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Abstract

The work presented in this thesis focusses on new techniques for capture and analysis of

hyperspectral data. Due to the three-dimensional nature of hyperspectral data, image

acquisition often requires some form of movement of either the object or the detector.

This thesis presents a novel technique which utilises a rotational line-scan rather than a

linear line-scan. Furthermore, a method for automatically calibrating this system using

a calibration object is described. Compared with traditional linear scanning systems,

the performance is shown to be high enough that a rotational scanning system is a viable

alternative.

Classification is an important tool in hyperspectral image analysis. In this thesis, five

different classification techniques are explained before they are tested on a classification

problem; the classification of five different kinds of Chinese tea leaves. The process from

capture to pre-processing to classification and post-processing is described. The effects

of altering the parameters of the classifiers and the pre and post-processing steps are

also evaluated.

This thesis documents the analysis of baked sponges using hyperspectral imaging. By

comparing hyperspectral images of sponges of varying ages with the results of an expert

tasting panel, a strong correlation is shown between the hyperspectral data and human

determined taste, texture and appearance scores. This data is then used to show the

distribution of moisture content throughout a sponge image.

While hyperspectral imaging provides significantly more data than a conventional imag-

ing system, the benefits offered by this extra data are not always clear. A quantitative

analysis of hyperspectral imaging versus conventional imaging is performed using a rice

grain classification problem where spatial, spectral and colour information is compared.
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Chapter 1

Introduction

Hyperspectral imaging provides both spatial and spectral information about a scene.

Each spatial location in a hyperspectral image contains a contiguous portion of the

electromagnetic spectrum, usually with some part extending outside the human visible

range. This wealth of data gives substantially more information about a scene compared

to conventional digital imaging, making it a useful tool in a number of areas such as

food and drink quality assessment [1], forensic science [2], and in the military [3].

The number of spectral bands captured varies, but tends to be in the region of 100s

of bands [1]. As a result, hyperspectral images are much larger than their standard

greyscale or colour imaging counterparts. This wealth of data provides valuable in-

formation, but the large quantities can cause problems during capture and subsequent

analysis. One aim of this thesis is therefore to provide new techniques which aid in the

capture and analysis of hyperspectral data.

The other main motivation for this work was that it was felt that was a need to demon-

strate the potential of hyperspectral imaging to non-expert users who may be unaware

or unconvinced that it could be potential solution to a problem they have. Originally,

hyperspectral imaging systems were bulky and expensive, so mainly used in a military

context. The price and size has come down as the technology improves, and therefore

the savings required from implementing a system are reduced, meaning hyperspectral

imaging can realise its potential in a wider range of applications. For a business to invest

in a hyperspectral imaging system, it must be convinced of its worth. Any processing

and analysis required may be beyond the capabilities of those in the business, and the

1
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camera manufacturers may also lack the will or ability to help. By collaborating with

system manufacturers and end users this gap can be bridged.

This thesis aims to determine the capability of hyperspectral imaging through a clas-

sification problem using Chinese tea leaves, shelf-life prediction of baked sponges and

a quantitative analysis of any improvements offered over conventional digital imaging

using classification of four different types of rice as an example. A novel technique for

data capture using rotational, rather than linear, movement is also proposed.

1.1 Organisation of Thesis

The remainder of this thesis is organised as follows:

• Chapter 2: This chapter is split into three sections. The first provides a back-

ground to the different hyperspectral imaging technologies, imaging methodologies

and wavelength ranges available. The second part looks at some of the current

signal processing techniques used in hyperspectral image analysis specifically fo-

cussing on dimensionality reduction. Finally, an overview is given of the main

applications areas where hyperspectral imaging technology is utilised.

• Chapter 3: In this chapter, a novel alternative to the linear line-scan normally

used in pushbroom acquisition is presented. The key difference is in the use of

rotational motion rather than linear motion. Two offsets associated with a rota-

tional line-scan are explained and an algorithm which compensates for the errors

they cause is proposed. A method for determining these offsets using a calibration

object is explained before a quantitative comparison is made with images captured

using a regular line scan system.

• Chapter 4: Classification is a common process to implement after capture of

hyperspectral data. In this chapter, five of the most popular classification tech-

niques are explained in detail. Each of these classifiers is then demonstrated in

a classification problem; the classification of five different types of Chinese tea.

The process of capturing and manipulating the data into a suitable format is de-

scribed. Results are then produced showing the performance of each classifier and

the effects of changing the most important parameters.
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• Chapter 5: Chapter 5 focusses on the analysis of baked sponges, specifically

how their eating quality changes with time. An experiment that utilises hyper-

spectral imaging and human tasting is described. It is demonstrated that the

moisture content appears to reduce as the sponges age showing correlation with

the also decreasing eating quality. The spatial distribution of moisture throughout

each sponge is then estimated using a maximum likelihood classifier. Finally, the

potential benefits of implementing a hyperspectral imaging system on a bakery

production line are discussed.

• Chapter 6: This chapter presents a quantitative analysis of the benefits offered

by hyperspectral imaging compared to conventional greyscale or colour digital

imaging. A technique for reducing the storage and processing requirements for

hyperspectral images with many unwanted background pixels is proposed. Spatial

features are combined with the hyperspectral data allowing five subsets from the

data to be created: spatial data, colour data, spectral data, spatial + colour

data, and spectral + spatial data. Classification is performed using a support

vector machine with each of these datasets, giving quantitative results showing

the improvement offered by hyperspectral imaging over conventional techniques.

• Chapter 7: In Chapter 7, the main results from this thesis are summarised along

with discussion about their impact and the direction any subsequent research could

take.

1.2 Original Contributions

It is believed that the following novel contributions have been made:

• In Chapter 3, a technique is proposed for reconstructing a rotational linescan back

into Cartesian space based on two offsets inherent within a rotational scan. Fur-

thermore, two methods for determining theses offsets based on a calibration object

are presented. The first method requires a perfect alignment of the calibration ob-

ject while the second method relaxes this alignment requirement.
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• Chapter 4 presents a methodology to image, correct, crop, pre-process, classify,

and spatially filter samples of Chinese tea using a hyperspectral system.

• In Chapter 5 hyperspectral data of a baked sponge is shown to correlate with

results from a human tasting panel. The distribution of moisture throughout a

sponge is also estimated using a maximum likelihood classifier.

• Chapter 6 documents a technique for the quantitative analysis of spectral, spatial

and colour information when used for classification, specifically in the case of rice

grains. A sparse representation technique is also proposed, drastically reducing

the storage and processing requirements of the data.



Chapter 2

Background

2.1 Introduction

As explained in the previous chapter, hyperspectral imaging is an imaging technique

which can provide both spatial and spectral information about a scene simultaneously.

The term hyperspectral imaging covers a broad range of technologies, imaging method-

ologies and wavelength ranges. Whilst detailing each of these individually is beyond the

scope of this thesis, the first part of this chapter aims to explain the principle behind

each along with some associated advantages and disadvantages.

The second part of this chapter looks at a common signal processing technique known as

dimensionality reduction. Multiple detailed examples will be used to demonstrate how

it can be implemented and the benefits it can offer.

The final section in this chapter will give an overview of the main applications areas that

take advantage of hyperspectral imaging, provide some specific examples and justify the

choice of the topics chosen for the rest of this thesis.

5
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Figure 2.1: Spectral response of a baked sponge

2.2 Technologies, Imaging Methodologies and Wavelength

Ranges

2.2.1 Imaging, Spectroscopy and Hyperspectral Imaging

Hyperspectral imaging can be thought of as a combination of spectroscopy and conven-

tional digital imaging. This section will briefly explain both of these before showing how

their principles can be combined to create hyperspectral imaging. The term ‘band’ will

be used throughout in different contexts, but it will always refer to a single channel of

a multichannel dataset.

Spectroscopy is the study of matter emitting or interacting with electromagnetic radia-

tion. This information can be represented by a plot of the response against wavelength,

known as a spectrum. Normally, only a single spectrum is produced with each measure-

ment, i.e. there is no spatial information associated with the signal. This is an average

of all the spectral information for a specific area. Figure 2.1 shows a spectroscopic mea-

surement of a baked sponge. The y-axis here refers to the intensity of the reflected light

measured by the sensor as a proportion of the intensity that would be reflected by a

white calibration tile with near-perfect reflectance.
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Figure 2.2: Cone Responses. S, M, and L refer to short, medium, and long, respectively.
The dashed line (R) shows the response of rods, more suited for night vision [4].

Figure 2.3: Close up view of pixels on an RGB display

Conventional digital imaging on the other hand, captures reflected light from multiple

locations in a scene, building a spatial image. Each of these spatial locations corre-

sponds to a single pixel on the sensor. In a greyscale image, each pixel has a single

value corresponding to the intensity of the captured light, i.e., there is no wavelength

information. In colour imaging, each pixel is represented by three components; red,

green and blue (RGB). Each component is a weighted sum of light from a specific region

of the electromagnetic spectrum, corresponding to the three types of receptor cones in

the human eye. Figure 2.2 shows the absorbance at different wavelengths of light for

each type of receptor cone. Note that although colour information is contained within

an RGB image, there is no information about specific wavelengths, only weighted sums

of them. Figure 2.3 shows an example of pixels on an RGB display.

Hyperspectral imaging combines spectroscopy and conventional imaging to produce a

spectrum at each pixel in the image. If you consider a greyscale image to be single

band and an RGB image to have three bands, then a hyperspectral image may have a
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Figure 2.4: Hyperspectral image consisting of images at different bands

hundred bands or even a thousand bands. (The actual number of bands required for an

image to be ‘hyperspectral’ is discussed in the following section.) Figure 2.4 shows how

a hyperspectral image is made up of many bands.

2.2.2 Spectral Imaging Classes

For an image to be considered ‘hyperspectral’, it generally has to consist of more than 20

bands. Any fewer than this, and it would be considered a ‘multispectral’ image. There is

no strict definition, however, so often data containing fewer than 20 bands is referred to

as hyperspectral, especially in a marketing context. More than several thousand bands

is sometimes referred to as ‘ultraspectral’. All three of these terms are often irrelevant as

they are not related spectral resolution. For example, a ‘multispectral’ image consisting

of 20 bands in the range 400 nm to 600 nm has a spectral resolution of 10 nm, whereas a

‘hyperspectral’ image consisting of 100 bands in the wavelength range 1000 nm to 2500

nm has an inferior spectral resolution of 17 nm. Which of these is better could only be

decided based on the application.
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2.2.3 Hyperspectral image data formats and display methods

Since hyperspectral images are three-dimensional (two spatial dimensions, one spectral

dimension), the data is in the form of a cube. In this thesis, a hyperspectral image is

referred to as a hypercube, although in other literature they may be called a hyperspec-

tral cube, spectral cube, spectral volume, datacube or data volume. The two spatial

dimensions are referred to as x and y and the spectral dimension is referred to as λ

(wavelength). The three dimensions allow the data to be displayed in three separate

ways. Using the MATLAB notation where a colon (:) represents all values in that di-

mension [5] and a hypercube, I, with dimensions (x, y, λ), we can represent the data as

follows:

I(:, :, λ) would return every pixel at a specific λ. This would produce a greyscale image

of the scene. For example, Figure 2.5(a) shows a hyperspectral image of sections of a

yellow pepper (left), a red pepper (middle) and a green pepper (right) at a wavelength

of 690 nm. Since 690 nm corresponds to a red wavelength, the red pepper appears

brighter than the other two. A colour representation of a hypercube can be created in

what is known as ‘false colour’, by simply selecting three bands corresponding to red,

green and blue. Figure 2.5(b) shows a false colour image of the peppers with the red,

green and blue wavelengths roughly corresponding to the peaks shown in Figure 2.2.

As expected, the pepper in the centre is indeed red. Since this image has been created

using only three bands, it looks unnatural when compared to the viewing the object in

real life. A true colour image generated using a spectral sensitivity function is shown

in Figure 2.5(c) giving a more realistic representation of the scene. To achieve the

most accurate representation of the scene, a spectral sensitivity function of the camera

and spectrograph used would be required. Since this was not available, the spectral

sensitivity function of the Nikon D70 camera was used, shown in Figure 2.5(d). More

information about the use of spectral sensitivity functions to create colour images can

be found in [6].

I(x, y, :) would return every λ value for a specific (x, y) location in the hypercube.

This would produce a spectrum of a single point in the scene. Figure 2.6(a) shows

the reflectance spectrum at three points in the three peppers hypercube. The locations

of these points is indicated in Figure 2.6(b). From this reflectance information, we

can see how the colours of the red and green peppers correspond to higher reflectance
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Figure 2.5: Sections of a yellow pepper (left), a red pepper (middle) and a green pepper
(right) (a) At 690 nm (b) In false colour generated from three spectral bands (c) In true
colour generated from a spectral sensitivity function (d)Spectral sensitivity function of

the Nikon D70 [7].

values at their corresponding wavelengths. The yellow pepper’s colour is due to the high

reflectance at green and red wavelengths.

I(:, y, :) would return every value at a specific y location. Since only y is specified and not

x, this is a plane rather than a single point. If I(:, :, λ) can be considered as a horizontal

slice then I(:, y, :) can be considered a vertical slice. Figure 2.7(a) shows a slice through

the three peppers hypercube. Figure 2.7(b) shows the spatial location of this line in

the hypercube. It is difficult to extract any meaningful information from this view, so

it is rarely used to visualise the data. By comparing Figure 2.6(a) and Figure 2.7(a),

however, similarities are evident: Figure 2.7(a) is effectively a ‘top down’ view of data

very similar to Figure 2.6(a). This format demonstrates how the pushbroom acquisition

technique works, as explained in Section 2.2.4.

I(x, :, :) produces a plane orthogonal to I(:, y, :) and is not different in any practical way

after acquisition since the order of x and y is arbitrary.
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Spectral response of three different peppers
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Figure 2.6: Spectral responses of different types of pepper (a) Plotted spectra (b)
Locations of plotted spectra

Table 2.1: Interleave Methods

Method Example

Band-Interleaved-by-Line AAAAABBBBBCCCCCAAAAA...
Band-Interleaved-by-Pixel ABCABCABCABCABCABCAB...
Band-Sequential AAAAAAAAAAAAAAABBBBB...

2.2.3.1 Interleave Methods

As well as several methods to visualise a hypercube, there are several ways to store

one. These are known as Band-Interleaved-by-Pixel (BIP), Band-Sequential (BSQ) and

Band-Interleaved-by-Line (BIL). Using data shown in Figure 2.8, a synthetic hypercube

containing letters rather than values, Table 2.1 shows the difference in how each value

is stored in a hypercube file.
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Figure 2.7: Slice of hypercube containing yellow, red and green peppers (a) All values
at all wavelengths at a specific y location (b) Location of line slice in hypercube

Figure 2.8: Synthetic hypercube made up of letters. Each letter corresponds to a
different band

Each of these methods is suited to a different display method. BIP stores each pixel

at all bands one after the other, so all values at I(x, y, :) would be next to each other.

BSQ stores each band separately so all values at I(:, :, λ) would be next to each other

and BIL stores each line at all wavelengths separately so all values at I(:, y, λ) would be

next to each other. Using a display method with its corresponding interleave method

results in much faster reading and writing of the file as the file pointer does not need to

skip around the file after each value has been read.
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2.2.4 Image Acquisition Techniques

2.2.4.1 Area Scan

An area scan is where the entire scene is captured at a specific wavelength band, then the

wavelength band is changed and the entire scene is captured again. This is repeated for

all bands required, building up the hypercube. Figure 2.9(a) shows how the changing

the wavelength band and recapturing the scene builds up the hypercube. The most

common way to capture data in this format is to use a sensor sensitive to the whole

wavelength range required and placing different band-pass filters in front of it. Each

filter used corresponds to a wavelength band in the produced hypercube. Changing the

filter is often achieved using a filter wheel, where the wheel spins a set amount after

each band has been captured. Another form of area scan imaging uses a tunable filter

where an electric current changes the band-pass capability of the filter. Similar to the

filter wheel, the filter is tuned to a different wavelength band after the previous band

has been captured.

Since all spatial information at a specific wavelength band is captured simultaneously,

BSQ is used as the data is captured in the correct order for this format.

Advantages

The main advantage of an area scan is the simplicity, both in terms of understanding

and implementation when a low number of wavelength bands are required. Since each

wavelength band is captured separately, the exposure time for the sensor can be adjusted

independently. Also, unlike some of the other methods described below, both the sample

and the detector can remain stationary.

Disadvantages

Poor spectral resolution and a long acquisition time are the main disadvantages of the

area scanning technique and improving one of these will tend to be at the expense of

the other. The spectral resolution is poor because a discrete filter (or in the case of a

tunable filter, a discrete setting) is required for each wavelength band. The acquisition

time is long because there is an exposure time for each wavelength band captured as

well as the time taken to change the filter. Adding more filters can increase the spectral

resolution but will increase the acquisition time and vice-versa.
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2.2.4.2 Whiskbroom

In whiskbroom acquisition, all wavelength bands are captured for a single spatial point

in the scene. Then, either the detector or the object is moved and another spectrum

is acquired. This is repeated for all spatial points in the scene. Figure 2.9(b) shows

how a hypercube is generated using this technique. BIP is the method used to store the

captured data as all the information for each pixel is captured one after the other. The

optics in a whiskbroom scan are simpler than the alternatives, as no spatial information

is captured. Two dimensions of movement (of the detector, object or both) are required,

however, and care must be taken to ensure that the movement is accurate, consistent

and repeatable.

Advantages

The whiskbroom method is equivalent to using a spectrometer (which captures a spec-

trum at a single point) and scanning it across the scene in both spatial dimensions.

Spectrometers can be much cheaper than the alternatives discussed in this section. This

could mean that a greater wavelength range could be covered, or they could be covered

at a higher spectral resolution.

Disadvantages

Having to scan in two directions has several drawbacks. Firstly, it is more time consum-

ing as either the object or the detector has to be repositioned for every capture. If the

object is not temporally stable, then the hypercube captured will not be an accurate

representation of the scene. Secondly, advanced positioning methods are required to

ensure that each pixel captured is registered to the right spatial location.

2.2.4.3 Pushbroom

Pushbroom is by far the most popular hyperspectral imaging acquisition technique. In-

stead of capturing a single pixel at all wavelength bands like the whiskbroom technique,

the pushbroom technique captures an entire line of pixels at all wavelength bands simul-

taneously. The detector or object is then moved along the other spatial dimension. This

is shown in Figure 2.9(c). This produces data in the BIL format. Each spatial line is a

two-dimensional slice of the hypercube and can be captured on a two-dimensional array

detector, such as a greyscale camera (assuming the camera is responsive in the all of the
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spectral bands of interest). Images from this camera are then captured sequentially, like

a video. While most pushbroom systems use linear motion, a major contribution in this

thesis is a pushbroom system which uses rotational motion. This is explained in detail

in Chapter 3.

Advantages

Although an accurate way of moving either the detector or the object is required, this

movement is often naturally available. For example, objects on a conveyor belt on

a production line moving underneath a hyperspectral camera or an aircraft holding

a downward facing hyperspectral camera flying in a straight line over a field. The

pushbroom technique combines the high spectral resolution of a whiskbroom system

with the high spatial resolution of an area scan system.

Disadvantages

Since all wavelength bands are captured simultaneously, the exposure time for each

wavelength band cannot be set independently. The scanning direction and speed need

to be accurately set to match the exposure time and the spatial resolution of the dis-

persive element to ensure that square pixels are generated. If non-square pixels are

produced, then the generated hypercube will need to be post-processed, requiring some

interpolation and will never be an exact representation of the scene.

2.2.4.4 Snapshot

As the name implies, a snapshot system is able to capture both spatial and spectral

information about a scene in a single exposure, i.e. all three dimensions captured at

once, as seen in Figure 2.9(d). No scanning is involved in this process.

Advantages

The main advantage of snapshot systems is their ability to capture full hypercubes in

a very short time. The exposure time is comparable with that of a single line in a

pushbroom system. This allows frame-rates suitable for recording hyperspectral videos.

Disadvantages

Snapshot systems are still relatively early in development, and resolutions both spatially

and spectrally are poorer than the more popular pushbroom systems.
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(a) (b)

(c) (d)

Figure 2.9: Different image acquisition techniques (a) Area Scan (b) Whiskbroom (c)
Pushbroom (d) Snapshot

2.2.5 Image Sensing Modes

Reflectance, transmittance and interactance are the three different sensing modes for

hyperspectral imaging. The difference between each comes down to the position of

the object, detector and light source. Figure 2.10 shows the differences between these

imaging modes [8].

Reflectance is the most popular hyperspectral imaging mode and all of the hypercubes in

the work shown in this thesis were captured in reflectance mode. Simply, a light source

illuminates an object and the hyperspectral camera records how much of this light is

reflected off the object and into the detector.

In transmittance, the object is placed between the light source and the detector. The

amount of light transmitted through the object reaching the detector is recorded. This

allows more detailed information about the inside of the object to be captured such as

internal defects. The amount of light penetrating the object, however, is often very small

making measurement difficult. This is especially true for objects with low transparency.



Chapter 2. Background 17

(a) (b) (c)

Figure 2.10: Different imaging modes (a) Reflectance mode (b) Transmittance modes
(c) Interactance mode

Interactance provides a compromise between reflectance and transmittance where the

light source and the detector are on the same side of the object [9]. The detector

measures light backscattered through the object, reducing the influence of the thickness

of the object and any surface effects [8]. Interactance requires a more complicated set-up

than reflectance or transmission, however, as a light seal must used to ensure that no

specular reflections are picked up by the detector.

[9] provides a detailed comparison of these three methods, and concludes that inter-

actance is the most effective method for the specific case of measuring the internal

properties of kiwifruit. It should be noted, however, that this study only looked at

spectroscopy techniques, not hyperspectral imaging. Interactance and transmission are

harder to implement with hyperspectral imaging, so reflectance mode is still the most

popular.

2.2.6 Visible, Near Infrared, Short Wave Infra-red

Much in the same way that different manufacturers have different definitions of the

terms ‘multispectral’ and ‘hyperspectral’, the same is true when it comes to naming

wavelength range capabilities of hyperspectral systems. Some combine the terms to

describe a system which covers multiple ranges while others simply refer to the region

which is most prominent in the system. In this thesis, three terms will be used: ‘visible’,

‘near infra-red’ and ‘short wave infra-red’. This section will briefly explain what is meant

by each of these terms.
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Table 2.2: Comparison of different hyperspectral wavelength ranges and their names.

Wavelength Range Name Abbreviation

400 nm to 700 nm Visible VIS
400 nm to 1000 nm Visible Near Infra-red VNIR
900 nm to 1700 nm Near Infra-red NIR
1000 nm to 2500 nm Short Wave Infra-red SWIR

Visible (VIS)

The term ‘visible’ in this sense refers to the wavelengths of light that can be detected by

the human eye (around 390 nm to 700 nm [10]). A VIS range system will be responsive

at most of these wavelengths (however, the shortest wavelength detected is often only

around 400 nm).

Near Infra-red (NIR)

‘Near infra-red’ tends to refer to the region of the spectrum with wavelengths 750 nm

to 1400 nm. Note that the NIR region starts as soon as the wavelength of the light is

longer than what is detectable by the human eye.

Short Wave Infra-red (SWIR) SWIR is the region after NIR that covers the range

1400 nm to 3000 nm. In practice, most hyperspectral imaging systems detect wave-

lengths no longer the 2500 nm.

Some example systems

Shown in Table 2.2 is a list of several different wavelength ranges and how they will be

referred to in this thesis.

2.2.7 Instruments Required for Hyperspectral Imaging

Despite the different acquisition techniques, sensing modes and wavelength ranges,

nearly every type of hyperspectral imaging needs the same five components: a light

source, a lens, a wavelength dispersion device, an image detector and a data acquisition

unit. This section will explain the purpose of each of these components and the different

technologies behind them.
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2.2.7.1 Light Sources

Unless the object being examined with a hyperspectral imaging system can emit its own

light in some way (for example, measuring the spectral response of a new type of light

bulb), a light source is required to illuminate the target. For field applications such as

crop monitoring, this light source is the sun. Other light sources include halogen lamps,

light emitting diodes and tunable light sources.

Halogen Lamps

For most hyperspectral imaging, a broadband light source such as a halogen lamp is

required. A halogen lamp consists of a tungsten filament enclosed in a glass bulb filled

with a halogen gas, usually iodine or bromine. When the filament is heated to a suffi-

ciently high temperature by passing an electric current through it, it produces light. The

spectral response of a halogen lamp is smooth and wide, covering the full range for VIS,

VNIR, NIR and SWIR (less than 380 nm to greater than 2500 nm). Due to their low

cost and the wide spectrum produced, halogen lamps have been used extensively for hy-

perspectral imaging applications [11]. They do, however, suffer from several drawbacks

including shorter life time than the alternatives, high heat output and spectral shifts

dues to temperature change. The high heat output is often a major factor, especially

when the light source must be close to the objects. If the acquisition time is too long,

then the heat produced by the halogen lamp may modify the sample in an undesired

way.

Light Emitting Diodes (LEDs)

An LED is a semiconductor device that emits light when its anode has a voltage that

is more positive than its cathode by at least the forward voltage drop. The wavelength

of the light emitted is determined by the energy band gap of the semiconductor. First

used as early as 1962 [12] LEDs have rapidly developed in recent years due to their

small size, low cost, fast response time, long lifetime, low heat generation and low energy

consumption. Another major advantage is that all photons emitted from an LED can

be in the one direction with no energy loss. The material used in an LED determines

the spectrum of the light it emits. Narrowband light at different wavelengths in the

VIS/VNIR/SWIR range or broadband white light can be produced. The broadband light

is particularly suited to hyperspectral imaging. Many of the drawbacks from halogen

lamps are addressed by LEDs, although currently they have a much lower light intensity.
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LED technology is expected to continue to improve and is expected to become the main

light source for hyperspectral imaging applications in the future [8].

Tunable Light Sources

A tunable light source emits light of a specified wavelength, but this wavelength can

be changed during operation. Rather than placing the dispersive element between the

detector and the object like most other methods, it is combined with a broadband

illumination source so that only a specific wavelength of light illuminates the object at

any one time. This approach is particularly suited to area scan methods rather the

whiskbroom or pushbroom. Since only narrowband light is ever illuminating the source,

the intensity is usually relatively weak reducing the chance of damage being caused by

heat [13].

2.2.7.2 Lenses

To ensure that a sharp image is acquired, a lens is required to focus the light onto

the imaging detector, similar to how a conventional camera works. A major problem,

however, is the effect of chromatic aberration. Chromatic aberration is the distortion

caused by the optical power of a lens varying with wavelength [14]. This especially

relevant to hyperspectral imaging as often a wide range of wavelengths is needed. A

specialist lens designed for the wavelength range required must be used.

2.2.7.3 Wavelength Dispersion Devices

Every hyperspectral imaging system must contain a wavelength dispersion device of

some sort. This is the part of the system that splits broadband light into individual

wavelength bands. This section will explain the operation of some of the more popular

wavelength dispersion devices, namely: filter wheels, imaging spectrographs, tunable

filters and Fourier transform imaging spectrometers.

Filter Wheels

A filter wheel is made up of several band pass filters, each one allowing only light

from a narrow band of the spectrum to pass through. An example of a filter wheel is

shown in Figure 2.11. Unlike many other dispersive elements, filter wheels can be easily

reconfigured to operate with different wavelength ranges (VIS,VNIR,NIR and SWIR).
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Figure 2.11: A filter wheel [15]

Filter wheel systems use area scan acquisition and tend to have fewer than 20 filters in

them, so are more like to be considered part of a multispectral rather than hyperspectral

system. The time taken to change wavelengths is also significantly longer compared to

other methods.

Imaging Spectrographs

An imaging spectrograph is a device which disperses broadband light into different

wavelength components simultaneously and retains one dimension of spatial information.

By scanning in a perpendicular direction to this spatial dimension, a three-dimensional

hypercube can be generated used the pushbroom acquisition method, explained in more

detail in Section 2.2.4.

Imaging spectrographs usually use diffraction gratings to disperse the light. A diffraction

grating is an optical device which refracts light based on its wavelength. These gratings

tend to be either reflective or transmissive. Reflective gratings consist of a grating

superimposed on a reflective surface while transmissive gratings consist of a grating

superimposed on a transparent surface.

Imaging spectrographs using a reflective grating usually require an entrance slit and two

concentric spherical mirrors. The reflective grating must be aberration-corrected. After

light enters through the slit, it is reflected onto the grating by one of the mirrors. The

angle that the light reflects at depends on its wavelength. This dispersed light is then

reflected by the other mirror out of the spectrograph where it can be recorded by an

image detector.

An imaging spectrograph using a transmissive grating tends to use a prism-grating-prism

(PGP) configuration [8]. After light passes through the entrance slit, it is collimated
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by a front lens before being dispersed by the PGP. The back lens then projects the

dispersed light out the back of the spectrograph where it can be recorded by an image

detector.

Reflective gratings are thought to be most suited for hyperspectral imaging systems due

to the high image quality, lack of high-order aberrations, low distortion, low f-number

and large field of view [16]. Reflective optical components such as mirrors tend to be more

efficient than transmissive components such as prisms, resulting in higher signal-to-noise

ratios (SNRs) for hyperspectral systems using reflective grating imaging spectrographs.

The main disadvantage with reflective grating systems is that some distortion is inherent

while transmissive grating systems use on-axis optics, so naturally have less distortion.

Tunable Filters

Tunable filters are wavelength dispersion devices suitable for acquiring hyperspectral

images using the area scan method, and share similarities with filter wheels. The dif-

ference is that an electronic signal is used to change the bandpass property of the filter,

rather than to rotate a filter wheel selecting a new discrete filter. There are two main

types of tunable filters: acousto-optic tunable filters (AOTFs) and liquid crystal tunable

filters (LCTFs). AOTFs work by using the acousto-optic effect [17] where a birefringent

crystal’s optical properties (i.e. the wavelength of light it allows to pass through it) are

modified by an acoustic signal. A piezoelectric transducer is used to convert an electric

signal into the acoustic one required. LCTFs use a liquid crystal which is electronically

controlled to only transmit a chosen wavelength band whilst blocking others. Compared

to filter wheels, tunable filters are much faster at changing from one wavelength band

to another since they do not have any moving parts. AOTFs are faster than LCTFs

(microseconds compared to milliseconds) however, they suffer from poorer image quality.

Both types of tunable filter, however, suffer from several shortcomings: high F-number

leading to small light collection angle and low light collection efficiency, requiring lin-

early polarised incident light causing significant losses and needing a longer exposure

time than imaging spectrographs under similar illumination [8].

Fourier Transform Imaging Spectrometers

By using an interferometer to self-interfere a broadband light source, an interferogram

containing its spectral data is produced. Performing an inverse Fourier transform on

this interferogram produces a spectrum of the light source. Fourier transform imaging
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spectrometers are based on this principle. An incoming beam of light is split into two

identical beams by a partially reflecting mirror known as a beam splitter. Each of these

beams follows a different path before being combined and arriving at a detector. The

difference in distance between the two paths creates a phase difference between the

two beams resulting in an interference pattern at the detector. By altering the path

difference, different interference patterns are produced (an interferogram). Performing

an inverse Fourier transform on the interferogram results in a spectrum of the incident

light beam. The Michelson and Sagnac interferometers are the two main interferometer

designs [8].

In the Michelson configuration, one mirror and the beam splitter are held in a fixed

position and another mirror is moved to change the path length of one of the beams.

In the Sagnac configuration, two mirrors are fixed whilst the beam splitter can be ro-

tated. By keeping the mirrors in a fixed position, the Sagnac interferometer has good

mechanical stability and compactness, but relatively low resolution. The moving mirror

in the Michelson configuration results in sensitivity to vibrations. The Sagnac config-

uration operates in a similar way to an imaging spectrometer where a single spatial

dimension is captured along with the spectral information for that spatial line, therefore

a pushbroom scan is required to build up a three-dimensional hypercube. The Michel-

son configuration has a pixel based interferogram allowing both spatial dimensions to be

captured simultaneously. However, rather than having to move the detector or object

like the Sagnac configuration, one of the mirrors must be moved, resulting in a time

delay. Slower movement produces a better spectral resolution and higher SNR, but at

the expensive of acquisition speed. Mainly used in bioanalytical chemistry in medicine,

Fourier transform imaging spectrometers are now starting to become more popular in

other hyperspectral imaging fields [8].

Single Shot Imagers

Single shot imagers acquire all spatial and spectral information simultaneously (snapshot

method). This is the only method for capturing hyperspectral images of fast moving

objects/scenes. In recent years, several different types of single shot imaging systems

have been developed including using a multiple lens and filter approach [18], a coded

aperture and compressive sensing approach [19], a multiple thin mirror approach [20], a

generalisation of the Lyot filter [21] and a monolithic filter array approach [22]. While the
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spectral resolutions of these systems tend to be poorer than the pushbroom alternatives,

their ability to acquire all data in a single exposure means they are the preferred option

for time sensitive acquisition. As the technology (and therefore spectral resolution)

improves, single shot imagers will become more popular in areas where pushbroom is

currently the main hyperspectral imaging acquisition method.

2.2.7.4 Image Sensors

A sensor is required for measuring the intensity of the incident light. Sensors used in hy-

perspectral imaging convert the incident photons into electrical signals, quantifying the

intensity of the light. These sensors are usually sensor arrays, i.e. they measure at multi-

ple different locations simultaneously. This sensor array may be one or two-dimensional.

A one-dimensional sensor array may be used in a whiskbroom hyperspectral imaging

system where a single point of light is dispersed into its wavelength components. Each

of these components is detected by a different pixel in the sensor array, producing the

spectrum of the incident light. A two-dimensional image sensor array is most often used

in conventional (greyscale) digital imaging where each array pixel detects light from a

different part of the scene. By viewing the response of each array pixel as a pixel in an

image, we get a spatial representation of the scene, with each pixel value correspond-

ing to the intensity of light at that point. An area scan hyperspectral imaging system

uses a two-dimensional image sensor in this way. Pushbroom systems also require a

two-dimensional sensor array, however, they are used slightly differently. Rather than

capturing a spatial image at a specific wavelength, an image of the spectral dimension

and one spatial dimension is captured.

Two main types of image sensor are charge-coupled device (CCD) and complementary

metal-oxide-semiconductor (CMOS). These consist of light sensitive photodiodes which

convert incident light into an electrical signal. These photodiodes tend to be made up

of one of three materials: silicon (Si), indium gallium arsenide (InGaAs) or mercury

cadmium tellurium (HgCdTe or MCT). Si detectors have a response in the wavelength

range 300 nm to 1100 nm, making it suitable for VIS and VNIR imaging, and even

capable of being used for some ultra-violet or NIR applications. InGaAs is responsive in

the NIR region (900 nm to 1700 nm) but by altering the percentages of indium arsenide

(InAs) and gallium arsenide(GaAs), this detection range can be extended up to 2600



Chapter 2. Background 25

nm. MCT has a much wider range of 800 nm up to 25 µm, although the exact range

is dependent on the percentages of mercury(Hg) and cadmium(Cd). MCT is the most

popular choice for SWIR hyperspectral imaging systems.

2.2.7.5 Data Acquisition Unit

To record the hyperspectral data captured by the sensor, a data acquisition unit (DAU)

is required. Data acquisition has relatively low processing requirements compared to

manipulation and analysis of hyperspectral data. The minimum requirements for a

DAU are as follows:

• Hard disk drive (HDD) or solid-state drive (SSD) with sufficient write speed and

storage capacity

• Sensor interface (USB, Firewire, Camera Link, etc.)

• Processor capable reading in frames and writing them to the HDD/SSD

The specification above is for a very simple hyperspectral system. The DAU may be

required to perform extra functions such as controlling movement of a stage/mirror or

navigation of an unmanned aerial vehicle and would have to be specified appropriately.

Of course, data analysis/processing is often required to be performed on the DAU, so a

more powerful computer is often used.

2.2.8 A Laboratory-Based Pushbroom Hyperspectral Imaging System

As explained earlier, there are five main components required for a pushbroom hyper-

spectral system:

• Light Source

• Lens

• Dispersive Element

• Imaging Sensor

• Data Acquisition Unit
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Figure 2.12: VNIR HSI System in the Strathclyde HSI Centre.

This section will describe each of these components as part of VNIR system located

in the Hyperspectral Imaging Centre at the University of Strathclyde. The complete

system is shown in Figure 2.12. Since this is a pushbroom system, there is a need to

move the object or the detector. In the HSI Centre, there are three different devices

which can provide this movement, as detailed below.

2.2.8.1 Light Source

The light source used in the HSI Centre is two 12V 50 W halogen lamps. Previously, a

single 400 W halogen lamp was used. This caused problems of heating up the sample

and an uneven light distribution. The two lower wattage lamps angled to illuminate a

narrower line in the field of view solved both of these problems. These two lamps can

be seen in Figure 2.12.
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Figure 2.13: Schneider Lens sensitive in the range 400 nm to 1000 nm.

Figure 2.14: Specim V10e imaging spectrograph with spectral range of 400 nm to 1000
nm.

2.2.8.2 Lens

Since the system is VNIR with a spectral range of 400 nm to 1000 nm, a VNIR specific

lens is required. A Schneider Compact VIS-NIR Lens with C-Mount is used. The lens

can be seen in Figure 2.13.

2.2.8.3 Dispersive Element

The dispersive element used in the system is a Specim V10E imaging spectrograph which

has a spectral resolution of 2.8 nm and a spectral range of 400 nm to 1000 nm. It accepts

a c-mount lens and a c-mount detector. Figure 2.14 shows the imaging spectrograph.
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Figure 2.15: Spectral response of the Hamamatsu ORCA-05G image detector [23].

Figure 2.16: Hamamatsu ORCA-05G image sensor.

2.2.8.4 Imaging Sensor

A Hamamatsu ORCA-05G CCD camera is used as the image detector. This camera

has a maximum resolution of 1344 × 1024 pixels. The readout speed is 8.9 frames/s

at full resolution, but this can be increased to 43 frames/s when using 8 × 8 binning

(168 × 128 resolution). Exposure times range from 10 µs to 1 s. A 12-bit analogue-to-

digital converter is used giving a range of integer outputs of 0 to 4095. Connection to

the DAU is via Firewire. The spectral response of this camera is shown in Figure 2.15.

As can be seen from the spectral response, the detector is sensitive to the entire range

of the imaging spectrograph (400 nm to 1000 nm). The sensitivity, however, is not the

same for every wavelength. This means that the range of intensity values depends of

the wavelength being measured. This is one of a number of reasons why correction of

data is required as described in Section 2.2.9. The camera can be seen in Figure 2.16.
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2.2.8.5 Data Acquisition Unit

Although the minimum requirements for the DAU are relatively low, manipulation and

analysis of data requires a higher specified machine. In the system shown in Figure 2.12,

a laptop with the following specifications is used:

• Intel Core i5-3340M 2.7 GHz processor

• 8 GB RAM

• 500 GB hard disk

• Firewire card

• 2 TB External USB hard disk

• Windows 7 64-bit

This machine is capable of capturing hyperspectral data of enormous proportions. The-

oretically, a hypercube the entire size of the external hard disk could be captured. At

the optimum resolution of the spectrograph and camera, this hypercube would have di-

mensions approximately 336×11, 500, 000×256. At a spatial resolution of 5 pixels/mm,

this hypercube would cover an area 2.3 km long.

2.2.8.6 Object/Detector Movement Devices

To provide the movement required for a pushbroom scan, three different devices have

been used with the set up described above.

Linear Stage

The main movement device used in this system is a Zolix motorised linear stage. It

consists of a 120 mm platform which can move up to 200 mm with speeds ranging from

less than 0.1 mm/s to around 50 mm/s. It is mainly used for capturing small samples

which can be easily be placed on the stage. It can simulate an object on a production

line conveyor belt. This is the stage shown in Figure 2.12.

Motorised Trolley

To facilitate scanning of objects which are longer than the 200 mm offered by the linear
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Figure 2.17: Motorised trolley.

Figure 2.18: Rotational stage.

stage, a motorised trolley was built out of extruded aluminium. The trolley is moved by

a motor which winds an anchored wire onto a reel. Changing the size of this reel and/or

the motor speed alters the speed of the trolley. Figure 2.17 shows the trolley being used

to scan 10 m long sections of power cable.

Rotational Stage

A rotational stage is also available. To capture data with a rotational stage as part of

a pushbroom system, some post processing is required. This is explained in Chapter 3.

By attaching the rotational stage to the linear stage, the system can image using a

whiskbroom set up. Rather than capturing in Cartesian space (x, y), the image would

be in polar form (r, θ). Figure 2.18 shows this rotational stage on its own.
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2.2.9 Correction of Captured Data and Calibration of a System

In a typical hyperspectral imaging system such as the one detailed in Section 2.2.8, the

raw data captured is only an indication of the absolute intensity of the light detected by

the image sensor. The spectral response of the light source and the imaging sensor will

greatly affect the intensity of the output data, possibly more so than the actual object

being imaged. The process required to account for this is called correction. Another

factor which must be considered is calibration. If the spectrograph and image sensor

have not been calibrated to each other, then there is no way of knowing which spatial

locations of each wavelength on the spectrograph correspond to which pixels on the

sensor.

2.2.9.1 Correction

The aim of correction is to turn the intensity values at each pixel at each wavelength in

a raw hypercube into reflectance values in the range 0 to 1. 0 should correspond to no

light entering the sensor and 1 should correspond to all light from the light source being

reflected into the sensor. To do this, ‘dark’ and ‘white’ references must be taken. The

dark reference is taken by capturing a small hypercube with the lens cap on preventing

any light from reaching the sensor. The white reference requires a hypercube of an

object that is ideally 100% reflective. Spectralon and polytetrafluoroethylene (PTFE)

are two popular materials used to make calibration tiles. Spectralon is >99% and >95%

reflective over the ranges 400-1000 nm and 250-2500 nm, respectively. PTFE is >98%

and >95% reflective over the ranges 250-1500 nm and 250-2200 nm, respectively [24]. By

taking averages of the reference hypercubes, the dimensions are reduced from (x×y×λ)

to (x× λ). Each spatial line (x× λ) in a raw hypercube is corrected as follows:

CL =
UL −Dm

Wm −Dm
(2.1)

where CL is the corrected line, UL is the uncorrected line, Dm is the mean of the dark

reference and Wm is the mean of the white reference. After this correction, every pixel at

every wavelength has a value between 0 and 1, removing the impact of the non-uniform

spectral response of the image sensor and light source. Figure 2.19 shows a comparison
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Figure 2.19: Spectral response of three different types of pepper (a) Uncorrected (b)
Corrected

between corrected and uncorrected spectra for the three peppers used in Section 2.2.

The corrected spectra give a true representation of the intensity of light reflected at each

wavelength band. The spectra in figure 2.19(a) are clearly influenced by response of the

sensor (Figure 2.15) but not in Figure 2.19(b).
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Figure 2.20: Uncalibrated mercury lamp response.

2.2.9.2 Calibration

In the system explained in Section 2.2.8, the imaging spectrograph and the imaging

sensor are connected directly to each other. Although they are designed to work together,

the entire output of the spectrograph is not projected exactly onto the CCD array in

the imaging sensor. This means that exactly which wavelength band corresponds to

which pixel is not known, so calibration must be performed. For this, a light source

with a known spectral response is required. A mercury argon lamp is often chosen, as it

offers several known peaks at specific wavelengths. Two main peaks that are in a useful

range for a VNIR system are at 435.84 nm and 546.07 nm [25]. Exact intensities are not

important for calibration, all that is required is knowledge of the peaks in the spectrum.

An average spectrum of an uncalibrated hypercube of a mercury lamp is shown in

Figure 2.20. Since no exact wavelength information is known at this stage, the x-axis

in the graph is in pixels, rather than wavelengths. The aim of calibration is to take two

(or more) peaks in the mercury lamp hypercube and determine which known peaks they

correspond to. Since wavelengths are equally dispersed by the imaging spectrograph,

the straight line that fits between the points can be used to determine the wavelength

of each pixel. Shown below is an example:

From Figure 2.20 it can be seen that there are peaks at 22 pixels and 67 pixels. Although

no exact wavelength information is known, the ranges of the spectrograph and detector

mean that these peaks must correspond to the known peaks of 435.84 nm and 546.07 nm,



Chapter 2. Background 34

respectively. The equation of a straight line that fits between them can be determined

as follows:

y = mx+ c (2.2)

m =
y2 − y1
x2 − x1

⇒ m =
(546.07− 435.84)

67− 22

⇒ m = 2.45

⇒ 546.07 = 2.45× 67 + c

⇒ c = 546.07− 2.45× 67

⇒ c = 381.92

⇒ y = 2.38× x+ 381.92 (2.3)

where y is wavelength in nm and x is pixel location in pixels. Equation 2.3 can then be

used to workout the corresponding wavelength for each pixel on the image sensor.

2.3 Dimensionality Reduction

The main advantage of hyperspectral imaging over standard imaging and multispectral

imaging is the quantity of data available. Whilst this provides more information about

a scene, there is significant redundancy in the data. For example, the difference between

an image of a scene at 700 nm compared to the same scene at 701 nm is minimal. By

removing this redundancy, computational complexity can be reduced, allowing results

to be obtained faster on lower specification hardware. Storage requirements are also a

significantly reduced. The performance of many classification methods is also affected

by the dimensionality of the input data [26]. For these reasons, many of the often cited

journal papers on hyperspectral image processing involve some method of dimensionality

reduction [27–30].

The main aim of dimensionality reduction in a hyperspectral imaging context is to take

a hypercube of dimensions (x, y, λ), and to convert it into the form (x, y, b) where b < λ.
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Reducing either x or y could also be considered dimensionality reduction, but that is

more of a standard image processing technique so will not be considered here.

As explained in Section 2.2.2, hyperspectral images tend to have more than 20 bands,

often hundreds. Most uses of dimensionality reduction tend to reduce the number of

bands to fewer than 20.

There are a number of different methods of dimensionality used in hyperspectral im-

age processing such as wavelet transforms [31], orthogonal subspace projections [29],

extended morphological transformations [32], and principal component analysis [33].

Rather than explaining each of these techniques, PCA was chosen as the focus for this

section as it is the most widely applied dimensionality reduction method for hyperspec-

tral data [34–39].

2.3.1 Principal Component Analysis

First documented by Pearson [40] and later developed independently by Hotelling [41],

Principal Component Analysis (PCA) is a method used to reduced the dimensionality

of a dataset with a large number of interrelated variables, while retaining as much of

the variation present in the dataset as possible. This is achieved by transforming the

data into a new set of uncorrelated variables known as principal components, ordered

such that the first few components retain most of the variation present in all of the

original data [42]. Since most of the information is stored in the first few components,

the other components can be discarded with very little loss of information. In a hyper-

spectral imaging context, this allows a hypercube to be greatly reduced in size, whilst

still retaining most of the information, allowing efficient processing.

Going into specific details of how PCA is derived is beyond the scope of this section (see

[42] for a definitive reference). Instead, a brief explanation of the steps required will be

followed by three examples which demonstrate how PCA works and how powerful it can

be when used to analyse hyperspectral data.

Assuming a hypercube I, consists of N band images and has dimensions m×n then each

band image has M = m×n pixels and the ith pixel in an image can be represented as the

vector xi = [xi1, x
i
2, ..., x

i
N ]T , i = 1, 2, ...,M . A hypercube can therefore be represented
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as an N ×M matrix, where X = (x1, x2, ..., xM ). This is often known as unfolding the

hypercube. PCA is then performed on this matrix as follows:

Algorithm 1: PCA Algorithm[43]

Input: The unfolded hypercube X

Mean centre the matrix as X̄ = [x1 − µ, x2 − µ, ..., xM − µ] where µ = 1
M

∑M
i=1 x

i is the

mean vector in the image.

Calculate the covariance matrix Σ = 1
M

∑M
i=1(x

i − µ)T = X̄X̄T .

Perform eigenvalue decomposition of the covariance matrix as Σ = UΛUT where

Λ = diag(λ1, λ2, ...λN ) is the diagonal matrix composed of the eigenvalues λ1, λ2, ...λN

and U = [u1, u2, ..., uN ]T is the orthonormal matrix composed of the corresponding

eigenvectors u1, u2, ..., uN .

Sort the eigenvectors in descending order and retain the first K eigenvectors

UK = (u1, u2, ..., uK) where K<N to approximate the original images:

zi = [zi1, z
i
2, ..., z

i
K ]T = UTKx

i, where zi, i = [1, 2, ...M ] forms the first K bands of the

transformed hypercube.

Output: The principal components z

The first example will use simple synthetic two-dimensional data, showing how data

can be represented in a different subspace. The second example will use a synthetic

hypercube with 10 bands, showing how PCA can be used to highlight differences between

similar band images. The third example will use a real hyperspectral image of different

types of pen ink, with the aim of distinguishing between visually similar writings. This

simulates, for example, the problem of detecting a fraudulently altered cheque.

Example 1: Synthetic two-dimensional example

Figure 2.21(a) shows a plot of a two dimensional dataset. Each point consist of an x

value and a y value, producing an angled oval shape. PCA transforms this data into a

new subspace which highlights the variance in the data; the first principal component

corresponds to the major axis of the oval while the second principal component corre-

sponds to the minor axis. In this example, it is clear that simply rotating and stretching

the data would achieve the same result shown in Figure 2.21(b). As the number of

dimensions increases, however, manually determining where and how the data should

be manipulated becomes much harder. It is in these higher dimensional subspaces that

PCA excels. To use the data in this example with Algorithm 1, the unfolded data
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Figure 2.21: Oval shape represented in two different subspaces (a) Original subspace
(b) Principal component subspace

would contain just two columns and all of the principal components would be retained,

K = N = 2.

Example 2: Synthetic hypercube example

Consider a hypercube of size 100 x 100 x 10 (x x y x λ) pixels where each band is

identical, an image made up of random noise with values between 0 and 1, shown in

Figure 2.22(a). Then consider that at band number 8, the values located within the red

box in Figure 2.22(b) are increased by 0.01 and at band number 3, the values located
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(a) (b)

(c) (d) (e)

Figure 2.22: Synthetic hypercube PCA (a) Image of random values (b) Locations of
edited points (c) Principal component 1 (d) Principal component 2 (e) Principal com-

ponent 3

within the green box are decreased by 0.001. Now the hypercube is made up of data

where each band is very similar to every other and determining where the variance

lies is much harder than in the previous example. Transforming this hypercube into

a subspace determined by PCA rearranges the data in such a way that the variances

present are immediately obvious. The first principal component, shown in Figure 2.22(c),

gives an average of the whole dataset. The second and third components, shown in

Figures 2.22(d) and 2.22(e) respectively, show exactly where the variances in the data

lie. This example, while synthetic, shows how multi-dimensional data can be reduced to

a few components that still represent nearly all of the variance within the dataset.

Example 3: Real hypercube example - alteration detection

Figure 2.23(a) shows a small section of a simple hand-written document consisting of

the word ‘Hello’ and ‘£10’, written with an ordinary black pen. Figure 2.23(b) shows

this same section after it has been altered by a different, but still black, pen. The word

‘hello’ has been completely crossed out and the amount has been changed to ‘£400’.
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(a) (b)

Figure 2.23: Document alteration simulation captured with standard digital camera(a)
Original writings (b) Modified writings

These two images were captured using a standard RGB camera. Clearly, determining

what was originally written using only the second image is very hard, if not impossible.

Since the alterations were made with a slightly different ink, however, it is possible that

hyperspectral imaging should be able to detect the difference. Figure 2.24(a) shows

one band (700 nm) from a hyperspectral image of the altered document. From this, it

can be seen that the ink used to make the alterations is partially transparent at 700

nm, revealing the changes. The low contrast, however, makes these alterations hard to

see, especially where the ‘1’ has been changed to a ‘4’. By transforming the data into

principal components, these differences are highlighted. Figure 2.24(b) shows the fourth

principal component which gives a much higher contrast image, clearly separating the

two inks.

Although this example is just a simulation, it shows how PCA can be used to show

differences that would be very hard to detect otherwise. The altered document could

be an altered bank cheque that could have gone unnoticed if hyperspectral imaging and

PCA had not been employed.

2.4 Applications

As explained in the Chapter 1, the price of hyperspectral imaging technology has de-

creased over recent years, resulting in a wider range of applications of the technology.

This section will outline some of the major application areas and give some referenced

examples of how hyperspectral imaging has been beneficial.
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(a) (b)

Figure 2.24: Hyperspectral data of document alteration simulation (a) At 700 nm (b)
Principal component 4

2.4.1 Food And Drink

Food and drink analysis is a major area for hyperspectral imaging. Consumers demand

high standards of quality and safety so it is important for the industry that quick, accu-

rate, and objective inspection systems are developed. Many current inspection systems

rely on human visual analysis which fails to meet all of these needs. Hyperspectral

imaging has therefore become a financially viable solution in a great number of situ-

ations. Since it is such a popular area for hyperspectral imaging, this thesis focusses

on a number of food and drink related problems. Chapter 4 looks at the classification

of Chinese tea, Chapter 5 looks at improving the baking process in sponge cakes and

Chapter 6 examines how well different imaging technologies are able to classify different

types of rice.

In [44], classification of Chinese tea using hyperspectral imaging was performed, however

only three principal components were retained for classification and the different classes

were different qualities of the same tea. In the research presented in Chapter 4, the

number of principal components retained was one of the parameters whose influence

was measured and the different classes were different tea types.

Hyperspectral imaging was used to assess the quality of butter cookies in [45]. In this

experiment, different qualities of cookies were produced by altering the baking times.

A sensory evaluation panel of six people was used to categorise each cookie as either

under-baked, adequately baked or over-baked based purely on the browning. Moisture

was measured by weighing each cookie, drying in a drying cabinet then weighing again.

The lost mass was assumed to be moisture and could therefore be used to determine the
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moisture content. Strong correlation was shown between the visible range hyperspectral

data and the browning scores, as would be expected since the browning scores were based

on visual observation. A regression model was then used to predict moisture content

based on a mean spectrum for each cookie. The analysis of baked sponges in Chapter 5

differs from the above cookie analysis in that it uses different ages of sponges to achieve

the different qualities of sponges, an expert panel is used to produce scores based on

taste, texture and appearance and the spatial information is used show the distribution

of the moisture in each sponge.

The moisture distribution in mangoes was investigated using hyperspectral imaging in

[46]. As with the cookies experiment described above, ground truth for moisture was

obtained by weighing before and after drying. A regression model was used map the

moisture distribution in each imaged mango slice. This study, however, used an NIR

system for moisture visualisation, unlike the baked sponges experiment in Chapter 5

which uses a VNIR system.

In [47], hyperspectral imaging was used for bruise detection on pickling cucumbers.

Different levels of bruising were created by dropping and rolling under load, simulating

the damage caused by mechanical harvesting systems. An NIR system was used and

PCA, band ratio and band difference techniques were used to segregate bruised from

non-bruised cucumbers.

Seafood can be successfully analysed using hyperspectral imaging as demonstrated in

[48]. In this review, nematode contamination, chemical composition, freshness, microbial

spoilage, adulteration and edible meat content are all shown to be determinable using

hyperspectral data.

Chilling injury in Red Delicious apples was successfully detected using five VNIR bands

and an artificial neural network [49] and a similar method was used for peaches in [50].

Beef tenderness has been predicted using hyperspectral imaging [51, 52]. Before this

analysis, tenderness measurements were based on slice shear force - a destructive test.

Hyperspectral imaging has enabled rapid, accurate, non-destructive measurements of

beef tenderness and therefore quality.

The agriculture sector, specifically precision farming, has seen a similar increase in the

use of hyperspectral imaging as a useful analytical tool such as in topsoil mapping [53], in
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measurement of weed infestation in corn [54] and in the identification, classification and

measurement of disease severity of rice crop [55, 56]. The studies on rice classification

have been remote sensing based problems looking at whole fields of crops, rather than

using a lab based system as in Chapter 6 where individual rice grains can be identified

and analysed.

[1] provides a comprehensive review of hyperspectral imaging as a tool for food quality

analysis.

2.4.2 Forensic Science

As shown by the simple example in Section 2.3.1, forgery detection is possible with

hyperspectral imaging. The forensic science field has had a number of successes us-

ing hyperspectral imaging as an analytical tool. Examples include estimating the age

of blood stains at a crime scene [2], analysis/detection of dynamite residue [57] and

document analysis [58].

2.4.3 Military

Like with many technologies, hyperspectral imaging owes much of its progress to military

funded projects. Although now used in a much wider range of areas, hyperspectral

imaging is still crucial in a number of military applications mainly focussing on target

detection [3], tracking [59] and terrain mapping [60].

2.4.4 Medical Imaging

Use of hyperspectral imaging in medical applications is another area where adoption

continues to increase. It has been used for early diagnosis of various types of cancer [61],

detection and evaluation of peripheral arterial disease [62] and retinal oxygen measure-

ment [63, 64]. Several other medical applications are described in the extensive review

in [61].
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2.5 Summary

This chapter has presented a comprehensive review of the main aspects of hyperspectral

imaging specifically focussing on the areas related to research documented in later chap-

ters. The first part of the chapter focussed on the different hyperspectral technologies,

imaging methodologies and the components needed for a full hyperspectral system. An

example system was described which is identical to the one used to capture most of the

data that is analysed in the rest of this thesis. The second part of the chapter looked at

dimensionality reduction, specifically Principal Component Analysis, an important tool

in hyperspectral image processing with some synthetic and real examples demonstrat-

ing its capability. Finally, four of the main application areas of hyperspectral imaging

were outlined with numerous examples of where hyperspectral imaging has been a useful

tool. Due to the number of successes in the food and drink industry, Chinese tea, baked

sponges and rice are investigated in the later chapters of this thesis.
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Rotational Scanning Techniques

3.1 Introduction

As explained in Section 2.2.4, most hyperspectral imaging acquisition techniques require

two of the hypercube dimensions to remain constant, whilst the third is varied. A popular

method for capturing hyperspectral data is linear pushbroom scanning [47, 65]. This

technique builds an image by capturing all available wavelengths on a spatial line-scan

translated across the image over time. A major drawback of this technique is that an

accurate way of linearly moving the camera or the object is required [66]. Rotational

movement is often easier to achieve or naturally available, hence the work presented here

investigates an alternative approach to the traditional linear pushbroom method.

Since linear pushbroom scanning captures a line of pixels perpendicular to the direction

of motion, a Cartesian representation of the image is created by simply placing these

lines side by side. The speed of the motion and the exposure time of the camera must be

set accurately to produce square pixels. If the exposure time is too long or the motion

is too fast, the pixels will be squashed. If the exposure time is too short, or the motion

is too slow, the pixels will be stretched.

Constructing a Cartesian representation of an image from a rotational scan is not as

simple, since the lines from the scan cannot just be placed side by side. Some form of

algorithm is needed to perform this construction. Figure 3.1 shows how a rotational

scan differs from a linear scan.

44
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(a)
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(b)

Figure 3.1: Two different types of line-scan. (a) Linear. (b) Rotational.

There are numerous cases of hyperspectral image capture using rotational movement

[67–70], but in each of these cases, the axis of rotation has been perpendicular to optical

axis. The method described above uses a rotational scan where the axis of motion is

parallel to the optical axis which is believed to be entirely novel.

All images acquired for this study were captured using the system described in Sec-

tion 2.2.8 with the rotational stage as the movement device.

The remaining parts of this chapter are organised as follows: Sections 3.2, 3.3 and 3.4

describe how a rotational scan is performed and the problems associated with it; Section

3.5 shows how a rotational scan can be converted to Cartesian form; Section 3.6 proposes

two techniques for calculating the two offsets associated with a rotational scan; Section

3.7 shows the implementation of three interpolation techniques; Section 3.8 contains the

results of a comparison with linear scanning using image similarity measures; Section 3.9

discusses some other considerations when using a rotational scan over a linear one; and

summarising remarks are presented in Section 3.10.

3.2 The Ideal Scan

The ideal rotational scan has the centre of each line scanned exactly coincident with

the axis of rotation. An example of an ideal scan is shown (from a top down view) in

Figures 3.2(a) and 3.2(b) where the white dot represents the axis of rotation and the

black line represents an imaged line. Figure 3.2(c) shows what the output of the scan

would look like. In this case, the height of the red bar is exactly the diameter of the red

circle and there is an equal amount of green on either side of it. Converting an ideal
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(a) (b) (c)

Figure 3.2: An ideal line-scan of a red circle on a green background. (a) First line of
the scan. (b) More lines of the scan. (c) The output of the scan.

scan to Cartesian representation is a relatively simple task, since each half of the scan

represents the image in polar form. There are publicly available toolboxes which can

perform this conversion[71].

3.3 Offset Scans

In practice, however, achieving an ideal scan is almost impossible, i.e. the axis of rotation

will not coincide with the centre of each line scanned. This error can be thought of as

the combination of two different offsets: a vertical offset and a horizontal offset.

3.3.1 Vertical Offset

Figure 3.3(a) shows the first line of a vertically offset scan. The axis of rotation is still

the white dot, but the line scan does not pass through it. Since the line scan does not

pass through the centre of the red circle, the red bar produced in Figure 3.3(c) has a

slightly smaller height.

3.3.2 Horizontal Offset

A horizontal offset is easier to accommodate as it simply causes a shift in the output of

the scan. A horizontal offset would cause Figure 3.2(c), for example, to be shifted up or

down such that there is an unequal amount of green on either side of the red bar. This

is shown in Figure 3.4.
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(a) (b) (c)

Figure 3.3: A vertically offset line-scan of a red circle on a green background. (a) First
line of the scan. (b) More lines of the scan. (c) The output of the scan.

(a) (b) (c)

Figure 3.4: A horizontally offset line-scan of a red circle on a green background. (a)
First line of the scan. (b) More lines of the scan. (c) The output of the scan.

3.3.3 Vertical Offset and Horizontal Offset

When both of these offsets are present, they operate independently. Figure 3.5 shows a

scan that is both vertically and horizontally offset. Figure 3.5(c) shows that the output

of this scan is a combination Figures 3.3(c) and 3.4(c); the height of the red bar has

been shortened due to the vertical offset and it has been shifted upwards due to the

horizontal offset.

3.4 Half Rotation versus Full Rotation

In an ideal scan, only half a rotation is needed to ensure that every possible point on

the object in the field of view is scanned. This is not the case with an offset scan. The

vertical offset means that a circle of radius equal to the offset will never be scanned,

regardless of how many rotations are completed. To ensure every possible point on
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(a) (b) (c)

Figure 3.5: A vertically and horizontally offset line-scan of a red circle on a green
background. (a) First line of the scan. (b) More lines of the scan. (c) The output of

the scan.

(a) (b)

Figure 3.6: The difference between vertically offset half rotation and full rotation scans.
(a) Half rotation. (b) Full rotation.

the object in the field of view is scanned, one full rotation is required. There is some

redundancy in this scan, however, as many points will be scanned twice. Half a rotation

will scan most of the image in the field of view leaving a section of the object unscanned

and another section scanned twice. The size of both of these sections is dependent on

the vertical offset. Figure 3.6 shows a half rotation and a full rotation scan.

3.5 Mathematical Representation and Conversion

Each line in a vertically offset scan can be thought of as a tangent to a circle with a

radius equal to the offset value. Since achieving a vertical offset of precisely zero is very
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Figure 3.7: The difference coordinate systems. (a) Ideal Scan. (b) Vertically Offset
Scan.

unlikely, every scan can be represented by tangents to a circle, even if this circle is very

small. The horizontal offset determines how long each tangent extends from the circle.

3.5.1 Converting to Cartesian Representation

An offset scan of an object is similar to representing it in polar form. Each pixel in polar

form corresponds to a radius and an angle but in an offset scan, each pixel corresponds

to a tangent length and an angle, see Figure 3.7. Cartesian co-ordinates can easily be

determined for a polar representation of an image using

x = r cos θ (3.1)

y = r sin θ (3.2)

Converting from an offset scan to Cartesian co-ordinates is not so simple.

Since a horizontal offset is just a shift and can be easily compensated for at a later stage,

this section will only consider a vertical offset. As explained earlier, a half scan will not

cover every point in the field of view so a scan of 2π radians will be used.

Before the Cartesian representation can be calculated, the vertical offset must be known.

This is equal to the radius of the circle whose tangents make up the scan. Let this radius

be r. The equation of this circle is then

(x− xc)2 + (y − yc)2 = r2 (3.3)
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C(xc,yc)

J(xj,yj)

P(x,y)

r

Q(x,y)

Figure 3.8: A circle with two intersecting tangents

where (xc, yc) is the centre of the circle, i.e. the axis of rotation. The circle can also be

represented by

x = xc + r cos θ (3.4)

y = yc + r sin θ (3.5)

where θ is the angle between (x, y), the centre of the circle and the horizontal.

Suppose there is a point outside this circle, J , at (xj , yj). There must be two lines which

pass through this point and are tangential to the circle. See Figure 3.8.

If the implicit equations of the two tangents are in the form

ax+ by + c = 0 (3.6)

then according to [72], a, b, and c can be found as follows:

a =
∓r(xc − xj)− (yc − yj)

√
(xc − xj)2 + (yc − yj)2 − r2

(xc − xj)2 + (yc − yj)2
(3.7)

b =
∓r(yc − yj)− (xc − xj)

√
(xc − xj)2 + (yc − yj)2 − r2

(xc − xj)2 + (yc − yj)2
(3.8)

c = −axj − byj (3.9)
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The equations of the tangents can then be used to determine the two points of intersec-

tion with the circle (P and Q on Figure 3.8):

ax+ by + c = 0

⇒ y = −a
b
x− c

b

Let m = −a
b and C = − c

b

⇒ y = mx+ C

(x− xc)2 + (y − yc)2 = r2

⇒ (x− xc)2 + (mx+ C − yc)2 = r2

⇒ x2 − 2xcx+ x2c + (mx+ C)2 − 2yc(mx+ C) + y2c = r2

⇒ x2 − 2xcx+ x2c +m2x2 + 2mxC + C2 − 2ycmx

+2ycC + y2c = r2

⇒ x2(m2 + 1) + x(2mC − 2xc − 2myc) + x2c + y2c

−2ycC + C2 = r2

⇒ x2(m2 + 1) + x(2mC − 2xc − 2myc) + x2c + y2c

−2ycC + C2 − r2 = 0
(3.10)

Equation 3.10 can then be solved for x using the quadratic formula giving the x co-

ordinates of the points of intersection with the circle. The equations of the tangents

can be used to compute the corresponding y co-ordinates. Equation 3.4 or 3.5 can then

be used to calculate the two θs. The Euclidean distance between J and P gives one

tangent length and the Euclidean distance between J and Q gives the other. Thus,

point J can be converted from Cartesian representation to two angles and two tangent

lengths. These values can then be used to extract a pixel from the output scan image.

Repeating this process for every (x, y) point allows a Cartesian representation of the

scanned object to be generated.
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3.5.2 Compensating for a horizontal offset

As mentioned previously, the horizontal offset is easier to deal with. A horizontal offset

of zero would mean that the axis of rotation is in the middle of the line scanned and so

each of the tangents determined in Section 3.5.1 would be of equal length. If the two

parts of each scanned line are called ‘Left Scan’ and ‘Right Scan’ respectively, then their

lengths can be evaluated using the horizontal offset, HO, as follows:

LeftScanLength =
TotalScanLength

2
+HO (3.11)

RightScanLength =
TotalScanLength

2
−HO (3.12)

The output of the conversion to Cartesian representation is an angle and a tangent

length. If this tangent length is less than or equal to the Left Scan Length, then a value

for the Left Scan exists. The same is true for the Right Scan. There are four possible

combinations: there is a value for just the left scan; there is a value for just the right

scan; there is a value for both scans; or there is a value for neither scan. This explains

why part of the image is scanned twice as discussed in Section 3.4.

3.5.3 Example Scans

Figure 3.9 shows some original and converted scans. Figures 3.9(a), 3.9(c) and 3.9(e) are

the original offset scans and Figures 3.9(b), 3.9(d) and 3.9(f) are the converted scans.

Note that Figures 3.9(a) and 3.9(b) have a smaller vertical offset, hence the smaller

black circle in the centre of the converted scan.

3.6 Determining the offsets

As explained in Section 3.5, the offsets must be known to allow the conversion algorithm

to operate. Initially, these offsets were determined through trial and error, but this was

both time consuming and inaccurate. This section explains two automatic methods of

determining the offset parameters using a calibration object. In essence, an object of

known dimensions is scanned and the output is compared to a theoretical perfect scan of
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9: Example rotational scans converted to Cartesian form. (a) Computer game
manual original scan. (b) Computer game manual converted scan. (c) Collection of
objects original scan. (d) Collection of objects converted scan. (e) ID, money and an

Allen key original scan. (f) ID, money and an Allen key converted scan.

that object. The difference between the actual output scan and the theoretical output

scan should reveal the offset parameters.
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(a) (b)

Figure 3.10: An ideal scan of the calibration object. (a) The calibration object (Carte-
sian space). (b) The output of an ideal scan (θ-tangent space).
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Figure 3.11: A vertically offset scan of the calibration object. (a) The output of the
scan (θ-tangent space). (b) Calibration object showing the difference between an ideal

scan and a vertically offset scan (Cartesian space).

3.6.1 Using a calibration object with perfect alignment

The calibration object used is shown in Figure 3.10(a). For the offset determination

technique explained in this section, the calibration object must be aligned such that the

centre of the circle coincides with the axis of rotation. The theoretical output of this

scan (no offsets) is a horizontal bar vertically in the centre of the image with a height

equal to the diameter of the white circle, as shown in Figure 3.10(b).



Chapter 3. Rotational Scanning Techniques 55

Horizontal Offset

Figure 3.12: Horizontally offset calibration object output scan (θ-tangent space).

3.6.1.1 Calculating the Vertical Offset

Figure 3.11(a) shows the output of a vertically offset scan. Using the knowledge of what

an ideal scan should look like, we can calculate the vertical offset V using Pythagoras’

Theorem as follows:

r2 = V 2 + (
B

2
)2

⇒ V 2 = r2 − (
B

2
)2

⇒ V =

√
r2 − (

B

2
)2 (3.13)

3.6.1.2 Calculating the Horizontal Offset

Figure 3.12 shows a horizontally offset output scan of the calibration object. The dif-

ference between the centre of the white bar (solid red line) and the centre of the image

(dotted red line) is equal to the horizontal offset.

3.6.2 Using a calibration object with imperfect alignment

In the previous section, the centre of the calibration object had to be aligned perfectly

with the axis of rotation. This is relatively simple to achieve when the imaging set-up

is a stationary camera and moving object. If, for example, the rotational movement

is provided by a motorised rotation stage, the centre of the axis of rotation is easy to

determine. If the set-up involves a stationary object and rotating camera (for example,
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a camera attached to a robotic arm), the exact location of the axis of rotation is hard

to determine. If the axis of rotation cannot be accurately determined, then the offset

determination technique explained in Section 3.6.1 will fail. This section explains a

technique for determining the offsets using a calibration circle that does not need to be

accurately aligned.

3.6.2.1 Calibration circle requirements

Although the calibration circle does not need to be accurately aligned, there are several

requirements that must still be met:

1. The calibration circle must be small enough that it is fully scanned (apart from

the blind spot caused by the offset).

2. The calibration circle must overlap with the offset circle.

3. The calibration circle must be larger than the offset circle.

Figure 3.13 shows four calibration circles (white) with a different offset circle (red)

overlaid on each one. Figure 3.13(a) and Figure 3.13(b) are acceptable. Figure 3.13(c)

would fail since the offset circle is larger than the calibration circle and Figure 3.13(d)

would fail since the offset circle is entirely outwith the calibration circle.

Figure 3.14 shows what the output scan in each of these calibrations situations would

look like.

By looking at these output scans, we can determine if the calibration requirements have

been met.

Since the calibration circle does not appear at the edge (top or bottom) of the output

scan in any of the scenarios, then requirement 1 has been met.

In the Figure 3.14(d), there are two distinct regions, therefore the offset circle is entirely

outwith the calibration circle and requirement 2 has not been met. The other three scans

all only have one distinct region so meet requirement 2. Note that for this requirement,

regions are allowed to wrap around the edges (left and right) of the scan since the original

starting angle of the scan does not matter. For example, the scan in Figure 3.14(b)
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(a) (b)

(c) (d)

Figure 3.13: Examples of calibration circles (white) with offset circles (red). Each figure
is in Cartesian Space. (a) Valid. (b) Valid. (c) Invalid. (d) Invalid.

could be shifted by π radians resulting in two separate regions. These regions would

wrap around, however, resulting in only one distinct region.

Requirement 3 is the hardest to determine. Since the calibration circle in Figure 3.14(a)

spans the entire width of the scan, the calibration circle must be larger than the offset

circle. Figure 3.14(d) has already been determined to be invalid. Figure 3.14(b) and

Figure 3.14(c) require further analysis. First, the location of the tangent whose inter-

section with the offset circle occurs closest to the centre of the calibration circle needs

to be found. This location is an angle. This can be found looking at the plot of the

sum of the output scan (in the vertical direction i.e., the number of white pixels at any

x location). If the offset circle overlaps with the centre of the radius of the calibration

circle, like in Figure 3.13(b), then this location will be at the maximum value in the

plot of the sum. See Figure 3.15(a). If the offset circle radius does not overlap with the

centre of the calibration circle, like in Figure 3.13(c), then this location will be at the

local minimum in the plot of the sum. See Figure 3.15(b).
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(a) (b)

(c) (d)

Figure 3.14: Examples of the scans produced from Figure 3.13. Each figure is in θ-
tangent space. (a) Valid. (b) Valid. (c) Invalid. (d) Invalid.

It can be seen that the angle of the maximum in Figure 3.15(a) is 3.37 radians and the

angle of the local minimum in Figure 3.15(b) is 3.19 radians.

After this angle has been found, the values in the sum plot π
2 radians either side of this

angle need to be noted. This will give the locations (angles) of the tangents perpendicular

to the one found previously. If this tangent intersects with the calibration circle, then

the offset circle must be smaller than the calibration circle and vice versa.

From Figure 3.15(a), these two tangents are at 1.80 radians and 4.05 radians and have

corresponding non-zero values in the sum plot meaning that they intersect with the

calibration circle.

In Figure 3.15(b), these values are at 1.62 radians and 4.76 radians, but in this case,

their corresponding values in the sum plots are zero meaning that they do not intersect

with the calibration circle.

Therefore Figure 3.13(b) meets requirement 3 and Figure 3.13(c) does not.

If all the requirements are met, then the scanned image can be used to calculate the

vertical and horizontal offsets.
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Figure 3.15: Plots of the sums of two output scans (a) Maximum (b) Local minimum

3.6.2.2 Calculating the Vertical Offset

The method used to calculate the vertical offset (i.e., the radius of the offset circle),

depends up the location of the calibration image in the scan. In this section, four

examples will be used to show how an output scan can be used to calculate the vertical

offset. For each example, three figures will be shown: the offset circle overlaid on the

calibration circle, the output of the scan and a plot of the sum of the output scan. The

output scan and the plot of the sum will be used to calculate the vertical offset for each

example. These four examples are all valid scans and do not correspond to the four

examples in the previous section.
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Offset circle fits entirely within the calibration circle and overlaps the centre

of the calibration circle

Figure 3.16(a) shows a calibration circle (white) with an offset circle (red) overlaid. This

offset circle fits entirely within the calibration circle and it also overlaps the centre of

the calibration circle. Figure 3.16(b) shows what the output of this scan would look like.

Figure 3.16(c) shows a plot of the sum of each column in the output scan.

The first step is to find the length of tangent of the offset circle that is closest to the

centre of the calibration circle, the green line labelled Ta on Figure 3.16(a). This can be

found by examining the sum of plots of the output scan shown in Figure 3.16(c). Since

the offset circle overlaps with the centre of the calibration circle, the tangent closest to

the centre of the calibration circle will also be the longest. From the sum of plots, it can

be seen that the highest value is 195 and occurs at 3.1416 (This happens to be π since

the offset circle is in line horizontally with the calibration circle and the scan started at

the right hand side of the offset circle). Therefore Ta = 195.

Next, the tangent furthest from the centre of the calibration circle, Tb, must be found.

This is exactly ±π radians away from Ta. Looking at the plot of sums, Tb is therefore

167 pixels.

CCr on Figure 3.16(a) is the calibration circle radius. This needs to be known for this

process to work, and in this case is 100 pixels.

A and B can then be calculated as follows:

CCr2 = A2 + (
Ta

2
)2

⇒ A2 = CCr2 − (
Ta

2
)2

⇒ A =

√
CCr2 − (

Ta

2
)2

⇒ A =

√
1002 − (

195

2
)2

⇒ A = 22.2205

CCr2 = B2 + (
Tb

2
)2
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⇒ B2 = CCr2 − (
Tb

2
)2

⇒ B =

√
CCr2 − (

Tb

2
)2

⇒ B =

√
1002 − (

167

2
)2

⇒ B = 55.025

Looking at Figure 3.16(a), the radius of the offset circle (i.e. the vertical offset) is found

as follows:

V O =
A+B

2

⇒ V O =
22.2205 + 55.0250

2

⇒ V O = 38.6227

The actual vertical offset used in this example was 40 pixels, so while 38.6 is close, it

would still produce some errors in a reconstructed scan. The reasons for this inaccuracy

are discussed later in the chapter.

Offset circle fits entirely within the calibration circle and does not overlap

the centre of the calibration circle

Figure 3.17(a) shows a calibration circle (white) with an offset circle (red) overlaid.

This offset circle fits entirely within the calibration circle but, in this case, it does not

overlap the centre of the calibration circle. Figure 3.17(b) shows what the output of

this scan would look like. Figure 3.17(c) shows a plot of the sum of each column in

the output scan. The main difference between this scan and the previous one, is that

the tangent increases to the maximum, decreases to a local minimum, returns to the

maximum before decreasing to the global minimum again. This is not very apparent in

Figure 3.17(b), but is very clear in the plot of sums, Figure 3.17(c).

Again, the first step in determining the vertical offset is to find the length of the tangent

to the offset circle closest to the centre of the calibration circle. This is the green line

labelled Ta on Figure 3.17(a). Since the offset circle does not overlap the centre of the

calibration circle, this will be a local minimum on the plot of sums, Figure 3.17(c). From

the plot, the length of Ta is 197 pixels.
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Figure 3.16: Example Scan 1. (a) Annotated calibration circle and offset circle (Carte-
sian space). (b) Output of the scan (θ-tangent space). (c) Plot of the sum of the output

scan.

The other tangent length required, Tb, is ±π radians away from Tb. Again from the

plot of sums, this is 64 pixels.

As before, A and B can be calculated as follows:

CCr2 = A2 + (
Ta

2
)2
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⇒ A2 = CCr2 − (
Ta

2
)2

⇒ A =

√
CCr2 − (

Ta

2
)2

⇒ A =

√
1002 − (

197

2
)2

⇒ A = 17.2554

CCr2 = B2 + (
Tb

2
)2

⇒ B2 = CCr2 − (
Tb

2
)2

⇒ B =

√
CCr2 − (

Tb

2
)2

⇒ B =

√
1002 − (

64

2
)2

⇒ B = 94.7418

Looking at Figure 3.17(a), the radius of the offset circle (i.e. the vertical offset) is found

slightly differently to before:

V O =
B −A

2

⇒ V O =
94.7418− 17.2554

2

⇒ V O = 38.7432

Again, the actual vertical offset was 40 pixels.

Offset circle does not fit entirely within the calibration circle and does overlap

the centre of the calibration circle

Figure 3.18(a) shows a calibration circle (white) with an offset circle (red) overlaid.

This offset circle does not fit entirely within the calibration circle but it does overlap

the centre of the calibration circle. Figure 3.18(b) shows what the output of this scan

would look like. Figure 3.18(c) shows a plot of the sum of each column in the output

scan. Since the offset circle overlaps the centre of the calibration circle, the plot of sums

has no local minimum.
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Figure 3.17: Example Scan 2. (a) Annotated calibration circle and offset circle (Carte-
sian space). (b) Output of the scan (θ-tangent space). (c) Plot of the sum of the output

scan.

The tangent closest to the centre of the calibration circle, Ta, is found the same way as

in Figure 3.16. The maximum value in the plot of sums is 195 pixels at 3.1416. In this

case, the other tangent length required is perpendicular (rather than parallel) to Ta.

This tangent, Tb, is therefore ±π
2 radians away from Ta. Again from the plot of sums,

this is 122 pixels.
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Once Tb has been found, B can be calculated as follows:

CCr2 = B2 + (
Tb

2
)2

⇒ B2 = CCr2 − (
Tb

2
)2

⇒ B =

√
CCr2 − (

Tb

2
)2

⇒ B =

√
1002 − (

122

2
)2

⇒ B = 79.2401

In this scenario, B is the vertical offset and no further calculation is required. The actual

value for the vertical offset in this case was 80.

Offset circle does not fit entirely within the calibration circle and does not

overlap the centre of the calibration circle

Figure 3.19(a) shows a calibration circle (white) with an offset circle (red) overlaid. This

offset circle does not fit entirely within the calibration circle and it does not overlap the

centre of the calibration circle. Figure 3.19(b) shows what the output of this scan would

look like. Figure 3.19(c) shows a plot of the sum of each column in the output scan.

Since the offset circle does not overlap the centre of the calibration circle, the plot of

sums has a local minimum, as in Figure 3.17.

The tangent closest to the centre of the calibration circle, Ta, is found the same way as

in Figure 3.17. The local minimum value in the plot of sums is 183 pixels at 3.1416. As

in Figure 3.18, the other tangent length required is perpendicular (rather than parallel)

to Ta. This tangent, Tb, is therefore ±π
2 radians away from Ta. From the plot of sums,

this is 123 pixels.

Once Tb has been found, B can be calculated as follows:

CCr2 = B2 + (
Tb

2
)2

⇒ B2 = CCr2 − (
Tb

2
)2

⇒ B =

√
CCr2 − (

Tb

2
)2
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Figure 3.18: Example Scan 3. (a) Annotated calibration circle and offset circle (Carte-
sian space). (b) Output of the scan (θ-tangent space). (c) Plot of the sum of the output

scan.

⇒ B =

√
1002 − (

123

2
)2

⇒ B = 78.8527

In this scenario, B is the vertical offset and no further calculation is required. The actual

value for the vertical offset in this case was 80.
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Figure 3.19: Example Scan 4. (a) Annotated calibration circle and offset circle (Carte-
sian space). (b) Output of the scan (θ-tangent space). (c) Plot of the sum of the output

scan.

3.6.2.3 Calculating the Horizontal Offset

Calculating the horizontal offset follows a similar process to the one described in Sec-

tion 3.6.1; the shift in the tangent from the centre is measured. The difference with

an unaligned calibration circle, however, is that the tangent method length changes

throughout the scan. To ensure that the horizontal offset is calculated correctly, the
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tangent closest to the centre of the calibration circle must be used. If the vertical off-

set has been found, then this has already been determined (Ta in the examples in this

chapter).

3.6.3 Errors in the Calculated Offsets

As was noted from the results of the offset calculations earlier in this section, the calcu-

lated offsets had varying degrees of accuracy. This was mainly caused by the fact that

the calibration objects used were synthetic and not truly circular. Figure 3.20 shows

how the exact radius of the circle varies at different points on the circumference if the

shape is not a perfect circle. As a result of this, the plot of sums measurements in the

previous section were effectively quantised. Using real calibration objects that are much

closer to a perfect circle would result in significantly higher accuracies.

3.7 Interpolation

When converting to Cartesian representation, some interpolation is required as none of

the pixels in the Cartesian representation will have an exact corresponding pixel in the

scanned image. This is illustrated in Figure 3.21 where it can be seen that not only do

the pixels from each representation not align, they are not even the same shape. This

section explains the different interpolation techniques used to extract a Cartesian point

from a rotationally scanned image.

12 px

12.37 px

11.66 px

12.21 px

Figure 3.20: Imperfect circle showing different radius values
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3.7.1 Nearest-Neighbour Interpolation

Nearest-neighbour interpolation can be used as a very simple method of determining the

value of a point that lies between other known points. As the name implies, nearest-

neighbour interpolation selects the closest known value. In the examples in the Sec-

tion 3.5, this is achieved by simply rounding to the nearest whole pixel value. Fig-

ure 3.22(a) shows part of a scan reconstructed using nearest-neighbour interpolation.

From the figure, it is clear that the checkerboard pattern has not been reconstructed

accurately - the straight edges show signs of severe aliasing.

3.7.2 Bilinear interpolation

Bilinear interpolation differs from nearest-neighbour interpolation in that it uses the

distances from the unknown point to the 4 nearest points to perform a weighted mean.

Figure 3.22(b) shows part of a scan reconstructed using bilinear interpolation. By com-

paring Figures 3.22(a) and 3.22(b) it can be seen that bilinear interpolation produces

smoother edges. Further information on bilinear interpolation can be found in [73].

3.7.3 Bicubic interpolation

Whilst bilinear interpolation considers 4 surrounding pixels to perform a weighted mean,

bicubic interpolation extends this by considering a further 12 pixels (16 pixels in total).

Figure 3.22(c) shows part of a scan reconstructed using bicubic interpolation. Again, the

Figure 3.21: Cartesian (red) and scanned image (green) coordinate grids
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(a) (b) (c)

Figure 3.22: Examples of three different types of interpolation on a scan of a chequer-
board. (a) Nearest-neighbour interpolation. (b) Bilinear interpolation. (c) Bicubic

interpolation.

result is smoother than when using nearest-neighbour interpolation, but offers almost

no improvement over bilinear interpolation. It is also significantly more computationally

intensive than both.

3.8 Quantitative Evaluation

To compare the effectiveness of using rotational scanning as an alternative method to

linear scanning, three randomly generated binary images were printed out and imaged

using both techniques. By comparing these scans with the originals, scores can be

produced which indicate their similarity. The three random images used are shown

in Figures 3.23(a)-(c). These images were generated by creating three random images

where each pixel in each lies in the range [0,1]. A binary image was then created from

each of these by thresholding at 0.5. Each of these binary images was then filtered three

times using a median filter. Filter sizes of 35 x 35, 20 x 20 and 5 x 5 were used. These

images are ideal for quantitative evaluations such as this one as they contain many

different features of varying sizes.

Although the random images are binary, the camera used for the linear and rotational

scans captures a greyscale image for each wavelength. As in other parts of this chapter,

only a single wavelength band needed to be considered, as the effectiveness of the tech-

nique is not wavelength dependent. To convert a single wavelength band from greyscale

to binary, a threshold must be set. Since the ratio of white pixels to dark pixels is
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.23: Random images for quantitative evaluation. (a) Random Image 1 (filter
size 35 x 35). (b) Random Image 2 (filter size 20 x 20). (c) Random Image 3 (filter
size 5 x 5). (d) Random Image 1 Linear Scan. (e) Random Image 2 Linear Scan.
(f) Random Image 3 Linear Scan. (g) Random Image 1 Rotational Scan. (h) Random

Image 2 Rotational Scan. (i) Random Image 3 Rotational Scan.

approximately 1:1 in each of the random images, setting the threshold to the mean of

the greyscale image was appropriate.

Before the images could be compared, they had to be scaled to the same size and

rotated to the same orientation. This was required as the ground truth images were in a

digital format and the scale of the scanned print outs depended on both the printer and

camera resolutions. The linear scans only had to be scaled as the orientation is simple

to fix before acquisition. The scaling was performed using bicubic interpolation. The
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rotational images had to be rotated before scaling. Since a rotation is simply a horizontal

shift in the tangent length/angle coordinate space, no interpolation was required for the

rotation. The same scaling technique used for the linear scans was then applied resulting

in all 6 scanned images sharing the same size and orientation.

This was performed for each scanned image and can be seen in Figures 3.23(d)-(i).

3.8.1 Image Similarity Measures

Image similarity is a subjective measure, so the only ‘correct’ method of determining

the similarity between two images is through human subjective evaluation [74]. Human

subjective evaluation, however, is rarely an option, so there is a need for an objective

measure of image similarity. A common technique is to use the mean squared error

(MSE) where the dissimilarity is computed as the average of the squared intensity be-

tween the source image and the distorted image [75]. Another common technique for

determining image similarity is the Structural SIMilarity Index (SSIM) which compares

images based on their structural information and gives a score based on how much they

differ [74]. SSIM operates on the assumption that human visual perception is suited

to extracting a scene’s structural information and therefore a good basis for determin-

ing image similarity. Correlation has also been shown to be a measure of how similar

two images are to each other [76]. Other image similarity measures include techniques

based on the discrete cosine transform [77], multi-scale wavelet decompositions [78] and

feature-based sparse representation [79].

For this study, MSE, SSIM and correlation were chosen as three measures of image

similarity. These techniques were chosen as they are simple to implement and are also

effective on binary image problems. For MSE, a dissimilarity score is produced, i.e., the

lower the better. For SSIM and correlation, a high score indicates high image similarity.

For each technique, three measures were generated comparing the ground truth to the

linear scan image, the ground truth to the rotational scan image and the linear scan

image to the rational scan image. This was repeated for each of the three random

images. The results are shown in Table 3.1.

From Table 3.1 the performance of the rotational scan is generally comparable with

that of the linear scan. For Images 1 and 2, the rotational scan outperforms the linear
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Table 3.1: Image similarity measures between synthetic images and rotational and
linear scans

Image Reference Image Check MSE Correlation SSIM

Image 1 Original Image 1 Linear Scan 0.045 0.910 0.811
Image 1 Original Image 1 Rotational Scan 0.034 0.932 0.837

Image 2 Original Image 2 Linear Scan 0.040 0.921 0.791
Image 2 Original Image 2 Rotational Scan 0.032 0.937 0.807

Image 3 Original Image 3 Linear Scan 0.163 0.675 0.375
Image 3 Original Image 3 Rotational Scan 0.183 0.634 0.343

Image 1 Linear Scan Image 1 Rotational Scan 0.055 0.889 0.803
Image 2 Linear Scan Image 2 Rotational Scan 0.049 0.903 0.759
Image 3 Linear Scan Image 3 Rotational Scan 0.185 0.629 0.310

scan in each similarity measure. For Image 3, the linear scan scores slightly better in

each case. Since Image 3 contained smaller features, this might indicate that rotational

scanning is better suited to scenes with large spatial features. To determine exactly how

the size of the spatial features affects the performance, multiple images could be created

for each filter size and many more filter sizes could be used (e.g. every second integer

between 3 and 35). This would allow the results to be cross-validated allowing more

robust conclusions to be drawn. The fact that each similarity measure ranked each test

image in the same order, however, gives more credibility to the results presented here.

Another consideration when comparing linear and rotational scanning is the blind spot

caused by VO in the rotational scan. For these similarity measures, the blind spot was

ignored which will naturally degrade the performance somewhat. By only considering

an area of the scan without the blind spot, it is expected that the results would further

improve.

The angular resolution of the scan will also have an effect on the accuracy of the output

image. Further tests could be performed with different angular resolutions to determine

how much of a factor this is.

Each of the rotational images used in this quantitative evaluation were reconstructed us-

ing bilinear interpolation. Using a different interpolation method would have an impact

on the results.
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3.9 Other Considerations

There are a number of other factors which must be considered when using a rotational

scan over a linear one.

3.9.1 Angular Resolution

The angular resolution of the scan will also have an effect on the quality of the recon-

structed image. This angular resolution is determined by the scan speed; the slower the

scan speed, the higher the angular resolution. Like linear scanning, changing the scan

speed changes the pixel shape. However, the algorithm for reconstructing a rotational

scan described in this chapter is capable of using any scan speed, therefore the only con-

siderations when changing the scan speed are acquisition time and angular resolution.

The width of a pixel in the scan can be approximated with

s = θr (3.14)

where s is the pixel width, θ is the angle in radians and r is the distance from the axis

of rotation. The angle θ can be determined by

θ =
2π

n
(3.15)

where n is the number of lines in the scan.

⇒ s =
2πr

n
(3.16)

Equation 3.16 is only an approximation as the distance s is the length of the arc that

subtends angle θ. The pixel width can not be exactly represented by an arc length in

this way. The size of the VO determines the accuracy of this approximation; a smaller

VO gives a more accurate approximation for the pixel width. If a specific maximum

pixel size is required, then Equation 3.16 can be used to approximate the minimum n

needed.
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3.9.2 Image Storage

As explained in Section 2.2, hypercubes captured using a linescan tend to be captured

and saved in BIL format. This is still the case with a rotational line scan except the

coordinate space is (tangent length, θ, λ) rather than (x, y, λ). The algorithm described

in this chapter could either be used to convert the whole hypercube and save it in

(x, y, λ) format or software could be developed to convert each wavelength band on-

the-fly when viewing. All spectral (rather than spatial) processing techniques could

be performed on the (tangent length, θ, λ) hypercube with no adverse effects. Spatial

techniques would have different results, however there may be some applications where

this could be beneficial such as in [80] where morphological operations are performed on

images polar-logarithmic form.

3.9.3 Conversion

Using the conversion algorithm in this chapter has a non-negligible computation time.

The solving of the Equation 3.10 is the most computationally expensive part. Rather

than performing this for every pixel at every wavelength, a lookup table can be con-

structed for a single wavelength and then rapidly repeated for all others. Furthermore,

this lookup table will show some rotational symmetry which could possibly be exploited,

drastically reducing the overall computation time.

3.9.4 Regions of Interest

Due to the nature of a rotational scan, the resulting resolution of the converted image

is much higher nearer the axis of rotation. Unfortunately, this is also where the blind

spot is. If care is taken when aligning the camera, then specific areas of interest could

be located towards (but not obscured by) the blind spot, improving the quality of the

signal captured. The resolution at different points in the image can be approximated

using Equation 3.16.
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3.9.5 The Radon Transform

On first look, it appears that the rotational scans in this chapter could be manipulated

in a similar way as the Radon transform [81]. The Radon transform, however, is used

with a scan where the axis of rotation is perpendicular to the axis of the detector, similar

to the other systems referred to in the introduction of this chapter.

3.10 Summary

In this chapter, an alternative to linear pushbroom scanning using rotational motion has

been presented. An algorithm has been created to allow the reconstruction of a Cartesian

image from a rotational line-scan. Two methods for measuring and compensating for

the two sources of error in a rotational line-scan have also been explained. Bilinear

interpolation was selected as the best interpolation method as it offered the best trade off

between performance and computational complexity. This interpolation method could

also be used in future to improve accuracy in the calculation of the offsets. Rotational

scanning was compared to traditional linear pushbroom scanning using MSE, SSIM and

correlation, and the results indicate that the two methods have a similar performance,

demonstrating that rotational scanning is a viable alternative hyperspectral imaging

line-scan method. Finally, some other important factors related to rotational scanning

were discussed with some possible suggestions for future developments of a rotational

scanning hyperspectral system.



Chapter 4

Supervised Classification

Techniques in Hyperspectral

Imaging

4.1 Introduction

Supervised classification is the process of assigning a new observation to one of a pre-

viously defined set of classes, based on training data whose class is already known [82].

Unsupervised classification, such as clustering, involves assigning a new observation to

a class which is hitherto unknown. In this chapter, only supervised classification will

be considered. Further information on unsupervised classification of hyperspectral data

can be found in [33]. In a classification context, an observation is a set of quantifiable

properties. With regards to hyperspectral data, an observation is usually a pixel, and the

properties are normally spectral responses or principal components. Data with known

classes (i.e. ground truth) is usually split into training and testing sets. The training set

it used to train the classifier and the testing set is used to analyse its performance. This

means that the testing set is not ‘unknown’ but its class is hidden from the classifier

until performance evaluation. Adjustments can then be made before the classifier is

applied to truly unknown data.

In this chapter, five different classification techniques are discussed. The operation of

each classifier is explained with some synthetic data used where appropriate followed by

77
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a discussion of some important factors that need to be considered during implementa-

tion. A classification problem using Chinese tea samples is then used to compare the

implementation and performance of each. For each classifier, the adjustment of any

parameters is discussed and evaluated where appropriate before the results are sum-

marised.

The five classification techniques used are as follows:

• Minimum Distance Classifier (MDC)

• Maximum Likelihood Classifier (MLC)

• Artificial Neural Network (ANN)

• Support Vector Machine (SVM)

• Adaptive Boosting (AdaBoost)

While only a small subset of the available classification techniques available, these five

provide a good spread in terms of complexity and performance. They also form the

basis for many other classification techniques.

4.2 Classifiers

4.2.1 Minimum Distance Classifier

The Minimum Distance Classifier (MDC) is one of the most simple classifiers available.

Training data is used to determine the mean value of each class. Each testing/unknown

point is assigned a class based on the Euclidean distance between it and each class

mean [33]. The minimum distance (hence the name) determines the class to which it

is assigned. Consider the red, green, and blue circles plotted in Figure 4.1(a). Each

of these circles represents an observation where the quantifiable properties are x and

y and each colour represents a different class; the data is two-dimensional and three

class. The thicker black circles represent the mean of each class. 1000 random samples

are then classified based on the class whose mean they are closest to (based on the

Euclidean distance), shown in Figure 4.1(b). From this figure, it can be seen that
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Figure 4.1: MDC Classification (a) 2D 3 Class data set and class means (b) Classifica-
tion of 1000 random points (c) Testing data classified

the classified points are distributed evenly, with each class having a similar shape and

classification boundaries being generally straight lines. To evaluate the performance of

this classifier, the data from Figure 4.1(a) is split into two equal sections; training data

and testing data. The mean of each class is calculated from the training data, then

used to classify the testing data. Figure 4.1(c) shows the result of this classification.

Overall, the performance appears high, with only around 6 points classified incorrectly.

The misclassification is caused by the classifier being unable to take account of the

distribution of the data; the long thin nature of the blue class, the compactness of the

red class and the spread of the green class. This example is only two-dimensional so not

comparable to hyperspectral imaging, however, Euclidean distance can be calculated

with multiple dimensions easily, so extending this to hyperspectral data is a trivial task.

Performance Factors

Speed and simplicity are the two main benefits of MDC. Shortly after data collection,

classification can be performed. The simple nature of the classification means that

no complex mathematical transforms are required, reducing the computational require-

ments. It can easily be used in a multi-class problem (such as the one above) without
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modification, unlike binary classifiers. A simple threshold may also be set by requiring

the minimum distance to be below a certain level before a sample can be assigned to

a class. This is a quick way to remove unwanted (and spectrally different) background

pixels. For example, consider a simple classification problem where a farmer wishes

to know which parts of a field have diseased crops. The classifier could be trained on

healthy and diseased crops and then a whole field could be classified. Other parts of

the image, such as paths, roads or adjacent fields do not need to be classified, so using

a threshold may prevent the classifier from labelling these regions. Without setting a

threshold, every pixel in the image will be classified, producing potentially confusing

results.

As can be seen from the synthetic example, MDC is unable to take account of the

distribution of data. If the data is biased in any way, then the performance of MDC

will suffer [33]. As a result, MLC is often only used as a first test before other more

sophisticated classification techniques are employed.

4.2.2 Maximum Likelihood Classifier

The Maximum Likelihood Classifier (MLC) is similar to MDC except that it uses the

covariance of each class as training data, as well as the mean. Each unknown observation

is given a likelihood score of belonging to each class based on the following equation [33]:

gi(x) = − ln |Ci| − (x−mi)
TC−1

i (x−mi) (4.1)

Where g is the likelihood result, i is the class being tested, Ci is the covariance matrix

for the ith class, x is the observation being tested and mi is the mean of the ith class.

The class with the highest likelihood is used as the label for the unknown observation.

Similar to the MDC, a threshold can be set so that only likelihoods above the threshold

value are classified. Anything below the threshold value is left unclassified.

Using the same synthetic data as in the MDC example, 1000 random points are classified

with an MLC, shown in Figure 4.2(a). Unlike in the MDC example (Figure 4.1(b)), each

class has a different shape and the classification boundaries are not all straight lines.

Using the same training and testing data as the MDC example, the testing data is
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Figure 4.2: MLC Classification (a) Classification of 1000 random points (b) Testing
data classified

classified and the result is shown in Figure 4.2(b). Clearly, the MLC has performed well,

correctly classifying every point.

If class probabilities are known before classification, then a more complex form of max-

imum likelihood classification can be performed [33]:

gi(x) = ln p(ωi)−
1

2
ln |Ci| −

1

2
(x−mi)

TC−1
i (x−mi) (4.2)

where p(ωi) is the prior the probability of pixel x belonging to the ith class.

Performance Factors

Like MDC, speed and simplicity are significant advantages when compared to other

more complex classifiers. By using the covariance matrix from each training class, MLC

is able to take account of the distribution of the data, leading to improved classification

results. As with MDC, multi-class classification is easy to implement.

Although MLC takes into account the distribution of the data, its classification accuracy

is still lower than some of the other more popular (and more complex) classifiers discussed

later in this section. Its simple nature, however, makes it an ideal candidate for use as

a weak learner in a boosting situation, also described later in this section.
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4.2.3 Artificial Neural Networks

Artificial Neural Networks (ANNs) are computational models based on the operation

of the human central nervous system. The effectiveness of ANNs for solving classifica-

tion problems has been demonstrated repeatedly since the early 1980s and their use in

hyperspectral (specifically remote sensing) problems has steadily increased since 1989

[83].

Simply, ANNs consist of interconnected nodes (known as ‘neurons’) which compute a

value based on some inputs. These neurons are arranged in layers consisting of an input

layer, some hidden layers and an output layer, see Figure 4.3. The number of hidden

layers is a parameter that must be set in advance. The neurons are joined together

by connections, with each connection having a weighting. The values computed by

neurons in one layer affect the ones in the next and so forth. When the network is

trained, training data is presented to the input layer and the result at the output layer

is compared to the desired result (ground truth). The weightings of the connections are

then iteratively updated to improve the result at the output layer. This trained network

can then be used to classify unknown input data.

An implementation of ANN would be as follows. For a given input vector x = (x1, x2, . . . , xd)
T ,

the output of a single neuron, z, is determined as

z = g(wTx− b) = g(
d∑
i=1

wixi − b)

where w = (w1, w2, . . . , wd)
T denotes a weight vector and g(.) refers to an activation

function to decide whether the perceptron should fire or not. The sigmoid function

Sig(x) = (1 + e−x)−1 is the most popular activation function [84].

The same process used to compute the output of a single neuron can be used to calculate

the output of the whole network in a topological manner. This means that for each

neuron, its inputs from other neurons must be computed before determining its output.

Consequently, the weight vector and the bias associated to each connection and each

node will influence the results, and they are determined in training as follows.

Before training the ANN, the topology of the ANN must be specified, and in this case the

feed-forward ANN will be used. A feed-forward ANN is a multi-layer perceptron (MLPP)
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Figure 4.3: Diagrammatic representation of ANN.

which contains three or more layers of neurons, i.e. one input layer, one output layer and

at least one hidden layer. With a given training set, a specified activation function and

a learning ratio γ where γ ∈ (0, 1), the learning process for supervised training using the

well-known back-propagation algorithm can be described in the following three stages.

First, the initial weights are set randomly between [−1, 1] to attain a group of output

z(t) at t = 1 referring to the first round of iteration. Then, an error function is decided as

ε(t) =
∑M

i=1(yi − z
(t)
i )2/2 using the sum of squared error between the estimated output

z and the target output y. Finally, the error signal at the output units is propagated

backwards through the whole network to update the weights using the gradient descent

rule

∆wij(t) = −γ ∂ε(t)
∂wij

where wij refers to a weight between the jth node in a given layer and the ith node in

the following layer. With updated weights, t = t+ 1 can be set to start a new iteration

until the network converges. This can be measured by using a small change ratio of ε(.)

or a given number of iterations.

Performance Factors

ANNs are popular due to their ability to generalise well in noisy environments and their

high accuracy even when the feature subspace is complex or when the source data is

comprised of different statistical distributions [85].
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The main disadvantage of ANNs is the time taken to train the network. Once the

network is trained, however, classification of more data is comparatively quick compared

to other competing techniques. Another notable drawback is their reliance on random

initial weights. This means that two implementations with the same parameters on

the same data may produce different results, making it hard to compare with other

techniques without several repeats.

4.2.4 Support Vector Machines

Based on an algorithm developed in 1963, Support Vector Machines (SVMs) as they

are used today were developed in 1995 [86]. SVMs aim to classify data by finding the

optimal hyperplane which separates the data into the correct classes, whilst maximising

the margin between the hyperplane and the data. Figure 4.4(a) shows three hyperplanes

(lines in this case) separating two-dimensional two-class data. H1 fails to separate

the data correctly while both H2 and H3 are successful. Looking at the margins, the

distances from each hyperplane to the closest point in each class, it can be seen that H3

separates the data with much larger margins. In this case, it is largest margin possible,

therefore H3 is the optimal hyperplane.

If the data is not linearly separable, a technique known as the ‘kernel trick’ can be used to

map the data into a new feature space where the data is linearly separable [86]. Consider

the data shown in Figure 4.4(b). Splitting the data correctly is not possible using a linear

function. By transforming the data from one dimension to two dimensions, as shown

in Figure 4.4(c), a straight line can now be used to separate the data. Figures 4.4(d)

and 4.4(e) show two-dimensional data mapped into three dimensions, allowing a plane

to separate the data. In both of these cases, a simple quadratic function is used to map

the data into a higher dimension space where the data is linearly separable. Rarely

is a problem this simple, however, and so a Gaussian radial basis function (RBF) is

commonly used [33].

When using the RBF kernel, two parameters C and γ must be set for the SVM to

operate. C stands for cost and determines how strongly to penalise misclassification. γ

is a parameter for the RBF kernel which determines the width of the peaks in the higher

dimensional space. The width of these peaks is inversely proportional to γ. Although
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Figure 4.4: SVM classification (a) Hyperplanes separating the data (b) Non-linearly sep-
arable one-dimensional data (c) One-dimensional data linearly separable when mapped
in two dimensions (d) Non-linearly separable two-dimensional data (e) Two-dimensional

data linearly separable when mapped in three dimensions

these parameters are critical to the performance [87], they can be set accurately using

a cross-validated grid-search technique removing the need for the user input.

Performance Factors

SVMs tend to achieve robust and accurate results with multidimensional capabilities

and low requirements for training data. It is because of these features that SVMs are
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one of the most popular classification methods [88]. They are by nature, however, binary

classifiers. This is obviously a problem for multi-class data, but there are several methods

to classify multi-class data with a binary classifier and these work well with SVMs [89].

Although the parameter selection can be performed automatically, this can significantly

increase the time it takes to train the SVM.

4.2.5 AdaBoost

AdaBoost (short for ‘Adaptive Boosting’, [90]) is part of a subset of methods known as

boosting, which is part of a larger subset known as ensemble methods. An ensemble

method is a process where multiple learning algorithms are combined to improve the

prediction accuracy to a rate higher than what any of the single algorithms could achieve

on their own. AdaBoost does this by combining multiple weak learners (classifiers) using

a weighted sum. The term ‘adaptive’ comes from the way the weak learners are adjusted

with each iteration to favour the points which have been previously misclassified. The

classification accuracy of each weak learner needs to be only slightly better than random

guessing, so for a binary classifier this would be anything greater than 50%. In fact,

since it is a binary classifier, anything less than 50% would also be acceptable as this

result would just be inverted. Pseudocode for an implementation of AdaBoost is shown

below in Algorithm 2.

Algorithm 2: AdaBoost Algorithm

Construct a training set (x1, y1),. . . , (xm, ym) where xi ∈ X, yi ∈ Y = {−1,+1};

Set a number of iterations (number of weak learners), N ;

Initialise the weight Wi to 1
m ,i = 1, . . . ,m;

for n = 1 to N do

Select from the available weak classifiers, the classifier with the largest absolute

difference between the weighted error rate, en, and 0.5, hn;

Find the weight of the classifier hn, αn = 1
2 ln 1−en

en
;

Update the weight of each sample in the training set. If a sample has been

correctly classified, decrease its weight. Wi = Wi
en

1−en , where i is each correctly

classified point;

Normalise W such that it is a probability distribution (i.e.,
∑m

i=1Wi = 1);

The final classifier is then H(x) =
∑N

n=1 αnhn(x)
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In this study, AdaBoost is used with multiple instances of MLC as the weak learners,

where each MLC is trained on a different subset of data. To use MLC as the weak

learner, it needs to be capable of using weighted inputs. To achieve this, a weighted

mean and weight covariance is used during the training process. The number of weak

learners used is a parameter that must be set in advance.

Performance Factors

The main advantage of AdaBoost over many other classification techniques is its ability

to use simple weak learners. Techniques such as SVM and ANN may be able to achieve

higher accuracies in some instances, but they are much more complex algorithms. Since

any weak learner can be used, AdaBoost is very versatile and can therefore be used in a

wide range of problems. Despite its simplicity, it can be very computationally intensive

compared to SVM and ANN, especially if a large number of weak learners are to be

used.

4.3 Tea Classification

In this section, each of the techniques described earlier is implemented in a classifica-

tion problem: the classification of five different kinds of Chinese Tea. The reasons tea

samples were chosen for classification are three fold: firstly, this topic has rarely been

investigated [44]; secondly, consumption of tea is a world-wide popular activity; and

thirdly, tea price varies significantly in terms of brand and associated grades. Since con-

ventional methods for tea analysis and classification need subjective input from domain

experts, hyperspectral imaging provides a unique means for objective and consistent

quality control even when the samples under examination appear similar to each other.

This research shows how hyperspectral imaging could become an important tool for tea

quality analysis and control, potentially identifying inferior or even fake products from

established quality brands. It also serves as an ideal test to measure the performance of

each of the classifiers described in this chapter.

4.3.1 Data Preparation and Pre-processing

In total, five different types of tea were used in the experiments: China Black (Tea 1),

Lung Ching (Tea 2), Tikuanyin (Tea 3), Yunnan (Tea 4) and Jasmine (Tea 5). All
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the tea samples were imaged using an Andor Luca EMCCD camera with a Specim

V8E spectrograph attached. Samples were placed on a Zolix KSA 11-200S4N motorised

stage and illuminated with an Armley 150W Halogen lamp. This is a pushbroom system,

similar to the one described in Section 2.2.8.

For each type of tea, two samples were placed into the compartments of an ice cube

tray and imaged simultaneously to generate a hypercube. Since each tea was imaged

twice, 10 hypercubes were produced from the five types of tea. Each hypercube was then

scaled using a white and dark reference image so each pixel has a value in the range 0

to 1 (see Section 2.2.9). For each hypercube, there were 256 spectral bands, however

not all of these bands contained information; some were just noise due to camera and

the spectrograph not having the same spectral range. This redundant data in each

hypercube was removed leaving 170 bands in the range 400 to 800 nm.

There were a substantial number of non-tea pixels in each of the acquired hypercubes,

which were mainly from the container holding the tea samples whilst the data was

captured, i.e. the ice cube tray. Therefore, these pixels were excluded so that only valid

tea samples remained for classification. To this end, the hypercubes were cropped so

that only the tea data was processed.

Rather than using manual image cropping, each hypercube was converted to a binary

image and a morphological opening was performed with a rectangular structuring el-

ement of size 70 by 80 pixels, leaving just two white boxes of tea. The sizes and the

locations of these white boxes were then used to crop the hypercube and valid tea sam-

ples were extracted as a region of interest in the centre of the cropped cube. The size of

each region of interest used was 39 by 51 pixels. This process is shown in Figure 4.5.

(a) (b) (c) (d)

Figure 4.5: Pre-processing to extract regions of interest. (a) Original tea sample.
(b)After thresholding. (c) Extracted masks. (d) Determined ROIs.
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After applying the above cropping process to all 10 hypercubes where each contained

two samples from the same tea, 20 different samples were produced. This resulted in 4

samples for each of the 5 teas. Images of these samples at the spectral band of 790 nm

are shown in Figure 4.6. As can be seen at this spectral band, some of the tea samples

appear quite similar to each other, such as Tea 3 (in the third row), Tea 4 (in the fourth

row) and also Tea 1 (in the first row). This shows how difficult it is to classify these

samples if only one grey level intensity is available, i.e. using a conventional method.

4.3.2 Feature Extraction and Selection

As explained in Section 2.3, a hypercube contains data derived from a range of contiguous

spectral bands, resulting in a significant volume of highly correlated data, especially in

adjacent bands. Processing this high volume of data is computationally expensive and

due to the high correlation, potentially inefficient. Therefore, it is worthwhile to extract

uncorrelated components as features from this highly correlated data for both efficiency

and effectiveness. To achieve this, PCA was employed to reduce the data from 170

bands to 10 principal components for most of the analysis. The effect of the number

of components retained is also explored. More information on PCA can be found in

Section 2.3.1.

Figure 4.6: All 20 tea samples, each row contains 4 samples for one tea



Chapter 4. Supervised Classification Techniques in Hyperspectral Imaging 90

4.3.3 Classification

Out of the five techniques described earlier, ANNs and AdaBoost have a parameter

that must be chosen before classification. As explained earlier, the number of principal

components retained is also a parameter that can be altered. Another parameter to be

considered is the size (in pixels) of a square modal filter that will be used to post-process

the results. The final parameter is the percentage of the data used for training (and

therefore the percentage used for testing). If every combination of every parameter was

tested, then the number of classification attempts would be huge. Instead, all but one

parameter will be fixed while the other is altered to see its effects. This will then be

repeated for all parameters. This forms the basis for all the classification attempts. The

parameter settings are shown below in Table 4.1. MATLAB notation is used so 1:2:15

is every second integer between 1 and 15 (inclusive) and 25:25:75 is 25, 50 and 75, etc.

Table 4.1: Parameter Selection Settings

Test Components Filter Size Hidden Layers Weak Learners Training Data

PCA 3:1:15 5 10 20 50%
Filter Size 10 1:2:15 10 20 50%
Hidden Layers 10 5 3:1:15 20 50%
Weak Learners 10 5 10 3:3:27 50%
Training Data 10 5 10 20 25:25:75%

For each of these tests, a plot will be produced showing how changing the parameter has

an effect on the overall classification accuracy for each tea or classifier, as appropriate.

All of the results are cross-validated by taking different cubes of tea for training and

testing data. For example, for a training percentage of 50%, two columns from the

hypercube are selected as training data. The remaining two become the testing data.

This is repeated for all combinations and the results are averaged together.

A cross-validated confusion matrix will then be produced for each classifier for a specific

set of parameters. Confusion matrices are ideal for displaying data such as this as they

show exactly which classes were misclassified and which class they were ‘confused’ with.

Some pixel-based visual results are also produced where each class is assigned a colour.

This shows exactly where the classifier has classified incorrectly.
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Figure 4.7: Number of PCA Components vs Classification Accuracy for all 5 Classifiers.

4.4 Results

This section presents the results of the experiments outlined in the previous section. The

term ‘accuracy’ is used to describe the percentage of pixels which have been classified

correctly, either for all the testing data pixels, or for the set of testing pixels for each

individual class.

4.4.1 PCA

The overall effect of changing the number of principal components retained for each

classifier is shown in Figure 4.7. From the plot, it is clear that increasing the number

of principal components retained tends to improve the accuracy of the classifier. It is

interesting to note that the improvement offered is not consistent between methods.

MDC, for example, very quickly reaches a maximum classification accuracy using just 4

components. The accuracy of MLC with AdaBoost, however, continues to increase with

number of components even when going from 14 to 15 components. Despite MLC being

the weak learner used, MLC on its own reaches a peak accuracy around 8 components.

This shows that the boosting algorithm is able to take advantage of the extra information

provided by the less significant components whereas MLC cannot.
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Figure 4.8: Filter Size vs Classification Accuracy Accuracy for all 5 Classifiers.

4.4.2 Filter Size

The overall effect of changing the modal filter size used in post-processing is shown in

Figure 4.8. As might be expected, increasing the size of the modal filter increases the

classification accuracy. Filter sizes bigger than 5 by 5 pixels continue to improve the

overall accuracy, however, this results in a significant increase in computation time.

4.4.3 Hidden Layers

For the ANN classifier, changing the number of hidden layers had an effect on the

classification accuracy. This is shown in Figure 4.9. For a hidden layer size of less than

5, the classification accuracy tends to suffer. The results, however, fluctuate significantly.

This is likely caused by the fact that the initial random weighting which affects the final

classification result. To achieve a more statistically significant result, the results would

need to be averaged over a large number of classification attempts.

4.4.4 Weak Learners

The number of weak learners used for the MLC with AdaBoost classifier had a noticeable

impact on the results as shown in Figure 4.10. In general, the classification accuracy

increases for each class as the number of weak learners used increases. This improved

accuracy, however, is relatively small when compared to the increase in computational
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Figure 4.9: ANN Hidden Layer Size vs Classification Accuracy.
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Figure 4.10: Number of Weak Learners vs Classification Accuracy for MLC with Ad-
aBoost.

complexity. For example, the training and classification process took 77 seconds for 3

weak learners while it took 399 seconds for 15 weak learners and 639 seconds for 25 weak

learners.

4.4.5 Training Data

The effects of altering the percentage of training data used are shown in Figure 4.11.

Interestingly, increasing the percentage of data used for training did not result in a

consistent increase in the classification accuracy. In fact, for SVM, ANN, and AdaBoost
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Figure 4.11: Training Data Percentage vs Classification Accuracy for all 5 Classifiers.

with MLC, 50% training data provided a higher accuracy than 75%. This demonstrates

that the data is already well generalised by only 25% of the data.

4.4.6 Confusion Matrices and Visual Results

As explained earlier, confusions matrices are an effective way to show how the classifier

is performing, specifically how accurate each individual class is. The confusions matrices

in this section are generated using each classifier with the parameters set as the fixed

ones in Table 4.1, i.e., 10 PCA components, a filter size of 5 by 5 pixels and a training

percentage of 50%. For the ANN, 10 hidden layers are used and 20 weak learners are

used for the MLC with AdaBoost.

Table 4.2 shows a confusion matrix for each classifier. From these it can be seen that

Tea 3 tends to be the worst performer and is often confused with Tea 4. They also show

that although the overall accuracy for MLC with AdaBoost is lower than both ANN

and SVM, it is higher for Tea 1 and Tea 2.

Pixel-based visual results are generated by assigning each pixel a colour from a single

classification result for each classifier without cross-validation. These visual results are

shown in Figure 4.12. Each image here is a single classification result that contributed

to the confusion matrix results earlier.
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Predicted

Tea 1 Tea 2 Tea 3 Tea 4 Tea 5
Actual Tea 1 23.63 % 1.12 % 3.32 % 44.55 % 27.38 %

Tea 2 3.14 % 78.44 % 1.52 % 1.28 % 15.63 %
Tea 3 9.59 % 6.26 % 10.59 % 56.81 % 16.76 %
Tea 4 1.71 % 0.00 % 14.48 % 78.03 % 5.77 %
Tea 5 5.12 % 22.66 % 4.90 % 18.19 % 49.12 %

(a)

Predicted

Tea 1 Tea 2 Tea 3 Tea 4 Tea 5
Actual Tea 1 85.36 % 0.08 % 1.59 % 10.85 % 2.12 %

Tea 2 0.00 % 95.82 % 0.00 % 0.00 % 4.18 %
Tea 3 19.19 % 0.81 % 46.67 % 27.40 % 5.93 %
Tea 4 18.82 % 0.02 % 2.66 % 77.16 % 1.33 %
Tea 5 5.77 % 7.62 % 0.13 % 0.00 % 86.48 %

(b)

Predicted

Tea 1 Tea 2 Tea 3 Tea 4 Tea 5
Actual Tea 1 86.16 % 0.01 % 10.24 % 2.31 % 1.27 %

Tea 2 0.01 % 97.07 % 0.00 % 0.06 % 2.85 %
Tea 3 10.30 % 0.05 % 77.17 % 12.08 % 0.40 %
Tea 4 2.23 % 0.00 % 7.36 % 90.41 % 0.00 %
Tea 5 0.99 % 3.20 % 0.23 % 0.13 % 95.44 %

(c)

Predicted

Tea 1 Tea 2 Tea 3 Tea 4 Tea 5
Actual Tea 1 90.51 % 0.01 % 7.48 % 1.44 % 0.56 %

Tea 2 0.00 % 97.45 % 0.06 % 0.00 % 2.48 %
Tea 3 11.28 % 0.05 % 80.20 % 8.33 % 0.13 %
Tea 4 1.93 % 0.00 % 6.04 % 92.02 % 0.00 %
Tea 5 0.52 % 3.17 % 0.23 % 0.00 % 96.08 %

(d)

Predicted

Tea 1 Tea 2 Tea 3 Tea 4 Tea 5
Actual Tea 1 91.24 % 0.00 % 3.17 % 5.18 % 0.41 %

Tea 2 0.10 % 97.68 % 0.10 % 0.00 % 2.12 %
Tea 3 21.18 % 0.13 % 64.74 % 13.42 % 0.54 %
Tea 4 19.19 % 0.00 % 1.44 % 79.34 % 0.03 %
Tea 5 3.52 % 3.82 % 0.18 % 0.03 % 92.45 %

(e)

Table 4.2: Confusion Matrices (a) MDC (b) MLC (c) ANN (d) SVM (e) MLC with
AdaBoost

Looking at these pixel-based visual results, it confirms that Tea 3 (the red class in these

figures) is the most the most likely to be classified incorrectly and the cyan regions in

the third row show where it has been misclassified as Tea 4.

4.4.7 Statistical Reliability

So far, only the classification percentage has been used as a measure of performance.

This measure does not compensate for the fact that some pixels could be correctly

classified due to random chance. Cohen’s Kappa, κ, takes into account the probability

of chance agreement and is calculated as follows:

κ =
Pr(a)− Pr(e)

1− Pr(e)

where Pr(a) is the observed agreement and Pr(e) is the probability of random agreement

[91]. Table 4.3 summarises Cohen’s Kappa for the classified results used to generate the

confusion matrices in Table 4.2.
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(a) (b) (c)

(d) (e) (f)

Figure 4.12: Pixel-based Classification Results. (a) MDC (b) MLC (c) ANN (d) SVM
(e) MLC with AdaBoost (f) Ground Truth

Table 4.3: Cohen’s Kappa for each Classifier

Classifier Cohen’s Kappa

MDC 0.35
MLC 0.73
ANN 0.87
SVM 0.89

MLC with AdaBoost 0.81

From the results, SVM exhibits the highest Kappa coefficient. This is unsurprising as it

had the highest overall accuracy in all of the tests in this study. In fact, the ordering of

the coefficients is identical to that of the overall classification accuracies. The poorest

performer, MDC, has a significantly lower coefficient than the others. This suggests that

many of the classified pixels could have been classified by random chance rather than

any distinguishing features identified by the classifier.
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Another factor influencing the results is the number of tea samples available for analysis.

Although cross-validation was used, the statistical reliability is limited by there being

only four samples of each tea available. If this experiment was to be repeated, many

more samples could be obtained simply by shaking the ice cube tray to redistribute the

tea leaves before image acquisition. With this extra data, more reliable results would be

produced and error bars could be added to the plots showing the variance of the results.

4.5 Summary

Classification is an important tool used extensively in hyperspectral image analysis. In

this chapter, five popular classification techniques were introduced and their operation

explained. Each technique was then used in a classification problem where five different

types of Chinese tea had to be identified.

The results demonstrate that hyperspectral imaging can be used to identify each of

the five teas, but the success of the process is highly dependent on the classification

algorithm used. Both post and pre-processing of the data is also crucial in extracting

the best results.

Increasing the number of principal components retained tended to improve the classifi-

cation accuracy, up until around 10 components. Retaining more than 10 components

offered no improvement to the overall accuracy.

Performing modal filtering of the data after classification improved the results. Increas-

ing the filter size improved accuracy up until around 9 by 9 pixels, after which it offered

little improvement.

The number of hidden layers when using an ANN classifier had an effect on the clas-

sification result. Using fewer than 5 layers resulted in a poor performance. The peak

performance of the classifier was when 7 hidden layers were used. It should be noted,

however, that the initial random weightings of an ANN mean that these results are not

necessarily fair comparisons. To overcome this, future experiments using ANN should

be performed multiple times for each hidden layer size so the results can be averaged

together.
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The performance of the MLC with AdaBoost was improved as more weak learners were

used. Adding these weak learners, however, was at the expense of increased computation

time. Using 15 weak learners offered a reasonable trade-off between performance and

complexity.

Increasing the percentage of training data used did not improve the classification re-

sults. This suggests that the data was already well generalised. In fact, in some cases,

increasing the percentage of training data decreased the accuracy.



Chapter 5

Hyperspectral Analysis of Baked

Sponges

5.1 Introduction

This chapter presents the results of an analysis of baked sponges using hyperspectral

imaging. As noted in Section 2.4, food and drink analysis is a major area for hyper-

spectral imaging. The baking area in particular has seen a number of developments

with hyperspectral imaging used to analyse bread, biscuits, cakes and other goods for

the purposes of product innovation, reformulation and for making healthier alternatives

[92].

The work presented in this chapter looks at how hyperspectral imaging can be utilised

within the baking industry with a focus on the problem of assessing the shelf life of

baked sponges and determining the distribution of moisture within them. Currently,

organoleptic testing is used to predict the shelf life of baked sponges. The organoleptic

tests are performed by a tasting panel, generally consisting of trained bakery staff, who

eat ageing sponges on a daily basis and score them based on factors such as taste, texture

and appearance. This process is repeated regularly using ageing sponges from the same

batch until the panel determine that the cake is no longer suitable for consumption.

The time taken for the sponge to reach this stage of deterioration can then be used to

predict the shelf life of that product and to help ensure that when sold to consumers,

sponges maintain their expected quality until the end of their shelf life.

99
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Organoleptic testing as described above is used across the baking industry for the pur-

poses of evaluating food quality. One drawback with this approach is the subjective

nature of the test itself. Many external factors can affect a taster’s perception of taste

at the time of eating, drastically affecting the results. This makes it difficult to obtain

an objective measure of how a sponge actually tastes at any point in time after it has

been baked. Another major drawback is the limitation on the number of samples a

single individual can taste in a single day. The result of this is that it is difficult to ob-

tain statistically relevant sample sizes as increasing the number of samples tasted would

decrease the accuracy of each tasting result.

In this study, an alternative and objective technique for analysing the eating quality of

baked sponges of different ages with the aim of accurately predicting the shelf life of

these products is presented. The technique uses a VNIR hyperspectral imaging system

to acquire images of sponges ageing over a period of 40 days. By analysing the changes

in measured reflectance as a function of time at a known water absorption band at 970

nm [93], it is possible to estimate the reduction in water content (drying out) of the

sponge over time. The results of this analysis are compared with and shown to correlate

with the tasting panel results obtained when tasting a different set of ageing sponges

from the same batch. Furthermore, due the the nature of hyperspectral imaging, the

distribution of moisture can be visualised. This moisture distribution information is

used to train a classifier which can classify a sponge of unknown moisture distribution

showing exactly where the sponge is drying out.

The remainder of this chapter is set out as follows: Section 5.2 describes a robust and

repeatable technique for imaging sponges of different ages to ensure that the imaging

process is performed consistently over the duration of the experiment. In Section 5.3

the techniques used to process and analyse the hyperspectral images to estimate the

shelf life of the sponges are described and explained in detail. Also described is the

process involved in using the spatial information from each hyperspectral image to give

an indication of the distribution of moisture content throughout each sponge. Section 5.4

presents the results of analysing the data for one batch of cakes captured over a 40 day

period and provides a comparison of the scores computed using the hyperspectral data

with the scores allocated by a tasting panel. In Section 5.5, an explanation is provided

as to how the results from this chapter could be used to implement a hyperspectral
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(a) (b) (c)

Figure 5.1: The fixture used to ensure consistent sponge cut and location. (a) The
empty fixture. (b) A sponge being cut. (c) A cut sponge.

sponge quality assessment system on a bakery production line. Section 5.6 provides

some summarising remarks.

5.2 Data Acquisition

For the experiments described in this chapter, one vanilla (white) and one chocolate

(brown) sponge were imaged each day (excluding weekends) over a 40 day period us-

ing a visible hyperspectral system resulting in 30 images of each type of sponge. Each

sponge was taken from the same batch produced on the first day. The system con-

sists of a Hamamatsu ORCA-05G camera with a Specim V10E spectrograph attached

giving a spectral range of 400-1000 nm and resolution of 2.34 nm/pixel. This system

captures hyperspectral image cubes using the popular pushbroom method explained in

Section 2.2.4.3.

Sponges to be imaged were placed in a bespoke fixture and the top of the sponge was

removed prior to imaging as shown in Figure 5.1.

The fixture was designed to match the diameter of the sponges with a depth of 30

mm. This was used to ensure that the distance between the camera and the surface of

each sponge was consistent in every image captured. After removing the top of each

sponge, the fixture containing the remaining section of the sponge to be imaged was

positioned on a Zolix KSA 11-200S4N motorised stage and the area under the camera

was illuminated with two 150 W halogen lamps. The bespoke fixture was constructed

with locating screws on the underside to ensure that the position of the fixture, and hence

the sponge contained within it, were always accurately positioned in the same location

on the translational stage for each imaging session. It is known that the illumination
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(a) (b)

Figure 5.2: HSI system used for imaging the sponges. (a) Entire setup. (b) Close up
of a sponge being imaged on the translation stage.

from the halogen lamp can be transient for around 30 minutes after switching on until

it becomes stable. To ensure stability in the illumination source during data capture,

the lamps were switched on one hour before imaging the sponges each day. The halogen

lamp itself can cause the sponges to dry out due to the radiation which it emits. For

this reason the system was set to capture an image of each sponge in 15 seconds. This

resulted in captured hypercubes of dimensions 336× 765× 256 pixels (x× y × λ). This

time was optimal to ensure a high quality image of the scene was acquired in the shortest

possible time thus minimising the effects of the illumination source on the experiment.

An image of the entire set up while imaging a sponge is shown in Figure 5.2.

5.3 Data Analysis

5.3.1 Pre-processing

Although care was taken to ensure illumination was as uniform as possible, the two lamps

created a light source that was neither spatially nor spectrally uniform. Furthermore,

the spectral response of the sensor was also non-uniform. To overcome this, ‘white’ and

‘dark’ references were used to correct each image. Each image captured contained a

calibration tile, as shown in Figure 5.3. The images in Figure 5.3 are false colour images

generated from three bands, as explained in Section 2.2.2. Cropping the image to just

the white part of tile provided the white reference. The dark reference was acquired by

capturing a small image while the lens was covered with a lens cap. The red tape on

the tile was used as an extra way to check consistency between images.
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(a) (b)

Figure 5.3: False colour images of the sponges on Day 1 before cropping. (a) Vanilla.
(b) Chocolate.

(a) (b)

Figure 5.4: False colour images of the sponges on Day 1 after cropping. (a) Vanilla.
(b) Chocolate.

The correction was performed as explained in Section 2.2.9.1.

After correction, each imaged was cropped to a 275 × 275 section in the centre of the

sponge. An example image of each type sponge after pre-processing is shown in Fig-

ure 5.4 again, in false colour.

5.3.2 Observing Water Content

As stated earlier, a known water absorption band is at 970 nm. A sponge with a high

moisture content is therefore expected to have a low reflectance (high absorbance) value

at 970 nm compared to a sponge with a lower moisture content. Figure 5.5 shows a

section of a vanilla sponge at 970 nm with a small amount of water placed on the left

hand side. The sponge is clearly darker and thus more moist where the water has been

added. Figure 5.6 shows the average spectral reflectance of this vanilla sponge across
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Figure 5.5: Vanilla sponge. Left - wet, right - dry.
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Figure 5.6: Reflectance values for wet and dry vanilla sponge.

the dry section and the wet section. Looking at reflectance values around 970 nm, it is

easy to see that the reflectance is higher for the dry sponge, confirming that 970 nm is

indeed a water absorption band and therefore suitable for measuring moisture content.

By inverting the reflectance at 970 nm and normalising for all sponges in an experiment,

a score can be produced within the range 0 to 1, where 0 corresponds to the driest sponge

and 1 corresponds to the most moist. Since sponges dry out with age, it is expected

that this score will give an indication of the age of this sponge.

5.3.3 Spatial Information

Using the moisture content information explained in the previous section, it is possible

to estimate the distribution of moisture throughout a spatial region of a hyperspectral

image. Since the day-to-day variation between sponges can be significant, an average

sponge image is created for each week, shown at 970 nm in Figure 5.7(a). Since the

moisture content at each pixel is a function of pixel intensity, the freshest (most moist)

average sponge (top) is the darkest and the oldest (bottom) average sponge is the bright-

est.
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(a) (b) (c) (d)

Figure 5.7: Average sponge for each week. From top to bottom: Week 1 to Week 6.
(a) Reflectance at 970 nm. (b) Reflectance at 970 nm thresholded. (c) MLC classified

result. (d) MLC classified and filtered result.

The variance in pixel intensity in Figure 5.7(a) is relatively low, however, resulting in

low contrast images. If each pixel can be considered as either ’dry’ or ’moist’, it should

be possible to set a threshold which separates these classes. Since no other information

about the moisture content of the sponges is known, a thresholded image of these average

sponges should contain an equal number of black pixels as white pixels, i.e. the mean
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Figure 5.8: Mean Pixel Intensity at different threshold values

pixel value in the image is 0.5 (where 0 is black and 1 is white). To find this threshold

value, the mean pixel intensity is plotted against threshold values from 0 to 1. See

Figure 5.8. From the figure, the threshold value which achieves a mean pixel intensity

of 0.5 is 0.3626. Applying this threshold to the average sponges for each week produces

the image shown in Figure 5.7(b). The thresholded result for all sponge images at this

value is shown in Figure 5.9 where the top left is the freshest sponge and the bottom

right is the oldest sponge.

From the results in Figures 5.7 and 5.9, it is clear that each sponge has dried from

the edge inwards. This information can be used to train a binary classifier by selecting

regions of dry and moist sponge for training data, see Figure 5.10. The centre of the

freshest sponge has been selected as ‘moist’ (blue) and the edges of the oldest sponge

have been selected as ‘dry’ (green).

The thresholded result shown in Figure 5.9 only uses information from one spectral

band (970 nm). It is expected that a more robust result could be obtained using more of

the spectral information available. Rather than trying to process every spectral band,

Principal Component Analysis (see Section 2.3.1) was employed to reduce the data from

256 wavelength bands to just 20 principal components.

The Maximum Likelihood Classifier (see Section 4.2.2) was chosen to classify the data

as it is quick to implement whilst still providing a robust classification result. The

speed of classification is important, especially if a system such as this one is to be used

on a production line where results are required almost instantly. So while SVMs were

shown to have a higher performance in Chapter 4, the higher speed of MLC made it

most suitable for the classification presented here. For this study, two classes were used:
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Figure 5.9: All sponges at 970 nm thresholded. Each row corresponds to a week and
each column corresponds to a day of the week.

moist sponge and dry sponge. Training data was selected as described earlier. The

results of the classification are discussed in Section 5.4.
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Figure 5.10: Training data selected from freshest sponge (left) and oldest sponge (right).
Blue corresponds to ‘moist’ and green corresponds to ‘dry’.
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Figure 5.11: Normalised mean organoleptic scores for Appearance, Taste and Texture.
(a) Chocolate. (b) Vanilla.

5.4 Experiments and Results

5.4.1 Organoleptic Results

A team of five tasting experts at the bakery analysed one chocolate sponge and one

vanilla sponge each day over a 40 day period from the same batch as used in the imaging

process explained in Section 5.2. Each sponge was scored out of 10 by each panel

member for taste, texture and appearance. In order to make comparisons with the

scores generated from the hyperspectral data, these scores were averaged and normalised,

resulting in 3 scores (taste, texture, appearance) for each sponge on each day, with

each score being within the range 0 to 1. This normalised mean response is shown in

Figure 5.11. As expected, the scores tend to decrease over time.



Chapter 5. Hyperspectral Analysis of Baked Sponges 109

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Inverted Normalised Reflectance Data at 970 nm for Chocolate Sponge

Day Number

(a)

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Day Number

Inverted Normalised Reflectance Data at 970 nm for Vanilla Sponge

(b)

Figure 5.12: Normalised and inverted response at 970 nm. (a) Chocolate. (b) Vanilla.
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Figure 5.13: Normalised Taste, Texture and Appearance and 970 nm. (a) Chocolate.
(b) Vanilla.

5.4.2 Hyperspectral Results

The inverted and normalised scores produced from the hyperspectral data for each type

of sponge are shown in Figure 5.12. The chocolate sponge clearly exhibits a downward

trend over time. The vanilla results are less conclusive, although the overall trend of

the data is still slightly downwards. Figure 5.13 shows the hyperspectral results on the

same axes as the tasting panel results. From here it can be seen that there is a strong

correlation between results. The chocolate sponge produces more consistent scores both

organoleptically and hyperspectrally compared to the vanilla results. This indicates that

there may be more variation within a single batch of vanilla sponges than in a single

batch of chocolate sponges. Indeed, further discussion with the bakery confirmed that

they find there is more variation between vanilla sponges during the baking process.
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5.4.3 Classification Results

As explained in Section 5.3, a classifier needs to be trained using training data before its

performance can be evaluated using testing data. Using the results of the thresholding

at 970 nm, the edge of the oldest sponge was labelled as dry (green) and the centre

of the freshest sponge was labelled as moist (blue), as in Figure 5.10. All sponges

were used as testing data and an average sponge was produced for each week. These

average sponge classification results are shown in Figure 5.7(c). To further improve

the classification result, each average sponge was filtered using a median filter with

window size 3x3 pixels, as seen in Figure 5.7(d). Comparing with the other results in

Figure 5.7, the improvement offered by classification over simple thresholding and also

the improvement offered by median filtering can be seen.

5.5 Developing a System

The results from the previous section clearly indicate that hyperspectral information

closely correlates both with the organoleptic quality scores and the expected moisture

content distribution of a baked sponge. If a sponge of unknown quality and moisture

distribution were to be imaged using a similar set up to the one described in this chap-

ter, a score could be produced giving an estimate of its eating quality. Furthermore,

this sponge image could be classified using the already trained MLC and the predicted

distribution of moisture content could be visualised. Currently, the bakery uses a human

tasting panel to analyse a very small subset of all sponges produced. This is subject

to a number of drawbacks, identified in Section 5.1. With the proposed hyperspectral

system, significantly more sponges could be analysed. In fact, due to the production

line nature of the baking process, every sponge produced could be imaged and analysed,

providing an unprecedented level of information about the baking process. The effects

of any changes in the baking process (e.g. new flour supplier) may not be apparent

under existing methods, so hyperspectral imaging could provide a means of objectively

quantifying any differences making it easier test new methods which may improve the

quality of sponges produced.

The bakery has recently acquired a moisture meter which provides an accurate percent-

age moisture content for a small sponge sample (<10 g) by weighing it before and after
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drying it out. Like the organoleptic testing, this test is also destructive so cannot be

used to analyse any more than a small subset of all sponges produced. In future work,

however, this moisture data could be used to verify and improve the performance of the

hyperspectral analysis.

Since using the full spectral data with the MLC produced better results than simple

thresholding at 970 nm, it is likely that more accurate scores could be produced for the

analysis in Section 5.4.2. If only 970 nm data is used, however, then a hyperspectral

system is not required. A single 970 nm band pass filter could be used to achieve the same

results. Obviously, this would limit the spatial information to the simple thresholded

result.

5.6 Summary

In this chapter, a method for using hyperspectral imaging to determine the quality of

a baked sponge is presented. Two batches of sponges (chocolate and vanilla flavour)

were used to analyse how the age of the sponge affects its quality. The ground truth

measurement was taken from an expert panel of tasters, who tested one of each sponge

each day. From the same batches of sponges, one of each sponge was imaged using an

VNIR hyperspectral system. By calibrating and correcting every image, an average score

relating to sponge moisture content was produced for each sponge. The results show

that these scores are strongly correlated with the organoleptic measurements from the

human tasters. Furthermore, a classifier was trained to identify moist and dry regions of

a sponge image. This allows an unknown sponge to be imaged and an estimation of its

moisture distribution to be visualised. With the techniques proposed in this chapter, a

system could be developed to allow every sponge produced to be imaged and analysed,

allowing the bakery to see the measured quality of each sponge, not a just subset analysed

by human tasters. With this information, the baking process can be modified and any

changes in the quality of the sponges can be immediately quantified.



Chapter 6

Spatial, Spectral and Colour

Information - A Quantitative

Analysis

6.1 Introduction

The aim of the research presented in this chapter is to quantify the improvement offered

by HSI over standard imaging techniques (RGB and greyscale) and standard spectro-

scopic techniques. A simple task of classifying four different kinds of rice is used to

measure the performance of each technique. Rice was chosen as there were several dif-

ferent kinds readily available and each variety showed some differences in terms of shape,

size, colour and, one would expect, spectral response.

SWIR HSI offers clear advantages over conventional imaging due the rich chemical in-

formation available, but the high equipment costs often prohibit its use. VNIR HSI

systems, however, costs significantly less allowing the potential of HSI to be realised in

many more situations. The advantage of VNIR HSI over RGB or greyscale imaging is

less apparent. For this reason, VNIR HSI is the considered technology of interest in this

chapter.

To show the improvement HSI offers over standard imaging, hyperspectral data is com-

pared with true colour images generated from the same dataset. The process to produce
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these true colour images is the same as explained in Section 2.2.3. The comparison with

spectroscopic techniques is achieved by simply considering only the spectral response of

each pixel and ignoring any spatial information.

Spatial information is obtained from the images using standard image processing tech-

niques, explained later in this chapter. Thus, from a single hyperspectral image, we can

produce five datasets for comparison:

• Spatial information only

• Colour information only

• Spectral information only

• Spatial and colour information

• Spatial and spectral information

To compare these five data sets, an SVM classifier is trained using a sub-sample of each

kind of rice. While any of the classification techniques explained in Chapter 4 could

have been used, SVMs were used as they consistently had the highest accuracy. Since

the datasets are relatively small (compared to the tea images in Chapter 4 and the

sponge images in Chapter 5), the classification speed is not so critical. The performance

of the SVM is evaluated against a different sub-sample, giving a classification accuracy

as a percentage. This is repeated for each dataset, and the best performance will be

indicated by the highest classification accuracy. To ensure reliable conclusions can be

drawn, this classification process is repeated over a number of different sub-samples for

each dataset, cross-validating the results.

In [30, 94], several techniques are described for extracting spatial features and combining

them with spectral information for classification. These techniques, however, focussed

on remote sensing data so are not applicable to the rice grain analysis presented in this

chapter. Colour is determined to be an important attribute for consumers with regards

to food in [95] and in [96], dates are classified using an SVM based on colour, texture

and shape. The four different types of date used in [96] are clearly visually similar,

unlike the rice grains used in this chapter.
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The remainder of this chapter is laid out as follows: firstly, the different types of rice

are described along with justification for their inclusion, the imaging process is then

explained in detail along with some example images, followed by the steps involved in

pre-processing all the captured data. Then the classification process is described. The

classification results are then presented and summarised before some conclusions are

drawn.

6.2 Rice Types

As outlined in the introduction to this chapter, rice was chosen as the subject for this

experiment for a number of reasons:

• Several kinds readily available at low cost

• Grain shape variance between types

• Grain size variance between types

• Grain colour variance between types

• Expected spectral variances between types

Using the tea leaves from Chapter 4 or the sponges from Chapter 5 was considered for

this study, but the spatial information in each of these cases was difficult to determine

(tea leaves) or almost non-existent (sponges).

The four types chosen, shown in Figure 6.1, are Long Grain and Wild Rice, Basmati

Rice, Pudding Rice and Value Long Grain Rice. For the rest of this chapter, these will

be referred to as Rice 1, Rice 2, Rice 3, and Rice 4, respectively.

From visual inspection of each type, the following conclusions could be immediately

drawn:

• Rice 1 is made up of black and white grains

• Rice 3 has generally more rounded shape than the others

• Rice 4 has a more inconsistent size due to the number of broken grains
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Figure 6.1: The four kinds of rice. From left to right: Basmati, Long Grain and Wild,
Pudding Rice, Value Long Grain

Since Rice 1 consists of grains which are one of two different colours, all of the black

colour grains were discarded. If they had been left in, then the problem would essentially

have become five-class, with one class being clearly different from the rest offering little

improvement to any conclusions which could be drawn.

6.3 Imaging

Since accurate spatial information is critical in this study, the grains of rice were imaged

in a grid formation with no two grains touching each other. A well-plate was used

to hold each grain in a specific place. By isolating each grain of rice like this, the

required image processing task of identifying each grain and its spatial properties should

become significantly easier since it is much easier to distinguish a grain of rice from the

background compared to distinguishing one grain of rice from another when they are

touching.

Each type of rice was imaged separately in a grid of 72 formation. Then a final image

consisting of 18 grains of each type was imaged. Each rice type in this case corresponded

to three rows in the grid. This resulted in a total of five hypercubes and a total of 360

individual grains imaged.
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The imaging set-up was the one described in Section 2.2.8, and the imaging was per-

formed in 4x4 binning mode, resulting in 336 pixels of 256 wavelength bands for each

line in each image. Using a white calibration tile, each image was corrected, as in Sec-

tion 2.2.9.1. A mercury calibration lamp was also used to calibrate each pixel to a

specific wavelength, as in Section 2.2.9.2.

Figure 6.2 shows a true colour representation (explained in Section 2.2.3) of each image

captured after correction and calibration, but before any other pre-processing. The

white bar at the top of each image is the calibration tile. Since the true colour image

consists of three channels - red, green and blue - the non-spatial data therefore consists

of all 256 spectral features and 3 colour features.

6.4 Data pre-processing

6.4.1 Mask Creation

From looking at the images in Figure 6.2, it is clear that much of each image consists

of pixels which are not rice. The first step in pre-processing is therefore to remove all

non-rice pixels. To achieve this, a mask must be created for each image which consists

of a binary image where a one represents a rice pixel and a zero represents a non-rice

pixel. Creation of these masks was not as straightforward as first expected and a number

of techniques needed to be attempted before a satisfactory result was obtained. This

section details each of these techniques.

6.4.1.1 Mask Creation By Thresholding

Since the rice grains were imaged on a black, highly absorbent background, it was

expected that there would be a single band at which all rice grain pixels were significantly

brighter than the background pixels. Some unwanted bright pixels caused by reflections

were anticipated, but it was thought that a morphological opening on a thresholded

result would be adequate, as in Section 4.3.1. The reflections (unwanted bright pixels),

however were more problematic than anticipated, preventing accurate masks from being

generated in this way. Figure 6.3(b) shows some regions of interest selected from the rice

mixture hypercube. Two of these regions are of rice pixels, and four are of background
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(a) (b) (c)

(d) (e)

Figure 6.2: False colour representations of the five captured hypercubes (a) Rice 1 (b)
Rice 2 (c) Rice 3 (d) Rice 4 (e) Mix of Rice 1, 2, 3, and 4

pixels, i.e., the well-plate. Figure 6.3(c) shows the mean spectrum for each of these

regions. From this plot, it is clear that the background is sometimes brighter than the

rice pixels and sometimes darker, regardless of the wavelength chosen. In cases such as

this, separating objects based on a threshold value is impossible.

6.4.1.2 Mask Creation By Spectral Trough Steepness

From this plot, however, it can be seen that the background pixels all exhibit distinct

troughs at 543 nm at 608 nm while the rice pixels maintain a relatively flat response.

These two troughs are caused by the combination of the fluorescent room lighting that
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was used during the imaging and the highly absorbent tape used behind the well plate.

In the uncorrected image, there are peaks at these wavelengths on both the white cali-

bration tile and the rice, but not on the well-plate, resulting in troughs produced in the

corrected spectra.

The steepness of these troughs can be calculated by taking a simple ratio of the trough

wavelength and another wavelength around 10 nm away. Figure 6.3(d) shows the image

at 543 nm divided by the image at 533 nm. The rice grains are clearly brighter than

the background pixels. To completely remove all the non-rice pixels, the image was

thresholded and any pixels much larger than a rice grain (400 pixels) or much smaller

(70 pixels) were masked out. The resultant mask is shown in Figure 6.3(e).

The masks for all rice images are shown in Figure 6.4. Each hypercube at each wave-

length band was then ANDed with its corresponding mask. This produced hypercubes

of identical size to the originals, but with the majority of pixels in each hypercube

consisting of zeros.

6.4.2 Sparse Representation

Since a masked hypercube consists mainly of zeros, there is huge redundancy in storing

every pixel at every wavelength band. To remove this redundancy, each hypercube was

reshaped from a 3-D matrix (x, y, λ), to a 2-D matrix (x × y, λ). Two extra columns

were then added to this data corresponding to the x and y values of each pixel resulting

in a dataset of dimensions (x× y, λ+ 2). All rows with zeros values for all wavelengths

(the masked pixels) were then removed, leaving a dataset of much smaller size. For

example, for the hypercube in Figure 6.2(a), the storage requirements can be calculated

as 336(x)× 620(y)× 256(λ)× 32 bits = 203.438 MB. The storage requirements for the

sparse representation of this hypercube are 12611 × (256 + 2) × 32 bits = 12.412 MB,

a huge decrease. This decrease not only reduces storage requirements, but results in

significantly faster processing times as much less data has to be classified.

6.4.3 Spatial Feature Extraction

After considering a number of possible spatial features that could be extracted, the

following three were chosen:
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• Major axis length

• Minor axis length

• Eccentricity

Each of these features refer to properties of an ellipse. Clearly, not every rice grain has

the shape of an ellipse, so a method is needed for determining the size and shape of an

ellipse which represents a single grain of rice. This is done by isolating each grain of

rice in the mask images, and calculating its second-moments. Since the second-moments

define an ellipse [97], they can be used to determine the corresponding ellipse for each

grain of rice in all of the mask images.

Major Axis Length

The major axis length of an ellipse is its longest diameter. Since the ellipse is determined

by the second-moments of the rice grain, this will give an indication of each grain’s length.

Minor Axis Length

The minor axis length is the shortest diameter of an ellipse. This is perpendicular to

the major axis explained above and gives an indication of each grain’s width.

Eccentricity

The eccentricity of an ellipse is another measure which is determined by the major and

minor axis lengths. From [98] it is defined as

E =

√
L2 − l2
L

(6.1)

where E is the eccentricity, L is the major axis length, and l is the minor axis length.

The eccentricity of an ellipse is always in the range 0 to 1, where 0 represents a circle

and 1 represents a line.

Each of these spatial features was calculated for each grain of rice in each mask image.

The three features were the incorporated into the hyperspectral data by creating an

extra band for each feature, similar to the extra two bands created for the x and y

locations of each pixels.
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Other spatial features such as textures were considered, but manual examination of the

rice images made it clear that any texture measures would not have helped separate any

of the rice classes.

Another factor that needed to be considered, was the removal of noisy bands that offered

no information. These were caused the sensor not being sensitive enough in the wave-

length regions towards the ultraviolet end of the spectrum. The first ten spectral bands

(306 nm - 408 nm) were removed from each sparsely represented hypercube. The λ di-

mension for each pixel therefore consisted of 246 spectral bands + 2 spatial coordinates

+ 3 spatial features = 251 variables.

6.5 Classification

As explained in Section 4.2.4, SVMs are consistently top performers in classification

problems, especially when the sample features are hyperspectral data, so they make a

good choice for this study. Although SVMs are binary classifiers, one-vs-all classification

is used to allow multi-class classification.

Since the data is arranged into sparse form with 251 variables per pixel, selecting subsets

for the data is simply an indexing problem. Selecting the training and testing data is

also an indexing problem, but it is not as simple to solve. Perhaps the most intuitive

method is to use the data from the hypercubes of each rice on its own as the training

data and the hypercube of the mixture of rice as the testing data. The benefit of this

method is that since the testing data contains spatial information from a single image,

a visual result can be produced showing exactly where each classified point lies. The

drawback however, is that it reduces the possibility of cross-validation, since there is

only one way to split the data. An alternative method is to gather all the data together

(individual rice classes and the mix of rice) into a large matrix where each row represents

a pixel and each column is one of the 251 variables. Training and testing sets can then

be chosen by selecting rows at random from this matrix.

For example, to perform ten-fold cross-validation, the large matrix would be split into

ten sections and in turn each of the sections would be used as testing data with the

rest used as training data. The results would then be averaged together. For this

study, however, this method would not be appropriate due to the nature of the spatial
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information. During the feature extraction process, three spatial features were calculated

for each pixel. These spatial features were related to the shape of the rice grain to which

it belonged, not to anything specific about this pixel. Therefore, for each pixel with

specific spatial feature values, there exists several other pixels with the exact same

spatial properties. With the cross-validation technique used above this means that some

of the testing pixels could have identical spatial features to the ones in the training set

since they could both originate from the same rice grain. This could not happen in a

real-life classification situation and it would unfairly skew the results of the classification

in favour of the spatial information.

To overcome this problem, the entire data set was split into individual rice grain sections.

Since there are 5 images with 72 grains in each one, the data is now subset into 360

sections. Cross validation can then be performed by choosing different groups of these

rice sections for training and testing sets without any pixels from a single grain appearing

in both.

6.6 Results and Discussions

This section shows the results of the classification and aims to quantify the advantage

offered by HSI over conventional imaging techniques. Different sized sets of training and

testing data were used for quantitative evaluation of each imaging technique and the

effect this had on the results are discussed.

6.6.1 Classification with Visual Result

As explained in the previous section, an intuitive way to split the data was to simply

use the individual rice images as training data and the mixed rice image as testing

data. This produced a visual result, shown in Figure 6.5 alongside the ground truth

image. This ground truth image was used to calculate the accuracies shown in Table 6.1.

Obviously, only rice pixels contributed to the accuracy, not any of the black background.

Looking at these classification results, the highest classification result is with spectral and

spatial information, as would be expected since this is the subset containing the most

information. Without cross-validation, however, there can be no confidence in these

results. Perhaps the split of training and testing this way happened to suit the SVM
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particularly well and the classification performance would suffer in other circumstances.

The effect of changing the percentage of training data also may have a great influence.

Table 6.1: Classification Accuracies for SVM Classification with Rice Mix as Testing
Data

Dataset Accuracy

Spatial information 69.91%
Colour information 67.17%
Spectral information 74.27%
Colour and spatial information 81.67%
Spectral and spatial information 90.20%

6.6.2 Cross-validation Results

By splitting the entire dataset into 360 individual rice grain sections, a number of differ-

ent levels of cross-validation were performed. The technique used was repeated random

sub-sampling, where the data is randomly split into multiple training and testing sets.

The classification accuracy is then calculated for each pair of sets and an average is

calculated. This entire process can then be repeated for various percentages of training

(and testing) data. In this study, 20 different pairs were randomly selected for each

training percentage. The results of this are shown in Table 6.2.

From Table 6.2, the results appear broadly similar to the non-cross-validated results,

suggesting that the data generalises well and that the initial split based on the individ-

ual rice images and the mixed rice image was a good approximation of random selection.

As before, combining spectral and spatial information produced the highest classifica-

tion accuracies. It is interesting to note that the spatial, colour, and spectral subsets

had relatively low accuracies individually, but combined together well. This shows that

the spatial differences were to an extent unrelated to the spectral differences and that

both were required for accurate classification. Adding colour information to the spatial

information improved the classification result, but not as much as adding spectral in-

formation. This was expected since the colour information is a subset of the spectral

information.
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Table 6.2: Cross-validated Classification Accuracies for SVM Classification

Training
Percentage Spatial Colour Spectral Colour + spatial Spectral + spatial

5% 57.80% 61.04% 58.73% 58.72% 70.44%
10% 64.76% 62.96% 63.01% 65.86% 84.69%
15% 65.74% 64.97% 64.07% 67.61% 88.98%
20% 66.63% 65.26% 65.49% 73.90% 91.19%
25% 68.70% 66.74% 66.22% 76.72% 91.48%
30% 66.84% 66.88% 66.33% 79.27% 92.12%
35% 68.31% 67.75% 67.75% 82.99% 92.35%
40% 67.05% 66.87% 68.02% 80.33% 92.28%
45% 67.30% 67.41% 67.40% 83.66% 92.75%
50% 65.76% 67.51% 69.64% 81.76% 93.48%
55% 66.24% 67.20% 69.63% 84.63% 93.60%
60% 64.85% 67.85% 69.32% 84.07% 93.34%
65% 66.87% 68.50% 69.08% 81.87% 93.70%
70% 68.88% 68.16% 67.94% 84.93% 94.33%
75% 67.85% 68.55% 69.43% 85.96% 93.07%
80% 66.26% 69.15% 69.59% 84.68% 94.13%
85% 68.99% 67.18% 70.86% 86.65% 94.33%
90% 67.79% 69.97% 69.58% 84.82% 93.65%
95% 69.20% 66.24% 69.91% 89.78% 94.32%

Average 66.62% 66.85% 67.47% 79.91% 91.27%

As the training percentage increased, the individual classification accuracies also in-

creased, as would be expected. The combinations of colour+spatial and spectral+spatial

showed the steepest increases.

6.7 Summary

In this chapter, hyperspectral images of rice were classified using an SVM classifier. To

evaluate the performance improvement offered by hyperspectral data over conventional

imaging techniques, the classifier was implemented with five different data subsets: spa-

tial, colour, spectral, spatial + colour, and spectral + spatial. The varying steepness of

a spectral trough in the data was exploited to create binary masks for each rice image

to get rid of any background pixels. The second-moments of each rice grain in each

of these masks was then used to determine the dimensions of corresponding ellipses.

The major-axis length, minor-axis length and eccentricity were then measured for each

of the ellipses and were used as the spatial information for classification. The colour
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information was extracted from the hyperspectral data by means of a true colour image.

By removing all rice pixels, each image reduced to a sparse representation, substantially

reducing the storage and processing requirements.

The results show that the combination of spectral and spatial information produced the

highest classification accuracy, averaging > 90% accuracy during each level of cross-

validation. Using colour and spatial information together (such as would be available

from a standard colour imaging system) produced the second most accurate results,

averaging >80% accuracy. This was higher than the approximately 70% accuracies seen

for spectral information on its own. From these results, it is shown that HSI in this

context can improve classification, but only if spatial features are still considered.

It has been demonstrated that VNIR HSI is a useful tool that when appropriately used

can improve classification results. It does not, however, negate the need for standard

image processing techniques. Since only four types of rice grain were analysed, there

is no guarantee that these results would generalise well for other foodstuffs. For this

reason, it would be worthwhile to repeat this experiment with new samples. This is

further discussed in Chapter 7.
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Figure 6.3: Creation of the mask for the Mix of Rice 1, 2, 3 and 4 (a) At 624 nm
(b) Regions of Interest (c) Plot of the Regions of Interest (d) The output of the trough

steepness calculation (e) The final mask
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(a) (b) (c)

(d) (e)

Figure 6.4: Masks for each hypercube to remove non-rice pixels (a) Rice 1 Mask (b) Rice
2 Mask (c) Rice 3 Mask (d) Rice 4 Mask (e) Mix of Rice 1, 2, 3, and 4 Mask
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(a) (b) (c)

(d) (e) (f)

Figure 6.5: SVM Classification results with Rice Mix as testing data (a) Spatial informa-
tion (b) Colour information (c) Spectral information (d) Colour and spatial information

(e) Spectral and spatial information (f) Ground truth



Chapter 7

Conclusions and Further Work

The initial aims of the work in this project were to develop new methods of capture and

analysis of hyperspectral data, and to conduct studies that could convince industrialists

that hyperspectral imaging may be a financially viable improvement to an aspect of

their business. This thesis demonstrates that these goals have clearly been achieved.

In terms of methods of capturing data, a major contribution has been the development

of a novel algorithm which converts data captured using a rotational line-scan into

Cartesian form making it an alternative to linear line-scan systems. This was enhanced

by the addition of a calibration process which determined the inherent offsets in the

scan using a calibration object that does not need to be perfectly aligned with the axis

of rotation of the scan.

The Chinese tea classification, the analysis of baked sponges and the quantitative anal-

ysis of spatial, spectral and colour information have clearly demonstrated that hyper-

spectral imaging can offer many benefits. The classification of Chinese tea samples

showed how hyperspectral imaging can be used to distinguish visually similar samples.

The analysis of baked sponges clearly demonstrated the potential value of hyperspectral

imaging as a quality analysis tool in a manufacturing environment and the quantitative

analysis of spatial, spectral and colour information showed the improvements offered by

hyperspectral imaging when compared to conventional imaging techniques.

In this chapter, the major conclusions of this work are presented and the impact of the

demonstrated results is evaluated. Finally, a number of potential directions that future

work in this field could take are discussed.

128
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7.1 Rotational Scanning Techniques

In Chapter 2, the main image acquisition techniques for hyperspectral imaging were

described. The most popular method was identified as pushbroom, where an entire line

of pixels at all wavelengths is captured simultaneously, before the object or detector is

moved and another line is captured. To ensure square pixels, an accurate way of moving

the camera or the object is required. Chapter 3 proposed that since rotational movement

is often naturally available or easier to achieve, a pushbroom acquisition technique that

utilises a rotational line-scan would be beneficial.

First, the idea of a perfect rotational scan was explained where the centre of each line

scanned lies exactly coincident with the axis of rotation of the scan. Since a perfect scan

of this type is the equivalent of polar representation, conversion to Cartesian represen-

tation is trivial using publicly available toolboxes. It was then explained that a perfect

scan of this nature is very hard to achieve, and that there will almost always be two

inherent offsets related to each scan. These offsets were defined as a vertical offset and

a horizontal offset. The horizontal offset represents a shift in the scan and as such is

easy to account for. The vertical offset, however, represents the distance the line-scan is

away from the axis of rotation. It was shown how this means that each line in the scan

can be represented by a tangent of a circle whose radius is equal to the vertical offset.

By defining the scan in this way, an algorithm was proposed which takes a rotationally

scanned image and converts it into Cartesian form. Several examples of rotational scans

converted to Cartesian form were shown.

To operate, this algorithm required that both the horizontal and vertical offsets were

known. Rather than manually determining these offsets through trial and error, a cali-

bration technique was proposed which used a calibration object consisting of a circle of

known size and of a colour which highly contrasted with the background. By aligning

the centre of this calibration object with the axis of rotation of the scan, it was shown

how these two offsets could be easily calculated. This calibration process was then im-

proved by relaxing the alignment requirements. Several examples were shown of how

an imperfectly aligned calibration object could be used to calculate both of the offsets.

Since nearly all of the pixels in Cartesian form do not have an exact corresponding pixel

in the scanned image, some form of interpolation was required. Nearest-neighbour, bi-

linear and bicubic interpolation methods were compared, and bilinear was selected as
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the most appropriate method as it offered the best trade off between performance and

computational complexity.

Finally, three synthetic images were used to measure the performance of rotational scan-

ning compared to linear scanning, by measuring the similarity between different pairs

of images. In general, the results were very good with rotational scanning outperform-

ing linear scanning in some cases, demonstrating that rotational scanning is a viable

alternative hyperspectral imaging method to a linear line-scan.

7.2 Supervised Classification Techniques in Hyperspectral

Imaging

In Chapter 4, five of the most popular classification techniques were explained before

each one was implemented in a classification problem where five different types of Chinese

tea leaves had to be distinguished. MDC, MLC, ANN, SVM and AdaBoost with MLC

were selected as the five classifiers.

Due to the nature of the imaging of the tea leaves, each image consisted of many non-tea

pixels, so some cropping was required. Rather than using manual cropping, each image

was converted to a binary image and a rectangular structuring element was used to

perform a morphological opening, resulting in a mask which was used to remove all non-

tea pixels. Since hyperspectral images contain a significant amount of highly correlated

data, PCA was used to reduce that data.

After splitting the data into multiple training and testing sets, each classifier was used to

classify the data. Several parameters were investigated: the number of PCA components,

the size of the modal filter used for post-processing, the number of hidden layers (ANN

only), the number of weak learners (AdaBoost with MLC only) and the percentage of

data used for training.

Plots were produced for each of these tests with the classification accuracy being the mea-

sure of performance. Cross-validation was used to ensure the results were statistically

significant and Cohen’s Kappa was calculated to confirm that the higher classification

accuracies were not significantly effected by random chance.
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Increasing the number of PCA components improved accuracy up until around 10 com-

ponents where it offered little improvement. Modal filtering of the data improved the

results up until around 9 by 9 pixels where the benefit was outweighed by increased

computational complexity. Using more hidden layers in the ANN improved results, al-

though more repeated results are needed to confirm this is not due to the random initial

weighting. Adding more weak learners to the AdaBoost with MLC also improved results

but significantly increased computation time - 15 weak learners offered a good compro-

mise. Using more training data did not improve classification results and in some cases

decreased the accuracy.

This study clearly demonstrated the potential for hyperspectral imaging in a classi-

fication context. Although initial classification results may be unsatisfactory, it was

shown that appropriate pre and post-processing can greatly improve the classification

performance of a system.

7.3 Analysis of Baked Sponges

An analysis of baked sponges using hyperspectral imaging was presented in Chapter 5.

An expert panel of tasters scored a selection of sponges of various ages on taste, texture

and appearance. A VNIR hyperspectral imaging system was used to image a similar

selection of sponges taken from the same batch. Through calibration and correction of

every image, a score relating to sponge moisture content for each sponge was produced.

Comparisons of these scores with the tasting panel scores showed a strong correlation,

especially for the chocolate sponges. By taking an average sponge image for each week,

the moisture content information was used to train a classifier which identified moist and

dry regions of each sponge image. This trained classifier could then be used to analyse

an unknown sponge and give a visualisation of its estimated moisture distribution. It

was then discussed how the techniques developed in this chapter could be implemented

in the production line environment of a bakery, allowing every sponge that is produced

to be imaged and scored, rather than the small subset the human tasters currently test.

This information would allow any problems in the baking process to be identified earlier.

Furthermore, alterations could be made to the baking process and any changes in the

quality of sponges could be immediately quantified.
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Although hyperspectral imaging will never completely replace the need for human tasters

in the quality analysis of food products, this case study demonstrated the potential

benefits a hyperspectral imaging system could provide. With ability to analyse many

more samples than a human tasting panel ever could, and capture spatial information,

hyperspectral imaging is destined to become a key technology in the baking industry

and the wider food and drink sector in general.

7.4 A Quantitative Analysis of Spatial, Spectral and Colour

Information

Chapter 6 provided a quantitative analysis of SVM classification using spatial, spectral

and colour information. While it was expected that a SWIR system would provide the

most accurate results, the benefits offered by a VNIR system tend to be less obvious.

The much lower cost of a VNIR system means that it would be preferable to a SWIR

one, if the benefits over standard colour imaging techniques could be demonstrated.

Using images of four different kinds of rice, four data subsets were produced: spatial,

colour, spatial + colour, and spectral + spatial. Similar to the Chinese tea images, each

image consisted of many unwanted background pixels.

By exploiting an unusual feature in the data caused by the fluorescent lighting in the

room during the imaging, a mask was created to separate the rice from the background

in each image. These mask images were then used to extract the second-moments of

each rice grain. These second moments were then used to determine the dimensions

of an ellipse for each grain, where the major-axis, minor-axis and eccentricity of each

could be measured. These three properties were used as the spatial information. Spec-

tral information was selected by ignoring any spatial features. Colour information was

extracted as true colour images from the hyperspectral data. Since so much of the data

consisted of the unwanted background pixels, each hypercube was reduced to a sparse

representation where each rice pixel was stored with its spatial coordinates and all other

pixels were discarded. This resulted in a significant reduction in storage and processing

requirements.

As expected, using both spatial and spectral information produced the highest results

from the SVM classification (>90% average accuracy after cross-validation). Spatial
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information combined with colour information had the second best performance with

nearly 80% accuracy, notably better than the approximately 67% accuracy seen for

spectral information on its own. These results showed that VNIR hyperspectral imaging

can significantly improve classification results compared to standard imaging techniques,

but it does not negate the need for spatial information to be taken into account.

7.5 Further Work

From the results presented in this thesis, there are a number of areas in which further

work could be carried out. These are discussed in this section.

7.5.1 Rotational Scanning Techniques

For the automatic determination of the rotational scan offsets, the requirements for the

calibration object were relaxed to the point where perfect alignment was not required.

The placement still had to satisfy some conditions, however. It is thought that these

requirements could be relaxed further still perhaps with the use of a different shape of

calibration object, or even by using multiple calibration objects.

Only three different images were used to measure the performance of the rotational

scan and compare it with the traditional linear one. By creating multiple images using

multiple filter sizes, a more comprehensive set of testing data could be produced. The

size and shape of the features in a rotationally scanned image is also likely to influence

the performance, so a more supervised approach to test pattern generation (rather than

filtered random images) would be useful for exploring this.

As mentioned in Chapter 3, the research in [80] is based on applying image processing

techniques to images in polar-logarithmic form. It would be interesting see how well

these techniques would preform when used with images captured by a rotational scan.

A robotic arm would be an ideal way to provide the movement required for a rotational

scan. As robotic arms are commonly used for non-destructive testing [99], combining

the rotational scanning method proposed in this thesis with the non-destructive testing

capabilities of hyperspectral imaging would be a perfect way to showcase both tech-

niques.
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7.5.2 Supervised Classification Techniques

With the Chinese tea classification, the modal filtering used during post-processing was

carried out using a simple square structuring element. A potential improvement to the

classification result could be to use a structuring element based on the shape and size

of the tea leaves being classified.

Further work could be to improve the robustness of the results by performing more

experiments. The ANN classification results in particular suffered from different initial

random weightings, so more repeats of these classifications would be beneficial. Since

only four different samples were available for each tea type, the number of possible cross-

validations was limited was for all classifiers. A simple way to remedy this would be

to image the tea leaves multiple times, but shaking the ice cube tray between repeat

images.

Each of the five classification techniques could be applied to both the sponge data and

the rice grain data. It would be interesting to see if the classifiers ranked the same as

with the tea data or if certain classifiers were more suited to specific datasets.

7.5.3 Analysis of Baked Sponges

The analysis of baked sponges is perhaps where most of the potential for future work

lies. Indeed, further research has already been carried out using a SWIR hyperspectral

system and the initial results indicate an improvement upon the results presented in

this thesis. The bakery has recently acquired a moisture meter which allows an accurate

moisture percentage to be obtained for a small sponge sample (<10 g). Further work has

been planned to use this moisture meter to confirm the relationship between moisture

content and hyperspectral data with the aim of accurately predicting moisture content

using hyperspectral data alone. The end goal of this work is to implement a hyperspectral

imaging system at the bakery where every single sponge produced could be imaged and

analysed.

Although the main focus of this research has been the analysis of baked sponges, the

bakery manufactures many other products such as chocolates, biscuits and other confec-

tionery. Each of these products will have a similar method of quality assessment which
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could well be improved by a similar type of hyperspectral analysis to the one described

in this thesis.

7.5.3.1 Spatial, Spectral and Colour Information

The quantitative analysis carried out in Chapter 6 only looked at the classification of

four kinds of rice grains. The robustness of this analysis would be greatly improved by

considering other objects, perhaps with some which may exhibit a high spatial variation

and low spectral variation such different pastas, and some which exhibit a high spectral

variation and low spatial variation such as dry spices. By comparing these results, a

score could be computed which could give an indication of spectral variance compared

to spatial variance and be used to predict the benefit offered by hyperspectral imaging

compared to conventional colour imaging.

Only three spatial features were used (major axis length, minor axis length and eccentric-

ity of each rice grain). Although texture measures were dismissed due to the similarity

of the rice grains, texture measures may be useful in other experiments outlined above.

Other spatial features could also be extracted, possibly by using rotational scanning to

find features in the proposed feature space.
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