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ABSTRACT 

 

 

This thesis presents the concept of representing finite signals in terms of sequential 

output pulses called pulse domain to extract Electrocardiogram (ECG) features for 

biometric authentication systems. Two novel methods based on the pulse domain 

philosophy namely Pulse Active (PA) and Adaptive Pulse Active (APA) techniques 

are presented in this thesis.   A total of 11 algorithms are derived from these two 

methods and used to generate novel ECG feature vectors. Six algorithms of the PA 

technique are named as Pulse Active Bit (PAB), Pulse Active Width (PAW), Pulse 

Active Area (PAA), Pulse Active Mean (PAM), Pulse Active Ratio (PAR) and Pulse 

Active Harmonic (PAH). Five APA algorithms are named as Adaptive Pulse Active 

Bit (APAB), Adaptive Pulse Active Width (APAW), Adaptive Pulse Active Area 

(APAA), Adaptive Pulse Active Mean (APAM) and Adaptive Pulse Active 

Harmonic (APAH).  The proposed techniques are validated using ECG experimental 

data from 112 subjects. Simulation results indicate that APAW generates the best 

biometric performance of all 11 algorithms. Selected ranges of PA and APA 

parameters are determined in this thesis that generates approximate similar biometric 

performance. Using this suggested range, these parameters are than used as a 

personal identification number (PIN) which are a part of the proposed PA-APA ECG 

based multilevel security biometric authentication system. 
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CHAPTER 1.  

 

INTRODUCTION 

 

1.1. PREFACE 

 

Skimming at automated teller machines (ATMs) is a growing problem throughout 

the world. Criminals are now using more advance devices which incorporate a micro 

camera for PIN captures and a skimming device to capture the ATM card data. The 

European ATM Crime Report published by EAST (the European ATM Security 

Team)  shows a 24% increase  for the period January to June 2010  compared with 

the same period in 2009 in card skimming attacks at European ATMs equivalent to 

€144 million  losses [1]. 

To counter this problem, biometric ATM has been introduced. Palm and finger vein 

biometrics are two available technologies incorporated with ATM which have been 

widely accepted in Japan and Brazil. In Europe, Poland was the first country to trial 

this technology [2]. Based on this technology, after the ATM card is inserted, hands 

or fingers are placed over a vein scanner which recognizes a unique data to authorise 

a transaction. Without entering PIN during the transaction process, capturing the PIN 

and ATM cards by the skimmers is no longer useful. Unfortunately, a physiological 

biometric normally cannot be changed. Hence, if it is compromised, it is possible that 

an authentication can be exposed to fraudulent transactions forever. Thus, in general 
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consumers still refuse to accept this biometric technology due to the risk of personal 

data infringements. 

Authentication systems using internal body characteristics such as 

electrocardiograms (ECGs) have attracted significant attention among researches as 

ECG based characteristic is difficult to be misrepresented. The ECG represents 

graphical electrical activity of the heart and is believed to be distinctive among 

individuals and stable for a long period of time. The main challenge implementing 

this technology is that the ECG characteristic is time dependent. This makes it 

difficult to extract the exact same ECG characteristic each time even from the same 

user. The main source of these variations comes from the effect of heart rate 

variability (HRV) and amplitude variability (AMV).  

 

1.2. MOTIVATION FOR THIS RESEARCH 

 

This thesis addresses the above shortcomings by developing a new feature extraction 

technique which can be used for electrocardiograms (ECGs) that increases the 

security level of a biometric authentication system.  

The first objective of the thesis is to develop new feature extraction techniques which 

i. are easy to construct and implement 

ii. are robust to the effect of heart rate and amplitude variability. 

iii. can be used for healthy and arrhythmia subjects.  

iv. keep the health information of the subject private by avoiding the 

reconstruction of the original ECG signals.  
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The second objective of the thesis is to develop algorithms to construct an ECG 

based authentication system which 

i. is capable of increasing the level of security of the authentication system 

ii. give the user the privilege to change their biometric feature vector whenever 

they feel the security system may be compromised. 

Throughout these investigations, a good quality representative ECG data sets is 

acquired from the public Physikalisch-Technische Bundesanstalt (PTB) database [3]. 

 

1.3. SUMMARY OF ORIGINAL CONTRIBUTION 

 

The results, discussion and conclusion detailed in this thesis not only contribute 

generally to the field of signal processing technology but are directed specifically 

towards the use of ECG as part of a high level security biometric authentication 

system. This section summarizes the original contribution of the work reported in 

this thesis. 

The main achievement of this research is the philosophy of representing a signal into 

pulse domain. Based on this philosophy, it is stated that every signal can be 

decomposed into a finite set of pulse features. Two architectures successfully 

developed with respect to this philosophy are named Pulse Active and Adaptive 

Pulse Active techniques.  

 

1) Pulse Active Feature Extraction Technique 

The first novel contribution in this thesis is the development of the Pulse Active (PA) 

technique. PA is a process of representing an investigated signal into pulse domain 

based on the concept of Pulse Width Modulation (PWM). A periodic triangular wave 
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with the same amplitude and period is used to modulate the investigated signal (in 

this thesis an ECG signal). The output pulse generated signal follows specific 

intersection rules between the investigated signal and the triangular wave. There are 

6 PA variant algorithms developed in this work namely: Pulse Active Bit (PAB), 

Pulse Active Width (PAW), Pulse Active Area (PAA), Pulse Active Mean (PAM), 

Pulse Active Ratio (PAR) and Pulse Active Harmonic (PAH). 

2) Adaptive Pulse Active Feature Extraction Technique 

The second novel contribution in this thesis is the development of Adaptive Pulse 

Active (APA) technique. APA is a process of representing an investigated signal into 

output pulses based on the concept of delta modulation. The investigated signal are 

replicated twice and position on top and bottom (generating an enveloped) of the 

investigated signal.  A periodic triangular wave with the same period but different 

amplitude is generated within the enveloped. The output pulse generated follows 

specific intersection rules between the generated triangular wave and a generated DC 

line. In view of these techniques, 5 different algorithms are developed. These 

algorithms are named as Adaptive Pulse Active Bit (APAB), Adaptive Pulse Active 

Width (APAW), Adaptive Pulse Active Area (APAA), Adaptive Pulse Active Mean 

(APAM), and  Adaptive Pulse Active Harmonic (PAH). 

3) Performance improvement for ECG Biometric Authentication  

The third novel contribution in this thesis is the improvement of the ECG Biometric 

Authentication works. In this thesis, PA and APA have been used to extract unique 

ECG features for the use of biometric authentication. The ECG sources used in this 

work come from the PTB database available freely on-line. The advantage of using 

this database is that the time intervals between recordings of the same subject 

available in the database is around 500 days which is very suitable to investigate the 

effectiveness of the PA and APA algorithms for biometric applications. Using this 

database, various new innovations which have never been reported in any of the 

previous work are presented. One of the main innovations is that the capability of the 

PA and APA algorithms to minimize the effect of HRV and AMV which have been 

the obstacle of practically implementing ECG as a biometric in current technology. 

The proposed novel techniques in this work manage to acquire an average 
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performance of up to 99% while its Equal Error Ratio (EER) manages to be as low as 

2%. These results come from the observation and analysis of the Receiver Operating 

Characteristic (ROC) curves. As a result of investigating these factors, it is 

discovered in this work that PA and APA are best used to extract ECG information 

between the peaks of P and T for biometric application. It is also discovered that 

PAW and APAW remain the best algorithms to generate the best AUR and EER 

profiles. Investigating the appropriate similarity measures, it is discovered that city 

block (or Manhattan) and cosine distance based similarity algorithms provide better 

authentication performance for the PA and APA techniques respectively. 

4) Multilevel Security ECG Based Biometric System 

The fourth novel contribution in this work is the development of a multilevel security 

ECG based biometric. The proposed system is developed by combining the PA and 

APA parameters as a personal identification number (PIN). The novel 11 algorithms 

developed based on the concept of PA and APA depends on the characteristic of the 

signal (i.e., amplitude, duration, intersection location) and 6 user defined parameters. 

Investigating these parameters on all 11 algorithms, it is concluded that different 

performances in all 11 algorithms can be obtained using specific combination 

settings of these parameters. Acceptable ranges of these parameters are proposed to 

generate similar authentication profiles. These acceptable ranges for all parameters 

are then configured as a PIN. Similar authentication profiles generated using the 

acceptable parameter ranges are important so that users are not restricted to using 

specific PIN combinations to achieve the highest authentication performance. In this 

way, although different feature vectors generated by different PIN may be used even 

for the same ECG signals, the biometric performance is still acceptably high. Using 

this system, the authentication process may only proceed when the PIN and correct 

ECG are used generating a multilevel security authentication system.  
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1.4. THESIS ORGANIZATION 

 

The remainder of this thesis is organized as follows:    

Chapter 2 provides an overview of biometric technology. It includes an introduction 

of biometric systems and characteristics. The explanation of multimodal biometric 

systems is then described in this chapter. The ethics on using biometric is discussed 

next. The final section of this chapter discusses the performance evaluation methods 

which will be used in this thesis. 

Chapter 3 reviews the concept of ECG as a biometric by first describing ECG 

signals and characteristics. The idea of using ECG as a biometric is described next in 

this chapter. The ECG sources to be used in this thesis are then discussed. Finally, a 

review of ECG based feature extraction techniques is provided. 

Chapter 4 introduces the novel Pulse Active (PA) feature extraction technique. The 

chapter begins with the fundamentals of the PA feature extraction technique. This 

chapter also investigates the best location to extract ECG using the PA technique. 

Later on in this chapter, 6 PA algorithms are presented based on the method PA 

features. Finally, results and discussion are given at the end of the chapter. 

Chapter 5 introduces a novel Adaptive Pulse Active (APA) feature extraction 

technique. The fundamentals of APA which include a simple discussion on delta 

modulation technique are included. A total of 5 APA algorithms are presented in this 

chapter. Results and discussion on the APA performance concludes the paper. 

Chapter 6 presents a novel multilevel security scheme involving PA and APA 

techniques. A detailed description of the PA-APA ECG based multilevel biometric 

security system is presented. The performance evaluation and discussion of the 

proposed scheme is provided in this chapter. 
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Chapter 7 concludes the thesis along with the discussion on the flexibility of the PA 

and APA technique to be used not only for ECG biometric application but with 

extension to other types of signals and applications. 
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CHAPTER 2.  

 

BIOMETRIC: SYSTEM, CHARACTERISTIC, ETHICS AND 

PERFORMANCE  

 

2.1. INTRODUCTION 

 

Human authentication technologies have rapidly evolved throughout the years. The 

main three approaches of these technologies are handheld, knowledge and biometric 

based as shown in the first column of Table 2-1. The advantages and disadvantages 

of these 3 main approaches are given in the second and third column of Table 2-1 

respectively [4].  

As can be seen from the list of disadvantages of all 3 approached in Table 2-1, it can 

be concluded that using one of these approaches independently would exposed the 

security system to the threat of fraudulent. The work in this thesis tends to combine 

two authentication approaches (knowledge and biometric based) from Table 2-1 in 

order to adapt both advantages of each approaches in the same time minimize their 

disadvantages when these approaches are considered independently.  

Biometric technologies are based on unique physical features of human bodies which 

are hard to be misrepresented and misplaced. This chapter first discusses the different 
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categories and requirement of a biometric system. It continues with the description of 

different types of biometric characteristics, the concept of multimodal biometrics, 

and the ethical issues with respect to biometrics. Finally, methods to evaluate the 

performance of a biometric system conclude this chapter.  

Table 2-1: Advantages and disadvantages of the three main authentication 

approaches. 

Approaches Advantages Disadvantages 

Handheld 

based 

(card, ID, 

token, 

passport, etc) 

 A new one can be issued. 

 It is quite standard  and easy to obtain  

 It can be stolen or shared. 

 A fake one can be issued. 

 A person can register with different 

identity 

Knowledge 

based  

(password, 

PIN, etc) 

 It is a simple and economical method. 

 If there are problems, it can be 

replaced by a new one quite easily. 

 It can be shared, guessed or 

cracked. 

 Good passwords are hard to 

remember. 

 A person can register with different 

identity 

Biometric 

based 

(fingerprint, 

iris, vein, ECG, 

etc) 

 It cannot be lost, forgotten, guessed, 

stolen or shared. 

 It is quite easy to check if someone has 

multiple identities. 

 It can provide greater security than the 

other two approaches 

 In some cases, a fake one can be 

issued. 

 It is neither replaceable nor secret. 

 If the biometric traits are stolen, it 

is not possible to be replaced. 

 

2.2. BIOMETRIC SYSTEMS 

 

A biometric system is a system that compares certain characteristics of a person for 

recognition and/or identification. It started to emerge from a law enforcement 

application to identify criminals and nowadays is been widely used in civilian 

applications. Traditionally the features or characteristics of a person are compared 

visibly by a fully trained person. However, advances in image and signal processing 

methods in conjunction with the development of sophisticated computers as tools 

have helped to build automated pattern recognition systems for biometrics. 
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2.2.1. Biometric requirements 

There are 7 requirements that need to be satisfied for a person’s characteristic to 

qualify as a practical biometric system feature [5]. These requirements are listed as 

follows: 

a) Universality : The characteristic should be possessed by every person 

b) Distinctiveness : The characteristic should distinguish between any two 

persons 

c) Permanence : The characteristic should be invariant over a period of 

time 

d) Collectability : The characteristic can be measured quantitatively 

e) Performance : Relates to the accuracy rate and speed of the recognition 

process 

f) Acceptability 

 

: The acceptance of the society to use the biometric 

characteristic in their daily lives 

g) Circumvention : How easy the system can be fooled using fraudulent 

methods. 

 

Based on these lists, it can be concluded that not every detail in human body can be 

considered as a biometric trait as not each detail in human body is distinctive, 

permanent and can be measure quantitatively. 

 

2.2.2. Overview of a biometric system 

According to [6], most biometric systems carry out the processes  illustrated in 

Figure 2-1.  As can be seen from Figure 2-1, once the biometric characteristic is 

captured by the sensor, it is pre-processed. In this step, the characteristic is filtered so 

that noises which were accidentally captured by the sensor can be reduced. 
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Figure 2-1: Basic processing steps in biometric recognition 

The type of noise is dependent on the chosen biometric characteristic. When the 

characteristic is at its best quality, a feature extraction algorithm or technique is then 

applied as shown in Figure 2-1 so that the distinctive features that separate one 

individual from another can be extracted. These features are then used either for 

enrolment to the training database or for testing the newly submitted identity. 

Training databases usually store feature vectors of all users recognized by the 

system. The final stage in biometric recognition process is the matching process 

which happened in the matcher block as illustrated in Figure 2-1. In this step, the 

system will match the testing and the training features and decide the identity of the 

subject. 

The biometric system may operate either in identification mode or in authentication 

mode [4]. In the authentication (or verification) mode, shown in Figure 2-2, the 

subject claims an identity from a training system database through a user name or a 

smart card. The aim of the system is to determine whether the subject is who he/she 

claims to be. The system will search the training database for a template of feature 

vector of the claim identity. The template is then passed to a matcher block as shown 

in Figure 2-2. The system will request the user to submit their biometric as test 

samples at the same time it is collecting the information of the claim identity as 

shown in Figure 2-2.  The test sample is used for feature extraction before sending it 

to the matching process as shown in Figure 2-2. During the matching process, the 

system performs a one-to-one comparison between the test and the training feature 

vectors to decide whether the claim is legitimate or a fraud.  

Enrolment 
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Figure 2-2:  Authentication Mode 

On the other hand as shown in Figure 2-3, the identification mode operates in the 

manner, which the test biometric feature vector of a subject is compared with all 

available feature vectors of in the training database.  

 

Figure 2-3 : Identification Mode 

As can be seen in Figure 2-3, in this approach, no identity is claimed from the user. 

The user starts the process with submitting their biometric sample for testing. The 

feature extraction technique is then used to extract unique information from the 

biometric and send it to a classification stage. In the same time, N available 

templates of feature vectors from the training database are sent to the classification 

stage as illustrated in Figure 2-3. In the classification stage, a classifier is used to 

perform a one-to-many comparison between a single template of the test feature 

vectors and N available templates of feature vectors from the training database. The 

classifier then decides if the subject is known to the system. 
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Figure 2-4 summarizes the overall operation mode of a general biometric system. As 

can be seen in Figure 2-4, the authentication mode only works in positive recognition 

while the identification mode may work in positive or negative recognition.  

 

Figure 2-4 : Biometric Operational modes. 

In positive recognition, the objective is to prove that the collected biometric samples 

are known to the system and prevents multiple people from using the same identity. 

In negative recognition, the system intends to prove whether the person is who they 

deny to be and prevents a single person to have multiple identities in a single 

database. 

 

2.3. BIOMETRIC CHARACTERISTIC 

 

2.3.1. Overview of biometric characteristic 

In general, biometric characteristics can be divided into two broad categories:- 

physiological and behavioural as shown in Figure 2-5. Gait[7], signature[8], 

keystroke[9], voice[10] and grip[11] are examples of behavioural biometric 

characteristics. Physiological attributes are related to the physical structure of the 

body. As can be seen from Figure 2-5, these can be further classified into the 

externally observable characteristics and the internal body characteristics. Facial[12, 

13], fingerprint[14, 15], hand geometry[16], iris scanning[17], retina scanning[18] 
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and footprint recognition[19] are among examples of the external observable 

physiological biometric characteristics. 

 

Figure 2-5 : Types of biometric characteristic 

The internal physiological biometric characteristics features are always covered by 

the skin and require invasive methods to misrepresent them. Vein [20, 21], 

electroencephalography (EEG) [22, 23] and the electrocardiography (ECG) [24, 25] 

are among examples of internal physiological biometric characteristics given in 

Figure 2-5. The following subsection will discuss in details these examples of 

behavioural and physiological characteristics. 

 

2.3.2. Behavioural characteristic 

Gait recognition [7] is a method of recognizing a subject based on how they walk. It 

has an advantage of capturing and analyzing the data from a distance. However it can 

be imitated and the feature can be covered by the type of clothes the subjects wear. 

Signature recognition [8] measures handwritten signature of an individual by 

capturing the shape, acceleration, pressure flow and timing information. It is how the 

signature is signed that is being measured for discrimination and not how the 

graphical image is analyzed. Keystroke dynamics [9] is a process that analyzes the 

Behavioural 



15 

 

way a user types by monitoring the keyboard inputs in attempt to identify users based 

on their habitual typing rhythm patterns. The feature is analyzed by measuring the 

typing tempo, the content and consistency. Speech recognition technology [10] 

examines the differences in the shape of vocal frequencies and the speaking habits 

between subjects. However this system can easily be defeated by someone who plays 

back the recorded voice or imitates a voice. Grip recognition [11], is a new 

technology implemented in smart gun to detect a gun owner’s hand size, strength and 

the dynamic grip style as a feature. It aims to reduce the misuse of guns by children 

or felons through the use of embedded smart chips on it. 

 

2.3.3. External Observable Physiological characteristic 

Facial recognition [12] is a recognition process that identifies a subject based on the 

facial characteristics such as nose, lips, eye jaw and cheekbones. These 

characteristics are extracted from a sequence of images or a video with various facial 

expressions as references. Nevertheless, the performance of this biometrics trait is 

affected by the changes in the environmental conditions such as illumination levels 

[13].  In addition to that, the biometric trait also can be defeated using masks. 

Fingerprint recognition [14] focuses on the distinctive impression of the ridges and 

valleys made by an individual’s finger. Although this technique can be defeated by 

using fake fingerprint cast in gel, it has been widely accepted as one of the best 

known biometric technologies. The fingerprint recognition performance suffers from 

degraded images due to improper finger placement, skin deformation, slippage and 

smearing, or sensor noise from wear and tear of surface coatings. For this reasons, 

current fingerprint recognition technology is moving towards implementation of 

contactless 3 dimensional fingerprinting to improve the recognition accuracy [15].   

Hand geometry recognition [16] captures an image of the hand and measures the 

length, width, thickness, distance between joint, shapes of the knuckle and surface 

area of a subject while the hand is guided on a plate. Although the basic shape of the 
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hand remains stable over its lifetime, natural and environmental factors can cause 

slight changes.  

Iris recognition [17] is a discrimination process based on unique feature of iris 

pattern possessed by the individual. The features are usually the distinctive coloured 

ring surrounding the pupil of the eye. This characteristic is reportedly stable through 

a person’s lifetime except in cases of injuries.  

Retina recognition [18] has a similar concept as iris recognition by capturing unique 

features from the eye. However, in this case, the patterns of blood vessels on the 

back of the eyeball are processed. Although this technology is highly reliable as no 

two people have the same retinal pattern, it requires high equipment costs and is not 

user friendly.  

Footprint recognition [19] was initially introduced in Japan as it is a part of the 

Japanese custom that people take off their shoes at the entrance to a dwelling. As a 

new developed biometric trait, this technology had been suggested as a personal 

recognition in a small group such as family or roommates. 

 

2.3.4. Internal Physiological characteristic 

Vein pattern recognition [20, 21] discriminates images of an individual’s vein pattern 

concentrated either on the face, finger, wrist or hand. Anatomically, the shapes of 

vascular patterns in the same part of the body are distinct for each person and are 

very stable over a long period of time. However, for this biometric trait, the success 

of the system relies on the image acquired. X-ray, ultrasonic and infrared are among 

the techniques available to generate the best image quality of the vein.   

EEG recognition [22, 23] has the advantage of confidentiality and almost impossible 

to steal as the feature is extracted from the signal coming from the brain. Although a 

person has the ability to alter most of their brain wave patterns, they cannot alter 
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what is referred to as their baseline brain wave pattern. Baseline brainwave is 

specific information stored in a person’s brain by measuring electrical brainwave 

response to words, phrases, or pictures that are presented on a computer screen.  

Recent research has shown that ECGs produced by individuals are particularly 

unique [24, 25]. In ECG recognition, features are extracted from the electrical signal 

of the heart. Since every individual’s heart has a different size, the shape of the 

electrical signal of the heart measure on the skin is different. 

 

2.4. MULTIMODAL BIOMETRIC 

 

There are no single biometric traits that can be claimed to be the best recognition 

tool. The choice of selecting the types of characteristics nowadays is more based on 

how and where it is applied.  As the application of using only one single biometric 

does not always meet the performance requirements, the development of systems that 

integrate two or more biometrics is emerging as a trend. Such systems are known as 

multimodal biometric systems [26]. Jain et al [5] listed 5 categories of multimodal 

biometric systems based on how the systems operate.  

i. Multiple sensors 

Two or more types of sensor are used for the same biometric characteristics. 

For example using combination of optical and capacitance sensor to capture 

the same fingerprint characteristics. 

ii. Multiple biometrics 

Multiple biometric characteristic such as ECG and fingerprinting are 

combined.  
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iii. Multiple unit of the same biometric 

The same biometric characteristic, with more than one unit for the same 

subject, such as 10 fingers or a pair of irises, can be combined.  

iv. Multiple snapshot of the same biometric 

The combination of multiple attempts to capture the same features from the 

same biometric, such as multiple samples of voice or multiple images of 

faces.   

v. Multiple representations and matching algorithms for the same biometrics. 

This involves combining different approaches to extract the feature or 

features during the classification process.  

Most of the work in the multimodal biometric research preferred the used of more 

than one biometric characteristic during a process of authentication. It is believed 

that, using more than one biometric trait may help to increase the security of the 

system. Some of the biometric characteristics are easy to be misused but exhibits a 

higher degree of discriminative values for example fingerprint. Others might not 

have a high discriminative value to distinguished individuals, however these 

characteristics are hard to be misrepresented for example using EEG. Having both 

types of biometric characteristic at the same time strengthen the system from the 

fraudster attack. 

 

2.5. ETHICAL ISSUE IN BIOMETRIC 

 

Biometrics raises a number of ethical issues. Privacy is the main issue that needs to 

be managed accordingly [27]. Data obtained during biometric enrolment, which is 

provided for a particular purpose could be used for purposes that the individual 

neither have predicted, nor agreed to. In some cases, misuse of the biometric 
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information from the people who have gain access to the data storage may be used to 

locate and harass or harm the user in some manner.  

A threat to privacy also comes in the form of unwarranted identification. Facial or 

gait recognition are among examples of biometrics which can be misused for 

unauthorized identification since the feature can be extracted from long distance and 

without the consent of the subject. These lead to a prejudicial system whereby people 

with criminal or unpleasant background history may be stopped or denied access 

without considering their initial intention. Safety is another issue in biometrics. If an 

item is secured through a biometric device, there is a chance that criminals could 

harm the owner in order to gain access.  For example, the owner’s finger can be cut if 

the biometric system uses the fingerprint characteristic as the key.  

A new threat on using biometrics as part of a security system is the reconstruction of 

original biometric characteristics based on the information stored in the security 

system [28]. It is easier for a fraudster to hack into the security system and obtained 

information such as the algorithm used and feature vector stored for regeneration of 

the original biometric characteristics, rather than install special hardware to steal the 

user biometric. Therefore a user will not be aware their biometric information has 

been stolen and the fraudster could steal more than one identity from the system. 

Additionally, biometric characteristics cannot be cancelled or reissued. If the 

biometric traits are compromised, the effect is a permanent one and could be an issue 

for the donors for the rest of their lives. 

 

2.6. PERFORMANCE EVALUATION 

 

Theoretically, it is hard to get a perfect match between features due to the 

imperfection of the sensing conditions during submission of a biometric sample. For 
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this reason similarity scores are introduced to measure the performance of biometric 

systems [29]. 

 

2.6.1. Similarity scores 

Feature vectors are mathematical representations of information extracted from a 

given sample using a signal processing technique. These feature vectors can be used 

to build or to compare against the enrolment template stored in the training system. 

The values returned when the two feature vectors are compared are known as scores. 

Similarity scores reflect the strength of a relationship between two feature vectors. 

Distance measurement is usually used to calculate these similarity scores. Let 

[ ]1 2 k
q q q= …q  and  [ ]1 2 k

r r r= …r  be an example of two different 

feature vectors. The most widely used distance measurements between  q  and r  are 

tabulated in Table 2-2. The theoretical assumption for the distance measures in Table 

2-2 is that similarity of two items is inversely related to their distance. Two items 

that are close together will be perceived as similar and those that are far apart will be 

perceived as dissimilar.    

Two types of results obtained from the concept of similarity scores are the ‘Genuine’ 

score and the ‘Imposter’ score. ‘Genuine’ score refers to the similarity score values 

of two feature vectors obtained from comparing samples of the same biometric 

characteristic of the same subject. ‘Imposter’ score on the other hand refers to the 

similarity score values of two feature vectors obtained from comparing samples of 

the same biometric characteristic of different subjects. 
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Table 2-2 : Distance Based Similarity Measures for Quantitative Variables 

Similarity Measure Formula 

Euclidean Distance(ED) 

or 2-norm Distance [30] 
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Cosine distance 

(CoSd)[35] 
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Mahalanobis distance 

(MAHAL)[36] 
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with S is a covariance matrix of (q, r) 

(2-8) 

Correlation (CORR)[37]: 
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2.6.2. Confusion matrix 

A confusion matrix is a table of two rows and two columns that reports the total 

value of true acceptance, false acceptance, true rejection and false rejection as shown 

in Figure 2-6 [38]. In Figure 2-6, a ‘Genuine’ attempt is an attempt by users to match 

their own training template to generate a ‘Genuine’ score.  

True 

Acceptance

False 

Rejection

False 

Acceptance

True 

Rejection

Genuine 

Attempt

Imposter 

Attempt

Acceptable 

Threshold Setting

Genuine 

Score

Imposter 

Score

 

Figure 2-6: Confusion Matrix 

If the ‘Genuine’ score falls within the acceptable threshold value, the result is known 

as true acceptance. If the ‘Genuine’ scores exceed the acceptable threshold value, the 

result is known as a false rejection. ‘Imposter’ attempt in Figure 2-6 is an attempt by 

a person to match another person’s training template to generate an ‘Imposter’ score. 

If an ‘Imposter’ score falls within the acceptable threshold value, the result is known 

as false acceptance. If the ‘Imposter’ score exceeds the acceptable threshold value, 

the result is known as true rejection. 
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2.6.3. Decision error ratio 

Biometric performance is normally reported in terms of the decision error ratio 

which is the false rejection ratio (FRR) and the false acceptance ratio (FAR). FRR 

reports the degree of expectation for the system to deny a legitimate claim by a 

‘Genuine’ user. The transaction may consist of one or more ‘Genuine’ attempts. FRR 

can be calculated as: 

Total number of False Rejections

Total number of 'Genuine' Attempts
FRR =  (2-10) 

FAR reports the degree of expectation of the system to incorrectly accept access of 

an ‘Imposter’. The transaction may consist of one or more ‘Imposter’ attempts. FAR 

can be calculated as: 

Total number of False Acceptances

Total number of 'Imposter' Attempts
FAR =  (2-11) 

  

 

2.6.4. Receiver  operating characteristic (ROC) 

The receiver operating characteristic (ROC) curves are an accepted method for 

summarizing the performance of a biometric system [39]. The ROC curve plot, is a 

function of the decision threshold, which plots the rate of ‘False Acceptance’ (i.e. 

imposter accepted as genuine) or 1-specificity on the x-axis, against the ‘1-False 

Rejection’ (i.e. genuine accepted as genuine) or sensitivity on the y-axis. It is also 

threshold independent, allowing it to be used in comparing different systems under 

similar settings or a single system under different settings. In order to quantitatively 

measure the comparison of multiple ROC curve performances, the area under an 

ROC (AUR) and the Equal Error Ratio (ERR) are used.  The AUR calculates the 
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area under each of the ROC curve. Its value ranges between 0 and 1. The AUR has 

an important statistical property which is equivalent to an average of the overall 

performance of the biometric system when all threshold settings generating the ROC 

curves are considered [40]. The EER is defined as the rate at which the false 

acceptance ratio equals the false rejection ratio. EER ranges between 0 and 1. A 

higher AUR value with a lower value of EER is desirable for practical systems. An 

example of generating the ROC curve, calculating the AUR values and determining 

the EER values from the ROC curve is given in Appendix A. 

 

2.7. CONCLUSION 

 

This chapter has investigated the theoretical concepts of biometric by discussing an 

overview of a biometric system followed by a review of various types of biometric 

traits. This explanation is important to support the justification of selecting 

electrocardiogram (ECG) as biometric which will be described next in Chapter 3.  
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CHAPTER 3.  

 

ELECTROCARDIOGRAMS FOR HUMAN RECOGNITION 

 

3.1. INTRODUCTION 

 

Implementing electrocardiograms (ECG) as a biometric trait has become an active 

research endeavour. This chapter offers an overview of the electrocardiogram 

process by first explaining the electrical conductivity of the heart, its lead 

configuration, its morphological structure, ECG fiducial points and methods to detect 

these points. The concept of an ECG as a biometric is then explored by discussing 

the advantages and challenges on using ECGs in biometrics. Since experiments using 

real-time ECG recordings require ethical approval from the authorities, this chapter 

then explains a strict procedure in using ECG recordings from a publicly available 

ECG database for all experiments throughout this thesis. A pre-processing technique 

on these ECG recordings is then described making them ready to be used for feature 

extraction.  Finally, conclusions and discussions on the work of implementing ECGs 

in biometrics conclude this chapter. 
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3.2. ELECTROCARDIOGRAM 

 

3.2.1. Electrical conductivity of the heart 

An electrocardiogram (ECG) is a graphical representation of the electrical activity of 

the heart over a period of time. It is recorded using an electrocardiograph machine 

through a certain configuration of electrode leads placed on the surface skin of the 

human body. Based on [41] , the illustration of the heart and its electrical conduction 

system is given in Figure 3-1. According to [41], the electrical activity of the heart is 

spontaneously generated from the Sinoatrial (SA) node towards the Atrioventricular 

(AV) node. Normal physiology allows the electrical activity further propagates from 

the AV node to the ventricle or Purkinje Fibers to respective bundle branches and 

finally fascicles. 

  

 

Figure 3-1: Electrical conductivity of the heart 
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3.2.2. ECG morphology 

A healthy heart usually displays 3 main waves in a single ECG complex namely the 

P wave, QRS wave and the T wave as shown in Figure 3-2 [42]. In Figure 3-2, P 

wave started from Ps to Pe while T wave starts from Ts to Te.  The QRS wave starts 

from the location of Q to the location of S.  P, R and T in Figure 3-2 represent the 

respective peak location of the P, QRS and T wave. 

P

Q

R

S

T

P wave
QRS wave T wave

PR 

Segment

Ps Pe Ts Te
 

Ps :Starting point of P 

wave 

Q: Starting point of QRS 

wave 

Ts: Starting point of T 

wave 

P  : Peak value of P 

wave 

R : Peak value of QRS 

wave 

T:   Peak value of T wave 

Pe: End point of P wave S: End point of QRS 

wave 

Te:  End point of T wave 

Figure 3-2: Electrocardiogram Complex 

The nervous system releases adrenaline which starts the electrical activity in the 

heart specifically in the SA node. The initialization of the electrical activity indicates 

the starting point of the P wave. This electrical impulse is propagated throughout the 

right atrium and then throughout the left atrium, stimulating the myocardium (heart 

muscle) of both atria to contract. The propagation between these atria in ECG 

represents the P wave. The PR segment on the ECG represents a delay in the AV 

nodes allowing blood to flow effectively from the atria to the ventricles and avoids 
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the atria and ventricles to contract at the same time. The spread of electrical activity 

(depolarization) through the ventricular myocardium produces the QRS wave on the 

ECG. During depolarization, the sodium and calcium ions stream into the cell while 

potassium ions stream out of the cell. As blood gets pumped out of the ventricle, 

ventricular repolarization occurs and the T wave is observed. During repolarization 

the ion concentration returns to its pre-contraction state. 

 

The heart normally beats at average 72 times per minute and the SA speeds up during 

exertion, emotional stress, fever, or whenever our body needs an extra boost of blood 

supply. In contrast, it slows down during rest or under the influence of certain 

medications.  Due to these factors that controlled the generation of the electrical 

pulses, the intervals between the ends of T wave and the starting point of the next 

ECG complex can be described as the region which is free from the electrical timing 

mechanism of the heart [70]. 

 

3.2.3. Fiducial points and detection 

Fiducial points are the points of interest corresponding to the peaks and boundary 

locations of the 3 major waves in an ECG complex as illustrated in Figure 3-2. There 

are 9 fiducial points in an ideal ECG complex. The locations of these fiducial points 

are affected by the heart rate [43]. In a normal ECG signal, the boundaries of each 

major wave are not visible to the naked eye. There is no actual definition where each 

major wave is supposed to start or end. However, there are a number of techniques 

available to approximately detect these locations including assessment of amplitude, 

slope and width as proposed by [44] or detecting the local maximum and minimum 

radius of curvature as mentioned in [45]. A combination of methods is preferred by 

electrocardiograph manufactures to increase the sensitivity and accuracy of the 

detection [46] .A widely used available software package for detecting ECG fiducial 

points is the ECGPUWAVE[47] which can be downloaded freely from Physionet 

[46, 48]. It is based on the algorithm of Pan and Tompkins [44] with some 

improvements that make use of slope information [49].  This software would be used 
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in detecting the fiducial points for all experiments in this thesis as it has sensitivity of 

99.69% and a positive prediction of 99.77% [50]. 

 

3.2.4. ECG lead configuration 

The term ‘lead’ for ECG is referred to two different things. The first term of ‘lead’ 

corresponds to the electrical cable and wires which connect the electrocardiograph 

machine with the surface electrode of the user [51]. The second term of ‘lead’ refers 

to the tracing of the voltage between two points on the human body. To differentiate 

between these two terms, in this thesis the second term of ‘lead’ will be written 

starting with a capital letter for example Lead.  A Lead is composed of two 

electrodes of opposite polarity (bipolar) or one electrode and a reference point made 

up from a signal combination of other electrodes (unipolar) [52] .Different Leads 

record different aspects (angle) of the heart electrical activity. 

 

 

Figure 3-3 : 10 leads electrode placement in standard 12 Leads configuration 
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There are 10 leads and 12 Leads in a standard surface electrocardiogram. Four of the 

leads are connected to the limb and six leads are connected to the chest as illustrated 

in Figure 3-3 from [53]. Each combination of limb leads generates 3 bipolar (I, II and 

III) and 3 unipolar (aVR, aVL and aVF) Leads as illustrated in Figure 3-4. It is 

configured based on Einthoven’s triangle settings [54] proposed by Willem 

Einthoven in 1903 [55].  

 

Figure 3-4 : Einthoven’s triangle 

The rest of the 12 Leads configuration comes from the chest leads. These Leads are 

unipolar Leads and symbolized by V1, V2, V3, V4, V5, and V6 with respect to V1, V2, 

V3, V4, V5, and V6 of the chest leads. 

 

3.3. ECG AS A BIOMETRIC 

 

3.3.1. ECG advantages as biometric 

In chapter 2, we discussed 7 requirements that need to be satisfied for a person’s 

characteristic to be considered as a biometric. In this chapter, we will evaluate how 

ECG fulfils these requirements. These requirements also represent the advantages for 

ECG implementation in biometric systems. 
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a) Universality 

Electrocardiogram is associated with the electrical activity of the heart. All living 

humans have a heart which meets the first requirement for ECG to be considered as a 

biometric.    

 

 

b) Distinctiveness 

ECG inherits the distinctiveness from the individual’s DNA [56]. Each human has a 

unique DNA fingerprint (except for identical twins) [57]. Unlike DNA, ECG 

distinctiveness also is affected by age, sex, body shape [25], lung-torso, blood mass-

torso, torso-air conductivity [58], race [59, 60], and the geometrical shape of the 

heart [24, 61] making it different between twins. 

  

c) Permanence 

According to [62], the permanence characteristic of ECG was studied by a group of  

PTB researchers [63] by noting that similarity in healthy subjects occurred at 

different time intervals ranging from 0 to 118 days. In the study, the similarity 

between those ECGs was observed when they were plotted on top of each other. 

Despite the fact that ECG shapes do change due to sickness or injuries, these changes 

are not included in the above study nor will be the concern of this thesis. Zeisler et al 

[64] investigates properties of the ECG in order to classify which properties were 

invariant. Based on this study, it was concluded that the only known independent 

invariant properties of the electrocardiogram are its time relations, namely, the 

sequence of cycles, their rhythm, the temporal duration of the P, QRS, and T waves, 

and the Q-T, P-R, P-Q and S-T intervals.  

 

 

d) Collectability 

The ECG signals can be recorded, measured and analyzed using electrocardiograph 

machines.  Also, construction  of an electrocardiograph machine is cheap [65]. There 

are various locations of ECG lead placement which can be used to record the ECG 

signals as mentioned in section 3.2.4. However not all Leads configurations are 



32 

 

practical for a biometric system. According to [66], Leads I configuration is enough 

to identify individuals. The LA and RA leads can be placed at the tip of the user left 

hand and right hand fingers respectively as implemented in [67]. This configuration 

makes the ECG recordings simple and practical. 

 

 

e) Performance 

Research on ECG for human identification performed by [62, 67-97] indicates that 

ECG has the capability to identify individuals greater than 80% correct classification 

rates.  

 

f) Acceptability 

ECG acceptability by the society is subject to the same issue as other biometric traits 

- i.e. protecting the privacy of the user. The use of ECG is especially sensitive since 

ECG signals contain health information relating to the user which some people are 

reluctant to share. As long as the health information is secure and not divulged by the 

biometric system, ECG has the potential to be used as a biometric trait. 

 

g) Circumvention 

ECG signals are generated based on the activity of the heart. It is practically 

impossible for a fraudster to duplicate or replicate a user’s exact ECG signals. To do 

so would require access to the heart of the user which is always covered by thorax 

and skin and requires an invasive method to misrepresent it. This ensures that the 

legitimate user must always be present during an identification transaction process. 

 

3.3.2. The challenges implementing ECG as a biometric 

In the previous subsection, the concept of permanence of ECG for biometrics is 

explained. Although a healthy individual’s ECG shape does not change for a period 

of time, the temporal duration of the 3 major waves in an ECG complex change with 

regards to HRV effects. For example, when the heart rate increases, the P and T 
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waves tends to move towards the peak of R making the whole duration of ECG 

complex shorter. Another problem that needs to be considered upon implementing 

ECG as a biometric is the effect of AMV which may contributed by noises.  As 

mentioned in the previous subsection, ECG also holds the user’s health information. 

It is important that the ECG cannot be reconstructed from the feature vector stored in 

the system, in order to protect user privacy. In order to implement ECG for a 

practical biometric system, the effects from these three challenges need to be 

minimized.  

 

3.3.3. Processing ECG with noise 

Noise in ambulatory ECG recordings are typically generated from power lines, radio-

frequency, electrosurgical noise and instrumentation noise, base line wander, 

Electromyogram (EMG) and motion artefacts [124, 125]. An example of an ECG 

signal is shown in Figure 3-5.  The ECG shown in Figure 3-5 were recorded with 

respect to various activities. Regions A, B, C, D, E and F show the Lead I ECG 

signal when the user is respectively at rest (in a sitting position), slightly moving, 

opening and closing his/her hands, standing up and sitting down again, pressing both 

index fingers multiple times and inhaling slowly when breathing. As can be seen 

from Figure 3-5, the user activity changes the shape of the raw signal. There are 4 

main ECG noises that usually reflect these changes which are the baseline wander, 

power line interference, motion artefacts and EMG as shown in Figure 3-6. 



34 

 

  

Figure 3-5: Example of Typical  ECG recording 

 

Figure 3-6 : Example of ECG noises 
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Baseline wander is a low frequency drift range between 0 to 0.5 Hz which can be 

removed using finite impulse response (FIR) notch filter [126]. Power line 

interference is a 50 Hz sinusoidal noises come from the power system and also can 

be removed using notch filter [127]. EMG has a broad bandwidth which sometimes 

overlaps that of the ECG [128]. Motion artefacts have a spectrum which completely 

overlaps the spectrum of the ECG [129]. These two types of noise are usually the 

most difficult forms of noise to eliminate from ambulatory ECG signals and require 

the use of adaptive filters [128-129]. Removing these noises is very important 

especially in medical application in order to preserve all accurate information 

embedded in ECG complexes. Example of designing adaptive filter to remove these 

noises using artificial neural networks can be found in [133-134].   

In this thesis, the design of such filters is not the objective of this research. In ECG 

biometric application, an accurate reconstruction of ECG signals after filtering 

process is not that important as in medical application. The main objective of ECG 

filtering in biometric application is to remove low frequency drift, power line 

interference in the same time retaining as much as possible unique information form 

the ECG that can discriminate individuals [70] .  

Israel et al [70] studied the bandpass limits that is capable to retain most of the 

distinctive individual heartbeat information for identification from 20 000 raw ECG 

signals. In [70], the initial goal of filtering is to remove the low frequency noises less 

then 0.06 Hz and 60 Hz noise (US Power Line interference) while retaining the 

individual heartbeat information between 1.10 Hz and 40 Hz. Their observations 

indicate that ECG information in the frequency band from 43 Hz to 60 Hz and low 

frequency band from 0 Hz to 2 Hz changes with HRV of the same individual. Using 

ECG including these bands will reduce the capability of the biometric system to 

match different ECGs from the same subject. Their conclusion is that using a 

frequency bandpass filter between 2 and 40 Hz is practical for biometric applications 

to minimize the effect of HRV within the same individual. 
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Figure 3-7 : Example of typical ECG signal band pass filtered from 2 to 40 Hz 

 

For ECG biometric application, to minimize the effect of the EMG and motion 

artefacts in an ECG signals, in this thesis, feature vectors is extracted from an 

average of multiple ECG complexes  instead of considering a complex at a time. In 

this way, the common attributes of these multiple complex is amplified.  The outlier 

ECG complexes as shown in Figure 3-7 can be removed by introducing acceptable 

ranges in which an ECG complex can be accepted for averaging. 
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3.4. ECG DATABASE 

 

All ECG signals in this thesis are taken from a public ECG database available on-line  

in the Physionet website [3]. This section will explain some strict requirements 

which must be fulfilled in order to use these ECG recordings for all experiments. 

These requirements are important so as to generate accurate results which can be 

compared with real time ECG recordings taken during biometric applications. 

 

3.4.1. ECG recording requirements 

ECG recordings taken from the public ECG database available on-line should abide 

by the following requirements: 

i. Each subject has at least 2 different ECG recordings. One will be used to 

generate the training database and another to generate the test database. 

ii. The two different recordings are taken in separate sessions, days, months or 

years apart. This to ensure that the ECG used in the experiment fulfil the 

permanence concept of a biometric traits. 

iii. The ECG is recorded in a practical manner. In this case, the recordings must 

come from a Lead I configuration.  

 

3.4.2. Physikalisch-Technische Bundesanstalt (PTB) database 

There are many public ECG database available on-line for example the MIT-BIH 

database [98], the European ST-T database [99], the Physikalisch-Technische 

Bundesanstalt (PTB) database [100] or taken from Physionet [3]. However, only 

PTB fulfils the requirements as indicated in subsection 3.4.1.  
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The PTB is selected because in this database the average time-interval between any 

two ECG recordings of the same subject is about 500 days [79]. The PTB database 

includes healthy and arrhythmia beats ECGs. A total of 112 subjects (98 subjects 

with arrhythmia beats and 14 healthy subjects) have been chosen from the database 

for all experiments in this thesis based on a requirement that each subject has at least 

2 different session ECG recordings.  

 

Figure 3-8 : Time intervals between recordings 

 

The PTB database provides a 12 Lead ECG recordings, however only Lead I 

recordings will be used in all experiments in this thesis. Figure 3-8 illustrates the 

distribution of the time intervals between two ECG recordings used in this thesis.  As 

can be seen from Figure 3-8 there are 23 pairs of recordings (20.54%) recorded with 

an interval of less than 1 week, 23 pairs of recordings (20.54%) are recorded with an 

interval between 1 week to a month, 24 pairs of recordings (21.43%) are recorded 

between 1 to 3 months, 23 pairs of recording (20.54%) have an interval between 3 
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and 6 months, 9 pairs of recording (8.04%) are recorded within 6 to 9 months and 10 

pairs of recording (8.93%) are recorded with an interval greater than a year. 

 

3.4.3. ECG filtering 

ECGs provided from the PTB database are generally raw signals and require pre-

processing to ensure that these ECGs are of the highest quality. A filtering process is 

performed on all ECG recordings so that only ECG components within 2 to 40 Hz 

are allowed [70] as discussed in section 3.3.3.  

There are various digital filters available which generally can be categorized in two: 

Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters. Usually, 

IIR filters are used when sharp cut off and high throughput are the only main 

requirement. FIR is used for a system where no phase distortion is acceptable. Since 

phase distortion has a greater effect on the recorded ECG, in this thesis, FIR filter 

will be used to ensure the ECG components are within 2 to 40Hz. The FIR filter in 

this thesis is designed with passband defined from 2 to 40 Hz and two stopbands 

defined from 1 to 2 Hz and 40 to 41 Hz. The Specification of the passband ripple is 

0.1dB and a stopband attenuation of 80dB. In this thesis, a Kaiser Window FIR filter 

with 5019 taps is designed and implemented. 

 

3.5. ECG BASED FEATURE EXTRACTION TECHNIQUE 

 

There are over 40 publications with respect to the work on implementing ECG as a 

biometric dating back from the pioneering work of Biel et al [68] , Irvine et al [85] 

and Kyoso et al [69]. Previous literature works on most of these methods have been 

widely reported by Nasri et al [87] , Sufi et al [56] and Chauhan et al [82].  
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Improvement on the ECG based biometric technology reportedly from previous 

works comes from investigating various factors such as ECG recording technologies 

[66, 86], feature extraction [68, 70, 71, 76], feature selection [84, 90],   classification 

methods [95, 97] and security system implementations [91].   

All studies on using ECG for human identification uses ECG recording based on 

either single Leads [66, 83, 88, 89, 101], two Leads [81], three Leads [72, 79] or 12 

Leads [68, 80]. ECG signals. However, most of the studies concentrate more on 

using single Leads which is the Lead I of a standard 12 Leads ECG recording to 

setup their databases. This is because of the practicality on collecting the ECG 

signals which can come from the finger tips [67]or palms [66, 88, 89, 101] of both 

individual hands. 

Most studies of ECG biometric require the segmentation of ECG recordings into a 

single complex of ECG signals. However, there are also attempt work on not to 

segment the ECG recording before extracting the features [71, 76, 80, 93, 94]. The 

work in [71, 76, 80] generates features based on the auto-correlation of non-

overlapping segments of the ECG recording. In [93, 94], the features are generated 

based on linear frequency cepstral coefficients and linear predictive coding.  

The ECG features used for classification in previous studies can be categorized into 

characteristic features [68, 70] or waveform based features [71, 76, 80]. These 

categories will be further explains in the following subsection. In general, these 

features are obtained involving the process of feature extraction and/or feature 

selection techniques. Some of the studies use directly the immediate features 

extracted from the ECG signals for classification [79]. Most studies, process the 

immediate extracted features in order to generate a new set of features. Choices of 

classifier to be used in recognizing individuals using ECGs involves classification 

methods such as nearest neighbor[71, 80] , Linear Discriminant Analysis [102] ,  

Nearest Center [95],   neural network [96, 97, 103, 104], support vector machine 

[93], hidden Markov model [105, 106].  
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This thesis concentrates in works on improving the feature extraction techniques for 

ECG biometric authentication. In the literature, it is generally unknown if the good 

performance comes from using good extracted features, selecting the correct features 

or using the best classifier. The direction adopted in this thesis is that, if a biometric 

performance generates the best authentication profile solely due to the feature 

extraction technique, then this performance can be increased using an appropriate 

classifier. The main feature extraction techniques from the literature will be 

described in detail. A summary of the main contributions in the field is tabulated in 

Table 3-1.  In Table 3-1, the 5 characteristic and 9 waveform based feature extraction 

techniques that are discussed in the following subsection are tabulated. The sample 

size of the test subjects ranges between 9 and 100 subjects. As can be seen from 

Table 3-1, these techniques generate identification performance greater than 80% and 

authentication performance greater than 3 % EER. Nine of the techniques tabulated 

in Table 3-1 required the detection of ECG fiducial points to generates the 

characteristic or waveform based features. From Table 3-1, it is also observed that 

only the methods published in [67, 68, 70, 79] use ECG recordings recorded with 

more than 24 hours interval. 

As mentioned earlier, most ECG based feature extraction techniques can be 

categorized into either characteristic based or waveform based features. For this 

section, a description on the main characteristic based feature extraction technique 

will be presented in the first subsection. The second subsection will cover some of 

the important waveform based feature extraction techniques. The final subsection 

will provide summary and critical evaluation of these techniques.  
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Table 3-1 : Summary of Important ECG Based Feature Extraction Technique 

Reference 
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I A 

Biel et al [68] 20 100  C Yes I Multiple days 

Kyoso et al [69] 9 99.6  C Yes I Single day 

Israel et al [70] 29 100  C Yes I Multiple days 

Wubeller et al [79] 74 

99 

 

2.8  

(EER) 

C No 

I 

A 

Multiple days 

Gahi et al [73] 24 100  C Yes I Single day 

Palaniappan et al [75] 10 97.6  W Yes I Single day 

Shen et al [78] 20 100  W Yes I Single day 

Seachea et al [77] 35 100  W Yes I Not mentioned 

Wang et al [102] 13 97.25  W Yes I Single day 

Plataniotis et al [76] 13 99  W No I Single day 

Agrafioti et al [71] 27 100  W No I Single day 

Fang et al [72] 100 99  W No I Single day 

Adrian et al [67] 50 89  W Yes I Three days 

Jianchu et al [74] 20  

12.50 

 (FAR) 

5.11  

(FRR) 

W No A Single day 

C=characteristic based, W= waveform based, I= Identification, A= Authentication 
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3.5.1. Characteristic based feature 

Characteristic features use the visible information of the ECG characteristic for 

example amplitudes, temporal duration, slopes or all ECG points in a single complex 

ECG.  

3.5.1.1. Amplitude, duration and slope 

In 2001, Biel et al [68]  demonstrated the possibility of using ECG to identify 

individuals. By using 12 Lead recordings configuration, ECG measurements are 

carried out on 20 subjects age between 20 to 55 years using SIEMENS Megacart 

equipment. The information from the SIEMENS ECG is then converted into 30 

usable features which are normally used in the clinical analysis. 

A total of 360 features are extracted from all 12 Leads ECG recordings. Their test 

shows that there are only small differences between using limb leads and the chest 

leads. For this reason, Lead I configuration has been chosen for further processing 

due to the simplicity of the electrode attachments. 30 features from Lead I are then 

reduce to 12 by removing features which are relatively high correlated with the 

others. After that, further reduction is done based on tests. 

The summary of features used in [68] are shown in Figure 3-9. In this work, it is 

concluded that only 1 lead is enough to identify a person.  However, a non-automatic 

feature detection in this work required special equipment or physician opinion to 

detect the features. Furthermore, the characteristics chosen were obtained by 

inspecting the correlation matrix. This limits the selection of features to be related 

only to the features available in clinical diagnoses of disease. 
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Figure 3-9 : Feature Vector used by Biel et al [68] for classification 

Soft independent modelling of class analogy (SIMCA) approach is used to classify 

the person.  Using SIMCA, a principle component analysis (PCA) is performed on 

each class in the data set, and a sufficient number of principal components are 

retained to account for most of the variation within each class. Various numbers of 

features have been tested for classification. However, experimental results using 9 

features demonstrate the best classification which indicates 100% correct 

identification rate for a sample of 20 subjects.  

In this work also, the best set of features for their observed high identification rates 

were found experimentally and not proven using a feature selection algorithm 

3.5.1.2. Amplitude and duration 

Kyoso et al [69] proposed an alternative method of ECG for identification by using 

only 4 features based on the duration and intervals of the ECG wave as shown in 

Figure 3-10. The features used in this technique also related only to the features 

available in clinical diagnoses of disease.  

sec 
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Figure 3-10 : Feature Vector used by Kyoso et al [69] for classification 

 

The ECG fiducial points are located using the second order derivative of the original 

wave. Mahalanobis generalized distance is then used to discriminate the features 

based on the smallest distance value. Experimental results on 9 subjects indicate that 

the system may achieve up to 99.6 % correct recognition. Kyoso et al only uses 2 

dimensional discriminant analysis to discriminate the subject. This affects the 

accuracy of the system so for some subjects, the accuracy of certain combinations of 

features is only up to 7.5% 

Gahi et al [73] reported to capture ECG characteristics using a wireless heart monitor 

and initially extract 24 features from it.  Mean and variance calculations are used to 

remove the outliers which are not appropriate for training and classification. To 

select the best features, Information Gain Ratio (IGR) is used to assign score to each 

individual features. Nine final features, as shown in Figure 3-11, are finally accepted 

to have the best set of features. Mahalanobis distance based classifier is used to 

identify the individuals.   
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Figure 3-11 : Feature Vector used by Gahi et al [73] for classification 

The experiment is performed on 16 subjects and manages to get 100% correct 

identification.  The features established in this work are found experimentally using 

IGR.  The disadvantage of using IGR to select features is that it computes a weight 

for a feature without examining other available features [107] .  Adding 2 or more 

random features towards the initial 24 feature will generate different conclusion and 

reduce the performance of the system.   

3.5.1.3. Temporal Duration 

Israel et al [70] reported a more comprehensive study using 15 ECG pulse temporal 

features for human identification as shown in Figure 3-12. The raw ECG data is first 

filtered using a bandpass filter between 2 Hz and 40 Hz to remove the noises. The 

ECG is then broken into single heartbeats and aligned by their R peaks.  The ECG 

fiducial points are then extracted in two steps. First, the peaks position is located by 

finding the local maximum of the P, QRS and T complexes. Then, the base positions 

are estimated through the location of the minimum radius of curvature. The features 

used in their experiment are the temporal distance between the R point and the 

fiducial points. Normalization process by the period of pulse is carried out so that the 

features are invariant to heart rate changes. The original 15 features are then reduced 

sec 
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to 12 features using Wilk’s lambda [108]. Classification based on the majority voting 

is used in this work to assign individuals to the selected classes.  

Israel et al [70] provide 3 main knowledge contributions in ECG biometric 

performance, by conducting tests on 29 subjects. Their first experiment shows that 

their system performance achieves 81% of correct classification with 9% false 

positives. However, by having the same number of heartbeat for all subjects during 

the classification process, the performance increased to 87% correct classification 

with 0% false positives. The research also examined the relationship between 

identification performance and ECG lead placement. 

By observing the ECG data comparing sensor placement between the neck and the 

chest, they concluded that there is a strong similarity between both sets of data and it 

is possible to use the neck ECG data as training and  the chest data for classification 

or vice versa.  The effect of state anxiety towards the performance of ECG 

biometrics was also studied in [70].  

 

 

Figure 3-12 : Feature Vector used by Israel et al [70] for classification 
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Their findings indicate that by normalizing the features extracted from each subject, 

the performance of ECG biometrics is invariant to the individual’s state of anxiety. 

Although, the methodology used in their experiments offers an automatic recognition 

for human identification, the accuracy of the system performance is low due to the 

location of the fiducial points used which are not properly defined or standardized for 

all subjects. 

3.5.1.4. The whole ECG trace 

In 2007, Wubbeler et al [79] performed an experiment on 74 subjects to investigate 

the potential of ECG for person recognition. Two dimensional ECG vectors from 

three Einthoven leads (I, II, III) are used in the experiments by first pre-processing 

them in terms of correcting the baseline noises, and then filtering them with a cut off 

frequency of 75 Hz.  In this work, instead of extracting the features from the ECGs, a 

pattern recognition task was performed by comparing the ECG traces themselves. R 

peaks were determined from the absolute value of the low pass filtered temporal 

derivative of each ECG trace using a threshold procedure. For classification, 2 

disjoint sets were drawn from the test set each containing 74 ECGs representing each 

subject. Standard nearest neighbour and threshold schemes were used to calculate the 

error rates.  

In the verification process, the false match ratio (FMR) was up to 2.5 %, the false 

non match ratio (FNMR) was up to 10 % and there was 2.8% equal error ratio 

(EER).  The identification process manages to identify 99% of the subjects correctly. 

Although high authentication and verification results are obtained in their 

experiment, it is hard to accurately detect the trace boundaries due to the changes of 

the ECG traces. Using the whole ECG traces instead of extracting features is not 

practical for a large enrolment database. 
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3.5.2. Waveform based feature 

Waveform based features are generated from a processed ECG waveform using 

signal processing methods such as correlation coefficient, phase space 

reconstruction, form factor,  auto correlation coefficient, Fourier coefficient, wavelet 

distance and wavelet coefficients. These features are not visibly observed from the 

ECG characteristic and required the processing algorithms to explain the information 

representing the features. 

3.5.2.1. Form Factor 

Palaniappan et al [75], reported a technique to identify individuals using form factor 

on QRS characteristic as shown in Figure 3-13. In their work, QRS is detected using 

Pan and Thomkins method [44]. Multilayer Perceptron-Backpropagation (MLP-BP) 

and Simplified Fuzzy ARTMAP (SFA) have been used for classification. 1000 ECGs 

from 10 subjects had been tested and their classification results give up to 97.6% 

correct classification. In this method, a significant amount of distinctive information 

is excluded by not considering the information of the P wave and the T wave. 

Furthermore, the inter-beat interval (between the offset of  the T wave to the onset of 

the next P wave) is a transition stage that is independent of the electrical timing 

mechanism of the heart [70].  
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Figure 3-13 : QRS characteristic used by Palaniappan et al [75] to generate feature 

vector using form factor 

This interval can be considered as a random signal which does not represent an 

electrical activity of the heart and should not be included as a part of human feature 

vector. 

3.5.2.2. Correlation Coefficient 

In 2002, Shen et al [66] used correlation coefficient of 7 characteristic features from 

the QRS complex to classify 20 individuals for recognition as shown in Figure 3-14. 

A template matching is first used to calculate the correlation coefficient among the 

QRS complexes and a decision based neural network (DBNN) is then used to 

validate the identity of these 20 subjects. Each subject will submit 20 ECG recording 

to build up the training set.  The correlation coefficient threshold is set to 0.85 in this 

work. When the average correlation of the 20 ECG recording per subject is less than 

0.85, it is concluded that there are no matches between the template and the subject. 

If the value is greater than 0.85, DBNN will be carried out to determine the identity 

of the subject. 95% and 80% subject recognition rate were achieved for the template 

matching and DBNN being performed separately, but the performance achieved 

100% when the template matching is done first followed by DBNN as a whole 

system.   
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Figure 3-14 : QRS characteristic used by Shen et al [66] to generate feature vector 

using correlation coefficient 

Although the combination of both modules achieved 100% recognition rates for a 

samples of 20 subjects, using information only related to the QRS complexes 

discards a lot of information from the ECG recordings which may be useful for a 

larger training database.  

 

3.5.2.3. Fourier Coefficient  

Seachia et al [77] proposed a different approached in order to use ECG for 

identification by using a Fourier transformation.  A normalized ECG based on the 

same heart rate is first divided into 3 subsequences which correspond to P, QRS and 

T waves. A Fourier transform is taken on these subsequences which later produced a 

number of Fourier coefficients. Only the significant elements of the Fourier 

coefficient are selected to be classified using neural networks.  Out of 35 subjects 

being tested, 2.85% were not identified correctly.  

3.5.2.4. Combine Waveform and Characteristic features 

In Wang et al [109], the waveform features of the ECG trace is captured using 

Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). 
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These were combined with 21 amplitude and duration features as illustrated in 

Figure 3-15.  ECGPUWAVE is used for detecting peak R of an ECG wave. Then, 

the heartbeats of a single record are all align by the R peak position and truncated by 

a window of 800 samples centered at R. QSPT based and peak points were detected 

in a similar method to that shown in [70] .  In order to select a number of features 

that produced minimum classification error, feature selection method was carried out 

based on Wilke’s lamda in SPSS. The feature vector is compared using the Euclidean 

distance and clustering was performed based on nearest neighbor and nearest centre 

techniques.  

Experiments are performed based on ECG signal of 13 subjects. Using only distance 

features, 74.45% of heartbeat identification is achieved. By adding the amplitude 

features, the heartbeat recognition rate increased to 92.40%. Their comparison result 

using PCA and LDA with K-nearest Neighbours (KNN) classifier managed to 

achieve 95.55% and 93.01% identification respectively. 

This shows that PCA and LDA are good for human identification from ECG. 

However, by combining the classification process using the amplitude and distance 

features with PCA and KNN classifier, the heartbeat recognition accuracy increased 

to 98.90 %. In this work, the problems in determining the accurate boundaries of the 

P wave and T wave are still not resolved. This will affect the biometric performance 

when applied to an ECG with irregularity on the waveform shapes. 
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Figure 3-15 : Characteristic features used by Wang et al [109] without PCA and 

LDA features 

3.5.2.5. Auto Correlation  

In Plataniotis et al [76], the ECG is first filtered to remove noise. Every ECG signal 

must have the same length regardless of the number of ECG complexes contained in 

that length.  Then auto correlation (AC) of the ECG segments is used to capture the 

essential attributes of the waveform. The number of AC lag (window) depends on a 

user selection value. To discriminate effectively ECGs from different subjects, a 

large window length is required. However this will produce high number of features. 

The Discrete Cosine Transform (DCT) is then applied to reduce the dimensionality 

and select only useful characteristic for recognition.  

To evaluate the performance of the proposed method, normalized Euclidean distance 

and normalized Gaussian log likelihood had been used for comparison. The method 

was tested on 14 subjects, the identification performance was 100% for window and 

subject based recognition. Although the classification result is good, the method is 

highly dependable to the effectiveness of the filtering process. Any abnormalities 
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within the ECG length will produce inaccurate AC coefficients within the same 

subjects. The effect of HRV of the same subject also will produced discrepancy to 

the AC values prior to the increased or decreased number of ECG complexes per 

ECG length. In addition to that, even though DCT manages to reduce the 

dimensionality of the features, the number of features that are capable to produce 

good discrimination is still large. This will limit the size of the database for any 

application. 

Agrafioti et al [71, 110] extended the usage of autocorrelation (AC) for feature 

selection.  The windowing process is first adapted to the ECG signal in order to 

segment it into non overlapping windows. Then normalized autocorrelation is 

calculated for every window. Similarly as in the case shown in [76] , the AC process 

generates a large number of features. Template Matching with the correlation 

coefficient is performed on the AC coefficient signal. This process is used to shorten 

the time of the search space by reducing the number of classes so that classification 

is carried out in a smaller group. Two techniques are highlighted in the work in order 

to reduce the dimensionality of the features. They are the Discrete Cosine Transform 

(DCT) and the Linear Discriminant Analysis (LDA).  The similarity measure is 

based on Euclidean distance and nearest neighbour (NN) is used as a classifier.  

Experiments are carried out onto 27 subjects. When AC and DCT methods are used, 

the subject and window recognition rates are 96.3% and 86.3% respectively, while 

when AC and LDA method are used, the subject and window recognition rates 

increased to 100% and 95.8% respectively.  In this work, the accuracy problem in 

calculating AC for the same subject, while the heart rate changes, is still not 

resolved. In this work, inserting additional template matching process compared to 

the work performs in [76] only reduces the classification processing time. The 

number of features used for classification is still large. 

3.5.2.6. Phase Space reconstruction  

Fang et al [72] proposed using the whole ECG signal for recognition. The ECG is 

first filtered using 4th order Butterworth bandpass filter with the pass band from 2 to 
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50Hz to remove the noises. Then peak R is detected and the waveforms of five 

consecutive cardiac cycles were averaged with respect to the R peaks. Three 

dimensional vectors with respect to the average ECG wave are set up using two 

different ways. The first technique is by embedding 2 different time delays to the 

original averaged waveform. The other technique is by using 3 different lead 

configurations denoted as anterior, lateral and posterior leads. The vector is then 

normalized over the entire cardiac cycle. Spatial correlation (SC) and mutual nearest 

point distance (MNPD) are used for similarity and dissimilarity measurement. Out of 

100 subjects being tested in their experiment, the proposed method manages to 

achieve 99% sensitivity with 99% accuracy using MNPD and 98% sensitivity with 

91% accuracy using SC.  In order to get a good classification result, the method 

needs to evaluate a large number of points or features. The storage of the whole ECG 

waveform also will create a privacy problem as a lot of personal information can be 

extracted from the ECG wave. 

3.5.2.7. Wavelet Coefficient  

Adrian et al [67] uses a wavelet distance measure to identify 50 subjects. The ECG 

data is collected using two Ag-AgCL button electrodes that are held between the 

thumb and index finger of the user. A 90 seconds ECG data sequence was recorded 

from each subject for three different sessions. For each data, PQRST complexes were 

automatically detected using the multiplication of backward difference algorithm 

[111]. Correlation coefficients were computed between the PQRST complexes.  Any 

PQRST complex with a correlation coefficient below the standard deviation of the 

mean correlation coefficient will be discarded. The remaining PQRST complexes 

were then averaged. Discrete wavelet transform coefficients are computed for each 

average signal using Daubechies scalar wavelet (Db3) with a five level 

decomposition. The accuracy of this technique is 89%. 

In the work of Jiancu et al [74], raw ECG signals were decomposed into a structure 

of coefficients using ‘bior1.1’ wavelet algorithm at scale 6. This coefficient structure 

was further extended to a coefficient matrix which principle components were used 

to discriminate between individuals. This work is performed on 20 different 
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individuals with 91 % correct classification.   In this work, the capability of the 

technique is reduced by the principle component method since only 40% of ECG 

information is used. 

 

3.5.3. Summary and critical evaluation 

Table 3-1 summarized the important previous work of the characteristic and 

waveform based feature extracting technique for ECG biometric as described in the 

previous subsections. As indicated in Table 3-1, most of the methods which manage 

to achieve 100% correct classification use less than 50 subjects. It is suggested in this 

thesis that the number of subjects for recognition should be increased to greater than 

100.  In sections 3.5.1 and 3.5.2, it is shown that most of the works tabulated in 

Table 3-1 investigate the performance of their feature extraction methods in term of 

identification modes which require the use of good classifiers. In this study, we focus 

on investigating the performance of new feature extraction methods for 

authentication purposes without combining any sophisticated classifier to improve 

the performance of the biometric system. Comparisons between two ECG recordings 

of a subject are done based on template matching using simple distance based 

similarity measures described in section 2.6.1.  

In Table 3-1, the characteristic and waveform based feature extraction techniques 

described in [68-70, 73, 75, 78, 109] use parametric features and require the 

detection of the 9 fiducial points of the normal ECG signal. Such parametric features 

associated with the attributes of the ECG may include basic geometric parameters 

such as length, width, amplitude and/or slope of each wave in an ECG complex. In 

[68-70, 73, 75, 78, 109], some of the works use these parametric features directly as 

feature vectors while some require further processing to generate more 

discriminative features. In section 3.2.2, it has been described that the ECG traces are 

specifically related to the activity of the ion moving in and out of the cell. For ECG 

to be used as biometric, it is believed that extracting features based only parametric 

features discards a lot of information with respect to the ions activities. 
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The work described in [71, 72, 74, 76, 112] tends to use non parametric features by 

requiring no ECG fiducial points. As a result, the non parametric features extracted 

from the ECG signals generate a high number of features thus limiting the storage 

capacity of the security system. For this reason, these techniques require feature 

selection or reduction approaches to reduce the dimension of the extracted features. 

Naturally, additional steps will increase the processing time for the whole system for 

a large number of subjects.  The proposed work which has been carried out in this 

thesis uses a hybrid concept of parametric and non parametric features. For the 

proposed technique, more characteristic features are extracted from the ECG signals 

whereas previous methods have been limited to the use of fiducial locations. 

However, no data reduction technique is required to reduce the size of the extracted 

features as it is not that large. 

It is also observed that the approaches shown in [71, 72, 74, 76, 112]  use feature 

extraction methods that need to consider more than 1 continuous ECG complex for 

extraction. Based on section 3.2.2, it has been described that inter beat location 

between two contiguous ECG complexes is free from the electrical timing 

mechanism of the heart. It is suggested that the non electric active ECG portion 

should be excluded for human identification as this region does not reflect the 

electrical activity of the heart.  

As described in section 3.2.3, fiducial locations are related to the heart rate of a 

person. Not considering these locations as part of the extracted features neglects the 

issue of HRV. Results presented by [71, 72, 74, 76, 112] do not consider this 

situation thus raising doubts if these methods can be practically applied when the 

HRV changes rapidly in general authentication applications.  

Evaluating the methods presented in sections 3.5.1, 3.5.2 and Table 3-1, it is 

observed that the ECG database used only consider ECGs from a healthy subject 

with a healthy ECG trace. For ECG to be used as biometric in a general population, 

unhealthy (or arrhythmia) ECG traces need to be consider. By evaluating the 

arrhythmia ECG trace the biometric performance will be reduce. For practical 
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implementation, this type of ECG need to be investigates in order to give a 

concussive overview of the feature extraction performance.  

Finally, the methods reviewed on using ECG as a biometric only represents a single 

level of security. This means that, if the ECG of a user is compromised, the ECG 

cannot be used any further for biometric authentication.  This unacceptable situation 

will be addressed in the work presented in Chapter 6. 

 

3.6. CONCLUSION 

 

This chapter investigated the concept of using the ECG as a biometric. An overview 

of electrocardiogram, advantages and challenges of ECGs as biometrics, ECG 

database and finally ECG based feature extraction techniques are described in this 

chapter.  To implement ECG as a biometric, the effects due to HRV, AMV, and the 

issues due to the security of the user health information need to be minimized. The 

next chapter introduces a new feature extraction technique known as Pulse Active 

technology. This technique has the capability to minimize the effects of HRV, AMV 

and also secure the health information of the user. The capability of the new feature 

extraction technique will be investigated by performing authentication mode 

biometrics.  
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CHAPTER 4.  

 

PULSE ACTIVE (PA) FEATURE EXTRACTION 

TECHNIQUE FOR ECG BIOMETRIC AUTHENTICATION 

 

4.1. INTRODUCTION 

 

In chapter 3 it was highlighted that in order to practically use ECG as a biometric, the 

effects of HRV and AMV need to be minimized. Furthermore, it was indicated that 

the techniques to extract ECG features for biometric purposes must not allow 

reconstruction of the original ECG signal based from the information stored in the 

security system. This chapter introduces a new feature extraction technique named 

Pulse Active which is capable of minimizing the effect of HRV and AMV. This new 

technique is also capable of preventing the reconstruction of original ECG signal 

from the features and algorithms stored in the system thus making it ethically 

acceptable. 

This chapter starts with the definition of Pulse Domain concept. This is followed by 

the description of a new Pulse Active feature extraction technique. This chapter then 

discusses various factors on implementing PA for ECG based biometric application. 

Finally, the performance of the new feature extraction technique will be evaluated for 

biometric authentication. 
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4.2. PULSE DOMAIN PHILOSOPHY 

 

The general concept of Pulse Domain is defined with a statement indicating that the 

relationship between two locations on any given signal can be presented by a simpler 

signal derived from a simple mathematical function known as a pulse. When multiple 

pairs of locations on the given signal are taken into consideration, a series of non 

periodic pulse waveform is generated. There are various available methods which are 

capable of generating pulse waveforms. The most well known are for example the 

Pulse Width Modulation (PWM), Delta Modulation (DM), Delta-Sigma Modulation 

(DSM), Pulse Code Modulation (PCM), Pulse Density Modulation (PDM), Space 

Vector Modulation (SVM)  and Sliding Mode Control (SMC). 

The work on Pulse Domain concept in this thesis concentrates mainly on 

investigating ways of generating a unique pulse waveform in order to represent the 

original signals. In this thesis, two new methodologies are presented to generate a 

unique pulse waveform for signal representation named Pulse Active (PA) and 

Adaptive Pulse Active (APA). This chapter will discussed the PA techniques while 

the next chapter discussed the APA 

 

4.3. FUNDAMENTAL OF PULSE ACTIVE (PA) 

 

‘Pulse Active’ refers to a method of transforming a signal into pulse domain based 

on the concept of Pulse Width Modulation (PWM) technique. PWM has been 

successfully implemented in many fields such as communication, electronic control, 

power electronic control and measurement circuits. In this thesis, PWM is modified 
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to be used as a new feature extraction technique to be used for a novel pattern 

recognition method. 

 

4.3.1. Pulse Active Topology 

The topology structure of the Pulse Active (PA) technique is illustrated in Figure 4-1. 

The operation of the PA technique, as shown in Figure 4-1, is based on amplitude 

comparison between the investigated signals (in this thesis an ECG signal) with a 

triangular wave. When the amplitude of the investigated signal is the same as the 

amplitude of the triangular wave, the output pulse will start to rise or fall based on 

certain rules which will be explored further in section 4.4. These transition states of 

the output pulse are used in the feature extraction process from the investigated 

signals. 

 

Figure 4-1: Topological Structure of Pulse Active Technique  

 

4.3.2. Pulse Width Modulation 

Conventionally, PWM is a process of generating a series of output pulses when an 

investigated signal is modulated by a modulating signal. Generally, the amplitudes of 

the investigated signal are represented by variable widths of the output pulse. 

Figure 4-2 shows a simple method to generate the PWM output pulses. In this 

example, a sinusoidal wave is chosen to be the investigated signal while a triangular 

wave is assigned as the modulating signal. Based on the PWM technique, when the 
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amplitude of the modulating signal is less than the investigated signal, the PWM is in 

the high state. Otherwise, it is in the lower state 

 

Figure 4-2: Simple Example of PWM Generation 

 

4.4. FEATURE EXTRACTION 

 

The PA technique requires at least two fiducial points to start and end the process. 

Based from literature discussed in section 3.5, there are 4 common locations to 

extract ECG features for biometric authentication. However, no matter which 

location is chosen to start and end the extraction process, the derivation of the 

generalized PA location will be the same. Further explanation on selection of these 

locations will be provided in section 4.5. For the purpose of derivation, the peak 

locations of P and T waves will be defined as the respective starting and ending 

points of the PA process. 

Consider a segmentation of an ECG signal, ( )ECGy t  for the duration of 
ECG

T   from 

the peak of P to the peak of T with peak-to-peak amplitude of 
ECG

A  as shown in 

Figure 4-3.  
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Figure 4-3: Waveform generation of Pulse Active technique 

The ECG signal is offset so that its minimum value is equal to zero. The maximum 

amplitude of ( )ECGy t  is
ECGA . Consider now a periodic triangular waveform ( )triy t  

of period 
tri

T  with maximum amplitude
tri

A , where
tri ECG

T T< . The latter waveform is 

superimposed on ( )ECGy t  as illustrated in Figure 4-3. A modulation factor 
fm  is 

introduced and defined as:  

ECG
f

tri

T
m

T
=  

(4-1) 

sec 
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where 
tri

T  is selected such that 
fm  is an integer. In Figure 4-3, 5fm = . The other 

parameter which also relates ( )ECGy t  to ( )triy t  is the modulation index 
i

m   which is 

defined as:  

tri
i

ECG

A
m

A
=  

(4-2) 

It is important to note that 
fm  represents the number of periodic triangular waves 

for ( )triy t . As mentioned in the previous chapter, ECG complexes are time varying 

from one another. This means that it is impossible for two ECG complexes to be 

exactly the same even though they may come from the same user. Two major 

contributors to the time varying phenomenon are the HRV and AMV. For example 

when the heart rate increases the P and T waves of the ECG signals tend to move 

towards the R making the 
ECG

T  duration of the ECG signal shorter. By adjusting the 

value of 
f

m , using (4-1), the period of the triangular wave 
tri

T  also reduces (to 

compensate for the reduction of 
ECG

T ). Similarly, in cases of AMV, the amplitude of 

each point in an ECG complex is slightly lower or higher compared to the next ECG 

complex for similar locations. The rate of variations for these amplitudes is 

proportional to the values of
ECG

A . Since the generation of ( )triy t  is related to the 

value of
ECG

A , adjusting the value of 
i

m  in (4-2), compensates for the reduction of 

ECG
A  by ensuring that the amplitude of the triangular period, 

tri
A also reduces. 

In Figure 4-3, each period of the periodic triangular waveform, ( )triy t  intersects the 

underlying ECG signal ( )ECGy t  to generate the output pulses ( )o t . The max and min 

of each pulse is maxO  and minO  respectively.  To ensure intersections occur between 

( )ECGy t  and ( )triy t  within each period, 
i

m  should be selected greater than 1 or 

tri ECG
A A> . There are two rules to generate these output pulses. The simplest way is 

by using the Above Maximum Area (AMA) rule, and the other way is by using the 

First Rise Last Fall (FRLF) rule. These are now described.  
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4.4.1. Above Maximum Area (AMA) 

The Above Maximum Area (AMA) rule is taken from the concept of the PWM 

whereby the output pulses ( )o t are formed based on amplitude comparison and can 

be obtained as follows: 

( )
( ) ( )

( ) ( )
max

min

ECG tri

ECG tri

O y t y t
o t

O y t y t

≤
= 

>
 

(4-3) 

 for 0...
ECG

t T= , where [ ]max min,O O  are user specified values. 

Using this rule, the transition state vector 
trans

T  is defined as the intersection points 

where the output pulses change from maxO  to minO  or vice versa and can be 

represented as: 

1 2 3 2, , , ,
fm

t t t t =  …transT  (4-4) 

for 1,2,3...
f

m m= .The odd intersection points  refer to the locations where ( )triy t  

becomes greater or equal than ( )ECGy t  while the even intersection points are the 

location when ( )ECGy t  becomes greater than ( )triy t . 

As an example Figure 4-4, illustrates the PA output pulse generated from an ECG 

complex of a subject for 
f

m  setting equal to 6. As can be seen from Figure 4-4, 

6
f

m =  generates 6 output pulses in ( )o t .  
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Figure 4-4: Pulse Active output generation using AMA without error 

 

Figure 4-5: Pulse Active output generation using AMA with error 
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The same ECG complex used in Figure 4-4 is then re-processed using the PA 

technique with a 
f

m  setting equal to 2. This process is shown in Figure 4-5. From 

Figure 4-5, it is observed that when 
f

m  is set to 2 for this ECG complex, the number 

of output pulses generated is equal to 3.  

To use PA for ECG biometrics the number of pulses produced represents the dimension 

of the feature vector extracted. As indicated from the previous two examples the AMA 

approach does not guarantee a fixed feature vector dimension (number of pulses) for a 

given ECG complex.  Thus AMA based PA using a pulse by pulse comparison cannot 

be readily used for ECG biometric with application to authentication. For a pulse by 

pulse comparison, the use of First Rise Last Fall (FRLF) rule for PA techniques is 

investigated next. 

 

4.4.2. First Rise Last Fall (FRLF)  

Based on the First Rise Last Fall (FRLF) rule and with reference to Figure 4-3, for 

each triangular wave period the location of the first intersection from the rising edge 

ve
t+  and the location of the last intersection from the falling edge  

ve
t−  are selected as 

the intersection points for that period. This is defined as the First Rise Last Fall 

(FRLF) rule.  Mathematically, this is described as follows: 

( ) ( ) ( )

( )
2 1 2 1

2 1
for 1

2
ve tri trim m

m
t t m T t T+− −

−
= − ≤ ≤  

(4-5) 

( )
2 2

2 1
    for

2
m ve tri m tri

m
t t T t mT−

−
= ≤ ≤  

(4-6) 

( ) 22 1 mm
t t

−
 =  transT  for 1,2,3.... fm m=  (4-7) 
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FRLF rules ensure that the total number of output pulses equal the number of the 
f

m  

setting. Figure 4-6 illustrates the output pulse generation of the same ECG signal 

used in Figure 4-4 and Figure 4-5 using 
f

m  equal to 2. As can be seen from 

Figure 4-6, 
f

m  set to 2 generates two output pulses which are used in a pulse by 

pulse comparison. Thus, FRLF will be used to generate 
trans

T  in all PA algorithm 

 

Figure 4-6: Pulse Active output generation using FRLF 

 

4.5. FEATURE LOCATION 

 

Every part within an ECG complex represents different characteristics of the ECG 

features. This section will describe various locations within ECG traces to be used 

for feature extraction. 

( )ECG
y t

( )o t

( )tri
y t

Time [sec] 
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4.5.1. Single complex 

As illustrated in Figure 3-2, a complete ECG complex is defined from Ps to Te 

(PsTe). To ensure that all ECG characteristics are taken into account, the first 

location of 
ECG

T  may be evaluated from these two points as shown in Figure 4-7.   

( )ECGy t

( )triy t
ECGA

2
tri

A

ECGT

tri
T

tri
T

tri
T

tri
T

tri
T

 

Figure 4-7: ECG extracted from Ps to Te 

An accurate detection on the fiducial points is very crucial when using this location. 

Using the 
ECG

T  location described in Figure 4-7, the theoretical authentication 

performance should be better since more ECG characteristics are taken into account. 

However, a reduction in performance is expected based on using this location due to 

the uncertainties in ECG boundary extraction (i.e. where the 3 major waves within 

the ECG complex should start and end).   

.  

 

 

sec 
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4.5.2. Peak R to the next Peak of R 

In some cases, for example where ECG waves exist without P or T waves or where 

the fiducial detection algorithm fails to detect the fiducial points as described in 

Figure 3-2 , a peak R to the next peak R ( RR′ ) interval can be used to start and end 

the PA process as shown in Figure 4-8.  

( )ECGy t

( )triy t

ECGA

2 triA

ECGT

tri
T

tri
T

tri
T

tri
T

tri
T

 

Figure 4-8: ECG extracted from R to the next R 

Only 1 fiducial point in each complex, the peak of R, needs to be detected. However, 

the inter-beat interval (between Te and the next Ps) might reduce the biometric 

performance since this location is a transition stage that is independent of the 

electrical timing mechanism of the heart and can be considered as a random signal 

[70].   

 

 

 

sec 
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4.5.3. QRS complex 

An alternative location to extracting ECG features examined in this section is by 

taking account of the ECGT  region within the QRS complex as shown in Figure 4-9. 

 

( )ECGy t
ECGA

2
tri

A

tri
T

tri
T

( )triy t

ECG
T

 

Figure 4-9: ECG extracted within QRS complex 

This region is not affected by the HRV [66]. However, not using precise definitions 

for the QRS boundaries to start and end the PA process can be a problem. The Q and 

S locations are between the transition of the P wave to the peak R and peak R to T 

wave respectively. In an ideal ECG signal, the Q and S location can be respectively 

determined by the locations where the ECG signals start to decreased from a linear 

zero line to the minimum of the peak P to R waves and the end location at a linear 

zero line from an increment of the minimum peak R to T waves . However, in actual 

ECG signals, this linear zero line is not visible making it hard to detect. Furthermore, 

leaving certain parts of an ECG may leave discriminative features in the P and T 

wave 

sec 
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4.5.4. Peak P to Peak T 

Figure 4-3 shows an ECG extraction location 
ECG

T  between the peaks of P and T 

(PT).  This location has the advantage of avoiding the unclear definition of the exact 

ECG locations where the 3 major waves should start and end (the boundaries 

locations). The drawback is that when omitting certain parts of an ECG, during a 

feature extraction process, it may reduce the ability of the biometric to differentiate 

between individuals. The starting point of P wave to the peak of P and the peak of T 

to the end of T wave may have embedded some discriminative features which may 

be useful to discriminate individual. 

 

4.6. FEATURE SELECTION 

 

The foundation of PA relies on the concept that two different ECG complexes with 

similar morphological shapes would intersect in similar locations generating similar 

values of (4-7). These similar intersection locations for different heart rates are 

guaranteed by the changes of the triangular period with a fixed setting of
f

m . 

However, variations in (4-7) between two different ECG complexes from the same 

subject still occur because these different ECGs consist of signals with different 

sampling points (for example, the number of sampling points from peak P to peak T) 

due to the HRV. Two procedures can be used to generate feature vector which may 

minimize the effect of HRV and at the same time avoid the dependency of  
trans

T  on 

the number of sampling points. The first procedure is based on the concept of 

normalization while the second is based on the concept of ratio. Using the concept of 

normalization the duration of ECG complexes within 
ECG

T  is normalized to 1 before 

the ECG features are extracted. Using this approach, 
trans

T  in (4-7) is no longer a 
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function of the ECG sampling points. In this thesis, 6 types of PA algorithm are 

derived and selected depend on the characteristic types of the output pulses in the 

following subsection. 

The final feature vector X  for all PA algorithms is written in the similar form. 

Unless otherwise stated, the PA final feature vector is given in the following form: 

( ) ( ) ( ) ( )1 2
f

x x x m x m =  … …X  (4-8) 

where ( )x m  is the individual PA algorithms calculated for 1,2, fm m= … . 

 

4.6.1. Pulse Active Bit (PAB) 

The simplest pulse active feature can be obtained by taken the intersection point of 

trans
T  in (4-7) as a feature vector. The term ‘Bit’ in the PAB refers to the bit location 

where the pulses changes from maxO  to minO  or minO  to maxO [113]. The PAB feature 

vector X is given as: 

1 2 3 2 fm
t t t t =  …X  (4-9) 

 

4.6.2. Pulse Active Width (PAW) 

The width between two contiguous points of 
trans

T  also can be used as feature 

vector[114] . Thus, the PAW algorithm ( )x m  is given as: 

( ) 2 2 1m m
x m t t −= −  

 

(4-10) 
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4.6.3. Pulse Active Area (PAA) 

Pulse active area (PAA) uses the width of each pulse as the features. With reference 

to Figure 4-3, the PAA mathematical expression ( )x m  can be defined as  

( ) ( )
( )1

tri

tri

mT

m T

x m o t dt
−

= ∫  
 

(4-11) 

 

Expending (4-11) yields 

( )

( ) ( )

( )( )

2 1 2

2 1 2

min max min

( 1)

min 2 1 2 max 2 2 1

2 2 1 max min min

         = 

        

m m tri

tri m m

t t mT

m T t t

m m tri m m

m m tri

x m O dt O dt O dt

O t t T O t t

t t O O O T

−

−−

− −

−

= + +

− + + −

= − − +

∫ ∫ ∫

 

 

 

 

 

(4-12) 

 

Substituting (4-1) to (4-12) yields the final PAA algorithm ( )x m  as  

( ) ( )( ) min
2 2 1 max min

ECG
m m

f

O T
x m t t O O

m
−= − − +  

 

(4-13) 

 

It is important to note that the feature vector evaluation using (4-13) involves the 

transition state vector of (4-7). To ensure the characteristics of the ECG embedded 

within (4-7) always taken into consideration, maxO  should not be set equal to minO . 
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4.6.4. Pulse Active Mean (PAM) 

The term ‘Mean’ in PAM refers to an averaging process of the output pulses in each 

period and can be selected as a feature vector[115]. Mathematically, PAM algorithm 

( )x m  can be represented as: 

( ) ( )
( )1

1 tri

tri

mT

tri m T

x m o t dt
T

−

= ∫  
(4-14) 

 

Following to a similar derivation to PAA, the final PAM algorithm ( )x m  can be 

written as: 

( ) ( )( )2 2 1 m ax m in m in

f

m m

E C G

m
x m t t O O O

T
−= − − +  

(4-15) 

 

Similarly to (4-13) in order to ensure that the ECG characteristics embedded within 

(4-7) are always taken in to consideration when generating the feature vectors, maxO  

should not be set equal to minO . 

 

4.6.5. Pulse Active Harmonic (PAH) 

Pulse Active Harmonic (PAH) makes use of the harmonic coefficient of the output 

pulses as features. The transition state vector as in (4-7) is then transformed to 

radians as follows: 
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( )
( ) ( )2 1

2 1

1
2

TRIm

m

TRI

t m T

T
ω π

−

−

− −
= ×  

 

(4-16) 

( )2

2

1
2

m TRI

m

TRI

t m T

T
ω π

− −
= ×  

 

(4-17) 

( ) 22 1 mm
ω ω

−
 =
 

W   

(4-18) 

for 1,2,3...
f

m m= . 

This forms the output pulse waveform ( )o ω  as illustrated in Figure 4-10. Equations 

(4-16) and (4-17) are used to ensure that each angle within W , in (4-18) is in the 

range of 0 to 2π . 

The pulse active harmonic (PAH) features are defined as the total harmonic 

coefficients of the individual pulses in ( )o ω . For each output pulse waveform ( )o ω  

from 0 to 2π , as shown in Figure 4-10, the Fourier coefficients are given as: 

( ) ( )
2

0

1
cos

n
a o n d

π

ω ω ω
π

= ∫  
 

(4-19) 

( ) ( )
2

0

1
sinnb o n d

π

ω ω ω
π

= ∫  
 

(4-20) 

where n  is the order of the harmonic. 
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Figure 4-10: Waveform generation of Pulse Active Harmonic 

Looking at ( )o ω  in Figure 4-10, (4-19) and (4-20)  can be written as: 

( )
( )

2

2 1

1
cos

m

m

na n d

ω

ω

ω ω
π

−

= ∫  
 

(4-21) 

( )
( )

2

2 1

1
sin

m

m

nb n d

ω

ω

ω ω
π

−

= ∫  
 

(4-22) 

Evaluating (4-21) and (4-22) yields: 
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( )( )2 2 1

1
sin( ) sinn m m

a n n
n

ω ω
π −
 = ⋅ − ⋅
 

 
 

(4-23) 

( )( ) 22 1

1
cos cos( )n mm

b n n
n

ω ω
π −
 = ⋅ − ⋅
 

 
 

(4-24) 

Based on the PAH definition above, (4-23) and (4-24) are used to generate the PAH 

feature vector X , as follows: 

( ) ( )( )2 2 1
1

1
sin( ) sin

fm

m m

m

A n n n
n

ω ω
π −

=

 
 = ⋅ − ⋅   

 
∑  

 

(4-25) 

( ) ( )( ) 22 1
1

1
cos cos( )

fm

mm

m

B n n n
n

ω ω
π −

=

 
 = ⋅ − ⋅   

 
∑  

 

(4-26) 

( ) ( )A n B n =  X   

(4-27) 

for 1 2n N= , , ..... . 

N is the total number of harmonics defined by the user which determines the 

dimension of the PAH feature vector. 

 

4.6.6. Pulse Active Ratio (PAR) 

Subsection 4.6.1 to 4.6.5 normalized ECG complexes first before their features are 

extracted using the respective equations. PAR does not require the normalization 

process before the feature extraction process is implemented. PAR feature vector 

represents the ratio between the area of the output pulse and the area of the triangular 

wave in each period as illustrated in Figure 4-3 [116, 117]. Mathematically, PAR 

algorithm ( )x m  can be presented as: 
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( )

( )
( )1

1 2
2

tri

tri

mT

m T

tri tri

o t dt

x m
T A

−
=

× ×

∫
 (4-28) 

 

Expanding (4-28) yields: 

( )

( )( ) ( )( )

2 1 2

2 1 2

min max min

( 1)

min 2 max 22 1 2 1

1 2
2

      
1 2

2

m m tri

tri m m

t t mT

m T t t

tri tri

m tri mm m

tri tri

O dt O dt O dt

x m
T A

O t t T O t t

T A

−

−−

− −

+ +

=
× ×

− + + −
=

× ×

∫ ∫ ∫

 

      
( )( ) ( )( )min 2 max 2 min2 1 2 1

1 1
m mm m

tri tri

O t t O t t O
A T

− −

  = − + − +   
 

        
( )( )( )2 max min min2 1

1 1
m m

tri tri

t t O O O
A T

−

  = − − +   
 

 
 

 

 

 

 

 

 

(4-29) 

 

Substituting (4-1) and (4-2) into (4-29) produces: 

( ) ( )( )max min 2 2 1 min

1
 

f

m m

i ECG ECG

m
x m O O t t O

m A T
−

 
= − − +   

 
 

(4-30) 

 

In (4-30), it is important not to set maxO  equal to minO , to ensure that the ECG 

characteristic as embedded within (4-7) are always taken into consideration. 

The summary all PA algorithms described in section 4.6.1 to 4.6.6 is given in 

Table 4-1.  
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Table 4-1 : Summary of 6 Pulse Active Feature Selection Techniques 

Name Criteria Equation 

Pulse 

Active 

Bit 

(PAB) 

Intersection 

locations 

between 

triangular 

wave and 

ECG 

signals 

1 2 3 2 fm
t t t t =  …X  

Pulse 

Active 

Width 

(PAW) 

Difference 

between 

two 

contiguous 

points of 

the 

intersection 

locations  

( ) ( ) ( ) ( )1 2
f

x x x m x m =  … …X   

where ( ) [ ]2 2 1m m
x m t t −= −  

Pulse 

Active 

Area 

(PAA) 

The output 

area of each 

pulse 

( ) ( ) ( ) ( )1 2
f

x x x m x m =  … …X   

where ( ) ( )( ) min
2 2 1 max min

ECG
m m

f

O T
x m t t O O

m
−= − − +  

Pulse 

Active 

Mean 

(PAM) 

The average 

value of 

each pulse 

( ) ( ) ( ) ( )1 2
f

x x x m x m =  … …X   

where ( ) ( )( )2 2 1 max min min

f

m m

ECG

m
x m t t O O O

T
−= − − +  

Pulse 

Active 

Harmonic 

(PAH) 

The total 

harmonic 

components 

of each 

pulse 

( ) ( )( )2 2 1
1

1
sin( ) sin

fm

m m
m

A n n n
n

ω ω
π −

=

 
 = ⋅ − ⋅   

 
∑  

( ) ( )( ) 22 1
1

1
cos cos( )

fm

mm
m

B n n n
n

ω ω
π −

=

 
 = ⋅ − ⋅   

 
∑  

( ) ( )A n B n =  X  

Pulse 

Active 

Ratio 

(PAR) 

The ratio 

between the 

area of the 

triangular 

waves and 

the area of 

the output 

pulse 

( ) ( ) ( ) ( )1 2
f

x x x m x m =  … …X  

where ( ) ( )( )max min 2 2 1 min

1
 

f

m m

i ECG ECG

m
x m O O t t O

m A T
−

 
=  − −  +  

 
 

for 1,2, fm m= …  and 1 2n N= , , .....  
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4.7. EXPERIMENTAL SETUP 

This section described the simulation setup that will be used in this thesis. The same 

setup will be repeatedly used in chapter 5 and 6. It involves the process of generating 

the experimental database and matching scores [116]. The procedures on running the 

experiment will also be covered in this section. 

 

4.7.1. Setting up the training and test databases 

As mentioned in section 3.4, the performance of the PA is investigated using a Lead I 

database of 112 subjects (healthy and arrhythmia) each with at least 2 different 

recordings from the PTB ECG database which is taken days, months or years apart as 

described in section 3.4.2. The summary process of setting up the simulation 

database is given in Figure 4-11. As can be seen from Figure 4-11, there are four 

major steps to generate databases involving ECG collections, pre-processing, feature 

extraction and assigning extracted features to the training or test databases. 

From Figure 4-11, 2 different ECG recordings are used from 14 healthy and 98 

arrhythmia subjects - one recording for the training and one for the test databases. 

The requirement that need to be fulfilled for ECG sources to be used in biometric 

applications as described in Section 3.4.1 limit the available ECG signals from the 

PTB database to 14 healthy subjects. Due to the small sample size, results obtained 

from ECGs of healthy subjects will only be indicative, and a future simulation set of 

tests will be required to ascertain statistically significant results. In contrast the 

sample size of measurements available for arrhythmia subjects can be considered 

sufficiently large to guarantee statistically significant outcomes.  

This procedure generates a total of 224 ECG signals from both databases. The 

databases are made up by extracting the first 30 seconds of each recording for each 

subject. Before we can use these 30-second recordings, some pre-processing is 

needed. This involves filtering all ECG recordings  so that only ECG components 
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within 2 to 40 Hz are allowed [70]. An FIR filter is used to filter the ECGs. 

ECGPUWAVE [118]  is then used to approximate the onset and offset of the P, 

QRS, and T waves.  

 

Figure 4-11: Summary of setting up simulation databases 

A quality check is performed for each 30-second recording to ensure acceptable 

quality ECG complexes. A high quality ECG complex in this experiment refers to an 

ECG morphology, which has visibly clear and apparent P, QRS, and T waves. There 

are 4 different locations to extract ECG features which will be investigated in this 

thesis. These are discussed in section 4.5. As for that the quality check process when 

investigated these locations are done differently. If the extracted locations from the 

whole ECG complex as described in section 4.5.1 is consider, the quality check is 

performed by calculating the average distance between the peak of R to the starting 

and ending point of P and T waves respectively.  The first two contiguous ECG 

complexes of the ECG recording between peaks of R are directly used for extraction 

if the extracted location is as described in section 4.5.2. For this location, the quality 
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check and averaging are excluded. This is because of the difficulty of averaging 

these locations as the inter beat durations between these varies and is independent of 

electrical heart mechanism activity as explained in section 4.5.2. If the extract 

locations are within the QRS wave of the ECG complex as described in section 4.5.3  

is considered,  the quality check is performed by calculating the average distance 

between the peak of R to the starting and ending point of QRS complex. For 

extracting ECG locations between the peaks of P and T, the quality check is 

performed by calculating the average distance between the peak of R to the peaks of 

P and T waves respectively. 

For all averaging process, a tolerance of 50 sampling points is introduced into each 

average distance values so that the acceptable limits of the peaks and boundaries of 

the P, QRS and T waves are defined. The first 10 seconds of the 30-second recording 

is then considered for further processing. All ECG complexes within the 10 seconds 

recording with a period within the respective acceptable limit are then used for 

averaging. If there are no good quality ECG complexes within the selected 10-second 

recording, a new 10-second recording is used. This is made up from the last 9 

seconds of the previous 10-second recording plus the recording of the following 

second. This process continues until good quality ECGs are obtained. Five good 

quality ECGs in a 10-second period is used in all experiments. These ECGs are 

averaged to produce smooth ECG signals which magnify the common attributes 

between complexes and minimize the ripples of the ECGs. The minimum values of 

the average ECGs are detected and used to change their DC offset to zero. A peak 

detection algorithm [119] is then used to detect the local maxima of these waves. All 

averaged ECGs then undergo the feature extraction process. Finally, these feature 

vectors are assigned to the training and test database respectively. A detail 

explanation and examples for this process is described in Appendix B. 

This process generates 98 feature vectors for each of the arrhythmia training and test 

databases.  For the healthy population, 14 feature vectors are assigned in each of 

their training and test databases using the same method. Databases for arrhythmia 

and healthy populations are kept and compared separately. For comparison purposes, 

the Biel et al [68] and Israel et al [70] feature extraction techniques as described in 
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section 3.5.1.1 and 3.5.1.3 respectively are used. The generation of their respective 

databases follows the procedure as illustrates in Figure 4-11.   

 

4.7.2. Generating matching scores 

Using the databases generated as in Figure 4-11, the next process is to generate the 

genuine and imposter matching scores as illustrated in Figure 4-12. As illustrated in 

Figure 4-12, for different populations, each feature vector from the test database is 

compared to all feature vectors in the training database, using similarity 

measurement as described in subsection 2.6.1 to generate matching scores. If the 

feature vectors from the test database and training database are from the same 

subject, the matching score is labeled as the genuine score. Otherwise, the matching 

score is labeled as an imposter score. 

 

Figure 4-12: Matching Score Process 
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This process generates 98 values of genuine scores and 9506 values of imposter 

scores for the arrhythmia population. For the healthy population, the above process 

generates 14 values of genuine score and 182 values of imposter scores. The score 

vectors are input to the Receiver Operating Characteristic (ROC) curve processing 

block. 

 

4.7.3. Simulation Procedure 

Based from the description given in section 4.6 there are 6 different PA algorithms 

namely PAB, PAW, PAA, PAM, PAR and PAH which can be used for feature 

extraction. It is also can be seen in that section that the feature vector values 

generated for each algorithms depends on the PA parameters namely modulation 

index 
i

m , modulation factor 
f

m , maximum value of output pulse 
max

O , minimum 

value of output pulse 
min

O  and total number of harmonic N .  

Unfortunately there are two other factors which need to be considered to obtain these 

results which are the 
ECG

T  location described in section 4.5 and the best similarity 

measures described in section 2.6.1.   

Figure 4-13 illustrates the simulation procedure which will be used in this chapter. 

As can be seen from Figure 4-13, to evaluate the performance of the proposed 

method, there are various unknown variables that need to be investigated which 

includes 4 locations to extract the features, 6 different PA algorithms,9 types of 

similarity measures and 5 different PA parameters. The objective of running 

experiments in this chapter is to compare the performance of all PA algorithms using 

the optimum settings. 
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Figure 4-13 : Simulation Procedure 

 

As can be seen from Figure 4-13, the first experiment conducted is to identify the 

best location of 
ECG

T  to be used with PA algorithms as described in section 4.5. 

Since this would be the first investigation in this chapter, the PA algorithms and 

similarity measures need to be used with PA algorithms are still unknown. PAR will 

be initially used as the feature extraction algorithm and the most  widely used 

distance measure namely the Euclidean distance [30] will be used as similarity 

measures. The results in this experiment will cover various range of 
f

m  and 
i

m  

settings while maxO  and minO  are set to be 1 and 0 respectively. 

The second experiment  in Figure 4-13, compares the performance between the pre-

set parameters of PA algorithm (as described in section 4.6) , Biel et al [68] (as 

described in section 3.5.1.1) and Israel et al  [70] (as described in section 3.5.1.3) 

feature extraction techniques. Up to this point, the similarities measures need to be 

used with PA algorithms are still unknown. As for that, the most widely used 
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similarity measures namely Euclidean distance will be used in the experiment. The 

best 
ECG

T  founded in the first experiment will be used for PA. To allow fair 

comparison, in this experiment the PA parameters namely
f

m ,
i

m , maxO  and minO  are 

pre-set to be 35, 1.5, 10 and -2 respectively. 

Using the 
ECG

T  location and the best PA feature selection investigated in the first and 

second experiments, evaluation of the best distance based similarity measure for PA 

is performed in the third experiment shown in Figure 4-13. The 9 similarity measures 

described in section 2.6.1 are compared. The PA parameters used to run the second 

experiment are reused in this experiment. 

Having obtained the best  
ECG

T  and similarity measures from the first and third 

experiments, the optimum PA parameters finally can be investigated in the fourth 

experiment. The reason to investigate for all PA algorithms is to determine which 

settings are the best for the specific algorithms. A comparison between algorithms 

using its optimum PA parameters is also carried out. 
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4.8. EXPERIMENTAL RESULTS 

 

4.8.1. Experiment 1 : Evaluation of extraction locations 

Experiment 1 in this section is to evaluate the best location to extract the ECG 

signals as explained in section 4.5. As mentioned in the previous section, Euclidean 

distance will be used first as similarity measures. Pulse Active Ratio (PAR) features 

as described in section 4.6.6 will be used to compare the performance between these 

locations using various values of im  and fm . The maxO  and minO  are set to be 1 and 

0 respectively. 

4.8.1.1. AUR and EER profile for ECGT  between Ps and Te 

Figures 4-14 a) and b) illustrate the AUR performance of the ECG PAR biometric 

system for various 
f

m  and 
i

m  setting when 
ECG

T  is selected from the starting point 

of the P wave, Ps, to the end of the T wave, Te, as illustrated in Figure 4-7 for 

respective healthy and arrhythmia populations. From Figures 4-14 a) and b), it is 

shown that for fm  greater than 15, lower 
i

m  values projected higher AUR values. As 

the values of 
i

m  increase, the performance of the authentication process degrades. It 

is also shown in both figures that when 
f

m  is greater than 15 it does not have much 

impact towards the authentication performance for a particular setting of
i

m . A poor 

region of the PAR biometric performance is observed for 
f

m  settings less than 5. 

Figures 4-15 a) and b) illustrate the EER for healthy and arrhythmia populations 

when 
ECG

T  is selected from Ps to Te. As can be seen from both figures, lower EER 

values are obtained by selecting 
i

m  low while the fm  settings do not affect the EER 

profiles. The EER values increase as the values of 
i

m  increase. 
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a) AUR Healthy b) AUR Arrhythmia 

Figure 4-14: AUR profile for TECG location from Ps to Te 

 
a) EER Healthy b) EER Arrhythmia 

Figure 4-15: EER profile for TECG location from Ps to Te 

4.8.1.2. AUR and EER profile for ECGT  between peaks of R 

Figures 4-16 a) and b) show the AUR performance when 
ECG

T  is selected from a 

peak of R to the next peak of R as presented in Figure 4-8. From these figures, it is 

shown that the best results are obtained when the setting of 
i

m  is low while the value 

of 
fm  is set between 25 and 40 for healthy populations and between 15 and 30 for 

the arrhythmia population. A poor region of AUR is identified when  
f

m  is set to be 

less than 5 in both figures. 
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a) AUR Healthy b) AUR Arrhythmia 

Figure 4-16: AUR profile for TECG location from R to the next R 

 
a) EER Healthy b) EER Arrhythmia 

Figure 4-17: EER profile for TECG location from R to the next R 

Figures 4-17 a) and b) illustrate the EER profiles for healthy and arrhythmia 

populations respectively when TECG is selected from R to the next R. From 

Figure 4-17 a), it is observed that setting 
fm  between 25 and 30 while 

i
m  is close to 

1 generates the lowest values of EER for healthy populations. The EER value is 

between 0.22 and 0.23 for any value of 
f

m  provided that 
i

m  is greater than 1.5. The 

EER profiles for the arrhythmia population, shown in Figure 4-17 b), indicate that 

lower EER values are observed in two areas. The first area is for 
i

m  close to 1 with 

f
m  ranging between 40 and 45. The second region of lower EER can be achieved 

when 
fm is set between 5 and 15 for any value of 

i
m .  
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4.8.1.3. AUR and EER profile for ECGT  between peaks P and T 

The AUR performance when 
ECG

T  is selected between the peaks of P and T for 

healthy and arrhythmia populations are demonstrated in Figure 4-18 a) and b) 

respectively. 

 
(a) AUR Healthy b) AUR Arrhythmia 

Figure 4-18: AUR profile for TECG  location between peaks P and T 

From these figures, it is observed that for 
f

m  greater than 15 and 10 for healthy and 

arrhythmia population respectively, lower 
i

m  values generate higher values of AUR. 

It is also observed that the AUR performance is not affected when 
f

m  is greater than 

these settings for the same setting of
i

m . 

The EER profiles for healthy and arrhythmia population when 
ECG

T  is selected 

between peaks P and T are shown in Figure 4-19 a) and b) respectively. The figures 

show that a lower EER value is achieved when 
i

m  is set to 1 with fm  greater than 15 

for the healthy population and greater than 20 for the arrhythmia population. As the 

value of 
i

m  increases, the EER value also increases. 
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(a) EER Healthy (b) EER Arrhythmia 

Figure 4-19: EER profile for TECG location between peaks P and T 

4.8.1.4. AUR and EER profile for ECGT  within QRS complex 

By acquiring ECG characteristics within the QRS complex as shown in Figure 4-9, 

the AUR performances for healthy and arrhythmia populations are given in 

Figure 4-20 a) and b) respectively. 

 
(a) AUR Healthy b) AUR Arrhythmia 

Figure 4-20: AUR profile for TECG location within QRS complex 

From Figure 4-20 a) and b), it is shown that a lower 
i

m  setting is desirable to achieve 

a high AUR profile when the 
fm setting is greater than 5 for both populations. It is 

also shown in both figures that 
f

m  is not affecting the authentication performance 

when it is set greater than 5 for the same setting of
i

m . A poor region of AUR profile 

is observed for both populations when 
f

m  is set to less than 2. Figure 4-21 a) and b) 
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illustrate the EER profile for the respective healthy and arrhythmia populations when 

ECG
T  is selected within the QRS complex. From these figures, it is observed that 

when the 
i

m  values are close to 1, the EER has its lowest value. As the values of 
i

m  

increase, the values of EER increase. It is shown that when 
f

m  is set greater than 7, 

fm  does not have any impact towards the EER profile for any particular 
i

m  settings. 

 
a) EER Healthy b) EER Arrhythmia 

Figure 4-21: EER profile for TECG location within QRS complex 

4.8.1.5. Conclusion on the effect of ECGT  location 

Tables 4-2 and 4-3 summarize the AUR and EER performances for all 4 locations. 

As can be seen from these tables, the maximum AUR with minimum EER values are 

obtained when 
ECG

T  is selected between the peaks of P and T, followed by the QRS 

locations and then by the RR′  intervals. In Table 4-2, it is observed that for healthy 

populations the AUR profile, when 
ECG

T is selected between the QRS complex, is 

slightly better compared to the AUR profile when 
ECG

T  is selected between the peaks 

of P and T. However, when the number of subjects with arrhythmia beats increases, 

the performance degrades. It is concluded in this subsection that, for the ECGs 

database used in this thesis, 
ECG

T  should be selected between peaks P and T to obtain 

a high AUR and EER profile. As for that, the remaining of this chapter will use 
ECG

T  

between peaks P and T. 
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Table 4-2: Summary of AUR performances on different TECG 

ECG
T  Population 

Optimum 

f
m  range 

Optimum 

i
m  range 

Maximum 

AUR 

AUR 

Ranges 

Ps 

Te 

Healthy >15 <1.5 0.74 0.15 

Arrhythmia >15 <1.5 0.64 0.06 

RR’ Healthy >5 <1.5 0.91 0.08 

Arrhythmia 10 35
f

m< <  <1.2 0.785 0.04 

PT Healthy >15 <1.2 0.945 0.12 

Arrhythmia >20 <1.2 0.865 0.09 

QRS Healthy >5 <1.2 0.96 0.14 

Arrhythmia >5 <1.2 0.84 0.11 

 

Table 4-3: Summary of EER performances on different TECG 

ECG
T  Population 

Optimum 

f
m  range 

Optimum 

i
m  range 

Minimum 

EER 

EER 

Ranges 

Ps 

Te 

Healthy >1 <1.5 0.31 0.18 

Arrhythmia >1 <1.2 0.39 0.09 

RR’ Healthy 25 40
f

m< <  <1.2 0.16 0.08 

Arrhythmia 5 30
f

m< <  <1.2 0.29 0.04 

PT Healthy >15 <1.2 0.08 0.2 

Arrhythmia >20 <1.2 0.19 0.12 

QRS Healthy >10 <1.2 0.1 0.15 

Arrhythmia >10 <1.2 0.23 0.1 

 

 

4.8.2. Experiment 2 : The optimum algorithms 

Experiment 2 in this subsection is to evaluates the performance of all PA feature 

selection techniques as explained in section 4.6 compared to the features proposed by 

Biel[68] and Israel [70] described in section 3.5.In this experiment, 
ECG

T  is selected 

from the peak P to the peak of T For all PA feature selection techniques, fm , 
i

m , 

maxO  and minO  are set to be 35, 1.5, 10 and -2 respectively. For PAH, N is set to be 

7. Figure 4-22 and Figure 4-23 illustrate the ROC comparison for the healthy and 
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arrhythmia populations respectively. As can be seen from both figures, the ROC 

curves for all PA feature selection techniques projected  higher than the Biel or Israel 

methods.  

 

Figure 4-22: ROC comparison for Healthy Population 

 

 

Figure 4-23: ROC comparison for Arrhythmia Population 



96 

 

Simulation results indicate that the PAW, PAA and PAM feature selection 

techniques share the same ROC performance profile. When 
ECG

T  is set to 1, 

equations (4-10), (4-13) and (4-15)  have a linear equation structure given as: 

trans
X k c= × ∆ +  (4-31) 

where 2 2 1trans m m
t t −∆ = − . For PAW, 1k =  and 0c = . For PAA, ( )max mink O O= −  and 

min

f

O
c

m
= . For PAM, ( )max minf

k m O O= −  and minc O= . When comparing two 

different sets of 
trans

∆  using (4-31), the calculated matching score is also in the form 

of a linear equation: 

T
Score k= × ∆  (4-32) 

where 
T

∆  is the difference value between the two sets of 
trans

∆ . The value of k in 

(4-31) and (4-32) is a constant value predefined by the user. Since the ROC curve is 

independent of the threshold settings, the generated ROC curves for PAW, PAA and 

PAM are the same. This leads to similar AUR and EER values. By contrast, although 

(4-30) seems to exhibit a linear equation structure similar to (4-31), k  and c  are 

dependent on individual ECG characteristics, namely 
ECG

A  and 
ECG

T . This makes the 

ROC for PAR different from the ROC for PAW, PAA, or PAM. 

From Figures 4-22 and 4-23 it is not clearly visible which PA feature selection 

technique is better. This is best determined by comparing the AUR and EER values 

tabulated in Table 4-4. The AUR and EER values in Table 4-4, indicate that the 

PAW, PAA and PAM generate the highest AUR with the lowest EER values for 

healthy and arrhythmia populations. This followed by the PAB, PAH and PAR 

feature selection techniques. 

Based from the evaluation in this subsection, it can be concluded that the PAW, PAA 

and PAM provide the best authentication performance for the healthy and arrhythmia 

populations used in the simulations based on the given settings. As for that, PAW 

will be further used to determine the similarity measures.  
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Table 4-4: ROC AUR and EER values for Healthy and Arrhythmia Populations 

 Healthy Population Arrhythmia Population 

 AUR EER AUR EER 

Biel 0.8544 0.2143 0.7630 0.3047 

Israel 0.8136 0.2857 0.7420 0.3101 

PAB 0.9517 0.1099 0.8864 0.2045 

PAW/PAA/PAM 0.9521 0.1044 0.8873 0.2045 

PAH 0.9454 0.1429 0.8243 0.2561 

PAR 0.9239 0.1429 0.8330 0.2386 

 

4.8.3. Experiment 3 : The optimum similarity measure 

As mentioned in subsection 2.6.1, there are 9 widely used distance based similarity 

measures for quantitative variables. Results generated in all above subsection in this 

chapter uses ‘Euclidean Distance’ as in (2-1) to be the distance measure to calculate 

the similarity score. In this subsection, the rest of distance measurements tabulated in 

Table 2-2 are evaluated.  

 

Figure 4-24: Distance Measurement Comparison For Healthy Population 
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To run this experiment, PAW will be used as the PA feature selection with 
f

m  and 

i
m  set to be 35 and 1.5 respectively. 

ECG
T  is set between the peaks of P and T. 

 

Figure 4-25: Distance Measurement Comparison For Arrhythmia Population 

Figures 4-24 and 4-25 illustrate the comparison performance for healthy and 

arrhythmia population respectively using various distance based similarity measure. 

It can be seen from these figures that 3 of the highest ROC curve projections are 

achieved when the distance measurement are using the Manhattan, Canberra and 

Sorensen distance measure methods. The AUR and EER profile for all distance 

measures shown in Table 2-2 using PAW are tabulated in Table 4-5. 

From Table 4-5, it is shown that the Manhattan distance measure provides the 

highest AUR and lowest EER values for healthy and arrhythmia populations. Based 

on these results, the Manhattan distance will be used to obtain the ROC curves 

throughout this chapter. 



99 

 

Table 4-5: AUR and EER values using different distance measure 

Distance Healthy Population Arrhythmia Population 

Name Equation AUR EER AUR EER 

Euclidean  (2.1) 0.9521 0.1044 0.8873 0.2047 

Manhattan (2.2) 0.9733 0.0714 0.9161 0.1573 

Chebyshev (2.3) 0.9097 0.2088 0.8150 0.2640 

Minkowski p=3 (2.4) 0.9419 0.1154 0.8600 0.2085 

Minkowski p=6 (2.4) 0.9215 0.1484 0.8286 0.2500 

Canberra (2.5) 0.9655 0.0824 0.9017 0.1805 

Sorensen (2.6) 0.9702 0.0934 0.9056 0.1494 

Cosine (2.7) 0.9317 0.1264 0.8490 0.2412 

Mahalanobis (2.8) 0.9168 0.1703 0.7983 0.2637 

Correlation (2.9) 0.9246 0.1484 0.8509 0.2423 

 

. 

4.8.4. Experiment 4 : Optimized PA parameters 

In the previous subsection, the performance of each PA feature selection is generated 

from predefined 
f

m , 
i

m , maxO  , minO  and/or N values. In this subsection, the 

biometric performances for all PA feature selection methods are evaluated using 

various values of 
fm , 

i
m , maxO , minO  and/or N .  

4.8.4.1. Effect of varying fm  and im   

This subsection will look into the effect of varying fm  and im  for all PA feature 

selection. PAB would be discussed first, follows by PAW, PAA, PAM, PAR and 

finally PAH. For PAA, PAM and PAR, maxO  and minO  are set to be 10 and -2 

respectively. For PAH, N  is set to be 7. In all simulation study in this subchapter, 

i
m  varies from 1 to 3.5 while 

f
m  is set between 1 and 50. 

Figures 4-26 and 4-27 represent the AUR and EER profile respectively for healthy 

and arrhythmia population when the ECGs are extracted using PAB. 
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(a) AUR Healthy (b) AUR Arrhythmia 

Figure 4-26: AUR profile for PAB 

 
(a) EER Healthy (b) EER Arrhythmia 

Figure 4-27: EER profile for PAB 

For the healthy population, it is observed that the highest AUR value and lowest EER 

value as shown in Figure 4-26(a) and Figure 4-27 (a) are obtained for im  values 

greater or equal to 1.1 while maintaining fm  to be greater than 15. For the 

arrhythmia population, it is observed that the highest AUR value as shown in 

Figure 4-26 (b) is obtained for im  values greater or equal to 1.1 while maintaining 

fm  to be greater than 20. The lowest EER values as illustrated in Figure 4-27 (b) is 

in the area when im  values greater or equal to 1.1 while maintaining fm  to be 

greater than 8. 

Next, the effect of varying fm  and im  is investigated for PAW, PAA and PAM. As 

explained in subsection 4.8.2, PAW , PAA and PAM share the same AUR and EER 
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profile and can be respectively shown in Figures 4-28 and 4-29. Examining the AUR 

and EER profile for healthy population as illustrated in Figure 4-28 (a) and 

Figure 4-29 (a), it is discovered that when im  is set greater than 1 while maintaining 

fm  greater than 15 gives the highest and lowest EER respectively. For the 

arrhythmia population, it is observed that the highest AUR value as shown in 

Figure 4-28 (b) is obtained for im  values greater or equal to 1.2 while maintaining 

fm  to be greater than 6. The lowest EER values as illustrated in Figure 4-29 (b) is in 

the area when im  values greater or equal to 1.2 while maintaining fm  to be greater 

than 15. 

 
(a) AUR Healthy (b) AUR Arrhythmia 

Figure 4-28: AUR profile for PAW, PAA and PAM 

 
(a) EER Healthy (b) EER Arrhythmia 

Figure 4-29: EER profile for PAW, PAA and PAM 
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The effects of varying fm  and im   towards the AUR and EER profile using PAR 

algorithm as in (4-9) is shown in Figures 4-30 and 4-31 respectively. From 

Figure 4-30, it is observed that when 
fm  is set to be greater than 15 for the healthy 

population and greater than 10 for the arrhythmia population, the AUR profile 

decreases as the value of 
i

m  increases.  Similar phenomenon is observed on the EER 

profile in Figure 4-31. In the figure, it is shown that when fm  is set to be greater than 

15 for both populations, the EER value increases as the value of 
i

m  increases. 

 
(a) AUR Healthy (b) AUR Arrhythmia 

Figure 4-30: AUR profile for PAR 

 
(a) EER Healthy (b) EER Arrhythmia 

Figure 4-31: EER profile for PAR 

The AUR and EER profile for healthy population using PAH are respectively shown 

in Figure 4-32(a) and Figure 4-33(a). Examining these figures, it can be concluded 

that the highest AUR and lowest EER are achievable when the values of 
i

m  is low 
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while maintaining the value of 
f

m  greater than 15. For the arrhythmia population, 

the AUR and EER profile of PAH as illustrated in Figure 4-32 (b) and Figure 4-33(b) 

indicates that the highest AUR and lowest EER profile is achievable when 
i

m  is set 

less than 2.5 while 
fm  greater than 15. 

 
(a) AUR Healthy (b) AUR Arrhythmia 

Figure 4-32: AUR profile for PAH 

 
(a) EER Healthy (b) EER Arrhythmia 

Figure 4-33: EER profile for PAH 

From this subsection, it can be concluded that selecting the correct value of 
i

m  and 

f
m  may be helpful in generating the best AUR and EER profile. Table 4-6 

summarized the 
i

m  and 
fm  setting which produced the highest AUR values and in 

the same time having the lowest EER profile discussed in this subsection.  

 



104 

 

Table 4-6: Suggested 
f

m  and 
i

m  settings for PA feature selection 

 Healthy Arrhythmia 

 im  fm  
im  fm  

PAB  1 1.≥  15>  1 1.≥  20>  

PAW 1≥  15>  1 2≥ .  15>  

PAA 1≥  15>  1 2≥ .  15>  

PAM 1≥  15>  1 2≥ .  15>  

PAR 2 5≤ .  15>  2 5≤ .  15>  

PAH 2 5≤ .  15>  2 5≤ .  15>  

 

For a general PA settings, from Table 4-6, it can be conclude that 
i

m  should be set 

between 1.1 and 2.5 while 
f

m  should be set greater than 20. 

4.8.4.2. Effect of varying Omax and Omin 

This subsection will now evaluate the effects of changing maxO  and minO  towards the 

AUR and EER values. Based from Table 4-1, maxO  and minO  exists in the final 

equations of PAA, PAM and PAR. To run this experiments, fm  and im  are set to be 

30 and 1.2 respectively. maxO varies between 1 and 50 while minO  varies between -50 

and 50. 

 
(a) AUR Healthy b) AUR Arrhythmia 

Figure 4-34: Effects of Omax and Omin on AUR profiles for PAA and PAM 
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(a) EER Healthy b) EER Arrhythmia 

Figure 4-35: Effects of Omax and Omin on EER profiles for PAA and PAM 

Figures 4-34 and 4-35 illustrate the effects of varying maxO  and minO  on PAA and 

PAM. From these figures, it is observed that, the highest AUR and lowest EER 

values always prevail for any values of maxO  as long as minO  negative. For PAR, the 

AUR and EER profiles are respectively illustrated in Figures 4-36 and 4-37. From 

these figures it is observed that the highest AUR and EER profile are obtained when 

minO  is negative while maxO  is set to be min0.4 O− × . 

 
(a) AUR Healthy b) AUR Arrhythmia 

Figure 4-36: Effects of Omax and Omin on AUR profiles for PAR 
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(a) EER Healthy b) EER Arrhythmia 

Figure 4-37: Effects of Omax and Omin on EER profiles for PAR 

In section 4.6 it has been repeatedly highlighted that maxO  should not be set equal to 

minO  when the PAA, PAM or PAR algorithms are used to generate feature vectors. 

Another consideration which needs to be taken into account when setting the values 

of  maxO  and minO  is that the output pulse area generated must not be equal to zero. In 

(4-13), (4-15) and (4-30),  the multiplication process of ( )max minO O−  with 

( 2 2 1m m
t t −− ) represents the area of each pulse. To ensure that the pulse area is not zero 

the following condition must hold: 

2 1 2

2 1 2

min max min

( 1)

0
m m tri

tri m m

t t mT

m T t t

O dt O dt O dt
−

−−

+ + ≠∫ ∫ ∫  
(4-33) 

Equation (4-33) can be rearranged as follows: 

( )max min

2 2 1

1 tri

m m

T
O O

t t −

 
≠ −  − 

 
(4-34) 

Substituting (4-1) into (4-34) generates: 

( )max min

2 2 1

1 ECG

f m m

T
O O

m t t −

 
≠ −  − 

 
(4-35) 

Regions of very poor performance are seen in Figures 4-34 to 4-37 correspond to 

values of maxO  which produce zero or very small pulse areas, as suggested in (4-35). 
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4.8.4.3. Effect of varying N   

The effect of another PA parameters needs to be evaluate is the total harmonic 

values, N  in PAH. Figure 4-38 shows the AUR profile for healthy and arrhythmia 

populations when N  varies between 1 and 50. In this simulation, 
i

m  and 
fm  are set 

to be 1.2 and 15 respectively. Observing the figure, it is shown that similarly high 

AUR values can be achieved when N  is between 3 and 20.  

 
(a) AUR Healthy b) AUR Arrhythmia 

Figure 4-38: Effects of N on AUR profiles for PAH 

 
(a) EER Healthy b) EER Arrhythmia 

Figure 4-39: Effects of N on EER profiles for PAH 

Figures 4-39 a) and b) show the EER profiles for healthy and arrhythmia populations 

respectively when N  varies between 1 and 50.The values of 
i

m  and 
f

m  are also set 

to be 1.2 and 15 respectively. In these figures, it is observed that when N is set 

between 2 and 20, the EER value are similarly low. The tolerance for healthy 
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population is around 0.08±  whilst for the arrhythmia population, the EER tolerance 

is around 0.03± . 

4.8.4.4. Summary of varying PA parameters  

For non-biometric applications, the requirement of selecting ECG sources as 

described in section 3.4.1 can be reduced to using ECG measurements from healthy 

populations that may come from the same recording and be collected with any Lead 

configuration. The performance of such application using 58 healthy subjects is 

shown in Appendix E where it is seen that the PAW still manages to generate ROC 

curves with high AUR and low EER which are respectively equal to 0.953 and 

0.1210.  

In the applications of biometric authentication, the study conducted in subsections 

4.8.4.1 to 4.8.4.3 suggested that common PA parameters, namely 
f

m , 
i

m , 
max

O , 

min
O  and N  can be assigned to obtained a similar AUR and EER performance The 

ranges extracted are from the statistically significant arrhythmia subjects. It is noted 

that using these ranges produces acceptable results for the healthy subjects used in 

the simulations. From subsection 4.8.4.1, it has been shown that a similar high AUR 

and low EER profile can be achieved using: 

20 50
f

m≤ ≤  (4-36) 

1.2 2.5
i

m≤ ≤  (4-37) 

From subsection 4.8.4.2, it can be concluded that PAA, PAM and PAR will have the 

similar highest AUR and lowest EER profile by setting minO  and maxO  as follows: 

min 0O <  (4-38) 

max min0.4O O= − ×  (4-39) 
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The N  parameter as studied in subsection 4.8.4.3 reveals that the highest AUR and 

EER profile can be achieved using 

2 20N≤ ≤  (4-40) 

The graphical representation of the AUR and EER performances based on the 

general PA parameters setting given from (4-36) to (4-40) are shown in Appendix C. 

From Appendix C, the maximum and minimum values of AUR and EER for healthy 

populations using these settings are tabulated in Table 4-7. The maximum and 

minimum values of AUR and EER for arrhythmia populations using these settings 

are tabulated in Table 4-8. 

Observing Appendix C, Table 4-7 and Table 4-8, it can be seen that, in general, when 

f
m  is set as (4-36) and 

i
m  set as (4-37), the AUR profiles for healthy and arrhythmia 

populations vary around 0 05.±  and 0 015.±  respectively for all PA feature selection 

techniques. The EER profiles for similar settings vary by 0 07.±  and 0 025.± for the 

healthy and arrhythmia population respectively. Setting 
max

O  and 
min

O  as in (4-38) 

and (4-39) vary the AUR and EER values by 0 085.±  for both populations.  

Finally, by setting N  as in (4-40) the AUR and EER tolerances for both populations 

are around 0.035±  and 0.08±  respectively. These tolerances, using the suggested PA 

parameters range, indicate that a similar biometric authentication performance, using 

the different settings, is achievable and that it will be advantageous to set up a doubly 

secure ECG-based biometric system as explained in chapter 6. 
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Table 4-7: AUR and EER profiles for healthy population using general PA 

parameters 

PA Feature Selection 
AUR EER 

max min max Min 

PAB( fm  and im  varies) 0.974 0.9695 0.0765 0.0715 

PAW ( fm  and im  varies) 0.9735 0.97 0.0765 0.0715 

PAA ( fm  and im  varies) 0.9735 0.97 0.0765 0.0715 

PAM ( fm  and im  varies) 0.9735 0.97 0.0765 0.0715 

PAR ( fm  and im  varies) 0.925 0.88 0.22 0.15 

PAH( fm  and im  varies) 0.948 0.934 0.145 0.145 

PAA ( maxO  and minO  varies) 0.97 0.97 0.07 0.07 

PAM ( maxO  and minO  varies) 0.97 0.97 0.07 0.07 

PAR ( maxO  and minO  varies) 0.965 0.88 0.21 0.07 

PAH ( N  varies) 0.96 0.938 0.15 0.07 

 

 

 

Table 4-8: Suggested Ranges, AUR and EER profiles for arrhythmia population 

PA Feature Selection 
AUR EER 

max min max Min 

PAB( fm  and im  varies) 0.918 0.915 0.17 0.158 

PAW ( fm  and im  varies) 0.9185 0.9135 0.169 0.156 

PAA ( fm  and im  varies) 0.9185 0.9135 0.169 0.156 

PAM ( fm  and im  varies) 0.9185 0.9135 0.169 0.156 

PAR ( fm  and im  varies) 0.825 0.705 0.272 0.25 

PAH( fm  and im  varies) 0.83 0.816 0.262 0.242 

PAA ( maxO  and minO  varies) 0.91 0.91 0.17 0.17 

PAM ( maxO  and minO  varies) 0.91 0.91 0.17 0.17 

PAR ( maxO  and minO  varies) 0.89 0.82 0.255 0.17 

PAH ( N  varies) 0.835 0.8 0.275 0.225 
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4.9. CONCLUSION 

 

This chapter has introduced a new feature extraction technique named Pulse Active. 

The fundamental concept of the Pulse Active technique was first introduced in this 

chapter by deriving the general topology of the Pulse Active feature extraction 

technique which leads to six different feature selection mechanisms. Various 

locations within the ECG, from where features can be extracted, have also been 

examined in this chapter. Simulations on these techniques suggested the optimized 

ranges of each feature selection algorithm. In chapter 6 these ranges will be revisited 

and reused to set up the multilevel security ECG-based authentication system. The 

next chapter will describe an alternative way to generate pulse domain output pulses 

named as Adaptive Pulse Active technique.   
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CHAPTER 5.  

 

ADAPTIVE PULSE ACTIVE (APA) FEATURE 

EXTRACTION TECHNIQUE FOR ECG BIOMETRIC 

AUTHENTICATION 

 

5.1. INTRODUCTION 

 

In Chapter 4, the PA technique used a triangular wave which is then superimposed 

on to the ECG signal and the intersection locations between both signals will 

determined the on-set and off-set of the output pulses based on certain rules.  It was 

shown that the ECG peak-to-peak amplitude 
ECG

A  and temporal duration 
ECG

T  

characterize the shape of the triangular wave used in PA. The maximum amplitude of 

the triangular wave
tri

A , for each period of the triangular wave
tri

T , is the same 

throughout the
ECG

T . In this chapter, a new feature extraction technique named the 

Adaptive Pulse Active (APA) is developed and used for biometric authentication. 

APA also transforms the investigated signals into a series of output pulses similar to 

PA with three fundamental differences which define the term ‘Adaptive’ in APA. 

These differences are: 

i. The maximum amplitude of the triangular wave in each period is not the 

same. 

ii. The output pulse generation is not based on the intersection location between 

the triangular wave and the ECG signals, but it is solely based on the 
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characteristics of the generated triangular waves. 

iii. APA is developed based on the concept of delta modulation (DM)   

This chapter will first introduce the fundamentals of APA by briefly discussing the 

concept of DM. This is followed by the development of a generalized scheme of the 

APA feature extraction technique.  Four types of APA feature selection methods are 

then discussed and, finally, the optimization of the APA parameters is presented. 

 

5.2. FUNDAMENTALS OF ADAPTIVE PULSE ACTIVE (APA)  

 

The APA approach is developed based on  Delta Modulation (DM) in PA. In order to 

introduce APA, the operation principle of DM is first presented in this subsection. 

This is then followed by the concept and mathematical derivation of the APA 

technique. 

 

5.2.1. Delta Modulation (DM) 

The block diagram of delta modulation (DM) and its waveform operational principle 

are illustrated in Figures 5-1 and 5-2 respectively. As shown in Figure 5-1, the input 

signal ( )i
V t  is subtracted from the feedback signal ( )F

V t to generate an error 

signal ( )errV t . The error signal is then quantized commonly using a hysteresis 

comparator with level V±∆  to generate a series of modulated output pulses ( )m
V t  

which are then integrated to generate the output signal ( )FV t . The closed loop 

configuration of the DM ensures that the polarity of each output pulse ( )mV t  is 

adjusted according to the sign of ( )err
V t .  
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V∆

V∆

∫

( )errV t( )iV t

( )FV t

( )mV t

 

Figure 5-1 : Block Diagram of DM 

V∆

V∆ ( )iV t

( )FV t

CCV+

CCV−

( )mV t

 

Figure 5-2 : Waveform generation of DM 

 

Figure 5-2 illustrates typical waveforms ( )iV t , ( )FV t , ( )mV t  and the hysteresis 

band V∆ process based on the concept of DM shown in Figure 5-1. The initial value 

of ( )FV t  is 0. Using this value, the generated ( )errV t  has a positive value. ( )errV t  is 

fed into the hysteresis comparator. With a positive ( )errV t , the ( )m
V t  will also 

generate a positive value. The positive ( )mV t  value is fed into an integrator. 
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Integrating any positive value would generate a positive slope of ( )FV t  which will 

increase the stepwise value of ( )FV t . This process continues until ( )FV t reaches the 

upper level of V∆ and consequently results in a negative ( )m
V t .  

 

5.2.2. Adaptive Pulse Active Waveform Generation 

The development of the APA feature extraction technique on ECG signals includes 4 

stages: 

i) Defining the start and end locations of the APA process 

ii) Generation of ECG envelopes 

iii) Triangular waves generation 

iv) Extracting APA features 

5.2.2.1.  Defining the start and end locations 

Similar to PA, APA requires the detection of 2 fiducial points to start and end the 

process. For the implementation on ECG signals, the APA process can start and end 

anywhere between these two fiducial points by employing any standard fiducial 

detection algorithm.  

( )ECGy t

ECG
T0

ECG
A

t

 

Figure 5-3 : ECG as investigated signal from peak P to peak T 
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This location is denoted as
ECG

T . Consider an ECG signal ( )ECGy t  from the peak of P 

to the peak of T. This temporal 
ECG

T  duration has peak to peak amplitude 
ECG

A  as 

shown in Figure 5-3. The ECG signal is offset so that its minimum value is equal to 

zero.  

5.2.2.2.  Generation of ECG envelopes 

Next, ( )ECGy t  is replicated twice and the replicates are positioned a 

distance V∆ above and below the original ( )ECGy t  as shown in Figure5-4. The top 

replication of the ECG signal is labeled ( )topy t  while the bottom replication of the 

ECG signal is labeled ( )bottomy t  . The signals ( )topy t  and ( )bottomy t  work like an 

envelopes on the ( )ECGy t for the distance V∆ . A constant, known as the deviation 

index
iδ , is introduced and defined as: 

i

ECG

V

A
δ

∆
=  (5-1) 

where 
i

δ  is a user defined value.  

V∆

V∆
ECG

A
( )ECG

y t

ECG
T

( )top
y t

( )bottom
y t

 

Figure 5-4 : ECG envelopes generation 
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This constant allows us to control the level between replicates and underlying signal. 

It also allows us to cope with the degree of amplitude variations. 

5.2.2.3.  Triangular wave generation 

The next process is to generate triangular waves ( )triy t  within the ( )ECGy t
 
envelope 

as shown in Figure 5-5. As can be seen from Figure 5-5, the triangular waves do not 

have the same peak to peak values, however, the duration for each period of the 

triangular wave is the same, i.e. 
tri

T . The modulation factor 
f

m , used earlier in (4-1), 

is redefined here as: 

ECG
f

tri

T
m

T
=  (5-2) 

In Figure 5-5 
fm  is set to 4. Each period of the triangular waves would have three 

important points which represent the starting point [ ]2 1m
L

−
, the peak, [ ]2m

L and the end 

point  [ ]2 1m
L

+
 of the triangular period. 

( )ECG
y t

ECG
T

( )top
y t

( )bottom
y t

( )tri
y t

[ ]1
L

[ ]3
L

[ ]5
L

[ ]7
L

[ ]9
L

[ ]2
L

[ ]4
L

[ ]6
L [ ]8

L

tri
T

tri
T

tri
T tri

T
 

Figure 5-5 : Triangular wave generation 
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These locations are denoted as location vectors and can be mathematically described 

as follows: 

[ ] ( )2 1
1 trim

L m T
−

= −  (5-3) 

[ ] ( )2
0.5 trim

L m T= −

 
(5-4) 

[ ]2 1 trim
L mT

+
=

 
(5-5) 

for 1,2,3...
f

m m= . 

( )tri
y t  is then generated using the following rules: 

( )
[ ]( ) [ ]( )

[ ] [ ]
[ ]( ) [ ]( )

2 2 1

2 1 2 1

2 2 1

top bottomm m

tri bottomm m

m m

y L y L
y t t L y L

L L

−

− −

−

 −
 = − +
 −
 

 (5-6) 

for ( 1) ( 0.5)
tri tri

m T t m T− ≤ ≤ −  and 1,2,3...
f

m m= , 

and 

( )
[ ]( ) [ ]( )
[ ] [ ]

[ ]( ) [ ]( )
2 1 2

2 2

2 1 2

bottom topm m

tri topm m

m m

y L y L
y t t L y L

L L

+

+

 −
 = − +
 −
 

 (5-7) 

for ( 0.5)
tri tri

m T t mT− ≤ ≤  and 1,2,3... fm m= . 

5.2.2.4. Extracting Features 

The next step is to extract the APA features from the generated triangular 

signal ( )tri
y t . To do this, an interception line, ( )Ly t  is defined. As illustrated in 

Figure 5-6, this is a DC line that runs across 
ECG

T  and is generated as follows: 

( )
( )( ) ( )( )

( )( )
2

min max
max

top bottom

L bottom

y t y t
y t y t

−
= +

 

(5-8) 

for ( 1)
tri tri

m T t mT− ≤ ≤ . 
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( )top
y t

( )bottom
y t

( )triy t

( )L
y t

 

Figure 5-6 : Interception line generation 

 

( )tri
y t

( )Ly t

t

( )o t
maxO

minO

[ ]2t[ ]1t [ ]3t [ ]4t [ ]5t [ ]7t[ ]6t [ ]8t

 

Figure 5-7 : Pulse Generation 
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To ensure that the minimum value of ( )top
y t  is always greater than the maximum 

value of ( )bottomy t  the value of the deviation index
i

δ , given in (5-1), must be greater 

than 0.5.  This will ensure that each triangular period is intersected by the DC line 

( )L
y t  in two places (one for the positive edge and one for the negative edge). 

As illustrated in Figure 5-7 the output pulses ( )o t  are formed as follows: 

( )
( ) ( )

( ) ( )
max

min

tri L

tri L

O y t y t
o t

O y t y t

≥
= 

<
 (5-9) 

for 0...
ECG

t T=  

For each triangular wave period, the location [ ]2 -1m
t where the DC line ( )L

y t  

intersects with the positive slope, and the location [ ]2m
t  where the DC line ( )L

y t  

intersects with the negative slope are selected as the intersection points for that 

period. These intersection locations are defined as a transition state vector and can be 

written as: 

( )

( )
[ ]

[ ]

2 -1

2

2 1

2

mtrans

trans m

tT m

T m t

 − 
=   
    

 (5-10) 

for 1,2,3...
f

m m= . 
trans

T  also corresponds to the location where the output pulse, 

( )o t state changes. 
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5.2.3. Adaptive Pulse Active Generalize Equation 

In the previous subsection the process of obtaining transT  was shown graphically. In 

this subsection, the derivation of a generalized transT  algorithm is presented. Recall 

the algorithm to generate the triangular wave as indicated in (5-6) and (5-7). Based 

on Figure 5-4 it is evident that 

( ) ( )top ECG
y t y t V= + ∆  (5-11) 

( ) ( )bottom ECGy t y t V= − ∆  (5-12) 

Substituting (5-11) and (5-12) into (5-6) and (5-7) yields 

( )
[ ]( ) [ ]( )

[ ] [ ]
[ ]( ) [ ]( )

2 2 1

2 1 2 1

2 2 1

2
ECG ECGm m

tri ECGm m

m m

y L y L V
y t t L y L V

L L

−

− −

−

 − + ∆
 = − + − ∆
 − 
 

 (5-13) 

for ( 1) ( 0.5)
tri tri

m T t m T− ≤ ≤ −  and 1,2,3...
f

m m= , 

( )
[ ]( ) [ ]( )

[ ] [ ]
[ ]( ) [ ]( )

2 1 2

2 2

2 1 2

2
ECG ECGm m

tri ECGm m

m m

y L y L V
y t t L y L V

L L

+

+

 − − ∆
 = − + + ∆
 − 
 

 (5-14) 

for ( 0.5)
tri tri

m T t mT− ≤ ≤  and 1,2,3... fm m= . 

Substituting (5-11) and (5-12) into (5-8) yields 

( )
( )( ) ( )( )

( )( )
2

2

ECG ECG

L ECG

y t y t V
y t y t V

− + ∆
= + − ∆

min max
max

 
(5-15) 

Since ( )( ) 0ECGy t =min  and ( )( )ECG ECGy t A=max , expanding (5-15) generates 

( )
1

2
L ECG

y t A=
 

(5- 16) 

 

Based on subsection 5.2.2.4, 
trans

T  is the location vector where the triangular waves 

( )tri
y t intersect the DC line ( )L

y t . Mathematically, this is written as 

( ) ( )tri L
y t y t=

 
(5-17) 

Substituting (5-16, (5-13) and (5-14) into (5-17) yields 

[ ]( ) [ ]( )
[ ] [ ]

[ ] [ ]( ) [ ]( )
2 2 1

2 1 2 1 2 1

2 2 1

2

2

ECG ECGm m
ECG

ECGm m m

m m

y L y L V A
t L y L V

L L

−

− − −

−

 − + ∆
  − + − ∆ =
 − 
 

(5-18) 
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[ ]( ) [ ]( )
[ ] [ ]

[ ] [ ]( ) [ ]( )
2 1 2

2 2 2

2 1 2

2

2

ECG ECGm m
ECG

ECGm m m

m m

y L y L V A
t L y L V

L L

+

+

 − − ∆
  − + + ∆ =
 − 
 

 (5-19) 

for  1, 2,3...
f

m m= . 

Solving [ ]2 1m
t

−
 in (5-18) yields 

[ ] [ ]( ) [ ] [ ]

[ ]( ) [ ]( ) [ ]

2 2 1

2 1 2 1 2 1

2 2 1
2 2

m mECG

ECGm m m

ECG ECGm m

L LA
t V y L L

y L y L V

−

− − −

−

 −  = + ∆ − +    − + ∆
 

 (5-20) 

Solving [ ]2m
t  in (5-19) 

[ ] [ ]( ) [ ] [ ]

[ ]( ) [ ]( ) [ ]

2 1 2

2 2 2

2 1 2
2 2

m mECG

ECGm m m

ECG ECGm m

L LA
t V y L L

y L y L V

+

+

 −  = − ∆ − +    − − ∆
 

 (5-21) 

Substituting (5-3), (5-4) and (5-5) into (5-20) and (5-21) generates 

[ ]

( ) ( ) ( )( )

( ) ( )( )
( )( ) ( )( )2 1

8 6 2 4 1

                                     4 4 0 5

4 0 5 1 2

ECG ECG tri

ECG tritri

m

ECG tri ECG tri

A V m m y m T

m y m TT
t

y m T y m T V
−

 + ∆ − + − −
 
 + − − 

=  
− − − + ∆ 

 
  

.

.
 (5-22) 

[ ]

( ) ( ) ( )( )

( ) ( )

( ) ( )( )2

2 8 4 0 5

                                            4 2

4 0 5 2

ECG ECG tri

ECG tritri

m

ECG tri ECG tri

A m V m y m T

m y mTT
t

y mT y m T V

 + − ∆ − −
 
 + − 

=  
− − − ∆ 

 
 

.

.  
(5-23) 

Substituting (5-1) and (5-2) into (5-22) and (5-23) yields 
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[ ]

( )( ) ( )
( )

( )
( )

( ) ( )
2 1

1
1 8 6 2 4

0 5
                                   4 4

4 0 5 1
2

ECG i ECG ECG

f

ECG ECG

fECG

m

f

ECG ECG ECG ECG i ECG

f f

m
A m m y T

m

m
m y T

mT
t

m m m
y T y T A

m m

δ

δ

−

  −
⋅ + ⋅ − + − ⋅     

 
 − 

+ − ⋅      
=  

   − − 
− +       

    
 
 
 

.

.



 (5-24) 

[ ]

( )( ) ( )
( )

( )

( )
2

0 5
1 2 8 4

                                         4 2

4 0 5
2

ECG i ECG ECG

f

ECG ECG

fECG

m

f

ECG ECG ECG ECG i ECG

f f

m
A m m y T

m

m
m y T

mT
t

m mm
y T y T A

m m

δ

δ

  −
⋅ + ⋅ − − ⋅     

 
  

+ − ⋅    
  =

    −
− −           

 
 
 
 

.

.  
(5-25) 

1, 2,3...
f

m m= . 

From this derivation, it can be seen that APA transition state vector transT  can also be 

generated using equations (5-24) and (5-25) by first measuring 
ECG

A  and 
ECG

T of the 

ECG signals and setting the APA parameters such 
i

δ  and
f

m . 

 

5.3. APA FOR ECG BIOMETRIC AUTHENTICATION 

 

In subsection 5.2.2.3, it was highlighted that the generation of the triangular wave 

supposed to be within the ( )ECGy t
 
envelope prior to the original concept of DM. In 

Figure 5-5, it was shown that, the signal length between peaks P and R, 2P R
T  is the 
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same with the signal length between peaks R and T, 2R T
T . Thus the triangular wave 

generated is connected at peak R of ( )bottom
y t and the triangular wave successfully 

generated within the ( )ECGy t
 
envelope. In an actual ECG signals, 2P R

T  and 2R T
T are 

not the same. This will make the triangular wave generated outside the ( )ECGy t
 

envelope if 
tri

T  is the same throughout the ECG signals. To fix this fundamental flaw 

during the implementation of ECG biometric authentication, APA will extract ECG 

features within 2P R
T  and 2R T

T  separately with the following conditions: 

i. The number of periodic triangular waves within 2P R
T  and 2R T

T is the same. 

This is done by using the same value of 
f

m  in both processes. 

ii. The envelope characteristic generated within 2P R
T  and 2R T

T  using the same 

parameters. This is done by using the same 
ECG

A  and 
i

δ  as defined in 

subsection 5.2.2.2.  

iii. The interception lines ( )Ly t  generated within 2P R
T  and 2R T

T  are the same. 

This is done by using (5-8) for the overall signals. 

 

Let ( )2P R
y t  and ( )2R T

y t  represent ECG signals within 2P R
T  and 2R T

T  respectively. 

The location [ ]2 2 -1P R m
t  and [ ]2 2P R m

t  where the DC line ( )Ly t  intersects with the 

positive slope, and the negative slope respectively within 2P R
T  can be written as: 

[ ]

( )( ) ( )
( )

( )
( )

( ) ( )

2 2

2 2

2

2 2 1

2 2 2 2

1
1 8 6 2 4

0 5
                                   4 4

4 0 5 1
2

ECG i P R P R

f

P R P R

fP R

P R m

f

P R P R P R P R i ECG

f f

m
A m m y T

m

m
m y T

mT
t

m m m
y T y T A

m m

δ

δ

−

  −
⋅ + ⋅ − + − ⋅     

 
 − 

+ − ⋅      
=  

   − − 
− +       

   


 

.

.






 (5-26)
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[ ]

( )( ) ( )
( )

( )

( )

2 2

2 2

2

2 2

2 2 2 2

0 5
1 2 8 4

                                         4 2

4 0 5
2

ECG i P R P R

f

P R P R

fP R

P R m

f

P R P R P R P R i ECG

f f

m
A m m y T

m

m
m y T

mT
t

m mm
y T y T A

m m

δ

δ

  −
⋅ + ⋅ − − ⋅     

 
  

+ − ⋅    
  =

    −
− −           

 
 
 
 

.

.  
(5-27)

for 1, 2,3... fm m= . 

The location [ ]2 2 -1R T m
t  and [ ]2 2R T m

t  where the DC line ( )L
y t  intersects with the 

positive slope, and the negative slope respectively within 2R T
T  can be written as: 
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(5-29) 

for 1, 2,3... fm m= . 
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The final transition state vector 
trans

T  can be written as: 

( )

( )
[ ]

[ ]

2 2 -1

2 2

2 1

2

P R mtrans

trans P R m

tT m

T m t

 − 
=   
    

 (5-30) 

( )

( )
[ ]

[ ]

2 2 -1

2 2

2 1 2

2 2

R Ttrans f m

R T mtrans f

tT m m

tT m m

 − +  
  =  
 +    

 
(5-31) 

for 1, 2,3... fm m= .
trans

T  also corresponds to the location where the output pulse, 

( )o t state changes. 

 

5.4. FEATURE SELECTION 

 

The features extracted using APA are in the form of generated output pulse ( )o t . 

Each pulse within each period of the triangular wave ( )tri
y t  is the ECG feature 

extracted within that period. In general, the representation of each output pulse is 

illustrated in Figure 5-8. 

From Figure 5-8, there are 5 different types of features can be selected from ( )o t . 

The selections of features in each algorithm depend on the characteristic types of the 

output pulses. Since the triangular wave generated in each period does not have a 

similar base, the area of the triangular waves is difficult to calculate. This prevent the 

used of ratio as described in section 4.5 to be selected as features. As explained in 

section 4.6, to avoid the dependency of  
trans

T  on the number of sampling points, the 

time durations for ( )2P Ry t  and ( )2R Ty t  are normalized to 1.  
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Figure 5-8 : APA Output pulse representation 

For ECG biometric application, the final feature vector X  for all APA algorithms is 

written in the similar form. Unless it is stated otherwise, the APA final feature vector 

is given in the following form: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2 2

2 2 2

1 2 1

2 2

P R P R P R P R f R T f

R T f R T f R T f

x x x m x m x m

x m x m m x m

= +

+ + 

           

                                    

… …

… …

X
 (5-32) 

where ( )2P R
x m  and ( )2R T fx m m+  are the individual APA algorithms calculated for 

1,2, fm m= … . 
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5.4.1. Adaptive Pulse Active Bit (APAB) 

Similar as in subsection 4.6.1, the simplest way to select ( )o t  features is by using 

trans
T  in (5-30) and (5-31) as a feature vector. The term ‘Bit’ in the APAB refers to 

the bit location where the pulses changes from maxO  to minO  or minO  to maxO . The 

APAB feature vector X is given as: 

[ ] [ ] [ ]

[ ] [ ] [ ]

2 1 2 2 2 2 2

2 1 2 2 2 2 2

          

                           

f

f

P R P R P R m P R m

R T R T R T m R T m

t t t t

t t t t

  

  

= 




… …

… …

X

 (5-33) 

for 1, 2,3...2 fm m= . 

 

5.4.2. Adaptive Pulse Active Width (APAW) 

The width between two contiguous points of 
trans

T  also can be used as feature 

vectors. The APAW algorithm can be calculated as follows: 

 

( ) [ ] [ ]2 2 2 2 2 1P R P R m P R m
x m t t

−
= −  (5-34) 

( ) [ ] [ ]2 2 2 2 2 1R T f R T m R T m
x m m t t

−
+ = −

 
(5-35) 

for 1, 2,3...
f

m m= . 

 

5.4.3. Adaptive Pulse Active Area (APAA) 

APAA uses the width of each pulse as the features. With reference to Figure 5-8, the 

APAA mathematical expression can be defined as  
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( ) ( )
( )

2

2

2

1

P R
f

P R
f

m
T

m

P R

m
T

m

x m o t dt
−
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( ) ( )
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2

2

2

1

R T
f

R T
f

m
T

m

R T f

m
T

m

x m m o t dt
−

+ = ∫  
(5-37) 

for 1,2, fm m= …  

Following the similar derivation steps as shown in (4-12),(5-36) and (5-37) can be 

written as 

( ) [ ] [ ]( )( ) 2
2 max min min2 2 2 2 1

P R
P R P R m P R m

f

T
x m t t O O O

m
−

= − − +  (5-38) 

( ) [ ] [ ]( )( ) 2
max min min2 2 2 2 1

R T
f R T m R T m

f

T
x m m t t O O O

m
−

+ = − − +
 (5-39) 

for 1,2, fm m= …  

It is important for the feature vectors evaluated using (5-38) and (5-39) involves the 

transition state vectors of (5-30) and (5-31). To ensure the characteristic of the ECG 

embedded within (5-30) and (5-31) always taken into consideration, maxO  should not 

be set equal to minO . 

 

5.4.4. Adaptive Pulse Active Mean (APAM) 

The term ‘Mean’ in APAM refers to an averaging process of the output pulses in 

each period and can be selected as feature vector. Mathematically, APAM can be 

presented as: 

( ) ( )
( )

2

2

2 1

P R
f

P R
f

m
T

m

f

P R m
T

m

m
x m o t dt

T
−

= ∫  

(5-40) 



130 

 

( ) ( )
( )

2

2

2 1

R T
f

R T
f
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m

f

f

R T m
T

m

m
x m m o t dt

T
−

+ = ∫  

(5-41) 

for 1,2, fm m= …  

Following the similar derivation to APAA, the mathematical expression of APAM 

can be written as:  

( ) [ ] [ ]( )( )2 max min min2 2 2 2 1

2

f

P R P R m P R m

P R

m
x m t t O O O

T
−

= − − +  (5-42) 

( ) [ ] [ ]( )( )2
max min min2 2 2 2 1

R T
f R T m R T m

f

T
x m m t t O O O

m
−

+ = − − +
 (5-43) 

for 1,2, fm m= …  

Similar as in (5-38) and (5-39) to ensure the ECG characteristics embedded within 

(5-30) and (5-31) are always taken in to consideration during generating the APAM 

feature vectors, maxO  should not be set equal to minO . 

 

5.4.5. Adaptive Pulse Active Harmonic (APAH) 

Adaptive Pulse Active Harmonic (APAH) make used the harmonic coefficient of the 

output pulses as features similar like the Pulse Active Harmonic described in 

subsection 4.6.5. The transition state vectors as in (5-30) and (5-31) are then 

transformed to radians as follows: 

[ ]
[ ] ( )2 1

2 1

1
2

f PP m

P m

P

m t m T

T
ω π

−

−

− −
= ×  

(5-44) 
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2

f PP m

P m

P

m t m T

T
ω π

− −
= ×

 

(5-45) 
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for 1, 2,3...
f

m m=  and 2  or 2P P R R T= . This forms the output pulse waveform ( )o ω  

as illustrated in Figure 5-9. 
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Figure 5-9 : Waveform generation of Adaptive Pulse Active Harmonic 

 

The radian transform vector W  are then defined as 
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(5-47) 

for 1, 2,3...
f

m m=  

Following the similar procedure as listed in (4-19) to (4-27), the final APAH 

equation can be written as: 
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1
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(5-48) 

( ) ( )( ) ( )
2

1

1
cos 2 1 cos( 2 )

fm

k

B n n k n k
nπ =

 
 = ⋅ − − ⋅   

 
∑ W W  

 

(5-49) 
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Table 5-1: Summary of 5 Adaptive Pulse Active Feature Selection Technique 

Name Criteria Equation  
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(5-50) 

for 1 2n N= , , ..... . N  is the total number of harmonics defined by the user which 

determines the dimension of the APAH feature vector. Table 5-1 summarizes the 5 

APA general equations discussed in this section. 

 

 

5.5. EXPERIMENTAL RESULTS 

 

A simulation setup as described in section 4.7 is also used in this section to find the 

best 
ECG

T  location, similarity measures technique and APA parameters for ECG 

biometric application. 

 

5.5.1. Experiment 1:  The optimum extraction location 

As described in section, 4.4, there are 4 locations related to fiducial points commonly 

used to extract ECGs. These locations are the whole ECG complex (from starting 

point of P wave to the ending point of T wave), from peak to R to the next peak of R, 

within the QRS complex and between peaks of P and T. However, not all locations 

can be used for APA. The implementation of APA for ECG biometric authentication 

requires the ECG signals to be separated at the peak of R to ensure the triangular 

wave is generated within the ECG envelopes as described in section 5.3. For this 

reason, investigation of the optimum extraction location in Experiment 1 only 

considers 3 extraction locations. In this experiment, APAW will be used to extract 

ECG features from the starting point of the P wave to the ending point of the T wave, 

within the QRS complex and between the peaks of P and T. Euclidean distance will 

be used as the similarity measure. 
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5.5.1.1. TECG between Ps and Te 

Figure 5-10 shows the AUR and EER profile of the ECG APAW biometric system 

for various 
f

m  and 
i

δ  setting when 
ECG

T  is selected from the starting point of the P 

wave, Ps, to the end of the T wave, Te for both healthy and arrhythmia populations. 

Comparing AUR profile in Figures 5-10 (a) and (b) and the EER profile in 

Figures 5-10 (c) and (d), it is shown that the selection of iδ  generates an opposite 

profile between the healthy and arrhythmia population. This phenomenon may occur 

due to the abnormalities of the ECG signals for the arrhythmia population. 

 
(a) AUR Healthy (b) AUR Arrhythmia 

 
(c) EER Healthy (d) EER Arrhythmia 

Figure 5-10 : APA profile for TECG from Ps to Te 

For the healthy population, it can be seen from Figures 5-10 (a) and (c) that the 

acceptable high AUR and low EER value are generated when fm  between 3 and 15 

while 
i

δ  is between 1.5 and 3. For the arrhythmia population, it can be seen from 
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Figures 5-10 (b) and (d) that the acceptable high AUR and low EER value are 

generated when fm  between 5 and 15 while 
i

δ  is between 0.5 and 1. From this 

observation, it can be concluded that specific range of  
f

m  and 
i

δ  which are 

applicable for both healthy and arrhythmia population is not available. 

 

5.5.1.2. TECG between P and T 

Figure 5-11 illustrates the AUR and EER profile for healthy and arrhythmia population when  

ECG
T  is selected between the peak of the P wave, P and the T wave, T.  

 
(a) AUR Healthy (b) AUR Arrhythmia 

 
(c) EER Healthy (d) EER Arrhythmia 

Figure 5-11 : APA profile for TECG from P to T 

As can be seen from Figures 5-11 (a) and (b), the acceptable high AUR value can be 

obtained from the healthy and arrhythmia population when fm  is set greater than 6 
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while 
i

δ  is between 0.5 and 1.5. The EER profile for healthy and arrhythmia 

population as shown in Figure 5-11 (c) and (d) indicates that an acceptable low value 

can be obtained when fm  is set greater than 6 for both population while 
i

δ  is from 1 

to 2 for the healthy population and between 0.5 and 1 for the arrhythmia population. 

 

 

5.5.1.3. TECG within QRS complex 

Figure 5-12shows the AUR and EER profile for healthy and arrhythmia population 

when 
ECG

T  is selected within QRS complex. 

 
(a) AUR Healthy (b) AUR Arrhythmia 

 
(c) EER Healthy (d) EER Arrhythmia 

Figure 5-12 : APA profile for TECG within QRS 
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As can be seen from Figure 5-12, a high value of AUR and low value of EER are 

obtains for healthy and arrhythmia subjects when fm  greater than 3 while iδ  is 

between 0.5 and 1.  

5.5.1.4. Summary of TECG selection using APA 

Tables 5-2 and 5-3 tabulate the summary of AUR and EER performances 

respectively on different 
ECG

T  using APA.  

 

Table 5-2: Summary of AUR performances on different TECG using APA 

ECG
T  Population 

Optimum 

f
m  range 

Optimum 

i
δ  range 

Maximum 

AUR 

AUR 

Ranges 

Ps 

Te 

Healthy 3 15fm≤ ≤  1.5 3iδ≤ ≤  0.9 0.12 

Arrhythmia 5 15fm≤ ≤  0.5 1iδ≤ ≤  0.84 0.16 

PT Healthy 6fm ≥  0.5 1.5iδ≤ ≤  0.99 0.05 

Arrhythmia 6fm ≥  0.5 1.5iδ≤ ≤  0.92 0.1 

QRS Healthy 3fm ≥  0.5 1iδ≤ ≤  0.975 0.075 

Arrhythmia 3fm ≥  0.5 1iδ≤ ≤  0.9 0.09 

 

Table 5-3 : Summary of EER performances on different TECG using APA 

ECG
T  Population 

Optimum 

f
m  range 

Optimum 

i
δ  range 

Minimum 

EER 

EER 

Ranges 

Ps 

Te 

Healthy 3 15fm≤ ≤  1.5 3iδ≤ ≤  0.155 0.21 

Arrhythmia 5 15fm≤ ≤  0.5 1iδ≤ ≤  0.24 0.14 

PT Healthy 6fm ≥  1 2iδ≤ ≤  0.04 0.12 

Arrhythmia 6fm ≥  0.5 1iδ≤ ≤  0.14 0.12 

QRS Healthy 3fm ≥  0.5 1iδ≤ ≤  0.07 0.12 

Arrhythmia 3fm ≥  0.5 1iδ≤ ≤  0.16 0.12 

 

Notice that the optimum range selected from the statistically reliable arrhythmia 

population contains the range of the healthy subjects as a subset. As can be seen from 

these tables, the maximum AUR with minimum EER values are obtained when 
ECG

T  

is selected between the peaks of P and T, followed by the QRS locations and then 
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from Ps to Te. It can be concluded from this evaluation that APA would generate a 

better discriminative performance when the ECG is extracted between the peaks of P 

and T. This location will be used for the rest of the chapters. 

  

5.5.2. Experiment 2 : The optimum algorithms 

In Experiment 2 described in this section, the performance of all APA feature 

selection techniques as explained in section 5.4 are compared with Biel et al [68] , 

Israel et al [70] and PA feature selection techniques described in section 4.6. For all 

PA feature selection techniques, PA parameters namely 
f

m , 
i

m , maxO  , minO  and N  

are set to 35, 1.5, 10 ,-2 and 7 respectively. Meanwhile the APA parameters, namely 

f
m , 

i
δ , maxO  , minO  and N , are set as 8, 0.8, 10, -2 and 7 respectively. From 

evaluation in section 5.5.1 
ECG

T  is best selected between the peak of P and the peak 

of T. Euclidean distance is used as the similarity measures in this experiment.  

Figures 5-13 and 5-14 illustrates the ROC comparison for healthy and arrhythmia 

populations. As can be seen from both figures, the ROC curves trajectories for 

APAW, APAA and APAM were higher than the rest of feature selection techniques 

investigated in this section. It is not visibly clear which of these three APA feature 

selection technique is the best, and comparison can only be made by using the AUR 

and EER values as tabulated in Table 5-4. 

It is also observed in Figures 5-13 and 5-14 that the ROC profile for APAB and 

APAH is projected lower than for all the PA and the rest of the APA feature 

selection techniques. By including Biel and Israel features, APAH generate the worst 

ROC performance.  

The AUR and EER values in Table 5-4 indicate that for healthy population, APAW 

generates the highest AUR and the lowest EER with values of 0.9929 and 0.0714 

respectively. For arrhythmia populations, APAM generates the highest AUR and the 
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lowest AUR with values of 0.9278 and 0.1364 respectively. Comparing all feature 

extraction techniques, APAH has the poorest authentication performance and 

generates the lowest AUR with the highest EER. 

 

Figure 5-13 : APA ROC comparison for Healthy Population 
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Figure 5-14 : APA ROC comparison for Arrhythmia Population 

 

Table 5-4: APA AUR and EER values for Healthy and Arrhythmia Populations 

 Healthy Population Arrhythmia Population 

 AUR EER AUR EER 

Biel 0.8544 0.2143 0.7630 0.3047 

Israel 0.8136 0.2857 0.7420 0.3101 

PAB 0.9517 0.1099 0.8864 0.2045 

PAW/PAA/PAM 0.9521 0.1044 0.8873 0.2045 

PAH 0.9454 0.1429 0.8243 0.2561 

PAR 0.9239 0.1429 0.8330 0.2386 

APAB 0.8748 0.2198 0.8023 0.2853 

APAW 0.9929 0.0714 0.9188 0.1455 

APAA 0.9898 0.0714 0.9179 0.1364 

APAM 0.9863 0.0879 0.9278 0.1364 

APAH 0.7747 0.3571 0.7280 0.3183 
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The APA feature extraction technique extracts information from the generated 

triangular waves. Compared to the PA, the triangular wave generated using APA 

appears to exhibit a unique representation of the investigated signal. 
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(a) (b) 

Figure 5-15: APA feature extraction phenomenon 

( )top
y t  and ( )bottom

y t  in Figure 5-15 (a) are the ECG envelopes ECG signal from 

peak P to R, ( )2P R
y t  of Figure 5-15 (b).  In Figure 5-15 (a), the location vectors 

1
t  to 

5
t  are similar unique points of the original signal ( )2P R

y t  as presented in 

Figure 5-15 (b). When features are intended to be extracted between location vectors, 

for example between 
1
t  and 

2
t  in Figure 5-15 (b), APA transforms the original 

information between these two points into a straight line (in this example becomes a 

positive slope of the triangular waves) as shown in Figure 5-15 (a). The use of a DC 

line to intersect the transformed straight lines in the next APA procedure represents 

an extraction process of a unique characteristic between the two locations. Thus, 

information between two contiguous location vectors is finally transformed into a 

single value.  In order to accurately characterize a signal, feature selection process 

between three contiguous locations give a better representation of the investigated 

signal compared to only using two contiguous locations. This conclusion is based on 
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a low performance of APAB and APAH profile shown in Table 5-4 whereby the 

feature vector which represents the investigated signal comes from features selected 

between two contiguous points at a time. However, when three contiguous locations 

are considered at a time, a more accurate signature is extracted. This is reflected by 

the good performance of APAW, APAA and APAM shown in Table 5-4.  

 

5.5.3. Experiment 3 : The optimum similarity measure 

Subsection 5.5.1 and 5.5.2 respectively concludes that 
ECG

T  is best selected between 

the peaks of P and T and APAW is the best feature selection technique. Experiment 3 

in this subsection will next investigate the best distance measure to be used with 

APA similar as carried out in section 4.8.3 . The APAW parameters namely 
f

m  and 

i
δ  are set to be 20 and 0.8 respectively. Figures 5-16 and 5-17 illustrate the 

comparison performance for healthy and arrhythmia population respectively using 

various distance based similarity measure. 

 

Figure 5-16 : APA distance measurement comparison for healthy population 
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Figure 5-17 : APA distance measurement comparison for Arrhythmia population 

 

As can be seen from these figures, the ROC curve for most of the similarity measures 

are very closed to each other except Mahalanobis distance measure. It can be seen 

from these figures that 2 of the highest ROC curve projections are achieved when the 

distance measurement are using the Cosine and Correlation distance measure 

methods Thus, analytical comparison to determine the best similarity measure 

between these two cannot be determine from the graph and can only be compared 

using their AUR and EER profile tabulated in Table 5-5. 
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Table 5-5: APA profile using different distance measure 

Distance Healthy Population Arrhythmia Population 

Name Equation AUR EER AUR EER 

Euclidean  (2.1) 0.9933 0.0714 0.9201 0.1477 

Manhattan (2.2) 0.9855 0.0714 0.9112 0.1520 

Chebyshev (2.3) 0.9918 0.0714 0.9265 0.1276 

Minkowski p=3 (2.4) 0.9953 0.0604 0.9232 0.1364 

Minkowski p=6 (2.4) 0.9929 0.0714 0.9253 0.1250 

Canberra (2.5) 0.9886 0.0714 0.9216 0.1705 

Sorensen (2.6) 0.9886 0.0714 0.9292 0.1477 

Cosine (2.7) 0.9969 0.0220 0.9432 0.1138 

Mahalanobis (2.8) 0.9141 0.2198 0.8021 0.2727 

Correlation (2.9) 0.9965 0.0385 0.9378 0.1024 

 

From Table 5-5, it is shown that the Cosine distance measure provides the highest 

AUR and lowest EER values for healthy population. For arrhythmia populations, 

Cosine distance measure generates the highest AUR values while correlation 

distance measure generates the lowest EER values. Based on these results, the 

Cosine distance measure would be used to obtain the ROC curves throughout this 

chapter. 

 

5.5.4. Experiment 4 : Optimized APA parameters 

Results indicating APAW as the best feature selection technique as shown in 

subsection 5.5.2 are based from a preset value. Experiment 4 presented in this 

subsection investigates the biometric performances for all APA feature selection 

methods are evaluated using various values of 
f

m , 
i

δ , maxO , minO  and/or N . 
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5.5.4.1. Effect of varying mf and δi 

The first two parameters that would be investigated in this subsection are the 
f

m  and 

i
δ . maxO , minO  and N  are respectively set to be 1, 0 and 7. All APA feature selection 

technique requires the information from these two variables.  

 
(a) AUR Healthy (b) AUR Arrhythmia 

 
(c) EER Healthy (d) EER Arrhythmia 

Figure 5-18 : APAB profile when mf and δi varies 

Figure 5-18 illustrates the AUR and EER profile for healthy and arrhythmia 

population when iδ  and fm  parameters varies using APAB. From this figure, it 

indicates that a higher AUR and lower EER are obtained with a low settings of iδ  

and fm . As the value of iδ  and fm  increases, the authentication performance is 

decreased. 

Figure 5-19 illustrates the AUR and EER profile for healthy and arrhythmia 

population when iδ  and fm  parameters varies using APAW. 
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(a) AUR Healthy (b) AUR Arrhythmia 

 
(c) EER Healthy (d) EER Arrhythmia 

Figure 5-19 : APAW profile when mf and δi varies 

 

For healthy population as shown in Figures 5-19 (a) and (c), a high AUR and low 

EER can be obtained be setting fm  greater than 3 and iδ  between 0.5 and 1.5. For 

the arrhythmia population as shown in Figures 5-19 (b) and (d), a high AUR and low 

EER can be obtained by setting fm greater than 3 and iδ  from 0.5 to 1. 

Figure 5-20 shows the AUR and EER profile for healthy and arrhythmia population 

when iδ  and fm  parameters varies using APAA.  
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(a) AUR Healthy (b) AUR Arrhythmia 

 
(c) EER Healthy (d) EER Arrhythmia 

Figure 5-20 : APAA profile when mf and δi varies 

 

For healthy population as shown in Figures 5-20 (a) and (c), a high AUR and low 

EER can be obtained be setting fm  greater than 3 and iδ  between 0.5 and 2. For the 

arrhythmia population as shown in Figures 5-20 (b) and (d), a high AUR and low 

EER can be obtained by setting fm greater than 5 and iδ  from 0.5 to 1.5. 

Figure 5-21 shows the AUR and EER profile for healthy and arrhythmia population 

when iδ  and fm  parameters varies using APAM.  
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(a) AUR Healthy (b) AUR Arrhythmia 

 
(c) EER Healthy (d) EER Arrhythmia 

Figure 5-21 : APAM Profile when mf and δi varies 

 

Figures 5-21 (a) and (c) indicates that a high AUR and low EER for healthy 

population can be obtained when fm  greater than 3 and iδ  greater than 1. In 

Figures 5-21 (b) and (d), a high AUR and low EER for arrhythmia population can be 

obtained when fm  greater than 3 and iδ  greater than 0.5. 

Figure 5-22 illustrates the AUR and EER profile for healthy and arrhythmia 

population when iδ  and fm  parameters varies using APAH.  
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(a) AUR Healthy (b) AUR Arrhythmia 

 
(c) EER Healthy (d) EER Arrhythmia 

Figure 5-22 : APAH profile when mf and δi varies 

From this figure, it is observed that that a higher AUR and lower EER for both 

healthy and arrhythmia population are obtained with a low settings of iδ  and fm . 

5.5.4.2. Effect of varying Omax and Omin. 

The next two variables that would be investigated in this subsection are the maxO  

and minO . Other variables such as 
f

m  and 
i

δ  are set to be 7 and 0.8 respectively. 

Figure 5-23 illustrates the AUR and EER profile for healthy and arrhythmia 

population when maxO  and minO  parameters varies using APAA. 
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(a) AUR Healthy (b) AUR Arrhythmia 

 
(c) EER Healthy (d) EER Arrhythmia 

Figure 5-23: APAA profile when Omax and Omin vary 

As can be seen from all figures in Figure 5-23 the high AUR and low EER values is 

obtained for any value of maxO  greater than 0 while setting minO  to be zero. 

Figure 5-24 shows the AUR and EER profile for healthy and arrhythmia population 

when maxO  and minO  parameters varies using APAM. Based from all figures shown in 

Figure 5-24, the high AUR and low EER values is obtained for any value of maxO  

greater than 0 while setting minO  to be zero. 
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(a) AUR Healthy (b) AUR Arrhythmia 

 
(c) EER Healthy (d) EER Arrhythmia 

Figure 5-24: APAM profile when Omax and Omin vary 

 

5.5.4.3. Effect of varying N. 

The final variable that would be investigated in this subsection is the effect of 

changing the total harmonic values, N  for APAH. The AUR and EER profile for 

healthy and arrhythmia population when N  varies are shown in Figure 5-25. 

Figures 5-25 a) and (c) illustrate the AUR and EER profile for healthy population. As 

can be seen from these figures, when N  is greater than 10, AUR is greater than 0.85 

while EER is less than 0.2.  The AUR and EER profile for arrhythmia population is 

respectively shown in Figures 5-25 (b) and (d). From these figures, it is observed that 

when N  is greater than 15, AUR is greater than 0.75 while EER is less than 0.3.   
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(a) AUR Healthy (b) AUR Arrhythmia 

 
(c) EER Healthy (d) EER Arrhythmia 

Figure 5-25 : APAH when N varies 

 

5.5.4.4. Summary of APA optimization study 

The performance for a non-biometric ECG data set using 58 healthy subjects is 

shown in Appendix E where it seen that the APAW still manages to generate ROC 

curves with a high AUR and low EER which are, respectively, equal to 0.948 and 

0.1210. 

In the applications of biometric authentication, the study conducted in subsections 

5.5.4.1 to 5.5.4.3 suggested that different APA feature selection techniques react 

differently using specific ranges of APA parameters namely  
f

m , 
i

δ , maxO  , minO  and 

N in terms of AUR and EER performance. For example, APAB and APAH performs 

better when both 
f

m  and 
i

δ  values are low. APAM on the other hand gives a better 
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authentication performance when both 
f

m  and 
i

δ  values are high. Despite of these 

observations, a common ranges of 
f

m  and 
i

δ  may be suggested for all APA feature 

selections technique as certain ranges generates almost similar performance in terms 

of AUR and EER as shown in Appendix D. From Appendix D, it is shown that a 

similar high AUR and low EER profile can be achieved using: 

5 15
f

m≤ ≤  (5-51) 

0.6 1.5
i

δ≤ ≤  (5-52) 

It also have been shown in this section that when maxO  is set greater than 0 while setting 

minO  to be zero generates the best AUR and EER profile for APAA and APAM.  In 

Appendix D, it is shown that similar AUR and EER profile for healthy and 

arrhythmia population are achieved using APAA and APAM when 

min 0O =  (5-53) 

max5 25O≤ ≤  (5-54) 

From subsection 5.5.4.3, it also have been shown that when N  is greater than 15 

both healthy and arrhythmia population generates a high AUR and EER values. In 

Appendix D, the AUR and EER profile when N  is range greater than 15. From 

Appendix D, the maximum and minimum values of AUR and EER for healthy 

populations using these settings are tabulated in Table 5-6. The maximum and 

minimum values of AUR and EER for arrhythmia populations using these settings 

are tabulated in Table 5-7. 

From Tables 5-6 and 5-7, it is observed that when APA parameters set as in (5-51) to 

(5-54), the AUR for APAW, APAA and APAM for healthy population are greater 

than 0.99 while for the arrhythmia population, the AUR is greater than 0.94.  
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Table 5-6 : AUR and EER profiles for healthy population using selected ranges of 

APA parameters 

APA Feature Selection 
AUR EER 

max min max Min 

APAB( fm  and iδ  varies) 0.92 0.85 0.24 0.175 

APAW ( fm  and iδ  varies) 0.996 0.974 0.07 0.02 

APAA ( fm  and iδ  varies) 0.996 0.982 0.07 0.03 

APAM ( fm  and iδ  varies) 0.994 0.978 0.07 0.05 

APAH( fm  and iδ  varies) 0.85 0.6 0.42 0.22 

APAA ( maxO  and minO  varies) 0.996 0.996 0.03 0.03 

APAM ( maxO  and minO  varies) 0.993 0.993 0.07 0.07 

APAH ( N  varies) 0.87 0.87 0.22 0.185 

 

The EER for healthy and arrhythmia populations for APAW, APAA and APAM are 

respectively less than 0.05 and 0.1. APAB is then included in the comparison for 

healthy and arrhythmia population, it is observed that the AUR and EER varies 0.1±  

and 0.2±  respectively between APAB, APAW, APAA and APAM.  However, the 

performance of APAH is differ largely compare to the rest of APA feature selection 

technique 

Table 5-7 : AUR and EER profiles for arrhythmia population using selected ranges 

of APA parameters 

APA Feature Selection 
AUR EER 

max min max Min 

APAB( fm  and iδ  varies) 0.835 0.795 0.29 0.255 

APAW ( fm  and iδ  varies) 0.945 0.89 0.2 0.11 

APAA ( fm  and iδ  varies) 0.945 0.92 0.145 0.115 

APAM ( fm  and iδ  varies) 0.965 0.95 0.12 0.09 

APAH( fm  and iδ  varies) 0.62 0.74 0.42 0.3 

APAA ( maxO  and minO  varies) 0.94 0.94 0.125 0.125 

APAM ( maxO  and minO  varies) 0.963 0.963 0.115 0.115 

APAH ( N  varies) 0.772 0.756 0.315 0.28 
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5.6. CONCLUSION 

This chapter has presented a new feature extraction technique named Adaptive Pulse 

Active (APA). The chapter started by explaining the fundamental concept of APA 

feature extraction technique. Five different feature selection algorithms, namely 

APAB, APAW, APAA, APAM and APAH are derived from the APA concept. 

Various locations within the ECG, from where features can be extracted using APA, 

have also been examined in this chapter. In this chapter, the performance comparison 

for all APA feature selection algorithms is performed. The performance comparison 

also includes all PA feature selection algorithms described in chapter 4. To improve 

the biometric performance profile, the best distance similarity measure to be used 

with APA has also been investigated in this chapter. Finally, this chapter evaluated 

the optimum APA parameters and suggests acceptable ranges for these parameters to 

generate similar authentication performance. The next chapter will use a hybrid PA 

and APA methods to set up multilevel security system. 
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CHAPTER 6.  

 

PA-APA ECG BASED MULTILEVEL SECURITY BIOMETRIC 

AUTHENTICATION SYSTEM 

 

6.1. INTRODUCTION 

 

The Pulse Active (PA) and Adaptive Pulse Active (APA) feature extraction 

techniques for ECG biometric authentication were explored extensively in chapters 4 

and 5 respectively. In those chapters, it was shown that PA and APA parameters 

performed differently depending on their 5 user defined parameters. However, 

specific ranges of these parameters may generate similar AUR and EER 

performances. The suggested ranges for PA and APA parameters were provided in 

subsection 4.8.4.4 and 5.5.4.4 respectively. In this chapter, the PA and APA 

suggested parameters will be used to integrate the knowledge and biometric based 

security approached as explain in Table 2-1 into a new concept of multilevel security 

system. Based on this new concept of security system, PA and APA parameters will 

be designed to be a 4 digit PIN of the system which then used to generate unique 

ECG biometric features. Both PIN and ECG need to be correctly submitted to allow 

the system to pass.  
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This chapter started with an overview of PA and APA parameters ranges which 

produce a similar biometric performance. A similar biometric performance is 

important for the system to avoid every user to use the same PIN which generates the 

highest biometric performance. Next the PA-APA ECG based multilevel security 

biometric authentication system. The advantage of a PIN as the first level of security 

is then discussed. Then the simulation setup to verify the performance of the 

proposed system is then follows. Results and discussion are given next. Finally the 

conclusion of the proposed scheme is given by the end of the chapter. 

 

6.2. PA and APA parameter ranges 

It has been shown that when PA and APA are set within the ranges shown in 

Table 6-1, their AUR and EER profiles varies by up to 0.1±  and 0.15±  respectively.  

Table 6-1: PA and APA parameter suggested range 

Parameters 
PA Ranges APA Ranges 

Maximum Minimum Maximum Minimum 

f
m  50 20 15 5 

i
m  2.5 1.5 Not Available 

i
δ  Not Available 1.5 0.6 

maxO  min0.4 O− ×  25 5 

minO  0<  0 

N  20 2 15≥  

 

In this chapter, the PA and APA parameters listed in Table 6-1 will be used to set up 

the PA-APA ECG based multilevel security biometric authentication system. As 

mentioned previously, a total of 11 PA and APA algorithms are available to be used 

for ECG biometric authentication system as listed in Tables 4-1 and 5-1. To setup the 

proposed security system, only 10 of these algorithms which have the highest AUR 
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and lowest EER are used. They are the APAW, APAA, APAM, APAB, PAW, PAA, 

PAM, PAR, PAB and PAH.  

6.3. MULTILEVEL SECURITY AUTHENTICATION SCHEME 

The proposed PA-APA ECG based multilevel security biometric authentication 

system involves 3 steps [115, 120]: 

i. Insert card or token 

ii. Key in personal identification number (PIN) 

iii. Submit ECG for authentication 

 

6.3.1. Insert card or token 

A user is required first to insert a card or token to claim an identity in the security 

system. Next, the system will request the user to provide two security parameters. i.e. 

a PIN and an ECG signal. 

 

6.3.2. Key in personal identification number (PIN) 

This step is the first level of security whereby the user is required to key in a four 

digit PIN as shown in Figure 6-1. If the PIN inserted is the same as the PIN stored in 

the system, the first level of security is verified and the user can proceed to step 3.  
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1 2 3 4

* * * *

p p p p
 

Figure 6-1 : Four digit biometric PIN 

There are only 10 possible values for each digit which are 0 to 9. The proposed 

relationships between 1p , 2p , 3p  and 4p  with the PA and APA parameters are given 

in the following subsection. 

6.3.2.1. The first digit p1. 

This digit selects the specific PA or APA algorithms (either APAW, APAA, APAM, 

APAB, PAW, PAA, PAM, PAR, PAB or PAH) used to extract the ECG features. 

The substitution of the 10 digits that represents PA or APA algorithm is given in 

Table 6-2. Although these algorithms generate similar AUR and EER profiles, the 

values for each feature vector are different even though the values of PA or APA 

parameters are the same in all cases.  

Table 6-2 : p1 representation for PA and APA algorithms 

1p  Algorithm 
1p  Algorithm 

0 APAA 1 APAM 

2 APAW 3 APAB 

4 PAB 5 PAW 

6 PAA 7 PAM 

8 PAR 9 PAH 

 

The fact that the user is able to select the type of algorithm to extract the ECG 

features introduces added security safeguards giving the user 9 alternative procedures 

if one is ever compromised. 
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6.3.2.2. The second digit p2. 

This digit is related to the value of 
f

m . From Table 6-1, it is observed that PA and 

APA have different ranges of 
f

m .  The proposed relationship between 2p  and 
f

m  

depends on the selection value of 1p . Furthermore, 
f

m  is required to be an integer to 

ensure that a complete triangular period is generated. The relationship between 2p  

and 
f

m is given as follows: 

( )

1

2

1

      5 if 3

1
20 if 4

3

f

f

m p

p
m p

− ≤


= 
− ≥

 
(6-1) 

 

Equation (6-1) is used to generate the value of 
f

m  from the user selection value of 

2p . The values for these variables are: 2p  ranges between 0 and 9, 
1

3p ≤ , 
f

m  

ranges between 5 and 14. 
1

4p ≥ , and 
f

m  ranges between 20 and 47. PAR, PAW, 

PAA and PAM all have the same size of feature vector as 
f

m , while the size of the 

PAB, APAW, APAA and APAM feature vector is twice the size of 
f

m . The size of 

APAB on the other hand is 4 times the size of 
f

m . Although the same algorithm is 

used, when comparing two feature vectors with different fm  values, the matching 

score between those two vectors will still be high. Two different feature vector sizes 

can be accommodated by adding zeros at the end of the smaller size feature vector to 

match the larger size feature vector. This represents an additional level of security to 

the system when the matching score exceeds the threshold setting. 

6.3.2.3. The third digit p3. 

This digit is related to the value of 
i

m  for PA and 
i

δ  for APA. It also depends on the 

selected value of 1p . From Table 6-1, the relationships between 3p  and 
i

m  and 
i

δ  

are given as follows: 

1

3

1

10 6 if 3

10 15 if 4

i

i

p
p

m p

δ − ≤
= 

− ≥
 

(6-2) 
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Equations (6-2) is used to generate the value of 
i

m  and 
i

δ  from the user selection 

value of  3p . Since 3p  is ranges between 0 and 9, for 
1

3p ≤ , 
i

δ  ranges between 0.6 

and 1.5 while for  
1

4p ≥ , 
i

m  ranges between 1.5 and 2.4. 

6.3.2.4. The fourth digit p4. 

This digit corresponds to the value of  maxO   and minO  for APAA, APAM, PAR, 

PAA and PAM the range of N  for PAH or just a random number for APAB, APAW, 

PAB and PAW. The relationships between 4p  and the PA or APA parameters are 

given as follows: 

max 1

min 1

1

4

max 1

min 1

1

0.5 2.5 if 2

   0 if 2

random if 3 4

2.5 1 if 5 8

1 if 5 8

0.5 1 if 9

O p

O p

p
p

O p

O p

N p

× − ≤


× ≤
 ≤ ≤

= 
× − ≤ ≤

− − ≤ ≤


× − ≥

 
(6-3) 

 

Equations (6-3) is used to generate the value of maxO , minO  and N  from the user 

selection value of  4p . Here 4p  ranges between 0 and 9, 
1

2p ≤ , 
max

O  ranges 

between 5 and 23, while 
min

O  is always zero. For 13 4p≤ ≤ , the value of 4p  is just a 

random number. For 15 8p≤ ≤ , 
max

O  ranges between 0.4 and 4 while 
min

O  always 

ranges between -1 and -10. For 
1

9p ≥ , N  ranges between 2 and 20. 

 

6.3.3. Submit ECG as biometric 

Once the PIN is verified and the values of the PA and APA parameters are calculated 

using equations (6-1) to (6-3) the feature extraction process can commence. The 

calculated feature vector value is compared to the value of the stored feature vector. 

If the difference between the two is within the acceptable threshold setting, the 

authentication is verified. This represents the next level of security in this system.  It 

is first required to insert a card or token to claim an identity in the security system. 
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Next, the system will request the user to provide two security parameters. i.e. a PIN 

and an ECG signal. 

 

6.4. PIN: THE FIRST LEVEL OF SECURITY 

 

Personal identification numbers (PIN) or passwords remain the widely used 

authentication means around the world. On the downside, the PIN can be 

accidentally or deliberately compromised, e.g.  a micro camera can be used to obtain 

the PIN without user consent. However, a PIN can always be changed whenever the 

user requires or when it has been compromised [121]. For a 4 digit PIN, there are 

10000 possible combinations of numbers which make it hard to guess. The odd for a 

fraudster to guess these PIN numbers is 1 in 10000 or 0.0001 %.  Many PIN 

verification systems allow 3 wrong PIN attempts, thereby giving a fraudster a 

0.003% probability of guessing the correct PIN before the authentication process is 

blocked. Furthermore, some security system do not allowed PIN to be numbers 

where all digits are identical (such as 1111 or 2222) or consecutive (1234 or 2345) as 

these PIN are easy to guess [122]. For this reason, the probability of guessing a PIN 

increases. In 2002, Bond et al [123], discovered a security flaw in the PIN generation 

system of the IBM 3624, which was duplicated in most later hardware. Known as the 

decimalization table attack, the flaw would allow someone who has access to a 

bank's computer system to determine the PIN for an ATM card in an average of 15 

guesses. Yet again, the chances of guessing the PIN increase. 

A 4 digit PIN described in the proposed PA-APA ECG based multilevel security 

biometric authentication system do not have any limitation on the choice of number 

intended for PIN making the chance of guessing the PIN up to 0.0001%. Integrating 

the PA and APA ECG based parameters as a part of the PIN increase the level of 

security of the system making the fraudster PIN guessing effort useless. 
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In a practical biometric systems, after an identity is claimed by a user (either using 

token or card), the next step is to submit the PIN. If the PIN is not correct, even if a 

fraudster has managed to obtain the legitimate ECGs, the system will automatically 

terminate the transaction without extracting any features. In some cases, for example 

in the event of a software attack by the fraudster or a glitch in the system, a system 

may allow a user to proceed to the next step of submitting an ECG thus extracting 

the ECG features. In this situation when the 1
st
 level of security is breached, a wrong 

PIN will generate a different set of feature vectors. Comparing two different sets of 

feature vectors will subsequently generate a high imposter matching scores and 

prevent authentication. 

 

6.5. PERFORMANCE EVALUATION 

 

To test the performance of the proposed PA-APA ECG based multilevel security 

biometric authentication system, the 112 processed average ECG training and test 

databases set up in chapter 4 and 5 are reused in this study. As mentioned in chapter 

2, the ROC curve requires two sets of matching scores known as ‘Genuine Scores’ 

and ‘Imposter Scores’. Five different cases are simulated in this study to generate the 

‘Genuine’ and ‘Imposter’ scores as illustrated in Figure 6-2. 

Two terms will be repeatedly used when describing each case. The first term is ‘Only 

ECG is compromised’. This term means that a fraudster managed to obtained or 

reconstruct the original ECGs of a user. When this happens, the system would not be 

able to distinguish whether the newly submitted ECG comes from a legitimate user 

or a fraudster. Using the training and test databases, this situation is simulated by 

comparing the same subject between these databases. 

The second term is ‘Only PIN is compromised’. This term reflects a situation where 

the system could not differentiate between the correct PIN keyed in by the legitimate 
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user and the correct PIN keyed in by a fraudster. In the simulation setup, this 

situation is simulated by using the same PIN for the training and test databases. 

Since similarity measurement for PA is the best using Manhattan distance, while for 

APA the best similarity measure is the Cosine distance, the best similarity score used 

in this experiment is still unknown. Based from Figures 4-24, 4-25, 5-16 and 5-17,  it 

is observed that Cosine and Manhattan distance do not working very well for PA and 

APA respectively. As for that the widely used similarity measures namely Euclidean 

distance will be used in this experiment to generate the scores.  

In the PA-APA ECG based biometric system, there are 2 types of information stored 

in the security system. These are the PIN and the ECG feature vectors. The matching 

scores processed in Figure 6-2 started after a user claimed an identity from the 

system. Once the identity is recognized by the system, the first step is to compare the 

stored and newly submitted PIN.  

There are only two outcomes from a PIN comparison, either they are the same or 

different. If the two compared PIN numbers are the same, then either the legitimate 

user has key in the PIN correctly or a fraudster has managed to obtain the correct 

PIN and keyed it into the system. The ECGs are then the second level of security.  

Using the proposed PA-APA ECG based biometric authentication, a feature vector is 

generated from the submitted ECG using the settings obtained from the PIN. The 

generated feature vector is then compared with the stored feature vector from the 

system.  As we are using ECGs from the training and test databases setup in Chapter 

4, the name of the ECG sources for both databases are known. In Figure 6-2 the ECG 

sources for the stored ECG feature vectors come from the training database while the 

sources for the newly submitted ECGs come from the test database. 
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Figure 6-2 : Multilevel Security System Verification 

Hence, as described in Figure 6-2, since the both compared feature vector are from 

the same subject, the matching scores between these feature vectors are labelled as 

‘Genuine’.  We categorize this as Case 4 where both PIN and ECG in the databases 

come from the same subject. If the compared feature vectors are from different 

subjects, the matching scores between these feature vectors are labelled as 

‘Imposter’. We categorize this as Case 3 in where the same PIN is used to extract 

ECG features from different subjects from the training and test databases. 

In the process of generating the ROC curve, any matching scores generated using 

two different PIN will be labelled as ‘Imposter’. There are 3 cases, namely Case 1, 

Case 2 and Case 3, which generate matching scores labelled as ‘Imposter’. In the 

experiment illustrated in Figure 6-2, we evaluate two scenarios when different PINs 
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are compared. The first scenario is that there is no breach in the system. We 

categorize this as Case 1. In Case 1, the system will automatically terminate the 

transaction if the submitted and stored PINs are not the same. The second scenario is 

studied by considering that there is a breach in the system. Cases 2 and 3 reflect this 

scenario. In these cases, although the PIN inserted is not the same, the user is still 

allowed to submit their ECG for feature extraction. If the ECG used to generate the 

matching score comes from the same subject, we categorize this as Case 2. 

Otherwise, the matching score will be categorized as Case 3. 

In running this simulation, two different PINs might generate feature vectors with 

two different sizes. To make sure that comparison can be performed for these 

vectors, the smaller size feature vector will be filled with zero to obtain the size 

exhibited by the larger feature vector. 

The following sections will describe in detail simulation procedure for all 5 cases. 

 

6.5.1. Case 1 : Only ECG is compromised-no breach 

Referring to Figure 6-2, the first case explained in this subsection is by considering 

that only the ECG is compromised with no security breach. Practically, when the PIN 

submitted is not the same with the one stored, the system will automatically reject the 

authentication process. Thus no ‘Imposter’ scores are generated.  

 

6.5.2. Case 2 : Only ECG is compromised- the system is breached 

Case 2 considers only the ECG is compromised when the system is breached. .As 

shown in Figure 6-2, for case 2, it is assumed that the user is allowed to move to the 

next step of submitting their ECGs although the PIN inserted is not the same as that 

stored. It is also assumed that the security system will only allow a wrong PIN to be 

inserted a maximum of 3 times before the transaction is blocked as explained in 

section 6.4.  
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6.5.3. Case 3 : Both PIN and ECG are not compromised – with fraudster 

attempt 

The third case as illustrates in Figure 6-2, considers that both PIN and ECG are not 

compromised. The purpose of this simulation is to generate ‘Imposter’ scores by 

assuming that the ECGs and the PIN are not compromised i.e. fraudster attempt. This 

means that the comparisons will not involve two ECGs with the same PIN from the 

same subject and all measures will be relatively high. 

  

6.5.4. Case 4 : No fraudster attempt 

The fourth case presented in Figure 6-2 is by considering no fraudster attempt. This 

simulation study generates ‘Genuine Scores’ by assuming that the PIN and the ECGs 

are not compromised and that no attempts to gain fraudulent access have been made. 

Since the comparisons are only done for ECGs from the same subject with the same 

PIN, all matching scores calculated in this case are labelled as ‘Genuine Scores’ and 

will be relatively low. 

 

6.5.5. Case 5 : Only PIN is compromised 

The fifth case illustrates in Figure 6-2 considers the situation which only the PIN is 

compromised. In this simulation, the purpose is to generate ‘Imposter Scores’ by 

assuming that the PIN is compromised but the ECG is not. In this case the Imposter 

scores will be relatively high.  
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6.5.6. Results 

As mentioned in previous section, there are no ‘Imposter’ scores generated due to 

Case 1. However, to include the effect of rejection for this case in the ROC curve, 

this thesis intentionally represents the rejection with a high value. To obtained this 

high value, a different randomly PIN are used to extract feature vector from the test 

and training database. The feature vector from the test and training database are 

compared to generate matching scores. The maximum matching scores values from 

these comparisons is defined as the high value. Matching process of Case 1 generates 

112 high value ‘Imposter’ scores. These scores come from comparing the same 

subject from the training and test database. Since the PINs are not the same, 

matching scores generated from these comparisons are replaced by the high value. 

For Case 2, to ensure the simulation runs in a controlled environment, all ECGs from 

the training database are extracted using the same PIN for example in this experiment 

PIN 8827 is used to extract feature vectors from all subjects in the training database. 

The feature vectors extracted from this PIN is defined as the ‘Stored Feature Vector’ 

described in Figure 6-2. Each ECG from the test database will be extracted 

repeatedly using 3 different sets of PIN numbers. To ensure the simulation runs in a 

controlled environment, the three randomly chosen PINs are selected as 9470, 2334 

and 5549. Feature vectors extracted using these three PINs are defined as ‘Submitted 

Feature Vector’. Each Stored Feature Vector will be compared to all Submitted 

Feature Vector to generate the ‘Imposter’ scores. Matching process of Case 2 

generates 336 ‘Imposter’ scores. These scores come from comparing generated 

feature vectors of the same subject from the test and training databases using the 

respective PIN. 

For case 3, each subject in the training database is compared with different subjects 

in the test database (ECGs used in comparison come from different subjects to reflect 

situation in which the ECG is not compromised). To reflect cases where the PIN 

numbers are not compromised, the same PIN used to extract feature vectors from the 

training and the test databases, described in Case 2, are reused. Matching process of 
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Case 3 generates a total of 37 296 ‘Imposter’ scores (12 432 ‘Imposter’ scores for 

each submitted PIN). 

Case 4 can be simulated by ensuring that all ECGs compared from the training and 

test databases belong to the same subject. In this case, the same PIN is used to extract 

ECG features from both test and training databases. In this simulation, a random PIN 

4470 is chosen to extract the features. Matching process of Case 4 generates 112 

‘Genuine’ scores. 

In Case 5, the same PIN is used for different subjects in the test and training 

databases. In this study, a random PIN 0334 will be used to extract ECG features 

from both the training and test databases. Matching process of Case 5 generates 

12 432 ‘Imposter’ scores. 

All matching scores for cases 1 to 5 are then combined to generate the ROC curves 

of the PA-APA ECG based multilevel security authentication system. The ROC 

curve for healthy and arrhythmia populations in this experiment generates an ideal 

case of authentication performance. In actual cases, the 1st level of security (which is 

the PIN) will always terminate a transaction if the keyed in PIN is not the same as the 

one stored. 

Since the Euclidean distance used as the similarity measures described in section 6.5 

generates an ideal ROC performance, the rest of similarity measure would not be 

evaluated in this section. 
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6.6. DISCUSSION 

6.6.1. System performance in breach 

Cases 1, 2 and 3, explained in section 6.5, consider situations in which the PIN 

numbers are unknown to the fraudster. The proposed system performance, with 

respect to the capability of the system to automatically terminate the transaction if 

the submitted PIN is not correct as described in case 1, has been discussed in section 

6.4. However, the objective of simulating case 1 in section 6.5.1 was to include the 

imposter matching scores for the ROC curves in the situation when the system is not 

breached. In a practical system, cases 2 and 3 are rarely to be found as most of the 

time the system will terminate the transaction if the submitted PIN is not the same as 

the one stored.  

Cases 4 and 5 explained in section 6.5 consider situations which the PIN numbers are 

known to the fraudster. Since the PIN is the combination of  the PA and the APA 

algorithms and parameters, as described in section 6.3.2, the general biometric 

performance when only cases 4 and 5 are considered have been shown in sections 

4.8.4.4 and 5.5.4.4. In those sections, the suggested range of PA and APA for all 

algorithms used which relate to the PIN technology in section 6.3.2 have been 

compared with ECGs from the same subject (Case 4) and different subject (Case 5).  

 

6.6.2. System performance with noise 

This subsection discusses the effect of noises as explained in subsection 3.3.3 on the 

proposed system performance when the level of noises in the raw ECGs increases. 

The noise sources to test the system are: 

a) 50 Hz sinusoidal interference with peak to peak amplitudes equals to a 

quarter of the peak to peak amplitude of the 30 second ECG recordings. 

b) White Gaussian noise to model muscle EMG noise 
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c) Low Frequency drift generated using a noise generator designed by [130] that 

consists of baseline wander taken from the MIT-BIH Noise Stress Test 

Database [3]. 

All 28 PTB ECG recordings of the 14 healthy subjects described in Figure 4-11 will 

be combined additively with the noise described above. The white Gaussian noise 

will be added with SNR equal 0dB, 15dB, 45dB and 60dB. For the purpose of this 

study, an arbitrary PIN 5207 will be used to extract feature vector for the training and 

test databases.. 

 

Figure 6-3 : ROC curve when ECG noise increases 

 

Figure 6-3 illustrates the ROC curve when all ECG signal are contaminated with 

various noises. In Figure 6-3, the ROC curves for Biel [68], Israel[70] and feature 

vector generated using PIN 5207 without adding the white Gaussian noise are also 

presented.  
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As can be seen from Figure 6-3, the ROC profile for noise SNR greater then 45dB is 

better than Biel [68] and Israel [70] feature extraction techniques without adding the 

white Gaussian noise. The AUR and EER profiles for these noisy ECG signals are 

shown in Figure 6-4.  

 

Figure 6-4 : AUR and EER profiles when ECG noise increases 

 

In Figure 6-4, the AUR and EER profiles for the noisy ECG signals are respectively 

higher and lower than Biel[68] and Israel[70] feature extraction techniques if the 

noise SNR is greater than 12dB. 

For all SNR noise, the AUR and EER profiles are better than the Israel feature 

extraction technique. From this observation, it is shown that the proposed method 

manages to generate useful authentication profiles under the influence of heavy 

noises. The AUR and EER performances reduce by up to 14% when 0dB SNR noise 

is added to the ECG signals. 
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6.6.3. Advantages of proposed system 

 

The proposed PA-APA ECG based multilevel security authentication system has the 

following advantages: 

i. If the PIN is compromised, the fraudster still cannot access the system, as the 

correct ECGs are also required. 

ii. If the ECGs are compromised, the user can change the PIN number so that the 

extracted features stored in the system change and hence it will reject an 

attempted authentication process by a fraudster. 

iii. The user must be alive and present during the transaction process.   

iv. The proposed system is safe from invertibility attacks such as those aiming to 

recover the original ECG by looking for information such as PIN, algorithm and 

feature vector stored in the system database. To regenerate the original ECG a 

high number of 
trans

T  is required which is not presented by the user during the 

enrolment process. Prediction on the next intersection point within a 
trans

T  is hard 

to acquire since the original ECG morphology of  a human  is determined by 

factors such as health, condition, sex and the shape of an individual’s heart. 

v. Using a different PIN to change feature vectors stored in the system is easy to 

perform. Users have the flexibility to change the PA or APA settings. Unlike 

combining smartcard or randomly coded tokens with a biometric trait, only 

specialized persons with certain type of hardware have the capability to change 

the algorithm parameters. 
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6.7. CONCLUSION 

 

A multilevel security PA-APA ECG based biometric authentication system using 

new signal processing technology name as pulse active (PA) and adaptive pulse 

active (APA) was presented. It was shown that the first level of security for a 

biometric system is the 4 digit PIN that represents the PA or APA parameters. The 

feature vectors of the ECG wave generated by 10 different PA and APA algorithms 

become the secondary level of security. Through experiments using the ECG dataset, 

it was shown that the proposed PIN range of the generalized PA-APA ECG based 

biometric system generates a good performance as a multilevel security 

authentication system. 
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CHAPTER 7.  

 

CONCLUSIONS 

 

7.1. THESIS CONCLUSION 

 

The work presented in this thesis explored a new concept of representing a signal 

into pulse domain for ECG authentications. A highly level security system is very 

important nowadays to protect consumers’ money and property. Experts in the field 

of security believe that biometrics is the answer. Yet, consumers refuse to use the 

technology due to fear of personal data infringements. The significance of using 

biometrics, advantages and challenge were presented in Chapter 2 of this thesis. 

In chapter 2, the advantages and disadvantages of the three main authentication 

approaches namely handheld based, knowledge based and biometric based systems 

were discussed. Each authentication approach has its own strengths and weaknesses. 

This leads to an idea of combining more than one approaches to increase the security 

of the authentication system as presented in this thesis. Most of the biometric system 

involves the process of collecting data, pre-processing, feature extraction, and 

classification. Improvement on the biometric performance may come from one of 

these steps. The scope of the work in this thesis is limited to improving the feature 

extraction techniques for biometric application.  
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In Chapter 2, the difference between authentication and identification biometric 

security systems is discussed. As discussed in chapter 2, the authentication system 

compared 1 to 1 template feature vectors to validate the claim of a subject. Thus, no 

advance classifier was used in the system. The capability of the authentication 

system depends mainly on the capability of the feature extraction technique to extract 

distinct features. For this reason, the need to have a good feature extraction method 

has motivated the research work in this thesis. Comparison between the training and 

test databases in this work is done using a simple template matching technique 

involving similarity distance measure. Nine widely used similarity measure are 

described in Chapter 2. To analyze the performance of the proposed technique in this 

thesis, the receiver operating characteristic (ROC) curve is used. ROC curve provide 

2 important information of the biometric system which is the overall performance of 

the system which is measured by the area under the ROC (AUR) and the equal error 

rates of false acceptance and false rejection. 

This thesis focused on the use of ECG as biometric trait. As explained in Chapter 3, 

ECG represents electrical activity of the heart and is believed to be unique among 

individuals. In chapter 3, the main feature extraction techniques in the literature 

which can be categorized into characteristic and waveform based were discussed. 

Many of these techniques reported a perfect classification using their methods. 

However, it is unknown from which step (feature extraction or classification) of the 

biometric system contribute to the perfect classification. The general hypothesis in 

this thesis claims that a better authentication can be achieved using any classifier 

using a good discriminative features. For this reason, extensive works have been 

done in this thesis to improve the feature extraction technique for ECG based 

biometric authentication system. 

Practical implementation of ECG for authentication is effected by placing the ECG 

electrodes using Lead I configuration so as to measure the voltage between two 

points on the human body (typically between the left and right hand of the user). In 

these measurements, the electrocardiograph current must propagate from one hand, 

through the heart and exit at the other hand to generate the ECG signals. As 

explained in Chapter 3, different Lead configurations examine the heart at different 
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angle, thus the ECG generated will not be the same. It is suggested that any 

recognition performance of the ECG based biometric which are not using Lead I 

configuration are not practical to be consider as general ECG based biometric 

performance. An ECG signal cannot be falsified in the same way as iris or fingerprint 

information can to allow unauthorized. However, in the future, when an ECG 

biometrics technology has been widely accepted as an authentication means, there 

will always be possibility of ECG recordings used without consent by the fraudster 

for authentication purposes. Another major challenge on implementing ECG as a 

biometric is the effect of HRV and AMV which have been discussed in chapter 3.  

These issues motivated the research to develop novel techniques named Pulse Active 

(PA) and Adaptive Pulse Active (APA) to solve the problem. The PA and APA are 

derived from the concept of representing a signal into pulse domain. The philosophy 

behind this is that, all signals can be presented by a finite sequence of pulses. 

Different parts of the signals would generate different width of the pulses based on 

the amplitude and duration of the signals.  

The fundamental of Pulse Active (PA) techniques was discussed in chapter 4. This 

technique is developed based on the concept of Pulse Width Modulation (PWM).  In 

the area of pattern recognition, the concept of PWM to extract features is relatively 

new. This chapter systematically explains the PA techniques to generate unique ECG 

features for biometric purposes. 6 new PA based algorithms were derived from this 

concept. The key advantage of this technique is that the features extracted from the 

ECG signal not only consists the information of the signal but also embedded user 

knowledge information represented by 5 PA unique parameters. Altering these 

parameters will change the value of feature vectors. In this research, the simulations 

carried out in the thesis focused on finding the optimal range of the PA parameters. 

There are two other factors which need to be considered when PA is used to extract 

ECG features for biometric application. These factors are the location of extraction 

and the best similarity measures. In chapter 4, these factors have been investigated. 

Comparing all PA techniques developed in chapter 4, PAW, PAA and PAM 

generates the best authentication profile which manage to obtain 97% AUR and 7% 

EER. 
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The alternative technique to PA is the Adaptive Pulse Active (APA) discussed in 

chapter 5. The APA technique is developed based on the concept of delta modulation 

(DM). 5 different algorithms based on this technique are derived. This chapter 

investigated the optimum of 5 APA parameters by considering first the extracted 

location and selecting the best similarity measure. Comparing all APA algorithms in 

this chapter, it is shown that APAW methods generates the best authentication profile 

which manage to obtain 99% AUR and 2% EER authentication performance.  

In general, chapters 4 and 5 in this thesis have shown how these techniques generate 

good authentication results whilst, at the same time, they deal with the HRV and 

AMV problems. In the future, simulation studies with larger number of healthy 

subjects needs to be conducted in order to produce statistically significant results for 

biometric authentication. The concern of a fraudulent uses of recorded ECGs as a 

means of authentication is solved by introducing a PIN related technology into the 

developed algorithms as discussed in chapter 6. The optimum ranges used to 

configure the PIN in this thesis are all based on the statistically significant 

arrhythmia result that contains the range of the 14 healthy subjects as a subset. The 

PIN will generate different feature vectors based on a selected algorithm. The PIN 

will generate different feature vectors based on a selected algorithm. Embedding the 

PIN and ECG biometric as part of an authentication process requires both the active 

presence of the user and knowledge of the PIN.  

 

7.2. FUTURE WORK 

 

The success of implementing the new algorithms on ECG signal for authentication 

generates a lot of potential for future work. The algorithms developed namely the PA 

and APA techniques are not limited to the use of ECG biometric authentication. By 

using fixed PA and APA parameters these techniques can be used for clinical 

application such as detecting abnormal ECG complexes within ECG recordings. A 
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typical example would be detection of sleep Apnea. The PA and APA algorithms can 

also be used for a non ECG signals such as speech, electromyography (EMG) and 

Electroencephalography (EEG) which have amplitude and time scaling variation 

issues.  

Feature vectors generated based on PA and APA is extracted from unique locations 

of the original signal. Different PA and APA parameters will generate different 

feature vectors. When multiple feature vectors (various PA and APA parameters) are 

considered, numerous locations on the original signal are taken into account. 

Combinations of these feature vectors will generate signature of the signals. 

In terms of transforming a signal in pulse domain, the PA and APA techniques 

transformed the original signals in the form of unipolar pulses with two output states. 

The PA and APA techniques can be further expended to form bipolar output pulses 

with three output states in pulse domain. A multilevel output pulse also can be 

developed to represent the features of the signal. Finally, the philosophy of 

transforming a signal into pulse domain can be extended to transform an image (2-D) 

or video (3-D) into pulse domain. 
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APPENDICES 

 

A. Example of generating Receiver Operating Characteristic (ROC) Curve 

Let Tables A-1 and A-2 represent the respective training and test database of 4 

subjects.  S1, S2, S3 and S4 in both tables represents the name of the subjects while 

X[1], X[2], X[3], X[4] and X[5] are the value of  feature vector X. 

Table A-1: Example feature vectors from the training database 

 X[1] X[2] X[3] X[4] X[5] 

S1 3 9 9 6 2 

S2 4 1 7 9 4 

S3 6 5 8 4 4 

S4 5 1 6 1 2 

 

Table A-2 : Example feature vectors from test database 

 X[1] X[2] X[3] X[4] X[5] 

S1 4 9 6 7 4 

S2 2 3 5 6 2 

S3 4 3 2 8 5 

S4 3 3 6 3 9 

 

The feature vectors of all subjects in the training database are compared to generate 

matching scores with the feature vectors of all subjects in the test database. In this 

example, Euclidean Distance is used as the similarity measures. Table A-3 tabulated 

the matching scores of this comparison. 
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Table A-3: Example of matching score results 

Subject Name Authentication  Subject Name Authentication 

Train Test Actual Score  Train Test Actual Score 

S1 

S1 Positive 3.87  

S2 

S1 Negative 8.31 

S2 Negative 7.28  S2 Positive 5.00 

S3 Negative 9.95  S3 Negative 5.57 

S4 Negative 10.15  S4 Negative 8.19 

S3 

S1 Negative 5.74  

S4 

S1 Negative 10.25 

S2 Negative 6.08  S2 Negative 6.24 

S3 Positive 7.81  S3 Negative 8.89 

S4 Negative 6.56  S4 Positive 7.81 

 

The 1
st
 and 6

th
 column in Table A-3 indicates the name of subjects from the training 

database while the 2
nd

 and 7
th

 column represent the name of the subjects from the test 

database. The 3
rd

 and 8
th

 column indicates the Actual authentication results between 

the training and test database while the 4
th

 and 9
th

 column represents its matching 

scores.  Next, all matching scores are normalized to 1 which the closest distance is 

near to 1. Table A-4 shows the normalized matching scores of Table A-3 using (A.1).  

In this example, the normalizing process is performed by using the maximum 

information from Table A-3 as follows: 

Score
Normalize Score 1

Maximum Score
= −  (A.1) 
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Table A-4: Example of normalized matching score results 

Subject Name Authentication  Subject Name Authentication 

Train Test Actual Score  Train Test Actual Score 

S1 

S1 Positive 0.62  

S2 

S1 Negative 0.19 

S2 Negative 0.29  S2 Positive 0.51 

S3 Negative 0.03  S3 Negative 0.46 

S4 Negative 0.01  S4 Negative 0.20 

S3 

S1 Negative 0.44  

S4 

S1 Negative 0.00 

S2 Negative 0.41  S2 Negative 0.39 

S3 Positive 0.24  S3 Negative 0.13 

S4 Negative 0.36  S4 Positive 0.24 

 

It is observed in Tables A-3 and A-4 that there should be 4 positive authentication 

(PA) results and 12 negative authentication (NA) results. ROC curve is generated 

based on a selection of all available thresholds in the system and compared to the 

matching score in Table A-4. In this example, the values of thresholds are selected 

from 0.1 to 0.9 in the step of 0.1. Table A-5 represents the authentication results 

when the selected threshold values are used to authenticate the matching score of 

Table A-4.  In Table A-5, the actual authentication (AA) and matching score (MS) 

comes from Table A-4. The selected threshold values are then compared to the value 

of matching scores from Table A-4. If MS is greater than the threshold values, the 

‘system authentication based on the threshold’ (TA) will generates PA. Otherwise 

TA will generate NA. Table A-5 (a) shows the example of TA when threshold is set 

as 0.4 
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Table A-5 (a): Threshold value = 0.4 

AA MS TA  AA MS TA  AA MS TA  AA MS TA 

PA 0.62 PA  NA 0.19 NA  NA 0.44 PA  NA 0.00 NA 

NA 0.29 NA  PA 0.51 PA  NA 0.41 PA  NA 0.39 NA 

NA 0.03 NA  NA 0.46 PA  PA 0.24 NA  NA 0.13 NA 

NA 0.01 NA  NA 0.20 NA  NA 0.36 NA  PA 0.24 NA 

 

From Table A-5 (a), it is shown that there are 2 true positive (TP) and 3 false positive 

(FP) authenticated when the threshold is set to 0.4. This process is continue for the 

selected threshold values and their results are presented in Tables A-5 (b) to A5 (i). 

Table A-5 (b) : Threshold = 0.9 

AA MS TA  AA MS TA  AA MS TA  AA MS TA 

PA 0.62 NA  NA 0.19 NA  NA 0.44 NA  NA 0.00 NA 

NA 0.29 NA  PA 0.51 NA  NA 0.41 NA  NA 0.39 NA 

NA 0.03 NA  NA 0.46 NA  PA 0.24 NA  NA 0.13 NA 

NA 0.01 NA  NA 0.20 NA  NA 0.36 NA  PA 0.24 NA 

 

Table A-5 (c) : Threshold = 0.8 

AA MS TA  AA MS TA  AA MS TA  AA MS TA 

PA 0.62 NA  NA 0.19 NA  NA 0.44 NA  NA 0.00 NA 

NA 0.29 NA  PA 0.51 NA  NA 0.41 NA  NA 0.39 NA 

NA 0.03 NA  NA 0.46 NA  PA 0.24 NA  NA 0.13 NA 

NA 0.01 NA  NA 0.20 NA  NA 0.36 NA  PA 0.24 NA 
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Table A-5 (d) : Threshold = 0.7 

AA MS TA  AA MS TA  AA MS TA  AA MS TA 

PA 0.62 NA  NA 0.19 NA  NA 0.44 NA  NA 0.00 NA 

NA 0.29 NA  PA 0.51 NA  NA 0.41 NA  NA 0.39 NA 

NA 0.03 NA  NA 0.46 NA  PA 0.24 NA  NA 0.13 NA 

NA 0.01 NA  NA 0.20 NA  NA 0.36 NA  PA 0.24 NA 

 

Table A-5 (e) : Threshold = 0.6 

AA MS TA  AA MS TA  AA MS TA  AA MS TA 

PA 0.62 PA  NA 0.19 NA  NA 0.44 NA  NA 0.00 NA 

NA 0.29 NA  PA 0.51 NA  NA 0.41 NA  NA 0.39 NA 

NA 0.03 NA  NA 0.46 NA  PA 0.24 NA  NA 0.13 NA 

NA 0.01 NA  NA 0.20 NA  NA 0.36 NA  PA 0.24 NA 

 

Table A-5 (f) : Threshold = 0.5 

AA MS TA  AA MS TA  AA MS TA  AA MS TA 

PA 0.62 PA  NA 0.19 NA  NA 0.44 NA  NA 0.00 NA 

NA 0.29 NA  PA 0.51 PA  NA 0.41 NA  NA 0.39 NA 

NA 0.03 NA  NA 0.46 NA  PA 0.24 NA  NA 0.13 NA 

NA 0.01 NA  NA 0.20 NA  NA 0.36 NA  PA 0.24 NA 

 

 

 

 



187 

 

Table A-5 (g): Threshold = 0.3 

AA MS TA  AA MS TA  AA MS TA  AA MS TA 

PA 0.62 PA  NA 0.19 NA  NA 0.44 PA  NA 0.00 NA 

NA 0.29 NA  PA 0.51 PA  NA 0.41 PA  NA 0.39 PA 

NA 0.03 NA  NA 0.46 PA  PA 0.24 NA  NA 0.13 NA 

NA 0.01 NA  NA 0.20 NA  NA 0.36 PA  PA 0.24 NA 

 

Table A-5 (h): Threshold = 0.2 

AA MS TA  AA MS TA  AA MS TA  AA MS TA 

PA 0.62 PA  NA 0.19 NA  NA 0.44 PA  NA 0.00 NA 

NA 0.29 PA  PA 0.51 PA  NA 0.41 PA  NA 0.39 PA 

NA 0.03 NA  NA 0.46 PA  PA 0.24 PA  NA 0.13 NA 

NA 0.01 NA  NA 0.20 PA  NA 0.36 PA  PA 0.24 PA 

 

 

Table A-5 (i): Threshold = 0.1 

AA MS TA  AA MS TA  AA MS TA  AA MS TA 

PA 0.62 PA  NA 0.19 PA  NA 0.44 PA  NA 0.00 NA 

NA 0.29 PA  PA 0.51 PA  NA 0.41 PA  NA 0.39 PA 

NA 0.03 NA  NA 0.46 PA  PA 0.24 PA  NA 0.13 PA 

NA 0.01 NA  NA 0.20 PA  NA 0.36 PA  PA 0.24 PA 

 

Using the TP and FP values obtained from Tables A-5 (a) to (i), the False 

Acceptance Ratio (FAR) and False Rejection Ratio (FRR) can be calculated using 

equations 2.2 and 2.3. The results of FAR and FRR is shown in Table A-6.  
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Table A-6: FAR and FRR Calculation 

Threshold 
Total Total TP

P
 

FP

N
 1-FRR FAR 

PA NA TP FP 

0.9 4 12 0 0 0 0 0 0 

0.8 4 12 0 0 0 0 0 0 

0.7 4 12 0 0 0 0 0 0 

0.6 4 12 1 0 0.25 0 0.25 0 

0.5 4 12 2 0 0.5 0 0.5 0 

0.4 4 12 2 3 0.5 0.25 0.5 0.25 

0.3 4 12 2 5 0.5 0.42 0.5 0.42 

0.2 4 12 4 7 1 0.58 1 0.58 

0.1 4 12 4 9 1 0.75 1 0.75 

 

Finally, the ROC curve can be projected based on the FAR and 1-FRR values 

tabulated in Table A-6 as shown in Figure A-1. 
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Figure A-1: Examples of ROC curve generation 

The ROC curve illustrated in Figure A-1 can be smoothed by increasing the value of the 

threshold settings. The area under ROC (AUR) can be calculated by the area under the ROC 

curve as shown in Figure A-2. 
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Figure A-2: Examples of AUR Calculation 

The AUR calculation for the example ROC curve in Figure A-2 is shown as follows: 

( ) ( )
1

AUR = 0.42 0.5 + 0.16 0.5 + 1 0.42
2

0 21 0 04 0 42

0 67

         . . .

         .

 
× × × × 

 

= + +

=

 

The equal error ratio is observed from the ROC curve which the FRR equals FAR. This 

value is equal to the intersection of a decreased linear line with the ROC curve as shown in 

Figure A-3. From Figure A-3, the EER observed is equal to 0.48 
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Figure A-3: Examples of EER determination from the ROC curve 
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B. Example of generating average ECG signal for databases  

This appendix provides an example of a step by step description of generating the 

average ECG signal used in the setup of training and test database 

B1. ECG signals from the PTB database. 

ECG signals from the PTB database can be obtained in the Physionet website: 

http://www.physionet.org/physiobank/database/ptbdb/. There are two types of files 

for every subject that must be  for downloaded. The extensions of the files are .dat 

and .hea for example ‘s0039lre.dat’ and ‘s0039lre.hea’. Using Cygwin software, 

these file are then used to generate the MATLAB data file (.mat) for the particular 

subject. The Cygwin instruction to convert the original data to MATLAB is 

wfdb2mat.  

 

Figure B-1: Cygwin response during the conversion of .dat file to .mat 

The output from the Cygwin would be as shown in Figure B-1. From Figure B-1, it is 

observed that converted ‘s0039lre.mat’ signals have 115200 samples for the duration 

of 1 minute and 55 seconds. The sampling frequency of the converted signal is 1 

kHz. The actual unit of the converted signals can be obtained based on information 

described in Figure B-1 using the following equation: 
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converted signal - Base
Actual signal =

Gain
 

B.1 

Figure B-2 shows the ECG graph for ‘s0039lre.mat’ in mV obtained from the 

Cygwin. 

 

Figure B-2: Example of the raw ECG signal from the PTB database 

The next step as described in Figure 4-11 is to extract the first 30 seconds of the 

signals. Figure B-3 illustrates the 30 seconds recording of the ECG signals shown in 

Figure B-2.  
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Figure B-3: Example of the 30 seconds ECG recordings 

 

B2. Filtering the ECG signals 

The next process as described in Figure 4-11 is to filter the 30 seconds ECG 

recordings. As explained in section 4.7.1, in this thesis, an FIR filter is used to filter 

all ECG recordings so that only ECG components within 2 to 40 Hz are allowed.  

There are various digital filters available which generally can be categorized in two: 

Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters. Usually, 

IIR filters are used when sharp cut off and high throughput are the only main 

requirement. FIR is used for a system where NO phase distortion is acceptable. Since 

phase distortion has a greater effect on the recorded ECG, in this thesis, FIR filter 

will be used to ensure the ECG components are within 2 to 40Hz. The FIR filter in 

this thesis is designed with Passband defined from 2 to 40 Hz and two Stopbands 

defined from 1 to 2 Hz and 40 to 41 Hz.  
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Figure B-4: Magnitude and Phase Response of the design filter 

 

Figure B-5: Filtered 30 Second ECG signals 
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Specification of the Passband ripple is 0.1dB and a Stopband attenuation of 80dB. 

The magnitude and frequency response of the designed filter is shown in Figure B-4. 

In this thesis, a Kaiser window FIR filter is designed through MATLAB using the 

‘kaiserord’ instruction. Given a set of specifications in the frequency domain, 

‘kaiserord’ estimates the minimum order of the FIR filter that will approximately 

meet the specification. The minimum order generated using this instruction for the 

given specification is 5019. Although this filter specification is not practical for 

hardware development, for the simulation work in this thesis, it is acceptable. Figure 

B-5 illustrates the filtered ECG signals of the 30 seconds ECG recording shown in 

Figure B-3. The filtered ECG values are saved as MATLAB .mat files. 

  

B3. Approximate the fiducial points 

ECGPUWAVE can only detect the fiducial points of the ECG source if the ECG 

source is in the WFDB format. 

 

B3.1 Converting the filtered ECG signals into WFDB format. 

The next step is to detect the fiducial locations of the ECG signals. The first step is to 

generate the original ECG signal (‘s00391lre.dat’) in .txt format using rdsamp 

through Cygwin. Rename the generated .txt file as samples.txt .Using MATLAB, 

convert the filtered ECG signals into .txt following the format in ‘samples.txt’. The 

new converted file is name as ‘myfile.txt’. Next using Cygwin, convert the myfile.txt 

file into WFDB format.  

 

 

B3.2 ECGPUWAVE 

As shown in Figure B-6, ECGPUWAVE is used to analyses an ECG signal from the 

specified record, detecting the QRS complexes and locating the beginning, peak, and 

end of the P, QRS, and ST-T waveforms. The fiducial locations of the filtered ECG 
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are in the .txt format. In this example, we name the fiducial locations file as 

‘fidecg.txt’.  

 

Figure B-6 : ECGPUWAVE fiducial detection process 

 

Figure B-7 shows an example of the fidecg.txt output file between 2.67 and 3.149 

seconds. As can be seen from Figure B-7, the first and second column indicates the 

fiducial locations in time and sampling point. The third column indicates the types of 

fiducial detected in those locations which are either the peaks of P wave ("p") , T 

wave ("t") or QRS wave ("N"). For example, in Figure B-7, it is shown that the peak 

of the P wave occurs at 2.698 seconds or 2698 sampling intervals after the beginning 

of the ECG recording. In using the ECGPUWAVE, the fourth and fifth columns are 

unused. The last column is called num and indicates specific information of the 

detected fiducial. ECGPUWAVE classifies each T wave as type 0 (normal), 1 

(inverted), 2 (positive monophasic), 3 (negative monophasic), 4 (biphasic negative-

positive), or 5 (biphasic positive-negative); this numeric classification is written into 

the num field each TWAVE row. The P, QRS, and T waveform onsets and ends are 

marked in the output annotation file using WFON ("(") and WFOFF (")") 

annotations. The num field of each WFON and WFOFF annotation designates the 

type of waveform with which it is associated: 0 for a P wave, 1 for a QRS complex, 

or 2 for a T wave. 
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Figure B-7: ECGPUWAVE output file 

 

 

B3. Quality Check, Averaging and Changing the DC offset 

As explain in section 4-7-1, quality check is performed on each 30 second recordings 

to obtain a high quality ECG complex. This is done by calculating the average 

distance between the peak of R to the peak of P and T defined in the pre-processing 

step for the duration of the 30-second recordings. A tolerance of 50 sampling points 

is introduced into both average distance value so that the acceptable limit of all peaks 

locations is defined. There are 42 ECG complexes detected using ECGPUWAVE in 

previous steps. Figure B-8 illustrates the fiducial locations of the example ECG 

source detected using ECGPUWAVE.  

The next step as described in Figure 4-11 is the quality check process. This process is 

to ensure that the ECG complex segmented from the ECGPUWAVE are within the 

acceptable heart rate that exhibits visibly clear and apparent P, QRS, and T waves.  

  

The fiducial points are then used to break the ECG recording into single complexes 

as shown in Figure B-9. As explained in section 4.7.1, only the first 5 ECG 

complexes are considered. Since in there are 4 different extracted locations intended 

for extraction as described in section 4.5, the breaking up process for these locations 

are done separately.  
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Figure B-8: Fiducial Locations 

 

Figure B-9: Segmentation of ECG 
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Except ECG signals taken between peaks R to the next peaks of R, these ECG 

segments are averaged. This is done by aligning these ECG at the peaks of R before 

averaging them. Figure B-10 illustrates the average ECG of 5 ECG complexes.  

 

Figure B-10: Average ECG signals 

As can be seen from Figure B-10, the starting and ending points of the average ECG 

signals are as defined as in section 4.5 expect in Figure B-10 d). To ensure the ECG 

signals as shown in Figure B-10 d) follow the definition of peaks P to T, the 

minimum values of the average ECGs are detected and used to change their DC 

offset to zero. A peak detection algorithm by Billauer [119] is then manually used to 

correct the peaks location of ECG signal in Figure B-10 d). The final ECG signals 

used to setup the training or test database are shown in Figure B-11.  



201 

 

 

Figure B-11 : Final ECG signals for t 
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C. AUR and EER performance for PA feature extraction technique using 

suggested PA Parameters 

Figure C-1 to C-A14 illustrates the AUR and EER profile for PA feature selection 

technique when PA parameters are set as suggested from (4-36) to (4-40). 

 
(a) AUR Healthy (b) AUR Arrhythmia 

Figure C-1: AUR profile for PAB when 
f

m  and 
i

m  vary 

 
(a) EER Healthy (b) EER Arrhythmia 

Figure C-2: EER profile for PAB when 
f

m  and 
i

m  vary 
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(a) AUR Healthy (b) AUR Arrhythmia 

Figure C-3: AUR profile for PAW, PAA and PAM when 
f

m  and 
i

m  vary  

 
(a) EER Healthy (b) EER Arrhythmia 

Figure C-4: EER profile for PAW, PAA and PAM when 
f

m  and 
i

m  vary 

 

 
(a) AUR Healthy (b) AUR Arrhythmia 

Figure C-5: AUR profile for PAR when 
f

m  and 
i

m  vary 
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(a) EER Healthy (b) EER Arrhythmia 

Figure C-6: EER profile for PAR when 
f

m  and 
i

m  vary 

 
(a) AUR Healthy (b) AUR Arrhythmia 

Figure C-7: AUR profile for PAH when 
f

m  and 
i

m  vary 

 
(b) EER Healthy (b) EER Arrhythmia 

Figure C-8: EER profile for PAH when 
f

m  and 
i

m  vary 
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(a) AUR Healthy (b) AUR Arrhythmia 

Figure C-9: AUR profile for PAA and PAM when maxO  and minO  vary 

 
(b) EER Healthy (b) EER Arrhythmia 

Figure C-10: EER profile for PAA and PAM when maxO  and minO  vary 

 
(a) AUR Healthy (b) AUR Arrhythmia 

Figure C-11: AUR profile for PAR when maxO  and minO  vary 
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(a) EER Healthy (b) EER Arrhythmia 

Figure C-12: EER profile for PAR when maxO  and minO  vary 

 
(a) AUR Healthy (b) AUR Arrhythmia 

Figure C-13: AUR profile for PAH when N  varies 

 
(b) EER Healthy (b) EER Arrhythmia 

Figure C-14: EER profile for PAH when N  varies 
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D. AUR and EER performance for APA feature extraction technique using 

suggested APA Parameters 

Figure D-1 to D-16 illustrates the AUR and EER profile for APA feature selection 

technique when APA parameters are set as suggested from subsection 5.5.4.4 

 
(b) AUR Healthy (b) AUR Arrhythmia 

Figure D-1: AUR profile for APAB when 
f

m  and 
i

δ  vary 

 
(a) EER Healthy (b) EER Arrhythmia 

Figure D-2: EER profile for APAB when 
f

m  and 
i

δ  vary 
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(b) AUR Healthy (b) AUR Arrhythmia 

Figure D-3: AUR profile for APAW when 
f

m  and 
i

δ  vary  

 
(a) EER Healthy (b) EER Arrhythmia 

Figure D-4: EER profile for APAW when 
f

m  and 
i

δ  vary 

 

 
(b) AUR Healthy (b) AUR Arrhythmia 

Figure D-5: AUR profile for APAA when 
f

m  and 
i

δ  vary 



209 

 

 
(b) EER Healthy (b) EER Arrhythmia 

Figure D-6: EER profile for APAA when 
f

m  and 
i

δ  vary 

 

 
(c) AUR Healthy (b) AUR Arrhythmia 

Figure D-7: AUR profile for APAM when 
f

m  and 
i

δ  vary 

 
(d) EER Healthy (b) EER Arrhythmia 

Figure D-8: EER profile for APAM when 
f

m  and 
i

δ  vary 
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(e) AUR Healthy (b) AUR Arrhythmia 

Figure D-9: AUR profile for APAH when 
f

m  and 
i

δ  vary 

 
(f) EER Healthy (b) EER Arrhythmia 

Figure D-10: EER profile for APAH when 
f

m  and 
i

δ  vary 

 
(c) AUR Healthy (b) AUR Arrhythmia 

Figure D-11: AUR profile for APAA when maxO  and minO  vary 
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(d) EER Healthy (b) EER Arrhythmia 

Figure D-12: EER profile for APAA when maxO  and minO  vary 

 
(b) AUR Healthy (b) AUR Arrhythmia 

Figure D-13: AUR profile for APAM when maxO  and minO  vary 

 
(a) EER Healthy (b) EER Arrhythmia 

Figure D-14: EER profile for APAM when maxO  and minO  vary 
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(c) AUR Healthy (b) AUR Arrhythmia 

Figure D-15: AUR profile for APAH when N  varies 

 
(d) EER Healthy (b) EER Arrhythmia 

Figure D-16: EER profile for APAH when N  varies 
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E. Example of PA and APA performance on non biometric applications  

The ECG recording requirements outlined in subsection 3.4.1 is reduced to only 

healthy subjects, the training and test database may come from the same recording 

and the ECG source may come from unpractical biometric leads (not limited to Lead 

I). These steps are necessary due to the difficulty of finding public ECG databases 

which meet the requirement in subsection 3.4.1. In this study, 58 healthy subjects 

from the Fantasia [131], Apnea [132] and MIT-BIH Normal Sinus Rhythm Database 

[3] are used. Each subject from these databases has their ECGs recording divided 

into 2 separate recordings. The first part of the recording is used to set up the training 

database while the second part of the recording is used to set up the test database. 

PAW and APAW is used to evaluate the performance of these databases.. 

 

Figure E-1: ROC performance curve for 58 Healthy Subjects using PAW 
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The ROC curve for the 58 healthy subjects extracted using PAW is shown in Figure 

E-1. The 
f

m  and 
i

m  values to generate the feature vectors of the ROC curve are 25 

and 1.5 respectively. From Figure E1, the AUR and EER values for these 58 healthy 

populations are 0.953 and 0.1210 respectively. 

APAW is then used to evaluate the databases. The ROC curve for the 58 healthy 

subjects extracted using APAW is shown in Figure E-2.  The 
i

δ  and 
f

m  are set to  

0.6 and 7 respectively. From Figure E-1, the AUR and EER values for these 58 

healthy populations are 0.948 and 0.1210 respectively. 

 

Figure E-2: ROC performance curve for 58 Healthy Subjects using APAW 
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