered the stage of engineering applications, it

has been realised that for their practical implementation and operation there are several

outstanding issues to be solved. Given the key role of SCs in future power grids, acquiring

a deep understanding of their behavior during different system conditions (i.e., steady

state and transient conditions), and ensuring their safe and reliable operation is vital.

The performance of SCs is dictated by their structure, the electro-thermal properties

of HTS tapes, and the system conditions. All commercially available HTS tapes for SCs

are coated conductors consisting of multiple layers of different materials [34]. Therefore,

SCs are characterised by a complicated design process and geometric features and they

operate as complex elements from the reliability perspective [9]. During steady state

conditions, SCs operate in a superconducting state and constitute a current-flowing path

with approximately zero resistance [35]. Under transient conditions (i.e., electric faults),

when the current flowing through SCs increases and exceeds a critical value, SCs start to

quench. During the quenching phenomenon, as the fault current continues to increase,

the resistance and temperature of SCs increase dramatically, resulting in the transition of

SCs into a highly-resistive state. This abrupt rise in SCs equivalent resistance results in

the reduction of the fault current levels. The effect of the dynamically changing resistance

and subsequent suppressed fault current magnitudes lead to many fault-related issues,

especially for operation of protection and fault location schemes.

For the reliable and healthy operation of AC and HVDC systems, the incorporated

protection schemes shall be capable of meeting the following requirements [36]:

� Selectivity

� Sensitivity

� Dependability

� Stability

� Security

� Speed of operation

� Simplicity
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In particular, protection selectivity refers to the the effectiveness of a protection

system in detecting and correctly identifying faults. A highly sensitive protection system

minimizes the likelihood of missing real faults, thus enhancing the reliability and safety

of the network [37]. Stability in protection systems refers to the system’s ability to

maintain consistent and reliable performance over time. It ensures that the protection

system doesn’t produce false alarms under normal operating conditions or faults beyond

the protection zone. A stable protection system is essential to prevent unnecessary

interruptions to the electrical network [37]. Protection selectivity is about the ability of

the system to precisely identify and isolate the faulty component or section of the network

when a fault occurs. It ensures that only the affected part is disconnected or protected,

while the rest of the network remains operational. Selectivity is crucial to minimise

downtimes and achieve protection coordination [38]. Dependability is a measure of the

level of confidence or assurance that a protection system, will indeed operate accurately

during a fault occurred within the protection zone [38]. Protection security is a measure

of the level of certainty that the protection scheme will not trigger erroneously or exceed

its designed response speed [39]. Finally, operational speed in protection systems refers

to the system’s response time when a fault is detected and is vital to minimise the impact

of faults on the network and prevent damage to equipment, while simplicity refers to its

ease of design, implementation, and operation [39]. The aforementioned criteria, apart

from the simplicity, will be considered for the development of the protection schemes.

The integration of SCs in AC transmission systems, with inherent fault current

limiting capability and variable resistance, imposes a negative impact on the performance

of existing protection schemes (i.e., over-current, distance protection) regarding their

sensitivity, dependability, and operating time. Furthermore, the discrimination, stability,

and security of protection systems may be jeopardised by external faults or other transient

events (i.e., load switching) which lead to the quenching of SCs.

With respect to HVDC systems, as the deployment of DC SCs is still in its infancy,

the impact of the quenching phenomenon on the fault management of such systems

has not been thoroughly studied. DC-side faults are the main issue when considering

HVDC technology due to the rapidly increasing fault currents and the lack of natural

zero-crossing. Therefore, a short fault clearance time (i.e., in the range of 5 ms) is of

major importance for the healthy operation of HVDC systems [40]. For the case of

meshed HVDC systems, fast fault clearance time is considered extremely challenging to
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achieve with discriminative line disconnection (i.e., only the fault line is disconnected).

Therefore, another key factor for the successful protection of multi-terminal HVDC

systems is the increased selectivity in order to ensure that the unaffected system’s parts

remain operational and minimise the downtimes. The installation of DC SCs, and their

quenching during transient conditions, may cause malfunctions to the well-established

protection schemes.

As such, the above-mentioned factors render the need for detailed fault signature

characterisation of SCs and the development of efficient fault management solutions,

imperative. Therefore, the integration of SCs into power systems has unlocked a new

research path for the area of power systems fault management. In this context, one of

the main objectives of this thesis is to characterise the fault response of SCs from a fault

management perspective and assess the impact of fault parameters (i.e., fault resistance,

type, location) on the quenching phenomenon. The acquired insights will be utilised for

the development of sensitive, discriminative, and fast protection schemes for AC and

HVDC systems with SCs.

Additionally, another important function that must run alongside the protection,

for the effective fault management, is the accurate estimation of the fault location. In

particular, when a fault occurs on a feeder, protection systems initiate the selective

tripping signal for the corresponding Circuit Breaker (CB) in order to prevent the adverse

effects on power system operation. Following this, the precise fault localisation is of

paramount importance in order to enable rapid restoration and minimise the system

down time [41]. More precisely, for the case of SCs the accurate identification of fault

location is very important considering their complex configuration (i.e., cooling liquid

tubes, tapes, etc.) and the challenges in the repair procedure [9]. Specifically, SCs consist

of complex, multi-layered structures comprising various materials with distinct properties,

including superconducting layers, insulation layers, stabilisers, and cryogenic cooling

systems. This intricate design significantly complicates the task of identifying fault

locations and performing necessary repairs. Furthermore, the elevated costs associated

with superconducting materials make precise fault localisation imperative. This challenge

is further exacerbated by the absence of standardized procedures for the operation and

repair of superconducting systems. To address this issues, another main objective of the

presented work is the development of a novel fault location scheme for SCs incorporated

in AC systems.
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It is evident that the fault management of SCs is a multi-variable problem. The inte-

gration of SCs results in many changes in the physical infrastructure and the information

layer of the system. As the complexities, the uncertainties, and the search space increase,

conventional methods of power system analysis and fault management are proven to be

inefficient, diminishing system security. Consequently, more advanced tools need to be

explored such as Artificial Intelligence (AI) methods.

AI methods have emerged as a compelling solution due to their remarkable com-

putational power and efficiency, particularly in tackling non-linear problems involving

high-dimensional data. In the context of SCs fault management, AI-based tools offer

a range of distinct advantages. Firstly, they excel in handling high-dimensional data,

adept at capturing intricate relationships that may elude conventional methods. Secondly,

AI techniques can adapt and learn from extensive datasets, enabling them to discern

fault patterns, even within complex SC systems. For instance, deep learning algorithms

can dynamically adjust fault management strategies based on historical fault data and

evolving network conditions. Thirdly, AI tools possess the capacity to uncover latent

information within data, unveiling hidden insights that prove invaluable for fault detec-

tion, classification, and precise localisation. For example, pattern recognition algorithms

can analyse and learn spatial and positional relationships within data, extracting useful

information required for fault management applications. Furthermore, their ability to

continuously learn and adapt to evolving scenarios renders them as robust solutions

perfectly aligned with the ever-changing landscape of electrical power infrastructure.

These inherent advantages of AI present significant potential to enhance the security,

reliability, and efficiency of SC fault management, rendering it a highly promising choice

for effectively addressing the unique challenges posed by SCs.

In this context, over the last few years there has been a progressive deployment of

AI-based methods in numerous power system applications, including fault management

[42–44]. With regards to the research area of superconductivity, AI techniques have

been gradually adopted for: i) the discovery of new superconducting materials, ii) the

optimisation of the superconductor design process and modelling, and iii) the condition

monitoring of large-scale superconducting installations [33].

The reported promising results justify that AI can play a vital role in the dissemination

of superconducting applications [45–49]. However, there is no research conducted in

the technical literature on the deployment of data-driven techniques in fault detection
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and location for SCs. As such, this thesis applies AI methods towards overcoming the

limitations of conventional techniques and developing efficient solutions for the fault

management of systems with AC and DC SCs.

1.3 Research Methodology

The research proposed in this thesis has been conducted in discrete stages which are

presented in Figure 1.2 along with the interdependencies between them.

Figure 1.2: Overview of research methodology.

Initially, a review of the operating principles of SCs was carried out in order to provide

the theoretical basis for the understanding of such cable technology. The literature review

was focused on the main characteristics of the different types of superconductors (i.e.,

Type I and Type II) and the most widely-used SC configurations. This was followed by a

concise literature survey of the emerged challenges, from a fault management perspective,
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in the power grids with superconducting feeders. In particular, an extensive review was

conducted on the proposed protection and fault location philosophies for SCs in AC grids,

aiming to identify the limitations of the proposed methods and determine the research

gaps in the fault management of SCs. For the case of DC SCs in HVDC systems, since

there is a lack of technical literature related to the fault management solutions, a literature

survey was conducted on the incorporated DC SCs within systems and the analysis of

their transient behavior, followed by an assessment of the existing protection solutions

for HVDC grids. Finally, the AI-based methods for power systems applications have

been reviewed and their potential for developing advanced fault management solutions

for AC and DC SCs was discussed.

The key findings highlight that there is plenty room for improvement in the research of

protection of AC SCs. Although there are a few reported studies which propose protection

schemes for AC SCs, there are still many challenges to be resolved in order to provide fast

and discriminative fault detection, especially under the influence of highly-resistive faults.

With regards to the DC SCs integrated within HVDC systems, there are no reported

studies or discussions on fault management. The literature survey showed that many

studies have been focused on the fault analysis of DC SCs in meshed systems, however,

there is still a need for reliable protection schemes which will comply with the HVDC

systems protection requirements and concurrently address the influence of the quenching

phenomenon.

On that front, AI-based methods present potential for developing innovative fault

detection and identification schemes with strong learning capability for AC and DC SCs.

Many protection methods have been proposed in the technical literature for conventional

systems without SCs which incorporate AI techniques or hybrid methods which are

composed of different AI models or combine AI and signal processing algorithms. Despite

the robust performance of such techniques against all fault conditions and their immu-

nity to varying fault parameters (i.e., fault resistance, fault type, and fault location),

their practical feasibility has not been discussed and their applicability for real-time

implementation has not been examined thoroughly. To guarantee the effectiveness and

generalisation capability of AI models for real-world power system applications, compre-

hensive testing and validation procedures should be conducted. Initally it is important

to extract datasets with adequate variability and distinct features and afterwards to

perform rigorous validations tests against a variety of fault scenarios (considering different
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fault types, locations, internal and external faults). Additionally, continuous monitoring

and model retraining, utilising real-time field data from SC operation, can enhance

the adaptability and reliability of AI-based protection schemes, ensuring their seamless

integration into practical applications. Lastly, evaluating the performance of such schemes

in real-time settings becomes indispensable. Conducting tests like Software-In-the-Loop

(SIL) or Hardware-In-the-Loop (HIL) tests scrutinises the AI-based protection schemes’

real-time performance, providing a critical assessment of their capabilities for real time

implementation. These comprehensive steps collectively contribute to the reliability and

practicality of AI-driven fault management solutions.

Additionally, it has been found that there is no reported research which addresses

the challenge of the fault location on SCs. In this context, the literature survey showed

that according to the main advantages and disadvantages of the proposed fault location

schemes, AI-based approaches could be considered a promising solution for the precise

fault localisation in systems with SCs.

Prior to the development of the algorithms, the fault signature characterisation

of SCs is required for the proper design of the proposed schemes. Therefore, at the

following stage of the research, the analytical modelling of AC and DC SCs was developed,

utilising coupled electro-thermal equations in order to evaluate their transient response

and acquire useful insights related to their fault management requirements. For this

purpose, a model of an AC power system and a multi-terminal HVDC grid have been

developed in Matlab/Simulink. A systematic iterative transient simulation analysis was

conducted which aimed to investigate the performance of SCs under different transient

conditions by analysing the stages of the quenching process based on the resulting voltage

and current signatures.

At the next stage, it was of paramount importance to illustrate the limitations of

existing protection methods and subsequently highlight the need for more advanced

and efficient solutions. Therefore, existing protection philosophies, such as over-current

threshold-based techniques for AC systems and derivative-based protection methods

for multi-terminal HVDC systems, have been developed in Matlab/Simulink. The

performance of these methods was investigated in compliance with the main protection

requirements accounting for sensitivity and stability.

Based on the identified limitations and research gaps, novel protection schemes with

discriminative fault detection and classification elements for AC distribution systems
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with SCs have been proposed. The developed schemes utilise feature extraction tools,

such as signal processing techniques and AI models. Furthermore, the capabilities of the

latest AI-trends have been exploited to overcome the fault-related issues in multi-terminal

HVDC systems with SCs and provide adequate protection of HVDC substations by

enhancing the protection sensitivity, stability, and speed.

The performance of the proposed schemes has been validated by simulation-based

analysis, considering all fault types and other disturbances. The results verified the in-

creased sensitivity of the developed schemes and their high operational speed, even during

the most challenging scenarios such as highly-resistive faults, and additionally confirmed

their stability against other disturbances (i.e., load switching events). Furthermore, the

generalisation capability and the learning strength of the proposed AI algorithms was

validated against many adverse factors such as additive random noise. Finally, for the

evaluation of the practical feasibility of the proposed schemes, their performance was

also assessed using real-time Software-In-the-Loop (SIL) testing.

Following the protection schemes and driven by the recent advancements in the

pattern recognition techniques for power systems applications, such as image analysis, the

presented work addressed the challenges related to fault location on AC SCs. Specifically,

a data-driven scheme has been developed which incorporates the transformation of time-

domain signals to time-to-frequency domain (spectrograms) and a AI algorithm in order

to perform fault localisation along the AC SCs. The effectiveness of the proposed fault

location scheme was tested under a wide range of scenarios, including different fault types,

fault resistance values, and fault inception angles at various positions. Furthermore, for

validation purposes, the developed scheme has been compared with other widely-used

data-driven algorithms and its superiority in terms of accurate fault location estimation

has been highlighted.

1.4 Principal Contribution

The main objective of the presented work is to fulfill the previously described research

gaps and contribute to the area of fault management of AC and HVDC grids with SCs

by conducting electro-thermal modelling of AC and DC SCs, investigating the transient

performance SCs and developing novel protection and fault location algorithms.

With the general recognition of the sparsity of technical literature regarding novel

fault management strategies for AC and DC SCs, the key contributions of this thesis are
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listed hereafter:

� Detailed fault signature characterisation of AC and DC SCs integrated into AC

systems with ICGs and multi-terminal HVDC grids with Modular Multilevel

Converters (MMCs), respectively. Specifically, the performance of SCs has been

evaluated through systematic Electro-Magnetic Transient (EMT) type simulation

studies under various fault conditions (i.e., highly-resistive faults, close-up faults,

DC-side faults, etc.). The main goal is to provide an enhanced insight of the

quenching phenomenon and its impact on the prospective AC and DC fault currents

and subsequently identify the arisen challenges from a protection perspective.

Furthermore, the response of the modelled SCs has been assessed during other

transient events (i.e., load switching events). Such a detailed study which considers

the influence of different fault parameters (i.e., fault location, fault type, fault

resistance, and inception angle) and the impact of other transient events on the

quenching of SCs has not yet been found in the technical literature.

� Detailed analysis and investigation of the protection challenges resulting from the

deployment of SCs. Simulation-based analysis has shown the limitations of existing

protection philosophies for AC systems and multi-terminal HVDC systems with

SCs. A series of protection assessment studies were formulated, evaluating the

sensitivity and stability margins of the proposed AC and DC protection schemes

in the literature (i.e., over-current threshold-based solutions, and derivative-based

philosophies). The results indicated that existing protection techniques are not

suitable to provide reliable solutions for SCs, introducing a trade-off between

protection sensitivity and stability. Therefore, this work highlighted the need for

further research protection applications for SCs and for enhanced solutions, which

shall consider the unique transient characteristics of such cable technology. No such

protection assessment studies have been found in the technical literature, especially

for SCs installed in HVDC systems.

� Advanced protection scheme entailing sensitive fault detection and classification

components for protection of AC SCs installed in AC systems with ICG units. The

proposed schemes utilise data-driven AI-based techniques which are the state-of-the-

art trend in power system protection. The performance of the developed data-driven

schemes has been scrutinised considering their capability to detect different fault
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types occurring on SCs and remain stable against other transient events, such as

load-switching events, or external faults. Furthermore, the proposed schemes were

tested for real-time implementation using SIL to ensure that such solutions are

computationally practical to be implemented in real-time. The results indicated

that the proposed schemes are capable of detecting and classifying correctly the

internal faults, while remaining stable under the influence of other transient events

which lead to the quenching of SCs.

� Novel fault location scheme for the identification of the fault position along the

length of AC SCs. This work formed the fault location function as a Machine

Learning (ML) regression problem. Specifically, a data-driven scheme has been

proposed which exploits the advantages of image analysis techniques and DL

algorithms for pattern recognition and feature extraction. The results revealed

that the proposed scheme is capable of consistently maintaining high accuracy in

the fault location estimation. Furthermore, the effectiveness of the developed fault

location scheme has been compared with other data-driven algorithms widely-used

in fault location applications.

� Advanced protection scheme composed of fault detection and classification algo-

rithms for DC SCs integrated in multi-terminal HVDC systems, which utilises

the principles of the latest trends in AI classifiers. The proposed scheme adopts

centralised protection philosophy (on the substation level), is designed to detect and

classify faults in HVDC substations accounting for bus faults and faults applied on

SCs or conventional feeders, and eliminates the need for a long-distance communica-

tion link. The suitability of the developed scheme has been verified using transient

simulation-based studies and further validated for real-time implementation using

SIL testing to confirm its operation for real-time applications. The results indicated

the fast and discriminative fault detection and classification for different fault types,

locations, and resistances. On that front, the proposed scheme provides a solid

foundation for the safe and reliable incorporation of SCs in multi-terminal HVDC

grids.
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1.5 Thesis Overview

The thesis is organised into seven chapters. The outline of these chapters is described

below:

Chapter 2: provides the theoretical foundation for the basic properties of super-

conductors and the quenching phenomenon along with a review of the widely-adopted

SC configurations. Furthermore, the chapter presents a detailed methodology for the

electro-thermal modelling of AC and DC SCs. Specifically, the mathematical formulation

of the electro-thermal analogy in SCs is described in detail.

Chapter 3: assesses the transient response of AC and DC SCs and provides useful

insights from a fault management perspective. Specifically, this chapter demonstrates the

results and key observations of the fault signatures characterisation of AC and DC SCs.

This was carried out by means of EMT simulation-based studies considering various fault

conditions and transient events.

Chapter 4: presents the development of two novel data-driven protection schemes

for AC SCs integrated in AC systems with ICGs. The potential of AI-based protection

techniques for the fault management of AC SCs has been identified by the conducted

literature survey and the limitations of the existing protection solutions have been revealed

by a qualification protection assessment study which considers conventional schemes.

The performance of the proposed AI-based schemes were verified based on transient

simulation-based studies and real-time SIL testing.

Chapter 5: proposes the development of a novel fault location scheme for AC SCs.

The review conducted in this chapter points out the advantages offered by AI methods to

fault location applications and their potential for AC systems with SCs. On that front,

in this chapter, an advanced fault location scheme based on AI-methods and feature

extraction tools is developed to perform the fault localisation on AC SCs. Transient

simulation-based studies are employed to verify the robust performance of the proposed

scheme. Additionally, a comparative analysis with a widely-used data-driven algorithm

in fault location applications is presented to validate the superiority of the proposed

scheme.

Chapter 6: describes the development of a novel protection scheme for multi-terminal

HVDC systems with SCs which utilises the latest trends in AI classifiers. Considering the

identified gap in the technical literature for protection applications in HVDC systems with

DC SCs, this chapter initially presents a qualification analysis in order to demonstrate
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the limitations of existing protection strategies. The obtained results underline the need

for more advanced solutions for the adequate protection of HVDC incorporated DC SCs.

Therefore, the development of an innovative protection scheme entailing sensitive fault

detection and classification components is discussed and several simulation-based studies

are presented to validate its performance. The simulation-based verification is followed

by SIL testing which highlights the suitability of the proposed algorithm for real-time

implementation.

Chapter 7: concludes the thesis by summarising and highlighting the key observations

and the main contributions derived by the presented research. Furthermore, plans and

potential avenues for future work in this area are also suggested.
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Chapter 2

Superconductors and Modelling of

SCs

2.1 Basic properties of superconductors

Superconductors exhibit remarkable properties, such as zero resistance and magnetic

flux exclusion (i.e, diamagnetism), when operating in superconducting state [50]. Three

interdependent critical boundaries define the superconducting state of superconductors,

as depicted in Figure 2.1. These are the critical temperature, TC , critical current density,

JC (or critical current IC), and critical magnetic field, HC . Superconductors lose their

superconducting properties and transition to a non-superconducting region, known as

the highly-resistive state, if any of the critical boundaries are exceeded [14].

Figure 2.1: Temperature, current-density and magnetic-field locus, highlighting super-
conducting and non-superconducting regions.
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The critical boundary condition of HC divides the superconductors into two categories,

namely Type I and Type II [31]. The external magnetic field, H, is calculated as a

function of the magnetisation, M , of the superconducting material and the flux density,

B, of the superconductor, and is given by (2.1) [14]:

B = µ0 · (H +M) (2.1)

Type I superconductors obey the Meissner effect which results in the expulsion

of the magnetic field from the interior of the superconductor (i.e., B = 0 and M =

−H) [51] during the transition to superconducting state. In particular, when Type

I superconductors are cooled below their TC they present a loss of resistance to the

flow of electrical currents. The Meissner effect is realised when the value of the applied

external field is below HC and a screening current is induced inside the volume of the

superconductor, canceling the applied magnetic field. Superconductors in the Meissner

state exhibit perfect diamagnetism.

When the value of the applied magnetic field exceeds HC , the magnetic field fully

penetrates into the superconductor volume, causing the superconductor to transit to a

highly-resistive state (i.e, M = 0 and B = µ ·H). This is the main limitation of Type I

superconductors which are characterised by low values of HC (e.g., 41 mT ) and enter

abruptly to the highly-resistive state when they are exposed to low magnetic fields.

Conversely, Type II superconductors have two critical magnetic field boundaries: the

lower boundary, HC1, and the upper boundary, HC2. Type II superconductors operate

in superconducting state when they are cooled below TC and the applied magnetic field

is lower than HC1. However, they enter into a highly-resistivity state when they are

exposed to magnetic fields higher than HC2. The magnetic fields with value between

HC1 and HC2 penetrate partially into the interior of the superconductor in the form

of magnetic field vortices (i.e., small tubes where magnetic flux can travel through the

material), forcing the superconductor to operate in a mixed state [52]. Therefore, Type

II can be subjected to higher external magnetic fields and retain their superconducting

properties. Some representative examples of Type II superconductors are Nb3Sn with

HC1 equal to 30 T and Yttrium Barium Copper Oxide (Y BCO) with HC1 within the

range of 8− 10 T [53].

The discovery of Type II superconductors has unlocked many possibilities for the

incorporation of superconductivity in large-scale power system applications. Table
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2.1 presents a comparison between the main characteristics of Type I and Type II

superconductors. Considering the gradual transition to the highly-resistive state of Type

II superconductors and their applicability for power system applications, this thesis

considers the Y BCO superconducting material for the modelling of SCs.

Table 2.1: Comparison between Type I and Type II superconductors.

Type I Type II

Low critical temperature, TC , up to 10 K High critical temperature, TC , greater than 10 K
Low critical magnetic field, HC High critical magnetic field, HC

Obeys the Meissner phenomenon Partially obeys the Meissner phenomenon
Abrupt transition to highly-resistive state Gradual transition to highly-resistive state

There is no mixed state Mixed state exists
Applicable for limited technical applications Applicable for large-scale power system applications

SCs constitute one of the most widely investigated applications which exploit the

benefits provided by superconductors. The superconducting state appears after cooling

SCs below TC , which differs for each type of superconducting material [54]. Within the

superconducting region, SCs present perfect conductivity (no resistance to the passage

of electrical current), eliminating any dissipation of energy. However, when one of the

three critical boundaries is exceeded (i.e., JC/IC , TC , and HC), due to a transient event

(i.e., presence of a fault), the quenching of SCs is initiated. The quenching phenomenon

can be defined as the transition of SCs from the superconducting state to the mixed

state and finally to the highly-resistive state. In power systems one of the most frequent

events which leads to the quenching of SCs is the occurrence of a fault. The quenching

phenomenon of SCs will be discussed in more detailed in the following subsections.

2.2 From 2G HTS tapes to SCs

Ever since the discovery of superconductivity, several techniques were investigated with

regards to the fabrication of HTS tapes, which constitute the basis of SC manufacturing.

It became apparent that composite techniques are required for the fabrication of HTS

tapes in order to achieve increased values of JC , ensure adequate performance of the

superconductors in a wide range of magnetic fields, and compensate the manufacturing

cost [55]. On that front, after many years of research and development, the invention

of 2G HTS tapes was a remarkable technical accomplishment which accelerated the

integration of SCs in power systems [9]. The transition from 1G (first generation) HTS

tapes to 2G emanates from the fact that the latter provide higher JC , better mechanical
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properties, and are also expected to be more economically profitable [56].

2G HTS tapes are formed as coated conductors and are composed of different layers

accounting for a superconducting layer, stabiliser layers, one substrate layer, and one silver

layer. The material and geometrical specifications (i.e., thickness, width) of each layer vary

depending on the manufacturer, such as American Superconductor Corporation (AMSC),

Nexans, Fujikura, Sumitomo Electric and SuperPower. Figure 2.2a illustrates the typical

structure of a 2G HTS tape based on the specifications proposed by SuperPower [34].

As can be observed, the superconducting layer is made of Y BCO and is deposited on a

stack buffered substrate made of Hastelloy C276, and is also covered with a silver layer

in order to improve the electrical conductivity. Copper stabiliser layers cover the tape to

enhance the mechanical strength. The Y BCO superconducting layer is solely responsible

for conducting the transportation of current, while copper stabiliser layers are utilised as

an alternative current path during quenching in order to protect the cable from excessive

thermal stresses which can lead to SC destruction.

Figure 2.2: Design schematics from 2G HTS tape to SC: a) Y BCO Coated Conductor
manufactured by SuperPower b) arrangement of HTS tape around former c) typical
configuration of SC.

The structure of SCs is composed of many HTS tapes assembled to form a stack. In

particular, as can be seen in Figure 2.2b, HTS tapes are attached closely to a stranded

former, which is the core of the SC, and are twisted spirally along the stack axis to

minimise the gap [57]. The twisting of stacked HTS tapes is important and allows

the development of SCs with reduced magnetic flux coupling among HTS tapes, high

current-carrying capability, and compact size.

The former of a SC is typically manufactured as a hollow tube made of copper or

stainless steel. The main purposes of the former are to provide a bypass current path

during quenching (along with the stabiliser layers), mechanical support, and a channel

for the liquid cooler. The former should be designed in such a way that imposes the
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lowest heat load to the cooling system during quenching [9].

Figure 2.2c shows a typical design schematic for a SC with 2G HTS tapes. Several

layers of HTS tapes are attached around the former to give the HTS conducting layer

and HTS shield layer of the SC. The number of layers of HTS tapes which compose the

HTS conducting and shield layers is determined by IC and the former radius [58]. The

shield layer is utilised to block electromagnetic fields. A current in the same order of

the transport current flowing through the HTS conducting layer circulates in the shield.

A dielectric layer is placed between the HTS conducting and shield layers and provides

electrical insulation. The thickness and type of the dielectric material are selected based

on the voltage level of the grid. Finally, the SC cooling system is composed of a cryostat

with Liquid Nitrogen (LN2) at 65 − 70 K, which is circulated in the cable loop to

refrigerate the SC and sustain its temperature below TC [7].

The performance of a SC is determined by the physical properties and geometrical

characteristics of the different layers which compose the HTS tapes (i.e., TC , JC of

superconducting layer, specific heat of each material, thickness and width of each layer),

the former thickness and radius, and the type of cooling system [59]. All these factors must

be adjusted with respect to the grid parameters (i.e., voltage levels, maximum potential

fault current) in order to properly model SCs and investigate their response under

different conditions (i.e., steady state and transient) [60]. All these design specifications

have been considered in this thesis for the detailed electro-thermal modelling of AC and

DC SCs which will be presented in the following subsections.

2.3 Configurations of SCs

SCs are the most advanced of the superconducting-based applications in the energy sector

with numerous successful pilot projects around the world [61]. In particular, AC SCs

have started to be utilised to solve congestion problems in urban centres or metropolitan

areas, while DC SC applications are considered a promising solution for bulk power

transmission from remote RES to load centres [62].

Several design topologies of SCs have been developed in recent years in an attempt to

minimise the capital and operating costs, and accelerate the commercial deployment of

such technology. The diversity in the applications of SCs results in different electromag-

netic structures, dielectric types, and cooling system configurations, with each offering

their own advantages and limitations [9].
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The configurations of SCs can be classified into distinct categories based on the layout

of the layers of HTS tapes, as well as the voltage level. The most widely used geometric

configurations are depicted in Figure 2.3 and include: i) the concentric SC (triaxial)

(Figure 2.3a), ii) the triad or ”three-core” SC (three phases in one cryostat) (Figure 2.3b)

and iii) the ”single-core” SC (three separate phases with seperate cryostats) (Figure 2.3c).

The concentric configuration of an AC SC is presented in Figure 2.3a. The most

important attribute of this configuration is the compact size, which reduces the total

cryogenic surface area, utilises less superconducting material, and subsequently reduces

the cost [7]. The layers of HTS tapes are helically wound around the former tube,

while three layers of dielectric separate the three phases for AC SCs. This configuration

offers higher current-carrying capacity, and has the lowest inductance compared to other

cable designs [57]. However, the major drawback is the non-uniform distribution of the

current among HTS tapes, making the manufacturing process more challenging [63].

This design has been successfully implemented for voltage levels within the range of

13.8 kV -50 kV [64].

Figure 2.3b shows an AC SC with the three phases placed within the same cryostat.

This structure leads to a larger cable size and requires the addition of a HTS shield layer

in order to reduce the magnetic field, resulting in increased cost [65]. The main advantage

of this cable configuration is the uniform current distribution among HTS tapes. In

practical deployment, triad SCs are utilised for voltage levels higher than 66 kV .

Finally, a single-core SC is shown in Figure 2.3c. In this type of cable configuration,

each conductor is contained in separate cryostats and is usually recommended for voltages

up to 138 kV for bulk power transmission over long distances [29]. However, as each

conductor requires separate inlet and outlet paths for cooling, the cost is dramatically

increased.

Figure 2.3: Overview of SC design: a) concentric b) triad c) single-core.
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SCs are also classified with respect to the type of dielectric used. Specifically, in

Cold Dielectric (CD) SCs, the electrical insulation layer is usually made of Polypropylene

Laminated Paper (PPLP) and is kept at cryogenic temperatures in the inner envelope [60].

This type of SC consists of a large cooling surface area, resulting in a smaller heat load and

higher cooling power. Conversely, in Warm Dielectric (WD) SCs, the dielectric layer is

not immersed in the cooling liquid, reducing the power required for cooling [66]. The main

drawbacks of the WD configuration is the need for separate cryostats for each conductor,

more expensive electrical insulation, and higher inductances and capacitances [9]. Table

2.2 presents a comparison between CD and WD SCs.

Table 2.2: Comparison between CD and WD SCs.

Characteristics WD CD

Magnetic field Present Cancelled
AC Losses High Low

Current-carrying capacity High Very high
Type of dielectric layer XLPE PPLP

SC inductance / capacitance Similar to conventional cables Low
Number of cryostats Seperate cryostat for each conductor Conductors in the same or separate cryostat
Type of shield layer Metallic material Metallic or HTS material

In the presented research, a CD single-core configuration has been considered for the

modelling of SCs as they present lower losses and increased current-carrying capability.

2.4 Electrical equivalent of HTS tapes and the quenching

of SCs

The quenching of a SC determines the transition to the highly-resistive state, leading

to temperature increase as well as thermal and electromagnetic forces [67]. Analysing

the quenching phenomenon is of paramount importance in the development of SC

models which will accurately represent their electro-thermal behaviour. The utilisation

of electrical equivalent circuit models has been considered as one of the fastest and

most accurate methods to gain a better understanding of the electro-thermal response

of SCs under different system conditions (i.e., steady state and transient) [68]. Based

on the electrical equivalent approach, HTS tapes (Figure 2.2a) can be modelled as

parallel connected electrical resistances which correspond to each layer of HTS tape (i.e.,

superconducting layer, stabilisers, substrate silver). In this context, each conductor of

the SC is modelled as the equivalent electrical circuit of all HTS tapes and the former,

connected in parallel. Figure 2.4 shows the equivalent electrical circuit of one HTS
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tape. The self and mutual inductances have been neglected at this stage for the tape

analysis [69] (self and mutual inductances have been considered during the detailed

electro-thermal modelling of SCs).

Figure 2.4: Equivalent circuit model of an HTS tape.

As can be observed in Figure 2.4, the resistance of the Y BCO layer, RY BCO, copper

stabiliser layers, RCU , and former, Rformer, have been modelled as variable resistors in

order to represent their variability during quenching. Conversely, the resistance of the

silver, RAg, and substrate, Rsub, layers have been modelled as constant resistances, as

their change during quenching is comparatively negligible.

In steady state conditions, SCs operate in superconducting state and transmit bulk

power with approximately zero losses. Under these conditions, the current flows solely

through the Y BCO layer and the SC behaves as a perfect conductor. During transient

events (i.e., faults) when the current flowing through the SC increases, the Y BCO layer

starts to quench, losing its superconducting properties. Specifically, when the current

exceeds a predefined threshold, known as the critical current, IC , the current density

exceeds the threshold JC and quenching is initiated. In this thesis the uniform current

distribution among the HTS tapes has been assumed and the SC has been modelled as

lumped model, allowing for the consideration of simultaneous quenching along the SC

length. It should be noted that this simplification does not adversely affect the efficacy

of the developed protection and fault location schemes which rely on the resulting fault

current and voltage signatures across the entire cable.

Under these transient conditions, RY BCO undergoes a non-linear increase and the

SC operates in the mixed state (intermediate state between superconducting and highly-

resistive). During the mixed state, the current starts to be diverted into the copper

stabiliser layers and the former, which present lower resistances compared to Y BCO.
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This is known as the current sharing process. The amount of current which is diverted

to the copper stabiliser layers and the former is dependent on their design specifications.

When the current starts flowing through the copper stabiliser layers and the former,

this causes the generation of Joule heat which subsequently leads to an increase in the

temperature, T , of the SC. On that front, RCU and Rformer increase as a function of

T and consequently the total resistance of the SC reaches very high values, affecting

the system current magnitudes. The rapid increase in the total resistance of the SC

causes further increases in T . When the value of T exceeds the value of TC , the SC

enters the highly-resistive state within milliseconds (i.e., a single AC cycle). The time

required for the transition of the SC from superconducting state to the highly-resistive

state is dependent on system conditions and the cooling system which is responsible for

the removal of the generated Joule heat [9]. The flowchart presented in Figure 3.2 shows

a representation of the quenching phenomenon.

Figure 2.5: Overview of quenching phenomenon

Hence, it can be concluded that the quenching of SCs enforces the appearance of

a variable resistance which imposes: i) the current redistribution within the SC, ii) a

dynamic change in the equivalent resistance of the system, and iii) has an impact of the

fault signatures. All these factors introduce new variables in the fault management of

power grids with SCs, which is the main focus of the presented research. Therefore, the
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investigation of SCs inherent current-limiting capability, as an extension of their primary

function as a lossless transmission media, is rendered imperative.

2.5 Electro-thermal modelling of AC SC

The previously discussed principles of superconductors along with the design specifications

of HTS tapes form the basis for the electro-thermal modelling of SCs. This section presents

the mathematical formulation of coupled electro-thermal modelling of an AC SC composed

of three single-core phases and 2G HTS tapes in Matlab/Simulink.

2.5.1 Numerical modelling of the HTS tapes

In the presented work, the structure of the commercially available 2G HTS tape proposed

by SuperPower and presented in Figure 2.2a has been selected. The electrical equivalent

circuit of each tape corresponds to that illustrated in Figure 2.4. For the modelling of

the SC, the lumped electrical parameters model coupled with a discrete thermal model

has been utilised.

The number of HTS tapes within the SC has been selected considering the derating

factor, λ, given by (2.2), which expresses the ratio between the operating current at

superconducting state, Iop, and the IC of the HTS tapes at zero applied magnetic

field [31, 70]. A λ equal to 80 % has been chosen to consider a safety margin of 20 %

before quenching and achieve high power transfer in steady state conditions:

λ =
Iop
IC

= 80% (2.2)

For simplification of the electro-magnetic performance of the SC, a uniform distribution

of the current has been assumed among HTS tapes and a uniform distribution of the

current density, J , among each tape [71].

The transition from the superconducting state to the highly-resistive state can be

described by the E−J power law and the resistivity of the superconducting layer Y BCO,

ρY BCO, is given by (2.3):

ρY BCO =
EC

JC(T )
·
(

J

JC(T )

)n−1

(2.3)

where, Ec = 1 (µV/cm) refers to the critical electric field, J denotes the operating

current density (A/m2), and n is a superconductor macroscopic property related to the
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steepness of the transition to the highly-resistive state which has been set equal to 30 [72].

Finally, JC is the critical current density (A/m2) and it is calculated as a function of

T (K) and the working magnetic field, H (T ), based on (2.4):

JC(T ) =

 JC0(H) · ( (TC−T (t))a

(TC−T0)a
) for T < TC

0 for T ≥ TC

(2.4)

where, JC0 is the critical current density (A/m2) at the initial temperature, T0 =

70 (K), and has been set to 1.5 [59].

When a SC operates in superconducting state, J is below JC , T is below TC , and

ρY BCO = 0 Ωm. Consequently, the current flows predominantly through the Y BCO

layer, generating approximately zero losses. Conversely, during transient conditions, when

the current flowing through the SC increases and quenching is triggered, the Y BCO layer

presents high values of resistivity (higher compared to normal conductors in cryogenic

conditions [67]). Specifically, under these conditions, ρY BCO presents a non-linear increase

according to (2.3), JC is reduced to 0 A/m2 and the SC operates in a mixed state. As

it was mentioned in subsection 2.4, during the mixed state, the current starts to be

diverted into the copper stabiliser layers and the former, resulting in a further increase

in T which leads to a transition to the highly-resistive state. In the highly-resistive state,

the resistivity of the copper stabiliser layers, ρCu, changes as a function of T based on

(2.5) [73]:

ρCu = (0.0084 · T − 0.4603) · 10−8, 250 K > T ≥ 70 K (2.5)

During the modelling of HTS tapes, RAg and Rsub have been neglected as they do not

have any significant impact on quenching. However, the thickness of the substrate and

silver layers have been considered in the modelling process as the total thickness of the

HTS tape affects the thermal properties of the SC. The specifications of the employed

HTS tapes are presented in Table 2.3 [34].

2.5.2 Structure of AC SC

The AC SC has been devised with a cross-sectional structure as depicted in Figure 2.6

and composed of three conductors contained in three separate cryostats. Table 2.4 details

the geometrical characteristics of the developed AC SC.

Each phase consists of the former, HTS conducting layer, insulation layer, and HTS
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Table 2.3: Specification of the HTS tape for the AC SC.

Parameters Value

Thickness of Y BCO layer 1 µm
Thickness of copper layer 40 µm

Thickness of substrate layer 60 µm
Thickness of silver layer 3.8 µm

Tape width 4 mm
Tape critical current 250 A

Tape critical temperature 92 K

Figure 2.6: Cross-section of the AC SC model.

Table 2.4: Geometrical characteristics of AC SC.

Layer Outer radius

Former tube (steel) 16.5 mm
HTS conducting layer 16.64 mm
Electrical insulation 18.64 mm
HTS shield layer 18.78 mm
Heat insulation 21.78 mm

shield layer. A PPLP, CD layer was considered between the HTS conducting and shield

layer, acting as electrical insulation, while permitting the SC to operate at relatively low

temperatures. The SC cooling system is composed of a cryostat with Liquid Nitrogen

(LN2) at 65− 70 K. The former is made of stainless steel and is modelled as a hollow

tube. The resistivity of the former as a function of T is given by (2.6) [59]:
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ρsteel = 1.193 · 10−6 − 7.529 · 10−7 exp(−T/647.113) (2.6)

The total resistance of the SC is equal to the equivalent resistance of the parallel

connected layers of the HTS tapes and the former, and is given by (2.7).

RSCeq =



RY BCOeq for T < TC and Iop < IC

RY BCOeq//RCueq//Rformer for T < TC and Iop > IC

RCueq//Rformer for T > TC and Iop > IC

(2.7)

where RY BCOeq indicates the equivalent resistance of the Y BCO layer of all parallel

connected HTS tapes, RCueq corresponds to the equivalent resistance of the stabiliser

layers of all parallel connected HTS tapes and RSCeq is the equivalent resistance of the

SC. The RSCeq changes with respect to the operating state of the HTS tapes. Once

the quenching is initiated and the current is shared among the Y BCO layers, copper

stabiliser layers and former, the RSCeq of the SC is calculated as the equivalent resistance

of the parallel connected RY BCOeq , RCUeq and Rformer. In the highly-resistive state, the

whole current is diverted to the copper stabiliser layers and the former, and therefore

RSCeq is given as the equivalent resistance of the parallel connected RCUeq and Rformer.

The per-unit length capacitances, C, and inductances, L, of the SC have been derived

using the ATP-EMTP software based on the general formulation provided in [74]. For

the calculation of C and L, the conducting layers and the shield layers of each phase

have been considered along with the solenoid effect caused by the axial magnetic field

generated by the helically wound HTS tapes around the former. The impact of the

solenoid effect on the L calculation has been considered based on the approach proposed

in [75]. Based on the structure of the SC in Figure 2.6, the electrical equivalent of the

three phases of the AC SC can be established as shown in Figure 2.7. Each layer of

each phase is composed of a variable resistance and self inductance. Moreover, there are

mutual inductances between the layers. Specifically, MCiSi corresponds to the mutual

inductance between the conducting and shield layer of phase i, MCiCj indicates the
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mutual inductance between the conducting layers of phases i and j, MSiSj denotes the

mutual inductance between the shield layers of phases i and j, and finally, MCiSj is the

mutual inductance between the conducting and shield layer of phases i and j.

Figure 2.7: Electrical equivalent parallel circuit diagram of AC SC.

2.5.3 Thermal modelling

In this subsection, the electro-thermal analogy is employed in order to model the coupling

between the thermal and electrical phenomena. Based on this approach, currents are

translated into Joule heating and the resulting temperature variations into changes to

the temperature-dependent properties of the SC.

Thus, considering the electro-thermal coupled modelling formulation, the sudden

loss of superconductivity during quenching is translated into heat generation by the

superconductor. The Joule heating generated by the SC due to the variations in RSCeq

is described by (2.8)
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P (t)diss = I(t)2 ·RSCeq (2.8)

where I(t) (A) is the total current flowing through the SC.

Assuming that there is no heat transfer with the external environment, part of the

generated Joule heat leads to an increase in T and the rest is absorbed by the LN2

cooling system. In this adiabatic regime, the cooling power that is removed by the LN2

refrigeration system is obtained with (2.9):

P (t)cooling = h ·A · (T (t)− 70) (2.9)

where A (m2) is the total area covered by the LN2 cooling system and h (W/m2 ·K) is

the heat transfer coefficient which determines the effectiveness of the cooling system and

the time of SC recovery after quenching. The heat transfer coefficient, h, is a function of

the temperature variation, ∆T , and has been calculated according to [76].

Considering the law of conservation of energy and combining equations (2.8) and

(2.9), the net power of the SC is calculated by (2.10):

P (t)SC = P (t)diss − P (t)cooling (2.10)

Eventually, the increase in T of the SC can be calculated through (2.11):

T (t) = Tt−1 +
1

CSC
·
∫ t

0
P (t)SC dt (2.11)

where CSC (J/K) denotes the total heat capacity of the SC and is calculated as a function

of the specific heat and the mass of the material of each SC layer. More specifically, the

heat capacity of Y BCO, CY BCO, is given by (2.12):

CY BCO = 2 · T · dY BCO · vY BCO ·N (2.12)

where dY BCO (kg/m3) is the density of the Y BCO material, vY BCO (m3) is the volume

of the Y BCO layer, and N is the number of HTS tapes.

The heat capacity of the copper stabiliser and Hastelloy layers is calculated based on

(2.13) and (2.14), respectively:

CCU = cCU · dCu · vCu ·N (2.13)
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Csub = 2 · T · dsub · vsub ·N (2.14)

where dCu (kg/m3) and dsub (kg/m3) are the density of copper and the substrate,

respectively, cCu (J/kg · K) is the specific heat of copper, and finally, vCU (m3) and

vsub (m
3) are the volume of the copper stabiliser and substrate layers, respectively.

Similarly, the heat capacity of the electrical insulation and steel former are derived

by (2.15) and (2.16), respectively:

CPPLP = cPPLP · dPPL · vPPLP (2.15)

Csteel = csteel · dsteel · vsteel (2.16)

where dPPLP (kg/m3) and dsteel (kg/m
3) are the density of the PPLP and steel, re-

spectively, cPPLP (J/kg ·K) and csteel (J/kg ·K) are the specific heat of the electrical

insulation and the former, respectively, and vPPLP (m3) and vsteel (m
3) are the volume

of the electrical insulation and the former.

For simplification of the modelling procedure, it has been considered that the HTS

shield and the HTS conducting layers of each phase conductor, illustrated in Figure 2.6,

consist of the same number of HTS tapes with the same specifications. Therefore, the

total heat capacity of the SC, CSC , is expressed according to (2.17):

CSC = 2 · CY BCO + 2 · CCU + 2 · Csub + CPPLP + Csteel (2.17)

The values of the density and specific heat of each material are given in Table 2.5.

Table 2.5: Specific heat and density of each material.

Parameter Value

Density of Y BCO 5900 kg/m3

Density of stainless steel 7500 kg/m3

Density of copper 8940 kg/m3

Specific heat of copper 185 (J/kg ·K)
Specific heat of stainless steel 21.78 (J/kg ·K)

Specific heat of PPLP 1930 (J/kg ·K)

It’s worth reiterating that in the adopted electro-thermal modeling of SC, there exists

an interdependence between current and temperature. When the current exceeds the
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critical level, quenching occurs, resulting in the generation of Joule heat. This heat, in

turn, elevates the cable’s temperature, leading to changes in the temperature-dependent

parameters. While the inductance and capacitance are typically considered constant

during quenching based on [7, 73], the influence of the cable’s structure on the magnetic

field has been accounted by calculating mutual and self-inductances according to [74]. In

this context, to achieve high-fidelity temperature-dependent modelling, an error tolerance

is also applied in the thermal model which determines the temperature at each time step.

Figure 2.8 shows an overview of the modelling process as developed in Matlab/Simulink

which calculates the temperature at the next time step, Tk+1, based on (2.18):

Figure 2.8: Electro-thermal modelling process of SC as developed in Matlab/Simulink.

e ≥
TN=j
k+1 − TN=j−1

k+1

TN=j−1
k+1

· 100(%) (2.18)

where Ik and TK are the current and temperature measurements of time step k

respectively, and Tk+1 is the calculated temperature of the next time step k + 1. The

index j indicates the simulation step. The calculation of Tk+1 at each time-step is based
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on an iterative process which is executed N times in order to realise the temperature

tolerance constraint. At the end of each time step, the temperature-dependent properties

of the SC are updated according to the Tk+1 value. In the developed model, the value of

e has been set to 0.01%.

2.6 Electro-thermal modelling of DC SC

The same mathematical formulation of the coupled electro-thermal modelling has been

utilised for the development of two DC SCs. Specifically, the electro-thermal characteris-

tics of both DC SCs have been modelled in Matlab/Simulink by combining equations

(2.2) to (2.18).

The schematic configuration of the DC SCs is illustrated in Figure 2.9 and it consists

of two concentric poles, the positive and negative pole [70]. The positive pole is located on

top of the steel former and is composed of the HTS layer and copper stabiliser layer. The

negative pole is placed on top of the electrical insulation layer and consists of the same

number of HTS tapes which compose the HTS layer and the stabiliser layer. The current

passing through the negative pole is nearly identical to the current flowing through the

positive pole, but with opposite direction [77]. Similarly, to the case of AC SCs, the

Y BCO superconducting material has been adopted for the HTS tapes. The number

of HTS tapes is closely related to the determination of IC for the DC SC, while the

thickness of the dielectric material has been chosen in accordance with the voltage level

of the grid. For the cooling of the DC SCs, LN2 is circulating in the cable loop to sustain

a constant T within the range of 65−70 K. All the layers are contained within a cryostat

which provides thermal insulation.

The final (per unit length) values of C and L of the two DC SCs have been calculated

utilising the general formulation proposed in [74]. The specifications of the HTS tapes

are the same as those presented in Table 2.3. The only difference is the value of IC , which

is equal to 140 A for DC SC1 and 120 A for DC SC2. The geometrical characteristics of

both DC SCs are presented in Table 2.6.

2.7 Summary

This chapter provides the theoretical background of the superconductors and their

properties in order to provide the basis for the development of proper SC models.
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Figure 2.9: Schematic illustration of DC SC.

Table 2.6: Geometrical characteristics of DC SC1 and SC2.

Layer Outer radius

Positive pole of SC1 / SC2 15.14 mm / 17.50 mm
Electric insulation of SC1 / SC2 27.14 mm / 29.50 mm

Negative pole of SC1 / SC2 27.28 mm / 29.64 mm
Outer wall of SC1 / SC2 110.23 mm / 111.34 mm

Superconductors are classified into Type I and Type II based on their behaviour

in the applied external field. The analysis showed that Type II superconductors are

characterised by more advantageous features compared to Type I as they present a gradual

transition to the highly-resistive state and preserve their superconducting properties

under a wider range of temperature. Additionally, the main advantages and drawbacks

of the different SC configurations have been discussed. The selection of the proper cable

configuration is determined by the operating voltage levels and the cost. Furthermore,

SCs are categorised as either WD or CD with respect to the dielectric type. WD SCs

present lower cooling requirements, however, their electrical insulation is more expensive

than that of CD SCs and have higher inductances and capacitances. Furthermore, the

structure of 2G HTS tapes has been analysed along with the quenching phenomenon

which dictates the performance of SCs.

Following the theoretical background, the detailed mathematical formulation of

the electro-thermal modelling of AC and DC SCs in Matlab/Simulink is presented.
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Specifically, the electro-thermal analogy is employed in order to simplify the coupling

between the thermal and electrical phenomena in SCs. On that front, the currents flowing

through the SC, during quenching, lead to the generation of Joule heating, causing an

increase in T of the SC. The subsequent temperature variations result in changes to the

temperature-dependent properties of the SCs (i.e., CSC , JC , ρY BCO, ρCU ) which have

been captured with high accuracy.

For the selection of the design specifications, it has been revealed that HTS tapes must

be protected electrically and thermally during quenching, considering alternative current

paths (i.e., copper stabiliser layers). The number of HTS tapes which are wound around

the former is determined based on the IC of the SC and the former radius. Furthermore,

the former specifications should be selected in a proper way in order to minimise the

heat load on the cooling system, while the shield layer should be designed properly to

provide a return path for the current.
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Fault Characterisation of AC and

DC SCs

The fault analysis of SCs plays a vital role in preserving power systems safety, reliability

and efficiency. During fault conditions, if SCs are not properly designed and adequately

protected, they can be completely damaged during quenching (i.e., burnout, mechanical

collapse, deformation, etc.). Therefore, it is important to study deeply the fault behaviour

of SCs along with the influence of fault parameters on their fault response (i.e., fault

type, location and resistance) prior to their deployment in power systems.

As the transient performance of SCs is dominated by the quenching phenomenon

and electrothermal properties of HTS tapes [78], their implementation within AC and

DC systems introduces new variables to the grid operation (i.e., variable resistance,

reduced fault current magnitudes, etc.) and leads to many fault management challenges,

accounting for fault detection, fault location and protection. Therefore, within the

scope of developing advanced and reliable fault management solutions for SCs, extensive

assessment studies are required in order to evaluate the performance of such cable

technology under different transient conditions and reveal the challenges from the fault

management perspective. On that front, a detailed fault characterisation of AC and DC

SCs is analysed and discussed in this chapter, presenting a variety of fault scenarios.

Such studies have been carried out utilising a model of an AC power system with the

inclusion of ICGs, and a multi-terminal HVDC network with incorporated DC SCs. It is

important to note that the challenges of protecting more complex multi-terminal HVDC

grids often can cover the challenges met in point-to-point HVDC systems.
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3.1 Power System Modelling and Fault Characterisation

of AC SC

AC superconducting-based transmission technology is being progressively explored and its

investigation has reached a more mature stage compared to that of DC superconducting-

based technology. As reported in Chapter 1, the first SC projects were focused on

the deployment of short-length AC SCs, creating the proper foundation for numerous

demonstration sights and pilots [79,80]. The dominant application of AC SCs consists

of high capacity connections utilised to tackle congestion challenges and interconnect

weak systems with great demand. Although SC applications are expected to be hugely

influential for power transmission in future power grids, there are still challenges to be

resolved emanating from their unique physical features and the lack of standardisation

for the testing and fault performance analysis of SCs [9].

With the scope of acquiring a deeper insight into the transient performance of AC

SCs, this chapter investigates the response of the AC SC model developed in Chapter 2

by conducting iterative simulation-based fault analysis under different fault conditions.

More specifically, the simulation-based studies aimed to analyse the different stages of

the quenching process along with the resulting fault current and voltage waveforms.

3.1.1 AC power system model

For the purposes of carrying out the assessment of AC SC fault response, EMT simulation

studies have been conducted, considering the power system depicted in Figure 3.1.

Figure 3.1: Test network.

The network under test has been developed in Matlab/Simulink and consists of a

voltage source connected to Bus 3 with nominal voltage of 132 kV , which represents the

equivalent network, and two different generation units, accounting for a SG and ICG,

both connected to Bus 1 [81]. The SG unit has a nominal capacity of 102 MVA and for
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modelling purposes, a standard salient pole synchronous machine has been utilised along

with the integration of Automatic Voltage Regulator (AVR), Power System Stabiliser

(PSS) and over-excitation limiter [82]. The ICG unit (i.e., a wind farm cluster) has a

total capacity of 100 MVA and constitutes permanent magnet SGs connected via a

Voltage Source Converter (VSC). The incorporated control scheme for the converters is

the standard d-q axis current injection (DQCI).

A 10 km SC has been integrated between Bus 1 and Bus 2 at 33 kV for the power

transmission from the generation units to the wider electrical grid. The parameters of

the developed AC SC are presented in Table 3.1.

Table 3.1: Parameters of AC SC

Parameter Value

Number of tapes ntapes 25
Operating temperature T0 70 K
Critical temperature TC 92 K
Critical current per tape IC 250 A
SC’s length l 10 km
Rated voltage V 33 kV
Rated capacity S 202 MVA

The conducted studies consider different fault scenarios (i.e., internal and external

faults) and transient events (i.e., load switching events). The ultimate goal is to disclose

potential fault management challenges and consequently identify the requirements for

the secure and reliable operation of AC SCs. One of the main prerequisites for designing

protection and fault location schemes is to investigate the distinctive features and effects

of internal faults (faults within the protection zone which must cause the initiation of

a tripping signal), external faults (faults beyond the protection zone which must not

lead to the initiation of a tripping signal) and transient events which must not lead to

protection operation, in order to ensure the protection sensitivity, stability, selectivity

and fault location accuracy. For that purpose, the presented studies aim to qualify and

quantify the behavior of AC SC quenching during internal faults, occurring along AC

SC’s length, external faults applied at the adjacent lines, and load switching events.

Specifically, the simulated fault scenarios include all types of internal and external

faults, accounting for three-phase (LLL), three-phase to ground (LLL-G), phase-to-phase

(LL), phase-to-phase to ground (LL-G) and phase to ground (L-G), with different values

of fault resistance Rf , (within the range of 0 Ω up to 300 Ω) [83]. Considering the
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configuration of the developed SC, shown in Figure 2.6, an LL fault for example can

be occurred when the superconducting layers of two adjacent phases come into direct

electrical contact due to some external force, or mechanical stress applied to the SC, or

degradation, or corrosion of the cable’s insulation and protective layers. These type of

faults may lead to cooling system malfunction and lead to quenching of SC. Furthermore,

if the fault involves a breach in the cryogenic insulation layer, it may result in the leakage

of LN2 from the cable. This can happen because the fault compromises the integrity of

the cryogenic insulation.

Internal faults were applied at varying fault position along AC SC’s length, considering

as a reference the SC terminal connected at Bus 1, while external faults were applied at

adjacent lines. Load switching events were simulated as the connection of loads, with

different values of active and reactive power, at Bus 2.

3.1.2 Fault response of AC SC during different scenarios

The selected scenarios analysed in this subsection are summarised in Table 3.2. In

particular, this subsection presents the simulation results of an LL-G internal solid fault

applied at 40% of the AC SC’s length, an LL-G internal resistive fault at 40% of the AC

SC’s length, an LL-G external solid fault at 30% of the adjacent line’s length, and a load

switching event with P = 80 MW and Q = 20 MVAr. The main goal of this selection

is to scrutinise the response of the AC SC against solid internal faults, assess the impact

of fault resistance on SC quenching and investigate the potential of external faults and

other transient events to lead to SC quenching. During all the scenarios, the fault or

load switching event occurs at t = 3.06 s. The analysis was conducted considering fault

current and voltage measurements captured with a sampling frequency of 20 kHz at

one terminal of the SC (as shown in Figure 3.1). Furthermore, it should be noted that

during the fault, the SG and the ICG unit have been assumed to be connected. This

assumption is made to investigate the natural response of the fault current contributed

by both sources and its impact on the quenching of the SC.

Table 3.2: Representative scenarios for AC SC.

Scenario Fault type Location Fault resistance

Solid internal fault (F1AC ) LL-G 40 % of SC’s length 0 Ω
Resistive internal fault (F2AC ) LL-G 40 % of SC’s length 50 Ω
Solid external fault (F3AC ) LL-G at 30 % of adjacent line 0 Ω
Load switch (LS) - Bus 2 -
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Scenario F1AC

Figure 3.2 presents the performance of the AC SC during an LL-G solid fault, occurring

at 40% of the AC SC’s length and triggered at t = 3.06 s.
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Figure 3.2: AC SC performance under a LL-G solid fault at 40% of the AC SC’s length:
a) Currents through YBCO layer b) Currents through copper stabiliser layers and former,
c) Equivalent resistance, d) Temperature.

During pre-fault conditions, the AC SC operates at T = 70 K and the resistance of

the YBCO layer is approximately zero, providing a current path with approximately zero

losses. Figure 3.2a shows the current flowing through the YBCO layer of each phase.

When the value of fault current flowing through phase A and phase B (which are the

faulted phases) reaches the value of IC , quenching of the HTS tapes is initiated, leading

to an increase in the resistance of the YBCO layers and consequently in T of the AC

SC [67]. Under these conditions, the fault current is re-distributed through the copper
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stabiliser layers and the former (current indicated as Ishunt in Figure 3.2b) at t = 3.064 s.

The fault current diversion results in an increase in the resistivity of the copper stabiliser

layers and the former based on (2.5) and (2.6), respectively, and a further increase in T

of the AC SC. Figure 3.2d shows the change in equivalent resistance of the AC SC (which

reaches values over 8 Ω), while Figure 3.2e demonstrates the resulting rise in T of the

AC SC. When T exceeds TC = 92 K, the HTS tapes enter the highly-resistive state and

a dramatic increase in Req can be observed in Figure 3.2d. Figure 3.2c demonstrates the

three phase voltage signatures. Once the fault occurs at t = 3.06 s, the voltage of phase

A and phase B present a rapid reduction towards 0 kV . However, within the first fault

cycle, phase voltages increase, by initially presenting high peaks followed by a gradual

recovery to approximately their pre-fault magnitudes. The behavior of the fault voltage

signatures is primarily influenced by two factors, the increase in Req inserted by the SC

(where a higher equivalent resistance results in the presence of higher voltage peaks) and

also the presence of the AVR of the SG which remains connected to the grid during the

fault.

Therefore, it is evident that the presence of a solid internal fault initiates the quenching

of AC SC and during the transition from superconducting state to highly-resistive state,

the AC SC experiences a dynamic change of Req which affects the resulting fault current

waveforms (and consequently the fault levels of the system) and the voltage signatures

during the fault.

Scenario F2AC

For the design of sensitive and effective protection and accurate fault location schemes,

it is essential to consider resistive faults, which are anticipated to affect the resulting

voltage and current waveforms. Figure 3.3 provides a deeper insight of the effect of Rf on

the quenching process by presenting the fault current measurements under the influence

of an LL-G fault with Rf = 50 Ω, occurring at 40% of the AC SC’s length.

As depicted in Figure 3.3a and Figure 3.3b, during a resistive fault, the AC SC does

not quench as the fault current flowing through YBCO layers does not reach the value of

IC . The YBCO layer remains in superconducting state and therefore there is no current

sharing among the copper stabiliser layers and the former. Subsequently, Req of the AC

SC is approximately zero (Figure 3.3d) and T is sustained at the operating temperature

(i.e., T0 = 70 K) (Figure 3.3e). Furthermore, Figure 3.3c shows that no voltage drop is

reported during the fault.
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Figure 3.3: AC SC performance under a LL-G fault with Rf = 50Ω at 40% of the AC
SC’s length: a) Currents through YBCO layer, b) Currents through copper stabiliser
layers and former, c) Equivalent resistance, d) Temperature.

Therefore, the presence of Rf reduces the prospective fault current, even below IC ,

preventing the AC SC from quenching. Thus, high values of Rf affect the quenching

process and make the detection and localisation of resistive faults challenging.

Scenario F3AC

Figure 3.4 depicts the fault response of the AC SC during an LL-G external solid fault

applied on the adjacent 132 kV line. As seen in Figure 3.4a, once the external fault is

triggered at t = 3.06 s, the current flowing through the YBCO layers present a peak

of 21 kA for phase A and 23 kA for phase B, while 4 ms after the fault occurrence the
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fault current has been diverted to the copper stabiliser layers and former (Figure 3.4b).

During quenching, Req of phase A reaches a value of 8 Ω, while Req of phase B is 6 Ω

(Figure 3.4d). Correspondingly, due to the Joule heat generation, T of phase A increases

to 91 K and of phase B to 85 K (Figure 3.4e). The voltage of phase A and phase B are

reduced for a few ms, but once Req starts to increase, the fault current decreases and

voltages present peak values (Figure 3.4c).
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Figure 3.4: AC SC performance under an external LL-G solid fault on the 132 kV
adjacent line: a) Currents through YBCO, b) Currents through copper stabilizer layers
and former, c) Equivalent resistance, d) Temperature.

The results of the presented analysis demonstrate that the quenching of AC SCs can

be caused by external faults, introducing many challenges to fault management of such

cables, accounting for protection stability and selectivity and fault location accuracy.

Scenario LS
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Figure 3.5a shows the results of a load switching event. Once the load is connected at

Bus 2, the AC SC starts to quench when the current flowing through the YBCO layers

exceeds IC of the HTS tapes. At t = 3.076 s, as is depicted in Figure 3.5b, the current is

diverted to the copper stabiliser layers and the former. T of the AC SC then reaches

values higher than TC , as is shown in Figure 3.5d, and consequently the HTS tapes enter

the highly-resistive state.
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Figure 3.5: AC SC performance under a load switching event : a) Currents through
YBCO layer, b) Currents through copper stabiliser layers and former, c) Equivalent
resistance, d) Temperature.

Similar to external faults, the presence of a load switching event can initiate the

quenching of AC SCs, affecting the protection stability, discrimination and security.
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3.1.3 Discussion of AC SC fault analysis assessment

From the acquired results, the following observations can be derived for the fault man-

agement of AC SCs:

� During the quenching process, AC SCs present a dynamic change in Req, leading

to a dynamic change in system total impedance and a suppression in the fault

current levels. These new variables introduced by the deployment of AC SCs have

an impact on the resulting fault current and voltage waveforms and consequently

cause an adverse effect on the existing well-established protection and fault location

schemes. For instance, the sensitivity of over-current protection schemes, which

is based on the fault current magnitudes, or the accuracy of impedance-based

fault location schemes, which require fault current and voltage measurements,

shall be jeopardised during quenching, threatening system safety and resiliency.

Furthermore, the introduction of high equivalent resistance leads to voltage spikes

across SCs, raising new challenges for voltage-assisted protection schemes. The

limitations of existing protection and fault location schemes will be discussed in

the following chapters.

� During highly-resistive faults, AC SCs do not quench, affecting the sensitivity of

protection schemes and accuracy of fault location schemes.

� The presence of other disturbances, such as load switching events and external faults,

cause the quenching of AC SCs, endangering the protection stability, selectivity

and security. The quenching of an AC SC during these conditions creates the risk

of the false indication of an internal fault occurrence and subsequently can lead

to protection nuisance tripping. Furthermore, the initiation of quenching during

external faults and other disturbances in conjunction with the absence of quenching

during highly-resistive internal faults causes challenges for the establishment of

discriminative protection schemes and accurate fault location schemes.

Thus, the performance of SCs during transient conditions is a multi-variable complex

problem. The obtained observations will be utilised as key drivers in the following

chapters in order to discuss the limitations of existing protection and fault location

schemes for the fault management of AC SCs and propose novel solutions which consider

the particularities of such technology.
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3.2 Power System Modelling and Fault Characterisation

of DC SCs

Driven by the necessity for zero-carbon power generation, approximately more than

300 GW of offshore wind power is anticipated to be integrated in Europe by 2050 [84].

Following these generation reforms, the incorporation of HVDC transmission systems

with DC SCs can help unlock numerous opportunities for the realisation of this target.

Multi-terminal HVDC systems, as a natural extension of the existing point-to-point

HVDC grids, satisfy all the requirements for enabling the target of energy connectivity

without borders. Furthermore, the deployment of Modular Multilevel Converters (MMCs),

compared to other converter topologies, unlocks advantageous functionalities for high-

power applications, accounting for improvements in fault blocking capability, elimination

of DC-link capacitor, and reduced semiconductor losses, which are analysed in more

detail in [85–87]. In this section a detailed fault current characterisation of DC SCs is

presented for a multi-terminal HVDC system with MMCs.

3.2.1 Multi-terminal HVDC power system model

Figure 3.6 presents the overall topology of the three-terminal HVDC grid model developed

in Matlab/Simulink. The topology of the system is based on the concept proposed in [40]

and considers the power transmission from a 66 kV AC offshore WF to a 400 kV onshore

AC grid, through DC SCs. The system is constructed by adopting the symmetric

monopole configuration and consists of i) three MMCs operating at ±200 kV DC voltage,

which represent the onshore and offshore valve stations, ii) current-limiting inductors

connected at each cable end and iii) CBs which have been modelled by adopting a hybrid

concept by ABB as reported in [88] (2 ms operation time with a maximum breaking

current of 9 kA). The methodology for inductor design will be analysed in subsection

3.2.2 as it is a key factor for the fault characterisation of SCs and the subsequent designing

of protection schemes.

The models of the MMCs are based on the detailed equivalent model of 401-level

Half Bridge (HB) MMCs, which have been developed according to guidelines presented

in [85]. Each MMC is composed of six arms with each arm containing series-connected

Half-Bridge Submodules (HBSMs) along with an arm inductor. Each HBSM consists

of two Insulated-Gate Bipolar Transistors (IGBTs) with anti-parallel diodes and one
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Figure 3.6: HVDC network model incorporating SCs and CC.

DC capacitor. In the presented work, the number of HBSMs of each arm has been

selected equal to 400 in order to achieve a high number of voltage steps (the DC voltage

is formed in discrete levels according to the number of MMC levels) and consequently

provide high-quality sinusoidal output signals with reduced harmonic content. In the

developed system depicted in Figure 3.6, MMC3 operates in grid-forming control mode

for the integration of the power delivered by the WF. MMC1 is utilised for the DC

voltage control of the HVDC network, while MMC2 controls the active P and reactive Q

power exchange with the onshore AC grid 1. Specifically, 0.4 GW of offshore power is

transmitted to onshore AC grid 1. For the modelling of the WF, an aggregated model

with fully-rated inverter-based turbines has been utilised, preserving the accuracy of the

simulation results [84]. Two bipolar DC SCs have been integrated within the system to

connect Bus 3 with Bus 1 and Bus 2, respectively. The length of SC1 and SC2 is 100 km

and 120 km, respectively, and they are utilised for the bulk offshore power transmission

with approximately zero losses. For the fabrication of such long DC SCs, joints are

utilised to connect HTS tapes and provide electrical continuity [84,89,90]. It is worthy of

note that the detailed modelling of SC joints is beyond the scope of the presented work.

Bus 1 and Bus 2 are connected through a DC conventional cable (CC) developed

according to the distributed parameters model. All cable sheaths are solidly bonded. The

inclusion of the CC has been incorporated into the system for simplification purposes,

aiming to achieve a more stable steady-state operation, especially in light of the MMCs’

tuning and system configuration. The prospect of replacing a third SC with the CC

could be considered as part of future research efforts.
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The specifications of the AC and DC systems are demonstrated in Table 3.3. As it

can be observed the rated current of CC and SC1 is 2 kA, while for SC2 is 2.2 kA. SC1

and CC have the same rated current, however, SCs are more efficient, compared to CC,

as they have different geometric characteristics (i.e., smaller cross-section for the same

voltage level) and present approximately zero losses due to the zero-equivalent resistance.

Table 3.3: System specifications

Parameter Symbol Value

AC onshore voltage VACON 400 kV
AC offshore voltage VACOF 66 kV
Rated current of CC and SC1 Irated 2 kA
Rated current of SC2 Irated 2.2 kA
DC voltage VDC 200 kV
DC inductor for SC1 LDC 140 mH
DC inductor for SC2 LDC 145 mH
MMC arm inductor Larm 0.1 p.u.
Cells per arm CSM 400
Conventional cable resistance RCable 0.0146 Ω/km
Conventional cable inductance LCable 0.158 mH/km
Conventional cable capacitance CCable 0.275 µF/km

Similarly, to AC systems, prior to the development of the proposed schemes in

HVDC grids, particular attention and specific case studies should be devoted to the

characterisation of SCs’ behaviour during transient conditions to acquire key insights

and consequently ensure the power system safety and reliability. The conducted studies

aim to acquire a deeper understanding of DC SCs response and their quenching during

faults applied: ii) along their length, ii) at the adjacent CC and SC and iii) at buses,

and consequently quantify the challenges from a fault management perspective. For this

purpose a series of different fault scenarios have been investigated by conducting EMT

simulation studies and utilising the system depicted in Figure 3.6. The fault scenarios

include Pole-to-Pole (PP), positive Pole-to-Ground (PG) and negative Pole-to-Ground

(NG) faults (incorporating various fault positions along the SCs and CC, and different

values of fault resistance).

3.2.2 Design of DC inductance

As it is observed in Figure 3.6, SC1 , SC2 and CC are terminated with external inductances,

LDC , which are implemented to reduce the rate of change (rise) of DC fault current.

The sizing of DC series inductances constitute a trade-off between the steady-state

performance and the transient response of the superconducting-based HVDC link [91].

More specifically, as discussed in Chapter 2, the quenching of SCs is dependent on the
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fault current (when the value of fault current exceeds IC , the SC quenches). Therefore, a

reduction in the rate of rise of DC fault current has an impact on the time initiation of the

quenching process, making the fault detection on SCs more challenging and affecting the

protection operational speed. In particular, if DC SCs do not quench quickly under the

faulted conditions, the fault may develop and propagate, having catastrophic consequences

for the whole system. On that front, the modelling of LDC at the terminals of each

SC has been established considering: i) their steady state performance (considering the

tuning of MMCs), ii) the time required for the quenching initiation after the occurrence

of an internal fault along the SC’s length and iii) CB maximum breaking current.

Considering a solid PG fault at 95 % of SC1’s length (50 km from Bus 3) (Figure 3.6)

and different values of LDC , the corresponding initiation time of quenching, tquen, after

the fault occurrence is reported in Table 3.4. It shall be noted that PP faults are the

most severe due to the fact that they force the system to collapse and lead to DC SC

quenching immediately after their occurrence. Therefore, for the design of LDC , the

presented work considered the tquen derived during PG and NG faults. Furthermore,

the sizing of LDC has been investigated in accordance with the quenching triggered by

solid faults because, as will be discussed in the following subsections, the presence of Rf

jeopardises the quenching process.

Table 3.4: Time of quenching initiation with respect to the DC inductor value.

Inductance [mH] 130 140 150 160 170 180 190 200
Time of quenching initiation tquen [ms] 0.05 0.08 0.68 0.98 1.18 1.29 1.87 1.96

As demonstrated in Table 3.4, an increase in the value of LDC causes a delay in the

quenching initiation. The minimum tquen corresponds to LDC of 130 mH. It should be

noted that for the presented studies the inductors have been considered ideal and thus

their resistance have been neglected. However, the simulation-based analysis showed that

for LDC = 130 mH the HVDC system is unstable during the steady state (considering

the tuning of MMCs). Therefore, the selected value which provides a trade-off between

the steady state performance and the transient response of SC1 is 140 mH. A similar

analysis has been conducted for SC2 and the resulting LDC value has been found equal

to 145 mH.

Furthermore, the selection of LDC for both SCs has been evaluated in accordance

with the CBs’ maximum breaking current. On that front, for CBs, the widely-used

ABB-type proposed in [92] has been considered (9 kA maximum breaking current for
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operation time of 2 ms). Figure 3.7 shows the resulting DC current flowing through SC1

and SC2 for the selected inductance values. The DC current traces have been generated

for SC1 and SC2 during a solid PP fault (which is the most severe fault) at 30 % of each

SC’s length (30 km from Bus 3), respectively. The fault in both cases has been generated

at t = 0 ms with 5 ms post-fault data.
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Figure 3.7: Fault DC current for the selected inductance values during a solid PP fault
at 30 % of SC1’s and SC2’s length.

As can be seen in Figure 3.7, for both fault scenarios, the resulting DC fault current

remains below the 9 kA threshold for the first 5 ms. Specifically, a solid PP fault at 30 %

of SC1’s length leads to maximum DC fault current at approximately 6.5 kA and as the

Req of SC1 increases, the fault current is reduced and sustained at 4 kA. Respectively,

for a PP fault at 30 % of SC2’s length, the maximum DC fault current is 7.4 kA and

due to the further surge of Req, the fault current is limited to 6.5 kA.

Therefore, the selected inductance value for both SCs leads to an appropriate steady

state performance and does not add a delay to the quenching process. The fast initiation

of the quenching phenomenon, after the fault occurrence, results in the reduction of the

peak fault current levels and subsequently mitigates the stress across the CBs.

Finally, for the calculation of LDC at the terminals of CC, the methodology proposed

in [85] for the sizing of DC inductors in meshed HVDC systems has been adopted and

the final value has been calculated equal to 133 mH.

3.3 Fault Characterisation of DC SCs

In this subsection, four representative fault scenarios will be analysed in order to extract

useful features from the fault response of DC SCs. The selected scenarios aim to analyse

the performance of SCs during the quenching phenomenon, the impact of Rf on the

quenching phenomenon, and the effect of faults applied to CC and buses. Table 3.5

summarises the presented fault scenarios which include a PP solid fault applied at SC1
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(F1DC ), a highly-resistive fault applied at the remote end of SC1 (F2DC ), a PP solid fault

at CC (F3DC ), and a solid fault occurring at Bus 3 (F4DC ). During all scenarios, the

faults have been applied at t = 5 ms and are permanent. During the simulation studies,

pre-fault (5 ms time window) and post-fault (20 ms time window) of current and voltage

waveforms were measured at one terminal of the cables, the DC side of the converter

and the corresponding bus. Specifically, of the system under test depicted in Figure

3.6, current measurements are obtained from SCs terminals P 3.1 and P 3.2, from point

P.3 at the DC side of MMC3 and for CC at terminal P 1.2. Voltage measurements are

obtained at Bus 3 from point P.3, Bus 2 from point P 2 and Bus 1 from point P.1. The

generated signals have been captured with a sampling frequency of 20 kHz [40] and CB

operations have been suspended in order to capture the natural response of the faults.

Specifically, the resulting current and voltage waveforms represent the system natural

response to faults and have been utilised to assess the order of magnitude. Furthermore,

to emulate realistically the performance of MMCs during the transient conditions (i.e.,

faults), the fault blocking capability of the HBSMs has been considered. During the DC

faults, when the fault current flowing through an MMC exceeds 1.2 p.u. of its nominal

current, the IGBTs are blocked for self-protection purposes [93]. During these conditions,

the fault current flows through the anti-parallel diodes and the MMC operates as an

uncontrolled rectifier.

Table 3.5: Representative fault scenarios

Scenario Fault type Fault location Fault resistance

F1DC PP 20 % of SC1’s length (internal) 0 Ω
F2DC PP 99 % of SC1’s length (internal) 300 Ω
F3DC PP 0.1 % of CC’s length (external) 0 Ω
F4DC PP Bus 3 (external) 0 Ω

Scenario F1DC

Figure 3.8 demonstrates the response of SC1, SC2, CC and the MMCs under the influence

of a solid PP fault applied at 20 % of SC1’s length (20 km from Bus 3). Figure 3.8a shows

the DC currents flowing through SC1, SC2 and CC. During steady state conditions, the

current flowing through SC2 is approximately 2 kA, while the current flowing through

SC1 and CC is approximately 0 A. These simulation results show that during normal

operation the offshore wind power (0.4 GW ) is transmitted to onshore AC grid 1 (depicted

in Figure 3.6) through SC2. It should be noted that due to the structure of HVDC grid

and the current limiting inductors the power flow of the SC has a definite solution (it
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should be noted that no power flow controllers have been considered in the presented

studies).
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Figure 3.8: PP solid fault at 20 % of SC1’s length: a) SC1, SC2 and CC DC currents, b)
SC1, SC2 and CC DC pole-to-pole voltage, c) equivalent resistance of SC1 and SC2, d)
temperature of SC1 and SC2 e) MMCs DC currents.
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The fault occurs at t = 5 ms, and then after 0.15 ms of the fault occurrence, SC1,

which is the faulted line, starts to quench and the peak of the fault current is 8.96 kA.

During the quenching process, Req of SC1 increases, (i.e., refer to Figure 3.8c), and the

maximum value reached is approximately 120 Ω. The rapid increase in Req leads to the

generation of Joule heat and consequently causes an abrupt increase in T of SC1, as

observed in Figure 3.8d. SC1 operates in the highly-resistive state, causing a reduction in

DC fault current which is sustained to approximately 7 kA. Specifically, at t = 9 ms the

fault current reaches it peak, which is lower compared to the prospective fault current

due to the increase in the equivalent resistance. After t = 9 msthe fault current reach to

a steady-state value. The pole-to-pole voltage of SC1, measured at Bus 3, is depicted in

Figure 3.8b, and is depressed, however there is residual voltage during quenching due to

the increase in the resistance of SC1.

The current infeed from SC2 and CC are demonstrated in Figure 3.8a and the rate

of current rise is limited due to the inductive terminations. It should be noted that the

solid fault applied on SC1 does not cause the quenching of SC2 and consequently T and

Req of SC2 are sustained to 70 K (Figure 3.8d) and 0 Ω (Figure 3.8c), respectively.

Figure 3.8e presents the response of the MMCs during the fault. Initially, there is

a rapid increase in the current from the MMCs due to the discharge of the submodule

capacitor. However, once the current exceeds 1.2 p.u. of the MMC rated current, the

IGBTs are turned-off and the MMCs are blocked for self-protection. In particular, the

binary signal which indicates the blocking of MMCs is depicted in Figure 3.8f. MMC1

and MMC3, which are directly connected to the faulted SC1, are blocked at 0.28 ms and

0.48 ms after the fault occurrence, respectively, while MMC2, which is the neighboring

converter, is blocked 1.88 ms after the fault. Once the MMCs are blocked, they start to

operate as uncontrollable rectifiers and the current depicted in Figure 3.8e corresponds to

the fault current fed from the AC side. The fault current contribution of MMC3, which

is the closest to the fault, is influenced by several factors, including the fault level behind

MMC3, the blocking capability of MMC3, the termination inductors, and the equivalent

resistance introduced by the SC.

Considering the results from this scenario, it is observed that the natural response

of DC fault current is limited due to the increase in resistance of SCs which results in

suppressed fault current magnitudes and residual voltages.
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Scenario F2DC

Figure 3.9 presents the transient performance of SC1, SC2, CC and the MMCs during

a highly-resistive (Rf = 300 Ω) PP fault applied at 99 % of SC1’s length (99 km from

Bus 3). Figure 3.9a shows the DC fault currents of SC1, SC2 and CC. As is observed,

SC1 does not quench during this fault scenario as the fault current flowing through the

HTS tapes is predominantly limited by Rf and therefore does not exceed the value of IC .

More specifically, the peak current of SC1 is approximately 250 A, the voltage, measured

at Bus 3, is slightly reduced to 198 kV (Figure 3.9b) and as observed in Figure 3.9c and

Figure 3.9d, SC1 operates at superconducting state with Req = 0 Ω and T = 70 K.

Furthermore, SC2 maintains its superconducting properties during the fault period,

operating as a zero resistance path (Figure 3.9c) at 70 K (Figure 3.9d). The voltage

of CC, measured at Bus 1, presents a slight reduction to 197 kV , 2 ms after the fault

occurrence (Figure 3.9b). This voltage dip can be explained by the fact that the fault is

applied close to CC’s connection point (1 km from Bus 1). Moreover, as demonstrated

in Figure 3.9e and Figure 3.9f, the fault current did not trigger the MMCs’ blocking.

Thus the converters continue to operate with approximately constant DC current and

the DC voltage is maintained by MMC1. As Rf increases, the IGBTs do not turn off, as

the maximum permissible operating current (and hence equivalent thermal stress) has

not been reached.

This scenario provides a deeper insight on the influence of Rf on the quenching

process. In particular, during highly-resistive faults, the fault current is predominantly

reduced by Rf , preventing the quenching of SCs.

Scenarios F3DC and F4DC

The performance of SC1, SC2, CC and the MMCs has also been investigated against a

PP external solid fault applied at 0.1 % of CC’s length (0.06 km from Bus 1). During the

fault period, the peak current flowing through SC1 is 5 kA (Figure 3.10a), the voltage

of SC1, measured at Bus 3, is reduced to 50 kV (Figure 3.10b), Req reaches a value of

130 Ω (Figure 3.10c) and T rises up to 190 K (Figure 3.10d). Therefore, it is evident

that the occurrence of a solid fault on CC leads to the quenching of SC1. As is depicted

in Figure 3.10a, the fault current flowing through SC1 starts to reduce once Req starts to

increase abruptly. The value of Req and T are retained to 130 Ω and 190 K, respectively.

This can be explained considering the time required for SC1 to recover and its T to

be reduced below TC . The higher the peak value of T during the fault, the slower the
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Figure 3.9: Highly-resistive PP fault at 99 % of SC1’s length with Rf = 300Ω : a) SC1,
SC2 and CC DC currents, b) SC1, SC2 and CC DC pole-to-pole voltage, c) equivalent
resistance of SC1 and SC2, d) temperature of SC1 and SC2 e) MMCs DC currents.

recovery process (within the range of a few sec to a few min) [94]. The recovery time of

SCs is determined by the fault parameters, the structure of the SC, and the type and
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efficiency of the cooling system [9].
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Figure 3.10: Solid PP fault at 0.1 % of CC’s length: a) SC1, SC2 and CC DC currents,
b) SC1, SC2 and CC DC pole-to-pole voltage, c) equivalent resistance of SC1 and SC2,
d) temperature of SC1 and SC2 e) MMCs DC currents.

Furthermore, the presence of a solid PP fault applied on CC does not lead to the
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quenching of SC2 and thus the T and Req of SC2, remain to 70 K and 0 Ω, respectively.

The DC fault current flowing through CC is illustrated in Figure 3.10a, while the voltage

dip, measured at Bus 2, is displayed in Figure 3.10b.

Regarding the response of the MMCs, as illustrated in Figure 3.10f, MMC1 is

blocked within 0.03 ms, MMC2 within 2.52 ms and MMC3 within 1.1 ms after the fault,

respectively. This causes them to start operating as uncontrollable rectifiers, feeding

current to the faulted point.

Furthermore, the simulation results of a permanent PP solid fault at Bus 3, F4DC ,

are shown in Figure 3.11.

Figure 3.11a shows the DC currents flowing through the two SCs and CC. It is

observed that for a solid fault at Bus 3 both SCs quench. More specifically, SC1 quenches

4 ms after the fault occurrence, presenting Req of approximately 140 Ω (Figure 3.11c) and

a rise of T up to 190 K (Figure 3.11d). The voltage of SC1 (measured at Bus 3) is reduced

to 0 kV as it is directly connected to the faulted bus. The DC current flowing through

SC1 is sustained to 400 A as the increase in Req limits the fault current magnitude.

The peak DC current flowing through SC2 is 10 kA (Figure 3.11a), while during the

quenching, as Req reaches a value of 120 Ω (Figure 3.11c), the DC current through SC2

is maintained at 5 kA (Figure 3.11a). The DC current through CC presents a peak

of 3.4 kA (Figure 3.11a) and the voltage of CC is decreased to 1.2 kV (Figure 3.11b).

Figure 3.11e and Figure 3.11f show the response of the MMCs during the fault period.

Specifically, the fault applied at Bus 3 causes the instantaneous blocking of MMC3, which

is directly connected to the faulted bus, while the IGBTS of MMC1 and MMC2 are

turned off 1.12 ms and 1.41 ms after the fault, respectively. It is worth reiterating that

the fault current presented in Figure 3.11 corresponds to the natural response of the

system during the fault, without considering the operation of CBs or thermal stresses.

By analysing the performance of SCs during F3DC and F4DC scenarios, it can be

concluded that the quenching of DC SCs can be initiated by external faults.

3.3.1 Discussion of DC SCs fault analysis assessment

The results obtained during the fault current characterisation of DC SCs in a multi-

terminal HVDC system lead to the following key points.

� The quenching of DC SCs results in reduced fault current magnitudes and residual

voltages due to the presence of variable Req. These factors are anticipated to
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Figure 3.11: Solid PP fault at Bus 3: a) SC1, SC2 and CC DC currents, b) SC1, SC2 and
CC DC pole-to-pole voltage, c) equivalent resistance of SC1 and SC2, d) temperature of
SC1 and SC2 e) MMCs DC currents.

degrade the robustness of existing protection schemes which employ a logical

relationship with limit thresholds (i.e., over-current, over-voltage, under-voltage,
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derivative-based) and therefore constitute the key points which should be taken

into consideration during the design of more advanced protection solutions.

� The initiation of quenching during external faults and the absence of quenching

during highly-resistive internal faults may lead to unsuccessful fault detection and

unnecessary system shutdown, respectively. Therefore, to ensure the secure and

reliable operation of HVDC grids with SCs, protection schemes with a high degree

of sensitivity, selectivity and security are required.

3.4 Summary

This chapter provides the outcomes of a comprehensive, simulation-based fault signatures

characterisation of AC and DC SCs. The simulation analysis has been conducted based

on i) a series of various faults applied on AC and DC SCs (i.e., faults with varied fault

type, fault resistance and fault location) and ii) external faults or other disturbances (i.e.,

load switching events). The results obtained through the fault assessment analysis of both

AC and DC SCs highlighted useful insights for the protection and fault location of such

cable technology. Specifically, the simulation results revealed that SC quenching affects

the fault current magnitudes and the resulting fault voltage measurements. Therefore, it

is anticipated that the impact of variable resistance on fault current and voltage traces

will introduce many challenges to existing protection schemes, particularly those based

on logical relationships with limit thresholds, and fault location schemes. Furthermore,

taking into account the initiation of SC quenching during external faults and other

disturbances (i.e., load switching events) along with the impact of the fault resistance

during internal resistive faults, the need for discriminative, sensitive and reliable protection

schemes and accurate fault location methods is rendered imperative to ensure the secure

operation of HVDC systems with SCs.

To perform the fault characterisation of AC and DC SCs, this chapter presents

the modelling of a three-phase AC grid and a multi-terminal HVDC system which

incorporate ICGs and SCs. More specifically, an AC 132 kV grid was developed in

Matlab/Simulink which is comprised of two types of generating units accounting for a

SG and ICGs. Regarding the HVDC network topology, a symmetric monopole has been

adopted and developed in Matlab/Simulink. The developed HVDC network contains

half-bridge MMCs which are considered as the preferred converter topology in recent

64



Chapter 3 Fault Characterisation of AC and DC SCs

HVDC projects, two DC SCs and a CC. For the modelling of the HVDC grid, this

chapter outlined and performed an approach for selecting the appropriate value of DC

inductors at the terminals of DC SCs and CC. It has been observed that particularly,

for the case of DC SCs, a dedicated design methodology is required which considers

the fast initiation of quenching (to avoid quenching propagation during the fault), the

steady-state performance of SCs (considering the tuning of MMCs) and the CBs current

breaking capacity.
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Chapter 4

Protection of SCs in AC systems

The protection of AC SCs against electric faults is an emerging research area due to

the particularities of this technology. The preliminary work conducted in Chapter 3

focused on the fault characterisation and transient analysis of AC SCs. The concluding

remarks indicated that the transition of HTS tapes to the highly-resistive state enforces

the appearance of variable resistance which imposes: i) the current re-distribution among

the different layers of AC SCs, ii) the dynamic change in the equivalent impedance of the

system, iii) the reduction of the fault currents to a certain value and iv) the appearance

of residual voltage during faults. All these factors are anticipated to have a negative

impact on the well-established protection schemes (i.e., distance and over-current relays)

and adversely affect the safety and security of the system. Consequently, the development

of reliable protection solutions for AC SCs is one of the major challenges which hinders

the full-scale commercialisation of such technology and thus impose an urgent need for

novel protection schemes which will be designed to conform with the aforementioned

features of SCs.

This chapter presents two novel data-driven protection schemes for the rapid, sensitive

and discriminative fault detection and classification in AC grids with SCs. Validation

studies incorporating simulation-based analysis and a real-time SIL testing platform are

considered to evaluate the sensitivity, stability and operational speed of the developed

schemes.
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4.1 Assessment of SC Protection Schemes for AC Systems

The integration of AC SCs has unlocked a new research path for the area of power systems

protection. In recent years, an increasing number of researchers have started to investigate

the fault response of SCs and their impact on existing fault management strategies in

order to accelerate the wide scale deployment of such cable technology. However, the

number of protection solutions for AC SCs reported in the technical literature is limited.

A coordinated protection scheme based on differential relays, over-current, and

directional over-current relays is proposed in [95] for a coaxial AC SC, integrated in a

meshed Medium Voltage (MV) AC network. A decision-making algorithm was investigated

in [96] to improve the performance of differential and over-current relays. In [97], a real-

time protective algorithm using the symmetrical coordinate method and vector analysis

during fault conditions was investigated for protection of a triaxial AC SC. The key

development of this work is a methodology for the calculation of the protection settings

with respect to the variations in the impedance of various topologies of AC SCs with

inherent fault current limiting capability. Authors in [98] investigated the impact of SCs

on protection systems, by proposing the utilisation of a differential relay as the primary

protection and a distance relay as back-up protection. The results demonstrated that by

applying the characteristics of SCs to relay settings, the fault detection is problematic,

during single-phase to ground and three-phase faults, due to the variations in the SC

resistance. Another effort to address the protection challenges of AC SCs is presented

in [99]. Specifically, in this study the optimal impedance of an AC SC has been determined

according to the fault current levels and the operating time of the over-current relay

in order to address the impact of the variable AC SC resistance on the pre-defined

protection settings and protection coordination. As a continuation of this work, the

same authors propose in [100] a novel method named Expected Regret-based Impedance

Selection (ERIS), based on which the impedance of an AC SC is determined under fault

conditions. This also incorporates power system uncertainties, such as the connection

status of the ICGs or lines. The numerical simulation results showed that the proposed

methods can successfully determine the proper impedance of AC SCs from a power

system protection perspective. Authors in [101] propose a correlation function for the

detection of quenching, considering the phase difference between the voltage and current

measurements. The developed method presents promising results related to the analysis

of AC SC quenching, however, the proposed method is affected by harmonic components
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and is vulnerable to the variations of the grid frequency. A quenching detection method

which eliminates the harmonic interference is discussed in [102]. The developed algorithm

is based on the Wavelet Transform (WT) of the voltage and current signatures measured

at one terminal of the AC SC. Although the proposed scheme has been found to present

increased sensitivity, its performance has not been scrutinised against different transient

events and its practical feasibility has not been confirmed.

All the aforementioned protection schemes have formed a foundation for power

system applications for AC SCs, however, none of them have been tested considering

challenging transient conditions such as: i) the impact of resistive faults on protection

sensitivity, ii) the protection discrimination by distinguishing highly-resistive internal

faults and solid external faults and iii) protection stability against external faults and

other disturbances. Additionally, there are no reported studies on the practical feasibility

of these schemes, including consideration of anticipated time delays and the acquisition

of necessary measurements and signals.

By assessing the reported studies and considering the AC protection requirements

(i.e., sensitivity, stability, selectivity, security, operational speed), it can be concluded

that the particularities of SC technology complicate the decision-making process of

the existing protection schemes. Particularly, the impact of variable resistance on the

resulting fault current and voltage waveforms results in an inability of distance protection

relays to detect the fault and isolate the faulted zone [103]. This effect, in conjunction

with the poor performance of distance relays against highly-resistive faults or in systems

with high integration of RES [104], renders this type of protection insufficient for future

grids with ICGs and AC SCs. Additionally, the reduced fault current magnitudes

negatively impact the sensitivity of over-current protection schemes, compromising the

overall system safety (the limitations of the over-current threshold-based methods will be

analysed in subsection 1.2). Differential protection is one of the most popular protection

schemes utilised in power system protection applications as it presents robustness under

disturbances such as voltage and current variations [105]. Since the operation of the

differential protection scheme relies on the comparison of remote and local signals, it is

less affected by the quenching phenomenon than other existing schemes. However, as it is

a communication-assisted scheme, it is affected by the communication time and reliability

and requires equipment for data synchronisation in order to have efficient protection

functionality [106,107]. Another protection philosophy which is well established in AC

68



Chapter 4 Protection of SCs in AC systems

power systems for protection applications is the Travelling Wave (TW) based scheme.

However, the application of TW-based methods to SCs requires cable models with a

higher level of detail and granularity than is currently available. Specifically, the utilised

SCs models shall cover a wide range of frequencies, as the TW effect can occur across

a broad spectrum. Based on the technical literature, current models for SCs do not

provide the necessary level of fidelity to accurately capture these effects, and therefore,

TW-based methods cannot be effectively used to investigate the behavior of SCs.

Therefore, there are several outstanding issues which need to be solved for the

protection of AC SCs. The goal of this thesis is to address the above-mentioned significant

facets by proposing two novel protection schemes with fault detection and classification

elements for the effective and reliable protection of AC grids with SCs.

4.2 Investigation of Over-Current Based Protection Solu-

tions for AC SCs

Prior to presenting and analysing the proposed protection schemes, it is of paramount

importance to highlight the need for more advanced and efficient protection solutions for

AC SCs.

For this purpose, the studies presented in this section aim to assess the sensitivity

and the stability margins of over-current threshold-based schemes for the protection

of AC SCs. On that front, an over-current threshold-based protection logic has been

developed in Matlab/Simulink and its performance has been investigated in terms of

its sensitivity to internal faults as well as its stability against external faults and load

switching events. The test cases have been obtained by conducting a series of faults

using the AC network presented in Chapter 3 and depicted in Figure 4.1. The simulation

studies contained internal, (Fint), and external, (Fext), faults and load switching events.

It is worth reiterating that external faults and load switching events can initiate the

quenching of HTS tapes and consequently AC SCs, so it is of utmost importance to

ensure that the protection scheme remains stable (i.e., the protection scheme does not

falsely indicate the presence of an internal fault).

The internal faults were simulated at every 10% of the AC SC’s length, while external

faults were considered at the adjacent lines. All possible fault types were considered (i.e.,

LLL-G, LLL, LL-G, LL and L-G) with fault resistance up to 300 Ω. Load switching
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Figure 4.1: Examined AC network for over-current assessment.

events with different values of active and reactive power were simulated at the end of the

AC SC at Bus 2. During the simulation process the three-phase currents flowing through

the AC SC for all the investigated scenarios were captured at a sampling frequency

of 20 kHz which is well-established and highly recommended for accurate and reliable

measurements in power system applications [108, 109]. Particularly, for the presented

studies it has been found that 20 kHz sampling frequency provides insights which are

adequate to enhance the sensitivity and speed of protection schemes, while also enabling

the utilisation of metering and data acquisition equipment with lower specification.

Regarding the current setting, a wide range of over-current thresholds was considered

starting from 1.05 p.u. to 2 p.u. with steps of 0.1 p.u. (base value corresponds to

the nominal current). For the time settings, different values of time delay have been

investigated starting from 40 ms to 120 ms with steps of 20 ms.

The performance of the over-current threshold-based scheme can be evaluated based

on the results presented in Figure 4.2 which shows the total number of tripping signals

initiated for internal faults, external faults, and load switching events, with respect to the

pick-up current setting. The percentage of the tripping signals has been calculated by

dividing the total number of scenarios, during which a tripping signal has been generated,

by the total number of investigated fault scenarios for each case. The results presented in

Figure 4.2 indicate that for a low over-current threshold (i.e., 1.05 p.u.), approximately

84% of the total number of internal faults are successfully detected. However, for the same

current setting, the tripping signal is initiated during external faults and load switching

events as well, resulting in the initiation of false tripping and eventually presenting a low

degree of stability. To obtain high margins of stability, the threshold should be set to

1.4 p.u. or beyond, which would comprise the element of sensitivity.

Furthermore, Figure 4.3 shows the number of tripping signals with respect to an

increase in the time delay settings. The over-current threshold has been set equal to
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Figure 4.2: Performance of over-current threshold-based scheme under internal, external
faults and load switching events with respect to the over-current threshold.

1.05 p.u. and the results indicate that as the time delay increases, the protection sensitivity

is deteriorated and the stability is improved. Specifically, for a time delay equal to 120 ms,

the scheme remains stable against all the external faults and load switching events, but the

internal faults remain undetected. Conversely, for low time delay settings the sensitivity

of the over-current based scheme is improved, but the stability is jeopardised as a tripping

signal is initiated for external faults and load switching events (i.e., initiation of false

tripping signal).

Effectively, these results demonstrate that existing protection techniques, such as

over-current based schemes, are not suitable to provide reliable solutions for AC SCs,

combining both sensitivity and stability. In particular, it can be concluded that protection

of AC SCs is a complex problem which cannot be solved with protection approaches based

on threshold limits with time delays and grading. In future power grids, incorporating

more ICG this challenge is expected to be more noticeable. This is due to the limited

fault current contributed by ICGs [110], resulting in absence of quenching in SCs and

consequently jeopardising the protection operational speed and reliability.

Undoubtedly, such a transition to a modern power grids with SCs creates an emerging

need to reevaluate protection and fault management paradigms and investigate more

advanced solutions. In particular, new criteria and approaches are required for the fault

management solutions in order to ensure high degree of sensitivity, stability, accuracy

and reliability. On that front, the work conducted in this chapter takes advantage of the
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Figure 4.3: Performance of over-current threshold-based scheme under internal, external
faults and load switching events with respect to the time delay setting.

benefits provided by AI-based techniques to propose robust and discriminative protection

schemes for AC systems with SCs. AI-based methods have been selected and implemented

to tackle the aforementioned limitations as powerful tools which are capable of providing

fast, efficient, and accurate solutions for problems with a high level of complexity.

4.3 Introduction of AI in Applied Superconductivity

Recent developments have been proposed using AI to provide fast and efficient solutions

to complex and nonlinear problems related to technical, manufacturing and economic

aspects of applied superconductivity [111]. In many applications, AI methods have been

applied to extract useful insights and hidden trends of the superconducting materials

or to accelerate the discovery of new superconducting materials with potentially higher

TC [112–115]. Furthermore, the advantages of AI-based techniques have been exploited in

the optimisation of the design procedure of superconducting apparatuses which constitutes

a complex, time-consuming process with tight manufacturing constraints [71,116–118].

The identification of the optimal size, structure and design parameters maximises the

efficiency and reliability of the superconducting devices, while minimising the cost and

losses. Another use of AI methods in large scale applications of applied superconductivity

is in condition monitoring. In these tasks, the receiving signals of superconducting devices

are continuously analysed and in conjunction with AI methods, operating conditions
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of the devices can be determined [119, 120]. The obtained signals can include voltage,

current, AC loss, or magnetic field. In particular, for AC SCs, due to their complex

structure, the AI-based condition monitoring applications offer many advantages. AI can

make predictions based on historical or reliable data and predict/forecast the temperature,

AC losses and operation mode of SCs, supporting the uptake of such cable technology

in real power systems. Additionally, AI-assisted condition monitoring has started to

be utilised for the detection of magnet quenching [111]. Another application for AI in

superconductivity which has started to gain increasing attention recently is the modelling

of superconducting devices based on data rather than mathematical formulations. By

taking advantage of the unique features of AI methods, the developed models reduce the

high computational burden and present improved accuracy.

Therefore, a progressive merge of AI into applied superconductivity has started to

be reported in the technical literature, creating new opportunities for the extensive

investigation, development, and wide integration of SCs in future power grids [121].

4.4 Artificial Intelligence Algorithms for Fault Detection

and Classification in Power Systems

Over the last few years, in the presence of digital transformation of power grids, an

envisioned framework entailing AI algorithms has been emerged which is capable of

providing meaningful real-time indicators and informed decisions for reliable fault man-

agement of power grids. This specific field of science has entered into the area of power

system applications by offering disruptive solutions to tackle many challenges for future

power systems. Essentially, purely mathematical expressions cannot be directly utilised

to represent the state and behaviour of future power grids, since those expressions are

of high order and multi-dimensional. At the same time, power grids themselves are

becoming less subject to physics and more subject to control. For such reasons, the

engineering community has started utilising AI methods to analyse big sets of data and

expose physical quantities, which are invisible in direct measurements, towards the better

understanding of the behaviour of power grids. The main benefits of these techniques

are their precision and robustness to system parameter variations [122].

There are plenty of proposed AI algorithms utilised for fault detection and classification

in distribution and transmission systems, such as Artificial Neural Networks (ANN),
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Support Vector Machines (SVM) and tree-based algorithms. Each algorithm has its own

characteristics and the selection of the appropriate model depends on the particularities of

the specific task. The factors that play a significant role in determining which algorithm

to use are composed of the type of the target value, the features of the available data,

and the system computational efficiency [123]. The target value is used to categorise the

problem into either a classification or regression task. When the target value is categorical,

classification algorithms are utilised, while for continuous target values, regression models

are appropriate. For the case of fault detection and classification of the fault as internal,

external, or other events, the target value is categorical and thus the problem can be

formed as a binary classification.

ANN algorithms are the most commonly used models in protection applications. This

is because they offer a variety of advantages and exhibit excellent qualities such as the

capability to incorporate with dynamic changes in power systems, the ability to find

the solution for complex non-linear equations, normalisation and generalisation, and

immunity to noise [124–127]. While there are several variations of ANNs, they all have

great computational capabilities and are able to identify complex relationships among data.

One drawback of ANN algorithms is that they are computationally intensive, requiring

significant training time and computational power. However, recent advancements in

technology, including optimisation functions and hardware with increased memory, have

enabled the faster implementation of ANNs for power system applications [123]. To

improve the efficiency and enhance the performance of ANN algorithms, many studies

have started to focus on hybrid methods composed of ANN algorithms and feature

extraction tools (i.e., WT) for reliable fault detection and classification in power grids.

In particular, in [125], a hybrid method is reported for fault detection on distribution

lines, utilising local currents from one end of the protected line. Specifically, the Discrete

Wavelet Transform (DWT) is used as a feature extraction tool to obtain high-frequency

components of the two aerial modal currents. The detailed coefficients are directly utilised

as an input to train the ANN algorithm to perform fault detection and distinguish faults

from other transient events. The results showed the accurate detection of faults, however,

the presented method fails when a lighting strike evolves to a fault. The approach

presented in [128] uses the WT of phase voltages and currents as inputs to train an

ANN algorithm to perform fault detection and classification. The presented method is

limited by the bandwidth of the measuring equipment as it requires information related
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to high-frequency transients of the measured voltage. Additionally, the presence of other

transient events which affect the protection discrimination have not been investigated.

In [129], the combination of ANN and WT algorithms has been considered to address

the challenge of detecting highly-resistive faults on transmission lines. The developed

algorithm has been utilised to identify the faulty phase along with the specific feeder

where the fault occurred. The results validated the performance of the developed method,

however for the evaluation process only the testing dataset has been utilised and the

effectiveness of the algorithm has not been scrutinised against previously unseen fault

scenarios or other events such as external, faults. Furthermore, an intelligent fault

detection algorithm for series compensated lines is reported in [130]. Particularly, the

DWT technique is used to extract the detailed coefficients of pre-fault and post-fault

signals of the three phase and ground fault currents at the sending end of a transmission

line. The energy content of the detailed coefficients form the training data set fed into

the ANN classifier. The resulting accuracy was 100% for the fault detection task and

97.43% for the fault classification task. However, during the simulation based studies,

highly-resistive faults, multiple fault positions, and other transient events have not been

considered.

Another widely used ML algorithm for fault detection and classification in power

systems is the use of SVM models [124, 131]. SVM is a supervised learning algorithm

which is based on statistical theory and is widely used for solving linear and non-linear

classification, as well as regression, problems. Similar to ANN, SVM algorithms are

characterised by high computational times during the training process. SVM possess

excellent features for binary and multi-class classification problems, such as the capability

to deal with arbitrarily structured data, over-fitting avoidance, avoiding convergence at

local minima, and generalisation capability. Recently, the utilisation of SVM algorithms

is reported for the development of hybrid methods for fault detection and classification

in power grids. Specifically, in [132], a fault detection method for power distribution

networks is proposed which uses DWT to extract the features of the transient fault

current. The results showed that the performance of the proposed fault detection and

classification technique yielded an accuracy of 98.5%. However, the performance of the

developed method has not been validated against other transient events and external

faults which may lead to protection maloperation. The normalised energy content of

the detailed coefficients are used to train the SVM classifier for fault detection and fault
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type classification. The work conducted in [133] presents an SVM-based algorithm for

fault detection in long transmission lines. The proposed technique utilises the current

waveform during a single cycle after a fault has occurred. The data is preprocessed using

the wavelet packet transform to extract energy and entropy, and a feature matrix is

created for the training of the SVM algorithm. The simulation results indicate that the

developed method achieves accuracy of 99.21%.

Tree-based models constitute the last family of AI algorithms utilised for fault

management problems. Advanced tree-based models such as Random Forest (RF) have

low bias, do not require fine-tuning of hyperparameters, and have a low risk of overfitting.

However, tree-based machine learning algorithms, such as Decision Trees (DT) and RFs,

are not suitable to make predictions outside of the range of the training dataset (they

present poor performance during extrapolation), they are not appropriate to handle

high dimensional data with many correlated features, and their training process is time

consuming [134]. Furthermore, DT and RF present poor performance compared to

ANN and SVM algorithms during complex problems as they operate by learning simple

thresholds on raw inputs, while ANN and SVM algorithms learn a better and more robust

representation of the given data. A classifier based on the RF algorithm has been used

in [135] to accurately identify and classify faults, utilising the total harmonic distortion of

voltage and current at the point of common coupling. A hybrid method based on DWT

and DTs is presented in [136] for detection and classification of power system faults, using

the IEEE-34 node test system. The proposed method identifies the presence of a fault,

using the sum of absolute values of detailed coefficients of the faulted current as the fault

index [136]. In [137], the incremental quantity of faulted current signals was utilised as

an indicative feature for the RF model to identify fault presence during a power swing.

The resulting accuracy was 99.8% under various fault scenarios. However, the stability of

the proposed method has not been evaluated against other transient events. A method

for detecting and identifying faults in interconnected transmission lines using the DWT

was proposed in [138]. The proposed method uses ANN and DT classifiers to classify

faults into twenty-one categories for phase identification and four classes for ground fault

identification. The accuracy of the classifiers was used to evaluate their performance,

and the ANN classifier has been found to outperform DT with an accuracy of 100%.

Based on the literature review of fault detection and classification techniques using

AI algorithms, it is clear that these methods can achieve very promising results with
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respect to fault detection and classification in power systems. Hybrid approaches that

combine AI classifiers with feature extraction tools tend to perform even better, presenting

immunity against varying fault parameters, accounting for fault resistance, fault type,

and fault location. However, it should be noted that the practical implementation and

real-world performance of these methods have not been extensively evaluated and the

time required for fault detection has not been thoroughly studied. Furthermore, even

though such solutions have been found to be promising, there are some challenges related

to the data generation, the computational requirements, and consequently the practical

implementation of such solutions. In particular, most of the AI-based methods require

databases composed of a variety of high-quality data (datasets which are characterised

by variety, non over-fitted characteristics, and non-bias distribution [139]). In response

to the challenge of data availability, as future power systems become data-rich, the

emergence of Wide Area Measurement Systems (WAMs), based on Phase Measurement

Units (PMUs), allow access to plentiful data, accelerating the widespread adoption of

data-driven applications. In regards to the computational requirements, as the technology

advances in both hardware and software, the computational burden is progressively

minimised. Furthermore, with respect to the quality of the data, many pre-processing

techniques have started to be utilised by the AI community in order to remove the bad

or over-fitted data and increase the reliability and accuracy of AI models. Therefore, the

progressive advancements in AI applications (i.e., deployment of AI-based high-fidelity

digital twin models) and the easier access to various data would enable the seamless

integration of AI methods into existing and future frameworks for establishing fault

management strategies.

Considering future trends, the vital role that AI has started to play in the field of

applied superconductivity and the compelling advantages offered by AI techniques in

protection applications, the presented research proposes two hybrid AI-based schemes

composed of fast and reliable fault detection and classification elements for the protection

of AC SCs. Taking into consideration the aforementioned characteristics of AI algorithms

and the complexity of the problem, ANN and SVM algorithms have been selected as the

most suitable for the development of the proposed schemes.
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4.5 Proposed Protection Schemes

In light of the unique advantages that AI-assisted fault management solutions offer, this

section presents the development of two AI-based protection schemes for AC supercon-

ducting cables. As highlighted by the results of the fault analysis of AC superconducting

cables in Chapter 3, effective fault management for these systems is a complex issue

that requires new criteria and approaches to ensure a high degree of sensitivity, stability,

accuracy, and reliability in the protection of AC superconducting cables.

The limitations of existing protection methods against the particularities of SCs

technology have been revealed through an assessment of the current protection methods.

To efficiently develop a reliable fault management scheme for SC, it is essential to

realistically model SC performance during transient conditions and utilise advanced

functions to perform tasks such as fault detection, classification, and location. The

capabilities of AI-based models to address multi-variable, complex problems and extract

meaningful insights are expected to play a crucial role in the fault management of SCs.

Figure 4.4 presents an envisioned framework for the fault management of SCs, including

potential input measurements, functions, and outputs.

Figure 4.4: Envisioned framework enabling AI-assisted models for fault management of
SCs.
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4.5.1 Stages of the developed protection schemes

The proposed protection schemes are based on time-domain methods for discriminative

detection and classification of faults in AC power systems incorporating SCs and high

penetrations of RES. The presented schemes utilise feature extraction tools based on the

Stationary Wavelet Transform (SWT), as well as AI classifiers to formulate the fault

detection and classification features and discriminate between external faults, internal

faults, and other network events. The performance of the proposed schemes has been

validated through detailed transient simulation using verified models of SCs and ICGs.

Moreover, their suitability for real-time implementation has been evaluated using the

SIL testing environment. The developed data-driven protection schemes have been

implemented in four discrete stages as illustrated in Figure 4.5. The following subsections

describe in detail each stage of the development.

3 x AC currents 
(SC)

3 x AC Voltages
(Bus terminal) 

Stationary Wavelet Transform

Detailed Coefficients Level 1
Level 2
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Figure 4.5: Schematic diagram of the proposed protection schemes with the fault detection
and classification elements.
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4.5.1.1 Stage 1 - Signal acquisition

At this stage, the three-phase current and voltage signals (i.e., currents flowing through

the AC SC, and voltage at Bus 1 in Figure 4.1) are captured with a sampling frequency

of 20 kHz. These signals are then passed through anti-aliasing filters, normalised, and

packaged into appropriate windows to be processed by the SWT filters.

4.5.1.2 Stage 2 - SWT

The WT is a powerful tool for power system protection due to its capability to simultane-

ously analyse signals in the time and frequency domains. One of the main useful features

of the WT is its inherent capability to detect signal singularities and disclose the useful

information contained in measured quantities (e.g., voltages and currents) after a power

system event. The WT can be distinguished in two categories: (i) Continuous Wavelet

Transform (CWT) and (ii) DWT. The selection between them is a trade-off between the

desired time resolution and processing requirements [140].

The DWT has been widely used for power system protection applications due to

its reduced complexity and computational efficiency [141–143]. However, one of the

significant drawbacks of the DWT is the effect of the downsampling process taking place

at every decomposition level [144], leading to loss of information in the high frequency

content of the analysed signal. A potential solution to overcome this drawback is the

utilisation of the SWT algorithm, which does not downsample the signal, but instead

it upsamples the filters by a factor of 2 at every decomposition level (by means of zero

padding).

The output of the SWT at each decomposition level contains the same number of

coefficients as the analysed signal. Therefore, the main advantage of the SWT is the

preservation of the time information of the original signal at each level. The SWT

algorithm can be implemented by applying discrete convolution to the analysed signal

with the appropriate high-pass and low-pass filters, as in the case of the DWT, but

without downsampling. Figure 4.6 illustrates the SWT procedure up to a decomposition

level of 2.

Specifically, x[k] is the original signal, hj [k] and gj [k] are the high-pass and low-pass

filters at the j − th level, and Aj [k] and Dj [k] are the approximation and detailed

coefficients at the j − th level. For the decomposition level j, the filters hj [k] and gj [k]

are obtained by upsampling the filters at level j − 1 which are then convolved with
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Figure 4.6: Stationary Wavelet Transform algorithm.

the approximation coefficient at level j − 1 to produce the approximation and detailed

coefficient of level j. For each decomposition level j, the detailed coefficients are calculated

based on (4.1).

Dj [k] =

L−1∑
l=0

Aj−1[n]× hj [k − n] (4.1)

where Aj is the approximation coefficients at level j, k is the index of the sample and L

the order of the high pass filter h[n].

In the presented research, the monitored parameters are subjected to Level 1 and

Level 2 decomposition though the SWT technique. The selection of the most suitable

decomposition levels is based on the frequency content of interest for the signal to be

processed. Based on the literature, the db4 mother wavelet presents relatively high

accuracy and reliability. Therefore it was selected for the purposes of the proposed

scheme [141, 144, 145]. It shall be highlighted that wavelet design can be considered

a dedicated and separate research area and is subject to the application requirements.

Therefore, detailed design is beyond the scope of the presented work. Considering the

db4 mother wavelet and the required level of decomposition, the required number of the

samples per iteration is 8.

4.5.1.3 Step 3 - Feature extraction

A 30-sample moving data window with 29-sample overlap, has been applied on the moni-

tored parameters and subsequent detailed coefficients at Level 1 and Level 2. The length

of the data window has been selected based on offline trial simulations to achieve a high

degree of reliability and efficiency in fault detection and classification. In the presented

work, decomposition Level up to 2 has been selected as the maximum decomposition

Level should not be set too high as the computational delay accumulates. However, this
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should not be a significant limitation for the protection scheme since the most significant

information for fault detection and classification lies in the high-frequency region, which

corresponds to the lower decomposition Levels [146].

The numerical values contained within those time windows are used to extract feature

vectors such as the sum
∑

(Dj), mean µ(Dj), standard deviation σ(Dj), and energy

content E(Dj) of the absolute values of the detailed coefficients at Level 1 and Level 2.

The E(Dj) represents the amount of energy present in detailed coefficients, σ(Dj) denotes

the degree of variation of the detailed coefficients, µ(Dj) is the average value of the

detailed coefficients and
∑

(Dj) represents the total value of the detailed coefficients [147].

The selection of the feature vectors has been determined through extensive offline trial

and error simulations, aiming to unlock deeper and more meaningful insights in the

nature and evolution of faults, and consequently enhance the performance of the ML

algorithms. The feature vectors were calculated as presented in (5.8) to (5.11) below:

∑
(Dj) =

nw∑
k=1

|Dj(k)| (4.2)

µ(Dj) =
1

2j · nw

nw∑
k=1

|Dj(k)| (4.3)

σ(Dj) =

√√√√ 1

2j · nj

nw∑
k=1

(|Dj(k)| − µ(Dj))2 (4.4)

E(Dj) =

nw∑
k=1

[Dj(k)]
2 (4.5)

where Dj(k) is the k − th detailed coefficient for each decomposition level j = 1, 2, and

nw is the window size.

These feature vectors can represent effectively the state of the AC SC during the

simulated transient events and form the basis for fault detection and discrimination. It

is worth highlighting that the feature vectors are normalised by subtracting the mean

value and dividing by the standard deviation as presented in (5.12):

x(i)scaled =
x(i)−X

σ(X)
(4.6)

where x(i) is the value of the sample in the feature vector x, X is the mean value of each

feature in the training set, and σ(X) is the standard deviation of each feature in the

82



Chapter 4 Protection of SCs in AC systems

training set.

4.5.1.4 Stage 4 - Fault detection and classification

The normalised feature vectors along with the three-phase faulted current measurements

obtained at the AC SC terminal connected to Bus 1, and voltage measurements captured

at Bus 1 (Figure 4.1), have been utilised as inputs to ML-based algorithms to perform

fault detection and classification. The main goal of the developed fault detection

and classification elements is to provide fast detection of internal faults and reliable

discrimination between internal faults, external faults and other disturbances. For that

purpose the fault detection and classification task has been formulated as a binary

classification problem and the developed detection and classification elements initiate at

their output ‘1’, for internal faults and ‘0’, for external faults and other disturbances.

Effectively, the output of the binary classification elements is used as a tripping signal

which would ultimately go to the corresponding CB, which protects the AC SC, to clear the

fault, however the presented studies evaluate the performance of the developed schemes

considering up to initiation of the tripping signal. For the development of the detection

and classification elements, ANN and SVM algorithms have been selected which have

been proven to be fast and reliable for fault diagnosis in power systems [125,130,148,149].

The detailed analysis of the ML algorithms utilised in this work are presented in the

following subsection.

4.5.2 ML-based algorithms

4.5.2.1 Artificial Neural Networks

ANNs represent a computational model inspired by the architecture and operations of

biological neural systems. ANNs dynamically adapt their structure in response to input

and output requirements, making them adept at modeling complex nonlinear relationships

within data [150]. These networks are organised into layers, comprising interconnected

nodes, or neurons. Two fundamental learning algorithms are employed in ANNs: the

feed-forward algorithm and the back-propagation algorithm.

In the feed-forward approach, input data traverse from input nodes through hidden

nodes to output nodes, following a forward path. Conversely, the back-propagation

method leverages training data to iteratively refine the network by adjusting weights

and biases associated with error values, ultimately converging towards correct output
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predictions [151].

A pivotal component in ANNs is the transfer function, which plays a vital role in

capturing the nonlinear relationships between input and output data [152]. Figure 4.7,

presented below, illustrates a typical multi-layer ANN model. This architecture encom-

passes three layers: the input layer, hidden layer, and output layer. The input layer

establishes connections with one or more hidden layers, where neurons are referred to as

perceptrons, before reaching in the output layer.

Figure 4.7: Typical multi-layer ANN model.

As it has been mentioned the training process consists of two steps: feed-forward

approach and back-propagation process. In the context of the back-propagation neural

network, the term ”output” refers to the information that is fed back into the input

phase to compute adjustments in the weights [152]. The process involves calculating

the error at each step and location, starting from the final stage and transmitting the

considered error backward. Initially, the weights of the back-propagation algorithm are

randomly selected and incorporated into an input pair. Following each step, these weights

are updated with new values, and this process is repeated for all possible input-output

combinations found in the training data provided by the creator [153]. This repetition

continues until the network converges to the desired target values within a predefined error
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tolerance. This entire procedure is applied to each layer within the network, working

in a reverse direction. Back-propagation is chosen for training due to its ability to

handle large datasets [154]. The Mean Square Error (MSE) technique is employed to

compute the error at each iteration (representing the loss function). The incorporation of

back-propagation algorithm is as follows based on [128]. The network’s objective during

training is to minimise this error (MSE) by adjusting its weights and biases through the

back-propagation algorithm.:

Forward propagation:

aj =
m∑
i

[w
(1)
ji xi] (4.7)

zj = f(aj) (4.8)

yj =

M∑
i

[w
(2)
ki zj ] (4.9)

Output difference:

δk = yk − tk (4.10)

Back propagation for hidden layers:

δi = (1− z2w)
K∑
k=1

[wkjδk] (4.11)

where aj denotes the weighted sum of inputs, wji is the weight related to the neuron

connections, xi corresponds to the inputs, zi is the activation unit of the input, δk is the

derivative of the error at kth neuron, yi is the ith output, yk is the activation of unit k,

tk denotes the corresponding target of the input and δj is the derivative of error.

The MSE function applied to each output in each iteration and is calculated based

on Eq 4.12:

MSE =
1

N

N∑
1

(Ei − Eo)
2 (4.12)

where N is the number of iterations, Ei is the actual output and Eo is the output of

the model.

The gradient of the error with respect to first layer weights and second layer weights
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are calculated and in this step the previous weights are updated

The performance of ANN algorithms rely heavily on the fine tuning of their hyper-

parameters [123]. On that front, in order to select the most-suitable ANN architecture

and the best training model for fault detection and classification, a wide range of ANN

network topologies have been tested. The optimum hyperparameters were set based on

the Grid Search (GS) technique. For this purpose, hyperparameter tuning was performed,

considering different combinations of hyperparameters. Specifically, the hyperparameters

defined with the GS process are the following: i) the number of hidden layers, ii) the

learning rate, iii) the batch size, and iv) the number of neurons at each hidden layer. The

performance of all the combinations was evaluated based on the K-fold Cross-Validation

(CV) technique. Specifically, the dataset was divided into K subsets and the model was

trained and tested for each hyperparameter combination K times. In each iteration,

K − 1 subsets were used for training, while the remaining 1 fold was used for validation.

The optimum combination of the hyperparameters was determined based on the K-fold

CV score, which is the average of the scores obtained on each subset.

In this study, the 5-fold CV technique was utilised, while the F1-score was selected

as the 5-fold CV evaluation metric, in order to select the optimum hyperparameters for

the ANN algorithm. The optimum hyperparameters and subsequently the best ANN

algorithm setup are presented in Figure 4.8.

The developed ANN model is a fully-connected, multi-layer model which consists of 1

input layer with 54 neurons (the number of neurons in the input layer is equal to the

length of the feature vectors) and 8 hidden layers with 120 neurons in total. The GS

5-fold CV technique revealed that a deep ANN network is required in order to learn a

robust data representation and present higher generalisation capability. Furthermore, to

improve the performance of the ANN classifier, the drop-out technique was used for the

hidden neurons during the training process in order to reduce interdependent learning

amongst the neurons and consequently minimise over-fitting to the training data. The

optimisation method used is the Adam optimiser, the learning rate has been defined

based on the GS 5-fold CV technique, while the rest of the parameters were used as

defined within the Pytorch framework.

The ANN algorithm operates as a binary classifier, and therefore it has one neuron

in the output layer. The output value varies from 0 to 1 due to the utilisation of the

log-sigmoid function as the activation function for the output layer. The equation of the
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Figure 4.8: Architecture of the developed ANN algorithm.

log-sigmoid function is given by Eq 4.13:

σ(x) =
1

1 + e−x
(4.13)

An activation function in a neural network is a mathematical function that determines

the output of a neuron or a node in a neural network. It introduces non-linearity to the

network, enabling it to learn complex patterns and relationships in the data. Activation

functions are essential because without them, a neural network, no matter how deep,

would simply be a linear model, failing to handle non-linear relationships in data [153].

Specifically, the log-sigmoid function yields a probability value for each class. In this

research, in order to convert the predicted probability value to a class label (0 or 1),

a decision threshold equal to 0.9 has been selected for both the training and testing

processes. This means that any probability above the threshold 0.9 corresponds to output

1 and indicates the presence of an internal fault, generating a tripping signal. The decision

threshold allows the mapping of the log-sigmoid output to a binary classification category

and its value is chosen to clearly indicate the split between the classes, increase classifica-

tion accuracy, and limit misclassification [155]. The decision thresholds are subject to

the classification problem and shall be tuned for each ML application individually [156].

In the presented work the decision threshold of 0.9 has been selected to penalise false
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classifications. In subsection 4.6.1.1 the investigation of different decision thresholds and

their impact on ML algorithms performance is presented.

4.5.2.2 Support Vector Machine

SVMs were originally developed for tackling classification problems within the context

of statistical learning theory and structural risk minimisation [1]. The idea of the SVM

algorithm is to non-linearly map the input vectors to a high dimensional feature space and

define a decision boundary. For a given set of labeled training data, an optimal hyperplane

is determined as a solution of an optimisation problem. The optimal hyperplane is the

one that best separates the features into two classes. The selected data points from

the training set which affect the position of the dividing hyperplane are called support

vectors. By projecting the hyperplane onto the initial dimensions, the desired decision

boundary can be determined. The SVM algorithm can be explained as a Wolf’s dual

optimisation problem based on [157]. The transformation of data into a feature space is

accomplished through a non-linear transformation function denoted as Φ [133].

Φ : Rn → Fm xi → Φ.(xi) (4.14)

Subsequently, within this high-dimensional feature space, the data can be rendered

linearly separable through the application of another function, denoted as f . This

function maps the data into a decision space (Y 2), where Y ∈ (+1,−1)

Φ : Fm → Y 2 Φ.(xi) → f(Φ.(xi)) (4.15)

In cases where the data exhibits linear separability, there exists a vector w ∈ RN and

a scalar b ∈ R such that yi(w.xi + b) ≥ 1 for all the patterns included within the training

data set. Consequently, the hyperplane is positioned in such a way that w.x + b = 1

for the closest points on one side and w.x+ b = −1 for the closest points on the other

side. This optimal hyperplane successfully separates points belonging to different classes

while maximising the margin of separation. The identification of an optimal separating

hyperplane involves solving the following equations based on Eq 4.16 [44]:

min
1

2
∥ w2 ∥ +C(

l∑
i=1

(ϵi)) (4.16)

the minimisation of Eq 4.16 is subject to yi(w.xi + b) ≥ 1− ϵi where ϵi ≥ 0∀i
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The solution to this constrained optimisation problem is derived by constructing a

Lagrangian based on Eq 4.17 [148]:

λ(w, b, a) =
1

2
∥ w2 ∥ −(

l∑
i=1

ai(yi(w.xi + b)− 1) (4.17)

Minimising the Lagrangian with respect to the primal variables w and b and max-

imising it with respect to the dual variable ai, leads to the determination of the solution

vector in terms of the training patterns. Once the optimisation problem is solved, the

training points with ai > 0 denote the support vectors, while w and b can be given by

Eq 4.18 [149]:

w =
l∑

i=1

aiyixi (4.18)

where x is a test vector and b can be calculated based on Eq 4.19:

b = ysv −
l∑

i=1

aiyik(xixj) (4.19)

Considering the above analysis and that sgn is the signal function, the optimal

decision function is formulated as follows [149]:

f(x) = sgn(
l∑

i=1

aiyik(xixj + b) (4.20)

where k denotes the kernel function and serves as a means to compute the inner

product Φ(xi,Φ(xj)) within the feature space, acting as a function of the input data.

In the presented work the values of the SVM model parameters have been selected

based on the combination of the GS and 5-fold CV methods and, similar to the ANN,

the F1-score was utilised as the 5-fold C evaluation metric. The output of the SVM

model is the actual class label (0 or 1) of the classified data, determined by the optimal

hyperplane. For the final SVM model, the selected hyperparameters are the following:

C = 100 and γ = 1, kernel function= Radial Basis Function (RBF).

4.5.3 System training

For the purpose of the simulation-based training, the system depicted in Figure 4.1 has

been utilised and a series of systematic iterative simulations have been performed (similar

to those presented in subsection 4.2 for the testing of the over-current based scheme).
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Specifically, the simulated scenarios include internal faults applied at every 10% of the

AC SC’s length, external faults occurring at the adjacent lines considering all fault types

(i.e., LLL-G, LLL, LL-G, LL and L-G) and Rf up to 300Ω, and load switching events

occurring at Bus 2. The final dataset is composed of 1750 events. To prepare the dataset

effectively for the proposed schemes, it’s crucial to include both, fault and non-fault

cases, in a balanced ratio while ensuring a variety of scenarios. This balance ensures that

the proposed scheme encounter a realistic distribution of scenarios, aiding their ability

to generalise well. A diverse dataset with a balanced ratio, such as 1:1 for fault and

non-fault cases, helps prevent bias in the AI-based models’ learning process, ultimately

enhancing their predictive capabilities. For each simulation scenario, the waveforms of

current flowing through the SC’s phases (measured at the SC terminal connected to Bus

1), and the voltage measured at Bus 1, were captured for 5 cycles (1 pre-fault and 4

during fault). By using 1 pre-fault cycle, the scheme can establish a baseline for normal

operation, while using 4 during fault cycles can provide more than enough information

to accurately detect and classify the fault type. All the feature vectors presented in

Subsection 4.5.1.3 were also extracted as part of the training process. Normalisation

was also applied to scale the feature vectors prior to the training process in order to

improve the performance of the ANN and SVM algorithms, and to accelerate the learning

process. The monitored parameters and calculated feature vectors were used to create

a Python-based training data base using the PyTorch open source library. From this

dataset, 60% was used for training and 20% for validation, while the remaining 20% was

used for testing according to common practice utilised in ML applications [158].

4.5.4 Anticipated time delays of the proposed schemes

It is important to ensure that the proposed protection schemes will operate correctly,

despite delays expected in real-life implementation. The anticipated operating time top of

the proposed scheme comprises the delays associated with the window-based processing

tdw, the delays of data processing tdt (accounting for digitisation and transmission), and

the time required by the ANN and SVM algorithms to produce a binary decision tML:

top = tdw + tdt + tML (4.21)

The delay associated with the window-based processing tdw can be calculated as

follows:
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tdw = (nw−fv − nw−ov) · ts (4.22)

where nw−fv is the length of the processing window for the feature vectors, nw−ov is

the window overlap, and ts is the sampling time. For this application a 30-sample

window, with 29 samples overlap at 20 kHz, has been assumed that is efficient in terms

of protection speed operation, reliability and computational speed and thus the tdw is

50 µs.

The proposed protection schemes require 6 measurements to be digitised, concentrated,

and transmitted to the protection system for further processing. Considering a modern

centralised system with Merging Units (MUs) and an Ethernet switch based on IEC-

61850 to collect and transmit all measurements in real-time, the overall time delays for

digitisation and transmission tdt can be calculated as follows [141]:

tdt = ts + tMU + tEth + tps (4.23)

where ts is the maximum delay due to the analogue sampling (i.e., ts = 1/fs = 1/20 kHz =

50 µs), tMU is the processing time in the MU (i.e., the time to encode the sampled values),

tEth is the total maximum Ethernet network latency, and tps is the processing time for the

protection system (i.e., the time to decode the sampled values). Assuming one Ethernet

link and 8 competing measurements, tEth can be estimated to be 6.34 µs [141]. tMU and

tps can be estimated as 12 µs and 9.5 µs, respectively, based on the work conducted

in [159]. Therefore, the overall resulting tdt is 77.84 µs.

The time required by the ML-based algorithms (i.e., tML) to produce the tripping

signal is subject to a number of variables such the algorithm complexity, the coding

efficiency, the processing power of the system, etc. Therefore, tML cannot be assessed

theoretically but will be evaluated experimentally in the following section.

4.6 Evaluation of the ANN and SVM Algorithms Based

on AI Metrics

The performance of the proposed protection schemes has been initially assessed based

on widely-used AI evaluation metrics. At the initial stage of the evaluation process, the

robustness and classification capability of the developed algorithms were tested using the

classification accuracy and F-1 score as evaluation metrics.
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4.6.1 Accuracy evaluation

The ANN and SVM algorithms were tested using 20% of the pre-simulated dataset of

1750 cases, which contain all types of events. The accuracy and F1 score, both have been

calculated based on the normalised confusion matrix produced for each binary classifier.

Table 4.1 and Table 4.2 present the normalised confusion matrix of the ANN and SVM

classifiers, respectively.

The high percentage value of True Positive (TP) predictions indicates the capability

of both classifiers to correctly classify internal faults, while the high percentage value of

the True Negative (TN) predictions show that both algorithms can predict correctly the

external faults and load switching events, preventing protection operation during these

events. Regarding the percentage value of False Positive (FP) and False Negative (FN)

predictions, they must be in principle very low as they indicate incorrect predictions.

Practically, these values would falsely flag the presence of an internal fault and the

absence of external fault and load switching events, which would compromise the stability

and sensitivity of the proposed schemes. From the perspective of power system protection,

FN predictions have a more severe impact than that of FP, as the former results in

undetected faults, threatening system security, while the latter will lead to false initiation

of a tripping signal and consequently to reduced system availability.

The results presented in Table 4.1 and Table 4.2 show that the percentage of FP

predictions for the ANN model is higher compared to those of the SVM, which suggests

that SVM provides higher reliability and availability. Conversely, the percentage of FN

predictions for the ANN is slightly lower compared to those of the SVM, which highlights

that the ANN provides a higher degree of dependability. Generally, there is clearly a

trade-off between the reliability and dependability.

Table 4.1: ANN confusion matrix.

Predicted Negative Predicted Positive

Actual Negative TN=99% FP=1.44%
Actual Positive FN=0.96% TP=99.6%

Table 4.2: SVM confusion matrix.

Predicted Negative Predicted Positive

Actual Negative TN=99% FP=0.048%
Actual Positive FN=1.06% TP=97%

The accuracy, ACC, and F1-score for both algorithms have been calculated based on
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(4.24) and (4.25), respectively:

ACC =
TP + TN

TP + TN + FP + FN
(4.24)

F1− score = 2 · precision · recall
precision+ recall

=
TP

TP + 1/2 · (FP + FN)
(4.25)

Accuracy is a measure of how often the classifier makes the correct prediction and, as

can be seen by (4.24), is defined as the ratio of the number of correct predictions to the

total number of predictions. The F-1 score is a balance metric that presents the harmonic

mean between precision and recall as can be seen by (4.25). Precision is a measure of

the proportion of TP predictions among all positive predictions made by the classifier,

while recall measures the proportion of TP predictions among all actual positive cases.

Taking into account the values presented in Table 4.1 and Table 4.2, the resulting

accuracy of the ANN and SVM algorithms is 98.88% and 99.44%, respectively, while

the resulting F-1 score is 98.87% and 99.43%, respectively. The results of the accuracy

test indicate that the SVM algorithm is more effective at making correct predictions

in a given number of scenarios. Thus, the SVM model demonstrates a higher level of

sensitivity against internal faults and stability against external faults and load switching

events. Furthermore, the higher value of F1-score for the SVM model indicates that SVM

presents a better balance of correctly identifying the presence of an internal fault (high

recall) and not identifying external faults and load switching events as internal faults

(high precision).

4.6.1.1 Investigation of different decision thresholds for the ANN algorithm

This subsection investigates the accuracy and F-1 score of the ANN algorithm with

respect to different decision thresholds. In particular, in subsection 4.6.1 it has been

reported that the accuracy of the ANN algorithm is 98.88% and F-1 score 98.87% for

decision threshold equal to 0.9. Additionally, the confusion matrix and accuracy of the

ANN algorithm have been calculated considering decision thresholds equal to 0.5 (Table

4.3), 0.7 (Table 4.4) and 0.99 (Table 4.5), during the training and testing processes.

The aim of this assessment is to evaluate the impact of the decision threshold on the

performance of the ANN.

Upon examination of the data presented in Table 4.3, the resulting accuracy of the
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Table 4.3: ANN confusion matrix for decision threshold equal to 0.5.

Predicted Negative Predicted Positive

Actual Negative TN=98% FP=2.4%
Actual Positive FN=0.72% TP=99.9%

ANN is 98.45% and the F-1 score is 98.46% for decision threshold equal to 0.5. A notable

observation is that as the decision threshold decreases from 0.9 to 0.5, the value of FP

increases which indicates that the models misclassify more external faults and switching

events as internal faults and initiate a false tripping signal. The value of TP is increased,

while the values of FN and TN present a slight decrease.

Table 4.4: ANN confusion matrix for decision threshold equal to 0.7.

Predicted Negative Predicted Positive

Actual Negative TN=98.55% FP=1.92%
Actual Positive FN=0.96% TP=99.6%

Considering the resulting confusion matrix in Table 4.4, the accuracy of the ANN

classifier is 98.57% and the F1-score is 98.57% for a decision threshold of 0.7. As the

decision threshold decreases, there is an increase in the number of FP classifications

and thus more external and load switching events trigger the initiation of a tripping

signal. Furthermore, there is a decrease in the number of TN classifications, while FN

classifications remain the same.

Table 4.5: ANN confusion matrix for decision threshold equal to 0.99.

Predicted Negative Predicted Positive

Actual Negative TN=99.75% FP=0.73%
Actual Positive FN=1.93% TP=98.79%

Based on the results presented in Table 4.5, the resulting accuracy of the ANN

algorithm is 97.40% and the F-1 score is 98.67% for a decision threshold of 0.99. As can

be observed, a further increase in the decision threshold results in a further increase in

the value of FN, compromising the sensitivity of the developed schemes. The number of

FP and TP is decreased, while the value of TN is slightly increased.

Therefore, from the presented analysis, it can be concluded that as the value of

the decision threshold increases, the range of predicted probabilities which indicate the

presence of an internal fault is reduced. Specifically, for decision threshold equal to 0.99,

only probabilities above 0.99 are converted to output ‘1’ and initiate the corresponding

tripping signal. This creates the challenge of an increase in FN predictions, affecting the
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sensitivity of protection schemes and threatening system security. Conversely, when the

decision threshold decreases from 0.9 to 0.7 and 0.5, the value of FP increases, leading

to the initiation of a tripping signal for external faults and load switching events and

consequently affecting the discrimination capability and stability of protection schemes,

while the values of FN remain approximately unchanged. It is worth reiterating that

the consequences of an increase in the value of FN and the subsequent increase in the

number of undetected faults is more severe than an increase in the value of FP for the

safety of the power system. Considering these observations and the resulting accuracy

for each decision threshold, it can be determined that the value of 0.9 for the decision

threshold of the ANN algorithm is appropriate for the investigated classification problem.

4.7 Offline Simulation Results

This section presents the simulation results for an internal LLL-G solid fault applied

at 5% of the AC SC’s length at t = 10 ms. The primary objective of this section is to

visually demonstrate Stage 1, Stage 2, and Stage 3 of the protection scheme development

process. To achieve this, a series of figures are provided which depict the measured

current and voltage signatures, as well as their SWT transformations and extracted

feature vectors. It is worth reiterating that the offline simulation-based studies conducted

at Stage 1, Stage 2 and Stage 3 of the development process were utilised to perform the

SWT of the fault current and voltage signatures, calculate the detailed coefficients along

with the corresponding feature vectors, and eventually form the dataset for the training

and testing of the developed protection schemes.

Figure 4.9a to Figure 4.9c show the fault current and voltage signatures measured at

one terminal of the AC SC and at Bus 1, respectively. Specifically, Figure 4.9a illustrates

the fault current flowing through the YBCO layer for the three phases, Figure 4.9b shows

the fault current flowing through the copper stabiliser layer and former for the three

phases, and Figure 4.9c presents the voltage signatures for the three phases.

As depicted in Figure 4.9a, the fault is initiated at t = 10ms, leading to the quenching

of the HTS tapes. As a result, the fault current is redirected to the copper stabiliser layer

and the former (Figure 4.9b) which provides a path with lower resistance. Figure 4.9d

through Figure 4.9l show the detailed coefficients of decomposition Level 1 and Level

2 for the fault current flowing through the YBCO layers, as well as the fault current

flowing through the copper stabiliser layers and former for all three phases, and the
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Figure 4.9: Detailed coefficients of decomposition Level 1 and Level 2 resulting from the
SWT of the fault current and voltage waveforms during an internal, LLL-G solid fault at
5% of the AC SC’s length.

detailed coefficients of the three-phase voltage signatures. As can be seen in Figure 4.9,

the utilisation of the SWT technique leads to unique peaks which indicate the presence

of a transient (i.e., fault).

Furthermore, the simulation results of the feature vectors are presented in the following

figures. In particular, Figure 4.10a to Figure 4.10i depict the magnitude of the sum

of absolute values of the resulting detailed coefficients of decomposition Level 1 and

Level 2 for the three phases. Figure 4.11a to Figure 4.11i show the magnitude of the

standard deviation of the absolute values of the current and voltage detailed coefficients

of decomposition Level 1 and Level 2. Figure 4.12a to Figure 4.12i display the magnitude

of the mean of the absolute values of the detailed coefficients of decomposition Level 1

and Level 2. Finally, Figure 4.13a to Figure 4.13i display the magnitude of the energy of

the detailed coefficients of the current and voltage signatures derived from decomposition

Level 1 and Level 2.

Based on the extensive simulation results, the SWT technique has proven to be an

exceptionally powerful tool for feature extraction in power systems. The implementation of

SWT enables the extraction of unique peaks, which in turn facilitate a more comprehensive

understanding of the transient events occurring within the system. As a result, fault

detection becomes increasingly distinct, an attribute commonly referred to as ’signal

singularity’ [160].
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Figure 4.10: Sum of absolute values of the detailed coefficients of decomposition Level 1
and Level 2 for the three phases.
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Figure 4.11: Standard deviation of absolute values of the detailed coefficients of decom-
position Level 1 and Level 2 for the three phases.
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Figure 4.12: Mean of absolute values of the detailed coefficients of decomposition Level 1
and Level 2 for the three phases.

In addition to the identification of unique peaks, the SWT technique allows for the

calculation of feature vectors, which are essential for recognising patterns and extracting
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useful information. This comprehensive approach improves the overall performance of

fault detection and classification elements within the proposed protection schemes. By

incorporating the SWT technique, it is possible to develop more robust, accurate, and

efficient fault detection and classification mechanisms, ultimately leading to enhanced

reliability and stability within the power system infrastructure.
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Figure 4.13: Energy of the detailed coefficients of decomposition Level 1 and Level 2 for
the three phases.

4.8 Real Time Validation

In this section, the developed protection schemes have been evaluated in terms of their

sensitivity against internal faults, stability against external faults and other transient

events, and their operational speed. The time performance of the developed schemes has

been further assessed against previously unseen scenarios (scenarios which do not belong

to the initial dataset and thus are not part of the testing dataset).

The presented studies have been conducted based on a real-time SIL platform. They

aim to validate that both schemes can effectively and quickly identify and classify transient

events and thus ensure the safe and efficient operation of the power grid with AC SCs

and validate the suitability of the algorithms for real-time implementation (i.e., their

ability to produce a binary tripping signal in real-time). Additionally, the performance

and execution time of the ANN and SVM algorithms have been evaluated using different

hardware specifications in order to determine their computational requirements.
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4.8.1 Testing environment for real-time validation

A diagram of the testing environment utilised for real-time testing of the proposed

schemes is shown in Figure 4.14. A wide range of cases (i.e., internal faults, external

faults and load switching events) were simulated using the Simulink-based model depicted

in Figure 4.1, and the resulting waveforms were stored externally for post-processing.

Such pre-simulated results were loaded on PC-A and were subsequently injected (on a

sample-by-sample basis) to PC-B though TCP/IP sockets. The specifications for PC-A

and PC-B are shown in Table 4.6.

PC with 
pre-simulated results

*.pkl
*.pth
*.sav

Training 
database

Sample-by-sample
waveform injection

Tripping signal

PC with 
ML-based protection 

algorithm

PC-BPC-A

Figure 4.14: Overview of the testing environment.

The developed protection schemes were loaded in PC-B and the training database

was also fed to PC-B for complementing the binary classifiers.

Effectively, the developed testing environment forms a real-time SIL platform for

validating the proposed protection schemes in terms of their operational speed and

capability to provide reliable fault detection and classification, taking into account

realistic digital infrastructures.

Table 4.6: PC specifications

PC Specifications
PC-A i7-6500U, 2 cores, 4 threads, 2.4 GHz, 4 MB Cache

PC-B
i9-10980XE, 18 cores, 36 threads, 3/4.6 GHz, 24 MB

Cache, GPU NVIDIA Quadro RTX 6000
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4.8.1.1 Results of the sensitivity and stability assessment of the proposed

protection schemes

Figure 4.15, Figure 4.16 and Figure 4.17 present the simulation results of representative

test cases, which quantify the overall performance of the developed protection schemes.

Effectively, such cases demonstrate the feasibility of the schemes to operate for internal

solid and highly-resistive faults and remain stable for external faults and load switching

events (in all scenarios, the event is triggered at t = 10 ms).

Figure 4.15 illustrates the system response and the extracted feature vectors under an

internal LG solid fault, occurring at 10% of the AC SC’s length. For this scenario, only

the detailed coefficients and the feature vectors for the faulted phase A are presented.

Figure 4.15a, Figure 4.15b and Figure 4.15c show the phase fault current signatures

flowing through the YBCO layer, copper stabiliser layers and former, and the three-phase

voltages, respectively. At the time of the fault occurrence at t = 10ms, the HTS tapes of

phase A start to quench, reaching peak values of approximately 25 kA. Once the HTS

tapes reach the highly-resistive state, the current is diverted to the copper stabiliser layer

and the former (approximately 6 ms after the fault occurrence).

Figure 4.15d, Figure 4.15e and Figure 4.15f illustrate the detailed coefficients of

decomposition Level 1 and Level 2 for the current flowing through the YBCO layer,

copper stabiliser layers and the former, and the voltage, respectively, for the faulted

phase A. As can be seen, the utilisation of the SWT technique aims to identify unique

peaks in the fault signatures which indicate the presence of a transient (i.e., fault). The

rest of the graphs demonstrate the magnitudes of the features vectors extracted from

the current signal flowing through phase A of the SC and the corresponding voltage

during the feature extraction stage of the protection schemes’ development. In particular,

Figure 4.15g, Figure 4.15h, and Figure 4.15i show the magnitude of the sum of absolute

values of the detailed coefficients of decomposition Level 1 and Level 2. Figure 4.15j,

Figure 4.15k, and Figure 4.15l depict the magnitude of the standard deviation of absolute

values of the detailed coefficients of decomposition Level 1 and Level 2. Figure 4.15m,

Figure 4.15n, and Figure 4.15o illustrate the magnitude of the mean of the detailed

coefficients of decomposition Level 1 and Level 2 and finally, Figure 4.15p, Figure 4.15q,

and Figure 4.15r present the magnitude of the energy of the detailed coefficients of

decomposition Level 1 and Level 2.

The measurements and feature vectors presented in Figure 4.15 (alongside the ex-

100



Chapter 4 Protection of SCs in AC systems

0 5 10 15 20 25 30

−10

0

a)

time [ms]
I Y

B
C
O
[k
A
]

Phase A
Phase B
Phase C

0 5 10 15 20 25 30

−10

0

10

b)

time [ms]

I s
h
u
n
t
[k
A
]

Phase A
Phase B
Phase C

0 5 10 15 20 25 30

−20

0

20

40

c)

time [ms]

V
bu
s
[k
V
]

Phase A
Phase B
Phase C

0 5 10 15 20 25 30

−2,000

0

2,000

4,000

d)

time [ms]

S
W

T
(I

Y
B
C
O
)

Phase A: D1
Phase A: D2

0 5 10 15 20 25 30

−2,000

0

2,000

e)

time [ms]

S
W

T
(I

sh
u
n
t)

Phase A: D1
Phase A: D2

0 5 10 15 20 25 30

−5,000

0

5,000

f )

time [ms]

S
W

T
(V

bu
s
)

Phase A: D1
Phase A: D2

0 5 10 15 20 25 30

0

1

2

3
·104

g)

time [ms]

Σ
(S

W
T
) Phase A: Σ(D1)

Phase A: Σ(D2)

0 5 10 15 20 25 30

0

1

2

3
·104

h)

time [ms]

Σ
(S

W
T
) Phase A: Σ(D1)

Phase A: Σ(D2)

0 5 10 15 20 25 30

0

2

4

6

·104

i)

time [ms]

Σ
(S

W
T
) Phase A: Σ(D1)

Phase A: Σ(D2)

0 5 10 15 20 25 30

0

500

1,000

1,500

j)

time [ms]

σ
(S

W
T
) Phase A: σ(D1)

Phase A: σ(D2)

0 5 10 15 20 25 30

0

500

1,000

k)

time [ms]

σ
(S

W
T
) Phase A: Σ(D1)

Phase A: Σ(D2)

0 5 10 15 20 25 30

0

1,000

2,000

3,000

l)

time [ms]

σ
(S

W
T
) Phase A: σ(D1)

Phase A: σ(D2)

0 5 10 15 20 25 30

0

500

m)

time [ms]

µ
(S

W
T
) Phase A: µ(D1)

Phase A: µ(D2)

0 5 10 15 20 25 30

0

500

n)

time [ms]

µ
(S

W
T
) Phase A: µ(D1)

Phase A: µ(D2)

0 5 10 15 20 25 30

0

1,000

2,000

o)

time [ms]

µ
(S

W
T
) Phase A: µ(D1)

Phase A: µ(D2)

0 5 10 15 20 25 30

0

2

4

6

·107

p)

time [ms]

E
(S

W
T
) Phase A: E(D1)

Phase A: E(D2)

0 5 10 15 20 25 30

0

2

4

6
·107

q)

time [ms]

E
(S

W
T
) Phase A: E(D1)

Phase A: E(D2)

0 5 10 15 20 25 30

0

1

2

3

·108

r)

time [ms]

E
(S

W
T
) Phase A: E(D1)

Phase A: E(D2)

Figure 4.15: Feature vectors resulting from the SWT of the total current flowing through
the AC SC for an internal LG solid fault at 10% of the AC SC’s length.

tracted feature from the non-faulted phases B and C) were used as inputs to the ANN

and SVM algorithms in order to produce a tripping signal, as presented in Figure 4.16.

0 5 10 15 20 25 30

ANN

SVM

Time [ms]

Figure 4.16: Tripping signal initiated by the ANN and SVM algorithms during a LG
solid fault at 10% of the AC SC’s length.

The produced binary signals confirm the capability of both models to detect and

classify correctly the internal fault and initiate a fast tripping signal, validating the

sensitivity of the proposed protection schemes. Particularly, the ANN algorithm initiates

a tripping signal 1.38 ms after the fault occurrence, while SVM outputs the same signal

after 2.45 ms. Therefore, both algorithms produce a fast tripping signal, providing
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reliable fault detection and classification and presenting fast operational speed [161]. The

total delay between the time instant of the fault occurrence and the initiation of the

tripping signal is a sum of the measurement, collection, processing and transmission

delays as discussed in Section 4.5.4, emanating from the realistic implementation of the

proposed schemes, as well as the time required for the ANN and SVM algorithms to be

executed and perform event classification.

For the validation of the discrimination capability of the developed schemes, Fig-

ure 4.17 demonstrates the fault current waveforms and the corresponding tripping signal

during highly-resistive internal faults, an external fault, and a load switching event.

Specifically, an LLL-G fault with fault resistance Rf = 50 Ω was applied at 10% of

the AC SC’s length. The currents flowing through the YBCO layers are depicted in

Figure 4.17a for the three phases and the currents of copper stabilisers layers and former

in Figure 4.17d. It is evident that during the highly-resistive fault, the current flowing

through the YBCO layer is lower than IC , preventing the AC SC from quenching. There-

fore, there is no current sharing between the YBCO, copper stabiliser layer and former,

as the fault current is predominately limited by the high value of the fault resistance.

It can be observed that highly-resistive faults can be considered the most challenging

from a protection perspective because the obtained fault current and voltage signatures

closely resemble those of steady-state conditions. Nevertheless, the proposed protection

algorithms detect the internal fault and both algorithms produce a tripping signal as

illustrated in Figure 4.17g. Specifically, the ANN initiates a tripping signal 1.43 ms after

the fault occurrence and the SVM after 3.60 ms. Based on these results, it is evident

that both models have been trained well and are able to make accurate predictions,

increasing the sensitivity and reliability of the fault detection and classification elements.

In this context, it is important to emphasise the significance of the SWT technique.

Specifically, the time domain signals shown Figure 4.17a and Figure 4.17d closely resemble

those obtained during steady-state conditions, making it challenging to detect quenching

events. However, Figure 4.18 displays the resulting SWT transformation of voltage and

current signatures during a highly-resistive fault, alongside the corresponding feature

vectors. Through the application of SWT, it becomes evident that the appropriate peaks

can be extracted, clearly indicating the presence of the fault and eventually enhance

the effectiveness of the proposed protection schemes. Therefore, he utilisation of SWT

achieves to detect these singularities in the analysed signals. It is worth reitarating, that
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other transformation such as Fourier analysis was not chosen as it is not suitable for

non-stationary signals [162]. Spectrograms were found to not perform well with ANN and

SVM models [128]. Additionally, DWT, as it has already be analysed, was not preferred

due to the loss of information at high frequencies resulting from downsampling at every

decomposition level.
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Figure 4.17: Simulation results of ANN/SVM output for internal LLL-G fault with
Rf = 50 Ω at 90 % of the AC SC’s length, external LLL-G fault with Rf = 3 Ω, and a
load switching event.

Figure 4.17b and Figure 4.17c present the current signatures for an LLL-G external

fault with Rf = 3 Ω applied at the adjacent 132 kV line, and a load switching event

at Bus 2, respectively. As opposed to the highly-resistive internal fault, both of such

events force the AC SC to quench. Particularly, during the external fault, the current

flowing through the YBCO layers of the three phases present a peak of 8.9 kA for phase

A, 10.5 kA for phase B, and 9.1 kA for phase C. Within the first 5 ms (Figure 4.17b)

and 10 ms after the fault occurrence, the fault current has been diverted to the copper

stabiliser layer and the former (Figure 4.17e).

For the load switching event (Figure 4.17c), once the load is connected at Bus 2, the

AC SC starts to quench as the current flows through the YBCO layers of the three phases

is higher than IC . At t = 15 ms the current starts to flow through the copper stabiliser

layers and the former (Figure 4.17e) which indicates that the HTS tapes have entered the

highly-resistive state. Although the AC SC quenches due to the presence of an external

fault and a load switching event, as can be seen from Figure 4.17h and Figure 4.17i, there

is no tripping signal initiated for these scenarios. These results justify that the schemes

demonstrate a high degree of stability during disturbances such as external faults and
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Figure 4.18: Feature vectors resulting from the SWT of the total current flowing through
the AC SC for an internal LLL-G highly-resistive fault at 50% of the AC SC’s length
with Rf = 50 Ω.

load switching events which cause the quenching of the AC SC.

4.8.1.2 Results of the time performance assessment of the proposed protec-

tion schemes

The time performance of the protection schemes has been further tested on additional

internal faults, encompassing fault occurrences at various percentages along the SC’s

length that were not part of the initial dataset. These tests were conducted for all types

of faults and Rf up to 300 Ω (for this test Rf values which are not part of the initial

dataset have been also considered). It is worth reiterating that such locations were not

part of the initial dataset. Practically, this is the foreseen situation as any developed

scheme is anticipated to accept inputs not necessarily similar to the trained cases. Some

indicative results are presented in Table 4.7 and validate the effectiveness of the proposed

schemes, as both are capable of detecting internal faults and initiating the corresponding

tripping signal very fast. In terms of the comparison between the two algorithms, it is
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noticeable that the ANN appears to initiate the tripping signal in shorter time scales.

Table 4.7: Time performance of developed protection schemes for previously unseen
internal faults.

Internal fault ANN SVM Internal fault ANN SVM

Location Type Rf [Ω] Tripping time [ms] Tripping time [ms] Location Type Rf [Ω] Tripping time [ms] Tripping time [ms]

5%

LLL

0 1.507 2.692

25%

LLL

0 1.437 3.196
2 1.443 2.982 2 1.468 2.838
13 1.498 2.580 5 1.439 2.623
28 1.477 3.077 40 1.521 2.968
250 1.516 2.791 75 1.519 2.770

LLLG

0 1.350 2.701

LLLG

0 1.445 3.006
7 1.435 2.701 9 1.487 3.013
18 1.028 2.933 30 1.030 2.839
201 1.480 2.579 43 1.500 3.204
67 1.764 2.792 72 1.501 2.938

LL

0.5 1.441 3.133

LL

0 1.440 2.920
3 1.425 2.890 2 1.450 2.620
6 1.420 2.890 10 1.355 2.764
215 1.520 3.100 32 1.473 3.077
100 1.489 3.040 97 1.498 2.805

LLG

0.5 1.476 3.037

LLG

0.9 1.461 3.033
11 1.456 2.872 17 1.431 2.640
20 1.471 3.147 31 1.460 3.009
112 1.502 2.710 56 1.508 2.863
98 1.499 3.190 90 1.470 2.850

LG

0.9 1.438 2.780

LG

0.67 1.411 2.740
5 1.440 3.210 6 1.462 3.059
140 1.436 3.067 28 1.442 2.905
255 1.513 3.099 33 1.488 3.088
80 1.814 3.048 85 1.519 2.890

15%

LLL

0 1.455 2.877

95%

LLL

0.9 1.458 3.167
1 1.442 3.038 2 1.436 2.605
17 1.503 2.673 8 1.459 3.030
31 1.506 3.048 17 1.469 3.050
60 1.487 2.810 85 1.495 3.202

LLLG

0 1.453 2.813

LLLG

0 1.470 3.080
3 1.447 3.109 2 1.452 2.921
6 1.448 3.005 8 1.445 3.048
140 1.509 3.101 50 1.479 2.630
190 1.471 2.786 75 1.487 3.077

LL

0.4 1.427 2.630

LL

0.3 1.455 3.037
6 1.473 2.771 2 1.456 2.812
16 1.463 2.771 5 1.456 2.828
270 1.469 3.161 19 1.484 2.980
60 1.508 3.080 78 1.464 3.110

LLG

0.9 2.210 2.761

LLG

0.7 1.460 2.640
3 1.487 2.670 17 1.411 3.055
11 1.790 3.000 15 1.440 2.875
175 1.496 3.119 55 1.745 2.890
100 1.496 2.799 90 1.494 3.190

LG

0 1.498 2.810

LG

0 1.429 3.191
6 1.468 3.208 5 1.435 3.179
122 1.449 2.897 34 1.446 3.011
67 1.480 2.690 79 1.493 2.680
188 1.535 2.805 96 1.464 2.990

Specifically, for the ANN algorithm, the time required to produce a binary tripping

signal lies within the range of 1.028 ms to 2.21 ms, with an average value of 1.47 ms.

For the SVM algorithm, a tripping signal can be initiated within the range of 2.579 ms

to 3.63 ms, with an average value of 2.91 ms. Therefore, ANN outperforms SVM with

respect to the operation speed. The time performance of the developed schemes were

compared with the protection solutions for AC SCs proposed in [96,163], to demonstrate

the superiority of both classifiers in terms of speed of operation, accounting for detection

and discrimination. Specifically, the differential current relay proposed in [163] detects

the internal faults on the AC SC in 0.86 s, while the differential scheme presented in [96]
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detects the faults on the SC in approximately 0.25 s.

4.8.2 Execution of the proposed schemes using different hardware

configurations

This subsection presents the feasibility of both the ANN and SVM algorithms to provide

fast and precise fault detection and classification under different hardware configurations.

Both algorithms have been executed (for the same scenario) at different computers in

order to evaluate their execution time in conjunction with the anticipated hardware costs.

Table 4.8 demonstrates the computers’ hardware specifications.

Table 4.8: PC specifications for hardware sensitivity analysis.

PC Specifications
PC-1 i7-6500U, 2 cores, 4 threads, 2.4 GHz, 4 MB Cache

PC-2
R7 4800H, 8 cores, 16 threads, 2.9/4.2 GHz, 8 MB

Cache, GPU NVIDIA RTX 2060

PC-3
i9-10980XE, 18 cores, 36 threads, 3/4.6 GHz, 24 MB

Cache, GPU NVIDIA Quadro RTX 6000

Figure 4.19 presents the execution time for the ANN and SVM algorithms running

at different computers. It can be seen that the execution time of ANN is relativity

low, compared to that obtained for SVM. Overall, the execution time of both models

(considering all the anticipated delays introduced by the real implementation in subsection

4.5.4) is low, providing a high level of confidence that the proposed protection schemes

are practical, considering realistic measurements and computation.

Another significant observation from this assessment is that real-time implementation

of the proposed schemes can be achieved by relatively low-spec and cheap computers (i.e.,

PC-1) which could enable their wider adoption. Additionally, the utilisation of high-spec

computers (i.e., PC-3) could only result in very small improvements in terms of execution

time, which can be considered negligible, especially in the case of the ANN for which the

execution time is practically very low.

4.9 Discussion

Two novel AI-based protection schemes have been presented in this chapter which include

fault detection and classification elements for the protection of power systems which
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Figure 4.19: Execution time for the ANN and SVM algorithms running in different
computers.

incorporate AC SCs. Following the successful evaluation of the proposed schemes, the

obtained results revealed that both schemes can provide fast and discriminative fault

detection and classification during various fault conditions, including solid and highly-

resistive internal faults applied on AC SCs. Specifically, the key points derived are as

follows:

� The results indicated that both proposed schemes are highly effective in detecting

and classifying internal faults on AC SC systems, while remaining stable against

external faults and other disturbances which cause the quenching of AC SCs.

� In terms of real-time performance, it has been found that both schemes were able

to run correctly in a SIL testing environment, which simulates realistic digital

infrastructures. They were able to initiate fast tripping signals with increased

sensitivity against internal faults, highlighting their feasibility for real-time applica-

tions. Therefore, both schemes ensure the fast fault detection and classification

considering the protection requirements for AC systems [164]. For comparison

purposes, the ANN algorithm has demonstrated faster performance than SVM,

with an average tripping signal initiation time of 1.47 ms, compared to the 2.91 ms

corresponding to SVM.

� Additionally, the sensitivity analysis on different hardware requirements revealed

that the proposed schemes can run on low-spec computers, reducing costs and

increasing the potential for wider adoption in protecting AC SC systems.
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4.10 Summary

In this chapter, the development of two AI-based protection schemes for AC systems

with SCs was presented. The proposed schemes incorporate AI classifiers and signal

processing techniques for the detection and classification of faults in AC systems. The

challenges posed by the transient response of AC SCs, as previously discussed in Chapter

3, were considered for the designing of the proposed schemes.

Initially, a thorough review of reported protection schemes for AC SCs in the literature

was carried out. It was found that much of the research conducted in this field is still in its

early stages and primarily focused on combining conventional protection solutions such as

over-current and differential relays. However, it has been noted that the proposed schemes

for AC SCs have not been thoroughly tested in terms of their sensitivity considering

challenging cases, such as highly-resistive faults, their discrimination capability against

external faults or other events, and their operational speed. These factors are particularly

important in light of the challenges posed by the quenching phenomenon and the need

for fast fault detection in AC systems. Therefore, there remains a significant research

gap in the area of protection for AC SCs and their unresolved issues.

Furthermore, this chapter has discussed the limitations of existing protection solutions

when dealing with the transient response of AC SCs. A qualification study was conducted

to assess the sensitivity and stability margins of over-current threshold-based solutions

for protecting AC SCs. The observations obtained from this analysis highlighted that the

utilisation of threshold-based over-current solutions for AC SCs is a trade-off between

protection sensitivity and stability.

Additionally, this chapter has presented the benefits offered by AI methods in applied

superconductivity and power systems protection applications. It has been found that

AI techniques are increasingly being used in applied superconductivity to analyse large

sets of data and real-time measurements, leading to a better understanding of the

behaviour of such technology and the emergence of a new research field combining

AI and superconducting applications. Moreover, it has been found that there is a

growing focus on incorporating AI techniques in fault detection and classification tasks

in power systems. In particular, the massive advancements in AI and the benefits

provided by AI algorithms such as the ability to uncover hidden trends and extract useful

information from measurements, render the utilisation of AI assisted protection schemes

very promising. This chapter has also presented the advantages and drawbacks of widely
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used AI algorithms.

For the development of the proposed schemes signal processing techniques such as

SWT and AI classifiers were utilised. Specifically, the first scheme uses an ANN classifier,

while the second scheme is based on the SVM algorithm. Initially, the performance of the

developed AI algorithms was evaluated using common metrics such as accuracy and the

F-1 score. The models with the highest classification capabilities were then integrated

into the proposed protection schemes to perform fault detection and classification tasks.

Validation tests have been conducted in terms of the sensitivity, stability, and time

performance of the proposed schemes. Specifically, detailed transient simulations and

a real-time SIL-based testing set-up have been utilised to scrutinise their effectiveness

against various scenarios. The results showed that both schemes are characterised by

enhanced reliability, superior stability, and high speed of operation. Both schemes operate

successfully under highly-resistive faults, which do not lead to quenching of AC SCs, and

differentiate them correctly from solid external faults which do cause the quenching of AC

SCs. In particular, both classifiers are sensitive against internal faults and remain stable

during external faults and load switching events, presenting an accuracy of 98.88 % for

the ANN algorithm and 99.44 % for the SVM model. Based on the results, it has been

found that the SVM algorithm results in a slightly higher ratio of correct predictions

to the total number of predictions compared to the ANN algorithm. Therefore, from a

protection perspective, the SVM-based scheme presents higher sensitivity against internal

faults and better discrimination capability and stability against external faults and load

switching events, ensuring the secure and reliable operation of the grid. The real-time

assessment studies also revealed that both schemes initiate the desired tripping signal

very fast, during previously unseen scenarios, and are in compliance with AC protection

requirements. Specifically, it has been found that the ANN-based protection scheme has

higher operational speed by initiating a tripping signal within the range of 1.028 ms to

2.21 ms with an average time of 1.47 ms, while the SVM-based scheme produces the

corresponding tripping signal within the range of 2.579 ms to 3.63 ms with an average

time of 2.91 ms. Therefore, the real-time SIL testing permits a high level of confidence

that the proposed schemes are feasible for real-time protection applications. Furthermore,

a sensitivity analysis conducted for different hardware specifications revealed that the

proposed schemes eliminate the need for expensive computers, facilitating their practical

implementation.
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Fault Location Scheme for SCs in

AC Systems

In transmission networks, when a fault occurs on a feeder, protection systems initiate

the selective tripping of the corresponding CBs in order to prevent the adverse effects on

power system operation. Following fault detection, the precise estimation of the fault

location is of paramount importance in order to facilitate rapid restoration of the system

and minimise downtime [41]. Specifically, for SCs, fault location is a challenging task

due to the unique properties of superconductors. SCs exhibit variable resistance, which

has a significant impact on the fault current and voltage signatures, thereby affecting the

performance of fault location methods that rely on voltage and current measurements.

Furthermore, the accurate estimation of fault location on SCs is crucial due to their

complex configuration (i.e., cooling liquid tubes and tapes) [9]. SCs are often buried

underground or encased in protective shielding and are composed of multiple layers and

parallel strands of superconducting wire, making the inspection and maintenance process

difficult. Therefore, fault location on SCs is a crucial and challenging task that requires

specialised techniques which shall be adjusted to their specific structure.

This chapter presents the development of a fault location scheme for SCs in AC systems,

utilising the transformation of time-domain fault current and voltage measurements to the

time-frequency domain, and exploiting the advantages of Convolutional Neural Network

(CNN) algorithms to estimate the fault position along SCs. The proposed fault location

scheme has been tested using the verified model of an AC SC presented in Chapter 2

and the AC network presented in Chapter 3. The results revealed that the proposed
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fault location scheme is able to provide precise fault localisation for a wide range of

fault scenarios, including different fault types, fault positions, fault resistance values,

and fault inception angles. Furthermore, the robustness of the developed scheme has

been verified against different influencing factors, accounting for very small increments of

fault location, additive noise, and different values of sampling frequency. For validation

purposes, the effectiveness of the CNN-based algorithm has been compared with other

data-driven algorithms and the relevant advantages have been highlighted.

5.1 Review of Fault Location Techniques in AC Systems

In recent years, a variety of fault location methods have been reported in the literature,

proposing different approaches such as impedance-based methods [165,166], TW tech-

niques [167–170], time-frequency domain reflectometry [171,172], and sparse measurement

techniques [173,174]. Figure 5.1 quantifies the research trend of fault location schemes

for MV AC systems, as reported in the recent literature [175].

Figure 5.1: Research trend of fault location schemes reported in literature for the last
few years.

As it can be inferred from the presented trend, AI is gaining popularity as a means

of fault location in power systems, with a considerable number of researchers focusing

on developing fault location schemes based on AI. As power systems become more

complex, the traditional fault location methods may not be able to handle the increased

complexity and uncertainty of power grids. AI algorithms, as discussed in Chapter 4,

are particularly well-suited for handling large amounts of data and identifying hidden

patterns and correlations. Furthermore, AI-based methods can continuously learn and
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adapt to changing conditions in the power system, making them ideal for addressing their

dynamic nature. Consequently, in more recent years, the trend of fault location schemes

has shifted towards the AI–based and hybrid techniques (techniques which combine

conventional methods such as impedance-based methods with AI algorithms) to improve

the reliability, efficiency and accuracy of fault location applications.

The following sub-sections present a review of conventional and AI-based fault location

schemes that have been proposed in the literature for MV AC systems. The proposed

methods are evaluated based on of their accuracy in fault location estimation, robustness

to noise, cost, and practical feasibility. Additionally, the potentials and limitations of

such methods for AC systems with SCs are thoroughly discussed.

5.1.1 Impedance-based methods

The impedance-based approach is one of the earliest and most widely used techniques

in the field of fault location. Impedance-based methods apply Kirchhoff’s laws and

their operating principles are based on the calculation of overall impedance between the

beginning of the line and the faulted point [175]. With respect to input measurements,

most studies use the voltage and current phasors for the estimation of fault location.

However, [176] presents two alternative approaches, one based solely the fault current

phasors and the other using only the current magnitude, with the former resulting in

more accurate fault localisation. Moreover, studies conducted in [177] introduce an

impedance-based fault location scheme that utilises solely voltage measurements from

two points along the line. For this scheme, the placement of the measuring devices

is not considered critical, enhancing its suitability for grids with bi-directional power

flow. An impedance-based fault location scheme for systems with ICGs is proposed

in [178]. The developed scheme calculates the impedance matrix based on pre-fault and

during fault voltage and current synchronised measurements obtained from buses and

the ICG terminal. The method has been found to be accurate under shunt fault types

and addresses the capacitive effect of distribution lines and the bi-directional nature

of ICGs. The same approach is proposed in [179], obviating the need for syncrhonised

measurements by adopting an iterative load flow algorithm which estimates the unknown

synchronisation angle. The direct circuit analysis is implemented by authors in [180]

and [181] for the fault localisation of single-phase and phase-to-phase faults, respectively,

in three-phase unbalanced systems. The proposed methods employed the matrix inverse
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lemma in order to simplify the calculation of the fault location equation. The simulation

results validated the effectiveness of the algorithms to precisely estimate the fault location

and the robustness to the load uncertainty. However, the verification studies have

not considered highly-resistive faults which are rendered the most challenging for fault

location problems.

Moreover, there are studies which propose variations of the impedance-based method,

including the utilisation of wide-band frequency analysis and Clark’s transformation

in a distributed parameter line mode [182] and the formation of fifth-order polynomial

equations, with a focus on incorporating the capacitive effect into the equations [183].

This effect is explored further in [184], where faults are classified as either ground or

line-to-line, and in [185], where the method is tested on an underground cable. In an

effort to make the impedance-based method more suitable for active grids and improve

accuracy, the golden section technique is suggested as a better analysis tool than the

traditional fixed step technique [186].

The impedance-based methods constitute an easy-to-implement fault location solution

and present adequate performance against resistive faults. Furthermore, impedance-based

methods take into consideration the heterogeneity of the line in their calculations by

analysing each section individually [175]. However, such methods are affected by loading

conditions during the faults [187], and their applicability for systems with high penetration

of ICGs has not been studied extensively. In this context, hybrid fault location methods

have started to be investigated which combine the impedance-based techniques with AI

tools [188, 189]. With respect to the fault location on SCs, as impedance-based fault

location schemes rely on the measurement of electrical impedance in the cable system

to determine the location of faults and considering the rapid change in the resistance

of SCs during quenching, the accurate determination of the fault location based on

impedance-based methods is challenging.

5.1.2 Travelling wave-based methods

TW-based methods have been proven to provide accurate estimation of the fault position

along transmission lines by identifying the TW reflections and the time required for

the wave to travel to the measuring point. In TW-based methods the fault location is

estimated based on measurements acquired either from a single end or from both ends of

the faulted circuit. The single-end methods eliminate the need for communication and
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synchronisation between devices. The selection of each approach is a trade-off between

the cost and the accuracy requirements.

The research conducted in [190] introduces a TW-based fault locator which depends

on the first 2 wave arrival times in each line terminal to provide precise fault location

estimation. Although there is reduced fault location estimation error under various

fault conditions, the method demands sampling frequency within the range of MHz,

compromising its feasibility for most commercial devices. A TW-based fault location

method which combines the advantages of the DWT and CWT is presented in [191].

Based on the proposed approach, the faulted section is identified utilising the DWT of

the synchronised voltage measurements. At the second step, if the identified fault occurs

between measuring devices, the exact location is estimated by the DWT, otherwise the

CWT is employed. The results showed accurate estimation of the fault location and

robust performance against highly-resistive faults. A fault location scheme for hybrid

feeders (i.e., overhead and coaxial power cable lines) is developed in [192] based on

the use of the Electromagnetic Time-Reversal (EMTR) technique. According to this

technique, measurement of the fault-originated electromagnetic transients are acquired

from a single observation point, the back injection of the time-reversed recorded signal is

simulated and the fault location is estimated trough a trial and error process by changing

the fault location and impedance variables. The results validated the accurate fault

location estimation, but the effectiveness of the method is based on the assumption

that the system topology remains unchanged during the fault. Additionally, authors

in [193] propose the construction of appropriate mother wavelets which comply with the

admissibility criteria of the CWT. However, the obtained results showed high percentage

error in the fault location estimation.

TW-based techniques provide accurate fault location estimation for a variety of fault

conditions, independently of the network parameters. However, their implementation

is accompanied by the installation of specialised and costly equipment (i.e., sensors,

GPS, etc.), utilised for the recording of the transient waves, and usually require high

sampling frequency in order to achieve high accuracy on the fault location estimation.

Furthermore, the effectiveness of TW-based fault location schemes is affected by the

amount of junctions existing between the measuring point and the faulted point, with

more junctions resulting in a lower quality of fault signatures and, thus, recorded data.

For the case of SCs, there are no reported studies in the literature which investigate
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the utilisation of TW-based methods for SCs as current modeling techniques for SCs

do not provide the necessary level of detail and granularity to effectively study the TW

phenomenon.

5.1.3 Sparse and distributed measurements methods

The increasing penetration of ICG-based technology has created the necessity for contin-

uous network monitoring and installation of sophisticated metering equipment. On that

front, extensive research has started to be pursued regarding sparse measurements-based

fault location schemes. Such techniques are based on the comparative analysis between

actual voltage measurements acquired from multiple points along the network, and

simulated voltage signals for all potential fault cases. The fault location is estimated

according to the optimal match between the two voltage signals.

A fault-location scheme based on the monitoring capability of smart metering devices

and on short-circuit theory is introduced in [194]. The main idea of the developed

algorithm is to calculate the bus impedance matrix and the fault current at every bus,

utilising voltage measurements before and during the fault occurrence. According to

the results, the method can precisely indicate the fault location in most cases, however,

the fault location estimation error is not eliminated during resistive faults. A similar

methodology is presented in [195] which further addresses the challenge of the multi-

source unbalanced nature of RES within the system. However, the main drawback of the

proposed method stems from the need of synchronised voltage and current measurements

from each generating unit and substation, increasing the cost dramatically. Many

reported methods employ Intelligent Electronic Devices (IEDs) for the measurements

acquisition [196–198]. Authors in [198] reduce the number of IEDs by proposing a fault

location method based on the virtual nodal injection of negative sequence current and the

Bayesian Compressive Sensing (BCS) theory. The method has been found to successfully

locate the fault under the influence of many adverse factors (i.e., fault resistance, noise,

bi-directional flows), however its effectiveness has been confirmed only for asymmetrical

faults.

Fault location techniques based on sparse-measurements establish a simple and fast

fault location solution which address the effect of RES. However, the influence of the

monitoring devices distribution on the fault location accuracy is the major challenge of

these methods. Insufficient and low cost devices lead to a compromise of fault location
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scheme accuracy and applicability. In this context, many researchers have started to

investigate optimisation methods for the device allocation with minimum cost [199]

and combine sparse measurements with other methods such as the work conducted

in [200, 201]. However, these methods require complex calculations and increase the

difficulty in the implementation. An important prerequisite for the wider adoption of

such methods is to overcome the high cost of required hardware and the computational

burden. Therefore, considering the aforementioned drawbacks of sparse measurements

fault location methods, they are not considered an adequate solution for MV systems

with SCs.

5.1.4 Reflectometry

Reflectometry-based fault location techniques identify the characteristics of electrical lines

by monitoring reflected waveforms. The utilised measurements in such methods can be in

frequency or time-domain [202]. The main idea of reflectometry is to inject a low-voltage,

high frequency signal to the faulted line and estimate the fault location with respect

to the detected response (i.e., resulting current and voltage waveforms). An inductive

directional coupling Spread Spectrum Time Domain Reflectometry (SSTDR) system is

proposed in [171] for the fault location along power cables. The method incorporates a

signal generator for the injection of the high frequency reference signal into the cable. A

detection device captures the reference signal along with the reflected signal and estimates

the fault location by calculating their cross correlation. The method has been verified

experimentally, utilising a section of test cable and the results showed effective accurate

fault location estimation.

Furthermore, a few reflectometry-based methods are reported in the technical lit-

erature for fault location estimation on SCs. Specifically, a time-frequency domain

reflectometry has been reported in the literature for the real-time abnormality diagnosis

(i.e, fault detection and fault location) of SCs [203]. However, the proposed scheme

requires the addition of measuring components necessary to measure independently

the reflected signals generated by each phase, resulting in higher cost. Furthermore,

validation studies do not consider the dynamically changing impedance of the layers

of SCs during quenching. Additionally, authors in [204] propose a Stepped Frequency

Wave Reflectometry (SFWR) method for the identification of the fault location in joints,

dielectric, and other SC parts. The cable under-test is a single-phase 22.9 kV/50 MVA
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SC with length of 7 m. The resulting fault location estimation error is approximately

4.55%, while the proposed method has not been scrutinised against a variety of fault

conditions, accounting for different fault types, locations, or highly-resistive faults. The

same authors investigate the challenge of the fault localisation on SCs in [205], by applying

a fundamental Time–Frequency Domain Reflectometry (TFDR) approach on a similar

prototype SC with length of 7 m. The accuracy of the fault location identification is

increased. However, the fault location estimation error is affected by the SC temperature

and the performance of the developed method has not been confirmed for a wide range of

fault scenarios. An improved TFDR method incorporated with filter-Ensemble Empirical

Mode Decomposition (EEMD) noise reduction is presented in [206] for a 50 m three-phase

SC. The obtained fault location estimation error is approximately 0.01%. Nevertheless,

the conducted work considered only the case of a solid three-phase fault.

Despite the accurate estimation of the fault location, the need for external equip-

ment and high sampling rates can be taken as drawbacks of these methods. The

reflectometry-based schemes require external equipment (i.e., signal generator, fault

recorder), constituting an expensive fault location solution.

5.1.5 AI-based methods

In response to the challenges posed by changes in power grids, the energy sector has

sought more advanced approaches to fault management, taking into account both the

physical infrastructure and the information layer. To that end, data-driven AI techniques

have gained popularity due to their ability to uncover quantities that are not easily

observable through direct measurements and to extract patterns from available data.

Relevant deployment of AI technology for fault location applications include the

utilisation of CNNs [207], LSTMs [208], SVM [209], Tree-based techniques such as

RF [210, 211], and XGBOOST regressors [212]. Furthermore, by taking advantage

of tangible benefits provided by AI techniques, many hybrid fault location schemes

have been proposed in the technical literature which are based on the combination

between feature extraction techniques, such as the WT, to extract useful insight from

the acquired measurements and AI algorithms to perform learning-based estimation

of the fault location [213]. Additionally, besides the WT, there are other types of

transformations used with AI models. One commonly used is the Clark–Concordia

transformation [214,215]. Furthermore, many researchers propose hybrid techniques that
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combine the advantages of different AI algorithms. Indicatively, in [131] the combination

of SVM and ANN algorithms has been presented, where the SVM classifier is utilised

for the fault type classification and the ANN regressor for the estimation of the fault

location. All these hybrid AI-based fault location methods provide high fault location

accuracy and are robust against a variety of fault conditions. However, most of the

reported methods have been evaluated based only on the testing dataset and do not

consider previously unseen scenarios out of the initial dataset for the validation of the

algorithm generalisation capability.

Additionally, the enhancement of conventional fault location methods performance

with pattern recognition techniques has started to gain increasing interest in the literature

[216]. One of the widely used pattern recognition techniques is image analysis which

has a plethora of interesting features for power system applications and is considered

an important field within AI. Based on the image analysis techniques, the images are

converted into binary format in order to be digitally processed and analysed for the

extraction of the useful information [217]. The image analysis technique has several

advantages for feature extraction in power systems that can be utilised to perform accurate

fault location. Specifically, for power system applications, image analysis techniques

can be utilised as powerful tools to extract crucial features related to the power system

conditions based on historical data, eliminating the need for expensive phasor synchronous

measurements equipment. Image analysis techniques present high-dimensional data in a

compact form, making it easier to identify patterns and features, reduce the data size

and computational complexity by compressing the signals, and can be combined with AI

algorithms to improve the accuracy of feature extraction, regression, and classification

problems. The most powerful algorithm for image processing is the CNN [218]. CNNs

have been widely used in image analysis tasks like Image recognition, Object detection,

and Segmentation [219], [220], [221] as they present increased capability to extract spatial

features on the analysed images (i.e., spatial features refers to the arrangement of pixels

and the relations among them). However, there is a very limited number of publications

for fault location problems which exploit the potential of image analysis [222].

AI fault location schemes may face difficulties regarding data availability and com-

putational requirements. To address these challenges, appropriate data pre-processing

and feature selection or dimensionality reduction techniques can be adopted to reduce

the need for large volumes of training data [212]. As the fault location on SCs can be
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considered a difficult task with increased complexity, AI-based techniques present great

potential for addressing this challenge.

5.1.6 Assessment of review

This literature review of various fault location methods highlighted that the key factors

contributing to a reliable fault location scheme are the increased accuracy, reduced

complexity, lower cost, and reduced computational burden. Table 5.1 demonstrates a

comparison of different fault location methods in terms of their features, such as accuracy,

cost, robustness against noise, and practical feasibility (i.e., ease of implementation,

required equipment, computational power). A desirable fault location scheme should

possess high accuracy, high robustness against noise, high practical feasibility, and low

cost.

As power systems evolve, methods such as the impedance-based schemes confront

the problem of accuracy, especially for complex system topologies. To compensate for

this, other methods, such as TW-based schemes and sparse-measurement-based methods

are employed, but these methods increase the cost and reduce practical feasibility due

to the need for synchronised measurements and expensive equipment. Overall, the

adoption of AI-based methods has started to be considered the best alternative in fault

location applications, presenting unique advantages which outweigh the challenges of

the conventional methods. Based on the literature review and summarising Table 5.1,

AI-based methods constitute the best trade-off between accuracy, cost and practical

feasibility. AI fault location schemes present increased learning capabilities which can

lead to accurate fault location estimation, do not require expensive equipment, and do

not present complexity in terms of their implementation.

Table 5.1: Comparison of different features of fault location schemes.

Method Accuracy Cost Noise robustness Practical feasibility

TW high high medium low
AI high low high medium

Impedance low low medium high
Sparse meas. high high medium low

Furthermore, the conducted review revealed that despite the abundance of the

proposed fault location schemes in the literature, the fault localisation on AC SCs has not

been extensively studied [9]. Particularly, for the case of SCs, the precise identification

of fault location is very important considering their complex configuration (i.e., cooling
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liquid tubes, tapes, etc.). Initially it has been highlighted that even though all the

reported methods have their own advantageous features, their applicability is limited

when it comes to SCs due to the unique electro-magneto-thermal properties of HTS

tapes and quenching. There is a limited number of studies based on the reflectometry

approaches for the fault localisation on SCs. However, the proposed methods have not

been validated for multiple fault conditions (i.e., various fault locations along the SC,

highly-resistive faults), SCs with longer length, and other factors which affect the accurate

estimation of the fault position such as the noisy measurements.

Driven by this research gap, this chapter proposes a fault location method for AC

MV systems with SCs. Considering the recent advancements in AI, and the limitations

of conventional methods, the developed fault location scheme constitutes a data-driven

method which forms the fault location estimation on AC SCs to a regression problem,

utilising AI techniques and powerful feature extraction tools such as image analysis. The

detailed methodology for the development of the proposed scheme will be presented in

the following sections.

5.2 Development of the Proposed Fault Location Scheme

This section presents the development of a novel data-driven scheme for fault localisation

in power grids which incorporate AC SCs. The operating principles of the developed

fault location scheme are based on the combination of image analysis techniques with AI

tools which are deployed to estimate the fault location along the length of the AC SC.

Specifically, the proposed scheme exploits the advantages of CNNs to estimate the fault

position along AC SC’s length. The operation of the proposed fault location scheme

is based on single-ended current and voltage measurements from one terminal of the

AC SC, which are available locally from the measuring equipment, eliminating the need

for synchronised measurements from both ends. Implementing a single-end scheme is

often more practical and cost-effective in real-world applications as it is less complex

in terms of hardware and data gathering. The acquired measurements are transformed

from time-domain to time-frequency domain as part of the feature extraction stage. The

development of the proposed fault location scheme has been performed in distinct stages

which are analysed in the subsequent subsections.
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5.2.1 Stages of the proposed fault location scheme

The 4-stages of the development of the fault location scheme are illustrated in Figure 5.2.

To aid the clarity of the description, a scenario of an LLL-G solid fault, at 50% along the

AC SC’s length, is utilised.

Figure 5.2: Flowchart of the development process of the CNN-based fault location scheme.

5.2.1.1 Stage I - Signal acquisition

Measurements of three-phase voltages and currents from one end of the AC SC are

captured with sampling frequency of 20 kHz (the investigation of different sampling

frequency values will be presented in subsection 5.4.4). In these studies it has been

assumed that 5 cycles (1 pre-fault cycle, to avoid fluctuations and overlap of the pre-fault

and during fault data, and 4 during the fault cycles) of data would be more than adequate

for this application [223]. The recorded data are filtered via low pass anti-aliasing filters

as per the Nyquist criterion, normalised and packaged into appropriate time windows

to be processed for spectral analysis at the following stage of the algorithm. For the

development of the fault location scheme the same model developed in Chapter 3 and

depicted in Figure 5.3 has been utilised.

Figure 5.4 shows the filtered time-domain fault current and voltage traces for the

tested fault case which represent the measurements utilised for the operation of the

developed fault location scheme. The fault occurs at t = 3.06 s. Figure 5.4a shows 1
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Figure 5.3: Tested AC network incorporating SC and a fault location scheme deployed at
Bus 1.

pre-fault cycle and 4 during fault cycles of the total current flowing through the SC and

Figure 5.4b demonstrates the voltage obtained at Bus 1.
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Figure 5.4: Voltage and current signatures during an LLL-G solid fault at 50% of the
AC SC’s length: a) three-phase currents, b) three-phase voltages.

5.2.1.2 Stage II - Signal to image transformation

At this stage, the time-domain signals (i.e., voltages and currents) are transformed to

time-frequency domain in order to produce 2D images. Specifically, the fault current and

voltage signatures, are utilised to produce the corresponding spectrograms, which are

plotted within a time-frequency plane. Considering the advantages of image transforma-

tion discussed in 5.1.5, this method has been selected as a powerful feature extraction

tool.

To compute the time-dependent spectrum, the non-stationary signal is divided into

shorter segments of equal length. The length of each segment specifies the time resolution

and must be smaller or equal to the signal duration. After relevant studies it has been

found that image analysis provides better results for that specific problem when each
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signal is divided into 8 segments of 250 samples each, with 50 samples overlap. A window-

based Short-Time Fourier Transform (STFT) is applied on each segment to compute

the corresponding spectrum [224]. Finally, the segments spectra are concatenated to

construct the spectrogram [224], which enables the localisation of frequency in time,

by means of a magnitude-dependent colormap. The STFT of a non-stationary signal,

using a window function c(t) which is centred at t = τ , is given by (5.1). Furthermore,

Figure 5.5 shows the spectrograms derived from the three-phase currents and voltages of

Figure 5.4.

STFT (τ, f) =

∫
y(t) · c(t− τ) · e−i2πftdt (5.1)

where y(t) is the time-domain signal and f is the frequency.

Figure 5.5: Current and voltage spectograms for an LLL-G solid fault at 50% of the AC
SC’s length.

5.2.1.3 Stage III - Image pre-processing

The resulting spectrograms with dimension (H × W ), where H is the height and W is

the width of the image, are stacked together to form a multi-layer image with dimensions

(L × H × W ). Parameter L denotes the number of over-layered spectrograms which

corresponds to L = 6 in this application. The resulting stacked image will be used

as input to the AI model at the following stage. Figure 5.6 shows a stacked image

stemming from the over-laying of the spectrograms produced by the three-phase current
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and three-phase voltage signatures depicted in Figure 5.5. Image stacking is used in image

analysis techniques to combine multiple images in order to capture more information,

reduce the data load and thus computational effort, and increase the generalisation

capability of the AI model [225]. For clarity, the sequence of stacking the voltage and

current spectrograms has no impact on the performance of the developed scheme.

H

W

L

Figure 5.6: Stacked image composed of 3 current and 3 voltage spectrograms.

5.2.1.4 Stage IV - Estimation of fault location

At the final stage of the development process the fault location is estimated. The stacked

images for all the fault scenarios are utilised as inputs to the AI-based network. The

fault localisation on the AC SC has been formed as a regression problem where the AI

network provides the value of the estimated fault location at its output.

A comprehensive analysis of different AI-based networks has been conducted and

eventually the results revealed that CNNs are the most robust and effective algorithms

for image processing. Furthermore, the motivation of utilising a CNN algorithm is their

ability to capture sequence patterns in the input data.

Specifically, a CNN is a type of ANNs which presents outstanding performance when

dealing with image analysis tasks. CNNs combines the ability of feature extraction and

pattern recognition and is capable of preserving the spatial or positional relationships

between input data points. Therefore, CNNs have have been widely applied to power

systems applications for fault management [207,226,227]. Typically, a CNN is constructed

by an input layer, a series of convolution layers with filters (kernels), pooling, and Fully

Connected (FC) layers.

The convolution layer is utilised to extract local features of the input images, by
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applying the convolution operation. In principle, the convolution operation is a linear

operation of multiplication and addition of convolution filters (kernels) with the corre-

sponding elements of the input feature map. The first convolution layer is utilised for

the extraction of low-level features of the input images, accounting for image edges and

gradient orientation. The addition of more convolution layers aims to capture high-level

features are captured providing an overall understanding of the input images. The

convolution operation is depicted in Figure 5.7.

Figure 5.7: Overview of the convolution operation.

If the input data are formed to matrix n × n and the convolution kernel is k × k,

the output is an m ×m matrix. The dimensional relation of the matrices is given by

(5.2) [228]:

m = n− k + 1 (5.2)

The convolution operation is based on the formula described in (5.3):

Y l
o = f(

∑
i∈m

Y l−1
o ·K l

io + bl) (5.3)

where Y l
o denotes the output of the l − th layer; Y l−1

o is the input of the l − th layer;

B is the offset; K denotes the kernel element; and f is the activation function. In the

presented research ReLU has been selected as the activation function for the convolution

layers.

The purpose of the pooling layer is to scale data from the previous layer (subsampling

of convolution layer), reduce the data dimension, and consequently reduce the computation

time and prevent over-fitting [222]. Figure 5.8 illustrates the pooling process.

There are two groups of pooling models used in CNNs which are known as the average

model and the maximum model. The average pooling model returns the average value of

the feature map portion covered by the convolution kernel and its operation is expressed
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Figure 5.8: Pooling process in CNN model.

according to (5.4) [226], while the maximum pooling model calculates the maximum

value of the feature map portion covered by the convolution kernel and its operation is

described by (5.5) [226].

Sij =
1

d2
(

d∑
i=1

d∑
j=1

Fij) + b (5.4)

Sij =
d

max
i=1,j=1

(Fij) + b (5.5)

where F denotes the input feature map, b is the bias parameter, d is the dimension of the

pooling matrix, and S is the calculated subsampling matrix after the pooling process.

The proper pooling model for an image analysis problem should be selected by

considering the specific features of the images (i.e., size and scale of objects in the image,

presence of strong edges, and level of noise) [229]. In the presented work the max pooling

model has been utilised because it tends to perform better in problems where the features

are highly localised, with distinctive peaks and thus max pooling can effectively identify

the maximum values in the spectrograms.

The output of the convolution and pooling layer is fed into a linear fully connected

feed forward layer, where the associated activation function provides the desirable output.

The output of the CNN model is the predicted fault location CF , with the error of the

fault localisation calculated according to (5.6):

errorFL[%] =

∣∣∣∣CF −A.CF

LSC

∣∣∣∣ · 100(%) (5.6)
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where A.CF is the actual fault location and LSC is the total length of the SC.

5.3 Selection of CNN Model

One of the main factors which determine the accuracy of the fault location scheme is

the architecture of the utilised CNN model. On that front, several well-known CNN

architectures, proposed by the computer vision community, have been evaluated in order

to select the one which provides the most accurate fault location estimation [230]. An

iterative simulation-based fault analysis was conducted in order to acquire the voltage and

current measurements considering the system presented in Figure 5.3 and different fault

types accounting for LLL, LLL-G, LL, LL-G and L-G, different values of Rf , (within the

range of 0 Ω up to 300 Ω), and varying fault position (fault location with an increment of

10 % of the AC SC’s length). The captured voltage and current fault signatures measured

at Bus 1 (Figure 5.3) were utilised to produce the corresponding spectrograms and create

the training data base.

For data pre-processing, the PyTorch open source ML library has been utilised.

Consequently, a dataset of 1750 transient events has been created, from which 60% was

used to train the CNN models, 20% was used for validation purposes, and the remaining

20% were used for testing purposes.

For the selection of i) the optimum hyperparameters, accounting for the batch size

and the learning rate, and ii) the best training model of each CNN model, the GS 5-fold

CV technique has been adopted to result in a CNN model with the best performance

and reduce over-fitting on the training data (the process of the GS 5-fold CV technique

has been explained in Chapter 4). For the selection of the CNN model hyperparameters,

the mean fault location estimation error has been considered as a 5-fold CV score and it

is given by (5.7):

errorFL[%] =
1

N

N∑
i=0

|( ŷi − yi
LSC

)| · 100(%) (5.7)

where ŷi corresponds to the estimated fault location, yi denotes the actual fault location,

and N is the total number of data points.

The CNN models have been trained by the back propagation gradient descent method

and the Adam optimiser has been utilised as the optimisation algorithm. The final

trained CNN models (with the best combination of hyperparameters) were tested on the

testing dataset, utilising again the mean fault location estimation error, errorFL, as the
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evaluation metric. For each CNN model, the combination which results in the lowest

errorFL for the testing dataset has been selected. The obtained results are presented in

Table 5.2.

Table 5.2: Tested CNN models and their performance on the testing dataset

CNN model errorFL(%)

Inception-v3 0.74
ResNet50 3.16
ResNet101 2.76
ResNet152 3.02
Densenet 4.20
VGG11 0.97
VGG13 1.25
VGG16 0.88
VGG19 0.98

It is worth highlighting that the Inception-v3 CNN model with the following hyper-

parameters: batch size = 4, learning rate = 0.001, presented the lowest errorFL and

subsequently was selected as the best CNN model.

The layers of the Inception-v3 model are demonstrated in Table 5.3, along with the

input size of each layer. The input image is 510× 580 with 6 channels which correspond

to the number of spectrograms (three-phase currents and three-phase voltages). At the

output of the developed CNN model there is a fully-connected layer which yields the

numerical value of the predicted fault location as a percentage of the AC SC length.

Table 5.3: The outline of the proposed CNN model

Layer type Input size

conv 510× 580× 6
conv 254× 289× 32
con padded 252× 287× 32
pool 252× 287× 64
conv 125× 143× 64
conv 123× 141× 80
conv 61× 70× 192
3× Inception 61× 70× 288
5× Inception 30× 34× 768
2× Inception 14× 16× 1280
pool 14× 16× 2048
fully-connected 1× 1× 2048
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5.4 Simulation Results and Validation

To examine the accuracy of the proposed fault location scheme, its performance has been

evaluated under the occurrence of different fault scenarios. Furthermore, the impact

of Rf , small increments of fault location, different fault inception angles, noise, and

sampling frequency on the effectiveness of the proposed scheme has been investigated.

The simulation-based results are analysed in the following subsections.

5.4.1 Fault location results

To achieve an overall performance assessment of the proposed scheme, its fault location

estimation capability was evaluated based on additional faults, which have not been

distributed equally along the AC SC length in contrary to the scenarios included in the

initial dataset. Furthermore, fault resistance values up to 300 Ω have been investigated

(for this test Rf values which are not part of the initial dataset have been also considered).

The purpose for this is that any fault location scheme must present increased generalisation

capability and be able to provide accurate fault location estimation with inputs not

necessarily similar to the training dataset. Table 5.4 shows the results of the fault

location estimation by presenting the values of the actual fault location, the predicted

fault location produced at the CNN output, and the derived errorFL calculated by (5.6).

The results validate the effectiveness of the proposed scheme. Specifically, the lowest

errorFL is 0.01%, the maximum error is 1.18% and the mean error, errorFL, of all

scenarios in Table 5.4 is 0.34%. It is important to highlight that the developed fault

location scheme achieves accurate fault location estimation even in the case of close-up

faults (i.e, faults occurring close to the head or end of the AC SC) and under the influence

of highly-resistive faults.

Furthermore, Figure 5.9 presents the performance of the proposed fault location

scheme under the influence of LLL-G faults occurred at every 5% of the SC’s length for

different values of Rf . The sensitivity analysis with respect to SC’s length shows that

the errorFL lies within the range of 0.009% and 1.108% and consequently verifies the

increased accuracy in fault location estimation.
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Table 5.4: Fault location errorFL for the CNN-based fault location scheme.

Fault type Rf (Ω) A.CF (km) CF (km) errorFL (%) Fault type Rf (Ω) A.CF (km) CF (km) errorFL (%) Fault type Rf (Ω) A.CF (km) CF (km) errorFL (%)

LLL-G 0 0.4 0.36 0.4 LLL 0 0.52 0.559 0.39 LL-G 0 7.8 7.9 1
LLL-G 0 2.2 2.212 0.12 LLL 0 2.39 2.397 0.07 LL-G 0 2.4 2.48 0.8
LLL-G 0 8.7 8.62 0.8 LLL 0 7.76 7.77 0.1 LL-G 0 2.6 2.62 0.2
LLL-G 0 9.96 9.961 0.01 LLL 0 6.6 6.622 0.22 LL-G 0 8.95 8.915 0.35
LLL-G 2 5.2 5.31 1.1 LLL 2 3.13 3.149 0.19 LL-G 2 9.97 9.865 1.05
LLL-G 2 8.4 8.41 0.1 LLL 2 7.14 7.112 0.28 LL-G 2 0.91 0.816 0.94
LLL-G 5 8.7 8.72 0.2 LLL 5 9.9 9.908 0.08 LL-G 5 6.3 6.29 0.1
LLL-G 5 2.1 1.998 0.2 LLL 5 7.97 7.915 0.55 LL-G 5 0.9 0.815 0.85
LLL-G 15 3.6 3.69 0.9 LLL 15 4.99 5.1 1.1 LL-G 15 1.8 1.75 0.5
LLL-G 15 4.2 4.25 0.5 LLL 15 8.37 8.35 0.2 LL-G 15 2.71 2.627 0.83
LLL-G 200 3 3.009 0.09 LLL 200 2.48 2.448 0.32 LL-G 200 1.61 1.54 0.7
LLL-G 200 9.2 9.221 0.21 LLL 200 5.98 5.978 0.02 LL-G 200 9.52 9.487 0.33
LLL-G 250 9.98 9.981 0.01 LLL 250 9.13 9.161 0.31 LL-G 250 4.48 4.592 1.12
LLL-G 250 0.98 9.923 0.57 LLL 250 2.99 3.05 0.6 LL-G 250 1.13 1.098 0.32
LLL-G 300 0.14 0.146 0.06 LLL 300 0.45 0.454 0.04 LL-G 300 0.02 0.024 0.04
LLL-G 300 6.17 6.156 0.14 LLL 300 4.32 4.441 0.9 LL-G 300 8.92 8.941 0.21

Fault type Rf (Ω) A.CF (km) CF (km) errorFL (%) Fault type Rf (Ω) A.CF (km) CF (km) errorFL (%)
LL 0 1.64 1.644 0.04 L-G 0 6.9 6.924 0.24
LL 0 2.67 2.648 0.22 L-G 0 1.81 1.79 0.2
LL 0 7.45 7.464 0.14 L-G 0 2.7 2.68 0.2
LL 0 9.39 9.393 0.03 L-G 0 3.33 3.324 0.06
LL 2 6.49 6.46 0.3 L-G 2 2.25 2.264 0.14
LL 2 8.15 8.151 0.01 L-G 2 5.5 5.618 1.18
LL 5 9.21 9.131 0.79 L-G 5 6.38 6.37 0.1
LL 5 5.14 5.141 0.01 L-G 5 7.31 7.23 0.8
LL 15 4.29 4.275 0.15 L-G 15 9.79 9.781 0.09
LL 15 7.11 7.116 0.06 L-G 15 1.11 1.09 0.2
LL 200 0.71 0.693 0.17 L-G 200 4.4 4.418 0.18
LL 200 9.54 9.561 0.21 L-G 200 9.99 9.96 0.3
LL 250 1.38 1.401 0.21 L-G 250 3.99 3.988 0.02
LL 250 9.79 9.831 0.41 L-G 250 8.48 8.501 0.21
LL 300 0.05 0.052 0.02 L-G 300 4.11 4.108 0.02
LL 300 6.99 6.954 0.36 L-G 300 0.44 0.437 0.03
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Figure 5.9: Absolute percentage of fault location error for LLL-G faults at each 5% of
AC SC’s length for different values of Rf .

5.4.2 Effect of small increments of fault distance

An incremental change of 10 m in fault location has been investigated in order to assess

the sensitivity of the proposed scheme to small variations of the actual fault position. The

aim of this analysis is to investigate that the proposed fault location scheme is accurate

for small increments of fault location and consequently against the stochasticity of the

sampling instant.

Specifically, the effectiveness of the fault location scheme has been evaluated for fault

positions within the range of 5.9 km to 6.1 km with steps of 10 m. By changing the

fault location by a small increment of 10 m, the influence of randomly varied sampling is

investigated. Figure 5.10 shows the percentage fault location errors derived for this range
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of fault positions during an LLL-G solid fault. It is evident that the errorFL fluctuates

between 0.95% to 0.1% which confirms the capability of the algorithm to provide high

estimation accuracy for very small increments of fault location (in the range of 10 m).
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Figure 5.10: errorFL with respect to 10m increment of fault distance.

5.4.3 Effect of fault inception angle

In order to scrutinise the performance of the CNN-based scheme under different values

of fault inception angles δf , an LL-G fault has been applied at 65% of the AC SC’s

length for δf from 0 up to 180 degrees with a step of 30 degrees. The main scope of this

investigation is to evaluate the immunity of the fault location scheme to variations in the

δf and subsequently in the time instant in the electric cycle when the fault occurs. The

acquired results are presented in Figure 5.11 and confirm that the estimation capability

of the proposed scheme is not affected by the changes in fault inception angle, yielding

errorFL equal to 0.27% which remains constant with respect to the changes in fault

inception angle.
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Figure 5.11: Impact of fault inception angle δf to fault location accuracy.
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5.4.4 Effect of sampling frequency

The fault location scheme has been additionally tested with respect to the sampling

frequency. In particular, the performance of the proposed scheme was evaluated for a

series of testing scenarios, considering sampling frequencies from 20 kHz (the sampling

frequency chosen for the presented studies) down to 5 kHz. Table 5.5 shows the resulting

errorFL from the conducted studies for some representative scenarios. As it can be

seen, the fault location estimation accuracy is affected by the value of the sampling

frequency. As the value of the sampling frequency decreases below 20 kHz, errorFL

presents a rapid increase and consequently the performance of the developed scheme is

jeopardised. In particular, for 5 kHZ the maximum, errorFL, is 1.991% and the mean

error, errorFL, is 1.39%, while for 10 kHZ the maximum errorFL is 1.321% and the

mean error, errorFL, is 0.9445%. The mean error, errorFL, for the same scenarios with

20 kHZ is 0.1321%. Considering the complex structure of SCs, such an increase in

errorFL might have a great impact on the repairing process. Therefore, the obtained

results reveal the requirements and the limitations of the developed scheme regarding

the sampling frequency and conclude that for practical AC SC applications the initial

basis of 20 kHZ constitutes the lowest sampling frequency which would lead to a precise

fault location estimation.

Table 5.5: Fault location errorFL of representative scenarios for different sampling
frequency.

Fault type Rf (Ω) Fault typeA.CF(km) 20 kHz 10 kHz 5 kHz

LLL-G 0 5.20 0.022 0.68 1.190
LLL-G 50 9.41 0.063 0.855 1.405
LLL-G 200 1.30 0.080 0.970 1.381
LLL 300 8.10 0.621 1.182 1.991
L-G 0 2.11 0.041 1.149 1.942
L-G 2 6.30 0.132 0.941 1.230
L-G 150 4.70 0.048 0.959 1.382
LL-G 0 7.90 0.012 0.688 0.921
LL 0 3.22 0.032 0.710 0.994
LL 50 3.80 0.270 1.321 1.533

5.4.5 Effect of noise

In practical power systems applications, noise can be caused by power quality issues,

transducers, or modulators and constitutes one of the most adverse factors which can

potentially affect the accuracy of the fault location schemes. To assess the robustness

of the proposed scheme under these conditions, the time-domain current and voltage
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measurements of the testing scenarios have been subjected to artificial noise. Indica-

tively, Figure 5.12 demonstrates the spectrograms of phase A current resulting from the

time-domain current signal without noise and with 100 dB signal-to-noise ratio (SNR),

respectively, for an LLL-G solid fault applied 5.3 km from Bus 1 in Figure 5.3. Table

6.7 presents the obtained errorFL with respect to an increasing noise amplitude for

6 representative fault scenarios from Table 5.4 (scenarios with the lowest and highest

errorFL prior to the noise addition).

It can be observed that, although the increase in the noise level (higher level of noise

corresponds to lower value of dB) leads to an increase in errorFL, a satisfactory fault

location rate can be achieved. As was expected, the highest rise in errorFL is reported

for SNR 30 dB.

Therefore, the proposed fault location scheme presents immunity against the additive

noise to time-domain signatures of the testing scenarios. Furthermore, this analysis

highlights the capability of the proposed algorithm to deal with more difficult testing

scenarios and subsequently confirms that the developed CNN-based scheme does not face

over-fitting issues and presents enhanced generalisation capability.

Figure 5.12: Spectrograms obtained from time-domain current signatures with and
without noise
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Table 5.6: Fault location errorFL of representative scenarios with respect to additive
noise on the testing scenarios.

Fault type Rf (Ω) A.CF(km) without noise 100 dB 60 dB 30 dB

LLL-G 0 8.8 0.010 0.056 0.107 0.200
LLL-G 0 6.82 0.110 0.211 0.387 0.402
LLL 2 5.2 1.100 1.130 1.191 1.286
LLL 200 2.98 0.380 0.420 0.513 0.589
LL-G 0 7.8 1.000 1.056 1.109 1.198
LL-G 15 1.8 0.5 0.769 0.807 0.980
LL 0 2.67 0.22 0.240 0.378 0.409
LL 300 0.02 0.040 0.091 0.147 0.242
L-G 2 5.50 1.180 1.228 1.210 1.289
L-G 250 3.99 0.020 0.073 0.154 0.253

5.4.6 Random masking and noise at the training dataset

In order to further evaluate the generalisation capability of the proposed scheme, data

perturbation techniques were applied to the time-frequency domain signals of the training

dataset. Those perturbation techniques include random masking and the addition of

random noise. Specifically, the spectrograms obtained at Stage III of the development

process, have been subjected to masking, by hiding portions of the image/spectrogram,

and simultaneously to image noise.

Random masking is a widely used technique for computer vision applications [231,232],

according to which small patches of the input image (the spectrograms in the presented

work) are masked and set to zero during the training process. This random removal of

information prevents the developed algorithm from being overly dependent on certain

features of the input. Additionally, the addition of random image noise during the

training process can be utilised to increase the variability of the training dataset and

mitigate over-fitting of the algorithm to the training dataset.

The mean error, errorFL, of the CNN-based fault location scheme on the testing

dataset (i.e., considering random masking and image noise during the training process) has

been found equal to 0.75%, which is very close to that reported in Table 5.2 (considering

the initial model without perturbation techniques). Furthermore, the performance of

the CNN model, with random masking and image noise, has been assessed based on

the previously unseen fault scenarios reported on Table 5.4, similar to the initial model.

Some representative cases are demonstrated in Table 5.7. The results revealed that the

errorFL for each scenario is low and therefore the fault location estimation accuracy

remains high. Furthermore, the values of the resulting errorFL for the investigated

scenarios are very close to those resulting from the initial model (which does not consider
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the perturbation techniques during the training process). Thus, no notable improvement

has been reported regarding the fault location estimation accuracy and for most of the

cases the initial model provides more accurate fault location estimation. The mean error,

errorFL, of Table 5.7, for the fault location scheme with the perturbation techniques

during the training process, is 0.30% and for the initial CNN algorithm (i.e., without

the perturbation techniques during the training process) it is 0.29%. Consequently,

this analysis confirms that the initial CNN-based scheme has adequate generalisation

capability, does not over-fit to the training dataset, and does not require perturbation

techniques during the training process.

Table 5.7: Fault location error, errorFL of representative scenarios considering perturba-
tion techniques during the training process.

Fault type Rf (Ω) A.CF(km) CF(km) errorFL(%)

LLL-G 0 8.7 8.61 0.9
LLL-G 2 5.2 5.27 0.7
LLL-G 5 2.1 2.122 0.22
LLL-G 250 9.98 9.979 0.01
LLL-G 300 6.17 6.157 0.13
LLL 0 7.76 7.739 0.21
LLL 0 2.39 2.384 0.06
LLL 2 3.13 3.148 0.18
LLL 5 9.9 9.892 0.08
LLL 250 9.13 9.087 0.43
LL-G 0 2.6 2.572 0.28
LL-G 0 7.8 7.910 1.10
LL-G 2 9.97 9.879 0.91
LL-G 5 6.3 6.307 0.07
LL-G 200 9.52 9.475 0.45
LL 2 8.15 8.153 0.03
LL 2 6.49 6.456 0.34
LL 5 5.14 5.141 0.01
LL 15 7.11 7.102 0.08
LL 15 4.29 4.272 0.18
L-G 0 2.7 2.690 0.10
L-G 0 6.9 6.918 0.18
L-G 0 1.81 1.787 0.23
L-G 5 6.38 6.395 0.15
L-G 200 9.99 9.951 0.39

5.5 Comparative Analysis with Other Data-Driven Fault

Location Schemes

The effectiveness of the developed fault location scheme has been further validated by

comparing its performance with another widely used data-driven algorithm in power

system applications. Specifically, the Long Short Term Memory (LSTM) algorithm has
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been selected for comparison purposes as it is a widely adopted RNN model for fault

management applications [233]. LSTM models are well-suited to processing sequences of

data (i.e, time-series data) and adaptively learning the dynamic information of the input

data by non-linear gating units. Their main advantage is that they extract the temporal

correlation of time series data (serial correlations) and parallel dependencies (correlations

of the input features) [208], while controlling the amount of information that needs to be

retained.

5.5.1 Stages of the LSTM algorithm

The 3-stage algorithm developed for the estimation of the fault location on the AC SC

based on the LSTM model is depicted in Figure 5.13. The following subsections describe

each stage in detailed.

Figure 5.13: Schematic diagram of the LSTM-based fault location schemes.

5.5.1.1 Stage I - Signal acquisition

The same fault current and voltage measurements acquired in Section 6.3.1 were utilised

to form the data basis for the fault location regression problem with the LSTM-based

scheme. To ensure fair comparison between the schemes, a same sampling frequency of

20 kHz was considered.
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5.5.1.2 Stage II - Feature extraction

At this stage, the SWT is applied as a power signal processing tool which detects signal

singularities and extracts the useful insights from voltage and current measurements. As

has been referred to in Chapter 4, SWT is a widely used WT for different power system

applications (i.e., protection applications) as it is computationally efficient and presents

reduced complexity [145].

For the LSTM-based fault location scheme, the faulted voltage and current signatures

are subjected to Level 1 and Level 2 decomposition through the SWT technique, and the

corresponding detailed coefficients are produced, utilising the db4 mother wavelet which

presents high accuracy and reliability in power systems applications [144]. It should be

noted that the exhaustive research of the appropriate type of mother wavelet is out of

the scope of the presented work.

Once the detailed coefficients of decomposition Levels 1 and Level 2 are acquired, a

moving data window has been utilised to extract feature vectors to form the data basis

for the LSTM-based scheme. It has been assumed that a data window with length of 30

samples (29-sample overlap) is adequate for this purpose. The production of the feature

vectors is performed at the end of Stage II. In particular, similar to the feature vectors

generated for the fault detection and classification schemes in Chapter 4, the feature

vectors for the LSTM-based fault location scheme include the absolute values of detailed

coefficients at decomposition Level 1 and Level 2 and also the sum Σ(Dj), mean µ(Dj),

standard deviation σ(Dj), and the energy content E(Dj) of the detailed coefficients of

decomposition Level 1 and Level 2. These have been calculated according to (5.8)-(5.11),

respectively:

Σ(Dj) =

mw∑
i=1

|Dj(i)| (5.8)

µ(Dj) =
1

2j ·mw

mw∑
i=1

|Dj(i)| (5.9)

σ(Dj) =

√√√√ 1

2j ·mj

mw∑
i=1

(|Dj(i)| − µ(Dj))2 (5.10)

E(Dj) =

mw∑
i=1

[Dj(i)]
2 (5.11)

where Dj(i) denotes the i− th detailed coefficient for j = 1, 2 decomposition level and

mw is equal to the window size.
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At the data pre-processing stage, prior to the training of the LSTM model, the feature

vectors along with the initial three-phase current and voltage signatures are normalised.

For the normalisation process, the mean value is subtracted by each sample in the feature

vector and the resulting values is divided by the standard deviation as presented in (5.12):

Yj,scaled =
Yj − Y

σ(Y )
(5.12)

where Yj denotes each sample in the feature vector y or current/voltage signal y, Y and

σ(Y ) correspond to the mean value and the standard deviation of each feature vector of

current/voltage signal, respectively.

The normalised feature vectors and the normalised three-phase current and voltage

signatures have been reshaped into a 3-dimensional matrix (batch size, sequence length,

features) in order to meet the requirements of LSTM input data, and are used as inputs

to train the LSTM model.

5.5.1.3 Stage III - Estimation of fault location

To perform the fault location estimation task, 2 different LSTM-based schemes have been

investigated considering different datasets. The scope of this investigation was to evaluate

the impact of different datasets on the LSTM-based fault location estimation capability

and select the scheme with the best performance to be compared with the developed

CNN-based scheme. The two models are composed of: i) the LSTM-based Scheme 1

which considers as inputs only the normalised three-phase current and voltage signatures,

and ii) the LSTM-based Scheme 2 which considers the inclusion of SWT signal processing

and thus accepts as input the normalised three-phase current and voltage signatures

along with the extracted feature vectors. Furthermore, the comparison between these 2

schemes evaluates the impact of the SWT technique at the pre-process stage on fault

location estimation accuracy.

The 3-dimensional matrix which is utlised as the input to LSTM-based Scheme 1

is (32, 1600, 6), where 32 is the batch size, 1600 is the sequence length and 6 is the

different number of features (3 phase currents and 3 phase voltages). For LSTM-based

Scheme 2 the 3-dimensional matrix at its input is (32, 1600, 42), where 42 is the number

of features (3 phase currents, 3 phase voltages and 6 feature vectors for each current

and voltage signature). The sequence length in an LSTM network refers to the number

of time steps in a single sample of the input data. In other words, it is the length of
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the input sequence that the LSTM network processes at a time. The sequence length

is an important hyperparameter in an LSTM network, as it determines the amount of

historical information that the network accesses to make predictions. If the sequence

length is too short, the network may not be able to capture long-term dependencies in the

data. If the sequence length is too long, the network may be computationally expensive

or may struggle to fit the data due to overfitting. Therefore, choosing an appropriate

sequence length for an LSTM network is an important part of the model design process,

and it requires extensive trial and error studies.

The output of the LSTM layer is fed into a fully connected layer followed by a

regression layer which produced the single value of the fault position as a percentage of

the AC SC length, similar to the CNN model. Thus, for LSTM-based schemes the fault

locations is calculated based on (5.6).

5.5.2 Selection of LSTM model

This section evaluates the performance of the developed LSTM-based schemes in order

to select the best model to be compared with the proposed CNN-based fault location

scheme. LSTM-based schemes have been developed utilising the PyTorch framework. The

most-suitable hyperparameters of each LSTM model have been selected based on the GS

5-fold CV technique (similarly to the CNN model). Particularly, different combinations

of i) hidden state size, ii) number of LSTM layers, iii) learning rate, and iv) batch size

have been tested utilising the mean error, errorFL, as the 5-fold CV score, given by (5.7).

The 2 LSTM-based schemes were evaluated on the testing dataset and the resulting

mean error, errorFL, is presented in Table 5.8.

Table 5.8: Tested LSTM-based schemes and their performance on the testing dataset

LSTM-based schemes errorFL(%)

Scheme 1 0.95
Scheme 2 0.88

It is evident that LSTM-based Scheme 2, which incorporates the SWT technique,

presents the lowest mean error, errorFL, and therefore it has been selected for comparison

purposes with the CNN-based fault location scheme. The resulting hyperparameters

from the GS 5-fold CV technique are the following: learning rate = 0.001, batch size =

32, hidden size = 64, and number of LSTM layers = 4. The Adam optimiser algorithm

was adopted for learning the weights and biases associated with the model during the
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training process.

5.5.3 Results of the comparison between the LSTM and the CNN

algorithm

This section presents the results of the comparative analysis between the proposed

CNN-based fault location scheme and LSTM-based Scheme 2. Both schemes have been

evaluated for additional fault cases which simulated different fault types, varying fault

position (which do not belong to the initial data set), and varying Rf . The errorFL

of the CNN-based model for these additional scenarios has been found to be 0.72%,

while for LSTM-based Scheme 2 this is 1.10%. The results of some representative cases

are presented in Table 5.9. The obtained observations validate the effectiveness of the

proposed fault location scheme, as the CNN model yields lower errorFL compared to

LSTM-based Scheme 2 for all the scenarios. The mean error, errorFL, of the CNN-based

scheme for the presented scenarios in Table 5.9 is 0.32% and for LSTM-based Scheme 2

this is 1.88%. The results revealed that the CNN-based fault location scheme outperforms

LSTM-based Scheme 2 and provides more accurate fault localisation, irrespective of the

fault type, fault resistance, or fault position and thus it can be considered a more reliable

scheme for the case of AC SCs.

5.6 Discussion

A novel data-driven fault location scheme for power grids with AC SCs has been developed

based on fault current and voltage measurements captured from a single end of the AC

SC and Bus 1, respectively. The proposed scheme utilises the combination of a time to

time-frequency transformation and a CNN algorithm for the fault location estimation.

According to the simulation results and the outcomes of the validation studies, the

following remarks can be pointed out:

� The proposed CNN-based fault location scheme has been found to successfully

provide accurate estimation of the fault location across a wide range of fault

conditions, accounting for different fault positions, fault types (i.e., LLL, LLL-G,

LL, LL-G, L-G), values of fault resistance up to 300 Ω, and fault inception angles

(from 0 degrees to 180 degrees). It is worth highlighting that the developed fault

location scheme presents robust performance, even in the case of close-up faults
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Table 5.9: Results of the comparison between the CNN-based and LSTM-based fault
location schemes.

Fault type Rf (Ω) A.CF(km) CNN errorFL(%) LSTM errorFL(%)

LLL-G 0 0.60 0.12 0.70
LLL-G 2 4.20 0.31 1.07
LLL-G 5 7.38 0.18 2.10
LLL-G 15 9.10 0.42 1.17
LLL-G 50 8.11 0.70 2.23
LLL-G 200 5.90 0.62 2.40
LLL-G 300 3.18 0.14 1.58
LL-G 0 3.56 0.09 2.27
LL-G 2 2.90 0.14 1.20
LL-G 5 7.30 0.33 1.00
LL-G 15 0.10 0.11 0.98
LL-G 50 8.80 0.34 2.07
LL-G 200 6.13 0.26 1.11
LL-G 300 9.56 0.57 2.77
L-G 0 1.70 0.23 1.90
L-G 2 7.10 0.22 0.98
L-G 5 3.98 0.43 2.13
L-G 15 2.40 0.24 2.99
L-G 50 4.45 0.17 2.56
L-G 200 9.90 0.33 3.71
L-G 300 8.19 0.39 2.84
LLL 0 1.14 0.18 0.99
LLL 2 2.34 0.20 1.09
LLL 5 3.84 0.38 1.99
LLL 15 4.19 0.23 2.01
LLL 50 8.50 0.22 2.11
LLL 200 7.13 0.43 2.12
LLL 300 9.30 0.21 2.03
LL 0 9.40 0.98 2.01
LL 2 1.40 0.07 1.01
LL 5 7.10 0.09 1.18
LL 15 2.60 0.44 1.29
LL 50 1.50 0.34 3.01
LL 200 3.12 0.44 2.13
LL 300 8.27 0.80 3.17

(i.e., fault location at 0.1% or 99% of the AC SC length) and under the influence

of highly-resistive faults during which there is no quenching of the AC SC. The

resulting mean fault location error, errorFL, on the testing dataset has been found

to be 0.74% while the errorFL for the additional scenarios utilised to further

validate the performance of the developed scheme has been demonstrated to be

0.34 %.

� The effectiveness of the proposed method has been verified against small increments

of fault location. Specifically, by changing the fault location with step of 10 m

and evaluating its performance against the randomly varied sampling instance, the

resulting fault location estimation error lies within the range of 0.95% to 0.1%.

Furthermore, it can be concluded that despite the addition of noise in the testing

141



Chapter 5 Fault Location Scheme for SCs in AC Systems

dataset, a successful fault locating rate is preserved.

� A sensitivity analysis revealed that the lowest sampling frequency for this fault

location application is 20 kHz.

� The incorporation of perturbation techniques, such as masking and noise, in the

training process resulted in a mean fault location estimation error, errorFL, close

to that of the initial model. Therefore, it has been confirmed that the initial model

has sufficient generalisation capability, does not over-fit to the training dataset and

thus eliminates the need for perturbation techniques which increase the complexity

of the training process.

� The proposed fault location scheme eliminates the need for a communication link

and expensive and complicated synchrophasor equipment.

� The reliability of the proposed fault location scheme has been demonstrated by

comparing its performance with an LSTM-based network, which is a widely-used

algorithm for fault location applications. The results indicated that the proposed

CNN-based scheme outperforms the LSTM-based scheme in terms of fault local-

isation accuracy. In particular, during the comparative analysis, the proposed

CNN-based scheme presents a mean fault location estimation error, errorFL, of

0.72% for the same investigated scenarios, while the LSTM-based scheme gives

1.1%.

� The time to time-frequency transformation of non-stationary signals is well suited

for studying signals in time and frequency domain simultaneously, and provides

a more comprehensive analysis of signals which can lead to improved accuracy of

fault location estimation.

� The integration of image analysis techniques with AI algorithms has the potential to

enhance the precision of feature extraction and facilitate the accurate identification

of fault location. Image analysis techniques, through their capability of representing

high-dimensional data in a condensed form, enable the facilitation of pattern

recognition and mitigate computational complexities. Furthermore, such techniques

demonstrate resilience towards data with a high level of noise.

� An extensive investigation of CNN algorithms with regards to the resulting mean

fault location estimation error, errorFL, revealed that the Inception-v3 model
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outperforms the rest of the CNN models for the feature extraction task of the

constructed spectrograms.

5.7 Summary

In this chapter the fault location challenge in AC systems with SCs has been analysed.

It has been found that the most important attribute of an effective fault location scheme

is the accuracy in the fault location estimation. The accurate identification of the fault

position accelerates the restoration process, eliminates the outage time and consequently

enhances the system reliability. In particular for SCs, the need for reliable fault location

schemes is rendered imperative due to their complex structure, the increased cost of such

technology and the demanding restoration process.

In response to this challenge, this chapter proposes the development of a data-driven

fault location scheme which incorporates feature extraction tools, such as image analysis

techniques, and AI algorithms such as CNN models to address the challenge of accurate

fault location on AC SCs. Initially, a literature review was conducted on the existing and

proposed fault location techniques in the technical literature. The assessment showed

that AI-based schemes provide a trade-off between accuracy, cost, and complexity and

thus many researchers have started to focus on AI for the development of fault location

applications. Furthermore, the key findings revealed the research gap in the area of fault

location on SCs and assessed the potential of the existing methods for resolving this

challenge. Although all the reported methods have their own advantages and drawbacks,

it has been highlighted that conventional schemes, such as impedance-based, cannot

provide accurate estimation of fault location on SCs or result in increased implementation

cost (i.e., sparse and distributed measurements methods). Reflectometry-based schemes

constitute the only solution proposed in the literature for the case of SCs, however, such

schemes have not been validated against multiple fault scenarios or SCs with length up

to several km. Furthermore Reflectometry-based schemes result in increased cost due to

the need for external equipment.

The proposed CNN-based fault location scheme is a novel contribution to the fault

location problem, leveraging the strong learning ability of CNNs. This has been found

to provide a robust solution for the precise fault localisation of AC SCs. In particular

the development of the proposed scheme has been based on the transformation of time

domain current and voltage fault signatures to time-frequency domain, with image
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analysis techniques used for the extraction of useful information. For the estimation

of the fault location on AC SCs, an Inception-v3 CNN model has been utilised which

presented mean fault location estimation error, errorFL, equal to 0.74% on the testing

dataset and 0.34% on additional fault scenarios which do not belong to the initial dataset.

The successful identification of the fault position across the length of the AC SC has

been verified for a wide range of fault scenarios including highly-resistive and close-up

faults, with resistances up to 300 Ω. Specifically, the minimum fault location estimation

error, errorFL, has been found to be 0.01% and the maximum 1.18%. The scheme has

demonstrated its ability to maintain a high level of accuracy in the presence of noisy inputs

and randomly varied sampling instances. Additionally, the scheme remains unaffected by

changes in the fault inception angle. Furthermore, the increased generalisation capability

of the developed scheme has been validated by a comparative analysis with an similar

CNN algorithm which adopts perturbation techniques during the training process (i.e.,

perturbation techniques are utilised in AI applications to improve the learning process of

the algorithm) and the results confirmed the effectiveness of the proposed scheme and

highlight its learning capability without the need for perturbation techniques. Lastly,

the proposed CNN-based scheme has been compared with an LSTM-based fault location

scheme and the results have validated its superiority, achieving a mean fault location

estimation error, errorFL, of 0.72% compared to 1.10% for the LSTM-based scheme, for

the same fault scenarios.
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Chapter 6

Protection of DC SCs in HVDC

Systems

HVDC technology offers several advantages over its AC counterparts, such as the capability

for efficient bulk power transmission over long distances with minimal losses [234]. These

attributes make HVDC systems ideal for connecting remote RES, such as offshore wind

farms. In addition to this, HVDC systems present several commercial and technical

benefits, including the interconnection of non-synchronous grids, independent control

of active and reactive power, and increased resilience against disturbances due to its

insensitivity to frequency variations [87]. These advantages make HVDC systems well-

suited for enhancing the power flow controllability in power grids, improving their

efficiency and stability, and providing a firewall against cascading blackouts [235,236].

Therefore, HVDC transmissions will play a significant role in the transition of power

grids towards sustainable net zero grids.

However, despite the numerous benefits, the implementation of HVDC systems is

faced with several key challenges, primarily due to the particularities and complexity

of the various technologies used in HVDC grids (i.e., converters, transformers, filters,

CBs). One of the most crucial factors for the wide spread adoption of HVDC technology

is the efficient protection of HVDC and AC systems. In particular, HVDC protection

philosophy is consistent with the objectives of AC transmission protection which aim

to achieve reliability, stability, dependability, security, sensitivity, selectivity and speed.

However, there are some crucial differences, primarily related to the timeframe of events.

Contrary to AC grid protection, which requires fault clearing time within the range of
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hundreds of ms, HVDC protection requires very fast and discriminative schemes which

detect and isolate the fault within the range of a few ms [164, 237]. The main factors

which affect the fault clearing time in HVDC systems is the limits introduced by DC CBs

and power electronic devices installed in the converters. In HVDC systems, when a fault

occurs, the converter is blocked for self-protection, resulting in temporary loss of control

over the converter (and partially the DC grid). Thus, very fast and reliable protection

systems are needed in order to avoid damages in the components and minimise the impact

of faults on the system. Furthermore, the DC-side faults, especially for Voltage Source

Converter (VSC)-based HVDC systems, are characterised by increased magnitudes and

rapid rising time [40]. This effect in conjunction with the absence of natural current zero

crossing make the protection of HVDC systems a challenging task [238]. As such, HVDC

systems require the development of advanced protection solutions which can accurately

detect and respond to faults in a timely and effective manner while helping to ensure

high levels of reliability.

SCs have the potential to revolutionise HVDC transmission systems, by providing

additive benefits such as improved efficiency, reduced losses, and decreased overall cost

of the system [91]. However, the fault response of DC SCs, which is dominated by the

quenching phenomenon, exacerbates the challenge of HVDC protection. Specifically, the

effect of quenching on fault current and voltage magnitudes can affect the sensitivity,

selectivity, and operational speed of HVDC protection schemes and have a negative

impact on the continued safe and reliable operation of HVDC systems. Therefore, to

address these challenges it is important to develop advanced protection solutions which

will be aligned with the HVDC protection requirements and consider the particularities of

SC technology. The designed protection solutions should have a high degree of sensitivity,

security, selectivity, and high operation speed.

On this front, this chapter proposes a novel data-driven, centralised protection scheme

(on the substation level) for discriminative fault detection and classification in MMC-

based multi-terminal HVDC systems with DC SCs and conventional DC cables. The

developed protection scheme exploits the potential of the latest advancements in AI and

presents the capability of detecting and classifying faults to all the elements connected

to HVDC substations (i.e., buses, SCs and conventional cables).
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6.1 Review of SCs in HVDC Systems and their Fault Man-

agement

Along with the advancement of superconducting-based technology, the deployment of

DC SCs is gaining attention as the key player of power transmission in future grids. The

first DC SC for industrial application was accomplished by the Chinese Academy of

Science, in 2012, by designing a 1.3 kV , 10 kA unipolar cable with length 360 m [239].

To date, there are three landmark demonstration projects of DC SCs. In particular, the

EU-funded Best Paths project, which investigates and validates the operation of a 30 m,

320 kV , 3.2 GW HVDC link for real-grid conditions with the developed technology to

approach commercial deployment [18]. The Ishikari project, Japan, which demonstrates

the deployment of 500 m and 1000 m DC SCs for the interconnection between a large

scale PV cell with an Internet data center to provide DC power supply [28], and the St.

Petersburg project which deploys the installation of a 2.5 km length DC SC at 20 kV [30].

The transient analysis of DC SCs has became one of the emerging research trends.

Many studies have started to focus on the technical feasibility and the associated challenges

of meshed HVDC grids with SCs. Specifically, authors in [91] addressed the power flow

and transient stability issues of multi-terminal HVDC systems with VSCs and SCs, while

a feedback current control scheme for the regulation of power distribution in a meshed

HVDC system with SCs and Line Commutated Converters (LCCs) was developed in [240].

A detailed fault current characterisation of meshed HVDC system with MMCs and DC

SCs is presented in [84]. The conducted simulation-based analysis evaluated the impact

of SC fault current limiting capability on the DC fault current magnitudes, highlighting

the potential of higher flexibility in terms of protection operation time. In [241] the

fault current limiting capability of a 0.2 kV , 100 kA, 20 MW DC SC is investigated

and the results showed reduction in current magnitude from 42.5 kA to 37.5 kA due to

quenching phenomenon and the increase in the equivalent resistance of SC. The impact

of DC SCs on fault levels is also studied in [242] for a 300 km DC SC in a meshed HVDC

system with LCCs. The conducted studies showed that regardless of the fault type, the

resulting fault current magnitudes can be 20 % reduced during the quenching of DC SCs.

Furthermore, as the utilisation of Superconducting Fault Current Limiters (SFCLs) is

considered a viable solution for current limitation in meshed HVDC systems [243,244],

several studies have started to propose the replacement of SFCLs by DC SCs with fault
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current limiting functionality [245]. The obtained results demonstrated that DC SCs are

more efficient in fault current limitation and present higher tolerance to highly-resistive

faults. All the existing studies have carried out experimental tests on prototype DC SCs,

or simulation-based analysis, for the assessment of steady-state, transient performance,

and the mechanical suitability of DC SCs or the validation of the designing process of SCs

and the operation of the cryogenic refrigeration system. However, there is no reported

research, discussions, or proposed strategies for the protection of DC SCs, prohibiting

the widespread adoption of such cable technology in large-scale HVDC applications.

The integration of SCs in HVDC systems complicates the fault management process

due to the quenching of DC SCs and the resulting variations in resistance, affecting

the impedance of the grid and fault current and voltage measurements. Ensuring the

implementation of highly effective fault detection strategies for SCs is of paramount

importance, given the unique characteristics and vulnerabilities associated with these

systems. In particular, there is a growing demand for robust fault management strategies

capable of accommodating the variable resistance introduced during the quenching

process. Moreover, it is imperative to investigate scenarios in which the quenching

process, responsible for transitioning the cable from a superconducting to a normal

state, may experience delays due to structural complexities within the system or the

intrinsic properties of the SC itself. In certain instances, quenching may not occur at

all, as observed during highly-resistive faults. In such cases, the absence or delay in

quenching can trigger a catastrophic sequence of events. The quenching process functions

as a protective mechanism by dissipating excess energy and preventing the formation

of hotspots within the cable. Therefore, there is an urgent need for highly sensitive

protection schemes capable of detecting the initiation of quenching to mitigate these

potential risks effectively.

In that aspect, conventional protection for HVDC systems may result in poor per-

formance and endanger system safety. In particular, the sensitivity of over-current

protection, which is utilised in HVDC systems as secondary transmission line protection,

is affected by the reduced fault current magnitudes due to the quenching of DC SCs.

Distance relays employ a calculation of apparent impedance through the measurement of

voltage and current at the relay location. This calculation is utilised to identify faults

and serves as the primary protective measure for AC transmission lines. Nevertheless, in

HVDC grid protection, the complex impedance at the fundamental frequency is distinct
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from that of the AC system, and the reliability of distance relays may be impacted by the

resistance present during a fault [246]. Considering the variations in system impedance

due to the quenching of DC SCs, distance protection relays are not suitable schemes.

Differential protection is a communication-based scheme which operates if the difference

between the sending and receiving end current exceeds the preset threshold. This type

of protection is better suited for short distance transmission lines and bus protection

as its response time is slow for long transmission lines with a high dependence on cor-

rect communication operation [247]. TW-based schemes are more suitable for HVDC

transmission line protection [238]. However, the studies reported in [248,249] showed the

drawbacks of the TW-based approach against close-up faults, their difficulty to detect

wave-peaks, and sensitivity to noise. Consequently, boundary protection is employed in

addition to the TW technique to determine faults in the HVDC line. With respect to DC

SCs, there is no reported research in the literature which investigates the effectiveness of

TW-based schemes. Furthermore, the exploration of TW theory in SCs requires a more

detailed modelling approach of SCs. Voltage and current derivative based protection

schemes using the single end measurements have proven to be efficient for multi-terminal

HVDC systems [250]. However, such schemes adopt a threshold-based operation, and

their tuning shall be very challenging for the case of DC SCs. The performance of voltage

and current derivative-based protection schemes against fault on DC SCs will be assessed

in the following section.

Considering the limitations of conventional HVDC protection systems due to the

particularities of DC SCs, researchers have started to investigate AI techniques for the

protection of HVDC systems with SCs to overcome the complexities and challenges by

relying on their inherent learning capabilities. However, this field of research is still at

its infancy. More specifically, there is only one reported method [121] which is based on

the monitoring of transmission characteristics for the detection of series faults (i.e., one

or more conductors are damaged or disconnected) on DC SCs and utilises a ML model

for the fault type classification. However, only the accuracy of the fault identification

(i.e., detection and classification) has been presented without providing any insight about

the time performance of the proposed method.

Filling the research gap in the literature and demonstrating the unique advantages

over existing methods, this chapter presents a novel protection scheme for rapid and

discriminative fault detection and classification in meshed HVDC system with SCs. The
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proposed scheme adopts a centralised protection philosophy and is designed to detect and

classify faults in HVDC substations, accounting for faults at buses and faults applied on

SCs or conventional feeders. The basic idea behind centralisation is to move protection

from multiple bay-level devices to a single central processing unit [251]. The proposed

protection scheme utilises a centralised philosophy, situated at the substation level, as

opposed to multiple bay-level devices. This approach is based on the key findings in

the technical literature that suggest centralised protection schemes offer a more holistic

protection solution, higher scalability, and improved protection discrimination [238,251].

This is particularly important in HVDC systems where the time frames for fault detection

and classification are tight.

6.2 Investigation of Derivative-Based Protection Philoso-

phy

Prior to the analysis of the proposed protection algorithm, the performance of existing

protection solutions for HVDC systems has been evaluated. In particular, this section

demonstrates the limitation of derivative-based HVDC protection philosophies, such

as current and voltage derivative-based schemes, which have been widely-proposed in

the technical literature for fault detection and location applications for HVDC systems.

Derivative-based schemes present increased sensitivity, speed, and accuracy, as well

as removing the need for a communication link (i.e., only local measurements are

required) [252].

In the presented work, the potential of utilising di/dt and dv/dt based protection has

been assessed by conducting a qualification analysis regarding the current and voltage

derivative threshold settings for the adequate detection of faults applied on SCs, which

presents the basic challenges of the threshold-based protection schemes for HVDC systems

with SCs. Further investigation of the settings adjustment is beyond the scope of the

presented work. Specifically, for the presented studies, the multi-terminal HVDC network

presented in Chapter 3 and depicted in Figure 6.1 has been utilised. The relay installed

at point P 3.1 of SC1 has been utilised as an indicative test case and its operation is

based on the local current or voltage measurements. The protection zone is bounded

by the inductive terminations and the current and voltage derivative-based relay should

operate only for forward faults (the direction is indicated by the grey arrow in Fig. 6.1)
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within the protection zone (no protection directionality has been considered) in order to

preserve the protection sensitivity and security.

Figure 6.1: HVDC network model incorporating derivative-based protection scheme.

For the assessment of the proper current and voltage derivative threshold settings,

a forward PP internal remote highly-resistive fault (i.e., F2) and a forward PP solid

external fault (i.e., F3) have been considered. These fault scenarios have been selected as

the most challenging for the evaluation of protection discrimination. Specifically, highly

discriminative protection schemes should initiate a tripping signal for highly-resistive

internal faults at the remote terminal and remain stable during solid external faults

occurring beyond the boundary of the protection zone.

6.2.1 Assessment of derivative-based schemes

Figure 6.2a and Figure 6.2b show the di/dt of the current flowing through SC1 and

measured at point P 3.1 during F2 and F3, respectively. As it is demonstrated, during

F2, which is a highly-resistive internal fault with Rf = 200 Ω, the first di/dt peak is

presented 1.2 ms after the fault and is approximately 198 kA/s. During F3, the first

peak of di/dt is approximately 920 kA/s. The magnitude of the peak of di/dt, during

F2, is reduced due to the increase in the variable Req of SC1 and the high value of Rf .

Specifically, during F2, the magnitude of the first peak of di/dt is affected by: i) the

variable resistance of SC1 and ii) the 200 Ω Rf , while the magnitude of the peak of di/dt

during F3 is affected by: i) the variable resistance of SC1 and ii) the current limiting

inductance at the terminals of SC1 and CC which are equal to 140 mH and 133 mH,

respectively. Therefore, the lower peak during the F2 internal fault is explained based on
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the higher value of current path’s impedance while the peak during F3 external fault is

affected by the sizing of the inductors at the SC’s terminals.
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Figure 6.2: Results of di/dt during: a) a PP internal, remote highly-resistive fault at
99 % of SC1’s length with Rf = 200 Ω b) a PP external solid fault at 0.1 % of CC’s
length.

Effectively, the obtained results indicated that the selection of a low current threshold

setting is required in order to ensure the detection of internal highly-resistive faults.

Conversely, for low current threshold settings, the current derivative-based relay operates

for external solid faults applied on the CC. Therefore, this protection philosophy presents a

low level of protection selectivity. This is due to a trade-off between protection sensitivity

and stability, where the protection of the SC may operate during solid external faults

and result in the disconnection of the unfaulted SC or highly-resistive internal faults may

remain undetected.

Figure 6.3a and Figure 6.3b depict the dv/dt of the voltage measurements captured

at point P 3.1 during F2 and F3, respectively. It can be noticed that the peak of dv/dt,

during F2 is approximately 10 MV/s, 2.5 ms after the fault occurrence, while during F3,

the first peak of dv/dt is 50 MV/s.

Similar to the case of the current derivative-based relay, the results showed that the

selection of a low voltage threshold setting is required for the secure operation against

internal highly-resistive faults, jeopardising the protection stability against external solid

faults applied on CC. Consequently, it can be concluded that the quenching, variations in

Req of SCs, increase in Rf , and fault current limitation capability of SCs have an adverse

impact on the proper selection of the voltage threshold setting.
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Figure 6.3: Results of dv/dt during: a) a PP internal, remote highly-resistive fault at
99 % of SC1’s length b) a PP external solid fault at 0.1 % of CC’s length.

6.3 Proposed Protection Scheme

The proposed data-driven protection scheme aims to address the aforementioned limita-

tions and provide a reliable protection solution for HVDC systems with SCs. For that

purpose, the proposed scheme exploits the advantages of advanced AI algorithms, such as

the XGBoost model, for the development real-time fault detection and classification. In

the presented work, the fault classification term refers to the identification of the faulted

element (i.e., buses, SC1, SC2 and CC).

As an indicative example, the XGBoost-based scheme installed at Bus 3, shown

in Figure 6.5, is a centralised cable and bus protection philosophy which protects the

system against the faults occurring within the protection zone. The protection zone

of the XGBoost-based scheme installed at Bus 3 includes faults occurring at Bus 3

(F4), SC1 (F1), and SC2 (F5). Similar to Bus 3, the same centralised XGBoost-based

protection philosophy has been assumed to be installed to the other two buses illustrated

in Figure 6.1 (Bus 1 and Bus 2). In particular, the XGBoost-based scheme installed at

Bus 1 detects and classifies faults occurring at Bus 1, SC1, and CC, while the protection

zone of the XGBoost-based scheme installed at Bus 2 intends to cover faults applied at

Bus 2, CC, and SC2.

An overview of the proposed XGBoost-based scheme is presented in Figure 6.4. The

scheme operates based on the time-domain fault current measurements captured at one

terminal of the cables and the DC side of the corresponding converters, as well as the

fault voltage measurements obtained from the corresponding bus. Thus, there is no
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requirement for communication and measurements transmission among the buses. The

fault is classified in order to determine the faulted element within the protection zone

or the presence of an external faults beyond the protection zone. Following the fault

classification, the output of the XGBoost-based scheme is the desirable tripping signal

that triggers the appropriate CB to clear the fault within the protection zone. Conversely,

during a detected external fault the XGBoost-based protection shall remain stable. It

should be noted that this work focuses on investigating the operation of the developed

scheme up to the initiation of the tripping signal and does not cover the operation of the

CB.

Figure 6.4: Overview of the XGBoost-based protection scheme for fault detection and
classification in multi-terminal HVDC systems with SCs.

For the practical implementation of the proposed scheme, the design depicted in

Figure 6.5 has been devised according to [238] which adheres to modern substation

protection standards [253,254]. As can be seen in Figure 6.5, Merging Units (MUs) could

be installed to acquire the local current and voltage measurements based on the IEC

61869 standard. The MUs perform all the data processing, accounting for sampling and

digitisation, and transmit the digital output of the current and voltage measurements to

the centralised protection scheme via Ethernet using the IEC 61850− 9− 2 protocol. The
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protection functions are assumed to be implemented within the XGBoost-based scheme,

while for the realisation of the fault clearance, the initiated tripping signal can be sent

to the corresponding CBs via the Generic Object Oriented Substation Event (GOOSE)

protocol defined by the IEC 61850 standard.

Figure 6.5: Outline of the practical implementation of the centralised XGBoost-based
scheme installed at Bus 3.

The following subsections present the different stages that were followed during the

development of the proposed scheme based on XGBoost.

6.3.1 Data generation and acquisition

Initially, with the scope of generating a diverse dataset, several fault scenarios were

simulated using the system illustrated in Figure 6.1. The system parameters that

have been modified during the iterative simulation process include the fault type, fault

resistance, and fault position. Specifically, the fault scenarios include PP, PG, and NG

fault types occurring at every 10% of SC1, SC2, and CC’s length, as well as faults applied

at the buses. For the resistive faults, 20 values of Rf have been considered within the

range of 0 Ω to 350 Ω. The maximum fault resistance of 350 Ω has been selected as a

typical value for highly-resistive faults in HVDC systems as reported in the technical

literature [255–258]. The initial dataset is composed of 1800 fault scenarios.

During the simulation studies, 200 pre-fault and 200 post-fault samples of the current

and voltage measurements were recorded and during the data acquisition process, the
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generated signals are captured with a sampling frequency of 20 kHz which has been

extensively investigated for protection applications in HVDC systems [40, 259]. The

number of samples has been selected in order to preserve a high level of accuracy for fault

detection and classification, and a low level of computational complexity. It should also

be highlighted that even though IEC 61869− 9 has promoted the sampling frequency

of 96 kHz for DC applications, the proposed scheme has demonstrated effective fault

detection and classification accuracy and operational speed even at lower sampling

frequencies. In particular, it has been found that a sampling frequency of 20 kHz is

sufficient to meet the protection requirements while reducing computational needs.

6.3.2 Data pre-processing

One of the main advantages of tree-based algorithms, such as the XGBoost model,

compared to other AI techniques, is the low requirements on data preparation [212].

Therefore, there is no need for extensive pre-processing of the obtained voltage and

current measurements.

The final Python-based dataset has been formed based on the captured time-domain

current and voltage measurements, without considering other features (i.e., current or

voltage derivative) or transformations (i.e., WT). Prior to the training of the developed

algorithm, the initial dataset was split into smaller datasets. Specifically, 80% of the

initial dataset was used for training, while the remaining 20% for the testing of the

XGBoost model. It should be noted that XGBoost has the capability to perform internal

CV, hence it is not necessary to create a separate validation dataset.

6.3.3 Multi-class classification

The acquired current and voltage measurements are used as inputs to the XGBoost-based

scheme to detect the presence of a fault and identify the faulted element. During the

training process, the voltage and current measurements have been contaminated with

random noise in order to represent the possible impact of noisy measurements on the

fault detection and classification. Specifically, random noise within the range of 80 to

130 SNR have been added to the training dataset. This range of noise has been selected

in order to consider reasonable levels of noise based on the selected sampling frequency

and the voltage levels. Lower and higher levels of noise will be investigated during the

testing process.
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In the presented work, the fault detection and classification tasks have been formed

as a multi-class classification problem. Specifically, for the scheme installed at Bus 3

(Figure 6.5) (which is the investigated centralised scheme), the XGBoost classifier initiates

output ‘1’ indicating faults at SC1, ‘2’ indicating faults at SC2 and ‘3’ for faults at Bus

3. Conversely, when the XGBoost output is ‘0’, the presence of an external fault beyond

the protection zone (i.e., fault at CC, Bus 1 and Bus 2) is identified. The correspondence

between the predicted classes and the faulted element for the developed XGBoost-based

scheme installed at Bus 3 is given in Table 6.1:

Table 6.1: Correspondence between predicted class and fault type for the developed
XGBoost-based scheme installed at Bus 3.

XGBoost-based scheme Class Fault

at Bus 3

1 at SC1
2 at SC2
3 at Bus 3
0 external

It is important to note that the detection of a fault within the protection zone (faults

which belong to classes 1, 2, or 3) will lead to the initiation of the relative tripping

signal, while faults classified as 0 indicate the absence of a tripping signal. The following

subsection presents the advantages of the XGBoost model and justifies its selection for

the development of the proposed scheme.

6.3.3.1 XGBoost algorithm for multi-class classification

The XGBoost algorithm is a decision tree-based ensemble model which is designed to

be very efficient and easily applicable in fault management applications with tabular

data [212]. The state-of-the-art XGBoost algorithms are very flexible and robust for

complex classification problems as they combine the advantages of the tree-based ML

algorithms with lower computational complexity and hence higher computational speed

[260]. In particular, XGBoost operation depends on the modelling of tree algorithms,

selecting different features of the initial dataset, and creating the conditional nodes. The

boosting term refers to an ensemble ML method according to which weak learners are

trained sequentially and combined to build a stronger learner with better predictive

performance. Based on the main principles of the Gradient Boosting (GBM) framework,

which constitutes the core of the XGBoost algorithm, during the training process each

weak learner tries to eliminate the weaknesses of its predecessor, resulting in strong
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learners with a high degree of accuracy.

The operation of the XGBoost algorithm is dependent on the minimisation of the

objective function given by (6.1), using gradient descent:

Obj =
i=1∑
n

l(yi, ŷi
(t−1) + ft(xi)) + Ω(ft) (6.1)

where l is the loss function which represents how well the model fits on the training dataset,

ŷi
(t−1) is the previous model at t− 1, ft(xi) is the new model, and Ω(ft) represents the

regularisation function which measures the complexity of the trees.

The regularrisation terms on the tree structure are given by (6.2) [263]:

Omega(ft) = γT 1
2
λ

γ∑
j=1

(w2
j ) (6.2)

where, T i the number of leaf nodes, wj is the value predicted by the j − th leaf node.

The formula in (6.3) can be derived by performing the second-order Taylor expansion of

the loss function [262]

Ω(ft) =
T∑

j=1

[Gjwj +
1

2
(Hj + λ)w2

j ] + γT (6.3)

where Gj and Hj can by expressed by (??) [263]:

Gj =
∑
i∈1

∇Ft−1 l(yiFt−1(xi)) (6.4)

Hj =
∑
i∈1

∇2
Ft−1

l(yiFt−1(xi)) (6.5)

Once the configuration of the decision tree has been established, the predicted values

for each leaf node can be derived by setting the derivative of the loss function to zero,

which can be expressed as follows [264]

w∗j = − Gj

Hj + λ
(6.6)

Nevertheless, identifying the best structure among all possible tree structures poses a

challenging NP-hard problem. In real-world scenarios, a greedy approach is frequently

employed to build a less-than-optimal tree structure. The fundamental concept involves

iteratively dividing one leaf node at a time starting from the root node, and making the
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split decision based on predefined criteria for each potential division [261]. XGBoost also

employs specific criteria to determine the optimal splits. By incorporating the predicted

value into the loss function, it becomes possible to achieve the minimum value of the loss

function.

L∗
t = −1

2

T∑
j=1

G2
j

Hj + λ
+ γT (6.7)

The Gain can be easily computed as the difference between the loss function before

and after a split, as demonstrated below based on (6.8):

Gain =
G2

L

H +L +λ
+

G2
R

H +R +λ
+

G2
L +G2

R

H +L +HR + λ
(6.8)

In the context of XGBoost, the primary criterion for constructing the decision tree

is to maximise the difference in the loss function before and after splitting. It’s evident

that a larger difference corresponds to a reduced overall loss function. By systematically

examining all feature values, it identifies the optimal splitting point when the difference

in the loss function before and after the split is at its maximum.

There are many comparative analyses reported in literature which highlight the advan-

tages of the XGBoost algorithm over others. Particularly, authors in [265] demonstrate

that the XGBoost algorithm is a scalable ensemble technique which outperforms gradient

boosting and random forests classifiers in terms of accuracy and computational speed.

The work conducted in [266] and [261] indicate that for more complex problems, the

XGBoost algorithm provides a higher degree of accuracy compared to ANN and SVM

classifiers, respectively, while concurrently reducing the execution time and the computa-

tional complexity. Furthermore, for multi-class classification problems, ANN algorithms

require extensive tuning, both in parameters and model architecture, while the XGBoost

algorithm performs well without extensive parameters tuning. The unique features of the

XGBoost algorithm for fault diagnosis problems are presented in [212,262,267,268] and

the studies revealed that the XGBoost algorithm is a robust, computationally efficient

algorithm which presents faster and more accurate results over other ML models. The

main advantages offered by the XGBoost algorithm are listed as follows and showcase

the superiority of the selected algorithm compared to other classification models:

� Fastest implementation of the GBM tree-based algorithms [266].

� Higher efficiency compared to conventional artificial neural network classifiers [260].
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� Incorporates provision of regularisation, reducing over-fitting to the training dataset,

and presenting enhanced generalisation capability.

� Utilises the power of the parallel pressing resulting in less computational time.

Therefore, the XGBoost algorithm combines efficiency, operational speed, and in-

creased generalisation capability which are attributes very important for fault management

problems.

In the presented work, in order to select the XGBoost model with the best prediction

performance, hyperparameter tuning was performed prior to the commencement of the

actual learning process. For this purpose, the training dataset was divided into 5-folds

(k = 5) and each combination of hyperparameters is subjected to the 5-fold CV for the

determination of the optimum combination. The 5-fold CV has been implemented based

on the ‘GridSearchCV’ scikit-learn class, and as CV score the F1-score was selected. All

the experiments were executed using AMD Ryzen 9 5900HX 16-core, 12-thread, 16GB

cache up to 4.0 GHz max boost processor.

The optimum hyperparameters of the developed XGBoost scheme are presented in

Table 6.2.

Table 6.2: Simulation scenarios

Hyperparameter Value

booster gbtree
alpha 10
number of estimators 200
lambda 1
maximum tree depth 3
learning rate 0.1

6.3.4 XGBoost-based scheme time delays

Prior to the testing of the developed scheme, for a realistic implementation, all the

anticipated time delays within the HVDC substation should be identified. The expected

total operating time of the XGBoost scheme, top, is calculated based on (6.9) and

consists of time delays associated with the data processing, td, (including measurements

digitisation and communication) and the XGBoost algorithm execution, tXGBoost, (time

required for the algorithm to provide the output signal). It should be noted that during

the trial and error process for the XGBoost-based scheme, it was observed that the
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utilisation of a window-based process does not enhance the performance of the developed

scheme:

top = td + tXGBoost (6.9)

The developed protection philosophy at each bus is based on current and voltage

measurements from all the cables and the converter attached to the corresponding DC

bus. Considering the use of MUs as illustrated in Fig. 6.5 and an Ethernet switch for

realisation of IEC 61850, the maximum anticipated time delay, td is given by (6.10):

td = ts + tMU + tEth + tpp (6.10)

where ts denotes the maximum time delay resulting from the analogue sampling (i.e.,

ts=50 µs); tMU is the time required to encode the sampled values in the MUs and can

be estimated at 12 µs according to [159]; tEth is the maximum time delay imposed by

the Ethernet link latency and is estimated at 6.34 µs based on [238]; and tpp is 9.5 µs,

relying on the work conducted in [159], and refers to the maximum time required for the

protection system to decode the sampled values. Therefore, the total td is 77.84 µs.

Finally, the time delay associated with the XGBoost algorithm, tXGBoost, is determined

by considering many factors accounting for coding efficiency and the power of the

processing system. The total top of the proposed scheme will be assessed experimentally

in the following section.

6.4 Simulation Results and Validation of the XGBoost-

Based Scheme

The effectiveness and generalisation capability of the XGBoost-based scheme have been

validated using proper evaluation metrics and time assessment studies. Initially, the ability

of the developed scheme to detect and classify correctly different faults was evaluated

on the testing dataset, considering the F1-score as the evaluation metric. Furthermore,

real-time assessment studies were carried out using a SIL testing platform in order to

validate the operation speed and thus the suitability of the proposed scheme for real-time

implementation. Additionally, the performance of the scheme has been tested against the

addition of noise in voltage and current time-domain measurements, emulating potential

effects arisen by measurement-related noise.
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6.4.1 F1-score evaluation

The F1-score is a widely used evaluation metric in ML applications. In particular, the

F1-score provides a combination between the precision and recall evaluation metrics,

considering the impact of both FP and FN predictions, respectively. The XGBoost

classifier was tested using the allotted 20% of the initial dataset. The split of the initial

dataset to 80% for training and the remaining 20% for testing is a common practice

utilised in ML applications [158]. Table 6.3 shows the normalised confusion matrix

generated during the testing process.

Table 6.3: XGBoost confusion matrix.

Actual / Predicted Condition Predicted Negative Predicted Positive

Actual Negative TN=96% FP=0.5%
Actual Positive FN=3% TP=98%

As concluded by Table 6.3, the high percentage of TP predictions indicates the

number of samples which have been identified correctly as positives. Therefore, the high

percentage of TP confirms the capability of the developed scheme to detect and classify

correctly the faults within the protection zone. The increased value of TN percentage

indicates the number of samples which have been correctly identified as negative. From a

protection perspective, the high percentage of TN validates the stability of the developed

scheme against external faults and thus confirms its discrimination capability. Regarding

the percentage of FP which indicate the false initialisation of the tripping signal for

an external fault, and the FN percentage which refers to the failure of tripping signal

initiation for an internal fault, both are very low, validating the high degree of protection

reliability and dependability. The total F1-score is calculated based on (4.25) in Chapter

4. From the values in the confusion matrix presented in Table 6.3, the final value of the

F1-score is 98%.

6.4.2 Sensitivity analysis regarding train-test dataset split

In this subsection a sensitivity analysis was performed with respect to the train-test split

percentages in order to evaluate the initial selection (80% of initial dataset for training

and the remaining 20% for testing) and investigate its impact on the performance of the

XGBoost model. For this purpose, the developed XGBoost model was tested on 35% of

the initial dataset (the remaining 65% was utilised for training) and 50% of the initial

dataset (the remaining 50% was utilised for training). Similar to sub-section 6.4.1, the
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evaluation was performed based on the F1-score.

Table 6.4 and Table 6.5 present the normalised confusion matrices generated during

the testing process on 35 % and 50 % of the initial dataset, respectively.

Table 6.4: XGBoost confusion matrix fro train-test split percentage of 65%-35%.

Actual / Predicted Condition Predicted Negative Predicted Positive

Actual Negative TN=85% FP=3%
Actual Positive FN=11% TP=90%

Table 6.5: XGBoost confusion matrix fro train-test split percentage of 50%-50%.

Actual / Predicted Condition Predicted Negative Predicted Positive

Actual Negative TN=78% FP=4%
Actual Positive FN=27% TP=86%

The resulting F1-score for the train-test split percentage of 65%-35% is 92%, and 84%

for the train-test split percentage of 50%-50%. Therefore, it can be concluded that as the

percentage of the initial dataset utilised for training is reduced, and thus the training set

representativeness decreases, the resulting F1-score decreases as well. Specifically, as the

percentage of the initial dataset assigned to the training process is reduced, the percentage

of FP predictions increases, resulting in the false initiation of the tripping signal for

faults beyond the protection zone and, hence, diminishes protection security. An increase

is also observed in the percentage of FNs, which indicates the failure of tripping signal

initiation, jeopardising the protection dependability and reliability. Conversely, as the

percentage of the initial dataset utilised for training decreases, the resulting percentages

of TP and TN predictions are reduced, affecting the protection sensitivity and stability,

respectively. Based on the obtained results, the XGBoost algorithm trained with 80% of

the initial dataset was selected for the presented studies.

6.4.3 Software in the loop testing for real-time validation

This subsection presents the results of the real-time assessment of the XGBoost-based

scheme, considering realistic digital infrastructure. The ultimate goal is to acquire a

deeper insight of the time response of the proposed scheme to validate its performance

for real-time implementation. On that front, the performance of the XGBoost-based

scheme at Bus 3 (illustrated in Figure 6.5) was tested with respect to time required for

the initiation of the tripping signal. The assessment was conducted utilising the testing

environment in Figure 6.6, which forms a real-time SIL platform. This is similar to the
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real-time SIL set-up utilised for the ANN and SVM based schemes in Chapter 3.

Figure 6.6: Overview of SIL testing environment used for time performance assessment
of the XGBoost-based scheme at Bus 3.

A variety of fault scenarios were simulated utilising the network depicted in Fig-

ure 6.1, and the corresponding voltage and current measurements were extracted for

post-processing. The simulated database was stored in PC-1 and the signatures were

injected sample-by-sample to PC-2 through TCP/IP sockets configuration. The final

trained XGBoost-based scheme was stored in PC-2 in order to generate the tripping

signal. The specifications of PC-1 and PC-2 are presented in Figure 6.6.

Indicatively, Figure 6.7 shows the simulation results of a PP solid fault applied at 58%

of SC1’s length, at t = 5 ms, which quantifies the time performance of the XGBoost-based

scheme installed at Bus 3. Figure 6.7a to Figure 6.7c illustrate the utilised voltage and

current measurements, accounting for the currents measured at the terminal of SC1, SC2

(Figure 6.7a), the DC side of converter MMC3 (Figure 6.7b), and the DC voltage at Bus

3 (Figure 6.7c). As it can be seen in Figure 6.7d, the fault is detected by the proposed

scheme and the corresponding tripping signal is initiated approximately 0.5 ms after

the fault occurrence. Thus the fault is detected within the time requirements of HVDC

protection.

Furthermore, during the real-time SIL testing, the performance of the XGBoost-based

scheme was evaluated on 200 previously unseen fault scenarios. The principal objective

of this assessment is to further validate the generalisation capability of the proposed

scheme against measurements which are not part of the training or testing datasets

and evaluate the time response of the XGBoost-based scheme. Some of the results

are presented in Table 6.6 and establish the effectiveness of the proposed protection

philosophy. Specifically, the proposed scheme detects and classifies correctly the faults

within the protection zone (i.e., faults applied at SC1, SC2, and Bus 3) and provide
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Figure 6.7: Overview of SIL testing environment used for time performance assessment
of the XGBoost-based scheme.

the corresponding tripping signal (even during highly-resistive faults). Conversely, the

scheme remains stable against external faults (faults applied on CC, Bus 1, and Bus 2)

which belong to the protection zones of XGBoost schemes installed at Bus 1 and Bus 2.

Regarding the operation time, which is of paramount importance in HVDC systems, the

tripping signal is initiated within the time range of 0.0803 ms to 1.2341 ms, providing

an average time of 0.2571 ms. Therefore, it can be concluded that the proposed scheme

fulfills all the requirements of an effective protection solution for HVDC systems with

SCs, accounting for increased discrimination, security, stability, and operational speed.

6.4.4 Impact of noise

The analysis presented in this subsection investigates the impact of noise on the per-

formance of the proposed scheme. In practice, unwanted distortion may be introduced

within the measurements emanating from quality issues in sensing and measuring equip-

ment. Therefore, to de-risk the proposed scheme and validate its effectiveness under such

conditions, the time-domain current and voltage measurements of the testing scenarios,
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Table 6.6: Time performance of the XGBoost-based scheme installed at Bus 3 during
previously unseen fault scenarios.

Faulted element Fault type Rf [Ω] Location % top [ms] Faulted element Fault type Rf [Ω] Location % top [ms]

SC1

PP

0 0.50 0.0898

Bus 1

PP

0 - Stable
2 15 0.0988 2 - Stable
5 45 0.1091 5 - Stable
50 65 0.1591 50 - Stable
300 99 0.2018 300 - Stable
0 87 0.0988 45 - Stable
100 1 0.1068 10 - Stable

PG

0 0.20 0.0901

Positive PG

0 - Stable
1 1.4 0.0951 1 - Stable
10 32 0.0908 10 - Stable
30 74 0.1009 30 - Stable
350 98.90 1.0890 350 - Stable
2 92 0.1073 100 - Stable
95 20 1.0113 4 - Stable

NG

0 1 0.0938

NG

0 - Stable
3 13 0.0920 3 - Stable
15 25.60 0.0901 15 - Stable
25 58.90 0.1256 25 - Stable
1 0.05 0.0582 1 - Stable
0 97 1.0982 200 - Stable
100 98 0.1911 67 - Stable

SC2

PP

0 2 0.0997

Bus 2

PP

0 - Stable
2 17 0.0988 2 - Stable
5 38 0.1003 5 - Stable
50 49.50 0.1024 50 - Stable
300 64.90 0.1109 300 - Stable
350 12.5 0.1219 11 - Stable
3 75.2 0.9876 88 - Stable

PG

0 8 0.0956

PG

0 - Stable
1 21 1.0841 1 - Stable
10 37 1.0943 10 - Stable
30 44.20 1.0928 30 - Stable
100 21.2 1.0867 35 - Stable
350 92 1.2341 350 - Stable
0 99 0.0431 16 - Stable

NG

0 49.80 0.0998

NG

0 Stable
3 59 0.1023 3 - Stable
15 81 0.1025 15 - Stable
25 69.90 0.1037 25 - Stable
200 96 1.0984 200 - Stable
90 13.5 1.1014 100 - Stable
0 93.8 1.0004 1 - Stable

Bus 3

PP

0 - 0.0827

CC

PP

0 0.89 Stable
2 - 0.0838 2 12 Stable
5 - 0.0889 5 48 Stable
50 - 0.0908 50 67 Stable
1 - 0.0887 100 0.4 Stable
300 - 0.0907 300 99 Stable
100 - 1.3104 1 88 Stable

PG

0 - 0.0813

PG

0 3 Stable
1 - 0.0921 1 18 Stable
10 - 0.0942 10 47 Stable
30 - 0.1022 30 85.3 Stable
350 - 0.1030 350 91 Stable
0.5 - 0.0532 100 11.1 Stable
60 - 0.1702 2 76.7 Stable

NG

0 - 0.0803

NG

0 2 Stable
3 - 0.1012 3 27 Stable
15 - 0.0989 15 58 Stable
25 - 0.0832 25 76.7 Stable
100 - 0.1355 100 18.2 Stable
200 - 0.1540 200 98.8 Stable
2 - 0.0849 2 5.6 Stable

investigated in section 6.4.3, have been contaminated with artificial noise. Figure 6.8

shows the fault current and voltage measurements of Figure 6.7 after the addition of

artificial noise (SNR=30 dB).

It is worth reiterating that the XGBoost-based scheme has been trained on data with

random noise within the range of 80 to 100 SNR. The presented results aim to confirm
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Figure 6.8: Current and voltage measurements after the addition of 30 dB noise.

the generalisation capability and the time response of the proposed scheme under the

influence of a wider range of noise.

The final results are presented in Table 6.7 and show the maximum and average

tripping time, top, of the XGBoost-based scheme installed at Bus 3. From the resulting

time values, it is concluded that as the noise level increases (the value of the SNR

decreases), the value of the top remains approximately the same.

More specifically, for the detection of the faults on SC1, the maximum top is 1.0982 ms

for SNR 100 dB. For the same SNR, the average top is 0.2416 ms, while for SNR 30 dB,

the maximum top is 1.0981 ms and the average top is 0.2412 ms. It is observed that

an increase in the additive noise causes a minor change in the operational speed of the

XGBoost-based scheme. The same trend is presented in the detection of the faults on

SC2 and Bus 3. Furthermore, the proposed scheme remains stable during faults on CC,

Bus 1, and Bus 2. Therefore, it is inferred that the performance of the developed scheme

is not jeopardised by the addition of the noise.

6.5 Discussion

A novel centralised (on the substation level) protection scheme with fault detection and

classification elements has been proposed for multi-terminal HVDC grid with DC SCs.
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Table 6.7: Time performance of the XGBoost-based scheme considering artificial noise to
current and voltage measurements of the testing scenarios.

SNR [dB] SC1 SC2 Bus 3 Bus 1 Bus 2 CC

top max [ms] top avg [ms] top max [ms] top avg [ms] top max [ms] top avg [ms] top max [ms] top avg [ms] top max [ms] top avg [ms] top max [ms] top avg [ms]
∞ 1.0982 0.2416 1.2341 0.3513 0.1543 0.0952 Stable Stable Stable Stable Stable Stable
100 1.0983 0.2415 1.2341 0.3513 0.1543 0.0952 Stable Stable Stable Stable Stable Stable
80 1.0983 0.2415 1.2341 0.3512 0.1543 0.0951 Stable Stable Stable Stable Stable Stable
60 1.0983 0.2414 1.2341 0.3512 0.1541 0.0949 Stable Stable Stable Stable Stable Stable
30 1.0981 0.2412 1.2339 0.3510 0.1538 0.0944 Stable Stable Stable Stable Stable Stable

The developed scheme utilises the principles of the XGBoost algorithm and protects

the system against faults occurring along the cables (SCs and CC) and the buses. The

results of the validation studies have highlighted the following key points:

� The proposed XGBoost-based scheme has been found to present high levels of

sensitivity, stability, selectivity, and increased operational speed during different

fault scenarios. These include various PP P-G and N-G faults, different fault

locations, and different fault resistances.

� The XGBoost-based scheme presents increased sensitivity by initiating a fast

tripping signal during the highly-resistive internal faults, while remaining stable

during external faults.

� The accurate activation of the tripping signal, during all investigated scenarios,

demonstrates the increased selectivity of the proposed scheme, highlighting its

ability to effectively identify and classify the faulty components while keeping

the unaffected parts operational. This capability enhances the system’s overall

reliability.

� The results from the real-time SIL testing validated the fast and accurate fault

detection and classification under various fault conditions and consequently high-

lighted the applicability of the developed scheme for real-time implementation.

Specifically, the results showed that the operation time lies within the range of

0.0803 ms and 1.2341 ms, which complies with the protection requirements for

HVDC grids.

� The proposed protection scheme presents robustness against noisy measurements.

6.6 Summary

This chapter has presented a centralised protection scheme (at the substation level) for

multi-terminal HVDC systems with SCs. It has been shown that the secure and reliable
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operation of HVDC grids with DC SCs introduces the need for discriminative, fast, and

sensitive protection solutions in order to comply with HVDC protection requirements

and address the particularities of SC technologies.

Initially, a literature review on the existing HVDC protection solutions has been

carried out and the key observations concluded the limitations of existing schemes

to provide reliable protection for DC SCs in HVDC systems. To build upon this, a

qualification assessment of widely used protection schemes in HVDC systems, such

as current and voltage derivative-based schemes, has been presented and the results

highlighted that the threshold-based protection schemes result in a trade-off between

protection sensitivity and stability. Considering the restrictions of existing schemes, and

the ever-increasing availability of data in future power grids, this chapter demonstrated

the development of a novel data driven protection scheme which is comprised of fault

detection and classification elements, exploiting the strong learning capabilities of the

XGBoost algorithm.

The proposed scheme has been assessed based on offline simulations and real-time

studies. The results showed that the XGBoost-based scheme can provide fast and

discriminative protection for faults applied at the SCs, conventional cable, and buses

(both solid and highly-resistive). This has been validated in detailed transient simulations

and utilising AI evaluation metrics such as the F1-score. The resulting F1-score has been

found to be equal to 98%, which confirms that the developed scheme can correctly detect

and classify all internal faults and also classify correctly, and remain stable for, external

faults beyond the protection zone. This evaluation underscores the increased sensitivity

towards internal faults, the robust stability when dealing with external faults, beyond

the protection zone, and the enhanced selectivity of the proposed scheme in effectively

initiating a tripping signal for the corresponding CB. In particular, the XGBoost-based

protection scheme demonstrates increased sensitivity, as evidenced by a significant rise

in TPs and a corresponding decrease in FNs. Additionally, the scheme’s stability is

affirmed by the high percentages of TNs and a reduction in FPs. Furthermore, the

developed scheme’s selectivity is underscored by the notable decrease in the resulting FP

values. The results from the real-time SIL testing validated the fast and accurate fault

detection and classification under various fault conditions and consequently highlighted

the applicability of the developed scheme for real-time implementation. Specifically, the

results showed that the operation time lies within the range of 0.0803 ms and 1.2341 ms,
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which complies with the protection requirements for HVDC grids. Furthermore, the

XGBoost-based scheme presents increased discrimination capability by initiating a fast

tripping signal during the highly-resistive internal faults and remaining stable during

external faults. Additionally, the generalisation capability of the proposed scheme has

been tested under the influence of noise. The results verified the robust performance

of the XGBoost-based scheme despite noisy measurements. To conclude, the proposed

scheme is suitable for the detection and classification of faults in HVDC grids with SCs,

and can be considered a very promising solution for the implementation of fast and

reliable DC bus and DC SC protection.
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Chapter 7

Conclusions and Future Work

This chapter provides a summary of the key findings and contributions of the research,

concluding the entire thesis. In addition, it suggests future work.

7.1 Summary and Key Outcomes

Chapter 1 of this thesis presented a discussion supporting the need for bulk power

corridors to accelerate the decarbonisation of power systems and accommodate changes

in grid infrastructure. The chapter emphasises the significant role that AC and DC SCs

are expected to play in future power grids, owing to their numerous advantages, including

bulk power transfer over long distances at lower voltage levels with minimal losses. As

research into superconducting-based applications advances, SCs are increasingly viewed as

a cost-effective solution to facilitate the integration of renewable generation from remote

areas. Nevertheless, the deployment of SCs in power grids presents significant challenges,

particularly regarding fault-related issues, which have been highlighted as a matter of

major importance. The unique electro-thermal properties of SCs add complexity to the

fault management of this technology. Thus, the main motivation of this work is the

development of reliable and effective fault management solutions, including protection

and fault location applications, to ensure the safe operation and increased reliability of

SC systems. Initially, the research gap in the area of fault management of systems with

SCs has been identified, which is followed by an overview of the research methodology

and the analysis of the main contributions of this thesis. Furthermore, this chapter

discussed the progressive deployment of AI-based techniques in power system applications,

including protection and fault location applications. As the fault management of SCs is
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a multi-variable problem, AI-based methods with strong learning capabilities have been

deemed a viable solution to tackle this challenge and, therefore, have been selected as

the primary tool for developing the proposed solutions.

Chapter 2 provided a theoretical background of superconductors and the quenching

phenomenon. The chapter described the structure of SCs, starting from the HTS tapes

that form the core of SC manufacturing and proceeding to the arrangement of HTS in SCs,

along with an overview of the advantages and drawbacks of different SC configurations.

It has been pointed out that the proper selection of SC configuration is based on voltage

levels and cost considerations. Specifically, it has been highlighted that:

� The concentric configuration of AC SCs presents a compact size, reduced cryogenic

surface area, utilisation of superconducting material, and cost. It also offers higher

current-carrying capacity and lower inductance compared to other configurations.

However, the non-uniform current distribution among HTS tapes makes the manu-

facturing process challenging. This design is preferred for voltage levels between

13.8 kV and 50 kV .

� Triad SCs are recommended for voltage levels higher than 66 kV and offer uniform

current distribution among HTS tapes. However, this configuration requires the

addition of a HTS shield layer, resulting in increased cost.

� Single-core SCs are recommended for voltages up to 138 kV for bulk power trans-

mission over long distances. In this configuration each conductor is contained in

separate cryostats, which significantly increases the cost, as each conductor requires

separate inlet and outlet paths for cooling.

Furthermore, SCs are classified based on the type of dielectric used and their operating

temperature. In particular:

� CD SCs exhibit higher cooling efficiency due to their larger cooling surface area.

This makes them suitable for applications where efficient cooling is critical, such as

large-scale power transmission. However, they may require more complex cooling

systems to maintain the required low temperatures.

� WD SCs have reduced cooling power requirements due to their dielectric layer not

being immersed in the cooling liquid. This design makes them more suitable for

applications where cooling requirements are less stringent, and the higher operating
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temperature is more manageable. WD SCs are characterised by higher inductances

and capacitances, which can limit their applicability in certain applications.

Moreover, the chapter presented the mathematical formulation for the electro-thermal

modelling of AC and DC SCs. This involved adopting the electrical equivalent of

commercially available 2G HTS tapes and the electro-thermal analogy, to simplify the

coupling between electrical and thermal phenomena in SCs and consequently represent

the quenching of HTS tapes.

Chapter 3 described the outcomes of a detailed, simulation-based transient analysis of

AC and DC SCs. The analysis was conducted to obtain a better understanding of the fault

response of SCs, identify challenges from a fault management perspective, and lay the

groundwork for the development of protection and fault location solutions. The studies

presented in this chapter considered various fault scenarios and transient events and the

analysis has been conducted based on the obtained current and voltage waveforms. For

that purpose, the developed models of AC and DC SCs have been integrated within an

AC transmission system with penetration of ICGs and a multi-terminal HVDC network

with MMCs.

From the analysis, the following key observations can be reflected:

� During the quenching process, AC and DC SCs present fault current limiting

capability, due to the rapid increase in the equivalent resistance, which leads to

the suppression of the current magnitudes. Furthermore, the presence of high

resistance during quenching leads to the appearance of residual voltage during

faults. These effects impose a significant challenge on the existing current and

voltage based protection schemes (i.e., over-current and distance protection) and

constitute important aspects which should be considered for the effective fault

management of AC and DC SCs.

� During highly-resistive faults, the fault current is predominately limited by the fault

resistance resulting in a fault current magnitude lower than the critical current of

the HTS tapes. Consequently, the quenching process is jeopardised, complicating

the fault detection and location processes on AC and DC SCs. To address this

challenge, increased sensitivity of the fault detection schemes is a prerequisite for

the safe operation of such cables.

� The presence of other disturbances, such as load switching events and external
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faults can lead to the quenching of AC and DC SCs, threatening the discrimination

of protection and accuracy of fault location schemes. Hence, for reliable operation,

protection solutions with a high degree of selectivity and stability, and fault location

schemes with increased accuracy, are required.

� Termination inductors affect the current in HVDC systems by reducing the rate of

change of current during a fault. Therefore, it is important to carefully consider the

design of termination inductors, their impact on the quenching, and consequently

the fault management of SCs.

Chapter 4 proposed two data-driven protection schemes incorporating fault detection

and classification elements for MV AC systems with SCs. Initially, protection assessment

studies were conducted to assess the efficacy of over-current threshold-based protection

schemes, which are commonly used for MV AC system protection. The outcomes of these

studies revealed that the performance of these protection methods is compromised by SC

quenching and fault resistance, creating a trade-off between protection, sensitivity, and

stability.

In view of these limitations, this chapter explored the potential of AI techniques for

fault management of AC SCs. Specifically, it is demonstrated that AI-based techniques

can handle complex, multi-variable problems such as AC system protection with SCs,

and uncover latent information that can enhance the understanding of the power system

response. Consequently, the proposed protection schemes leverage the advantages offered

by AI methods, specifically ANN and SVM classifiers, in conjunction with signal processing

techniques such as the WT. After thorough validation of both schemes for a series of

scenarios including different fault types, location, and values of fault resistance as well as

other transient events, the following noteworthy observations can be made.

� WT is proven to be an efficient feature extraction tool which reveals hidden

information from the faulted voltage and current measurements.

� The proposed schemes have been found to be highly sensitive, even during highly-

resistive faults, and stable against external faults and other disturbances.

� The performance of the schemes have been evaluated through detailed transient

simulations and the results showed that the ANN algorithm detects correctly the

internal faults with accuracy of 99.74%, while the SVM classifier with accuracy of

99.69%. Therefore, both algorithms increased discrimination capability by detecting
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all types of internal faults and remaining stable against external faults and other

transient events such as load switching events.

� The operational speed of the proposed schemes has been verified based on a

SIL testing set-up which confirms the fast fault detection and initiation of the

corresponding tripping signals. In particular, ANN and SVM algorithms detected

the internal faults with average operation time of 1.47 ms and 2.91 ms, respectively.

These average operation times are adequate as they result in rapid fault detection

and classification, effectively minimising quenching propagation, preventing the

SCs from reaching the critical temperature and consequently ensuring the system’s

safety.

� A sensitivity analysis, considering diverse hardware specifications, has revealed

that the real-time implementation of the developed schemes can be realised using

equipment characterised by comparatively modest specifications. The reduced

financial burden associated with these schemes enhances their scalability and

replicability, ultimately contributing to their widespread adoption and deployment

as cost effective protection solutions.

� Both classifiers satisfy the requirements for sensitive, discriminative, and fast

protection of AC systems with SCs. However, for comparison purposes it has been

found that the ANN algorithm outperforms SVM in terms of the operational speed,

presenting better capabilities for real-time implementation.

In Chapter 5 the challenges related to the fault location on AC SCs are discussed. It

has been pointed out that the accurate estimation of the fault location is of paramount

importance for the SC technology due to the complex configuration of such cables

and the difficulties involved in the repair process. To address this issue, the chapter

proposed a novel data-driven fault location scheme based on the CNN algorithm and the

transformation of time-domain signals to the time-frequency domain.

The proposed scheme utilises measurements from one terminal of the AC SC and

does not require time-synchronisation measurements. Its performance has been evaluated

through detailed transient simulations that considered various fault scenarios and the

impact of factors such as noisy measurements. In contrast to existing methods reported

in the literature, which have limitations in terms of their deployment in superconducting-

based grids, they account for the influence of variable resistance on the accuracy, the
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electromagnetic theory of SCs, the requirement of time-synchronised measurements, and

the need for external equipment. The proposed method provides accurate fault localisation,

while addressing the aforementioned challenges. Validation studies demonstrate the

following advantages of the proposed fault location scheme:

� The transformation of non-stationary signals from time domain to time-frequency

domain is ideal for analysing signals concurrently in both domains. This approach

provides a more complete analysis of signals, which can result in more accurate

fault location estimation.

� The combination of AI algorithms with image analysis techniques provides the

potential of improving the accuracy of feature extraction and identifying fault

locations more precisely. Image analysis techniques have the ability to represent

complex data in a simplified form, facilitating pattern recognition and reducing

computational complexities. Additionally, these techniques demonstrate robustness

when dealing with data that contains a significant amount of noise, which is

particularly important in protection applications as measuring equipment is subject

to noise, posing challenges to accurate fault detection and localisation.

� An extensive investigation of CNN algorithms with regards to the resulting mean

fault location estimation error revealed that the Inception-v3 presents the best

performance for the SC fault location problem.

� The proposed fault location scheme has been found to successfully estimate the

fault location during all the investigated scenarios and maintain high accuracy of

the fault location identification, even during highly-resistive and close-up faults,

which are considered the most challenging. The mean fault location estimation

error on the testing dataset has been found equal to 0.74%. According to the

relevant technical literature, 0.74% mean fault location estimation error is low and

based on the obtained results this low error rate reflects the efficacy and precision

of the scheme in identifying fault locations and enabling prompt and accurate

mitigation of faults in various situations, thus enhancing the overall reliability and

performance of the system.

� The evaluation of the proposed scheme on previously unseen fault scenarios, re-

sulting in a maximum fault location estimation error of 1.18% and a mean fault
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location estimation error of 0.34%, demonstrates its outstanding performance and

generalisation capability. The resulting errors are lower compared to error rates of

existing schemes in the literature and indicates the scheme’s robustness and adapt-

ability to a wide range of situations, ensuring accurate and reliable fault location

identification for maintaining the operational efficiency of the power system.

� The proposed scheme maintains increased accuracy against randomly varied sam-

pling instants and changes in the inception angle. Specifically, for small variations

of the actual fault position (i.e., 10 m), the resulting fault location estimation error

ranges between 0.1% and 1.2%. The obtained error is low based on the relevant

technical literature and indicates the scheme’s robustness and precision in fault

localisation.

� Sensitivity analysis revealed that a minimum sampling frequency of 20 kHz is

sufficient for the adequate performance of the developed scheme. The selection

of 20 kHz is consistent with established industry standards and is suitable for

practical implementation in real-world scenarios.

� The proposed scheme has been found to be robust against noisy measurements.

� During the incorporation of perturbation techniques (i.e., noise and masking) in

the training process, which are utilised to improve the generalisation capability of

AI models, no notable improvement has been reported regarding the fault location

estimation accuracy. Therefore, the generalisation capability of the developed

scheme is increased.

� The comparative analysis with another data-driven scheme (i.e., LSTM-based

scheme) validated the suitability of the proposed method to provide precise fault

location on AC SCs. Specifically, the developed CNN-based scheme and the LSTM-

based scheme resulted in mean fault location estimation errors equal to 0.73% and

1.1%, respectively, during the evaluation of the same fault scenarios.

Chapter 6 presented a centralised protection scheme (at substation level) for multi-

terminal HVDC systems with DC SCs, which addresses the need for discriminative,

fast, and sensitive protection solutions to ensure secure and reliable operation of HVDC

grids with DC SCs. The chapter started by highlighting the limitations of existing

protection schemes for DC SCs in HVDC systems by conducting a comprehensive
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literature review and presenting a qualification assessment of widely used protection

schemes in HVDC systems. The key obervations and the obtained results revealed that

existing protection schemes present limitation with respect to protection sensitivity,

stability and discrimination capability.

Given the limitations of existing protection schemes, the chapter presented a novel

data-driven protection scheme that exploits the strong learning capabilities of the XGBoost

algorithm. This scheme comprises fault detection and classification elements which are

tested and validated based on offline simulations and real-time studies. The evaluation

studies led to the following key observations:

� The developed scheme adopts the centralised protection philosophy, providing a

holistic protection solution and eliminating the need for communication among sub-

stations. Furthermore, it has demonstrated increased sensitivity and discrimination

capability to detect and classify correctly all the faults occurring to all the elements

connected to HVDC substation (i.e., buses, SCs, and conventional feeders).

� The proposed scheme has been found to exhibit a high degree of stability and

selectivity during external faults occurring beyond the protection zone. In practical

deployment, this suggests that the number of nuisance tripping events and system

downtime can potentially be minimised.

� The results of the real-time SIL testing showed a high speed of operation which is in

compliance with the HVDC protection requirements (i.e., 2− 5 ms), validating the

feasibility of the developed scheme for real-time protection applications. Specifically,

the resulting operation time is within the time range of 0.0803 ms to 1.2341 ms,

providing an average time of 0.2571 ms.

� The proposed scheme has presented immunity to noisy measurements and increased

generalisation capability against modifications in the network topology.

7.2 Future Work

This section discusses further research steps which can follow the successful development

and validation of the presented fault detection, classification and location schemes.

178



Chapter 7 Conclusions and Future Work

7.2.1 Investigation of different control strategies and penetration levels

of ICGs connected to the AC transmission network

The fault current characterisation of the AC SC presented in Chapter 3 and the devel-

opment of the protection and location schemes analysed in Chapter 4 and Chapter 5,

respectively, considered the integration of AC SCs in power grids incorporating ICGs

which operate in DQCI control mode. However, the fault current contribution of ICGs is

determined by their control strategy, and the system fault levels depend on the penetra-

tion level of ICGs, which may affect the quenching of SCs. Therefore, further investigation

is required to explore the quenching of SCs considering different control strategies and

penetration levels of ICGs in power systems incorporating SCs. Additionally, the efficacy

of the developed schemes can be further validated against different ICG control designs

in inverter-dominated networks.

7.2.2 Further investigation of AI algorithms

The protection and fault location schemes developed in this study were designed by

incorporating robust AI algorithms that possess strong learning capabilities, such as the

ANN and SVM models, which are among the most frequently proposed pattern recognition

algorithms. The schemes also account for CNN models and the latest improvements in

AI classifiers, such as the XGBoost algorithm. Additionally, the developed schemes were

compared with other commonly used AI models, including LSTM models, for the fault

location application. These algorithms were selected based on their unique advantages

for similar power systems protection and fault location problems reported in technical

literature, and were further validated, demonstrating successful outcomes. However, it is

recommended that additional AI algorithms be evaluated for fault management in SCs,

including upcoming trends in AI applications.

7.2.3 Development of back-up protection schemes

The proposed protection schemes, presented in Chapter 4 and Chapter 6 for AC and

HVDC systems, respectively, have been developed as primary protection solutions. Based

on the literature review, there is a lack of reliable solutions for the primary protection of

AC and DC SCs. However, a next research step should be the development of adequate

back-up protection schemes for AC and HVDC grids incorporating SCs.
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7.2.4 Experimental validation

In the presented work, the development of SCs has been conducted in Matlab/Simulink

providing accurate representation of their transient performance and the quenching

phenomenon. Furthermore, the practical feasibility of the developed schemes has been

validated using real-time SIL testing. The next step of this research should be the

experimental validation of the developed SCs and the testing of the proposed schemes

based on a scaled-down laboratory prototype.

7.2.5 Protection coordination of the three XGBoost-based protection

schemes installed at HVDC substations

Following the successful development and evaluation of the proposed centralised XGBoost-

based scheme for multi-terminal HVDC systems, more research shall be steered towards

the simultaneous assessment of the three centralised XGBoost-based schemes installed at

the three substations, along with the investigation of back-up protection schemes.

7.2.6 Re-evaluating protection and fault location schemes for next

generation SCs

As future work, it is recommended to extend the assessment of the developed protection

and fault location schemes and revisit the fault characterisation for the upcoming genera-

tion of SCs. These can include SCs fabricated using different superconducting materials

(i.e., Bi-based oxide wires, MgB2 wires), characterised by different specifications (i.e.,

increased critical boundaries, different layers of HTS tapes and modified configurations).

Additionally, different cooling systems may be employed. On that front, a comprehensive

evaluation of the proposed schemes, taking into account these diverse factors, will ensure

that the protection and fault location schemes remain effective, robust, and adaptable

for a broad spectrum of SC technologies. Furthermore, this exploration can potentially

uncover new insights to enhance the performance and reliability of the developed schemes,

contributing to the continued advancement of SC applications in power systems.

7.2.7 Development of high-fidelity SC models

SCs offer the potential to transform power transmission by significantly increasing energy

efficiency and reducing losses. However, accurate modelling of their behavior, especially

under transient conditions, remains a challenge. Although current models exist, there is a
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need to develop high-fidelity models that can provide a more detailed understanding of the

transient response of SCs, unlocking deeper insights. The development of detailed models

of SCs can bring numerous benefits beyond unlocking deeper insights into their behavior.

These models will also enable investigations into other protection and location schemes,

such as those based on the TWs theory. Therefore, the development of high-fidelity

models will aim to unlock the full potential of SCs in power systems and accelerate the

realisation of a sustainable energy future.
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Mariana Resener, and Arturo Suman Bretas. Hybrid fault diagnosis scheme

implementation for power distribution systems automation. IEEE Transactions on

Power Delivery, 23(4):1846–1856, July 2008.

[189] Ramon Perez, Carmen Vásquez, and Amelec Viloria. An intelligent strategy for

faults location in distribution networks with distributed generation. Journal of

Intelligent and Fuzzy Systems, 36:1–11, 01 2019.

[190] O. D. Naidu and Ashok Kumar Pradhan. Model free traveling wave based fault

location method for series compensated transmission line. IEEE Access, 8:193128–

193137, October 2020.

[191] M. Goudarzi, B. Vahidi, R.A. Naghizadeh, and S.H. Hosseinian. Improved fault

location algorithm for radial distribution systems with discrete and continuous

wavelet analysis. International Journal of Electrical Power and Energy Systems,

67:423–430, May 2015.

201



Chapter 7 BIBLIOGRAPHY

[192] Reza Razzaghi, Gaspard Lugrin, Hossein Manesh, Carlos Romero, Mario Paolone,

and Farhad Rachidi. An efficient method based on the electromagnetic time

reversal to locate faults in power networks. IEEE Transactions on Power Delivery,

28(3):1663–1673, July 2013.

[193] Alberto Borghetti, Mauro Bosetti, Mauro Di Silvestro, Carlo Alberto Nucci, and

Mario Paolone. Continuous wavelet transform for fault location in distribution power

networks definition of mother wavelets inferred from fault originated transients.

IEEE Transactions on Power Systems, 23(2):380–388, April 2008.

[194] Fernanda C. L. Trindade, Walmir Freitas, and José C. M. Vieira. Fault location in
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