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Abstract

With the sophistication of shipboard systems, maintenance is becoming more time-consuming

and skill-dependant. Precise and timely planning, which can be achieved through Condition

Based Maintenance, is key in overcoming these challenges, as well as ensuring the longevity

and efficiency of assets. The rapid growth of ship monitoring systems means that failures and

performance shifts can be linked to variations in measured parameters. This knowledge can be

used to limit performance losses, through the identification of undesirable trends. The current

project seeks to predict the health status of the hull and the propeller, through the combina-

tion of performance modelling approaches from two distinct schools, first-principle techniques

and data-driven methods, with the data collection capabilities of modern vessels. Reductions of

the vessel’s performance at a certain operational and environmental setting, when compared to a

reference ’clean vessel state’ can be traced to the extent of fouling of the hull & propeller, whose

condition can be determined separately. A hybrid methodology, combining the accuracy, speed,

and flexibility of data-driven methods with the physical knowledge of first-principle models is

considered the ideal candidate for the above tasks. The main aim of the research project is to

develop a set of real-time fault detection, which can be used to supplement a maintenance strat-

egy, reducing maintenance loads and crew requirements. The developed novel hybrid prediction

models utilise both data-driven and first-principle approaches, which has not been previously

applied to the problem of evaluating the vessel performance shift due to biofouling. Finally, a

case study is employed to demonstrate the numerical tool’s ability to identify shifts in ship ca-

pability. Due to the generous collaboration of DAMEN Shipyards and The Royal Netherlands

Navy, the developed methodology is validated and tested on real-world data.
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1 Background

The last decade has been characterised by growing concerns about greenhouse emissions and

their increasingly apparent effects on climate change [1]. The problem of global warming has

been internationally recognised [2] and has been one of the biggest drivers in most fields of

current research and regulation. The shipping industry is no exception, and several promising

technologies have been and are under development towards a net-zero carbon footprint [3].

1.1 Introduction

The increase in globalisation of trade comes partially as a result of a raising demand for the

transport of resources [4]. In this field, shipping has been identified as the most efficient mode

of transport to face this demand when compared to its land and air alternatives [5]. This is due

to a relatively low energy consumption and, therefore, a low cost per unit of carried weight [6],

as well as a high degree of cargo safety [7]. As a result, shipping has become responsible for

90% of global trade and a seemingly low, in comparison, global transport emission share of

2.9% [8, 9, 10]. Maritime seems to be less damaging to the environment when compared to

its land and air alternatives, however, sulphur oxides, nitrogen oxides, particulate matter, and

carbon dioxide emissions due to shipping are still a significant contributor to air pollution [11].

Following the growth observed in the last 40 years [5], the volume of waterborne trans-

port work is expected to further increase, potentially doubling by 2030 [12]. Moreover, the

shipping industry only recently started the uptake of new technologies (e.g., alternative fu-

els [13, 14]) and still primarily relies on fossil fuel energy [15]. Consequently, a rapid increase

in shipping’s Green House Gas (GHG) emissions volume and emissions share is expected due
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Chapter 1. Background

to the increase in transport volumes and the quicker decarbonisation of other industries respec-

tively [16]. For example, the most recent Fourth GHG Study by the International Maritime

Organisation (IMO) [10] observed that the decrease in carbon intensity of shipping operations

(i.e., due to the use of new technologies) was outweighed by the growth of total shipping emis-

sions (i.e., due to the increase in waterborne transport volume). Specifically, emissions are still

expected to increase from about 90% of 2008 levels in 2018 to 90-130% of 2008 emissions in

2050 for a range of possible scenarios [10]. As an attempt to rectify this, the IMO has been

actively taking regulatory action. The development and enforcement of the EEDI (Energy Ef-

ficiency Design Index) by the Marine Environment Protection Committee (MEPC) and, since

2011, the requirement for ship owners to incorporate the Ship Energy Efficiency Management

Plan (SEEMP) [17] in line with the IMO are some examples of the IMO’s efforts. A vessel’s

EEDI measures the ratio between produced GHG emissions and the amount of useful work it

delivers. A minimum energy efficiency level is required, depending on ship type and size, in

line with a phased implementation plan where increasingly stricter energy efficiency thresh-

olds are enforced. This process started in 2013, following a two-year buffer, and is planned to

introduce the strictest regulatory efficiency requirements by 2025. Nevertheless, stricter regula-

tions will be required in the future (such as the one on sulphur content requirements for marine

fuel inside and outside Emission Control Areas (ECAs) [18]) to achieve the IMO’s ambitions

towards a net-zero environmental footprint of shipping by the end of the century, following a

50% reduction by 2050 [19].

The means of achieving the required emission reductions still remains an open question. In

its second GHG study [8], the IMO suggests a combination of technological and operational

improvements. The authors of [5] review studies on ship energy efficiency increasing (and/or

emission reducing) technologies and practices currently available in academia and industry.

They reach the conclusion that a 75% reduction in emissions is possible by 2050 based on cur-

rent technologies, including the adoption of alternative fuels. Unfortunately, they also state

that widespread deployment of these technologies and practices is currently not happening fast

enough or at the required scale. The authors of [20] come to similar conclusions when analysing

2



Chapter 1. Background

the implementation of over 30 candidate technologies. GHG reducing technologies (i.e., fuel

cells, batteries, dual-fuel engines) and alternative fuels (i.e., ammonia and hydrogen) will have a

substantial impact on the future [5], however, the current fleet cannot be realistically retrofitted

in the short-medium term. For this reason, it is mandatory to keep current propulsion systems

at their best efficiency. Improving vessel efficiency is also in line with ship owners’ desire to

reduce fuel costs, which often contribute to more than half of a ship’s operational costs [7]. In

fact, an emission reduction of 33% by 2030 could be possible because most energy efficiency

improving measures are cost efficient [21]. Nevertheless, despite these being financially fea-

sible, the adoption of new technologies is rare among vessel owners and operators. This is

the so-called ’energy efficiency gap’, which is caused by unrealised potential for improvement,

and affects many other fields [22]. Focusing our attention on the shipping industry, there are

many factors causing this gap (e.g., safety, reliability, technological uncertainty, and market

constraints) that act as a barrier for the implementation of new energy efficiency improving

technologies [23].

Regardless of the emission reducing technologies employed, a vessel and its systems are

and will always be subject to performance decay. Effective maintenance can be responsible

for up to 40% of total operational costs [24] and, therefore, is a perfect candidate for optimi-

sation and improvement. Moreover, effective maintenance of systems and system components

reduces the disruptions that can be caused by faults or failures on-board [25], ensuring that the

vessel is operating at its best efficiency. Therefore, using intelligent tools as a decision-support

instrument in maintenance planning is a potential source of operational improvements [26].

However, improvements need to be economically viable for vessel owners, as well as effective

in reducing environmental impact [27]. A good example is the problem of biofouling, which is

the focus of the current work. Direct exposure to seawater, which is both highly corrosive and

filled with living organisms, is the main cause of surface roughness increases that negatively

impact the hydrodynamic performance of a ship [28]. This increase is responsible for higher

GHG emissions due to the consumption of additional fuel. While novel systems that combat

biofouling [29] are becoming available, two main methods of biofouling control are widely
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implemented [30, 15], namely antifouling coatings and periodical cleaning. Nevertheless, no

coating can fully stop biofouling [31] and the coating needs to be periodically replaced during

dry-docking. Financially, the higher fuel consumption translates to substantial increases in op-

erational costs, especially since between 60− 70% of the operational costs of a ship result from

its energy requirements [32]. On the other hand, periodical cleaning is a time-consuming and

costly maintenance activity, which prevents the vessel from performing its particular mission.

The above brings about a curios trade-off between the two sources of monetary expenditure in

operating a vessel. For this reason, being able to monitor and evaluate the biofouling state and

its effects on vessels’ hull and propeller performance is of paramount importance for optimum

maintenance planning. Existing research [33] has hinted that even modest improvements in the

fouling condition of a hull potentially outweigh the costs of developing technical solutions or

improving management strategies. Unfortunately, due to the dynamic and multifaceted nature

of the problem, this remains a difficult task [34]. The reasons in why the author has chosen the

topic of biofouling are expanded on in the following Chapter 2, and will, for now, be omitted

in favour of delivering a holistic description of the higher level challenges and opportunities the

Maritime industry faces.

To avoid only conducting maintenance when a fault or failure occurs, there is a need for a

mature knowledge of a vessel and its operation. In this respect, the development of the necessary

decision-support tools associated with constructing a maintenance schedule is an important

avenue for research. This can be looked at in terms of both making the implementation of new

technologies easier through a good foundation for their upkeep, encouraging owners to adopt

them, as well as the above-mentioned connection to fuel economy, which currently is of big

importance due to the currently high carbon content of marine fuels. Throughout history, many

maintenance strategies have been developed with varying requirements in terms of knowledge

and information.

4



Chapter 1. Background

1.2 Maintenance Approaches

According to the British Standard EN 13306:2017 [35], the term maintenance refers to the

’combination of all technical, administrative and managerial actions during the life cycle of

an item intended to retain it in, or restore it to, a state in which it can perform the required

function’, whereas a maintenance strategy is a ’management method used in order to achieve

the maintenance objectives’. As mentioned above, the uptake of an appropriate maintenance

strategy in terms of a vessel is essential. This both minimises down time and costs, increasing

profitability, as well as ensuring the long life of an operator’s assets. The preferred strategy has

naturally changed with the modernisation of industry and continues to evolve based on tech-

nological trends. Lazakis et al. [36] appropriately list the evolutionary steps of owners’ and

operators’ view of maintenance in shipping. Initially, it was considered a nuisance, however,

necessary for the continued operation of one’s ships. Eventually, the possibility to reduce opera-

tional down time and costs through the optimisation of the maintenance strategy and scheduling

meant an opportunity to increase profitability and as such started being seen in a more positive

light. In today’s age, maintenance has become integral, where much thought and planning is

put into the selection of the most appropriate strategy. Of course, this has not happened solely

due to the ’change of heart’ of the Maritime industry, the modernisation of the world has meant

that more robust and advanced strategies came into existence, providing increasingly benefits

to owners and operators, in a way bringing incentive for their interests.

The classification and separation of maintenance strategies, however, is no easy task. Upon

review, there is no internationally accepted structure across the whole industry, a conclusion

which other research has also reached [37]. However, the underlying understanding which has

lead researchers to varying classifications of maintenance types is constant. The author prefers

the structure presented in [36], among other works. The initial stages of maintenance deploy-

ment in shipping made use of corrective maintenance, where a component is only replaced or

serviced when a failure or fault occurs. Even though there is a certain level of cost saving that

comes from fully utilising the lifetime of a part before replacing it, the unexpected occurrence
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Chapter 1. Background

of failures results in a higher chance for serious faults and subsequently longer down periods

[24]. As an attempt to remedy this and decrease operational downtime or a need to operate

with a severely reduced efficiency/performance, a more proactive approach was developed. The

so-called preventive maintenance draws upon previous experience and applies a time-based

maintenance interval, where components are replaced preemptively. Preventive maintenance

reduces failure rates and down time, in this way seeking to maximise cost savings, however,

often a lot of the remaining useful life of components is wasted [36]. Looking at the so-far

mentioned maintenance strategies, it can be seen that they are almost each other’s opposite.

Corrective maintenance prioritises the full exploitation of components, sacrificing vessel oper-

ability, whereas the preventive approach sacrifices some useful life of vessel parts and focuses

on maximising operational up-time. In reality, apart from very specific use cases, the optimum

approach is somewhere in between. Not surprisingly, the next step in shipping maintenance

strategy evolution seeks the minimum possible costs through a balance between the two previ-

ous approaches. Predictive maintenance strategies utilise the advancement of technology and

research to detect the need for maintenance in real-time during operation [38]. According to

[36, 37], predictive maintenance can be further split up into Reliability-Centered Maintenance

(RCM), Risk-Based Inspection (RBI) and Condition Monitoring (CM). Figure 1.1 shows the

above described evolution of maintenance strategies.

Figure 1.1: Evolution of Maintenance Strategies

The current work is interested in CM, which seeks to determine the health status of ma-
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chinery through the use of sensory data and ultimately provide insight into when and what

maintenance is required before failure occurs [38]. Knowledge about the health status of vessel

components at any given moment is extremely valuable when ensuring maximal exploitation of

resources, allowing operational downtime only when a failure is expected to occur soon. The

trends of key performance indicators, which are recorded through the aforementioned sensory

readings, are normally used in advanced performance modelling methods in combination with

historical data and engineering expertise to conduct the necessary condition evaluation. Nat-

urally, the choice of an appropriate performance modelling avenue is a very important factor

in achieving good quality results. The development of the state-of-the-art in modelling and

the resulting availability of better insight in terms of vessel systems & subsystems can thus

be seen as directly linked to the improvement of the existing maintenance framework in the

Maritime industry, which is an essential factor going forward. The necessary steps towards the

decarbonisation of shipping cannot be done on a weak foundation of knowledge due to its com-

plicated and high-consequence nature. Owners and operators can only commit to technological

improvement if they know what to expect as a result.

1.3 Datification in Shipping

Currently, following the trends in other industries, shipping is going through a technological

revolution where the smart use and recording of digital data is improving operational and design

processes [39]. Due to both a steady transition from the previous manual means of operational

monitoring to new cyber-centered methodologies and the ever increasing computational power

available for exploitation, new data-driven techniques for evaluating vessel performance are

being developed. While the potential benefit of these tools is vast, it can only be brought to

fruition through the availability of high quality and quantity data [40].

Traditionally, operational performance in shipping has been monitored utilising manual data

logging through the so-called noon reports (NR). These log books are used on all ships and the

frequency of logging of new entries is either daily or every watch, where a 24-hour average is en-
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tered into the NR. Which variables get recorded depends on the needs of the shipping company,

the availability of instruments for conducting the actual measurement, the training and motiva-

tion of the crew etc. [41]. In fact, due to the dependence of noon reports on manual human data

logging, they are often exposed to certain shortcomings due to insufficient crew training, inade-

quate data collection protocols and, of course, human error on data entry. Most operators collect

very similar data (ship position, speed, propeller RPM, fuel consumption, draft, environmental

conditions, etc.), however, there is no standard format for this, which makes using NR data for

performance analysis very difficult if the goal is an approach which would work for different

vessels and operators. Irregardless of that, some researchers have seen success in utilising noon

reports for the analysis of vessel performance [9, 15, 42], while there are even some who have

used NR data in the development of Machine Learning (ML) algorithms [43, 44].

Technological advancements have resulted in the implementation of automatic data acqui-

sition systems for vessels, also known as Continuous Monitoring (CM) systems, where data is

being recorded with much higher sampling frequency, accuracy, and reliability than the previ-

ously used noon reports [45]. Sensory readings from the ship’s instrumentation normally get

fed to this central system, where they are available for storage and subsequent analysis or for

on-the-go decision making through data-driven tools. The digitisation and unification of perfor-

mance data allows for easy exchange between vessels and land-based data centers, which will

most definitely be of paramount importance in the future, for example if current interest in the

development of autonomous shipping is to be believed. It is interesting to note that despite the

superior capabilities of automatic systems, operators are often not provided with transparency

on how the data is being handled and processed within commercial systems [41]. Nevertheless,

in the scope of using data-driven techniques for the determination of vessel performance char-

acteristics, the amount of additional data that the higher sampling frequency entails results in

higher accuracy and reliability models. The lack of need for crew involvement in data collection

also enables the use of automatic equipment monitoring.

Both manual parameter logging through noon reports and automatic data acquisition sys-

tems are greatly reliant on the use of different sensors installed throughout the ship, each with
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unique characteristics and operating conditions [39]. For example, higher frequency data col-

lection is used for machinery analysis, while low frequency sampling is utilised in the determi-

nation of environmental conditions [46]. As a result, the extent and quality of available sensory

data are directly related to these devices, whose functionality is essential for any performance

evaluations. In this sense, while sufficient data quality is needed, it is not currently guaran-

teed. On-board ship sensors are prone to malfunction due to harsh operating conditions and

are often duplicated to increase redundancy [41]. Additionally, sensory noise is inevitable due

to the presence of unobserved phenomena whose effect on readings is unknown, and should

be addressed in the data handling pipeline. Nevertheless, the modernisation of industry is an

undisputed trend which is bound to better availability and quality of sensory equipment and as

such the reliability and volume of recorded data is naturally going to increase. Ultimately, if the

information is available, it can then be used to better the Maritime industry through multiple

avenues.

1.4 Chapter Conclusion

The shipping industry is seeing substantial and increasing pressure to reduce its environmental

footprint, all the while maintaining the operational efficiency of its assets. As such, the cur-

rent reliance on fossil fuels and the imminent growth in global trade require urgent action to

substantially reduce greenhouse emissions. Technological advancements and alternative power

sources offer promise in the long-term, however, their widespread adoption is hindered by var-

ious hurdles in the short-term, including the previously mentioned ’energy efficiency gap’ and

the inherent challenges of retrofitting/replacing the existing fleet.

Biofouling significantly affects vessel performance, further complicating the path towards

decarbonisation. Moreover, it is a consistent issue which will continue to hinder shipping re-

gardless of advancements in vessel powering. The growth of marine life on a ship’s hull is the

main contributor to increases in surface roughness as a ship ages, leading to higher requirements

in terms of power input for the same overall performance. Currently, this translates to increased

9



Chapter 1. Background

emissions, and while antifouling coating and periodic cleaning are being used as a deterrent,

these methods are not fully effective, are also costly, and time-consuming. Consequently, the

ability to monitor the state of biofouling on a ship’s underwater surfaces, and its impact on

vessel performance is key for developing a robust and optimal maintenance strategy. The latter

have continuously evolved, from corrective to predictive and proactive approaches, highlight-

ing the importance of advanced condition monitoring systems in ensuring vessels operate in

an optimum condition, despite challenges such as biofouling. With the industry’s movement

towards greater levels of ’datification’, high quality operational sensory data is becoming more

readily available, facilitating more sophisticated analysis and estimation of vessel performance

and empowering existing maintenance practices.

Ultimately, the successful decarbonisation of the shipping industry will require a holistic ap-

proach that integrates technological innovation, effective maintenance strategies, and the smart

use of data. By embracing these advancements, the maritime sector can both achieve significant

emission reductions in the short-term, and build the foundations of a more efficient future. The

current project seeks to develop the current best practice in terms of biofouling impact estima-

tion by introducing novel numerical modelling methods that have not yet been considered for

this application, but have highlighted substantial promise in other fields of engineering.

1.5 Structure of Thesis

Following the brief introduction given in the current Chapter, a detailed investigation into the

available literature on the target topic is conducted in Chapter 2. This critical review and its

findings has also been published as a separate journal article [47]. Based on the identified re-

search gaps as per the later, the aims & objectives of the current research project are outlined in

Chapter 3. In order to meet the set goals, a sophisticated methodology is constructed and vali-

dated in Chapter 4, resulting in a robust ship speed prediction model. Moreover, to demonstrate

the value of the above in terms of supplementing a vessel’s maintenance strategy, a case study

is performed in Chapter 5 to compare the new approach against the current industry method of
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estimating the performance impacts of biofouling. Finally, after a discussion on the observed

results, the author reflects on what has been achieved and its future prospects within Shipping

in Chapter 6, providing a conclusion to the research project.

11



2 Critical Review

Throughout the years, researchers have attempted to develop numerical methods which can

effectively be used as a guide for vessel biofouling centered maintenance strategies. To better

understand these numerical models, it is worth first describing the biofouling phenomenon in

more detail. In the current section, the state-of-the-art of such methods is critically reviewed,

following a description of biofouling, its impact, and methods of prevention. A conclusion from

the performed review, open problems, and future direction of this field of research is detailed

at the end of the chapter. The chapter, in its entirety, has also been separately published as a

journal article in Ocean Engineering [47].

2.1 Introduction

Biofouling is an unwanted process, characterised by several stages of formation, which results

in the growth of marine life on a ship’s wetted surfaces. According to [48], ship hull biofouling

can be characterised by three categories: weeds, shells, and slime. The former two are referred

to as macrofouling and the latter as microfouling. Macrofouling forms on vessels with longer

nonoperational periods and has more pronounced negative effects on ship performance [49].

Instead, ships with high operational speeds and low periods of down time commonly experi-

ence earlier and less detrimental stages of biofouling, such as the formation of a biofilm and the

growth of algae, also termed as microfouling [49, 50]. The initial biofouling stage is the for-

mation of a slime film with varying thickness, depending on the growth stage. Once a biofilm

has been formed, its presence makes the further growth of weed and shells much easier [51].

This development is not uniform over the vessel’s entire underwater surfaces [15]: the separate
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regions of an underwater body experience varying conditions, for example in terms of fluid

flow, due to the general non-uniformity of a ship hull, providing different levels of facilitation

for organism growth.

Moreover, this development also varies between vessel types and missions, depending on

their operational characteristics [52]. In fact, navy ships often spend long periods in port,

whereas commercial vessels rarely remain stationary for a prolonged period of time due to

their need to complete transport work in order to remain profitable. Such differences in activ-

ity result in major variability in the type and extent of fouling formation. It has been widely

observed that marine life finds it much easier to attach to vessel surfaces at lower speeds, ul-

timately a stationary vessel being the optimum ’host’ [49]. In contrast, higher vessel speeds

result in increased frictional shearing forces, which often dislodge less hardy organisms from a

ship’s underwater surfaces or, at least, make their survival much harder, especially when expe-

rienced for prolonged periods of time [49]. Therefore, a container carrier, that often completes

long voyages at constant high speeds, most likely will experience the onset of fouling to a lesser

extent when compared to a sedentary navy ship [49].

A vessel’s operational envelope has a substantial influence on biofouling, however, there are

other important factors as well. Environmental variables (e.g., water temperature, salinity, pH,

nutrient composition, flow velocity, depth, and light) affect the properties of biofouling [53].

Biofouling organisms thrive in warmer weather [15], which not only means that there is a geo-

graphical influence on their development, but also seasonal variations. The majority of marine

lifeforms prefer higher water temperatures and steady environmental conditions, therefore, less

organisms are able to survive on the submerged surfaces of vessels whose operation involves

rapid and frequent changes in environmental conditions [49]. The biofouling phenomenon is

very complex and multifaceted, meaning that even vessels with identical operational behaviour

will most likely experience different biofouling development if they do not operate in the same

region.
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2.2 Impact of biofouling on vessels

Biofouling results in severe operational drawbacks and dangers. In particular, it negatively

impacts vessel efficiency in terms of performance and costs [54] (see Sections 2.2.1 and 2.2.2),

as well as resulting in damages to the environment when combined with the global nature of

shipping [55] (see Section 2.2.3).

2.2.1 Impact on performance

In order for a vessel to move through water at a certain speed, its propulsion system must gen-

erate an appropriate amount of thrust, which overcomes the inherent resistance associated with

this movement. The total experienced resistance is a combination of several components con-

cerning friction, as well as pressure variations due to wind, waves, and the hull’s movement

through water [56]. The biggest and most influential contribution to the total resistance (up

to 90% according to [57]) is the skin friction of a vessel’s underwater hull. It originates from

the viscosity of water and is directly affected by the smoothness/roughness of the underwater

surfaces of a ship. Thus, it is easy to observe that the condition of a vessel’s hull, propeller, and

other appendages has a direct correlation with this important frictional element of the total resis-

tance. Biofouling has a negative effect on the roughness of the subjected surface, resulting in an

altered hydrodynamic profile and a higher total resistance. Recent research has identified that

hull roughness also has an impact on other resistance components [58], which has previously

been assumed to be negligible.

The negative impact of an increase of the hull’s resistance due to biofouling can be evaluated

in two ways [50]. To maintain a desired speed, there must be an appropriate increase in the

delivered thrust by the propulsor, i.e. there will be a higher power demand. If the delivered

power is to be kept constant, the increase in total resistance due to biofouling results in a natural

decrease of the vessel’s speed. Additionally, if the former perspective is taken into account,

the increase in delivered power can also be considered with regards to fuel economy. These

different evaluation methods exist in literature, making it difficult to easily compare the results
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of different research works [15]. A constant between all interpretations of the problem is that

fouling decreases a vessel’s range [59], which is a serious issue for some ship types (e.g. navy

vessels).

Each of the above-mentioned biofouling stages is different with regard to the scale of its

negative impact on a vessel’s performance [57]. Even the initial stage of biofouling, the for-

mation of a slime film, has a pronounced impact on hydrodynamic performance. For example,

Watanabe et al. [60] reported an 8 − 15% increase of frictional resistance due to the presence

of slime. This has been further confirmed by Farkas et al. [50] where a Computational Fluid

Dynamics (CFD) implementation was exploited to determine the impact of different stages of

slime film development. An increase in total resistance ranging from 0.5 to 25.8% was observed

when different biofilm stages were examined. Moreover, in [57] the effects of biofouling on ship

resistance and powering were studied and it was discovered that a light slime film resulted in

around a 10% increase in shaft power and total resistance, whereas heavy slime films could

result in around a 20% increase.

Macrofouling affects the total resistance to a greater extent. The estimation of added re-

sistance due to weed biofouling is difficult and of minor interest [48]. Instead, the impact of

hard calcareous fouling on hull resistance, propeller performance, and propulsion characteris-

tics is often the subject of research in the field. For example, Kempf et al. [61] conducted an

experimental campaign on pontoons with varying coverage and height of shells with the goal of

predicting added resistance due to biofouling. In [62] towing tank experiments using flat plates

covered with artificial barnacles of varying size and coverage were performed. The results, ex-

trapolated at full-scale, showed that barnacle size has a significant effect on added resistance

due to biofouling, where a 10% coverage with 10mm diameter and 5mm height artificial bar-

nacles led to the same 44.6% increase in effective power requirement that was observed for a

50% coverage with 2.5mm diameter and 1.25mm height shells. The above results confirmed

the assumption of [63] that the height of the largest barnacles (part of a fouling layer) has the

largest impact on drag. In [57] an increase of required shaft power between 35% for lesser and

86% for heavy calcareous fouling was reported. This was observed at cruising speed through a
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Table 2.1: Performance impact of biofouling.

Ref. Method Microfouling impact Macrofouling impact

[60] Rotor and Towing tank ex-
periments

Frictional resistance in-
crease 8− 15% N/A

[50] CFD Total resistance increase
0.5− 25.8%

Total resistance increase
50− 120%

[57]

Laboratory-scale drag
measurements and bound-
ary layer similarity law
analysis

Total resistance increase of
around 10% for a light
slime film and around 20%
for a heavy one

Total resistance increase
ranging from 35− 86%

method of predicting the effects of coating roughness and fouling on a full-scale ship by utilis-

ing model tests. Finally, the authors of [50] exploited CFD simulations with varying extents of

hard fouling on different ship and propeller types to determine the impact of hard fouling on ship

performance. They observed increases in total resistance in the range between 50−120% across

different hull forms, along with increases in required delivered power between 75 − 213.4%.

Using effective power as an indicator of fouling effects neglects the decreased propeller perfor-

mance due to the fact that when fouled a ship propeller’s efficiency decreases and its operational

region may be shifted away from optimal conditions.

For the sake of completeness, a brief summary on the performance impact that has been

attributed to biofouling is reported in Table 2.1.

2.2.2 Financial impact

As discussed in the previous section, over time biofouling decreases the efficiency of a vessel,

requiring additional fuel for achieving the same mission. An increase in the fuel quantity re-

quired for powering is accompanied by extra financial strain, especially since between 60−70%

of the operational costs of a ship result from its energy requirements [32].

There is a direct monetary cost to maintaining a fouling-free vessel, as well as accompanying

down periods, where the vessel is unable to perform its mission. Therefore, there is an obvious

trade-off between the costs of hull and propeller maintenance activities and the costs due to

increases in total resistance. In fact, it is crucial to develop tools which are able to effectively

estimate the loss in efficiency (and the increase in costs) due to the vessel’s biofouling state in
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order to detect the optimal point in time for conducting hull and propeller maintenance [64]. The

most influential and widely known study to address the financial aspects of ship biofouling is

that done by Schultz et. al [33]. An in-depth analysis and breakdown of the costs associated with

the fouling of an entire class of naval vessels allowed the researchers to quantify the financial

expenditure that is needed to combat the usual performance deterioration with time. The above

lead to a conclusion that even modest improvements in the fouling condition of a hull could

save enough money to cover the costs of development, acquisition, and implementation of even

relatively expensive technical or management solutions.

The financial aspects are not only ground for the creation of tools and strategies which can

help fouling management, but there is also a need and desire for such developments [65].

2.2.3 Environmental impact

As stated in the introduction, the energy efficiency gap in Maritime is a serious problem that

needs to be addressed. The overall efficiency decrease due to biofouling has a severe environ-

mental impact caused by the increase in the amount of pollutants expelled to the atmosphere

through exhaust gases. The IMO has previously estimated that the deterioration in hull and

propeller performance of the world fleet is accountable for 9− 12% of Maritime’s GHG emis-

sions [66]. Being able to assess the vessel’s performance decrease due to fouling in real-time

and, subsequently, to use this information to improve current maintenance practice then be-

comes fundamental. Moreover, these tools are inexpensive and relatively easy to exploit on

both old and current vessels. In fact, researchers have been able to achieve this using Noon

Reports (NR) [43] which are widely available for most ships and even if not, their creation is

solely dictated by company operational practice.

Another aspect to take into consideration is that a single vessel can travel across very long

distances and often connects geographical locations with entirely different marine life, becom-

ing a vector for the transportation of species across the globe. This becomes a problem when

considering potentially invasive organisms, which threaten the biodiversity of the oceans. In

fact, there is evidence that fouling is even more likely to cause the transfer of foreign species
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than ballast water [67, 68]. The chance of spreading non-indigenous species through fouling

has been observed to increase with the age of the hull and propeller’s antifouling coating [68].

Interestingly, microfouling is far less likely to result in the spread of non-indigenous species

when compared to macrofouling because the organisms that slime films are comprised of lack

reproductive structure [68]. Maintaining a vessel’s hull at earlier stages of fouling development,

while also collecting the resultant waste, could be considered as a viable option in reducing this

environmental risk [33, 15].

2.3 Fouling control

To mitigate biofouling’s negative effects, two main means of mitigation and control are used in

combination.

Antifouling (AF) coatings are normally applied to the exposed surfaces of ships to protect

against, or at least slow down, the build-up of biomass. Different coating technologies exist,

utilising different approaches. As described by [53], the main ones are Self-Polishing Copoly-

mers (SPC), Controlled Depletion Polymers (CDP), and Foul-Release coatings (FR), which can

be further split up into biocidal (SPC and CDP) and non-biocidal (FR). Ultimately, the former

release chemicals to prevent the formation of biofouling, whereas the latter reduce the attach-

ment strength of marine life and facilitate the release of biofouling from treated surfaces when

the vessel is moving. Biocidal coatings have a long history of environmental damage: for a long

time tributyl tin (TBT) was used industry-wide because of its very high effectiveness in prevent-

ing fouling, however, was ultimately banned due to its serious environmental impact [48] and

replaced with copper-based biocidal coatings. However, these are now also being banned re-

gionally [48]. Hard coatings, on the other hand, have been found neutral to the ocean with a

lifespan of at least 10 years, where they may even extend the life of the hull [69]. None of

the technologies mentioned above provide full protection (i.e., biofouling still occurs on the

hull and propeller of vessels). The application of antifouling coatings only reduces fouling

accumulation between cleaning events and allows for longer periods between them [31].
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Regardless of the relative effectiveness of AF coatings, none of the technologies provide full

protection, i.e., biofouling still occurs on the hull & propeller of vessels, be it at a reduced rate,

and if left unchecked would result in severe frictional resistance increases. Manual cleaning of

the hull and propeller is the second method of fouling control, which can either be done under-

water by divers with specialised brushes and Remotely Operated Vehicles (ROVs) or when the

vessel is dry-docked [69, 70]. Dry-docking is the more effective of the two methods as it allows

for cleaning, sandblasting, and re-coating of the hull with a new antifouling coating and results

in a larger reduction in total resistance [15]. Moreover, it is the only method which allows for

the neutralisation of invasive species [15]. Unfortunately, dry-docking is also expensive and

thus is undertaken only when necessary, usually every 3 to 5 years [71]. Underwater cleaning

of the hull and propeller has been observed to have roughly half the beneficial effect on reducing

fouling resistance when compared to dry-docking [15], however, it is much cheaper. In fact, in

[59], authors state that underwater cleaning costs would get accounted for in between 14 and

24 operational hours through fuel savings. The replacement of divers with specialised ROVs

for underwater cleaning can be identified as another option [72]. Unfortunately, for the easily

damaged foul-release silicone coatings, underwater cleaning is not suitable [42]. Additionally,

it also does not allow for the collection of biological waste and can lead to the rapid discharge of

antifoulants from biocidal ship hull coatings, which without proper filtration can cause severe

environmental damage [73]. For this reason, classic underwater cleaning is banned in many

ports across the world [49]. Nevertheless, methods for addressing the shortcomings of under-

water cleaning, namely capture technology, are currently under development [74]. Additionally,

underwater cleaning is often combined with hard coatings which avoids the discharge of toxic

particles [69].

2.4 Preliminaries

Before reviewing the methods available in the literature, this section provides a concise ex-

planation of biofouling-related parameters and collectible data useful for monitoring and eval-
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uating the relevant effects on hull and propeller performance. It is important to have a clear

understanding of what phenomena can be measured or simulated by means of endogenous (i.e.,

vessel specific) or exogenous (e.g., environmental) data collection. Specifically, a parameter

is referred to as exogenous if it is determined outside of a vessel’s operation and cannot be

influenced by the examined system, whereas endogenous measurements describe factors over

which there is control. For example, environmental conditions are exogenous as they describe

the environment in which the ship has to operate and cannot be influenced. In fact, exogenous

parameters are the main subject of filtering because of the inherent difficulty of estimating their

effects on a vessel. Knowledge about exogenous parameters is extremely valuable because it

allows approaches to take the influence of outside conditions into consideration, irregardless

whether this is done as part of a deterministic approach for evaluating added resistances due to

wind, waves etc., or as part of a data-driven approach where the phenomena are captured in a

purely artificial way.

For this reason, the data that can be available will first be described, followed by what

quantities it is possible to estimate for the purpose of monitoring and evaluating biofouling

effects on hull and propeller performance.

2.4.1 Available Data Sources

The quality, volume, and variety of collected data varies between vessels and is highly depen-

dent on the particular equipment installed on board [75]. Due to the long life cycle of ships, data

recording capabilities vary substantially, depending on a ship’s age [39]. Retrofitting sensory

equipment is an option which many ship owners actually pursue [76]. Considering the task of

a vessel’s operational monitoring, for both newbuilding and retrofitting, selecting the array of

sensors is a complex ship-specific problem, which depends on the particular monitoring appli-

cation, the shipowner’s needs and the desired capabilities [77]. In fact, many different metrics

need to be taken into account, such as the cost of the sensors and their probability of failure,

the costs and the complexity of the installation, and the estimated benefits (e.g., environmental,

economical, etc.) [76]. The final array of sensors available for the vessel’s monitoring directly

20



Chapter 2. Critical Review

affects the condition monitoring system’s capabilities, quality, and accuracy [78]. As a matter

of fact, collecting high frequency and quality operational data facilitates the development of

enhanced monitoring capabilities but, at the same time, increases the cost of the installation,

its maintenance, and the operation of the monitoring system itself [79]. Most commonly, it is

required to exploit, in an opportunistic way, all the measures and sensors already available and

still obtain good results without investing in retrofitting or modifying newbuiding projects [49].

Note that, some information, can be also retrieved via virtual sensors which do not require

any physical sensor installation [76]. Although virtual sensors might lead to less accurate es-

timation, this approach still provides some benefits of having a physical sensor without the

associated capital cost [80].

Table 2.2 briefly reviews the biofouling-related operational measurements as well as exam-

ple sensory equipment. Some sensory features are inherently less reliable than others due to the

nature of the target parameter and the nature of the sensor exploited [81]. A lot of variables are

not included (e.g., light intensity, water nutrient composition, and water pH etc.) despite them

being influential in terms of the speed and type of biofouling formation, partially because of

the difficulties associated with their measurement [53]. Moreover, the current work is focused

on methods for determining the biofouling performance impact rather than the specifics of the

biofouling growth process.
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Table 2.2: Typical biofouling-related operational measurements.
Parameters Description Source Sensors Reliability

Water Depth

The value of a water depth measurement in terms of vessel

performance modelling comes with respect to estimating

shallow water effects. With decreasing water depth, these

become more impactful

Exogenous

Depth sounder (also called echo

sounder or depth finder) or

Pressure-based depth sensor

High

Water Properties (e.g.,

Temperature, Density,

Viscosity, and Salinity)

Variations in water properties directly affect the hydrody-

namic performance of a vessel
Exogenous Various sea water sensors High

Sea State Properties
Knowledge of the sea state allows for the estimation of

wave effects on the ship
Exogenous

Shipboard sensors, Satellite data, or

Wave buoys

Medium/

High

Water Current Properties

Knowledge of the water current speed and direction with

respect to the vessel could allow for the use of speed over

ground instead of speed over water (SoW). This helps cur-

tail the low reliability of SoW measurements.

Exogenous Acoustic Doppler current profilers High

Wind State Properties
Knowledge of the wind state allows for the estimation of

wind effects on the ship.
Exogenous Anemometer High

Air Properties (Tempera-

ture, Pressure, Humidity

etc.)

Variations in air properties directly affect the aerodynamic

performance of a vessel.
Exogenous

Shipboard sensors such as temper-

ature sensor, barometer, humidity

sensor, etc.

High

Draft & Trim
Draft & Trim are key hydrostatic properties, which di-

rectly affect hydrodynamic performance.
Endogenous

Hydrostatic level sensors in multi-

ple locations across ship length
High

Vessel Speed through Wa-

ter

Speed through water (also LOG speed) helps determine a

vessel’s operational efficiency and rate of fuel consump-

tion. It is complicated to calculate accurately, requiring

knowledge of currents and other forces acting on the ves-

sel.

Endogenous

Paddle wheel speed sensor, Ul-

trasonic speed sensor, Electromag-

netic speed sensor, or, most re-

cently, Doppler log which is more

accurate

Medium/

High

Vessel Speed over Ground
Speed over Ground (GPS speed) is the speed at which the

vessel moves with respect to its geographical position.
Endogenous GPS signal High
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ME RPM & Torque
The power output of the engine through its RPM and

Torque indicates operational setting.
Endogenous

Rotational speed sensor (for exam-

ple a tachometer) and a Torque sen-

sor

High

ME Fuel Consumption
Fuel is the source of propulsive power and so it is directly

linked to energy efficiency.
Endogenous Mass flow meter High

Fuel Properties

Fuel properties such as heating values, density, tempera-

ture, etc. vary and are important parameters related to the

energy input into the power plant.

Endogenous
Fuel quality sensor & Fuel heating

value sensor
High

Shaft Torque, RPM, and

Power

The shaft power is a good indicator of the power available

for propelling the vessel.
Endogenous Shaft power (torsion) meter

Medium/

High

Propeller Thrust
A propeller’s generated thrust is the vessel’s moving force,

which opposes total resistance.
Endogenous

Thrust meter, usually an optical

sensor
High

Propeller Pitch
The propeller’s pitch sets its operational point. For a ves-

sel with a controllable pitch propeller, this can be varied.
Endogenous Propulsion Control System High

Rudder Angle & Activity

Angling the rudder results in a sideways force, which turns

the vessel. Rudder activity also results in power losses, i.e.

added resistance.

Endogenous Rudder angle sensor High
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2.4.2 Parameters to Estimate

For what concerns the scope of this review, the most important parameter to estimate is the im-

pact that biofouling has on the vessel’s hull and propeller performance. In particular, it is often

required to compare the actual ’real-life’ performance to the case when the hull and propeller

are ’clean’ (i.e., not fouled) [82]. Commonly, data recorded during ship sea trials is used to rep-

resent this unfouled scenario [83, 42, 84, 85, 86]. Nevertheless, this approach is not always the

correct one since, in time, other vessel components are subject to decay [87] and this may lead to

an overestimation of the biofouling effects on hull and propeller performance. Additional vessel

fuel consumption is usually exploited to translate the added resistance due to biofouling into a

measure that can be easily converted into a monetary cost [33]. However, due to many other

exogenous factors that can potentially influence the fuel consumption, it has been proven to be

inaccurate for describing the added resistance due to biofouling [88]. In fact, Carchen et al. [88]

argue the need for new measures (in addition to speed loss, added power requirements and fuel

consumption) which provide enhanced insight into vessel hydrodynamic performance changes

due to biofouling. Specifically, they propose three novel parameters, i.e., hull viscous drag,

effective wake, and propeller sectional drag, which have the potential to improve the ability

to evaluate biofouling’s impact on ship hydrodynamic performance. Nevertheless, these pa-

rameters are difficult to relate to commercial shipping practice. For example, the use of simpler

parameters such as speed loss is useful in translating the delay in vessel operations into financial

losses [64]. The same can be said regarding increases in power and fuel requirements [33].

Table 2.3 summarises the main parameters that are usually estimated and exploited to mea-

sure the biofouling impact.

2.4.3 Modelling Approaches

To estimate the parameters described in Section 2.4.2 based on the data described in Sec-

tion 2.4.1, the most effective and cost-efficient approach is to use numerical methods [98].

These numerical models can build upon the physical knowledge of the problem [50], or on
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Table 2.3: Typical parameters for biofouling impact estimation

Ref. Parameter Link to shipping practice

[64, 84, 85, 86,
49, 50, 89, 90, 26] Speed loss Can be translated into longer voyage

times and bigger delays in schedule.
[49, 83, 15, 91,
50] Additional fuel consumption Direct connection to increased fuel costs

and, therefore, operational costs.
[43, 53, 62, 50,
56, 57, 42, 92, 58,
33, 89, 42, 93, 94,
95, 96, 26]

Additional power requirement/Added
resistance

Can result in overloading of the vessel’s
engine and is indicative of higher energy
needs/lower ship efficiency.

[97, 34]
Change in propeller open-water perfor-
mance (i.e Thrust coefficient, Torque
coefficient & efficiency)

Indicative of a shift in propeller per-
formance envelope and can be used
to guide modifications towards optimal
vessel operation.

historical data about the biofouling phenomenon [64], or on both [99]. According to what

type of information is used to formulate the model, physical knowledge of the problem and/or

collected historical data, the construction of the model changes. In particular, three different

types of modelling approaches can be identified: Physical models (PMs), Data-driven models

(DDMs), and Hybrid models (HMs). PMs are built based on a-priori, mechanistic knowledge

of the real system (i.e., the numerical description of the biofouling growth and related added

resistance) [98]. DDMs, instead, are built based on historical collections of observations of

the vessel in operation (i.e., vessel speed, fuel consumption, delivered power, wind, waves, sea

currents data), exploiting state-of-the-art Machine Learning (ML) techniques [64]. In the case

of an HM, the PM and the DDM are combined to build models which use both a-priori phys-

ical information of the underlying phenomenon and historical data [100]. Figure 2.1 reports a

graphical representation of these three modelling approaches and how they are built.

Since PMs are based on the knowledge of the physical laws governing the phenomenon, they

can be very reliable. In fact, by construction, they only produce physically plausible predictions.

The expected accuracy of the results grows with the increase of the detail in modelling the

physical phenomenon [56]. However, usually, increasing the accuracy of PM results in quite a

high request in terms of computational requirements [98]. This fact limits their use in the wild

where substantial computational capabilities are seldom available [98].

DDMs, instead, do not require any a-priori knowledge of the physical system, but rather

are built on historical data collected from the real system. They usually require a large amount
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(a) Physical Models (PM)

(b) Data-Driven Models (DDM)

(c) Hybrid Models (HM)

Figure 2.1: The three performance modelling approaches
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of data and a large amount of computational resources to be constructed (i.e., the learning

phase) to reach a satisfying performance in terms of model accuracy [101]. Instead, once the

model is constructed, its use for making predictions (i.e., the forward phase) is computationally

inexpensive [102] and this has a big added value for DDMs as only the forward phase needs

to be exploited in order to use them in operation. However, since they rely only on historical

observations, DDMs work well in the statistical sense (i.e., on average), but they can produce

implausible estimations (i.e., not physically plausible estimations) in particular situations [99].

HMs have been developed to fill the gaps of PMs and DDMs and develop models able to take

the best of the two worlds [103]. HMs, in fact, can be able to: exploit the mechanistic knowledge

of the system and avoid implausible predictions, reduce the computational requirements of a PM

by exploiting historical data, and reduce DDMs’ need for large amounts of historical data by

starting from an already good approximation of the phenomenon provided by PMs [100].

Advantages and disadvantages of PMs, DDMs, and HMs for estimating the impact of bio-

fouling on vessel’s hull and propeller performance will be discussed in detail in the following

sections, presenting and analysing examples of models proposed in the literature belonging to

each one of these categories. For each example, the accuracy obtained by the model on real-

word or synthetic data has been reported, if available.

2.5 Analytical Review

It is now hopefully clear why biofouling is so undesirable, not only does it affect the profitabil-

ity/effectiveness of a vessel, but also negatively impacts the environment through increased

GHG emissions and fouled ships endangering the biodiversity of the planet’s oceans. The

extent of these setbacks is so immense that it completely warrants research interest and the

development of specialised tools, which can be used to minimise fouling’s impact. The con-

tinuous progress of technology and, subsequently, simulation and analysis capabilities enable

the creation of such decision support instruments. More particularly, the decision that owners

and operators have to make on when to invest in cleaning their vessels is greatly important in
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minimising the effects of fouling and needs to backed by a vigorous analysis of vessel perfor-

mance. This, in combination with the rare situation that improvements in fouling management

are beneficial in terms of both environmental and financial considerations, has resulted in the

development of various methodologies for predicting the fouling state of ships and its effects

on performance. The information that the latter provide is used to develop appropriate mainte-

nance strategies, therefore, it is of great interest for players in the maritime sector and is highly

valuable in terms of environmental preservation.

A long history of biofouling research has resulted in many excellent publications and anal-

yses which utilise a wide array of approaches, some more successful than others. These can be

grouped in terms of their underlying ideas into deterministic (also physical, first-principle, white

box), data-driven (also black box), and hybrid (also grey box). Hybrid models are still in their

infancy with only a limited number of implementations in research. As a result, when consider-

ing the evaluation of the hull & propeller’s fouling condition and its effects, as far as the author

is aware, grey box models have not yet seen adoption. While some of these methodologies

consider their own real-world application and usefulness, many focus on bettering human un-

derstanding of the underlying variation in physical phenomena that can be observed as a result

of the aspects of fouling. The latter are very insightful and vigorous in terms of their theoretical

basis, however, more often than not are not applicable to dynamic on-the-go decision making

and as such bring little value from a practical viewpoint. A review of the current state-of-the art

is to follow. In this review, PMs, DDMs, and HMs proposed in literature for estimating the im-

pact of biofouling on vessel’s hull and propeller performance have been analysed. In particular,

among the variety of methods proposed in the literature, the models presented in this work have

been chosen to represent all the different approaches to the problem.

Methods to be presented for each category were selected according to these criteria: recently

developed models (from 2015 to 2021) or models between 2000 and 2015 with at least 25

citations.

In the case of PMs, the most exploited and effective methods for predicting the hull and

propeller’s deterioration due to fouling are CFD models which incorporate fouling condition
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specific roughness properties into the wall function of the CFD software [104, 58, 93, 97, 94,

50, 91, 34, 28]. Other commonly exploited models are based on Granville’s boundary layer

similarity law scaling [57, 33, 105, 62, 92, 53], which extrapolate flat plate experimental results

into full-scale resistance and powering predictions for vessels.

In the case of DDMs, instead, the most exploited and effective methods for determining

biofouling’s impact on performance are based on artificial neural networks [43, 64, 95, 96, 26].

Additionally, classification methods based on neural networks are used to identify different

levels of biofouling [106, 107] and biofouling species [108].

For what concerns HMs, this approach has been less investigated in the literature and no

methods have so far been proposed for assessing biofouling’s impact on the vessel’s hull and

propeller performances.

In the following sections, advantages and disadvantages of PMs, DDMs, and HMs and

relevant examples have been analysed in detail. Moreover, for each class of models, tables have

been reported summarising the following aspects (if available):

• Input data: the data that the models require to make the desired estimation;

• Data origin: synthetic data or real-world data collected during sea-trials or operations by

on-board sensors or by exogenous sources;

• Amount of data: the amount of data exploited to build and validate the models;

• Method: the technique used by the models to predict the output;

• Output: what parameter(s) the model actually estimates;

• Accuracy: the accuracy obtained by the models;

A section is also dedicated to show how, in some cases, PMs have been translated into

industry standards (Section 2.5.2). Physical models have been around the longest, therefore

they are considered by actors in Maritime to be more robust and trustworthy [98].

2.5.1 Physical Models

PMs are the most well-established numerical approach when it comes to assessing the biofoul-

ing state [89]. PMs, as already explained before, rely on the a-priori physical knowledge of the
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phenomenon and are built upon a set of governing laws and assumptions [98]. The complexity,

the accuracy, and the computational requirements of a PM vary by adding or removing some

assumptions [56]. To model the hydrodynamic performance of a ship and then quantify the

negative impact of the different stages of the biofouling, PMs estimate the total resistance of a

vessel or its different components (i.e. wind, waves, currents, and sometimes the rudder effect)

through experiment and simulation [15]. As PMs are the most popular numerical approach,

many exist in literature with different levels of complexity.

Among PMs, Experimental Fluid Dynamics (EFD) represents the baseline for biofouling

state estimation. EFD consists of conducting experiments in a controlled test environment,

such as towing tanks and cavitation tunnels, with the goal of quantifying a target effect on

hydrodynamic performance [98]. There is a long history of research utilising such techniques,

which is well described by Demirel et al. [62] who utilise a series of towing tests on flat plates

using artificial 3D printed barnacles to determine the effects of barnacle height and coverage on

vessel resistance and powering. The main drawback of EFD is their high associated costs and

the limitation to specific experimental conditions. It is both time and cost intensive to conduct

a rigorous experimental procedure which covers many operational scenarios [98]. Moreover,

experimental facilities often are not suitable for full-scale testing, limiting EFD to model scale

and leading to results often being extrapolated to full-scale for further analysis. For example,

for the analysis of biofouling’s impact on vessel performance, the Granville’s similarity law

scaling procedure [109, 110] is often used to translate laboratory-scale results into a prediction

of the impact of fouling. This procedure was first introduced by Schultz [63, 57] and it has

been employed extensively in research even since [33, 105, 62, 92, 53, 91]. Ultimately, EFD

is not often used on its own to determine fouling effects, but rather as a source of information

employed in more advanced PMs [53, 50, 57, 58, 62, 63, 92, 56].

Another approach, an alternative to EFD, to determine biofouling’s impact on ship per-

formance, involves estimating the total resistance and then correcting for its various compo-

nents which allows the isolation of fouling’s contribution [15]. This estimation has often been

performed with resistance modelling methods [89, 15], which were originally developed by
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Todd [111]. A collection of separate empirical and non-empirical methods for each resistance

component can be exploited [89, 43]. A good example is the work by Foteinos et al. [42],

where an engine model in the MOTHER software is first calibrated according to shop test and

sea trial reports and then used to estimate total ship resistance; empirical formulae are used

to determine calm water resistance, air resistance, and wave-added resistance, which are then

subtracted from the total ship resistance to obtain the contribution of hull & propeller fouling.

Researchers include different levels of detail in their decomposition of total resistance [89].

For example, Carchen et al. [98] developed a real-time biofouling impact monitoring system

on the basis of automatic data collection and resistance modelling. The authors considered not

only the wind, wave, and calm water resistance (which are usually taken into account [42]) but

also the steering and shallow water effects. Resistance modelling is based on a-priori physical

knowledge and, therefore, results in only physically plausible results. However, these results

are often inaccurate, partially due to a need for estimating several unknown friction-related

coefficients [43].

The state-of-the-art PMs are surely the ones based on CFD, which often replace or supple-

ment EFD and resistance modelling [98]. CFD demonstrate high accuracy using computers to

solve complex Navier-Stokes equations describing fluid flow. However, CFD are very com-

putationally expensive when compared to other methods [26]. Similar to EFD methods, CFD

simulations are confined to the analysis of a single flow or operational condition at a time, which

limits their practical real-time applicability [98]. Nonetheless, a large body of research relies on

CFD to measure biofouling impact [50, 28, 34, 58, 56, 91, 93, 94, 104, 97]. The CFD approach

to estimating the biofuling state is to consider increases in the vessel’s surface roughness due

to specific biofouling conditions and incorporate these in the wall function by means of appro-

priate roughness functions [57]. The specific roughness functions are usually determined using

experimental methods [63]. Additionally, data collected from EFD is used to validate this type

of PMs [104, 58, 93, 97, 50, 91, 28, 34].

PMs are quite useful not only to get an estimation of the biofouling state but also to gain a

better understanding of the hydrodynamic behaviour of fouled vessels and surfaces [88]. How-
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ever, even nowadays, there are still specific physical phenomena which cannot be easily mod-

elled through PMs [112]. Consequently, in realistic scenarios, PMs often lack in accuracy or

are too computationally demanding.

For a more precise view of the current state-of-the-art approaches, Table 2.4 summarises the

most relevant contributions in the field of PMs for biofouling state estimation.
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Table 2.4: Summary of PMs for monitoring and evaluating the biofouling state and effects on vessels’ hull and propeller
performance

Ref. Method Input data Data origin
Amount of

data
Output Accuracy

[57,

33]

Granville’s similarity

law analysis based

on laboratory-scale

experimental results.

Fouling condition and

antifouling paint spe-

cific roughness func-

tions, vessel geometry

& particulars.

Experiment

derived

roughness

functions.

Roughness

functions

for 7 surface

conditions.

Predictions of full-scale ship

resistance and powering for a

range of fouling conditions and

roughness.

Extrapolated full-scale results are compared

with trial results for similar hull forms: Ref-

erence values of 24% and 8%, compared to

extrapolated results of 22− 32% and 9%.

[89]

Propeller power

absorption tech-

nique which uses

the propeller as an

instrument to estimate

speed or power.

Propeller particulars,

ship performance

data.

Automated

data acquisi-

tion systems

installed

on-board.

After filter-

ing, 3326

entries were

used.

Power increase and/or speed

loss due to fouling.

Average speed and shaft horsepower abso-

lute errors of 1.8% and 0.9% respectively.

[42]

Shaft torque pre-

diction through an

engine simulation

software fed with

recorded engine

data, coupled with

resistance modelling

Engine shop test

data, sea trial reports,

performance reports,

noon reports, engine

and vessel geometry

Real-world

engine &

vessel trial

and opera-

tion.

Four Pana-

max vessels’

operational

data.

Estimation of resistance due to

fouling through increases in the

Propeller Law and Fouling Re-

sistance coefficients.

Results with more than 5% deviation from

sea trials were discarded from analysis.

[105,

62]

Granville’s similarity

law analysis based on

a series of flat plate

towing tests for differ-

ent artificial barnacle

heights & coverage.

Barnacle size and cov-

erage values.

3-D scans of

actual barna-

cles.

10 different

combina-

tions of

barnacle

size and

coverage.

Added resistance diagrams are

plotted using predictions of

added resistance and the effec-

tive power of ships for varying

barnacle fouling conditions.

Uncertainties estimated through repeatabil-

ity tests based on a procedure defined by the

ITTC: Friction coefficient uncertainty below

4%; Roughness function uncertainty was

mostly under +/ − 6%, however, for small

barnacles it was below 28%.
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[92]

A prediction code

based on Granville’s

similarity law is used

to predict the effects

of different fouling

states.

Roughness height,

roughness func-

tions, corresponding

roughness Reynolds

numbers and desired

ship lengths.

Experiment

derived

roughness

functions

from [57].

Roughness

functions

for 7 surface

conditions.

Frictional resistance coefficient

values which are used to gener-

ate added resistance diagrams

for the prediction of increases

in frictional resistance coeffi-

cients and effective power of

ships due to a range of surface

conditions.

The authors provide no information on the

accuracy of the used method.

[98,

88]

A ship performance

monitoring system

based on real-life

data collection and

resistance modelling.

Time, SoG, Course

over Ground, Head-

ing, SoW, Propeller

speed, Propeller

Torque, Propeller

Thrust, Rudder an-

gle, Wind speed,

Wind direction, Wave

amplitude, Wave

spectrum, Wave

properties

Automatic

on-board

monitoring

system.

Data from

sea trials and

normal ser-

vice with 1

Hz sampling

frequency.

Normalised delivered power,

apparent wake fraction, effec-

tive wake fraction, fouling co-

efficient, and change in fric-

tional resistance coefficient

The authors present no validation study,

which would give indication into the accu-

racy of their method.

[53]

A time-dependent

biofouling growth

model based on field

test data coupled with

a frictional resistance

and powering predic-

tion model based on

Granville’s similarity

law.

Vessel idle time, field

test data for AF coat-

ings, water tempera-

ture, biofouling con-

dition specific rough-

ness functions & ship

particulars.

Static field

tests from

a paint

company.

Test from

one to three

years in two

regions.

Fouling Rating, calcareous

fouling surface coverage,

percentage increase in fric-

tional resistance & percentage

increase of effective power.

Following the validation of their model, the

authors conducted a case study in which the

model committed a 4% error when estimat-

ing the increase of effective power due to

fouling.
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[104]

CFD implementation

utilising biofoul-

ing state specific

roughness functions.

Fouling conditions’

specific roughness

functions, geometry

and particulars of

KCS hull.

Experiment

derived

roughness

functions

from [62].

Roughness

functions for

10 fouling

conditions.

Fouling effects on the resis-

tance components, form fac-

tors, wake fractions and flow

characteristics.

Verification study based on grid convergence

index (GCI) method: GCIs under 1%. As

part of a validation study, the modified wall-

function results from CFD were compared

with experimental results, however, the exact

values for committed errors are not given.

[58]

CFD implementation

utilising biofoul-

ing state specific

roughness functions.

Fouling conditions’

specific roughness

functions, geometry

and particulars of

KCS and KVLCC2

hulls.

Experiment

derived

roughness

functions

from [62].

Roughness

functions

for 3 surface

conditions.

Fouling effects on the resis-

tance components, form fac-

tors, wake fractions and flow

characteristics.

Verification study based on grid convergence

index (GCI) method: GCIs under 1%. Vali-

dation study by comparison with experimen-

tal results: observed errors are within 5% of

reference values.

[93]

CFD implementation

utilising biofoul-

ing state specific

roughness functions.

Fouling conditions’

specific roughness

functions, geometry

and particulars of the

KP 505 propeller and

the KCS hull.

Experiment

derived

roughness

functions

from [62].

Roughness

functions for

10 surface

conditions.

Effects of fouling on full-scale

ship resistance and powering,

as well as flow characteristics.

Verification study based on grid convergence

index (GCI) method: GCIs under 0.1%. Val-

idation study by comparison with experi-

mental results: observed errors are within

5.5% of reference values.

[97]

CFD implementation

at full-scale utilising

biofouling state spe-

cific roughness func-

tions.

Fouling conditions’

specific roughness

functions, full-scale

KP505 propeller

geometry and particu-

lars

Experiment

derived

roughness

functions

from [62].

Roughness

functions for

10 surface

conditions.

Propeller open water perfor-

mance (i.e., Thrust coefficient,

Torque coefficient and open-

water efficiency)

Verification study based on grid convergence

index (GCI) method: GCIs under 1%. As

part of a validation study, the results from

CFD were compared with experimental re-

sults, however, the exact values for commit-

ted errors are not given.
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[94]

A validated RANS

solver (OpenFOAM)

utilised according

to experimentally

investigated surface

roughness properties.

Fouling conditions’ &

hull coatings’ specific

roughness functions,

geometry and particu-

lars of the KCS hull.

Experiment

derived

roughness

functions.

Experiments

for 4 marine

coatings.

Impact of fouling on ship total

resistance and frictional resis-

tance.

Verification study based on grid convergence

index (GCI) and correction factor (CF) meth-

ods: GCIs and CFs around 10%. Validation

study by comparison with synthetic CFD re-

sults from [104]: average deviation of 5%

for drag coefficient and 5% for frictional re-

sistance coefficient.

[50]

CFD implementation

utilising biofoul-

ing state specific

roughness functions.

Fouling conditions’

specific roughness

functions, geometry

and particulars of the

KP 505 propeller and

KCS hull.

Experiment

derived

rough-

ness func-

tions from

[113, 114].

Roughness

functions

for 8 surface

conditions.

Impact of biofilm on ship

propulsion characteristics.

Verification study based on grid convergence

index (GCI) method: GCIs under 3.5%. Val-

idation study by comparison with experi-

mental results: observed errors are within

+/− 6% of reference values.

[91]

The ITTC 1978 Per-

formance Prediction

Method is modified

by incorporating

Granville’s similar-

ity law scaling in

combination with

CFD.

Roughness functions,

vessel geometry and

particulars, results

from towing tank

experiments.

Experiment

derived

roughness

functions

from [113].

Roughness

functions

for 8 surface

conditions.

Impact of fouling on ship resis-

tance and propulsion character-

istics.

Verification study based on grid convergence

index (GCI) method: GCIs under 4.9%. Val-

idation study by comparison with experi-

mental results: observed errors are within

4.2% of reference values.

[34]

CFD implementation

utilising biofoul-

ing state specific

roughness functions.

Fouling conditions’

specific roughness

functions, geometry

and particulars of

WB, KP505 & KP458

propellers

Experiment

derived

rough-

ness func-

tions from

[113, 63].

Roughness

functions for

14 surface

conditions.

Open water performance (i.e.,

Thrust coefficient, Torque co-

efficient and open-water effi-

ciency) of propellers

Verification study based on grid convergence

index (GCI) method: GCIs under 5%. Vali-

dation study by comparison with experimen-

tal results: observed errors are within 2.7%,

2.5%, and 5.4% of reference values for WB,

KP505 & KP458 respectively.
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[28]

CFD implementation

utilising biofoul-

ing state specific

roughness functions.

Fouling conditions’

specific roughness

functions, geometry

and particulars of

KCS, KVLCC2 & BC

hulls

Experiment

derived

roughness

functions

from [113].

Roughness

functions

for 8 surface

conditions.

Impact of fouling on ship resis-

tance and propulsion character-

istics.

Verification study based on grid convergence

index (GCI) method: GCIs under 4.2%. Val-

idation study by comparison with experi-

mental results: observed errors are within

2.1%, 4.2%, and 2.6% of reference values

for KCS, KVLCC2 & BC respectively.
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2.5.2 Industry Standards

The current industry standard for estimating changes in ship hull and propeller performance

consists of applying the ISO 19030 developed by the International Organisation for Standardis-

ation (ISO). The aim of the ISO 19030 is to prescribe practical methods for measuring changes

in ship specific hull and propeller performance and to define a set of relevant performance in-

dicators for hull and propeller maintenance, repair, and retrofit activities [84]. The ISO 1903

consists of three parts:

1. an explanation of the general principles that are adopted [84];

2. a description of the default and most accurate method that can be applied for determining

metrics for changes in hull and propeller performance [85];

3. a set of alternative methods that can be used in case the default procedure cannot be

adopted [86], enhancing the range of applicability of the standard.

ISO 19030 has been identified as a good starting point for vessel owners and operators to

track hull and propeller performance, considering the previous lack of an official standard [49].

However, it has received criticism for its underlying methods [115], e.g., the suggested cor-

rections and filtering procedure [64, 50] and its performance assessment [116]. In fact, most

performance monitoring approaches utilise a reference condition, which is then compared to

real-time performance to determine any noticeable shifts [115]. However, these corrections

are often done through simplistic methods with narrow ranges of applicability which demon-

strate inaccurate results. The ISO 19030 is no different as it requires filtering out of operating

points that are outside of the applicability of the methods’ assumptions [64]. While the ISO

19030 standard is considered a positive step forward from previously non-existent official guid-

ance to hull and propeller monitoring, it is still affected by issues which have not yet been

resolved [116].
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2.5.3 Data-Driven Models

In recent years, DDMs have been growing in popularity in the field of ship performance mod-

elling [117]. Unlike PMs, they do not require any a-priory knowledge about the underly-

ing physical principles [64]. In the field of biofouling, DDMs are built by applying predic-

tive ML algorithms on historical data, collected from automatic on-board data logging sys-

tems [64, 83, 96], noon reports [118, 15], and vessel inspections and surveys [107]. Gener-

ally, the main limitations of DDMs are the need for high quantity and quality data [11] and

their possible lack of physical meaning [99]. Nevertheless, DDMs can account for many ship-

specific and environmental phenomena, that might be difficult, or even impossible, to model

with PMs [64], with very limited computational overhead.

DDMs have been successful and have increasingly received the attention of researchers and

the Maritime industry because modern on-board equipment is capable of recording and storing

large amounts of good quality historical data [96]. In fact, advanced data logging systems are

nowadays a standard in newbuilds, as well as being conveniently installed during the retrofitting

of older vessels [76]. This trend is expected to continue in the future [39].

Research that exploits DDMs for biofouling state estimation is still in its infancy and a lim-

ited number of works are available in the literature. Nonetheless, DDMs have already showed

promising results when compared to PMs [43, 118] and the ISO 19030 standard [64].

DDMs, in fact, can also easily leverage on structured information like images and videos [119]

to better estimate the biofouling state. For example, Wang et al. [106] were able to accurately

classify fouling conditions through image recognition techniques, combined with an Artificial

Neural Network. Due to an excellent accuracy, despite using research-tailored input images,

they argue that manual underwater surveys could be replaced with artificial methods. Bloom-

field et al. [107], similarly to Wang et al. [106], leveraged on Convolutional Artificial Neural

Networks to classify underwater survey images of a vessel’s hull according to a tiered fouling

level framework. The achieved accuracy is shown to be very close to expert agreement rates on

a sub-sample of the used image library. Chin et al. [108] collected an image database containing
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entries for 10 common fouling species from internet sources and used it in combination with

an image processing technique to train a Convolutional Artificial Neural Network. The latter is

then used to classify biofouling according to species that are present and fouling density.

Apart from DDMs which leverage on images of the hull, other methods can be used to

determine the biofouling state. For example, Coraddu et al. [83], utilising just a set of real

data collected on-board from a real vessel, developed an unsupervised DDM based on outlier

detection ML algorithms to estimate the hull and propeller biofouling condition. Through a

rigorous and statistically robust approach, using as little as 10 manually labelled samples, a very

high accuracy is achieved. In fact, the research by Coraddu et al. [83] demonstrates that DDMs

can be effective without using very large historical datasets, which is the common opinion.

Even though having an indication of a vessel’s biofouling state is valuable for maintenance-

related planning and decision making processes, being able to evaluate the exact impact that

biofouling has on performance is surely much more valuable [84]. In this context, DDMs

have shown a very high potential and effectiveness in many studies. For example, Coraddu et

al. [64] proposed DDMs based on deep learning models able to quantify the speed loss due

to biofouling in real-time by using just data coming from the vessel’s on-board monitoring

systems. The developed DDMs show to outperform the state-of-the-art ISO 19030 industry

standard, providing more reliable and actionable results. Other DDMs have also been developed

to determine speed loss due to biofouling [90].

Apart from using a speed loss prediction as proxy for the biofouling state estimation, the

most popular performance metric in terms of quantifying biofouling is shaft power [43, 118,

95, 96, 26]. Recently, Laurie et al. [96] employed and compared a set of ML techniques (i.e.

linear regression, decision tree, k-nearest neighbours, artificial neural networks, and random

forest) when predicting the shaft power of a fouled vessel. Considering the complex nature of

biofouling phenomena, a very high prediction accuracy (errors below 2%) was observed for

some of the statistical methods. In fact, DDMs can accurately estimate vessel performance in a

broad range of operating conditions because they are built on historical data, as opposed to the

majority of PMs.
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Another aspect that needs to be carefully taken into account when estimating the biofouling

state is the impact of hull and propellers cleaning. For example, Adland et al. [15] investigated

the impact of hull and propeller cleaning on vessel performance. In particular, they proposed a

DDM capable of determining the performance impact of the underwater cleaning and the dry-

docking of a vessel. To asses the validity of the proposal, the authors rely on a dataset of daily

noon reports combined with a historical log of cleaning instances.

For a more precise view of the current state-of-the-art approaches, Table 2.5 summarises the

most relevant contributions in the field of DDMs for biofouling state estimation.
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Table 2.5: Summary of DDMs for monitoring and evaluating the biofouling state and effects on vessels’ hull and propeller
performance

Ref. Method Input data Data origin
Amount of

data
Output Accuracy

[108]

Convolutional Neural

Network paired with

OpenCV image pro-

cessing.

A database of images

of different fouling or-

ganisms and fouling

density.

Internet.

1825 images

of 10 com-

mon fouling

species.

Classification of the fouling

species and density of fouling.

Mean classification accuracy of 74.75% &

standard deviation of 7.92%. No model ac-

curacy is provided for determining fouling

density.

[83]

One-Class Support

Vector Machines and

Global k-Nearest

Neighbour methods

for outlier detection.

A featureset, com-

prised of measured

values from the ship

monitoring systems

and wave buoy data.

On-board

monitoring

systems &

wave buoys.

39(+10)

features,

unspecified

number of

samples.

Hull and propeller fouling is

identified and labelled.

Even with as little as 10 labelled samples,

the proposed model has impressive accuracy

when classifying whether the ship is fouled,

achieving 0.04+/-0.001 Average Misclassifi-

cation Rate.

[107]
Convolutional Neural

Network.

A dataset of under-

water images of ship

hulls, labelled accord-

ing to their Simpli-

fied Level of Fouling

(SLoF).

In-water

surveys of

around 300

vessels.

10263 im-

ages with

SLoF labels.

Estimates for SLoF based on

input image.

Mean average precision of 0.796, standard

deviation of 0.023.

[15]

Before-after and

difference-in-

differences esti-

mators.

A dataset consisting

of daily vessel param-

eter measurements,

combined with a

historical log of hull

& propeller cleanings.

Daily noon

reports &

maintenance

logs.

7868 daily

observations

after data

cleaning &

28 main-

tenance

activities.

Impact of hull & propeller

cleaning activities on the aver-

age fuel consumption of exam-

ined vessels.

The proposed procedure is applied at an ar-

bitrary point in time, instead of the time of

a known cleaning for validation. This is re-

peated 1000 times and the results indicate

an encouraging 0.002%+/-0.086% average

change in fuel consumption at these arbitrary

points.
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[43]
Artificial Neural Net-

work.

A dataset comprised

of measured values

from the ship monitor-

ing system.

On-board

monitoring.

4 8-feature

datasets,

consisting of

a total 679

10-minute

averages.

A 10-minute average propul-

sion power estimate.

A 2.7% cross-validation error is reported,

however, there is no indication of its inter-

val of confidence. Also, there is no unbiased

test of the model where a set of data, omitted

in training and validation, is used.

[64]
Deep Extreme Learn-

ing Machine.

A dataset comprised

of measured param-

eters from the ship’s

monitoring system,

combined with a

historical log of hull

& propeller cleanings.

Data logging

systems &

maintenance

logs of two

Handymax

tankers.

15 minute

averages

over nearly

5 years for

17 features

& 9 cleaning

events.

Speed through Water & speed

loss percentage, as well as es-

timates for timing of mainte-

nance activities

The proposed method shows a higher level

of reliability when compared to the state-of-

the-art ISO 19030 industrial standard. Ad-

ditionally, all changes corresponding to a

cleaning event are detectable. No indication

of accuracy of the DELM when predicting

Speed through Water.

[95]
Artificial Neural Net-

work

A featureset, com-

prised of measured

parameters from a

ship’s monitoring

system, as well

as environmental

features.

VLCC au-

tomatic

monitoring

system.

11 features,

unspecified

number of

samples.

Shaft power estimate.

Graphs on the error distribution are pro-

vided, however, authors provide no indica-

tion on which the final selected model is and

its exact accuracy.

[90]

Curve fitting and De-

trended Fluctuation

Analysis (DFA)

Two datasets, col-

lected 9 months apart,

that include ship

speed, propulsion

power, fuel consump-

tion, generated power,

battery power, aft &

fore draught.

Alarm

monitoring

system of an

electric ferry.

A week

of data at

the start &

one after 9

months (1

sample per

minute).

Speed loss estimate after 9

months of operation.

Only Motor power vs Vessel speed curve fit-

ting accuracy is provided: best fit R-square

& RMSE - 0.9999 & 0.07248 before and

0.9999 & 0.05637 after 9 months.
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[96]

Multiple Linear Re-

gression, Decision

Tree (AdaBoost),

KNN, ANN and

Random Forest.

A dataset from a

ship’s monitoring

system, expanded

through artificial

feature generation

and additional wave

information.

On-board au-

tomatic ship

monitoring

& CMEMS.

20 features

with 10571

entries after

cleaning.

Shaft power.

MAPEs & RMSPE: Multiple Linear Regres-

sion - 6.453% 0.0930%, Decision Tree -

6.987% 0.0932%, KNN - 1.245% 0.0302%,

ANN - 1.893% 0.0317% and Random Forest

- 1.171% 0.0264%.

[26]
Artificial Neural Net-

work

A dataset from a

ship’s monitoring

system, expanded

through artificial

feature generation.

Container

ship con-

tinuous

monitoring

system.

14 (+5)

features -

1 minute

samples over

19 months.

Main Engine Fuel Oil Con-

sumption (t/24hr) or Shaft

Power (kW) estimate.

RMSE & R-square for Fuel Consumption -

0.78 & 0.998 with and 0.96 & 0.997 without

fouling feature. RMSE & R-square for Shaft

Power - 132.07 & 0.999 with and 203.19 &

0.997 without fouling feature.
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2.5.4 Hybrid Models

HMs are a hybridisation between PMs and DDMs. In a HM, the PM and the DDM are combined

to build a model which uses both a-priory physical information for the underlying phenomenon

as well as historical data [98]. For example, the prediction of a PM can be used as an initial

estimate to feed into a DDM [99]. HMs aim to address the main setbacks of PMs (i.e., compu-

tational requirements and accuracy) and DDMs (i.e., possible lack of a physical interpretation

and need for large amount of data).

By looking at the literature, no applications of HMs to biofouling have yet been proposed

and this represents a clear research gap. In fact, there is an opportunity to utilise the large

amount of high-quality PMs in literature to supplement DDMs. A simple combination of state-

of-the-art approaches may result in an HM able to outperform the original model in terms of ac-

curacy, computational complexity, data requirements, and physical interpretability. In fact, HMs

have shown their potential within other niches of vessel performance modelling with favourable

results [100]: Leifsson et al. [103] successfully utilised a HM, which outperformed both a PM

and a DDM, for predicting vessel speed and fuel consumption in the scope of vessel operational

optimisation; Similarly, Coraddu et al. [101] compare the performance of PMs, DDMs and

HMs in predicting the fuel consumption of a vessel in a real scenario and conclude that HMs

improve upon the accuracy of PMs and the data requirements of DDMs; Additionally, in [11],

Coraddu et al. utilise the latter to effectively optimise vessel trim in real operational condi-

tions; Swider et al. [120] look into the complementarity potential between PMs and DDMs and

reach encouraging conclusions, which are supplemented by an example application of an HM

for predicting the speed/power of an offshore vessel; Coraddu et al. [121] utilise a HM to ac-

curately predict engine temperatures during operational dynamic manoeuvring based on engine

models and engine measurements for a Holland class patrol vessel and show that, for this, a

hybrid approach greatly outperforms a DDM; Yang et al. [122] use real operational data from

a crude oil tanker over a 7-year sailing period to demonstrate the accuracy and reliability of a

genetic algorithm-based HM in predicting vessel fuel consumption; Montewka et al. [112] suc-
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cessfully incorporate the use of a HM for evaluating ship performance in ice-covered water in

a route planning methodology for an ice going bulk carrier; Liu et al. [123] build a digital twin

based on a HM which provides a satisfying prediction of ship speed and fuel consumption and

demonstrate the application effects of the HM through an arrival time forecast and a weather

routing showcase; Finally, Coraddu et al. [99] combine PMs and DDMs to build a fast, accurate,

and physically grounded model that can be used for real-time prediction of engine performance

parameters in dynamic conditions in order to identify emerging failures early on and establish

trends in performance reduction.

2.6 Open Problems and Future Perspectives

After providing a complete review of the numerical methods for monitoring and evaluating

the biofouling state and effects on vessels’ hull and propeller performance in Section 2.5, the

current section summarises the open problems and future perspectives of this field of research.

For what concerns the open problems, there are at least two main aspects that are worth

discussing. Firstly, regardless of the numerical methods adopted, filtering out unfavourable

exogenous factors which might alter the biofouling state estimation and the effect of the envi-

ronmental conditions is of great importance. In this respect, robust filtering and outlier detection

procedures should be carried out to feed the PMs, DDMs, or HMs with reliable data. Secondly,

some of the proposed approaches are computationally expensive which might prevent their use

in real-time for maintenance-related decision making processes. Although DDMs can be con-

sidered computationally inexpensive in the forward phase, the training phase (to build or update

the model) can be quite taxing (especially if this phase is performed on-board). Moreover, the

additional burden of detecting and filtering outliers has to be accounted for real-time applica-

tions. For this reason, researchers should focus their attention on the development of numerical

frameworks which also take into account computational burden.

Focusing our attention on the future, the author foresees a wider use of hybridisation tech-

niques for biofouling assessment. As reported in Section 2.5.4, to the best of the author’s
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knowledge, no applications of HMs to biofouling have yet been proposed. Leveraging on state-

of-the-art PMs, in the upcoming years, researchers have the unique opportunity to exploit the

on-board operational data to develop HMs for a more accurate, reliable, computationally inex-

pensive, and physically grounded biofouling state assessment. In fact, HMs have the potential

to offer the accuracy, speed, and flexibility of data-driven approaches, while maintaining some

physical knowledge of the problem through simplistic PMs, making them an ideal candidate for

supporting real-world maintenance strategies. For this reason, the development of HMs could

unlock the continuous real-time evaluation of the hull and propeller status, enabling shipowners

and operators to select the optimal trade-off between cleaning costs and increased fuel con-

sumption due to biofouling. While adopting HMs for biofouling state and effects estimation

is surely a new field for future research, there is still space for improvement for the current

approaches. For example, the effects of exogenous factors are not accurately represented by

PMs, resorting to simple filtering procedures of the unmodeled conditions. DDMs, by con-

struction, can handle this condition by simply considering these exogenous factors in the data

collection, nevertheless this requires a large amount of historical data to sample all conditions

that the model needs to learn. For this reason, the development and implementation of more

and more advanced data logging and storing systems over the entire global fleet (newbuilds and

retro-fittings) is becoming essential. Finally, given the relevance of the topic and its impact on

the global shipping footprint, there is a need for an update of the current industry standard to

reflect the state-of-the-art in monitoring capabilities providing enhanced and certified numerical

procedures for biofouling state assessment.

2.7 Chapter Conclusion

The scope of this section was to review the numerical methods for monitoring and evaluating

the biofouling state and effects on vessels’ hull and propeller performance. For this reason, the

problem of biofouling was first described, its impact on performance, which is summarised in

Table 2.1, and gave insight into the preliminary steps in biofouling related performance mod-
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elling such as data acquisition, ideal parameter requirements, listed in Table 2.2, and desired

outputs for impact estimation, summarised in Table 2.3. The above was then followed by a

critical review of approaches to biofouling state and effects estimation. In particular, the ap-

proaches were grouped into three families of numerical methods, i.e., PMs, DDMs, and HMs,

and analysed them from a practical real-world view point. For each family, strengths and weak-

nesses were discussed, as well as reviewing the most important approaches that exist in literature

and listed these approaches in Table 2.4 for PMs and Table 2.5 for DDMs. In short, PMs are

based fully on the physical knowledge of the phenomena (providing also the ground for the

current industrial standards); DDMs fully rely on historical data to learn the desired model;

while HMs are able to exploit both sources of information. Summary tables were created as an

additional supplement to the review. Finally, the current open problems and future direction of

this important field of research were expanded on.

In summary, PMs have, so far, been the standard approach to biofouling analysis and can

achieve good prediction accuracy, however, this is achieved at the expense of an increased

requirement for computational resources that prevent their use in real-time applications. DDMs,

instead, have the advantage of providing a more accurate near real-time prediction at the cost

of a computational expensive training phase. Unfortunately, DDMs can, in some cases, provide

results that are not physically plausible due to their statistical nature, however, they have been

observed to work well on average For this reason, HMs, which are able to take the best from

PMs and DDMs, can potentially offer the optimum solution as they are able to deliver physically

plausible results in near real-time. Nevertheless, at the time of writing, HMs have not yet been

employed or sufficiently investigated for the specific application of biofouling state and effect

estimation.
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The critical review, performed in Chapter 2, categorises the currently existing numerical meth-

ods for modelling the effects of biofouling on ship performance. While both Physical Models

and Data-Driven Models have been employed extensively, the more novel field of hybrid mod-

elling has not been explored in the field of biofouling.

As discussed in Section 2.5.4, Hybrid Models have successfully been used for performance

modelling of other subjects in Maritime, where they most often exhibit better performance than

purely Physical or Data-Driven methods. Therefore, there is a potential to reduce the data

requirements of biofouling impact estimation DDMs, while also incorporating much needed

physical knowledge into their methodology, allowing the resulting HMs to be used in real-time

applications, and in a decision-support role for biofouling management maintenance strategies.

Consequently, a hybrid methodology was identified as a plausible step forward in improving

the current state-of-the-art in modelling biofouling’s effect on vessels.

Further considerations are also important and can bring value to the research project. Robust

pre-processing might facilitate better numerical performance, as well as filtering out exogenous

factors that contribute to sensory noise. While hybridisation could prove to better model ac-

curacy and lower data requirements, it is also important to determine the exact benefits of a

’physically-grounded’ hybrid approach. Whether these are accuracy-based and become appar-

ent when the hybrid model is used to evaluate vessel performance trends, or whether just the act

of embedding physical methods into a data-driven approach brings a higher degree of trustwor-

thiness to the methodology is to be determined.

Considering all of the above, the main Aim of the current thesis is to combine state-of-the-art
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approaches from Machine Learning and Marine Engineering and develop hybridised decision-

support tools for supplementing predictive maintenance strategies. This aim is achieved through

specific objectives that also attempt to rectify current research gaps:

• To critically review the literature on current state-of-the-art practice in terms of vessel

biofouling monitoring in order to determine research gaps and opportunities for research.;

• To utilise robust data pre-processing & filtering approaches in order to optimise numerical

model performance.;

• To create a state-of-the-art Data-Driven Model based on vessel operational data in order

to estimate biofouling-related performance drops in real-time.;

• To identify and employ suitable Physical Models in order to expand a sensory dataset

from an on-board automatic monitoring system by adding additional features.;

• To create an advanced hybrid model for predicting biofouling effects on ship performance

in real-time by combining the previously developed Data-Driven Model with the pre-

processed dataset, expanded through Physical Modelling, in order to improve numerical

model performance.;

• To validate the real-time hybrid model against the current state-of-the-art i.e., current

industry standard (i.e. ISO19030), as well as the pre-hybridisation data-driven methodol-

ogy.

• To demonstrate how the models can be used as a decision-support tool, part of a holistic

biofouling management plan based on current and past vessel performance.
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The current chapter describes the development of a hybrid modelling methodology which at-

tempts to predict the effect biofouling has on a vessel’s performance. This has been based on the

critical analysis of existing research in the field, conducted in Chapter 2. A description of the

available real-word data, and how it has been cleaned and pre-processed for use in the various

developed models in Section 4.2, is followed by a breakdown of current industrial best practice

in terms of biofouling impact estimation, i.e. ISO19030 in Section 4.3. Further in Section 4.4,

the processed dataset is used to develop a set of Data-driven models, based on various Machine

Learning algorithms, ranging from simple methods such as Regularised Least Squares (RLS)

to more sophisticated approaches such as Random Forest (RF) and Artificial Neural Networks

(ANN). Section 4.5 provides a description of the physical knowledge that can be extracted from

the available information about the subject vessel through first-principle methods, as well as

the author’s approach in doing so. Additionally, some further feature engineering is applied

in an attempt to incorporate existing knowledge into the methodology in Section 4.6. Finally,

through incorporating the simple but valuable physical models that have been constructed into

the data-driven framework, Section 4.7 outlines the resulting hybrid methodology that is the

main outcome of the current research project. The chapter is then concluded in Section 4.9,

following an analysis of the performance of Data-driven & Hybrid models demonstrate when

trying to predict a certain vessel Key Performance Indicator (KPI) in Section 4.8, which can

then be studied to evaluate the impact of biofouling.

Further chapters utilise the state-of-the-art hybrid methodology in a realistic case study with

the aim of providing the reader with an understanding of how the former can be used in a

51



Chapter 4. Methodology

practical environment. While these further sections of the report contain their own detailed

methodology, in order to provide the reader with a better understanding of the overall process

followed within this research project, a holistic view over the entire project’s methodology is

provided visually in Figure 4.1.

Figure 4.1: Project Methodology Flow Chart

4.1 Data Description

Both Data-driven and Hybrid models have a high reliance on data quality in achieving good

performance, therefore, it is essential for a methodology that evaluates vessel performance and

relies on DDMs and HMs to do so, to be built upon a robust dataset. Furthermore, the latter

needs to be expansive enough so as to successfully capture a sufficient, for the purposes of the

current project, amount of data on the different environments and settings that a vessel operates

within.

The current work utilises a set of high-quality data for a medium-sized craft, which con-

tains over 70 features. These features range from indicators of the environmental conditions

surrounding the vessel, to readings of the various settings of her propulsion systems and their
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performance. Table 4.1 lists all of the relevant features which have been used in model devel-

opment further in the current work. The different Machine Learning algorithms, described in

Section 4.4, each employ a selection strategy to select the optimal subset of features with the

best results.

The dataset spans over 2 years, however, due to a substantial gap after only a few months in

the beginning of that period, a subset is used here, covering approximately a year of operation.

The vessel is cleaned prior to this period, therefore, the beginning of the data subset has been

assumed as representative of a clean-hull condition. While this is only an approximation due

to the high speed of fouling development, in the context of the observed time frame, the initial

period is undeniably going to be the ’cleanest’ state for the hull & propellers, assuming no

underwater cleaning has been conducted. Because the utilised data begins months after the

ship was drydocked, at the start of the recorded period, a biofilm would have already been

formed and would be impacting her performance in open water. Unfortunately, the industrial

partner that kindly provided the sensory dataset had also not kept record of underwater cleaning

activities conducted when the vessel was at port. However, it was noted that even if underwater

cleaning had occurred, it would have been infrequent and low-scale, therefore, the expectation

is that the biofouling levels of the underwater hull & propellers continuously increased within

the year. Whether or not the above assumptions is correct will undoubtedly become apparent

further in this work.

A relatively high granularity exists within the dataset with a data point every 3 seconds in

the vessel’s operating periods. This high frequency of the automatic ship monitoring system and

the expansiveness of the produced dataset allows the capture of information on various environ-

mental & operational phenomena, that are too rapidly occurring and, therefore, too short-lived

to be otherwise captured. As previously mentioned in Chapter 2, this is a common problem

within the field of biofouling performance estimation, where researchers have had to base their

novel methods on subpar datasets, which often only include a few averaged readings every few

minutes. In this way, the current work leverages on the capabilities of recent data acquisition

systems which are becoming more readily available in shipping, and seeks to demonstrate the
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benefits & possibilities when such a system is present.

4.2 Data Pre-processing

Data pre-processing is a crucial and indispensable step in the data analysis and machine learn-

ing pipeline. It involves cleaning, transforming, and organizing raw data to enhance its quality

and make it suitable for analysis or model training. Prior to being shared, the sensory dataset

described in the previous section had already went through simple pre-processing and clean-

ing as part of its compilation, however, it was observed that there were still erroneous entries

remaining that would have caused issues when training and testing the various models. There-

fore, a simplistic and visual pre-processing process was employed. Additionally, due to the

target application of the current research, it was decided that model accuracy would be greatly

increased if transient periods of acceleration, deceleration, and change of course (i.e. turning

manoeuvres) were discarded.

Ultimately, the pre-processing methods described below result in roughly a 60% reduction

of the available dataset’s size to a final size of around 2 million data points. The author believes

this to be large enough to contain sufficient information about the target phenomenon over

a broad range of operational conditions and, as such, is suitable for the Machine Learning

methods explored in Section 4.4.

4.2.1 Removal of Erroneous entries, Outliers & Sensory noise

Empty entries in a sensory dataset refer to missing data points or fields that do not contain any

information for a particular data point. These missing entries can occur for various reasons,

such as malfunction of a sensor or issues with data transmission, and can significantly impact

the integrity and usefulness of the dataset, therefore, it is essential that they are dealt with early

on.

Depending on the nature of the missing data, various techniques can be employed, such

as data imputation (filling in missing values using statistical methods), excluding incomplete
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Table 4.1: List of dataset features

Variable Name Units Variable name Units

Air Temperature ◦C DG2 Produced power kW
Speed through water knots DG3 Produced power kW
Relative humidity % DG1 Load %
Relative wind angle ◦ DG2 Load %
Relative wind speed knots DG3 Load %
Sea temperature ◦C SB Patrol Electric Motor speed rpm
Eastward wind speed m/s PS Patrol Electric Motor speed rpm
Northward wind speed m/s SB Main DE speed rpm
Spectral significant wave height m PS Main DE speed rpm
Spectral significant primary swell wave height m Bow thruster absorbed power kW
Spectral significant primary wind wave height m Draft at bow m
Primary swell wave period s Draft at stern m
Wind wave period s True wind speed knots
Wave period at spectral peak s True sea water velocity knots
SB Propeller shaft speed rpm True wind speed in x direction based on COG knots
PS Propeller shaft speed rpm True wind speed in y direction based on COG knots
SB Propeller pitch ratio % Mean direction of wind based on COG ◦

PS Propeller pitch ratio %
Mean primary swell wave direction based on
COG

◦

SB Propeller shaft torque Nm Mean wave direction based on COG ◦

PS Propeller shaft torque Nm Mean wind wave direction based on COG ◦

Roll angle ◦ True sea water velocity in x direction based on
COG knots

Trim angle ◦ True sea water velocity in y direction based on
COG knots

SB Main DE fuel consumption kg/h Mean direction of current based on COG ◦

PS Main DE fuel consumption kg/h True wind speed in x direction based on Heading knots
SB Main DE fuel rack position % True wind speed in y direction based on Heading knots
PS Main DE fuel rack position % Mean direction of wind based on heading ◦

SB Rudder angle ◦ Mean primary swell wave direction based on
Heading

◦

PS Rudder angle ◦ Mean wave direction based on Heading ◦

SB Patrol Electric Motor absorbed power kW Mean wind wave direction based on Heading ◦

PS Patrol Electric Motor absorbed power kW
True sea water velocity in x direction based on
Heading knots

DG1 Fuel consumption l/h
True sea water velocity in y direction based on
Heading knots

DG2 Fuel consumption l/h Mean direction of current based on Heading ◦

DG3 Fuel consumption l/h
Drift angle - difference between heading and
COG

◦

DG1 Produced power kW Rate of turn based on COG ◦/s

55



Chapter 4. Methodology

samples, or applying machine learning algorithms that can handle missing data. It is important

for researchers to carefully assess the data available to them when choosing between the above

techniques. Due to the large amount of available data points and the complexity of the dataset,

it was decided to delete any samples that have an erroneous or missing value for any of the

features. Examples of erroneous samples in the current scope were considered to be:

• Negative values for strictly positive physical quantities (e.g. negative fuel consumption

or negative significant wave height).

• Values outside of acceptable sensory ranges (e.g. direction angles outside of the 0◦−360◦

range or percentages outside of the 0%− 100% range).

• NaN entries, indicative of a sensory fault, data transmission fault, or corrupted data point.

In the current case, the high quality of the data meant there were relatively few discarded sam-

ples (less than 1% of the total size of the dataset).

Additionally, erroneous data that was not captured as part of the above, was treated using

Inter Quartile Range (IQR) filtering [124] which is a simple and robust statistical method for

filtering out outliers within a dataset. The data is organised in ascending order and divided

through Quartiles, which are values that separate the data in four equal parts. The middle 50%

of the dataset is contained between the first (Q1) and third (Q3) quartile, which is defined as the

IQR. Values which sit outside of Q1−1.5∗IQR to Q3+1.5∗IQR are then considered as outliers

and, in the current work, removed from the dataset. Features, subject to IQR preprocessing,

were identified through visual histogram representation of the dataset. An example (Relative

Wind Speed) can be seen in Figure 4.2, showing the difference before and after IQR filtering.

4.2.2 Removal of Transient periods

Transient periods of acceleration, deceleration, or turning manoeuvres are characterised by

complex physical phenomena which become difficult for data-driven methods to predict due

to their inherent lack of first-principle knowledge. Ultimately, for a methodology which aims
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(a) Relative Wind Speed distribution prior to
IQR filtering

(b) Relative Wind Speed distribution after IQR
filtering

Figure 4.2: IQR filtering of Relative Wind Speed

to assess the impact biofouling has on vessel performance, the ability to do so during volatile

periods of operation is unimportant and striving to achieve it could only compromise the overall

quality of the model, perhaps lowering its predictive performance. Therefore, here it has been

decided to filter out these operational scenarios in order to preserve model performance.

In particular, low speed operation is normally characteristic during manoeuvring in port or

shallow and difficult waters. There, the vessel is impacted by additional outside factors such

as the presence of other craft, wave refraction from channel walls, shallow water effects, etc..

Subsequently, the author decided it appropriate to filter out all data points which contain a Speed

through Water of under 5 knots, and hopefully prevent most of the uncertainties of low-speed

operation from having an effect on any subsequent analyses.

Additionally, for a few key features that are indicative of changes in vessel operation (Vessel

speed, Propellers’ rotational speed, Rudder angle, Patrol Electric Motor rotational speed, and

Main Engines’ rotational speed), a 5% per second threshold was set for variation between sub-

sequent data points. This was observed to be greatly important for the accuracy of developed

models. As can be seen in Table 4.2, the chosen threshold balanced between losing too much
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Table 4.2: Model accuracy versus Size of dataset after steady-state filtering

Filtering threshold (% per second) % of data points lost % change in model accu-
racy (RLS)

20% −15.9% +6.65%
10% −30.1% +9.48%
5% −49.9% +11.24%
3% −64.4% +13.88%
1% −86.3% +23.80%
0.5% −93.6% +28.89%

of the operational data, and increasing model performance when compared to no filtering of

transient operation. Lowering this further to 3%, 1% or 0.5% per second greatly reduced the

data points available after filtering without making the model better at predicting the vessel’s

speed. In fact, an artificial increase in accuracy could be seen when the majority of the data was

filtered out.

4.2.3 Data Normalisation

The sensory dataset that was available for the the current work includes a large selection of dif-

ferent features, which are measured using varying units, and subsequently scales. For example,

while Relative Humidity is measured in percentage, the Power generated by the vessel’s engines

is often in the range of thousands or tens of thousands of kW. In order for the developed mod-

els to utilise variables with such vastly different scales, the variables need to be standardised

through normalisation. The most commonly used methods for normalising data are:

• Min-Max normalisation.

The minimum value observed in the dataset is subtracted from every data point. The

resulting number is then divided by the difference between the maximum and minimum

value:

xnorm =
x− xmin

xmax − xmin

∈ [0, 1] (4.1)

This approach results in values within the range of [0, 1], however, can be adjusted to
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result in different ranges, such as [−1, 1]:

xnorm = 2 ∗ x− xmin

xmax − xmin

− 1 ∈ [−1, 1] (4.2)

• z-score normalisation.

The mean of the data is subtracted from every data point. The resulting number is then

divided by the standard deviation of the dataset. In this way, data points equal to the mean

are normalised to be 0, whereas ones which differ from the mean by a standard deviation

are transformed to 1:

xnorm =
x− µ

σ
(4.3)

Whichever method of normalisation is chosen, the data variables are processed into a con-

sistent scale and range throughout the dataset. This enhances the performance of numerical

models and, in a data-driven environment, prevents distortion between the weight of different

features. For the current work, Min-Max normalisation in the range [0, 1] was chosen for all

features.

4.3 Benchmark Method - ISO19030

As described in Section 2.5.2, ISO19030 [84, 85, 86], developed by the International Organi-

sation for Standardisation, represents the state-of-the-art industrial approach for estimating per-

formance changes for ships. In the current scope, it is used as a benchmark, as it was deemed to

be the most indicative method of highlighting and evaluating the performance of the developed

data-driven and hybrid methods on the currently available data, outlined in Section 4.1. In fact,

a decision was made to not validate the developed approaches against other works in literature

due to the unique nature of the operational envelopes of different vessels, and the variation

between the datasets that have been utilised in other similar research.

The steps followed in applying the ISO19030 procedure to the raw unprocessed data features

described in Table 4.1 are as follows:
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1. Extraction of features, required for ISO19030.

As expected, not all 68 available features are required for applying the ISO 19030 method,

as it is quite simplistic in its estimation. In particular, only Air temperature, Speed through

water, Relative wind angle, Propeller shaft speed, Speed over ground Propeller shaft

torque, Draft & Trim were utilised.

2. Removal of NaN entries within the dataset.

3. Application of Chauvenet’s Criterion for data filtering

ISO 19030 relies on Chauvenet’s Criterion [125] for the detection and removal of outliers

and erroneous entries within the input data. Firstly, the mean, µ, and standard deviation,

σ, of the dataset are computed, followed by the absolute difference between the values

within the dataset and the calculated mean, ∆i. By then assuming a normal distribution,

the probability of a data point with a certain deviation from the mean is calculated and

compared to a threshold value, which is used to govern whether a datum is flagged as an

outlier. Points are considered to be outliers if:

erfc

(
∆i

σ ∗
√
2

)
∗N < 0.5 (4.4)

Where erfc is the complimentary error function and N is the total number of data points.

4. Additional filtering

Entries were also omitted if the speed over water was less than 10 knots. This was done

to avoid to avoid misrepresentation of the results for low speeds when calculating the

percentage speed loss.

5. Correction for Wind Resistance

ISO 19030 includes corrections to the delivered power, PD, due to the influence of wind,
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which are computed by:

∆PW =
(Rrw −R0w) ∗ vg

ηD0

+ PD

(
1− ηDM

ηD0

)
(4.5)

where

Rrw =
1

2
∗ ρa ∗ vwr

2 ∗ A ∗ Crw(Ψwr,ref ) (4.6)

and

R0w =
1

2
∗ ρa ∗ vg2 ∗ A ∗ C0w(0) (4.7)

where:

• ∆PW - Wind correction, [W ];

• Rrw - Wind resistance due to relative wind, [N ];

• R0w - Air resistance in no-wind condition, [N ];

• vg - Ship speed over ground, [m/s];

• vwr - Relative wind speed at reference height, [m/s];

• Crw - Wind resistance coefficient, dependent on wind direction of relative wind

Ψwr,ref ;

• C0w - Wind resistance coefficient for head wind;

• ρa - Air density, [kg/m3];

• A - Transverse projected area in current loading condition, [m2];

• Ψwr,ref - Relative wind direction at reference height, [◦];

• ηD0 - Propulsive efficiency coefficient in calm condition;

• ηDM - Propulsive efficiency coefficient in actual voyage condition

The corrected power, PD,corr, is then:

PD,corr = PD −∆PW (4.8)
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For the current case, PD is calculated using the Propeller shaft torque and speed readings

from the dataset:

6. Calculation of expected speed based on reference Power curve

Power curves for the vessel, representative of a clean vessel condition, were generated

according to the methodology in Section 4.5.1 for a large set of drafts and trims. Based

on these, by using the corrected delivered power, PD,corr, as well as an observed Draft

and Trim, an expected speed, ve is estimated.

7. Calculation of speed loss

The percentage speed loss, vloss, can then be calculated using the expected speed, ve, and

the measured speed through water, vw:

vloss = 100 ∗ vm − ve
ve

(4.9)

In ISO19030, the speed loss is then used as the main KPI for evaluating a vessel’s performance.

As part of Section 2.4.2, different vessel performance metrics were discussed in the scope of

evaluating the effects of biofouling. The choice of KPI is highly dependant on the perspective

from which the problem of biofouling is considered. For example, when talking about a com-

mercial vessel, increases in power requirements and fuel consumption to achieve a set speed are

more important due to the monetary/profitability considerations of merchant vessels. However,

as is in the current case with a Naval craft, for some vessel types, speed loss can be seen as the

ideal KPI due to the importance of high-speed operation. Therefore, speed and, particularly,

speed loss due to the effects of biofouling over time are considered as the target variable in the

current work.
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4.4 Data-driven Methods

For any statistical learning problem, a general modelisation framework can be defined, char-

acterised by an input space X ⊆ Rd, an output space Y ⊆ Rd, and an unknown relation

µ : X −→ Y to be learned [126, 127]. Within the current work, X contains the features

listed in Table 4.1 excluding the target parameter which is representative of Y . In the current

work, the latter is the vessel’s Speed through water. In this context, the authors define the model

h : X −→ Y as an approximation of µ. The aim of the current work is to develop a model h that

is able to estimate the expected ’clean’ vessel speed given the operational and environmental

conditions that the ship is operating in at a specific point in time. A subsequent comparison to

the ’real’ recorded speed through water at that time then allows for an approximate indication of

the state of the hull & propeller. Moreover, by applying this methodology to a long operational

period (as is represented by the available dataset, described in Section 4.1), it should become

possible to observe a notable shift in performance over time, draw conclusions based on this

trend, and, ultimately, make maintenance decisions.

The approximating model h can be obtained through different types of techniques, for ex-

ample, requiring some physical knowledge of the problem, as in physics-based methods, or the

acquisition and utilisation of large amounts of data, as in data-driven methods. While physi-

cal models (PMs) are utilised further in this work in Section 4.5 with the aim of introducing

first-principle knowledge into the existing dataset, the current Section focuses on adopting a

data-driven Machine Learning (ML) approach in order to translate the prediction of a vessel’s

speed through water into a typical regression problem [128, 129]. In fact, ML techniques aim at

estimating the unknown relationship µ between input and output through a learning algorithm

AH which exploits historical data to learn h and where H is a set of hyperparameters which

characterises the generalisation performance of A [130]. The historical data consists of a series

of n examples of the input/output relation µ and are defined as Dn = {(x1, y1), ..., (xn, yn)},

where x ∈ X and y ∈ Y .

Each learning algorithm is characterised by a unique set of hyperparameters that define it,
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however, the appropriate process of choosing the hyperparameters’ values is standard across

all different methods. Since hyperparameters influence the model’s ability to approximate

µ, a proper Model Selection (MS) and Error Estimation (EE) procedure is required to tune

them [130]. Resampling techniques such as k-fold Cross Validation [131], the nonparametric

Bootstrap [132], or Monte Carlo simulation [133] are normally used when dealing with real-

world scenarios, as these have been observed to perform well in practice [99]. When utilising

Resampling techniques, the original dataset Dn is resampled a number of times (nr), with or

without replacement, to build three independent datasets called learning, validation and test

sets, respectively Lr
l , Vr

v , T r
t , with r ∈ {1, ..., nr}, such that

Lr
l ∩ Vr

v = ⊘, Lr
l ∩ T r

t = ⊘, Vr
v ∩ T r

t = ⊘ (4.10)

Lr
l ∪ Vr

v ∪ T r
t = Dn (4.11)

Following this, to perform the MS process and select the best set of hyperparameters H∗

from the set of all possible ones H = {H1,H2, ...} for the specific algorithm AH, the following

procedure must be applied:

H∗ : argmin
H∈H

nr∑
r=1

M(AH(Lr
l ),Vr

v ), (4.12)

where h = AH(Lr
l ) is a model built with the algorithm A with its set of hyperparameters

H and with the data Lr
l and where M(AH(Lr

l ),Vr
v ) is a desired metric. Since the data in Lr

l

is independent of the data in Vr
v , H∗ should be a set of hyperparameters, which allows AH to

achieve good performance on unseen data. Furthermore, for the EE phase, the optimal model

h∗
A = AH∗(Dn) is evaluated according to:

M(h∗
A) =

1

nr

nr∑
r=1

M(AH∗(Lr
l ∪ Vr

v ), T r
t ) (4.13)

Similarly to the process of MS, since the two datasets (Lr
l ∪ Vr

v and T r
t ) are independent,
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M(h∗
A) estimates the true performance of the final model without bias [130].

In the current work, the MS procedure is completed using Monte Carlo simulation without

replacement [133]. Within this, l = 0.7ns, v = 0.15ns, and t = 0.15ns, where ns is the

number of data points to be resampled from Dn in each Monte Carlo iteration. The latter is

implemented as a user input, which balances the computational requirement of the model and

the accuracy & confidence of its results. Some of the algorithms used in the following sections

utilise the entire dataset Dn, i.e. ns = n, however, for others this is impossible due to the size

of Dn and the associated computational demand. For what concerns the error metric M , Mean

Square Error (MSE) is adopted due to its convexity, smoothness, and statistical properties [134].

Additionally, to analyse and ensure the performance of the developed model, Mean Absolute

Percentage Error (MAPE) is utilised, as well as a range of visualization methods.

Sections 4.4.1 through 4.4.6 will now describe the theory behind the various algorithms that

have been explored as possible options for the prediction model. This includes explanations of

each method’s unique hyperparameter set, as well as a top-level description of their underlying

concepts, logic, and application to the particular problem.

4.4.1 Regularised Least Squares (RLS)

The idea behind RLS can be summarised as follows. During the training phase, the quality of the

learned function h(x) is measured according to a loss function l(h(x), y) [134] with empirical

error

L̂n(h) =
1

n

n∑
i=1

l(h(xi), yi). (4.14)

A simple criterion for selecting the final model during the training phase could then con-

sist in simply choosing the approximating function that minimises the empirical error L̂n(h).

This approach is known as empirical risk minimisation (ERM) [128]. However, ERM is usu-

ally avoided in ML as it leads to severe overfitting of the model on the training dataset. In

fact, in this case, the training process could choose a model, complicated enough to perfectly
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describe all the training samples (including the noise that afflicts them). In other words ERM

implies memorisation of data rather than learning. A more effective approach is to minimise a

cost function where the trade-off between accuracy on the training data and a measure of the

complexity of the selected model is achieved [135], implementing the Occam’s razor principle

h∗ : min
h

L̂n(h) + λC(h). (4.15)

In other words, the best approximating function h∗ is chosen as one that is complicated

enough to learn from the data without overfitting. In particular, C(h) is a complexity measure:

depending on the Machine Learning approach used, different measures are realised. Instead,

λ ∈ [0,∞] is a hyperparameter, that must be set a-priori and is not obtained as an output of the

optimisation procedure: it regulates the trade-off between the overfitting tendency, related to the

minimisation of the empirical error, and the underfitting tendency, related to the minimisation

of C(h). The optimal value for λ is problem-dependent, and requires tuning. In RLS, models

are defined as:

h(x) = wTx, (4.16)

The complexity of the models, in RLS, is measured as:

C(h) = ∥w∥2, (4.17)

i.e., the Euclidean norm of the set of weights describing the regressor, which is a standard

complexity measure in ML [126, 136]. Regarding the loss function, the square loss is typically

adopted due to its convexity, smoothness, and statistical properties [134]:

L̂n(h) =
1

n

n∑
i=1

l(h(xi), yi) =
1

n

n∑
i=1

[h(xi)− yi]
2. (4.18)

Consequently, Problem (4.15) can be reformulated as:
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w∗ : min
w

n∑
i=1

[wTx − yi]
2 + λ∥w∥2. (4.19)

Equation 4.19 can then be represented in its matrix form:

w∗ : min
w

∥wTX − y∥2 + λwTw, (4.20)

where y = [y1, ..., yn]
T , X = [x1, ..., xn]

T ∈ Rnxm, w = [w1, ..., wm]
T , and the identity

matrix I ∈ Rmxm. By setting the gradient equal to 0 w.r.t. w, it is possible to state that:

(X + λI)w∗ = y, (4.21)

or

w∗ = (XTX + λI)−1XTy, (4.22)

RLS is characterised by a single hyperparameter, λ, which is tuned in the MS phase, as de-

scribed in Section 4.4 and controls the Bias-Variance trade-off, prevents overfitting, and greatly

improves generalisation performance.

4.4.2 Kernel Regularised Least Squares (KRLS)

In KRLS, models are defined as:

h(x) = wTφ(x), (4.23)

where φ is an a-priori defined Feature Mapping (FM) [126] allowing to keep the structure

of h(x) linear. The complexity of the models, in KRLS, is measured the same as in RLS i.e. ac-

cording to equation 4.17. Similarly, the square loss is also adopted. In this case, Problem (4.15)

can be reformulated as:
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w∗ : min
w

n∑
i=1

[wTφ(x)− yi]
2 + λ∥w∥2. (4.24)

By exploiting the Representer Theorem [137], the solution h∗ of the Problem (4.24) can be

expressed as a linear combination of the samples projected in the space defined by φ:

h∗(x) =
n∑

i=1

αiφ(xi)
Tφ(x). (4.25)

It is worth highlighting that, according to the kernel trick, it is possible to reformulate h∗(x)

without explicit knowledge of φ, and consequently avoiding the curse of dimensionality of

computing φ, using a proper kernel function K(xi, x) = φ(xi)
Tφ(x):

h∗(x) =
n∑

i=1

αiK(xi, x) (4.26)

Several kernel functions can be found in the literature [138, 139], each with a particular

property that can be exploited according to the problem under examination. Usually, the Gaus-

sian kernel is chosen:

K(xi, x) = e−γ∥xi−x∥2 , (4.27)

because of the theoretical reasons described in [140, 141] and because of its effective-

ness [142, 143]. γ is another hyperparameter, which regulates the non-linearity of the solution

that must be tuned as will be described later. Basically, the Gaussian kernel is able to implic-

itly create an infinite dimensional φ, and because of this, KRLS is able to learn any possible

function [140]. The KRLS problem of Eq. 4.24 can be reformulated by exploiting kernels as:

α∗ : min
α

∥Qα− y∥2 + λαTQα, (4.28)

where y = [y1, ..., yn]
T , α = [α1, ..., αn]

T , the matrix Q such that Qi,j = K(xj, xi), and the

identity matrix I ∈ Rnxn. By setting the gradient equal to 0 w.r.t. α, it is possible to state that:
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(Q + λI)α∗ = y, (4.29)

or

α∗ = (QTQ + λI)−1QTy, (4.30)

which is a linear system for which effective solvers have been developed over the years,

allowing it to cope with even very large sets of training data [144].

For KRLS, there are two hyperparameters, λ and γ, which are tuned in the MS phase,

as described in Section 4.4. Concequently, the computational demand is higher than RLS,

however, so is the expected accuracy.

4.4.3 Decision Trees

Tree-based algorithms progressively segment the feature space into a set of smaller and smaller

regions, R1, R2, ..., RP , and them model the response as a constant, cp in each one [145]:

f(x) =
P∑

p=1

cpI(x ∈ Rp). (4.31)

A model is built by recursive binary splitting in order to reduce the sum of squares. There-

fore, it is easy to see that the best ĉp is just the average of yi in region Rp [145]:

ĉp = ave(yi|xi ∈ Rp). (4.32)

A greedy algorithm is necessary, as it is computationally not feasible to find the best partition

in terms of minimising the sum of squares [145]. Starting with all of the data, consider a splitting

variable j and a split point s, and define the pair of half planes:

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s}. (4.33)
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Then we seek the j and s that solve:

j, s : min
j, s

[min
c1

∑
xi∈R1(j,s)

(yi − c1)
2 +min

c2

∑
xi∈R2(j,s)

(yi − c2)
2]. (4.34)

For any choice of j and s, the inner minimisation is solved by:

ĉ1 = ave(yi|xi ∈ R1(j, s)) and ĉ2 = ave(yi|xi ∈ R2(j, s)) (4.35)

For each splitting variable, the determination of the split point s can be done very quickly.

Therefore by scanning through all of the inputs, determination of the best pair (j, s) is feasi-

ble. [145]

The process is repeated further on each of the two resulting regions and so on, and so on.

It is clear that this process can be taken to the extreme, where the tree memorises and overfits

the data, therefore a way of maintaining good generalisation performance i.e. a Bias-Variance

balance is needed.

There are a number of hyperparameters that are typically exploited to tune Decision Tree

models:

• Criteria - Measures the quality of the split in a decision tree. Can be Gini impurity or

Information Gain.

• Maximum depth - Controls the maximum depth that the tree is allowed to grow to.

• Minimum split samples - The minimum number of samples needed to split a node.

• Minimum leaf samples - The minimum required number of samples to be present at a

leaf node. This means that a split is only done when both resulting leafs will have the

minimum required number of samples.

• Max features - unlike RLS and KRLS, a Decision tree does not have inherent feature

selection, therefore, a maximum number of features needs to be tuned. This allows us to

avoid the curse of dimensionality, while also maintaining the most valuable features.
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4.4.4 XGBoost

The concept of boosting is the combination of many ”weak” learners to form a powerful ”com-

mittee” which produces a weighted estimate [145]. In particular, Extreme Gradient Boost-

ing (XGBoost) is an optimised application of gradient boosting that uses decision trees [146].

Boosting algorithms are iterative, where subsequent iterations are trained to correct the errors

of their predecessors with the goal of minimising a loss function.

A tree ensemble model uses K additive functions to predict the output [147]:

ŷi =
K∑
k=1

fk(xi), fk ∈ F , (4.36)

where F = {f(x) = wq(x)}(q : Rm −→ T, w ∈ RT ) is the space of regression trees.

Here q represents that maps an example to the corresponding leaf index. T is the number of

leaves in the tree. Each fk corresponds to an independent tree structure q and leaf weights w.

To learn the set of functions used in the model, the following regularised objective is min-

imised [147]:

L̂n(h) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk), (4.37)

where

Ω(f) = γT +
1

2
λ∥w∥2. (4.38)

The term Ω penalises the complexity of the model. The additional regularisation term, λ,

helps to smooth the final learned weights to avoid over-fitting.

For a more in depth explanation of the XGBoost algorithm, please refer to the original

publication - [147].
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4.4.5 Random Forest (RF)

The Random Forest (RF) algorithm [148] is based on the bagging (i.e. bootstrap aggregation)

technique, which reduces the variance on an estimated prediction function [145]. It simulta-

neously fits the same regression tree to bootstrap sampled versions of the training data, and

averages their result to produce its estimate:

ŷi =
1

K

K∑
k=1

fk(xi). (4.39)

On top of the hyperparameters needed for Decision Trees, the size of the ”forest” needs to

be tuned for the particular application.

RF is a substantial modification of bagging that builds a large set of de-correlated trees. On

many problems, it’s performance is similar to boosting methods with the additional benefit that

RFs are simpler to train and tune. [145]

4.4.6 Artificial Neural Network (ANN)

As the their name suggest, Artificial Neural Networks (ANNs) are inspired by the human brain

and attempt to replicate a connected system of neurons. This is done through perceptrons (see

Figure 4.3), which are organised in layers, connected together by weights or functions, which

are progressively tuned based on the available data [149].

Figure 4.3: Nonlinear model of a neuron [149].
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A typical Neural Network architecture includes three types of layers (see Figure 4.4):

1. Input layer - This layer receives the input data, where each node corresponds to a dataset

feature.

2. Hidden layer - This intermediate layer process the information fed to them from the previ-

ous layer, applying a weighted sum of inputs and a non-linear activation function, which

allows the network to capture complex relationships within the data.

3. Output layer - This final layer produces the output of the NN i.e. an estimate for the target

feature(s).

Depending on the number of hidden layers in a NN, it can be referred to as Deep or Shallow.

Figure 4.4: Fully connected feedforward network with one hidden layer and one output
layer [149].

Training a feedforward ANN (i.e. signals are only fed in one direction from the input to the

output side of the network) involves a few steps:
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1. Forward propagation - The input data is fed into the input layer, and processed through

the hidden layers by means of the initial weights and biases of their nodes. The output

layer provides the initial estimate.

2. Error Estimation - After calculating an estimate of the target feature, the ANN assesses

the difference between it and the actual value using a loss function (e.g. mean squared

error for regression).

3. Backpropagation - The calculated loss is fed back through the network and used to calcu-

late the gradients of the loss with respect to the weights of the network.

4. Optimisation - An optimisation algorithm is used to update the weights and biases based

on the calculated gradients.

Considering the large amounts of data available for the current application, an ANN seems

to be a good candidate. In particular, a Shallow network will be used due to its simplicity and

the requirement for it to fit into a real-time approach.

4.5 Physical Modelling

In order to effectively implement physical knowledge into the existing data-driven methodology

with the aim of developing a hybrid model, the features of the sensory dataset, described in

Section 4.1, are used in combination with a 3D model of the Holland Class OPVs. A rough

representation of the followed methodology is given in Figure 4.5.

A 3D model provides the opportunity to utilise the vessel’s geometry and particulars in a

hydrodynamic analysis software. In the current work, ShipX was used in order to gain first-

principle knowledge about the vessel’s operation, as is described in Section 4.5.1

Further, the open-water performance curves for the Holland Class OPVs’ propellers were

kindly provided by the Royal Netherlands Navy, and have been used in conjunction with dataset

features to develop first-principle estimates for the Speed through Water (Section 4.5.2) and

calm water Thrust (Section 4.5.3).
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Figure 4.5: Physical Modelling Flow Chart

4.5.1 Calm Water Resistance & Hydrostatic Parameters

As depicted in Figure 4.6, the overall goal in conducting hydrodynamic simulation of the OPV

in ShipX was to develop a database of calm water resistance curves. These can then be used as

a look-up table or also a type of transfer function for the hybrid model in order to construct a

new ”Calm Water Resistance” feature in the dataset.

On top of a 3D geometry for the vessel, ShipX requires a set of operational conditions for

which to run the hydrodynamic simulation:

1. Draft

2. Trim

3. Vessel Speed

4. Simulation Method

By analysing the operational dataset (described in Section 4.1) ranges for the Drafts, Trims, and

Vessel Speeds that need to be simulated in order to fully cover the operational range of the OPV
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Figure 4.6: Vessel Calm Water Resistance & Hydrostatics Flow Chart

Table 4.3: Operational Parameter Grid

Parameter Minimum value Maximum value Step

Draft 3.8m 5.0m 0.1m
Trim −1.4m 0.8m 0.1m
Vessel Speed 5kn 25kn 0.5kn

are shown in Table 4.3.

The simulation method was set to HOLTROP84 which corresponds to the Holtrop & Men-

nen methodology [150], which is the most established and widely used first-principle approach

for estimating the resistance of a vessel in calm water.

In total, 299 simulation runs were performed to develop 13 x 23 x 41 look-up tables for

Vessel Calm Water Resistance, Wetted Surface Area, & Displacement. Using the first-principle

estimate for the vessel’s Speed through Water (Section 4.5.2), as well as existing OPV data,

these ”transfer functions” were then used to create new data features and improve the sensory

dataset.
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4.5.2 Speed through Water

On top of the sensory dataset, the Royal Netherlands Navy kindly provided some additional

vessel information. Unfortunately, due to confidentiality, the majority of this cannot be dis-

closed. In particular, the availability of the Open Water performance characteristics of the two

Holland Class OPV propellers meant that a first-principle estimate for the vessel speed could

be calculated for each sample of the sensory dataset. This is a very powerful tool in the current

work, because a ’clean’ vessel speed estimate is the target feature of the data-driven models,

outlined in Section 4.4, allowing them to be developed as a basis for a hybrid model. Ulti-

mately, the ability to deterministically calculate the expected vessel speed, and implementing

this physical knowledge of the target feature into the data-driven space, is what transforms the

current methodology into a Hybrid Model.

Figure 4.7: Vessel Calm Water Speed Flow Chart

As depicted in Figure 4.7, the speed of the vessel can be estimated through the open water

curves of the vessel propellers. By calculating 2 out of the 4 performance parameters that are

included in the graphs (i.e. Propeller Pitch/Diameter ratio, Torque coefficient, Thrust coeffi-
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cient, and Advance coefficient), you can determine the remaining 2. Considering the available

features of the dataset, it is possible to easily calculate the Torque coefficient, KQ using Equa-

tion 4.40, as the propeller shaft rotational speed, n, & torque, Q, are included in the operational

data (see Table 4.1), while the density of seawater, ρ and the diameter of the propellers, D are

known. Moreover, the Propellers’ Pitch/Diameter ratio is also part of the sensory signals.

KQ =
Q

ρ ∗ n2 ∗D5
(4.40)

The Advance coefficient, J , can therefore be determined using the open water curves. By

definition:

J =
V

n ∗D
(4.41)

Equation 4.41 can then be rearranged and solved for vessel speed:

V = J ∗ n ∗D (4.42)

The above methodology is possible for each sample of the sensory data, therefore, the

dataset was enriched further to include this deterministic estimate for vessel speed as an ad-

ditional feature.

4.5.3 Thrust

Following a similar methodology to Section 4.5.2, Figure 4.8 depicts how the open water per-

formance curves for the OPV’s propellers can be used to also provide a deterministic estimate

for Calm Water Thrust.

Using Equation 4.40, the Torque coefficient can be calculated and together with the Pro-

peller Pitch/Diameter ratio is used to determine a Thrust coefficient, KT . By definition:

KT =
T

ρ ∗ n2 ∗D4
(4.43)
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Figure 4.8: Propeller Thrust Flow Chart

Then Equation 4.43 can be rearranged and solved for Thrust, T :

T = KT ∗ ρ ∗ n2 ∗D4 (4.44)

The above methodology is again possible for each sample of the sensory data, and the dataset

has been enriched with the physical estimate for the delivered Thrust in calm water.

4.5.4 Added Wind Resistance

Finally, following the methodology that was explained earlier in Section 4.3, the dataset was

expanded by estimating the wind resistance for each data point.

4.6 Features Engineering

Improvements to the dataset can also go beyond incorporating physical knowledge through

first-principle manipulation of the sensory features and vessel particulars. Particularly, a way to
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encapsulate a vessel’s exposure to biofouling generation enabling conditions into a numerical

entity could be beneficial. As has already been discussed in Section 2.1, the time a ship spends

stationary, as well as the overall operational time since a hull & propeller cleaning, are critical

to the formation of micro and macro fouling on her underwater surfaces.

4.6.1 Time since Cleaning

The available Holland Class OPV operational data includes a timestamp for each reading. In

fact, knowing a particular date/time when an underwater cleaning of the hull and propeller has

been performed, it is possible to attempt to quantify the state of fouling formation.

An additional feature has been added to the dataset that simply quantifies the time elapsed

(in hours) since her last drydocking or underwater cleaning.

This can be split further into two separate features if enough data is available to be exploited

to train the data-driven/hybrid models. ’Enough data’ refers to a dataset that spans a long enough

timeframe within which the operational characteristics of the vessel have been continuously

recorded, and the ship has been subjected to a number of cleaning operations. This would then

ensure that the model can infer the typical operational characteristics following the different

types of cleaning events.

4.6.2 Stationary Time

A step further can be done by, for each datapoint, calculating the total time duration that the ship

has spent stationary since being cleaned. This knowledge can be very powerful in attempting to

quantify the biofouling state of a ship’s underwater body, as the majority of fouling is formed

at very low vessel speed and mostly when she is stationary at port or anchored.

Similarly to Section 4.6.1, the above methodology can be expanded to differentiate between

a full service of the hull and propeller of the ship during drydocking and an underwater cleaning

performed by divers or robots. Again, this is highly dependent on the access to data.
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4.7 Hybrid Models

Combining the developed PMs with a DDM which leverages the algorithms described previ-

ously in Section 4.4, Hybrid models are constructed. From the dataset features described in

Table 4.1, Speed through Water is selected as the target feature. In the forward phase, this

allows the comparison between the models’ prediction and the sensory reading in order to de-

termine the target KPI of % speed loss. Moreover, by having a first principle estimate for Speed

through Water, an initial guess is available to the DDM, which is the defining characteristics of

a HM as discussed in Section 2.5.4. Overall, the ’hybridisation’ of the base data-driven model

is achieved in two separate enhancements packages:

1. Hybridisation package #1 (HP1):

• Speed through Water;

• Calm Water Resistance & Hydrostatic Parameters;

• Thrust;

• Added Wind Resistance;

2. Hybridistaion package #2 (HP2):

• Time since Cleaning;

• Stationary time

In this work, a total of 24 models are therefore developed - 6 different Machine Learn-

ing Algorithms which are exploited on their own, combined with Hybridisation package #1,

combined with Hybridisation package #2, or combined with both Hybridisation packages.

4.8 Performance Assessment & Comparison

In order to select the best-performing methodology, an exhaustive Model Selection approach

was applied, utilising a subset of the available data which is representative of the cleanest vessel
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Table 4.4: DDMs & HMs performance in predicting Vessel Speed through Water - July 2019

Algorithm Error
metric DDM HM (Package #1) HM (Package #2) HM (Package #1 & #2)

RLS MSE 0.494± 0.003 0.237± 0.001 0.494± 0.003 0.232± 0.001
MAPE 4.308%± 0.007% 2.980%± 0.006% 4.312%± 0.008% 2.939%± 0.005%

KRSL MSE 0.108± 0.003 0.102± 0.002 0.106± 0.003 0.100± 0.002
MAPE 1.909%± 0.011% 1.882%± 0.017% 1.8984%±0.015% 1.857%± 0.009%

Decision Trees MSE 0.234± 0.018 0.178± 0.012 0.235± 0.016 0.168± 0.010
MAPE 2.479%± 0.054% 2.275%± 0.046% 2.482%± 0.044% 2.263%± 0.042%

XGBoost MSE 0.123± 0.006 0.101± 0.005 0.121± 0.006 0.099± 0.004
MAPE 1.944%± 0.034% 1.8165%±0.022% 1.930%± 0.033% 1.817%± 0.026%

Random Forest MSE 0.128± 0.007 0.097± 0.006 0.121± 0.007 0.093± 0.004
MAPE 1.882%± 0.029% 1.733%± 0.030% 1.852%± 0.033% 1.719%± 0.031%

ANN MSE 0.216± 0.006 0.157± 0.004 0.243± 0.013 0.146± 0.004
MAPE 2.203%± 0.070% 2.083%± 0.049% 2.234%± 0.086% 2.047%± 0.045%

condition available. Moreover, the best model is then selected for a case study (Described in

Chapter 5), where it is used to evaluate the speed loss of the subject vessel, and compared to the

ISO19030 standard.

The training & test performance plots for each algorithm are depicted in Annex A for DDMs,

and in Annex B for the best-performing HMs. Table 4.4 summarises the training performance

of the DDMs/HMs in terms of MSE and MAPE. It can be seen that even the simplest explored

ML algorithms, RLS & Decision Trees, result in a well-performing prediction model. How-

ever, these are still outperformed by the more advanced KRLS, XGBoost, Random Forest, and

ANN. In particular, the Random Forest method has the most impressive estimation accuracy of

1.719%± 0.031% MAPE when coupled with the complete hybridisation package.

In terms of the optimum for each algorithm, the Hybrid methodology which combines both

Hybridisation packages is consistently the best performer. This is more significant for simpler

methods - RLS, for example, reducing its average MAPE by around 1.4%. On the other hand,

the more complex and computationally expensive non-linear approaches do still benefit from

hybridisation, however, this is to a lesser extend. In fact, the accuracy of these more sophis-

ticated algorithms is already very high (around 1.9% MAPE for KRLS, Random Forest, and

XGBoost) following a purely data-driven approach. Ultimately, the consistent accuracy im-

provement that HMs exhibit when compared to the base DDMs, demonstrates the benefits of

incorporating physical knowledge into the methodology.
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Looking further, the accuracy gained through HP2 is noticeably lower that HP1. Most likely,

this is due to the fact that through HP1, a physical estimate of the target feature is fed into the

ML framework, which acts as an initial ’guess’ and guides the data-driven model towards the

true value of the target feature. Furthermore, the benefit of the ’Time since Cleaning’ and ’Sta-

tionary time’ features is tied to the tracking and logging of cleaning operations. In the current

work, knowledge of only the initial drydocking period in which the vessel’s hull was repainted

and its propeller - cleaned is available, which reduces these features’ potential to improve the

accuracy of the model’s predictions. If information about smaller cleaning operations was avail-

able, a greater number of new features could be engineered and included in the methodology.

Nevertheless, HP2 consistently improves upon the base DDM, even if only by a small amount.

In terms of complexity and computational effort, all hybridisation occurs prior to model

training/testing, therefore inclusion of the additional features does not have a noticeable inverse

impact on run times. In fact, even if performance gains due to HP2 are marginal in the current

implementation, there is no significant downside to including it in the final model. Therefore,

based on the results reported in Table 4.4, the Random Forest Hybrid Model (HP1 & HP2) was

selected as the best performer and has been used in the Case study outlined further below.

Finally, despite showing a very high performance as per Table 4.4, the computational de-

mand & accuracy of the best-performing model can be further improved. In fact, to achieve

a fair comparison between the different algorithms, limitations were placed on the size of the

Training and Cross-Validation datasets. Figure 4.9 shows the sensitivity of the Random Forest

Hybrid Model with respect to the amount of data used for training & cross-validation in terms of

MSE and MAPE. Both the size of the 95% confidence interval and the error naturally decrease

with more data, however, the benefit of additional data gradually diminishes. Therefore, for the

current application, a Training & Cross-Validation size of 20000 data points was determined to

achieve the optimal balance between computational demand and accuracy. This is an increase

on the 10000 used in the benchmark model from Table 4.4.
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(a) MSE

(b) MAPE

Figure 4.9: Random Forest HM - Training/Validation Dataset size vs Model Accuracy
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4.9 Chapter Conclusion

A detailed description of the sensory dataset that has been collected during the operation of Hol-

land Class Offshore Patrol Vessels was provided in Section 4.1, listing all parameter features,

data granularity, data quantity, and data quality. As necessary with all data, appropriate cleaning

and filtering steps have been taken to ensure a robust and high quality input is available to all

constructed models, and that all volatile periods of transient operation have been excluded in

order to better overall predictive performance. This is described in detail as part of Section 4.2.

Apart from preparation of the input data, the benchmark methodology that is currently used

in industry i.e. the approach outlined as part of the ISO19030 standard, is broken down and

explained in Section 4.3. An explanation of the workings of the developed DDMs is presented

in Section 4.4, providing background into the underlying Machine Learning algorithms that

have been exploited. Additionally, in Sections 4.5 manipulations are done using the input data,

the vessel’s particulars, and physical knowledge in order to provide a first-principle estimate

of the target feature (i.e. vessel speed), as well as to enhance and supplement the sensory

dataset with further features. Moreover, based on experience of the biofouling phenomenon, the

elapsed time since the last cleaning of the vessel’s underwater surfaces, as well as the cumulative

duration that the ship has maintained stationary since cleaning, are included as dataset features

in Section 4.6. Sections 4.5 & 4.6 are pivotal in terms of addressing the research gap that was

identified as a result of the critical analysis in Chapter 2, and, therefore are what distinguish

the current project from other similar studies on modelling the negative performance impacts of

biofouling in real time.

Finally, an explanation of how the new features have successfully been incorporated to-

gether with the base DDMs to create the final state-of-the-art Hybrid Models has been given

in Section 4.7. The chapter is concluded by utilising a subset of the sensory dataset, which is

representative of ’clean’ operating, in order to train and assess the performance of all developed

models. The HMs, which are the main subject of the current work, were seen to consistently

outperform DDMs, with the best model that utilises the Random Forest algorithm and the com-
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plete suite of dataset features demonstrating very high predictive accuracy.

It can be said that, so far, a novel better-performing biofouling vessel performance impact

estimation methodology has been successfully developed. The concept of hybrid models has

successfully been translated into the field of biofouling, however, at this stage it is of little

consequence as it has yet to be proven capable of generating useful knowledge and practical

insight that can be used to guide a maintenance strategy. To do this, a case study is needed,

which will determine whether the model, trained and tested on ’clean vessel’ data in the previous

section, is able to detect the performance shift that a vessel experiences as a result of the different

stages of biofouling. Furthermore, if it does successfully pick up on this performance shift,

there is a question as to whether it outperforms the standard practice as set out in the ISO19030

standard.
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As discussed previously, a demonstration of how the newly-developed HMs can be used as

a decision-support tool based on current and past vessel performance is necessary to provide

validity to the research outcomes. Figure 4.1 previously outlined the overall approach of the

research project. In the current work, HMs differentiate from DDMs only through the featureset

used to train and validate them, as opposed to the incorporated ML algorithm or their structure.

In fact, the more accurate of the two will inevitably outperform the other in terms of real-

life application. However, to prove this, both the best performing DDM & HM, in our case -

Random Forest, will be used in a direct comparison with ISO19030.

5.1 Analysis Setup

The three methodologies are tested on a large subset of the sensory data, which represents the

most continuous and unbroken period of operation. In terms of timescale, this starts within a

couple of months of the ’clean condition’ data, used for training, and therefore it is expected that

a reduction in vessel performance is naturally going to be observed. Furthermore, the subject

data reflects 7 months of real-world operation. In fact, within this period of time, a successful

biofouling performance impact estimation approach should be able to identify not only short-

term changes in vessel performance within individual voyages / months, but also an overall

long-term degradation.

In terms of data features, the ISO19030 approach only considers a small number of the avail-

able parameters and some additional information about the vessel, such as resistance curves,

wind resistance coefficients, etc. as was discussed in detail in Section 4.3. The Random Forest
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Method, instead, takes into account all original dataset features , with the caveat that for each

individual tree estimator in the forest, a random subset of the complete featureset is considered.

Additionally, physical knowledge about the ship is embedded into the method through hybridi-

sation to form the HM, providing the model with an estimate of the target feature through novel

manipulations of the dataset’s features and vessel characteristics. Despite starting with the same

exact data, the RF and ISO19030 approaches have differing strategies in terms of pre-processing

and cleaning, where ISO19030 removes NaN entries from the dataset, applies Chauvenet’s Cri-

terion for data filtering, and removes entries with vessel speed under 10knots. On the other

hand, the HM & DDM incorporate the more sophisticated pre-processing steps described in

Section 4.2.

The target KPI for ISO19030 is speed loss percentage, as per Equation 4.9, which utilises

an expected speed based on the sensory data and the vessel’s resistance curve, and compares it

to the measured speed through water. Since the Random Forest models have also been trained

to predict the same target feature, it is possible to take advantage of the same KPI and strategy.

This allows for a fair comparison between methods.

5.2 ISO19030 Performance

Figure 5.1 shows the result of applying the ISO19030 approach on the available OPV data. In

order to gain a better understanding of the results, a red trendline is fitted to the speed loss

estimates for each month in order to visualise the short-term changes to vessel performance.

Additionally, as a supplement and a showcase of long-term shifts, a green trendline is fitted to

the entire suite of speed loss entries. In reality, a decrease in speed loss should be present if

the vessel has been treated in some way, either through drydocking, polishing & repainting, or

though underwater cleaning. An unbroken period of operation should normally be reflected by

an increase in speed loss. It can be seen in Figure 5.1 that, according to ISO19030, the vessel’s

operational characteristics have actually improved during 4 of the 7 months. Moreover, through

the entire period, there seems to be only a slight deterioration in performance. Both the long-

88



Chapter 5. Case study

Figure 5.1: ISO19030 Speed Loss Prediction
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term and short-term pictures painted by this analysis seem counterintuitive when considering

the widely-observed negative effects of biofouling and their scale, which have been discussed

previously in Chapter 2.

A possible explanation can be found in the fact that, apart from the major drydocking event,

there is no information available about the frequency and extent of in-service underwater clean-

ing operations. Therefore, these could have happened both when the ship was in dock for an

extended amount of time, or to a lesser extend when she was in port for a short period of a day

or few.

At this point, the results can be seen as open to interpretation, and the approach should not

be discounted until the outcome of the hybrid method is also observed.

5.3 Hybrid Model Performance

Figure 5.2 shows the result of applying the novel HM on the available OPV data. The same

as with ISO19030, a red trendline fitted to the speed loss estimates for each month can be

used to analyse performance shifts in the short-term, whereas a green one provides a visual

representation of how the vessel degrades over the 7 months due to biofouling.

Based on the Hybrid method’s output, the impact of biofouling seems to continuously de-

grade performance, which was highlighted as expected prior to the analysis. In the short-term,

for each voyage / month apart from the last, there is a noticeable increase in the speed loss

KPI. In fact, using Figure 5.2, estimates can be made in terms of when underwater cleaning has

occurred and to what extent. Between days 20 and 40, representative of the first and second

voyages, there is a substantial uplift in vessel performance (i.e. reduction in speed loss) which

is most likely aligned with an underwater cleaning event. The same can be seen in the similar

gap of around 20 days between the third and fourth voyage. On the other hand, between the

second and third, as well as the forth and fifth, no cleaning seems to have been performed as

the performance deterioration seems continuous. Of course, without knowledge of the exact

maintenance log, no concrete conclusions can be made.
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Figure 5.2: Hybrid Model Speed Loss Prediction
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In terms of the higher-level trend over the entire 7-month operational period, a noticeable

increase in speed loss is apparent. The simple first order polynomial trendline might not be fully

accurate as a predictor of how the performance shifts over a longer period, however. In fact,

the phenomenon does not seem linear in terms of time elapsed, but rather inverse logarithmic.

This is physically sensible as, at some point in time, the entire underwater surface becomes

subjected to macrofouling, and any further surface roughness gains are marginal. Ideally, coun-

termeasures should be taken in terms of the ship’s maintenance strategy prior to biofouling

levels reaching that stage.

5.4 Data-Driven Model Performance

Figure 5.3 shows the result of applying the base DDM on the available OPV data. Again, the

short and long-term trends are captured through trendlines.

There is an obvious disparity between the outputs of the two Random Forest Models. As

was mentioned earlier, an improvement going from the DDM to the HM is expected due to the

difference in prediction accuracy, however, the scale of this is surprising.

A possible explanation is the additional knowledge imparted into the methodology through

Hybridisation Package #2, which includes time since cleaning and time spent immobile, which

are directly related to the growth of biofouling and its impact on ship speed over time. There-

fore, the benefit of HP2 could have potentially been underestimated in Section 4.8 by looking

purely at prediction accuracy.

5.5 Method Comparison & Chapter Conclusion

All three methodologies have successfully been applied and visualisations of their results are

shown in Figures 5.1, 5.2 & 5.3. As was highlighted when outlining the setup of the case study,

the natural expectation is that a consistent deterioration in ship performance is to be observed

due to the effect of biofouling. With the assumption that no small-scale cleaning events were

conducted after the ship was in drydock, the above should be true for both the entire operational
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Figure 5.3: Data-Driven Model Speed Loss Prediction
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period as a whole, as well as within the individual voyages that comprise it.

The ISO19030 approach only picked up a small shift in speed loss over the 7 months, as well

as concluding that not only did performance not always reduce within the separate voyages, but

in the majority of them, it got better. Based on the knowledge of the biofouling phenomenon,

developed in Chapter 2, this is realistically not possible without external influence. The latter,

of course, could not be fully discounted due to the lack of maintenance logs for the OPVs.

However, when looking at the results from the HM-based analysis, a more familiar scenario

can be observed. That is, for the same operational conditions and propulsion settings, the ves-

sel’s speed through water continuously reduced in time both in the short and long-term. In order

to be fully objective, it has to be said that in the final month / voyage of the operational time

frame, the HM shows a performance uplift, which cannot be easily explained. There are days

within this period where the ship was not in operation, which allows for the possibility of a

cleaning event to have taken place.

In terms of the DDM, while it was easy to predict that its performance would be worse than

that of its Hybrid counterpart, an interesting observation could still be made. In particular, a

comparison between Figures 5.2 & 5.3 very clearly highlights the benefits of including real-

world knowledge into the methodology through feature engineering.

On average, the novel HM method seemingly outperforms the ISO19030 approach when

it comes to providing an insight into the status of biofouling’s impact on vessel performance.

This is true for both short-term and long-term observations. Therefore, the outcomes of the per-

formed case study enforce the claim that HMs have a place in maintenance decision-support. In

the current case, a lot of insight can be gained purely by having an operational dataset and some

knowledge about the subject vessel, with a lot of potential for greater value if more information

such as maintenance logs is available. Additionally, due to the nature of an OPV’s mission (i.e.

disjointed and highly transient as opposed to continuous and steady operation), even higher

quality outcomes could be possible employing the developed strategy to commercial vessels. In

fact, the latter are governed by optimised operation and maintenance schedule to a much higher

extent to naval vessels, due to their extreme reliance on profitability and efficiency.
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As was set out in Chapter 1, the current project has been developed towards addressing the

critical challenges that the Maritime industry will be, and, in fact, already is, facing. Namely,

there is a need to reduce Shipping’s environmental impact, as well as its efficiency, through the

improvement of maintenance methods and strategies. Although there are numerous promising

technological advancements in different stages of development and implementation, none are

mature enough to single-handedly address the issue at hand. Therefore, in the short-term, the

best that can be done is to streamline the efficiency of vessel operations, as well as to maximise

efficiency through optimal maintenance strategies. In fact, the above would continue to be

beneficial in the future of the Maritime industry, even when currently immature technologies

become ready for wide-scale implementation.

Biofouling, which leads to the deterioration of the surface condition of a vessel’s underwater

hull and propeller, and therefore - to the continuous growth in the ship’s energy/fuel require-

ments in order to complete its particular mission, has been an active area of research effort for

several decades. However, only recently has the availability of high quality and high enough

quantity of operational data become common enough, to allow for the continuous monitoring

of the biofouling state of underwater vessel surfaces, as well as its impact on ship performance.

Within this research work, a new novel method of measuring the above impact was proposed,

following a comprehensive review of currently available numerical methods in Chapter 2. Com-

monly used first-principle methods (also referred to as Physical Models - PMs) that are rooted in

physical principles provide relatively accurate and, more importantly, easy-to-interpret results,

however, they are far too computationally expensive to be effective in real-time monitoring ap-
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plications. On the other hand, data-driven methods (also know as Data-Driven Models - DDMs)

which leverage on historic observations of a vessel’s operational parameters to make estimations

about its real-time/future performance are highly accurate and are able to output results much

quicker, however, they lack any physical interpretability, only operating as a ’black box’. Hy-

brid Models (HMs) seek to combine the advantages of PMs and DDMs, while bypassing their

individual setbacks. These incorporate physical knowledge into the data-driven structure in or-

der to find the ideal middle ground between the two widely-spread families of models, and, in

fact, have shown great promise in other engineering applications. As, to the best of the author’s

knowledge, there have been no HMs proposed to tackle the biofouling problem and, also, the

fact the current industry standard method for assessing a vessel’s state of biofouling (the ap-

proach set out by ISO19030) has previously received criticism, an opportune research gap was

identified.

The overall aim of the project - to combine state-of-the-art approaches from the fields of

Machine Learning (ML) and Marine engineering and develop hybridised decision-support tools

for supplementing predictive maintenance strategies, was set out in Chapter 3. Moreover, this

was broken down in ordered objectives, which then successfully guided the completion of the

research work. Based on the above, a robust methodology for the project was set out in Chap-

ter 4 and was visualised in Figure 4.1. A rich operational dataset for one of the Holland Class

OPVs, collected by on-board sensors, was described in detail and used as a stepping stone

for the subject data-driven and hybrid models. It was taken through a rigorous pre-processing

process, cleaned of erroneous entries, outliers, and sensory noise, as well as transient periods

of operation which are often characterised by high degrees of volatility. Following a detailed

explanation of the ISO19030 approach, the structure of the project’s own base DDMs was es-

tablished. Six separate promising ML algorithms were brought forward in order to ultimately

select a well-performing method.

In order to create the target Hybrid methodology, a set of first-principle enhancements were

brought forward. A physical estimate of the approach’s target parameter - speed through water,

was deterministically calculated through the vessel’s open water performance curves, along
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with the ShipX software suite which was used to create a wide set of resistance curves for a

large variety of operating conditions. To further supplement the sensory dataset, other physical

features were also added - Calm Water Resistance & Hydrostatic Parameters, Thrust, and Added

Wind Resistance. Additionally, based on knowledge of the biofouling phenomenon, a further

set of features was developed to encapsulate knowledge about the time the vessel has spent

operational since its last cleaning event, and the length of time it has spent stationary. These are

known to be highly correlated to the extend of biofouling development on underwater surfaces.

After constructing both the DDMs and their HM adaptations, a robust & extensive model

training, validation and testing procedure was conducted in Section 4.8, where the candidate

methods were compared in terms of their error in predicting the vessel’s speed on data repre-

sentative of its ’cleanest’ operational state. The proposed HMs consistently outperformed their

DDM counterparts for all proposed ML algorithms, where the Random Forest algorithm with

the complete suite of hybridisation achieved the best overall results with an impressively low

Mean Absolute Percentage Error (MAPE) of 1.719% ± 0.031%. In fact, this could be further

improved by increasing the amount of data used for its Training & Cross-Validation, as was

shown in Figure 4.9.

In order to demonstrate the proposed method’s performance, a case study was then con-

ducted in Chapter 5, utilising the best performing Hybrid and Data-Driven models in order to

assess the percentage speed loss the vessel has experienced over a 7 month period, representa-

tive of a fouled hull & propeller condition. This was directly compared to the results following

the ISO19030 approach on the same set of data. The Hybrid Method achieved the most accu-

rate and realistic assessment of the impact of biofouling on the vessel’s performance. While

the ISO19030 approach struggled to detect a definitive performance drop, the HM consistently

identified losses in performance in both the short-term (per voyage) and long-term (for the en-

tire period). Moreover, when compared to the purely data-driven approach, the HM provided

substantial improvements in terms of its practical application. This is most likely due to the real-

world & physical knowledge of the biofouling phenomenon that was embedded into it through

the two hybridisation packages discussed in Section 4.7 These results serve to highlight the
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proposed model’s potential as a viable decision-support tool for maintenance planning, and its

ability to provide quality insights to the vessel’s owner & operator. The latter would ultimately

enable a more proactive, efficient, and effective maintenance strategy.

While the developed Hybrid Methodology is unquestionably already well-capable, it can be

improved, which, in the author’s opinion, can be a fruitful avenue for further research. There

is a large number of candidate features that can be added through hybridisation, and only a

small subset of these was explored within the current work as an initial stepping stone. The

methodology is, in its core, data-centric, therefore the easiest way to improve upon it, is to

improve the quality & quantity of data. Most notably, it can be better validated through a

more intimate knowledge of associated maintenance activities such as the cleaning schedule

for the vessel’s underwater surfaces. Moreover, the current work is centered around Offshore

Patrol Vessels, whose operation is mission-based and, therefore, sporadic. Commercial vessel

which are operated in a more continuous and constant manner would be accompanied with a

’smoother’ dataset with much less downtime. Additionally, the later are profit-driven, therefore,

a biofouling strategy decision-support method would be much more valuable for their owners &

operators. Finally, while biofouling performance impact estimation has, hopefully, been proven

to be a good candidate for hybridisation, this is not to say that there are no other niches of

predictive maintenance, performance analysis, and, in more broad terms, marine engineering

that can experience similar benefits.

In conclusion, within this project, a novel Hybrid Model was successfully developed and

utilised to estimate the impact biofouling has on a vessel’s performance, marking a noteworthy

advancement in the field. The methodology used to create this output is easy to expand. In

fact, in the future, more physical knowledge can be imparted into the model simply by adding

further physical-based features into the sensory dataset, depending on the case-by-case avail-

ability of data. Certainly, there could be many more beneficial parameter features that have not

been covered here, but would potentially provide increases in accuracy and physical robustness.

Additionally, more detailed knowledge in terms of the logs of vessel cleaning events, both in

dry-dock and by underwater means, could greatly increase the model’s ability. All of the above
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taken into account, the methodology of the current project can already successfully be used as

a foundation for the development of highly performing hybrid decision-support tools to aid in

the optimisation of vessel maintenance strategies.
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[114] A. Farkas, N. Degiuli, and I. Martić, “Towards the prediction of the effect of biofilm on

the ship resistance using cfd,” Ocean Engineering, vol. 167, pp. 169–186, 2018.

[115] V. Bertram, “Some heretic thoughts on ISO 19030,” in HullPIC Hull Performance &

Insight Conference, 2017.

112



References

[116] D. R. Oliveira, L. Granhag, and L. Larsson, “A novel indicator for ship hull and propeller

performance: Examples from two shipping segments,” Ocean Engineering, vol. 205, p.

107229, 2020.
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Appendix A. Data-driven model performance plots

(a) RLS - DDM Training Error histograms

(b) RLS - DDM Test performance

Figure A.1: RLS Data-driven Model performance

118



Appendix A. Data-driven model performance plots

(a) KRLS - DDM Training Error histograms

(b) KRLS - DDM Test performance

Figure A.2: KRLS Data-driven Model performance
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Appendix A. Data-driven model performance plots

(a) Decision Tree - DDM Training Error histograms

(b) Decision Tree - DDM Test performance

Figure A.3: Decision Tree Data-driven Model performance
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Appendix A. Data-driven model performance plots

(a) Random Forest - DDM Training Error histograms

(b) Random Forest - DDM Test performance

Figure A.4: Random Forest Data-driven Model performance
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Appendix A. Data-driven model performance plots

(a) XG Boost - DDM Training Error histograms

(b) XG Boost - DDM Test performance

Figure A.5: XG Boost Data-driven Model performance
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Appendix A. Data-driven model performance plots

(a) Neural Network - DDM Training Error histograms

(b) Neural Network - DDM Test performance

Figure A.6: Neural Network Data-driven Model performance
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B Hybrid model performance plots
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Appendix B. Hybrid model performance plots

(a) RLS - HM Training Error histograms

(b) RLS - HM Test performance

Figure B.1: RLS Hybrid model performance
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Appendix B. Hybrid model performance plots

(a) KRLS - HM Training Error histograms

(b) KRLS - HM Test performance

Figure B.2: KRLS Hybrid model performance
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Appendix B. Hybrid model performance plots

(a) Decision Tree - HM Training Error histograms

(b) Decision Tree - HM Test performance

Figure B.3: Decision Tree Hybrid model performance
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Appendix B. Hybrid model performance plots

(a) Random Forest - HM Training Error histograms

(b) Random Forest - HM Test performance

Figure B.4: Random Forest Hybrid Model performance
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Appendix B. Hybrid model performance plots

(a) XG Boost - HM Training Error histograms

(b) XG Boost - HM Test performance

Figure B.5: XG Boost Hybrid Model performance
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Appendix B. Hybrid model performance plots

(a) Neural Network - HM Training Error histograms

(b) Neural Network - HM Test performance

Figure B.6: Neural Network Hybrid Model performance
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